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Abstract 

This work consists of detailed experimental studies of the structure and dynamics of 

glassy states in hard spheres with short-range attraction. The well-characterized model 

system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing lin-

ear polymer which induces a depletion attraction between the particles. 

Observation of crystallization reveals a re-entrant glass transition where the glass melts 

and freeze again upon increasing attraction at high volume fraction. Static light scat-

tering shows a continuous change in the static structure factors across the re-entrant 

region. Dynamic light scattering results, which cover 11 orders of magnitude in time, 

are consistent with the existence of two distinct kinds of glasses, those dominated by 

inter-particle repulsion and caging, and those dominated by attraction. Samples close 

to the 'A3 point' predicted by mode coupling theory for such systems show very slow, 

logarithmic dynamics. 

To measure the slow dynamics of non-ergodic glassy samples, a simple ensemble av-

eraging method in dynamic light scattering, the echo technique, was developed. By 

rotating the sample continuously many sub-ensembles are probed thus the measured 

intensity correlation function contains peaks whose height follow the sample's true 

dynamics. The technique is described by a simple theoretical model and verified by 

computer simulations. It is shown that the profile of the peak is not affected by sam-

ple dynamics, hence imperfect rotation can be corrected. This technique allow me to 

measure dynamics over a relaxation time range from 1 to beyond 10 4  seconds in rel- 

V 



atively short measurement time. The technique can be used with any light scattering 

setups and thus has large potential in a wide range of applications where the dynamics 

of slowly-relaxing or non-ergodic samples is of interest. 
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Chapter 1 

Introduction 

1.1 Colloids 

Colloid is the term used to describe a class of mesoscopic-sized objects suspended in 

another medium, usually liquids. These objects are nanometer to micrometer in size, 

much larger than molecules. They comes in many forms: macro-molecules (polymer 

chains, DNA,...), solid particles (latex, metal particles,...), liquid droplets (fat, oil, 

surfactant solutions,. . . ), or biological matters (red blood cell, viruses,...). The variety 

of real life complex substances colloids represent makes them interesting in their own 

right for their many practical applications. 

In the view of fundamental physics, colloids are small enough that statistical mechanics 

is relevant, yet they're large enough that their structure can be probed by light, their 

dynamics is slow enough (in the time scale of microseconds and longer) to be followed. 

Therefore colloids are good candidates to study phase behaviour and other fundamental 

phenomena as mesoscopic models of their molecular counterpart. 

1 
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CHAPTER 1. INTRODUCTION 

1.2 Colloids as hard-spheres 

The simplest thermodynamic system other than ideal gas modelled by colloids is a 

collection of N hard spheres of radius R suspended in a liquid (solvent) with total 

volume V. The spherical particles do not interact except for an infinite hard core re-

pulsion. There is only one thermodynamic variable to characterize the system: density 

- expressed as a dimensionless volume fraction 0 = (413)irNR 31V. Hard-spheres 

are athermal, i.e. there is no temperature scale for them since the interaction potential 

presents no energy scale, the only thermodynamic driving force in play is entropy. De-

spite its simplicity, a hard-sphere system shows a complex phase behaviour [1, 2]. At 

low volume fraction, hard-spheres exist as an orderless fluid. In the range of volume 

fraction 0.494 < 0 < 0.545, it develops a crystal phase at 0m  = 0.545 coexisting with 

the fluid phase at of  = 0.494. With q  above 0.545, the whole systems is crystalline. 

Even though there is no theory accounts for the exact values of the freezing and melt-

ing volume fractions of hard-spheres, experiments and simulations [1, 2, 3] agree well 

at the values quoted above. The phenomenon of colloid hard spheres freezing into a 

crystalline state, sacrificing configurational entropy of the system, is to increase local 

entropy of individual particles so that the total entropy is maximized. According to 

equilibrium thermodynamics, this crystalline phase is the most stable phase up to the 

maximum possible volume fraction of close packing q = 	0.74. However, 

the homogeneous crystallization of hard-spheres stops at volume fraction çbg 	0.58 

[1, 2, 41. Above this volume fraction, the system is stuck in a non-equilibrium state 

with fluid-like structure and frozen dynamics [2, 5, 6].  The volume fraction cbg  at which 

this happens is the glass transition for hard-spheres. 
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1.3 Glasses 

1.3.1 Molecular glass 

The term glass' is commonly used to describe materials that have an amorphous ar -

rangement of molecules (particles) just like in a liquid, yet they are solid, i.e. do not 

flow and can withstand finite stress at zero frequency. Glasses can be obtained via 

many pathways, but the most common one is to cool a liquid quickly below a certain 

temperature. During cooling, the heat capacity C at constant pressure shows a sudden 

drop from a liquid-like value to a crystal-like value due to the loss of liquid degrees 

of freedom. The temperature at which this occurs is referred to as the 'glass transi-

tion temperature'. Molecular substances that form glasses are divided into 2 types: 

strong and fragile glass formers depending on the behaviour of their viscosity in the 

temperature range leading up to the glass transition [7]. 

Glasses are non-equilibrium states, where the system prefers to get to the thermody-

namically favourable state (crystalline) but is stuck kinetically forever or for an ex-

tremely long time. This is an interesting state of matter which many studies has been 

devoted to [7]. Studies of non-equilibrium states would shed light on the fundamental 

mechanisms of how they got stuck, and the kinetic path-way to equilibrium. 

1.3.2 Colloidal glass 

When colloids are used as models for molecules, the colloidal particles in suspension 

take the place of molecules and the suspending liquid is considered only as an environ-

ment for the system. There are however major differences of the models and molecular 

systems. First colloidal particles undergo Brownian motion in the bath of solvent rather 

than ballistic motion of molecules in vacuum. Nevertheless, those motions are in the 

time scale much smaller than that of the glass transitions so that the exact nature of 
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each individual microscopic motion is not directly relevant. 

Secondly, colloidal particles are much larger than molecules and in constant exchange 

of momentum with the molecules of the (constant temperature) suspending liquids. 

Thus temperature does not play a very important role in the behaviour of colloidal 

suspensions. The important control parameters are volume fraction (density) and, in 

the case of non-hard-spheres, interaction strength between colloidal particles in unit 

of kBT,  where kB is the Boltzmann's constant and T is temperature. The criterion 

for identifying the glass transition in colloids therefore takes a microscopic approach. 

It is accepted that a colloidal suspension reaches a glass transitions when the particle 

dynamics does not fully relax and homogeneous crystallization stops. 

Practically, there are direct applications in understanding the colloidal glass transition. 

In cases where dense crystals are the desirable products, like green bodies in ceramic 

industry [8],  or fabrication of colloidal crystals for photonic applications [9],  knowing 

how to overcome the glass transition would be useful. In other applications where 

dense, glassy states are desirable, or crystallization and phase transitions are to be 

avoided, like in foodstuffs, cryo-biology, knowing how to enter the glass state quickly 

is of great help. 

1.4 Hard-spheres with attraction 

A natural extension to the hard-sphere system is to add attraction to make it closer to 

molecular substances. There are several ways to realize this experimentally, but the 

most controllable way is by adding non-adsorbing polymer coils to a suspension of 

colloids [10, 11]. The center of mass of a polymer coil of radius of gyration r9  is 

excluded from a zone of width rg  from the surface of each colloid. When two colloids 

come close enough to each other so that their polymer-excluded regions overlap, the 

imbalance in polymer osmotic pressure pushes them together. A model system of this 
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type has been studied extensively over the last decade [12], showing many features of a 

molecular systems: crystallization as first order phase transition, gas-liquid transitions, 

critical point and triple point of gas-liquid-crystal coexistence [13],  gels and glasses 

[14, 15].  Therefore colloid-polymer mixtures were chosen as the experimental system 

of study in this work. 

The colloid-polymer mixture approach to model attraction in hard-sphere systems car-

ries two major advantages. Firstly, the two parameters characterizing the attraction - 

the range and depth of the attractive potential - can be easily fine-tuned experimen-

tally. The dimensionless range of the attraction can be estimated by the ratio 6 = rg /R, 

while its strength Umax is governed by the concentration of polymer. The three param-

eters 6 , , and Umax (at constant temperature) are the control parameters and determine 

the behaviour of the system. Secondly, this system can be implemented as an extension 

to the well-characterized hard-sphere colloids. Thus all experimental methods and data 

interpretation can start from a well-founded reference. 

1.5 How to study them 

There are two main microscopic descriptions that determine the state of matter: the 

structure - arrangement of particles relative to each other, and the dynamics - how 

particles move over time. Studying the structure and dynamics of a system as it crosses 

a glass transition will be very useful in the quest to understand the mechanisms of the 

glass transition. 

From the early time of colloids study, light scattering has been used as a very good 

probe to measure the structure and dynamics of colloidal systems. Light scattering 

techniques essentially probe the magnitude and fluctuation in different Fourier compo-

nents of the system density by shining a coherent beam of light to a sample and detect 

the scattered light as functions of time and scattering angle. The variations of averaged 
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scattered light intensity with scattering angles gives information about the structure of 

the system. The fluctuation of scattered intensity in time on the other hand gives infor-

mation about the movement of particles inside the scattering volume: the dynamics of 

the system. 

Recently, advances in technology enable microscopy to be used widely to look directly 

at microscopic structure and dynamics of colloids [6, 16, 17]. Microscopy is particu-

larly good at studying local structure and single particle dynamics. Despite that, light 

scattering still has certain overwhelming advantages in some areas. First, it does not 

need to resolve each particles, thus allows the use of particles as small as one-tenth of 

the wavelength of light. Secondly, the scattering volume probed is much larger than 

the particle size, thus at any one time, scattered information is obtained from typically 

108  particles, giving rise to very good statistics and low noise. 

1.6 Aims and thesis layout 

This work aims at studying the structure and dynamics of colloidal hard-spheres with 

a short-range depletion-induced attraction near the glass transitions for an experimen-

tal model system: nearly-hard-spheres polymethylmethacrylate (PMMA) colloids and 

linear polystyrene mixtures. The study used light scattering methods to measure the 

static structure factors and dynamic structure factors of samples near the glass transi-

tions of the system, particularly at high volume fraction. 

Chapter 2 lays out the theoretical background needed in carrying out this work and rel-

evant in discussing results. It reviews equilibrium theoretical treatment for the colloid-

polymer mixture, mode coupling theory predictions on the glass transitions in simi-

lar systems, and theories of light scattering methods. Chapter 3 describes in detail a 

new dynamic light scattering (DLS) method, the echo technique, developed during the 

course of this work. This technique allows measuring ensemble-averaged dynamics 
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from non-ergodic samples in relatively short measurement time with improved accu-

racy. Echo DLS was used in conjunction with other methods to obtain dynamics data 

for this work. Chapter 4 describes the methods and procedures used in preparing and 

calibrating samples, and in measuring their structure and dynamics. Chapter 5 shows 

results of the work, discussing their relevance and interpretation along the way. Fi-

nally, chapter 6 summarizes all the main results and understanding of the work, also 

suggests other directions further studies should pursue to gain more insight into the 

physics of the glass transitions. 



Chapter 2 

Theoretical background 

2.1 Colloid-polymer mixtures and equilibrium the- 

ory 

2.1.1 Colloid-polymer mixtures and depletion potential 

Experimentally, colloid-polymer mixtures have been used extensively as a model of 

colloidal hard-sphere with depletion-induced attraction [12]. The attraction arises from 

the depletion phenomenon of non-adsorbing polymer coils from the surface of colloid 

particles first described by Asakura and Oosawa [10].  The centres of mass of any 

polymer coils with radius of gyration Tg  are excluded from a region of width about r9  

from the surface of any colloid particles (Fig. 2.1(a)). When two colloids come close 

enough so that their polymer excluded regions overlap, more free volume accessible to 

polymers is created, increasing the entropy of polymer coils. This creates an effective 

attraction between the colloid particles. The attraction can also be seen as the result of 

an imbalance in osmotic pressure by the polymer coils. 

This 'effective' depletion attraction between two colloid particles of radius R has an 



(a) (b) 
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Figure 2.1: (a) Attraction due to overlapping of polymer-depleting volume around each col-
bid. The center of the polymer coils cannot enter the depleting hashed region around the 
colloid. When two colloids come close together so that their depletion layers overlap, there 
is more room for the polymer coils because the total depleted volume is now reduced. The 
increase in entropy of polymer coils effectively creates an attraction between the 2 colloids. (b) 
Asakura-Oosawa deleption attraction potential. The depth Umax is proportional to the polymer 
concentration in the volume accessible to the centres of the coils and the dimensionless range 
is determined by the size ratio . 

infinite hard-core repulsion at touching, particles' centre-to-centre distance r = 2R. 

The attrative well starts with a minimum at touching and increases to zero at r = 

2(R+r9 ). The dimensionless range of the attractive potential is the size ratio = r9/R. 

In the case of e < 2/\/ - 1 0.15, any one polymer coil can only touch at most two 

colloids at the same time, so the depletion interaction is purely pair-wise. The potential 

is well described [11, 18] by the Asakura-Oosawa form [10] (Fig. 2.1(b)): 

+00 	 forr<2R 

llp Voveriap  for 2R < r <2R + 2rg 	 (2.1) 

0 	 for r>2R+2r9  

where fly, is the osmotic pressure of polymer, Vovertap  is the overlap volume of the 

depleted regions, given by: 

Vovertap - (

1 - 	
3r 	1 1 	r 	1 3\ 3 (l 

+6) 3 - 	 (2.2) 
4R(1+e) 	L2R1+]) 	

.  

When the polymer coils are in a theta-solvent, they are assumed to behave like ideal 
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gas. They do not interact with each other and are confined to the (dynamic) free volume 

available to them, V, which is the volume not occupied by colloids or their associated 

depletion regions. With this assumption, the polymer osmotic pressure is proportional 

to its number concentration r  in Vfree : 

rip = (2.3) 

where nr = 	with N the total number of polymer coils in the sample. 

The actual free volume can be expressed as a fraction of the total volume Vfee = aV. 

The fraction a depends firstly on the colloid volume fraction 0 as each colloid excludes 

polymer from a volume of (4/3)7rR3 (1 + ) 3 . Secondly, since these excluded volumes 

can overlap, a also depends on how much they overlap. Equivalently a is a function 

of all colloid positions which in turn depend on polymer concentration. Therefore a 

is a complicated function of the colloid structure that is not easily obtained. However, 

one can approximate a from q  and from scaled particle theory [19]: 

a = (1 - 0) exp[—A'y - B 7 - C')'3], 	 (2.4) 

where 'y = 	- q) ,  A = 3 + 32  + , B = 9e2 /2  + 33, and C = 
33• 

This approximation completely ignores the effect of polymer on the structure of col-

bids, and thus is not expected to work well, especially at high 0 . Therefore to avoid 

unnecessary uncertainties, most experimental results use the mass concentration of 

polymer in the whole system, c, which is directly determined experimentally, as an 

alternative variable to describe the composition of the system [19]: 

cp - 
 M N 	

(2.5) 

where M is the mass of one polymer coil and V is the total volume of the system. 

Conversion from Cp  to the free polymer concentration is possible using the approxima-

tion of the free volume fraction a above. Note that a is also a function of the colloid 

volume fraction q: 

c = Mpa()rir, 	 (2.6) 



12 	 CHAPTER 2. THEORETICAL BACKGROUND 

or in terms of mass concentration in the free volume: 

free 
CP = c(04. 	 (2.7) 

2.1.2 Equilibrium theory 

It is well-known in experiment [1, 2] and simulation [3] that the freezing and melting 

volume fractions in hard-sphere systems are 0.494 and 0.545 respectively. Equilibrium 

thermodynamic theory [19] accounts for the change in melting and freezing transitions 

when attraction is added, as well as the introduction of a liquid phase for above a 

critical value. The theoretical treatment is described in detail in [19, 20].  Experimental 

observations of equilibrium phases were reported in [13, 15]. This section will only 

summerize the key points of the theory for small relevent to this work. 

Consider a system of fixed volume V containing N hard-sphere colloids and N non-

interacting ideal polymer coils behaving as ideal gas. The polymer is however only 

free to explore the free volume aV available to it. The system is in equilibrium with 

a reservoir containing a polymer solution of chemical potential . Since the number 

of colloids N is fixed but N is allowed to vary, the semigrand partition function 

which integrates over all values of N must be used. 

The semigrand potential that needs to be minimized is derived from the semigrand 

partition function [20]: 

H= —k B Tln 
	

(2.8) 

= F - kBTnra()V, 	 (2.9) 

where F is the Helmholtz free energy for a hard-sphere colloid system that can be 

derived from the appropriate hard-sphere equation of state. 

When colloidal fluid and crystal phases coexist in equilibrium, colloid osmotic pres- 

sure Pc  and chemical potential 	as well as polymer chemical potential - or equiv- 

alently free  have to be equal in the two phases. Keeping nr  constant, Pc  and /i 
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H "R3 can be derived from the dimensionless free energy concentration h(çb) = 	- by 

applying simple changes in thermodynamic variables: 

dh (2.10) 
dO 

3k B T 	dh 
Pc = - 47rR3 [h - c] . 	 (2.11) 

Using different expressions for F for the colloidal hard-sphere fluid and crystal, then 

equating pc  and Pc  of the two phases simultanously, one can find the coexisting volume 

fractions of the fluid and solid phase. Note that from Eqs. 2.10 and 2.11, /-1, and p are 

the slope and the intercept, respectively, of the tangent to h(q). Therefore solving the 

simultaneous equations can be done by finding the common tangent to the two curves 

representing fluid and solid free energies: h1() and h, (0). A common tangent of 

hf(q) between its two minima will reveal the gas-liquid coexisting volume fractions. 

An arbitrary integration constant in obtaining Fc  from the hard-sphere equations of 

state is calibrated so that for pure hard-sphere (i.e. n = 0), the volume fractions of 

coexisting fluid and crystal are 0.494 and 0.545 respectively. Then the same constant is 

used with increasing value of n free  to find the coexisting volume fractions of mixtures 

with polymer. The calculated state points (, flfree) could be converted to the experi-

mental state points (, cr), by using eq. 2.6 and the approximated free volume fraction 

a() (eq. 2.4) with the corresponding 0 for fluid and solid. 

Equilibrium theory predicted that on increasing attraction, the fluid-crystal coexistence 

gap increases for small 6 and regions of coexistence of gas, liquid, and crystal appear 

for large 6 [19].  This was indeed observed by experiments [13, 15] and computer sim-

ulations [21]. Apart from the equilibrium states predicted by equilibrium theory, ex-

periments also reveals that there exist other non-equilibrium states in colloid-polymer 

mixtures when either the colloid volume fraction or polymer concentration is high 

enough [14, 15, 221. 
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2.2 Mode coupling theory (MCT) 

Mode coupling theory was used to explain and predict glass transitions in many sys-

tems. It essentially takes into account the 'coupling', or feedback between different 

modes of density fluctuation. At some critical conditions, the coupling becomes so 

strong that it prevents the fluctuations to decay completely, trapping the system in a 

non-ergodic glassy state. MCT has successfully predicted many features of the glass 

transition in hard-sphere systems [5], as well as many atomic ones [23].  Though suc-

cessful in many areas, MCT is not a very comprehensive theory as to the underlying 

physics of the glass transition [24]. A detailed formalism of the theory is laid out in 

[25, 26]. This section will review the relevant key concepts in my understanding of the 

theory. 

