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Absorbing Wave-Makers and Wide Tanks

*
S.H. Salter

Abstract

Experiments aimed at generating power from sea waves used models which
sometimes reflected waves back to the wave-maker. The difficulty was
avoided by changing the wave-maker control system so that it could
absorb reflections. A wide tank using a bank of absorbing wave-
makers is being used to test more advanced models in seas of controlled
angular spread. A crude measure of crest-length can be obtained from
measurement of the correlation coefficients between wave-gauges at
different separations.

Introduction

It was with some hesitation that I accepted an invitation to talk
at this conference. Until recently my only qualification to work on
waves was a total absence of any preconceptions. But in 1973 I set
out to examine methods of generating useful power from them. For
most of the possible techniques the scaling rules operate extremely
well and so a great deal of our work has involved the testing of
models at scales of about 1:100 in model seas of progressively
increasing realism. I believed that a wave tank should behave like
the instruments on the test bench of an electronic engineer. I
wanted to be able to control exactly the sizes, frequencies and angular
spreads of the sea and to arrange repeatable 'freak' events at will.
Furthermore it seemed clear to me that the best wave energy device
would have a very long crest—spanning configuration. This meant that
we would need to control a large width of sea front rather than the
small patch which would be acceptable for oil-rig experiments. This
paper describes the steps towards that objective.

Early problems

My first introduction to the problems of wave-making came in a
borrowed narrow tank which was equipped with a hinged flap wave-maker.
It was driven through a crank and push-rod by a geared-down induction
motor. Although the amplitude of the angular movement of the flap
was constant, the amplitude of the waves often showed variations of
up to 30%, which made experimental measurements quite difficult. The
trouble seemed to be caused by reflections from the models. Indeed,

*

Reader in Mechanical Engineering, University of Edinburgh, Scotland.

o I L why wkmm tel (031) 650 5703

- i =



if I fitted the tank with a fully reflecting cliff, the result was a
spectacular growth of wave amplitude.

Let us consider the action of the hinged flaps shown in Fig. 1.
Although they are both driven through the same angle, the one on the
right has its hinge deeper than the one on the left. As a result its
swept volume is larger and the wave that it makes will be larger too.
Clearly the amplitude of the wave-maker movement is not sufficient to
define the amplitude of the waves. We also need to know about the
depth of immersion of the hinge.

0

Fig.1. Swept volume depends on hinge depth which depends
on many factors. Reflections mean trouble.

If we ignore evaporation and leakage, the following factors could
alter the water level in front of a wave-maker.

(1) Reflections from the model or beach.

(2) The aftermath of previously generated waves.

(3) The presence of other components of a spectrum.

(4) Waves coming sideways from adjacent units in a bank of
wave-makers.

(5) Waves coming across the face of a single wide unit,
which can be generated by end effects, flexure or
uneven geometry.

If we take all these factors into account and recall that, for a flap,
the swept volume depends on the square of the hinge depth, it seems
that, despite its widespread use, displacement is a very bad indicator
of the size of wave to be generated.

Possible solutions

Once unwanted energy is in the tank the only thing that can be
done is to absorb it. The first application of absorbing principles
was reported by Milgram (1) (2) in 1965 and later in 1970. The usual
configuration of beach uses a lot of tank length, and performance
very often falls for low values of wave steepness. Milgram wanted to
make a short beach which would work well at small wave steepness.

He placed a capacitance wave probe close to the front of a flap and
passed its output through an active electronic filter to an electric
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motor driving the flap. He was able to demonstrate stable operation
and good absorption but has not reported that he went on to use the
equipment as a wave-maker.

In principle there are many techniques available which would give
a wave-maker information of what the water is doing. We could use
resistive or capacitive wave gauges like Milgram. We could use radar,
sonar or lasers. We could measure pressure or force. The signals
from any such sources could be processed to produce any of the others
and, provided that the instruments are working properly, there is
little theoretical distinction between them.

Unaware of Milgram's work, I decided to measure force on the wave-
maker. I believe that this has three advantages. Firstly, a single
force sensor takes a mean value of water conditions across the whole
of the wave-maker front. To obtain as good a statistical sample in
the presence of cross waves would require taking an average from probes
at many points across the wave-maker.

