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ABSTRACT 

The development of an 'eon-line" computer system for data capture 

and processing to be used with a combined gas chromatography-mass 

spectroscopy (g.c.-m.s.) technique is described. 	The usefulness of the 

g.c.-m.s. technique in investigating problems which cannot be tackled by 

other methods was demonstrated in two types of system; firstly, the 

simultaneous exchange and addition reactions of ethylene were investigated 

over a variety of oxide catalysts and secondly, the technique was used to 

study the simultaneous exchange reactions of a number of hydrocarbons with 

deuterium. 	The use of the computer was shown to be less time-consunng 

and more accurate than the method it superseded. 

In the reactions of ethylene with deuterium over a variety of 

oxide catalysts, a wide range of selectivities was shown by the catalysts 

for the two reactions, exchange and addition. 	Magnesium oxide accelerated 

the exchange of ethylene without the production of ethane even at 671K; 

gamma-alumina also exhibited a high selectivity for exchange. 	In contrast 

on chromium oxide (Cr 203 ) at 197K  and zinc oxide at 273K 9  ethylene under- 

went rapid deuteration with no observable exchange of the olefin. 	Other 

catalysts showed intermediate behaviour being able to promote both 

reactions. 	For the range of oxides studied the ratio of the rate constants 

for the exchange and addition reactions decreased in the order 

MgO > Al 203  > TiO > Fb 203 11,  Co3 04  > Zr02 	ZnO 7 Cr 203  

An explanation for the marked differences in catalytic behaviour is 

suggested in relation to the activity of different types of hydrogen 

species on the various catalysts. 

Both the g.c.---m.s. system and conventional mass spectrometric 

techniques were used to investigate the exchange reactions of alkanes over 

a gamma-alumina catalyst. 	The exchange activities of a series of alkanes 

with deuterium were found. 	From the different activities of the various 

reactants and of different types of hydrogen atoms within the same molecule, 

a qualitative estimate of the relative acidities was made. 	The results 

indicated that the reaction intermediates were carbanionic in character. 

A linear relationship between hydrogen exchange activity and the hydro- 

carbon acidity was obtained and was shown to be an example of the Bronsted 

catalysis law. 



All the exchange reactions took place in a stepwise manner and, 

for the cycloalkanes, exchange could be followed at lower temperatures 

without the complications of isomerisation and addition. 	The cycloalkanes 

appeared to have an enhanced activity compared with the linear molecules. 

Methods of analysing the data from catalytic exchange reactions 

of molecules in which different groups of hydrogen atoms exchange at 

different rates were required in this work. 	A method of determining the rate 

of exchange from such reactions which had already been proposed was tested 

using computer-generated isotopic distributions and found to be satisfactory 

provided the ratio of the rate constants for the two groups of exchangeable 

hydrogen atoms was greater than about 5. 	On the other hand, the derivation 
of rate constants and Arrhenius parameters from data obtained by temperature-

programmed experiments could only be considered reliable when the rate con-

stants for the different groups of atoms wasgreater than about 20. 

The exchange reactions of a series of alkanes and olefins with 

deuterium were investigated over magnesium oxide. 	A large range of activity 

was observed; olefins which could form allyl species, e.g. propylene and 

isobutene, exchanged rapidly at low temperature (195K) while some of the 
alkanes, e.g. methane and n-butane, required temperatures above 600K. 	The 

range of activity was rationalised in terms of the possible reaction mechan- 

isms. 	The results indicated that intermediates of a carbanionic nature 

preoninate in the reactions on magnesium oxide. 	Like alumina, a Bronsted 

relationship was found between the activities for the exchange of alkanes 

and the hydrocarbon acidities. 

All the exchange reactions were stepwise and those requirng high 

temperature showed evidence of poisoning. 	The presence of ethylene appeared 

to poison the exchange reactions of propylene and isobutene. 
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INTRODUCTION 

1.1 HISTCRIC!L BACKGCUID 

A concise yet complete definiticn of catalysis is probably 

as elusive as the philosopher's stone which could transform base metal 

into gold and from which the idea of catalysis originated. 	A catalyst 

is often defined as "a substance which increases the rate at which a 

chemical reaction approaches equilibrium without being consumed in the 

process." 	The range and importance of catalysis and catalytic reactions 

in society is great, indeed life itself depends on some very specific 

catalytic reactions. 

Although man has used catalysis for thcusands of years, one 

of the oldest examples being in the production of alcoholic beverages, 

that branch of modern science known as catalysis can trace its origin 

to a review article(1)  by Berzelius in 136 in which "catalysts" are 

defined as "substcncos which by their r;re ircnce evohe ohenical 

reactions that would not othcr;i:e tike nioce." 	Beraci i t  I s Used this 

concept to relate a variety of diverse observations concerning the 

effect of trace substances on reaction rates. 	One implication of his 

ideas was that the presence of a catalyst provided a more hvotnahlo 

chemical environment for a particular reaction. 

Several other catalytic processes were recorded in subsequent 

years but the next major advance in the understanding of catalysis 

came in 1901 when Ostwald 	first suggested that a catalyst influences 

the rate of a chemical reaction but has no effect on the position of 

equilibrium, his definition being that "a catalyst changes the velocity 

of a chemical reaction without itself appearing in the products." 	One 



important implication of these ideas is that a catalyst only affects 

those reactions which are already thermodynamically feasible. 	A 

catalyst may provide a new and energetically more favourable pathway 

for a reaction by forming intermediates with the substrate which decom- 

poses to give various products. 	It is knowledge of these intermediates, 

their nature, formation and decomposition which yields understanding 

of a catalytic reaction. 

Catalytic reactions can be subdivided into three categories; 

heterogeneous catalysis where the catalyst and reactants are in different 

phases, homogeneous catalysis where both are in the same phase and 

enzyme catalysis which controls many biological processes. The work 

of this thesis is solely concerned with the first category, in particular 

reactions between gaseous reactants on a solid catalyst. 

1.2 ADSORPTION PROCESSES  

Adsorption of one or more reactants on the catalyst surface 

is a necessary step in any reaction in heterogeneous catalysis. The 

processes involved in adsorption have long been studied and it is now 

accepted that the nature, extent and strength of adsorption can play 

an important role in determining reaction products. Adsorption 

phenomena can be subdivided into physical adsorption and chernisorption. 

Physical adsorption arises from weak intermolecular attractive forces. 

The gas molecules adsorb on the solid bound by Van der Waal type forces 

similar to those which give rise to the cohesive properties of liquids. 

Heats of physical adsorption are comparable to heats of liquefaction of 

the adsorbate and are of the order of 5 - 20 kJ mol 	The rate of 

physical adsorption is always fast because the process has a low 
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activation energy provided the adsorption sites are easily accessible. 

A slow rate of physical adsorption may indicate slow diffusion in a 

porous surface. In physical adsorption, several adsorbed layers may 

be formed, particularly at temperatures near the boiling point of the 

gas. 

Physical adsorption involves weak forces and only on rare 

occasions, e.g. the oxidation of nitric acid on a silica catalyst(4) 
9 

is it important in catalytic reactions. However it is useful in the 

measurement of a catalyst's surface properties by the determination of 

the quantity of gas adsorbed under various conditions. In particular, 

the estimation of surface area by the method of Brunauer, Emmett and 

Teller (B.E.T.)' 6  is widely used. 

Chemisorption is the result of a molecule interacting with 

the unsaturated valenojes of the atoms at a solid surface. A molecule 

can be regarded as undergoing a chemical reaction in which there Is a 

rearrangement of electrons within the molecule. Much stronger forces 

and more radical changes in the molecules are involved in chemisorption 

than In physical adsorption. 	Chemisorption Is an essential step in 

the preparation of a molecule for a reaction. 

Adsorption Is usually exothermic. In a spontaneous process 

the free energy change, AG 9  is negative and from 

AG - 	- TS 	 1.1 

it is necessary that A H is also negative because the entropy change, 

S, must be negative since adsorption produces a more ordered system. 

If AH is negative it indicates an exothermic process. In Ohemi-

sorption the heat of adsorption is generally in the range 40 - iiOO 

kJ mo1 1 . 	Chemisorption is necessarily limited to monolayer 



tion is oftcri rapid 

and in tch CCC Cs f;e rotcnt al cn;ry hacrier to be overcome before 

adsorption can take place is small, e.g. al*rj- ticn of hydrogen on 

clean metal filaments (7)  proceeds rapidly at 25K. 	However some 

chemisorption processes involve slow activated adsorption, e.g. the 

adsorption of nitrogen on iron catalysts 	in which the rate 

determining step involves the breaking of the N-N 1ond, 

The first quantitative discussion of adsorption processes 

(° 10) was developed by Langmuir ' 	
. 	Working on certain assumptions 

that on a surface there are a fixed number of surface sites which 

can accommodate one adsorbed molecule and which all have the same 

heat of adsorption, the equation 

0- --- 1 + ap 1.2 

was derived in which 0 is the fraction of surface covered by 

adsorbed species, p is the Lras rrenre and a is a constant 

related to the heat of adsorption. 	This equation dcs not hold 

universally, the principal theoretical objections being that it 

takes no account of lateral interaction between adsorbed species 

and that, because of surface heterogeneity, the heat of adsorption 

is not uniform over the surface. 

The isotherm formulated by Brunauer, flnnett and Teller (6) 

involved similar assumptions as the Langmuir model hut also 

accommodated the possibility of multilayer adsorption. 	The 

equation is 

J 1 	 1 	+ jfl 1.3 V(po_pJ = WEVmC 	po 

where V is the volume of gas adsorbed, Vm  is the volume of 
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adsorbate for monolayer coverage, p is the partial gas phase 

pressure, po is the saturated vapour pressures and c is a 

constant. 	By plotting p/V(po—p) against p/po for a series of 

readings, the volume of a monolayer can be derived which leads to 

a value for the number of molecules required to cover the surface. 

The surface area can be estimated if the area occupied by one 

adsorbed molecule is known. 	Although the model can be criticised 	
01) 

it does appear to give self—consistent results for solids with 

appreciable microporosity, i.ee pores smaller than 2nm and when 

nitrogen in a relative pressure range of 0.05-0.3 is used as the 

adsorbed gas. However, it should be borne in mind that the method 

measures the total accessible surface of a catalyst regardless of 

whether or not all locations are catalytically active. 

Other commonly used isotherms are those of Freundlich (12)  

and Tempkin(13). 

1.3 REACTIONS ON SURFACES 

Two concepts are central to the consideration of surface 

reactions. 	Firstly, one of the reactants must be adsorbed on the 

surface probably as an organometallic intermediate species, an idea 

first suggested by Sabatier(14). 	Secondly, the catalytic process 

is considered to occur at specific locations on the surface which 

have some property, perhaps geometric or electronic, which favours 

the reactions. These locations are known as active sites, a term 

first used by H.S. Taylor(1516)0 	Much of modern research in 

catalysis is concerned with either the nature of the adsorbed 

species or the nature of the active sites. 



A surface reaction is usually broken down into the 

following steps, 

diffusion of reactants to the surface 

adsorption of reactants at the surface 

chemical reaction on the surface 

desorption of products from the sur1ace 

diffusion of products a;ay from the surface 

These are consecutive steps and, if one is much slower than the 

rest, it will be the rate determining step. 	Steps (a) and (e) 

are usually rapid and, in the static system ihich was used in this 

study, the low pressure in the reactor and the size of the particles 

favour rapid diffusion. 	Diffusion-controlled reactions can be 

detected by their temperature dependence. 	Steps (b), (c) and (d) 

are all activated processes and behave with an exp(-E,/RT) dependence 

with respect to trnperature while diffusion processes vary as the 

square root of T . 	Step (b) is seldom rate-determining although 

the dissociative cher!Iisorptlon of nitrogen is thought to be the 

slow step in the formation of aneoriia from nitrncn and 

Since there is little information about the rates of desorption, 

steps I% c) and (d) are often considered together as the chemical 

reaction on the surface and often constitute the rate determining 

step. 

Two mechanisms have been formulated to describe the 

reaction of two species at a catalyst surface. 	Assuming that 

adsorption and desorption are in equilibrium, the catalytic reaction 

can be considered as an interaction between adsorbed species at the 

catalyst surface. The reaction may be between two reactants both 
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adsorbed at nearby sites on the catalyst. 	This is the Langmuir- 

Hinsheiwood mechanism (18-20)  and has been successfully applied to the rate 

expressions of many catalytic decomposition and bimolecular reactions. 

An alternative approach is to consider the reaction as being between an 

adsorbed molecule and another molecule in the gas phase. This is the 

Rideal-Eley mechanism(21) There is no evidence that either of these 

mechanisms operates to the total exclusion of the other.. 

In any catalytic reaction, the nature of the adsorbed inter-

mediates, their stabilities and the possible reactions which they may 

undergo are all important in understanding the mechanism of the reaction. 

In order to be effective In a reaction an intermediate must have certain 

characteristics. 	It must be formed reversibly and also the process of 

formation and its reverse step must take place rapidly. A strongly 

adsorbed intermediate whose formation is not readily reversible may 

simply poison a reaction by blocking the active sites. 

A wide range of adsorbed species is known. Even with a 

relatively simple molecule such as ethane several possibilities arise. 

The most straightforward adsorption involves dissociation of the alkane 

to give an ethyl species or adsorbed ethylene. 	Further dissociation will 

result in vinyl species,C 2H3 , or an acetylenic intermediate, C 2H2 . In 

extreme cases, adsorption may involve rupture of the carbon-carbon bond 

to give CHn(n=o-3) fragments. The precise nature of the species formed 

depends on the nature of the catalyst. 	On metals adsorbed species tend 

to be radicals arising from homolytic splitting of chemical bonds. 

Kemball(22) has reviewed the relation between the stability of intermediate 

characteristics of a particular metal and the latter's ability to catalyse 

various reactions. 	Metals tend to form a variety of adsorbed radical 



intermediates which can iriterconvert in a number of ways. 	On rrany 

oxide catalysts, ionic or at least partially polarised species are 

known to be important. 	Work on the reactions over silica-alumina 

catalysts which has been reviewed by voge(23)  has shown that carbonium 

ions are intermediate species. 	Burwell and co-workers (24)  investigated 

the reactions of hydrocarbons on chrornia gel catalysts finding evidence 

for the participation of allylic Intermediates and also the suggestion 

that carbanions may be involved in some of the processes. 

A useful technique for learning about the nature of adsorbed 

intermediates formed from hydrocarbons has been the study of exchange 

reactions in which hydrogen atoms In the hydrocarbon are replaced by 

deuterium atoms. 	Exchange reactions can provide useful information 

concerning the making and breaking of bonds on the catalyst surface, 

the relative stabilities of different types of intermediate and the 

effect of chemical environment on the reactivity of bonds. 

Although exchange reactions often involve a hydrocarbon 

reacting with deuteriuin, other sources of the heavy isotope are available. 

Some catalysts such as titanium dioxide are relatively poor agents for 

activating the deuterium molecule. In such cases one cannot be sure 

that the rate-determining steps are associated with the hydrocarbon 

being studied and not with the activation of the deuterium molecule. 

Heavy (25926)  has been used as a source of deuterium in exchange 

reactions but has the disadvantage that it may act as a poison 

particularly on catalysts where active sites have been developed 

through the removal of surface hydroxyl groups at high temperature. 

Another source of labelling isotope has been treatment of the catalyst 

to deuterate surface hydroxyl groups 	• The main drawbacks with 



this method are that the amount of labelling isotope is limited and that 

the rate of reaction of the surface deuterium may introduce a new 

controlling factor. 	An increasingly important method of investigating 

exchange is by 	 i.e. exchange between a hydrocarbon 

and its deuterated form. This has the advantage of removing any 

complications associated with hydrogen-deuterium reactions while the 

main drawback has been the availability of deuterated reactants. 

Exchange reactions can be classified in two ways. In simple 

or stepwise exchange reactions, only a single hydrogen atom is replaced 

by a deuterium atom in each molecule which reacts on the surface of the 

catalyst. 	Isotopic species containing two or more deuterium atoms are 

formed only by successive reactions. In multiple exchange reactions more 

than one deuterium atom is introduced into the hydrocarbon molecule on 

each interaction of the molecule with the catalyst. 

Both these exchange processes have several possible mechanisms. 

For simple exchange reactions the mechanism may involve 

the hydrocarbon is not chemisorbed except during the actual 

exchange which takes place with a chemisorbed deuterium atom 

(or ion). 

CnHm 	 CnI{m-i D 

	

D 	H 	I 

I 	 I 	 1.4 
* 	* 	 * 	* 

where * represents a surface site. 

the reaction may be dissociative and involve adsorbed radicals 

or ions of the type C H n rn-i 

the mechanism may be associative and involve adsorbed species 

	

of the type C n H 	 which may be radicals or possibly ions. 
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The possible mechanisms for multiple exchange are necessarily 

more complicated. 	Schemes similar to (a), (b) and (c) for stepwise 

exchange are possible but now involving more than one hydrogen atom in the 

molecule. 	Another possibility is the existence of two or more types of 

adsorbed species of different states of hydrogenation with multiple 

exchange resulting from the interconversion of these species on the 

surface of the catalyst. 

In practice, data on the kinetics of the exchange reaction, 

the nature of the adsorption of the reacting gases and the probable 

stability of the different kinds of intermediate are required to 

determine which mechanism is operative. Most of the work reported in 

this thesis is concerned with the exchange reactions of hydrocarbons 

with deuterium over oxide catalysts, in particular over alumina and 

magnesium oxide. 

The field of exchange reactions on metals (30-32)
has  been 

extensively reviewed while a review of exchange reactions on oxide 

catalysts 33  has recently appeared. In addition, a survey of the 

uses of deuterium in heterogen2ous catalysts 	has been published. 

However, tracer studies are not limited to reactions involving deuterium. 

The replacement of 14N N by N has proved useful in the study of reaction 

14 mechanisms (17)  • Another branch of this topic involves the use of C 

and tritium isotopes which are radioactive, a property which can be used 

in their detection. Investigations using this technique include the 

mechanism of the Fischer-Tropsch synthesis using 14 C-labelled alcohols' 

and the catalyst poisoning studies of Thomson and colleagues (36,37). 	A 

review of the use of isotopic tracers in catalysis has recently been 

8  published, 
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1.4 CATALYSIS ON OXIDES 

Great interest has been shown in the properties of oxides as 

catalysts during the last two decades. 	In this section some of the 

results are summarised with particular reference to alumina and magnesium 

oxide which were the principal catalysts used in this work. Although 

this is not an exhaustive review it will illustrate the range of modern 

techniques used in catalysis research. 

Both adsorption processes and reaction mechanisms over 

gamma-alumina have been studied. The dehydration of aluminium, hydroxides 

produces a series of transition aluminas of which gamma-alumina is one. 

The exact nature of these transition aluminas is dependent on the history 

of the hydroxide, the temperature of dehydration, particle sizes and other 

factors. Many of these transition aluminas possess high catalytic 

activity. Prolonged dehydration produces the stable alpha-alumina form 

which is relatively inactive as a catalyst. A general review' of the 

various alumninas, their preparation and properties is available. 	Unless 

otherwise specified, alumina refers to the transition gamma-alumina. 

As with other oxide catalysts, alumina requires activation 

before being used as a catalyst. 	Usually this involves heating in vacuo 

which removes some of the surface hydroxyl groups leading to the creation 

of surface sites. 	The exact nature of these sites, which even now is not 

fully understood, has been the subject of great study. X-ray diffraction 

techniques have been used to investigate the surface structure of 

alumina(40) 9  particularly for information concerning crystallite size. 

The work of Pen .41-43) 9 largely using the technique of infra-red 

spectroscopy, has revealed information about the hydration and dehydration 

of alumina surfaces and a model' 	has been postulated to account for 
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these observations. 	Removal of hydroxyl groups has been suggested as 

creating strained sites on the surface which are catalytically active. 

The acid-base properties of the alumina surface have also aroused 

interest. Adsorption experiments involving ammonia 3  and 

revealed the existence of strong Lewis acid-base sites. Ammonia may 

adsorb on alumina in a variety of ways including hydrogen-bonding with 

hydroxyl groups, co-ordination at Lewis sites and chemisorption to give 

NH groups. Several types of Lewis-acidic sites have been proposed to 

explain observed adsorption behaviour. The importance of the acidic 

properties in relation to the catalytic activity of alumina was investi-

gated for the dehydration of alcohols (46) Both aspects of acidity, viz. 

the strength of acidic sites and their relative numbers were considered. 

The dehydrating ability of the alumina was found to be closely related to 

its acid-base properties. 	In later 	 it was concluded that 

hydrogen molecules dissociate heterolytically on alumina, the hydride ion 

being associated with Lewis acid sites and the proton with oxygen ions. 

Acidic and basic sites on the surface of alumina can be pictured according 

to this scheme (48)  9 

OH OH 0- 

9-I _ 
-0-A1-0-A1- 

+H20 

Lewis sites 

if 	if 

\/ 
0+ 0- 

I 	I 
-0-A1-0-A1- 

Brfnsted sites 

1.6 

The Lewis acid site is visualised as an incompletely co-ordinated 

aluminium atom formed by dehydration and the weak Brnsted site as a 

Lewis site which has adsorbed moisture while the basic site is considered 

to be a negatively charged oxygen atom. Nuclear magnetic resonance 

techniques 	have also been used to investigate the dehydroiylation 

and the acid-base properties of alumina. The existence of Lewis acidic 
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sites has been confirmed and the density of surface hydroxyl groups is 

estimated at 1.5 - 4.5 x 10 
18  m -2  

A vast range of reactions has been investigated over alumina 

catalysts; these include isornerisation of oieçins(50_57)
9 cracking 

reactions, ortho-para hydrogen conversion, hydrogenation 

reactions 	,60), dehydration of alcohols (61) and exchange reactions. 

Despite intensive study, the mechanism of olefin isornerisation which is 

usually monitored by gas chromatography is not fully understood and a 

variety of possible reaction schemes have been suggested. 	Associative 

intermediates of a carboniuin ion 	 as well as dissociative 

IT'-allyl intermediates which may be carbonlum ions
IRARR\ 

 or carbanions\ ) , 

have been suggested. 	In a recent paper (57)  y  the double bond shift was 

concluded to occur via an intramolecular proton transfer. 	The cracking 

ability of alumina at temperatures in excess of 673K is attributed to 

"passive" Bronsted sites which, although always present, only become 

active at elevated temperatures 8 . 	Ortho-para hydrogen conversion is 

believed to take place at exposed aluminium nciei. 	Hydrogenation 

of ethylene which is preadsorbed occurs at two different types of acidic 

(60) site 	• 	The activity for the dehydration of alcohols by alumina is 

(61) attributed to its acid-base properties 	. 	Dehydration leads to 

formation of olefins and is, in general, accompanied by isomerisation of 

the double bond. 	The isomerisation occurs at strong acid centres while 

dehydration occurs at weak dual Lewis acid-base sites. 	Exchange reactions 

over alumina are discussed in chapter 5. 

Other important information about alumina has been obtained 

from electron spin resonance studies which have been used to investigate 

(62-66) the redox properties of surfaces and their influence on catalysis 
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Electron transfer processes are known to occur on alumina surfaces and 

are promoted by its oxidising-reducing properties. 	Direct evidence has 

been found for more than one type of active site on alumina; the use of 

carbon dioxide as a selective poison completely eliminates deuterium 

exchange in butene while having little effect on the isomerisation 

(67) reaction 	• kicrowave spectroscopy which enables the location of the 

deuterium in the deuterated species to be determined confirms that the 

sites for isomerisation and isotopic mixing are independent (68) . 

Temperature desorption work has revealed the presence of five types of 

adsorbed hydrogen on alumina surfaces (69)  and two types of active site 

for ethylene hydrogenation'. 

Adsorption processes and catalytic reactions have not been so 

extensively studied on magnesium oxide. The catalyst is known to exhibit 

basic properties and the presence of several types of basic centres on 

the surface of partially hydrated magnesium hydroxide has been discussed 

in the light of studies of adsorption and isotope exchange of carbon 

dioxide on the catalyst''. The acid-base properties have also been 

Infra-red studies reveal the presence of free and 

combined hydroxyl groups on the surface and potentiometric titration 

studies with pyridine show the presence of centres of various acid 

strengths. Electron resonance spectroscopy has also been used to 

investigate the electron donor properties of the surface. 	Electron 

donor centres 	are associated with hydroxyl groups on the surface of 

the oxide activated below 573K. 	During dehydration at higher temperatures 

weakly coordinated oxygen ions are formed which are responsible for the 

reducing properties of the surface. 	Radical anions have been detected 

on clean magnesium oxide surfaces but not on those which have water or 
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carbon dioxide present. Infra-red spectroscopic studies (76)  of 

ammonia adsorption of dehydrated magnesium oxide suggest that NH 3  is 

probably hydrogen-bonded to an oxide ion. No evidence of Lewis or 

Brnsted acid sites was found. 	On the hydrated magnesium oxide surface, 

ammonia is hydrogen-bonded to hydroxyl roups. 

Magnesium oxide is a very active catalyst for hydrogen-

deuterium equilibration at low temperatures k78 t 79)  • The active sites 

are closely associated with positive paramagnetic centres, probably 

proton impurities. The exchange of propane, however, requires 

temperatures in excess of 623K 66 . 	Butene isomerisation is another 

reaction which proceeds rapidly at low temperature over magnesium 

oxide 	• It is suggested that the reaction intermediate is 

carbanionic and the pattern of behaviour conforms to that of a base-

catalysed reaction involving an allylic species. A correlation has been 

noted between catalytic activity and the concentration of surface electron 

donor sites. The concentration of active sites depends on pretreatment 

temperature reaching a maximum at ca. 1000K. The slow exchange of 

3-3-dimethylbutene (d2) suggeststhat carbonium ions are not readily 

formed on magnesium oxide. 

An oxide catalyst which attracted early interest was silica-

alumina (23)  on which carbonium ions are readily formed and seem to feature 

in several reactions of which catalytic cracking is probably the most 

important. A variety of reactions have been investigated over chromia ( 24). 

The catalyst requires activation by pretreating at high temperatures 

which involves the elimination of water and the formation of coordinatively 

unsaturated chromium atoms. Double-bond migration, deuterium exchange, 

isomerisation and olefin hydrogenation are among the reactions studied. 
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Hydrogenation and isomerisation have also been studied over zinc oxide 

catalysts (b3)  using a combination of spectroscopic and kinetic techniques 

together with the use of Isotopic tracers and adsorption measurements. 

The group of aluminosilicates known as zeolites have been studied from 

many aspects in the last fifteen years and are now of great importance 

In industrial applications of catalysis especially as cracking catalysts. 

Recent reviews 46) illustrate the range and variety äf research on these 

catalysts. 

1.5 THE PRESENT STUDY 

The usefulness of a combined gas chromatography-mass spectroscopy 

system has already been demonstrated (70) 
 . However, limitations on the 

amount of mechanistic Information which could be obtained arose from two 

factors. 	Sometimes, as in the case of platinum, the rate of exchange 

of reactant with deuterium was so fast that both reactant and product 

were Isotopically equilibrated, 	Alternatively, as was found on iron, 

some of the reactant and product were fully deuterated. It was felt 

that these difficulties might be avoided with oxide catalysts because 

these tend to favour ionic mechanisms and modes of adsorption which do not 

vary as widely in strength which lead to the problems with metal catalysts. 

Alumina has exhibited interesting catalytic behaviour but the nature of 

the reaction mechanisms and adsorbed species are not yet fully understood. 

Experiments using the g.c.-rn.s. technique might prove useful In elucidating 

some of these factors. Although surface properties of magnesium oxide 

have been the subject of study, few catalytic reactions have been 

investigated on this catalyst. It was felt that further examination 

would prove fruitful and that it might be interesting to compare the 



Id  

properties of alumina and magnesium oxide as catalysts. 

An attempt was made to select problems which could be 

investigated more effectively by g.c.-rn.s. techniques than by other 

methods. 	One system which lends itself to g.c.-m.e. study is the 

competitive and simultaneous exchange of a series of hydrocarbons. 

Provided that a suitable temperature range could be found within which 

all the reactants exchanged at a convenient rate, it was hoped that an 

experiment could follow the exchange of as many as five hydrocarbons 

without too much difficulty. 	Comparative data can be obtained and 	the 

relative reactivities might be related to some parameter indicative of 

the reaction mechanism. Thermodynamic data for the formation of 

radicals and ions is now available which may be useful in deciding about 

intermediates. Such studies may reveal the role of the nature of the 

reactant in determining the rate of exchange. 

The second type of problem which can be investigated is a system 

where a single reactant participates in more than one process, e.g. 

combined exchange and hydrogenation. A variety of oxide catalysts 

exhibit a wide range of selectivities for the exchange-addition reactions 

of ethylene with deuterium and a comparative study of these catalysts 

would be well-suited to the g.c.-m.s. technique. 	In this case the 

influence of the nature of the catalyst on a reaction would be investigated. 

It was also hoped to improve the g.c.-rn.s. technique, in parti-

cular to develop an on-line computer link for data collection. Previously 

one of the most time-consuming stages in an experiment was the measurement 

and processing of data. 	By collecting data by computer and then pro- 

cessing, it was intended to speed up the turnover of results from an 

experiment. 
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CHAPTER 2 

EXP ERI MENTAL 

2.1 INTRODUCTION 

Tracer studies involving isotopic substitution in one or more 

of the reactants in a chemical process are long—established as a means of 

elucidating catalytic mechanisms. 	The principal application of this 

technique in heterogeneous catalysis has been in studying the exchange 

reactions of the hydrogen in hydrocarbons with deuterium. The incor-

poration of deuterium is usually followed by mass spectrometry, the 

reactants and products being chemically similar but of different isotopic 

composition. 

Exchange reactions of hydrocarbons with deuterium can be 

investigated using a direct leak from the reaction vessel to a mass 

spectrometeill). 	This technique was extensively used in this work; the 

reaction vessel was connected to an AEI 1S1O mass spectrometer via a 

capilliary leak thus allowing mass analysis of the reaction mixture at 

various times during the reaction. 	This method is satisfactory when 	one 

hydrocarbon is being studied and when exchange is the only significant 

reaction occurring at the ambient temperature. 

However the direct leak method proves to be inadequate for more 

complex catalytic systems. When reaction mixtures contain two or more 

hydrocarbons whose mass spectra overlap, accurate analysis of isotopic 

distributions is impossible. 	Such a situation can arise in two ways; 

firstly, when the competitive reaction of two or more hydrocarbons is 

being followed and also when a single reactant can form two or more pro-

ducts. The combination of gas chromatography for separation of the 



reactants and products and fast-scanning mass spectroscopy to analyse the 

elutants from the chromatograph provides a method for investigating both 

these types of reaction. 	A schematic representation of the experimental 

set-up is shown in figure 2.1. 	The development of the gas handling system, 

gas chrornatograph and mass spectrometer have been reporte 3  while the 

introduction of "on-line" computer capture of data and its development 

have taken place over the course of this work. 	These facilities have 

greatly reduced the time and the tedium involved in data processing and 

have produced a more efficient system. 

Whenever possible in this work, exchange reactions were investi-

gated using the direct leak method for several reasons. 	The gee*-m.s. 

system involves a much more complicated experimental set-up which is more 

expensive, time-consuming and intricate to operate. 	In addition, the 

problem of "bleed" from the chromatograph column makes it less accurate in 

estimating isotopic distributions. 

2.2 GAS HANDLING APPARATUS 

Two separate vacuum lines were used in this work, line A which 

was connected to the g.c.-m.s. system and line B which led into the capil-

liary leak of the MS10 spectrometer. A diagram of gas line A is shown in 

figure 2.2. Line B was of similar design to this, the differences being 

in minor details such as the position of bulbs, taps etc. and that line B 

incorporated two reaction vessels one of which was designed for work with 

metal films. 

Both vacuum lines were constructed of "Pyrex" glass and all the 

ground glass joints and stopcocks were lubricated with Apiezon L high 

vacuum grease (vapour pressure < 1.3 x 10 Nm 2  at room temperature). 
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FIGURE 2.1 : Block Diagram of G.C.-M.S.System. 

ADC Analogue-to-Digital Converter; C Gas Chromatograph Column; 

CR0 Cathode Ray Oscilloscope; EM Electron Multiplier; G Galvanometer 

Drive Amplifier; GL Gas Handling Line; GS Gas Sampling Valve; MS 

Mass Spectrometer; PDP11 	Mini Computer; R Reaction Vessel; S Molecu- 

lar Separator; P Total Ion Monitor; Till Ultra-Violet Recorder; V 

Pumping System. 
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Evacuation of the gas line was achieved by an electrically heated, Admiralty 

type mercury diffusion pump, DPi, backed by a two stage "Speedivac" rotary 

pump, RP1; this combination attained a pressure of 6.7 x 104 NM  -2 while 

mercury contamination from the diffusion pump was prevented by the liquid 

nitrogen cold trap, CPI. To maintain a consistently good vacuum, main-

tenance of the rotary pump, cleaning of the cold traps and checks for 

"streaking" in the tap grease were carried out regularly. 

For coarse pressure readings such as needed in making up a 

reaction mixture, diaphragm pressure gauges, D(i1 and D(2,which were cali-

brated in Torr (=133.3Nm 2 )

9  were used. 	To check the high vacuum of the 

system, e.g. when outgassing a catalyst sample, the pressure was measured 

14) by a McLeod gauge, MU 	Reaction mixtures were prepared in the mixing 

volume, M. The constituents of the mixture were either stored on the line 

in the permanently mounted glass bulbs, GB, or fed into the system via 

glass ground joints, GJ, from detachable bulbs or gas cylinders. The 

mixture could then be admitted to the reaction vessel, R. 

