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SUMMARY 

DkjA 
A characteristic feature of mammalian/virus transformed and 

tumour cells is the persistence of virus DNA, and usually but 

restrictively, its expression. This "genetic transformation" of 

individual normal cells may therefore form the basis of "phenotypic 

transformation" i.e. transformation as observed at the gross or 

morphological level. 

The amount of virus DNA, which appears to be consistently 

associated with host cell nuclear DNA and therefore with chromosomes, 

is likely to be an important feature in itself and is an indication 

of the level at which virus-host cell interactions operate during 

either transformation or oncogenesis. The present work describes 

experiments which attempt to estimate the amount of virus-specific 

DNA sequences in Adenovirus transformed or tumour cells: chiefly 

by cRNA-DNA hybridisation techniques. By characterising the virus 

cRNAs, both at the transcriptional and hybridisation levels, and 

therefore increasing the resolving power of the cRNA-DNA hybridisation 

technique, at most 3-4 copies of virus DNA complementary to the virus 

cRNAs were found to exist per diploid quantity of host DNA. Further-

more, using in situ hybridisation - the resolving power of which has 

also been increased during the present work-it has been shown that 

these low amounts of virus DNA sequences most likely represent the 

values per individual cell. These results are consistent with a 

very basic level of virus restriction existing in the transformed or tumour 

cells studied. 

The low amounts of virus DNA per individual transformed or tumour 

cell mean, in effect, that these sequences are difficult to detect by 



the current techniques available: especially at the single cell 

level. Many of these virus DNA sequences, however, are transcribed 

in vivo and as such are amplified. Using a modification of the 

in situ hybridisation technique virus-specific RNA sequences have 

been detected in individual Adenovirus transformed or infected cells. 

Such a method opens up the possibility of detecting, for example, 

heterogeneity of virus-specific RNA transcription in tumours. 

Preliminary experiments, with this approach in mind, have demonstrated 

such a heterogeneity of messenger RNA transcription between cells in 

the same tumour. 
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CHAPTER I 

INTRODUCTION 

Several mammalian DNA viruses are capable of transforming cells 

in culture. 	Such transformed cells usually display in vitro charac- 

teristics which are different from normal or untransformed cells: 

for example, the ability to grow to high densities when compared with 

appropriate control cells (Gallimore, 1974); the ability to produce 

colonies in semi-solid agar medium (Macpherson and Montagnier, 1964); 

and the predisposition to be agglutinable by various plant lectins at 

concentrations that fail to agglutinate normal cells (Inbar and Sachs, 

1969). 	 - 

Whether such transformation can be correlated with the persis-

tence and expression of virus genes within the affected cell has, for 

a long time, been an interesting question in virus-cell interactions. 

The virus genome is at least partially present in some virus-

transformed cells as demonstrated by the presence of new transformation-

specific proteins, or new virus-specific antigens. 	SV40 transformed 

cells, for example, express several virus implicated functions such 

as the SV40 T antigen (Black, et al., 1963; Green, 1970) and.the 

tumour-specific transplantation antigen(s) (TSTA) (Habel, 1965; 

Green, 1970). 	Similarly, Adenovirus transformed cells synthesise 

at least two types of virus-implicated antigens: T-antigen(s) and 

TSTA antigen(s). And as far as have been tested, all lymphoblastoid 

cell lines of human origin contain complement-fixing antigens specific 

for Epstein-Barr virus (EBV) (Pope et al.,1969; Vonka et al., 1970). 
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That the new antigens in virus transformed cells are the products 

of virus or virus-mediated gene expression is supported by a good 

deal of circumstantial evidence; for example, the persistence of virus 

DNA (e.g. Klein, 1975; Botchan et al., 1974; Westphal and Delbecco, 

1968; Green et al., 1970) and its transcription (e.g. Ozanne et al., 

1973; Botchan et al., 1974; Green, 1970) appear to be general 

phenomena. 

Many of the mammalian DNA viruses which can cause transformation 

also possess oncogenic potential: i.e. the ability to cause tumours 

in appropriate hosts. 	But the realisation of this potential can be 

influenced by a variety of factors including the nature of both the 

virus and the host. 	Immunosurveillance and tolerance by the host 

is a case in point (see Klein, 1975b for example). 	Reflecting this 

are the human Adenoviruses which have been classified as highly, 

moderately, or non-oncogeniC in vivo in hamsters (Huebner, 1967); 

and while some serotypes appear to be non-oncogenic on this basis 

they may nevertheless transform cells in vitro (Freeman et al., 1967; 

McAllister et al., 1969) which may then produce tumours following 

inoculation into immunosuppressed hosts (Gallimore, 1972). 

As in DNA virus transformation new internal and surface antigens 

are detectable in the tumours and in the cell lines derived from them. 

These tumour cells retain their malignant character, the capacity to 

synthesise the new virus-specific antigens, and the appearance and in 

vitro behaviour of virus transformed cells even through many cell 

generations on cloning. 

Some tumours which have arisen in vivo without experimental 

manipulation or deliberate induction can also be associated with 
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oncogenic DNA viruses, there being high antibody titres to the virus 

in question in individuals suffering from the tumour. For instance 

there is an association between antibodies to Herpesvirus type 2 and 

cervical neoplasia (Nahmias et al., 1970; Royston and Aurelian, 1970). 

Also African Burkitt's lymphoma and certain nasopharyngeal carcinomas 

are consistently associated with high EBV antibody titres (Klein, 

1975). 

The appearance and persistence of new virus-specific antigens is 

consistent with persistence and the expression of the virus genome as in 

DNA virus transformation. This is further substantiated by the 

detection of virus-specific RNA and DNA within a variety of virus-

implicated tumours; for example Adenovirus-induced tumours 

(Fujinaga and Green, 1966; 1967; 1968; Green, 1970) SV40-induced 

hamster tumours (Oda et al., 1972), Polyoma-induced tumours 

(Axelrod et al., 1964) and EBV-implicated tumours (Zur Hausen et al., 

1972; Nonoyama et al., 1973; Pagano, 1974; Klein, 1975). 

Thus the general similarities between transformed. cells and 

tumours, for example their growth characteristics in vitro may reflect 

a basic underlying similarity in the presence of virus DNA and its 

possible expression. Experiments described in this thesis were 

designed to elucidate the state of the virus DNA and its transcription 

into RNA in individual virus-transformed or tumour cells. 

By way of introduction to these particular experiments there 

follows a general account of virus DNA in virus-transformed or 

tumour cells. Virus-specific RNA in virus-transformed and tumour 

cells is dealt with in Chapter IV. 
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STATE OF VIRUS DNA IN MAMMALIAN DNA VIRUS -TRANSFORMED AND TUMOUR CELLS 

One of the striking features of mammalian DNA transformation and 

tumourogefleSiS is, in general, the lack of production of virus 

particles. 	This is in marked contrast to permissive systems (where 

productive cycles are initiated and completed).which suggests that 

virus maturation is blocked at some stage in the transformed or 

tumour cell. There are several stages of virus maturation where 

blockage or interference could occur, for example at the level of 

virus assembly, translation, transcription, or DNA replication. 	In 

most transformed or tumour cells not all the virus-specific proteins 

or RNA sequences that appear during a normal productive cycle are 

present. The virus-specific RNA, for example, is usually confined to 

those sequences transcribed previous to virus DNA replication in the 

normal productive cycle (Green, 1970). 	Selectivity in translation 

and transcription, however, could also be explained by deletions of 

the appropriate regions of the virus genome. For the vast majority 

of transformed cells this appears unlikely in view of the fact that in 

these cells me. infectious virus can be rescued by cell fusion 

(Watkins and Dulbecco, 1967; Gerber, 1966; Kowprowskiet., 1967) 

and/or by induction by chemical means (e.g. Glaser and Rapp, 1972). 

Nevertheless some transformed cells could possess incomplete genomes 

on this basis since attempts to rescue infectious virus by these 

means have usually been unsuccessful. Adenovirus transformed cells 

are a case in point (Casto, 1972; Burns and Black, 1969; Dunn et al., 

1973). 

The relationship between transformation and virus DNA replication 

is unclear in the sense that in some transformed cells the virus DNA 



appears to replicate or be induced to do so (Watkins, 1973; Klein, 

1975; Andersson, 1975); while in others there is no evidence to 

suggest that normally it does (Green, 1970; McDougall et al., 1975; 

McDougall, 1974). 

This last point is important since the failure of the virus DNA 

to replicate suggests that a very basic level of restriction exists 

in the transformed or tumour state. The amount of virus DNA in 

transformed or tumour cells is an indication of this and is therefore 

an important feature of virus transformation or tumourogenesis. 

AMOUNT OF VIRUS DNA IN TRANSFORMED OR TUMOUR CELLS 

Determination of the amount of virus DNA within transformed or 

tumour cells is important for a few reasons. As mentioned previously 

an absence of large amounts of virus DNA per cell would suggest that 

virus DNA replication - outside mitosis - is unlikely to be a feature 

of or a prerequisite for transformation or tumourogenesis. 	But 

estimation of the exact amount, or nearest approximation to this, is 

equally important because it may reflect a more basic feature of 

either the transformation or oncogenic process. 	For instance, it 

could be argued that the frequency of transformation of an individual 

cell is dependent on. the frequency of virus DNA molecules within it: 

the more virus DNA molecules the more likely will the cell become 

transformed. Alternatively the presence of only one virus DNA 

molecule per cell, for example, might indicate that the cell's 

tolerance is low, either at the gross or the molecular level. 

Examples would be the failure of the cell to remain viable with more 

than a few virus DNA molecules or, at the molecular level, the presence 

of only one potential integration site for the virus DNA. 



While it is clearly desirable to obtain this information, 

attempts to do so have resulted, as will now be summarised, in 

different estimates for the amount of virus DNA in certain virus 

transformed or tumour cells. 

The number of copies of virus DNA within transformed or tumour 

cells as been studied by making use of molecular nucleic acid 

hybridisation and reassociation techniques: principally, RNA excess 

hybridisation using radioactive complementary (cRNA) to the virus 

DNA; and reassociation of radioactive virus DNA in conjunction with 

unlabelled transformed or tumour DNA. 

In the former type of approach the amount of virus DNA is 

estimated usually in conjunction with reconstruction experiments using 

pure virus DNA. That is, the amount of cRNA hybridised to a 

particular amount of virus DNA is compared with the amount bound to 

transformed or tumour DNA. Using this method, a variety of virus-

transformed cells and tumours have been studied (Table 1:1). What 

is evident from these studies is the fact that several copies of 

virus DNA appear to exist in several transformed cell types. Thus 

Green (1970) estimated 60 copies of Adenovirus DNA in an Adenovirus 12 

transformed cell line; 85 in an Adenovirus 7 transformed cell line; 

and 23-29 in an Adenovirus 2 transformed cell line. And SV40 trans-

formed cells appear to possess 5-60 virus DNA copies (Westphal and 

Dulbecco, 1968) while several human lymphoblastoid cell lines possess 

around 20-100 EBV DNA copies (Pagano, 1974; Klein, 1975; Nonoyama 

and Pagano, 1971; Zur Hausen et al., 1972). 

The principle of the second method of virus DNA estimation 

(Also Table 1:1) is that a precisely defined amount of labelled virus 
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DNA is allowed to renature after denaturation, the reaction following 

characteristic kinetics dependent on the initial DNA concentration and 

its complexity (Britten and Kohne, 1966; Wetmur and Davidson, 1968; 

Kohne and Britten, 1971). Various cellular DNAs can then by analysed 

for the presence of virus DNA by adding them to the renaturing virus 

DNA and observing the deflection and increase in its reaction rate. 

Using this technique, Gelb et al., (1971) detected between 1 and 3 

SV40 genome copies per diploid quantity of SV40 transformed cell DNA; 

and Smith et al., (1972) demonstrated a similar low amount of SV40 

DNA in abortively-transformed BALB/3T3 clones. Small amounts of 

virus DNA sequences in SV40 transformed cells have also been reported 

by Ozanne et al (1973) where Live independently-derived transformed 

clones contained 1.35-8.75 copies per diploid quantity of host DNA. 

For Adenovirus transformed or tumour cells the amount of virus DNA, 

as determined by this technique, is also low: thus one Adenovirus 

transformed rat cell line contains close to one virus DNA copy 

(Pettersson and Sambrook, 1973). 

There is therefore some discrepency between the results obtained 

by RNA excess hybridisation and virus DNA-DNA reassociation. This 

is exemplified in the case of the Adenoviriis: 2 transformed cell line, 

8617. By cRNA hybridisation the virus genome number estimates are 

between 14 and 30 (Green, 1970: Green etal., 1970) whereas by the 

virus DNA-DNA reassociation technique there is approximately only one 

copy which is detectable (Pettersson and Sambrook, 1973). 	These 

discrepencies mean, in effect, that the facts supporting hypotheses 

on the role of virus DNA in transformed or tumour cells are themselves 

controversial. 



(a) 

Table 1:1 

Virus 
Transformed 

or 
Tumour cell 

No. of virus 
genome copies 
(or equivalents) 
/diploid quan-
tity host DNA 

cRNA-DNA 
hybridisation 

virus 
DNA-DNA 

reassociation 

virus 
DNA-host DNA 
reassociation 

Reference Comments 

EBV "Raj ill 50 + - - Zurha.usen et al.(1970) 

HKLY-l(nc) 26 + nc = Nasopharyngeal 
Carcinoma 

HKLY-2(nc) 20 + - - 

D75(BBrTR) 188  

HL 26 -. - + Zurha.en et al(1970) L 	African Burkitt's 

B2 22 - 
- + it  

lymphoma 

ne 19 - - + H  

nc 6 - - + 

Raji 60 + - - Glaser & Nonoyama( 1 72) 
Raji 6 - 

- + Zurha.üsen & Schult- labelled virus DNA 
Holthansen (1970) double-stranded and 

of low specific 
activity 

Raji 57 + - - Nonoyama & Pagano 
(1971) 

Raji 50.8-52 
- + - Nonoyama & Pagano 

(1973) 



TaD.Le 

Virus 
Transformed 

or 
Tumour cell 

1:1 contci.  

No. of virus 
genome copies 
(or equivalents) 
/diploid quan- 

RNA-DNA 
r 	sa h 	Idi 

virus 
DNA-DNA 

reassociation 
tity host DNA  

virus 
DNA-host DNA 
reassociation 

Reference Comments 

SV40 SVT2 1.52 - 	. . 	+ - Gelb etal.(1971) 

SV40.hamster 2.08  
tumour 

SV-UV-15(5) 3.86 - + - 

SVpy3T3/l 1.42 - 	S  + - 

SV-UV-15(l) 1.04 + - 

SVT2 1.56 - + - 

SVT2 1.56 - + - Gelb & Martin(1972) 

SV-UV-15(l) 1.04 - + - 

S . 	 .. 	
.. 	 .:-. . 



(b) 

Table 1:1 contd. 

Virus 
Transformed 

or 
Tumour cell 

No. of virus 
genome copies 
(or equivalents) 
/diploid quan- 
tity host DNA 

cRNA DNA 
hybridisation 

virus 
DNA-DNA 

reassociation 

virus 
DNA-host DNA 
reassociatlor 

Reference 
-, 

Comments 

SV4O SV3T3 8-9 - + - Ozanne et al(1973) the qntity of 3.9 
x 10 	daltons for 
host DNA used for 
calculations 

SVT2 2.2 - + - 

SV1O1 8-9 - + - 

SVB30 6.1 - + - 

SVpyll 1.3 - + - 

F1SV101 8-9 - + - 

CA41.6 8-9 - + - 

CA30.4 8-9 - + - 

CA32.6 8-9 - + - 

SV3T3-47 20 + - - Westphal & Dulbecco 
(1968) 

SVPy3T3-11 44 + - - doubly infected 
cell (polyoma 

H50 58 + - - and SV4O) 

SV3T3 20 + - - Sambrook et al(1968) 



Virus 
Transformed 

or 
Tumour cell 

No. of virus 
genome copies 
(or equivalents) 

rtdiploid quan- 
cRNA-DNA 

hybridisation 

virus 
DNA-DNA 

reassociation 
ity host DNA  

virus 
DNA-host DNA 
reassociation 

Reference Comments 

deno- Ad2/F2 
virus 50pfu/cell 50-150 + - - Dunn et al(1973) In situ hybridis- 

Ad2/B8 - - ation. estimates 
(lOfu/cell) . 

Ad2/8617 0.98-1.041 -. pettersson..& 
• 0.79_1.00j . 	. 	- . - Sainbro6k(1973).- 

Ad2/8617 2.7 + - - Loni & Green(1973) In situ hybridis- 
ation estimates 

Ad7/5728 10.7 	. + - - 

Ad12/HE/9 5.5 + 

- - - 



(c) 

ixabiell:l 

Virus 

conta. 

Transformed 
or 

Tumour cell 

No. of VIrUS 
genome copies 
(or equivalents) 
/diploid quan- 

cRNA-DNA 
hybridisation 

virus 
DNA-DNA 

reassociation 

tity host DNA  

virus 
DNA-host DNA 
reassociation 

Reference Comments 

deno- Ad2 23-29 + - - Green(1970) 

viru 
Ad7 85 + 

Adl2 22  

Ad12 hamster 22 - - Green.eta1(l97O) 

Ad12 trans- 
53-60 + - - 

formed 

Ad7 hamster 86-97 + - - 
tumour 

Ad2(8617) 22-30 + - - 

Ad2(8629) 29 + 

Ad2(8638) 14  

Ad2(8625 37 + - - 

Poly- Py3T3-6 5 + - - Westphal & Dulbecco(1968) 

ma 

Py8 .7 + - - 

Svpy3T3-11 10 + - - Doubly infected cell 
(polyoma and SV40) 



Table 1:2 

(a) Human Adenoviruses 

Particle weight 175 
x106  daltons 

Diameter of 80 
virion 

% bNA 12-13 

DNA, m.w., 
X106 daltons 

20-25 

DNA conformation linear duplex 

No. of polypep- 9 
tides 

Host cell for 
productive infec- human 
t ion 

Host cell for hamster, rat 
transformation human 

(b) Human Adenoviruses 

Group Members Oncogenicity 	%DNA 

A Ad12,18,31 "highly oncogenic" 	11.6-12.5 

in newborn hamsters 

B Ad3,7,11, "weakly oncogeñic" 	. 	12.5-13.7 
14,16,21 in newborn hamsters 

(all but 	Adli) 

C Adl,2,5,6 "nononcogenic" in 	12.5-13.1 
newborn hamsters but 
morphologically 
transform 	rat embryo. 
cells in vitro 

Viral DNA 
% G+C 

48-49 

49-52 

57-59 

(a) Taken from Green (1970). 
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Some of the discrepencies do appear to be due to technical 

factors (e.g. Haas et al., 1972) although it is unlikely that they 

can all be explained in this way (for a fuller discussion see 

Chapter III, Discussion pgs. t QL q ). 

Work described in this Thesis was undertaken with a view to 

measuring and locating Adenovirus DNA in particular transformed or 

tumour cells by various techniques in order to attempt to settle 

questions of the sort outlined this far. The basic methodology 

employed was cRNA-DNA hybridisation. 	Its advantages are as follows: 

ease of synthesis of highly radioactively-labelled complementary RNA 

to the virus DNA template; the detectibility limits involved with 

molecular cRNA-DNA hybridisation can be large; and cRNA -DNA 

hybridisation in situ is possible allowing single cells to be 

studied, potentially to determine cytological localisation of viral 

nucleic acids. 

CHOICE OF ADENOVIRUS SYSTEM 

For technical reasons the Adenovirus system was easier to study 

than some other mammalian DNA virus systems: Adenoviruses can be 

readily grown in Human Embryonic Kidney .  (}JEK) or Hela cells which 

greatly facilitates their isolation; the virus genome is relatively 

large (Ar20-25 x 106  daltons) facilitating detection and isolation; 

and Adenovirus stocks, tumours and transformed cells could be 

obtained (see Materials and Methods). They are indigenous to man 

(Pereira et al. , 1963; Ginsberg, 1962); and as previously mentioned 

the human serotypes differ in oncogenic potential (Trentin et al., 

1962; Green, 1970; Huebner, 1967). 	The basic features of human 

Adenoviruses are presented in Table 1:11. 



INTEGRATION OF VIRUS DNA WITHIN CELLULAR DNA OF TRANSFORMED AND 
TUMOUR CELLS 

Although quantitative estimates of virus DNA in many different 

virus-transformed or tumour cells vary, estimates for individual cell 

lines are constant even through many cell generations. For instance, 

the "Raji" human cell line derived from an African Burkitt's 

lymphoma always possesses in the region of 50 EBV genome copies even 

after several periods of cloning (Klein, 1975; Pagano, 1974). 

This does aiggest that virus DNA replication, outside mitosis, is 

unlikely to be a feature of these cells; and that the virus DNA may 

be associated with the host cell DNA: possiblyintegrated with it. 

If this is generally the case then an important feature of transfor-

mation or tuxnourogenesis is likely to be virus DNA associations 

with chromosomes which could provide the means by which the virus DNA 

in transformed cells, for example, is not only stably inherited 

(Green, 1970; Mann and Littlefield, 1968; Mann and Macpherson, 1969), 

but influences and is influenced by the control mechanisms inherent in 

their structure. 	Some of the evidence for viral integration with 

host cell DNA will now be discussed. 

a) Association of virus DNA with cellular DNA 

Infective native SV40 DNA exists as a superhelical. twisted 

circular molecule. These structures are found in productively 

infected cells (Sebring et al., 1971). 	However, they are not found 

in SV40 transformed cells (Sambrook et al., 1968; Westphal and 

Dulbecco, 1968). 	In addition, by applying a DNA extraction method 

which separates infective virus DNA from cell DNA (Hirt, 1967), the 

above authors showed that SV3T3-transformed cells do not possess -free 

virus DNA in detectable amounts either. Chromosomes, however, 
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possess the sane amount of SV40 DNA sequences as total nuclear DNA; 

and alkali-stable covalent linkages exist between the virus DNA and 

the host DNA which suggests that virus DNA becomes covalently 

integrated into the chromosomal DNA in these transformed cells. 

Covalent linkage of virus DNA sequences to host cell DNA 

sequences has also been suggested by alkaline CsC1 gradient 

centrifugation followed by SV40 cRNA hybridisation (Collins and 

Sauer, 1972). 	These authors showed, moreover, that virus integration 

appears to be independent of cell DNA synthesis, a finding complemented 

by Doerfler (1970) who demonstrated that integration, of Adenovirus 12 

into Baby Hamster Kidney cellular DNA was independent of host DNA 

synthesis. 

For EBV DNA in non-producer Haji cells, this does not appear to 

be the case since a large percentage of virus DNA is separated from 

host DNA on alkaline glycerol gradients (Nonoyama and Pagano, 1972). 

This, however, does not preclude the possibilities that the virus and 

cellular DNAs are associated through alkali-labile bonds; that a 

small percentage of the EBV DNA is associated in alkali-stable bonds; 

that EBV DNA contains nicks or single strand interruptions that are 

alkali-labile; a strong possibility since another Herpes virus, Herpes 

Simplex, is susceptible to alkali treatment (Frankel and Roizman, 

1972) and may possess ribonucleotide regions (Biswal et al., 1974). 

By way of clarification, Adams et al (1973) and Adams and Lindahi 

(1975) have recently shown that a small percentage of EBV does appear 

to integrate with host cell DNA, while the rest of it is separable 

from host DNA. 
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Very much less is known about the Alenovirus group although 

Green (1970) has suggested that Adenovirus DNA is integrated into 

host cell DNA in several Adenovirus transformed cell lines since 

DNAs isolated from chromosomes and nuclei have the same virus DNA 

content. These are unpublished results however and remain to be 

confirmed. 

The difficulties with all these experiments, lie first of all 

with the det:ctibility limits and secondly with the fact that 

advantitious DNA binding can never be ruled out completely. Thus 

failure to detect virus DNA in certain DNA fractions might be due to 

technical limitations and co-migration of virus DNA with high-

molecular weight DNA might, in some cases at least, reflect non-

specific DNA-DNA interactions. 

b) Association with host cell chromosomes 

1. Association of virus-specific functions and chromosomes. 

Somatic cell hybrids can be formed by fusing mammalian DNA 

virus transformed or tumour cells with normal cells (Glaser and 

O'Neill, 1972; Glaser and Nonoyama, 1972; Glaser and Rapp, 1972; 

Weiss et al., 1968; Mann and Littlefield, 1968; Weber, 1974; 

Huenber and Kowprowski, 1974; Klein et al., 1974). 	Three reports 

in particular, have a direct bearing on the persistence of virus 

DNA within cells and its association with host cell chromosomes. 

In the first report, two variants of BHK21 cells were used: 

one lacking inosinic acid pyrophosphorylase (IPP)  and resistant to 

6-thioguanine, the other lacking thymidine kinase and resistant to 

5-bromodeoxyuridine (Mann and Littlefield, 1968). 	A hybrid was 

obtained which was sensitive to both analogues and had twice the 
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normal BHK chromosome number. After transformation with polyoma virus, 

an IPP-deficient subline was isolated. This hybrid possessed trans-

formed properties. However selection for resistance to either 

analogue resulted in chromosome loss. 	In 6-thioguanine resistant 

clones, a loss of chromosomes also resulted in a proportion of cells 

which possessed normal cell characteristics, for example reduced 

plating efficiency in agar. Two of these clones also lost the 

polyoma T-antigen and were less tumourogenic than related transformed 

cell lines. Upon reinfection however these clones became transformed 

and polyoma T-antigen became re-detectable (Mann and Macpherson, 

1969). 	These results were interpreted to indicate that selection 

for loss of the chromosome(s) controlling the synthesis of IPP 

brought about, in a few cases, the loss of chromosomal factors 

controlling the transformed phenotype. 	In the "revertant" clones 

with "normal" phenotype, about 20% of the chromosomes of the hybrid 

had been lost. 	This suggests that the polyoma genome, or at least 

some virus-mediated controlling function, is associated with one or 

a few chromosomes in the karyotype. 	This is a slightly different 

conclusion from that of a conceptually similar experiment carried out. 

by Weiss et al. (1968) who demonstrated that hybrid cells formed 

between SV40 transformed human cells and normal mouse cells synthesised 

SV40 T-antigen; but upon extended cultivation and after nearly all 

human chromosomes had been lost, this synthesis was no longer detectable. 

Virus or virus-mediated gene expression therefore appears to be corr -

elated with the presence of several host cell chromosomes in this 

case. 	Klein et al. (1974) have also shown that EBV-determined nuclear 

antigen (EBNA)and other EBV-associated antigens are not synthesised 
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in hybrid clones - originally derived from the fusion of an EBV DNA 

positive lymphoblastoid cell line with a mouse cell line - which have 

lost several human chromosomes. They conclude therefore that while 

EBV DNA may be associated with several human chromosomes, it is not 

associated with them all. 

Conclusions derived from the above experiments, while generally 

valid, may not be valid in detail' however; particularly in view 

of the fact that the authors failed to identify the chromosomes 

unambiguously. Association of T-antigen expression, for examp1e, 

with several chromosomes might be a misinterpretation since specific 

chromosomes might berdained preferentially. For the SV40 trans-

formed human cell - normal mouse cell hybrids studied by Weiss et al. 

(1968) this does appear to be the case since there is preferential 

retention of human chromosome 7 which is also the only one to be 

consistently associated with SV40 T-antigen expression (Croce et al., 

1973). 	Virus gene-expression may therefore be associated with only 

one or two chromosomes in otherhybrid cells also (e.g. Klein et al., 

1974). 

Virus T-antigen expression and its association with chromosomes 

of the transformed or tumour cell has also been suggested by chromo-

some transfer techniques. Metaphase chromosomes isolated from an 

inducible SV40 transformed Chinese hamster cell line, with no detect-

able infectious virus or free virus DNA, on transfer to permissive 

BSC 1 cells, bring about the appearance of SV40 T-antigen in one cell 

per lO treated cells (Shani et al., 1974). 	This is unlikely to be 

due to transfer of T-antigen alone since activation of the antigen 

in the permissive cells is wholely dependent on the integrity of the 

chromosomes during transfer. 
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2. 	Virus-chromosome interactions. 

Viruses can have visible effects on host cell chromosomes of 

subsequently transformed cells. These effects can be random or 

non-random. 	Thus, early after infection of hamster cells with 

Adenovirus 12 or 2 there is a gradual appearance of stable chromo-

some aberrations in the subsequently transformed cells (Stich and 

Yohn, 1970); and some of these cells possess new marker chromosomes. 

Many other transformed cells also possess chromosome aberrations and 

breakage is frequently a feature of the original exposure of the 

cells to virus (e.g. see Jones, 1974; McDougall, 1975). 	That 

chromosome breakage may reflect virus integration is suggested by a 

few findings. 	During productive infection, for example, chromo- 

some breakage has been reported (McDougall, 1971; Zur Hausen, 1967; 

Cooper et al., 1967; Stich and Yong, 1967) and integration also 

appears to be a regular feature of productive infection. However, 

chromosome aberrations and breakage in transformed cells can also be 

caused by agents other than viruses: for example X-rays (Caspersson 

et al., 1972), inhibitors of DNA synthesis (Benedict et -al., 1970) 

which act during the cell's G2 or S phase (Karon and Benedict, 1972), 

and chemical carcinogens (Nichols, 1966; DiPaolo et al., 1973). 

However the fact that certain DNA inhibitors appear to be incorporated 

into host DNA while they cause chromosome breakage (Karon and Benedict, 

1972) and the finding that X-rayed cells are more prone to transfor-

mation by DNA viruses (Stocker, 1963) as are cells with spontaneous 

chromosome aberrations (Todaro et al., 1966; Swift and Tlirshhorn, 

1966) suggests that virus integration may occur via chromosome 

breakage. 	If this is so, then virus release (during rescue with 
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permissive cells for example; or during induction with agents such 

as mitomycin C or BUDR) may occur via chromosome breakage also. 

This is supported by the findings that induction of virus in some 

transformed cells by DNA analogues is accompanied by the chromosome 

breakage. Furthermore, it has been demonstrated that amino acid 

deprivation can result both in chromosome breakage (Freed and 

Schatz, 1969) and induction of infectious SV40 from transformed 

hamster cells (Kaplan et al., 1972). There is therefore a tentative 

correlation between integrative mechanisms and chromosome breakage. 

3. Association of virus DNA with chromosomes. 

In the non-lytic infection of hamster cells (BHK 21 and NIL) 

with 3H-Thymidine-labelled Adenovirus 12, association of grains with 

chromosomes was observed (Zur Hausen, 1968). The label was in grain 

clusters which were absent from non-inducible rat kangaroo cells 

infected with the same virus, thus suggesting that the association 

of grain clusters with chromosomes represented integration of virus 

DNA. After UV irradiation (Zur Hausen, 1968) which reduces the 

infectivity of the virus in permissive cells, this chromosome assoc-

iation was still observed suggesting that integration is not affected 

by UV exposure. 	Since, in several cases, transformation is resistant 

to 131 irradiation (Latarjetet al. , 1967) whereas virus assembly 

or infectivity appears to be affected, the inability of UV to affect 

the association of virus DNA label with chromosomes can be explained 

on the basis that initiation of transformation and virus DNA integration •  

are correlated. 	In line with this is the finding that even early 

virus functions, such as virus DNA replication, are post-integrative 

(Doerfier, 1968). 
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By studying the early infection of cultured human leukocytes, 

which are non-permissive, with 3H-Adenovirus 12, Nichols et al.. (1968) 

found a random association of grains with host cell chromosomes. 

However neither the experiments of Zur Hausen (1968) nor 

Nichols (1968) can rule out the possibility that the label associated 

with host chromosomes represents binding of virus DNA to host 

chromatin. To this extent they are somewhat inconclusive. 

4. 	The use of in situ hybridisation. 	 - 

Non-specificity can largely be circumvented by the application 

of the in situ hybridisation method (see Chapter 111, section lv). 

The advent of this technique (John et al., 1969; Gall and Pardue, 

1969) with its inherent molecular and cytological specificity, has 

enabled the precise chromosomal mapping of specific nucleic acid 

sequences. 	Correspondingly it has been utilised in attempts to 

detect virus-specific DNA sequences associated with host cell 

chromosomes. Thus attempts have been made to localise EBV DNA 

(Zur Hausen and Schulte-Hoithasen, 1972); SV40 DNA (Oda et al., 1972); 

and Adenovirus DNA (McDougall et al., 1972b; Dunn et al., 1973; 

jni and Green, 1973; Green, 1970) within transformed or tumour ,  

karyotypes. 

The results of such attempts tend to suggest a random distribution 

of virus DNA throughout individual karyotypes. However it is unclear 

whether some of these results are wholely interpietable on this basis. 

Some pointers suggest they might not be.. First, the evidence from 

somatic cell hybridisation studies in general suggest a less wide 

distribution of virus DNA in various karyotypes. 	Second, in some 

cases, and especially where there is no distinct chromosomal location, 
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the results of in situ hybridisation experiments are inconclusive 

(see Jones and Bishop, 1973 for example). 

part of the difficulty in interpretating in situ hybridisation 

results of this kind lies in the nature of the technique itself and 

our limited knowledge of its efficiency. Thus although convention-

al molecular hybridisation techniques such as DNA excess or RNA 

excess hybridisation can be characterised with respect to their 

reaction parameters (also see pg. 74L ) it is more difficult to do 

this for in situ hybridisation reactions because of the complications 

arising from the fact that the DNA "targets" are embedded in the 

chromosome. Reflecting this difficulty, very few studies have 

commented on how the actual process of in situ hybridisation compare 

with other nucleic acid hybridisation techniques. 	Nevertheless, 

with these reservations, in situ hybridisation can be a very useful 

technique in the present context because of its inherent specificity. 

However, because even the largest estimates of virus DNA in transformed 

or tumour cells are relatively low (Table l;l) and because of some 

uncertainty in previous results (see above) it was considered important 

to determine whether individual in situ hybridisation reactions behave 

as conventional hybridisation reactions which can be optimised, thus 

increasing the chances of detecting virus DNA 	These experiments are 

described in Chaper ill, section IV. Experiments involving in situ 

hybridisation under optimal conditions to cells containing virus DNA 

are described in Chaper 111, section V. 

P 
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SUMMARY 

The persistence of virus DNA is a general feature of virus-

transformed or tumour cells. Although for a variety of virus-trans-

formed or tumour cells the amount of virus DNA varies, it is clear 

that it can be subject to replicative and transcriptional controls 

(also see Chapter IV) which themselves are likely to be Influenced 

by both virus and host cell. The actual virus DNA amount in 

individual cell lines or tumours is particularly important to estimate 

since it could reflect a basic feature of the transformation or 

oncogenic process. Furthermore, it is evident that the virus DNA 

has associations with chromosomal. 'and/or cellular DNA sequences. 

This, as well, may have important implications for both transformation 

and oncogenesis. From this point of view, in situ hybridisation 

possesses great 'potential. The following chapter deals with the 

points raised here. 
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DNA 

RNA 

HriBNA 

rRNA 

rDNA 

mRNA 

DNase 

RNase panacreatic (A) 

poly A 

poly U 

oligo dT 

EDTA 

SLS 

sSc 

PlUS 

TCA 

PCA 

PpO 

popop 

NEM 

BSA 

GF filters 

DEP 

HEK 

O.D. 

deoxyribonucleic acid 

ribonucléiô acid 

heterogenous nuclear RNA 

ribosomal RNA 

ribosomal DNA 

messenger RNA 

deoxyribonuCleaSe 

ribonuclease from bovine pancreas 

poly-adenylic acid 

poly-uridylic acid 

oligo-thymidylate 

ethylenediamine tetra-acetic acid 

sodium salt 

sodium laux7l sulphate 

standard saline citrate 

tn shydroxymethylalfliflo-methafle 

trichioroacetic acid 

perchloric acid 

2-5- diphenyloxazole 

1 ,Lf, bis_2_(4_methyl_5_PheflyOXaZOle)_ 

benzene 

minimal essential medium 

bovine serum albumin 

glass fibre filters 

diethyl pyrocarbonate 

human embryonic kidney 

optical density 



M. 0. 	 multiplicity of infection 

S.C. 	 sub-cutaneous 

EBV 	 Epstein-Barr Virus 

P.A. 	 Formamide 

p.f.u. 	 plaque forming units 

UDP 	 Uridine diphosphate 

cpm 	 counts per minute (radioactivity) 

G.C. 	 Guanine + Cytosine content 

S.A. 	 Specific activity 

cRNA 	 complementary RNA 

Ad or Adeno- Adenovirus 

svko Simian Virus kO 

Py polyoma virus 

cDNA complementary DNA 

UTP Uridine triphosphate 

ATP Adenosine triphosphate 

GTP Guanosine triphosphate 

CTP Cytidine triphosphate 

PBS Foetal Bovine serum ,  

FCS Foetal Calf Serum 

DFCS Dialysed FCS 
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BUFFERS AND SOLUTIONS 

Mv 
	

10mM TRIS pH7.5 

ssC 

Column Buffer 

Binding Buffer 

Eluting Buffer 

Kirby' solution 

Phenol-cresol 

Trypsin 

10mM NaCl 

1.5mM MgC12  

150mM NaCl 

15mM Na citrate 

O.3M NaCl 

O.OIM Na acetate 

O.kM NaCl 

10mM TRIS pH7.5 

1 m EDTA 

0.1% SLS 

10mM TRIS p1I7.5 

1mM EDTA 

o.-i% SLS 

1% Na-triisopropylnaphalene Sulphonate 

6% Na-k-amino salicilate: 

1% NaCl 

69o'n-Butanol 

o.% SLS 

5009m phenol=550m1 water-saturated 

phenol 

70gm m-cresol 

0.5gm 8-hydroxyquinol me 

Made up to a 0.25% solution in 

Dulbecco A and sterilised through 

Millipore filters. (HAWP, 0.22 u pore size) 

Dulbecco / 



Dulbecco A 

UR 

TryptosePhosphate Broth (TPB) 

uumgi jitre 

8xlO3mg/litre NaCl 

200mg/litre KC1 

1,150mg/litre Na2HPOk 

200:1 Dulbecco A: Dulbecco B 

(Duibecco B=CaC12  100m&/litre 

MgCl2  100mg/litre) 

29.5gm Difco Bacto TPB in 1 litre 

of distilled water 

Counting Fluids 

Toluene-PPO-POPOP 
	

3gm PPO and 0.3mg  POPOP per litre 

of toluene 

Aquasol 	 I'EN chemicals 
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CHAPTER II (MATERIALS AND METHODS) 

MAIT!1?DTAT c! 

Cells 

Human Embryonic Kidney cells were obtained from Foetuses donated by 

Dr. Brock, Western General Hospital Edinburgh. 

Adenovirus 2 transformed cells were donated by Dr. P. H. Gallimore, 

Dept. Cancer, Birmingham. The lines were as follows: 

Ad2/PEB/1Op/BI Rat embryo brain cells infected at a mo.i. of lOpfu/cell. 

Ad2/PEB/50p/BI Rat embryo brain cells infected at a mo.i. of 50pfu/cell. 

Aderiovjr.us  7 transformed hamster cells were obtained from Flow 

laboratories, England: cat. no. TT-103. 

Tissues 

Human placental tissue was obtained for the preparation of 

human DNA from the Simpson Maternity Pavilion in Edinburgh. 

Tumours or cells derived from tumours were obtained as follows: 

Ad2/HL REF./50p/T5, or Ad2/T for short, was induced in new born Hooded 

Lister (HL) rats by inoculating Adenovirus 2 transformed cells (fibroblasts) 

originally infected at 50pfu/cell into them without immunosupression. 