Secondly, force sensors can be entirely free from the chemical and
biological vagaries of tank water. We have found that, despite
attempts to compensate for conductivity changes, we have not been able
to guarantee long term stability from every member of a large batch of
resistive gauges. We have also found that capacitive gauges will
eventually develop a surface film which introduces a lag to the output
signal for' falling water levels. The trouble is that tank water is
an ill-defined medium. Minerals are present. Corrosion inhibitors
are added. Biological growths and slimes form. Biocides are used to
kill them. People spill oil. Dust settles. Residues are left by
evaporation. Conditions of the probe are different above and below
water level. Examination of glass tank-windows after six months shows
how dirty the surfaces of our gauges must be. We have not yet
developed a wave gauge which can be trusted without frequent cleaning
and calibration and this is not acceptable for a large bank of wave-
makers.

A third advantage of force measurement is that it is easy to
combine the signal from the force transducer with that from a velocity
transducer, and thereby fix the rate at which energy is given to the
water. I have a great respect for the soundness of the principle of
the conservation of energy. Many successful machines have been built
which demonstrate its usefulness. While we all treat water waves as
if they were sinusoids we know that, as the steepness increases, this
approximation becomes guite seriously wrong. The troughs are shallower
and the crests are sharper and higher than in a sine wave. I argue
that it is better to provide the right amount of energy at each
frequency than to try to enforce a sinuscidal form that the waves do
not like. We should leave the waves to decide for themselves which
order of Stoke's corrections is appropriate, how to mix the frequencies
together, and what shape suits them best.

Gilbert (3) rejects force measurement on the ground that the
force signal is corrupted by the need to accelerate the displacer.
However the mechanical inertia is constant and it is not difficult to
make it small. If this is done, the force needed to accelerate it



will be small in comparison with the force needed to move the water
and can be allowed for. Furthermore the laws governing force, mass
and acceleration are by now rather well understood.

To summarise: there are many ways to control a wave-maker. The
displacement of the moving element is the worst. Force techniques
have the virtue that they sample the whole frontage, that the
transducers are isolated from both chemical and biological properties
of tank water thereby achieving good long-term stability, and that by
controlling energy they bypass many of the problems of non-linearity
involved in generating steep waves.

Wave-maker design

If we decide to measure force we must ensure that the force signal
does not include contributions from waves created behind the wave-maker.
This could be arranged by fitting the wave-makers with a force-
sensitive front panel. But I believe that it is better to avoid the
problem altogether by using an asymmetric arrangement with no waves
created behind. In this way we halve the rating of motors and power
amplifiers and also halve the energy consumed.

|

Fig.2. Wedge. Fig.3. Duck.

There are several ways of producing the asymmetry, three of which
are shown in Figs. 2,3,4. It is generally the case that sliding
constraints are more difficult to implement than rotating ones, and
this is particularly true underwater. We have therefore not used the
sliding wedge. But we have obtained satisfactory results with both
the 'duck' and the sealed flap.



Fig.4.The 'Belofram' membrane seal.

Sliding seals are used successfully at the large manceuvering

tank at Gothenburg in Sweden but as we wanted to avoid friction forces
we preferred the membrane "Belofram" principle reported by Taniguchi
and Kasai (4) in 1972. We find that polyurethane-impregnated nylon
fabrics are excellent. But it is essential that they are not required
to bend in two directions at the same time in the same place. This
difficulty is most acute at the point where the back line of the gusset
meets the line of the hinge, and careful design is necessary to avoid

early failure.

Figure 5 shows the arrangement of our current design. The flap
consists of a riveted 18 gauge light-alloy prismatic box which is both
light and rigid. The drive comes from a low-inertia printed armature
motor. It is connected by a multi-strand stainless-steel wire
wrapped seven times round a screw-threaded pulley on the motor shaft.
Some careful development was necessary to choose the size of the pulley.
We want it to be small so that the electric motors can run fast and
be efficient. But if we make it too small we run into fatigue
problems from bending the wire round too tight a curve. Our present
combination has not given a fatigue failure for three years from a

sample of eighty units.
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Fig. 5. An absorbing
wave-maker, 1977
design. 80 are
used in line
abreast.

The hydrostatic force trying to push the wave-maker backwards is
balanced by a spring. Its rate is chosen to resonate with the mass
and added mass of the flap system at a frequency a little above the
centre of the working band. This means that most of the power goes
into making waves rather than accelerating and decelerating inertia.
Two power transistors working in class B are more than enough for
fully developed waves at 1 Hz. The resonance of the flap is so
damped that its effects are spread over a large fraction of the
working band and the transfer function of the wave-maker is a gentle
curve. We try to make the wave-maker behave like a correctly matched
source impedance analogous to an electronic pulse generator driving a
co-axial cable. An electronic network produces the effect of
"negative spring" at low frequencies and arranges that the damping
coefficient of the flap varies correctly over the frequency band.