Volume calibration was carried out by successive expansions of 

hydrogen from a bulb of known volume (5.753 x 1m3  determined with die- 

tilled water at 298k). 	By applying Boyle's Law, the volumes of the mixing 

volume and associated parts of the vacuum line could be determined. 	Since 

not all the reaction vessels were of a standard size, the best estimate of 

the number of molecules in the reaction vessel was the difference between 

the number of molecules in the mixing volume before and after admission of 

the reaction mixture to the reaction vessel. Thus for line A, the number 

of molecules In the reaction vessel, Ii , is given by 

9.66 x 101b 
n 	M 	

T 	
(126.4p0 - 139.7p1) 	2.1. 
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while for line B, 

9.66 x 10 18 
- 	(740.6p - 173.7p ) 

T 	 0 

where p and p 1  are the partial pressures of hydrooarbon before and after 

admission to the reaction vessel and T is the laboratory temperature. 

Two types of reaction vessel were used. 	In reactions over 

alumina, a cylindrical silica vessel (volume Ca. 3 x 10 	rn3 ) was used 

while for reactions over magnesium oxide, the reaction vessel was of 

similar design but made of 'Pyrex". 	Both vessels, approximately 35-0 mm 

in diameter and 0.12-0.15 m in length  ) could be attached to the gas handling 

line by means of a B24 ground glass joint which fitted into a water-cooled 

Jacket. The vessels were pumped down by a diffusion ump, DP2, hacked by 

a rotary pump, RP2 1  with a liquid nitrogen cold trap, CT2, again preventing 

mercury contamination of the line. The pressure in the reaction vessel 

was measured by the McLeod gauge, MG. 	After an experiment, reaction 

vessels were washed out with chromic acid, repeatedly rinsed with distilled 

water an.i then dried in an oven before being used again. 

The reaction vessel was heated 	a close-fitting electrical 

furnace which consisted of a silica tube about 0.06m in diameter which was 

wuwd with resistance wire. 	The temperature of the furnace was controlled 

by a Eu.rotherm proportional controller with a chromel-aiuuel thermocouple. 

This device could maintain a steady temperature within 1K but the temperature 

scale of the Eurotherm was inaccurate at higher temperatures. To monitor 

the correct temperature, a chromel-alumel thermocouple attached to a 

digital voltometer with a cold junction in ice was used. 	The correct 

temperature could be obtained from a chromel-alurnel calibration charf5  

One feature of the glass reaction vessels was a tube down the centre of the 

n 2 .2. 
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vessel Into which the thermocouple fitted. 	A temperature probe in this 

position will give a more accurate estimate of the catalyst temperature. 

On the capilliary leak system, a fine glass tube led from the 

top of the reaction vessel into the mass spectrometer. 	Thus sampling was 

continuous. The glassware from the reaction vessel to the MS10 inlet was 

wrapped in heating tape and kept at 373K to minimise gas adsorption on the 

glass. The rate of leakage from the reaction vessel was Ca. 1-2% h 1  

so that depletion of the reaction mixture was never an important factor. 

In the g.c. - m.s. system, removal of samples from the reaction 

vessel at suitable stages in the course of a reaction was cairied out by a 

three-way glass stopcock and a Perkin-Elmer gas sampling valve, GS, fitted 

with a P.T.F.E. rotor (see figures 2.1 and 2.2) which was connected to a 

stainless steel loop (volume 5 x io ms ). 	The steps involved in sampling 

were as follows: 

Before taking a sample, the three-way stopcock and sampling 

valve were set such that the steel loop was evacuated by the gas line 

pumping system. 

On sampling, the three-way tap was turned to link the reaction 

vessel and the sampling loop for ten seconds. 

The tap was closed and the sampling valve rotated to seal the 

loop from the gas line and to link it to the carrier gas supply for the 

chromatograph column. This was done for one minute to allow the contents 

of the sample loop to be flushed into the g.c. column. 

Finally, the stopcock and valve were returned to their original 

positions. 

The sample size was Ca. 4 of the reacting material which had 

to be considered in deciding how many samples could be taken from the 
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reaction mixture without disturbing the kinetics of the system under 

study. 	In practice, no more than about ten samples were taken in the 

course of an experiment. 

2.3 THE PREPARATION OF TIE REACTANTS 

The source and purity of each of the reactants are listed in 

table 2.1 

TABLE 2.1 

SOURCE AND PURITY OF REACTANTS 

SUTPLIER REACTANT PURITY 

Cambrian Chemicals Deuterium, ethane 99.5% 
Ltd. ethylene, isobutane, 

propylene, isobutene 

Cambrian Chemicals Methane 99.9% 
Ltd. 

Phillips Petroleum Co. N-butane, propane research grade 

Koch-Light Laboratories Cyclopentene, puries 
Inc. cyclopentane 

British Oxygen Co. Ltd. Cyclopropane - 

K and K Laboratories Methylcycloproparie - 

Pha2esep Ltd. Cyclobutane contained n-butane 

Purification and handling of gases was only carried out in the 

presence of a "sticking" vacuum measured by the McLeod Gauge, MG (figure 2.2). 
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Before the admission of any gas, those sections of the line involved were 

first evacuated and then flushed with the gas to remove adsorbed impurities. 

Gases could be introduced to the system either directly at ground glass 

joints, GJ, or via the mercury bubbler, MB. 

Purification of deuterium was achieved by diffusion through an 

electrically heated palladium-silver alloy thimble, PT. The line was 

isolated from the pumps and cold trap, CT39 was surrounded by liquid 

nitrogen, which not only prevented the mercury vapour reaching the hot 

thimble but removed any condensible impurities in the deuterium. The 

thimble was heated by applying a voltage of about 15V. across a resistance 

heater which resulted in a diffusion rate of about 2.5 KN m-2 h-1  

The purification of hydrocarbons involved a repeated cycle of 

freezing down the gas, pumping and then thawing. 	On the final distilla- 

tion step only the middle section of the sample was retained, the higher 

and lower boiling point fractions being pumped away. Methane has an 

appreciable vapour pressure at liquid nitrogen temperature (2.67 kNm 2  

at 78K) and cannot be completely frozen down. In this work, ultra-high 

purity methane was used direct from the lecture bottle without further 

purification. 

Reaction mixtures were prepared in the mixing volume section, M, 

of the vacuum line. After it had been evacuated, a known pressure of 

hydrocarbon measured on the diaphragm gauge, DO, was admitted. An 

adequate head of deuterium pressure was built up on the other side of the 

stopcock separating the mixing volume from the rest of the gas-handling 

line; the tap was opened slightly until the desired total pressure was 

reached. The excess of deuterium prevented any back diffusion of hydro-

carbon from the mixing volume. When two or more hydrocarbons were required 
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in the mixture, for example in g.c.-m.so experiments, it was possible to 

freeze down the first component into a sample tube and add the other 

components before introducing deuterium. 	Before a reaction was started, 

the reaction mixture was kept in the mixing volume for at least 30 minutes 

to obtain a homogeneous mixture. 

In the studies over gamma-alumina, the reaction mixture for 

experiments on the MS10 system was generally 1-2 1cimn 2  of hydrocarbon and 

12.0 kNm 2  of deuterium in the mixing volume. This corresponded to about 

3 x 10 19 molecules in the reaction vessel. 	Exceptions to this standard 

mixture were generally those higher in deuterium content and were used in 

experiments where the effect of extensive exchange was being studied. 

For experiments followed by g.c.-rn.s. when more than one hydrocarbon was 

involved, reaction mixtures were chosen to give approximately the same 

number (3 x 1019)  hydrocarbon molecules and the same total pressure in the 

reaction system. 	Similar reaction mixtures were used for reactions over 

magnesium oxide, the pressures of hydrocarbon being 0.3-1.2 1d1m 2  and of 

deuterium 9.6-12.0 kI'Jm 2  giving 2-3.5 x 10 19 hydrocarbon molecules in the 

reaction vessel. 	In g.c.-m.so experiments mixtures were chosen by the 

same criteria. 	For the ethylene-deuterium reactions on oxides, a 10:1 

ratio of deuterium to ethylene was admitted to each oxide, the resulting 

initial gas phase pressure being in the range 1.9-2.8 kNm 2 . 

2.4 THE CATALYSTS. 

Transition aluminas which are formed by partial thermal dehydra-

tion of aluminium hydroxides and oxide hydroxides possess high catalytic 

activity. 	The gamma-alumina used in this work was prepared by calcining 

a high-purity boehmite (Laporte Industries Ltd.) at 900K in air for 16h. 
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Two batches of gamma-alumina were prepared having surface areas of 90 and 

120 m2j 1  respectively. The catalyst pretreatment followed the pattern 

of some earlier wor1. 	After evacuation to 723K, the catalyst was 

treated with 20kNm 2  12essu.re of oxygen for 15 minutes, then evacuated, 

treated with a fresh dose of oxygen for 90 minutes and finally outgassed 

at 723K for at least 16 hours. The oxygen was admitted to "burn off" any 

carbon residues on the catalyst while the overall pretreatment had the 

effect of partially debydroxylating the alumina which led to the creation 

of active sites. 	With the exception of experiments involving cyclopropane and 

methylcyclopropane when 0.1g catalyst was used, the standard amount of 

catalyst was 1g. 

Magnesium oxide was prepared by dissolving magnesium (Johnson 

Matthey Chemicals Ltd.) in nitric acid, adding ammonium carbonate to pre-

cipitate magnesium carbonate which was then filtered out and dried in an 

oven at 393K overnight. The carbonate was decomposed to the oxide by 

heating in vacuo at 1120K for 16h. 	Three batches of oxide were prepared 

having surface areas of 30 9  30 and 50 m 2 g respectively. The catalyst 

pretreatment consisted of outgassing at 723K for 16h to dehydroxylate the 

surface. In reactions of alkanes and cycloalkanes over magnesium oxide, 

0 .59 of catalyst were used while for reactions of olefins, O.lg was used 

The details of the catalysts which were studied in the ethylene-

deuterium reactions are given in table 2.2. 	Masses of catalyst used in 

these experiments were in the range 0.2-3.0g. 
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TABLE 2.2 

DETAILS OF CATALYSTS FOR ETNYLFE REACPIONS 

OXIDE SOURCE PREPRFATMT 
SURF.CE 
AREA 

2 —1 mg 

rutile Tioxide International Ltd. evacuated (123K 2 16h);02  

(2.7 kY 	2 ,723K 30mm); 

cooled to 29 8K,evacuated 

(298K, 30mm) 

iron oxide Johnson Matthey evacuated (673K,16h) 2.62( 8 ) 
Chemicals Ltd., grade I 

cobalt oxide Johnson Yatthey evacuated (523K245min)9 0.65(8) 
Chemicals Ltd., grade 1 

zirconia I.C.I.Ltd. 	(containing evacuated (723K,20h) 2( 10 ) 
0.02% sulphur ) 

zinc oxide New Jersey Zinc Co. evacuated and heated to 10 
(Kadox 25) 

573K; H 2  (20kim 2 9 573K 9  

30mm); 	evacuated (573K, 

5 mm, then 723K 9 	16h) 

chrotnia similar to sample I and 100 (13) 

II described elsewhere (1 2)  

The surface areas of catalysts were determined by gas adsorption 

using nitrogen at 78K. 	he adsorption isotherm is obtained and, assuming 

that the B.E.T. equation (see section 1.2) holds, the volume of monolayer 

coverage can be determined. 	If the cross—section of the adsorbate 
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molecule is known, the surface area of the catalyst can be calculated. 

The apparatus used to obtain the adsorption isotherm is fully described 

elsewhere . 	It operated on a constant volume principle viz, that a 

measured volume of gas was admitted to the sample and, after equilibrium 

had been established, the pressure in the system was measured from which 

the amount of gas remaining in the gas phase could be calculated. 	From 

these values the volume of nitrogen adsorbed on the catalyst could be 

deduced. 	A series of results for different pressures was recorded. 

Using equation 1.3 the volume of an adsorbed monolayer was determined and 

hence the surface area of the catalyst. 

2.5 THE MASS SPECTROMETER 

In exchange reactions involving a single hydrocarbon, continuous 

sampling from the reaction vessel could be carried out via a capilliary 

leak into an AEI MS10 mass spectrometer, a detailed description of which 

is given in the appropriate handbooI141. 	This is a high sensitivity, 	low 

resolution instrument but which can resolve species differing in mass by 

one unit which is satisfactory for exchange reactions. 

Gas molecules within the spectrometer are ionised by a crossbeam 

of electrons generated by an electrically heated rhenium filament. 	The 

electrons are accelerated to a predetermined energy (in this work typically 

10eV 1.6 x 10_18J)  and aligned by a magnetic field. 	The ions are 

accelerated out of the ionisation region by application of a potential, V. 

After acceleration, the Ions traverse a magnetic field, H, where they are 

deflected through 1800. A series of slits ensures that only those ions 

which have travelled on a path of radius, r, arrive at the ion collector 

electrode. The mass of the ions arriving at the collector is given by 

H2r2e 	
2.3 

2V 
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where e is the charge on the ion. 	Different masses can be studied by 

varying the magnetic field or the accelerating voltage. In this instrument, 

the rr'agnetic field was varied by means of an electromagnet the poles of which 

were positioned round the source. 

The electrode assembly, filaments, slits etc. were su ported 

from the top flange of the mass spectrometer vacuum chamber. 	The flange 

also carried a glass-metal seal which served as the inlet from the reaction 

vassel. 	The mass spectrometer chamber was made of non-magnetic stainless 

steel and the whole apparatus could be baked out at 560K. 

A Bayard-Alpert ionisation gauge was located directly below the 

miss spectrometer chamber and a liquid nitrogen cold trap separated the 

high vacuum region from an oil diffusion pump. 	The vacuum was obtained 

by means of a backing rotary pump, a water-cooled oil diffusion pump and 

the cold trap. 	The trap had two functions; firstly, to trap condensible 

gases in the spectrometer source and secondly, to prevent oil vapour from 

the pump contaminating the source. 	The chief advantage of oil over mercury 

:as that it had a lower vapour pressure whilst its major disadvantage was 

that its decomposition products might find their way into the high vacuum 

region. 	A further disadvantage was that if large quantities of air 

entered the mass spectrc:eter the oxidation of the pump oil necessitated 

a complete overhaul of the apparatus. 	in order to "clean" the spectrometer 

source the vacuum chamber was baked out for twenty-four hours. 

The background pressure in the mass spectrometer when it had 

cooled after baking and when the cold trap had been filled was less than 

10 5Nni 2 . 	The pressure was monitored by an AEI VC3 Ionisation Gauge 

which operated on the ionisation effect resulting when a low pressure of 

gas is bombarded with electrons. 	The degree of ionisation is proportional 



to the pressure of gas present. The instrument operated in the pressure 

range io - 10 7Nn12 . The gauge head was of a Bayard—Alpert type 

because, at low pressure, electrons hitting the grid in a conventional 

triode—type valve cause X—rays to be passed to the collector thereby 

releasing photoelectrons which effectively set up a current opposed to 

the ion current which results in a misleading pressure reading. 

The electromagnet allowed the mass spectrometer to operate in 

the range n'e = 1-400, with a field strength up to 9 kilogauss0 With 

an ion accelerating voltage of 250v. the I10 had a resolving power of 

about 300 (10,o'valley). The time taken to scan the complete mass range 

could be varied from 5000 to 100 seconds in six steps. 	The scan could 

be started, stopped or reversed at any point. 	Typically in this work, 	a 

range of interest might be twenty mass units which could be scanned in one 

to two minutes. 

The intensity of collector current for a particular mass was 

10r9  - 10712  amps. This current was monitored by an electrometer head 

and then amplified. The output from the amplifier was displayed on a 

chart recorder. A mass spectrum consisted of a series of peaks corres-

ponding to different mass numbers whose relative intensities were propor-

tional to the sizes of the peaks. 

2.6 THE GAS cm0MAT0GRApH - MASS SFECTR0rETER 

In reaction mixtures where two or more constituents are of 

interest and have overlapping cracking patterns in the mass spectrometer 

it is necessary to separate the various hydrocarbons before they are 

admitted to the spectrometer. 

Gas chromatography offers a means to this end. 	The procedure 
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of sampling the reaction mixture has been described in section 2.2. 	On 

flushing out the sample loop the contents were fed into a gas chromatograph 

column using helium as the carrier gas. 	Three columns were principally 

used in this work. 	Firstly, to separate acyclic alkanes, an 8m column of 

bis-2-methojetbyladipate (13.5%)  and di-2-ethylhexylsebacate (6.5%) on 

60/bO mesh Chrornosorb P operating at 273k was used for C 1 - C3  alkanes 

and the same column operated at room temperature was satisfactory for 

higher alkanes. 	With a carrier gas pressure of 310 kNm' 2  complete base- 

line separation of all the saturated hydrocarbons could be achieved. 

Olefins, cycloalkanes and their isomerisation products were separated on 

a 4m column of propylene carbonate on 60/30 mesh Chromosorb P operating at 

273K. The column was also used to separate the components of the cyclo-

butane and n-butane mixture. The only compounds which proved difficult to 

resolve completely were rneth.ylcyclopropane and isobutene. Fortunately the 

isoraerisation of methylcycloproparie of which isobutene is a possible product 

was not an important reaction and the difficulty was largely avoided. 

Separation of ethylene and ethane was achieved by using a 2m column of 

squalane (3%) on activated alumina type H, 1001200 mesh. The column was 

maintained at 263K by immersion in a bath of ice and ethanol while the 

carrier gas pressure was 140 kNm 2 . 	Under these conditions, typical 

retention times for ethane and ethylene were 6 and 7.5 minutes respectively. 

In combined g.c.- m.s. studies the chromatograph gave rise to two 

problems. 	Even at room temperature there was considerable elution of 

water from the column and a smaller amount of bleed from the stationary 

phase which both made contributions to the background spectra. Although 

the background was useful as a source of reference peaks, experiments 

involving C 1  and C 2  hydrocarbons were complicated by relatively large 



backgrounds in the mass ranges of interest. The second problem arose from 

the ability of the chromatographic column to bring about the partial 

separation of deuterated alkanes. 	No single mass spectrometric scan of 

a chromatographic peak was representative of the isotopic distribution in 

that sample. 	To determine the true distribution a number of mass spectro- 

metric analyses were taken at equal intervals of time as each component 

emerged from the column. 	To achieve this a rapid-scanning mass spectro- 

meter was required. 

The effluent from the chromatographic column was passed via a 

stainless steel capilliary tube (33mm bore) which reduced the pressure 

between the column and the source into an all-glass Biemann-Watscn 

molecular separatoj19 which acted as the interface between the gas chroma-

tograph and the mass spectrometer. 	The purpose of the separator was to 

remove as much of the carrier gas from the stream of gas entering the 

spectrometer but, at the same time, not to pump away too much of the 

hydrocarbon. The separator consisted of a glass frit through which the 

column effluent passed and was mounted in a glass diffusion chamber which 

was evacuated by a rotary pump. The sizes of the pores in the frit were 

such that passage of the carrier gas would occur more easily than that of 

the larger hydrocarbon molecules. 	Use of helium with its low molecular 

weight gave the maximum differential in pumping rates. The hydrocarbon-

enriched sample then passed into the mass spectrometer via a glass 

re-entrant. 

The mass spectrometer used in the combined g.c.- m.s. system was 

an AEI M320 "Rapide" which is a single-focussing, pi-radian deflection 

instrument with rapid magnetic scanning. The design of the M520 is 

based on that of the MS10 and much of the description of that apparatus 
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in section 2.5 is also applicable here. 	A detailed review of the MS20 

and its operation may be found in the manufacturer's manual (16) 

The vacuum system involved a rotary pump and a water-cooled 

diffusion pump with liquid nitrogen cold trap giving a pressure of less 

than 10-5  Nm-2  after baking. The theory of ion behaviour within the 

spectrometer source is similar to that for the 'S10. 	The principal 

difference between the apparati was that the MS20 had the.facility to 

complete a mass scan in a much shorter time. The variable electromagnet 

which was positioned round the source performed an exponential scan from 

high to low mass number at the fastest rate available viz, one second per 

decade of mass with an electromagnet reset time of one second. Thus, for 

mass range m/e = 100 to 10 which was most frequently used in this work, 

about thirty mass scans could be recorded for a sample with an elution 

period of one minute from the chromatographic column. 

In operation, the ionisation energy of the electrons was set at 

20eV which was chosen to give reasonable sensitivity without causing 

ionisation of residual helium (ionisation potential = 24.6 eV). 	An 

additional feature of the 1IS20 was the total ion monitor plate which 

intercepted about 15% of the ion current. 	Its output, after amplification, 

was displayed on a current meter and a chart recorder. 	The trace reflected 

fluctuations in pressure as each hydrocarbon entered the source and thus 

acted as a chromatographic detector. 	When a hydrocarbon sample was 

detected the electromagnet was switched into the repetitive scanning mode 

for the duration of the sample, thereby collecting a set of mass spectra. 

2.7 DATA COLLECTION IN THE G.C.- M.S. SYSTEM  

Three routes were available for the collection and presentation 
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of mass spectra in the g.e.- rn.s. system as indicated in figure 2.1. 

The output of the mass spectrometer, i.e. the individual ion currents 

produced at the collector for each nVe  ratio was fed initially to an 

electron multiplier operated at 3kV with a 1kHz bandwidth for faster 

scanning speeds. 

The first route for the output of the electron multiplier was to 

a cathode ray oscilloscope. 	As each spectrum was produced it could be 

displayed on the oscilloscope screen, the sweep of the oscilloscope beam 

being triggered at the start of each magnetic scan. This gave a rapid 

visual check on the spectra which could be useful in gauging the rate of a 

reaction during an experiment but which did not provide any lasting means 

of data collection. 

The second outlet was for the current to be fed to a set of six 

galvanometer drive amplifiers. 	Each of these was capable of amplifying 

the incoming signal intensities to a different level. 	The visual display 

of these intensities was on an SE3006 ultra-violet chart recorder. 	Fluc- 

tuations in intensities from the amplifiers caused deflections in the 

associated spots in the u-v recorder producing peaks in the spectra. 

Although six ranges were available, in practice the width of the chart 

paper made the use of only three ranges feasible. 	Ion peaks were 

monitored at attenuation e!els of 2, 10 and 100. 	In this manner the 

mass spectra were recorded as a series of peaks on the u-v sensitive chart 

paper. 	After the spectra had been calibrated, usually by some recognisable 

reference masses in the background, the intensities of the peaks were 

measured manually from the peak heights, a process which might involve 

thousands of measurements and was therefore both tedious and time-consuming. 

The third method of data collection bypassed these difficulties. 
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The signal from the electron multiplier was fed via a unity gain high 

impedance buffer to an analog-to-digital converter (a.d.c.) of a mini-

computer, in this case a PDP11 machine (Digital Equipment Corporation). 

At the start of each scan an electronic pulse was automatically generated 

by the mass spectrometer magnet control unit and directed to the a.d.c. in 

order to activate the data collection procedure. 	During an experiment the 

signal generated by the electron multiplier was sampled by the a.d.c. at 

5000 Hz. 	A threshold level was preset at a value such that baseline noise 

from the multiplier and signals due to random ion peaks were not stored by 

the computer. 	For each mass spectrometer scan every a.d.c. sample number 

above threshold was recorded and each spectrum was assigned a number for 

identification purposes. 

At the conclusion of an experiment the first step in the reduction 

of the data was the identification of peaks. A peak location routine was 

used to analyse the changes in the pattern of intensities observed at the 

a.d.c.. A steady increase in signal intensity for three consecutive a.d.c. 

samples enabled a mass spectrometric peak to be recognised; a subsequent 

decrease in intensity over two a.d.c. samples determined the termination of 

a peak. 	For each peak thus defined the initial sample numbers and signal 

intensities in the computer-stored data were used to assign 

a centroid value which accurately defined the position 

of the peak in relation to the start of the spectrum. 

This value was used in the mass interpolation of the 

spectrum. 

an integrated intensity value for the peak. 	Integra- 

tion of the peak area rather than measuring the highest 

individual intensity was found to produce more reliable 

results. 
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In this way the spectrum finally recorded comprised a series of centroid 

and intensity values. 

CABLE 2.3 

DIGITAL REFTATION OF MASS SPECTRA 

(Spectrum of mixture of deuterated ethylenes) 

centroid intensity mass  

2365 112 33.0 

2436 5717 32.0 

2509 5474 31.0 

2579 279 8  30.0 

2655 1200 29.0 

2737 2191 28.0 

2819 516 27.0 

2904 178 26.0 

3737 5til 18.0 

Mass numbers subsequently assigned during data processing. 

Table 2.3. shows a typical mass spectrometric scan which was one of twenty-

four recorded for a sample of ethylene during an exchange reaction with 

deuterium over magnesium oxide. At this stage the data was transferred 

via a telephone link or as binary data on paper tape to an ICL 4-75 

computer for further processing. 

The next stage in the data reduction was to assign mass nwnbers 

to the intensities in the spectra. 	The array of time and intensity values 

had to be converted into a list of mass numbers and associated intensities 
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which was accomplished by setting up a mass calibration table. 	Reference 

peaks in the initial scans of a data file were used; satisfactory refer-

encing could be achieved in two ways. 	Firstly, use was made of the 

background spectra which were recorded before the elution of hydrocarbon 

samples from the gas chromatograph. The most prominent peaks in the 

background spectra were usually due to the presence of traces of water, 

nitrogen and oxygen in the mass spectrometer source which.could be assigned 

to mass numbers 18, 2b and 32. 	Also present in the spectrometer were 

peaks arising out of "bleed" from the g.l.c. column. 	The relation between 

mass numbers and centroid values throughout the spectrum was interpolated 

from the positions of the reference masses, the a.d.c. sampling rate and 

the rate of the electromagnetic scan. In this way each centrold value 

could be converted into a mass number (see table 2.3). 	The use of back- 

ground peaks as references had the advantage that they were always present 

in the system and, if for any reason the experiment was interrupted, it was 

a relatively simple task to reset the calibration table. 	However, the 

method also had its drawbacks. 	Firstly, it was a poor approach because 

it required the background spectrum to be of fairly high intensity. 	A 

more serious disadvantage arose if the mass range of interest was higher 

than the largest available reference mass. 	In those circumstances the 

reference table would have to he extrapolated to determine the mass numbers 

which proved to be an unsatisfactory procedure. For peaks whose mass 

number was ten or more greater than the largest reference peak, misinter- 

pretation was likely. 	This necessitated the use of some reference compound 

prior to the experiment. The vapour of a pure hydrocarbon was introduced 

to the ion chamber of the spectrometer source via a capilliary inlet. 	A 

suitable compound was 2-methyl-pentane which gave reference peaks at mass 
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numbers bb, 71, 56 and 41 which could be used for calibration in experi-

ments involving C 3-05  hydrocarbons. This method had the advantage that 

the normal background of the spectrometer could be very low. 	Once the few 

spectra requlied for referencing had been collected, the vapour was pusiiped 

from the system in a few minutes. 	The disadvantage with this method of 

referencing was that it had to be done prior to the experiment. To 

summarise, the referencing required a set of reference peaks which covered 

the mass range of interest and were of sufficient intensity to be recognised. 

Ideally the peaks were spaced at intervals of about 15 mass numbers. 

The interpolation of mass numbers also depended on other factors. 

In order that peaks were assigned to their correct bass numbers the 

spectrometer had to scan in a reproducible fashion, in particular to start 

from the same point each time. Any drift in the peak positions would 

result in incorrect mass interpolation. 	Changes in the spectrometer's 

characteristics were likely as the temperature of the instrument increased. 

A warming-up period of abcut an hour with the machine in a fully-operational 

state was allowed before the start of an experiment to allow the Instrument 

to stabilise. 	The interpolation program was also adapted to cater for 

slight fluctuations in the positions of the mass nuubers during an experiment. 

However the system was not able to cope with sudden, relatively 

large changes in the magnet scan which invalidated the calibration table. 

When background spectra were being used to reference scans it v.as a 

relatively simple natter to recalibrate and continue. 	However, if a 

reference compound was being used or if the discontinuity escaped unnoticed, 

which was likely, useful information could be lost. 	It was discovered that 

the first scan of a batch taken from the M620 by switching on the automatic 
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repetitive scanning mode was atypical of the subsequent scans in its 

mass/time characteristics. 	Therefore an additional switch was incorporated 

to control the transmission of the start sdtches to the FDP11. 	The magnet 

was allowed to scan continuously and the start pulses to the a.d.c. were 

interrupted at the second switch when spectra were not being collected. 

Stray pulses "seen" by the a.d.c. which often arose when electri-

cal apparatus was switched on elsewhere in the laboratory were another 

so:rce of difficulty. 	To avoid this )  only operations which were necessary 

for he collection of data were carried out hen scans were being recorded. 

Facilities for mass interpolation were available on both the 

PDP11 and ICL4-75 machines, the same method being used on both systems. 

Although all spectra were eventually collected and pL'ocessed on the FD11 

and 4-75 achines, a few scans were still recorded on ultra-violet paper 

during an experiment to afford an immediate indication of the progress of 

a reaction. 	During the development of the computer facility both methods 

of data acquisition were used and the results compared in order to assess 

the reliability of the on-line capture technique. 

The course of an exchange process on magnesium oxide was used 

to compare data from the PDP11 and from the u. -v. recorder. 	The methods 

of processing the mass spectra into isotopic distributions were the same 

for both sets of data and are described in chapter 3. 	Figure 2.3 gives 

a comparison of isotopic distributions obtained for the exchange of 

ethylene with douteriurn over n;ajnesIum oxide at 298K. Clearly there is 

very good areenent between the isotopic distributions obtained from the 

two sources. 	In adition the isotopic distributions obtained from the 

computer captured data are in much closer agreement with the calculated 

binomial distribution as shown in table 2.4. 
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FIGURE 2.3 : Comparison of isotopic distributions obtained for the 

exchange of ethylene with deuterium on magnesium oxide 

at 298 and 373K. 

, data from PDP11; - - , data from photographic 

paper; also shown are calculated binomial distributions: 

0, ethylene —d 0 ; 0, —d 1 ; A, —d 2 ; • , .-d3 ; I , —d4 . 

The parameter 0 represents 100 times the mean number of 

deuterium atoms present per molecule or hydrocarbon. 
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TABLE 2.4 

TYPICAL DISTRIBUTION DURING ETHYL DNE EXCHANGE 

do di d2 d3. 

0 	130 20.7 40.2 29.6 7.9 1.6 PDP11 

20.9 40.0 28.8 9.2 1.1 binomial 

= 133 17.7 41.9 30.9 8.9 0.6 u-v charts 

19.9 39.6 29.5 9.8 1.2 binomial 

The 0 value represents 100 times the mean number of deuterium atoms 

present per molecule of hydrocarbon. When data were collected on ultra-

violet paper the disagreement was mainly due to an underestimate of the 

percentage of ethylene-d 4  present. 	The error was attributed to the 

presence of the peak at 'e = 32 in the background spectrum. Although 

the two ions 0 2+  and C 2 
 D 

4 
+ have nominal mass 32 9  examination of accurate 

atomic masses showed that the former ion is about 0.2 1ihter. 	Con- 

sequently partial resolution of the two mass peaks occurred when recording 

spectra of exchanged ethylenes. 	When examining the spectra on ultraviolet 

paper it was very difficult to establish that part of the total intensity 

due to the presence of ethylene-d 4  and since measurements of peak heights 

were used, an underestimated intensity value resulted. 	The sampling 

rate of the a.d.c. of the PDP11 was sufficiently high that an accurate 

integrated intensity for each component at mass 32 could be determined. 

To surnmarise, the results indicate that data acquisition via the 

PDP11 computer enables isotopic distributions to be calculated with an 

accuracy which is as high as, and in certain cases, higher than that 

obtained by previous methods. 
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2.8 EXPERIMMAL PROCEDURE 

Whenever it was practical a set routine was followed for both 

systems. 	The steps in this routine are outlined below. 

(a) preparation; (carried out the day before an experiment 

the rotary pumps and diffusion pumps were switched on in 

the gas line and the cold traps filled with liquid nitrogen. 

After a suitable time the pressure was checked using the McLeod 

gauge (sticking vacuum desirable). 

the rotary and oil diffusion pumps of the mass spectrometer 

were switched on, as were the external heaters if the instrument 

required baking. 	When baking was complete the liquid nitrogen 

cold trap was filled and, after two hours which was rejuired 

for the spectrometer to cool, the pressure in the source was 

checked (less than 1075 Nm 2 )0 

for g.c.—m.se experiments, helium was set flowing through 

the chromatographic column at the required rate overnight to 

allow it to stabilise. 

the catalyst was weighed out and put into a clean reaction 

vessel which was then attached to the gas line. 	The vessel was 

evacuated and then brought up to the temperature recuired for the 

pretreatment which was then carried out. 

(b) procedure before experiment. 

the pressure in the gas line and spectrometer were checked. 

the reaction mixture was prepared and allowed to stand in 

the mixing volume. 

the source connections plug and electrometer amplifier head 

were attached to the top of the mass spectrometer stack and the 



electromagnet moved into position around the source. 

in g.c.-m.s. experiments the column was connected to the 

inlet capilliary of the Ms20 with the helium flowing and a 

throttling tap was adjusted to give the operational pressure 

-2 of Ca. 	
3 x 10 Nm 	in the spectrometer. 

the magnet was energised and the electron beam control unit, 

amplifiers and chart recorder switched on and made operational. 

The filament was then switched on and a few trial scans were 

run to check that everything was working properly. At this 

point, the MS20 was tuned for maximum sensitivity. The magnetic 

field was locked at some recognisable in/e value. The Ion 

repeller voltage and deflector plate voltage were adjusted to 

give maximum spot deflection on the chart recorder. 

the MS10 was then ready to operate; a few background scans 

of the mass range of interest were taken, the appropriate scale 

on the amplifier chosen and then steps (8) and (9) carried out. 

before a g.c.-m.s. experiment was started, the collection 

link to the computer had to be set up. 	The appropriate connec- 

tions were made and the system logged onto the computer which 

was then programmed to remain in an "activated" state awaiting 

the first pulses from the spectrometer. 

(b) the furnace was now removed from around the reaction vessel 

which was closed to the pumps and allowed to settle at the 

chosen reaction temperature. 

(9) the reaction mixture was admitted to the reaction vessel. 

In experiments on the M510 the continuous leak meant that samples 

of the reaction mixture were available at any time during the 



experiment. 	In the g.c.-m.s. system, samples had to be with- 

drawn from the reaction vessel at suitable time intervals. 