(Not the same as Ad2/REB/50p/BI) 

Ad2/HL PEB/50p/T6, or Ad2/T6 for short, was induced in newborn Hooded 

Lister rats by inoculating Adenovirus 2 transformed cells originally 

infected at 50pfu/cell into them without immunosupresslon. (Not the 

same as Aci2/REB/50p/BI or cells inducing Ad2/T5.) 

Ad2/T4 was a tumour induced by the inoculation of Adenovirus 2 

transformed cells into newborn Hooded Lister rats under conditions 

of immunosupression. In this case the original transformed oells 

were infected at a m.o.i. of lOpfu/cell and are identical to the 

Ad2/PEB/1 Op/B 1/ 
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Ad2/REB/IOp/BI line described above. 

Ad12/TI was an Adenovirus 12 tumour induced by innoculating purified 

Adenovirus 12 virus into newborn Hooded Lister rats at an infectivity 

of 2x108  - 2x109  p.f.u. in BEK cells. No immunosupression. 

Inimunosupression is necessary in certain cases of tumour induction by 

the "non-oncogenic" Adenoviruses (see Table 1.2) (Gallimore, 1972; 1974). 

3. Viruses 

In the main, three Adenoviruses, each one belonging to a different 

serotype group (see Table 1.2), were used in these studies: Adenovirus 2, 

Adenovirus 7, and Adenovirus 12. All original stocks of these viruses 

were a gift from Dr.J. K. McDougall, Dept. Cancer Studies, Birmingham. 

In addition to these viruses, Adenovirus 5, which was a gift from 

Dr. J. Williams, MRC Virology Unit, Glasgow, was also used in certain 

experiments. 

Unless otherwise stated, all chemicals were obtained from British 

Drug Houses (B.D.H.). 
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METHODS 

The methods section'is divided into subsections which correspond 

roughly to the different sections of the subsequent CHAPTERS III and 

IV. Methods are arranged essentially in order of their appearance in 

the Thesis. 

SECTION 1 

1. Culture Media for cells 

HEK cells were grown and maintained in FlO medium (Ham, 1963) 

supplemented with 100/otryptose phosphate broth (DIFCO Labs.) and 

10010 FCS or 10% EBS. (Biocuit Ltd., Glasgow). 

Hela cells were grown in Eagle's MEM (Hanks based plus non-

essential amino acids), supplemented with 0.1% NaHCO3 , 0.13mg/mi 

streptomycin, 60ug/mi penicillin, and 10% FBS. Normal mouse cells, 

rat cells and transformed cells were also grown in this medium. 

Eagle's MEMZ plus 51% F'CS or DFCS was used in transformation 

experiments. (Gallimore, 1974). 

Tumour oells, derived from induced tumours, were grown in Eagle's 

MEMS which was supplemented with 10% FCS, sodium pyruvate, and 2xamino 

acids plus vitamins. 

2. Culture Preparation of Tumour Cells 

Tumours were excised from the surrounding rat tissue and were 

macerated with sterile scissors. The macerate was washed with 

Dulbecco A (Oxoid Ltd., London) and the cells suspended in Dulbecco A 

without the need for trypsin. The cells were then pelleted by low 

speed centrifugation for 2-3 minutes, and resuspended in Dulbecco A. 

The cell suspension was agitated and a sample counted to ascertain 

the number of cells present. NEMS ( 	supplemented) was warmed 

to/ 



to 37°C and added to the cell suspension. After addition of antibiotics, 

the cell suspension plus new medium was added to litre, sterile burler 

bottles. Cells were grown at 37°C, with the medium being changed 

every three days. 

3. Extraction and Preparation of DNA from whole tissues 

Modification of the method of Marmur (1961) was used. The procedure 

is described in Prosser (1974). Tissues were cut up, minced and 

placed into saline EDTA at 0 °C and washed several times to remove 

any blood. The connective tissue of tumours, or placenta, was 

removed and the remaining tissue homogenised in a loose-fitting 

glass Teflon homogenizer (approximately 5rnl saline EIDTA to each 

gram of tissue). SLS was added to a final concentration of 2%, and 

the mixture incubated at 60°C for 10 minutes. Sodium perchiorate 

(5M) was added to.a final concentration: of IM. Then a 1/10 of a volume 

of chloroform-isoaiflyl alcohol (24/1:v/v): phenoiwas added and the solution 

agitated for about -- hour. After shaking, the material was centrifuged 

at 10K rpm (12,000G) for 10-20 minutes in the Sorval (RC2 B) atk °C. 

The top layer was withdrawn with an inverted pipette and transferred 

to a beaker. Two volumes of absolute ethanol were carefully over-

layered on the DNA solution. The crude DNA was washed through an 

alcohol series, air dried and finally dissolved in 0..IxSSC. After 

dissolving, 1/10 volume of 1OxSSC was added followed by solid NaCl: 

to a concentration of 1M. RNase (Sigma) in 2% Na acetate pH5.0, 

(concentration: 20mg/mi) was heated to 1000C for 5 minutes, chilled to 

room temperature and added to the DNA solution to a final concentration 

of 50ug/ml. If the starting tissue was liver, an amylase (Sigma) 

digestion step wa included at a concentration of 200ug/ml. This 

enzyme was added at the same time as the PNase. The solution.. was 

incubated!' 



incubated for 3_4 hours at 37°C. Protease (Sigma) was then added to 

a final concentration of kOOug/inl, and the digestion carried out for 

up to 6 hours at 37°C. The solution was then shaken with chloroforni-

isoamyl alcbhol:phef101, 1:1, and centrifuged as before. The aqueous 

layer was removed and the deproteinising step was repeated until no 

protein interphase was observed between the two layers. In order to 

precipitate the DNA from the solution, acetate EDPA (3M Na acetate, 

0.00IM EDTA), pH7.0, was added (1/10 volume) followed by isopropanol 

(0.56 
volume). The DNA was spooled out of solution, dehydrated through an 

alcohol series, air dried, and dissolved in the desired solvent 

(e.g. 0.1xSSC). 

kI. Extraction and Preparation of DNA from tissue culture cells 

Cells were grown to confluence, or nearly so, in Petri dishes or in 

I litre burler bottles. They were then washed several times in 

Dulbecco A to remove - culture medium. Trypsin (0.25% in Dulbecco A) 

was added and the cells incubated at 37°C. Detached cells were 

centrifuged in an MSE bench centrifuge at 5K (approx. 2,300  rpm) for 

5 
minutes. The supernatant was removed and the cells washed again 

with Dulbecco A. After a second centrifugation, DNA was extracted 

either by the modified Marmur method (see above) or as follows. The 

pellet was carefully resuspended in a small amount of residual 

supernatant. Protease (Sigma) was made. up 
in 2xSSC (200ug/ml), 

digested at 37°
C for 30 minutes, adjusted to 0.1% SLS, and added to 

the cells suspension which was incubated at 37°C fOr 2-3 hours. 

Lfnhl aliquots of this solution were then made up with 5.12 gm CsCl 

(BDH, analytically pure) and centrifuged for ko hours at 40K rpm at 

250
C. Fractions were collected, diluted with O.IxSSC, 

and their 

optical densities (260nm) determined. The fractions containing the 

DNil 	 . . 
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DNA peak were pooled and pelleted for 18 hours at 30K rpm in the 

3x20 swing out rotor of the MSE 50 ultracentrifuge. The DNA was 

redissolved in 0.1xSSC or other required solvent. 

Preparation of Micrococcus luteus DNA 

10gms of M.Luteus cells (Sigma) were mixed with lOOmls of 0.01M Tris 

pH8.0 at room temperature in an MSE blender for 1 minute. The washed 

cells were pelleted in the Sorva]. for 10 minutes at 10K rpm. The cells 

were resuspended in 0.01M Tris, 0,2N sucrose pH8..0 and the solution 

made up to 200mls. 75mg of lysozyme were made up in 1.5m1 Tris-sucrose 

buffer and-Lithe solution heated to 30°C. This lysozyme solution 

was then added to the M.Luteus solution and the mixture heated at 30°C 

for 15 minutes, 0.25ml of 0.0IM MgC1 2  were added and the mixture left 

for 30_40 minutes. During this time lOOmi of 0.45M NaCl, 0.3M EDTA 

pH8.0 were made up and to this solution, 12m1 of 25916' SLS were added. 

This solution was then heated to 60 °C. The heated solution was now 

added to the M. Luteus solution after the 30 minute incubation with 

MgCl2. The mixture was mixed thoroughly. After lysis, 78mls of 5M 

NaClOk and 40mls saturated Tris pH8.3 were added. The DNA was then 

deproteinised by shaking with phenol-chloroform, 1:1; precipitated, 

and purified by the method for making DNA from whole tissues. 

The presence of contaminating RNA was checked by alkaline 

digestion of a sample of DNA. Approximately SOug/ml of DNA was treated 

with 1/10 vol. of 6N K0H at 37 °C for 1 hour. 1/10 vol. of concentrated 

P.C.A. was added and the. sample then left on ice for approximately 

20 minutes. The sample was centrifuged at 10,000 rpm for 10 minutes 

to precipitate.the DNA and the potassium perchlorate. The optical 

density (260nm) of the supernatant was determined after careful 

decanting. Only DNA samples. that were uncontaminated with RNA were 

used/. 



used. Usually, after alkaline digestion and acid precipitation 

of the DNA sample, the supernatant O.D. was negligible. 

Growth of Adenovirus in cell cultures 

Adenovirus was passaged in human embryonic kidney cells (HEK) or 

Hela cells. Cells were infected at virus multiplicities of 50-100pfw'cell. 

After usually 48 hours, the infected cells were disrupted by 

ultrasonic treatment and 2gm. of CsC1 (B.D.H., analytically pure) 

were added to approximately kml. aliquots of-virus/cell extract. The 

samples were then centrifuged to equilibrium in a SW65 rotor in a 

Beckthan L2-65B ultracentrifuge. (Russell et al.; 1967).  After several. 

centriugations in CsC1 the virus band was dialysed against 0.01M 

Tris pH7.2 for up to two days at k°C. The virus particles were. left 

for a further three days in the Tris buffer and the DNA extracted after 

this time. 

Purification of Adenovirus DNA (Levine and Ginsberg, 1 967) 

The DNA was extracted from virus particles by a modification of the 

procedure of Borenfreund et al. (1961). The virions were disrupted 

by 1% SLS incubation at 40C .for 30 minutes. €.25M  2-mercaptoethanol 

was added and the mixture shaken for 30 minutes at k°C. Pronase 

(lmg/ml) was added and the solution shaken for a further 60 minutes 

at 37°C. Two volumes of chloroform-isoamylalcohol (19:1) were added 

and I vol. of this mixture was added to I vol. of water-saturated - 

phenol. The 'mixture was shaken for 10 minutes. at' roomi.'temperature. 

Aftercentrifugation at 10,000 rpm for 10 minutes, the aqueous phase 

was removed and re-extracted. The aqueous phase, after the second 

centrifugation, 'was removed and the DNA precipitated with 2 volumes of 

absOlute alcohol. The precipitated DNA was then centrifuged at 

10,000 rpm for 10 minutes, the supernatant discarded, and the 

precipitate redissolved in about lml of 3mM NaCl. The dissolved DNA 

was/ 



was re-precipitated with alcohol and the precipitate again centrifuged. 

Analytical centrifugation and determination o initial buoyant densities 

Centrifugation was carried out in the Beckman Model E Analytical 

Ultracentrifuge for 18 hours at +tfK rpm at 25 °C. Ultraviolet photo-

graphs were taken and traced on the Joyce Loebel inicrodensitometer. 

The densities of the DNAs in neutral CsC1 were determined from the 

position of a marker DNA added to the gradients. (Usually M.Luteus 

DNA, 1 .731 9nVcrn 3 ). 

0.89gm CsC1 (B.D.H. analytically pure) were added to 0.7m1  DNA solution 

(O.1xSSC) containing 5ug DNA and the density was brought to 1 .7 1 0gWcm 3  

(100101) by refractometry and according to the relationship: 

25 
P25 = 10.8601 Nd

25_13.k97LI. (lift, Voet, and VLnograd, 1961) where 

p is the buoyant density at 25 °C, Nd25  is the Refractive index at 25°C. 

Analytical runs were usually carried out by Mr. 1 9  F. Purdom, (this lali) 

Thermal Denaturation of DNAs 

Denaturation was carried out in a Unicam SP800 Spectrophotometer. 

Variable and constant temperatures were achieved with the Unicarn 

temperature programmer (8P876) and heating block (SP877) attachments. 

Readings of optical absorbance were taken on a linear recorder (SP20) 

via a scale expander (sp80). Unicam microcells 00mm path length and 

0.45m1 volume) were used to hold the DNA samples. These cells were- held 

in the heating block and the holders fitted. with a clamping device to 

seal the cells and prevent evaporation. The sample--of DNA, and a reference 

sample, were dégassed by taking the samples up in a Imi syringe, 

blocking the needle with a rubber stopper, creating a vacuum in the 

syringe, and tapping out the air bubbles. The temperature of the heating 

block was raised at 1 0C/minute until the hyperchromicity reached a 

plateau. The time was recorded on a print-out chart. The percentage 

increase/ 



increase in hyperchromicity was plotted against temperature ( °c). 
in 

DNAs were ienatured/1mM EDTA (Spiers, unpublished), or in IxSSC. 

Single stranded molecular weight determination 

The method of Studier (1961) was employed. Equal volumes of DNA 

(200ug/ml) in O.IxSSC and O.2M NaOH in O.1xSSC were mixed and left 

for 2 hours at room temperature. The alkaline DNA solution ( 20u1) 

was sedimented through 0.9M NaCl, O.1M NaOH(700iiL) at constant velocity. 

The single stranded molecular weight was determined from the 20 S of 

the DNA according to the formula: 

(log 
20  S 

 w + 1 .05453 ) 
) 

Molecular Weight (M.W.) =( 	 ) , Allowance was made 
log ._1 L 0346 

for temperature and salt concentration as described (Studier, 1961). 

Mr. J. Telford or Mr. I. Purdom performed the molecular weight 

determinations. 

DNA renaturation 

DNA was purified and checked for RNA contamination. Only DNA in which 

there was negligible contamination by cold alkali soluble material was 

used. Aliquots (15m1s.O.IxSSC) were sonicated for 15" pulses with 

intervals of 2 minutes between pulses to a total of 1 '30"  sonication 

with a Dawe sonicator (position 8). After sonication, the DNA was 

precipitated by the addition of 2 volumes of absolute alcohol and i/ic 

volume of 214 sodium acetate pH5.0 and left at -20°C for a minimum 

period of 2 hours The DNA was collected by centrifugation at 10,000 

rpm for 15 minutes in the RB4 rotor of the Sorvall. The pellet was 

dissolved in 0.3M  NaCl, O.OiM sodium acetate (Column buffer). The 

solution was loaded onto a 2.5cmx45cm column of Sephadex 5E50, swollen 

in the same buffer. The DNA was eluted with column buffer and the 

optical densities of each fraction determined. The peak fractions were 

pooled/ 



pooled and precipitated with 2 volumes of absolute aclohol and stored 

at -20°C. The precipitate was collected by centrifugation and the 

DNA dissolved in the desired solvent (e.g. 0.IxSSC). For renaturation, 

the concentration of the DNA was generally 10-20mg1mi. 

The average molecular size of the sonicated DNA was in the region of 

105daltons (Alkali single strand). 

DNA renaturation was generally carried out at 65°C or 70°C in 2xSSC 

(Bishop, 1972). The DNA, dissolved in 0.1xSSC p1115.5,  was denatured 

by heating in a boiling water bath for 7 minutes. A control sample 

was withdrawn, and diluted in 0.1xSSC pH7.5 (ice-cold). The rest of the 

DNA solution was transferred to a water bath' at the required temperature 

of incubation, and the solution left for 30 minutes to allow the 

temperature to equilibrate. 20xSSC pH5.0 was added to the solution to 

a final salt concentration of 2xSSC. After thorough mixing, zero time 

points were taken and diluted in to ice-cold 0.1xSSC. The liquid 

paraffin was layered on the top of the DNA solution and the reaction 

tube was stoppered to avoid evaporation. Samples were withdrawn at 

different times and diluted into ice-cold 0.1xSSC. The final concentration 

of the DNA in the 0.1xSSC was around 50ug/ml. Duplicate samples for 

each point were examined. in theUnicam SP800 spectrophotometer and the 

absorbance of each sample was recorded from 320-230 nm at 50°C. The 

temperature was then raised to 90°C to melt the duplexes, and the 

spectra of the samples again recorded. The rise in extinction, at 26Onmm, 

between 50°C and 90°C, is due to the hyperchromicity of the double 

stranded DNA and is therefore a measure of the amount of renaturation 

which has taken place. It is therefore possible to plot: 

E260 (90)- E260 (50) 
as a measure of renaturation. 

260 (90) 

Fully/ 



ii 

Fully denatured DNA has 1381%  of the E260 of native DNA. From the 

E260 (90)  it is therefore possible to calculate the E260 native value: 

E260 native 
E260 (90)  xlOO 

138 

The amount of renaturation which has taken place at a given Cot value 

can thus be expressed as a percentage of the total possible renaturation 

by: 

E260 (90) - E260 (50) x 100 
Renaturation  

E260 (90) 
E260 (90)  x 100 

-  

138 

The percentage of renatured DNA can be plotted against Cot:DNA initial 

concentration inmoles nucleotide/litre 1  times time in seconds (Britten 

and Kohne, 1968). 
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SECTION II 

1. In Vitro Transcription 

a) Standard incubation mix: All glassware was washed in chromic acid, 

distilled water, autoclaved overnight at 110 °C, and then siliconised. 

Radioactive nucleotides were obtained from the Radiochemical Centre, 

Amersharn, and unlabelled ones from Sigma. E.Coli DNA-dependent RNA 

polymerase was obtained from Sigma or Miles-Seravac. In some experiments 

enzyme prepared by Dr. J. 0. Bishop (this laboratory) was used. 

M.Luteus DNA-dependent RNA polymerase was obtained from Miles-Seravac. 

Unless otherwise stated in the text or independent Figure legends, the 

transcription mix was standard. With all four nucleotides labelled 

(usually with specific activities: ATP, 20Ci/mmole; UTP, 14 Ci/mmole; CTP,20.8 

GTP, 10 Ci/mmole), this standard mix was as follows: O.1M Tris p117.5, 

1.6mM Spermi dine, 70mM -1 OOhiNKC1, 2mM KHPO O . 5mNNnC1 2 , 4mMMgCl2, 	 2 k ,  

5nmoles each of 3H ATP, 3HGTP, 3HUGT, 3HCTP,. and finally 2.5 units of 

enzyme. The final volume was O.lml,, and in addition to the above reagents, 

it contained 1-5ug of high molecular weight native DNA. 

For preliminary experiments this DNA was lyophilised in a 0.001M NaCl 

solution prior to addition of the incubation mix. Sãmetimes, however, 

this lyophilised step was found to have serious effects on the 

commencement and rate of the transcriptionreact 4-3n after addition of the 

enzyme. This was probably due to the delay in the DNA coming into solution. 

Consequently, for the majority of the transcription reactions, the DNA 

was previously concentrated to the desired amount in O.,001M NaCl before 

being added to a previously made up reaction mix. Under these conditions 

the reaction commenced immediately the enzyme was added (Figure 11:1). 

To/ 



Figure II:I.Transcription of Adenovirus 2DNA 

by the E.coli DNA-dependent .RNA polymerase 

with the DNA(Iug) lyophilised(o-o) or 

added in a O.00IM NaCl solution(x-x) (see text). 

The incubation mix contained 100mM Tris pH7.5, 

2mM K2 HPO 4 ,O.IM KC1,0.0005M MnC1 2 ,O.004M 

NgC1 2 ,2.5 units enzyme,5 nmoles each of 

ATP,GTP,CTP,UTP(alltritium labelled:15-

20Ci/mmole) and the volume was made up 

to O,Iml with distilled water.Incubation 

was at 37 0 C,points being taken at 

intervals during the reaction.The aliquots 

were TCA precipitated(IO%) and the 

radioactivity determined by counting in 

Toluene-based scintillation fluid. 
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To monitor the incorporation of the radioactive triphophates into 

RNA, 2u1. samples were withdrawn from the incubation mix at certain 

times and the amount of RNA determined by TCA precipitation. Zero 

time points were withdrawn before the ene' was added to the mix. 

The transcription reaction was carried out at 37°C  and when the 

incorporation reached a plateau,' the reaction was terminated by 

chilling on ice. The method used here has been utilised by Jones et al. 

(l97k). 

b) Extraction and Purification of cRNA 

cRNA was prepared in the above manner or as varied in the text or 

Legend Figures. DNase was added to the chilled transcription mixture 

toa final concentration of tfOug/ml (L+ul  of a 1m&/ml solution made 

up in 0..01M Tris pH7.5, 0 9 002M MgCl
2 
 and 101% dimethylsuiphoxide and 

stored at -20°C) and the mixture incubated for 10 minutes at 37°C. 

Then lOul of IM NaCl and lOul of 5%SLS were added and the mixture 

incubated for a further 2 minutes at 37°C.  Approximately 1 50-200ug 

of carrier unlabelled E.Coli RNA were added and the RNAs extracted 

with water saturated distilled phenol (BDH, analar). After vigorous 

shaking, and centrifugation to separate the aqueous and phenol 

layers, the phenol layer was re-extracted with an equal volume of 

0.1xSSC. The combined aqueous phases were placed directly on a 

Sephadex G-50 (Pharmacie Fine Chemiaals, Uppsala) column (30cmxl.5cm) 

previously equilibrated with 0.1xSSC. The RNAs were eluted in 

0.IxSSC at a rate of 1m1/5  minutes, and the fractions collected on an 

1KB fraction collector controller, type .3403 B. The RNA peak was 

located by spectrophotometric reading at 260nm, and the radioactivity 

of the cRNA monitored by TCA precipitation and counting in Toluene-

based scintillation fluid. The principal fractions containing the 

c1NA were pooled, lyophilised, and the RNA resuspended in the desired' 

solvent./ 



solvent. In some experiments the pooled PNA fractions were made 

0.3M NaCl and the RNA precipitated with 2.5 volumes of absolute 
0 

alcohol. After overnight precipitation at -20 C the RNA was pelleted 

and resuspended in the desired solvent. The specific activity of 

cINAs, using all four ribonuclecide triphosphates labelled, was 

estimated to be 1.4 - 2x1O7cpm/ug. 

Separation of E.coli total RNA 

E.coli M.P.E.6 00 (MRC Microbial products Division, Porton, Wilts) 

were broken up and dispersed in 1+0mls of cold-0.01M MgCl2, 0.0IM 

sodium azide, and 0.0IM Tris. The cells were centrifuged at 10,000 rpm 

for 10 minutes and the pellet ground with kgms of A1203  for 10 minutes. 

12ml of Tris/MgC12  buffer were added and the mixture centrifuged at 

10,000 rpm for 10 minutes. After re-ceñtrifugation of the supernatant, 

DNase (20ug/ml final) was added and the solution incubated for 

2 minutes at 37°C.  The incubatedsUpernatant was chilled and centrifuged 

at 38,000 rpm for 60 minutes at 0°C. The resulting pellet was 

homogenised in 5.Oml of Tris/MgCl2  and then centrifuged at 15,000 rpm 

for 10 minutes. The supernatant was made 0.516 SLS and an equal volume 

of phenol was added. After shaking for 10 minutes. the aqueous and 

phenol phases were separated by centrifugation. The aqueous and 

proteic-thases were re-extracted with phenol. To the final aqueous. 

phase 1/10 a volume of 2.ON potassium acetate pH5.0 was added, 

followed by 2. volumes of ethanol. The RNA was precipitatedovernight 

at -20 
0C. Total RNA was stored in alcohol. 	- 

Fractionation of unlabelled Lcoli RNA into 23S  and 16s RNA 

E.coli total RNA, which was precipitated in absolute alcohol, was 

pelleted by centrifigation in the Sorval SS-34 rotor for 10 minutes 

at 10,000 rpm. The pellet was then washed at least once with cold 

alcohol and then dissolved in 0.001M EDTA, 0.IM NaCl, 0.1% diethyl-

pyrocarbonate/ 



pyrocarbonate (Kodak) and 0.02M Sodium acetate ph5.0.  The RNA 

was layered on to a 5_4O°A Sucrose gradient, the sucrose being dissolved 

in the same buffer. These RNA gradients were centrifuged at 25,000 rpm 

for 18 hours at 10-15°C in the 6x15 MSE rotor. Fractions were 

collected from the bottom of each tube after piercing with a needle. 

The optical density (260nm) of each fraction was determined in the 

sP800 spectrophotometer and the 23S and 16s peaks pooled and 

precipitated with 2 volumes of absolute alcohol after adding 1/10 the 

volume of 3.OM NaCl. The RNA was precipitated overnight at -20 °C; 

collected by centrifügation inthe Sorval SS.34 rotor and was washed 

again with absolute alcohol. After pelleting once more the RNA was 

dissolved in the appropriate salt and frozen at -20°C. 

k. Fractionation of labelled cPNA in a linear Sucrose gradient 

An appropriate amount of cINA was dissolved in 0.001M EDTA, 

0.01M NaCl, 0.1% DEP and 0.02M sodium acetate pH5.0. This solution, 

together with a solution of E.coli ribosomal RNA dissolved in the 

same buffer, was gently layered on to a pre-made 5-.40% sucrose linear 

gradient. Centrifugation was carried out as described for the 

fractionation of E.coli RNA, and the optical densities of each 

fraction determined. TCA precipitable radioactivity was measured 

for fraction aliquots, and the distribution of cPNA molecules along 

the gradient ahalysed with - respect to the unlabelled E.coli 23 and. 

16S marker RNAs. 
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SECTION III 

Pancreatic RNase (Sigma) 

The enzyme was made up in 2°/s sodium acetate p115.0  and heated at 100 0C 

for 5 minutes before being diluted into 2xSSC at approximate 

concentrations. 

DNase (Sigma) 

lOmg of electrophoretically pure DNase were suspended in 2m1 of 

0.0025N HC1 and dialysed for 2 days against 2 litres of 0.0025 N HC1. 

2.5m1 of 0.2M áodium acetate pH5.3 and 0.75m1 of 1M sodium iodoacetate 

were added to this DNase solution. The mix was incubated at 55 °C 

for 60 minutes, and then dialysed overnight against 1 litre of 

0.0025 N HC1. 

The precipitate was spun down at 10,000 rpm for 30 minutes and the 

supernatant then contained DNase at the approximate concentration of 

2mg/mi. 

Filter Hybridisation procedure 

Denatured DNA was loaded onto membrane filters (13 Millipore, 

HAWP '0.k5.vi pore size) according to the method of Gillespie and 

Spiegelman (1965).  DNA, usually in 0.1xSSC, was denatured by the 

addition of an equal volume of IN NaOH for 15 minutes at room 

temperature The solution was then neutralised with 2 volumes of 

neutralising mix (1.ON HC1, 1.OM Tris pH8.0.., 3-OM NaCl, 1:1:2 by 

volume) and aiiowd to drip through the membrane filters which had 

been prewashed in 2xSSC. Loaded filters, and blanks, were washed 

with 6xSSC, and subsequently dried in a vacuum oven at 80 °c for 

2 hours. They were then labelled with a pencil and stored at -20 0C 

k. RNA-DNA hybridisation in RNA excess 

Before hybridisation, the filters containing bound DNA were soaked 

in/ 



in the reaction medium minus RNA. Temperature optimums (T.OPT.) 

for individual hybridisation reactions were determined by the method 

of Birnstiel et al.(1972), the .reactionusüally'hbt exceeding 30% 

of the saturation value. For kinetic studies, the hybridisation 

medium was brought to optimal temperature, filters introduced and 

individual ones withdrawn and placed into chilled 6xSSC at various 

times over approximately 10-80% of the reaction. Filters were 

washed by the batch method (Birnstiel et al.; 1968), an. PNase step 

being included. Controls consisted of heterologous DNA alone, and 

blank filters. RNA-DNA hybrids were counted in Toluene-based 

scintillation fluid. 

In experiments involving hybridisation of cRNA across a CsC1 or a 

Ag± CS2SO1+ gradient, fractions, or aliquots from fractions, were 

loaded onto millipore filters and hybridised as above so that the anint 

of cRNA in the reaction would always be in excess of the homologous 

DNA sequences. 

5. DNA-RNA hybridisation in DNA excess 

The reactions were carried out according to the procedure of Melli et al. 

(1971) and Bishop (1972a). The concentrations of the DNA and RNA 

werechosen so that there was usually a 100:1 or 1000:1 excess ratio 

of DNA:BNA. Under these conditions the reaction is likely to be 

complete (Bishop, 1972b) although in some cases the ratio had to. be 

adjusted to allow for a specific base sequence ratio. In general 

DNA was present as 10-20mg/'ml. and the RNA was present in very small 

amounts. The actual concentrations of the RNA was dependent on both 

the DNA base sequence:RNA base sequence ratio, and the specific 

activity of the labelled RNA. For cRNA the specific activity was 

1.42.0x107cpm/ug. When the reaction was considered to be incomplete 

the concentration of DNA in the mixture was increased: i.e. the 

DNA/ 



DNA:RNA ratio was increased. 

Purified, sonicated DNA was denatured in 0.1xSSC by heating at 100 0 
 C 

for 7-10 minutes. RNA was added and the mixture heated for a further 

34 minutes. A control sample was taken and diluted into .ice-cold 

2xSSC. The DNA and RNA mixture was removed to a constant temperature 

water bath, (65°c or yo°c). The hybridisation reaction was started 

by adjusting the solution concentration to 2xSSC. .Zero time points 

were taken and the reaction monitored by sampling for various times. 

Each sample was diluted into ice-cold 2xSSC. To dëterniie the amount 

of hybrid formation throughout the reaction, samples were divided 

into equal volumes, and the RNA-DNA hybrids detected by RNasing 

(bug/ml panacreatic; Sigma) followed by TCA precipitation, alcohol 

rinsing, drying in a vacuum oven at 80°c, and finally counting 

in Toluene-based scintillation fluid. The % RNase-resistance for 

each sample was obtained by comparing RNasecl samples with non-RNased 

samples. This % RNase-resistance was then plotted against log Cot 

(Meili et al., 1971; Bishop, 1072; Bishop 1972b; Campo, 1973). 

For DNA excess hybridisation reactions which were continued for 

several hours, or even days, 2% SLS was added to the original reaction 

solution. In these cases, samples were diluted in 2xSSC so that the 

final SLS concentration was 0.00596 or less since higher concentrations 

interfere with RNase digestion. 

6. Preparation -of labelled Xenopus ribosomal RNA 

Cells of a Xenopus permanent cell line were grown to 2/3 confluence in 

a 250ml Falcon flask. They were labelled with 80CiJmi. 3H-Uridine 

(720Ci/mmole, Amersham) in Eagle's MEN, supplemented with 0.1% NaHCO 3 , 

1CFBS, and antibiótics; and incubated for 48 hours at 25°C. The 

0 i cells were washed with Dulbecco A and homogenised at 0 C n 0.15M NaCl, 

0.1% SLS, 0.01M Tris pH7.2. An equal. volume of water-saturated phenol 

was/ 



was added and the RNA purified by repeated phenol extraction and 

centrifugation. The final aqueous phase was made 2% sodium acetate 

(pH5.0) and the RNA precipitated by adding 2.5 volumes of absolute 

alcohol. The precipitate was stored at -20°C overnight. 28 and 18S 

RNAs were separated by centrifugation in a linear , 5-40% sucrose 

gradient as described for the isolation of E.coli 23 and 16S RNAs. 

The specific activity was 2x1o 5cpnVug. 

Preparative CsC1 gradient centrifugation 

The method of isopycnic centrifugation has been reviewed by Plapm 

et al. (1967; 1 969). DNA in 0.1xSSC, together with M.luteus DNA as 

a density marker (1.731gnVcm3),  was added to 5.2gmCsCl (BDH, analytically 

pure) and centrifuged in an MSE lOxlO rotor for ko hours at 250C, running 

speed +2Krpm. A hole was pierced and fractions collected. After 

diluting to 0.5ml with 0.1xSSC, the optical density, of each fraction 

was determined. 

Self-Complementarty of labelled RNA preparations 

RNA was denatured by heating at 100 °C for 5 minutes. After rapid 

chilling in ice, the RNA was incubated in an SSC or an SSC/FA mix at 

appropriate temperatures of incubation (see text or Legends for details). 

At various times during the annealing reaction, samples were withdrawn 

and diluted into ice-cold 0.IxSSC. (or 2xSSC). After the last sample had 

been diluted, they were split into two equal portions. One lot was 

ased'10ug/ml pancreatic; Sigma) at 370C for 30 minutes; the other 

was incubated at the same temperature and for the same time with OT.1xSSC. 

Carrier RNA (E.coli total, or yeast; (Sigma)) was added and the RNAs 

precipitated by adding an equal volume of 10116 cold TCA. After 20 minutes 

on the ice samples were filtered on GF/C filters. The collected ' 

precipitate was washed twice with cold 5%TCA followed by one rinse in 

absolute/ 



absolute alcohol. Filters were then dried in a vacuum oven at 80°c 

for approximately 20 minutes. lOmi of Toluene PPO-POPOP were added 

and the samples were counted in a Pábkard scintillation counter. 

9. Dissociation of RNA-DNA hybrids (membrane filters) 

RNA-DNA hybrids were formed at optimal rate temperatures in appropriate 

hybridisation solutions, and the reaction terminated at 

approximately 80°/ of the final saturation value. To determine the temperature 

at which 5cP/ of the cRNA was released from each filter (.Tm),the filters 

were placed in 1.0ml of melting solution (generally 1xSSC) after 

nuclease inhibition, and heated in temperature increments ofrr8°c. 

(Birnstiel et al. 1972). The details of the procedure are as follows: 

The RNA-DNA hybrids, on filters, were counted in Toluene-based 

scintillation fluid. To remo1e the Toluene fluid the filters were washed 

in chloroform (3 changes) for a total of 15 minutes. After drying, the 

filters were soaked in 1XSSC containing 0.1% diethylpyrocarbonate and 

then washed for 1/2 hour in this solution at room temperature. These 

filters werethen washed in 1XSSC at room temperature fôr.a further 

20 minutes. Each filter was then placed in a vial and imi. of melting 

solution added. After 5 minutes at each temperature of incubation the 

Imi was removed from the vial and set aside on ice. Another Imi. of 

solution was added to the vial containing the filter and the temperature 

of the solution raised by approximately 80c. Samples were taken,. 

in this fashion, until the. temperature approached 100 °C. 200ug carrier 

RNA was added to each imi stored in ice. 5 cold .TCA was added to 

make the RNA solution io%TCA, the tubes stirred, and left in ice for 

20 minutes. The RNA was then filtered through GF/C filters which 

were washed with 5% cold TCA, rinsed with absolute alcohol, and dried 

in a vacuum oven at 80
0c for 20-30 minutes. The dried filters were then 

counted in 15m1 of Toluene-based scintillation fluid. In addition, the 

original/ 



original membrane filter was also counted after drying. The % TCA 

precipitable RNA released from the membrane filtenr was plotted against 

the temperature increase. All the RNA, originally in hybrid form, 

was generally recovered. 

10. Preparation of labelled Adenovirus 2 DNA 

Human embryonic kidney cells (BEK) were grown at 37°C. The culture 

medium was Ham's FlO plus icY/ tryptose phosphate broth plus,10% FCS. 

Adenovirus 2 (a gift from Dr. J. K. McDougall, Birmingham) was added 

to the cells and was absorbed for 3 hours in medium without the serum 

content. After this time fne cells were rinsed in PBS and the medium 

piu'.the 1 FCS replaced. Infected cells were incubated at 370C for 

10 hours before 3H-Thymidine (20CJmmole; Amersham) was added at a 

concentration of luCi/mi. At this time virus-specific DNA is beginning 

to be synthesised(Ledinko and Fong, 1969; Dunn et al., 1973). Cells 

were harvested after 70 hours incubation in medium plus 3H-Thymidine 

and virus extracted and purified according to the previously described 

procedure. Virus DNA was extracted according to the method of Levine 

and Ginsberg (1967) which is described above. The DNA had a buoyant 

density Of I .716g/c! 3  in neutral CsC1, both in the preparative 

ultracentrifuge and in the analytical ultracentrifuge. Two preparations 

of 3H-Thymidine labelled Adenovirus 2 DNA were used; one batch being 

prepared by Dr. J. K. MäDougall, Birmingham.. Both' preparations possessed 

specific activities of 	106cpnVug. 
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SECTION IV 

1. Preparation of chromosome spreads from cultured cells 

Cells were grown to -- confluence in 9cm Petri dishes (Sterilin, Flow 

Laboratories, Ayrshire) in lOrni of culture medium, generally Eagle's 

MEM supplemented with iC/ FCS and containing 0.1% NaHCO3 , and antibiotics. 

Colcemid (Ciba) was made up 1mg in lOOmi. Dulbecco A (OXoid) heated 

to 37°C. O.kml were added to each Petri dish which contained lOmis 

medium. The colcemid was left to act on the cells for 5-6 hours of 

culture at 37°C. The medium was then pipetted off and the cells washed 

carefully with Dulbecco A. Pre-warmed Trypsin (0.25 010 inDuibecco A) was. 

added to the cultures and the dishes rocked gently until the cells began 

to detach from the substrate. These cells were pelleted for 5 minutes in 

an MSE bench centrifuge set at 2K (i'+oo rpm). The supernatant was removed 

and the cells suspended in fresh Dulbecco A. After thorough rinsing and 

shaking in the Dulbecco A, the cells were again pelleted as before. The 

supernatant was decanted and the pellet resuspended in a very small volume 

of residual supernatant Dulbecco A. Care was taken to completely 

resuspend the cells at this juncture. Approximately 5m1 of 0.07M KC1 were 

slowly run into the centrifuge tube containing the cells. The tube was 

agitated and the cells suspended and dispersed in the KC1 solution which 

was then warmed at 37°C for 10-15 minutes. The cells were again pelleted, 

the KC1 removed, and the pellet resuspended in residual drop of supernatant. 

Cells were then fixed in 3:1 methanol:acetic acid. Freshly prepared 

3:1 fixative was run into the tube and the cells dispersed. They were 

then left for at least one hour. The fixative was changed 3 times, 

the cells being pelleted between each change. Fixed cells were. 

dropped onto previously cleaned glass microscope slides (boiled in 

concentrated HC1, rinsed in alcohol-ether and thoroughly washed in 

running," 
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running distilled water) and the spots air-dried. 

Alternatively the pellet was fixed in. 2.5% glutraldehyde (TAAB Lab., 

Reading) in 0.IM phosphate buffer, pH7.2 fr 30 minutes at room 

temperature. Cells were then washed repeatedly in the phosphate buffer 

and dropped onto glass slides and left to air dry. 

Preparation of chromosome spreads from whole blood 

Peripheral blood was drawn by venipuncture into a disposable plastic 

syringe and immediately transferred to a plastic lithium heparin 

bottle (Stayne Laboratories, High Wycombe) and thoroughly mixed. 