2.2.1 Structure and dynamics 

First let us define the concepts of structure and dynamics of a colloidal system. Con-

sider a colloidal suspension of N identical particles, the centres of which are located 

at r3 , j = 1, 2,. . . , N. One can define a 3N-dimensional vector r   as a collective 

position of all particles in the system. As particles move in time, their positions are 

functions of time t. The density of the system can be defined as delta functions at the 

particle centres: 

	

p(r,t) = 	- r(t)). 	 (2.12) 

Its spatial Fourier transform is 

	

p(q, t) 	e i.rj(t) 	 (2.13) 
j 

The structure of the system in the wavevector q domain can be expressed as the static 

structure factor (SSF): 

S(q) = (p(q)p*(q)) 	 (2.14) 
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where p is the complex conjugate of p, both of which are taken at the same time; and 

the angle brackets are ensemble average. 

For the dynamics of the sample, the normalized collective dynamic structure factor 

(DSF) f(q, r) describes the correlation in density fluctuation after a delay time r: 

f(q,r) = (
p(q, O) p*(q , r)) 

(2.15) (p(q)p* (q)) 

2.2.2 MCT formalism 

For colloidal suspensions at time scales larger than the Brownian time scale, i.e. after 

the colloid particles have lost their initial momemtum to the solvent, the Langevin 

equation of motion for colloids can be reduced to Smoluchowski equation of motion, 

which describes the evolution of the position distribution function P(rN(t)) [27]: 

aP(rN) 
- OP(rN) , 	 (2.16) 

OT
-  

where 0 is the Smoluchowski operator: 

N 

i V Dij(rN).  (v ± - VjU(rN)), 	 (2.17)
kBT 

i,j=1 

with D 23  the diffusion tensor that generally depends on the configuration r   of the 

system and includes hydrodynamic interactions. 

The time correlation function of any two configuration-dependent functions u (rN(t)) 

and v(rN(t))  can be derived from Eq. 2.16: 

(u(0)v(r)) = (u(0) exp(Or)v(0)), 	 (2.18) 

where (9 is the adjoint Smoluchowski operator: 

C9 = 	
(Vj- 
	Vj U(r r)) Djj(rN) . V,
kBT i,j= 1 
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Using p(q, t) and p ( q, t) as n and v, and the Zwanzig-Mori projection operator, one 

obtains an exact equation for f(q, r) in the memory-function formalism (see e.g. [28, 

29,30]): 

f
7'

=Dff q2 f(q,r) + 
	

f(q, t)M(q, r - t)dt, 	(2.20) 
&r o 

where Deff = DO H(q)IS(q) is the effective diffusion constant at wave vector q, and 

the memory function M(q, t) is given by: 

= R* (q)  exp[(l - P)Ot]R(q)) 
(2.21) M(q,t) 	

S(q) 

with R = (1 - P)Op(q), and the projection operator P that projects any function g of 

r   onto a spatial Fourier component of the density: 

p = 	p(q). 	 (2.22) 

Equation 2.20 is an exact equation for f(q, t). However it is formidable to evaluate 

in general the memory function M(q, t) which is a complicated functional of the DSF 

f(q, r). The MCT approach to solving this equation is to approximate the memory 

function. This approach involves two approximations. Firstly, it approximates the 

projection operation (1— T) by a projection onto bilinear products of density. Secondly, 

it assumes the fluctuation in p(q, t) is Gaussian and factorises the four-point correlator: 

(pppp) = (pp) (pp). For more details see e.g. [29].  This approach allows solving 

Eq. 2.20 knowing only the static structure factor S(q). 

Another derivation of MCT started from the Zwanzig-Mori formal results for a full 

system consisting of colloid and solvent particles, then simplified for a colloids by 

introducing a noise term while ignoring the momentum term to give [31]: 

fo

ôf(q,t)ôf(q, 	
= Deff q2  [f(q, r) + 
	

m(q, r - t)dt] , 	(2.23) 
aT 

where m(q, t) is called the memory kernel, and is approximated as a quadratic func-

tional of f(q, r): 

m(q, t) = 	Vq,kf(k, t)f(k - q, t) , 	 (2.24) 
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with 1',k  depends only on the structure of the system and can be evaluated from 8(q). 

Therefore Eq. 2.23 can be solved with only the knowledge of S(q) to obtain f(q, r) 

without any adjustable parameter. This approach with Eq. 2.23 and the approximated 

m(q, t) readily calculated from S(q) is regularly used in the MCT literature for col-

loidal systems. 

The mathematics of MCT seems to obscure the underlying physics. To understand 

MCT a little more, it is better to consider some strip down versions of MCT where 

only the physics remains [24, 32]. This approach also starts from the Smoluchowski 

equation of motion, but with the force term _V j U(rN) derived from the Hamiltonian 

functional H{p(r)} as a functional derivative: 

\ 
_VjU(rN) = —p(r)V3 	

6P
(5H{p} 

p ) 	
(2.25) 

The form of H is approximated as harmonic expansion in density fluctuation, which 

corresponds to the approximation of bilinear product projection of the previous ap-

proach: 

H = - f p(r)p(r')c(r - r')d3rd3r', 	 (2.26) 

where c(r—r'l) is the direct correlation function and its Fourier transform is connected 

to the static structure factor as c(q) = V[1 - S(q) 1 ]/N. These give the equation for 

the density p(r): 
19P (PV6H) 

= Vp + V . D 	. 	 (2.27) 

The first term gives rise to a pure diffusional solution that is recovered in dilute non-

interacting system (H = 0). Schematically, the second term describes changes in p by 

a product of pp (using Eq. 2.26). Similarly, other equations for higher correlation of 

p give a hierarchy of equations for (pp) involving (ppp) and (ppp)  involving (pppp). 

Now the Gaussian approximation is used for the factorisation (pppp) = (pp) (pp), 

which then makes the set of equations of motion closed and solvable. 
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2.2.3 MCT results 

Within the MCT framework, variation in control paramaters of the system, i.e. vol-

ume fraction 0 and interaction potential (shape, range and strength), will change S(q) 

smoothly. Nevertheless, in certain ranges of the control parameters, the solution of 

Eq. 2.23 shows 'bifurcation' of different orders identified as glass-transition singulari-

ties. 

The simplest transition is the fluid-glass transtion found in hard-sphere systems by 

solving for the long time limit of the DSF, also called the non-ergodicity parameter fq, 

fq = urn f(q,T). 	 (2.28) 
T—*oo 

If fq = 0, the system is in an ergodic state, if fq > 0, it is in a glassy state. MCT 

predicts this transition to occur at a critical volume fraction & = 0.52 [33],  which is 

smaller than the experimental value of çb g  = 0.58 [1, 2]. However, the dynamics near 

the glass transition predicted by MCT compares well with experiments [5] provided 

that MCT volume fractions are scaled up by Oglo, 

In systems with short-ranged attraction, the solutions of the MCT equations show 

higher-order singularities and the fluid-glass transition has a re-entrant shape (Fig. 2.2). 

Re-entrance means the glass that forms at high q  in a hard-sphere system melts when 

enough attraction is added, and freezes again if the attraction is even higher. In the 

-U parameter plane (U is the attraction strength), the re-entrant glass transition has 

a '>.' shape [35, 36, 37, 38].  The glass formed at low attraction is arrested due to the 

caging effect of non-overlapping hard-core neighbouring particles and termed 'repul-

sive' glass. The glass formed at high attraction in the re-entrance scenario is however 

arrested by the strong attractive bonds (but still reversible) between neighbouring par -

ticles, and is termed 'attractive' glass. For systems with attraction range e smaller than 

a critical 6, the fluid-repulsive glass and fluid-attractive glass transition lines intersect 

at a crossing point, where the latter continues into the glass region and terminates at an 
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Figure 2.2: Glass transition diagram for the square well attractive system predicted by MCT at 
different attraction ranges, from [34]. For short-range attractions (6 < ), the gel and glass 
lines intersect at a crossing point (c) and the gel line terminates at an A3-endpoint singularity 
(o), at e = the gel and glass lines intersect at an A4 singularity (*). For larger range 6 > , 
the transitions vary smoothly as attraction strength increases. 

'A3' singularity. As is increased, the transition line that separate repulsive and attrac-

tive glass becomes shorter and finally turns into an 'A4' singularity at the intersection 

for = . For 6 > , MCT does not distinguish the two types of glass anymore. 

These features seem to be universal to many short-range attractive systems with dif-

ferent attraction potentials, e.g. adhesive hard-spheres [39],  Yukawa  [39],  square-well 

[36], Asakura-Osawa (AO) [35]. 

With its detailed predictions of the glass transition and dynamics, MCT is well placed 

for comparisons with experimental data. However, for systems with attraction, the ex-

tra control parameter (attraction strength or temperature) makes it difficult to determine 

the corresponding state points between theory and experiments. This is particularly the 

case since MCT underestimates the glass transition volume fraction in hard-spheres. 

It also seems to underestimate the attraction strength of the attractive glass transition 

in colloid-polymer mixtures [37]. Despite the difficulties in quantitative verification, 

MCT agrees well qualitatively with several experiments [37, 40, 41, 421 and computer 

simulations [37, 43].  However detailed experimental data that can be compared with 
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S 	 S 

S 	 S 

to detector 

Figure 2.3: Schematic diagram of a simple light scattering setup. A laser beam is shone 
through the sample at direction k. A detector measures the scattered intensity at an angle 0 
at direction k8 . The intersection of the incident and detection light path defines the scattering 
volume (shaded region). The difference of scattered and incident wavevectors defines the 
scattering wavevector q. 

MCT do not yet exist for the repulsive-attractive glass system. The main part of this 

thesis presents and discusses just such data obtained from light scattering. 

2.3 Light scattering 

This section reviews the key relevant concepts and principles of light scattering that 

are the basis of experimental measurements of this work. Full details of the theory of 

light scattering can be found in e.g. [27, 28].  The procedures used to measure S(q) 

and f(q, i-) will be presented in chapter 4. 

2.3.1 General light scattering 

Let us consider a simple light scattering experiment as in Fig. 2.3. A narrow plane- 

wave, monochromatic beam of light of wavelength ..\ is shone through a colloidal sus- 
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pension. The incident wavevector is defined in the direction of the beam with mag-

nitude 1k, I = 27rn/A, where n is the refractive index of the suspending medium of 

the sample (the solvent). A detector is arranged through some optics so that it will 

detect light in the far field at an angle 9 relative to the incident beam in the scattering 

plane perpendicular to the incident polarization. The detection light path defines the 

direction of the scattered wavevector k 3 . Since the mass of a colloidal particle is much 

larger than the rest mass of the incident photon, energy transfer in scattering events 

can be ignored. So we assume the scattering is quasi elastic, thus 1k5 1 = k21. The 

scattering vector of this experiment is defined as q = k 3  —k2  and q = 4irn sin (O/2)/A. 

Let us first asumme that the particles scatter weakly enough that only single scattering 

is considered (corresponding to the first Born approximation). Then the scattering 

volume - intersection of incident and detection light path - is the only region where 

detected scattered light originates. The magnitude of the scattered field from a single 

isotropic spherical particle j of radius R is 

b(q) = 41r f 
R 

r2 [n(r) - no] 
sin(qr) 

 dr, 	 (2.29) 
qr 

where n3  (r) is the refractive index of particle j at a distance r from its centre and no  is 

the refractive index of the solvent. For monodisperse particles all b3  (q) are the same, 

b3  (q) = b(q). 

The instantaneous scattered field amplitude E(q, t) from all N identical particles in the 

scattering volume is 
N 

E(q, t) = b(q) E e""i (t) , 	 (2.30) 
j=1 

where r3  (t) is the postion of the centre of particle j at time t. Apart from the prefactor 

b(q), E(q, t) is the same as the Fourier transform p(q, t) of the position density of the 

system (c.f. Eq. 2.13). The instantaneous scattered intensity is 

I(q,t) = 	. 	 (2.31) 
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The ensemble-averaged intensity (I) is defined as the average of I(q, t) over many 

different realisations of the system. For isotropic sample, i.e. where the arrangement 

of particles is independent of direction, the ensemble average can be taken over many 

scattering vectors q with the same magnitude. Thus the average intensity can be ex-

pressed as a function of q - the magnitude of the scattering vector. In the case of an 

ergodic sample where particles in the scattering volume can fully explore all possible 

arrangements, the ensemble average is equivalent to the (long enough) time average. 

From now on, 'average' means ensemble average unless explicitly stated otherwise. 

2.3.2 Static light scattering 

The average scattered intensity as a function of scattering wavevector q is given by 

(Eqs. 2.30 and 2.31): 

(1(q)) = [b(q)]2 	E (ei). 	 (2.32) 
j=1 k=1 

It can also be written as a product of an intra-particle interference term P(q), and an 

inter-particle interference term 8(q): 

(1(q)) = N[b(0)]2 P(q)S(q) 
	

(2.33) 

where P(q) is the single particle form factor, essentially the normalized diffraction 

pattern from the refractive index distribution in single particles: 

P(q) = 	

2 	
(2.34) 

and 8(q) is the static structure factor: 

8(q) = 1  E E (e(ri_rk)) . 	 (2.35) 
j=1 k=1 

It is the measure the correlation of particle positions, and is effectively the Fourier 

transform of the pair distribution function g(r) [27]: 

8(q) = 1 + 4pf  r2[g(r) - 1}sln(qr) dr, 	 (2.36) 
 qr 
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where p is the average number density of the sample. 

Theoretically, the Ornstein-Zernike equation can be used to formulate an integral equa-

tion for g(r) [44]. Some closure approximations are needed to solve for 8(q). For 

hard-spheres, the Percus-Yevick approximation [44] and Verlet-Weis semi-empirical 

correction [45] provides an analytical expression for the static structure factor that 

agrees quite well with computer simulation results [28].  In systems of short-range at-

traction, Percus-Yervick approximation and mean-spherical approximation can be used 

to obtained S(q) [36, 44, 46, 47].  For colloid-polymer mixtures where the interaction is 

of AO form, Bergenholtz et.al . [35] used a mapping procedure to an equivalent attrac-

tive Yukawa system to calculate 8(q) as input to MCI. Their results agree well with 

simulation except in the low attraction regime (near hard-sphere like). Comparisons 

between theoretical 8(q) and experiments are hindered mainly because experimental 

8(q) are not accurate for qR > 4 as P(q) decays very quickly for homogenous spher-

ical particles [28]. 

Experimentally, the SSF can be obtained from the average intensity if one knows the 

form factor P(q). The latter in turn can be obtained from the scattered intensity of a 

dilute sample where the positions of particles are uncorrelated so that its SSF 8djj (q) = 

1. From Eq. 2.33, 8(q) of a concentrated sample is obtained from the ratio of scattered 

intensities of that sample and a dilute one of the same particle, provided the incident 

intensity is the same (so that b(0) is the same): 

- (1(q)) Ndz (2.37) 
8(q) - (I(q)) N' 

where the subsript 'dil' refers to the dilute sample. The ratio of numbers of particles in 

the same scattering volume can be replaced by the equivalent ratio of volume fractions. 
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2.3.3 Dynamic light scattering 

To measure the dynamics of the system, we need to measure how the particles move 

in time. Eqs. 2.30 and 2.31 show that as time progresses, the positions of particles 

change, then the instantaneous scattered field and intensity also change with time. 

The correlation of the instanstaneous field E(q, t) with itself at a later time t + r is 

a measure of the density time auto-correlation function. Its normalised function is 

called 'intermediate scattering function': 

9 (1)(q,7) 	
(E(q,O)E*(q,r)) 

(1(q)) 
(2.38) 

Knowing that E(q, t) oc p(q, t), Eq. 2.15 shows that g(l)(q,  ) is the same as the DSF 

f (q, r). Experimentally one measures the scattered intensity I(q, t) and constructs its 

time correlation function - the intensity correlation function (ICF): 

9
(2)(q,7) = (I(q,O)I(q,7-)) . 

	 (2.39) 
(1(q)) 2  

The DSF can be obtained from the ICF and the Siegert relation [28]: 

9(2)(q, r) = 1 +,32  [f (q, )]2 	
(2.40) 

where 92  is the intercept of the correlation function and depends on the specific DLS 

instrument. Because of the normalization condition f(q, 0) = 1, the intercept 62  can 

be obtained from the ICF: g(2)(q,  0) = 1 +,62. 

It should be noted that the Siegert relation only holds if the scattered field E(q, t) is 

a zero mean random Gaussian variable [28, 48], i.e. if the averages in Eqs. 2.38 and 

2.39 are ensemble averages [49].  Therefore it is essential that the measured ICF is an 

ensemble-averaged quantity so that Eq. 2.40 can be used to obtain the DSF. 

For a fast-relaxing equilibrium sample, any correlation in density fluctuation vanishes 

after some time Tr  which can be characterized as the relaxation time. So a DLS mea- 

surement at the same scattering vector q will observe many independent realizations 
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of the system if the measurement time is much longer than Tr•  Then the time-averaged 

correlation function is the same as the ensemble-averaged one. The correlation func- 

tion is also independent of starting time. Such systems are called ergodic and have 

f(q,00) = 0. 

However, in non-equilibrium systems, some components of the density fluctuation do 

not completely relax, or do so extremely slowly. In these cases, f(q, r) is finite for 

very large T, and a time-averaged correlation function will not sample all realizations 

of the system during the measurement time at one q. Ensemble average of isotropic 

systems can be taken by averaging measurements at different scattering vectors q of 

the same magnitude. Experimentally averaging over many different q is not a trivial 

task, especially when one wants to obtain dynamical information at large T at the same 

time. Many different experimental schemes have been developed for this purpose and 

each has its own advantages and disadvantages. During the course of this work, a 

different ensemble averaging scheme was developed and will be discussed in detail in 

chapter 3. 

2.3.4 Light scattering on turbid samples 

So far the theory on light scattering has been discussed only under the assumption that 

the sample is weakly scattering and only single scattering events are significant. How-

ever, many colloidal systems are turbid, especially at high concentration. In the case 

where the sample is significantly turbid but multiple scattering does not overwhelm-

ingly dominates, cross-correlation techniques in some special scattering arrangements 

[50] can be used to extract the single-scattering static and dynamic information. One 

of those arrangements is the two-colour light scattering, the detailed descriptions and 

analysis of which was described in [51] and its modifications used in this work in 

chapter 4. Here I just summerize relevant results. 