Before each sample reached the mass spectrometer a few background 

scans were recorded. 
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CHAPTER 3 

THE ANALYSIS OF EXPERIMPAL DATA 

3.1 INTRODUCTION 

This chapter describes the methods used to convert the raw data 

obtained in experiments into results from which useful information could 

be derived. 	In essence the same methods were used for data from experiments 

using the MS10 apparatus and using the g.c.—m.s0 system, the reduction of 

data from mass spectrometric studies of exchange reactions following an 

established pattern(1) Relevant corrections were made to the raw spectral 

data to produce isotopic distributions corresponding to various times 

during the experiment. 	From the changes in these distributions the rate 

of exchange could be calculated. 

Many of the calculations were carried out using a computer for 

which programs had already been written (2)
The calculations were worked 

through either on an IBM 370/158 machine or on an ICL 4/75 machine. Except 

for minor alterations necessitated by using different systems these programs 

were used in their original forms. 

One development in this field which was carried out in the course 

of my work was the testing of a method of analysing data from exchange 

reactions of molecules with non—equivalent hydrogen atoms. 	Computer— 

generated data for which the correct results were known were used to test 

the reliability of the technique. 

The methods of analysis for isomerisation and hydrogenation 

reactions are also described in this chapter. 
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3.2 ANALYSiS OF MASS SPECTRAL DATA 

The initial treatment of mass spectral data from MS10 

experiments and g.c.-m.s. experiments differed as a result of the methods 

of recording the data. 

For experiments using the MS10 spectrometer, the spectra 

consisted of a number of peaks of varying intensity which corresponded 

to species of different masses. 	A kinetic run at fixed temperature con- 

sisted of a number of those spectral scans taken at definite time intervals. 

The heights of the peaks were measured to the nearest millimetre and con- 

verted to a common sensitivity. 	The peak heigit corresponding to each 

mass was then plotted against the times at which scans had been recorded. 

In fast reactions particularly, it was necessary to recognise that, even 

within one spectrum, the peaks for different masses were separated by 

definite time intervals. 	Typically the mass range of interest would be 

scanned by the magnet in one minute. 	In general the rate of reaction 

and the frequency of sampling were low enough for this not to be an 

important factor but, In the exchange of olefins on magnesium oxide for 

example, these corrections were necessary. 	Smooth curves were then 

drawn through the points for each mass to show up any variations in mass 

spectrometer sensitivity and also any minor fluctuations in the recorder. 

To analyse the data, the peak heights for each mass at a series of times 

during the experiment were read from the graph. 	At this stage correction 

was made for background. 	The intensities of the peaks corresponding to 

the various background masses were measured prior to the experiment and 

subsequently subtracted from each set of readings. 

The g.c.-m.s. system produced a much larger volume of raw data 

which had to be reduced before computing isotopic distributions. 	The 
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computer output, as described in chapter 2.7, consisted of a series of 

spectra of mass numbers and corresponding intensities. 	As has been 

explained, no single scan was representative of the overall isotopic 

distribution. 	To determine the average distribution the peak heights 

were integrated over the series of scans using Simpson's rule (3)  to pro- 

duce an average intensity value for each mass number. 	The error involved 

in this numerical integration was sensitive to the number of mass spectral 

scans recorded during the elution of the hydrocarbon. 	Previous 

investigation' has shown that a scanning frequency which produced about 

fifteen scans per hydrocarbon component had an associated 95% confidence 

level of ± 1% 	in this work typically thirty scans were recorded for 

each hydrocarbon peak. 	It was necessary to correct for background peaks 

arising from residual gases in the spectrometer source and from "bleed" 

from the chromatograph column. 	Before each g.c.-m.s. sample five back- 

ground scans were recorded, the peak heights of those masses present were 

averaged and then subtracted from the integrated intensity values to which 

they contributed in the hydrocarbon spectra. 	At this stage the data 

consisted of a series of intensities over the mass range of interest, each 

set corresponding to a sample time during the experiment. 

The remainder of the processing was common to both types of data. 

Both carbon and hydrogen have more than one stable isotope. The occurrence 

of 13 C and deuterium in the spectra of hydrocarbons must be taken into 

account because the presence of either of these isotopes will result in 

peaks at mass numbers greater than that of the parent molecule. 	Since 

exchange reactions involve changes in isotopic distributions it is essential 

to correct for the natural presence of heavy isotopes in the reactants. 

The isotopic abundances of heavy carbon and deuterium are 1.069% and 0.016% 
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respectively (5)  and for the molecule CH, the binomial expression 

(0.98931 + 0.01069x) (099984 + 0.00016X)m 	 31 

can be used to yield the intensity ratios for peaks containing natural 

isotopes relative to that of the parent hydrocarbon. 	The term in x 

corresponds to the fraction of parent peak (mass number P), the term in 

Z' to the (P + 1) peak, etc. 	For a range of deuterated products these 

values will vary with the extent of exchange. 	For the species C H D , 
nrn-rr 

expression 3.1 can be used with m replaced by (m-r). 	Isotopic corrections 

were made on a systematic basis starting with the lowest mass number and 

working upwards to higher masses using the corrected intensity at each mass 

to calculate the contribution to the next highest mass. 

The final correction to be made was to account for fragmentation 

of molecules in the mass spectrometer source. The molecules entering the 

source collided with a crossbeam of electrons and fragmentation processes 

were the result of encounters between these electrons and the rnolecules(6). 

Some of the electrons had sufficient energy to rupture carbon-hydrogen 

bonds giving rise to peaks in the hydrocarbon spectrum at mass numbers 

below that of the parent molecule. 	The characteristics of the rragmenta- 

tion pattern were principally determined by the molecule itself and the 

energy of the ionising electrons. 	In this work the electron voltage was 

kept as low as possible to minimise fragmentation but at a sufficiently 

high value to give adequate sensitivity. 	In general an electron energy 

of 10eV (1eV = 1.6 x 10 19j) was used on the 1310 and 20eV on the g.c.-m.s. 

system, 

The simplest approach to fragmentation correction was on a 

statistical basis. 	If it was assumed that the relative probability of 

breaking a carbon-hydrogen and a carbon-deuterium bond were equal then only 
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the fragmentation pattern of the light (i.e. undeuterated) hydrocarbon 

was required. 	The pattern was obtained by admitting a sample of the 

light hydrocarbon to the mass spectrometer, recording the mass spectrum 

and correcting for background and natural isotope. 	The spectrum then 

consisted of a parent peak intensity and intensities corresponding to 

some mass numbers lower than that of the parent. The pattern was then 

normalised with the parent peak intensity equal to unity and the fractions 

corresponding to the various fragments were recorded. 	When dealing with 

spectra of deuterated products it was assumed that loss of hydrogen or 

deuterium occurred on a statistical basis. 	This method which is described 

in detail 	 was adequate in situations where the extent of 

fragmentation was not great and where highly deuterated products were not 

involved. 

The method has been found to be inadequate in cases where heavily 

deuterated products are formed. 	The chief causes for its failure are that, 

in reality, it is easier to rupture a carbon—hydrogen bond than a carbon—

deuterium bond and that the fragmentation of a particular bond is influenced 

by the nature of the other bonds in the molecule. 	An empirical method 

has been devised to account for these factors. 	When experiments in this 

work produced highly deuterated products this procedure was adopted but, 

in other cases, the statistical procedure proved adequate. 	A modification 

to the usual procedure for fragmentation correction was necessary when 

considering the case of highly deuterated isobutane. 	In the mass spectro- 

meter the most likely hydrogen atom to be removed from the molecule in a 

collision with the ionising electrons was the methine hydrogen which, as 

the results indicated, had little likelihood of being deuterium. 	Thus it 

was assumed that the fragment with the lose of one hydrogen atom was always 
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one mass unit less than its parent ion. 	Fragmentation from the other 

positions in the molecule was considered in the usual way. 

For each of the methods fragmentation corrections were made 

in a systematic fashion starting with the highest mass peak and working 

in order of decreasing mass by making corrections on the basis of each 

newly corrected peak intensity and taking into account all possible 

fragmentation processes. 	The fragment ion contributior from each peak 

were calculated by multiplying the intensity for that particular peak by 

the relevant fragmentation factors and subtracting the products from the 

appropriate peak intensities at lower mass numbers. 

The fragmentation - corrected peaks were then summed and the 

amount of each isotopic species expressed as a percentage. This gave a 

series of isotopic distributions for various time intervals during the 

experiment. 	It was often useful to compare the experimental distribution 

with a binomial product distribution calculated from the mean deuterium 

content of the experimental distribution. The usefulness of such a 

comparison was that, in processes where the incorporation of deuterium 

was by a stepwise process, the distribution of isotopic species remained 

(10) binomial throughout the reaction 	• 	Good agreement or the lack of it 

between the experimental and binomial distributions might indicate whether 

or not stepwise exchange was involved. 	The mean deuterium content is 

defined by 

'.-A  i 
To 3.2 

where d is the percentage of hydrocarbon with i deuterium atoms. 	The 

binomial distribution is simply the expansion of 

100 (h + d) 	 3.3 
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where h and d are the probabilities of any hydrogen atom being an H or a 

D atom respectively and N is the total number of replaceable hydrogen 

atoms in the hydrocarbon. h and d are defined by 

d 
	MD 	

3.4 

ii 	(1-d) 
	

3.5 

The term in d 1  in the binomial expansion gives the percentage of isotopic 

species with i deuterium atoms in the molecule. 

It is important to have some estimate of how accurate and 

successful these correction methods are and to realise the likely sources 

of error, 	It has been shown 	that the Simpson's Rule integration is 

satisfactory if the number of scans per hydrocarbon peak is greater than 

fifteen. 	Background corrections particularly in the g.c.-m.s. system 

are a possible source of error. 	In the MS10 overnight baking proved to 

be sufficient to give a background spectrum which, in most cases, was 

negligible in the mass range of interest. The likely background peaks 

were at m/e 	18, 28, 32 9  44 (corresponding to water, nitrogen, oxygen and 

carbon dioxide respectively) and, if necessary, corrections were made for 

these peaks. 	It was assumed that there was a linear superposition of the 

hydrocarbon and background peak intensities in each spectrum. i.e. that 

there was no suppression of background intensities on admission of the 

hydrocarbon sample. 

However in the g.c.-m.s. system background peaks were seldom 

negligible. In many cases they were outwith the mass range of interest 

and did not present any problem but for methane, ethane and ethylene 

background peaks at zn/e = th, 28 and 32 9  corresponding to water, nitrogen 

and oxygen respectively, had to be taken into account. 	In most cases the 

relative intensities of the hydrocarbon  peaks and background peaks were such 
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that processing could be carried out albeit with a greater uncertainty than 

in M310 experiments. 	In one case (see chapter 6.2) the size of the hydro- 

carbon peaks was of the order of the background peaKs and alternative 

measures were required. 

It is difficult to estimate the errors involved in making the 

fragmentation corrections. It was assumed that fragmentation patterns 

were reproducible in the lifetime of a filament in the mass spectrometer 

source. However on renewal of a filament new fragmentation patterns were 

1ecorded0 	Little error would be introduced as a result of fluctuations 

in the mass spectrum during an experiment. The accuracy of the final 

results was considered to depend mostly on the scheme used for corrections. 

The reliability of isotopic distributions was gauged from two factors; in 

the early stages of a reaction the self-consistency of the fragmentation 

pattern was checked in that peak intensities corresponding to fragment ions 

should be close to zero after correction. 	Secondly, in experiments invol- 

ving a stepwise mechanism comparison of the experimental and binomial 

distributions helped to reveal errors. 

It was also assumed that the mass spectrometer was equally 

sensitive to the various isotopic species of the same hydrocarbon with the 

exception of methane for which different sensitivities of CH  and CD  have 

been recorded 	in the g.c.-m.s. system. 	One possible reason for the 

difference in sensitivities may be differential pumping in the molecular 

separator of the deuterométhane. 

3.3 THE KIN ETICS OF HYDROCARBON REACTIONS 

Most of this work involved a study of the kinetics of various 

hydrocarbon reactions, in particular exchange reactions. 	From the relative 



rates of reaction of different species, information could be deduced 

concerning the possible reaction paths and the nature of the intermediates. 

Therefore methods were required to calculate reaction rates from the 

experimental data and these are described in this section. 	Three types 

of reaction were encountered in this work, exchange, addition and iso-

merisation, of which the first had the greatest importance. 

(a) The Kinetics of Exchange Reactions. 

The treatment of data from exchange reactions has been detailed 

elsewhere(1) and the relevant equations and definitions are summarised 

here. 	The course of an exchange reaction could be followed in two ways, 

either by the rate of incorporation of deuterium into the molecule or by 

the rate of disappearance of the light hydrocarbon. 

The deuterium content of a hydrocarbon was defined by the 

parameter, , 

0 =id 	 3.6 

where d 1  was the percentage of hydrocarbon with t exchangeable hydrogens 

of which i were deuterium. 	The rate of entry of deuterium into the hydro- 

carbon was given by 

log (000 	kt - log (Øoc_Øo) 3.7 
2.303 Øo 

where k was a rate constant equivalent to the number of deuterium atoms 

entering 100 molecules of hydrocarbon in unit time and where 00 9  /oo were 

respectively the initial and equilibrium values of 0. 	In using equation 
3.7 it was assumed that all the hydrogen atoms in the hydrocarbon were 

equally susceptible to exchange and that the influence of isotopes on the 
S 

rate of exchange could be ignored. 

In a "well-behaved" reaction a plot of log (9'oo - ) against time 

should have been a straight line. 	Before this could be tested the value 



of 6o had to be chosen. 	In those experiments in which the reaction was 

followed to equilibrium the value could be determined from the final isotopic 

distribution. An estimate of Øx based on the assumption that, in the 

equilibrium distribution, the hydrogen and deuterium are randomly dispersed 

in the hydrocarbon and hydrogen mixture was given by 

øo - 7r x N x 100 
	

3.b 

where X was the fraction of deuterium atoms in the total number of 

hydrogen and deuterium atoms in the system and N was the total number of 

exchangeable hydrogens in the molecule. In practice an equilibrium 

isotope effect operated whereby the deuterium was preferentially found in 

the hydrocarbon giving a larger value of Øco than that calculated from 

equation 3.6. 

Deviations from a straight line in the plot of equation 3.7 

could reveal interesting information. Non-linearity might simply be a 

result of a poor choice of too. An overestimation resulted in the line 

flattening out and appearing convex with respect to the origin. An under-

estimation had the opposite effect giving a line which was concave with 

respect to the origin. 	Another reason for failure to give a straight line 

was poisoning of the catalyst. In such cases the usual behaviour was for 

the line to be curved with a decreasing gradient. 	A third cause was that 

not all the hydrogen atoms in the hydrocarbon were equally active for 

exchange. 	This situation is discussed in section 3.4. 

A second rate constant, k 0 , was defined by 

- log (X - Xoo) = k0t 	 - log (100 - Xoo) 3.9 
2.303000-XooJ 

where k  o referred to the rate of disappearance of the light hydrocarbon 

of which X, 100 and Xoo were the percentages present at time t, initially 

and at equilibrium respectively. 	In this case a plot of log (X-Xoo) 
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versus time yielded a straight line with gradient -kJ2.303(100-Xoo). 

The ratio of the two rate constants, M, was a useful parameter 

because it represented the mean number of hydrogen atoms replaced by 

deuterium atoms in each molecule of hydrocarbon undergoing exchange in 

the initial stages of the reaction. 	In the case of stepwise exchange, 

the value of M was close to unity while for multiple exchange it had some 

larger value. 

It is important to realise that the rate constants, k and k 

differ from the normal definition of chemical rate constants. 	Strictly 

speaking they are relevant only to a particular mixture of reactants. 

The course of a particular reaction can be given by a first-order equation. 

However if the true kinetics of an exchange process are required a series 

of experiments involving different reaction mixtures must be carried out. 

The dependence of the rate constant for exchange, k, on the pressure of 

hydrocarbon, P 
HC'  and deuterium P D2'  must be measured and the values of 

x and y evaluated from the equation 

	

k = constant X P x  XP Y 	3.10 HC 	D9, 

The values of x and y often indicate the strength of adsorption of the 

reactants. 	Strong adsorption results in an index tending to zero, 

whereas a value of x or y close to unity would indicate a weak form of 

chernisorption. 

(b) Kinetics of Hydrogenation and isornerisation. 

Of particular interest in this work was the addition of 

deuterium to ethylene over a variety of oxide catalysts. 	Two possible 

reactions were observed, namely exchange of the olefin and hydrogenation 

to produce ethane. 	The rate constant for the addition reaction, ka 

was derived from the integrated first-order rate equation 

- log (1 -Xa) = k t a 
3.11 2.303 
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where the fractional conversion of ethylene to ethane at time t is Xi. 

The rate constant for exchange was obtained from equation 3.9 which is 

( applicable if the exchange reaction is first order in ethylene pressure ii)  

The linear relations predicted by these rate equations were well obeyed 

except in two cases and hence the assumptions were considered to be 

justified. 

In thosereactions where isomerisation was being investigated 

the rate constant, k1  , was derived from the first—order equation 

	

log (1 - x ) = 	k1t 
	

3.12 
2.303 

where the fraction of reactant which has isomerised at time t is X 

(c) Errors and Arrhenius Parameters. 

Errors in rate parameters obtained graphically were estimated 

from the spread of points In the plots. 	Gradients of straight lines were 

calculated by a least squares method using which the uncertainty could 

also be calculated. 	Care had to be taken in considering points which 

deviated from the general pattern. 	It had to be decided whether they 

were simply the result of "poor" data or the consequence of some change 

in the reaction conditions from which useful information might be derived. 

The usual practice was to follow exchange reactions at a series 

of different temperatures. 	Rate constants could be converted to units of 

molecules s 1  m 2  from knowledge of the catalyst surface area and the 

number of molecules in the reaction system. 	The apparent activation 

energy, E, for the exchange process could be derived from the ArrhenIus 

equation, 

log.k= logA - 	E 
	

3.13 
2.303 RT 

where A was the frequency factor, R was the gas constant and T was the 
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temperature. 	If the Arrhenius equation held, a plot of logk versus the 

inverse temperature was a straight line. 

The activation energy observed was only the true activation 

energy for the chemical process if other factors, principally surface 

coverage, were temperature independent. 	In cases where the surface 

coverage was high the observed activation energy was close to the true 

value but in cases where surface coverage was low and varied with tempera-

ture, the observed activation energy, Eobs, was given by 

E obs 	E + EH 	 3.14 

where AH is the heat of adsorption of the gas. 

3.4 EXCHANGE IN MOLECULES WITH NON-EQUIVALENT HYDROGENS ATOMS 

In exchange reactions of hydrocarbons and other substances with 

deuterium the various hydrogen atoms in the molecule frequently react at 

different rates, e.g. with the alkylbenzenes a marked difference is observed 

in the reactivity of the side group and of the ring hydrogen atoms over a 

wide range of cataiysts(12), 	It is desirable that the maximum amount of 

information about the rates of exchange of the different types of hydrogen 

atoms should be obtained from experimental data for such systems but the 

selection of a reliable method of analysing the data may be difficult. 

The problem has been solved for the case of molecules having 

hydrogen atoms in two groups both exchanging in a stepwise fashion but at 

different rates (13)  . 	Bolder, Dallinga and Kloosterziel (in)  gave a general 

treatment for multiple exchange but limit it to molecules with a single 

group of exchangeable hydrogen atoms. They also considered a method for 

molecules with non-equivalent hydrogen atoms involved in multiple exchange 

but subject to two conditions; firstly, the reaction starts with undeuterated 



64 

hydrocarbon molecules and secondly, the fraction of deuterium in the 

deuterating agent remains constant. 	This latter condition implies that 

the analysis cannot be applied to experimental situations, COrrLmOflly found 

in heterogeneous catalysts, in which the dilution of the deuterium by 

hydrogen from the reactant hydrocarbon cannot be neglected. 

Approximate methods of obtaining rate constants from experimental 

data were proposed by Crawford and Kemball 	and subsequently improved 

by Harper, Siegel and Kernball(16)e 	The latter method, which shall be 

referred to as the HSK method, could be applied to cases with two or more 

groups of hydrogen atoms reacting at different rates by either stepwise or 

multiple mechanisms. 	Intuitively one expected the FISK method to give 

reliable results in the limit of one group exchanging very much faster than 

the next group but some doubt existed as to how well the method worked when 

the rates of exchange of different groups were comparable. The first 

objective of the present section was to attempt to determine the conditions 

under which the HSK method was reliable. 

Temperature-programmed catalysis has been used as a technique 

for following the exchange of groups of non-equivalent hydrogen atoms(17) 

and the analysis of the results involves an extension to the HSK method. 

The technique provides information from a single experiment which could only 

be obtained from several experiments carried out in a conventional manner 

at constant temperature. Arrhenius parameters as well as the relative 

rates of reaction of the different groups of hydrogen atoms can be obtained 

but the limits of reliability of the approach had not been established. 

This problem was also investigated. 

The method of investigating both problems involved the use of 

equations derived by Dallinga et 	to compute distributions of isotopic 
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species for exchange reactions for a molecule with two groups of hydrogen 

atoms reacting in a stepwise manner. 	These computed distributions were 

taken as "experimental data" then analysed by the ESK method and its 

extension for temperature—programmed catalysis and finally the calculated 

rates were compared with the actual rates used to generate the "experimental 

data". 	In this way, information about the useful limits of the HSK method 

was obtained. 	A list of symbols used in this section is given at the end 

of the chapter. 

(a) Derivation of the Isotopic Distributions. 

The treatment set out by Dallinga et al. (13) applies to any 

molecule in which the hydrogen atoms can be subdivided into two groups, 

A and B, the latter reacting more slowly but with the exchange of both 

groups occurring by a stepwise process. 	Their theory was adapted in this 

study to enable the distribution of products during an exchange reaction 

to be calculated. 

Expressions for the variation with time of DA  and  DB,  the 

deuterium content in Group A and group B respectively, were found In 

equations (20) and (21) of reference 13. 	The expressions involved kA  and 

k 
BI 

the rate constants for the exchange of groups A and B respectively, 

the mole fraction of the reacting molecule in the total system and the 

initial fraction of deuterium in the labelling compound. 	Thus, if the 

experimental conditions, i.e. the reaction mixture and the rate constants 

for exchange in groups A and B were specified, DA  and  DB  could be calculated 

for a series of values of time. 	Then using the binomial expressions which 

apply for stepwise exchange, the distribution of isotopic species in the 

two groups could be derived and, on combination of the results for the two 

groups, an isotopic distribution for the molecule as a whole could be 

obtained. 



Many of the calculations were repetitive using the same 

relationship several times. 	A computer program, a listing of which is 

included in the appendix, was written to calculate the distributions for 

the required times. 	Facilities were incorporated in the program to 

specify the number of hydrogen atoms in each group, N 1  and NB,  the rate 

constants, kA  and  kB,  and the composition of the reaction mixture. 	Most 

calculations were carried out with NA = NB = 4, corresponding to a molecule 

such as naphthalene with eight exchangeable hydrogen atoms in two groups 

of four. 	In this way, sets of distributions of products at specified 

times were generated to be used as "experimental" distributions for which 

the kinetic and other experimental details were known. 

(b) Calculation of Rate Constants from Isotopic Distributions. 

The HSK method of obtaining rate constants has been described 

in detail elsewhere (16) and involves an extension to the case where all 

hydrogen atoms in a molecule exchange at the same rate (see section 3.3(a)). 

In cases where groups of hydrogen atoms exchange at different rates the plots 

of equations 3.7 and 309 are no longer linear and the HSK method is required. 

With the exception of using k for the total rate constant rather than k  

the same nomenclature is used here as in reference (16). 

The total rate constant is the sum of the individual group rate 

constants, kA  and  kB.  An approximation is used to obtain kB  by assuming 

that kBrZ<kA  and hence that the formation of the isotopic compounds from 

and d8  is due to the exchange of hydrogen atoms in group B. The 

quantity 0B is defined by 

di 
0B = 100 	(i-4) 8 	 3.15 

i.5• 	
di 

i=4 

and the values are used in an equation analogous to equation 3.7 to 
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estimate kB. 	Provided 0B 	is chosen appropriately, a satisfactory 

linear plot can be obtained. 	The choice of VBONO is  based on the 

equilibrium distribution corresponding to a random distribution of 

deuterium atoms between the source of deuterium and all the exchangeable 

positions of the molecule. 	The value of OBt calculated from equation 

3.15 for this equilibrium distribution, can be used as Øo 

In order to find the faster rate constant kA, 0A is defined by 

4 	 8 

A =id. + 4d. 	 3.16 

i=1 	 i=5 

and used as 0 in equation 3.7 to obtain the total rate constant, k. 

Subtraction of the slower rate constant k   from the total rate constant 

then gives k 
A 	 Ao . 	The choice of 0 	is discussed later. 

(c) Temperature Programming. 

Temperature-programmed catalysis is used as a rapid means of 

comparing the rates of exchange of different kinds of hydrogen atoms in 

a molecule when the ratio of the reaction rates is so great that it is 

impossible to choose a single temperature at which both reactions can be 

observed accurately and conveniently. 	The usual method is to increase 

the temperature linearly with time so that the reaction of both groups 

of hydrogen atoms can be followed in a single experiment. 	The distri- 

butions of products are obtained at equal intervals of time and analysed 

by a procedure based on the FISK method07). 

In order to generate suitable data for studying this technique 

distributions must be calculated which correctly reflect the increase in 

the reaction rate as the temperature increases. 	It was assumed that the 

rate constants, kA  and  kB,  obeyed the Arrheniuz equation and, for simplicity, 

that both groups had the same activation energy, E. 
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The computer program was capable of calculating distributions 

of products at various times in the exchange reaction with specified rate 

constants; however, it had no facility to deal with a changing rate con-

stant. 	The problem was circumvented by defining an expanded time scale, 

t, a computer time related to laboratory time, t 1 , by the equation 

dt 	k 
= 	 3.17 dt 1  

0 

where k 
0 	 -

D is the rate constant at To, the initial temerature, and k is the 

rate constant at temperature, T, and laboratory time, t 1 . 	The temperature 

was assumed to increase linearly with time. 	In this way the extent of 

reaction for a system which had reacted under laboratory conditions for a 

time, t 1 , during which the rate constant was increasing with temperature 

would be equivalent to that calculated for a reaction with a fixed rate 

constant, k, for time, t. 	Integration of equation 3.17 gave the values 

of t 
c 	 1 which corresponded to the selected values of t for which distribu- 

tions were required. 	Once a list of the required values of t had been 

obtained product distributions were calculated as before. 

(d) Constant temperature results. 

Distributions of products were calculated at various time intervals 

for an arbitrary mixture of 22.6 parts of deuterium to one part of hydro-

carbon and for values of the ratio kA/kB  of 100, 20 9  10, 5 and 1. 	These 

were then used as "experimental data". 

The analysis of the results of an actual experiment required 

firstly the recognition that not all the hydrogen atoms were exchanging at 

the same rate and secondly, the determination of how many hydrogen atoms 

were in each group. 	Figures 3.1 and 3.2 show distributions of products 

during reaction for values of kA/kB  of 20 and 5 respectively. The fact 
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FIGURE 3.1 : Calculated isotopic distributions during reaction with k 	0.6 D atoms! 
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FIGURE 3.2 : Calculated isotopic distributions during reaction with k as for figure 3.1 

but kA/kB 	5. 



that four hydrogen atoms were replaced more rapidly than the second four 

is clear in figure 3.1 but obscured in the latter. 

Another method of distinguishing non-equivalent groups in a 

stepwise exchange reaction was to compare product distributions with the 

calculated binomial distributions for the same value of 0. 	This could 

only be applied to stepwise xchange processes for which the binomial 

distribution corresponds to the case where all the hydrogen atoms in the 

molecule exchange at the same rate. 

TABLE 3.1 

COMPARISON OF PRODUCT DISTRIBUTIONS WITH BINOMIAL 

DISTRIBUTIONS FOR DIFFERENT VALUES OF kA/'ICB 

kA/kB d a 1  d 2  d 3  d4  d5  d 6  d 7  d 5  

20 319.0 0.4 4.5 18.9 37.0 31.2 7.3 0.7 0.0 0.0 

(binomial) 319.0 1.7 9.0 21.0 27.9  23.1 12.3 4.2 0,8 0.1 

10 312.9 0.7 6.3 21.3 34.6  26.9 5.5 1.4 0.1 0.0 

(binomial) 312.9 1.9 9.7 21.5 28.0 22.5 11.6 3.7 0.7 0.1 

5 299.5 1.5 9.3 24.0 31.7 22.7 8.5 1.5 0.2 0.0 

(binomial) 299.5 2.3 11.2 23.5 28.2 21.1 10.1 3.0 0.5 0.0 

Distributions are in percentage values. 

The results in table 3.1 indicate that the experimental distributions had 

more d3- and d4- species and less d5- and higher products than the corres-

ponding binomial distributions. The test worked well for kA/kB = 20 or 

10 and gave some indication of the division of atoms into groups even with 

a ratio of 5. 	This test only worked well at the appropriate stage of the 

reaction; at the beginning the distributions were accurately binomial, 
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discrepancies appeared when the slower group was starting to exchange and 

they disappeared again as equilibrium was approached. An appropriate stage 

to make the comparison was when the binomial distribution showed about 10% 

of the isotopic product with one more deuterium atom than the number of 

hydrogen atoms in the rapidly exchanging group, i.e. d 5  in this case. 

TABLE 3.2 

COMPARISON OF ESTIMATED   AND CHOSEN RATE CONSTANTS  

kA/kB k kB VA 00 

chosen 	est. chosen 	est. chosen 	est. 

20 21.5 14.0 14.1 0.6 0.62 370 

10 11.3 7.3 7.36 0.6 0.60 360 

5 5.tS 4.00 4.07 0.6 0.60 400 

1 4.4 1.3 1.56 0.6 0.29 400 

a rate constants calculated to ±3 in the third significant figure. 

b units: D atoms per 100 molecules min 1 . 

The rate constants obtained by the HSK method are compared in 

table 3.2 with the actual values used to generate the data. The choices 

of  OAOIO  andBoo were important in estimating the rate constants and the 

procedure for obtaining an adequate value of 0Boo  has been explained. 

If 
OAOO was  correctly chosen, a linear plot was obtained using equation 

3.16 and the derivation of the rate constant from the gradient presented 

no problem. 	Curvature of the )- plot convex to the time axis implied 

that the reaction was slowing down and that VAOD had  been over—estimated. 
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The reverse behaviour indicated an under-estirntion of the equilibrium 

value. 

Fortunately the range of possible values of VAC,, was  limited. 

If it was assumed that only four hydrogen atoms were reacting and that the 

remaining four were inert, the calculated value of VAOO was  367 for the 

reaction mixture used. 	If the corresponding procedure to that for 

estimating the value in group B was employed, 
0A010  was 400 which was the 

maximum possible value. The 0- plots are shown in figure 3.3 and the 

selected values of OAOO are  given in table 3.2. 	It is not surprising 

that a lower value of 	was more satisfactory for the case of kA/kB 

20 and that the higher values were better for the case where there was 

less difference between the rates of reaction of the two groups of atoms. 

Figure 3.4 illustrates the plots of 0B  in the appropriate form 

of equation 3.15 to determine the rate of exchange of the slower group of 

hydrogen atoms. 	It was not possible to evaluate 0B  satisfactorily for 

distributions with less than 10% of the total hydrocarbon present as d 5  or 

higher species. 	Each of these plots showed similar behaviour and fell 

into three sections. 	The first part was curved and the curvature was 	more 

pronounced and lasted longer for the lower values of kA/kJ3. 	The second 

sections were reasonably linear particularly for the higher ratios and 

were used to estimate the rates given in table 3.2. 	In the final sections 

which occurred at substantially longer times and are not shown in figure 

3.4 the plots merged into a common line with a gradient corresponding to 

a slightly slower rate of 0.56 D atoms per 100 molecules min- 1 9 

It is clear that the HSK method gives a good estimate for the 

total rate of exchange and only fails in the extreme case where k = k B  

and the two groups of hydrogen atoms react at the same rate. In practice 
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the method would never be applied to such a case which would be analysed 

by standard methods(1). 

The estimated values of k   were all low compared with the chosen 

values but the deviation was not greater than 10% if kA/kB  was 5 or higher. 

The reason for this discrepancy was that the deuterium pool had become 

diluted as a result of the exchange of the first group by the time the 

second group started to react. 	The method made no allowance for this and 

consequently the calculated value of k   was slightly low. 	A correction 

for this factor could have been made. 	The underestimation of k   led to 

a slight overestimation of the ratio kA/kB  by about 10% rising to 20% for 

kA/kB = 

It is fortunate that the 113K method is satisfactory for cases 

where it is possible to distinguish different groups of hydrogen atoms by 

inspection of the experimental results. 	Where such differences can be 

seen, corresponding to kA/kB>  5 1  reasonably accurate results for the rate 

constants can be obtained, the accuracy improving for higher values of 

kA/kB. 	The method only fails for cases where it is difficult to distin- 

guish the different groups of atoms because they have similar reactivities. 

This investigation was necessarily limited to testing the HSK 

method for two groups of hydrogen atoms exchanging in a stepwise fashion 

because it was not feasible to calculate distributions of products involving 

multiple exchange. 	However, it seemed probable that the HSK method would 

work at least as satisfactorily for cases of multiple exchange as it did 

for stepwise exchange. 	The determination of the total rate should have 

been as reliable for multiple exchange and the estimation of kB  might b 

improved because the multiple exchange would increase the production of 

d 4  at an early stage and enable the exchange of the second group to be 
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followed more efficiently than in the case of stepwise exchange. 

The HSI( method was put forward originally for molecules contain-

ing three groups of hydrogen atoms. 	Our examination of its validity was 

restricted to the case of two such groups because the theory for calculating 

distributions was available only for two groups. 	However, on the basis 

of the present work, it would be reasonable to assume that the HSK method 

could be applied to more groups provided the value of kjkM> 5 for 

successive groups L and M. 	But corrections for isotopic dilution would 

then be essential. 