Universal bottles (iOml) were prepared containing 1+ml culture medium 

(Eagle' s?M -i- 0.c1°/ w/wNaHCO 3  1./oFCS, .nd antibiotics.) and:0.05m; 

phytohaemagglutinin (Burroughs Wellcome). 0..4ml of bl:ood was incubated 

at 37°C for 2-3 days. During the laèt 3 hours of incubation, 0.5m1  of 

0.02116 colcemid solution (Ciba) made up in Dulbecco A was added. The 

cultures were gently shaken and then spun down on an MSE bench centrifuge 

at 5 for  5 minutes. The supernatant was discarded and the cells 

resuspended in pre-warmed (37 °C) 0.07M  KC1. The rest of the procedure 

was been described in the preparation of chromosome spreads from cultured 

cells, (see pg.44). 

Blood was donated by Dr. J. Prosser and Mr. N. Thomas (both this 

laboratory) and was withdrawn by Dr. R. Sutcliffe (Dept. Genetics, 

Glasgow). 

Cells grown on microscope slides 

Clean, sterile galss microscope slides were prepared and placed in 

Petri dishes. Culture medium was added to the dishes, and an 

appropriate dilution of cells, in the same medium, added. The cells 

were incubated at 37 °C in an atmosphere of 5% CO2  in air. The medium 

was washed from the slides and the cells rinsed in Dulbecco A. After 

several! 



several rinses in the Dulbecco A the cells were swollen in 0.075M KC1; 

and fixed in 3:1 methanol:acetic acid (cold) or in 2.5% Gluteraldehyde 

as described previously. After several changes in fresh fixative, 

the slides were left in fixative in the cold (1 0C) overnight. They 

were then passed through an alcohol series (o-ioc) and left to 

air-dry. 

k. In situ hybridisation 

a) Cytological preparations: 

Cell cultures: Chromosome: -spreads and interphase nuclei were 

prepared as described. 

5um frozen sections of tumour material were prepared by Dr. J. K. 

McDougall, Birmingha1T1. 

b) The hybridisation reaction: 

Coverslips (Chance, no.1, 22mrnx22min) were cut to llxllmm size, wahed 

in alcohol: ether 1:1, siliconized (Pepelcote, Hopkins and Williams, 

Chadwell Heath), dried, rinsed in distilled water and dried again. A 

rubber sealing solution was prepared by mixing Cow Gum (P.B. Cow Ltd., 

Slough, Bucks) with petroleum ether (B.D.H.). 

The fixative used has an effect on the results obtained after in situ 

hybridisation. Figure 11:2 and Table 11:1 show that with 3:1 methanol: 

acetic acid as opposed to gluteraldehyde the final outcome in terms 

of grain counts is better. For most in situ hybridisation experiments 

described here the fixative was therefore always 3:1 methanol:acetic acid. 

The denaturation method also has an effect on the results of in situ 

hybridisation experiments. Gall and Padue (1969) have used NaOH to 

denature the chromosomal DNA. H Dwever, both AHNSTROM and Natarajan 

(9974) and Commings et al.(1973) have shown that there is considerable 

loss of DNA from the chromosomes during the NaOH treatment. Heat 

denaturation/ 



Figure 11:2. Mouse embryo cells after in 

situ hybridisation with mouse satellite 

cRNA.Conditio'nsof hybridisátion:I hour, 

3xSSC,60 0 C,O.00Iug /3u1 cRNA.Stained in 

Giemsa(pH 6.8).a)whole embryo cells 

fixed with 2.5% Gluteraldehyde:exposure 

time-2 weeks;b)whole embryo cells fixed 

with 3:1 methanol:acetic acid:exposure 

time 2 weeks;c)mouse chromosomes fixed 

in 2.5% Gluteraldehyde:exposne time 

6weeks;d)mouse chromosomes fixed in 

3:1 methanol:acetic acid:exposure time 

6 weeks.a) and b)x400 in scale;c) and 

d) x450. Note the higher grain yield 

in methanol:acetic acid fixed 

preparations. 
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Table 11:1 

Grains in 
% Cells containing n grains cytoplasm 

in nucleus (Average back- 
ground) 

Fixative n= 5 	6-10 	11-25 	26-50 	51 

2.5% Gluteraldehyde 0 	26 	60 	14 	0 10-20 

Methanol:acetic acid, 3:1 0 	0 	9 	21 	70 5 

Conditions of hybridisation as for Figure 11.2. Exposure time 2 weeks. 

* No. of cells counted = 100 for both fixatives. 



denaturation at high temperatures has also been used (John et al.1969) 

as has heat denaturation at low temperatures in conjunction with 

Formainide (Steffensen and Wimber, 1 970) which reduces the melting 

temperature of DNA duplexes (Helmkamp and Ts'o, 1961 and McConaughr 

et al. 1 969). 

Figure 11:3, however, shows that there also appears to be loss of DNA 

from the chromosomes with heat treatment in conjunction with Formamide. 

No loss appea±s to occur with HC1 treatment which has also beenused 

to denature chromosomal DNA (MacGregor and Kezer, 1971, Jones 1973). 

In addition, NaOH and heat Formamide treatment appeared to have 

deleterious effects on chromosome morphology and stainability with 

giemsa. Therefore unless otherwise stated 11 denaturation was always 

used in the in situ hybridisation experiments in this thesis. 

Acid denatured cytological preparations were freed of dust particles 

by blowing them with air. Radioactive cRNA was applied to the 

preparations in the appropriate salt solution (usually 2-4xSSC) and 

a coverslip sealed to the preparation with the diluted Cow Gum. Slides 

were incubated usually at the optimal rate temperature of hybridisation 

for each cRNA-DNA reaction. The reaction was terminated after several 

ts for individual hybridisalions and the coverslip removed and the 

slides dipped into ice-cold 2xSSC. These slides were washed in cold 

2xSSC for several minutes, then PNased (20ug/ml in 2xSSC) for - 20-30 

minutes in 2xSSC at 37 °C. After RNase digestion preparations were 

washed exhaustively in. a large volume of 2xSSC in the cold (4'
0 
 C). 

3-4 hours later and after repeated changes of 2xSSC, the preparations 

were dehydrated through an alcohol series: 50-1O(Y/o, and subsequently 

air-dried at room temperature. 

c) Autoradiography/ 



Figure 11:3. Loss of DNA on treatment with 

various denaturants used in the in situ 

hybridisation procedure.Mouse embryo 

cells were labelled with 3H-Thymidine 

for approximately two cell generations 

and nuclear and chromosome spreads 

made.These spreads were then subjected 

to DNA denaturants and the amount of 

incorporated 3H-Thymidine remaining 

examined by autoradioagraphy .Exposure 

time:2 weeks. 

3H-Thymidine labelled cells treated 
with a) 0.07N NaOH for 3mins. at R.T. ° C; 

b)0.2 N HCL for 20mins. at R.T. ° C;c) 

O.IxSSC 90%F.A. for 2 hours at 65°C. 
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Autoradiography 

Ilford K2 or Ilford Lk Nuclear Emulsion in gel form was used to coat 

slides for autoradiography. A 1:1 solution of emulsion:distilled 

water was heated to 39_430
C in a water bath. The mixture was gently 

stirred to avoid local overheating, to mix the emulsion with the 

water thoroughly, and to produce an even surface for the dipping of the 

slides. Dipped slides were hung vertically and dried in a stream of 

air at 180c. They-were then stored in light proof boxes at k°C for 

varying lengths of time. Slides were developed in Kodak D 19 B 

developer for 3.5 minutes with no agitation, at 180C, rinsed carefully 

in distilled water, fixed in Johnson Fix-Sol (diluted 1:5 with distilled 

water) for 5.5 minutes (or 2x the clearing time), washed with. distilled 

water for several minutes and stained. 

Staining Autoradiograph 

Slides were stained in Giemsa R66 (Gurrs, London) diluted 31100 in 

Buffer pH6.8 (Gurr's tablets). The staining time was generally around 

112 hour - 1 hour depending on the thibkness of the emulsion film. 

Overstained preparations were destained in either Buffer pH6.8 or 

516 alcohol. 

3. In situ hybridisation involving cells grown directly on glass slides, 

and cells derived from blood cultures 

This was carried out as described previously (pg.41). Cells grown 

on glass slides were always denatured with HC1; NaOH and heating removed 

the cells. HC1-denatured cells were not removed during either the 

fixation procedure or the subsequent in situ. hybridisation procedure. 

6. Alkaline CsCl gradients 

These gradients were prepared according to the protocol of Flamm et al. 

(1967) with the inclusion of M.Luteus DNA, alkaline buoyant density 

1 .788 gm/cm-3  (Vinograd et al. , ( 1 963). A trace amount of highly 

purifie d/ 



purified satellite DNA was added to 3.3mls  of a 0..01M Tris-HC1 

(pH8.5) solution containing 1+0ug Xenopus DNA (a gift from Mr. C. Philips, 

this laboratory) and 20ug M.Luteus:DNA:lQOul IN NaOH were added, 

followed by 500ug SLS. The solution was finally brought to an initial 

density of 1.7609nVcm 3  with CsC1 (B.D.H., analytically pure) and the 

DNA centrifuged in the MSE 50 rotor for ko hours at 1+4,000 rpm at 250C. 

The buoyant densities of the separated strands of the satellite DNA 

were calculated by comparing their positions in the alkaline gradient 

with those of the M.Luteus and Xenopus DNAs. These marker DNAs have 

buoyant densities in alkALine OsCi of 1 .788gWcm 3  and I .75kgnVcm 3  

respectively. (The values were determined in the analytical 

Ultracentrifuge). 

7. Preparation of Satellite DNA 

Satellite and main band DNA were separated by preparative density 

centrifugation in Ag+ - CSOk (Jensen and Davidson, 1966). The 

Technique relies on the selective affinity of Ag4  - ion for certain 

DNA bases and has been used to isolate a variety of satellite DNAs 

from a variety of organisms; for example, from the Chimpanzee (Prosser 

et al., 1973); man (Corneo et al., 1973); Baboon (Prosser, 1974) and 

mouse (Corneo et. al., 1968) Here, mouse satellite DNA was purified by 

the method of Corneo et al.(1968) and Human satellite DNAs, I, II, and 

III prepared by the methods of Corneo etal.(1970; 1971). 

Purified total DNA was dissolved in 0.1M Na2SOk  and then dialysed 

against 0.IN Na2SOk. A solt'tion of 0.1M borate buffer pH9.2 was added 

to give a final concentration of 0.005M borate ion. A 10 M solution 

of AgCLO was added to give varying molar ratios of Ag to DNA-Phosphate. 

For the mouse, R 
F values of 0.2-0.25 were used: for the human satellites 

I, II, and III, R values of 0.1, 0.35  and 0.2 were used. A saturated 

solution/ 



solution of Cs2SO4  (Anderman and Co. Ltd., London) in distilled water 

e = 1 .930gnV'cm 3 ) was added to give the required initial buoyant density 

as judged from the refractive index. In general, an increase in 

of 0.05 led to an increase in initial buoyant density of 0.01 2gnVcni 3  

and was achieved by increasing the amount of saturated Cs2S0 added per 

ml of gradient by 0.013m1. The final DNA concentration was 50ug/ml 

solution. 

Preparative centrifugation was carried out in volumes of 20m1/tube in the 

8x4O fixed eadigle .Titanium ±otor of the MSE 65 ultracentrifuge. The 

solution was centrifuged at 30K rpm for 96 hours at 20°C, a hole was 

pierced in each tube, and fractions collected and diluted with 0.5m1 

0.IM Na2SO4.  Absorbance at 260nm was determined, fractions containing 

the regions of satellite DNA pooled, and this DNA re-centrifuged in 

Cs2SOk with no additional Ag added. After the second centrifugation, 

the satellite DNA regions were extensively dialysed against 5M NaCl 

plus 0.01M Tris-HC1 pH7.0, followed by dialysis against 0.1xSSC. The 

purity of various satellite fractions was ascertained by analytical 

centrifugation in CsC1. All satellite DNA preparations were eventually 

dialysed against 0.1xSSC. 

8. a) -  Fixation of. ce1lsonto.covè±slips 

Cells, derived from monolayers -  in culture, were fixed in 3:1 methanol: 

acetic acid as previously described and air-dried directly onto 

coverslips. 

b) In situ hybridisation with cells on coverslips 

Hybridisation was carried out essentially as described above with the 

coverslip being sealed to a glass microscope slide with Cow Gum 

solution. Post-hybridisation, the coverslip containing the cells was 

eased from the slide and the Gum totally removed with the aid of 

watchmaker's/ 



watchmaker's forceps. The coverslips were then treated with PNase and 

exhaustively washed in cold 2xSSC as described for the routine in situ 

hybridisation procedure. 

Scintillation counting of cells oncoverslips 

Processed post-in situ hybridised cells on coverslips were finally 

rinsed in alcohol and air-diied. These coverslips were then directly 

immersed in lOmi Toluene-based Scintillation fluid and the radioactivity 

determined. 

Thermal melting of RNA-DNA and DNA-DNA duplexes with cells on .coverslips 

This was'càrried out as described for the thermal melting of hybrids 

retained on millipore filters (pg.4.1): i.e. the use of T.C.A. to 

precipitate either 3H-labelled RNA or 3H-Thymidine-labelled DNA. 

/ 



SECTION V 

Tumour Induction 

Adenovirus 2 tumours were induced by inoculating Adenovirus 2 

transformed cells into newborn Hooded Lister rats 'with or without 

immunosupression. (See Materials). Inoculation was carried out by 

Dr. P. H. Gallimore, Dept. GancerStudies, Birmingham. Adenovirus 12 

tumours were induced in ne\iborn Hooded Lister rats by injecting 

purified Adenovirus 12 S.C. (See Materials). These tumours were 

excisable by about 8'weeks post-inoculation. 

Preparatiónof virus-infected cells 

Hela and HEK cells were used as permissive systems for the 

replication of Adenovirus5, 2, 12, or 7 serotypes. 

Plague formation on cells 

In some cases original Adenovirus 5 preparations were tested for 

infectivity by plaque formation on a monolayer of Hela cells overlaid 

with agar and stained with neutral red. The method was that of 

Williams (1970) which incorporates MgC12  in the medium, having an 

enhancing effect on the production of plaques. 

Virus suspensions (diluted in PBS) were absorbed to Hela monolayers 

and the cells incubated for 90 minutes at 37°C. The monolayers were 

then overlaid with 5ml of 0.6% Noble agar (Difco) in Eagle's medium 

containing 296 FCS and 25mM MgG1 2 . After incubation at 37 °C in 5% 

602 for 5 days, an additional 2m1 ot agar overlay medium was added 

to the cultures, and on the 6th or 7th day after infection a further 

2m1 of overlay medium containing neutral red, was added. Normal cells 

stained with the ñëutral red and the plaques appeared clear and large. 

Either Hela or HEK cells were grown to nearly 2/3 confluence in 

9Omm/ 



90mm or 50mm plastic Petri dishes. Virus (diluted in PBS) was 

added to the cells at defined m.o.i. and after the culturing medium 

had been removed. Virus was absorbed at 37°C for 30 mm. - 3 hours 

in different experiments. After the required time, the cells were 

washed briefly in PBS and the growth medium then added. Cells were 

cultured at 37°C  in 5% CO  in air. 

3. Preparation of nuclear RNA from cultured tumour cells 

Shimada etal.(1972) separated nuclear and cytoplasmic fractions 

of Adenovirus 2 transformed cells using modifications of the methods 

of Borun et al.(1967) and Penman (1966). Also they extracted nuclear 

RNA by a combination of the methods of Penman (1966), Fujinaga and 

Green (1967) and Warner et al. (1966). The method of Shimada et al. 

(1972) was used to separate nuclear and cytoplasmic fractions of 

Adenovirus tumour cells; and a combination of the methods of Penman 

(1966); Kirby (1965) and Parish and Kirby (1966) were used to extract 

the nuclear RNA. 

a) Separation of nuclear and cytoplasmic fractions 

Cultured cells were washed in Dulbecco A, Trypsinised, centrifuged 

and resuspended in 1x10N Tris-HC1, 1xl0 3M MgC121 
 1x10M NaCl, 

pH7.4 (ISB buffer). (Penman, 1966). Nonidet-P-4o (NP-4o) (Shell 

Chemical Co.) was added to a concentration. of 0.2% and the mixture 

incubated at 0°C for 15 minutes. '(Shimadaetal., 1972). The sblution 

was then centrifuged at 2,200 rpm for 10 mm.. in the cold (k°c). 

The resulting pellet was resuspended in RSB + NP-40 and incubated 

for a further 5 minutes at k°C. After agitation the suspension 

was again centrifuged at the previous speed for the same time and 

the nuclei pelleted. 

The/ 



Table ll. 

Whole cell: 
nucleus + Cytoplasm 

Cell Nonidet P-40% 
cytoplasm 
(x. iO2cpm/ 

 
Radioactivity in 

(%) 
 

cytoplasm 
lOOml culture/ 

lOOmi culture) 

Adenovirus 2 transformed 0.2 10,736 279 2.6 
rat embryo 

(Ad2/REB/lOp/Bl) 

0.2 10,378 291 2.8 

* 	 I?  0.2 7,385 285 3.9 

*Shjmada et al. (1972) 



The separation of nuclei and cytoplasm was evaluated by a5 phase 

contrast microscopy and b) labelling cells with 3H.-Thymidine and 

deterthining the radioactivity in separated fractions. For the second 

determination the procedure was as follows: Cells were labelled with 

0.5uCi/ml 3H.Thymidine (2OCi/mmole Amersham) in Eagle's MEM, 

supplemented. After 20 hours incubation at 37°C, 5P/o  CO2  in air, 

the cells were rinsed with Dulbecco A and nuclear and cytoplasmic fractions 

prepared by the method outlined above. After addition of 2.5961  

Perchloric acid, the total acid-insoluble radioactivity is cytoplasmic 

(Table 11:2). Shimadaetal. (1972), using 0.2% NP-40, found less 

than +% of the total radioactivity ( 3H-Thymidine) in the cytoplasmic 

fraction. 

k. Extraction of Nuclear RNA 

lml of Kirby's solution was added to nuclei and the mixture gently 

.homogenised in a small Teflon homogenizer. An equal volume of 

phenol-creol was added and the mixture shaken at room temperature 

for 20-30  minutes. This mixture was then centrifuged at 10,000 rpm for 

10 minutes and the aqueous phase was removed. The phenol and proteic 

phases were then re-extracted with 2.5 volumes of distilled water and 

shaken for another 20-30  minutes at room temperature. After centrifugation 

at 10,000 rpm for 10 minutes the aqueous phase was removed, and added to 

the first aqueous phase. This was now extracted with i/ volume of 

phenol-cresol:, the phases separated by centrifugation, and the water phase 

re-extracted with 1/2 volume of chloroform to remove any phenol. i/b 

volumes of 214 sodium acetate (pH5.0) was added and the RNA precipitated 

with 2.5 volumes of absolute alcohol at •-20 6C overnight. The resulting 

precipitate was then pelleted by centrifugation at 1'0,000 rpm for 

20/ 



20 minutes, the pellet washed in 1:1 alcohol: ether, and air-dried. 

7mM MgC12 , 50mM TrispH7.5 was added and the solution incubated with 

50u&/ml of re-purified DNase (see pg.3)  for 30 minutes at 0°C. 

After alcohol precipitation, the precipitate was stored at -20 
0C. 

The RNA spectra was determined in an SP800 spectrophotometer and 

pure RNA gave an E260/E280  2. 



SECTION VI 

Labelling of RNA in cultured cells 

Adenovirus transformed cells or normal cells were groan in Eagle's 

MEM supplemented with icP/ P05 and also containing 0.1% NaHCO 3I  and 

antibiotic. The cells, when --- confluent, were labelled with 

lOuCi/mi 3H-Uridine (2501/M mole, Amersham) for 8 hours at 37°C. At 

the end of this labelling period the radioactive medium was removed 

and the cells washed in Dulbecco A. 

Preparation of cytoplasmic labelled RNA from cultured cells 

Nuclear and cytoplasmic fractions were prepared as previously described. 

To the RSB + NP-2+0 supernatant an equal volume of Kirby's solüt ion 

was added. Phenol-chloroform-cresol was added to the mixture in a 

1:1 ratio, and the RNA extracted by shaking at room temperature for 

20 minutes. After centrifugation, the RNA was further extracted by 

the same procedure as has been already described for the preparation 

of nuclear RNA; and the final RNA solution precipitated with the 

addition'of 1/10 volume 2M sodium acetate (pH5.0) and 2.5 volumes of 

absolute alcohol. The RNA was stored at -20°C overnight. All the 

preparative steps were carried out at 040C. 

Cellulose-oligo edT) columns. (Aviv and Leder, 1972) 

1gm of: cellulose-oligo (dT) binds 31+ OD of poly A. 50mg were used to 

pack a sterile pasteur pipette. The column. was washed with lOrnl 

distilled water, 2m1 of 0.INaOH, lOmi of distilled water and finally 

lOml of the binding buffer. (kOOmI'iNaCl, 1mM EDTA, 10mM Tris - 0.1% 

SLS pH7.6.) The RNA sample was suspended in the same binding buffer 

and loaded on to the surface of the column. The RNA molecules lacking 

poly A sequences were collected in fractions of binding buffer; the 

poly A-containing RNA molecules were eluted in low salt eluting buffer 

(1mM EDTA/ 
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Om M EDTA, 10mM Tris- 0.1%SLS p117.6) and fractions collected. The 

radioactivity in the fractions of binding buffer and eluting buffer 

was monitored by counting fraction aliquots in liquid sinctillation 

fluid. (iothi Aquasol; NEN Chemicals, Germany). The RNA in the eluting 

was made 0.4M NaCl and the solution passed again through the column. 

Binding buffer and elution buffer fractions were again taken and the 

poly A-containing mRNA precipitated at -20 °C. 

Lf Penaturation of 3H-labelled Adenovirus 2 DNA 

3H-Thymidine labelled. Adenovirus 2 DNA was prepared and Purified as 

described previously. 

The DNA was denatured by boiling at 100 °C in 0.IxSSC for 30 minutes. 

Control samples were taken. The salt concentration was adjusted to 

3xSSC and the renaturation carried out at 65°C. At various times 

throughout the reaction, samples were withdrawn and diluted into a large 

volume of cold SI nuclease buffer (0.03M sodium acetate pH4.5, 3x10 5  

ZnSOk, 0.0IM NaCl). The diluted samples were then divided into equal 

portions and one portion treated with SI nuclease enzyme (a gift from 

Dr. J. 0. Bishop, this laboratory). Si digests single strand DNA 

(Sutton, 1971). The treated and untreated samples were incubated at 

500C for +0 minutes, then placed on ice. 50ug of Bovine serum albumin 

perinl were added followed by50 9/o TCA to a final concentration of 

101"o. After 20 minutes on ice, these samples were filtered on GF/C 

filters, the filters washed with cold 5106 TCA, dried and.counted in 

Toluene-based scintillation fluid. The % of Si nuclease-resistance 

for each sample was plotted against Log Cot. 

5 Preparative CsC1 centrifugation of labelled virus DNA 

3H-labelled Adenovirus 2 DNA was prepared as previously described. 



A small amount of virus DNA in 0.IxSSC, plus approximately 50ug human 

DNA and 15ug of M.Luteus marker DNA, was made up with 5.2gm CsC1 

(B.D.H., analytically pure) to an initial density of 

1 .700-1 .720giw'cm3. The total 'ro1ume was krnl. Liquid paraffin was 

added to fill up the tube. The DNAs were centrifuged at 42K rpm for 

'+o hours at 25°C in an NSE ithctcl0 rotor. After centrifugation,tubes 

were pierced, fractions collected and diluted with 0.1xSSC. An equal 

volume of iN NaOH was added and the DNA in each fraction denatured over 

a 15 minute period. DNA was then loaded onto membrane filters 

according to the method of Gillespie and Spiegelman (1965) and as 

already described. The radioactivity of each filter was counted in 

Toluene-based scintillation fluid, and the counts per fraction plotted. 

6 In situ hybidisation of 3H-Adenovirus DNA and Adenovirus-specific 

nucleic acids in eukaryote cells 

The preparation of nuclear spreads and whole cells has already been 

described. 

Adenovirus 3H-DNA was denatured by heating at 100°C in 0.IxSSC for 

30 minutes. The denatured DNA was rapidly chilled on ice, made up 

to 2xSSC, and added to cytological preparations at a concentration 

of usually 103ug/5ul. Hybridisation was carried out for 10 hours 

at 65°C and the reaction terminated by chilling in ice-cold 2xSSC. 

Preparations were treated with Si nuclease in 0.03M sodium acetate 

pll4.5, 3x105M ZnSOk, 0.01M NaCl. After 30 minutes enyme treatment 

at room temperature the slides were then washed in the Si nuclease 

buffer followed by exhaustive washing in cold (k°C) 2xSSC. 

Dehydrated slides were coated with Ilford K2 emulsion and exposed as 

previously described. In some experiments, cells were RNased (20u9/inl; 

2xSSC ) before 3H-DNA was added. 
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Preparation of 3H-Ply (U) 

The method is described in Jones, Bishop and Brito-da-Cunha (1973); 

and Bishop etal.(197k). 

0.25mCi3H-TJDP (13.3 Cl/rn mole, Amersham) was lyophilised in a lOmi 

conical tube. 5u1 of 0.5M Tris pH8.5 at, 37°C, 0.1M KC1, 0.06M MgC1 2  

were added and the tube shaken vigorously. 30u1 of aqueous 1% IJDP 

(Sigma) was added followed by 15u1 polynucleotide phosphorylase 

(Miles-Seravac, Code No: 31/620.) Incorporation was carried out at 

37°C and the reaction monitored by TCA precipitation of aliquots. 

When the incorporation reached a plateau, the reaction was terminated 

by adding 1.0ml of 0.2M sodium acetate pH5.0, 0.05mls lWo SLS and 

0.5m1  water-saturated phenol. The mixture was shaken for 2 minutes 

and 0.5ml of chloroform added. After a .further shaking for 2 minutes 

the mixture was centrifuged, the aqueous phase removed, and the 

phenol phase re-extracted with lml of distilled water. The pooled 

aqueous phases were layered onto a Sephadex-G50 column previously 

equilibrated with 0.1xSSC. The effluent was monitored by scintillation 

counting and the peak fractions of 3H-poly (U) pooled and lyophilised. 

The 3H-poly (U) was dissolved in a solution which was finally 2-5xSSC. 

The specific activity of 3H-poly (U) was 2.5 x 105cpnVug. 

Hybridisation of 3H-Poly (U) and Poly(A) in Poly (U) Excess 

50ng of cold poly (rA) (Sigma), in distilled water, was made up and 

hybridised to 3H-poly (U) in 2xSSC at 37°C. During the reaction, 

samples were taken and diluted 20 times in ice-cold 2x$SC. Two 

portions were removed and to one portion RNase (2Oug/ml) was added. 

After 20 minutes in an icebath, bovine serum albumin carrier (250ug) 

and TCA (1016) were added. Samples were collected on GF/C (Whatman) 

filters, dried, and counted with 15m1 of toluene-based scintillation 

fluid/. 



fluid. The % RNase-resistance of each sample was calculated by 

comparing the RNased samples with the non-INase treated ones. 

9. In situ hybridisation of poly (U) and poly A-hiRA 

Cytological preparations were denatured with 0.2N IIC1 as previously 

described, and prepared for in situ hybridisation.. Approximately 

ixiokcpm of 3H-poly (U) were added in a 5 ul volume of 2xSSC. The 

reaction was carried out for 2-3 hours at 500C, and terminated by washing 

the preparations in ice-cold 2xSSC0 RNasing (20ug/ml) was carried 

out at k°C for 20 minutes and the preparations washed exhaustively 

in 2xSSC at +°C. After the last cold 2xSSC wash, the slides were 

treated as previously described. 
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CHAPTER III 

ATTEMPTS TO DETECT ADENOVIRUS DNA IN ADENOVIRUS TRANSFORMED 

AND TUMOUR CELLS: PHYSICAL METHODS AND THE USE OF VIRUS 

COMPLEMENTARY RNA 

SECTION 1 

BASIC BIOPHYSICAL STUDIES 

The techniques of buoyant density centrifugation in CsC1 and 

thermal denaturation can be particularly useful in discriminating 

classes of DNA within the eukaryote genome. CsCl buoyant density 

centrifugation, for example, is capable of resolving certain satellite 

DNAs (Walker, 1970; Flamm, 1972); and thermal gradient denaturation 

of some DNAs result in the resolution of ribosomal genes (Birnstiel 

et al, 1970). 	DNA-DNA reassociation as well can discriminate classes 

of DNA which in this case are defined on the basis of their base-

sequence repetitition frequency (Britten and Kohne, 1968; Walker, 

1970). 	The subject of this section is whether virus DNA can be 

resolved from the rest of the genomal DNA in certain Adenovirus 

transformed or tumour cells by these techniques. 

Results and Conclusions 

a) Buoyant density determinations in neutral CsCl. 

DNAs were spun in the analytical ultracentrifuge and their 

buoyant densities determined (Table 111:1). 

There is no difference in the values for normal DNA, both 

AdenoVirus 2 and 7 transformed cell DNA, and DNA from tumours induced 

by Adenovirus 2 transformed cells or Adenovirus 12. 	These DNAs all 

possess buoyant density values of 1.699 (1.700) gm/cm-
3. 



Table 111:1 

DNA 
Buoyant desity 

(gin/cm 	) 
in neutral CsCl 

(G+C)% 
(G+C%) 

OTHER STUDIES 

Mouse 1.699/1.690 39.0 main/34.2 satellite Flamm et al. 	(1967) 

Rat 1.700 39.0-40.0 40.0 (Steele, 	1968) 

E. coli 1.712 51 

M. luteus 1.731 72 

Xenopus ribosomal (oocyte) 1.729 66-68 70 (Birnstiel et 
al., 	1970) 

Human 1.699 39.9 

Adenovirus 2 1.716 58 57-59 ) 

Adenovirus 7 1.711 50 49-52 	(Green, 1970) 

Adenovirus 12 1.708 48 48-49 ) 

Ad2/REB/lOp/Bl 1.700 40 

Ad2/REB/50p/B1 1.700 39.0-40.0 

Ad2/T4 1.699 39.9 

Ad2/T5 1.700 40.0 

Ad2/T6 1.699 39.9 

Ad7/1 1.700 40 

Ad12/Tl 1.700 39.0-40.0 

* Analytical ultracentrifuge  
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The three Adenovirus DNAs-2, 7 and 12 - possess unique buoyant 

density values, and the calculated GC contents are in agreement with 

previously determined values for these particular virus DNAs (Green, 

1970). 

Mouse DNA, as expected, runs as two detectable peaks in the 

gradient: 1.6999m/cm 3  (main band) and 1.690gm/cm 3  (AT-rich 

satellite ) (Kit, 1961; also this Thesis, pg. IOX ). 

The molecular weights of the DNAs are all in the range of 10 7 

daltons, and decreasing this value by a 1000 fold failed to resolve 

any differences between the virus transformed, the tumour, and 

normal rat DNA (data not shown). 

b) Thermal dissociation of DNAs. 

Several DNAs were melted in 1 x SSC pH 7.5, or 1mM EDTA. 	The 

latter solution was preferable since the melting range of the DNAs 

was lower than with the SSC solution and consequently reduced boiling 

of the 114A solution in the spectrophotometer cuvettes. 	The use of 

this EDTA solution has already been noted (Spiers, unpublished) and 

it gave reproducible results with a variety of DNAs (Figures 111:1 and 

111:2). 	Bacterial DNAs of known GC contents and Tms served as 

standards (see Figure 111:2). 

There is no difference in the Tms of normal rat DNA, transformed 

DNA or tumour DNA (Table 111:2); and Adenovirus DNA isolated from 

serotypes 2, 7 and 12 each possess This which are consistent with 

their GC contents, and with values obtained by other workers (Green 

and Pina, 1964; Green, 1970). 

*  ° Thi = mid-point of the DNA melting transition (C) 



Table 111:2 

DNA Tm DNA (1mM EDTA) Th(1xSSC) 
Other Studies 

Micrococcus luteus 72 99 99(Spiers,1973) 

E. coil 61.5 90 

mouse 59.5 85.5 

rat 58.1 85.5 

human 58.1 85.5 

chimpanzee (pan troglodytes) 58.5 85.5 86(Prosser,1974) 

Adeno-2 transformed (Ad2/REB/lOp/Bl) 58.1 85.5 

if 	 to 	 (Ad2/REB/50p/Bl) 58.1 85.5 

Adeno-7 transformed (Ad7/1) 58.1 85.5 

Adeno-2 Tumour (Ad2/T4) 58.1 85.5 

Adeno-2 Tumour (Ad2/T5) 58.1 85.5 

Adeno-2 Tumour (Ad2/T6) 58.1 85.5 

Adeno-12 Tumour (Ad12/T1) 58.1. 85.5 

Adenovirus 12 61 89 88.8(Green and ) 

Adenovirus 2 66 92.5 92.4Pina, 	1964 

Adenovirus 7 62 90 



Figure 111:1. Melts of DNA in a 1mM EDTA 

solution.Each DNA was dialysed against 

1mM EDTA and samples concentrated to 

25ug/ml 
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c) Reassociation kinetics 

DNA was denatured and reassociated according to procedures 

outlined in Materials and Methods. 	The DNA was sonicated to a 

Molecular Weight of 1.5 x 1O5  daltons and reassociation carried 

out at 70°C in 2 x SSC. The data are presented as conventional log 

Cot curves, the Cot* being a measure of the complexity of the individual 

DNAs (Britten and Kohne, 1968). 

Normal rat DNA reassociates over a wide range of log Cot values, 

a finding which is consistent with other studies on rat DNA (Melli 

et al., 1971; Campo, 1973); and DNAs from tumour or transformed 

cells exhibit the same reassociation transitions (Figures 111:3 and 111:4). 

There is no increase or decrease in the frequency of highly repetitive, 

intermediate or unique DNA sequence - the three main classes of DNA 

definable by this method - between normal rat, transformed or tumour 

DNA. 	In fact, all these DNAs show two main transitions; one at a 

Cot* of around 10 and another around a Cot of 1000. These two 

transitions represent a proportion of the genome comprised of a 

heterogeneous population of highly reiterated sequences. and a larger 

proportion composed, for the most part, of unique sequences only. 

The three techniques used here have therefore failed to resolve 

any differences in the DNA from normal cells and transformed or tumour 

cells. 	These particular techniques, however, have limited resolving 

power (see e.g. Walker, 1970; Flamm, 1972) and therefore the failure 

to resolve any differences between normal DNA and transformed or tumour 

DNA could reflect these limitations. Experiments were therefore 

designed which utilised the base-sequence specificity of the Adenovirus 

DNAs. Radioactive complementary RNAs (eRNAs) to the Adenovirus 



Figure 111:3. Reassociation of DNA in 

2xSSC,at70 0
C over several Cot values. 

DNA was at a concentration of 20mg/nil. 

Reassociation was calculated according 

to the formula: 

ExIOO 
26o(9o) 	26o(5o) 

E 260(90) _E 26 	xIOO 
o(9o) 

138 

as described in Materials and Methods, 

pg.33 



2 	3 	4 

Fig. III: 3. 



Figure 111:4. Reassociation of DNA in 2xSSC 

at 70 0
C.20mg/ml DNA:% reassociation was 

calculated according to the formula 

as presented in Figure III:3.Figures 111:3 

and 111:4 show that reassociation of 

normal rat DNA parallels reassociation 

of transformed cell or tumour cell DNA. 
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DNAs were synthesised and used to try and detect virus-specific 

DNA sequences in transformed or tumour DNA. The preparation, 

characterisation and use of these cRNAs in detecting such DNA 

sequences are described in the following sections. 
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SECTION II 

BASIC PROPERTIES OF THE TRANSCRIPTION OF ADENOVIRUS DNA BY THE 

E.COLI DNA-DEPENDENT RNA POLYMERASE 

This section deals with some of the basic properties of the 

transcription of Adenovirus DNA by the E. coil DNA-dependent RNA 

polymerase (E. coil RNA polymerase). 	While this poiymerase's action 

on certain DNAs is well documented (see e.g. Richardson, 1969), little 

is known about its mode of action on Adenovirus DNA. 

In general, the amount and rate of synthesis of RNA produced 

in.- vitro is dependent on a variety of factors which are either 

related to the nature of the template DNA or to the node of action 

of the enzyme itself. 	Thus transcription is dependent on the 

frequency and availability of initiation and termination sites on 

the DNA for example; and is also dependent on the rate of chain 

growth or polymerisation. Each of these processes in turn have 

their own specific rates which can be additionally influenced by 

factors such as the substrate concentration, the ionic strength, the 

availability of polymerase molecules and the nature of the DNA. 

Reflecting this, RNA synthesis can be enhanced in the presence of high 

ionic strength for example (So et al., 1967; Bremer, 1970; Maitra 

and Barash, 1969); Salmon Sperm DNA is transcribed more efficiently 

than Calf Thymus DNA (Chamberlain and Berg, 1962); and an increased 

superhelicity of the closed circular DNA of phage leads to increased 

amounts of RNA synthesis (Botchan et al., 1973). 

One of the points about the existence of •these various influences 

is the fact that until they have been recognised and characterised it 

is unclear whether specific transcription reactions are being carried 



out under conditions which maximise incorporation.. This is an 

important point since it is frequently desirable to define conditions 

of INA synthesis: for example, very poor transcription may be due to 

unfavourable ionic strength or alternatively to infrequent initiation 

sites on the DNA and failure to be aware of the first effect might 

erroneously lead to explanation of poor transcription on the basis of 

infrequent initiation sites only. Moreover, apart from this general 

consideration, it is clearly desirable to have transcription conditions 

which favour maximal amounts of RNA synthesis since the production of 

highly radioactive cRNAs for use in nucleic acid hybridisation 

experiments is an expensive process. 

This section deals therefore with some aspects of the transcrip-

tion of Adenovirus cRNAs principally by E. coil RNA polyinerase. The 

results are particularly important in that they show that Adenovirus 

cRNA synthesis has similar reaction dependencies as those described 

for a variety of other DNA-E. coil RNA polymerase interactions. 

This means, in effect, that subsequent use of Adenovirus cRNAs to 

detect regions of DNA homology (see later) does not have to rely on 

peculiar or unique conditions of cRNA synthesis. 

Results and Discussion 

The amount of RNA synthesised can be measured by its precipitation 

with trichioroacetic acid (TCA), the filtered radioactivity being 

counted in a Toluene-base scintillation fluid. 	The rate of RNA 

synthesis can be measured by the size of RNA transcripts produced in 

a short incubation time. 	This size, which is a measure of the number 

of nucleotides incorporated, can be determined from the RNA's sedimen-

tation in sucrose density gradients. 
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Like all RNA polymerases, the reaction with E. coil polymerase 

requires a cation, the four ribonucleoside triphosphates, and a DNA 

primer (Fox and Weiss, 1964; Richardson, 1969). 	The basic mix 

(see Figure 111:5 legend) also includes Spermidine (1.6mM) which 

helps to stabilise the enzyme and stimulate the rate and extent of 

RNA synthesis (Fox and Weiss, 1964; Soetal., 1967). 	Enzyme was 

added at saturating concentrations which, under optimum conditions, 

would theoretically be capable of catalysing the incorporation of 

2.5n moles 14C-ATP into acid-insoluble material in the presence of 

Calf Thymus DNA in 10 minutes. The basic mix also contains the 

buffers Tris and K2HPO4 . 