The design has to compromise between the requirement of generating
large waves at low frequencies and that of absorbing at high
frequencies,

The wire drive allows considerable tolerance in motor-to-wavemaker



alignment and avoids the extra bearings that would be needed for the
coupling of a more rigid actuator to the arc of movement of the wave-
maker flap. The wires are happy in the splash zone and need no
lubricant. They are stiff enough for the required gain-bandwidth
product.

Clearly wires cannot push the wave-maker. All the force to push
it backwards comes from the water, It is never necessary to move the
flap backwards faster than the water can follow it. If we tried to
do so, the water would be left behind and we would be trying to make
waves in air.

To summarise: wire drives can provide the right speed ratio and
can be designed to escape bending fatique. They are tolerant of
misalignment and can work in dusty, wet conditions. Their frequency
characteristics are adequate. But above all they are very, very cheap.

Force sensing

Our first force-sensing transducers used etched foil strain gauges.
But we found that it was easier to achieve a high stiffness value with
piezo-electric crystals. These have the further advantage of not
needing a stable energising supply and not minding a large standing
bias force. The availability of cheap field-effect operational
amplifiers has opened up many low frequency applications for piezo-
crystals, but they cannot, of course, work down to zero frequency.
This means that the low frequency as well as the high frequency
characteristics of the control loop must be carefully designed to
ensure stability.

We were concerned that the humid conditions of a wave tank would
not be compatible with high-impedance circuitry. This worry proved
groundless. Every transducer had to survive an initial 24 hours
immersion in 60 cms of water, The few failures showed up at the very
start and we have not had a wet piezo crystal for three years. All
our experience of doing electronics in and under water confirms the
belief that impedance is irrelevant when the circuits get wet. Indeed
high-impedance circuitry has the possible advantage that it takes
longer for the wires to be electro-plated away!

Velocity sensing

Velocity is just as important as force. Our velocity transducers
are coupled to the rear shaft of the drive motors. Although we
intended to use purpose-built tacho-generators we were forced by
delivery problems to use ordinary ironless-rotor D.C. electric motors.
The only difference appeared to be a slightly wider spread of
calibration constant. All brush-commutated tacho-generators have
small spikes present in their output signal which are caused by the
segments of the commutator. The spike repetition frequency is far
above the working band and so they cause no problems. But the spikes
can be used to good advantage for calibration purposes. It is
possible to use them to trigger a discriminator and thus obtain very
precise digital calibration.



It is most desirable, particularly where multiple units are
concerned, to avoid any calibration adjustments which are not
absolutely necessary. We put a good deal of effort into an electronic
circuit design which gives uniform behaviour with fixed resistors.

We managed with only one potentiometer.

We designed the units for multiple production and tested a single
one in a narrow tank. Its hinge depth was 500 mm and it was optimised
for operation at 1 Hz. The long-term stability of wave amplitude has
proved satisfactory. Even with a totally reflecting cliff giving a
complete standing wave the variations amount to only a few parts per
thousand.

With the help of the unit in the narrow tank we were able to
develop the models of our wave energy devices so that they reflected
very little of the incoming power. This had excellent results as far
as our predictions for full-scale mooring forces were concerned but
that is part of another story. It was time to go to multi-directional
seas.

Controlling Direction

An earlier multi-directional tank at the Hydraulics Research
Station Wallingford (5) employs amplitude variations to control
direction. A bank of 10 wave-makers are arranged in a crescent and,
if it is required to increase the power from one direction, the
amplitude of the units in that direction is increased. The technique
works well for the area at the centre of the crescent but would not
cover the frontage needed for long crest-spanning devices.

The approach we selected owes much to the guidance of Longuet-
Higgins and the method he used to teach us about directionality.
Familiarity with Huygen's principle in optics or phased-array radars
may be helpful.

We assume that a sea state is the result of the superposition of
a large number of 'fronts'. A front is a long-crested regular train
of waves specified by four numbers:-

(1) The amplitude

(2) The frequency (or period or wave length)
(3) The angle made to the side of the tank

(4) A starting phase relative to other fronts.

A front would be generated by a bank of a large number of narrow wave-
makers if there was a progressive phase shift ¢ of their command
signals. In Fig. 6 the front angle is given by



Fig. 6. A phased array of wave-makers.

Several tanks have used this principle to generate regular monochromatic
single fronts. The drive is taken along a common rotating shaft and
the angle of the crank driving each element is adjusted manually.