Two laser beams of different wavelengths, says blue B)  and green \G)  and two 



function (ICF): 

g(2) 	 q, 	q, (qy) = (IB (0)Ia(Y)) 

(Ifi(q)) (Ia(q)) 
(2.42) 
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Green detector 	Blue detector 

Figure 2.4: Schematic setup of the two-colour light scattering arrangement. The incident and 
detection paths of the two colours AB and AG are separated by 2cr such that the scattering 
vectors qB and qG are identical, both in magnitude and direction. This ensures only single-
scattering events on each colour are correlated and contribute to the time-dependence of the 
cross-correlation function. 

detectors with filters are used essentially as two separate scattering experiments si-

multanuously on the same scattering volume at different scattering angles for each 

wavelength. The incident and scattered beams are arranged such that the scattering an-

gles °B  and OG  are different but the scattering vectors are identical, i.e. qB = qG  = q. 

This is achieved by separating the incident and detection beams of the two colours by 

an angle 2a (Fig. 2.4) so that OG = 0 + 2cr, 0B = 0 - 2a, and oz satisfies 

ta 	
-B 

n 	
.A 

a= 	tan(). 
'G + '\ B 

(2.41) 

The outputs of the two dectectors are cross-correlated to give the intensity correlation 

where ('B)  and (Ic)  are the average scattered blue and green intensities respectively. 

In this arrangement, it can be shown [51] that only single scattering events in both 

colour probe exactly the same Fourier component of the density fluctuation and thus 
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they are correlated. All other, multiply-scattered, light does not probe the same compo-

nent in both colours and is completely uncorrelated and thus does not contribute to the 

time-dependence of the cross-correlation function g(2)  (q, r). The ICF can be expressed 

[51] in terms of the normalised single scattering dynamic structure factor f(q, r) by 

the Siegert relation (Eq. 2.40): 

g 2 (q,r) = 1 + 	[f(q,7- )] 2 , 	 (2.43) 

where the intercept now is I32/3LS.  The factor 02  has the same meaning as before 

and depends on the ratio of detector area and coherence area for single scattering and 

also on the overlap of the scattering volumes by each colour. This factor is instrument 

related and dependent on scattering angle but not on the sample used. The extra factor 

i3L reflects the amount of singly-scattered intensities, (I) and (is), relative to the 

total (singly and multiply) scattered intensity: 

2 
I3MS = ( IB) (IG) 	

(2.44) 

Knowing ,3M  will allow extraction of the singly-scattered intensity (IS (q)) from the 

total measured intensity. Hence a proper static structure factor can also be obtained 

from two-colour light scattering for turbid sample [52]. 



Chapter 3 

Echo DLS 

3.1 Introduction 

The main characteristic of glassy states is their partially frozen dynamics. In fact, the 

definition of a kinetic glass transition is when the long time limit of the dynamic struc-

ture factor becomes positive, f(q, oo) > 0. In these cases, since the density fluctuation 

at a particular fixed wavevector q does not fully relax, the time-averaged intensity 

correlation function (ICF) at that q explores only a subsection of the configuration 

phase space and therefore does not measure the true dynamics [49]. Therefore to study 

dynamics of non-ergodic systems, or those with very slow relaxation, one needs to 

average over many realizations of the system. This can be achieved by averaging over 

many scattering vectors q of the same scattering volume or at the same q for many 

scattering volumes. 

A good ensemble averaging method is useful not only in study of colloidal glassy 

dynamics encountered in this work, but also in various other fields [53].  These include 

aging in many soft systems [54, 55, 56, 57],  restructuring of granular materials [58, 59] 

to list a few. Other scattering techniques like X-ray photon correlation spectroscopy 

also need ensemble averaging to study the dynamics of this class of materials. 

pit 
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However, practical ensemble averaging is not trivial. Brute-force method of averaging 

over many measurements at different q takes a prohibitively long time to complete. 

For example, a time-averaged measurement of g(2) (q, T) of up to a maximum delay 

time Tmax  requires measurement time of the order of at least Tmax•  Many hundred such 

measurements need to be carried out to obtain a statistically meaningful ensemble av -

erage. This pushes the total measurement time to the order of l000-r,,,,,,.Therefore 

to measure dynamics of a non-ergodic sample up to Tmax = 1000 s, normal brute-force 

ensemble averaging method requires .' 10 6  seconds (12 days) of measurement time. 

Several other methods have been developed to overcome this difficulty. They however 

have some limitations on the light scattering arrangements or types of samples that 

can be used. The Pusey-vanMegen method [49] utilizes the relationship between time-

and ensemble-average intensity to obtain the proper dynamics from time-averaged ICF. 

This method requires that the intercept of the measured ICF in Eq 2.40 be ideal 02 = 

1. This is a difficult condition in conventional DLS setup and impossible in cross-

correlation schemes [50, 51, 60] as the intercept i3? is always less than 1 because of 

multiple scattering. Multiple speckle methods [61, 62, 63] measure time-averaged ICF 

at many different q of the same magnitude simultaneously. Since the arrangement of 

the scattering vectors q spreads out in space, these methods prevent the use of special 

arrangements like two-colour or 3-D DLS which require a strict spatial constraint on 

the incident and scattered beams. 

We have developed a new ensemble averaging method that requires simple hardware 

design, yet is robust and produces good data the quality of which can be monitored. 

This technique achieves ensemble averaging by rotating the sample continuously so 

that averaging is done over many different wave-vectors of the same magnitude. Be-

cause of the rotation, the correlation function decays quickly. However after the sample 

completes an exactly whole number of revolutions, it comes back to the same orien-

tation where any de-correlation due to rotation vanishes and correlation due to the 

dynamics of particles inside the sample recovers, where an 'echo' in the correlation 
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function is detected, similar to those obtained in shear experiments [64]. The shapes 

of echoes in the correlation function can be used as a measure of rotation quality and 

also to correct for effects of imperfect rotation. As will be discussed in section 3.4, the 

new method has features in common with the interleaved sampling technique [65]. 

First a simple model of this technique will be analysed in section 3.2, predicting the 

shape of echoes which is shown to be independent of the dynamics of the sample. 

Results from simple simulations of the model are also presented, showing very good 

agreement with theory. A common practical problem, imperfect rotating speed, is also 

analysed and shown that it can be corrected for using the areas under echoes. Then 

in section 3.3 I will describe the implementation of the technique and methods of data 

analysis. Finally, section 3.4 will end this chapter by discussing the advantages and 

disadvantages of the technique as well as its potential applications. 

3.2 Theory 

3.2.1 Theoretical model 

Instead of rotating the sample in a fixed light scattering setup, let us consider an equiv-

alent set up where the incident beam and detector rotate about a fixed cylindrical scat-

tering volume scattering volume of radius R, containing N particles (fig. 3.1). The 

incident light beam enters the sample at direction k2  and a detector collects photon 

counts at direction k in the far field. Both vectors rotate about the z-axis of the sam-

ple but are fixed relative to each other so that the scattering vector q(t) = k3  - k2  is 

constant in magnitude but rotates about the origin with constant angular speed w. 

The scattered field and intensity defined by Eqs. 2.30 and 2.31 at the detector at time t 
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q(t, r) 

q 

Figure 3.1: A model of N particles in a cylindrical scattering volume of radius R. Incident 
beam (in direction k2 ) and detector (in direction k 8 ) rotates at constant angular speed W. The 
scattering wave-vector q(t) therefore also rotates with time but fixed in magnitude. The dif-
ference Aq of scattering vectors at times t + r and t rotates in time along with the scattering 
vector q(t) and its magnitude depends on r: /q = 2qsin(wr12). 

are functions of t and the (time-dependent) scattering vector q(t): 

N 

E(q(t), t) = b(q) E eig(t).,j(t) , 	 (3.1) 
j=1  

I(q(t),t) = E (q, t) E* (q, t) . 	 (3.2) 

The measured unnormalized field correlation function at delay time r, averaged over 

sufficient time, i.e. over many rotations: 

G ( " (q, 'r) = (E[q(t), t]E*[q(t + r), t + ]) 	 (3.3) 
N N 

= 	(e (t)ni(t) e_ t+T)(t+T) ) t  . 	(3.4) 
j=1 k=1 

Since the vectors q(t) and q(t + r) are rotating many times around the scattering 

volume, sampling many independent Fourier components, the time averages (... ) t  in 

the above equations are equivalent to ensemble averages over many scattering vectors 

q. The order of this summation is not important, therefore the explicit dependence of 

q in time t will be omitted in places for clarity. 
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One can define a vector Eq as the difference between the scattering vectors at time 

t and t + r: q(t, r) = q(t + r) - q(t). For a specific value of T, Lq is fixed in 

magnitude and rotating in time with angular speed w (fig 3.1). The correlation function 

in Eq. 3.4 now becomes: 

G'(q, r) = 	E (e [ri(t)_rk(t+T)]e_z..(T).ri(t+T)) 	 (35) 
j 	k 

For values of r that are exact multiples of the period of rotation, r = nT, n = 

0, 1, 2,... the scattering vectors q(t) and q(t + r) are exactly the same, therefore 

q(nT) = 0. Then the second exponential in Eq. 3.5 is simply one. The correlation 

function at these values is exactly the same as an ensemble average over all q(t) of the 

dynamic structure factor: 

	

G'(q,r = nT) 	(e[ni(t)_v1t+T)]) . 	 (3.6) 
j 	k 

For i-  away from but close to nT, i.e. sin(irr/T) << 1 so that /q is small, the factor 

exp(—ig(r) . rk(t + r)) is less than one. It reduces G( ' ) (q, ) from the value it 

would have if there were no rotation. In other words, the exponent in equation (3.5) 

that contains zq gives rise to a decay in G' (q, r) due to rotation of the sample. For T 

far enough from nT, i.e. sin(irr/T) 1 , the fields at q(t) and q(t+) are independent 

of each other, therefore Eq. 3.4 is a product of 2 field averages so equal to zero. 

Ideally, equation (3.5) allows us to measure the ensemble-averaged correlation func-

tion at delay times equal to multiples of rotation period (T = nT) without the need to 

know the effect of rotation on the functional form of G' (q, r). However, it will be 

clear in section 3.2.3 that this knowledge is essential for further understanding of the 

technique and more importantly for correcting imperfection of the rotation in experi-

mental conditions. 

We can split the sum in equation (3.5) into 2 terms: one with j = k and one with 
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j 0 k: 

G(l)  (q, T) = 
	

(eirk(t)_rk(t+T)]e_rk(t+T)) + 

k 	 k jOk 

(3.7) 

(e 	rk(t)_rk(t+T)}e_zA.r(t+T)) + 	: i: (e(t)i(t)e_(t+T)i1(t+T)) 

k 	 k j0k 

(3.8) 

Let us consider first the case of dilute non-interacting particles, where positions of 

different particles are uncorrelated. Thus the 2 phase factors in the second sum are 

independent and can be separated into 2 averages, each of which is an average of 

random phase factor thus equals to zero. Therefore only the first sum remains in the 

correlation function: 

G' (q, ) = ( ei rk(t)_rk(t+r)]e_z 	rk(t+T)) . 	 (3.9) 

On changing the index k, any changes in the first phase factor exp (iq• [rk (t) - r,, (t+i- )]) 

depend only on the intrinsic motion of particle k, while changes in the second phase 

factor exp(—iq . rk(t + T)) depend only on the position of particle k. If it is assumed 

that there is no centrifuging and external field, then the motion of any particle does 

not depend on its position. These two phase factors thus change independently with 

respect to k. The sum can then be separated: 

= 	( 	(t)ri(t+r)I 	 . 	(3.10) 

By the same argument, the motions of particles at length scale 11q (the first sum) do 

not depend on the distribution of their positions over length scale 1/Lq (comparable 

to the scattering volume size) on going from one scattering vector q to the next. The 

assumption here is that Lq << q, i.e. r is close to mT. Note that the second sum 
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depends on the distribution of particle positions and not the structure of the sample as 

the first. Therefore the ensemble sum can also be separated: 

(q, 
1 

N ( 
	

e.[rk(t)_rk(t+T)1) 

( 	

e'(t+T)) 	(3.11) r) = - 

1 - 	:i: 	 (t)-rk 	 (e_r1(t+T)) . 	(3.12) 
- 7 

k 

This indicates the separation in the correlation function between sample dynamics and 

rotation of the sample. The calculation so far assumes independent particle positions. 

However, for strongly interacting systems where particle positions are correlated, the 

same result still holds. This can be proved by replacing independent particles in the 

above calculation by small regions of the sample between which there is no correlation 

in configuration. Then the scattered phase factor from different regions are indepen-

dent and can be separated. It must be assumed that these 'correlated' regions are very 

small compared to the scattering volume. This assumption is already implicit in the 

derivation of the Siegert relation (Eq. 2.40) for concentrated systems [28, 48]. 

It is shown above that the correlation function (Eq. 3.5) can be factorized into 2 terms 

(Eq. 3.12): one depends on the dynamics of the sample we want to probe, the other 

depends only on the rotation of the sample with three assumptions. These are (i) the 

rotation is slow so that there is no centrifuging and there is no radial external field 

acting on the particles. (ii) The regions in which particle positions are correlated are 

very small compared to the scattering volume. (iii) The separation is valid only for r 

close to nT, i.e. sin(irr/T) < 1. 

From Eq. 3.12, the normalized field correlation function is: 

g(l)(q, ) - (
j,k e.[ri(t)_rt+T)i) 

x 
- (1:m,n ei11m(t)_1n(t)1) 

(>I e 
	.r(t+r)) 

N 
(3.13) 

= f(q,r) x 
	

(3.14) 
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where the first term is the ensemble averaged dynamic structure factor (DSF) as if 

the sample were not rotating, f(q, r). This measures the dynamics of the sample at 

wave-vector q and is the quantity of interest. The second term, g(q, r), reflects the 

rotation of the sample. Averaged over many speckles with the assumption that the size 

of the scattering volume is much larger than any correlation length in particle positions 

of a homogeneous sample, this term can be rewritten as an integral with a uniform 

distribution P(r) of particle position r: 

1 
g ') (q,r) = - 

N 	
= f e_irP(r)dr 	(3.15) 

where the integral is evaluated over the scattering volume. Since r is uniformly dis- 

tributed in a circle of radius R, the probability distribution function can be written in 

terms of a radial and an angular component: 

P(r) = P(r)P(0) = 
 

27r R2 
(3.16) 

The scalar product of Aq and r in the same polar coordinates: Aq r = Aqr cos 0. 

So, 

R 	3ir/2 

g(q, r) =  
fr=O f'oh=-7r/2 	

(3.17) 
 irR 
3 7r/2 RV  

/=0 

f
=_ir/2 

re c0drdc5 	 (3.18) 

1 	R 

	

= 	
/=0 

f 
=
7r/2 

	

—7r/2 

r (e_0 + e+ 	cos  ) drd 	(3.19) 

R,, 	ir/2 

I f0=0 

	

r cos(Lqr cos çb)drdq 	 (3.20) 
Jr=0  

Evaluating this integral with Maple gives: 

	

g(1) (q, 	
- 2J1 (LqR) 

(3.21) 
- LqR 

where /q = 2q sin(w12) and J1  (x) is a first order Bessel function of the first kind, 

so that 2J1(x) 	.-oc 	(4)k 	2k 
x = Lk=0 k!(k+1)! () 
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Let us make a change of variables to more intuitive quantities. Put u = qR, which 

represents the dimensionless wave-vector of the light scattering experiment with the 

size of the scattering volume set as the length scale; and 9 = 2 sin(wr/2), which is 

a measure of the angle rotated by the sample after a delay time T. Then LiqR = 

2qR sin(w/2) = u'O. The expression for the rotational correlation in Eq. 3.14 be-

comes: 

gl)(q,y) - 2Ji (u9) 
(3.22) 

- u'9 

One can recognize that this expression has the form of the Airy function of the diffracted 

field from a circular opening in diffraction optics. However here the main variable 9 is 

the (measure of) rotating angle rather than wave vector since we look at correlation of 

field at one specific wave-vector while rotating the diffracting object. 

It should be noted that in real equipment the precise functional form of9 7()  depends on 

the geometry of the scattering volume which is essentially determined by the profile 

of the incident and scattered beams. Nevertheless, the separation of sample dynamics 

and rotation in Eq. 3.14 still holds as it makes no assumption on scattering volume 

geometry. 

The Siegert relation (equation 2.40) and the factorization of the correlation function 

(equation 3.14) give the experimentally-observed ICF: 

= 1 + fi2 [f (q, Y)]2 [g(')(q  r)]2 
	

(3.23) 

Let us look at some properties of the rotational factor 19(1r ) (q T)] = (2J1 (u19)/(u19)) 2  

via the ICF of a rotating rigid sample whose f(q, r) = 1 for all T. The corresponding 

ICF is 
(2) 	 f2Ji(u'9) 

g gj (q,T) = 1 + 	
) 2 

(3.24) 

Since this is a function of 192  oc sin 2 (.r/2), it is a periodic function with period 

wr = 27r and has main maxima of 2 at r = nT, which correspond to exact n complete 
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Figure 3.2: Intensity correlation function of the model with u = 4007r. The tine was calculated 
from theory by equation 3.24. The points are results from a simulation of a rigid (crosses) and 
a fluid (circles) sample. The inset with enlarged vertical axis shows subsequent minima in the 
pattern. 

revolutions of the sample with period T. Away from the maxima, the function decays 

very quickly to a series of decaying local maxima very close to zero. Figure 3.2 shows 

a plot of g (2)
, (q, r) at the main peak near r = 0. Figure 3.3 compares the theoretical 

form to an experimental zero-th peak obtained from an experiment described in figure 

3.14. 

For typical DLS arrangements with q 10fLm 1  and R 	100pm, i.e. u -' 1000, the 

width of the main peak is of the order of a thousandth of the period, which corresponds 

to wr 27r/1000 << 1. Therefore the approximations that lead to the separation of 

particle dynamics and rotation components in equation (3.14) still hold for values of r 

within and even well beyond the main peak. 

The decay of the ICF at 'r = 0 can be explained with the following physical picture. 

When the sample is rotated, a random speckle pattern is moving across the detector. 

The intensity measured at the detector thus fluctuates. Each speckle in that pattern has 
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Figure 3.3: Intensity correlation function decays quickly due to rotation of sample, obtained 
from an echo DLS experiment (crosses). The higher part of the peak agrees well with the 
theoretical form (continuous line) with intercept of 32 = 0.277 and u = 1250. The discrepancy 
near the base line could be due to slight smearing and different scattering volume geometry. 
The full data for this sample is shown in figure 3.14. 

a certain size and intensity both of which vary randomly from one speckle to the next, 

hence the decay from the maximum at r = 0. The width of this peak is a measure of 

the angular size of the speckles, which relates to the size of the scattering volume R 

and the magnitude of the scattering vector q. 