The DNA and cation dependehcies essential for nucleotide incor-

poration into RNA chains are shown in Figure 111:5. When Mg and 

Mn , or DNA is omitted from the incubation mix, there is little TCA 

precipitable material in 30 mins. of incubation at 37 °C (Figure 

III:5a). 	When Mg ++ or Mn 
++ and DNA are added, however, there is 

transcription (Figure III:5b) which is more extensive when both Mg ++ 

and Mn are present as well as DNA (Figure II1:5a). Chamberlin and 

Berg (1962), in studying the action of E. coli RNA polymerase on a 

variety of INAs, also found that the effect of Mg and Mn is 

accumulative in this way. Under normal conditions of transcription 

the reaction essentially plateaus at approximately 30 mins. incubation 

at 37°C. 	Similar in vitro kinetics, using this enzyme, have been 

reported for bacteriophage DNA (Richardson, 1969); a variety of 

eukaryotic DNAs (see Jones, 1973 for example); and certain DNA virus 

DNAS (see Pettersson et al., 1974 for example). 



Figure III:5.Synthesis of Adenovirus 2cRNA. 

The basic incubation mix contains:1-2ug 

DNA(dialysed against O.00IM NaCl),O.IM 

Tris pH7.5,Spermidine(I.6mN) ,0.09-O.IM 

KCL,2mM K 2HPO 4 ,5 nmoles each of ATP, 

UTP,CTP,GTP(either all labelled with 

tritium:15-20C1/mmole,or one labelled 

only:usually UTP),and 2.5 units enzyme. 

In experiments with all four triphosphates 

labelled the results were the same although 

the radioactivity incorporated was higher. 

At the termination of the reaction samples 

were TCA precipitated and the radioactivity 

determined by counting in Toluene-based 

scintillation fluid. (Toluene--PPO,POPOP). 

III:5a) o-o basic mix (all four 

nucleotides labelled) plus 0.0005M MnC1 2 , 

0.004N MgCl 2 ;x-x as for o-o but DNA 

denatured;-j- -+ basic mix only; ---' 

basic mix minus DNA but containing 0.0005M 

MnCl 2  and 0.004M MgC1 2 . 

III:5b) 00 basic mix(allfour nucléotides 

labelled) plus 0.004M MgC1 2 ;.4-_fbasic •mix 

(all four nucleotides labelled) plus 0.0005M 

NnCl 2 .Same sample volumes taken as for 

Figure III:5a.,and the RNA TCA precipitated. 
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Denatured Adenovirus DNA (heating at 100 °C in 0.001M NaCl for 

over 30 mins. prior to transcription) shows a marked reduction in 

RNA synthesis (Figure III:5a) which although not as much as for 

denatured T6 DNA (Chamberlin and Berg, 1962) or the transcription of 

denatured rDNA by the M. luteus DNA-dependent RNA polymerase (Hecht, 

1973), is consistent with the lower levels of RNA synthesis observed 

when, in general, any template DNA is denatured (see Richardson, 1969 

for example) . 

3. At different concentrations of Mg or Mn transcription of 

Adenovirus 2 DNA proceeds at different rates, the cation optimums being 

H- 	 -H- - 4mM Mn - or above 4mM Mg (Figure III:6a). These optimums are in 

agreement with those found for the action of E. coli polymerase on 

Salmon Sperm DNA (Chamberlin and Berg, 1962), Calf Thymus DNA (Furth 

et al. , 1962) and the rDNA of Xenopus laevis (Reeder and Brown, 1970). 

In addition, RNA synthesis does not seem to be impaired at relatively 

high concentrations of 10-12mM Mg -H- (Figure III:6a) and this finding 

is consistent with other studies where concentrations as high as this 

have been used without inhibition of RNA synthesis; for example with 

T4 DNA (Bremer, 1970). 	The addition of Mn rather than Mg appears 

to lead to greater stimulation (also Figure III:6a). 	The cation 

dependence for the in vitro transcription of some other DNAs also 

exhibits this predilection' for Mn 	(Maitra et al. *, 1967). 	(When 

_both Mg and Mn were present in the incubation mix the same incor-

poration of RNA as obtained for optimal Mn alone was obtained with 

low concentrations of Mn ( 2mM) together with Mg concentrations 

of around 4-8mM (data not shown). 	This finding is also in agreement 

with those obtained by other workers (e.g. Chamberlin and Berg, 1962).) 



Figure 111:6. Titration of Adenovirus 2 

cRNA synthesis with either MgCl 2or MnCl 2  

and also KC1.a) basic incubation mix 

(UTP labelled only) plus MgC1 2 (x-x) or 

MnCl 2 (o-o).KC1 at O.IM. RNA TCA 

precipitated after lOmins. incubation 

at 37 0 C.b)Basic mix(UTP labelled only) 

plus MgC1 2 (4inM) and increasing amounts 

of KC1. Reaction terminated after lOmins. 

incubation at 37 0 C and RNA TCA 

precipitated (10%) 
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4. The amount of RNA chains synthesised in vitro with the E. coli 

RNA polymerase is dependent on the salt concentration (Bremer, 1970) 

so that at higher ionic strength (0.2M KC1) more RNA is produced than 

at lower ionic strength (e.g. 0.05M KC1). 

This is mainly the result of re-initiation of RNA chains 

(Richardson, 1969); an increased growth rate (Bremer, 1970); and a 

decline in end-product inhibition (So et al., 1967) at elevated ionic. 

strength. 	In order to see whether high ionic strength enhanced 

II  Adenovirus cRNA synthesis, Mg - containing incubation mixes were 

titrated with increasing amounts of KC1. Figure 1II:6b shows that 

the amount of RNA synthesised at 0.2M KC1 is greater than at other 

ionic strengths while concentrations higher than 0.25M are inhibitory. 

This latter concentration - of KC1 is also inhibitory for the synthesis 

of T4 DNA (So etal., 1967), amongst others. 

At 0.2M KC1 with Mn ++ present, however, the reaction is slightly 

inhibited and reducing the molarity of the KC1 to around 0.11M when 

Mn H was present as well as Mg
H  gave the most qtimum results (data. 

not shown). 

As mentioned, the actual growth of RNA chains is faster in high 

ionic strength. 	T4.cRNA synthesis, with E. coli RNA polymerase, for 

example is 2.5 nucleotides per second when incubatedin low salt 

(0.31M KC1) but is 36 nucleotides per second in high salt (0.2M KC1) 

and with saturating concentrations of nucleoside triphosphates 

(Bremer, 1970). 	In high salt, 35 nucleotides per •second lave been 

reported for polyrAU formation (Geiduschek and Haselkorn, 1969) and 

16-20 per second have been recorded for\ cRNA synthesis (Richardson, 

1969). 	A slow rate of cRNA synthesis in high salt (0.15M) is 
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characteristic of ribosomal DNA however. Reeder and Brown (1970) 

for instance report 2-3 nucleotides per second for the rate of RNA 

synthesis with E. coli RNA polymerase on Xenopus rDNA. 

Figure 111:7 shows that the rate of,Adenovirus cRNA (0.15M KC1) 

synthesis is faster than the rate of transcription of rDNA (0.15M). 

An approximate rate of Adenovirus cRNA synthesis can be estimated from. 

the size of this virus cRNA produced in a short incubation time. 

Figure III:8a shows that after only 60 seconds incubation, 28S RNA transcripts 

36. 
exist which must contain about 4.5 x 10 nucleotides ( 1.6 x 10 daltons) 

and an approximate minimum transcription rate of 75 nucleotides per 

second can therefore be calculated for the synthesis of Adenovirus 2 

cRNA. This rate is comparable with many other in vitro transcription 

rates using E. coli RNA polymerase. 

5. The size of the Adenovirus cRNA synthesised by E. coli RNA poly-

merase has been studied both here and by other workers. 	In the 

experiments described here there are several peaks of radioactivity 

along a sucrose gradient, the largest peak occurring around 28S 

(Figure III:8b). 	This is also true for Adenovirus 12 cRNA (Figure 

III:80. 	Pettersson et al. (1974), using DMSO-sucrose gradients, 

have estimated the cRNA transcribed off Adenovirus 2 DNA, by the 

E. coli RNA polymerase, to be around 28S while Loni and Green (1973) 

using 3.2% polyacrylamide gels, have obtained several discrete Adeno-

virus 2 cRNA peaks which1l into a molecular weight range somewhat 

lower than that reported here or by Pettersson eta. (1974); their 

S values being 8S, 1203 , 13S and 16S. 	Loni and Green (1973) also 

report that Adenovirus 7 and 12 cRNA both migrate in 3.2% poly.-. 

acrylamide gels at 9 and 12S values which are again lower than those 



Figure 111:7. Synthesis of Adenovirus 

2cRNA and Xenopus cRNA to rDNA.Incubation 

mig contains O.15M KC1,I.6mM Spermidine, 

0.004M NgC1 23' 2mM K 2HPO 4 ,5nmoles ATP,CTP, 

UTP,GTP(all labelled with tritium at 

15-20cI/mmole),2.5. units polymerase, 

100mM Tris pH7.5;and x-xlug Adenovirus 

2 DNA(dialysed against 0.00IM NaCl) or 

o-o lug Xenopus rDNA(dialysed against 

0.00IM NaC1).Aliquots were.withra.in  

at specific times of incubation at 

37 ° C and the RNA TCA precipitated 

and its radioactivity determined 

by counting in Toluene-based 

scintillation fluid. 
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reported here. 	Lower estimates of 4S for the size of Adenovirus 

cRNAs (McDougall( ~ta1, 1975) may be due to lyophilisation (Figure 
III:8a) or to freezing at -70°C which can decrease the molecular 

size of RNA. 

The Adenovirus genome is around 20-25 x 10  daltons (Green et al., 

1967) and RNA transcripts approaching this size would be considerably 

greater than 28S in a sucrose gradient. That no very large molecular 

peaks in such gradients have been observed (Figure III:8a, 8b, 8c; 

see also Pettersson et al., 1974; Loni and Green, 1973) could be due 

to premature digestion of cRNA molecules by nuclease present, nicks 

in the.template DNA, or preferential or interrupted transcription. 

Selective transcription of Adenovirus DNA is partially the subject of 

the following section of this Thesis, and it has also been observed 

by other workers (Pettersson et al., 1974; Green and Hodap, 1972; 

Dunn et al., 1973). 	Pettersson et al. (1974), in particular, have 

demonstrated that initiation of RNA synthesis by E. coli RNA poly-

merase appears to occur in at least five locations on Adenovirus 2 

DNA as determined by electron microscopy of transcription complexes, 

some sites being more active than others. Two regions which correspond 

to 7.11% and 4.7% of the Adenovirus DNA duplex appear to be particularly 

active. 	Either region does not exceed 1.0 x 106  daltons in. single 

strand molecular length and an RNA transcript from such a region would 

therefore not approach 28S in sucrose gradients. However RNA appears 

to be synthesised from other regions as well, one region amounting to 

59.8% of the virus genome. That transcripts larger than equivalent 

to 28S fail to be detected in the sucrose gradient experiments described 

here and elsewhere (see Pettersson et al., 1974; Loni and Green, 1973) 



Figure 111:8. Size distribution of Adenovirus 

cRNA transcripts in sucrose density gradients. 

cRNA in 0.00IM EDTA,0.IM NaCl,DEP(0.I%),0.2 N 

sodium acetate was sedimented through a 

sucrose density.gradient(5-40%) made up in the 

same buffer.The gradients were spun at 25,000 

rpm for 18 hours at 10-15 ° C in the 6x15 rotor 

(MSE).Fraction aliquots were TCA precipitated 

and the radioactivity determined by counting 

in Toluene-based scintillation fluid.E .coii 

RNA was added to each gradient as a density 

marker(arrows),III:8a) 	Adenovirus 2cRNA 

synthesised in a short incubation time of 

60seconds.The transcription mix contained 

100mM Tris pH7.5,5 n moles each of ATP,CTP, 

GTP,UTP(all labelled with tritium:15-20 cI/mmole) 

,2.5 units enzyme,2mM K 2 HPO 4 ,I.6mM Spermidine, 

0.15 N KC1,0.004M MgCl 2  and I-2ug DNA(O.00IM NaCL), 

The reaction,at 37
0 C,was stopped after 60 seconds, 

RNA precipitated with alcohol and finally 

resuspended in gradient buffer; 	Adenovirus 

2cRNA synthesised as inL—-butreaction stopped 

after 30mins. and cRNA lyophilised after ex-

-traction,before addition to gradient.III:8b) 

0 - 0 Adenovirus 2 cRNA synthesised after 30mins. 

incubation in basic mix but with 4mM MgCl 2 , 

0.IM KC1 p.0005M MnC1 2 ,5nmoles ATP,CTP,UTP, 

GTP(all tritium labelled) added.cRNA was 

alcohol precipitated after extraction, 

before addtion to gradient buffer;III;8c) 

Adenovirus 12 cRNA synthesised in same mix 

as III:8b.See text and Materials and Methods 

for details. 
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suggest that either they are inefficiently synthesised or are broken 

down by nucleases present either in the transcription reaction or the 

sucrose gradient. 

6. Transcription of Adenovirus DNA by Micrococcus luteus DNA-

dependent RNA polymerase. 

This enzyme also transcribes Adenovirus DNA (Figure III:9a) but 

much less RNA is synthesised than with E. coli RNA polymerase. 

The amount of RNA synthesised is dependent on the concentrations 

of cations in the incubation mix. Figure III:9b shows that RNA 

incorporation is maximal around 6mM Mg or around 2-3mM. Mn, the 

Mg producing greater stimulation. These optimums are in agreement 

with those found for the action of M. luteus RNA polyinerase on Calf 

Thymus DNA (Fox and Weiss, 1964) and Xenopus rDNA (Hecht, 1973). 

It is not clear why the M. luteus RNA polymerase should be less 

efficient than the E. coli RNA polymerase but it may be the result 

of polymerase-cRNA binding or end-product inhibition. 	Nd 1 is 

inhibitory for the action of this polymerase an some cases (e.g. 

Hecht, 1973) but the concentrations used here ( 	0.1M KC!) are 

probably too low to account for the reduction of synthesis. 	Perhaps 

reduction is due to non-reinitiation of chain growth which is known 

to occur with M. luteus RNA polymerase (see Hecht, 1973; Richardson, 

1969). 

As a result of this decreased activity with the M. luteus RNA 

polymerase, all subsequent experiments involving Adenovirus cRNAs 

utilised the E. coli RNA polymerase. 

Conclusions 

There are three main conclusions which can be drawn from the 



Figure 111:9. Transcription of Adenovirus 

2 DNA by M.luteus DNA-dependent RNA 

polymerase.a) Incubation mix same as 

for Figure III:5a(0.09N Kcl) but 2.5 

units N.luteus enzyme.Same sample 

volumes also taken as for Figurelll:5a. 

There is approximately 10 times less 

incorporation with the' M.'lut'eus enzyme 

as compared to the E.'coli enzyme.b) 

incubation mix as for Figure 111:6. 	 ' 

RNA TCA' precipitated after lOmins. 

incubation at 37 ° C. 0 - 0 NgC1 2 ;x-x 

MnCl2. 
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results of the experiments described above. First, Adenovirus cRNA 

synthesis using the E. coli DNA-dependent RNA polymerase, does not 

appear to be special or unique in that the reaction dependencies are 

similar to those found for a variety of other E. coli RNA polymerase-

DNA interactions. 	This, in effect, means that peculiar conditions 

of synthesis do not have to be met before Adenovirus DNA can be 

transcribed efficiently. Secondly, the transcription reaction can 

be somewhat optimised for the production of RNA by considering the 

various influences that have been described above. The most optimal 

conditions of synthesis are summarised in Table 111:3. Finally, 

together with these considerations, the above experiments suggest 

that Adenovirus DNA maybe preferentially transcribed in vitro since 

the size of the cRNAs is markedly heterogeneous and no transcripts 

approaching the nolecular length of one complete DNA strand are 

observed. This suggestion is borne out by the results of subsequent 

experiments described in the following section. 



Table 111:3 

Incubation mixes for transcription 

dependent RNA 

of Adenovirus DNA by E. coil DNA 

polymerase 

- 

MgC124MnC12  MgC12  alone MnCl2  alone 

Trig pH 7.5 	100mM Tris pH 7.5 100mM Tris pH 7.5 100mM 

MnCl2  0.5-2mM MgC12  4-12mM MnC12  4mM 

MgC12  4mM Spermidine 1.6mM Spermidine 1.6mM 

Spermidine 	1.6mM KC1 0.2M KC1 0.2M 

KC1 0.lM K2IO4  2mM K21-UO4  2mM 

K2HPO4  2 mM Enzyme 2.5 units Enzyme 2.5 units 

Enzyme 2.5 units DNA 1-2pg DNA 1-2Lg 

DNA 1-2Lg nTPs Sn moles each nTPS 5n moles each 

nTPs 5n moles each 



74 

Ct'g"Dyf.1 T T  

CHARACTERISATION OF ADENOVIRUS cRNAs 

It has been known for a long time that nucleic acid hybridisation 

techniques can be useful for the detection of specific nucleic acid 

base-sequence homology (e.g. McCarthy and Church, 1970; Walker, 1969; 

Bishop, 1972b). Many features of the process contribute to the 

preciseness and.specificity obtained and these are outlined in a 

brief account. 

An important consideration in molecular hybridisation studies is 

characterisation of the RNA species. Failure to characterise the 

RNA, or the hybrids, can frequently lead to misinterpretations of 

results, or the failure of the technique to detect regions of nucleic 

acid homology which would otherwise be apparent. 	This last point 

is particularly important when trying to detect sequences represented 

in small amounts within individual genomes. Some of the evidence 

on virus DNA sequences in certain eukaryote cells suggests that they 

exist in small amounts (see Table Il). 	Since the Adenovirus ciNAs 

are the probes used to measure the amount of virus DNA sequences in 

these virus-exposed cells, it was considered particularly desirable 

to characterise them. 	The results of this section show that such 

characterisation is essential before virus DNA in transformed or tumour 

cells can be quantitated. 	In the following section use is made of 

cRNA and DNA excess hybridisation which are now both described. 
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Native DNA can be dissociated and reassociated in vitro (Marmur 

and Lane, 1960; Doty et al.,1960) and - hybrid duplex DNA molecule 

can be formed from the DNA of two different bacterial species 

(Schildkraut et al., 1961), viruses (Schildkraut et al., 1962; 

Sutton, 1972) or higher organisms (Walker, 1969; Hoyer, McCarthy and 

Bolton, 1964; McCarthy and Church, 1970; Kohne, 1970). 	Siiilarly, 

specific complex-formation between denatured and complementary RNA 

canbe brought about by the process of annealing at high temperature 

and high salt concentration (Hall and Spiegelman, 1961; Schildkraut, 

Marmur, Fresco and Doty, 1961) and such hybridisation between 

complementary nucleic acids can be considered to be very highly 

specific (McCarthy and Church, 1970; Walker, 1969; Bishop, 1972b). 

There are, essentially, two types of hybridisation experiments; 

RNA excess and DNA excess. 	In the second type of reaction the 

proportion of the RNA which is complementary to the DNA can be 

measured, and the rate constant of the reactive species can be 

estimated (Melli et al., 1971; Bishop etal., 1972; Bishop, l972a). 

In RNA excess experiments, unlike DNA excess experiments where 

the reactants are usually in solution, the DNA is usually immobilised 

on nitrocellulose membrane filters so as to prevent D\ reassociation. 

(Nygaard and Hall, 1964; Gillespie and Spiegelman, 1965). 	Both 

DNA-DNA reassociation and RNA-DNA hybridisation can behave, as second 

order reactions (Nygaard and Hall, 1964; Wetmur and Davidson, 1968; 

Young and Paul, 1973), and the rate of the reactions are influenced, 

for the most part, by similar factors. 

Nygaard and Hall (1964) have shown that the initial rate of 

hybridisation is proportional to the initial RNA concentration, and 
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Bishop (1969) has demonstrated that the rate of RNA-DNA hybrid 

formation, throughout the reaction, is still a function of the 

initial RNA concentration. Further, if the RNA concentration, 

throughout the reaction, is well in excess of the complementary 

DNA sequence then the rate of hybridisation, roughly, is inversely 

proportional to the genetic complexity of the RNA (Bishop, 1969; 

Birnstiel etal., 1972; Purdometal., 1972). 	In this respeOt 

DNA-RNA hybridisation is closely analogous to DNA-DNA reassociation 

where the rate is inversely proportional to the base sequence com-

plexity of the DNA (Britten and Kohne, 1968; Wetmur and Davidson, 

1968). 	Conveniently, for WA excess hybridisation reactions, the 

rate of RNA--DNA hybrid formation can be derived from the double-  

reciprocal plot of hybridisation versus time (Bishop, 1969); and 

Birnstiel et al. (1972) have used the term Crt (the product of 

initial RNA concentration, in moles/nucleotide/liter ' , and the time 

necessary to reach half-saturation, in secs.), to measure kinetic 

complexities of RNA species in individual hybridisation reactions. 

This term (Crt*)  is reasonably analogous to Cot (the product, in 

moles nucleotide/litre 1/sec., of initial DNA concentration and the 

time taken to reach half-reassociation) which has been introduced by 

Britten and Kohne (1968) to help characterise DNA-DNA reassociation 

reactions. 

There are other parameters which affect the rate of DNA-DNA 

reassociation, some of which influence the rate of RNA-DNA hybridis-

ation. The maximum rate of reassociation generally occurs at a 

temperature of 20-30 °C below the melting temperature (Tm) of the DNA 

(Marmur and Doty, 1961; Wetmur and Davidson, 1968); the reaction 
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rate increases slightly with the GC content of the DNA (Wetmur and 

Davidson, 1968); higher salt concentrations give a faster rate 

(Schildkraut and Lifson, 1965; Wetmur and Davidson, 1968; Britten, 

1969); and the rate is proportional to the square root of the 

molecular weight of the DNA (Wetmur and Davidson, 1968) or exception-

ally is inversely proportional to the fragment size of the DNA 

(Hutton and Wetmur, 1973; Chilton, 1973). 	The reassociation rate 

is also inversely proportional to the solvent viscosity (Wetmur and 

Davidson, 1968), and mismatching can reduce the overall reaction rate, 

although by how much is not certain. Hutton and Wetmur (1973b) 

estimate that the reaction rate of deaminated DNA is reduced by a 

factor of 2 when there is 33% mismatch in the final duplex, and 

glyoxalated DNA with 16% mismatch reduces the renaturation rate also 

by a factor of 2. 	Bonner et al. (1973) using deaminated DNA and 

also renaturation of interspecies bacterial DNAs, estimate the reduction 

in reaction rate due to mismatching to be almost twice that of Hutton 

and Wetmur (1973b); and a far greater dependence on mismatching on 

reaction rate has been proposed by Sutton and McCallum. (1971) and 

Sutton (1972). 

For RNA-DNA hybridisation the dependencies are less clear.. 	In 

general there is a marked dependence on temperature (Birnstiel et al., 

1972; Bishop, 1972b) and the rate increases with increased salt 

concentration (Bishop, 1972a). 	Whether there is any effect of CC 

content, RNA molecular length, or mismatching on the rate of the 

hybridisation reaction is not precisely known. 	There is some 

evidence that for RNA excess hybridisation reactions there is no 

length dependence (Birnstiel et al., 1972), whereas for 1:1 RNA:DNA 
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reactions the rate is proportional to the molecular length (Hutton 

and Wetmur, 1973b) and for DNA excess reactions the rate may be 

inversely proportional to the fragment size of the DNA at least 

(Bishop, 1972b). 

In general, if the hybridisation reaction is carried out under 

conditions of RNA excess (Young and Paul, 1973; Bishop, 1972b) and 

the RNA consists of a single reactive species - or a few species all 

at the same concentration - the reaction is second order and the rate 

of approach to saturation (and the double-reciprocal transformation) 

can be used to measure the kinetic complexities of the individual RNA 

species. In addition, if the hybridisation reaction is carried cut 

under the same criteria every time, then the kinetic complexities of 

a variety of }NAs can be compared. These kinetic complexity values 

can be related to the analytical complexities of the RNs studied. 

The rate of hybridisation in DNA excess experiments is also a 

function of analytical complexity (Bishop, 1972; Bishop, 1972b), 

and in addition, can provide information on the repetition frequency 

of the DNA sequences complementary to the RNA. 

Accordingly, cRNAs were synthesised from Acienovirus DNA templates 

using the E. coli DNA-dependent RNA polymerase (see this Chapter, 

Section II; and Materials and Methods). These cRNAs were then 

hybridised to their homologous template DNAs in conditions of RNA 

excess or DNA excess. From the RNA excess experiments, double-

reciprocal linear plots were constructed for individual reactions, 

and the saturation values and. Crt*s determined. 	Using these values, 

and standards, the kinetic complexities of the virus cRNAs were 

obtained. 	The fidelity of transcription was also examined. 
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Results and Discussion 

1. Effect of RNase on Adenovirus DNA-cRNA hybrids 

Some DNA-RNA hybrids are sensitive to pancreatic RNase digestion. 

For example, the enzyme partially degrades homologous hybrids formed 

between E. coli rRNA and E. coil DNA (Yankofsky and Spiegelman, 1962), 

cRNA and \DNA (Green, 1970), and trytophan messenger RNA and several 

bacterial DNAs (Denney and Yanofsky, 1972). 	Bishop (1972b) has also 

commented on the susceptibility of certain RNA-DNA hybrids to RNase 

digestion; bacteriophage T4 and P. mirabilis cRNAs only hybridise to 

between 60 and 75% of their expected saturation values. Equally, 

saturation values can be apparently increased by failure to use the 

appropriate enzymatic concentrations. 

Adenovirus cRNAs were hybridised to their homologous DNA 

templates and the resulting hybrids treated with varying concentrations 

of pancreatic RNase. 	The results, for Adenovirus 12 cRNA-12 DNA 

hybrids are shown in Figure 111:10. At concentrations of around 

log/ml RNase the hybrids appear to be resistant to digestion. 

Similar results were obtained for Adenovirus 2 and Adenovirus 7 cRNA-

homologous DNA hybrids (data not shown) and increasing the time of 

digestion did not lower the hybridisation values obtained with 

lOi.g/ml. for 20 minutes incubation. 	The saturation values, in 

addition, are in agreement with the findings of the subsequent kinetic 

experiments so that there does not seem to be appreciable digestion 

of fully-formed cRNA-DNA hybrids. For subsequent experiments involving 

the use of RNase, concentrations of 10tg/ml. were used. 



Figure 111:10. Effect of RNase(pancreaticA) 

on Adenovirus I2cRNA-DNA hybrids. 

Various concentrations of RNase (made up 

in 2% Na acetate pH5 and diluted in 2xSSC) 

were added to Adenovirus I2cRNA-DNA hybrids 

on membrane filters.Hybridisation was 

performed in 6xSSC 30%FA with Adenovirus 12 

cRNA(S.A. I.7xIO 7 cpm/ug) in a 10:1 excess 

over the DNA(5ng Adenovirus DNA plus 2ug 

M.luteus DNA as carrier/filter).The reaction 

was carried out at 50 ° C for 20% of the final 

saturation value. o-o Adenovirus I2cRNA-DNA 

hybrids treated once with different 

concentrations of RNase.x--x Adenovirus12 

cRNA-DNA hybrids treated once with RNase 

at different concentrations and then a second 

time with 'bug/mi in 2xSSC. 
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2. Optimum rate temperatures for hybridisation of Adenovirus cRNAs 

Initial rates of cRNA-DNA hybrid formation for Adenovirus cRNA-

DNAs were determined by hybridising cRNAs to their homologous DNAs 

to less than 50% of the final saturation value, in conditions of cRNA 

excess. The temperature optimums (T.OPr.) in 6 x SSC/30%Formamide 

(FA) and 1 x SSC were obtained, and are shown in Figure 111:11 and 

Table 111:4. The lowering of the T.OPT. values due to the Formamide 

is consistent with the findings of McConaughy et. al. (1969); that a 

1% increase in Formamide leads to a 0.7 °C decrease in thermal 

stability of nucleic acid helices. 	Also, the effect of Na ion 

concentration is in agreement with the increase in T.OPI. for renatur-

ation with increasing salt concentration (Schildkraut and Lifson, 

1965). The T.OPTs for the three virus cRNAs are very similar: 

0 	0 	 0  
Adenovirus 12, 2 and 7 being 51 C, 52 C and 53 C respectively in 

6 x SSC 30% FA. 

The Tms of these virus DNAs are higher by so 	
0

me 30 C than the 

T.OPT. values in the same salt (Table III:4). 	RNAs with known high 

GC contents appear to have closer Tm DNA /T.OPT. hybrid. differences. 

For example, Xenopus ribosomal 28 and 18S RNA (GC content, 59%) has 

a 9°C difference in 6 x SSC/50% FA (Birnstiel et al., 1972); and 

E. coli cRNA (GC content, 50%) has a difference in 3 x SSC/50% FA, of 

around 11°C (Bishop, 1972a). 	The Tm/T.OPT. hybrid difference for 

RNAs of lesser GC content appears to be greater; 0 x 174 DNA (GC 

content, 42%) has a Tm of 64 °C in 6 x SSC 50% FA and the cRNA a T. OPT. 

in the same solution, of 45 °C giving a difference of 19 °C (Birnstiel 

et al., 1972); while P. mirabilis cRNA (GC content, 39%) has a 

mDNA/Tovr hybrid difference also of around 19°C (Bishop, 1972a). 



Figure 111:11. Optimal rate temperature 

for the formation of Adenovirus cRNA-

DNA hybrids. Carried out in 6xSSC 30%FA 

with cRNA(S.A. I.7xIO 7 cpm/ug) at 2:1 

excess over DNA on filters(5ng each). 

Reactions were terminated after 10- 

20% of the final saturation value 

and the hybrids treated as described( 

Materials and Methods,pg.3S -3). 
2ug carrier M.luteus DNA was added. 

to each filter before hybridisation 

and the background radioactivity 

due to this subtracted. 

x-x Adenovirus I2cRNA;o-o Adenovirus 

7cRNA;o--o. Adenovirus 2cRNA. 
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Table 111:4 

virus cRNA 
T.OPT. 

6xSSC/30% FA 
T.OPT. 
1xSSC 

hybrid 

1xSSC 
TM 

1xSSC 
TM 

hybrid TOh 

1xSSC 

DNA TOpT h 

1xSSC 

DNA  

1xSSC 

Adeno-12 51 60 72 89.0 12 30  

Adeno-7 53 63 75 90 12 27.0 15 

Adeno-2 52 61 78 92.5 17 31.5 14,5 

* See Table 111:1 
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AT-rich satellite cRNAs have T.OPTs which are 30-40°C lower than the 

This of the native DNAs,(seè Section IV, this Chapter). In general, 

then, the lower the GC content of the RNA in an RNA-DNA hybrid, the 

 DNA 	h 
greater the 	/T.oPTerence. 	Figure 111:12 reflects this 

finding. What is clearly evident is the discrepancy between the GC 

contents of Adenovirus DNAs and the Tm )NA /0p hybrid differences. 

This is specially true for Adenovirus 2 cRNA, the corresponding DNA 

duplex having a GC content of 58% (Green, 1970; Table 111:1, this 

Thesis) which is approximately 10% higher than Adenovirus 12or 7 

DNAs. That the T.OPT. values for the virus cRNA-DNA reactions are 

low suggests that regions of low GC content may be preferentially 

hybridising. 	Subsequent experiments lend additional support to this 

suggestion. 

3. Base-sequence complexity and rates of hybridisation of Adenovirus 

cRNAs 

Figures 111:13, 111:14 and 111:15 show double-reciprocal linear 

plots for the hybridisation of Adenovirus cRNAs to their template 

DNAs. The reactions were all carried out in RNA excess conditions, 

at the T.OPT. for each cRNA in 6 x SSC130%FA, the Formamide being 

considered useful in maintaining the molecular weight of the RNA 

during long incubation times (Birnstiel et al., 1972; McConaughy 

et al., 1969). 	The ts for the individual reactions were determined, 

and the Crt calculated. 	These Crt* -s 	 s are presented in Table 111:5. 

Each of the Adenovirus cRNA-DNA hybridisation reactions has its own 

ti-, and the complexity of each RNA is consequently different. The 

kinetic complexity of Xenopus ribosomal RNA (28 and 18S) was determined 

under the same criteria (see below) and this value together with a 
11 



Figure 111:12. Variation in Tm DNA/T.OPT. 

RNA-DNA hybrid formation with GC content 

for a variety of DNAs and their corresponding 

hybrids.In general,as the GC content becomes 

lower for the DNA,the TmDNA/T.OPT. becomes 

larger.Note the position of Adenovirus 

2 cRNA-DNA hybrid/T.OPT./Tm DNA in relation 

to its GC content. See text for details. 
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0 x 174 cRNA standard (Sinsheimer, 1959; Birnstiel et al., 1972) 

allowed comparisons for the individual virus cRNAs to be made. 

Kinetic Complexity of Xenopus ribosomal RN 

28 and 18S Xenopus ribosomal RNA was prepared as described in 

Materials and Methods. 	Figure 111:16 demonstrates that this RNA 

preparation was homogeneous for ribosomal RNA base sequences since 

it exclusively hybridised to INA sequences of ribosomal CC content 

(1.724 gm/cm 3 ). Aybridisation experiment was then carried out in 

order to derive the kinetic complexity of this RNA population. The 

result is shown in Table 111:5. 	The kinetic complexity of 1.9 is the 

same as previously reported by Birnstiel et al. (1972). 

Although the RNA consists of a population of 18S and 28S RNA 

molecules, the kinetic complexity can be considered as a mean value 

(Birnstiel et al., 1972), the individual 18S and 28S RNA molecules 

actually having their own kinetic complexities. 

% DNA Complementary to Adenovirus cRNAs. 

The saturation values for different Adenovirus cRNA-DNA 

reactions are shown in Table 111:5. 	All these values are low, and 

represent only a percentage of the possible saturation value. For 

example., Adenovirus 12 cRNA hybridises only to 200/6 of the complemen-

tary DNA sequences, and Adenovirus 7 cRNA hybridises to only approx-. 

imately half this amount of the available complementary DNA sequences. 

These low saturation values suggest that the virus cRNAs, in the main, 

represent cnly a proportion of their individual template DNA. 

Moreover the saturation values for each virus cRNA are in agreement 

1 	 1 with the ts for each hybridisation reaction 



Figure 111:13. Hybridisation of Adenovirus 

2 cRNA to Adenovirus 2 DNA immobilised on 

membrane filters.Reaction carried out at 

T.OPT. (see Figure 111:11) in 6xSSC 30%FA 

with DNA at 5ng/filter and cRNA(S.A. 

1.7 xlO 7 cpm/ug) at calculated 2:1 excess 

over total DNA sequences.M.luteus DNA 

carrier(2ug/filter) was also added. 

The t for the reaction is calculated 

from the double reciprocal linear plot 

(Bishop,1969;Birnstiel etal.,1972) 

by obtaining the time value at which 

the reaction is half complete. 

Standardised ts(3ug/ml) are presented 

in Table 111:5. 





Figure 111:14. Hybridisation of Adenovirus 

7cRNA to Adenovirus 7 DNA on filters. 

Data expressed as double reciprocal linear 

plot(Bishop,1969).Conditions of hybridisation 

as for Figure 111:13 and 111:15. 



I 

0.5 

	

0.1 	 0.5 	 . . . 	1.0 

• 	 . 	 . 	 S 

TIME(Hours) 

1.5 	. 	2.0 

Fig. III: 14 



Figure 111:15. Hybridisation of Adenovirus 

12 cRNA to Adenovirus 12 DNA over time 

periods. Conditions of hybridisation 

are the same as presented in FigureIII:13. 
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Figure 111:16. Hybridisation of 28 and 18S 

rRNA(Xenopus kidney) to Xenopus DNA fractionated 

on a neutral CsC1 gradient.rRNA(S.A. 2xIO 5 cpm/ug) 

;6xSSC 30%FA at 70 ° C and the reaction stopped 

after 10 hours incubatiori.Hybridisation is to 

DNA sequences with a buoyant density of 

1.724 gm/cm 3which is the buoyant density 

of Xenopus rDNA sequences in neutral CsCl 

(Birnstiel et al.,1970). 

N.luteus DNA(I.731gm/cm 3 )as density marker. 
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Adenovirus DNA has an analytical complexity of around 25 x 106 

daltons (Green, 1970), which is the amount of deoxyribonucleotides 

in the virus gnome. 	If the cRNA from an individual virus serotype 

represented a total asymmetric transcript then the molecular length 

of this cRNA would be in the region of 1.25 x 10 7  daltons. 0 x 174 

cRNA (1.6 x 1o6  daltons) and Xenopus ribosomal RNA (28S and 18S) 

(2.2 x 106 daltons) possess ts (3g/ml) of 24-30 minutes. (Birnstiel 

et al., 1972; Table 111:5, this Thesis). 	This means that for an - .RNA 

complexity of approximately 1.25 x 10 7  daltons, and under the same 

conditions of hybridisation, around 300 minutes would be needed before 

the, reaction would be at half-saturation. The t for Aden ovirus 12 

cRNA is around 30 minutes which is approximately 10% of the above 

value, suggesting that the cRNA that is hybridising is around 10 times 

less complex than the equivalent of one total transcript of the 

Adenovirus genome. Similarly, the t- values for Adenovirus 2 and 

Adenovirus 7 represent the hybridisation of RNA sequences which are a 

lot less complex than one total transcript of the virus geriome 

(Table 111:5). 

The DNA of Adenovirus 12 appears to be transcribed by the E. coli 

RNA polymerase, to a greater extent than the other two virus DNAs. 

Adenovirus 2 DNA has a high GC content (58-59%) and apparently is the 

DNA to be least transcribed by the E. coli RNA polyrnerase. 	It. has 

already been shown that AT-rich base-sequences in Adenovirus 2 cRNA 

appear to be preferentially annealing in a homologous hybridisation 

reaction (Figure 111:11, 111:12). 	The results of the kinetic 

experiments show that certain cRNA sequences are preferentially 

hybridising and furthermore, these sequences are most likely 



84 

preferentially transcribed in vitro. 

The double-reciprocal linear plot, howver, is not strictly 

applicable to hybridisation reactions involving a population of RNA 

molecules which are all present at different concentrations. That 

is, the linear plot essentially represents the hybridisation of RNA 

sequences which are present in a large concentration in the RNA 

population. RNA sequences which are present in very low concen-

trations in the reaction are unlikely to be detected by RNA excess 

hybridisation reactions unless these sequences themselves are in 

excess of the complementary DNA sequences. Consequently the 

Adenovirus cRNAs could consist of a large proportion of base sequences 

which are transcribed from a limited region of the genome, and also 

a minor proportion of sequences which have been transcribed from the 

rest of the genome. 

There are other reasons why the saturation values for the 

Adenovirus cRNAs might be low. First of all, the cRNA could conceiv-

ably consist of virus-specific RNA molecules plus RNA sequences 

which are not complementary to the virus genome i.e. the transcription 

by theE. coli polymerase is not faithful. 	Secondly,the reaction 

might not be in cRNA excess even for the greater proportion of RNA 

sequences present; failure to achieve RNA excess in these types of 

hybridisation experiments can lead to under-estimates of saturation 

values (Young and Paul, 1973; Birnstiel et al., 1972). 	Thirdly, 

self-complementarity of the cRNA could result in reduced saturation 

values, and could influence the reaction rate. 	Such seif-complemen- 

tarity of cRNA and its effect on hybridisation reaction rates, has 

been noted (Bishop, 1969); T4 cRNA preparations were up to 40% RNAse- 
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resistant due to RNA-RNA self-annealing. ]Finally, DNA could be lost 

from the filters as the reaction proceeds or thec amount of DNA 

immobilised in the filters could be over-estimated. Various 

experiments were performed to test these variables; although the 

Crt* values for each of the hybridising cRNAs are, in themselves, 

evidence that the majority of the cRNA sequences represent only a 

proportion of the Adenovirus genomes. 