(e) Temperature-programming results. 

The method of generating "experimental data" was first tested 

for the case where all hydrogen atoms in the molecule exchange at equivalent 

rates. 	Values of 0 at a series of values of t 1  were obtained from data 

generated with a chosen activation energy of 40 kJ 	an initial rate 

of exchange of 1.0 D atoms per 100 molecules min- 1  at 273K and a rate of 

increase of temperature of 1 - 0 K min. The average rate of reaction was 

evaluated for each time interval from 

k 	= 	000 
n (0 	

- 

- in ( - 	 .)]/tt 1  3.18 

with 1.1+1 	Viand 	, representing successive values of P. Then ink was 

plotted against the reciprocal of the mean temperature for each time 

interval. The fact that a good straight line was obtained with a gradient 

corresponding to an activating energy of 39.2  0.8 kJ mol 1  confirmed that 

the method of generating data was satisfactory. 

The method was next applied to the case of two groups of hydrogen 

atoms with values of kA/kB  of 6, 11 and 21 9  all activation energies being 

chosen as 40 kJ mo1. 	The "experimental data" was used to determine Ic 

and k   by expressions analogous to equation 3.18 and the corresponding 
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activation energies were estimated from Arrhenius plots. 	The comparison 

between the estimated values of k/kB  and the estimated activation energies 

with the respective chosen values was used to assess the validity of the 

method of handling the data from temperature-programmed catalysis. 	Some 

Arrheniu.s plots are shown in figure 3.5 and the results are summarised in 

table 3.3 

TABLE 3.3 

RESULTS FOR TEMPERATURE-PROGRAMMED CATALYSIS 

k/kB 
WkJ 	o1 1  

chosen est est. 
when d 5  = when a 5  = 20% for k 	for k  

21 22.6 22.2 41.4 40.3 

11 13.5 13.1 42.6 37.3 

6 7.7 7.4 43.8 33.4 

Satisfactory straight lines were obtained in the Arrhenius plots for 

the total rate of exchange and the agreement between the derived activation 

energies and the chosen values was better the higher the value of k/kB. 

The results for k   were much less satisfactory, particularly 

for the lowest value of k/kB = 6. 	The Arrhenius plot in this case was 

curved and only approximated to a straight line at a comparatively late 

stage in the reaction. The derived activation energy from this line was 

too low and the estimated values of k/kB,  whether determined when there 

was ic% or 20% of d 5  formed, were too high. 	Better results were obtained 

for k/kB = 11 and the most satisfactory results for k/kB = 21. The 
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difficulties associated with the Arrhenius plots of k   for the lower 

values clearly arose from the type of behaviour illustrated in figure 3.4 

of the plots of k   in the constant temperature experiments. 	The estimates 

for k  are much too low at the stage where the slower hydrogen atoms 

begin to exchange but become more reliable as the reaction proceeds. 

The conclusion is that the FISK method works satisfactorily for 

temperature—programmed catalysis when the ratio of the rate constants of 

the two groups of hydrogen is greater than about 20 and is definitely 

unreliable if the ratio is less than 10. 



LIST OF SYBOI 

DA ,  D 	mean deuterium content in groups of hydrogen atoms, A and B 

respectively. 

d. 	percentage of isotopic species containing i deuterium atoms. 

E 	activation energy for exchange of hydrogen atoms. 

k 	total rate constant for exchange of hydrocarbon. 

kA 	rate constant for exchange of hydrogen atoms in group A. 

(Similar definitions for k , k , k m ) B 	n 	in 

k 	initial value of k in temperature programming experiment. 

NA ,  NB number of hydrogen atoms in group A and group B respectively. 

P 	temperature of reaction. 

T 	initial temperature in temperature programming experiment. 

t 
C 	

computer time scale. 

t 1 	laboratory time scale. 

OA P  0B measure of extent of deuteration in group A and group B 

respectively. 
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CHAPTER 4 

REACTIONS OF ETHYLENE WITH DEIJPERIUM ON OXIDE CATALYSIS 

41 INTRODUCTION 

Ethylene reacts with deuterium in two ways over oxide catalysts; 

either addition occurs to produce ethane or exchange takes place to give 

deuterated ethylenes. 	Over a variety of catalysts a wide range of 

selectivities is observed. 	Systems in which a reactant has more than 	one 

possible product are well suited to analysis by combined gas chromatography - 

mass spectroscopy. The behaviour of ethylene with deuterium was chosen 

as a suitable system to test the computer link-up for data acquisition in 

the g.c.-m.s. technique (see Chapter 2.7). 	The technique is particularly 

useful in that it enables very small quantities of ethane to be detected 

for a reaction in which the predominant process is exchange of ethylene 

while, conversely, in a system showing high selectivity for hydrogenation 

it is possible to measure the rate of any accompanying exchange reaction. 

Of particular interest in this section was the behaviour on 

alumina and magnesium oxide because these catalysts were the subject of 

the other work described in this thesis. Not all the reactions were 

being studied for the first time and some of the work simply involved 

repeating already recorded results. However, the general pattern of 

behaviour and its relation to different types of intermediates were of 

interest and it was felt that a set of results recorded for different 

catalysts by the same technique was to be preferred to a collection of 

data taken from the literature. 

iL 
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The reactions of ethylene with deuterium over zinc oxide(i) , 

chromia(2), cobalt oxide, rutile (titanium dioxide) 	and alumina (5) 
 

have already been reported. 	In this work new catalysts studied were 

magnesium oxide, iron oxide and zirconium oxide. 

4.2 PREVIOUS STUDIES OF ETHYLENE-DEUPERIUM REACTIONS. 

The interaction between ethylene and deuterium over transition 

metal catalysts has been widely studied and, in particular, the extent to 

which exchange and hydrogenation of the ol'in occur. The mechanisms of 

the two reactions are closely related and are believed to involve the 

same kind of intermediate viz, ethyl radical species (617). 	It is 

suggested that the fate of these ethyl species, whether they return to 

adsorbed ethylene or go on to become ethane, determines the product dis- 

tribution. 	A range of activities has been observed; on iron and nickel 

catalysts olefin exchange is the more important process but on tungsten 

and platinum, ethane production predominates while other metal catalysts, 

e.g. rhodium and ruthenium, intermediate behaviour is observed. 

More recently the reactions of ethylene and deuterium over 

certain metal oxides have been examined and the results reveal some 

interesting contrasts in catalytic action. Three main types of behaviour 

have been noted. 	Firstly, it has been found over some catalysts that 

simple addition occurs to produce C 
2 
 H 
4 
 D 2 as the principal initial product 

with little or no accompanying exchange of the olefin. 	Zinc oxide(1) 

chromia(2) and cobalt oxide 	show this behaviour. 	In the case of zinc 

oxide it is suggested that the important step is the formation of the 

half-hydrogenated ethyl species C 2  H 4 
 D which takes place irreversibly. 

Consequently all the ethyl species are converted to ethane molecules and 
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none revert to ethylene. Adsorption of hydrogen is believed to occur at 

zinc-oxygen pair sites. The reactions over cobalt oxide and chromia have 

been considered in terms of the relation between the degree of coordinative 

unsaturation at the active sites and the possible reactions between the 

olefin and deuterium which may occur at the site(8). 	Suggested mechanisms 

for related homogeneous catalytic reactions are used to illustrate the 

possible reaction pathways and the relative abilities of different types 

of sites to promote the various reactions are considered. 	In this treat- 

ment it is noted that the oxidation state of the transition metal will be 

an important parameter in the reactivity of an active site. The reactions 

over zinc oxide and chromia indicate almost exclusive addition with no 

exchange being observed. However, on cobalt oxide although the predominant 

reaction was still addition the exchange reaction could be followed. 

Whether or not cobalt oxide should be classed with zinc oxide and chromia 

or with the next group of oxides is perhaps debatable. This work may 

help resolve the question. 

The second type of behaviour is observed over titanium dioxide 

which supports the exchange of ethylene and the production of ethane at 

similar rates. This behaviour can be compared to that on some metal 

catalysts and the simplest explanation is that the formation of surface 

ethyl species is reversible. 

The third type of behaviour is that found over alumina catalysts. 

Ethylene and other olefins exhibit rapid exchange with deuterium without 

significant formation of saturated hydrocarbons; for this reason, alumina 

has been used to produce perdeutero-olefins. 	Elsewhere it has been 

shown that hydrogenation of ethylene can be effected but at somewhat higher 

(h t  temperatures than those required for exchange.  Hydrogenation takes 
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Place at or below room temperature if ethylene is preadsorbed on the 

catalyst (11)  but at higher temperatures exchange is much faster than the 

addition reaction (12), 	The behaviour on alumina appears paradoxical 

because a catalyst which is capable of activating both ethylene and hydro-

gen might be expected to catalyse hydrogenation as well as the exchange 

reaction because the former is thermodynamically more favourable. 

4.3 EXPERIMENTAL PROCEDURE 

These experiments were investigated using the combined gas 

chromatography - mass spectrometry system details of which have been given 

in Chapter 2. 	The reaction vessel used in this work was made of silica 

(volume ca. 2.70 x 10 m3 ). 	The mass spectrometer operated at an ionising 

voltage of 20eV and alout 15 - 20 scans per hydrocarlon ccuponerit were 

recorded. 

The data were collected using the "on-line" ccuputer link and 

indeed the results involving magnesium oxide were used to test the system 

(see Chapter 2.7). 	Details of all the catalysts and their respective 

pretreatments are given in table 2.2. At the end of their experiments the 

iron oxide and cobalt oxide samples were allowed to cool to room temper-

ature whereupon they showed no apparent ferromagnetism. This procedure 

was to check that none of the oxide had been reduced to metal during the 

experiment. 

Frarnentation patterns and relative sensitivities for ethylene-d 

and ethane-d were measured at regular intervals during the course of the 

work. Corrections for background, natural isotope occurrence and fragmen- 

tation followed the scheme described in Chapter 3.2. 	When correcting 

spectra for fragmentation it was assumed that loss of hydrogen and 
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deuterium took place in a statistical manner and that the fragmentation 

patterns for all isotopic hydrocarbons were identical. 

Over some of the catalysts one or other of the possible reactions 

was predominant; therefore it was important to know the lower rate limit 

which might be determined. For exchange reactions mass spectra were used 

to determine the rate constant. 	The apparatus enabled identifiable mass 

spectra to be obtained for 6 x 1014 molecules entering the g.c.—P.s. system 

which corresponds to 3 x 1O 6  molecules in the reaction vessel or a prcduct 

yield of 0.3%. 	Reliable isotopic distributions could be obtained such 

that the presence of less than 0.5% ethylene—d 1  in ethylene d 0  could be 

detected. 

4.4 RESULTS 
TABLE 4.1 

ACTIVITIES OF THE OXIDES FOR ETHYLENE—DEUTERIUM REACTIONS 

addition 	 exchange 

Catalyst reaction,ka 	reaction, ke kdka T/K 

/molecules sm 2 	/molecules sm 2  

<2.7 x 1011 	a19 x 10 5  >6900 671 

A1203 b32 x 1011 	4.7 x 10 14 1500 239 

Tb 2  5.1 	x 10 12 	1.3 x 10 13 2.5 641 

Fe203  5.5 x 101 	6.6 x 10 13  1.1 468 

Co3 04  8.1 	x 	10 16 	1.1 	x 	1016 0.13 293 

Zr02  7.5 x 10 14 	 3.6 x 10 13 0.046 297 

ZnO 1.5 x 10 1 4 	< 2.5 x 10 12 <0.020 273 

Cr 203 1.5 x 1015 	< 1.9 x io 13  <0.012 195 

a ke obtained from extrapolation of data measured at 298 - 373K. 

b ka  obtained from extrapolation of data measured at 428 - 563K. 
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The results obtained for the eight oxides are suirrnarised in 

table 4.1. 	The linear relations predicted by the rate expressions 

(equations 3.7 and 3.4) were obeyed well except in two cases. 	For cobalt 

oxide a slight curvature of the plot indicating a decrease in the rate was 

observed for the addition reaction. 	A similar effect has been attributed 

to the irreversible adsorption of hydrogen on the catalyst. No curva-

ture of the plot for the exchange data was observed which is illustrated 

in figure 4.1. For iron oxide both the addition and exchange reactions 

showed a high initial rate followed by a period of lower activity during 

which the linear relations were obeyed. Rates of reaction reported for 

this oxide are applicable to the later stages of the reaction. 

All the exchange reactions observed were stepwise, i.e. one 

hydrogen atom was replaced at a time as evidenced by the close agreement 

between experimental isotopic distributions and the corresponding binomial 

distributions throughout the experiments. 

TABLE 4.2 

DISTRIBUTION OF ISOTOPIC ETHYLENES 

DURING EXCHANGE REACTION OVER jg 

d 0  d 1  - d 2  d 3  - 

experimental 12.4 32.4 36.9 16.0 2.4 r 	164.0 

binomial 12.2 33.8 35.3 16.2 2.5 

As an example table 4.2 shows a distribution during ethylene exchange over 

magnesium oxide. 
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FIGURE 4.1 : Exchange and Addition Rate Plots for the Reaction of 

Ethylene with Deuterium on Cobalt Oxide. 

0, exchange data; 13 1 addition data. 
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All the results could be fitted into one of the three categories 

previously described. 	For alumina and magnesium oxide the exchange 

reaction predominated. 	As an example, the rate plot for exchange over 

magnesium oxide is shown in figure 4.2. 	The rate of addition was too 

slow to be observed even at elevated temperatures. 	Any ethane produced 

during one hour at 671K was below the limits of detection although 

exchange was rapid at room temperature. 	Thus less than 0.3% ethane was 

present and the rate of addition was less than 2.7 x 10 
11 molecules 

m. 	In table 4.1 the rates of exchange measured at lower tempera- 

tures are compared with rates of addition at high temperature. The 

exchange of ethylene with deuterium over magnesium oxide was followed at 

a series of temperatures in the range 248 - 373K to give a rate expression, 

r = 10 16-5  exp (- 16 x 103/RT) molecules s 1 m 2 	4.1 

Similarly for the addition reaction over alumina the rate was given by 

16.1 	 3i . 	 -1 -2 
r = 10 	exp (- 25 x 10 /RT) molecules s 	in 	4.2 

The intermediate category for which both exchange and hydro-

genation occurred at comparable rates comprised rutile, iron oxide, cobalt 

oxide and zirconia. 	Whereas previous results over rutiie 	were confirmed, 

the data for cobalt oxide suggested that exchange was more important than 

previously suggestea. 	These results indicated that cobalt oxide 

belongs with titanium dioxide, iron oxide and zirconia rather than with 

zinc oxide and chromia. 	The rate plots for cobalt oxide are illustrated 

in figure 4.1. 

The third type of behaviour viz, the predominance of the 

addition reaction was exhibited over zinc oxide and chromia. 	In both 

these cases ethylene-d 1  was not present above the detection limit of 0.5%. 

Determining the absence of ethylene-d 1  was necessarily more difficult than 
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FIGURE 4.2 : Rate Plot for the Exchange of Ethylene with Deuterium 

on Magnesium Oxide at 298K. 
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product as was the case with magnesium oxide because the concentration of 

only one isotopic species was being examined in a supply of reactant which 

was steadily undergoing conversion to ethane. 	Data for chomiwn oxide 

were particularly difficult to obtain because of the high activity of the 

catalyst for the addition reaction even at 195K. 	In view of these limi- 

tations the ratio ke/ka  is probably considerably lower than the upper 

limits shown in table 4.1. 	The data for the addition reaction over zinc 

oxide were not so troublesome and the rate plot is shown in figure 4.3. 

4.5 DISCUSSION 

Two features of the reaction are worthy of consideration; 

firstly, the relative activities of the different oxides for the ethylene-

deuterium reaction and secondly, the different selectivities with respect 

to exchange and addition exhibited by these catalysts. 

The activity pattern obtained with the eight oxides for the 

ethylene-deuterium reaction is illustrated in figure 4.4 and is very similar 

to that found for hydrogen-deuterium equilibration. 	For oxides of the 

first transition period there appeared to be a simple correlation between 

the catalytic activity per unit surface area and the electronic configura-

tion of the metal ion 	 and a twin peaked activity pattern was obtained. 

The condition for high activity appeared to be that the oxide should 

possess some but not too many unpaired d-electrons. 	The activity pattern 

has been interpreted in terms of crystal field effects on the electronic 

levels of the metal 	
(14)• 	The behaviour was confirmed in a later 

study where the reaction rates were determined at a standard temperature 

(15) 
of 298K. The activities of a series of oxides towards ethylene 
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FIGURE 4.3 : Rate Plot for the Addition Reaction of Ethylene and 

Deuterium on Zinc Oxide at 273K. 
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hydrogenation (16)  and isotopic mixing(17) have also been investigated. 

The present results substantiate the observations that the 

relative rates for ethylene conform to the twin-peaked activity for these 

oxides and establish that the agreement may be extended to include 

reactions on alumina, magnesium oxide and zirconia. 	In figure 4.49 the 

oxides of the first transition series are grouped together in order of 

their position in the periodic table. 	The other three oxides are 

included for comparison purposes only. 	Thus for each of the eight 

oxides under investigation it was concluded that the rate of the ethylene-

deuterium reaction (exchange or addition, whichever was faster) reflected 

the ability of the catalyst to activate deuterium. 

In order to explain the marked differences in the selectivities 

for the addition and exchange reactions it is necessary to examine the 

nature of the adsorbed hydrogen (or deuterium) on these oxides. The 

argument developed here is an extension of one presented e lsewhere (18 ), 

Those oxides for which exchange is the predominant reaction 

will be considered first. Two principal factors may contribute to the 

situation whereby alumina catalyses ethylene exchange more readily than 

the thermodynamically favoured hydrogenation reaction. The exchange of 

ethylene probably occurs via the formation of adsorbed vinyl species for 

which there is good evidence from exchange of olefins with deuterium over 

alumina(1920) . 	In both cyclic and acyclic olefins, vinyl hydrogens were 

preferentially exchanged and the mechanism suggested involves dissociative 

adsorption on acid-base or ion-pair sites. 	The absence of hydrogenation 

over alumina is easier to understand if it is unnecessary to assume the 

presence of adsorbed ethyl groups for the exchange of ethylene. 	Another 

factor has to be considered. 	As will be more fully explained in Chapter 5, 
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alkyl species almost certainly possessing carbanionic character are 

responsible for alkane exchange over alumina. Thus adsorbed ethyl 

species can, in the right circumstances, be formed readily and reversibly 

on alumina. 	it is therefore surprising that ethyl species cannot be 

formed readily from ethylene. A possible explanation can be given in 

terms of the differing reactivities of electrophilic and nucleophilic 

hydrogen atoms on alumina. The dissociative adsorption of a hydrogen 

molecule on an oxide catalyst probably takes place by a heterolytic fission 

of the H - H bond, 

H2 - H 
E  + }L 	 4.3 

The exchange of ethylene and ethane can be represented as 

C 
2 
 H 

4 
<_ CH + 

and 

C 2116 -' C 
2 
 H 5 + 

If electrophilic hydrogen atoms react readily both of these 

reactions should occur with ease. On the other hand the formation of 

ethyl carbanions from ethylene would involve nucleophilic hydrogen, 

+ C2H4  -k C2H5 	 4.6 

which may take place more slowly. To summarise, only one kind of adsorbed 

hydrogen, HE,  will be needed for exchange of both ethane and ethylene but 

both kinds are necessarily involved in hydrogenation. 

It is now necessary to consider the other type of behaviour, 

viz, those oxides over which the addition reaction predominates. 	In the 

above discussion reference has been made to fully charged species. 	In 

reality such intermediates very probably possess only a partial electronic 

charge and in fact it is the extent of the charge on the reactive adsorbed 

species which may well enable the results of this study to be explained. 



Alumina and magnesium oxide may lead to the formation of adsorbed hydrogen 

atoms with a high fractional charge. 	In contrast on zinc oxide and 

chromia a neutralisation of the potential charge on the adsorbed forms of 

hydrogen may be facilitated. 	Thus the hydrogenation of chroinia is 

envisaged in two stages (figure 4.5). 	First adsorption of the olefin, 

possibly at coordinatively unsaturated Cr 3  sites, takes place together 

with heterolytic dissociative adsorption of hydrogen on ion pair sites. 

Secondly adsorbed ethyl groups are produced with subsequent formation of 

ethane by the reaction sequence shown. 	The important feature of the 

scheme is that neutralisation of the charge on the nucleophilic and 

electrophilic forms of adsorbed hydrogen occurs and thus both hydrogen 

atoms are in a radical form when the addition steps II and IV take place 

and are therefore equally reactive. 	Once adsorbed ethyl groups are pro- 

duced by reaction involved the first hydrogen atom (step II), ethane is 

readily formed by reaction with the second hydrogen atom. The overall 

effect is analogous to that presented to Dent and Kokes (21) where addition 

of deuterium to ethylene occurs with the absence of exchange in the olefin 

because the alkyl reversal (reverse of step II) is not operative on oxides 

such as chromia and zinc oxide. 	The production of neutral adsorbed 

hydrogen is facilitated by the ability of chromium ions to undergo a 

reversible change in oxidation state between Cr 3'' and Cr2+. 	The 

importance of the participation of Cr2+  ions in hydrogenation and dehydro-

genation reactions on chromia has been noted(22). 

The argument developed here for chromia may be applied to the 

other transition metal oxides under investigation. 	The selectivity ratio 

ke/k a (table 4.1) for each oxide is thought to reflect the inability of the 

catalyst and the transition metal ion in particular to produce neutral 



Adsorption of ethylene and hydrogen: 

CHCH2 	H H 
3+ 	 32- 

Cr 	Cr0 

Formation of ethane: 

CHZCH2  

Cr 	CrQ 
11 

CH2=CH2 	H H 

3.4- 	 24- Cr 	Cr0 
2 

4 u 
 CH-CH2 

3+ 	/2.4.. 

C 	CrQ 
2._ 

Jilt 
CH

I 
	H 

3+ 	3 Cr 	Cr0 
2- 

4rv 
CH-CH3  

3+ 	3-i- 
Cr 	Cr0 

2. 

FIGURE 4.5 	: 	 Scheme for adsorption and reaction of ethylene and 

hydrogen on chrornia. 
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adsorbed hydrogen. 	Thus a complete ch - rge transfer may be effected on 

zinc oxide and chromia and high selectivity for addition results. 	On 

the other oxides the effect is less complete and exchange and addition 

occur simultaneously. 	On alumina and magnesium oxide where a change in 

the oxidation state of the surface cation is unfavourable adsorbed hydrogen 

remains in the H+  and H forms. 

This work has shown that the g.c.- rn.s. technique can be very 

useful in studying two simultaneous reactions,ini this case addition and 

exchange and also served to check the reliability of the computer link-up 

to collect data. 	The results themselves illustrate how important the 

interaction between catalyst and reactants is in determining the nature 

of the reaction products. 
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cHAFrE5 

EXCHANGE REACTIONS OF ALKANES OVER AL MINA 

5.1 INTRODUCTION 

Exchange reactions can reveal useful information concerning the 

nature of intermediate species and of important steps in a catalytic 

reaction. 	In this chapter, the results of a study of the exchange 

reactions of alkanes and cycloalkaries with deuterium over alumina are 

described 

In an investigation of the exchange of hydroxyl groups of 

alumina with deuterated methane(1), isotopic mixing was observed at room 

temperature. 	The reaction was catalysed by a small nu:nber of active sites 

and involved exchange with only about i% of the catalyst hydroxyl groups. 

The rate-determining step was found to involve dissociation of a carbon-

hydrogen bond. The exchange of ethane over alumina has also been 

reported ( 2 ). 	Higher temperatures were required 390-500K) and the 

exchange involved a stepwise mechanism. 	The effect of partial pressures 

of the reactants on the rate of exchange was also investigated. 	Lewis 

acidity is reported as being the property of an alumina catalyst which 

best correlates with its activity for the exchange of propane. 

Exchange activity was confined to catalysts activated in the temperature 

range 673-1073K with a maximum activity for pretreatment temperatures 

around b20K. 	This fitted best with changes in the Lewis acidity of the 

catalyst. 	Reducing centres on the surface were found to play an important 

role in the exchange but the hydroxyl groups on alumina did not appear to 

be involved. 
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Alumina is also reported to be an excellent catalyst for the 

exchange of cyciopropane. 	Isomerisation and hydrogenation reactions 

do not occur to any great extent and the catalyst has been used to prepare 

cyclopropane-d 6  of high isotopic purity. 	It is also pointed out that the 

purity of the alumina is an important factor. 	Small amounts of transition 

metals are sufficient to catalyse saturation while the presence of alkali 

metal impurities may inhibit the exchange process. 	Recent work 	has 

shown that after alkali treatment, alumina with traces of iron impurity 

can catalyse the hydrogenation of unsaturated hydrocarbons. 

In this study, the exchange reactions of five acyclic and four 

cycloalkanes were investigated. 	Information concerning reaction inter- 

Iflediates has been obtained not only from the relative rates of exchange of 

various reactants but also from the reactivities of different hydrogens 

within the same molecule. In previous work only one hydrocarbon has been 

investigated In any experiment. 	The g.c.-m.s. technique permits examina- 

tion of the exchange of a series of reactants simultaneously making it 

possible to obtain relative rates of exchange for different alkanes over 

the same catalyst sample, thereby eliminating possible problems in repro- 

ducing catalytic performance. 	In addition, the exchange of cycloalkanes 

with deuterium may readily be studied even if other reactions take place. 

Using the g.c.-m.s. system, the processes of addition, exchange and 

Isomerisation may be followed simultaneously. 

The exchange reactions of methane, ethane, propane and cyclo-

propane were all repeated. 	It was felt that this was necessary if valid 

comparisons of relative reactivity were to be made. 	Not only were the 

previous catalysts (1-4)  derived from a variety of sources but they were not 

subjected to a standard pretreatment which is an important factor in deter-

mining catalyst activity. 
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.2 EXi TAL iOOED'JrE 

F'xchange reactions involving a single reactant were followed 

a direct capilliary leak from the reaction vessel to an AEI I310 

:-tr. 	'hc 	.e 'c 	e 	n:ribed in detail in 

e 2. In ox e mots nvl.vim':oro tLn ;me reactant hydrocarbon 

or in those in which a single reactant could exhibit different reactions, 

the I etric i:C tque was inadequate. In such cases, 

the 	Thined .c.-m.s. 	r&ts hhcd to an on-line computer was employed. 

Details of this technique have also been described in Chapter 2. 

Deeuse of the relt.ive1y high r ctivity of cyclpropane and 

methyicyclopropane, in experiments involving these molecules O.lg of 

catalyst was used; in other experiments ig was the standard amount. 	The 

reaction mixture usually consisted of 0.96 kNm2 hydrocarbon and 9.5 

deuterium which was made up in the mixing volume. 	Exceptions to these 

proportions were required in experiments where extensive deuteration was 

being followed. 	For n-butane, propane and iso'butane exchange reactions, 

deuterium enriched mixtures were prepared. 	Deuterium to hydrocarbon 

ratios of 25:1 for the first two and 50:1 for isobutane were prepared. 

In experiments involving more than one hydrocarbon, reaction mixtures were 

chosen to give roughly the same number of hydrocarbon molecules and the 

same total pressure in the reaction vessel as in individual experiments. 

The sample of cyclobutane used in this work contained fairly large amounts, 

40-60%, of n-butane. 	The g.c.-m.s. technique allowed the exchange of 

these molecules to be followed simultaneously without prior separation of 

the individual components. 

For reaction temperatures above room temperature the silica 

furnace (see Chapter 2.3) was used. 	When temperatures below room temperature 
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were required, the following standard baths were used; ice (273K), 

ice/ethanol (255K), carbon tetrachloride slush (250K) and solid carbon 

dioxide (195K). 

The methods of data collection and processing were as outlined 

in Chapters 2 and 3. 	Mass spectra were corrected for the presence of 

background peaks, for naturally occurring deuterium and heavy carbon and 

for fragmentation in the mass spectrometer source. 	When the exchange 

reaction was not followed past the initial stages, the fragmentation was 

assumed to involve statistical loss of hydrogen and deuterium from the 

molecule. 	However if extensive exchange was involved the method of 

Dowie et al. 5  was used. 	A further modification in the usual fragmenta- 

tion correction procedure was required for analysis of highly deuterated 

isobutane. 	In the mass spectrometer the most likely hydrogen atom to be 

lost after initial ionisation of the molecule is that of the methine groups 

which as results indicate had little chance of being a deuterium atom. 

Thus it was assumed that the fragment produced by loss of hydrogen atom was 

always one mass unit less than its parent ion. 	Fragmentation by loss of 

hydrogen (or deuterium) from other positions in the molecule was considered 

in the usual manner. 

5.3 RESULTS 

Exchange of acyclic alkaneg 

The exchange reactions of single hydrocarbons were generally 

followed in the temperature range 273-373K. 	Some general points emerged 

for all the experiments; all reactions followed the usual equation for 

exchange processes giving linear log ( 0-Ø) and logd plots and all gave 

M values near unity, indicating the stepwise nature of the exchange. 	The 



courses of the exchange reactions of n-butane, isobutane, propane and 

methane are shown in figure 5.1. 	The exchange reactions were followed at 

a series of temperatures and activation energies and frequency factors 

could be derived. 	The results are summarised in table 5.1 while the 

Arrhenius plots are shown in figure 5.2. 	All rates quoted subsequently 

are k values. 

TABLE 5.1 

EXCHANGE REACTIONS O ACYCLIC ALKANES OVF.k( ALWINA 

Reactant E 	-1 
/kJ mol 

log (A/ 	-1 -2 molecules s 	m 	) 
Temperature 
Range /K 

methane 17 16.5 284-360 

propane 36 19.6 292-363 

isobutane 33 19.4 273-370 

n-butane 35 20.1 273 -335 

Data refers to the most reactive type of hydrogen atoms in each molecule. 

Since certain reactions exhibited exchange of different groups of hydrogen 

atoms at different rates (see below) the data in table 5.1 refer to the 

most active hydrogens. The uncertainty in values of the activation energy 

is estimated at ± 4kJmol 1 ; that in the logA values is ± 0.6. 

The most interesting aspect of the exchange of n-butane was that 

six of the hydrogen atoms in the molecule were exchanged more readily than 

the other four. The distribution of isotopic species with time (figure 5.3) 

shows a marked discontinuity between the appearance of the d 6.- and d 7  isomers. 
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FIGURE 5.1 : Rate plots for the exchange of acyclic alkanes with 

deuterium on alumina. 

0, methane at 284K; X, propane at 299K; 

EJ, isobutane at 323K; ta,, n-butane at 286K. 
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FIGURE 5.2 : Arrhenius plots for the exchange reactions of acyclic 

alkanes on alumina. 

0, methane; X , propane; 0, isobutane; A 9  n-butane. 
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FIGURE 5.3 : Isotopic distributions during the exchange reaction of n—butane on alumina at 286K. 
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Exchange in the second group of hydrogen atoms was studied in greater 

detail by using a higher deuterium:hydrocarbon ratio in the reaction 

mixture. 	Analysis of the results indicated that the methyl hydrogen 

atoms in ri-butane (type A) exchanged about sixty times faster than those 

in the methylene groups (type B) at 316K. The computer program which was 

written to generate distributions to check the HSK method (see Chapter 3) 

was used to calculate theoretical isotopic distributions at various times 

for molecules in which different groups of atoms exchanged at different 

rates. 	By specifying that type A hydrogens exchanged sixty times faster 

than type B, a set of distributions was generated for n-butane such that 

for similar extents of exchange experimental and calculated distributions 

could be compared (table 5.2). 	Also shown in the table is the binomial 

distribution calculated for ten equally reactive hydrogen atoms. 

TABLE 5.2 

PRODUCT DISTRIBUTIONS FOR EXCHANGE OF n-BW'ANE 

isotopic species/% d 2  d 3  d4  d 5  d 6  d 7  a 8  

experimental 3.6 15.2 29.5 33.8 16.1 1.4 0.1 446.6 

calculated  45 15.4 29.9 31.9 15.7 1.7 0.0 442.2 

calculated  8.3 14.4 24 , 2 23.0 15.2 6.9 2.0 446.6 

as Assuming 6 hydrogen atoms (type A) reacting more rapidly than 

the remaining 4 (type B) with 	= 60. 

b. 	Assuming all 10 hydrogen atoms reacting at the same rate. 

C. 	0 represents the extent of exchange; 10 2  is the average 

number of deuterium atoms per molecule. 



From these results it was suspected that the six methyl ydrog:ns 

in propane might exchange more readily than the two methylene atcrr-. 	A 

similar analysis was carried out with the data for propane exchange. 

Again the hydrogen atoms in the primary positions were much nore 	ve 

than those in the secondary groups and kA/kB  was found to be about 170 at 

355K. 	It is necessary to accept a fairly large uncertainty (± 30) in this 

value because the reaction only produced about 7% of the highly deuterated 

species which may not be enough to give entirely satisfactory results. 

However it is also known that the results are best for molecules with 

large differences in reactivities and, in this experiment, reasonably 

linear plots were obtained. 

In the case of isobutarie no evidence for the production of 

d 10-species was obtained during the experiment. 	A deuterium enriched 

mixture was reacted at 423K in an attempt to produce some perdeuteroalkarie. 

Even after pumping off the diluted deuterium and continuing the reaction 

with a fresh dose, no isobutane-d 10  was formed although the mixture con-

tained over 70% of d 5- and d9- isomers, see table 5.3. 

TABLE 5.3 

EXCHANGE _OFISOBUTANE; PRODUCT DISTRIBUTION A?1'ER EXTENSIVE REACTION 

isotopic species/% d 6  d 7  d 8  d 9  d 10  

experimental 7.7 18.5 40.0 33.6 0.05 798.1 

calculated  7.7 22.0 37.1 28.9 2.2 790 

a. 	Based on 9 hydrogen atoms (type A) reacting more rapidly than 

the remaining 1 (type B) with kA/kB - 100. 
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The other distribution shown in the table is that calculated for a molecule 

like isobutane in which the tenth hydrogen atom exchanges 100 times more 

slowly than the other nine. 	For a 0- value of 790 it predicts that over 
2% of the d 10 - species should be present in the product mixture. 	This 

quantity would certainly have been detectable in the mass spectrometer 

and thus for isobutane we estimate that kA/kB  is greater than 100. 