The interesting phenomenon is when the sample completes an exact number of revo-

lutions. At this point the positions of all particles in a rigid sample come back exactly 

as at time t = 0, thus the intensity pattern of the speckles repeats. This corresponds 

to other complete correlations, hence maxima in g(2)  at wr = 2n7r or r = nT. For a 

non-rigid sample, any changes in particle positions after n complete revolutions of the 

sample are simply due to intrinsic fluctuation of particles but not due to the rotation of 

the sample. Therefore there is a peak in the correlation signal after exactly every round 

trip of the sample, and the main peaks in the ICF are called 'echoes'. 
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3.2.2 Computer simulation 

I also did two computer simulations of 10 4  non-interacting point-like particles, one 

with a rigid sample, the other with a dilute fluid sample. All particles resided in a cube 

of side 2R with periodic boundary conditions. Only particles inside the inner cylinder 

with its axis along z and radius R, were used in the light scattering calculations to 

ensure directional invariance in the scattering plane while the scattering vector rotated. 

Scattering parameters were chosen to be similar to real experimental DLS conditions. 

The scattering vector q with constant magnitude q = 4007r/R was rotated in the 

x-y plane about the z-axis with period T in time steps s = T/50000. Every time 

step, the scattered intensity was calculated with equation 3.2, and for the fluid sample 

each particle was moved one step in a 3-D random walk with step length b = 3.2 x 

1O 6R to simulate Brownian motion. The normalized auto correlation function of the 

series of intensities obtained was calculated. Several tens of correlation functions of 

different initial configurations were averaged to reduce the random noise in the average 

intensity. The ICFs obtained were then compared to theoretical prediction (fig. 3.2). 

The size of the step length b controlled how quickly the dynamics of the sample decays. 

For a 3-D random walk Brownian motion, the mean square displacement of particles 

after time 7 is (zr2) = b2r/s, so that the expected intensity correlation function is 

[27]: 

/ 	\ 
9 2)(q, r) = 1 + exp 	

3s 
b2q2r ) 

	
(3.25) 

The peaks of all echoes obtained in the fluid simulation follow the expected dynamics 

described in Eq. 3.25 extremely well (Fig. 3.4). Fig. 3.2 shows a comparison between 

the theoretical form of the echo (Eq. 3.24) and results from computer simulation for a 

rigid and a fluid sample. It shows a remarkable agreement up to the second maximum 

away from the main peak. Fig. 3.5 shows the 1st, 2nd, 7th and 10th echoes from 

the dynamics of the simulated fluid sample. The correlation function from the rigid 
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Figure 3.4: Intensity correlation function of the simulated echo DLS of a fluid (continuous line) 
and the predicted dynamics from its Brownian motion (dashed line) showing that the peaks of 
the echoes follow the dynamics of the sample. 

sample was scaled so that the maxima of the peaks from 2 samples are the same. 

The factor used in the normalization is the actual particle dynamics since Lq = 0 at 

= T, 2T, 7T, lOT. The good agreement in shape of the echoes from the fluid sample 

and the scaled correlation due to rotation verifies that the dynamics of particles does 

not affect the shape of the echo and can be separated as in Eq. 3.14. 

3.2.3 Imperfect rotation 

One important assumption of the theoretical treatment above is that the angular speed 

of the rotation remains strictly constant during the experiment. This requires an abso-

lutely smooth and stable rotation, which in practice is rather difficult to achieve. 

The ideal functional form of the echo peaks worked out above assumes the scattered 

intensity measured at time t is the ideal intensity 'id  at the angular position 0 = w0t. 
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Figure 3.5: Different echo peaks from simulation of a fluid (circles) and a rigid (crosses) sample 
with u = 4007r. The correlation function of the rigid sample was normalized to the maxima of the 
fluid peaks. The good agreement of the shape of the peaks shows that the particle dynamics 
does not affect the correlation due to rotation as in equation (3.14). The continuous line is 
the expected exponential decay from the Brownian motion of particles in the simulation, which 
hardly decays at all over the narrow range of each peak. 
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The ideal ICF obtained from an experiment of duration T is: 

	

(2) 	1 	7- 

9id (7-) = (1)2 f 1d(t)Iid(t + r)dt. 	 (3.26) 

However, for a realistic rotation, the angular speed is not constant but varies with time: 

w(t) = w0  + 6, (t), where 6,, (t) is the limited fluctuation of w. As a result, the intensity 

measured at time t is now not the same as in the ideal case but the same as the ideal 

intensity at a shifted time t': 1(t) = Id(t') (Fig. 3.6(a)). Therefore a particular pair 

of intensities measured r apart appears to be those of the ideal case but with slightly 

different delay time 7 - 8: 

I(t)I(t + 7•) = Id(t)Ijd(t + T  - 8(t, r)), 	 (3.27) 

where 8 is a limited function of initial time t and delay time T (Fig. 3.6(b)). If the 

fluctuation in angular speed is limited about a fixed mean, it is possible to assume that 

8 fluctuates about zero in time within a small range 8max•  It is also reasonable to assume 

that such fluctuation in speed is slow, i.e. its time scale is much longer than the time 

scale of one speckle passing the detector (typically less than 10 3T). Therefore, for 'r 

less than this limit, i.e. for r within the main peak of the zeroth echo, 6max is very small 

(fig. 3.6(c)). In fact, 8(t, r = 0) = 0 exactly for all t. This means the shape and size of 

the zeroth echo is not affected significantly by any limited fluctuation in angular speed, 

i.e. g(2)(y  0) = g(). 

For 7 > T, 8 can be significant. From Eq. 3.27, the ICF taken over a long time 'J>> T: 

J I(t)I(t + i- )dt 	 (3.28) 7-  

	

g(2)(y) 
= 	

1 

(J)2T 

1 	7-  

(I) 2 T o 

	

= 	J Id(t)Id(t +r - 6(t, r))dt'. 	(3.29) 

The integral in Eq. 3.29 can be split into many integrals over sub-domains F, each 

of which comprises many small intervals in t such that 6(r, t) in each domain has 
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Figure 3.6: Sketches of quantities involved in imperfect rotations of a sample. (a) As the 
angular speed fluctuates, the angular position of the sample, or equivalently scattered intensity 
measured, at time t is the same as that in the ideal case but shifted to t', so that ideal delay 
time T is effectively shifted by a random limited amount 5. (b) The random shift S in delay 
time for a particular i-  also fluctuates with initial time t. The collection of time intervals when 
S(t, r) = 8,., constitute the domain r. (c) The maximum amplitude of fluctuation S increases 
with delay time r from zero to a limiting value. It is assumed that the time scale of this increase 
is much larger than echo width but smaller than period of rotation. 
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approximately the same value 6 (Fig. 3.6(b)): 

1 	
FJ 1d(t) lid (t + T - ön)dt'] . 	(3.30) g (2) fr) _ 	I L r 

(j) 2 j
11  

Provided that the total measurement time T is long enough, each domain rn  contains 

intensities from many speckles, thus the integral over I'n  represents an ensemble av-

erage. Then by comparing to equation 3.26, it is recognized that the integral inside 

the sum is proportional to the ideal ICF with r shifted by 8. Thus Eq. 3.30 can be 

re-written as: 

'ç 	'Yn (2) 
g 2(r) = L. --gid( - 

n 
(3.31) 

where 'yr, is the total length of domain F. Thus the factor 'y/T is essentially the 

probability of finding 6(t, r) having a value 6. Therefore, Eq. 3.31 in the continuous 

limit 'y —* 0 is in fact a convolution of the ideal correlation function g) ('r) with the 

probability distribution 'y(6)  of 8: 

g2(r) = 	 gid 	— 
	 (3.32) 

The effect of this 'smearing' of the correlation function means the apparent maximum 

of the main peak will drop and the width increases. However, it can be shown that the 

area under g(2) (T) is the same as that under gj (f). Let us define the area under the 

echo A as the area between the echo peak and the baseline g(2)  () = 1 in the vincinity 

of the echo peak (Fig. 3.7): 

A = 	[g(2) (T)- 1]dr 	 (3.33) 

= _+fg(2)(r)dr, 	 (3.34) 

where 1 is the integration interval around the echo peak and is large enough that the 

value of [g(r) — 1] is zero at the limits even if it is shifted by +6max . Rewriting 
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I- 

Figure 3.7: Area under an ideal echo peak (continuous line) is unchanged if the integration 
interval Q shifts a small amount J. The effect of 'smearing' is that the measured (2)  (r) (dashed 
line) has a lower peak and increased width but the area is the same as that of the ideal peak. 

9 (2)(y) in terms of the convolution of the ideal ICF (Eq. 3.32), one obtains a double 

integral 
P 

	f
+5max

A=_+ 	dr 	d8g)(r-8)'y(8) . 	 (3.35) 
2 	5max 

A change of variable v = - 6 gives: 

A = _c+f gJ(v)dvj 	'y(8)d6. 	 (3.36) 
JMaMx  

Since gj (r) approaches a constant of 1 for r at the limits of Q, the new limits of Il' 

do not affect the first integral, thus it can be separated from the second. The second 

integral is unity since 'y(6) is a normalized probability distribution function. Thus the 

area under the real echo peak A is the same as that under the ideal echo, independent 

of any smearing effects. 

A = - + J (2)  
id (v)dv = A 2d. (3.37) 

It has been shown in section 3.2.1 that the measured correlation function can be factor- 

ized into the particle dynamics and the rotation correlation, so that Eqs. 2.40 and 3.14 
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give: 

g(r) -1 = 	 (3.38) 

	

id 	 r 

where 32  is the usual intercept in the Siegert relation. 

Combining Eqs. 3.33, 3.37 and 3.38, the area under the n-th echo measures the dy-

namics free of interference from the smearing effect of imperfect rotation: 

A n  == L 
	

2[f(q,y)]2[g(l)(y)]2. 	 (3.39) 
T 

Since the particle dynamics f(q, r) is much slower than the time scale it takes for the 

rotation to sample one speckle ('-' 10 3T), f(q, r) is constant in the range of the echo 

width, f(q, ) = f(q, r) where r is the position of the n-th echo maximum. Thus 

[f (q, r)] 2  can be taken out of the integral: 

A.= 
	

J 02 [g ( 1 )(y)] 2 
	

(3.40) 

where the remaining integral is in fact the area under the zero-th echo. Therefore the 

real dynamics simply scales the area under an echo by a factor of [f (q, r)] 2  relative to 

the zero-th echo. 

3.3 Implementation 

In this section I will describe the implementation of experimental arrangements and 

data analysis for this technique. The DLS setup employed here is two-colour DLS [5 11 

to extract single scattering information from turbid samples. However, if conventional 

DLS were used, all following details still hold with a replacement of the two colour 

intensities by the same single colour intensity. 
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3.3.1 instrument setup and data acquisition 

The construction of the sample holder was very important to obtain a smooth rotation 

of the sample (Fig. 3.8). Samples were put in cylindrical glass cells with outer diam-

eter 7mm. The sample cell was fixed into a brass inner sample holder by centering 

screws on top and bottom. The inner holder rotated with very little friction inside a 

nicely fit Teflon outer holder. The inner holder was driven by a DC servo motor (Faul-

haber DC-Minimotor 2444S with encoder feedback, best resolution at ±0.18°/rev) via 

2 perpendicular pairs of pins, one pair on the holder and the other fixed to the motor 

(Fig. 3.8). This 'pin-driving' mechanism decoupled any wobbling between the motor 

and the sample, making it unnecessary to line up the motor axis exactly to the optical 

axis of the DLS setup. The construction of the sample holder alone could ensure the 

sample was at the centre of the setup, which needed to be checked only once. 

Scattered light in the far field was detected by photo-multiplier tubes, and scattered 

intensity 1(t) as a function of time t was measured by counting the number of photon 

pulses produced by the detector in consecutive time intervals [t, t + s], where the length 

of this interval s, called sample time, can be set prior to the experiment. Therefore 

intensities were realized as discrete numbers of photon counts in discrete unit of sample 

time s, which is typically a few tens of microseconds. The cross correlation function 

of the blue intensity - 1B (t), and green - IG(t), was constructed as: 

NIB(j)IG(j + k) 
g2(k) 

= 	N 
(j=1 

IB(j)) (i IG(j + k)) 	
(3.41) 

where g (2)(k), 1(j) are the correlation function and photon counts at delay time r = ks 

and at time t = js, respectively. This formulation of the correlation function where 

the normalizing intensity is the product of the average of direct intensity 1(j) and that 

of delayed intensity I(j + k) is the symmetric normalization scheme which improves 

the accuracy of the result if the input intensity is varied slowly [66]. 

Since the echo technique requires correlating the intensity at one speckle with that at 
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Figure 3.8: Schematic diagram of the sample holder construction. The inner and outer holders 
are made so that the inner one can rotate smoothly. The sample is driven by a DC servo motor 

via 2 pairs of pins. 

exactly the same place after some delay time r , it is necessary that a linear sampling 

scheme is used. This means the sample time s has to be constant for all delay times r. 

In order to calculate the correlation function for a large delay time of say 1000s, a 

very large number of samples (i/s 10 8) have to be stored in a buffer. The constraint 

of storing large number of samples makes the use of a software correlator more effec-

tive and inexpensive, especially with increasing processing speed of modern personal 

computers (PC). 

Two channels of photon counts were acquired by the counter card PCI-6602 manufac- 

tured by National Instrument. The card is plugged to a PCI extension slot on a PC and 
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Figure 3.9: Schematic data acquisition path and counter card configuration. Photons arriving 
at the PMT generate pulses that are pre-amplified to TTL level. The signals enter the counter 
card as inputs for counters 0 and 1, both of which are configured to operate in continuous 
period measurement mode. Note that input lines are already terminated with 5011 impedance 
inside the card. Counter 2 is configured to pulse train generation mode, which takes input from 
the internal clock and generate a train of pulses of period equal to the selected sample time 
s. This sampling clocking signal is used to gate counting in counters 0 and 1. The results of 
photon counts are continuously put in 2 internal buffers which are periodically read out by the 
software program LinCount. The software saves 2 streams of photon counts as 2 series of 
fixed-size files. 

configured to count the number of detected photon pulses every sample time s (see 

figure 3.9). These counts are saved as 16-bit samples in 2 series of binary files, one 

for the blue stream (stream 0: namebase. 0. 000,namebase. 0. 001, ...), and 

one for the green stream (stream 1: namebase. 1.000, namebase.1. 001,...), 

where namebase is a user-defined name. All characteristics of the data streams are 

saved in a text file named namebase . inf. This informative file is then read by other 

data analysing programs that can be run simultaneously while data is being acquired, 

resulting in an almost real-time analysis of the scattering experiment. 



3.3. IMPLEMENTATION 
	

51 

3.3.2 Modified multi-tau scheme 

For almost all cases, a very large range of dynamical information is of interest. There-

fore one usually needs to know the correlation function at delay times logarithmically 

spaced out. The results of this is that a very large amount of information 'between the 

points' at large r is not used in linear sampling scheme. In order to make use of this 

'lost' information, Schatzel introduced the multi-tau scheme [67], in which the sample 

time used to calculate a correlation channel is proportional to the delay time of that 

channel. However, in echo DLS the requirement of correlating intensity at one speckle 

to that at the same speckle a long time afterwards is absolutely crucial. Thus a simple 

multi-tau scheme as in [67] does not work as it averages intensities of neighbouring 

speckles in the process. 

I introduced a modified multi-tau scheme where correlation between intensities at ex-

actly the same speckle was maintained while the sample time s was effectively in-

creased for increasing delay time. The main feature of this modified scheme was 

that sample time was increased by averaging intensities at exactly the same speckle 

at neighbouring revolution (figure 3.10). Intensities from the same angular position 

at two consecutive periods were averaged to give one new sample. Thus the effective 

sample time for each new sample was now twice the old one. The new averaged values 

were then put into new streams which were then correlated in the same way for longer 

delay time. In order to ensure that intensities at the same speckle were added, precise 

measurement of the period was required. This value was readily available by comput-

ing at least one echo from the original intensity without using multi-tau. The position 

of this echo allows the period to be calculated with relative uncertainty of about 106. 

As the sample time was doubled, the actual two samples that were averaged were 

separated by one period in time. Therefore the delay time of the correlation channel 

calculated with the averaged sample must be considerably larger than one period to 

reduce distortion due to averaging. In this scheme, I used the original data stream to 
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Figure 3.10: Modified multi-tau scheme for echo DLS. Pairs of counts from the same angular 
position are averaged to give a new sample. These make up a new sample stream with the 
sample time effectively doubled. The new streams are then used to calculate the correlation 
function in the same way for larger delay time. This procedure is repeated several times. 

Effective sample 

time 

Sample 	temporal 

coverage 
echoes range in 'r 

Original data s s 0-16 1-16 T 

1st average 2s T 9-16 18-32T 

2nd average 4s 3T 9-16 36-64T 

3rd average 8s 7T 9-16 72-128T 

Table 3.1: A typical choice for effective sample time and correlation delay time in modified 
multi-tau scheme. s is the sample time, T is the period of rotation. There are 16 echoes in 
the first octave, then 8 every subsequent octave. The sample time is doubled every step, so 
the total number of samples is halved. The total time for calculating the correlation function is 
therefore reduced. 
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calculate g(2)  up to the 16th echo. Then the sample time was doubled and the new 

stream was used for g(2)  from the 9th to 16th echoes of the new sample time, which 

corresponded to echoes 18 to 32 of the original sample time. This was repeated as 

many times as necessary to achieve the longest delay time. The procedure is summa-

rized in table 3.1. This selection of sample times and delay times ensured that the delay 

time was at least 16 times larger than the separation between averaged samples, which 

introduced a triangular distortion of no more than 10 3  [68]. 

3.3.3 Echo symmetry 

The theoretical prediction of the echo profile is a symmetric peak always greater than 

1 (equation 3.23 and figure 3.2). However, in practice, we know that there is smearing 

of this profile, and this smearing is by no reason symmetric. In fact, one would expect 

this smearing to be asymmetric as the sample is rotated only in one direction. We 

indeed found that most echoes are somewhat asymmetric, especially near the base line 

(figure 3.11). 

With two-colour DLS, I performed the cross-correlation between the two intensity 

signals from two wavelengths of the setup. Thus there were 2 choices for the direct 

stream. These are denoted by g 1  (r) and g 0  (r), with 10 (t) comes from the blue 

stream, and I (t) comes from the green stream: 

(2) 	(10 (t)11 (t + r)) 

	

901(r) 
= (10 (t)) (11 (t + r)) 	

(3.42) 

(2) 	(11 (t)10 (t + i- )) 

	

= (I(t)) (10 (t + r)) 	
(3.43) 

The definition of g 0 (r) can be re-written with a shift of —r in time t: 

g 0 (r) = 
(11(t - 'r)Io (t)) 

(11(t - r)) (10 (t)) 
(2) = g01(-r) (3.44) 

Therefore one can transform the 1 x 0 cross-correlation to a negative delay time simply 

by negating r and put both g 1 (r) and g 1  (-T) together for comparison. 
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Figure 3.11: Comparison of 0 x 1 and 1 x 0 correlation modes of a rigid sample. The shape 
of the peaks of the 2 modes are not symmetrical about r = 0 but shifted in i-  domain (the full 
diamond and circle peaks on the sides). The full zero echo is made up from the 0 x 1 mode 
and the reflected 1 x 0 mode (diamonds and circles at the centre). The non-zero peaks are 
wider and lower than the zero-th echo due to smearing effect as discussed in section 3.2.3. 
Some fluctuations near the baseline of the zero-th echo are smeared out in other echoes. 