There are two minor limitations. The wave-makers will move in
the same way if ¢ = 0,+ 2w,+ 4m etc. This means that there are a
number of possible values of a. If we try to make a = 0O and apply a
large command signal at a high frequency we will sometimes generate a
spurious pair of oblique fronts in addition to the intended one. This
is one way to produce cross waves in a narrow tank.

Secondly there is a restriction on making short waves at large
values of a. We cannot get o up to 90° if A < 2P. This means that
we should make the pitch of the wave-makers as small as we can afford
and use a large number of them.

The mechanical drives could only produce one frequency at a time
and must have been laborious to adjust. But modern electronic
technology allows the superposition of many sinusoidal command signals
and instantaneous changes of sea state.

A measure of the difficulty of the computing task is given by the
product of the number of wave-makers times the number of fronts times
the number of samples per second. The computer we use can run at a
'difficulty product' above 10°. The Edinburgh tank has 80 wave
makers. We update the command signal 20 times per second. This means
that we can compute the command signals for 75 fronts. The newer
model of the computer is faster and so the large wave-makers in the new



tank at Trondheim can be updated at the lower rate of 10 per second.
This allows them to produce more than one hundred fronts. If it
should be thought that a spectrum with one hundred discrete teeth is
not a proper representation then it is not very expensive to add more
computing power. Indeed it will probably turn out better in future

to split the task between several slower machines. An alternative is
to dither the teeth of the spectrum continuously. But we believe that
neither of these is necessary because of an interesting effect noticed
by Glenn Keller.

Keller's Tooth-Breeding Experiment

Keller generated two long-crested fronts with frequencies close to
one another. He chose the frequencies so that they would both fit
exactly into the repeat period of his sampling time and also would both
lie on single lines of a fast Fourier transform. He used four test
conditions, generating both small and moderate amplitudes and measuring
them close to, and far from, the wave-makers. The small amplitude case
behaved as one would expect. But at a steepness of only 1 to 30 the
results showed a very interesting display of extra teeth in the Fourier
transform which is shown in Fig. 7. The effect is more marked at a
distance from the wave-makers. The extra teeth are spaced at intervals
equal to the original separation frequency but also occur below as well
as above the original pair. Furthermore the envelope of the group

reminds one of the shape of many theoretical spectra. If we were to
let the process continue we would be able to produce a proper broad
spectrum from a single pair, like rabbits in Australia. If two teeth

can do this in a few metres then 75 can do so as well.

2 metre

L I llL . i L w

6 metre

| e il " .J_L.llil.L N w

o Fig. 7. Keller’'s tooth breeding experiment. The frequencices wers
1.5234 Hz and 1.6016 Hz. The FFT used 2048 sarples ct
20 Hz. Teeth are bred at intervals equal to the
original separation above and below the parents.

- 10 -



Choosing the fronts

The computer which generates the wave-maker command signals (a
Plessey Miproc) runs with an efficient but obscure machine code program.
The instructions are produced by a slower high-level language machine
which offers a great variety of editing facilities.

The most basic, called "brewing", allows us to choose the fronts
by typing in four parameters for each. This is used for single fronts
and the binary front "quilt" but is tedious for large numbers of fronts.
Programs have therefore been written which produce machine code for the
various theoretical spectra, with options to select any of the spreading
functions in their original or a modified form. We can specify them
by wind-speed or energy-period and introduce a model scale factor. For
example we can ask for a Jonswap with cost2.4 spread or a Pierson-
Moskowitz with Mitsuyasu spread, modified so that the crest lengths are
all, say, 1.5 times Mitsuyasu's recommendations. We can rotate the
whole bank of fronts through a specified angle, modify individual
fronts, and carry out a variety of glabal editing functions.

The amplitudes, frequencies and front angles are chosen so that
each contributes a roughly equal amount of energy to the final result.
The algorithms for this are due to Mollison, who has developed some
elegant statistical methods to ensure that the results are "more
randomly distributed than plain chance".

If the model to be tested has some unusual property such as a
particularly narrow resonance band, we will obtain better results by
concentrating more fronts round that frequency and reducing their
amplitudes to keep the energy content correct. Alternatively if we
want to exaggerate resonant behaviour we can add a strong extra tooth
to the comb spectrum. We do everything possible to make our wave
energy devices exhibit broad-band damped behaviour in every mode, and
we have not found structures with resonance peaks narrow enough to be
lost between sensibly chosen teeth.