The simultaneous exchange of different alkanes was also studied. 

A mixture of methane, ethane and propane was reacted with deuterium at 

30K and a mixture of propane, n-butane and isobutane was exchanged at 

290K. 	The results for these experiments are summarised in table 5.4. 

Also listed are the rates obtained in the individual exchange experiments. 

No corrections have been made for the effect of different partial pressures 

of reactants in the mixture. 

TABLE 5.4 

SIMULTANEOUS AND INDIVIDUAL EXCHANGE OF ALKAN ES  

reactant 

simultaneous rate 

10 13k 

/molecules s 	rn 

individual rate 

10- 13k 

/molecules s 	m 

temperature 

T/K 

methane 3.4 3.9 308 

ethane 1.9 - 308 	experiment A 

propane 9.6 3.8 308 

propane 1.5 1.5 290 

isobutane 6.3 3.8 290 	experiment B 

n-butane 6.6 6.7 290 
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Exchange of cycloalkanes 

All the cycloalkanes studied underwent exchange by a stepwise 

mechanism. 	Cyclopropane and methylcyclopropane were the most reactive 

molecules and the kinetic data is given in table 55. 	Also included in 

the table is an indication of the temperature required to give an 

isomerigation rate in excess of 10 13  molecules sm 2 . 

TABLE 5.5 

EXCHANGE REACTIONS OF CYCLOALKANES OVER ALIJ1INA 

log (A/ temperature/K 

reactant E/J mol molecules temperature for k 1 = 10 13 

S 	m range/K molecules 
-1 -2 

S 	m 

cyclopropane 26 19.9. 250-289 355 

methylcyclopropane 17 18.1 273-348 355 

(type A) 

(type B) 25 18.4 273-345 - 

cyclobutane 45 21.4 273-317 335 

cyclopentane 42 20.6 289-339 - 

The exchange of cyclopropane was followed in the temperature 

range 250-290K when all the hydrogen atoms were found to exchange readily 

and at the same rate. 	A temperature of 355K was required before the 

production of propylene was observed and at this temperature the rate of 

exchange was calculated to be more than 1000 times that of isomerisation. 

Interesting results were obtained in the exchange of methyl-

cyclopropane. 	The eight hydrogen atoms could be classified into three 
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groups, A, B and C according to their different rates of exchenge. 	The 

four hydrogens at the C 2  and C3  positions (type A) were the most reactive, 

followed by the single ring hydrogen at the substituted C 1  position (type 

B). 	The least active were those atoms in the methyl group (type C). 

The ratio of rate constants kA:kB  was about 10:1 at room temperature. 

The type C hydrogens did not appear to exchange eve at temperatures in 

excess of 350K. 	The rate of exchange of the type A hydrogens at 287K 

-2 (1.3 x 10
15 
 molecules s

-1 
 in ) was very similar to that of the hydrogens 

in cyclopropane itself (1.4 x 10 15 molecules 9 1 m 2 ) measured at the same 

temperature. 	A temperature of 355K was required in order to achieve 

isomerisation at a measurable rate, the initial product being transhut- 

2-ene. 	At this temperature, the rate of isomerisation was about 100 

times slower than that for exchange of type B hydrogens. 

The exchange of cyclobutane was studied using a reaction mixture 

consisting of cyclobutane and n-butane in approximately equal amounts. 

All the hydrogens in cyclobutane exchanged at the same rate in the tempera-

ture range 273-355K. 	Even at high temperatures in this range only a 

trace of butene cculd be detected and the rate of isornerisation was at 

least 150 times slower than that of exchange. 

In the exchange of cyc1opentane all the hydrogens reacted at an 

equal rate and in a stepwise manner. 

5_.4 	DISCUSSION 

The rate of exchange of methane with deuterium on this alumina 

catalyst (4.0 x 10 13 molecules s- 1 m  -2  at 301K) is somewhat slower than 

that found by Larson and hall ( ' )  ( 3.6 x 10 14  molecules 	li2 at 301K) 

but a higher pretreatment temperature was employed in their work. 	For 
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the exchange of propane, Flockhart et al. found a rate of 1.1 x 10 13  

molecules snç 2  for an alumina catalyst pretreated at the temperature 

used in the present work (723K). 	Using the pressure dependencies quoted, 

their catalyst would be expected to show a rate of 2.7 x 10 13  mo1ecu1s 

in this system and this compares favourably with the observed rate 

of 1.6 x io13 molecules 	12 	The observations of the relative rates 

of exchange of the different hydrogen atoms in propane does however 

disagree with the same workers suggestion that the secondary hydroens 

are more rapidly replaced. 

It has been shown (1) that in the exchange of methane with 

deuterium over alumina, the rate determining step involves fission of a 

carbon-hydrogen bond and it seems very probable that dissociative adsorp-

tion is involved for all the alkanes studied in the present work. 

It seems unlikely that the alkanes exchange via radical inter-

mediates, 	it has been established 	that the adsorption of saturated 

hydrocarbons to form surface alkyl species plays an important role in the 

exchange process on metal catalysts. Figure 5.4 shows that for the 

exchnge of alkanes on tungsten there exists a rough correlation between 

the ease of exchange and the dissociation energy of the alkyl-hydrogen 

bond which must necessarily be broken to produce the adsorbed alkyl groups. 

In particular, the high bond dissociation energy of the carbon-hydrogen 

bond in methane results in a rate of exchange which is about 1000 times 

slower than that of the other alkanes. 	In contrast, on alumina, methane 

exchanges as readily as the other alkanes and no such distinction in 

behaviour is observed. 	In addition the most weakly bound hydrogens in 

isobutane (the methine hydrogen) and in n-butane (the secondary hydrogen) 

are the least active for exchange. 	For the cycloalkanes, the observed 
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rate of reaction decreases in the sequence: 

cyclopropane >> cyclobutane > cyclopentane 

and this order is the reverse of that expected for radical intermediates 

since the bond dissociation energies (ii) are 4312 414 and 397 kJ mol -1 

for cyclopropane, -butane and -pentane respectively. 

Exchange via carbonium ion or partially positively charged 

intermediates may also be ruled out. 	Exchange of saturated hydrocarbons 

on silica-alumina is generally regarded as involving carbonium ion 

intermediates. 	On silica-alumina, isobutane will exchange at 393K 12  

but n-butane requires a temperature in excess of 550K. 	In contrast, on 

alumina at room temperature the two butane molecules undergo exchange at 

similar rates. A much higher rate would be expected for isobutane H 

formation of the tertiary carbonium ion were important for exchange. 

The general behaviour of the alkanes on alumina suggests that 

the intermediate species are adsorbed alkyl groups which possess carbanionic 

character. 	Many of the differences in reactivities can be qualitatively 

explained by consideration of the effects of alkyl substituents on the 

stabilities of carbanions. 	Alkyl group replacement of hydrogen in 

methane leads to a decrease in the stability of the carbanion as a result 

of the electron releasing nature of the substituent, e.g. the ethyl car-

banion CH3 CH2  would be less stable than the methyl anion CH  and indeed 

the exchange rate for ethane is lower than that observed for methane. 

Increasing the length of the alkyl chain tends to decrease the degree of 

destabilisation (see for example reference 13) such that the anion 

CH3 CH2CH2  is more stable than CH3 CH2 . 	This is in accord with the 

observation that propane exchanges at a greater rate than ethane. 

The operation of such inductive effects can also assist in 
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explaining the different reac tivities found for various groups of hydrogen 

atoms in the same molecule. 	For both propane and n-butane, the methylene 

hydrogens exchanged much more slowly than the primary hydrogens, the effect 

being more marked in the case of propane. The (CH 3 ) 2CH-  car banion has 

two methyl groups adjacent to the central carbon atom on which the 

negative charge is visualised and thus there is a pronounced destabilising 

influence. 	The magnitude of the effect is reduced in the carbanion 

(CH 3 )(C2H5 )C}C formed from n-butane since, in this case, one of the 

substituent groups is larger and therefore less destabilising. 	By 

similar reasoning it can be seen why the rnethine hydrogen in iso'utane is 

very inactive for exchange; the inductive effect of three substituent 

methyl groups causes the (CH 3 ) 3C anion to he particularly unstable. 

It would be useful to attempt a more quantitative correlation 

between alkane exchange activity and carbanion stability. 	If this is a 

major factor in determining the reactivity of the alkanes the rate deter-

mining step which occurs on the surface may be written 

RH 	 R-  + H 
	

5.1 

This reaction may be considered to involve three basis processes, 

energy change 

RH - 	R + H. 	AH = DRH 	 5,2 

R- + e 	- 	R 	AH = ER 	 5-3 

H - 	H+ + e 	AH = I 	 5.4 

where D 	 is the bond dissociation energy of the alkyl-hydrogen bond 

which is broken in the adsorption process, ER  is the electron affinity of 

the alkyl radical and 
'H  is the ionisation potential of the hydrogen atom. 

For a series of alkanes, provided that the respective carhanionic species 

are equally strongly adsorbed, the ease of occurrence of reaction 5.1 will 
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be determined by the value of (DR HER• 	Unfortunately precise values 

of  ER for the radicals under discussion are not known at present, reported 
values often having an uncertainty exceeding several tenths of an electron 

volt • Such a degree of uncertainty precludes the assessment of 

relative carbanion stabilities based on thermochemical data. 	Indeed 

catalytic studies similar to those reported here may have some value in 

assessing relative values of electron affinities for hydrocarbon and 

other radicals. 

It is more fruitful to consider the reactivities of the alkanee 

as a function of hydrocarbon acidity. 	As with electron affinity data, 

the assignment of PK values for such weak acids is not without question. 

The PKa values used in this work have been derived from equilibrium 

(15) 	(16) 	 (15) studies by Dessy and colleagues 	and Cram 	. 	Dessy et al. 	have 

argued that in establishing a rank of carbanion stabilities the use of 

kinetic acidity values is not to be recommended. 	These values were mostly 

determined by competitive exchange reactions of organometallic or alkyl- 

halogen compounds in basic media. 	These reactions can be used to define 

a relative scale of acidities and an absolute scale of pK 
a  values can be 

drawn up if some standard molecule is defined as having a given PKa  value. 

Alkanes are weak carbon acids having large values of pK and belong to that 

part of the scale where there is most uncertainty. 	In the relevant PKa 

range, 30-50 9  relative values of acidity appear to be reasonably accurate 

but absolute magnitudes may have an uncertainty of one or two units. 

The conditions under which most pK values were obtained may also be 

queried, namely whether thermodynamic properties in basic solutions are 

relevant to the formation of carbanions in gas-phase exchange reactions. 

Probably an accurate scale of kinetic acidities which refers to the rates 



at which acids donate protons to a reference base would be more desi:rable. 

Howver techniques by which organic anions may be observed in the gas 

phase(17) have only been recently developed and, as yet, only a relative 

acidity scale has been established. 

Figure 5.5 shows the relationship between the exchange activity 

of alkanes and their pK a values where these are known. 	The rate constants 

used in the figure are taken from tables 5.1 and 5.5 except for the 

secondary hydrogens in propane and n—butane. 	For these less active 

hydrogen atoms Arrhenius data were not available and thus the rates of 

their exchange, kB, were estimated at 29K using the values of kAft 

obtained at slightly higher temperatures. 

The figure shows that a linear relationhip of the form 

log k = _a(pKa) + b 	 5.5 

is found to hold where a and b are constants. 

For the acyclic molecules, a and b were found to he 0.64 and 

38.7 respectively, while for the cycloalkanes their values were 0.38 and 

29.5. 	Also included in figure 5.5 is the rate of exchange of ethylene 

which appears to fit quite well on the line for acyclic alkanes. 

/ 	 (18) Equation 5.5 is erseritially the Brpnsted relation 	origin- 

ally proposed to relate the effectiveness of an acid catalyst to its 

acid strength, 

= GAK' 
	

5.6 

where kA denotes the rate constant observed for the catalysed reaction, 

K is the dissociation constant of the acid, GA  is a constant and x is a 

parameter taking values between zero ani unity which indicates the 

sensitivity of the catalysis to acid strength. 	As Bell(19) has indicated, 

the Brnsted relationship, although normally applied to the catalysis of 
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a given reaction by a series of acid catalysts, is also expected to hold 

for the case where one catalyst is used with a series of acid reactants. 

Thus x, the sensitivity factor in equation 5.6 1  is analogous to the para-

meter a in equation 5.50 	For acyclic molecules a = 0.64 but for cyclo- 

alkanes the dependence of the exchange rate on PKa  is less marked with 

a = 0.38. 	Thus it is clear that an additional factor influences the 

activity of the cycloalkanes and causes an enhancement in the rate of 

exchange, particularly for cyclobutane and cyclopentane. The origin of 

the increased rate of exchange is difficult to explain. The enhanced' 

rate of exchange of cyclopropane over chromia(2)  has been attributed to 

the operation of a hyperconjugative effect. 	It is unlikely that such an 

effect is present in exchange on alumina since cycloproparie is only 

marginally faster in exchange than predicted on the basis of the rate- 

acidity relationship for acyclic molecules (figure 5.5). 	This close 

agreement also precludes the attribution of high exchange rates in cyclo-

alkanes to enhanced chemisorption via TI-bonding interaction with the 

catalyst surface. The absence of IT-bonding influences is also ruled 

out by the fact that the relative exchange activity of ethylene is satis- 

factorily explained by acidity alone. 	Perhaps it is due to some effect 

which enables the hydrogens in cyclobutane and cyclopentane to be more 

accessible. 	The origin of the effect may possibly lie in the orientation 

of the adsorbed reactant at the surface. 	A deeper understanding will 

require further experimentation.. 

The linear free energy relationship depicted in figure 5.5 

demonstrates that alkanes exchange on alumina via the formation of adsorbed 

alkyl groups with carbanionic character and that exchange activity is 

largely controlled by hydrocarbon acidity. The extension of the idea to 
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include ethylene is in accord with the dissociation mechanism for ethylene 

exchange proposed by Hightower and Hall(21). 

In addition the relationship may be used to estimate PKa  values 

for the methyl hydrogens in the butane molecules since these are not 

included in the data from references 15 and 16. 	Both n-butane and 

isobutane exhibit similar rates of exchange and giving an estimate of the 

PKa value for the primary hydrogen in both molecules of approximately 39. 

The results of the experiments in which more than one alkane 

underwent simultaneous exchange over the same catalyst indicate that the 

reaction rates were little affected by the presence of other alkanes. 

Results were also free from effects due to dilution of the deuterium pool 

which might have occurred, for example, if a large hydrocarbon underwent 

rapid exchange in competition with smaller and less reactive molecules. 

The applicability of gas chromatography - mass spectroscopy to competitive 

studies of catalytic reactions was confirmed by these experiments. 
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CA' ER 6 

REACTIONS OF HYDROCARBONS OVER MAGNESIUM OXIDE 

6.1 INTRODUCTION 

The properties of magnesium oxide as a catalyst have been studied 

for a limited number of reactions but from these it is obvious that it is 

a catalyst which shows a great range of activity - from the rapid isomeri- 

(, ) sation of butene at low temperature 	to the slow exchange of propane 

at much higher temperatures. 	In this work the range of reactions 

studied was increased and it was hoped that an understanding of the reaction 

intermediates and the nature of the surface of magnesium oxide would make 

it possible to rationalise the pattern of behaviour exhibited by the 

catalyst. The results of several experiments over alumina catalysts have 

indicated that intermediates of a carbanionic nature are important. 

Magnesium oxide is regarded as a basic catalyst (4)  on which similar inter-

mediates may be formed. 	It was thought that consideration of the simi- 

larities and differences in behaviour of these two catalysts would be of 

interest. 	It should be remembered that any comparison of the catalysts 

will refer to the general pattern of behaviour. 	It would not be possible 

with the information available to make direct comparisons of the intrinsic 

activities of the oxides. 	One cannot determine whether the same fraction 

of surface sites is active for both catalysts or whether the respective 

pretreatments produce the same degree of activation. 	Indeed the latter 

is almost certainly not the case. 

Almost all this study was concerned with the exchange reactions 

of either alkanes or alkenes with deuterium over magnesium oxide. As 
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described in Chapter 5, the exchange of alkanes over alumina provides 

evidence for the formation of alkrl species with carbanionjo character as 

intermediates in the reaction. 	The presence of carbanionic species as 

intermediates on magnesium oxide has been suggested for 'butene isomerisa- 

tion 	and it was considered likely that if such species were to be 

involved in exchange reactions over magnesium oxide, the relative rates of 

exchange of different alkanes and of different types of hydrogen atoms 

within the same molecule should exhibit a similar pattern to that obtained 

for alumina. 	Both acyclic and cycloalkanes were studied. 

The exchange of olefins has also been investigated over magnesium 

oxide. 	The exchange of prcpylene 5  has provided interesting results: 

at 195K rapid exchange of the five terminal hydrogen atoms occurred but the 

sixth hydrogen was not replaced. The suggested mechanism involved the 

abstraction of a proton by the basic sites on the magnesium oxide to form 

an allyl anion which underwent a rapid double bond shift with scrambling 

of deuterium between the five terminal positions. 	It should be noted that 

a carbonium ion intermediate could conceivably give rise to a product 

labelled in the same manner but this seemed an unlikely process on this 

catalyst. 

The evidence from the isornerisation of 3,3- drnethylbut-1-ene (6) 

which almost certainly involves a carbonium ion suggests that such a species 

is unlikely to be formed on magnesium oxide at low temperature. Further 

evidence regarding the ease or difficulty of double bond shift was expected 

to be obtained from the exchange reactions of isobutene and cyclopentene. 

The exchange of the latter over alumina (7)  is largely limited to the two 

vinyl hydrogens indicating that the double bond remains fixed during the 

exchange process. 
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A series of alkane and olefin reactions was investigated. 	It 

was necessary in some cases to repeat or to complement previous results to 

obtain data which could be compared for the same catalyst. 	Again it was 

felt that valid comparisons could only be made between results obtained 

over the same type of catalyst. The combined gas chromatograph - mass 

spectrometer system was used to study the simultaneous exchange of some of 

the alkanes and olefins. 

6.2 EXPERDEN1PAL PROCEDURE 

The experimental procedure followed the general pattern described 

in Chapter 2. 	Reactions involving a single hydrocarbon were followed 

using the MS10 apparatus while those involving more than one reactant or 

with more than one possible product were studied using the g.c.-m.s. 

technique. 

0.59 of magnesium oxide was used for the exchange reactions of 

alkanes. 	The reaction mixture was prepared with a deuteriuin:hydrogen 

ratio of 5:1 which resulted in ca. 1.5 x 10  hydrocarbon molecules in 

the reaction vessel. 	For the simultaneous exchange reactions of methane, 

ethane and propane and of propane, isobutane and n-butane the total number 

of hydrocarbon molecules in the reaction mixture was roughly the same as 

that in the individual experiments. 	In reactions involving olefins which 

tended to be more reactive, O.lg of catalyst was used. 	The reaction 

mixtures for experiments involving a single reactant were the same as 

those used with the alkanes. 	However in the simultaneous exchange 

experiments the number of molecules of each hydrocarbon in the mixture was 

roughly the same as in the individual exchange reactions. This gave 

improved sensitivity for g.c.-m.s. experiments. 
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Three batches of catalyst were used in the experiments, having 

surface areas of 30 9  30 and 50 m2g 1  respectively. 	The second and third 

samples had similar activities; the exchange of ethylene was followed over 

both catalysts and the rates obtained at 273K were found to be in good agree- 

ment (2.8 x 10 13  and 3.2 x 10 13  molecules s m ). 	Most of the 	 vimnts 

were followed using these batches of catalyst. The first sample however 

appeared to have a lower activity than the other two. 	The exchange of 

methane at 623K was reduced by a factor of three over the first sample. 

This difference in activity is very probably a result of slight differences 

in the preparation of the magnesium oxide, e.g. during the decomposition of 

the carbonate. The only experiments which involved this sample of catalyst 

were the simultaneous exchange of the alkanes. 	In all cases the pretreatment 

of the catalyst involved outgassing at 723K overnight. 

When reaction temperatures above room temperature were required 

the silica furnace was again used. 	When lower temperatures were required 

the following cold baths were used; solid carbon dioxide (195K), carbon 

tetrachloride slush (250K) and an ice/ethanol mixture (255K). 

The collection and processing of experimental data followed the 

scheme described in Chapters 2 and 3. 	The mass spectra were corrected for 

the presence of background peaks, for naturally occurring deuterium and 

heavy carbon and for fragmentation in the mass spectrometer source. 	In 

general for the alkanes the fragmentation was simply calculated on a statis-

tical model for the loss of hydrogen and deuterium which seemed to he satis- 

factory. 	However for the olefins in which exchange was much more extensive 

the more sophisticated scheme of Dowie et al. 	 was employed. 

In the simultaneous exchange reactions of methane, ethane and 

propane difficulty was experienced in obtaining accurate isotopic distributions 
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e:ce of tl,e 	ey ] 	b:c r:nd contribution jarti- 

i'clarly at n/e = 18. 	However the rate of exchange of methane can be 

followed from the decay of the d 0-peak assuming no fragment from the water 

kground interferes. 	The rates quoted for methane are therefore k values 

•:-ue oer or tcts an 	•rve 	 :'er o 	e k  rate constants. 

The exchange reactions of two acyclic alkanes, n-butane and methane, 

and of tao cycloalkanes, cyclopropane and methylcyclopropane, were investi- 

ed in detail while the exchange of five alkanes exchanging simultaneously 

t'olnwed using the g.c.-m.s. system. 

The :tails of the individual experiments are given in table 6.1. 

TABLE 6.1 

K1NhT1C DATA FOR EXCHANGE OF ALKAN ES  

reactant -1 kjmol 

log (Ab 

/molecule 
	-2 /molecule s 	m 	) 

temperature 
/ range/K 

methane 35.2 17.4 623-683 

n-butane 14.6 17.8 620-700 

cyclopropane 25.2 17.5 473-677 

methylcyclopropane (A) 17.5 17.1 450-560 

 -'20 450-560 

 -23 .-.15.5 450-560 

a 
uncertainty in activation energies ± 3 kJ mol 

b uncertainty in log (frequency factor) ± 0.5 
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The results for n-butane are calculated for the overall rate of exchange. 

The relevant rate plots and Arrhenius gi'aphs are illustrated in figures 6.1 

and 6.2 respectively. 	All the alkanes exchanged in a stepwise fashion 

giving good agreement between the experimental and binomial distributions 

in the early stages of the reaction. 

The exchange of n-butane and methane required temperatures which 

were close to the pretreatment temperature of the catalyst. 	It was 

originally hoped to follow the exchange of n-butane until appreciable 

amounts of highly deuterated species were present. 	However the reaction 

appeared to poison at later stages and only small amounts of d 7- and d 8- 

species were obtained. 	A curvature in the 0- plot can be seen after 
about one hour (figure 6.1). Nevertheless there was evidence that the 

six methyl hydrogens in n-butane exchanged more rapidly than the four 

methylene ones. 	If the value of ç% is chosen assuming ten equally 

exchangeable hydrogen atoms in the molecule, the log (Ø-) plots were 

curved. However if it was assumed that six hydrogens were exchanging 

more rapidly than the others the resulting value of Ø gave much better 

plots which were linear at least in the initial stages and from which the 

rate constants were calculated. 	In addition the computer program which 

was developed for the work described in Chapter 3 was able to calculate 

the predicted distributions for a molecule with ten exchangeable hydrogen 

atoms of which six exchange fifty times faster than the other four. The 

calculated distributions follow the experimental values quite well (table 

6.2). 	Also included with the final set is the corresponding binomial 

distribution for ten equally reactive hydrogen atoms. 
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FIGURE 6.1 : Rate plots for the exchange reactions of alkanes with 

deuterium on magnesium oxide. 

I , cyclopropane at 478K; 0, n-butane at 691K; 

•, methane at 623K; U, methylcycloproparie at 519K. 
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TABLE 6.2 

COMPARISON OF EXPERI!ENTAL AND COTER-GENERATED 

DISTRIBUTIONS FOR N-BUTANE 

d 0  d 1  d 2  d 3  d4  d 5  d 6  d 7  d 8  d 9  d 10  

177 	calculated 12.4 30.8 32.0 17.9  5.8 1.0 0.1 0.0 0.0 0.0 0.0 

186 	experimental 11.2 31.4 30.i 18.1 5.2 2.1 1.2 0.0 0.0 0.0 0.0 

303 	calculated 1.6 9.3 23.0 30.6 23.3 9.9 2.0 0.1 0.0 0.0 0.0 

301 	experimental 0.0 10.2 26.3 31.1 20.6 8.1 3.7 0.0 0.0 0.0 0.0 

393 	calculated 0.2 2.2 9.8 23.2 31.5 23.7 8.5 0.8 0.0 0.0 0.0 

399 	experimental 0.0 0.4 9.7 24.9 31.7 22.9 9.1 1.2 0.0 0.0 0.0 

399 	binomial 0.6 4.0 12.1 21.5 25.1  20.1 11.1 4.2 1.1 0.2 0.0 

Values calculated for kA/kB = 50 

Methane exchange was poisoned in the early stages of the reaction 

before settling to a steady rate after about twenty minutes. The Arrhenius 

data (table 6.1) is calculated from these steady rate conditions. 

The simultaneous exchange of alkanes was studied in two experi-

ments using the g.c.-m.s. technique, the first involving methane, ethane 

and propane at 627K  while in the second experiment the exchange of propane, 

isobutane and n-butane was followed. 	The rate constants for the larger 

molecules were calculated assuming that six hydrogen atoms exchange faster 

than the other two in propane, nine faster than one in isobutane and six 

faster than four in n-butane. 	Again this assumption resulted in the best 



ht lines in the rate plots. 	he oi'der of reactivity of the five 

ris was found to be methane (6.8) > butanes (4.9) > propane (2.5)> 

:thane (1.0). 

numbers give the relative rates with respect to ethane at 627K.) 

~ 6nesium oxide proved to be a more active catalyst for the 

'change reactions of the cycloalkanes. 	Whereas temperatures in excess 

of 6'uK re rjuired for acyclic alkanes, the exchange reaction of cyclo- 

;ith deuterium was followed at 478K. 	The exchange reaction was 

udied using the g.c.-m.so system and appeared to proceed without any 

7, 	C fliy a trace of propylene appeared 

t it 	3 r.t 	gh for mass spectral analysis. 

However no further olefin production was observed during the course of the 

reaction even after one hour at 677K. 	The propylene was not an impurity 

in the cyclopropane and probably arose from some fast initial reaction 

which poisoned. There was however no evidence of poisoning in the exchange 

reaction. 

As on alumina the exchange reaction of methylcyclopropane produced 

interesting results. 	The eight hydrogen atoms in the molecule could be 

divided into three groups; the four hydrogens at the C 2  and C3  positions 

(type A) were the most reactive followed by the single ring hydrogen at the 

substituted position C 1  (type B), while the three least reactive hydrogen 

atoms were those in the substituerit methyl group (type C). 	The data for 

the second and third types of hydrogen atoms in table 6.1 is only approxi- 

mate for two reasons. 	Firstly, the difference in reactivity between types 

B and C is fairly small and the methods of analysis are known to be least 

reliable in such circumstances (Chapter 3.4). 	in addition, the middle type 

involves only one hydrogen atom and will be subject to greater uncertainty. 
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However, the ratio of the rate constants was kA:kB:kO = 100:5:1 which 

remained approximately the same over the temperature range because the 

activation energies for the different types of hydrogen atoms were roughly 

similar. 	At 500K the overall rate of exchange of methy.Icycloproparie 

15 	 -1 -2 1.o x 10 	molecules s m ) is slightly faster than that for cyclopropane 

(7.8 x io14 molecules s 1 m 2 ). 	No evidence for isomerisation of methyl- 

cyclopropane was observed. 	At the ambient temperature the isomerisation 

products viz. butenes would rapidly equilibrate with deuterium giving 

anomalous amounts of highly deuterated species. 	This effect was never seen. 

Of the olefins the exchange reactions of ethylene, propylene, 

isobutene and cyclopentene with deuterium were investigated. 	The results 

for ethylene exchange have already been presented (Chapter 4) and the 

results for propylene include some data from another source". 	Also 

studied were the simultaneous exchange reactions of ethylene, propylene and 

isobutene. 	Again all the exchange reactions were found to be stepwise and 

the results are swnrnarised in table 6.3. The rate plots for the exchange 

reactions are shown in figure 6.3 while the Arrhenius graphs are given in 

figure 6.4. 
TABLE 6.3 

KINETIC DATA FOR EXCI-IANGE OF OLEFINS 

reactant /kJmo l 1  
log kA  
/molecules s- 1   m  -2 

temperature 
range/K 

ethylene 16.0 16.5 273-373 

propylene 13.6 19.4 195-273 

isobutene 20.5 21.0 195-273 

cyclopentene 21.4 19.1 273-330 

a uncertainty in activation energies ± 3kJ mol 1  

uncertainty in frequency factor ± 0.5 
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FIGURE 6.3 : Rate plots for the exchange reactions of olefins with 

deuterium on magnesium oxide. 

0 , cyclopentene at 330K; E , isobutene at 195K; 
U, ethylene at 370K. 



U 
U 

0 
E 

-x 
LI 
a,  
0 

14 

FIGURE 6.4 : Arrhenius plots for the exchange reactions of olefins 

on magnesium oxide. 

U, cycloperitene; £ , isobutene; 0, propylene; 

I, ethylene. 
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All four hydrogen atoms in ethylene appeared to exchange at the 

same rate. 	The initial experimental distribution indicated small amounts 

of d3- and d4- species present in the reaction mixture. This multiple-

exchange proceeded no further and the overall exchange settled down to a 

steady rate involving a stepwise mechanism. The reaction was repeated 

using ethylene from a different gas cylinder and the same behaviour was 

observed thereby eliminating the presence of impurities in the first gas 

sample giving rise to the extra peaks in the mass spectrum. 

Propylene exchange with deuterium occurs readily over magnesium 

oxide. 	Five of the hydrogen atoms can be replaced. 	A similar activity 

for exchange was found with isobutene where all eight hydrogen atoms appeared 

to exchange at the same rate. 

In the cyclic olefin, cyclopentene, two hydrogen atoms were 

observed to exchange more readily than the other six atoms. 	A pronounced 

break in the experimental distribution when compared with the binomial 

distribution was obvious between the d 2- and the d 3- exchanged species. 

At 330K9 the ratio of the rate constants for exchange of the two types of 

hydrogen atoms was fifteen. 

The simultaneous exchange of olefins produced some unexpected 

results. 	The presence of ethylene in the reaction mixture appeared to 

retard the exchange of propylene and isobutene. 	The results are summar- 

ised in table 6.4. 	Also included are the rate constants for exchange of 

the individual molecules at the relevant temperatures. 	The effect is 

most dramatic in reaction (1) where the rates of isobutene and propylene 

are reduced by a factor of about 500. 	In reaction (2) the exchange of 

propylene in the presence of ethylene was followed at a series of tempera-

tures and the activation energy was calculated as 26.5 kJ moll which is 
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1rt t\0 4" -,+ ior to o:i 	of 	i(:O 	' 	I tO?lf 	13.5 -'j:01 1 ). 

f'ter this reaction the catalyst was evacuated at 473K for 30 minutes. 	A 

fL.;h :rht:o 

 

Of ::'c:vlene and deuterium was introduced and the exchange 

tin fo1 , 	At 250K the rate of exchange was 2.5 x 1016  molecules 

S 
-1 
 m 2  which was close to that obtained previously (4 x 10 16 molecules 

-1 -2 
S 	m ) and indicated that the activity of the catalyst had been restored. 

The presence of ethylene in the reaction mixture appeared to be important 

because in a reaction involving propylene and isobutene the rates of 

exchange of the olefins were close to those obtained in the individual 

experiments. 	It was noted that in none of these reactions was there 

appreciable loss of reactant from the gas phase other than by adsorption 

at low temperature which was reversible. 

TABLE 6.4 

SIMULTANEOUS EXCHANGE REACTIONS OF OLEFINS 

(1) (2) individual 

reactant temperature 10 15k,Ø 10 15k0 10 15kg 
1K /molecules /molecules /molecules 

-1 m  -2 s s- 1  m -2 -1 -2 s 	m 

195 < 0.01 0.15 propylene 5.0 

isobutene <0,01 - 4.0 

propylene 273 0.9 2.0 50 

isobutene 0.8 
- 21 

ethylene 330 <0.01 0.05 0.21 

propylene 2.3 20 >100 
isobutene 3.5 - >100 

Reaction mixtures:(1) ethylene, propylene and isobutene. 

(2) ethylene and propylene. 
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2e results of the exchange reactions confirm the wide range of 

tivity of magnesium oxide as a catalyst. 	In this discussion an aritrary 

o 	; high activity refers to 

L':m temperature, moderate 

;otivity to those followed between 273K and 423K, low activity describes 

2 oo 4u} Hflc ' y low activity refers to those 

tc: 	vi'y 	Jy v,-'n  rt 700K which is close to the 

iretreatment temperature used in this work. 	It should be noted that a 

'or pretreatment temperature would probably have produced greater overall 

:oti city in the catalyst but it is assumed that the general pattern of 

L'etvO 'Hivities would be the same. 	Evidence from hydrogen/deuterium 

and butene isomerisation reactions(2) indicates that the 

tivity of magnesium oxide catalysts is sensitive to the pretreatment 

t 	 L11O2. 

- 	R000t ou 2i oh on e :ut n to t' o ctoory re 

hydrogen-deuterium equilibration ( g )  Y butene isomerisatiori(1 92) and the 

exchange of propylene and isobutene. 