As the peaks are not symmetric, these two cross-correlation are not exactly the same 

but related in a rather interesting manner.The shapes of the echoes at r and —Y are not 

symmetric about zero but simply translated by 2, where ±r are the positions of the 

peaks in comparison (figure 3.11). This 'direction of time' in the r space indicates that 

the distortion of the peak shapes strongly correlates to the rotation of sample, i.e. it is 

the imperfect rotation that gives rise to the distortion. 

There are two channels of data available in two-colour DLS that are slightly different 

due to the reasons described above. To improve the statistics of the final result by 

making use of both channels, they were averaged before further analysis. Moreover, 

the asymmetry of echo peaks should be preserved before any smearing correction as it 

is the manifestation of the smearing. Therefore the following procedures were used to 
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obtain the averaged ICF for further analysis. The 1 x 0 mode function g 0 (r) is first 

reflected about 'r = 0 to give the negative delay time section go X 
Each echo in 

this function is then shifted by 2r before averaged with the peak from go  X 1 (r). So the 

average ICF at the n-th echo (n > 1) with a maximum at 'r that is used for further 

analysis is calculated as: 

1 (g (2) g(2)(y 	r) = 	01 (r) + g 0 (2r - r)), 	 (3.45) 

where r is the average of the two maximum positions from g 1 (r) and g 0 (r), both 

of which were found to be very close (typically 10 6T) in all cases. 

For the zero-th echo ('r ' s-' 
0), the 1 x 0 data was simply reflected and joined to the 0 x 1 

section: 

I g0(-r)  
g(2) (r) = 	 (3.46) 

I 	(2) for r > 0 

It should be noted that in a conventional single-colour DLS experiment, there is only 

one incident-scattered beam pair, producing one intensity stream. Thus there is no way 

to sense the direction of the rotation. The obtained ICF is therefore symmetrical about 

= 0, and the above averaging procedure is not necessary. 

3.3.4 Smearing correction 

Imperfect sample rotation and its smearing effect were observed in almost all measure-

ments with the echo method (see e.g. Fig. 3.11). The effects are introducing significant 

noise and even systematic error to the maximum values of the echoes (Fig. 3.12). It 

was shown in section 3.2.3 that in such cases, it is essential to use the area under the 

echo peak to measure the intrinsic dynamics of the sample. The normalization by area 

is done as following. First, the area under each echo and above the baseline, A(T), 

including the zero-th echo, is calculated: 

= f 	(g(2)(7) - 1) di-, 	 (3.47) 
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where g (2) (r) is the measured ICF (or in the case of two-colour DLS, is the average 

according to Eqs. 3.45 and 3.46). The integral limits will be discussed below. 

Knowing the area under the echo is conserved under smearing but scaled by the dynam- 

ics (Eq. 3.40), the smearing-corrected correlation function g 2)(-rn ) =  1 +/32 [f(q, r)]2  

at echo n was then constructed as: 

= A(r) 
[g 2) (0) - 1] + 1, 

A fr0) 	
(3.48) 

where A('r) and A(i -o ) are the areas under the n-th and the zero-th echoes respectively; 

9 (2) (0) is the maximum value of the zero-th echo, g(2)  (r = 0). 

It should be noted that the application of the modified multi-tau scheme to improve 

statistical accuracy may inadvertently 'average out' the effect of smearing. Thus the 

additional smearing correction may not have the same effect as rigorously proved in 

section 3.2.3. However, it seemed that even though the modified multi-tau scheme 

reduced the random fluctuation due to smearing from one echo to the next, it could not 

eliminate the accumulated smearing effect (the rise in relative FWHM at r 5 x 103 

seconds in Fig. 3.12(a)). Yet the smearing correction that followed seemed to eliminate 

that almost entirely (Fig. 3.12(b)). Many experiments carried out on rigid samples 

showed that the smearing correction worked well with the modified multi-tau scheme. 

The above smearing correction however does not verify the assumption that the fluctu-

ation in rotating angular speed is limited and the average speed is stable over the whole 

experiment. To verify that assumption and monitor the extent of the smearing effect, 

one can use another feature of the echo: the full widths at half maximum (FWHMs) 

of the peaks above the baseline (Fig. 3.13). Since the FWHM is not dependent on the 

area under each echo, i.e. independent of the intrinsic dynamics of the sample, it is a 

good candidate for the measure of the 'quality' of the rotation. The relative FWHM 

compared to that of the zero-th echo is a measure of the extent of smearing on the shape 

of the obtained echo (Fig. 3.12(a)). For perfectly constant speed rotation, the values of 

all FWHM of all echoes should be the same as that of the zero-th echo, therefore all 
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Figure 3.12: Echo ICF from a rigid sample calculated with modified multi-tau scheme. (a) The 
vertical lines are echoes with large fluctuation at low r due to smearing, part of which has 

been averaged out yet still present at large r. The filled squares are corresponding full width 

at half maximum (FWHM) of each echo, measured relative to the FWHM of the zero-th echo, 
scales on right. (b) Smearing corrected correlation functions using different area integration 
schemes. There are offsets between the schemes but data within each scheme are consistent 
and more accurate than prior to correction. 
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fixed width 

Figure 3.13: Limits to calculations of the area under each echo peaks. The full width at half 
maximum (FWHM) is used as a measure of the extent of smearing effect. 

relative FWHMs are equal to one. If the rotation is not completely smooth, then smear-

ing will occur and the relative FWHMs will not be constant and greater than one. If 

the rotation speed is not stable, i.e. average speed drifts away due to large friction, the 

relative FWHM will diverge at larger. Thus by monitoring the FWHM as a function 

of r, one can evaluate the quality of the rotation before applying smearing correction. 

There are several ways to choose the integration limits in equation 3.47. Theoreti-

cally, the correlation function g (2) (r) is never less than and approaches the baseline 

value of 1 away from the main peak. However, in almost all measurements, g(2) ('i-) 

fluctuates about 1 even very far from the echo peak. This fluctuation is due to ran-

dom noise in the average intensity used for normalization from the limited number 

of independent speckles observed. Our typical experimental setup observed about 

p = T/(echo width) 3000 speckles, which gives a random error of j17 2%. 
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This uncertainty also applies to the intercept of the ICF. This fluctuation in the base-

line is unavoidable and too complicated to correct for in data analysis. Instead I tried 

different empirical limits to calculate the area and typical results for a rigid sample 

are presented in figure 3.12(b). The measured correlation function is the result of a 

'true' echo superimposing on a fluctuating background around 1. Furthermore, the 

relative position of the real echo changes with respect to minima and maxima of the 

background, and it seems this relative position that complicates the choice of the most 

appropriate limits. The simplest choice is the 'base line' limit. The limits of integration 

are chosen to be the last point above 1 when moving away from the peak of the echo. 

This works relatively well in some cases. However, in the case where the echo does 

not reach 1 in a rather large range of r, several background fluctuations are included in 

the area calculation. Results in these cases are not very smooth. 

Another simple choice is the 'minimum' limit, where the first local minima in g(2)  (r) 

either side of the peak are used as limits. This method seems to work well with quickly 

decaying ICF from ergodic samples, where the background fluctuation is very small 

due to a large number of independent speckles observed. In most of other cases it does 

not give very good results, usually with a few points having very high or very low 

values (squares in Fig. 3.12(b)). 

The last choice is the 'fixed-width' limit where the range of integration for area is 

fixed to the same value either side of the peak and the same for all echoes, including 

zero-th echo. This method seems to work relatively well for most cases. However, the 

difficulty is to make the right choice of the integration width. Ideally, one would like to 

calculate the area with an infinite width to average out all fluctuation in the background. 

However, even if that approach were practical, the area calculated would not converge 

but fluctuate about a mean value. It is this mean value that we need for the area. It was 

found that a value for the width equal to a multiple (no less than the maximum value of 

the relative FWHM) of the zero-th echo width w0  produced rather good results, with 

wo  defined by the first minimum in g(2)  (r) in the zero-th echo. Even the choice of 
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integration limits made seemed somewhat arbitrary to make the end result of g2) (r) 

a smooth function, the correction eliminated spurious fluctuations in the original data 

due to imperfect rotation, yet did not introduce any other except from small random 

noise. 

The intercept g(2) (0) obtained with echo DLS was in general less than that obtained in 

brute-force ensemble averaging. This was mainly because the rotation of the sample 

introduces a different alignment of the sample to the light scattering setup (thus a dif-

ferent 32)  and random wobbling of the sample leads to an incomplete returning of the 

same speckle. The latter effect cannot be corrected by the smearing correction. These 

factors were instrument-related and different in different samples, different scattering 

angles, so very difficult to determine or calibrate. Therefore in order to join echo data 

to those obtained by ensemble averaging at shorter delay time, I scaled the intercept by 

an arbitrary factor (in the range 1-2) to match with data obtained by other techniques 

in the region of overlap. 

3.4 Discussion 

A comparison of f(q, r) obtained using echo DLS and an average of 100 conven-

tional time-averaged correlations of a metastable ergodic colloid-polymer sample at 

q = 14.51 Mm' is presented in figure 3.14. A more detailed description of this sample 

can be found in [69].  The agreement of the two techniques in the overlap region is ex-

cellent. Note that the echo data was of much better quality at large i -  despite a 20-fold 

shorter measurement time. This good agreement of the two techniques and that with 

the expected result in a rigid sample (Fig. 3.12) are very convincing that the echo DLS 

method can give very good quality data in much shorter measurement time. 

Ideally, the measurement time tm  required to obtain dynamical data of maximum delay 

time Tm ax  is just Tmax  plus one period for ensemble averaging of the longest delay time: 
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Figure 3.14: Comparison of the normalized DSF of a slowly-relaxing colloid-polymer mixture 
measured by average of 100 time-averaged measurements (crosses) and by echo technique 
(circles). The echo data were scaled by an arbitrary intercept to match to time-average ones. 
There was good agreement of the two methods in the overlap region. The echo measurement 
taken in 2300 seconds gives significantly better statistics at long T than the time-averaged one 

which took 5 x 104  seconds (-i  14 hours) in total to complete. 

tm = 'rmax  + T. Even with imperfection in rotation, this measurement time is required 

to extend for only a few hundred periods to average over all fluctuations in angular 

speed, so that tm is still of the order 'rmax . With today's computer speed and hard drive 

capacity, the computation of ICFs with modified the multi-tau scheme had about the 

same speed as data being acquired. Thus echo DLS data can be obtained almost in real 

time, and there is virtually no upper limit for Tmax. One can easily obtain dynamical 

information up to 104  seconds in about 1.5 x 101 seconds (4 hours) of measurement 

time. 

Compared to other methods of measuring non-ergodic dynamics, echo DLS has certain 

61 
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advantages. Firstly, it does not require high spatial coherence over detector aperture as 

in the Pusey-vanMegen method [49]. In fact, an ICF with any intercept, i.e. any level 
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of coherence, can be measured with echo DLS. Therefore this technique is suitable for 

use in cross-correlation schemes like two-colour [51] or three-dimensional [60] DLS 

where the intercept depends on sample turbidity and is often significantly lower than 

one. 

Secondly, echo DLS is not constrained to the small scattering angle limit as with some 

multispeckle setups [61, 62]. Compared to another multispeckle arrangement which 

uses a CCD camera as detector in a conventional DLS setup [63],  echo DLS can aver-

age the dynamics over a larger number of speckles, typically several thousands (ratio 

of period to echo width) without compromising the resolution of the scattering angle. 

This advantage gives echo DLS the ability to produce data with low level of random 

noise due to a limited number of independent speckles sampled. This noise is par-

ticularly pronounced in highly non-ergodic samples, i.e. samples whose measured 

dynamics is almost frozen and have a high value of f(q, oo). 

Finally, compared to the interleaved sampling method [65] whose principles of ob-

taining ensemble average is very similar, echo DLS introduces some major improve-

ments. The interleaved sampling method also rotates the sample but by a stepper motor 

through a large number of positions. At each position, a sample of the scattered inten-

sity is acquired and correlated to the intensities at the same position in previous revo-

lutions so that a time-averaged ICF is obtained for each position. These ICFs are then 

averaged to obtain the ensemble-averaged ICF. This method is equivalent to calculat-

ing a single delay time r = nT at the exact peak of every echo. On the other hand, 

echo DLS calculates the correlation function over a range of delay time around r = nT 

thus also obtains the shape of the echo, thus it is possible to correct for any smearing 

due to imperfect rotation by using the echo area. It is also unnecessary to synchronize 

sample rotation and correlator, enabling the use of a continuous servo motor that can 

produce a smooth rotation. Moreover, the quality of any rotation can be monitored by 

the apparent width of the echoes, to ensure that the smearing effect is not too large and 

correction can be applied. 
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However, there is a drawback of this method. That is its complete lack of data for 

T < T, which is typically about one second. Any much faster rotation will pro-

duce, apart from mechanical difficulties, instability of rotational speed and possible 

unwanted disturbance to the sample. Therefore some other methods such as brute-

force ensemble averaging should be used to obtain short time data up to T ' lOs. 

These data joined with echo DLS allow one to measure dynamics of non-ergodic sam-

ples over a very large dynamical range, typically from 10-6  to 10 seconds. 



Chapter 4 

Methods and experiments 

This chapter describes the methods and procedures used in sample preparation, as 

well as observation and light scattering experiments to obtain structural and dynamic 

information of colloid-polymer mixture samples near the glass transitions. 

4.1 Sample preparation 

4.1.1 Colloids 

The colloidal particles used in this study were poly-methylmethacrylate (PMMA) spheres 

sterically stabilized by chemically-grafted poly-(12-hydroxystearic acid) (PHSA). The 

particles, synthesized by Dr. A. B. Schofield with methods in [70],  were originally 

dispersed in dodecane which is not a suitable solvent for this work. The chosen sol-

vent is instead cis-decahydronapthalene (cis-decalin) as its refractive index is close 

to that of PMMA (1.48 and 1.49 respectively). To replace the solvent, colloids were 

'washed' several times. Suspensions were centrifuged before discarding dodecane and 

re-dispersed in cis-decalin. Since the old solvent was trapped between close packed 

particles after centrifuging and cannot be discarded completely, the particles were 

65 
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Figure 4.1: Variation in diffusion coefficient D(q) in dilute colloid stock near the form factor 
minimum (filled circles) measured with two-colour DLS. The continuous line are fit of Eq. 33 
in [72] to measured data, giving the polydispersity or = 0.069 ± 0.004. The singly-scattered 
intensity (squares) are shown with scale on the right. 

washed for at least 6 times so that the fraction of dodecane left in the solvent is less 

than 10-4  . Refractive index of the final solvent was also measured with an Abbe re-

fractometer and found to be the same as that of cis-decalin within the instrumental 

error (,s.  0.05%). 

The PMMA particles with the solvated PHSA, approximately lOnm thick, behave like 

nearly-hard-sphere [71]. The particle hard-sphere radius, R = 202nm, was determined 

by Dr. A. B. Schofield from the lattice spacing of the crystal phase at fluid-crystal 

coexistence with static light scattering, using the crystal volume fraction ç = 0.545. 

Particle size polydispersity was 0.069 (Fig. 4.1), measured from the apparent angle 

dependence of the diffusion coefficient in a dilute suspension [72]. 

The colloidal volume fraction was calibrated by measuring the amount of crystal phase 

in the coexistence region and assuming the fluid and crystal volume fraction to be at 

0.494 and 0.545 respectively, taking into account slow compaction of the crystal phase 

by gravity [73].  This volume fraction corresponds to the 'hard-sphere' size of the 
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particles which include the stabilizing layer and is larger than the PMMA core. 

The effective density of the composite particle (core + stabilizing layer) is needed 

for further sample preparation. Consider the particle as a sphere with a PMMA core of 

density Pcore  and volume Vcore  surrounded by a stabilizing layer of volume XVcore . Since 

cis-decalin is a good solvent for PHSA, the stabilizing layer is a solvated polymer layer, 

its density is assumed to be close to that of the solvent: Ps Pcis-decalin The effective 

density of the colloid particle is 

Pc= 
Pcore + PsX 	 (4.1) 

It depends only on the ratio x  of the volume of the stabilizing layer to that of the core. 

This ratio is a constant for each batch of colloids and needs to be measured once only 

by the following drying procedure. 

Samples of the volume-fraction-calibrated stock were weighed to get the total mass 

rn. They were then dried in a vacuum oven at 40°C for 24 hours so that all solvent 

was evaporated, and re-weighed to get the mass of the core m core (the mass of PHSA 

polymer is negligible compared to that of the core). If the hard-sphere volume fraction 

of the sample is qo,  the ratio x  can be shown to be 

x=o11+(

m 	 (4.2) 
L 	mcore)] 

The volume fraction of the colloid stock was also re-calibrated from time to time with 

the same drying and weighing procedures, by solving for qo  in the above equation 

knowing the ratio X. 

4.1.2 Polymer and mixing with colloids 

To induce attraction between the colloids, non-adsorbing linear polystyrene was added. 

This well-characterized model colloid-polymer mixture has been studied extensively 

over the last decade [12]. The polymer used was purchased from Polymer Laboratories 
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and had a molecular weight of M = 370000 daltons and polydispersity MW /Mn  = 
1.03. Its radius of gyration in cis-decalin at 20°C was calculated from the data in 

[74] to be rg  = 17.8 nm. Thus the dimensionless range of the depletion attraction is 

r9 /R = 0.09. The polymer is dispersed in cis-decalin to make a polymer stock of 

known mass concentration. 

Colloid-polymer mixture samples were prepared by adding colloid stock, polymer 

stock and solvent together in appropriate proportions. The sample composition is 

quoted as colloid volume fraction and polymer mass concentration in the total sam-

ple volume (q, ci,). However in practice, adding components by mass is much more 

accurate than by volume. The calculation of final composition as well as prediction of 

the amount of each component for a desired composition can be done straightforwardly 

by mass concentration. Let us define the mass concentration of colloid and polymer in 

a sample as x = m/m and y = m/m, where m, m and m are masses of colloids 

(consist of PMMA core and stabilizing layer), polymer and total sample respectively. 

These can be calculated from 0 and c from simple conservations of mass and volume: 

X 
= 	 (4.3)

CP  
Y = 	 (4.4) 

where Pc  is the effective density of colloids obtained from Eq. 4. 1, fi is the total density 

of the sample: j5 = Op, + Cp  + (1 - cp /pp ) ps , with p and p8  are densities of 

polystyrene and solvent respectively. Since the volume taken up by polymer coils in 

a mixture is not known, p is not easily determined. In the simplest approximation, I 

used the tabulated density of solid polymer (1.05 g.cm 3) for p and found that this 

quantity make very small changes in the final compositions of the sample due to small 

polymer mass fraction. Therefore the errors from not using the appropriate polymer 

density can be safely neglected. 