Self-Complementarity of Adenovirus .cRNAs. 

Adenovjrus cRNAs were self-annealed in 6 x SSC130% FA at the 

T.OPT. at which each Adenovirus cRNA hybridised.. 	The reactions 

were terminated after an equivalent of several ts in the hybridis-

ation reaction. The RNAse-resistance is shown, for each Adenovirus 

cRNA,in Table 111:6 together with the seif-complementarities of 

cRNAs transcribed from denatured virus templates. 	The cRNAs 

transcribed from native DNA templates show little self-annealing 

that would interfere with cRNA-DNA hybridisation; the cRNAs to 

denatured Adenovirus DNA template, however, show -considerable. RNAse- 

resistance. 	This high level of'RNAse-resistance in the latter case is 

inagreement with the loss of asymmetric transcription when the tem-

plate DNA of a variety of organisms is denatured during, a transcription 

reaction (Richardson, 1969; Chamberlin & Berg, 1962). 

Effect of RNA concentration on the saturation value and Crt. 

For the membrane procedure (Gillespie - and Spiegelman, 1965) the 

rate of hybrid formation throughout the entire reaction is a simple 

function of the initial RNA concentration (Bishop, 1969), and by multiplying 

the concentration of the input RNA (Cr;moles/nucleotide/1 1 ) and 

t*(sec.) for independent reactions with different initial RNA 



Table 111:5 

RNA 	
Complementary DN° 	(3ug/ml) 	Cr x 

	Approx. Kinetic CornglexitY 

(%) 	 (mins) 	(moles.SeC./1.) 	 (daltons x 10 ) 

In 6 x SSC/30% F.A. 

20 30' 16 1.9 
Adeno-12 cRNA 1.1 

Adeno-7 oRNA 10 15-20' 11 

Adeno-2 cRNA 5-10 12-15' 8 0.9 

Xenopus rRNA 0.075 30 16 1.9 

(28 & l8S) 
15 Kinetic Standard  

174 CRNA 95 24-27 

a Taken from Birnstiel et - al. (1972). 

0 Double.-Stranded. 



Table 111:6 

Seif-complementarity of cRNA 

R 
% RNase-resistance 

( 	10 t  1/2s) 

Adenovirus 2 10-15 

Adenovirus 7 11-15 

Adenovirus 12 5-7 

Adenovirus  denatured 2 25-30 

aAdenovirus  denatured 7 20-2 

aAdenovirus  denatured 12 42-44 

a DNA was denatured previous to transcription with 

E. coli RNA-polymerase by boiling at 100°C for 

15 minutes in 0.001 m NaCl. 



concentrations, a constant Crt value should be obtained (Birnstiel 

et al., 1972; Purdometal, 1972). 	Table III:7 illustrates a nearly 

constant Crt* value for each of the Adenovirus cRNA-homologous DNA 

hybridisation reactions. 

Actually there is a slight rise in the Crt value, for each 

Adenovirus cRNA, at very high cRNA inputs, which suggests that there 

may be sequences in the cRNA which are under-represented at low RNA 

inputs; although even at these relatively low RNA inputs the 

reaction is still being carried, out under RNA excess conditions for 

the majority of the RNA sequences. Theoretically if the hybridisation 

reactions were not being carried out in cRNA excess and the cRNAs 

represented a single concentration of complete genome transcripts, 

then the reaction rate would be very slow. Young and Paul. (1973) have 

demonstrated that decreasing an RNA:DNA ratio from approximately 10:1 to 

1:1 results in about a 30% decrease. in the reaction rate. As has 

already been pointed out, the ts for individual virus cRNA-DNA 

hybridisation reactions are lower than would be expected from the 

theoretical expectations if the cRNA represented complete Adenovirus 

genome. transcripts. 	If the reactions were not in RNA excess conditions, 

then the kinetic complexities of the viral cRNAs would in fact be lower 

and not higher than those obtained already. Thus for the majority!-of 

sequences in the different cRNAs, the reactions are in RNA excess. 

8. The base sequences in Adenovirus cRNAs are all'viral-specific 

Adenovirus cRNAs were hybridised to their homologous DNAs in 

conditions of DNA excess. The hybridisation of Adenovirus 12 cRNA 

to Adeflovirus12 DNA is shown in Figure 111:17; the % RNAse-resistance 

being plotted against log Cot (Britten and Kohne, 1968; Melli et al., 

1971; Bishop, 1972a). 	The hybridisation value, for this particular 



Table 111:7 

cRNA 
a 
Initial cRNA concentration 

1 	3 
Crt—  xlO 

2 
(moles/sec/litre) 

Adenovjrus 12 0.05 16 
1  0.5 16 

0.7 18 

Adenovjrus 2 	. 0.05 8 

0.5 9 

Adenovjrus 7 0.05 11 

II  0.5 11 

0.7 12 

a 
Hybridisation conducted at the T.OPT. for individual reactions in 

6 x SSC 30% FA (see Table 111:4) 
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cRNA, is around 80% and the Cot-!is 0.1. 	Bacteriophage cRNA also 

hybridises, in DNA excess, to its template DNA with a Cot-!of 0.1 

(Bishop, 1972a). 	The analytical complexity (genome size) of) DNA 

is 3 x 10 daltons (Bishop, 1969) and its GC content is 49%. 	The 

GC content of Adenovirus 12 DNA is 49% also (Green, 1970) and it has 

an analytical -:complexity of around 2.5 x 1O7  which is near the genome 

size of DNA. The Cot values obtained in the same salt (2 x SSC) 

and under the same incubation temperatures (70°C), for both these 

virus DNAs are therefore in excellent agreement, both experimentally 

and theoretically. 

The Cot-!*  for the reassociation of Adenovirus 12 DNA can be 

calculated from the Cot -! hybridisation value of 0.1. Bishop (1972a) 

has shown that, in general, the Cot*  reassociation value is approx-

imately 3 times faster than the Cot value for hybridisation in DNA 

excess hybridisation experiments. 	This gives a Cot, for the reassoc- 

iation of Adenovirus 12 DNA in 2 x SSC at 700C, of 3.3 x 102. The 

hybridisation values and the Cots for the other AdenoVirus cflNAs are 

presented in Table 111:8. Adenovirus- 7 cRNA has a similar Cot' to 

Adenovirus 12 cRNA. Adenovirus 2 cRNA, however, has a larger Cot*, 

its value being 0.17. Adenovirus 2 DNA has. a GC content. of 58-59% 

(Green, 1970; also Table 111:1 of this Thesis). 	Annealing sequences 

with approximately 60% GC content under the same incubation conditions 

as annealing sequences of approximately 50% GC content increases the 

Cot-!hybridisation value by a factor of 1.5' however (Bishop, 1972a). 

This is due to the GC contribution. 	Hence the Cot'hybridisation 

value for Adenovirus 2 cRNA will be about 1.5 times higher than expected 

due to the higher % of GC content in the corresponding DNA. The 



actual Cot*  is then 0.113 which is approximately the same as obtained 

for the. other Adenoviruses studied. 	Furthermore, the calculated Cot-  

for the DNA-DNA reaction is close to the value of 1.7 x 10 2  

0 x SSC) obtained by SI nuclease monitoring (see pg.Ir/ of this 

Thesis). 

The DNA excess experiments are therefore a true representation of 

the reassociation of Adenovirus DNA. 	In these experiments the excess 

ratio was 1000:1. 	For ratios of 100:1 the RNase-resistance was less 

than 40% (Table 111:8). 	Since an excessratio of 100:1 is usually 

sufficient to bring excess DNA-RNA reactions theoretically to comple-

tion (Bishop, 1972a; 1972b), this result suggests that the virus 

cRNA is probably complementary to only a percentage of the genome. 

By increasing the excess ratio to 1000:1 (Figure 111:17; Table 111:8) 

the DNA sequences complementary to the cRNA will be increased. Hence 

the 80% value. 	Increasing the excess ratio even further ( 2 times) 

does not increase the hybridisation value (not shown). 

The remaining % of cRNA which appears to be RNase-sensitive could 

be the result of failure to achieve high enough DNA excess for a few-

sequences in the cRNA; or it could be due to slight degradation of the 

hybrids (Bishop, 1972b) although this is unlikely (see Figure 111:10). 

Even less likely, some cRNA could have broken down during the incub-

ation period. 	The hybridisation was carried out - at 70°C in 2 x SSC 

so that some cRNA-DNA hybrids might be unstable at this temperature. 

However experiments done at 65°C in 2 x SSC also do not reach full 
the virus 

hybridisation of/cRNA (Table 111:8 also). Rarely does the % RNase- 

resistance reach 100% in DNA excess hybridisation experiments (Bishop, 

1972b; Campo, 1973). 



Figure 111:17. Hybridisation of Adenovirus 

12 cRNA and Adenovirus 12 DNA,in DNA excess. 

2xSSC, 70° C.DNA: cRNA(S.A. 1.7 xlO 7 cpin/ug): 

I000:I.Molecular length of DNA:400 base-

pairs;cRNA:800. Hybridisation was plotted 

relative to non-RNased samples alid the 

reaction terminated after a Cot of I 

had been reached.cRNA-cRNA self-annealing 

deducted. 





Table 111:8 

CIP 

cRNA DNA 

* 

Hybridisation 
value (cpm) 

Cot! 

hybridisation 

(G+C) 
content 

corrected 
to 50% GC 

Cot! DNA-DNA 
renturation 
(calculated) 

Adenovirus 12 12 80 0.1 6.1 3.3x10 2  

Adenovirus 12 
12a 34 - - - 

Adenovirus 2 2 75 0.17 0.113 3.7x10 2  

Adenovirus 7 7 78 0.11 0.11 3.6x10 2  

Adenovirus 12°  12 80 0.1 0.1 3.3x10 2  

* cRNA-cRNA subtracted (Table 111:6) 

a 100:1,DNA:cRNA excess 

+ 1000:1,DNA:cFtNA excess 

6 65°C 



9. Retention of DNA on membrane filters. 

Gillespie and Spiegelman (1965) demonstrated that the DNA which 

is immobilised on the nitrocellulose membrane filters does not become 

unattached during the course of an RNA excess experiment. However, 

when complete hybrids have been formed between homologous reacting RNA 

and DNA strands these hybrids can be preferentially lost from the 

filter. An example of this phenomenon is the loss of SV40 DNA-cRNA 

hybrids (Haas et al-, 1972). 

Accordingly, Adenovirus 2 DNA, labelled with tritium (specific 

activity approx. 1 x 10  cpm/g) was loaded onto membrane filters and 

a hybridisation reaction performed with unlabelled Adenovirus 2 cRNA. 

Filters were counted before, during and after several steps in the 

conventional hybridisation procedure. There was no appreciable loss 

of DNA (data not shown). 	Since the cRNAs represent different 

concentrations of RNA sequences complementary to their template DNAs, 

it is unlikely that complete hybrids would be formed anyway. 	Further, 

since a loss of DNA from the filters-would not affect the ts for the 

individual cRNA-DNA hybridisation reactions, the hybridisation rate 

being independent of the amount of DNA on the filters (Birnstiel et al., 

1972), the unexpectedly low ts and low saturation values for the 

Adenovirus cRNA-homologous DNA reactions cannot be explained on this 

basis. 



From the results of the above experiments it seems that the 

E. coli RNA polymerase is transcribing certain regions of the 

Adenovirus genomes more efficiently - or selectively - than others. 

There are two experiments which help to confirm this conclusion. 

First, thermal melting of the hybrids can provide information on the 

preciseness of base-pairing and the average GC content of the hybrid. 

Second, there is only a certain degree of homology between different 

Adenovirus serotype DNAs; 12 and 7 share 10-25% of their DNA base 

sequences, 12 and 2 share 20-24% of their DNA base sequences, and 7 and 

2 share 24-26% of their DNA base sequences: (Green, 1970). 	Therefore 

if these common DNA sequences are not transcribed by the E. coil RNA 

polymerase, hybridisation reactions between cRNAs and heterologeus 

Adenovirus DNAs will be negative. 

10. Thermal dissociation of Pdenovirus cRNA-DNA hybrids. 

Thermal melts were performed in 0.1 x SSC. 	The melting 

profiles are shown in Figure 111:18. The Tms for the individual 

hybrids are presented in Table 111:4. They are 68 °C, 62°C and 

65 
0
C in 0.1 x SSC for Adenovirus 2, 12 and 7 respectively. 	Green 

and Hodap (1972) reported similar Tms, in 0.1 x SSC-0.176 SLS, for 

these three Adenovirus cRNA-DNA hybrids: Adenovirus 2 (68 °C), 

12(640C) and 7(660C). 	In 1 x SSC the Tm for native Adenovirus 2 

DNA is 92.50C (Green and Pina, 1964; Table 111:2, this Thesis) which 

correlates with its GC content of 58-59% (Marmur and Doty, 1962). 

The Tm of the Adenovirus 2 cRWA-DNA hybrid in 1 x SSC is 78 °C, which 

is 14.5°C lower than the Tm for the native DNA. 	Adenovirus 12 DNA 

melts, in 1 x SSC, at 89°C (Green and Pina, 1964; Table 111:2, this 

Thesis) and the corresponding hybrid dissociates with a Tm of 72°C 



Figure 111:18. Thermal dissociation of 

Adenovirus cRNA-DNA hybrids.The hybrids. 

were formed in 6xSSC 30%FA at the T.OPT. 

for individual reactions and hybridisation 

terminated at 80% of the reactiou.After 

post-hybridisation treatment(see Materials 

and Methods,pg. 38 )to remove non-specific 

RNA,filters were counted in Toluene.-PPO, 

POPOP and the radioactivity determined. 

To melt the cRNA-DNA hybrids filters were 

thoroughly washed in Chloroform to remove 

Toluene scintillation fluid and washed in 

I xSSC and IxSSC containing DEP to remove 

Toluene and RNase activity.They were then 

subjected to increase in temperature while 

being immersed in 0.IxSSC. 

a) Adenovirus 12 cRNA-DNA hybrid;b) 

Adenovirus 7cRNA-DNA hybrid;c) Adenovirus 2 

cRNA-DNA hybrid. Tm corresponds to temperature 

at which 50% of the hybrid has melted. 
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which is some -17°C lower. There is therefore a marked difference 

between the Tms of the native DNAs and the Ths of the cRNA-DNA hybrids. 

The principal parameters which could contribute to the relatively 

low hybrid thermal stabilities are: low molecular weight RNA, low CC 

content, and mismatching of base pairs. For DNA-DNA renaturation 

studies, the expression bAT = 820°C (Thomas and Dancis, 1973) connects 

the molecular length of a duplex(b) with the change in Tm (T). 

For example if the single strand molecular weight of a reassociating 

duplex is 400 nucleotides then the Tm of the resulting duplex will be 

approximately 2°C lower than normal; for single strand molecular 

weights above 800 nucleotides this effect will be negligible. There 

is sme evidence for this length effect occuring in RNA-DNA hybrid-

isation reactions, either with immobilised DNA (Birnstiel et al., 

1972) or with both reactants in solution (Shenkin and Burdon, 1974)'. 

However, in the experiments reported here the effect is probably 

minimal since a large percentage of the cRNAs possess molecular 

weights above 800 nucleotides (see Figure III:8b & 8c). 

All the hybrids melt with a single sharp transition indicative 

of a high degree of precision of base pairing. 	There is therefore 

no good reason to suppose that a large percentage of-mismatched pairs 

exist. 	For the hybrid Tms to' be approx. 15 °C lower than the native 

DNA Tms on the basis of mismatching alone, the hybrids would be 

approximately 15% mismatched (Bonner et al., 1973). 	This is unlikely. 

A likely explanation for the large temperature difference between 

the hybrid Tms and the native DNA Ths is that, for substantial regions, 

the hybrids are composed of rU-dA or rA-dT rich regions since a 

predominence of Uridine or Adenine residues in the ribose strand of a 
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mixed deoxyribose-ribose helix can markedly reduce the thermal stab-

ility (Walker, 1969). 	PolyrA-polydT for example has a Tm which is 

4°C lower than the Tm of the corresponding polydA-polydT duplex 

(Chamberlin, 1965), and more strikingly, polyrU-polydA melts some 

19°C' below the corresponding DNA duplex with the same base composition 

(Walker, 1969). This suggestion would be in agreement with the low 

T.OPTs for the formation of the Adenovirus cRNA-DNA hybrids 

(Table 111:4) and it is likely, moreover, that the selected transcripts 

of the virus genomes represent relatively AT-rich regions. 	It is 

also interesting that the majority of sequences in the Adenovirus 

cRNAs are common to the virus-specific RNA sequences expressed in 

Adenovirus transformed cells (Green, 1970; Green and Hodap, 1972). 

These latter sequences are of 47-51% CC content, a value which is 

common to several Adenovirus transformed cells including those 

transformed by Adenovirus type 2. 	In general the in vivo RNA is of 

lower CC content than the corresponding DNA (Green, 1970). Thus 

there may be some correlation between Adenovirus DNA transcripts in 

vitro and in vivo. 

11. Cross-hybridisation of Adenovirus cRNAs with heterologous 

Adenovirus DNAs. 

The human Adenoviruses can be subdivided' into serotype groups -  on 

the basis of their reaction with either rat or rhesus monkey erythro-

cytes (Rosen, 1958; 1960); basic biochemical and immunological 

differences (e.g. Pereira et al., 1963; Ginsberg, 1962); and onco-

genicity in hamsters (e.g. Huebner, 1967). 	Serotypes in different 

groups are related in some antigenic properties (Pereira et al., 1963) 

and by some DNA-DNA homology (Green, 1970). For Adenovirus 12 and 7 



Table 111:9a 

CRNAa DNA 
(ông) 

cpm hybridised* DNA(50ig) cpm hybridised* 
cross-

hybridisation hybridisation 

Adeno-2 2 2100 2 22 x 10 - 

Adeno-7 7 4203 7 4.08x 1O4  - 

Adeno-12 12 8100 12 8.02x 104  - 

Adeno-2 7 80 7 120 1% 

Adeno-2 12 50 12 120 1% 

Adeno-7 2 60 2 100 1% 

Adeno-7 12 50 12 140 1% 

Adeno-12 2 80 2 160 1% 

Adeno.-12 7 40 7 160 1% 

a Always 8:1 excess (cRNA; S.A. 1.7 x 10 cpm/ug) 

* 6 x SSC130% FA, T.OPT. 2-3ts. 

b background counts for 3ug rn. luteus DNA alone have been subtracted. 



Table 111.10 

• 	
• 	cRNA DNA  

% Hybridisation value  

Adenovirus 12 • 	 .12 80 

it 	 2 2 75 

H 	7 7 	• 78 

12 15 

2 12 6 

It 	7 12 16 

1000:1 excess 

b 
cRNA-cRNA annealing substrated 

(see Table 111:6) 
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this homology extends to 25%; for 2 and 7, 26%; and for 12 and 2, 24% 

(Green, 1970). This level of homology has also been established and 

corroborated by heterology patterns in the electron microscope (Garon 

et al., 1973). 	cRNA excess and DNA excess hybridisation experiments 

were therefore carried out with Adenovirus cRNAs and heterologous 

serotype DNAs. 	The results are shown in Tables 111:9 and 111:10. 

Under conditions of cRNA excess (Table III:9a) there is no cross-

hybridisation of Adenovirus cRNAs. Under conditions of Adenovirus 

DNA excess (Table 111:10) there is some cross-hybridisation. 

Green and Hodap (1972) also showed that cRNAs to Adenovirus DNAs 

do not cross-hybridise under conditions with DNA immobilised on 

filters. 	Their experiments, however, may be open to criticism. 

They hybridised Adenovirus 12 cRNA to Adenovirus 12 DNA and cbtained 

189 cpm/3 ng DNA bound (Table III:9b is taken from Green and Hodap; 

1972). Taking an upper limit of 25% homology between Adenovirus 12 

and Adenovirus 7 DNA (Green, 1970) around 40-50cpm/3ng would be 

expected for the heterologous reaction. 	Clearly this is a low value 

and may be within background range. The other homologous Adenovirus 

cRNA-DNA reactions give similarly low hybridisation values (Table III: 

9b). 	Dunn et al. (1973) also reach the conclusion that Adenovirus 

DNAs must be selectively transcribed by the E. coli RNA polymerase since 

there is little cross hybridisation between different serotypes 

(Table III:8c). 	However, in this case the hybridisation reactions 

were not carried out under optimum conditions for the formation of 

these virus dNA-DNA hybrids. On calculation their homologous 

reaction is only about 10% of the expected saturation value obtained 

in this Thesis (Table 111:5). 	In the experiments reported here both 

the cRNA excess and the DNA excess experiments were carried out under 



Table III:9b [adapted from Green & Hoclap (1972)] 

DNA on filter DNA template 
for cRNA 

Bound 
cts/min 

Adenovjrus 12 12 189 

Adenovirus 	2 12 6 

Adenovjrus 	7 12 5 

None 12 4 

Aderiovjrus 	2 2 117 

Adenovirus 12 2 7 

Adenovirus 	7 2 7 

None 2 6 

Adenovjrus 	7 7 238 

Adenovirus 12 7 6 

Adenovirus 	2 7 10 

None 7 5 



Table-111:9c [adapted from Dunn et al., 1973] 

DNA on membrane Template for cRNA synthesis cpm bound3  to membrane 

Adenovirus type 2- 1 Adenovirus type 2 5916 

Adenovirus type 12 " 
97 

Human 2 " 124 

E. coil2 11 112 

none 
" 1 	38 

Adenovirus type 12 1 Adenovirus type 12 8390 

Adenovirus type 2 1 'I 168 

Human 2 u 132 

E. con2 11 100 

None " 100 

1 50 rig/filter 

2 50 pg/f liter 

3 Input 50,000 cpm/membrane 
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optimum conditions and the reactions were taken past saturation. 

Under the cRNA excess conditions there is no homology evident, while 

under the DNA excess conditions there is some (Table III:9a; 111:10). 

These experiments suggest that the sequences complementary to common 

DNA sequences for different serotypes are under-represented in the 

cRNAs. However, the fact that some hybridisation occurs in the DNA 

excess hybridisation experiments suggests that these particular 

sequences are likely to be transcribed in vitro, although infrequently. 

12. Experiments with denatured Adenovirus DNA templates. 

Since Adenovirus DNA templates. appear to be transcribed in a. 

preferential way by the E. coli RNA polymerase, it was thought that 

denaturation of the template previous to transcription might lead to 

increased amounts of RNA being synthesised and loss of selectivity, 

there being evidence for this occurring with other denatured DNAs 

(Richardson, 1969). 

Figure 111:19 shows the T.OPTs of the respective Adenovirus 

cRNAs transcribed from denatured templates. 	In 6 x SSC 30% FA, the 

T.OPTs are similar: 50-53' C. The kinetic complexities of two of 

the Adenovirus cRNAs were determined (Figure 111:20 and 111:21; 

Table 111:11), and the saturation values are shown in Table 111:11. 

What is apparent from these results is the decreased saturation 

1 
values and the concomitant increased t values for each of the 

Adenovirus cRNA-homologous DNA reactions compared to the homologous 

reactions with cRNA transcribed from a native DNA template (Table III: 

5). The saturation values cannot therefore be increased by use of-a 

denatured DNA template; a result probably due to the self-annealing of 

cRNA during the hybridisation reaction (Table 111:6). 	. 



Figure 111:19. 
Optimal rate temperature for the formation 

of Adenovirus cRNA-DNA hybrids,the cRNA 

originally being transcribed from a denatured 

DNA template.Conditions of hybridisation 

were 6xSSC 30%FA;cRNA(S.A. - I.7xIO 7 cpm/ug); 

IO:Iexcess cRNA:DNA at 5ng DNA/filter. 

Carrier M.luteus DNA(2ug) was added to 

each filter,hybridisation to this DNA 

never exceeding 0.01% of the homologous 

virus cRNA-DNA reaction. 

a) Adenovirus ; 7b)Adenovirus 12 c)Adenovirus 2. 
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Figure 111:20. Hybridisation of Adenovirus 

7 cRNA synthesised off a denatured template 

to Adenovirus 7 DNA immobilised on membrane 

filters.Hybridisation at T.OPT. (see Figure 

111:19) in 6xSSC 30%FA with 5ng virus DNA 

and 2ug carrier M.l'uteus DNA on filters. 

cRNA(S.A. I.7xlO 7 cptn/ug) added at 2:1 

excess.The tj for this reaction can be 

calculated from the time to reach half-

saturation.(see Table 111:11) 
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Figure 111:21. Hybridisation of Adenovirus 

12 cRNA synthesised off a denatured template 

to Adenovirus 12 DNA immobilised on filters. 

Hybridisation-at T.OPT. (see Figure 111:19) 

in 6xSSC 30%FA with 5ng virus DNA and 2ug 

carrier M.lut'eus DNA added per filter.cRNA 

(S.A. '1.7 xIO 7 pm/ug) was added at an 

original excess of 2:1 cRNA to DNA and was 

heated at 100 ° C for I5mins. prior to 

hybridisation. 
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Table 111:11 

cRNA T.OPT 
(6xSSC 30% FA) 

T.OPT. 
(1xSSC) 

Complementary DNA 
(%) 

t3ug/ml  Approx. Kinetic Comlexity 
(daltons x 10 	) 

Adeto-2 denatured 53 62 n.d. n.d. - 

Adeno-7 denatured 50 59 67 2025 1.3 

Adeno-12 denatured 50 60 4 
1 mm. 

0.06 

Mouse satellite denatured 43 52 5 second 
8-10  0.01 
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GENERAL CONCLUSIONS  

There are a few important conclusions derived from the results 

of experiments described in this section. 

First of all, cRNA excess experiments show that the majority of 

sequences in Adenovirus cRNAs appear to be transcribed from only a 

limited region of the Adenovirus genomes. The amount of DNA transcribed 

varies between different AdenovirUs serotypes; AdenovirUS 2 dENk 

transcription possesses greatest selectivity; AdenovirUs 12 has the 

least. Selectivity in transcription is an interpretation of the low 

saturation values and the unexpectedly low t values for individual 

hybridisation reactions (Table 111:5). That the cRNA sequences 

detectable by cRNA excess hybridisation represent a majority of 

transcripts rather than sole transcripts is suggested by the slight 

increase in Crt- under high cRNA excess conditions (Table 111:7); by 

the fact that some of the cRNA sequences do hybridise to heterologoUS 

AdenovirUS DNA serotypeS under DNA excess hybridisation while they do 

not under cRNA excess hybridisation (Tables 111:9; 111:10), and also 

by the fact that cRNA sequences in very low concentration would 

theoretically fail to hybridise in the RNA excess experiments (e.g. 

Bishop, 1972b). A second important point to. emerge from the results 

presented here is the fact that the majority of cRNA sequences are 

probably AT-rich since the T.OVI'. for hybridisation is always low 

(Table 111:4) and the Tms for the cRNA-DNA hybrids are also in agree- 

ment with this (Table 111:4). 

Selective transcription of Adenovirus DNA by E. CO1iRNPL poly-

merase has been noted by other workers (Green and Hodap, 1972; 

Dunn et al., 1973; PetterssOfl et al., 1974). 	In particular, these 
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last authors have shown that all the DNA sequences are represented 

in Adenovirus 2 cRNA but there is still preferential transcription, 

certain regions of the template being more active than others. By 

following the effect of adding unlabelled cRNA to the reassociation 

of labelled virus DNA fragments produced by E.COR 1 restriction 

enzyme, these workers showed that two Adenovirus 2 DNA fraginents-D 

and F - were transcriptionally more active than the others. Both 

these fragments represent 7.11% and 4.70% of the Adenovirus 2 genome 

i.e. a total of 11.81% of the duplex. RNA transcribed from these 

regions would therefore represent about 5-6% of the genome since 

the product RNA is, in the main, asymmetric. This % complementarity 

is similar to the value obtained here (Table 111:4) which has been 

derived from cRNA excess experiments. These two specific fragments, 

furthermore, are located at the AT-rich end of the Adenovirus 2 DNA 

molecule (Kimes and Green, 1970). Thus the cRNA to these regions 

will be UA-rich. 	In this respect this cRNA is additionally similar 

to the postulated UA-rich cRNA sequences described here for all three 

Adenoviruses. As mentioned, Pettersson et al. (1974) also suggest 

that all the Adenovirus 2 DNA sequences are represented in the cRNA 

transcripts. Part of their procedure incorporates hydroxyapatite 

fractionation which can lead to over-estimation of duplex or hybrid 

formation, particularly for Adenovirus DNAs (Tibbetts etal., 1973); 

so it is unclear if all the Adenovirus 2 DNA sequences really are 

represented in the cRNA. Although this remains to be precisely 

demonstrated, it is clear that a large proportion of the Adenovirus 

cRNAs are complementary to only certain regions of the Adenovirus 

genomes. 	The fact that there is selective transcription of 
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Adenovirus DNAs by the E. coli RNA polymerase means that experiments 

utilising Adenovirus cRNAs to detect virus DNA sequences in eukaryote 

cells have to be treated with caution. Most of the molecular 

hybridisation experiments such as cRNA excess and in situ hybridisation 

are directly influenced by the heterogeneity and concentration of the 

RNA species. Clearly, if most of the Adenovirus 12 cRNA, for example, 

only represents 20% of the Adenovirus 12 DNA template, then the chances 

of detecting Adenovirus 12 DNA sequences in eukaryote cells will be - 

reduced. Another important point is that because the Adenovirus cRNA-

DNA hybrids have relatively low This and T.OPrs (see Table 111:4), to 

obtain maximum amounts of hybrid formation the incubation temperature 

has to be relatively low. 	For instance, hybridisation of Adenovirus 2 

cRNA at 800C in 2 x SSC (or its equivalent in a Formamide solution) 

would reduce the chances of detecting Adenovirus 2 DNA homology. 

This could not be predicted from the Th of the virus DNA which is high 

GC (see Table 111:1). 	A final point which needs to be mentioned is the. 

fact that virus DNA sequences in certain transformed or tumour cells, 

may only represent partial genomes (see Introduction). Therefore, the 

majority of Adenovirus cRNA sequences might not even be complementary 

to these partial genomes. 

All this clearly demonstrates that before estimates or location 

of Adenovirus DNA sequences in transformed or tumour cells in particular 

can be made, the AdenoviruS cRNAs and the Adenovirus cRNA-DNA hybrids 

have to be characterised. 



• f'!.T 

 

T17 

IN SITU HYBRIDISATION 

The in situ hybridisation method (John et al., 1969; Gall and 

Pardue, 1969) combines the specificity of molecular nucleic acid 

hybridisation with cytological discrimination leading to the detection 

and localisation of specific nucleic acid base-sequences within 

eukaryote cells (Jones, 1973; Hennig, 1973; Steffensen and Wimber, 

1972). 

Apart from chromosomal mapping of DNA sequences, one of its 

advantages over other conventional hybridisation methods is the 

fact that single cells can be studied. This can be an important 

consideration since some cells in a population might possess more, 

specific, DNA sequences than others: for example developing Xenopus 

oocytes have several times the amount of ribosomal genes than do 

follicle cells (Birnstiel et al., 1970). 	Thereis also a restricted 

distribution of EBV genomes to the epithelial cells of certain human 

nasopharyngeal carcinomas (Wolf et al., 1973; Klein etal.., 1974). 

As regards virus-host cell interactions, the method has been 

utilised in several attempts to detect virus nucleic acids in 

permissive, semi-permissive, or non-permissive systems. 

Replicating virus DNA has been detected in situ in SV40-infected 

monkey kidney cells (Geuskens and May, 1974); BRIK cells which are 

permissive for the replication of EBV (Pagano, 1974); and HEK cells 

infected with Adenovirus 12 (McDougall et al., 1972; Dunn et al., 

1973). 	The applicationsof in situ hybridisation to semi-permissive 

systems are exemplified in the detection of Adenovirus 2 DNA replication 

in rat embryo cells (Gallimore, 1974), and the localisation of 



replicating SV40 DNA in a small percentage of rabbit kidney cells 

transformed by this virus (Watkins, 1973). There have also been 

attempts to detect virus-specific DNA within virus transformed or 

tumour cells; for example certain SV40 transformed human cells and 

hamster tumour cells (Oda et al., 1972); and a cell line originating 

from an African Burkitt's lymphoma (Zur Hausen and Schulte-Hoithausen, 

1972). 	Shope papilloma virus DNA has been localised in. rabbit skin 

(Orth et al., 1970), and for Adenoviruses there is the suggestion 

that virus DNA can be detected within the nuclei of transformed rat 

cells (Dunn et al., 1973) and rat tumours induced by Adenovirus 12 

(Dunn et al., 1973; McDougall et al., 1972b). 

Clearly, the method has been of great use in studying and 

clarifying the variety of virus-cell interactions which can occur. 

For in situ hybridisation the principal parameters are the 

specific activity of the labelled nucleic acid "probe" and the 

amount of specific nucleic acid sequences in the cell to be analysed. 

Briefly, the greater the specific activity, and the larger the 

amount of "target" sequences, the greater will be the chance of 

detecting them. Thus there is a greater chance of detecting virus 

DNA in infected cells than transformed or tumour cells since-, in 

general, transformed or tumour cells contain - lower amounts of virus 

DNA (see Introduction, Chapter 1). 

There are two important facets of the in situ hybrdisation 

process which need to be considered in relation to its resolving power. 

The first is efficiency. 	Clearly, if the efficiency is low then this 

reduces the limit of detection. 	In conjunction with this is a second 

consideration of whether or not in situ reactions can be optimised. 



100 

Conventional hybridisation reactions can be optimised (section 111, 

this Chapter) with the direct result that their efficiency can 

sometimes be increased. Many of the features of in situ hybridisation 

appear to be similar to the RNA excess hybridisation method: for 

instance in both cases the denatured DNA is immobilised and RNA is 

incubated in solution around it (also see Jones, 1973; Hennig, 1973). 

This suggests that in situ hybridisation reactions also can be 

optimised and their efficiency improved.. This is particularly 

important, as in the present work, when the detectibility of trace 

amounts of nucleic acids in the cell is in question. Some of the 

work in this Thesis attempts to detect virus DNA sequences in trans-

formed or tumour cells by in situ hybridisation (see following section). 

A knowledge of the efficiency of the process and its comparability 

with conventional RNA-DNA hybridisation is therefore desirable. 

Experimental design 

The effects of the fixation procedure and denaturation treatment 

have already been mentioned (see Materials and Methods,. pg. 4., ). 

Two types of experiment were designed to determine whether 

individual in situ hybridisation reactions could be optimised and to 

determine their efficiency. 	One type. (B) monitors RNA-DNA hybrid 

formation (radioactivity) by autoradiography which is a normal 

feature of the in situ method; the other type (C) uses direct 

scintillation counting. 	Both types of experiment use satellite DNA 

as a test system because it is readily isolatable, easily detectable 

by both conventional and in situ hybridisation, and it has discrete 

chromosomal locations (see Walker, 1970 for example). 
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Satellite cRNAs were characterised and the conditions of 

satellite cRNA-DNA hybrid formation determined. 	In situ hybridisation 

reactions were then performed and the results compared with conventional 

hybridisation 

The reactions studied were mouse satellite cRNA-DNA and human 

satellite cRNA-DNA hybridisation. 

The results show that individual reactions at the cytological 

level can be optimised.and further, the optimal hybridisation 

conditions are similar to those found for conventional RNA excess 

hybridisation. Estimates of efficiency, carried out under optimal 

conditions, fall into the range of 4-5%. 

A. CHARACTERISATION OF SATELL'ITE cRNAs 

RESULTS & DISCUSSION 

1. RNA transcribed from native duplex satellite- DNA. 

The E. coli RNA polymerase has a predilection for the H(heavy) 

strand of duplex mouse satellite DNA resulting in a 5-6 fold concen-

tration of H strand transcripts over L(light) strand transcripts in 

the cRNA (Figure 111:22). 

Such hybridisation to both H and L strands of mouse satellite 

DNA could represent partial symmetric transcription of the satellite 

DNA, and this suggestion is supported by self-annealing experiments 

with mouse satellite cRNA which indicate 4-15% seif-complementarity 

in the transcript (Table 111:12). 

The self-compleinentarities of the human satellite cRNAs are 

listed in Table 111:12 and the values suggest a very limited amount 

of symmetric transcription of these satellite DNAs. 

The sizes of the cRNAs were determined by sucrose gradient 



Figure 111:22. Hybridisation of mouse 

satellite cRNA to the complementary 

strands of mouse satellite separated by 

alkaline CsC1 centrifugation.M.luteus and 

Xenopus DNAs are added as buoyant density 

markers.The DNA of each fraction was 

denatured,loaded onto millipore filters 

(Materials and Methods) and hybridised 

at the T.OPT. (see Figure II.I:24)in 6xSSC 

30% FA,with a 10 times excess of complementary 

satellite cRNA,for 2 reaction half—lives(tl). 
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Figure 111:23. Fractionation of mouse 

satellite cRNA(3xIO 4 cpm) in a sucrose. 

density gradient(5-40%).Spun at 15 ° C, 

24,000 rpm for I8hours.RN.A TCA 

precipitated.E.coli RNA added as a 

density marker. 
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centrifugation and were estimated to be between 5-6S, corresponding 

to molecules of 150-200 nucleotides (Figure 111:23). 

Optimal rate temperatures for hybridisation of satellite cRNAs 

The temperature optimums (T.OPT.) for the formation of satellite 

cRNA-DNA hybrids are shown in Figure 111:24. The T.OPTs for human 

satellite III and mouse satellite cRNAs were also determined in 

1 x SSC and 3 x SSC (Table 111:13). 

Mouse satellite DNA has a Tm of 86°C in 1 x SSC (Bond et al., 

1967) while human satellite DNAs I, II and III have Ths, in 

Lx SSC of 80°C, 84°C and 85 °C respectively (Corneoetal., 1968; 

Corneoetal., 1970; Corneoetal., 1971). 	These values are 

30-40°C higher than the T.OPT. values for the individual satellite 

cRNA-DNA hybridisations, a temperature difference rather higher 

than previously reported for a variety of DNA-RNA hybrids 

(Birnstiel et al, 1972; Bishop, 1972). 

Gradient Hybridisation 

Mouse satellite cRNA was hybridised to mouse DNA fractionated 

on either a CsCl gradient (Figure 111:25) or a Ag _Cs 2SO4  gradient 

(Figure 111:26) at the T.OPT. in appropriate hybridisation solution. 

Human satellite .111 cRNA was hybridised to human DNA fraction-

ated on a CsC1 gradient at the T.OPT. for this reaction (Figure III: 

27). 

These gradient hybridisations show that the satellite cRNAs, 

for the most part, hybridise to DNA sequences with unique buoyant 

density. 

cRNAs to total DNA, for instance total human DNA, hybridise to 

many sequences with a heterogeneous buoyant density (Figure 111:28). 



Figure 111:24. Initial rate of satellite cRNA--

DNA hybridisation as a function of temperature. 

cRNA was hybridised to filters containing 

total DNA.RNA concentration and time of 

incubation were chosen so that 10-30% 

of the complementary satellite DNA reacted. 

a) 6xSSC 30%FA;b)3xSSC. 

o-o Mouse satellite cRNA;ti—tzi human satellite 

III cRNA; 0 -40 human satellite II cRNA; 

human satellite I cRNA. 
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Figure 111:25. Hybridisation of mouse 

satellite cRNA to total mouse DNA fractionated 

on a neutral CsCl gradient.Hybridisation as 

for Legend to Figure 111:27. As well as 

hybridisation to DNA sequences with a 

buoyant density of mouse satellite DNA 

(1.690gm/cm 3 )(see TableIII:I),there is 

also some hybridisation to sequences 

which are present in the light part of 

the gradient.This may represent. 

trailing of satellite sequences 

into this region of the gradient. 