The hydrogen-deuterium reaction occurs over a catalyst similar 

to the one used in this work at 78K and it is assumed for the exchange 

reactions that the rate-determining step will not be associated with 

activation of the deuterium. 	The active sites for this hydrogen-deuterium 

reaction are thought to be associated with positive paramagnetic centres. 

A mechanism for propylene exchange 	has already been suggested, 

involving the dissociative adsorption of the propylene to form an allyl 

species. 	The absence of multiple exchange (M = 0.9 - 1.2) suggests that 

the step which involves replacement of hydrogen by deuterium should be 
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and reversible which is supported by the low activation energy for 

rropylene exchange. 	The mechanism of the scrambling process is not clear. 

It may be intramolecular or intermolecular which might only be determined 

om further research. 	A similar sort of scheme for olefin exchange can 

e suggested for isobutene, in this case all eight hydrogens being access- 

icnr.:d in the exchange experiments. 	If a carboniurn ion 

it is likely that the rate of isobutene exchange 

;ould be markedly faster than that of propylene because of the increased 

'tability of the intermediate. In reality the rate of exchange of iso-

Tutene is slightly slower which is probably a reflection of the greater 

stability of the anion formed from propylene. 

iourate activity:- The exchange reactions of ethylene and cyclopentene 

can be included in this category. The exchange of ethylene can be under-

stood as involving dissociative adsorption to give a carbanionic vinyl 

species which collects a deuterium atom on desorption. 	If this type of 

mechanism held for all olefins one would expect an order of reactivity 

ethylene > isobutene > propylene 

However the abilities of the larger olefins to form allyl species and of 

the catalyst to promote a double bond shift upset this order. 	Ethylene, 

of course, cannot form an allyl species. 

The exchange reactions of olefins over alumina and magnesium oxide 

show distinctly different patterns. 	Table 6.5 shows a comparison of some 

of the exchange reaction data over the two catalysts. 	Because a large 

temperature range was involved in the work it is difficult to choose a 

suitable method of comparing rates of reaction. 	The comparison of rates 

of exchange at a given temperature required the extrapolation of Arrhenius 

data for some of the values. 	In this case a temperature of 289K was 
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;en because most of the data were available around this te:perature. 

ct' 	elation to a minimum. 

b 6.5 

'AiiSCN CF RAB OF XCHkNCE ON ALUNA AND MAGNIUM OXIDE 

temperature required 

reactant 
for rate of exchange of 

1015  molecules sm 2/K 
T=289K 

on MgO 	 on A1 203  

propylene 0.003 160 —325 b 

cthylene 10 465 310 

cyclopropane 150 524 272 

methane 220 840 606 

a rate constants/molecules 	—2 

b 	rate of exchange of propylene with deuterium from reference (10). 

A large range of relative rates for alumina and magnesium oxide 

7:iud. 	The other method of comparing the catalysts' activities was 

to tabulate the temperature required for a given rate of exchange with each 

particular reactant. 	These temperatures are also recorded in table 6.5 

for both alumina and magnesium oxide. 	This again illustrates the disparity 

in the activities of the two catalysts from the exchange of propylene 

through to the reaction with methane. 

Olefin exchange over alumina is known to occur more readily in 

vinyl hydrogen atoms particularly terminal ones. 	In propylene (5)  itself 

the results of exchange with deuterium indicate a preferential replacement 

of the methylene hydrogen atoms followed by exchange of the central and 
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Yyl hydrogen atoms. 	There is no evidence of a double bond shift 

chanism being operative over alumina which pinpoints one of the striking 

ifferences in the behaviour of alumina and magnesium oxide as catalysts. 

n the exchange reaction of ethylene a similar reaction process is believed 

o operate on both oxides. 	However in the case of larger olefins which 

.n accommodate an allylic species as a reaction intermediate, rapid exchange 

I th 

 

deuterium occurs over magnesium oxide but not over alumina. 	As table 

6.5 indicates propylene exchanges much faster than ethylene over magnesium 

t ;lightly slower than ethylene over alumina. 	Exchange over the two 

lysts probably involves different types of intermediates: on mag- 

csiurn oxide IT-allyl carbanions are believed to be important while on 

1wnina, 1-propenyl species seems likely to be the principal intermediate 

;ith some 2-propenyl and O-allyl species also present. 	The relative pro- 

irties of the intermediates explain why double-bond shift is favoured on 

.nm:xjde. 

The strength of interaction between the intermediate species and 

:y l) be 	rt nt n 	 c 	r, c f 	li 1 Uy of 

fl 	 0 	 2 	 U lv 	nI 	o 2e 

nctive sites on alumina. 	Little quantitative data is available and direct 

!;ethods of measuring the acid-base properties of surfaces under reaction 

conditions are not available. 	From the adsorption studies of pyridine and 

ammonia, strong Lewis-acid sites where ammonia appears to coordinate to metal 

ions are believed to exist on alumina(h1). 	However much weaker interactions 

with ammonia occur on magnesium oxide(12). 

The exchange reaction of cyclopentene with deuterium over alumina 
(7) 

was restricted to the vinyl hydrogen atoms of temperatures below 473K. 

Double bond migration was restricted to molecules which incorporated a three 
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carbon atom chain including the double bond which could appear concave 

when viewed from outside the molecule. 	This was believed to reflect the 

geometric properties of the surface sites. 	The computer program developed 

for the work described in Chapter 3 was used to calculate distribution for 

a molecule like cyclopentene where two hydrogens react faster than the other 

eight. 	In order to match the experimental distributions for the exchange 

of cyclopentene over alumina the ratio of rate constants for exchange in 

the vinyl hydrogen atoms and in the other ring positions had to be in excess 

of 750. 	The distinction between the two types of hydrogen atoms is not so 

sharp over magnesium oxide. 	However, the double bond shift is still not 

so rapid within the molecule as in propylene exchange because the results 

clearly indicate that the vinyl hydrogens are more readily exchanged with 

deuterium than are the other ring hydrogen atoms. 	Exchange in the vinyl 

positions possibly occurs by a similar mechanism over both catalysts, perhaps 

involving a dissociative intermediate of carbanionic nature. 	The double 

bond migration is probably an independent process which is more easily 

promoted by magnesium oxide than by alumina. 	This may be a result of some 

geometric property whereby the former catalyst can better accommodate the 

cyclic molecules. 

Low activity:- The exchange reactions of alkanes and cycloalkanes can be 

put into this category. 	The relatively high activity of methane in compari- 

son with the other alkanes suggests that a radical mechanism can he dismissed 

for the same reasons as those discussed in relation to alumina (Chapter 5.4). 

In addition the arguments against carbonium ion intermediates are also 

relevant to magnesium oxide. 

A direct comparison with the propane exchange results of Flockhart 

(3) 	 16 et al. 	is not possible. 	They obtained a rate of 5.6 x 1016  
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S 1  m 	at 713K which compares with our value at that temperature of 

3 x 10 15  molecules s 	m 2 	The difference in the rates of reaction is 

not unreasonable since, in this work, a lower pretreatment temperature 

(623K as against 750K) was used which would probably result in this catalyst 

not being activated to the same extent. 

A similar relationship between the rate of exchange of the alkanes 

and their piCa values (where available) to that for alumina was found to 

hold for magnesium oxide. 	This is shown in figure 6.5 in which the rate 

constants,where they are known, refer to individual exchange experiments. 

For ethane and propane the relative rates with respect to methane were used. 

At 627K, the Brnsted ±elaticnship can be written as 

lok 	= — 0.63 piCa + 38.3 
	

6.1 

At this temperature the rate of exchange of ethylene (extrapolated from 

Arrhenius data obtained between 273 and 373K) also fits the straight line 

and, as with alumina, the rate of the exchange reaction of cyclopropane 

appears to be enhanced when compared with acyclic alkanes. This all seems 

to be good evidence to support the suggestion that alkarie exchange over 

magnesium oxide involves dissociative adsorption to give an alkyl species 

which has some degree of negative charge. 	The results of the combined 

exchange experiments would indicate that the presence of other alkanes in 

the reaction system does not greatly affect the exchange of any particular 

alkane. 

With regard to exchange reactions of alkanes, the behaviour of 

alumina and magnesium oxide as catalysts is similar. 	The reactions required 

a higher temperature over magnesium oxide but the general relative pattern 

was the same and indeed the Brnsted relationships indicate that the cata-

lysts have similar sensitivities to the acid strengths of the reactants. 
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The lesser activity of magnesium oxide may be attributable to different 

degrees of activation during the pretreatments of the catalysts. 	Another 

possible cause of the difference may be the formation of intermediates on 

nnesium oxide which are strongly adsorbed such that surface exchne is 

retarded. 	In an examination of the kinetics of the exchange reaction of 

cyclopropane with deuterium over magnesium oxide (13),  the reaction was 

found to he 	iroxmately first order with respect to the aikane and zero 

order with respect to deuterium. The simplest interpretation of these 

results is that the rate-determining step in the exchange of.1 opane is 

the adsorption of the akane itself. Deuterium will play no part in this 

and hence will have a zero-order dependence. 	The deuterium must be readily 

available on the magnesium oxide surface even at low temperature for the 

exchange of the olefins. 

Very low activity:- 	No evidence was found for the isornei'isation of 

cycloalkanes over magnesium oxide even at the highest temperatures allowed 

by the system. 	It is possible that, like the isornerisation of 3,3 

dimethylbut1_ene(6), these reactions involve carbonium ions as intermediates 

which are unlikely to be formed on magnesium oxide. 

Of the two catalysts alumina seems to be the more likely to 

accelerate reactions which involve carbonium ions. 	The relative reacti- 

vities for exchange and isomerisation of 3-3 diethylbut-1-ene tend to 

support this 04). 	Over alumina isomerisation occurred at 328K while 

exchange with deuterium required a slightly higher temperature. 	However 

on magnesium oxide no isomerisation of the butene was detected at 493K 

even though exchange of the methyl hydrogen atoms could be observed at this 

temperature. 	Exchange of the vinyl hydrogens takes place at lower tempera- 

tures. 	Similarly in the isomerisation of rnethylcyclopropane which may 
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involve a carboniurn ion intermediate the iscmerisatjon reaction over 

alumina occurs before the exchange of the hydrogen atoms in the methyl 

group but over magnesium oxide all eight hydrogen atoms will exchange 

without any evidence of isomerisation 0  

Poisoning and Inhibition:— The most dramatic poisoning effects with 

magnesium oxide occurred in the simultaneous exchange of the olefins. 

The presence of ethylene in the reactions involving propylene and isobutene 

seemed to drastically affect the rate of the exchange reactions. 	Propylene 

and isobutene do not seem to greatly affect one another. 	The possibility 

of a "dirty" ethylene sample can be dismissed because ethylene from two 

different sources gave the same rates for the exchange reactions. 	One 

possible explanation is that some dimerisation or polymerisation involving 

an adsorbed ethylene species and some larger grouping occurs and the product 

is irreversibly adsorbed on the catalyst thereby poisoning the reaction. 

There was no evidence from the total ion monitor trace of material loss 

from the reaction mixture but perhaps only a small number of species would 

be required to poison the active sites and any losses of material would be 

imperceptible. 	Alternatively, the inhibition of the olefin exchange 

reactions may be a result of competition for sites. 	The reaction mixture 

contained Ca. 10 20 molecules over 0.1g of catalyst in which case the number 

of molecules in the reaction vessel was probably greater than the number of 

active sites. 	However the fact that propylene and isobuterie when reacting 

together did not interfere greatly with each other would suggest that any 

effect due to competition for the sites was small. 	It should be noted 

that the activation energy for the exchange of propylene with deuterium 

in the presence of ethylene is about twice that when propylene reacts on 

its own. 	Both propylene and isobutene have low activation energies for 
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exchange and the presence of ethylene causes this to be increased perhaps 

as a result of the strong adsorption of a C 
2  H 

 3 species which competes for 

sites with the allylic species. 	The size of the ethylene species and Its 

ability to coordinate terminal vinyl hydrogens, which is known to he 

important over alumina, may also be effective in this case. 

The other poisoning effects which occurred in reactions with 

magnesium oxide were found in the alkane exchange reactions at high tempera-

tures. 	Again the possible causes of this must remain speculative. 	It 

is unlikely that the poisoning was due to the main product of the reaction, 

namely the deuterated alkanes but, at such elevated temperatures, it was 

possible that other species are formed on the catalyst possibly Involving 

carbon-carbcn bond rupture to give irreversibly adsorbed species. 	This 

was supported by the fact that poisoning appeared to be worse at higher 

temperatures. 
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Evidence for Carbanionic Intermediates During Exchange Between Butanes 
and Deuterium on Alumina 

By PHILIP J. ROBERTSON, MICHAEL S. SCURREL.L, and CHARLES KEMBALL 

(Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ) 

Summary Examination of the exchange reactions be-
tween isobutane and deuterium, and n-butane and 
deuterium on alumina has revealed that the reactive 
hydrocarbon intermediates possess carbanionic character. 

STUDIES of hydrogen-deuterium exchange reactions in-
volving saturated hydrocarbons on alumina have been 
confined to propane,' methane,' and ethane.' In the case 
of propane' and methane' it appears that the exchange 
process takes place via adsorbed alkyl groups which are 
attached to electron-deficient centres. We report here the 
results obtained for the exchange of isobutane and n-
butane on alumina because they provide direct evidence for 
the participation of carbanionic intermediates in these 
reactions. 

The experimental technique was essentially that des-
cribed previously.' The y-alumina was prepared by 
heating a high purity boehmite (Laporte Industries Ltd.) 
at 900 K in air for 16 h (surface area by N, adsorption at 
77 K = 120 in1  g'). The catalyst (1.0 g) was treated with 
oxygen at 723 K prior to evacuation at this temperature 
(pressure <2 x 10-' N rn') for at least 15 h. The 
mixture usually consisted of hydrocarbon and deuterium at 
initial pressures of 0•95 and 9-6 kN m' respectively in a 
silica vessel (3 x 10-' m'). 

The initial rate of reaction of n-butane (1.4 x 1011 
molecules s rn') at 273 K was 2-3 times faster than the 
rate for isobutane, both compounds exhibiting stepwise 
exchange. After extensive exchange of isobutane at 425 
K, the amounts of the ['H,]-, ['H,]-, and ['H,,]-isomers 
were 40, 34, and <05% respectively showing that 9 of the  

hydrogen atoms were exchanging at least 100 times more 
rapidly than the tenth. Analysis of results for n-butane at 
316 K by standard methods' showed that 6 hydrogen 
atoms were replaced 55 times more rapidly than the remain-
ing 4. 

These results indicate that the alkyl intermediates in the 
exchange reactions possess carbanionic character and that 
neither carbonium ions nor radical species are involved. 
If exchange occurred via alkyl radicals, the methine hydro-
gen would have been expected to react more rapidly than 
those in the methyl groups in isobutane on the basis of 
relative dissociation energies for the two types of carbon-
hydrogen bonds' and, similarly, the methylene hydrogens 
would have reacted at least as rapidly as the methyl 
hydrogens in n-butane. Participation of carboniuni ion 
intermediates, although compatible with the observation 
that 9 hydrogen atoms of isobutane exchange readily, 7  is not 
consistent with the similar rates found for isobutane and 
n-butane. Formation of carbomurn ions would occur 
much more easily for isobutane. 

Additional evidence for the involvement of alkyl car-
banionic species is provided by the fact that the methyl 
hydrogens in n-butane exchange at a much higher rate than 
those in the methylene groups. This result is expected on 
the basis of the relative acidities for these two types of 
hydrogen atoms.' 
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Industries Ltd., for a postdoctoral fellowship (to M.S.S.). 
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Development of a gas chrornatograph-mass spectrometer with 
'on-line' computer for studies in catalysis 

Reactions of ethylene and deuterium on oxides 
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The development of an on-line' computer for use with a combined gas chromatography.. 
mass spectroscopy (gc.-ms.) technique in the study of heterogeneous catalysis is described 
and discussed with reference to the reactions of ethylene and deuterium on oxides. Emphasis 
has been placed on the selectivities shown by a number of catalysts for the exchange and 
addition reactions. Magnesium oxide effects the exchange of ethylene without production of 
ethane even at 671 K: y-alumina also exhibits a high selectivity for exchange. In contrast, 
on chromium oxide (0r 20 5) at 197 K and zinc oxide at 273 K, ethylene undergoes rapid 
deuteration with no observable exchange of the olefin. For the range of catalysts studied the 
ratio of rate constants for the exchange and addition reactions decreases in the order: 
MgO > A120 > TiO2  Fe20 3  > C0 304  > Zr02 > ZoO Cr203. An explanation for the 
marked differences in catalytic behaviour within this group of oxides is provided. 

INTRODUCTION 

The application of a combined gas chromatograph—mass spectrometer to studies of 
catalytic reactions has been described (Dowie, Kemball, Kempling & Whan 1972). 
The technique has been successfully applied to studies of deuterium exchange pro-
cesses on surfaces (Dowie, Gray, Whan & Kemball 1971; Dowie, Whan & Kemba.fl 
1972; Kernball & Kempling 1972) but the quantities of data produced in an ex-
periment are large and the analysis complex and tedious. This problem has now 
been overcome by means of an 'on-lijie' computer using analog-to-digital conversion 
for data capture. This method of data acquisition is described and discussed in 
this paper with particular reference to the reactions of ethylene and deuterium on 
oxide catalysts. 

There have been several previous investigations into the reactions of ethylene 
and deuterium on oxides but perhaps the most interesting results are those shown 
by alumina. Ethylene and other olefins undergo rapid exchange with deuterium 
On this catalyst (Larson, Hightower & Hall 1966) without significant formation of 
the corresponding saturated hydrocarbon. The high selectivity displayed by 
alumina has led to its use in the preparation of perdeutero-olefins. Elsewhere 
(Hindin & Weller 1956) it has been shown that the hydrogenation of ethylene 
can be effected but at somewhat higher temperatures than those required for 
exchange. Hydrogenation takes place at or below room temperature if ethylene 

299 1 	 Vol. 338. A. 
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is preadsorbed on the catalyst (Amenorniya, Chenier & Cvet•anovic 1967) but at 
higher temperatures exchange is much faster than the addition reaction (Amenomiya 

1968). 
The behaviour of alumina appears paradoxical, since a catalyst which is capable 

of activating both ethylene and hydrogen might. be  expected to catalyse the hydro-
genation reaction which is thermodynamically more favourable and takes place 
with very high selectivity on zinc oxide (Kokes & Dent 1972) and chromia (Burwell 
et al. 1960). Intermediate behaviour with both exchange and addition taking place 
at similar rates is found for titania (rutile) (Lake & Kemball 1967). 

The present work was aimed at a comparative study of the natures of the ethylene.— 
deuterium reactions on these and other oxides to examine the general pattern of the 
results and in particular to explain the anomalous character of alumina. The relative 
rates of the exchange and addition processes have been measured for eight oxide 
catalysts. The combined gas chromatograph—mass spectrometer is particularly 
useful for this purpose since it enables very small quantities of ethane to be detected 
for a reaction in which the predominant process is the exchange of ethylene. Con-
versely in a system showing high selectivity for hydrogenation it is possible to 
measure the rate of any accompanying exchange reaction. 

EXPERIMENTAL 

Apparatus 

The apparatus used for this work was basically that described earlier (Dowie 
et al. 1972). The reactor was constructed of silica and was of volume 2.70 x 10 m 3 . 

The mass spectrometer used ionizing electrons at 20eV and about 15-20 scans per 
hydrocarbon component were recorded. 

In previous work (Dowie et al. 1972) mass spectra were recorded on photographic 
paper. An improved method of data capture has now been developed with the aid 
of an 'on-line' computer. The signal from the electron multiplier to the ultraviolet 
recorder (see Dowie et al. 1972, figure 1) was fed via a unity gain high impedance 
buffer to the analog-to-digital converter (a.d.c.) of the computer (PDP 11, Digital 
Equipment Corporation, Maynard, Massachusetts, U.S.A.). In this way mass spectra 
could be collected simultaneously by the computer and the ultraviolet recorder. 
During the development of the computer facility both methods of data acquisition 
were used and the results compared in order to assess the reliability of the 'on-line 
capture technique. 

Data acquisition 

At the start of each scan an electronic pulse was automatically generated by the 
mass spectrometer magnet control unit and directed to the a.d.c. in order to 
activate' the data collection procedure. During an experiment the mass spectro-

meter scanning rate was I s per decade of mass, the spectra were scanned between 
preset mass limits of 100 and 10, and the signal generated by the electron multiplier 
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was sampled by the a.(l.c. at 5000 Hz. A threshold level was preset at a value such 
that baseline noise from the multiplier and signals due to random ion peaks were 
not stored by the computer. For each mass spectrometric scan every a.d.c. sample 
number together with the corresponding signal intensity above threshold was re-
corded and each spectrum was assigned a number for identification purposes. 

TABLE 1. DIGITAL REPRESENTATION OF MASS SPECTRA 

(Spectrum of mixture of deuterated ethylencs.) 

centroid intensity masst 

2365 112 33.0 
2436 5717 32.0 
2509 5474 31.0 
2579 2798 30.0 
2655 1200 29.0 
2737 2191 28.0 
2819 516 27.0 
2904 178 26.0 
3737 581 18.0 

t Mass numbers subsequently assigned during data processing. 

At the conclusion of an experiment a peak location routine was used to analyze 
changes in the pattern of the intensities observed by the a.d.c. A steady increase 
in signal intensity for three consecutive a.d.c. samples enabled a mass spectro-
metric peak to be recognized; a subsequent decrease in intensity over two a.d.c. 
samples established the termination of the peak. For each peak thus defined the 
initial sample numbers and signal intensities were used to assign (a) a centroid 
value, which accurately defined the position of the peak in relation to the start of 
a spectrum and (b) an integrated intensity value. In this way each spectrum recorded 
finally comprised a series of centroid and intensity values and table 1 shows a typical 
mass spectrometric scan which was one of 24 recorded for a sample of ethylene after 
exchange with deuterium on magnesium oxide. 

All spectra were produced in this form by the PDP 11 and simultaneously re-
corded as binary data on paper tape. The tape was subsequently processed by means 
of an I.C.L. 4-75 computer. First, mass numbers were assigned to the centroid 
values in each spectrum. Use was made here of the background spectra which were 
always recorded immediately before elution of the hydrocarbons from the gas 
chromatograph The three most prominent peaks in these background scans could 
be assigned mass numbers 18, 28 and 32, their occurrence being due to the presence of 
traces of water, nitrogen an oxygen in the mass spectrometer. The relation between 
mass number and centroid value throughout the spectrum was interpolated from 
the positions of the three reference masses, the a.d.c. sampling rate and the scan 
rate per decade of mass. In this way each centroid value in the remaining spectra 
could be converted into a mass number. 

After all spectra had been processed to the mass number-intensity stage, isotopic 
J9-2 
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distributions were obtained for each hydrocarbon sample by the methods previously 
described (Dowie et al. 1972) by means of 4-75 computer. 

Although all spectra are now processed by the P1)P 11 and 4-75 machines, a few 
scans are recorded on ultraviolet paper during an experiment to afford an immediate 
indication of the progress of a reaction. It is hoped that in future all data processing 
will be achieved by means of the PDP 11 computer alone. This will obviate the need 
for an intermediate transfer of data and will lead to an even more rapid and reliable 
calculation of isotopic distributions from experimental data. 

lit aterial8 

Details of the catalysts used are given in table 2. 
Ethane, ethylene (99%) and deuterium (99.5%) were supplied by Cambrian 

Chemicals Ltd. The hydrocarbons were further purified by distillation from traps 
immersed in liquid nitrogen before storage, and again immediately before use. 
Deuterium and hydrogen (Air Products Ltd) were passed through a heated 
palladium-silver alloy thimble before use. Oxygen (Air Products Ltd) was dried 
by passage through traps held at 77K. 

TABLE 2. THE CATALYSTS 

oxide 	 source 	 pretreatment 

y-alumina boehmite (Laporte Industries 02  (20 kPa, 723K, 15 mm); 
Ltd) calcined (923K, 151i) evacuated; 02  (20kPa, 

723 K, 1h); evacuated 
(723K, 16h) 

MgO 	magnesium (Johnson 
Matthey Chemicals Ltd, 
Speepure') via nitrate and 

carbonate (decomposed 
1120K, 12h) 

Ti02 	Tioxide International Ltd 
(rutile) 

Fe203 	Johnson Matthey 
Chemicals Ltd, grade I 

C0304 	Johnson Matthey 
Chemicals Ltd, grade 1 

Zr0 2 	I.C.I. Ltd (contained 
0.02%S) 

ZnO 	New Jersey Zinc Company evacuated and heated to 
(Kadox 25) 
	

573 K; 11 2  (20kPa, 573 K. 
30 min) evacuated (573 K. 
5mm, then 723 K, 161m) 

Cr20, 

	

	similar to samples I and II evacuated (7 23 K, 20 12) 

described elsewhere (Cross 
& Leach 171) 

evacuated (723 K, 16 Ii) 

evacuated (7 23 K, 16h); 
02  (2.7kPa, 723K, 30 min); 
cooled to 298 K; evacuated 
(298 K, 30 min) 

evacuated (673K, 161i) 

evacuated (533 K, 45 min)  
(Harrison, Nicholls & 
Steiner 1967) 

evacuated (723 K, 20 h) 

surface area/m 2  g' 
(by N, adsorption 

at 77K) 

90 

30 

25 (Brookes 1972) 

2.62 (Shannon 1969) 

0.65 (Shannon 1969) 

2 (Hughes, Taylor & 
Kemball) 

10 (Naito et at. 1 97 1 ) 

100 approx. (Leach 
1973, pers. COmfl[fl) 
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Procedure 

After each catalyst had been activated as described (table 2) the reaction vessel 
was held at reaction temperature (table 3). Masses of catalyst used in these ex-
periments were in the range 0.2-3.0g. 

A 10: 1 ratio of deuterium to ethylene was admitted to each oxide at reaction 
temperature and the resulting initial gas phase pressure was in the range 1.9-2.8 kPa. 
For the measurement of the rates of reaction of deuterium with ethylene on alumina 
the initial pressure was approximately 5.2 kPa. Samples (approximately 2 %) were 
removed from the gas phase intermittently and introduced into the gas chromato-
graphic column. 

Separation of ethylene and ethane was achieved by using a 2 in column of 
squalane (3%) on activated alumina type H, 100/200 mesh. The column was 
maintained at 263 K by immersion in a bath of ice and ethanol and helium carrier 
gas was passed at a pressure of 140 kPa. Under these conditions typical retention 
times for ethane and ethylene were 6 and 7.6 min respectively. 

Mass spectra were corrected for the presence of background peaks, for naturally 
occurring deuterium and 'heavy' carbon and for fragmentation. All analyses were 
made in terms of the parent ion for each isomer present. Fragmentation patterns 
and relative sensitivities for ethylene-d 0  and ethane-d0  were measured at regular 
intervals during the course of the work. When correcting spectra for fragmentation 
it was assumed that loss of hydrogen and deuterium took place in a statistical manner 
and that the fragmentation patterns for all isomeric hydrocarbons were identical. 
It was not found necessary to adopt the procedure developed by Dowie, Whan & 
Kemball (1972). 

The apparatus enabled identifiable mass spectra to be obtained for 6 x 10 1 4 

molecules entering the g.c.-m.s. system. This corresponds to 3 x1016 molecules in 
the reaction vessel or a product yield of 0.3 %. Reliable isotopic distributions could 
be obtained such that the presence of > 0.5% etliylene-d 1  in ethylene-d0  could be 
detected. 

RESULTS 

The results obtained for the eight oxides used are summarized in table 3. 
The integrated first-order rate equation 

-lg(1_xa)=kat/2.303, 	 (1) 

was used to calculate the value of k, the rate constant for the addition reaction. 
The fractional conversion of ethylene to ethane at time t is Xa. The rate constant 
for exchange, ke was obtained from the equation 

-lgd0  = ket/230.3-lg 100, 	 (2) 

where d0  is the percentage of light ethylene present at time t. This equation is 
applicable to an exchange reaction which is first order in ethylene pressure (Kembafl 
& Stoddart 1957). 
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The linear relations predicted by these rate equations were well obeyed except 
in two cases and hence the assumptions made above are considered to be justified. 
For cobalt oxide a slight curvature of the plot indicating a decrease in rate was 
observed for the addition reaction. A similar effect has been attributed to irre-
versible adsorption of hydrogen on the catalyst (Tanaka, Nihira & Ozaki 1970). 
No curvature of the plot for the exchange data was detected. For iron oxide both 
the addition and exchange reactions showed a high initial rate followed by a period 
of lower activity (luring which the linear relations were obeyed. Rates of reaction 
reported for this oxide are applicable to the latter stage of reaction. 

TABLE 3. ACTIVITIES OF THE OXIDES FOR ETHYLENE- 

DEUTERIUM REACTIONS 

addition 	 exchange 
reaction. 1. 	reaction, k 

catalyst 	molecules s in-2 	molecules s' in k'k 	 T eI 	 fK 

MgO 
A1 203  
Ti0 2  (rutile) 
Fe203  
Co3O 4  
zI,02  
ZnO 
Cr203  

< 2.7 x 1011 
3.2 x 10 11 1  
5.1 x 1012 

5.8 x 101 3  
8.1 x 1016 
7.8 x 1014 

1.5 x 10' 
1.5x 10 16  

1.9x 10"t 
4.7 x 10' 
1.3 x 1()13 

6.6 x 10's 
1.1 x 1016 
3.6 x 10's 

< 2.8x 1012 
< 1.9x 10 13  

> 6900 671 
1500 289 

2.5 641 
1.1 468 
0.13 293 
0.046 297 

< 0.020 273 
< 0.012 195 

t k obtained from extrapolation of data measured at 298-373 K. 
lç obtained from extrapolation of data measured at 428-563 K. 

For alumina and magnesium oxide where k ka, rates of exchange measured 
at low temperatures were compared with rates of addition at high temperatures 
(table 3). For magnesium oxide any ethane produced (luring I h at 671 K was below 

the limits of detection although exchange was rapid even at 298K. Thus < 0.3% 

ethane was present and ka was calculated as < 2.7 x 10" molecules s rn 2 . 

For zinc oxide and chromium oxide where ka > k ethylene-d 1  was not present 
above the detection limit (0.5%). Determining the absence of ethylene-d 1  is 
necessarily more difficult than establishing the highest limit to which ethane as 
a reaction product is present (as for magnesium oxide) since the concentration of 
only one isotopic species is being examined in a supply of reactant which is steadily 
undergoing conversion to ethane. Data for chromium oxide were particularly dif-
ficult to obtain because of the high activity of the catalyst for the addition reaction, 
even at 195 K. In view of these limitations the ratio k,/k,, is probably considerably 

lower than the tipper limits shown in table 3. 
Arrhenius parameters derived from the data obtained for the addition and ex-

change reactions on alumina and magnesium oxide respectively are shown in table 4. 
All the exchange reactions were stepwise, one hydrogen atom being replaced at 

a time, as evidenced by the close agreement between experimental isotopic dis-
tributions and the binomial distributions throughout the experiments. 
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TABLE 4. ARRHENIUS PARAMETERS FOR ETHYLENE—DEUTERIUM 
REACTIONS ON MAGNESIUM OXIDE AND ALUMINA 

oxide 

MgO (exchange) 
A1 203  (addition) 

temperature 
range K 

298-373 
428-563 

ig (A /molecules 
E/kJ mol -1 	s rn-2 ) 

16 	 16.5 
25 	 16.1 

DISCUSSION 

Evaluation of computer captured data 

The course of the exchange process on magnesium oxide is shown in figure 1, 
where data obtained from the PDP 11 and 4-75 computers are compared with those 
from the ultraviolet recorder. Clearly there is very good agreement between the 
isotopic distributions obtained from the two sources of raw spectral data. In addition, 
the isotopic distributions obtained from the computer captured data are in much 
closer agreement with the calculated binomial distributions also shown in figure 1. 
This is particularly clear at 0 values above 100. The parameter 0 represents 100 times 

all 
C? C) 

C) 

0 
4. 0 

S 

C) C) 
C) 
0. 

0 	 50 	 100 	150 

FIGURE 1. Comparison of isotopic distributions obtained for the exchange of ethylene with 
deuterium on magnesium oxide at 298 and 373 K; —,data from PDP 11; --, (lata from 
photographic paper. Also shown are calculated binomial distributions: Q, ethylene -d0 ; 

0 -d1 ; A, -d2: •. -il3;  •. -d4 . The parameter 0 represents 100 times the mean 
nun ber of deuterium atottis pnsent per molecule of hydrocarbon. 
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the mean number of deuterium atoms present per molecule of hydrocarbon. The 
disagreement found here is mainly due to an underestimate of the percentage of 
ethylene-d 4  present when data are collected on ultraviolet paper. This point was 
investigated further and the error is attributed to the presence of the peak at 32 
in the background spectrum of the mass spectrometer. Although the two ions O 
and C9D have nominal mass 32, examination of accurate atomic masses shows that 
the former ion is about 0.2% lighter. Consequently, partial resolution of the two 
mass peaks occurs when recording spectra of exchanged ethylenes. When examining 
the spectra on ultraviolet paper it is very difficult to establish that part of the total 
intensity clue to the presence of ethvlene-d 4  and since measurements of peak heights 
are used an underestimated intensity value results. The sampling rate of the a.d.c. 
of the PDP ii is, however, sufficiently high that an accurate integrated intensity 
for each component at mass 32 can be determined. 

To summarize, the results indicate that data acquisition via the PDP 11 com-
puter enables isotopic distributions to be calculated with an accuracy which is as 
high as, and in certain cases higher than that obtained before. 