Conversely, the volume fraction and polymer concentration can also be calculated from 
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mass concentrations x and y: 

= x  
VfJ c  

c = 	 (4.6) 2   

where v = 1/5, calculated from x and y as: v = X/Pc + Y/Pp  + (1 - - Y)/P., .  

Since the volume concentration (, c) and mass concentration (x, y) can be calculated 

from one another, all calculations for sample preparation and actual concentrations was 

done in mass concentrations. 

To prepare a new sample from a known one, with known total mass m0 and known 

concentrations (x 0 , yo) one has to go through 2 stages. First, an estimated amount of 

stocks (either two of colloid, polymer stocks or solvent) to be added for the desired 

composition is calculated. Then, the final composition of the new sample is calculated 

from the actual amounts of stocks added. The second stage is straight forward, the 

same as calculating position of centre of mass: 

m0x0 + m1x1 + m2x2 	 (4.7) 
m0 + m1 + m2 

m0y0 + m1y1 + m2y2 	 (4.8) 
mo+ml+m2 

where mi,zi,yi and m2, x2, Y2 are masses and concentrations of the 2 stocks added. 

In the first stage, the masses of added stocks are found by solving Eqs. 4.7 and 4.8 

simultaneously for m1 and m2, given the desired x and y. If a solution is infinite, 

that scenario is impossible. If a solution is negative, the corresponding stock has to be 

taken out of the original sample - an impossible situation unless the original sample 

is a colloid stock and solvent is to be taken out. Since there are three possible stocks, 

three pairs of them are used in Eqs. 4.7 and 4.8 which were solved until an acceptable 

solution is found. However, to reduce uncertainties in the final concentrations, only the 

following combinations were used: (i) adding/removing solvent from colloid stock, 

then add polymer stock to make new sample. (ii) adding solvent to a known sample 
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to reduce concentrations. (iii) removing solvent by slow evaporation from a known 

sample to achieve higher concentrations. 

Samples with a total volume of about 1 cm' were prepared in glass vials. The size of 

the sample requires the mass of each constituent component of no less than about 

40 mg, large enough to be weighed accurately on a lOOg electronic balance. For 

highly concentrated samples that need removal of solvent, appropriate amount of col-

bid stocks were centrifuged to compact all colloids before the desired amount of sol-

vent was sucked out. Then the colloids was redispersed before adding polymer stock. 

Total sample mass was recorded for subsequent diluting or concentrating. 

Samples with all components added were tumbled for prolonged periods of time (about 

104 revolutions) to ensure proper mixing of the components. After homogenizing, a 

small amount of each sample was transferred to 3 mm inner diameter glass tubes and 

sealed with Araldite Rapid epoxy glue for light scattering experiments. The rest of 

the sample was then left undisturbed for visual observation of any phase transitions 

until sedimentation appeared. Then some samples may be diluted with solvent while 

others were left opened at room temperature for solvent to evaporate slowly before 

re-homogenizing by tumbling for at least 6000 revolutions. In this way, a sequence of 

samples, some very close in composition, could be prepared. 

The main uncertainty in sample composition comes from a systematic uncertainty in 

the calibrated volume fraction of the colloid stock. This is because the volume fractions 

of coexisting fluid and crystal phases for slightly polydisperse hard-spheres are slightly 

different from those in a monodisperse colloid, but the exact values are uncertain [75, 

76]. However, all samples were prepared from the same stocks of colloids and polymer 

solutions, or stocks calibrated against each other. Some samples were also derived 

from others in a controlled way (described above). Therefore despite some systematic 

uncertainties in the estimation of absolute volume fractions due to polydispersity, the 

uncertainties in sample compositions relative to each other were mostly from random 
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errors in weighing which are below a percent in the worst case and are insignificant in 

this work. 

4.2 Two-colour light scattering 

The high colloid volume fraction (0 > 0.5) and difference in the refractive indices 

of PMMA and cis-decalin (1.49 and 1.48 respectively) was enough to render all the 

samples of interest turbid (transmission coefficients 20-40%). I therefore used two-

colour light scattering to extract the singly-scattered component. The theoretical back-

ground of the two-colour technique was outlined in section 2.3.4 and fully laid out in 

[51]. In this section I will describe the modifications to the setup of [51]. 

The two-colour light scattering setup was arranged in principle as that described in 

Fig. 4 of[51], except a few modifications (Fig. 4.2). First the whole setup was powered 

by a single Ar+ laser set to emit all lines. The beam after attenuation by the reflective 

neutral density filter NF was split by the beam splitter cube BS. Each beam is passed 

through an interference band-pass filter so that a green 514.5 nm) and a blue 

CA B  = 488 nm) beam are produced for the scattering experiment. On the detection op-

tics, the imaging lens L2 was a compound lens consisting of 2 identical planar-convex 

lenses and was arrange with the planar surfaces pointing outwards to reduce abbera-

tion in the 1:1 imaging configuration. Thus the scattering volume image position (P1) 

does not change for different scattering angles. The outputs of the two detectors were 

cross-correlated to give the intensity correlation function (ICF) according to Eq. 2.42. 

The concentrations of polymer in my samples were low. The highest ratio of intensity 

scattered from polymer to that from colloid was measured to be 4 x 10. This highest 

ratio only applied for one sample (H in Fig. 5.3) at the lowest scattering angle. There-

fore I assume that the scattered intensity is from colloids only. Under these conditions, 

all light scattering measurements probe the structure and dynamics of colloid particles 
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Figure 4.2: Schematic arrangement of the two-colour light scattering setup. The basic arrange-
ment is the same as Fig. 4 of [51], except it is powered by a single laser with beam splitter BS 
and bandpass filters BF1, GEl, and L2 is a compound lens. The drawing is not to scale. 
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alone. All light scattering experiments were carried out at 20°C. 

4.3 Static light scattering 

The static structure factor was measured with the procedure described in [52]. First, 

the total average intensities, ('B) and (iG) and the intercept, c 	g (2)(q,  0) - 1 

0202 MS  (from Eq. 2.43), of a concentrated sample of interest were measured at different 

scattering vectors q. The sample was rotated continuously during the measurement to 

obtain an ensemble average. Since the rotation only changes the time-dependence 

of g(2)(q,  r), the intercept and average intensity were not affected. It was found that 

it was necessary to average measurements at different vertical positions in the non-

ergodic samples to reduce random noise from the finite number of speckles observed. 

From Eq. 2.44, the average single-scattered intensity is (Is) (Is ) (IG). 

The factor /3L is not yet known but the product i32/3L5 is from the intercept. Besides, 

the particle form factor P(q) is also needed for the SSF. Therefore the same measure-

ments were made on a dilute suspension of known volume fraction Idii to obtain the 

single-particle form factor. The volume fraction of this dilute sample was jdii = 0.01, 

small enough that multiple scattering can be ignored, so that the measured intercept 

contains only the instrument related factor: Cdii =  g1 (q, 0) - 1 = /32, which was 

the same as that in the measurement of the concentrated sample. The factor 0 can 

now be obtained: /3 = C/Cdjl. The measurements of concentrated and dilute sam-

ples were made immediately after one another to reduce uncertainties in laser beam 

intensity and stability. 

The volume fraction of the dilute sample, qdi1 = 0.01, though small is enough to make 

its SSF Sdji(q) vary slightly with q according to Percus-Yevick results. To compen-

sate for this variation, the dilute sample is assumed to have Percus-Yevick SSF at the 

corresponding volume fraction. 
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Since multiple-scattering is significant, the attenuation of light along the path must be 

taken into account. Any emerging scattered light has gone through a path equal to the 

diameter of the sample cell and is reduced by a factor T due to scattering along the path. 

The transmission T is measured as the ratio of intensities of transmitted beam which 

went straight through the sample and incident beam (without sample). This quantity 

was measured separately for each colour on each concentrated and dilute sample as 

the ratio of transmitted to input light intensity. The static structure factor was then 

calculated according to Eq. 2.37, taking attenuation and dilute SSF into account: 

&Lil /TB,di1TG,diL (r(-[B) (1G) C/Cdjl 
Sd21(q) , 	(4.9) S(q) = 	

V'TBTG 	\/(1B,dil) (IG,dil) 

where the subscripts B, G, dii are for blue, green light, and dilute sample respectively. 

4.4 Dynamic light scattering 

The objective of DLS is to measure the normalized collective dynamic structure factor 

f(q, 'r) introduced in section 2.2. This is done by measuring the intensity correlation 

function g(2) (q, r) with two-colour DLS (Eq. 2.42) and normalizing it with the Siegert 

relation (Eq. 2.40): 
/g(2)(q,y) —1 

f(q,r) 	g(2)(q,o) —1 	
(4.10) 

However, since most samples investigated in this study either were non-ergodic or 

had very slow relaxation times, the time-averaged ICF did not represent the proper 

ensemble-averaged dynamics. The DSF was therefore separately measured in two 

regimes: the long-time dynamics by echo DLS, and the short-time one by brute-force 

ensemble averaging as a compliment to echo DLS technique. 

Brute-force ensemble averaging was done for the short-time regime 10 7 s < r 

2) 20s. Several hundred (typically between 500-865) of time-averaged ICFs, g(q,  r), 
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and associated scattered intensities, 'Bi and 'Gt'  were measured with an ALV-5000 

correlator, each for a duration of 40-60 seconds. Between each measurement, the 

sample was rotated by a small angle to a different position so that each time-averaged 

ICF sampled a different Fourier component. The time-averaged ICF is: 

g 2)(q,r) = 

So the ensemble-averaged ICF is 

(lB (0)IG('r)) 

'Bt'Gt 
(4.11) 

9 (2)(q,r) = ((lB (0)IG('r))) 

(1B) (IG) 

(IBtIGtg2) (q r)) 

(IBt) (IGt) 

(4.12) 

(4.13) 

In the long time range 1 - 10 4  seconds, echo DLS was used with period of rotation 

T = 1 or 2 seconds. Details of the procedures and data analysis method were given in 

section 3.3. The smearing corrected ICF at r = nT (n = 1, 2, 3,...) was calculated 

from the measured ICF according to Eq. 3.48 and normalized according to Eq. 4.10. 

Since the rotation used in echo DLS introduced slightly different alignment in the DLS 

setup (hence different 02), the resulting intercept was different from that obtained by 

brute-force ensemble averaging. Therefore I scaled the intercept of the echo DLS 

results by an arbitrary factor (in the range of 1-2) so that the resulting DSF from both 

methods matched in the region of overlap. 

4.5 Polymer viscosity for re-scaling colloid dynam-

'Cs 

The goal of studying the DSF is to find out how the polymer-induced depletion at- 

traction affects the particle dynamics. But the presence of the polymer influences the 

dynamics in another (uninteresting) manner - by increasing the effective viscosity of 
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Figure 4.3: Viscosity of polystyrene solutions in cis-decalin at 20°C at different polymer con-
centrations. A quadratic fit (solid line) was used to interpolate to viscosities of samples with 
different cpfre 

the medium in which the particles diffuse from that of the pure solvent, i, to that of 

a polymer solution, 17 at concentration cr.  The real effects of adding polymer to col-

bids dynamics is rather complicated [77].  Nevertheless, to the simplest approximation 

I assume the dynamics of colloid particles due to added polymer can be separated to 

two factors: a trivial slowing down due to an increase in viscosity of the medium, and 

a complicated effect due to the induced attraction. It is the second effect that is the 

main objective of this work. 

To compensate for the slowing down due to increase in background viscosity, the rel-

ative viscosity, Tir = ij/ij, of the polymer solution suspending the colloids is required. 

The viscosity of pure polystyrene solutions at a number of concentrations was mea-

sured with a miniature suspended-level viscometer as described in [77]. The results at 

20°C are presented in Fig. 4.3. Since the polymer concentration in my samples was 

small, the viscosity was expected to follow an Taylor expansion of concentration up 

to order two [78].  The result was fitted to a quadratic dependence in concentration to 

interpolate the relative viscosity at concentrations Cee  corresponding to free polymer 

concentration in samples used in DLS. The value ofcr  in each sample was estimated 

with Eq. 2.7 from ep , 0 and using an approximate expression (Eq. 2.4) based on 
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scaled-particle theory [19]. 



Chapter 5 

Results and discussion 

This chapter will describe results from many colloid-polymer mixture samples of dif-

ferent compositions, prepared by methods described in chapter 4. Their phase be-

haviour were observed to draw up a phase diagram. Structure and dynamics of selected 

samples were measured to explore the physics behind the glass transition. 

5.1 Phase behaviour 

5.1.1 Equilibrium phase behaviour 

After being homogenized by prolonged tumbling, samples were left undisturbed for 

observation. Because the size of colloidal particles is similar to wavelengths of visi-

ble light, colloidal crystals can be seen with the naked eye as iridescent specks. The 

equilibrium phase behaviour of this system is in general agreement to that of other 

well-known colloid-polymer mixture with small size ratio [13]. 

The phase behaviour is shown in Fig. 5.1. In agreement with equilibrium theory [19] 

for systems with short-range attraction, I observed an expansion of the fluid-crystal co- 

existence region upon increasing polymer concentration (open circles and diamonds). 

79 
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Figure 5.1: Equilibrium and non-equilibrium behaviour of a colloid-polymer mixture of e = 0.09. 

Open symbols are those that reached thermal equilibrium (fluid, fluid-crystal coexistence, and 
fully crystallized), the samples denoted by circles went through a gas-liquid separation before 
a final fluid-crystal (see text). Other samples did not crystallize: some showed characteristics 
of hard-sphere glasses at the onset of sedimentation (filled circles), some showed those of 
attraction-driven glasses and gels (filled squares), and some showed both (pluses). Dashed 
and solid curves are guides to the eye of the observed boundary where crystallization ceased 
and fluid-crystal coexistence boundary respectively. The dotted lines are lines of equal 

CPlee 
 

estimated by scaled particle theory, expressed as fractions of the overlap concentration on the 
right. 

To the left of this region is a stable fluid phase (triangles) and to the right is the fully 

crystalline phase (inverted triangles). These observations also agree with previous ex-

periments on similar systems [13]. 

However, there was a difference between fluid-crystal coexisting samples at low vol-

ume fraction (q < 0.45, open circles in Fig. 5.1) and those at higher volume fraction. 

The low volume fraction samples first underwent a gas-liquid transition before most 

or all of the liquid crystallized. This delay in crystallization may be attributed to the 
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slight polydispersity (a 	0.07) of the colloids. A previous study of a similar system 

with higher polydispersity (a 0.09) also observed gas-liquid separation where fluid-

crystal coexistence was expected [79]. The rest of section 5.1.1 will be a digression to 

further elucidate these observations. 

It is known that the induced short-range attraction compresses the colloidal crystals 

to a higher volume fraction. Particles in a denser crystal phase are closer together 

and thus can accommodate less polydispersity. A simple criterion by Pusey based 

on Lindemann [79, 801 suggests that a crystal phase is not stable if the mean nearest 

neigbour distance is shorter than touching separation of two large particles with radius 

(1 + a)i. Thus the maximum volume fraction of polydisperse crystals in this 

system is estimated to be max 0.74/(1 + 0,) 3  = 0.60. If this simple explanation 

is adequate, even qualitatively, for the suppression of direct crystallization in some 

samples, all samples above a certain tie line (say, the dark thin line in Fig. 5.2) which 

will give crystal with 4 > Omax cannot crystallize. However, this is not supported 

by experimental observations. Samples lying around a single dotted curve in Fig. 5.1 

with similar attraction strength (i.e. approximately on the same tie line) showed a 

range of crystallizing behaviour, including some at higher q that reached fluid-crystal 

coexistence and even full crystallization in one step (diamonds and inverted triangles 

in Fig. 5.1). 

Relaxing the Pusey-Lindemann criterion of a discrete threshold for polydisperse crys-

tals, one realizes that the difficulty of obtaining a polydisperse crystal is encapsulated 

in the cell theory of solids [81] as a decrease in entropy for larger polydispersity. Using 

the free energy for polydisperse hard spheres estimated by cell theory, it was possible 

to calculate an approximate theoretical equilibrium phase diagram for a polydisperse 

colloid-polymer mixtures (details in appendix). The results show that polydispersity 

simply narrows the fluid-crystal coexistence region relative to the monodisperse case 

(Fig. 5.2). 
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Figure 5.2: Theoretical equilibrium phase diagram for polydisperse colloid-polymer mixture 
with = 0.08 using cell theory free energy. The thick lines are fluid-crystal coexistence lines for 
different polydispersities, showing fluid-crystal coexistence region narrows when polydispersity 
increases. The thin lines are tie lines of the monodisperse case, the dark one indicates the 
limit above which no crystallization is possible with the Pusey-Lindemann criterion. 

It could be speculated that polydispersity brings the equilibrium fluid-crystal coex-

istence boundary much closer to the metastable gas-liquid binodal. Just inside the 

former, crystallization would not be observed because the low thermodynamic driving 

force. But when there is enough polymer to bring the system inside the metastable 

gas-liquid binodal, gas-liquid demixing may occur, and occur very quickly because it 

requires no symmetry breaking. The dense liquid phase resulting from this process 

may then subsequently crystallize. This two-stepped crystallization process has been 

observed before in colloid-polymer mixtures [82], where the close proximity of the 

metastable gas-liquid binodal and the equilibrium fluid-crystal boundary was brought 

about by tuning the temperature. 

It is known that gas-liquid demixing in a polydisperse colloid-polymer mixture leads 

to fractionation in the average size as well as polydispersity in the two phases [83]. In 
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Sample R (nm) or 

Parent 182± 1 0.069±0.004 

HS fluid 182 ± 1 0.075 ± 0.004 

HS crystal 181 ± 1 0.070 ± 0.004 

CPfluid 174± 1 0.095±0.003 

CP crystal 183 ± 1 0.060 ± 0.002 

Table 5.1: Fractionation of size and polydispersity in fluid-crystal transition. In hard sphere 
(HS), fractionation does not seem to be significant, whereas fractionation of both size and poly-
dispersity is significant in a colloid-polymer mixture (CP). The measured mean radius quoted 
is hydrodynamic radius. 

the two-stepped scenario suggested above, one therefore may expect that the resulting 

crystals were also fractionated relative to the parent homogeneous fluid. 

To verify the fractionation of two coexisting phases in this system, polydispersities of 

the fluid and crystal phases were measured for two samples in the fluid-crystal coex-

istence: sample HS is a hard sphere suspension with 0 = 0.54, c = 0, sample CP 

with 0 = 0.47, c = 3.2 mg.cm 3 . Both samples showed normal one-step crystal-

lization to a fluid-crystal coexistence. After the phase separation was completed, a 

small amount of each phase was extracted and its polydispersity was determined by 

the q-variation of apparent diffusion coefficient in dilute DLS measurement [72]. The 

results in Table 5.1 showed that the hard-sphere fluid-crystal transition did not intro-

duce significant fractionation within the experimental uncertainties, whereas the same 

transition in colloid-polymer mixture did. More significantly, it showed that in sample 

CP the denser phase (crystal) which favoured larger particles had lower polydispersity 

than the parent as well as the less dense phase. This is consistent with previous mea-

surements showing that gas-liquid phase separation gave a liquid phase with larger and 

less polydisperse particles [79, 831. 