Alternatively, some satellite sequences 

may not have been fully resolved into 

a satellite peak.These sequences may 

also be interspersed with the main 

band sequences.(also see Figure 111:26). 
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Figure 111:26. Hybridisation of mouse satellite 

cRNA(S.A. I.4xIO 7 cpm/ug) to total mouse DNA 
fractionated on a Ag+_Cs2So4gradient.GradiefltS 

were made up as described in Materials and Methods 

(pg.4'7 ) at an R0f 0.25,The DNA was centrifuged at 

30Krpm for 72 hours at 25 ° C in the 8x60 MSE rotor 

,and the fractions were collected from the bottom 

of the tube.Aliquots were denatured,neutraliSed, 

and loaded onto membrane filters(The DNA sequences 

complementary to the cRNA were always very much 

less than the concentration of the cRNA 

sequences).6xSSC 30%FA for IOts at the T.OPT. 

After extesive washing in 2xSSC,followed by 

RNasing to remove unbound RNA,the filters were 

counted in Toluene-based scintillation fluid. 

Hybridisation is mainly to DNA sequences 

which on re-running on neutral CsC1 band at 

a density of 1.690gm/cm which is the 

buoyant density of mouse satellite 

DNA.The isolated satellite DNA in the Ag 

Cs 2 SO 4  gradient can also be observed by 

spectrophotometry at 260nm(arrow).Main band 

hybridisation can be accounted for by the 

presence of mouse satellite DNA sequences 

which probably have not been completely. 

isolated by the technique of Ag-Cs 2 SO4  

gradient centrifugation.Incomplete 

separation has been observed for the 

centrifugation of other satellite DNAs 

as well.(e.g. Prosser,1974). 
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Figure 111:27. Hybridisation of satellite 

cRNA to neutral CsC1 gradient.DNA. in O.IxSSC, 

together with M.luteus DNA as density marker, 

was added to 5.2gm CsC1 and centrifuged in a 

MSE IOxIO rotor for 40hours at 25 0 C.Fractions 

were collected,their O.D.s(260nm) determined, 

and aliquots of each fraction denatured, 

loaded onto membrane filters and hybridised. 

with human satellite III cRNA so that the 

concentration of the RNA was in a 10 times 

excess of the complementary DNA on the 

filters.6xSSC 30%FA at the T.OPT. and 

continued for 2 reaction ts.The peak 

of radioactivity corresponds to a buoyant 

density of 1.696gm/cm 3which is the 

buoyant density of human satellite III DNA 

in neutral CsC1(Corneo et 'al.,1973). 
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Figure 111:28. Hybridisation of total human 

DNA cRNA to total human DNA fractionated on 

a neutral CsC1 gradient.Total Human DNA( 

O.00IM NaC1) was transcribed by the E.coli 

DNA-dependent RNA polymerase and the cRNA 

extracted and purified.The cRNA(S.A. 2.Ox 

10 cpm/ug) was hybridised to total human DNA 

fractionated on the CsC1 gradient as described 

in the Legend to Figure III:27.Hybridisation; 

to DNA sequences with heterogeneous buoyant 

density. 
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Table 111:12 Self-complementarity of satellite cRNAs 

Satellite cRNA Concentration (tg/ml) 
%RNAse-resistance (1.p.m.-H 3 ) 

at several Ts 

Mouse 0.012 15 

Mouse 0.014 7 

Mouse 0.010 9 

Mouse  0.010 40 

Human I 0.012 4 

Human II 0.016 15 

Human III 0.020 8 

a Mouse cENA transcribed from a denatured mouse satellite DNA template 
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4. 	Base-sequence complexity and rates of hybridisation of satellite 

cRNAs. 

Figures 111:29 and 111:30 show double reciprocal linear plots for 

the hybridisation of satellite cRNA sequences. 	From the time taken to 

reach half-saturation, Crts were calculated (Table 111:13). 

0 x 174 cRNA hybridises to its template DNA with a Crt of 15 x 10 

moles/sec/i under RNA excess conditions at its T.OPT. (45 °C) in 6 x SSC 

50% FA. 	(Birnstiel et al., 1972) and the DNA has anaIyticl 
V 

complexity of around 5500 bases. The Crt* of mouse satellite cRNA 

is approximately 3 x 10 -4 moles/sec/1 and is therefore about 50 times 

less complex than the 0 x 174 cRNA. This infers that mouse satellite 

DNA has a kinetic complexity of around 100 base pairs, a value in 

agreement with complexities derived from renaturation studies 

(Waring and Britten, 1966; Sutton and McCallum, 1971; Hutton and 

Wetmur, 1973a). The kinetic complexities of the three human 

satellite DNAs are shown in Table 111:13. 	The percentage of the 

mouse and human genomes complementary to the individual cRNAs can be 

calculated from the saturation values contained in the double 

reciprocal plots (Bishop, 1969; Birnstiel et al., 1972). 	While the 

value (Table 111:13) for the percentage of the mouse genome. comple-

mentary to the mouse satellite cRNA is in good agreement with 

previously published values (Kit, 1961), the percentages derived for 

each of the human satellite DNAs• (Table 111:13) are lower than have 

previously been suggested from densitometric measurements in the 

analytical ultracentrifuge (Corneo et al. 1973). 
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Figure 111:30 demonstrates that even at low temperatures of 

incubation, where the rate of hybridisation is slower, full saturation 

is eventually achieved. As the temperature is increased so the rate 

of the reaction increases, although at supra-optimal temperatures the 

saturation value decreases as a consequence of greater RNA-DNA hybrid 

dissociation as the temperature approaches the Tm of the hybrid. 

For mouse satellite cRNA-DNA hybridisation, a reduction of 15°C from 

the T.OPT. leads to a 1.5 times decrease in reaction rate; and an 

increase of 15°C over the T.OPT. leads to a 1.75 increase in reaction 

rate but a60% decrease in the saturation value. 

5. Thermal stability of satellite cRNA-DNA hybrids 

Figure 111:31 shows the melting profiles of mouse satellite 

cRNA-DNA and the human satellite cRNA DNA hybrids originally formed 

at the T.OPT. 	The Tms of the hybrids are 12-18 °C lower than the 

corresponding This for the native satellite DNAs (Table 111:13), and 

are about 22°C higher than the T.OPT. values under similar criteria. 

The Tins of the mouse satellite and human satellite III cRNA-DNA 

hybrids formed also at 65 °C are shown inTable 111:13. 	They are 

75-76 
0 
 C and 72 

0
C respectively. 

B. 	In situ hybridisationof AT-rich satellite cRNAs 

The optimal temperature of hybridisation, and the melting 

temperature of the AT-rich satellite cRNA-DNA hybrids studied here 

are 33-40°C and 12-18°C lower than the Tins of the native DNAs 

(Table 111:13). 	This is a considerable temperature difference. 

These particular satellite DNAs have already been assigned 

chromosomal sites (Jones, 1970; Pardue and Gall, 1970; Jones and 

Corneo, 1971; Jones, Prosser, Corneo and Ginelui, 1973; Jones et 



Figure 111:29. Double reciprocal plot for 

the reactions of human satellite IeRNA and 

human satellite III cRNA.Filters containing 

O.OIug or 0.05ug total human DNA were 

challenged with 0.02ug/ml satellite III 

or satellite I cRNA respectively,at the 

T.OPT.,s in 6xSSC 30%FA for various times. 

S.A. of cRNAs was I.4xlO7cptn/ug. 
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Figure 111:30. The effect of temperature 

on the rate of mouse satellite eRNA- 

DNA hybrid formation.cRNA excess. 

Filters containing 0.002ug total mouse 

DNA were hybridised in 6xSSC 30%FA 

until 80-90% of the reaction had 

been achieved.The cRNA( t ?bcpm/ug) 

was at a concentration of 0.0I8ug/ml.. 

Each reaction is expressed as a double 

reciprocal plot and the difference 

in rates of the three linear plots. 

can be expressed through the changes 

in the time for 50% saturation to be 

achieved.The reactions are essentially 

an experimental extrapolation of the 

optimal rate temperature curve shown 

in Figure 111:24. 
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Figure 111:31. Melting temperature profiles 

of cRNA-DNA hybrids. DNA was hybridised with 

saturating amounts of homologous satellite 

cRNA and the hybrids dissociated as 

described, in Materials and Methods(pg.4.2 ). - 

- Human III satellite cRNA-DNA hybrid; 

Human satellite II cRNA-DNA hybrid. 

• - Human I cRNAsatellite-DNA hybrid; 

00 	mouse satellite cRNA-DNA hybrid. 
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al., 1974) but apart from human satellite I the temperature of 

incubation chosen was generally 65°C which is already within the 

melting range of all these satellite cRNA-DNA hybrids (Figure 111:31). 

This together with the findings that some of these satellite DNA 

sequences appear to have a restricted distribution in the karyotype 

suggested that reducing the temperature of incubation to without 

the melting range of the hybrids would lead to greater efficiency 

in the in situ hybridisation reaction. 	In turn, it could be 

investigated whether such an increase, if any, would reflect any 

basic similarities between in situ and conventional hybridisation. 

RESULTS 

Mouse satellite and human satellite III cRNAs were hybridised 

to mouse and human chromosomes respectively and hybrid formation 

monitored by autoradiography. 

It can be seen from Figures 111:32,111:33 and 111:34 that the 

temperature of incubation is important in determining the amount of 

hybridisation that occurs in the karyotypes. 	At 75°C, for example, 

few chromosomes in either the mouse or the human are labelled (Figures 

iiI:33d and III:32c) whereas at 55 °C several chromosomes are labelled 

(Figures 1II:33b and III:32b). 	In the human, and at this latter 

temperature, certain chromosomes from each group are consistently 

labelled near the centromeres: 1,7/8,9,10,11,13,14,15,16,17,18,19, 

20,21,22 and in males a small heterochromatic chromosome most likely 

the Y (Figure III:32d). 	Mouse chromosomes, at 55°C with the excep- 

tion of the y in males, are labelled at the centromeres. 	However 

there appears to be a variation in the amount of satellite DNA 

present on different chromosomes in this particular inbred strain 
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(JBT/Jd) which, like some other inbred mice (Dev. et al., 1974) has, 

variations in the amount of C-band material on different chromo-

somes (Figure 111:35). 	Chromosomes with minor amounts of C-band are 

only slightly labelled at 55°C (Figure III:33b) and are ünlabélled 

at high temperature (Figure III:33d). 

From Figures 111:32, 111:33 and 111:34 it is also apparent that 

there is an optimal temperature of hybridisation for each of the 

satellite cRNA-DNA hybridisation reactions. For mouse satellite 

it is 50-60°C, for human satellite III it is also 50-60°C. 	By 

RNA excess hybridisation with DNA immobilised on membrane filters, 

the individual T.OPT.s for these reactions are 58°C and 53°C 

respectively (Table 111:13). 	The T.OPT.s obtained both by conven- 

tional RNA excess hybridisation and in situ hybridisation are there- 

fore in agreement. 	This suggests that both reactions share common 

kinetic characteristics. 

DISCUSSION 

Three important points arise from the results of experiments 

described here. 	First of all, there is an optimal rate temperature,. 

for the hybridisation of individual AT-rich satellite cRNA-DNA' hybrids. 

Secondly, there is also an optimal temperature for the in situ 

hybridisation of these same satellite cRNA-DNA hybrids. Thirdly, 

these two optimums have similar values. This suggests that the 

in situ hybridisation reaction is markedly influenced by temperature 

(a point which may not have been fully appreciated in the past) in a 

way which reflects its basic underlying similarity to RNA excess 

hybridisation. 



Figure 111:32 and 111:33. Mouse satellite and 

Human satellite III cRNAs were hybridised 

to mouse and human chromosomes respectively, 

by adding 2ul samples of the cRNA in 

3xSSC(O.2ug/ml) to previously denatured 

(0.2N HC1) preparations.The reaction was 

carried out for 20mins..Autoradiographs were 

prepared as described.(Materials and Methods). 

Figure 111:32 represents hybridisation of 

human satellite III cRNA to human chromosomes 

at a)20 ° C,b)55 ° C75
0
C,d)70 0 C .Note the 

hybridisation of cRNA to the small chromosome, 

probably the Y(arrow),In Figure III:33,mouse 

satellite cRNA has been hybridised to mouse 

chromosomes at a)30
0 C,b)55 ° C,c)65 ° ,d)75 ° C. 

The arrows identify chromosomes with 

differing amounts of satellite DNA, 

a finding most likely correlated with 

the amounts of C band material(see Figure 111:35 

and discussion). 
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Figure 111:34. The average number of 

chromosomes labelled after hybridisation 

with human satellite III and mouse satellite 

cRNAs,at different temperatures of incubation. 

Preparations were denatured with 0.2 N HCl. 

cRNA(in 3xSSC) was hybridised to the 

chromosomal DNA sequences for 20mins.,and 

autoradioagraphs were exposed for lOdays. 

A total of 100 metaphase spreads were 

examined at each temperature of hybridisation. 
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Figure 111:35. Female chromosomes were 

denatured with 0.071q NAOH fox 3mins. and 

incubated in 2xSSC for Ihour at 65 ° C. 

The amount of C band material is 

variable between chromosomes,in 

particular two homologues possessing very 

much less, than the others. 



Table 111:13 

Satellite 

cRNA 

T.OPT.hybnid(H) 

(1xSSC) (3xSSC) 
30% FA) 

T'"' 

T.OPT. 65°C 

ThDNA(D) 

(1xSSC) 

ThH_TOP4 

(1xSSC) 

ThDT OPTH 

(1xSSC) 

D_H 

(1xSSC) 

T-(secs)* Ti 

(3vg/ml) 

Crt!  
2 

M/sec/l 

Complexi ty 

nucleotides 
%Genome 

Môüse 52 	58 	43 74 	76 •86 22 34 12 24-38 3x10 4  100 
11(10a12) 

Human I 47 	- 	38 66 80 19 33 14 56-60 6x10 4  200 0.175(0I?5 

Human II 44 	- 	35 66 84 22 40 18 26-36 4x10 4  120 
07(2b) 

Human III 48 	53 	40 70 	72 85 22 37 15 10-14 1.2x10 40 
0.85(l .5) 

* 6xSSC 3076 Formamide 

a Waring and Britten (1966) 

b Corneo et al. (1973). 



In detail, the individual T.OPTs are low for several possible 

reasons. 	First, the satellite DNAs themselves have low Tms 

(Bond et al., 1967; Corneo et al., 1973). 	Second, cRNAs to AT-rich 

satellite DNAs will contain substantial regions of Uridine or Adenine 

residues which can impart low thermal stability to nucleic acid 

helices. Thirdly, the size of the RNA can be expected to have an 

effect; and finally, because satellites are composed of similar but 

not identical sequences, mismatching of these sequences upon 

reassociation or hybridisation will occur. These explanations gain 

support from the fact that individual This are low also (Figure 111:31; 

Table 111:13). The degree of these effects can be approximately 

determined from these Ths. Mouse satellite cRNA, for example, is 

mainly transcribed from the H strand of the DNA (Figure 111:22) 

which is rich in Thymidine clusters (Southern, 1970) and will there-

fore be mostly composed of Adenine residues. The mixed rihose-

deoxyribose homopolymer pair, rA-dT, melts 4-5 °C lower than dA-dT 

(Chamberlin, 1965). 	The length of the cRNA which in this case 

is around 150-200 bases (Figure 111:23), can have an important 

inverse effect on the Tm of a hybrid (Birnstiel et al., 1972) as well 

as the Tm of a DNA-DNA. duplex (Thomas and Dancis, 1973). 	This, 

together - with the fact that the minimum stable length of olyrA-polydT 

or polyU-polyA appears to be relatively long (Walker, 1969) suggests 

a 4-50C contribution to a reduction in Tm with an RNA length of 

approximately 150-200 base-pairs. Additional reduction in Tm comes 

from base-sequence mismatching. Thus the mouse satellite cRNA-DNA 

hybrid will contain around 2-5% mismatch and the human satellite III 

cRNA-DNA hybrid will contain around 3% more mismatch. These values 
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of incubation (Figure 111:32) and even where 90% of the hybrid has 

melted (Figure 111:31). 	Mouse satellite DNA exists as a 10% fraction 

(Waring and Britten, 1966; Kit, 1961) whereas human satellite ill 

represents a much smaller proportion of the genome (Corneo et al., 

1973; also see Table 111:13). 	Thus hybridising mouse satellite 

cRNA even at temperatures where approximately 25% of the potential 

hybrid formed at the T.OPT. will not have formed (Figure 111:31) most 

of the mouse chromosomes are still labelled (Figure III:33c). 

However, at temperatures where approximately 70% of the potential 

hybrid will not form the centromeric regions of several-specific 

chromosomes are unlabelled (Figure III:33d). 	These have visibly 

less C band material (Figure 111:35). A decrease in the amount of 

label at temperatures lower than the T.OPT. (Figures 111:32, 111:33 

and 111:34) may well reflect the fact that at these temperatures 

saturation is not achieved. The satellite cRNAs studied here 

hybridise with Crt -s of 3 x 10 moles/sec/l (mouse) and 1.2 x 10-4 
 

moles/sec/l (human 111) so that the 20 mm. incubation time in the 

in situ reaction (see Materials and Methods) would normally represent 

approximately 10-20 reaction half-lives in 3 x SSC. Under these RNA 

excess conditions the reaction at low temperatures of incubation, for 

example 15°C below the T.OPT., would still have approached saturation 

(Figure III:30).Since temperatures such as these result in less numbers 

of labelled chromosomes, this suggests that the in situ hybridisation 

reaction may well be slower than that determined by RNA excess 

hybridisation. 

Alternatively, the in situ hybridisation reaction may suffer from 

a depletion of RNA, for example not sufficient RNA excess (Birnstiel 

et al., 1972; Young and Paul, 1973) which has the effect of reducing 
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both the reaction rate and saturation value; or depletion of DNA 

sites, for example chromosomal DNA reassociation (Alonso et al., 

1974). This latter consideration is unlikely however in view of 

the findings of Kurnit (1974) who has shown that highly-repetitive 

chromosomal DNA sequences do not appear to renature during the C 

band procedure. 	Because in situ hybridisation and RNA excess 

hybridisation appear to share the characteristic of a common temper-

ature optimum, experiments designed with this in mind may well 

increase the resolution of the technique. For example, many studies 

utilising in situ hybridisation have used incubation temperatures 

around 65°C as originally described by Jones (1970) and Pardue and 

Gall (1970). This temperature, however, is approximately 10 °C 

above the T.OPT. for the formation of human satellite III cRNA-DNA 

hybrids and as such can be expected to lead to decreased saturation 

value for this reaction. 	Since Jones, Prosser, Corneo and 

Ginelli (1973) also used 65 °C to determine that the location of human 

satellite ill DNA sequences is limited to a few chromosomes, their 

results can be considered a minimum estimate. 	The possibility of 

cross-hybridisation between human satellite ill cRNA and other 

satellite DNAs (e.g. Melli et al. , 1975) seems unlikely since highly 

labelled chromosomes at the T.OPT. which are not labelled. at higher 

temperatures, do not correspond to those sites assigned to human 

satellite 11 or 1 DNAs (Jones and Corneo, 1972; Jones et al., 1974). 

For other RNA species being used in the in situ hybridisation 

reaction, increased tolerance of hybrid formation might be particularly 

important since hybridising at the T.OPT. should increase the chances 

of detecting those chromosomal DNA sequences complementary to the 

RNA. The complex formation between polyU and chromosomal polydA 



is a case in point (Shenkin and Burdon, 1974; Jones, Bishop and 

Brito-da---Cunha, 1973). 

For the detection of virus DNA in eukaryote cells the above 

findings have similar implications. 	Thus hybridising Adenovirus 

cRNAs to cells at temperatures which are inside the thermal 

dissociation range of the potential hybrids will reduce the chances 

of detecting the virus DNA sequences. There is some evidence that 

this may have been done by other workers in some cases. 

Clearly the fact that in situ hybridisation appears to behave as 

conventional hybridisation with regard to some basic parameters means, 

in effect, that the results of conventional hybridisation experiments 

in general can be applied to the designing of in situ hybridisation 

experiments in detail. 

C. IN SITU HYBRIDISATION TO WHOLE CELLS FIXED ONTO COVERSLIPS 

Mouse satellite cRNA was hybridised to mouse cells immobilised 

by fixation onto coverslips (Materials and Methods, pg.çb ). 

cRNA-DNA.hybrids were monitored by direct scintillation counting.. 

RESULTS 

1. The effect of denaturation, temperature of incubation and other 

aspects of the normal in situ hybridisation procedure were 

investigated by observing their effect on 
3* 
 H-Thymidine labelled 

cells. 

Figure 111:36 shows that NaOH treatment (Gall and Pardue, 1969) 

removes major amounts of radioactivity from the coverslips whereas HCl 

treatment (MacGregor and Kezer, 1971) does not. 	Most of the loss with 

the former denaturant is due to whole cells being removed as well as 

DNA. 	HC1 was routinely used. 	Figure 111:37 shows that washing in 



Figure 111:36. Effect of denaturants 

on 3H-Thymidine labelled cells fixed 

onto coverslips.. 0 - 0 0.07N NaOH; 

x-x 0.2 N HC1. Any concentration of 

NaOH did,in fact,reinove DNA and cells. 
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Figure 111:37. Effect of 2xSSC(25
0 0' 

washing and RNasing(25 0 C,IOug/ml in 2xSSC) on 

3H-Thymidine labelled cells fixed onto 

coverslips.Longer times still did not 

remove substantial amounts of radioactivity. 

0 - 0 Rnase;x-x 2xSSC 
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Figure 111:38. Effect of temperature on 

3H-Thymidine labelled cells fixed onto 

coverslips.Coverslips were heated in 

2xSSC at different temperatures for 

4-24 hours incubation.The time 

of incubation was not important compared 

to the influence of temperature.. 
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2 x SSC or RNAsing (20.tg/ml) does not remove appreciable amounts of 

radioactivity. 	Figure 111:38 demonstrates' that temperature, however, 

has a marked effect on the retention of 3H-Thymidine on the coverslip: 

the higher the temperature, the greater the loss. 	In SSC solutions, 

the optimum rate temperature of hybridisation of mouse satellite 

cRNA-DNA hybrid formation is quite high (Table 111:13). 	Formamide, 

however, reduces the effect of temperature on the 3H-labelled cells 

(Figure 111:39), as well as reducing the cptimal rate temperature of 

mouse cRNA'DNA hybrid formation (Table 111:13). 	Formamide was 

therefore used in all the subsequent experiments on the kinetics of 

in situ hybridisation with whole cells fixed onto coverslips..' 

2. Mouse satellite dNA-DNA hybrid formation. 

Experiments discussed above have shown the T.OPT. to be important 

in in situ hybridisation reactions. 	The T.OPT. for mouse satellite 

cRNA-DNA hybrid formation in 6 x SSC"30% FA is 43°C (Table 111:13). 

In 3 x SSC 50% FA the T.OPT. will be approximately 25 °C. 	Hybridis- 

ation reactions were therefore carried out at 25°C in 3 x SSC 50% FA. 

Figure 111:40 shows that mouse cRNA hybridises specifically to 

mouse cells since it hybridises to mouse cells but not to human cells; 

mouse cells, however, do not hybridise with human satellite ill cRNA. 

Hybridisation increases with time until it reaches a plateau. 	The mouse 

satellite cRNA-DNA hybrid melts in situ with a TM of 37°C in 1 x SSC 

3076 FA (Figure 111:39). 	Allowing for the effect of FA (0.7°C for 1% 

FA; McConaughYet., 1969) this extrapolates to 72 °C in 1 x SSC. 

The Tm of mouse satellite cRNA-DNA hybrid, formed on membrane filters 

in conditions of cRNA excess, is 74 °C (Table 111:13). 	There is 

therefore good agreement between these two values. A minimal amount 

of 3H-Thymidine is lost from the coverslips under the same temperature 



Figure 111:39. Melting of DNA-DNA or cRNADNA 

hybrids from cells on coverslips.Cells, 

either labelled with 3H-Thymidine or 

hybridised with mouse satellite cRNA 

at 25 ° C in 3xSSC 50%FA,were exposed to 

temperature increments in a IxSSC 30%FA 

solution and the radioactivity released 

measured by TCA precipitation and 

cou1iting in Toluene-based scintillation 

fluid.The Tm at which 50% of the 

radioactivity was released corresponds to 

54
0 C( 3llThymidine) or 37 0 C( 311-cRNA). 

3 	 3 x-x HThymidine; 0 - 0 H-cRNA. 
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Figure 111:40. Hybridisation of satellite 

cRNA to cells fixed onto coverslips. Satellite 

cRNA(S.A. 1.4xIO 7 cpm/ug;3xIO 2 ugX in 3xSSC 50% 

PA was hybridised to cells(5x10 4 /coversliP) fixed 

in 3:1 methanol:acetic acid.Temperature of 

incubation:25 0 C.RadioaCtiVitY was monitored by 

direct scintillation countingi.e. counting 

the slips after post-in situ treatment(See 

Materials and Nethods,pg. 5 	).in Toluene 

-based scintillation fluid. 

x-x Mouse satellite. cRNA hybridised to mouse 

embryo cells;o-o Human satellite III cRNA 

hybridised to mouse embryo cells;O-O mouse 

satellite cRNA hybridised to human 1-lela cells. 
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conditions (also Figure 111:39) but there is the possibility that 

the Tth of 72°C may be a minimal value. An estimate of the efficiency 

of in situ hybridisation can now be obtained from the saturation value 

as shown in Figure 111:40. 	This is calculated as follows. 	The 

number of cells fixed to the coverslip is 5 x 10 and since the amount 

of DNA per nucleus is in the range of 6 x 10 6  g the amount of DNA 

1 
per coverslip is therefore approximately 3 x 10 p.g. The percentage 

of the mouse genome that comprises the light satellite DNA is 1076 

(Table 111:13; also Waring and Britten, 1966) thus the amount of 

satellite DNA per coverslip is approximately 3 x 10 fig. 	The 

specific activity of the mouse satellite cRNA is 1.4 x 10 7cpm/.g, 

and allowing for mainly single )NA strand hybridisation (Figure 111:22) 

the amount of cRNA bound per 1.5 x 10 2 1.g satellite would be 

2.1 x 1O5  cpm. 	The efficiency of the scintillation counter. is 10% 

a 
in this case (as determined by counting specific volumes of samples 

of 3H-ATP of known specific activity) giving a theoretical 

hybridisation value, at saturation, of 2.1 x 10 4  cpm/coverslip. 	The 

actual hybridisation value is around 9 x 102  cpm thus giving an 

efficiency of 4-5%. 

DISCUSSION 

The results of the experiments described above put the efficiency 

of in situ hybridisation at about 4-5%. Since this estimate is based 

on several assumptions it may be that this is a minimum value; For 

instance if the efficiency of the scintillation counting is actually 

lower than 10%, then the in situ hybridisation will be higher (actually 

3 
the results of experiments with H-uridine labelled cells do suggest 

it is about 10% (not shown)). Equally if the cRNA did not hybridise to 
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all the cells either because of insufficient excess or unavailability 

of some cells on the coverslip, the in situ estimate would be lower 

than it actually is. 	There have been other attempts to estimate the 

efficiency of in situ hybridisation. 	For instance, Jones (1970) 

hybridising mouse satellite DNA to the centromeric satellite on mouse 

chromosomes estimated about 10%; Steffensen and Wimber (1970) 

calculated the efficiency of hybridisation to the chromosomal 5S genes 

in Dipteran polytene chromosomes to be between 3-6%; and Jones, Bishop 

and Brito-da-Cunha (1973), analysing the complex formation between 

polyU and chromosomal bands of the polytene chromosomes of 

Rhynchosciara, suggested about 5-6% efficiency. 	7% was calculated 

for the hybridisation of ribosomal RNA to the cap region of the 

Xenopus oocyte (Jones, 1973); and a lower value of 1-2% was calculated 

for the hybridisation of short-pulse-labelled RNA to Hela cell nuclei 

(John et al., 1969). 	Recently, Szabo et al. (1975) have suggested 

about 1% efficiency even under optimal conditions. All these estimates 

therefore fall into the range of 1-10% and are therefore in agreement 

with the 4-5% estimate derived here. The particular value of the 

method of estimation applied here is that at no stage is there an 

autoradiographiC efficiency estimate which needs to be taken into 

account. 	In contrast, all other in situ hybridisation efficiency 

estimates have relied on assuming an autoradiographic efficiency 

estimate of 10% (e.g. Jones, 1970). 	This is an assumption, of course, 

since autoradiographic efficiency depends on a variety of factors 

including the thickness of the emulsion, the section or cell thickness, 

the choice of isotope, and various emulsion factors (Rogers, 1969). 

For tritium and a maximum section thickness of less than 5p the auto- 
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radiographic efficiency is around 10-15%. The results presented here, 

however, suggest that the autoradiographic efficiency estimate is 

reasonable. 

Another important feature of the method of estimation described 

here is the fact that the identity of the cRNA-DNA hybrids can be 

examined. Thus the mouse satellite cRNA-DNA hybrids formed at the 

cellular level possess similar thermal melting characteristics as those 

formed in RNA excess experiments (see Figure 111:39; and Table 111:13). 

The ability to do this may have important applications for other 

in situ hybridisation experiments.. 

However;, it does remain that the efficiency of in situ hybridisation 

is relatively low. This may reflect the fact that in situ hybridisation 

reactions may not go to completion, the rate also appearing to be 

slower than conventional hybridisation reactions (see discussion on 

pg. 101 
 ). 	

Consistent with this suggestion is the fact that the 

hybridisation of mouse satellite cRNA to cells fixed onto coverslips 

also seems rather slow (see Figure 111:40). 	Recently, Szabo et al. 

(1975) also report that for some RNA species the rate of in situ, 

hybridisation also appears to be slower than conventional hybridisation. 

Clearly, the finding that the efficiency is low, together with 

the faôt that in situ hybridisation can underestimate the amount of ,  

potential annealing of nucleic acid sequences if the results of con-

ventional RNA excess hybridisation experiments are not considered (see 

Section B), indicates that for optimal resolving power the cytological 

hybridisation procedure should be carried out with RNA excess 

hybridisation data in mind. 
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The findings in this section are utilised in the designing of 

in situ hybridisation reactions involving Adenovirus cRNAs and are 

also considered in the light of interpretation of such experiments. 
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SECTION V 

DETECTION OF VIRUS DNA SEQUENCES IN ADENOVIRUS-INFECTED, TRANSFORMED 

AND TUMOUR CELLS 

RESULTS 

1. cRNA excess hybridisation 

cRNAs to Adenovirus 2, 7 and 12 DNAs were hybridised to Adeno-

virus transformed and tumour DNAs in conditions of cRNA excess, and 

under incubation conditions that were optimum for individual cRNA-

homologous DNA reactions (see Section III, this Chapter). 	The reac- 

tions were terminated after several t*s for individual cRNAs, which 

is a reasonable measure of hybridisation time since the amount of 

complementary DNA on the membrane filters does not affect the rate 

of the base-pairing (Birnstiel et al., 1972). 	Saturation values were 

obtained for each hybridisation reaction together with control values 

obtained by hybridising Adenovirus cRNAs to rat DNA, mouse DNA, human 

DNA, and bacterial DNAs. 

The results are shown in Table 111:14. Except for two cases of 

Adenovirus 2 tumours, the saturation values for transformed DNAs and 

tumour DNAs are not consistently above the levels of heterologous 

controls. 	This suggests that in these cases Adenovirus DNA sequences 

are-present only a few times per individual cell. Adenovirus DNA is 

nevertheless present in Adenovirus transformed cells and tumours since, 

for example, Adenovirus-specific antigens exist (Gallimore, 1972; 

Freeman et al, 1967; Green, 1970). 	The failure to detect them may 

therefore be due to limitations set by the RNA excess hybridisation 

technique (see Section III). 
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Although the amount of cRNA hybridising to a given amoung of 

complementary virus DNA can be calculated on the basis of saturation 

values (see Section III), a reconstruction experiment was performed. 

A known amount of virus DNA was loaded onto membrane filters together 

with heterologous carrier DNA (M. luteus) and the DNA challenged 

with the homologous virus cRNA. The result is shown in Figure III:41a. 

The analytical complexity of Adenovirus DNA is around 25 x 10 6  

daltons (Green, 1970) and the analytical complexity of the haploid 

genome of the rat is 1.8 x 1012  (Steele, 1968). 	From the specific 

activity of the virus cRNAs (1.7 x 10 
7
cpm4tg) it can therefore be 

calculated that for 10 5p.g of virus DNA/i tg transformed or tumour DNA, 

approximately 50-80 cpm hybridised would be expected. 	Figure III:41a 

shows, on extrapolation, that the actual hybridisation value is less than 

this. 	This low value can be increased by increasing the amount of 

DNA loaded onto individual membrane filters. 	Because of loading 

difficulties, however, 20tg of DNA represents an upper limit. 	For 

20g of transformed or tumour DNA there would theoretically he approx-

imately 200-300 cpm/f lIter for 1 complete copy of Adenovirus DNA per 

diploid quantity of host DNA. 	The background levels of radioactivity 

are around this value (Figure III:41b; Table 111:14). 	In fact, about 

two-three complete copies of the virus genome per diploid quantity of 

host DNA could actually be detected with reasonable confidence. 	If 

the transformed or tumour DNA possessed less than this amount of DNA 

sequences complementary to the cRNA then they would likely to undetected. 

The situation is further complicated by the fact that only selec-

tive regions of the Adenovirus templates appear to be transcribed 

in vitro. 	Since RNA excess hybridisation is directly influenced by the 



Table 111:14. 

DNA(20g) CRNA 

a 
cpm/hybridlsed 
(T.OPT. for each 

Reaction, 6xSSC 30% FA, 
several t.$) 

Estimated virus DNA copies 	
12 

(calculated 	assuming 1.8x10 	d 
for haploid rat DNA and 

25x106d for Ad DNA) 

Ad2/REB/50p/Bl Ad2 292 S 	. 	2 
Ad2/REI3/lOp/Bl Ad2 276 . 	< 2 
Ad2/T4 Ad2 300 < 2 
Ad2/T5 Ad2 830 2-3 
Ad2/T6 Ad2 900 3-4 
Ad7/1 Ad? 295 < 2 
Ad12/Tl Ad12 347 < 2 
Rat Ad2 280 
Rat Ad7 380 
Rat Ad12 351 
Mouse Ad2 300 
Mouse Ad12 256 
Human Ad? 

5 	
343 

Human Ad2 370 
Human Ad12 253 
E. coil Ad2 219 
E. coli Ad12 306 . 
E. coil Ad7 256 
E. coil Ad? 256 

a Average of four experiments 



Figure 111:41. a) Hybridisation of Adenovirus 

12 cRNA with increasing amounts of Adenovirus 

12 DNA. Conditions of hybridisation:6xSSC 30 

FA,50
0 C,several ts.IO :1 cRNA:DNA.cRNA 1.7 

xlO 7 cpm/ug.b) Hybr idisation of normal rat 

DNA with Adenovirus 12 cRNA.Conditions as 

for a).Background cpm. for M.L°uteus DNA 

alone have been subtracted. 
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largest concentration of RNA sequences in the reaction (Bishop, 1972; 

Section III, this Chapter) it is clear that Adenovirus-specific DNA 

sequences would go undetected if they were not complementary to the 

greater proportion of RNA sequences in the cRNAs. 	For instance, 

cells could contain multiple copies of virus DNA sequences which are 

under-represented in the cRNAs and also contain less than three copies 

of sequences complementary to the greater proportion of the sequences 

in the cRNA. 	In this case, virus DNA would be present but would be 

undetectable. 

Two Adenovirus 2 tumours, however, appear to react with 

Adenovirus 2 cRNA. One of them (Ad 2/T6) was analysed further. 

DNA was centrifuged in a neutral CsC1 gradient and fractions 

hybridised with Adenovirus2 or 12 cRNA. There was no hybridisation 

with 12 cRNA but 2 cRNA reacted (Figure 111:42). 	A peak of radio- 

activity is observed at a buoyant density position of 1.706 gm/cm
-3 

, 

corresponding to a GC content of 43% (Sueoka et -al., 1968). The 

buoyant density of Adenovirus 2 DNA is 1.716gm/cm 3  (Section I, this 

Chapter; also see. Green, 1970) so that hybridisation cannot be to 

complete isolated virus DNA molecules. Adenovirus 2 cRNA was also 

hybridised across a CsC1 gradient containing M. luteus DNA, rat DNA, 

and a trace amount of Adenovirus 2 DNA (Figure 111:43). The cRNA 

hybridises to DNA sequences possessing a buoyant density of 1.715-

1.716gm/cm 3  which is the buoyant density of Adenovirus 2 DNA. 

Hybridisation in Figure 111:42 therefore represents annealing 

of cRNA to either incomplete copies of Adenovirus genomes, or to 

regions of Adenovirus DNA which have become integrated into the rat 

DNA. These regions must at least correspond to those selectively 

transcribed in vitro by the E. coli RNA polymerase. 



Figurelll:42. Hybridisation of Adenovirus 

2 cRNA to Adenovirus 2 tumour DNA(Ad2/T6). 

cRNA(S.A. I.7xIO 7 cpm/ug) in 10:1 excess over 

DNA sequences(theoretical);6xSSC 30%FA, 

several ts,50
0 C.Peak of radioactivity 

corresponds to buoyant density of 

3  1.705-1.706gm/cm. 
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Figure 111:43. Hybridisation of Adenovirus 

2cRNA to CsC1 gradient containing normal rat 

DNA and Adenovirus 2 DNA.M.luteus DNAincluded 

as a density marker(I.731gm/cm 3 ).Radioactivity 

is concentrated over fractions with buoyant 

density of 1.715-1.716 gm/cm 3which is the 

buoyant density of Adenovirus 2 DNA in 

neutral CsC1(see Table III: I).Conditions 

of hybridisation as for Figure 111:42. 
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The amount of virus DNA in this particular tumour DNA can be 

roughly assessed from the saturation value (Table.III:14). 	About 

3-4 copies of virus DNA sequences which are complementary to the cRNA 

are present. This may be a minimum estimate of total virus DNA 

sequences, however, since there may be sequences present which are 

not complementary to the greater proportion of the RNA sequences in 

the cRNA. 

In the case of the Adenovirus 2 tumour (Ad2/T5) there are 

approximately 2-3 copies of virus DNA sequences complementary to the 

virus cRNA (also Table 111:14). 

2. 	DNA excess hybridisation 

A DNA excess ratio of approximately 100:1 was calculated. 

Hybridisation was carried out at 65 °C in 2 x SSC over a wide range of 

Cot values up to 10. DNA was at a concentration of 10mg/mi and cRNA at 

10 3 i.g/ml (1.7 x 107cpm/.g). 	The results are shown in Table 111:15. 

The transformed DNAs are negative. One Adenovirus 2 tumour DNA 

(Ad2/T5) is positive. 	(The Ad2/T6 tumour was not analysed by the DNA 

excess method because there was not sufficient DNA.) 

cRNA transcribed from a total DNA template (rat) hybridises to 

its template DNA to about 50% while the Ad2/T5 tumour DNA hybridises 

to Adenovirus 2 cRNA to about 40% (Figure III:44;Table 111:15). 