Activity of the oxides 

The activity pattern obtained with the eight oxides for the ethylene-deuterium 
reaction is very similar to that found for the hydrogen-deuterium equilibration 
(figure 2). For the oxides of the first transition series the twin-peaked activity 
obtained initially (Dowden, Mackenzie & Trapnell 16) was confirmed by a later 
study in which the reaction rates were determined at a standard temperature of 
298 K (Pearce, Richardson & Rudham 1969). The present results substantiate the 
observations that the relative rates of hydrogenation (Harrison, Nicholls & Steiner 
1967) and isotopic mixing (Ozaki, Ai & Kimura 1970 of ethylene conform to the 
twin-peaked pattern for these oxides and establish that the agreement may be 
extended to include reactions on alumina, magnesium oxide and zirconia. In 
figure 2 the oxides of the first transition series elements are grouped together in 
order of their position in the periodic table. The other three oxides are included for 
comparison purposes only. Thus for each of the eight oxides under investigation it 
is concluded that the rate at which the ethylene-deuterium reaction (exchange or 
addition, whichever is the faster) occurs reflects the ability of the catalyst to 
activate deuterium. In order to explain the marked differences in selectivities for the 
addition and exchange reactions with ethylene we must examine the nature of the 
adsorbed hydrogen (or deuterium) on these oxides. The argument developed here is 
an extension of that presented elsewhere (Kemball 1973). 

Two principal factors may contribute to the situation where alumina catalyses 
ethylene exchange more readily than the thermodynamically favoured hydrogena-
tion reaction. The exchange of ethylene may occur dissociatively through the 
formation of adsorbed vinyl species for which there seems good evidence (High-
tower & Hall 1969, 1970). The absence of hydrogenation is easier to understand if 
it is unnecessary to assume the presence of adsorbed ethyl groups for the exchange 
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of ethylene. But another factor must be considered because alkyl species, almost 
certainly possessing carbanionic character (Robertson, Scurrell & Kemball 1973) 
must be responsible for alkane exchange and so form readily and reversibly. It is 
therefore perhaps surprising that the adsorbed ethyl species is not also formed 
readily from ethylene. A possible explanation can be given in terms of the differing 
reactivities of electrophilie and nucleophiic hydrogen atoms on alumina. The 
dissociative adsorption of a hydrogen molecule on an oxide catalyst probably takes 
place by a heterolytic fission of the H—H bond 

H2 —*Hj+H. 	 (3) 

12 

Ti02 	Cr2O3  Fe2O3  Co304 	ZnO A1 203  Al 
rutile 

compound 

FIGURE 2. Comparison of the activities of the oxides for hydrogen—deuterium equilibration 
and ethylene—deuterium reactions. The temperatures used to measure either () C,H - 
(addition) or () C 2H4  - D, (exchange) were 298 K for MgO and as given in table 3 for 
the other oxides. The H 2 —D 2  equilibration rates (0)  were determined as follows: A1 203  
at 273 K (Van Cauwelaert & Hall 1970); MgO at 273K (Eley & Zainmitt 197'); ZrO, at 
298 K (Hughes et at.); other oxides all at 297 K (Pearce et al. 1969). 

The exchange of ethylene and ethane can be represented as 

OH —CH-H 2 4 	2 3 	li' 

1-1 1-T 	(1 T.- 	T-T -- 
'-'2 6' 	2 5 	E 

If electrophilic hydrogen atoms react readily, both of these reactions should occur 
with ease. On the other hand, the formation of ethyl carbanions from ethylene 
would involve nucleophilic hydrogen 

C2H4 +Hc -3 C2H. 	 (6) 
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and it may react more slowly. Restating the argument briefly, only one kind of 
adsorbed hydrogen H or H is needed for exchange, but both kinds are necessarily 
involved in hydrogenation. 

In the above discussion reference has been made to fully charged species. In 
reality such intermediates very probably possess only a partial electronic charge 
and in fact it is the extent of the charge on the reactive adsorbed species which 
may well enable the results of our present investigations to be explained. Alumina 

.Adorpt eli or ethyletic itild hvd rogcI: 

C'H 2 =C'H 2 	H U 

Cr' I 	 C r3+Oi_ 

10 rinzt Lion or eLba ne: 

('Il,=('Ii, Ii 	II 

Cr"  Cr"02  

CH,=CII. 11 	1-1 

Cr3-t-  ('r10 2  - 

(il ;  —CH 2 Cr 
Cl -' Cr2 102 

1. 111  
CH,—Cl - 1 2  H  

Cr 3  Cr3  0 2- 

tiv 

CH,—CH 3  

Cr3 ' Cr' 

FIGURE 3. Scheme for adsorption and reaction of ethylene and hydrogen on chrornia. 

and magnesium oxide may lead to the formation of adsorbed hydrogen atoms with 
a high fractional charge. In contrast, on zinc oxide and chromia a neutralization of 
the potential charge on the adsorbed forms of hydrogen may be facilitated. Thus 
the hydrogenation of ethylene on chromia is envisaged in two stages (figure 3). 
First, adsorption of the olefin, possibly at coordinatively unsaturated Cr3+  sites, 
takes place together with heterolytic dissociative adsorption of hydrogen on ion 
pair sites. Secondly, adsorbed ethyl groups are produced with subsequent formation 
of ethane by the reaction sequence shown. The important feature of this scheme is 
that neutralization of the charge on the nucleophihic and electrophilic forms of 
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adsorbed hydrogen occurs and thus both hydrogen atoms are in a radical form when 
the addition steps II and IV take place and are therefore equally reactive. Once 
adsorbed ethyl groups are produced by reaction involving the first hydrogen atom 
(step II), ethane is readily formed by reaction with the second hydrogen atom. The 
overall effect is analogous to that presented by Dent & Kokes (1969), where addition 
of deuterium to ethylene occurs with the absence of exchange in the olefin because 
the 'alkyl reversal' (reverse of step II) is not operative on oxides such as chromia and 
zinc oxide. The production of neutral adsorbed hydrogen is facilitated by the ability 
of chromium ions to undergo a reversible change in oxidation state between C r3+ 

and Cr2+.  The importance of the participation of Cr2+  ions in hydrogenation and 
dehydrogenation reactions on chromia has been noted (Rideal 1968). 

The argument developed for chromia may be applied to the other transition 
metal oxides under investigation. The selectivity ratio k/k (table 3) for each oxide 
is thought to reflect the inability of the catalyst and the transition metal ion in 
particular to produce neutral adsorbed hydrogen. Thus a complete charge transfer 
may be effected on zinc oxide or chromia and high selectivity for addition results. 
On the other oxides the effect is less complete and exchange and addition occur 
simultaneously. On alumina and magnesium oxide where a change in oxidation 
state of the surface cations is unfavourable adsorbed hydrogen remains in the H+ 
and H forms. 
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\lethmls of analvzii ig tile data from catalytic exchange reactions of molecules in 
which different, groups of hydrogen atoms exchange at different rates have been tested 
using computer-generated isotopic distributions. The method of determining rates of 
exchange from such reactions at constant temperature, proposed by Harper, Siegel, and 
Kemball, is found to be satisfactory provided that the ratio of the rate constants for two 
groups of exchangeable hydrogen atoms is greater than about 5. 

On the other hand, the derivation of rate constants and Arrhenius parameters from 
data obtained by temperature-programmed experiments can only be considered reliable 
when the ratio of rate constants for the different groups of atoms is greater than about 20. 

INTRODUCTION 

In exchange reactions of hydrocarbons and 
other substances with deuterium, the various 
hydrogen atoms in the molecule frequently 
react at different rat es, e.g., for the alkyl-
benzenes, a marked difference is observed in 
the reactivity of the side group and of the 
ring hydrogen atoms over a wide range of 
catalysts (1). It is desirable that the maxi-
mum amount of information about the rates 
of exchange of the different types of hydro-
gen atoms should be obtained from experi-
mental data for such systems, but the selec-
tion of a reliable method of analyzing the 
data may be difficult. 

The problem has been solved for the case 
of molecules having hydrogen atoms in two 
groups, both exchanging in a stepwise fash-
ion but at different rates (2). Bolder, I)all-
inga, and Kloosterziel (3) gave a general 
treatment for multiple exchange but limited 
it to molecules with a single group (it ex-
changeable hydrogen atoiiis. They also con-
sidered a method for molecules with non-
equivalent hydrogen atoms involved in 
multiple exchange but subject to two c in-
ditions: Firstly, the reaction starts with 
utideut erat ed hvdn carhon molecules and,  

secondly, the fraction of deuterium in the 
deuterating agent remains constant. This 
latter condition implies that their analysis 
cannot be applied to experimental situations, 
commonly found in heterogeneous catalysis, 
in which the dilution of the deuterium by 
hydrogen from the reactant hydrocarbon 
cannot be neglected. 

Approximate methods of obtaining rate 
constants from experimental data were pro-
posed by Crawford and Tcemball (4) and 
subsequently improved by Harper, Siegel, 
and Kemball (5). The latter method which 
we shall call tile HS K met hod can be ap-
plied to cases with two or more groups of 
hydrogen atoms reacting at different rates 
by either stepwise or multiple mechanisms. 
Intuit ivelv, one would expect that the HSK 
method gives reliable results in the limit of 
one group exchanging very much faster than 
the next group, but some doubt exists as to 
how well the method works when the rates 
of exchange of different groups are com-
parable. The first objective of the present 
research was to attempt to determine the 
conditions under which the HS K met hod is 
reliable. 

Temperature-programmed catalysis has 
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1)eeli uSd1 as a te(lilli( file for following 111C 

exchange of groups of lIoll((jllivalelIt liVdl' 

gen tonis (G), aiiol ill(' lIlvsis ((I results 
involves an ('XtellsiOfl of the 1 -Is k method. 
The techIhli(l1.ie provides information from a 
single eXl)IlillI(llt \VhIi(1l ('011111 old ' he oh-
tallied from several experiments carried out 
ill a conventional manner at ('((list lint tent-
perat ure .Ar rhenius parameters as ivell as 
relative rates of reaction of the o different 
groups of hydrogen 11t01115 are ObtIlilied, but 
the limits of the reliability of the approach 
have not i)('eml established. Investigation of 
this prohh'nl is tlii' 5('('()lid objective of the 
present paper. 

The method of investigating both prob-
lems involved the use of eq uations derived 'rived 
by Dahlitiga el el. (2) to (Oflipflt(' distribu-
tions Of isotopic species for ('X(hialIg( reac-
tions for a no ,lecule with two groups of 
livdn (gel! at nis reacting in a stepwise man-
tie t'. These computed (list ri I (Ut Ii (115 \V ( re 
taken as "experimental data," ahiaIVZed by 
the HSK method and its extension for temn-
perat tIre-pr gramnnied catalsis, and the cal-
collated rates \V('l'(' then coliip:ure(l with I lie 

actual rates used to generate the ''experi-
mental data." In this way, information 
about the useful limits of tfic (lc 115K method 
was obtained. 

No ME NO LAT1 liE 

1) 4 , D 3  Mean 	deuterium 	('((Iii ('lit 	in 
gu lips of hydri geli at 	Ins, A 
and 	B 	respect 1 V(' I ' 	UI (('SC 

correspond 	to 	1) 	and 	A 	in 
Ref. (2).] 

(I 1 )( i'ceiit age of iso t opic species 
containing I deuteriuni atoms 
Act ivat i 	rt 	energy 	for 	ex- 
change of hydrogen at( ms 

k Total 	rat e 	constant 	for 	IX- 

change of hivdrocarhoii 
k.4  Hate constant for exchange of 

11 ydrogen atoms ill group A. 
(Similar 	definitions 	for 	kft, 

AL, 'cM.) 
Illitial value of I' in Ieliipera- 

- 	- ture-programiilning ('xj(el'imii( nt 
k, kA ,  etc. Mean 	values 	of 	k, 	A'. 	etc., 

etiip 'r- over time intervals in temper- 

at lire-programming experi- 
110 '11 

.V A . NB Nlmliil (('1' of livdrogt'tm atoms In 
group .4 1111(1 group B. respee- 
tivelv 

7' lenil(cl'at kite of 	reaction 
Initial telulperat tire in temper- 
-it ure-pr( (graIl 1111111 g ('Xl ('11- 

lilelit 
1, 

 
Computer time scale 
lah (l'lit( (1'",' 	t iflh(' scale 

4).t. Measure of extent of deutera- 
n in group _4 and group B, 

respective] 
1:iitnhiln'iumii values of 4)A 	and 
01 ,  

4) 

at 

\Ieasure of extent of deUt('ra- 
t l( (Ii 	iii 	Ii \'(IF( H 'all ii (Ii 	molecule tile 

DERIVATION ((l"THE 	I5()TOPI(' 

I )is'riom ltt'TiONs 

The treatment set out I i y  l)ahlinga et al. 
(2) applies to any molecule in which hydro-
gen llt((lils can be suihdivi(l('(l into two  
groups, .1 and B, the latter reacting more 
sl avIv 

 
but with the exchange of both groups 

((ccurrimig by a stepwise process. lliew the-
or\' was adapt ('d t () ehial)le 115 to calculate 
the (list rihut ion of products (luring an ex-
change reaction. 

E,xpressions for the variation with time 01 

i), 1111(1 1),,. the (l('ult ('l'ililfl content ill group 
A 1111(1 group B hydrogens, respectively, can 
he found from Eqs. (20) and (21) of Ref. (2). 
These expressions involve k 4  and k11, the 
rate (((list alit s for the exchange of groups 
A and B, respectively, the mole fraction of 
the reacting iiiolecimle in the total svsteni, 
and flue initial fraction of (h'uterillfli in tie 
labeling compound . TItus, if the  ('xpen itien-
tal conditions, i.e., the reaction mixture and 
the rate constants for exchange in groups A 
and B, are specified, D, and I), can be cal-
culated for a series of values of time. rFhiefl 
using the binomrual expression",  which apply 
for st('l)\Vis(' i'xchiutiigo', the distribution of 
isotopic sl)e('i('s in the two groups can be 
derive(l and, on combination of the results 

(I' the t\\ - o  gr( (ups, 1111 i5( (t( (pie distribution 
for the molecule as :i whole can he obtained. 

Many iv of the calculations are repetitive 
using tb' same relationship several times. 
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A (ofliplit IF program was written to calcu -
late the (list ribut I( inS. Facilities were incor-
porated in this program to specify V,1  and 
A 11 , the inte constants k. 1  and k, and the 
reaction mixture. Must calculations Well.' 
carried out with .V A  = = 4, correspond-
ing to a nu ilecule such as naphthalene with 
eight, exchallgeai)k hydrogen atoms ill two 
groups of four. In this way, sets of distribu-
tions of products at specified times were 
generated to he used aS 'experiment al'' dis-
tributions for vliicIi the kinetic and other 
experimental details were known. 

CALCULATION OF RATE CONSTANTS FROM 

Isovocic 1)ISTI(i BUTIONS 

The FISK (5) nthod of obtaining rate 
constants front experimental (list ru lot i ins of 
isotopic species has been described else-
where. With the exception ifi of using k for 
the tot al  rate constant ant rat her than ian k, we 
follow the same nomenclature.  

To obtain the slower rate constant, k 11 , it 
is assumed that the second group of hydro-
gen atoms exchanges iiiuclm more slowly than 
the first group, group A. It was olle of the 
aims of this work to investigate the lower 
limits of k. 1 /k ii  for the FISK method to work 
sat isfaetonilv. To obtain linear plots when 
deriving rate constants, ants, ci irreet values for 

must he chosen. The choice of on 
similar lines to that, described in (5) proved 
to he satisfactory '  while the choice of 
will he (hsi'ussed in the section with the 
results. 

TEn lEiIATUIIE PItOGIIA ii Mi NG 

l'enlp(rat lin('-pniigrainnled 	cat alysis 	is 
used as a rapid means of comparing the 
rates of exiliaiige of different kinds of hy-
drogen atonis m a molecule when time ratio 
of the rates is so great that it is impossible 
to choose a single reaction tinipirat lire at-
which both  rates can be observed accurately 
and conveniently. The usual nat hilid is to 
increase temperature  linearly with time SO 

that reaction of both groups of hydrogen 
at ((inS (itil be followed V( 'd in a single experiment. ii ient 
The (list n hut ions of products are obtained 
at equal intervals of time and analyzed by a 
procedure based d on the HS K method id (G) 

In 01(1(1 to geiierate suitable data for 

studying this technique, distributions must 
be calculated which correctly reflect the in-
creLse in the reaction rate as the tempera-
ture increases. We have assumed that the 
late constants 1A  and k 11  will obey the Ar-
rhenius equation and, for simplicity, that 
both go nips have the same activation eli-
ergv, E. 

The COnij)flten program \\i.i capable of 
calculating (list nibul ions of products at Vari-
ous times in the exchange reaction but with 
specified late constants; it had no fu-cilit V 

to deal with a changing rate constant. This 
problem was solved by defining an expanded 
time  Scale, 1, ( 10111puter tin Ic, related t o 
laboratory tunic by the equation 

(I(: 	k 
(1) 

where k0  is the rate constant at T0 , the 
initial t(IliperatUi'(', and A is the rate con-
stant at temperature T and laboratory time 
/ j . The temperature was assumed to increase 
hiniarlv w m with tie. In this way the extent- of 
till re titi on for a system which had reacted 
under laboratory conditions for a time 1 
during which the rate constant ant \va,s increas-
ing with temperature would be equivalent. 
to that calculated for a reaction with a fixed 
rate constant, A' 0 , for time 1. Integration of 
Eq. (1) gives the values of 1, which corre-
spond to the selected Values of 1, for which 
distributions are required. Once a. list of the 
required values of 1, had been obtained, 
product distributions were calculated a.s 
before.  

RE-4- 1,T1, ANU DiscUssioN 

Constant Tent perature 

I)ist rihut ions of products were calculated 
at various time intervals for an arbitrary 
mixture of 22.6 parts of deuterium to I part 
of hydrocarbon and for values of the ratio 
k, 1 //c 11  of 100, 20, 10, 5 , and 1. rFhi(s were 
then used as experimental data. 

The analysis of the results of an actual 
experiment requires, firstly, the recognition 
that not all the hydrogen atoms are ix-
changing at the same rate and, secondly, the 
determination of how many hydrogen atoms  
are in each group. Figures1 and 2 show 
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F'iu. I. Caictil tell isotopic (list lil)I1t ions (luring 
reaction with kB = 0.0 I ) atoms 100 molecules min -1  

and kA/kR = 20. 

distributions of products during reaction for 
values of kA/kfi of 20 and 5, rept'ctivelv. 
The fact that, four hydrogen atoms \V('ri' re-
Placed more rapidly than the second four is 
clear in Fig. 1 but obscured in Fig. 2. 

Another method of distinguishing to it-

equivalent, groups in a stepwise exchange is 
to compare product distributions with cal-
culated binomial distributions for tit( ,  same 
value of 0. The results in Table 1 511(1w that, 
the experimental distributions have more (1 
and (14 Species and less (15  and (16 species than 
the corresponding binomial distributions. 
This test works well for 11'. 1 /k 11  = 20 or 10 
and gives some indication of the division Of 
the atoms into groups even with tit(' ratio 
of 5. This test only works well at the appro-
priate stage of the reaction; at the beginning 
the distrihut ions will he accui'atelv binomial. 
but discrepancies will appear when the 
slower group are stail ing to exchange and 

I'm. 2. Calculated isotopic distributions during 
reaction with k14 as for Fig. 1, but k..1/k = 5. 

they disappear again as equilibrium is ap-
proached. An appropriate stage to make the 
comparison is when the binomial distribu-
tion shows about 10% of the isotopic product 
with one more deuterium atom than the 
nunl}o'r of hydrogen atoms in the, rapidly 
exeliatIge(l group, i.e., (1 in our case. 

Tit( ,  ritt(' ('ollsttflt5 O})tltiIl('(l by the HSK 
method are compared in Table 2 with the 
actual values used to generilt t' the ''experi-
mental data." The choices of and 
are important in estimating the rate con-
stan ts, and tit( ,   I )0t 'edit 0' for obtaining an 
adequate value of 1I has been describ ed 

(a). If 	,,, is correctly chosen, a linear plot 
5110111(1 he obtained for Iog(, - 	vs 
time. and the derivation of the rate constant 
from the gradient presents no problem. Cur-
vat iii't' of the 0 plot ('OiIV('X to the line axis 
iIili)li('5 that the reaction is slowing down and 
that the equilibrium value of 0 . 1  has been 

TABLE I 

(lplItIlo1N or Pnonucr I )Isi'ulltcTioNs WITH BINOMIAL 1)IsTItIIfl.ITIONS 

FOR I )ivi.'i:oi.NT V.ti.uioi or k,4  k8 

/ kji 'I' (lü  d 1  (12 il:i (1 4  d il d1  de 

20 319.() 0A 4.5 ISO :1710 ii .2 7.3 0.7 0.0 0.0 

(Binomial) 319.0 1.7 9.0 21.0 27. 9 23.112 3 4.2 0.5 0.1 

10 312.9 0.7 63 34.6 26.9 55 1.4 0.1 0.0 

(Binomial) 312.9 I 	.t) 9.7 21.5 25.0 22,5 II 	Ii :1.7 0,7 0.1 

299. 5 1.5 9.3 24.0 31.7 22.7 55 I'S 0.2 0.0 

(Binomial) 299.5 2.3 11 	2 23,5 282 21.1 10.1 3I) 0.5 0.0 
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TABLE 2 
(oMe..\eIsoN OF ESTIMATED" AND CHOSEN HATE CONSTANTS 

kAlkB k kB 

Chosen Est. Chosen 	Est.. Chosen Est. 

(I) atoms 100 molecules min ' 

20 21,5 14.0 	14.1 0.6 0.62 370 
10 11.3 7. 3 	 7,38 wt! 0.60 380 
5 5.8 4 	(1(1 	4.07 0.6 0,60 400 
1 4.4 1 	3 	 1.56 0.6 0.20 400 

Rate constants calculated to ±3 in tile third significant figure 

overestimated. The reverse beli avior indi-
cates thitt. 	has been ttIldIt(StiIll:lt(d. 

Fortunately, the range of possible values 
for & was limited. If it wts assumed that 
only four hydrogen atoms were reacting and 
that the remaining four were inert, the cal-
eulated value of is 367 for the reaction 
mixture Used. If till' corresponding procedure 
to that for estimating was employed, 

= 400. which is tile maximum j)OSSil)le 

value of 	. The 	plots for 	ate shown 
in Fig. 3, and the selected values of , are 
given in Table 2. It is in It surprising that a 
lower value If ., was more satisfactory for 
the case of Ic 1  Ic e  = 20 and that the higher 
values were better for tile ease where there 
Was less difference between thit' rates of reac-
tion of the two) groups of atoms. 

TIME J MIN 
100 	 200 	300 

S 	

, 

40  

ligure 4 shows the  plots fo r 	in the ap- 
propriate form to determine the rate of ex-
change III the slower group of hydrogen 
atoms. It was not, pt.ssible to evaluate 
satisfactorily for distributions with less than 
10% of the total hydrocarbon present as (1 5  
or higher species. Each of these plots showed 
similar behavior and fell into three sections. 
The first, part was curved and the curvature 
was more pronounced and lasted longer for 
the lower values of k A  /k,1. The 51(1(11(1 SeC-
tions were reasonably linear, particularly for 
the higher values of k A  /Ic,. and were used to 
estimate the rates given in Table 2. In tile 
final Sections, which (I('(Urred at substan-
tially long.:r tunes titici are not, shown in Fig. 
4, the plots merged into a common line with 
a gradient corresponding to a slightly slowet 

TIME / MIN 

0 	 50 	 100 	 150 

53 

I -L0 	 800 	 600 
TIME/ MIN 

.1) 	Sc 	¶00 	150 

TIME/ MIN 

Fto, 3. Appropriate plots Of OA to determine k 

With values ccl k.4  k8 of I (s), 5 (0), 10 (A), and 
20(0). 

Fm. 4. A pprc pria Ic plots (upper and left-hand 
scales) of to determine k8 with vlllIIrs of k4/k8 of 
1 (H), 5 ) () ), It) (A), and 20 (0): 1111 extended 
plot for the last value is also shown icr longer holes 
(lower and tight-hand scales). 
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rate of 0.56 1) atoms/ 100 molecules miir'. 
It is clear that the HSK method gives a 

good estimate for the total rate of exchange 
and only fails in the extreme case where 
kA = k13  and the two groups of hydrogen 
atoms react at the same rate. In practice, 
the method would never he applied to such 
a case, which would be analyzed by standard 
methods (T). 

The estimated values of k u  I]-(,  all low 
compared with the ehoseti value, but the 
deviation is not greater t liaii 10% it k.4  /k 1  
is 5 or higher. The reason for the discrepancy 
is that the deuterium pool has become di-
luted as a result of tIe' exchange of the first 
group by the time that the second group 
starts to react. The method makes no allow-
ance for this, and consequently t lie calcu-
lated value for h: 1  will he slightly low. A 
correction for this factor ('001(1 easily he 
made. The underestimation of k il  leads to a 
slight, overestimation of the ratio 14/Ic, by 
about 10%, rising to 20% for h.1  /k, = 5. 

It is fortunate that the HSK method is 
satisfactory for cases where it is possible to 
distinguish different groups Of' 11 ' ydrogell 
atoms by inspection Of the expemimneimf a! 

W results. here such differences can be seen, 
corresponding to h' 4  /k 11  > 5, reasi )nal)lv ac-
curate results for the mate' ('OflSti!TtS can he 
Obtained, the ac curacv improving for higher 
values of kA/kil. The method only fails for 
cases where it is difficult to distinguish the 
different, groups of atoms because t1wY have 
similar reactivity. 

This investigation has necessarily been 
limited to testing the HSK method for two 
groups of hydrogen atoms exchanging in a 
stepwise fashion because it, is not feasible 
to calculate distributions Of products involv-
ing multiple exclinmigc. Ho wever, it seems 
probable that the HSK method will work at 
least as satisfactorily for cases ( (I niult ipl 
exchange as it does for stepwise exchange. 
The determination of the total rate (k = 
k,4  + k11 ) should be as reliable for multiple 
exchange, and the estimation of k B  may even 
be improved because the multiple exchange 
would increase the production Of d 1  at an 
early stage and enable the exchange Of the 
second group to be followed more efficiently 
than with stepwise exchange. 

The HS K met hod was put forward origi-
tinily (5) for molecules containing three 
groups Of hydrogen at ouiis. Our examination 
of its validity has been restricted to the east' 
of two such groups because the theory for 
calculating distributions was available for 
only two groups. However, on tile basis of 
lie present work, it would he reasonable to 

assume that the HSE method can he applied 
to more groups provided the value of 
kL/hf > S for successive groups L and if. 
But corrections for isotopic dilution will be 
essential. 

i'einpeialuie Protiram  nun 

The method of generating 'experimental 
data" was first tested  fIll' the case where all 
Ii ydrogen at I Iflis in t lie mnllecule exchange 
at equivalent rates. Values Of at a series 
of values Of t j  were IIht iiIliI'(i from data gen-
erated with a chosen activation energy of 
40 k.J uiiol, an mt ial mate of exchange of 
1.0 1) at omiis / 100 no leeules mnimr' at 273 K, 
and a rate of increase Of temperature of 
1.0 K miir . The average rate of reaction 
wa.s evaluated for cad i tone interval from 

ln( 	- 
(2) 

with 	4.1 and 	l'epl'I sent ing successive 
values of 0 .  Thu'n In /' was plotted against. 
the reciprocal of t lie mean temperature 
for each t inie interval. The fact that a 
good straight line was obtained wit Ii a 
gradient corresponding to an activation 
energy Of 39.2 ± 0.5 LI mIll' confirmed that, 
the method Of generating data was satis-
factory. 

The method was next applied to the case 
Of two groups of hydrogen atoms wit It values 
of k/k, 1  of 6, 11, and 21 all activation ener-
gies being chosen as 40 kJ nioh -1 . The "cx-
pem'inicmitah data" were used to del ermine k 
and k1i by expressions analogous to Eq. (2) 
and t lie corresponding activation energies 
estimated from Arm'hemmius plots. The corn-
parison between the estimated values of k/k 11  
and the estimated activation energies with 
the respective chosen values was used to 
assess the validity of the method of handling 
the data from temperat lire-programmed cat-
alysis. Some Arrhienius plots are shown in 
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TABLE 3 
UE(;ULT5 	'ott 	'I'l:Mi'I;Lt.vruiti;-PIIoGItAMiII.:i) 	('.t'r.ttvsts 

F" 
- 	 kJ niol'' 

Es;. 	 Est, 
('huso i 	 when rl, 	0 ''1 	when d 	20"(' for Ic for k8 

21 	 22.6 	 22.2 	 41.4 403 
II 	 I3. 5 	 13.1 	 42.6 37.3 
6 	 7.7 	 7.4 	 43.8 33.4 

('huseti ii('tivat ion eneri cs Iveli' It) k,J not I ill all 'ase. 

Fig. 5, and till' results til'i suniniarizeil in 
Table :3 

Sat.isfttet ((rV straight lines were oht tutied 
from the Arrhenius plots for the total late 
of exchtuige, and the agreement. bet\V('elI the 
derived activation energies and the clii sen 
value was better the higher the value of k, k-  1, 

The results for k,1 were mueh less satis-
factory, part iculiti lv for the lowest value (If 
k/k 11  = Ii. The Arrheiiius plot in this case 
WItS curved 11.11(1 only approximated a. straight. 
line at a coinparat ivelv late stage in the re-
action. fl. TIie derived 'd ict i vat i 1)11 energy fii ni 
this lifiv was too low, titid t lie ('st ituiitt'd 

4 

'0 
a 

0 

Es 
30 	35 

10' K IT 

FIG. 5. Arrhenius plots for the estimated rates of 
exchange from 1 emperat ire-programme I result 
with values of I IB of 6 (Q ) and 21 (0; .1 repre-
sent  Ic, t he Li Il al rate of exchange, ge, titi I I' t he  rate of 
the slower group, k11.  

values 	whether determined when 
here was 10 or 20% of d formed, were too 

high. Better results were obtained for 
k/k 11  = 1 L and the most satisfactory results 
for k/k, 1  = 21. The clitheulties associated 
with the Arrhenius plots for ka for the lower 
values of k/ k11  clearly arise from I lie t vpe 
of behavior exhibited in Fig. 4 for the plots 
for k 11  in the constant -t Pill pci'a.t ure experi-
nient.s. Tit( ,  estimates for k 11  are much too 
low at the stage when the slower hydrogen 
atoms begin to exchange but become more 
reliable as I lie reaction pi'ot'eds. 

The conclusion is that the FISK method 
works satisfactorily for temperature-pro-
grainmed catalysis when the ratio ()f the 
t'alt' ('(Inst mIs of the two groups of hydrogen 
is greater than about 20 and is definitely 
unreliable if the ratio is less than 10. 
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The exchange behaviour of a series of alkanes, including cycloalkanes, with deuterium over y-
alumina has been investigated. Different types of hydrogen atom; within the same molecule are 
found to exchange at different rates and in some cases a quantitative estimate of the relative activities 
has been made. These results and a comparison of reaction rates of different molecules indicate that 
the reaction intermediates are carbanionic in character. A linear relation between hydrogen exchange 
activity and hydrocarbon acidity has been obtained and is shown tc be an example of the Brønsted 
catalysis law. 

All the exchange reactions took place in a stepwise manner and, for the cycloalkanes, exchange 
could be followed at lower temperatures without complication from isomerization and addition. 

Recent results 1 suggest that the intermediates in the exchange of butanes over 
y-alumina possess carbanionic character. The present work which involves the 
examination of the exchange reactions of a series of acyclic and cyclic alkanes seeks to 
relate rates of reaction to the stabilities of the carbanions formed from the respective 
molecules. 

Larson and Hall 2 investigated the exchange reactions of methane over alumina. 
The reactions were catalyzed by a small number of active sites and involved exchange 
with only 1 % of the catalyst hydroxyl groups. Ethane is reported to exchange on 
alumina via a stepwise mechanism.' Lewis acidity was lound to be the property of 
the alumina catalyst which best correlated with its activity for the exchange of pro-
pane.' In addition, reducing centres on the surface played an essential role in the 
reaction. 

y-Alumina is reported to be an excellent catalyst for the exchange of cyclopro- 
pane. 5  Isomerization and hydrogenation reactions are not extensive and the catalyst 
has been used to prepare [ 2 H 6]cyclopropane of high isotopic purity. 

In this work the exchange reactions of five acyclic and four cyclic alkanes have been 
studied. Information concerning reaction intermediates has been obtained not only 
from relative rates of exchange of the various reactants, but also from the reactivities of 
different types of hydrogen atoms within the same molecule. 

In previous work only one hydrocarbon has been investigated in any one experi- 
ment. An improved method involving combined gas chromatography-mass spectro-
metry (g.c.-m.s.) has now been used and permits examination of the exchange of a 
series of reactants simultaneously. It has, therefore. been possible to obtain relative 
rates of exchange for different alkanes over the same catdyst sample, thereby elimin-
ating possible problems of reproducibility of catalytic performance. In addition the 
exchange of cycloalkanes with deuterium may readily be studied even if other reactions 
take place. Using g.c.-m.s. the processes of addition, exchange and isomerization 
may be followed simultaneously. 

903 
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EXPERIMENTAL 

APPARATUS AND PROCEDURE 

Exchange reactions involving a single reactant were followed in a conventional manner a 
using a direct capillary leak from the reaction vessel to an A.E.I. MS1O mass spectrometer. 
Mass spectral analyses of the hydrocarbon products were carried out for the parent ions using 
an electron beam of energy 10 eV. With the exception of experiments involving cyclo. 
propane and methylcyclopropane when 0.1 g samples of catalyst were used the usual pro-
cedure was to treat 1.0 gy-alumina in oxygen at 723 K prior to evacuation at this temperature 
for at least 15 ii. The reaction mixture usually consisted of 0.96 kN m 2  hydrocarbon and 
9.5 kN iii 2  deuterium in a silica reaction vessel, giving Ca. 3 x 10' molecules of hydrocarbon 
in the reaction vessel. Exceptions to these proportions are indicated in the Results section. 