The fact that there was a significant difference in the amount of fractionation in the 
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two samples could be explained by the following arguments. In sample CP, the final 

phases had very different colloid volume fractions (- 0.05 and 0.7 according to the-

ory). To reach that state, a large scale migration of colloidal particles from one part 

of the sample to another was required. This macroscopic movement of particles due 

to the driving force of the phase separation would certainly facilitate any separation of 

size species as well. On the other hand, the hard sphere sample HS reached its equilib-

rium with two phases of relatively similar volume fractions (0.49 and 0.55). The phase 

separation into such final densities would not require as much macroscopic migration 

of particles as in the case of sample CP, hence an insignificant fractionation. There-

fore any studies on fractionation should consider the kinetic process during which it 

happens. 

5.1.2 Non-equilibrium phase behaviour 

The non-equilibrium behaviour of systems with 	0.1 at low volume fractions 

(q < 0.2) has been studied before [14, 22]. This work concentrated on the higher 

volume fraction region (q' ~! 0.5) where MCT predicts the existence of different glassy 

states [35, 36]. Observations in this region are shown in Fig. 5.3. In addition to equi-

librium phases, samples with very high colloid volume fractions and/or polymer con-

centrations (filled circles, squares and crosses) failed to crystallize for weeks to months 

even though equilibrium statistical mechanics predicts either fluid-crystal coexistence 

or full crystallinity. 

Samples with high colloid volume fractions and low polymer concentrations (filled cir-

cles in Fig. 5.3) showed all the characteristics of hard-sphere colloidal glass [1]. Weeks 

after homogenization and left undisturbed, sedimentation showed its effect: very thin 

layers at the top of the samples developed heterogeneous crystals due to the bound-

ary effect of the meniscus and gravity. Samples denoted by squares in Fig. 5.3, with 

high polymer concentration and moderate colloid volume fraction, showed signs of 
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Figure 5.3: The high volume fraction area of Fig. 5.1. Open symbols are samples that reached 
thermodynamic equilibrium, the others did not crystallize for weeks. The dashed lines are 
guides to the eye of the observed boundary where crystallization ceases, showing a re-entrant 
behaviour. The solid line is MCT prediction of the glass transition for the system with e = 0.08 

[37, 35]. Light scattering data for marked samples labeled A—K are shown in sections 5.2 and 

5.3. 

transient gels. They collapse under gravity after some 'latency time' as observed pre-

viously in similar systems [14, 22]. However, the amount of collapse decreased and 

transient time increased dramatically in higher volume fraction samples. For concen-

trated samples with colloid volume fraction above 0.55, it took more than 4 weeks to 

see tiny collapses of less than half a millimeter at the very top of the meniscuses of 

samples '-. 2cm high. These collapses were distinguished from normal sedimentation 

by their characteristic sharp and non-flat boundary between the collapsed material and 

a clear supernatant. No crystallization was observed in these samples however long 

they were left undisturbed. Interestingly, for non-crystallizing samples with very high 

colloid volume fraction and polymer concentration (crosses), characteristics of both 

5 

4 

—3 

E 
0 
C) 
E 

0 

hard-sphere glass and transient gels were present. After 4-8 weeks, tiny collapses 

were seen, and also a thin layer of crystal phase appeared just under the collapsing 
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boundary. 

Consider a sequence of samples of similar colloid volume fraction and increasing at-

traction, for example samples A—H in Fig. 5.3 with q ' s' 0.6. According to thermody-

namic equilibrium theory, all these samples should crystallize [19]. Sample A without 

polymer was a glass. Sample B with a small amount of polymer was also a glass as 

no homogeneous crystallization was observed for 4 weeks and only heterogeneously 

nucleated crystals at the meniscus were observed after 13 days. However, sample C 

with c.-' 1.4 mg cm-3  of polymer completely crystallized in 1 day. This means the glass 

transition line has moved to higher 0 , a trend that has been observed before in similar 

system [15].  Failure to crystallize was seen again for samples with polymer concentra-

tion above ' 2.5 mg cm — ' (samples F,G,H). The behaviour of all the samples in this 

region taken together show that the line of failure to crystallize had a re-entrant shape. 

In pure hard-spheres, crystallization ceases at essentially the same volume fraction 

as where f(q, oo) first becomes non-zero, i.e. at the glass transition [2, 5].  If this 

coincidence still holds for attractive hard-spheres systems, then I have observed a re-

entrant glass transition in hard spheres with short-range attraction. This observation 

agrees qualitatively with MCT results for an AO attraction with = 0.08 [37, 35]. The 

agreement is remarkable despite the MCT results contains no adjustable parameter 

except a scaling of q' so that hard-sphere glass transition is at 0 = 0.58. 

Previous studies of sticky hard spheres by MCT [35, 36] and computer simulation 

[37, 43] suggest that the re-entrant behaviour is due to two different mechanisms of 

glassy arrest. The heuristic picture is as follows. In the 'repulsion-dominated' hard-

sphere glass, particles are caged by their neighbours at high enough volume fraction. 

Short-range attraction clusters the particles of the cage and opens up holes, ultimately 

melting the glass. However, increasing the attraction further leads to an 'attraction-

dominated' glass where particles stick to their neighbours with long-lived bonds. In 

this terminology, samples A and B are repulsive glasses and F—H are attractive glasses. 
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Samples I—K must lie in the region where these two types of glass merge as they show 

characteristics of both types, with further evidence in the dynamics shown in section 

5.3. The next sections, with results from light scattering, will give insights into the 

structure and dynamics of these glasses, and the nature of the re-entrant transition 

between them. 

5.2 Static structure factor 

The static structure factors (SSF) of the samples whose symbols are circled in Fig. 5.3 

were measured. Note that samples C—E were measured as metastable fluids, i.e. before 

any crystal nucleation took place. Consider first the results for a sequence of samples 

(A—H) with 0.6, Fig. 5.4. These samples span the re-entrant glass transition 

line where the crystallization behaviour showed dramatic changes. However, no re-

entrant behaviour can be seen in the SSFs. Instead, there are only gradual changes 

upon increasing the attractive interaction. These gradual changes have been predicted 

by theory [36],  and observed before in other experimental systems [42]. 

The most obvious and most easily quantifiable changes are in the height and position 

of the main peak. Broadly speaking, and taking experimental uncertainties into ac-

count, the peak reduces in height and shifts to higher q when the attraction is increased 

(inset Fig. 5.4(a)). These trends are similar to those observed in a similar system of 

microgel-polymer mixtures which also shows re-entrant behaviour [42]. In detail, the 

peak position, q*, remains constant (at q*R  3.8, samples A—D) until just before we 

enter the attractive glass region (sample E), whereupon it increases by 5% to reach 

another constant value (q*R 4, samples F—H). These samples have approximately 

constant 0 (in fact it decreases slightly from A to H, Fig. 5.3). The increase in q*  is 

the result of a significant fraction of neighbouring particles becoming trapped in each 

others' narrow depletion potential well when the attractive glass forms. Quantitatively, 
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a 5% increase in q*  corresponds to a 15% increase in the local packing fraction, from 

0.6 to 0.69; the latter is the same as the random close packing volume fraction for this 

system (measured by spinning down a sample of known ). In other words, the nearest 

particles in the attractive glass are practically touching. 

The clustering of particles at constant volume necessarily implies that the average num-

ber of nearest neighbours should decrease, and that 'holes' are opened up to render the 

structure more inhomogeneous on the spatial scale of a few particles. The former is 

reflected in the decrease in S( q*). Significantly, upon increasing the attraction from 

zero, the decrease in the peak height starts at the point of the melting of the repul-

sive glass, and continues until we enter the attractive glass region, whereupon the peak 

height remains constant (inset Fig. 5.4(a)). 

The increased heterogeneity is reflected in a rise in the SSF at low q, Fig. 5.4(b). The 

smallest q studied was qR = 1.50, corresponding to a length scale of about 4 particle 

radii. The value of S(q) increases nearly exponentially with the polymer concen-

tration between samples A—E (inset Fig. 5.4(b)), and thereafter remains constant. The 

increased density fluctuations at this length scale corresponds to the opening up of 

'holes' due to particle clustering. 

Note that all three features considered, q * ,  S( q*) and S(q), remain virtually constant 

for all three attractive glass samples, F—H. Once particles drop into each others' narrow 

attractive potential wells, any further structural changes will be hard to resolve. We 

shall see, however, that the dynamics continues measurably to evolve from sample F to 

sample H: in this regime of almost-touching nearest neighbours, a very small change 

in the structure has very large dynamic consequences. 

All the qualitative features observed in the evolution of the SSFs for samples A—H 

are also seen in the SSFs for samples I—K at the higher volume fraction of 	0.64, 

Fig. 5.5. However, the effects are significantly less obvious, largely because the range 

of polymer concentration is now much smaller and 0 is higher. At low q, the values 
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Figure 5.5: Static structure factors of samples I—K with 	0.64. The inset shows the same 
data with a logarithmic vertical axis. 

of S(qmjn ) are lower than those of similar polymer concentration but lower 0 (C—E) 

(Fig. 5.4(b)). This is because at higher volume fraction, a tight local clustering of some 

particles does not create so much room elsewhere - there is less space for developing 

heterogeneities. 

5.3 Dynamic structure factor 

As discussed in section 4.5, I assume the addition of polymer introduce an increase in 

solvent viscosity by a factor of q  besides the effective induced attraction. All colloid 

dynamics will be normalized by this factor. Furthermore, the rate of dynamical decay 

at wave vector q depends on the length scale being probed; in dilute systems it scales 

as q2 . Thus, in order to compare the dynamics of different samples at different wave 

vectors, and to highlight the effects of the attraction, I scaled the delay time variable 

of the DSFs by the relative viscosity r, and the dimensionless wave vector (qR) 2 , so 

that DSF is presented as a function of the 'scaled time' (qR) 2r/i r . Note that for the 

lowest q studied, the scaled time is very close to the real time, while at the highest q, it 
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is increased by about an order of magnitude. 

Aging [84] was found in all non-crystallizing samples. The dynamics slowed down 

with the 'waiting time' - the time interval between the cessation of tumbling and the 

beginning of measurement, Fig. 5.6. It is known that the hard-sphere glass ages [54]. I 

found that the rates of aging in different glasses were different and that its effects were 

complex. Repulsive glasses aged only in the first day or two, after which they did not 

evolve within the time window of the measurements. Attractive glasses, on the other 

hand, showed different dynamics with age for up to 10 days. Aging is complicated 

enough to be the subject of a separate study and was not investigated systematically in 

this work. To eliminate as much as possible aging effects on dynamical results within 

practical limits of waiting time, I present DSFs of glassy samples with age between 1 

and 4 days. The dynamics of crystallizing samples (C—E) were measured while they 

were in the metastable state well before the appearance of crystallization. Below I first 

show results of different samples at the same q, then at different q for the same sample. 

5.3.1 Constant scattering vectors, variable compositions 

The DSFs of samples A—H at qR = 1.50, Fig. 5.7, clearly evolve non-monotonically 

with increasing polymer concentration and show re-entrant behaviour. Briefly, samples 

A and B are non-ergodic within our time window, while samples C—E are ergodic (their 

DSFs decay completely to zero), and samples F—G become non-ergodic again. 

In detail, the DSF of sample A, a pure hard-sphere glass, shows a plateau at IA  (q, oo) 

0.7, corresponding to particles getting 'stuck' in their nearest-neighbour cages. This 

can be compared with previous work [5, 85]. Note that in doing so, it is important 

to compare samples with the same density relative to random close packing: i.e. the 

same (q5rcp - c)/crcp, since Orcp  differs according to the polydispersity of the colloids 

[86]. 
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points of inflection become clearer with increasing age of the samples. 
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polymer solution viscosity ii,.. The inset shows the same plots on an expanded vertical axis. 

With a small amount of polymer added to the hard-sphere glass, sample B shows the 

same qualitative dynamics. Quantitatively, however, the height of the plateau is lower, 

f(q, oo) = 0.62. This indicates that particles in B are not as restricted as in A, i.e. 

the cage is loosened by the attractive interaction, but still remains closed in our time 

window. 

The DSF of sample C decayed completely in (a 'scaled time' of) about 1000 seconds, 

as did those for the other crystallizing samples D and E. It is interesting to note that the 

DSFs of these three samples slow down upon increasing polymer concentration but all 

reach zero at about the same scaled time. The DSF of sample C shows the remnant 

of a plateau at a scaled time of 10 s. The DSFs for samples D and E exhibit a very 

stretched single decay, rather than a two-stepped process. This is unusual behaviour 

for a fluid at volume fraction 0 '-..' 0.6 (at least at first sight). 

The intermediate, fi, and long-time, c, decays in a dense hard-sphere fluid are at- 
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tributed to particles 'rattling' in their local neighbour cages, and escaping from these 

cages, respectively [5].  Attraction hinders the 'rattling' by trapping particles in po-

tential wells, but accelerates the cage opening by clustering. At some polymer con-

centration (or attraction strength), the two time scales coincide. If at this point the 

attraction alone is not enough to trap the system in an non-ergodic state, we will ob-

serve the melting of the repulsive glass into an ergodic fluid dominated by attraction. 

This is the case for sample C, where the a and 3 decays are barely distinguishable in 

the DSF. At higher polymer concentrations, the cage concept is no longer appropriate 

for describing the particle dynamics - for it to be valid, a particle has to 'rattle' many 

times in a cage before it opens. Note that this is a distinctive feature of dense fluids 

with short-range attraction. In a dense fluid with long-range attraction, the effective 

potential well experienced by any particle due to its neighbours is essentially flat. This 

adds a (negative) constant to the free energy, so the phase behaviour [87] and dynamics 

of the system are still controlled by repulsion (or, equivalently, entropy). 

Note that the shape of the DSF of sample C at qR = 1.50 is similar to that shown in 

curve 2, Fig. 11 of [36].  This DSF was calculated at qR = 2.1 for a sample in the re-

entrant portion of the state diagram in a system that just shows a glass-glass transition 

and an A3 point. Recent calculations for colloid-polymer mixtures [35] suggests that 

this system, with 0.09, should show exactly these features. 

The DSFs of samples F—H are, once more, non-ergodic in my experimental time win-

dow: they do not decay completely even after 10 4  seconds. Simple extrapolation in-

dicates that it would take these DSFs at least 106  seconds to reach zero. The DSFs 

of samples G and H show points of inflection; that for sample H is clearer and occurs 

at f = 0.995 - a very high value compared to the plateaus in hard-sphere glasses. 

These high points of inflection can be associated with dynamics originating from par-

ticles rattling in very narrow attractive potential wells. 

At other wave vectors, Figs. 5.8 and 5.9, the DSFs behave in a similar way, namely rel 
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Figure 5.8: DSFs at the peak of the SSFs for samples A—H. The inset shows the same plots 

on an expanded vertical axis. 

atively low plateaus in the repulsive glasses A and B, complete decay in the metastable 

fluids C—E, and extremely slow dynamics in the attractive glasses F—H, with very high 

points of inflection in G and H. Note, however, that at the peak of the corresponding 

SSFs, the DSFs for samples C—E are barely distinguishable (Fig. 5.8). 

The plateaus in the DSFs of the repulsive glasses can be used as a measure of f(q, oo), 

the non-ergodicity parameter. An estimate of this quantity for the attractive glasses is 

more problematic, partly due to significant aging in my time window. To proceed, I 

use the value of f at the point of inflection as a surrogate; and call this the 'measured' 

f(q, ) 
f(M)(q, oo). The evolution of f(M)(q,  oo) with increasing polymer concen-

tration (samples A—H) is shown in Fig. 5.10. The non-ergodicity parameter decreases 

slightly when moving from A to B, away from the hard-sphere glass. When attraction 

melts the repulsive glass, f(M)  (q, oo) = 0 for samples C—E (not shown). Sample F did 

not crystallize and showed non-ergodic dynamics up to 10 4  seconds but did not exhibit 

any discernible point of inflection in its dynamics. Samples G and H had extremely 

0.4 
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fin 
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Figure 5.9: DSFs of samples A-H at qR = 4.30, to the right of all S(q) peaks. The inset shows 
the same plots on an expanded vertical axis. 

high non-ergodicity parameters of nearly 1. A 'jump' in f(q, oo) when moving from 

repulsive to attractive glass was predicted by MCT (Fig. 7 in [36]). 

The evolution of the short-time dynamics of the whole sequence of samples is also 

interesting. Fig. 5.11 shows the short-time behaviour of the DSFs for A—H at large 

length scale, qR = 1.50, where experimental noise is lowest. Note the very small 

vertical interval, 0.997 to 1.000, spanned in this figure; thus only the first 0.3% of 

the decays of the DSFs are being analyzed. The DSFs of repulsive glasses A and 

B possessed relatively long linear parts, corresponding to the first term in in the 

expression derived from the Smoluchowski (many-particle diffusion) equation [28]: 

f(q, r) DOB)q2y + 0(r2 ), where D0  is the free-particle diffusion constant in 

pure solvent (with no polymer) D0  = kBT167r77oR, and H(q) is the hydrodynamic 

factor. This linear regime of the DSFs indicates that at short time, individual particles 

still diffuse freely without the influence from direct interaction with their neighbours. 
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(ill 

The change in limiting slope as r —* 0, or the short-time diffusion coefficient D3  (q) = 
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D0H(q)/S(q), can be almost entirely explained by the change in 8(q) (Fig. 5.12), 

including the strong decrease on entering the attractive glass regime. What is more 

interesting is that the dynamics depart from free diffusion progressively earlier upon 

increasing attraction (Fig. 5.11). In fact, for the attractive glasses F—H, the particles are 

confined so tightly by the attractive potential wells that the DSFs display non-linearity 

almost immediately (cf. also insets to Figs. 5.7-5.9). 

Moving to the (shorter) sequence of samples at the higher volume fraction of q 

0.64 and closer to the intersection of the two glass transition lines, samples I—K in 

Fig. 5.3, we see the emergence of remarkably stretched-out, extremely slow dynamics. 

Consider first the data at qR = 1.50, Fig. 5.13. In terms of short-time dynamics (inset, 

Fig. 5.13), samples I and J are comparable to samples C and D, while sample K shows 

a behaviour intermediate between those of samples E and F. At intermediate times, 

the decay is linear with respect to the logarithm of the scaled time. Thereafter there 

is an incipient plateau at f 	0.7 in sample I, reminiscent of the plateau in repulsive 

glasses A and B, before a further decay, but never beyond -' 0.62 in my time window. 