Failure to achieve full hybridisation, even when expected (Figure III: 

44) may be due to not sufficient DNA excess, breakdown of the cRNA 

over prolonged incubation times (Bishop, 1972a; Campo, 1973) or RNase 

sensitivity of the hybrids (Bishop, 1972b). 	For this reason it 

cannot be accurately judged whether incomplete hybridisation to the 

tumour DNA represents inherent limitations on the technique, or the 

fact that some cRNA sequences are not represented in the virus DNA. 
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in the tumour. 	If a small percentage of the cRNA sequences do 

represent all the Adenovirus 2 genome as suggested by Pettersson 

et al. (1974), failure to achieve full 100% hybridisation could be 

due to the fact that some virus DNA sequences are missing in the 

tumour DNA. The actual amount of the virus DNA sequences comple-

mentary to the cRNA can be roughly assessed from the Cot-!for the 

hybridisation reaction. The frequency(F) of these DNA sequences 

is calculated from the formula 

Cot- hybridisationE coli cRNA (standard) 
F 	2 	 c(Ad2/T5 tumour  =  

Cot 	
C(E. coli) lhybridisation 	

(Ad2/T5)  

where C = analytical complexity of haploid DNA (Bishop, 1972a; 

Melli et al., 1971). 

Thus 

F 	
15.9(Melli et al., 1971) 	 1.8 x 10 12 
Cot. hybridisation Tumour (Ad2/T5) x 2.7 x 109 . 

The Cot -  hybridisation for Ad2/T5 DNA-Adenovirus 2 cRNA is 

6.6 x 1O3  (Figure 111:44). 	Therefore F = 2-3 for Adenovirus 2 DNA 

in the Ad2/T5 tumour. Thus DNA excess hybridisation gives 2-3 copies 

of virus DNA complementary to the Adenovirus 2 cRNA. 

3. 	In situ hybridisation 

Using cRNAs to Adenovirus DNAs, in situ hybridisation experiments 

were performed with Adenovirus transformed cells, Adenovirus and 

Adenovirus transformed cell-induced tumours, Adenovirus infected cells 

and cells devoid of Adenovirus DNA. 

The results of Section IV demonstrated that it is best to perform 

an in situ localisation experiment at the optimal conditions of 

hybridisation for the particular RNA. 	These optimal hybridisation 



Figure 111:44. Hybridisation of cRNA to 

total DNA in DNA excess.65 
0 C in 2xSSC. 

DNA:IOmg/ml. cRNA at IOug/ml.(S.A. 

I. 7xIO 7 cpm/ug) 

0 - 0 rat cRNA transcribed from a total 

rat DNA template(E.coli RNA polymerase) 

hybridised to total normal rat DNA(liver). 

x--x Adenovirus 2 cRNA hybridised to 

Adenovitus 2 tumour DNA(Ad2/T5). 
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Table 111:15 

DNA* cFtNA **%RNase_resjgtance at Cot 10 

Ad2/RED/50p/B1 Ad2 < 5 

Ad2/REB/1Op/Bl Ad2 5 

Ad2/T4 Ad2 5 

Ad2/T5 Ad2 39 

Ad2/T6 Ad  nd 

Ad7/1 Ad7 5 

Ad12/Tl Ad12 c 
Rat Ad2 

Rat Ad12 < 5  

Rat Ad7 '_5 

Rat Total Rat 50 

* DNA excess of approximately 100:1 (calculated virus DNA sequences) 

** %RNase-resistance for cRNA-cRNA annealing subtracted [see Table 111:61 



conditions for Adenovirus cRNAs have been studied in Section III. 

The in situ hybridisation experiments described below were there-

fore conducted with these considerations in mind. 

a) 	Permissive cells. 

HEK cells are permissive for the replication of Adenovirus DNA 

and the subsequent production of virus particles-(e.g. Ledinko and 

Fong, 1969; Zur Hausen, 1967; McDougall, 1971). Hela cells are 

also permissive for the replication of Adenovirus. Adenovirus 12 

replication was studied in HEK cells; Adenovirus 2 replication was 

studied in HEK cells and Hela cells. 

1. HEK cells were infected at multiplicities of lOOpfu/cell with 

Adenovirus 12. At 48 hours post-infection the cells were hybridised 

with Adenovirus 12 cRNA, Adenovirus 2 cRNA and Adenovirus 7 cRNA. 

In the case of the homologous reaction there are pools of grains which 

are restricted to the nuclei of the cells (Figure 111:45). 	The 

stage of replication of virus DNA in different nuclei is variable, 

suggesting asynchrony in initiation of replication or rate of 

replication. This may be due to asynchrony in virus penetration, or 

asynchrony in some cell-mediated function. 

Grain pools in Adenovirus 12 infected HEK cells have also been 

detected by McDougall et al (1972) and Dunn et al., (1973). 	Similar 

pools have also been observed by Watkins (1973) who, using in situ 

hybridisation with SV40 cRNA, showed there was a focal distribution 

of SV40 replicating DNA within the nuclei of a small percentage of baby 

rabbit kidney cells transformed with SV40 virus. 

Hybridisation of Adenovirus 2 or 7 cRNA to Adenovirus 12 infected 

cells was negative. 	In view of the fact that infected cells possess 
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Figure III:4c. In situ hybridisation 

of Adenovirus 12 cRNA and Adenovirus 

12-infected HEK nuclei.Cells were 

originally infected at IOOpfu/cell 

and haruested at 48 hours post 

-infection when nuclear preparations 

were made.Condiiions of hybridisation 

:65 0 C in 2xSSC;O.Iug cRNA/4u1;16 hours. 

S.A. of cRNAI.7 xlO 7 cpm/ug.Exposure 

time:4 weeks(Ilford K2 emulsion). 

Pools of grains represent pools of 

replicating virus DNA. 
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a great number of virus particles at 48 hours post-infection and a 

large amount of excess virus DNA which appears to remain unassembled 

into virus particles (Green etal., 1970), together with the finding 

that i'denovjrus 12 DNA shares 20-24% of its base-sequences with 

Adenovirus 2 DNA and lo-25% with Adenovirus 7 DNA (Green, 1970), the 

lack of cross-hybridisation seems unexpected. However, Adenovirus 

cRNAs are selectively transcribed from their template DNAs (Section III, 

Chapter III, this Thesis; Green and Hodap, 1972; Dunn et al., 1973; 

Pettersson et al., 1974) in such a manner that the greater proportion 

of the cRNA sequences are not common to different serotypes. Thus 

the lack of cross-hybridisation at the cytological level is explicable. 

intranuclear inclusions are a general feature of Adenovirus 

infected cells (Ginsberg and Dingle, 1965). 	For example they appear 

regularly in Adenovirus-infected human cells (Boyer et al., 1959; 

Morgan et al., 1957; Phillips and Raskas, 1972), and in canine cells 

Infected with Canine Adenovirus (Yamamoto and Shahrabadi, 1971; 

Shahrabadi et al., 1972). 	Their significance is not totally under- 

stood although histochemical and autoradiographical studies have shown 

that they are composed of DNA, protein and RNA (Yamamoto and Shahrabadi, 

1971). 	Subsequent studies on the nature of the inclusion-associated 

DNA has demonstrated it to be virus-specific (Shahrabadi et al., 1972). 

Similar nuclear inclusions appear to be the cytological site of virus 

DNA replication in SV40 transformed cells which are semi-permissive for 

the virus (Watkins, 1973). 	For Adenovirus-infected cells this also may 

be the case since previous suggestions that the viral DNA is initially 

synthesised near the cell membrane appear to have been refuted (Simmons 

etal., 1974). 	An example of the intra-nuclear inclusions induced by 
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Figure 111:46. Intranuclear inclusions 

in Adenovirus 12 -infected HER cells. 

REK cells have been infected at 100 

pfu/cell with purified Adenovirus 12 

and harvested 48 hours post-infection. 

Stained with Giemsa(pH 6.8) for 5mins. 

at room temperature(240C). 
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Adenovirus 12 in human embryonic kidney cells is shown in Figure III: 

46. As virus replication proceeds in these cells the inclusions 

become characteristically shaped within the nucleus. The varying 

degree of morphology of these inclusions clearly follows the pattern 

of grain pools seen in the infected cells hybridised with Adenovirus 

12 cRNA. The pattern of viral DNA synthesis and the formation of 

the intranuclear inclusions are therefore similar in their nuclear 

distributions. 	This suggests that the giemsa-staining inclusions 

are directly involved with the replication of the viral DNA. 	Whether 

viral DNA synthesis is initiated within these regions is not known. 

2. HEK cells were infected with Adenovirus 2 at a m.o.i. of 

lOOpfu/cell and the cells harvested at 50 hours post-infection. 	Hela 

cells were infected with Adenovirus 2 at a m.o.i. of 5pfu/cell and the 

cells harvested 50 hours post-infection. 	In addition, Hela cells 

were also infected with Adenovirus 5 at a m.o.i. of 50pfu/cell and 

the cells harvested 50 hours post-infection. 	(Adenovirus 5 was a gift 

from Dr. J. Williams, Virology, Glasgow.) 	Hybridisation with 

Adenovirus 2 cRNA is positive (Figure 111:47), with Adenoirus 12 or 

7 cRNAs it was negative (not shown). 	Grains are present throughout 

individual nuclei of either.Adenovirus 2 or 5-infected cells. 	Some 

cells were devoid of grains which suggests that virus DNA is either 

not replicating or is not present in these cells. These cells may 

not have been originally infected. 

What is particularly interesting, however, is that the pattern 

of virus DNA replication, both in the Adenovirus 2-infected HEN and 

Hela cells, appears to be different from the pattern found for 

Adenovirus 12-infected cells (c.f. Figure 111:45). 	Although there 

are grains distributed over the entire nucleus, frequently they are 

localised to nuclear areas (Figure 111:48) which are clearly discrete 



Figure 111:47. In situ hybridisation 

of Adenovirus 2 cRNA to Adenovirus 2 

and 5-infected Hela cells.Infected 

cells were harvested at 50hours post-

infection(see text for detaiis)and 

challenged with Adenovirus 2cRNA(S.Ao 

1.7 xlO 7 cpm/ug) at 65 0 C for I6hours 

in 2xSSC.cRNAO.OIug/4u1.Exposure 

time 8weeks.(K2 emulsion). 

a) and b) Adenovirus 2-infected 

Hela cells c)Adenovirus 5-infected 

Hela cells. Note dispersion of 

grains and frequent grain 

localisation to regions within 

individual nuclei. 
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and distinct since they stain differently to the rest of the nucleus 

with either GLemsa (Figure 1II:48.also) or with Methyl Green Pyronin 

(not shown). . In some cells there are several areas or "bodies" 

which either surround or are contained within the nucleus. Further-

more, these differently-Staining "bodies" appear to disperse around 

the periphery of certain nuclei and grains are then associated with. 

the ruclear membrane (see Figure III:48d for example). The pattern 

of replication is clearly different from Adenovirus 12-infected cells. 

Adenovirus 5-infected Hela cells possess grains when hybridised 

with AdenoviruS 2 cRNA (Figure 111:47). The presence of Adenovirus 5 

particles was determined by Electron Microscopy (Figure 111:49): 

they clearly exist in the infected cells. 	Adenovirus 2 cRNA is 

therefore capable of hybridising with Adenovirus 5 DNA at the 

cytological level. Both these DNAs share considerable DNA-DNA 

homology, extending to 95% (Green, 1979). Moreover Adenovirus 2 

cRNA hybridises with Adenovirus 5 DNA immobilised on membrane filters 

(Dunn, personal communication). 

Again, however, what is particularly interesting is the finding 

that the pattern of AdenoviruS 5 DNA replication, as monitored by 

AdenoviruS 2 cRNA hybridisation, is unlike Adenovirus 12 replication 

but like Adenovirus 2 replication (c.f. Figures 111:45; and 111:47). 

Since Adenovirus 2 and 5 are more closely related to each other (they 

share the same subgroup) than to Adenovirus 12, and since the pattern 

of replication does not appear to be attributable to different 

cellular affects (Hela and HEK are similar), there is a strong 

possibility that the difference in virus DNA replication reflects 

a difference between AdenovirUs 12 and Adenovirus 2 or 5. 



Figure 111:48. In situ hybridisation of 

Adenovirus 2 cRNA to Adenovirus 2-infected 

HEK cells.Conditions of hybridisation same 

as for Figure III:47.In a considerable 

number of cases hybridisation is 

predominantly to "bodies" outside or 

within individual nuclei.(see a) and b)). 

Moreover in some cells hybridisation 

occurs mainly around the periphery of 

the nucleus(see arrow in d)),most 

likely reflecting the break up of 

the "bodies" and release of virus. 

In the colour photograph grains 

appear brown as a result of both 

overdevelopment and not enough 

post-fixation washing of the 

autoradiograph and the sensitivity 

of the colour film emulsion to 

red light. 
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Figure 111:49 also shows that at the E.M. level, virus is frequently 

concentrated in regions of the nucleus which appear to be "budding" 

off. 	These regions most probably correspond to the "bodies" 

detected at the L.M. level. 

Whatever the significance of the above results are, they clearly 

show that virus-specific DNA sequences can be detected at the single 

cell level. The same approach,was therefore adopted for Adenovirus 

transformed or tumour cells. 

Transformed cells. 

Adenovirus 2 and 7 transformed cells were examined for the 

presence of. virus DNA. 	Table 111:16 and Figure 111:50 demonstrate 

that the numbers of gains present over these cells are low. 	Control 

cells derived from mouse, normal rat, human and toad (Xenopus laevis) 

tissue all possess similar amounts of grains. 	In other experiments 

no grains were observed for either the transformed cells or the control 

cells. Additionally, autoradiographs exposed for periods of six 

months to a year still did not show an increased number of grains in 

the transformed cells compared to the control cells (not shown). 

Tumours. 

Newborn Hooded Lister rats were inoculated either with purified 

Adenovirus or with Adenovirus transformed cells. 	In most cases, the 

rats were previously immunosuppressed (Gallimore, 197:2). 	Frozen 

sections and in vitro established cell lines were prepared as 

described in Materials and Methods. 

Table 111:16 summarises the results of in situ hybridisation with 

tumour cell lines: and Figure 111:51 shows a typical in situ hybrid-

isation to a frozen section. This frozen section was derived from 



Figure 111:49. E.M. sections of 

Adenovirus 5-infected Hela cells. 

Infected cells were prepared for 

E.M.sectioning as described 

routinely(GMA embedding) .Thin 

sections (silver interference 

colour:800-I000 . thick) were 

cut on a Poster Blum Ultra-

inicrotome NK.2,stained doubly 

with Uranyl acetate and Lead 

Citrate,and examined in 

an AEI EM6.electron microscope 

with a double condenser. 

E.M. section of a cell 

which contains a peculiar 

inclusion(i) common only 

to virus-infected cells. 

Virus-like particles are 

evident in an area of the 

nucleus which is delineated 

by the marginated chromatin 

(m.c.) which is also a 

feature of virus-infected cells.. 

Electrom micrograph showing 

newly-formed viruses in what 

appears to be a fold of the 

nuclear envelope(e).These 

constrictions are common to 

Adenovirus 5-infected cells 

and may correspond to the 

"bodies" seen at the L.M..level 

(see Figure 111:48 and 46).c) 

Also note the marginated chromatin 

(m,c.) and one particular virus 

particle which possesses the 

characteristic nucleoid and 

capsid(v). 
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Figure III:5o.  In situ hybridisation 

of Adenovirus cRNAs to Adenovirus transformed 

cell chromosomes.Conditions of hybridisation: 

cRNA at O.OIug/4u1,2xSSC;I6hours at 65 ° C. 

S.A. of cRNA 1.7 xlO 7 cprn/ug. a) Adenovirus 

7 transformed hamster chromosomes(Ad7/I) 

challenged with Adenovirus 7 cRNA;b)Adenovirus 

2 transformed rat cell chromosomes(Ad2/REB/IOp/BI) 

challenged with Adenovirus 2 cRNA;c) Adenovirus 

7 transformed hamster cell chromosomes(Ad7/I) 

challenged with Adenovitus 7 cRNA. 

Exposure times:a and b) 2 months.c)6 months. 

There are few grains.Even after 6 months 

exposure,grains are not associated in any 

specific way.Also note marker chromosome 

in Ad2/REB/IOp/BI line(arrow). 
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the Adenovirus 2 tumour-Ad2/T5-which was induced by inoculating 

Adenovirus 2 transformed cells, originally infected at 50pfu/cell, 

into newborn rats (see Materials pg.3 ). 	It did not show any 

autoradiographic grains after in situ hybridisation with either 

Adenovirus 12 or 7 cRNAs (not shown). 	These results therefore 

suggest that hybridisation with Adenovirus 2 cRNA to this tumour 

section results in specific detection of Adenovirus 2 DNA at the 

cytological level. Another Adenovirus 2 tumour (Ad2/T4) did not 

possess any grains on in situ hybridisation with Adenovirus 2, 12 or 

7 cRNAs (not shown). 	It therefore resembles the transformed cell 

line (Ad2/REB/lOp/Bi) used to produce it in vivo in that there does 

not appear to be any hybridisation of virus DNA and cRNA at the 

cytological level. 	The Adenovirus 12 induced tumour does not 

possess a higher number of grains than control cells (Table 111:16). 

These findings suggest that different tumours possess different 

amounts of Adenovirus DNA. There may be an alternative explanation 

however. RNA can anneal to complementary single-strand RNA molecules. 

For example, the denatured strands of phage MS2 or QB can reanneal and 

form well-matched double stranded RNA (Friedrich and Feix, 1972). 

RNA-RNA annealing also forms the basis of the measure of self-comple-- 

mentarity of cRNA preparations (Bishop, 1972a; Section III, this Chapter 

of this Thesis). 

Adenovirus cRNAs would be capable of self-annealing to in vivo 

Adenovirus-specific RNA if, either the cRNAs were largely symmetrically 

transcribed in vitro or if the in vivo virus RNA was largely symmetrically 

transcribed. 	The cRNA is mainly asymmetrically transcribed (Section 

III, this Chapter; also Pettersson et al., 1974). 	There is evidence, 

however, which suggests that a large percentage of virus-specific RNA 



Table 111:16 

Cell 
b 

cRNA 
c 

average grain counts/nucleus or metaphase spread 

Ad2/REB/lOp/Bi Ad2 2 

Ad2/REB/50p/Bi Ad2 4 

Ad7/Ti Ad7 3 

Ad2/T4 Ad2 3 

Ad2/T5 Ad2 15 

Ad2/T6 Ad2 nd 

Ad 12/T1 Ad12 4 

Ad2/T5 Ad2 3 

rat Ad2,7,12 2 

mouse Ad2,7,12 2 

human Ad2,7,12 3 

toad Ad2,7,12 2 

a Denatured with 0.2N HC1 and RNased (20pg/m1 for 60 mins. at room T °C) 
prior to in situ hybridisation with Adenovirus 2 cRNA. 

b S.A. 1.7 x 107cpm4tg; 0.01g/4t1 2 x SSC; 16 hours at 65°C. 

C Average of 50 nuclei or metaphase spreads: 8 weeks exposure. 



Figure III:5 1 . Hybridisation of 

Adenovirus 2 cRNA to Adenovirus 2 

tumour section(Ad2/T5) insitu.a) 

Tumour was denatured with 0.2N HC1 

and challenged with Adenovirus 2 

cRNA as described in the Legend to 

Figure III50. 

Exposure time:8 weeks. 

h)Cells in centre of tumour section 

possess very few grains in comparison 

to cells over remainder of tumour. 

Also see Figures IV: 9 and 10 of 

Chapter IV which demonstrate that 

the centre of Adenovirus tumours 

are frequently necrotic and 

little RNA is present. 
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in transformed cells té originally transcribed'from both virus DNA 

strands (Green and Landgraf-Leurs, 1973; Sambrook et al., 1973; 

Ozanne et al., 1973; Khoury et al., 1972). 	Such RNA resembles the 

completely symmetric transcription of virus-specific sequences in 

some SV40-infected cells (Aloni, 1972; Fried, 1972) and polyoma-

infected mouse kidney cells (Aloni and Locker, 1973). 

To test whether Adenovirus tumour cells could have some in vivo 

RNA which could hybridise to Adenovirus cRNAs, two experiments were 

performed. First of all, sections of the Ad2/T5 tumour were 

denatured and then RNased prior to in situ hybridisation with 

Adenovirus 2 cRNA; secondly, nuclear RNA was prepared and hybridised 

to Adenovirus 2 cRNA. 

In the first experiment grain numbers were reduced in comparison 

to non-pre-RNased sections: (Table 111:16); in the second experiment 

there is about 10% RNase-resistance in Adenovirus 2 cRNA-Ad2/T5 

nuclear RNA combinations but only 3% in Adenovirus 2 cRNA-normal rat 

cell combinations (Table 111:17). 	Both of these experiments there- 

fore suggest that some of the autoradiographic grains present in some 

tumours may represent cRNA-in vivo RNA hybrids. 

GENERAL CONCLUSIONS.  

The main conclusions arising from this Chapter, and in particular 

this Section V, are as follows: 

1. Using cRNAs to detect Adeno'rirus DNA in transformed or tumour 

cells presents difficulties, stemming mainly from the fact that 

Adenovirus cRNAs are selectively transcribed. 	This selective 

transcription means that only those sequences which are complementary 

to the najor proportion of sequences in the cRNAs will have any 



Table 111:17 

Nuclear RNA (lOpg) 
a 
cRNA 

b 
%FtNase-resistance 

Ad2/T5 Ad2 907 

Normal rat liver Ad2 2.8 

Ad2/T5 Ad7 2.6 

Normal rat liver Ad7 2.4 

a S.A. 1.7 x 1O 7  cpm; O.Ol.tg in 2 x SSC; 65 °C; 16 hours annealing. 

b cRNA-cRNA annealing deducted (see Table 111:6) 



' I2i 

chance of being detected by RNA excess or in situ hybridisation. 

This inturn means that it is difficult to assess the role of virus 

DNA in transformation or tumourogenesis on the basis of such cRNA-DNA 

hybridisation experiments. Given this, however, some direct conclusions 

can be made. 	These are as follows. 

By Adenovirus cRNA excess and. DNA excess hybridisation two 

AdenoviruS 2 tumours possess around 2-4 copies of virus DNA sequences 

complementary to the cRNAs. Another Adenovirus 2 tumour, one 

Adenovirus 12 tumour, and two independently-derived Adenovirus 2 

transformed rat cell lines and one Adenovirus 7 transformed hamster 

cell line possess less than two copies of virus DNA sequences comple-

mentary to the Adenovirus cRNAs. 	In all these cases, of course, 

virus DNA sequences may also be present which are not complementary 

to the major proportion of the cRNA sequences. 

Adenovirus DNA can be detected in single virus-infected cells 

by in situ hybridisation with Adenovirus cRNAs. 	It cannot, however, 

be detected in the transformed cell lines studied; neither can it 

be detected in the Adenovirus 12 tumour or one Adenovirus 2 tumour. 

Grains present over another Adenovirus 2 tumour after in situ hybrid-

isation with AdenoviruS 2 cRNA are unlikely to be virus cRNA-virus 

DNA hybrids: first, DNA sequences complementary to the cRNA are in 

very few numbers as judged by cRNA excess hybridisation experiments 

(2-3 copies), and second, there is some evidence for in vivo virus 

RNA-cRNA annealing occurring in this case. 

AdenoviruS DNA in Adenovirus transformed or tumour cells may 

exist as incomplete genorne copies and/or may be integrated into the 

host DNA. 	These conclusions are discussed below. 
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DISCUSSION 

1. Use of Adenovirus cRNAs to estimate virus DNA amounts in 

eukaryote cells 

There is little doubt that virus DNA persists in Adenovirus 

transformed and tumour cells: virus-specific antigens exist 

(Freeman et al., 1967; Green, 1970; Gallimore, 1974); virus-specific 

RNA is present in the nucleus (Shimada et al., 1972; Green et al., 

1970; Wall et al., 1973; Tsueietal., 1972) and the cytoplasm 

(Fujinaga and Green, 1966; 1967; 1968; this Thesis, Chapter IV); 

and virus-specific sequences are present in DNA isolated from trans-

formed and tumour cells (Green, 1970; Green et al., 1970; Pettersson 

and Sambrook, 1973). 	Primarily, however, there is the question of 

just how much virus DNA there is per cell. 

As mentioned previously (see Introduction and Table 1:1) estimates 

of virus DNA vary according to the method employed and the type of 

transformed cell or tumour cell. 	In general, cRNA-DNA hybridisation 

estimates, as opposed to virus DNA-DNA reassociation estimates, are 

higher, although this generalisation does not hold good in all cases: 

the amount of EBV genomes in a variety of human lymphoblastoid cell 

lines are always large, between 20-100 copies per diploid quantity of 

host DNA (Zur Hausen et al., 1972; Zu.r Hausen and Schulte-HoithaUSen, 

1970; Nonoyama and Pagano, 1971; Nonoyama and Pagano, 1973). 	In 

the case of "Raji" cells, a line derived from an African Burkitt's 

lymphoma, 50-52 EBV equivalents per cell were estimated by both virus 

DNA-DNA reassociation and cRN -DNA hybridisation. 

There are essentially three points which need to be explained. 

in some cases, do cRNA-DNA hybridisation and virus-DNA-DNA 
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reassociation estimates vary? Second, why, in some cases, do they 

not xary a great deal and finally, why are estimates obtained by 

AdenoviruS cRNA-DNA hybridisation low as described in this Thesis but 

high as described elsewhere (see Table 1:1). 

One feature of cRNA-DNA hybridisation suggests that this technique 

might give rise to overestimates. 

Virus gene equivalents tend to be estimated in conjunction with 

reconstruction experiments using pure virus. DNA and these experiments, 

which also ise membrane filters, can overestimate the amount of virus 

DNA sequences present in host DNA because completely homologous hybrids 

are lost from the filters.. This has been demonstrated by Haas et al. 

(1972) who showed that SV40;cRNA-SV40 DNA hybrids were not retained 

during the hybridisation procedure, but SV40 cRNA-transformed cell 

DNA hybrids were as long as the molecular length of the host DNA 

exceeded the molecular length of SV40. While this effect might be 

true for SV40 cRNA-DNA hybrids, it may not be true for other virus 

cRNA-DNA hybrids however. SV40 cRNA is transcribed asymmetrically 

from native superheliCal double stranded SV40 DNA (Westphal, 1970) and 

is complementary to all of the genome (LindstrOmafld Delbecco, 1972; 

Khoury and Martin, 1972). Other virus DNAs may be transcribed 

preferentially, selectively, or symmetrically. 	Certainly for 

Adenovirus cRNAs overestimation on the basis of selective loss from 

filters is unlikely to occur since these cRNAs are preferentially 

transcribed (Section 11:111). 	In support of this, estimates on the 

amount of virus DNA in transformed cells or tumour cells studied here 

are very low. Three AdenOvirUS transformed cell lines, for example, 

contain less than 2 copies of DNA sequences complementary to the 
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major sequences in the cRNAs. Selective homologous cRNA-DNA hybrid 

loss from filters may not occur with EBV cRNA-DNA hybrids either 

since cRNA-DNA hybridisation and virus DNA-DNA reassociation estimates 

are similar. 	This point, however, remains to be established. 

As pointed out above, overestimation on this basis requires that 

the transformed or tumour DNA be greater than the molecular length 

of the cRNA used. 	In this connection SV40 DNA is approximately 

30 times less in molecular weight than EBV DNA: 3 x 
10  

daltons as 

opposed to 1 x 108  (Green, 1970; Lindahi and Adams, 1975). 	There- 

fore the effect may be more pronounced for SV40 genome equivalent 

determination than for EBV determination since host DNA isolated for 

experimentation is usually in the region of 10 daltons in molecular 

weight. 

It is less clear why estimates for virus DNA in Adenovirus 

transformed or tumour DNA should be so different; low as described 

in this Thesis but reasonably high as described by other workers using 

cRNA-DNA hybridisation (see Green, 1970; Green et al., 1970). 

Many of the experiments in this Thesis have been devoted to 

showing that Adenovirus cRNAs do not represent a homogeneous popul-

ation of virus DNA transcripts (Section 11:111), a finding which 

has been corroborated by Pettersson et al. (1974); Green and Hodap, 

(1972 Dunn et al. , (1973 and McDougall et al., (1975). 	And it is 

clear that this could give rise to underestimates rather than over- 

estimates. 	Of course under-estimation could occur if the amount of 

potential hybrid formed was reduced. 	This situation - could arise if, 

for example, either hybridisation reactions were not taken to 

saturation or were carried out at supra-optimal temperatures (see 
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Section III). 	Decreased saturation, in turn, could be the result 

of insufficient RNA excess or short, incompJete hybridisation times 

of incubation. 	Under-estimation on this basis, however, is extremely 

unlikely to be a feature of Adenovirus cRNA-DNA estimation at the 

T.OPT. One is therefore left with the conlusion that either the 

estimates of Green (1970) and Green et al. (1970) are overestimates 

due perhaps to a variety of factors, or that the Adenovirus trans-

formed or tumour lines studied by these authors contain more virus 

DNA than those studied here. Factors which might contribute to 

overestimation in these cases could be background radioactivity which 

can be quite high (see Table 111:14 for example); overestimation of 

the analytical complexity of the host rat genome; or overestimation 

of the amount of transformed DNA immobilised on filters. 	Green et 

al. (1970) do use 10 13 daltons as the value for the analytical 

complexity of the ratgenome (diploid) in contrast to other estimates: 

of 3.6 x 10 12 (Steele, 1968) which would therefore lead to an over-

estimation of around 3 times, bringing their virus DNA estimates to 

around 3-13 copies per diploid quantity of host DNA. This is 

partially substantiated by the findings of Pettersson and Sambrook 

(1973), who using the same Adenovirus 2 transformed cell line (8617) 

as Green et al. (1970) and Green (1970) demonstrate close to one 

virus DNA copy per diploid quantity of host DNA, - by virus DNA-DNA 

reassociation (see Table 1:1). 

Much the same problem is encountered in estimates of virus DNA 

sequences by in situ hybridisation. The results presented in this 

Thesis suggest that no transformed cells studied here possess virus 

DNA sequences which are detectable at the cytological level. The 
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same can probably be said for the tumour cells studied since in the 

tumour which is positive by this technique, cRNA-in vivo RNA annealing 

exists. 	These findings are consistent with the results obtained by 

other conventional hybridisation techniques used here:namely, the 

maximum amount of virus DNA sequences which have been detectable are 

in the range of 2-4 copies complementary to the cRNAs (see. Table 

111:14, for example). 	But again, other workers have reported that 

Adenovirus DNA appears to be detectable at the cytological level. 

McDougall et al. (1972b) and Dunn et al. (1973), for example, using 

Adenovirus cRNA and Adenovirus 12-induced tumours, calculated approx-

imately 50-150 virus genomes per cell on the basis of autoradiographic 

grain counts after in situ hybridisation. They also reported specific 

detection of Adenovirus 2 DNA in certain Adenovirus transformed cells 

(Dunn et al., 1973). 	Loni and Green (1973) have also claimed that 

Adenovirus DNA sequences can be detected by in situ hybridisation. 

Their estimates were 2.7, 10.7, and 5.5 virus DNA copies for 

Adenovirus 2, 7 and 12 transformed cells respectively. 	The Adenovirus 

12 transformed cell line was the 8617 line (see before). 	The problems 

encountered with Adenovirus cRNA hybridisation have already been dis-

cussed, and in situ hybridisation itself presents limitations on 

detectibility (Section V; Jones, 1973; Hennig, 1973). 	Some idea 	of 

the feasibility of the in situ hybridisation approach in relation to 

detecting Adenovirus DNA in transformed and tumour cells can be deduced 

from the present results. 	The efficiency of the process is around 

4-5% (see Section IV) and the reaction is comparable with RNA excess 

hybridisation. Assuming 2-4 Adenovirus DNA copies per cell, the amount 

of virus DNA available for detection would be in the range of 6 x 10- 11 119 
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assuming each cell to have 6 x 10 6 i.g diploid DNA and the M.W. of 

Adenovirus DNA to be approximately 20-25 x 10  daltons. The 

Adenovirus 2 cRNA is synthesised from 5% of the template (see 

Section II, III) and is complementary mainly to single strandDNA. 

Thus the amount of complementary virus DNA will be about 6 x 10 12(xg 

per diploid host cell. 	At a cRNA specific activity of 1.7 x 10 7cprn/ 

pjg; 10% autoradiographic efficiency and an in situ hybridisation 

efficiency of 4-5%, about 500-1000 days would be needed to obtain 1 

grain per cell. These considerations suggest that the in situ 

hybridisation estimates obtained by other workers are over-estimates. 

This may be due, in part, to the presence of in vivo RNA-cRNA hybrids. 

(Table 111:17). There is a precedent for self-complementary RNA in 

the nucleus of the cell which is absent from the cytoplasm (Aloni, 1972; 

Aloni and Locker, 1973; Fried, 1972). 	This would be consistent 

with the grains restricted to the nuclei of some Adenovirus transformed 

or tumour cells after in situ hybridisation with Adenovirus cRNA as 

described by McDougall et al. (1972b). 	DNA-DNA reassociation using 

restriction fragments of the virus DNA as "probes" is a rather more 

precise method of virus genome estimation. 	Digestion of Adenovirus 2 

DNA with restriction enzyme E COB 1 results in the production of equi-

molar yields of six DNA fragments, each of which correspond to a 

unique segment of virus DNA (Pettersson et al., 1973). 	Reassociation 

of each of these fragments alone, and in the presence of transformed 

or tumour DNA showed that the Adenovirus 2 transformed cell line, 8617, 

was missing two complete fragments of the virus genome (Sharp et al., 

1974). Furthermore, only about 1 copy of each of the other fragments 

was present, the total percentage of the virus genome present being 
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46%. 

As seen from Table 1:1 (Chapter 1) this line possessed close 

to one copy by the virus DNA-DNA reassociation technique but up 

to 30 copies by the cRNA-DNA hybridisation technique. This shows 

that the cRNA-DNA hybridisation estimates obtained by Green (1970) & 

Green et al. (1970) in particular are overestimates. 	More importantly 

it demonstrates that unless the virus •DNA sequences are present in 

the cell they will not be thtectedby the cRNA. 

The finding that an Adenovirus transformed.ceil line contains 

incomplete Adenovirus genomes is important. 	To ascertain whether 

this lack of specific regions is a general phenomenon of Adenovirus 

transformation or tumourogenesis, other cell lines were studied 

(Gallimore et al., 1974). 	The essential conclusion was that no 

Adenovirus 2 transformed rat cell line contains DNA sequences homolo-

gous to the complete Adenovirus genome, and the same 14% of the 

lefthand .end of the virus genome is always present. 	The transformed 

cell line (Ad 2/REB/lop/Bl) studied in this Thesis was also studied 

by Gallimore et al. (1974), who demonstrated that it possesses only 

5-6 copies of the 14% of the left hand end of the Adenovirus 2 genome. 

It is also now known that this 14% is not transcribed efficiently 

in vitro by the E. coli RNA polymerase (Pettersson et al., 1974). 

It is therefore hardly surprising that this transformed DNA fails to 

hybridise either by conventional or in situ hybridisation with 

Adenovirus 2 cRNA as described in this Thesis. 	Another cell line 

studied in the present work was derived from the tumour Ad2/5, itself 

induced by inoculation of AdenovirUs 2 transformed rat fibroblast cells 

without immunosuppresSion (see Materials). 	Gallimore et al. (1974) 
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have studied the original transformed cell line - termed T2C4 - and 

shown that it contains, on average, about 9576 of the virus genome 

per diploid quantity of host DNA. 	Furthermore, the E CoR I 

restriction fragments, F and D, are present in about 4 copies. 	This 

number is very similar to the 2-3 copies of virus DNA sequences detected 

by cRNA-DNA hybridisation as described in this Thesis; the D and F 

fragments likely being the greatest proportion of the cRNA transcript 

(see discussion before). 	Subsequent work [sharp et al., 1974; Cold 

Spring Harbor Symp. Quant. Biol. 39, 457 (1974.11, moreover, has shown 

that symmetric transcripts of virus DNA sequences exist both in the 

nucleus and cytoplasm of certain transformed or tumour cells. 	In 

particular, and relevant to the present work, is the finding that in the 

T2C4 line the F fragment, at least, is transcribed equally efficiently 

from both virus DNA strands. 	Again, then, the a'iginal T2C4 line is 

similar to the Ad2/5 line described here in that.symmetric transcripts 

have been detected. 	This means, apart from good correlation and 

corroboration, that the original line and cells derived from the tumour 

induced by it possess similar quantities of virus DNA sequences and 

similar virus RNA expression. 	This similarity has also been 

commented on for the transformed BI line (Gallimore et al., 1974) and 

other transformed and tumour lines as well (Gallimore, personal 

communication); and it indicates that the amount of virus DNA or its 

expression in individual cells is unlikely to change through cultivation 

in vitro or indeed in vivo. 

The other cell lines or tumours studied here have not been 

studied by Gallimore et al. (1974) or others but the finding that most 

Adenovirus transformed or tumour cell lines contain very few and usually 



13 

incomplete virus DNA genomes suggest that this is a general feature 

of Adenovirus transformation and tumoürogeneSiS. 

2. Significance of low levels of virus DNAin Adenovirus transformed 

or tumour cells 

In the present Adenovirus tumour or transformed cell lines studied 

2-4 copies of virus DNA represents the maximal amount of virus sequences 

detected per diploid quantity of DNA. Although the cRNA hybridisation 

technique would be incapable of detecting certain virus DNA sequences 

in the cells, by virtue of tie fact that the cRNAs are selectively trans-

cribed, it seems likely that 2-4 virus DNA copies is a reasonable estimate 

of the total number of virus DNA sequences that exist. Adenovirus 

transformed cells and tumours can contain -virus DNA sequences not 

complementary to the major proportion of sequences in the cRNAs (see 

above discussion) but in these cases the overall amount per diploid 

quantity of host DNA is still very low: from a few copies of 14% of 

the virus genome to only one or two copies of nearly complete genowes. 

Thus, although it is conceivable that certain cells could contain 

large numbers of Adenovirus DNA sequences not represented in the virus 

cRNAs evidence obtained elsewhere indicates that this is unlikely. 	Many 

rovke 
other virus transformed or tumour cell lines including th8gV40, 

polyoma, and certain Herpes viruses, also contain very low amounts 

of virus DNA sequences (see Table 1:1; also Cold Spring Harbor Symp. 