In experiments involving more than one reactant hydrocarbon or in those in which a 
single reactant could exhibit different reactions, the standard mass spectrometric method 
proved inadequate. In such cases the combined g.c.-m.s. apparatus linked to an "on-line" 
computer 6. 7 was employed. Separation of acyclic alkanes was achieved using an 8 m 
column of bis-2-methoxyethyl adipate (13.5 ) and di-2-ethylhexyl sebacate (6.5 %) on 
60/80 mesh Chromosorb P, operating at 273 K for C 1  to C3  alkanes and at room temperature 
for higher alkanes. Cycloalkanes and their isomerization products were separated on a 4 m 
column of propylene carbonate on 60/80 mesh Chrornosorb P operating at 273 K. This 
column was also used to separate the components of the cyclobutane and ii-butane mixture. 
For experiments followed by g.c.-m.s., the reaction mixtures were chosen to give approxi-
mately the same number (3 x 10') of hydrocarbon molecules and the same total pressure in 
the reaction system as for those experiments followed by mass spectrometry alone. The 
catalyst received the same pretreatment. 

The method of data acquisition was identical to that described previously 7  except that 
the use of reference masses IS, 28 and 32 proved inadequate for the accurate analysis of mass 
spectra of C 3  and C4  alkanes. It was found necessary to employ reference masses such that 
the mass range of interest was included, thereby permitting mass numbers to be assigned by 
an interpolation method. Two techniques were available for the production of suitable 
reference masses. First, liquid phase bleed from the chromatographic column sometimes 
gave rise to a suitable reference spectrum. Second, when this was not the case, a reference 
spectrum was obtained by insertion into the mass spectrometer of a hydrocarbon with a 
known fragmentation pattern, e.g. o-xylene. This procedure was carried out before the 
start of an experiment and all traces of the hydrocarbon allowed to evacuate from the system 
before collecting further spectra. 

MATERIALS 

The y-alumina was prepared by heating a high purity boehmite (Laporte Industries Ltd.) 
at 900 K in air for 16 h. The specific surface area, determined by nitrogen adsorption at 
77 K, was 120 m 2  g 1 . 

All hydrocarbons and deuterium were of high purity. The hydrocarbons were distilled 
from traps held in liquid nitrogen before use while the deuterium was purified by diffusion 
through a heated palladium-silver alloy thimble. The cyclobutane sample was a mixture of 
approximately equal amounts of cyclobutane and n-butane and was without prior separation 
of the individual components. 

TREATMENT OF RESULTS 

Mass spectra were corrected for the presence of background peaks, for naturally occurring 
deuterium and "heavy" carbon and for fragmentation in the mass spectrometer source. 
When the exchange reaction was not followed past the initial stages, the fragmentation was 
assumed to involve statistical loss of hydrogen and deuterium from the molecule. However, 
if extensive exchange was involved the method of Dowie et al. 9  was used. A further modi-
fication in the usual fragmentation correction procedure was required for analysis of highly 
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deuterated isobutane. In the mass spectrometer the most likely hydrogen atom to be lost 
after initial ionization of the molecule is that of the methinc group, which as results indicate 
had little chance of being a deuterium atom. Thus it was assumed that the fragment pro-
duced by loss of one hydrogen atom was always one mass unit less than its parent ion. 
Fragmentation by loss of hydrogen (or deuterium) from other positions in the molecule was 
considered in the usual manner. 

In the exchange reactions where all the hydrogen atoms of the reactant exchanged at the 
same rate standard methods 10 were used to determine the initial rate for deuterium entry (ku,) 
and loss of the [ 2 H0]-isomer (k 0 ). Values of the parameter M(= k/k 0) were calculated to 
determine the multiplicity of the exchange process. 

However, for some hydrocarbons different types of hydrogen atoms exchanged at different 
rates. To analyse the data in these cases a method involving approximations in the stand-
ard treatment was required. The exchange in different groups of hydrogen atoms was 
considered separately and equations analogous to those devised by Kemball 10  were derived. 
This method is known to be satisfactory if the ratio of rate constants for exchange in the 
different groups is greater than 5 1.12 

Initial rates for isomerization, k1 were calculated where appropriate assuming first order 
loss of reactant. 

RESULTS 

EXCHANGE OF ACYCLIC ALKANES 

Some general points emerged for all the experiments involving the individual 
exchange of a reactant. All reactions followed the usual equations for exchange 
processes 10 and all gave M values near unity, indicating the stepwise nature of the 
exchange. All rates quoted subsequently are k, values and the derived Arrhenius 
parameters are given in table I. Since certain reactants exhibited exchange of' differ-
ent groups of hydrogen atoms at different rates (see below) the data in table I refer to 
the most active hydrogen atoms. The uncertainty in values of the activation energy 
E is estimated as ±4 kJ mo! -1 ; that in the log A values is ±0.6. 

TABLE I.—KINETIC DATA FOR EXCHANGE OF MOST REACTIVE HYDROGEN ATOMS IN ALKANES 

temperature/K for 

Iog(Almotecule temperature k1 	10 13 molecule 
reactant Elk) mol' s' rn -2 ) range/K s-  I rn -2  

methane 17 16.5 284-360 - 

propane 36 19.6 292-363 - 

isobutane 33 19.4 273-370 - 

n-butane 35 20.1 273-335 - 

cyclopropane 26 19.9 250-289 355 
methylcyclopropane 

(type A) 17 18.1 273-348 
methylcyclopropane >355 

(type B) 25 18.4 273-348 
cyclobutane 45 21.4 273-317 >335 
cyclopentane 42 20.6 289-339 - 

The most interesting aspect of the exchange of n-butane was that six of the hydro-
gen atoms in the molecule were exchanged more readily than the other four, the 
distribution of isotopic species as a function of time showing a marked discontinuity 
between the appearance of the [2 H 6]- and [ 2 H 7]-isomers. Exchange in the second 
group of hydrogen atoms was studied in greater detail by using a higher deuterium: 
hydrocarbon ratio of 25 : 1. Analysis of the results indicated that the methyl 
hydrogen atoms in n-butane (type A) exchanged about sixty times faster than those in 
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the methylene groups (type B) at 316 K. A computer program 12  was used to cal-
culate theoretical isotopic distributions at various times for molecules in which 
different groups of atoms exchanged at different rates. By specifying that type A 
hydrogen atoms exchanged sixty times faster than type B (i.e. k A /k,, = 60) a set of 
distributions was generated for n-butane such that for similar extents of exchange 
experimental and calculated distributions could be compared (table 2). Also shown 
in table 2 is the binomial distribution calculated for ten equally reactive hydrogen 
atoms. 

TABLE 2.-PRODUCT DISTRIBUTIONS FOR EXCHANGE OF fl-BUTANE 

isotopic species/ 	[ 2 H2] 	12H 3 1 	EH41 	[ 2 II1 	[ 2 1-161 	[ 2 H7] 	[ 2 1-18] 

experimental 	3.6 	15.2 	29.5 	33.8 	16.1 	1.4 	0.1 	446.6 
calculated 11 	 4.5 	15.4 	29.9 	31.9 	15.7 	1.7 	0.0 	442.2 
calculated b 	8.3 	14.4 	24.2 	23.0 	15.2 	6.9 	2.0 	446.6 

a Assuming 6 hydrogen atoms (type A) reacting more rapidly than remaining 4 (type B) with 
kA/kB = 60; b  assuming all 10 hydrogen atoms reacting at same rate; c  0 represents the extent of 
the exchange, I0_2  being the average number of deuterium atoms per molecule. 

A similar analysis was carried out with the data for propane exchange. Again 
those hydrogen atoms in the primary positions were much more active than those in 
the secondary group and k A /k B  was found to be about 170 at 355 K. 

TABLE 3.-EXCHANGE OF ISOBUTANE: PRODUCT DISTRIBUTION AFTER EXTENSIVE REACTION 

isotopic species/ 	 L 2 Ft5] 	 [ 2 1-17] 	( 2 H51 	1 2 1191 	[ 2 1-I101 

experimental 	7.7 	18.5 	40.0 	33.6 	<0.05 	798.1 

calculated ° 	7.7 	22.0 	37.1 	28.9 	2.2 	790 

a Based on 9 hydrogen atoms (type A) reacting more rapidly than the remaining I (type B) with 
kA/kB = 100. 

In isobutane no evidence for the production of the [ 2 H 10]-species was obtained 
during the experiment. A deuterium enriched mixture (13 2  : isobutane = 50 : I) was 
treated at 423 K in an attempt to produce some perdeuteroalkane. Even after 
pumping off the diluted deuterium and continuing the reaction with a fresh dose no 

TABLE 4.-SIMULTANEOUS AND INDIVIDUAL EXCHANGE OF ALKANES 

simultaneous rate individual rate 
I 0 13k 	/moIecule 10 	3 k 	jrnolecule temperature 

reactant s 1  rn 2  s 1  rn 2  T/K 

methane 3.4 3.9 308 
ethane 1.9 - 308 	experiment A 
propane 9.6 3.8 308 

propane 1.5 1.5 290 
isobutane 6.3 3.8 290 	experiment B 
n-butane 6.6 6.7 290 

[2 H 10}isobutane was formed, although the mixture then contained over 70 % of 
[2 H 8]- and [ 2 H 9]-isomers (table 3). The other distribution shown in the table is that 
calculated for a molecule like isobutane in which the tenth hydrogen atom exchanges 
100 times more slowly than the other nine. For a 0 value of 790 it predicts that over 
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2 % of the [ 2 H 10]-species should be present in the product mixture. This quantity 
would certainly have been detectable in the mass spectrometer and thus for isobutane 
we estimate that k A /kB > 100. 

Results for the simultaneous exchange of the alkanes are summarised in table 4. 
A mixture of methane, ethane and propane was reacted with deuterium at 308 K and 
a mixture of propane, n-butane and isobutane was reacted at 290 K. The rates 
derived from the results of these experiments are listed together with those obtained 
in the individual exchange experiments. 

EXCHANGE OF CYCLIC ALKANES 

All the cycloalkanes studied underwent exchange by a stepwise mechanism. 
Cyclopropane and methylcyclo propane were the most reactive molecules and kinetic 
data are given in table I. Also included in the table is an indication of the temperature 
required to give an isomerization rate in excess of 1013  molecule s' in - '. 

The exchange of cyclopropane was followed in the temperature range 250-290 K 
when all the hydrogen atoms were found to exchange reacily and at the same rate. A 
temperature of 358 K was required before the production of propylene was observed 
and at this temperature the rate of exchange was more than 1000 times that of isomer-
ization. 

Interesting results were obtained in the exchange of methylcyclopropane. The 
eight hydrogen atoms could be classified into three groups A. B and C according to 
their different rates of exchange. The four hydrogens at the C(2) and C(3) positions 
(type A) were the most reactive, followed by the single ring hydrogen at the substi-
tuted C(l) position (type B). The least active were those atoms in the methyl group 
(type Q. The ratio of rate constants kA : kB was Ca. 10 I at room temperature. 
The type C hydrogen atoms did not appear to exchange even at temperatures in excess 
of 350 K. The rate of exchange of the type A hydrogen atoms at 287 K (1.3 x 10 15  

molecule s rn -2) was very similar to that of the hydrogen atoms in cyclopropane 
itself (1.4x 10' molecules - ' nr 2) measured at the sane temperature. A temper-
ature of 355 K was required in order to achieve isomerization at a measurable rate, the 
initial product being trans-but-2-ene. At this temperature, the rate of isomerization 
was ca. 100 times slower than that of the exchange of t)pe B hydrogens. 

The exchange of cyclobutane was studied using a reaction mixture consisting of 
cyclobutane and n-butane in approximately equal amounts. All the hydrogen 
atoms in cyclobutane exchanged at the same rate in the temperature range 273-355 K. 
Even at the high temperatures in this range only a trace of butene could be detected 
and the rate of isomerization was at least 150 times siDwer than that of exchange. 

In the exchange of cyclopentane all the hydrogens reacted at an equal rate and in a 
stepwise manner. 

DISCUSSION 

The rate of exchange of methane with deuterium on our alumina catalyst (4.0 x 10 13  

molecules - ' rn 2  at 301 K) is somewhat slower than that found by Larson and 
Hall 2. 26 (3.6 x 1014  molecules- ' nr 2  at 301 K) but a higher pretreatment temper-
ature was employed in their work. For the exchange of propane at 293 K, Flock-
hart etal.4  found a rate of Li x 10' molecules - ' m 2  for an alumina catalyst pre-
treated at the temperature used in the present work (723 K). Using the pressure 
dependencies quoted we would expect their catalyst to show a rate of 2.7 x 10' 
molecules- ' rn 2  in our system and this compares favourably with the observed rate 
of 1.6 x 10 13  molecule s' m 2 . Our observation of the relative rates of exchange 



908 	 ALKANE EXCHANGE ON ALUMINA 

of the different hydrogen atoms in propane does however disagree with the suggestion 
of Flockhart et al. 4  that the secondary hydrogen atoms are more rapidly replaced. 

It has been shown I that in the exchange of methane with deuterium over alumina, 
the rate determining step involves fission of a C—H bond and it seems very probable 
that dissociative adsorption is involved for all the alkanes studied in the present work. 

It seems unlikely that the alkanes exchange via radical intermediates. It has been 
established 10. 13, 14 that the adsorption of saturated hydrocarbons to form surface 
alkyl species plays an important part in the exchange process on metal catalysts. Fig. 
1 shows that for the exchange of alkanes on tungsten there exists a rough correlation 
between the ease of exchange and the dissociation energy of the alkyl-hydrogen bond 
which must necessarily be broken to produce the adsorbed alkyl groups. In particu-
lar, the high bond dissociation energy of the C—H bond of methane results in a rate of 
exchange which is about 1000 times slower than that of the other alkaiies. In contrast, 
on y-alumina, methane exchanges as readily as the other alkanes and no such distinc-
distinction in behaviour is observed. In addition, the most weakly bound hydrogen 
atoms in isobutane (the methine hydrogen) and in n-butane (the secondary hydrogen 
atoms) are the least active for exchange. For the cycloalkanes the observed rate of 
reaction decreases in the sequence: 

cyclopropane >s  cyclobutane > cyclopentane 

and this order is the reverse of that expected for radical intermediates since the bond 
dissociation energies are 431, 414 and 397 kJ mol -1  for cyclopropane, cyclobutane 
and cyclopentane respectively. 

r4 

Cd 
,IB.O 

73 
16.0 

0 

0 

0 

an 

380 	400 	420 	440 

dissociation energy DRHIkJ mol - ' 
FIG. 1 .—Alkane exchange reactions over tungsten; log k 0  at 289 K as a function of the dissociation 

energy s of the C—I-i bond for methane,'° ethane,'° propane,'° isobutane 11  and n-butane. 14  

Exchange via carbonium ion or partially positively charged intermediates may 
also be ruled out. Exchange of saturated hydrocarbons on silica-alumina is generally 
regarded as involving carbonium ion intermediates. On silica-alumina isobutane 
will exchange at 393 K 17  but ti-butane requires a temperature in excess of 550 K. 
In contrast, on ) ,-alumina at room temperature the two butane molecules undergo 
exchange at similar rates. A much higher rate would he expected for isobutane if 
formation of tertiary carbonium ion were important for exchange. 

The general behaviour of the alkanes on alumina suggests that the intermediate 
species are adsorbed alkyl groups which possess carbanionic character. Many of the 
differences in reactivities can be qualitatively explained by consideration of the 
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effects of alkyl substituents on the stabilities of carbanions. Alkyl group replacement 
of hydrogen in methane leads to a decrease in the stability of the carbanion as a result 
of the electron releasing nature of the substituent e.g. the ethyl carbanions CH 3 CH 
would be less stable than the methyl anion CH, and indeed the exchange rate for 
ethane is lower than that observed for methane. Increasing the length of the alkyl 
chain tends to decrease the degree of destabilization [see for example ref. (18)] such 
that the anion CH 3CH,CH 2  is more stable than CH 3 CI4 2 . This is in accord with 
the observation that propane exchanges at a greater rate than ethane. 

The operation of such inductive effects can also assist in explaining the different 
reactivities found for various groups of hydrogen atoms in the same molecule. For 
both propane and n-butane, the methylene hydrogen atoms exchanged much more 
slowly than the primary hydrogen atoms, the effect being more marked in the case of 
propane. The (CH 3) 2

CH carbanion has two methyl groups adjacent to the central 
carbon atom on which the negative charge is visualized and thus there is a pronounced 
destabilizing influence. The magnitude of the effect is reduced in the carbanion 
(CH 3)(C 2H 5)CH -  formed from n-butane since, in this case, one of the substituent 
groups is larger and therefore less destabilizing. By'similar reasoning it can be seen 
why the methine hydrogen in isobutane is very inactive for exchange; the inductive 
effect of three substituent methyl groups causes the (CH 3) 3 C ion to be particularly 

unstable. 
It would be useful to attempt a more quantitative correlation between alkane 

exchange activity and carbanion stability. If this is the major factor in determining 
the reactivity of the alkanes the rate determining step which occurs on the surface 
may be written 

RH-.R- +H. 	 (1) 

This reaction may be considered to involve three basic processes 

	

RH-+R.+H. 	AH = DRH 	 (2) 

R.+e- -R- 	AH = ER 	 (3) 

	

H.-+H+e 	LH = 'H 	 (4) 

where DRH is the bond dissociation energy of the alkyl-hydrogen bond which is broken 
in the adsorption process, ER  is the electron affinity of the alkyl radical and 'H  is the 
ionization potential of the hydrogen atom. For a series Df alkalies, provided that the 
respective carbanionic species are equally strongly adsorbed the ease of occurrence of 
reaction (I) will be determined by the value of (DRH- ER). Unfortunately precise 

values of ER  for the radicals under discussion are not known at present, reported values 
often having an uncertainty exceeding several tenths of an electron-volt.' 9  Such a 
degree of uncertainty precludes the assessment of relative carbanion stabilities based 
on thermochemical data. Indeed catalytic studies similar to those reported here may 
have some value in assessing relative values of electron affinities for hydrocarbon and 
other radicals. 

It is more fruitful to consider the reactivities of the alkanes as a function of hydro-
carbon acidity. As with electron affinity data, the assignments of pKa  values for such 
weak acids is not without question. The pK, values used in this work have been 
derived from equilibrium studies by Dessy et al. 2°  and Cram. 2 ' Dessy et al. 20  have 
argued that in establishing a rank of carbanion stabilities the use of kinetic acidity 

values is not to be recommended. 
Fig. 2 shows the relationship between the exchange activity of alkanes and their plC 3  

values where these are known. The rate constants used in the figure are taken from 
the data of table I except for the secondary hydrogen atoms in propane and n-butane. 
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For these less active hydrogen atoms Arrhenius data were not available and thus the 
rates of their exchange k were estimated at 289 K using the values of kA/k,3 obtained 
at slightly higher temperatures. 
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FIG. 2.—Alkane exchange reactions over y-alumina; log k4. at 289 K as a function of the pKa  of the 
hydrocarbon [k.1, for ethylene taken from ref. (7)]. The values of PK a  are given to the nearest half-

integer for ethane and n-butane, and to the nearest integer for the other compounds. 20, 

The figure shows that a linear relationship of the form 

log k,1, = —a(pK a)+b 	 (5) 
holds, where a and b are constants. 

For the acyclic molecules 

logk = —0.64(pKj+38.7. 	 (6) 
For the cycloalkanes 

log k, = 	0.38(PKa)+29.5. 	 (7) 
Eqn (6) appears to hold for ethylene exchange on alumina. 

Eqn (5) is essentially the Brønsted relation 22  proposed to relate the effectiveness 
of an acid catalyst to its acid strength: 

	

kA = GA Ka 	 (8) 
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where kA denotes the rate constant observed for the catalyzed reaction, K is the 
dissociation constant of the acid, G A  is a constant and ot is a parameter taking values 
between zero and unity and indicates the sensitivity of the catalysis to the acid 
strength .23  As Bell 22  has indicated, the Brønsted relationship, although normally 
applied to the catalysis of a given reaction by a series of acid catalysts, is also expected 
to hold for the case where one catalyst is used with a series of acid reactants. Thus 2, 

the sensitivity factor of the Bronsted equation (8) is analogous to the parameter a in 
eqn (5). For the acyclic molecules a = 0.63, but for the cycloalkanes the dependence 
of exchange rate on pK is less marked with a = 0.38. Thus it is clear that an addi-
tional factor influences the activity of the cycloalkanes and causes an enhancement in 
the rate of exchange, particularly for cyclobutane and cyclopentane. The origin of the 
increased rate of exchange is difficult to explain. Burwell etal."' have attributed the 
enhanced rate of exchange of cyclopropane on chroniia to the operation of a hyper-
conjugative effect. It is unlikely that such an effect is present in exchange on alumina 
since cyclopropane is only marginally faster in exchange than predicted on the basis of 
the rate-acidity relationship for acyclic molecules (fig. 2). This close agreement also 
precludes the attribution of high exchange rates in cycicalkanes to enhanced chemi-
sorption via it-bonding interaction with the catalyst surface. The absence of it-
bonding influences is also confirmed by the fact that the relative exchange activity of 
ethylene is satisfactorily explained by acidity alone. We must therefore conclude 
that an effect operates which enables the hydrogen atoms in cyclobutane and cyclo-
pentane to be more accessible. The origin of this effect may possibly lie in the orient-
ation of the adsorbed reactant at the surface but a deeper understanding must await 
the results of further experimentation. 

The linear free energy relationship depicted in fig. 2 demonstrates that alkanes 
exchange on alumina via the formation of adsorbed alkyl groups with carbanionic 
character and that exchange activity is largely controlled by hydrocarbon acidity. 
The extension of this idea to include ethylene is in accord with the dissociative mech-
anism for ethylene exchange proposed by Hightower anc. Hall. 25  The work demon-
strates the importance of the electronic charge of reactive intermediates on catalytic 
processes occurring on alumina.' 

In addition we may use the relationship to provide PKa  values for the methyl 
hydrogen atoms in the butane molecules, since these are not included in the data from 
ref. (20) and (21). Both n-butane and isobutane exhibit similar rates of exchange 
(tables 1 and 4) and we calculate the pK value for the primary hydrogens in both 
molecules as approximately 39. 

The results of the experiments in which more than cne alkane underwent simul-
taneous exchange over the same catalyst indicate that the reaction rates were little 
affected by the presence of other alkanes. Results were also free from effects due to 
dilution of the deuterium pool which might have occurred, for example, if a large 
hydrocarbon underwent rapid exchange in competition with smaller and less reactive 
molecules. The applicability of g.c.-ni.s. to competitive studies of catalytic reactions 
is thus demonstrated. 
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PROGRAM TO cAL:tJLATF DISTRIBUTIONS IN MOLECULES 

WITH GROUPS OF NON—EJtJIVALENT HYDPUr,EN ATOMS. 

SYMBOLS IN PROGRAM 

NMOL -NO 	OF 	MOLECULES 	BEING 	CONSIDERED 
N —TOTAL 	NO 	OF 	EXCHANGEABLE 	HYDROGENS 
NGRCUP —NO 	OF 	GROUPS 
NSET(I) -NO 	OF 	HYDROGENS 	IN 	EACH 	GROUP 
PRATIC —RATIO 	OF 	DEUTERIUM 	TO 	HYDROCARBON 
S -MOLE 	FRACTION 	OF 	D 	IN 	0—H 	POOL 
AD —MOLE 	FRACTION 	OF 	HYDROCARBON 
NRATS —NO 	OF 	RATIOS 	TO 	BE 	CONSIDERED 
RATC —SLOWEST 	RATE 	CONSTANT 	(Z 	MIN) 

REGIT(I) —RATIO 	OF 	RATE 	CONSTANTS 
NS —NO 	OF 	STEPS 	IN 	TEMP 	INCREASE 
H —INTERVAL 	BETWEEN 	STEPS 
NB —INTERVAL 	BETWEEN 	SAMPLES 
TI11E(I) —TIME 	OF 	SAMPLE 	(HRS) 
T —INITIAL 	TEMP 	(K) 
E -ACTIVATION 	ENERGY 	(KJ 	MOLE) 
B —RATE 	OF 	:NCREASE 	OF 	TEMP 	(DEG 	MIN) 

DECLARATIONS 

DIMENSION C(5,5) .A(!) ,DED(5) ,00T(5,1000) ,D(20,1000) ,NSET(5 

DIMENSION TIGER(S),P(2),COMT(1000),TLAB(1000) ,TIME(1000) 
DIMENSION PMET(1000',REGIT(5) ,M1)TEMP(30) .TEMPIN(50) 
COMMON COMT,TLAB,H,FJS,J ,PMET 

DATA BLANK/' '/ 

SET CONDITIONS 

RE A 0 • N MC L 
DC 23 IMOL=1,NMOL 
READ, N, NGROUP, ( NSET ( I) , 11, NGROUP) 
READ, PRATIO 
READ, S 
AB1.0/(1.0+PRATIO) 
READ, NRATS 
DC 20 NCATS1,NRATS 
READ .RAT C 
SRCRI\TC*0.6/(1.0*NSET(NGrOUP)) 
READ, ( REG IT( I), I1, NGROIJP) 
DC 21 J1,NGROUP 
TIGER(J)REGIT(J)/(1.O*NSET(J)) 
DC 22 J1.NGROIJP 



22 	TIGER(J)TIGER(J)/TIGER(NGROUp) 
DO 23 J:1,NGROUp 
KJ-1 

WRITE((,, , 1000) J .NSET(J) 
1000 	FCR?7T('Y,20X,'GROUP '.11,' CONTAINS ',12,' HYDROGEN ATOM 
S') 

IF(J.E.1) GO TO 117 
WRITE(6,1001 ) K,J ,REGJT(K) 

1001 	FORMT('O',20X,'RATIQ OF RATE CONSTANTS:- 	GROUP 1 .11,' 
GROUP ', 

WIll' 
117 	DO 23 L1,NGPOUP 

C(J,L)SRC*(1_IA9S(J_L)+NSET(J)*AB)/(1+AB)*TIGER(J) 
23 	CONTINUE 

WRITE(ô, 1 002) NGROUP, RATC 
100? 	FORt/AT('0',20X,'RA1E 	CONSTANT 	FOR 	GROUP 	'.11,'  
10.4) 

XXX(C(1,1)+C(2,2))/2 
Yvv= ((C (1, 1) C (2, 2)) ** 	/4 
ZZZ:C (1, 1) *C (2, 2)-C(1, 2)*C(2, 1) 
A(1)XXX+SQRT(YYY-ZZZ) 
A(2)'C(1,1)+C(2,fl-A(1) 
M=1 
IF(NCATS.GT .1) GO 10100 
READ, NS 
READ i  H 

100 	CONTINUE 
C 
C 	CALCULATE TIMES FOR RISING TEMPERATURE 
C 

IF(H.EQ.0.0)GO TO 101 
IF(NCATS.GT .1)GO 10102 
CALL CALTIrI 
READ, N 0 
X = ND 

102 	IF(M/X.EO.M/ND)GO TO 103 
GO TO 112 

103 	TIME(')COMT(M) /60.0 
GO TO 104 

C 
C 	READ TIMES FOR CONSTANT TEMPERATURE 
C 
101 	IF(NCATS.GT.1) GO TO 105 

P''ET()000.0 
R E A 0 , I I M E (M) 

105 	IF(TflE(M).GT.999.0)0 TO 20 
C 
C 	CALCULATE PRODUCT DISTRIBUTION 
C 
104 	MAMAO 

DO 24 J1,NGRCUP 
IF(NSET(J).EQ.0) GO TO 24 
L = N G R U UP - j 1 

AM A+ N SET (J ) 
0 3 L S / (1 + N * A B) 
IF(M.GT.1) GO TO 106 
WR lIE (6, 1003) DGL 

1003 	FORMAT('U',' DGL 	',F12,6) 
PHIl N DO L*1 00. *NSE 1(J) 



RITE (6, 1004) PHIl N 
1004 	FORMAT('O',' PHI(INFINITY) = 	',F12.6) 

106 	P(1)NSET(1) 
P (?) N SET (2) 
uUur) GL/(2*A(J)*A(L)C(J,J)*A(L)_C(L,1)*A(J)) 
VVVC(J,L)*C(1,J)+P(L) 	/P(J) 	*C(J,L)*(C(L,L)_A(L)) 
WWW C C (J , J ) -A( J ) ) * (C ( L L ) -A( 1)) +P (1)/P( J ) * (J .1) * (C(L, 1)-A 

CL)) 
DED(J)DGL+UUU*(VVV*EXP(A(J)*TI!E(M)) ,I.WWW*EXP(A(L)*TIME(M) 

WRITE(6,1005)DED(J ) 
1005 	FOR4T('',' D= 	',F12.6) 
24 	CONTINUE 

DO 25 J:1.NGROtJP 
IF(NSET(J).EQ.0) GO TO 25 
DCT(J,1)(1-DE1)(J))**NSET(J) 
NNNSET(J )+1 
Do 25 12.NN 
DOT(J,I)DOT(J,(11))*DED(J)*(NN 

25 	CONTINUE 
N NN= N + 2 
N r N SET (1) + 1 
PH I= ( ) 1   U 
DC 26 J2,NNN 
K=J-1 
o ( j • M ) =0 • 0 
DO 26 11,K 
IF(I.GT.NN,OR.(J-I),GT.(NNN-NN)) GO TO 107 
IF( (NNN-Nr,).EO.l) 1)01(2, (J - j) )1 .0 
D(J , M)D(J ,M)+DOT(1, I) DO1 (2, (J-I) )*100 

1r7 	IF(I.NE.K) GO TO 26 
PH IPH 1+1) (J , M) * (J-2) 

26 	CONTINUE 
IF(H.EQ.0.0)GO TO 108 
WRITE (6, 1006) PMET (M) 

1006 	FORMAT('O','TEMPERATURE IS 	',F6.2,'K') 
GO TO 109 

108 	IF(NCATS.GT.1) GO TO 109 
W R I T E (6, 1 ()07) 

1007 	FORNAT('O','TF.MPERATURE IS CONSTANT') 
109 	CONTINUE 

Xl jMT  IE (M) *60. 
W I I U (6, 1 00 ) XI I M 

1008 	FORMAT( 'O',25X.'PRODUCT DISTRIBUTION AT 1 ,F12.5,' MINIJIFS 
I ) 

WRJTE(6,1009) (BLANK, LIJLU:1 ,N) 
1009 	FORMAT(' ) ',5X,'DO',5x,A1.'D1',5x,A1,'D2',5x,A1,'03',5X,A1, 

'010' ,5X 
W ,p1, '1)11' , 5X ,Al 1 ' 1)12') 
WRITE(6,1010) (D(J ,M) ,J=2,NNN) 

1010 	FOR'AT( '0' ,13Fh1 
C 
C 	CALCULATE PHI VALUES FOR DIFFERENT GROUPS 
C 

A Z m 0 • 0 



27 

28 

29 

30 

110 
111 

1011 
C 
C 
C 

1012 
.2) 

B Z U • 0 
czo .0 
02:0 .0 
N AZ 1 N SET (1) 
NBZ1SET(1 )+1 
J 1 23: 971 + 2 
DC 27 J=1,NAZ1 
A 2  A 2 + J * 13 (J + , M) 
DC 28 JNI3Z1,N 
B 2 = B Z + N S El (1) * 13 (J + 2 H) 
H IAAZ+BZ 
DC 29 JNBZ1,N 
IF(fl(J123,H).LT.0.1) GO TO 110 
CZCZ+ (J—NSET( 1) ) *D(J +2, H) 
00 30 J:NfZ1 • N 
D Z 13 7 + 0 (J + , H) 

HIBC7/DZ*100.0 
GO 10 111 
H lB = U • U 
CONTINUE 
WRITE (6, 1011) H IA, H lEl 
FORMAT( 'O',' 	PHI(A) 	' ,F10.4, 	PHI(B) = 	',F10.4) 

Cc1PARE CORRESPONDING BINOMIAL DISTRIBUTION 

WRITE (6,1012) PHI 
FORMAT('0 1 ,20X,'BINCIMJAL 	DJSTRI1J'JTI0N 	WITH 	PHI 	',F7 

YyP9y /1 (JO/N 
XX=l • 0 - V V 
13 (2. M ) :1 OO*XX**N 
DO 31 J3,NNN 

31 D(J,M):D(J_1,M)*(NN_J+1 )yy/XX/(J-2) 
WRITF(6,1009) (BLANK, LULU:1 ,N) 
WRITE(6,1010) (D(J,) ,J:2,NNN) 

112 	M=M+1 
IF(H.EQ.0.0)GO TO 1Ci 
IF('.EQ.NS)GO TO 20 
GO TO 102 

20 	CONTINUE 
STOP 
END 
SUBROUTINE CALl IM 

C 
C 	CALCULATES COMPUTER TIME DISTRIBUTION 
C 

DIMENSION COMT(1000) ,TLA13(1000) 
DIMENSION PMET (1000) 
COMMON PMET 
COMMON CONT, I LAB, '4, S • J 
R=8.31/E-03 
READ, I E.8 
P=0.0 
F P 1 • 0 
F F P() • 0 
ARO .0 
P10 .0 



I4RITE(6, 1013) 
1013 	F0RAT('0 1 ,' LAB 	TtME',1Ox,'C0PUTER 	TIME') 

W R I I E (6, 1 01 6) 
1(14 	FOR?AT( '0' ,4X, ' 0.0000', 19X, '0.0000') 

J:0 
113 	JJ+1 

TF(J.EQ.NS)GO 10116 
p=p+0 
Y: C El (R * I ) - E/ ( * CT + 13 * p) ) ) 
PPEXP ( Y) 
IF(J.LT.3) GO TO 11 1 > 
X=J /2.0 
YJ /2 
I F (X • (51 • Y) AR AR + H * C ' F P + 2 pp - F F P) / 6 • 0 
I F (X • E 0 • Y) A R AR + H * ( I P + P) / 2 .0 
GO TO 116 

115 	ARH* ( FP+PP) /.U+AR 
116 	FFPFP 

FPPP 
P E I (J ) I + B * P 
CCIII (J ) AR 
TLAB(J ):P 
IF(INI(P).EQ.1N1P1:tGo 10117 
WRITE (6,101 S) P, AR 

1015 	FCRP'AT('0',5X,E10.415X,E10,4) 
11? 	P1P 

GO 10 113 
114 	RETURN 

END 