There is no incipient plateau for the other two samples. Note that the DSF of sample I 
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Figure 5.11: The short-time dynamics of samples A—H at qR = 1.50. The straight lines are fits 
to the linear part of the DSFs at r —* 0. The dynamics departs from an initial diffusive regime 
progressively earlier upon increasing attraction. The short-time diffusion coefficient in the limit 
r —* 0 is also reduced significantly. 
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Figure 5.12: The normalized short-time diffusion coefficient Do/D 8 (circles, left scale), static 
structure factor S(q) and hydrodynamic factor H(q) (right scale) at qR = 1.50. D3  and 8(q) 
were extracted from Fig. 5.11 and 5.4 respectively. The decrease in D3  is nearly in line with 
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Figure 5.13: The DSFs at qR = 1.50 for samples I—K with 	0.64. Extremely stretched 

relaxation is found in all three samples with logarithmic decay over long ranges of r (straight 

lines). The inset shows the short-time dynamics, which deviate from the diffusive regime from 
very early times. 

shows aspects of the behaviour of repulsion-dominated glasses (long time) and a fluid 

dominated by short-range attraction (short time). The two regimes are 'bridged' by a 

stretched log-time decay. 

At the peak of the SSF, Fig. 5.14, sample I behaves in a similar way at short to interme-

diate times, while there is no incipient plateau at long times. Samples J and K develop 

an incipient plateau as high as - 0.993 (inset Fig. 5.14) before turning over to decay 

more rapidly in logarithmic time. 

The fact that these samples show extremely stretched out dynamics, logarithmic in 

time, suggests that they are very close to the A3 critical point predicted by MCT, 

where the repulsive and attractive glasses become indistinguishable [36, 88, 89]. In 

particular, the shape of the DSF of sample I at qR = 1.5 is comparable to curve 3 in 

Fig. 11 of [36],  calculated at qR = 2.1 for a sample on the repulsive glass transition 

line very close to where it intersects the attractive glass transition line for a system that 

just shows an A3 singularity. This is not inconsistent with the position of sample I on 
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Figure 5.14: DSFs at the peak of the SSH for samples I—K. All decay much slower than at low 
q. Sample I shows a logarithmic decay for about 3 decades in scaled time. Samples J and K 
develop very high plateaus (inset). 

the state diagram, Fig. 5.3, of this system at 	0.09 [35]. 

Heuristically, we may begin to make sense of log-time decays as follows. At high 

enough volume fraction, the average distance between neighbouring particles will de-

crease to a value such that they are always well within the attraction range of each 

other 1 . If the attraction is strong enough, the restriction of particle movement due to 

the neighbour cage and the restriction caused by bonding between particles take place 

simultaneously at all times. This competition between two opposite mechanisms may 

lead to a broad distribution of decay times and therefore a very stretched out DSF 2 . 

1n this system the estimated distance between particles for samples I—K (0 = 0.64) from random 
close pack (rcp = 0.69) is ( rcp/) 1 ''3 = 1.03 1 + e/3 , where the attractive potential is half of the 
maximum depth. 

2Formally, a r 1  distribution of decay times gives a decay linear in log 7% Limitations in my data 
mean, however, that I cannot use them to back out the actual decay-time distribution in our samples. 
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5.3.2 Constant compositions, variable scattering vectors 

In this section, I show for completeness the dynamics of each sample at different scat- 

tering vectors in Figs. 5.15-5.18. The change of DSFs with q in repulsive glasses 

A and B are in agreement with previous work [85, 5].  Other samples show the gen-

eral trend that the dynamics become slower at scattering vectors with higher S (q). 

The only exception concerns the intermediate-time dynamics of the attractive glasses 

F—H (insets, Fig. 5.17). The significance of the rather complicated q-dependence of 

the intermediate-time dynamics of these samples is not clear. Nor do I know of any 

detailed calculations to date that can throw light on this issue. 

The systematic q-dependent data shown in Figs. 5.15-5.18 allow me to investigate the 

q-dependence of the measured non-ergodicity parameter, f(M)(q, oo), in detail. The 

measured non-ergodicity parameters of glassy samples A, B, G and H are shown as 

a function of scattering vector q in Fig. 5.19. The data for repulsive glasses A and 

B vary essentially with the static structure factor, as observed in hard-sphere glasses 

[85]. Attractive glass G and H on the other hand showed extremely high measured 

non-ergodicity parameters that hardly vary with q. This agrees with predictions by 

MCT (c.f. Fig. 8 in [36]). 
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time. Except for sample C at the lowest q, all other DSFs do not show two distinct relaxation 
processes as other dense fluids. 
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Figure 5.17: The DSFs of samples F-H at different q. The vertical axes span different ranges. 
Sample F did not show a point of inflection, but G and H have very high points of inflection 
(horizontal lines), the values of which are used in Figs. 5.10 and 5.19. 
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at the peak of 8(q). Sample I decays to a logarithmic section and then appears to turn up to 
a plateau. Sample J shows a very long section of logarithmic decay. Sample K is similar to J 
with a shorter stretch of logarithmic decay. In the early decay at the peak of S(q), the DSF of 

sample I has a long stretch of logarithmic decay whereas samples J and K develop very high 
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Figure 5.19: The measured non-ergodicity parameters of samples A, B, G and H as a function 
of scattering vector q (points), and the static structure factor of sample B (line) for comparison. 
The non-ergodicity parameters of repulsive glasses A and B follow the static structure factor, 
whereas those of the attractive glass are extremely high and hardly fluctuate with q (upper 
pane with expanded vertical axis). 
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Chapter 6 

Conclusion 

6.1 Summary of Results 

In this work I have presented a detailed experimental investigation of the glass transi-

tions in a colloid-polymer mixture with = 0.09, a model for a hard-sphere system 

with short range attraction. Experimental methods include observation of phase be-

haviour and light scattering which explores the microscopic structure and dynamics of 

the system. I also presented the echo dynamic light scattering technique used to obtain 

ensemble-averages in DLS measurements. 

6.1.1 Echo DLS 

Echo DLS is a simple method of measuring ensemble-averaged correlation functions 

by rotating the sample in a dynamic light scattering setup. The correlation functions 

obtained consist of peaks (echoes) at delay time equal to exact multiples of the rota-

tional period. The envelope of these echoes follows the ensemble-averaged correlation 

function of the sample obtained otherwise. Theoretical analysis and computer simu-

lations predict the profiles of the echoes and show that their shape is not altered by 
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sample dynamics. Therefore correction to imperfect sample rotation can be made us-

ing the areas under the echoes. The echo DLS method requires only simple hardware 

to be added to any DLS setup, yet gives very good and quality-verifiable data over a 

delay time range 1 - 10 4  seconds and beyond in a similar measurement time. It is ideal 

as a practical compliment to other methods for measuring long time dynamics of many 

classes of non-ergodic samples not least the glasses studied in this work. 

6.1.2 Phase behaviour 

The equilibrium phase behaviour of the system under study agreed with predictions by 

theory [19] and previous experiments [13].  It was also found that fluid-crystal coex-

isting samples at low volume fraction reached their final state via a two-step process: 

a gas-liquid separation followed by the crystallization of the liquid phase. This was 

attributed to the colloid size polydispersity which brought the fluid-crystal coexistence 

boundary closer to the gas-liquid binodal. The fractionation in the gas-liquid separa-

tion produced a less polydisperse liquid phase that finally crystallized. 

Samples with high enough volume fraction and/or polymer concentration did not reach 

the predicted crystallized phases but stay amorphous for long periods of time. The po-

sitions of these samples on the phase diagram clearly showed a re-entrant behaviour: 

the attraction melted the hard-sphere-like repulsive glass and pushed the glass transi-

tion to a higher volume fraction. However, with strong enough attration, the system 

was stuck in an attractive glass. The microscopic structure and dynamics of these 

glasses were then explored with light scattering. 

6.1.3 Structure and dynamics of glasses 

It was found that in increasing attraction across the re-entrant region, the structure of 

the system changes gradually. Locally particles are drawn closer together thus create 
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more heterogeneity at longer length scale. As soon as the system enters the attractive 

glass, neighbouring particles are almost touching and the structural changes seem to 

saturate. 

On the other hand, the collective particle dynamics studied by DLS reveals a clear 

re-entrant glass transition. With little attraction, the system at high enough volume 

fraction is 'stuck' in a repulsive glassy state where the arrest is due to caging by neigh-

boring particles. My data support the suggestion [39] that attraction causes particles 

to cluster, thus opening up holes in the cages and melting the glass. At the same 

time, the attraction slows down the particle dynamics. It was found that the repulsive 

glass melts when the characteristic time of the attraction-dominated particle dynam-

ics becomes comparable to that of cage opening. The resulting ergodic fluid shows a 

distinctive dynamical feature: despite the fluid's high density, its DSF does not show 

distinct c and fi relaxation processes. 

Increasing the attraction further leads to a different kind of arrest where the strong at-

traction between particles creates long-lived bonds and prevents structural rearrange-

ment, giving rise to an attraction-dominated glass. These short-range bonds manifested 

in the dynamic structure factors as 'points of inflection' much higher than the plateaus 

of repulsive glass. 

In the region where the two glass transition lines are expected to meet, I observed very 

slow, log-time dynamics in the DSFs. These stretched dynamics which correspond to 

broad distribution of decay times could be the result of a competition between two 

opposite mechanisms of glass forming: caging and bonding. The observed dynamics 

agree well with predictions for samples near the critical 'A3' point in mode-coupling 

theory. 
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6.2 Suggestions for future work 

6.2.1 Comparison with MCT 

Qualitatively, the scenario of two types of fundamentally different glasses agrees well 

with predictions from MCT calculations (with those reported in [35] being closest to 

the present experimental system). Quantitatively, however, these results stand as a 

challenge to MCT (or any other theory): the detailed calculations needed for direct 

quantitative comparison have not, to my knowledge, been performed. 

A detailed comparison between experiment and theory faces a number of non-trivial 

problems. First and foremost, since calculated and measured glass transition thresholds 

differ, choices exist as to what constitute 'corresponding state points' for the purpose 

of making the comparison. In the case of pure hard spheres, where OMCT 	0.52 

and 	0.58, it is accepted practice to compare measurements and calculations 

at the same relative volume fraction (çb - qg)//g [5]. The situation is more complex 

in a colloid-polymer mixture, since a state point is now specified by the densities of 

both components. The predicted glass transition lines show quantitative disagreement 

with experiments over the whole composition plane (cf. Fig. 1 in [37]). To compare 

calculated and measured SSFs and DSFs, a protocol for identifying 'corresponding 

state points' is needed. 

Secondly, the attractive interaction between two particles is always specified directly 

as a potential energy in calculations. The corresponding experimental variable is the 

polymer concentration in the free volume, c. This is currently guessed at using an 

uncontrolled and untested approximation based on scaled-particle theory [19],  and is 

likely to lead to large systematic errors in systems with high colloid volume fractions. 

Finally, the marked and complex aging behaviour of the attractive glasses complicates 

the definition of a non-ergodic state for the purposes of comparing with MCT. De- 

spite these potential difficulties, however, my data suggest that it may be worthwhile 
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performing a series of calculations at fixed q and increasing attraction crossing the re-

entrant gap in between the repulsive and attractive glass transition lines for a system of 

hard spheres interacting with something like an Asakura-Oosawa potential [35]. 

6.2.2 Aging in glasses 

It is clear from my preliminary study that attractive and repulsive glasses show qual-

itative different aging behaviour. Classical MCT does not predict aging, but it is a 

generic feature of experimental glasses of all kinds [84]. One could speculate that 

aging is the slow process of exploring neighbouring energy landscape minima via acti-

vated hopping. It thus provides another window to look at the nature of the two glasses. 

A number of theoretical approaches are emerging, and simulation is a valuable tool. 

It is possible that the activated processes seen in simulations [90] are responsible for 

the final decays of the dynamics in our attractive glasses and their aging behaviour, 

ultimately avoiding the ideal MCT divergence of relaxation time. It is probable that 

further study of this phenomenon in this model colloid-polymer mixture should throw 

significant light on this intriguing (and generic) phenomenon. 

6.2.3 Fragile and strong glasses 

It was suggested [69] that the two glassy states found in attractive hard spheres could be 

seen in the context of fragile and strong glass former in atomic and molecular glasses. 

They are classified according to the way the viscosity diverges as the glass transition 

is approached from the liquid side [7].  The viscosity of strong glass formers diverges 

according to an Arrhenius law (i.e. exponentially), while that of fragile glass form-

ers does not. Hard sphere glass are then fragile. One may speculate that attraction- 

dominated glasses are 'strong' in this sense - because there is an energy scale (set 

by the attractive well depth), we may expect an 'activated' (i.e. Arrhenius) viscosity. 
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Further studies of the rheology of the two glassy states studied here will either confirm 

or dismiss this scenario. Strong and fragile glasses can also be distinguished by their 

underlying 'energy landscapes' [91], which could be studied by direct imaging. 

6.2.4 Other approaches 

MCT has been found to be successful in predicting many features of the glass transition 

in hard spheres without as well as with a short-range attraction. Much of the physical 

basis for its success, however, remains to be elucidated. Some features, like aging and 

hydrodynamic interaction were completely ignored by classical MCT. It is possible to 

study this system in other theoretical approaches which have been less used to discuss 

colloidal glasses to date. 

Some of these may give insight into the glassy states found in this work. Energy 

landscapes [91] with relation to fragile-strong glasses and aging have already been 

alluded to. This approach is somewhat related to the random trap model [92].  The 

melting of a repulsive glass by adding attraction may be discussed in terms of 'free 

volume' [93].  The local environment of each particles, essential to these approaches, 

can be deduced from direct imaging. 



Appendix A 

Theoretical polydisperse 

fluid-crystal phase diagram 

This appendix describes detailed procedures to calculate the polydisperse fluid-crystal 

coexistence boundary. Details of the equilibrium theory that these calculations are 

based on can be found in [19, 20].  The free energy of a polydisperse crystal phase 

based on cell theory is taken from [81]. 

A.1 Free energies 

As discussed in section 2.1.2, the dimensionless free energy concentration h(0) is used 

to derive the colloid chemical potential and osmotic pressure in each phase (Eqs. 2.10 

and 2.11). It consists of two parts, a colloidal term and a polymer term (Eq. 2.9): 

F 47rR3 47rR3  
3V — na() 	. 	 (A.1) 

k B T 

Let us define the free polymer volume fraction a = (4/3)7rrN/(cV). Note that this 

is not the polymer activity mentioned in [20].  The free polymer number concentration 
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nr can be expressed in terms of the dimensionless a in the above equation: 

F 47rR3  aa(q5) 
h() = 	 (A.2) 

3V  
he  hp (,ap ) 

The second term depends only on free polymer concentration, i.e. on a, and colloid 

volume fraction 0. The first term is the colloid term and can be derived from the 

appropriate equation of state for hard sphere colloids. 

Hard sphere colloid equation of states are usually expressed as a function of compress-

ibilty in volume fraction: Z PV/(N CkBT) = Z(). The free energy density due to 

colloid h, (0) is derived from the equation of states as follow. 

F Z() 

NC kBT - d + C 
- f  

Fc 

Vk B T 
- Nc Y WZdC) 

V 
 

F 471R3 47rR3N 	Z()  
V 3k B T 

- 
- 	 d + c) 

3V 	(f   

= 	(f 	d + c) ,  

where C is an arbitrary integration constant. 

For the fluid phase, the compressiblity expression by Carnahan and Starling (Eq. 1 in 

[94]) 

 
- 	(i—) 3  

was used to obtain h (q): 

	

(i_)2) 	
(A.8) 

with an implicit value of C taken as a reference. 

For the polydisperse colloidal crystal, the free energy based on a cell theory suggested 

by Sear [81] gives: 

	

h) = (c —3 f(R) ln(a - (R + 	 (A.9) 
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- 	 1/3 

where a is the nearest neighbour distance in a FCC lattice, a = 2R 
 (OFCC

) 

, and 

p(R) is the size distribution function for a polydisperse system. 

In the limit of a monodisperse system, p(R) = 	- ), the colloid free energy 

becomes: 

h 0 (q) = q (C - 3 ln(a - 2R)) 	 (A. 10) 

For a polydisperse system, I used the "hat" distribution function for colloidal size, ie. 

for a system with polydispersity a, 

o 	r<(1—a) 

p(r)= 	L 	(1—a)<r<(1+a) . 	 (A.11) 

o 	r>(1—a) 

With this form of size distribution function, the free energy density for polydisperse 

systems is (taken W = 1) 

h()=(((a_2_a)1n(a_2_a)_(a_2+a)1n(a_2+a))+3+C) 
co"

(A.12) 

Note that the expressions of h(q) in Eqs. A.10 and A.12 are kept so that the constant 

C is the same as in Eq. A.9. The value of C will be adjusted in the phase boundary 

calculation for the monodisperse case (Eq. A.10) so that the coexisting hard sphere 

fluid and crystal volume fraction is as close as possible to 0.494 and 0.545. A perfect 

match is not possible due to the accuracy of the cell model. 

A.2 Phase boundary calculation 

Substituting the expressions of h1  (q) and h'(0) for colloidal fluid and crystal respec- 

tively to Eq. A.2, one obtains two free energy density functions hf (q5) and h(0) for 

fluid and crystal phases in colloid-polymer mixture with a as a parameter. It can 
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Figure A.1: Common tangent method used to calculate the volume fractions of coexisting 
phases. Both h(cb) curves for fluid and solid are progressively added a linear term AO until 
both minima are equal. The values of 0 at the minima are the coexisting volume fractions. 

be shown that the colloid chemical potential and osmotic pressure are the slope and 

intercept of the tangent to h(çb) (Eqs. 2.10 and 2.11). 

Therefore the coexisting volume fractions of fluid and crystal are the contact points of 

a common tangent to h1  (q) and h (q). It should also be noted that adding a linear term 

A0 to both curves (after calibrating the integration constant C one against the other) 

does not change the 0 coordinates of the tangential points of the common tangent to 

the 2 curves. Therefore it is easier to calculate the common tangent by progressively 

adding Açb with varying A until both minima of the curves are on the same horizontal 

tangent (Fig. A. 1). The results of coexisting volume fractions for different values of 

ap  are collected to construct the thoeretical phase diagram in the (a r , 0) plane. The 

corresponding phasediagram in experimental space (cr, qS) is calculated by converting 

a,, to c,, using the corresponding 0 of each phase. 
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Figure A.2: Free energy density of fluid phase (thin line) and crystal phase (thick lines) of difer-
rent polydispersities calculated with a top hat size distribution in the cell model: monodisperse 

limit (continuous line), or = 7% (dash line), or = 9% (dot-dash line). The same arbitrary linear 

term of 0 was added to all the curves. The common tangent to fluid and crystal free energy 
branches determines volume fractions of coexisting phases. 

The effect of polydispersity is to increase the crystal free energy (Fig. A.2). This makes 

the coexisting volume fractions of fluid and crystal closer, resulting in a narrower fluid-

crystal coexistence region as seen in Fig. 5.2. 
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