Quant. Biol. 39, 1975)(EBV, however, is an exception in that many 

copies of its DNA usually exist per transformed or tumour cell). 	How, 

then, does this relate to our understanding of transformation or .  

tumourogenesis? 	 - 
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Several points emerge. 	First, it is striking that although 

the amount of virus DNA is low per cell, the proportion of virus-

specific RNA is usually high (also see Chapter IV): thus suggesting 

the preferential transcription of virus DNA. 	Because of this, some 

of these selectively transcribed DNA sequences are likely to be 

involved in promoting or maintaining either the transformed or the 

tumourogenic state. For most transformed or tumour cells the 

existence of only one gene coding for some transformation or oncogenic 

function may therefore be enough. Certain other lines of evidence support 

this view. 	Graham et al. (1974), for instance, have shown, by naked DNA 

transformation experiments, that a specific region of the Adenovirus 5 

genome amounting to about 6% of,the lefthand end appears to be capable 

of transforming rat kidney cells in culture. Adenovirus 2 transform-

ation or turnourogenesis as well may also be initiated and maintained 

by the presence of only 14% of the left hand end of the Adenovirus 2 

genome (Gallimore et al., 1974). 	Part of this argument, of course, 

does imply that both the presence of a. single specific gene or set of 

genes and their transcription does have a direct effect on the initia- 

tion or maintenance of transformation or tumourogenesis. Tumourogenesas 

is likely to involve a whole series of events involving both the 

expression of the relevant virus gene and the relationship of the virus-

exposed cell with the host (e.g. see Klein, 1975b): but there is good 

evidence, however, which suggests that virus-transformation at least 

is reliant on the expression of specific, and only a few, maybe one, 

virus genes. 	For example, temperature sensitive mutants exist which, 

in a certain complementation group, fail to initiate or maintain the 

transformed state at the restrictive temperature. 	The need for SV40 

gene A function in SV40 virus transformation is a case in point (Martin 
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and Yang Chou, 1975; Brugge and Butel, 1975; Tegtmeyer, 1975; 

Osborn and Weber, 1975). Even so, the expression of one or two copies 

of virus-specific genes might not be enough to maintain transformation 

in certain cases. 	This may be true for EBV transformation where a 

characteristic feature of the process is large amounts of EBV DNA per 

transformed cell. Some cells transformed by EBV even at extremely 

low m.o.i. still contain multiple copies of virus DNA sequences 

(Robinson and Miller, 1975) which does suggest that the virus DNA 

may be subject to amplification which, as a mechanism, could provide 

the means by which several transformation genes accumulate. The 

need for this in EBV transformation may be the result of very low 

levels of virus DNA expression; for example its transcription into 

RNA or into transformation-specific protein. 	The fact that, in 

certain cases, transformation or malignancy can be dependent on a 

balance or gene dosage of normal and abnormal cell genes also tends 

to suggest that the amount of virus gene product which affects trans-

formation is likely to be important. 	For the majority of mammalian 

DNA viruses this may amount to the expression of one or two copies of 

the important virus gene: but for EBV, for example, it may mean more. 

	

A second point concerns the role of virus DNA integration. 	It 

is unfortunate that the use of in situ hybridisation in studying the 

chromosomal integration of virus DNA seems not possible. For the 

majority of virus DNA transformed or tumour cells nevertheless, by 

CsCl gradient centrifugation of one Adenovirus 2 tumour DNA followed 

by Adenovirus 2 cRNA hybridisation, virus DNA sequences were detected 

in the region of the gradient corresponding to the banding of host DNA 

sequences (see Figures 111:42 and 111:43). 	This may indicate that the 
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virus DNA sequences, in this particular tumour at least, are inte-

grated into the host DNA sequences. 

In general the evidence for virus DNA integration into host DNA 

is reasonably strong (see Chapter.1). 	Virus DNA integration, per so, 

however, may not be the deciding factor of whether a cell becomes trans-

formed or not. There is now a large amount of evidence which suggests 

that integration of virus DNA occurs during both productive infection 

(Burger and Doerfier, 1974; Collins and Sauer, 1972; Hirai and Defendi, 

1072; Manor et al., 1973; Waldeck et al., 1973; Ralph and Colter, 

1972; Holzel and Sokol, 1974) and abortive infection (Doerfler, 1968; 

Burlingham and Doerfler, 1971; Doefler, 1970; Doefler et al., 19 72) 

also. 	However, there are at least two ways in which virus DNA inte- 

gration appears to differ between productive infection and transform-

ation in particular: the amount of integrated virus DNA is usually 

more during productive infection, and 'more importantly there is no 

definitive evidence to support the hypothesis that integration per se 

contributes functionally to the inevitable replication of the virus 

DNA, the production of virus particles, and the death of the cell. 

More integrated virus DNA during productive infection suggests 

that there may be several potntia1 integration sites; while the 

presence of low amounts of virus DNA during transformation suggests 

that only a selective few of the potential sites are involved in 

transformation. 	Other evidence points in this direction: for 

example, somatic cell hybridisation studies, and the fact that trans- 

formation usually occurs with very low frequency. 	Even for EBV 

transformation where multiple virus DNA sequences exist per cell it is 

clear that the potential integration sites must be few;: 50 genomes, as 
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present in "Raji" cells for example, represents about 5 x 1O 9  

daltons of DNA amounting to about 1/25th of the DNA in each chromosome 

which would be a vast amount if it was all integrated. 

It is also clear that "transformation" specific sites could exist. 

There is a precedent for the phenotypic expression of eukaryote genes 

depending upon their position or orientation in the genome 

Thus there is some case for believing that transformation fundam-

entally may be the result of the expression of a specific product of 

a gene residing at a specific site in the eukaryote genome. 
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ATTEMPTS TO DETECT ADENOVIRUS-SPECIFIC RNA SEQUENCES IN 

TRANSFORMED AND TUMOUR CELLS 

INTRODUCTION 

MAMMALIAN DNA VIRUS-SPECIFIC RNA IN ThANSFORMEDTUMOUR CELLS 

As mentioned previously virus-specific RNA is found in mammalian 

DNA virus transformed and tumour cells, for example in Adenovirus 

transformed and tumour cells (Fujinaga and Green, 1966; 1968; Green, 

1970); polyoma transformed cells. (Banjamin, 1966); SV40 transformed 

cells (Aloni et al., 1968; Oda and Dulbecco, 1968; Reich et al., 1966; 

Sauer and Kidwai, 1968); and EBV transformed human lymphoblastoid 

cell lines (Sudgen, personal communication). 	In some transformed or 

tumour cells it represents a considerable percentage of the RNA in the 

cell whereas in others the percentage is less so. Adenovirus trans-

formed cells, for example, possess 2-5% virus-specific polysomal 

messenger (m) RNA (Green, 1970), whereas most SV40 or polyoma trans-

formed cells possess only about 0.01-0.1%. 

In general, cells transformed by mammalian DNA viruses usually 

possess only a subset of the virus-specific RNA sequences found.in 

productive infection (Green, 1970; Green et al., 1970; Botchan 

et al., 1974; Sambrook èt al., 1972; Khoury et al., 1974'  

et al., 1975). 

Three different classes of virus mRNA molecules are synthesised 

in Adenovirus transformed or tumour cells, each one being specific 

for each major sub-group of the human Adenoviruses (Fujinaga 2t al., 

1969; McAllister et al., 1969; Green, -1970). And in the main, only 

4-10% of the Adenovirus genome is expressed, the sequences being a 

subset of the sequences expressed early in the productive cycle. 
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(Green and Hodap, 1972). 	In other transformed cells there is also 

selective transcription of the virus genome. 	Thus some SV40 

transformed cells express only about one third of the virus genome 

(Aloni et al., 1968) while others express less or sometimes more. 

Most SV40 transformed cells, however, do differ from Adenovirus 

transformed cells studied in that some late virus genes are transcribed 

in the former but not in the latter. 	In some cases this late gene 

expression canamount to nearly 80% of the normally expressed late 

genes in productive infection (Sauer and Kidwai, 1968). 

For SV40 transformed 3T31 cells virus-specific RNA is complementary 

to 55-60% of the sequences of the early strand of the SV40 DNA molecule, 

and 15-20% of the sequences of the late strand (Sambrook 

1972). 	For some other SV40 transformed cells (Ozanne et al., 1973), 

30-80% of the early strand and 0-20% of the late strand are present 

as RNA. 	Since the early region in production infection corresponds 

to about 30-35% of the early strand (Lindstrom and Dulbecco, 1972; 

Khoury et al., 1972; Sambrook et al., 1972; Sambrook et al., 1973), a 

proportion of the RNA produced in certain SV40 transformed cells is 

clearly anti-late. 	Two main points emerge from this data. 	First, 

there is selective transcription of virus genes in transformed or 

tumour cells. 	Second, this selectivity may be the result of control 

mechanisms or loss of virus DNA sequences. 	In SV40 transformed cells 

late genes can be transcribed, while in Adenovirus transformed cells 

they are not. 	This may reflect the fact that all the virus genome 

is present in most .SV4O transformed cells but not in Adenovirus 

transformed cells (see pg. 4.. 	. 
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VIRUS-SPECIFIC RNA AND VIRUS DNA INTEGRATION 

Virus-specific nuclear RNA in transformed or tumour cells, appears 

to be covalently-linked to cellular HnRNA (Heterogeneous nuclear RNA). 

Thus virus DNA - either SV40 or Adenovirus for example - hybridises 

to nuclear transformed RNA sequences greater than 40-453 in sucrose 

gradients with or without DMSO treatment to disrupt aggregation (Linberg 

and Darnell, 1970; Green, 1970; Green et al., 1970; Wall et al., 

1973). 	Similar experiments, using polyacrylamide gels, have.-shown 

that SV40 or Adenovirus-specific transformed cell nuclear RNA sequences 

exist in high molecular weight form (Young et al., 1973; Green et al., 

1970). ' Since infectious virus DNA is not normally found in these 

cells, and the amount of virus .)DNA present probably represents only a 

few genome copies (see Chapter' III, this Thesis and also Gelb et al., 

1971; Botchan et al., 1974; Sharp etal., 1974; Gallimore et al., 

1974) it is unlikely (but not impossible) that the high molecular 

weight virus-specific nuclear RNA is due to tandemly repeated, or 

continuous, transcription of the virus DNA only.. 

A proportion of the high molecular weight RNA could possibly be 

due to the post-transcriptional addition of ribonucleotides. 	PolyA, 

for instance, is added to most of the eukaryote primary' RNA transcripts 

which give rise to mRNA (Lewin, 1974; 1975) and to DNA virus-specific 

RNA in cells (e.g. Philipson et al., 1971). 	However, since some 

virus-specific mRNA, in transformed cells, still exceeds the length 

of the expected virus DNA sequence transcript, (e.g. Weinberg etal., 

1973) even allowing for 50,000 daltons of polyA, the influence of 

polyA on the size of virus-specific sequences in HriRNA must be small. 
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Virus-host HnRNA molecules also can exist in cells productively-

infected by several mammalian DNA viruses (Tonegawa et al., 1970; 

Acheson et al., 1971; Green et al., 1970; Weinberg et al., 1972; 

Jaenisch, 1972; Rozenblatt and Winocour, 1972). 

Tsuei et al. (1972) and Wall and Darnell (1972) isolated the 

virus-host HnRNA in Adenovirus and SV40 transformed cells. RNA 

sequences which wereco-isolated with pure virus-specific sequences 

hybridisect.. to cell DNA under contitions which suggest that these 

sequences are transcribed from repetitive DNA. Whether any of the 

host HnRNA sequences which are linked to virus-specific sequences are 

transcribed from unique DNA sequences in the genome or whether any 

virus-specific RNA sequences in the nucleus are not transcriptionally 

linked to host HnRNA sequences is not known. 

The difficulty with these sort of experiments is the unresolved 

question of whether or not RNA aggregation can occur to any great 

extent, thus bringing about high-molecular weight RNA. Macnaughton 

et al. (1974), for example, have shown that distinct mRNA species can 

aggregate and that R-RNA interactions can occur in nuclear RNA when 

full RNA denaturation conditions are omitted. 	This may also be true 

for virus-specific-RNA - host HnRNA interactions, particularly when 

non-denaturation conditions are employed. Judged from this point of 

view, integration of virus DNA within the host genome may be 

artifactual. 	The virus-specific RNA is subsequently transported to 

the cytoplasm through a series of post-transcriptional modifications 

and cleavage (Shimada et al., 1972; Wall andDarnell, 1971; Wall et al., 

1973) which results in discrete classes of virus-specific messenger 

RNA (mRNA). 	For example, three discrete size classes of virus-specific 
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mRNA have been found for one Adenovirus 2 transformed cell line: 

16S, 20S and 26S (Wall et al., 1973). 	More heterogeneous size 

classes have been found for other Adenovirus transformed cells 

(Green et al., 1970). 

DESIRABILITY OF DETECTING VIRUS-SPECIFIC RNA IN INDIVIDUAL CELLS 

The discovery that virus DNA can exist in several types of 

transformed or tumour cells has lead to many attempts to try and 

detect it in different types of tumours. 	However:this may not be 

an easy task since, in many cases, the amount of virus DNA may be 

relatively low (see Chapter III, this Thesis). 	Screening tumours 

by in situ hybridisation with virus cRNPts (McAllister et al., 1972; 

McDougall et al., 1972b; Wolf etal., 1973; Chapter III, this Thesis) 

may not therefore be the method of choice. RNA transcription, however, 

represents direct amplification of the virus DNA sequences - even at 

a selective level. Consequently a method was devised by which virus-

specific RNA could be detected in individual cells. The particular 

usefulness of the method is that virus-specific nucleic acids can be 

detected in cells in which the virus DNA content would be too low to 

detect. 	This raises the possibility of screening for virus-specific 

sequences in cancer tissue in which the virus DNA, if present, is 

limited to a few genome copies. 
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A. DETECTION OF ADENOVIRUS-SPECIFIC ?1ESSENGER RNA(mRNA) IN INDIVIDUAL 

TRANSFORItED CELLS 

SECTION I 

Preliminary isolation of Adenovirus 2 messenger RNA from Adenovirus 2 

transformed rat cells 

3 	
was 

H-Uridine-labelled virus-specific mRNA/isolated from Adenovirus 

2 transformed cells (Ad 2/REB/lOp/Bi) by isolating total mRNA via 

polyA-mRNA-oligo(dT) binding and hybridising it to virus DNA 

immobilised on filters. The results show that virus-specific mRNA 

can be detected in these transformed cells. 

Results and discussion 

a) Shimada et al. (1972) have shown that in certain Adenovirus 

transformed cells virus-specific RNA can be detected in the nucleus 

after 30 mins. incorporation of' 3H-uridine. 	After 60 mins. there 

is also a high proportion of virus-specific RNA in the cytoplasmic 

RNA. Further, the proportion of virus-specific RNA in the nucleus 

compared to the cytoplasm decreases by 95% in 4 hours of incorpor-

ation time. After several hours of labelling with 3H-Uridine the 

virus-specific messenger RNA (mRNA) has dramatically accumulated in 

the cytoplasm (Tsuèi et al., 1972). 	In order to check that the 

transformed cells could incorporate 3H-Uridine under the conditions 

employed, BI transformed cells were labelled with 3H-Uridine for 

various time periods and the radioactivity determined by TCA pre- 

cipitation of whole cells (Figure IV.:l). 	Incorporation is linear 

with a slight falling off after 60-90 mins. 	BI transformed cells 

were labelled for up to 8 hours before RNA was extracted. 



Figure IV:I. Incorporation of 3H-Uridine 

into total cellular RNA with time. 

Adenovirus 2 transformed rat cells 

(Ad2/REB/IOp/BI) were labelled with lOuCi/mi 
3  H-Uridine(S.A. 25Ci/mmole) for various 

tiines.Whole cells were then washed with 

changes of Dulbecco A and finally TCA 

precipitated onto GF/80 filters. 

After alcohol drying and heating at 

80 ° C for 40mins.,the radioactivity on 

the filters was determined by counting 

in Toluene-POPOP,PPO scintillation 

fluid. 
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b) Cytoplasmic RNA was extracted and purified by a combination of 

methods. (see Materials and Methods, pg. 	). 	This RNA was passed 

through an oligo(dT) column and the 
0lyA_COfltaifling RNA eluted in low 

salt (Aviv and Leder, 1972). Approximately 5% of the 
3H-Uridifle-

labelled RNA was eluted in low salt after two passages through the 

column (Figure IV:2). 

C) 
The polyA-mRNA was hybridised to AdenovirUS 2 DNA and M. luteus 

DNA which were tDth immobilised on membrane filters. The specific 

activity of the 3H_Uridifle_labelled mRNA was 
	2 x 105cpm/Lg. 

Hybridisation was performed in 6 x SSC 30% FA at 50 0C and the reaction 

terminated by chilling, RNasing and washing the filters. The result 

is shown in Table IV:1. The rnRNA hybridises to the virus DNA but 

not to the bacterial DNA. Table IV:l also shows that polyA-mRNA 

isolated from normal rat cells does not significantly bind to the 

AdenovirUS 2 DNA. All this demonstrates that the polyA-rnRNA 

isolated from these particular AdenovirUs 2 transformed cells contains 

AdenovirUs 2-specific sequences. 	
From these experiments, the propor - 

tion of the polyA_mRNA which is virus-specific cannot be dtermifled. 

Neither can the virus DNA sequence complementaritY be determined. 

Nonetheless, virus-specific 	
clearly exists and should be capable 

of being detected by in situ hybridisation. 



Figure IV:2. Separation of polyA-mRNA 

from total cytoplasmic RNA isolated 

from Adenovirus 2 transformed rat 

cells(Ad2/REB/IOp/BI).The polyA-mRNA 

was eluted in low salt buffer 

(1mM EDTA,IOmM Tris-O.I% SLS) (arrow) 

and the radioactivity determined 

by counting in liquid scintillator 

(Aquasol). 
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Table IV:l 

3H-Uridine-labelled Adenovirus 2 5 transformed cell RNA C.P.M.   hybr idizedab 
DNA (S.A. 	2 x 10 	cpm) 

Adenovirus 2 (5tg) 4 x 10 820 

M. luteus (5g) 4 x 10 55 

M. luteus (20g) 4 x 10 67 

DNA 
3  H-uridine-labelled normal rat 	ibroblast cell RNA c.p.m. hybridized a )   

(S.A. 	2 

Adenovirus 2 (5g) 4.3 x 10 60 

M. luteus (5g) 4.0 x 10 43 

a Average of 2 experiments 

b Hybridisation at 500C in 6 x SSC 30% FA for 10 hours 



150 

SECTION II 

Detection of mRNA in individual cells by in situ .  hybridisation 

Specific RNA sequences have been detected in individual cells 

before. Harrison et al. (1973), for instance, localised Haemoglobin 

messenger RNA in the cytoplasm of red blood cells using in situ 

hybridization with Haemoglobin eDNA. Detecting specific RNA sequences 

at the single cell level is therefore feasible. 

The experiments described here were designed to examine three 

points. Can Adenovirus-specific RNA sequences be detected at the 

single cell level and if so, is the technique specific and reliable. 

Third, does specific virus messenger expression in individual cells 

vary between cells? The first' two points involve hybridization of 

311-labelled Adenovirus 2 DNA to transformed and infected cells. The 

third point also exploits the formation of hybrid complexes between 

polyA-mRNAand polyU to estimate total mRNA expression in comparison 

to virus-specific mRNA expression. 

Results and discussion 

Adenovirus 2 DNA labelled with 3H-Thymidine during the growth 

cycle in HEK cells, and purified as described in Materials and Methods 

possesses a buoyant density in neutral CsC1 of 1.716gm/cm 3  (Figure 

IV:3), a value in good agreement with previously reported density 

determinations for this particular virus DNA (Table 111:1, this Thesis.; 

Green and Pina, 1964; Ledinko and Fong, 1969). 	There is no 

apparent label in the density position of human main band DNA, a 

result which suggests the purity of the virus DNA. When the virus 

DNA is denatured it is virtually completely Sl nuclease sensitive, 

and on reassociation it becomes 50% Sl nuclease resistant when a 



Figure IV:3. CsCl gradient centrifugation 

of 3H-Thymidine labelled Adenovirus 2 

DNA.The labelled DNA in 0.IxSSC,together 

with total human DNA(unlabelled) and 

M.luteus DNA(unlabelled) was made up 

with 5.2gm CsC1(B.D.H. analytically pure) 

to a volume of 4.Omls.Centrifugation 

was done at 42,000 rpm at 25 ° C for 

40hours in the IOxIO MSE rotor. 

Fractions were collected,their 0.D.s 

(260nm) determined,and the DNA in each 

fraction denatured,neutralised, and 

bound to membrane filters according 

to the procedure Of Gillespie and 

Spiegelman(1965) .The radioactivity 

of each fraction was then determined 

by counting the filters in Toluene-

based scintillation fluid after the 

DNA had been washed in 6BSSC and 

baked at 80 ° C for 2hours in vacuo. 

The peak of radioactivity corresponds 

to the buoyant density of Adenovirus 

2 DNA  in neutral CsCl(see TableIII:2); 

while M.luteus DNA and total human 

DNAs also. band at their known 

buoyant density positions of 

1.731gm/cm 3 and 1.700gm/cm 3  

respectively.(also see TableIII:I). 
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Cot* of approximately 1.7 x 10_2moies/sec ./l_1  has been reached 

(Figure IV:4). The rate and extent of the reassociating virus DNA 

is similar to that expected for a unique genome with an analytical 

complexity of around 25 x 106 daltons which is the molecular weight 

of Adenovirus 2 DNA (Green et al., 1967 for example). Other workers 

have observed similar Cot -  values for this particular virus DNA 

(Tibbetts et al., 1974; pettersson et al., 1974). Thus by buoyant 

density measurement and by reassociation kinetics the labelled DNA 

represents a homogeneous population of Adenovirus genomes. This 

virus DNA was hybridised to Adenovirus 2 transformed rat cells (Ad 2/ 

REB/lOp/Bi). These cells are heavily labelled in the cytoplasm with 

occasional grain clusters in tI-i,e nucleus (Figure IV:5b, 5c). 	There 

were few grains in either the nucleus or the cytoplasm of normal rat 

cells. 	To test whether label represents RNA-DNA hybrid formation, 

Adenovirus 2 DNA was hybridised to transformed.cells which had been 

previously RNAsed (20 Vg1ml, liNase A in 2 x SSC for 30 mins.) and 

exhaustively rinsed in 2 x SSC. After such treatment the amount of 

label was considerably reduced subsequent to in situ hybridisation 

(Figure IV:5d). 	The relatively low labelling in the nucleus of a 

transformed cell compared to the cytoplasm (Figure IV:5) may reflect 

the apparently lower content of virus-specific sequences in HnRNA in 

comparison to their proportion in the mRNA of the polysomes (Shimada 

et al., 1972). 	Alternatively, the efficiency of hybridisation to 

the nucleus might be impaired for some reason. 	To test whether the 

Adenovirus 2 DNA was, capable of hybridising to virus sequences in 

the nucleus of a cell, an in situ hybridisation reaction was -  carried 

out with the labelled virus DNA and 1-JEK cells infected with Adenovirus 2. 



3 
Figure IV:4. Reassociation of H-Thymidine 

labelled Adenovirus 2 DNA.3xSSC,65
0 C,with an 

initial DNA concentration of 3x10'ug/ml. 

% reassociation was measured by SI nucleasë 

monitoring(see Materials and Methods,pg.fl ). 
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Cells permissive for Adenovirus infection are known to possess viral-

specific RNA both in the nucleus and the cytoplasm (Green et al., 1970; 

Green, 1970; Fujinaga et al., 1968), and to accumulate newly-synthesised 

viral DNA in the nucleus (Green, 1962; Ledinko and Fong, 1969). 

Furthermore, newly-replicated viral DNA can be detected by in situ 

hybridisation with virus cRNA (McDougall et al., 1972a; Gallimore, 

1974; this Ihesis pg.2.) so that Adenovirus 2 replicated duplexes, 

syntheised in the infected HEK cells, should be capable of forming 

duplexes with the 3H-labelled Adenovirus 2 DNA used to detect virus 

sequences in the transformed cells. Hybridisation to pre-RNAsed or 

non pre-HNAsed Adenovirus 2-infected HEK cells or nuclei is depicted 

in Figures IV:5a and IV:6b. Grains are located in the nuclei of 

pre-RNAsed cells (F igure IV:6b) and in both the nuclei and cytoplasm 

of non pre-RNAsed infected cells (Figure IV:5a). A pre-RNAsed 

Adenovirus 2-infected HEK nucleus which has been in situ hybridised 

with Adenovirus 2 cRNA is shown in Figure IV:6a for comparison. 

These above results suggest that the input Adenovirus 2 DNA can 

hybridise or anneal to either virus-specific RNA or virus-specific 

DNA in the Adenovirus 2-infected cells. There were few grains in 

either the nucleus or cytoplasm of normal rat cells. 

During the course of the reaction, the virus DNA would be 

expected to reassociate or self-anneal, as well as hybridise to any 

complementary base-sequences within the cell. 	Other studies have 

shown that this self -renaturation of DNA sequences probably does not 

present problems. 

For example, Pardue and Gall (1969) detected amplified ribosomal DNA 

in -
situ by employing double stranded labelled ribosomal DNA. 	The 

centromeric location of mouse satellite DNA has also been demonstrated 



Figure IV:6. In situ hybridisation of 

Adenovirus cRNA or Adenovirus 2 DNA 

to Adenovirus-infected cells. 

Adenovirus 2or 12-infected HEK 

cells(IOOpfu/cll) were pre-RNased 

and challenged with either 

Adenovirus 2cRNA or I2cRNA 

(S.A. I.7xIO 7 cpm/ug;O.00Iug/5u1; 

65 C for lOhours in 2xSSC) or 

Adenovirus 2 DNA(S.A. I0 6 cpm/ug: 

I0 3 ug/ul:65 0 C for lOhours in 

3xSSC). 

Adenovirus 2 cRNA hybridised 

to Adenovirus 2-infected HEK cells; 

Adenovirus 2 DNA annealed to 

Adenovirus-2--infected HEK nuclei; 

Adenovirus 12 cRNA hybridised 

to Adenovirus 12-infected KE.K nuclei; 

Adenovirus 2 DNA annealed to 

Adenovirus 12-infected HEK nuclei. 

Exposure time:4-6 weeks.. 
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Figure IV:5. In situ hybridisation 

of Adenovirus 2 DNA to Adenóvirus 2 

-infected HEK cells or to Adenovirus 

2 transformed rat cells. 

a) Adenovirus 2 DNA annealed to 

Adenovirüs 2-infected HER cells: 

no pre-RNasing. 

B) and c) Adenovirus 2DNA hybridised 

to Adenovirus 2 transformed rat cells 

with no pre-RNasing:3xIO 3 ug/ml: 

3xSSC 30%FA: 45 0 C for IOhours(3xSSC 

for lOhours at 65 ° C also gave 

same results). 

d) Adenovirus 2 DNA hybridised 

to Adenovirus 2 transformed rat 

cells pre-RNased.Conditions of 

hybridisation as for b). 

Exposure time: a)4weeks;b),c) 

and d) 6 months. 
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using mouse satellite DNA as a probe (Pardue and Gall, 1970) and 

recently, Herinen et al. (1975) have located the position of the 

ribosomal genes on the mitotic and iampbrush chromosomes of Triturus 

cristatus carnifex using 1-125-labelled double stranded ribosomal 

DNA. The ability to do this is fortunate since self-annealed DNA 

base-sequences could contribute to the autoradiographic label because 

they will be Si nuclease resistant, we well as compete with the 

hybridisation reaction at the cytological level. 

The Adenovirus 2 DNA, at the criteria used here, would be 

expected to have nearly half-reassociated within an hour of the 

commencement of the reaction in situ (Figure IV;4). 	However there 

is no extracellular background radioactivity and hybridisation is 

very much greater in transformed cells than in normal rat cells. 

The grains present in large amounts in the cytoplasm of these trans-

formed rat cells most likely represent virus in vivo RNA- virus DNA 

hybrids since RNAsing the cells prior to in situ hybridisation drastic-

ally reduces the label. There is some evidence from other in situ 

hybridisation experiments that pre-RNasing may not remove all the 

hybridisable RNA (Hennen et al., 1975; Rosbash, personal communication) 

so that the remaining grains, after such treatment, possibly represent 

some non-RNased molecules which have hybridised. To further check 

the specificity of the in situ reaction an additional two experiments 

were performed. First, the Adenovirus 2 labelled DNA washybridised 

to Adenovirus 12 infected cells which contain replicating virus DNA 

(Green, 1970; McDougall et al., 1972) detectable by in situ hybrid-

isation with Adenovirus 12cRNA (Section III, Chapter III; Figure IV:6c 

also). Adenovirus 12 and2 DNAs share up to 22% homology. Therefore 
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Adenovirus 2 labelled DNA should be capable of hybridising to 

Adenovirus 12 DNA in these cells. 	Figure IV: 6d shows that this is 

SO. 	Grain clusters are present in individual, nuclei. 	The second 

experiment involved hybridising a non-virus labelled DNA to cells. 

which do not contain RNA sequences complementary to it. Transformed 

cells were hybridised with a 3H-Thymidine-labelled Drosophila satellite 

DNA,(a gift from M. Izquierdo, this laboratory). 

The level of grains present after annealing with this satellite 

DNA was very low (not shown) thus confirming that annealing with 

3H-Thymidine-labe lled Adenovirus. 2 DNA is most probably specific. 

Silver grains seen in some control preparations may be the result 

of either incomplete enzyme digestion or insufficient post in situ 

hybridisation washing. 	If some of these grains are due to non- 

specific binding of double-stranded 3}I-DNA then the use of separated 

virus DNA strands may be an advantage in future exploitation of the 

technique. 

The finding that virus-specific mRNA can be cbtected by in situ 

hybridisation with virus DNA raises some interesting points. 	First, 

as described previously, there have been some attempts, using cRNA to 

Adenovirus genomes, to detect viral-specific DNA in individual cells 

transformed by Adenoviruses (Green et al., 1970; Dunn etal., 1973; 

McDougall etal., 1972b; Loni and Green, 1973;.. Chapter III, this 

Thesis). 	The major limitation with this approach, however, is set 

by the amount of DNA base-sequences which can participate in the 

reaction, and be subsequently detected by the cRNA in the in situ 

technique. 	To date in the Adenovirus transformed cells studied, 

only a portion of the viral genome is present (Sharp et al., 1974; 



155 

Gallimore et al., 1974) and in very few copies (Pettersson and 

Sambrook, 1973; Gallimore et al., 1974; this Thesis, Chapter III), 

thus limiting the chance of detecting viral DNA. 	In fact since a 

large percentage of the cRNA represents only a proportion of the 

Adenovirusgenome (Green and.'Hodap, 1972; Dunn et al., 1973; 

Pettersson 6t al., 1974; this Thesis, Chapter III) screening 

transformed cells and tumours for virus DNA by hybridisation with 

virus cRNA (McAllister et al., 1972; McDougall et al., 1972b; 

Dunn et al., 1973) is unlikely to be a method of choice. As 

demonstrated here, however, viral-specific RNA can be localised in 

cells expressing Adenovirus genetic information. Two points in 

particular suggest that this technique is very sensitive. 	First, 

the particular transformed cell line used in this study contains only 

14% of the Adenovirus 2 genome (Gallimore et al., 1974) and expresses 

only approximately 77o of this in the form of a single transcript (Sharp 

et al., Cold Spring Harbor Symp. Quant. Biol. (1975) in press). 

Second, Adenovirus 2 DNA is capable of annealing to Adenovirus 12 DNA 

in infected cells at the cytological level (Figure IV:6d) and yet 

these two viruses only share 9-22% of their DNA base-sequences (Green 

et al., 1970). 	Thus the input Adenovirus DNA is capable of annealing 

with nucleic acid sequences in the range of 1-2 x 106  daltons in 

molecular weight, i.e. 3-6 x lO base-pairs in molecular length. 

The ability to detect virus-specific RNA. sequences in individual cells 

should therefore have important uses in general: for screening purposes, 

and for studying the transcriptional specificities of individual cells 

in a tumour. For instance, some cells in a certain tumour possess 

different genetic information from other cells in the same tumour 
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(Goldenberg et al., 1974; Weiner et al.,1972) and at least one 

tumour has a restricted distribution of virus genes within its 

cellular architecture (Wolf et al., 1973; Klein et al., 1974). 

Little is known about the transcriptional specificities at the 

single cell level and the method described here therefore has 

important applications in this direction. 

A second point can be raised from the ability to detect specific 

RNA sequences in situ. 	It is unclear in general whether mRNA 

varies quantitatively from cell to cell: for instance during 

different stages of the cell cycle. 	Figure IV:5 shows that the 

expression of virus-specific RNA in Adenovirus 2 transformed cells 

does not appear to vary much between cells. Whether uniformity in 

this RNA expression reflects uniformity in total mRNA expression 

is not clear. An approach to answer this question can be made by 

exploiting hybrid formation between.polyA-mRNA and polyU, the extent 

of the reaction being a measure of the total mRNA content of the 

cell. The presence of polyA sequences on mRNA molecules has been 

alluded to previously. 	With the exception of Histone mRNAs. 

(Adesnik and Darnell, 1972) mRNA sequences contain polyA post-

transcriptionally added to the 3' end of the messenger sequences 

thus enabling the mRNA sequences to be isolated from:the rest of 

the cellular RNA. The amount of polyA in total RNA populations is 

therefore a measure of the amount of polyA-mRNA sequences. 	PolyA-mRNA- 

molecules can form complexes with polyU (Bishop et al., 1974; 

Rosbach et al., 1974) which are then a measure of the amount of polyA-

mRNA in an RNA population (see Rosbash and Ford; 1974 for example). 
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To determine whether total mRNA expression varies from cell to 

cell, as opposed to virus-specific mRNA expression which does not 

appear to (see Figure IV:5), polyU was'hybridised to transformed 

cells (see below). 

PolyU-homopolymer complexes are less stable than a variety of 

other RNA-DNA hybrids (Riley et a1., 1966; Chamberlin, 1965), and 

low temperatures of RNasing these hybrids are needed in comparison 

to other RNA-DNA hybrids (e.g. Bishop etal., 1974). 	PolyU-poly(rA). 

complexes are more stable than polyU-poly(dA) complexes. For instance, 

polyU-poly(rA) has a Tm of 72 °C in 2 x SSC whereas polyU-poJ.y(dA) has 

a Thi, in the same salt, of 42 °C. 	This Tm difference is demonstrated 

in Figure IV:7 where 3H-polyU has been hybridised to poly(rA) or 

poly(dA) sequences in Drosophila DNA, and the resulting complexes 

melted in 2 x SSC, Bishop et al. (1974) have shown that mRNA-polyU 

complexes melt with Tms characteristic of polyU-poly(rA) complexes 

i.e. around 70°C in 2 x SSC. 	Figure IV:7 shows in common with 

Shenkin and Burdon (1974) and Bishop et al. (1974), that at around 

50°C the polyU-DNA sequences have approximately 90 116 melted whereas 

polyU-poly(rA) complexes are still stable. This is a useful finding 

since hybridisation carried out at around 50 °C in 2 x SSC will largely 

reflect the polyU-poly(rA) or polyU-mRNA complex formation. 	In situ 

hybridisatiOn using polyU was therefore carried out according to the 

method of Jones, Bishop and Brito-da-Cunha (1973) but with the 

modification of increased temperature of hybridisation in 2 x SSC: 

i.e. 50°C instead of 30-37°C. 

PolyU hybridisation to transformed cells is shown in Figure IV:8. 

Transformed cells are heavily labelled, especially in the cytoplasm 



Figure IV:7. Thermal dissociation of polyU-DNA 

or polyU-poly rA complexes.The complexes 

were melted in 2xSSC and the %polyu released 

determined by TCA precipitation and 

counting in Toluene-based scintillation 

fluid.The Tm is the temperature at which 

50% of the polyU-DNA or polyU-polyrA 

complexes have dissociated. 

00 polyU-drosophila DNA; 

00 polylJ-polyrA(Shenkin and Burdon,1974); 

x-x polylj-poly rA. 





Figure IV:8. In situ hybridisation 

of poly U to Adenovirus 2 transformed 

rat cells(Ad2/REB/IOp/BI).Label is 

concentrated in the cytoplasm.(nuclei 

are darkly stained with Giemsa).Exposure 

time:2 weeks.See Materials and Methods 

and text for details. 
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where the polyA-mRNA is likely to be accumulating. There is little 

difference between the labelling pattern observed for several cells. 

which therefore suggests that the uniformity in Adenovirus-specific 

mRNA (Figure IV:5) probably reflects the uniformity of polyA-mRNA 

expression in general. 
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B. TRANSCRIPTION OF RNA IN TUMOURS 

The biology of whole tumours is not understood in depth. 

Reflecting this, while many of the studies on tumour expression have 

concentrated on analysing tumour cells derived from whole tumours and 

grown in culture, few studies have directly analysed the tumour as 

originally produced in-  vivo. 	Thus many studies have been directed 

at detecting virus RNA in individual tumour cells isolated from whole 

tumours but few have, attempted to relate this to the biology of the 

tumour mass (see for example, Axelrod et al., 1964; Green, 1970). 

As previously demonstrated. in this Thesis (pg.197) mRNA expression 

can be quantitated by polyU binding to individual cells. This 

method of determining mRNA amount was therefore applied to whole 

tumour sections in order to determine whether .there was heterogeneous 

total mRNA expression throughout the structure of the tumour mass. 

The results represent the first report of mRNA estimation for indiv-

idual cells within a tumour. 

Results and Discussion 

3 H-polyU was hybridised to Adenovirus 2 transformed cell-induced' 

tumour sections or to Adenovirus 12-induced tumour sections. The 

conditions of hybridisation and synthesis of polyU have already been 

described (see page57; and Materials and Methods, pg.ç7-0). 	In the 

Adenovirus 2 transformed cell induced tumour, (Ad2/T5) most of the 

label is confined to the peripheral cells of the tumour mass (Figures 

IV:9a & 9b). 	In the other tumour (Adl2/T]) there is more widespread 

distribution of label except for cells in the centre of the tumour 

which appear to possess little (Figures IV:9c and 9d). 	Thus for the 

tumour sections there is not uniformity of polyA-mRNA expression. 

The simplest interpretation of this result is that polyA-mRNA content 

is diminished in certain cells of the tumour, an interpretation which 



Figure IV:9. In situ hybridisation 

of poly U to frozen sections of 

Adenovirus-induced tumours.a)and b) 

Adenovirus 2 transformed cell(Ad2/REB/50p/BI) 

-induced tumour(Ad2/T5 ).Note hybridisation 

to cells in periphery of tumour mass. 

b) Adenovirus 12-induced tumour(Ad12/TI). 

Note widespread distribution of grains 

except for cells in the centre of the 

tumour(d) where grains are absent. 

These centre cells are most likely 

necrotic.For conditions of polyU 

hybridisation see Materials aiad Methods 

and text.Exposure time:all 2 weeks. 
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gains support from the fact that many Adenovirus- induced tumours 

possess necrotic cells which are frequently a major part of the tumour; 

live cells being only confined to the growing surface. Thus the 

intense polyU labelling seen in the periphery of one tumour in particular 

(Figure IV:9a & 9b) probably reflects such a situation. . This is 

further strengthened by the fact that, on staining with Methyl Green 

Pyronin (MGP) to discriminate RNA from DNA, only the peripheral cells 

of this particular tumour appear to contain RNA (Figure IV:lOa & b). 

The tumour which contains a more widespread distribution of polyU 

also contains a more widespread distribution of RNA on staining with 

M.G.P. (Figure IV:lOc). 	Therefore the polyU bound by cells does 

reflect in vivo RNA expression. 

Clearly it will be important and interesting to determine whether 

there is a similar distribution of virus-specific RNA within these 

types of tumour. The method described previously should be capable 

of answering this question. 	. 	 . 



Figure IV:IO. Tumour sections stained 

with Methyl Green Pyronin(M.G.P.,) to 

discriminate RNA from DNA. (RNA 

Stains distinctly red). 

a) and b) Adenovirus 2 tumour section 

(Ad2/T5):RNA is concentrated in the 

peripheral cells of the tumour mass. 

c) Adenovirus 12 tumour(Ad12/TI): 

there is a widespread distribution 

of RNA. 
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