The relative starting phases of the fronts are usually selected on
a pseudo-random basis with a seed number which can be changed to get a
different second sea with the same statistical properties. But we can
ask for the starting phases to be chosen with devilish malevolence so
that fronts combine at an exactly specified place in the tank at an
exactly specified time after the sequence starts. This produces a
freak wave with very low, but not zero, statistical probability. It
is usually devastating for ship models and so we can exercise mercy
with a lower specified ratio of peak-to-RMS value. The maximum ratio
is given by V2N where N is the number of wave fronts. For N = 75
this comes out to 12.25. If we specify a high ratio of peak to RMS
value in a large sea at a point which is a long distance from the wave-
makers, we may find that premature breaking stops us getting the
expected ratio. But by putting the models closer to the wave-makers
(two or three metres at 1/100th)scale we can be sure of testing in
conditions beyond anything that ships are expected to take. We argue
that the 'malice aforethought' method gets tests done more rapidly than
a more random method because we do not have to wait for chance to come
round. The question is whether it is better to play until the dealer



hands you a royal running flush in spades, or persuade him quietly
before the game begins. A hundred years is a long time even at model

scale.

We found that a particularly spectacular pattern results from
making all fronts have the same frequency but choosing the angles and
phases so that they converge to one central "bulls eye". Even though
the wave is monochromatic and the water deep relative to the wavelength,
this procedure produces a plunging breaker with a vertical internal
face and a height-to-length ratio of about 1l to 4.5. As energy is
contributed by all the wave-makers, the technique gives a method of
making very large waves. The trough-to-crest height can be as large
as the hinge depth of the flaps.

Testing Testing Tanks

An accurate representation of the sea surface is and loocks like a
complicated mixture of frequencies and angles. A rigorous proof that
one is achieving the desired objective is not easy. We are at the
early stages of a programme of work on multiple gauge measurements.

If we choose an artificially short repeat-period for a pseudo-
random sequence and measure the output from gauges at points all over
the tank for the exact repeat period, we should expect that the RMS
value at each point would be the same. However the arrangement of
our tank does not quite do this. We have wave-makers along one of the
long sides of the tank which are faced by beaches on the other. But
while one of the short sides of the tank is also fitted with beaches
it is faced by a glass observation window which will, of course, reflect
oblique wave fronts. It is no surprise to discover that the side
beach causes a triangular area of reduced wave height. But we also
found an iZncrease along a ridge parallel to the glass about two metres
away from it. Other anomalies can probably be traced to sections of
beach with slightly inferior absorption. We would also expect that
any wave-breaking would deplete the wave heights of a fan-shaped area
down wave.

However the variations in wave height over the central three-
quarters of the tank are lower, and a good deal less than would occur
at sea because of chance. It is gratifying to report that wave
records are very repeatable from run to run, and that the differences
are about the same as our level of confidence in the wave gauges.

The test which shows up the defects in a wide tank most easily
is that of producing long-crested monochromatic wave fronts as in a
narrow tank. Wide, rigid, non-absorbing wave-makers cannot do this
for any length of time without building up ever larger amounts of
cross-wave. We can detect the presence of cross-waves in our tank
but their amplitude does not continue to grow. Two very quick
subjective tests can be carried out. In the first of them we
generate fairly large long-crested regular waves for several minutes.
We then switch off the wave-makers and observe the tank-surface after
the end of the train has reached the beach. In a short wide tank
the cross-waves will still be present. In the second test we
generate the same wave train and then reduce wavelength and increase



height, so that spilling breakers are just formed. The amount of
breaking activity should be the same along the whole frontage. The
position of aberrations is clearly marked.

A Variant for Shallow Water

We have a strong preference for the hinged flap for wave making
in deep water tanks. Flaps give a reasonable approximation to the
exponential decay of orbital motion and do not have too much added mass.
But many people engaged in coastal engineering need to make large waves
with long periods in shallow water. They reguire a flat elliptical
motion of water particles and find that there is inadequate depth for
a hinged flap. We have carried out design work on absorbing wave-
makers suitable for these applications.

The arrangement is shown in Fig. 8, and is the subject of
provisional patent applications. It consists of two moving elements.
A flap which can generate and absorb at high frequencies is mounted
with gusset seals inside a carrier. The carrier is mounted from a
second hinge well above the water. Its rear surface is part of a
circular arc centred on its axis of rotation so that water behind
remains undisturbed. The carrier hinges have to resist a substantial
upward force. The wave-maker operates as if the flap was the 'twzeter'
and the carrier the 'woofer' of a hi-fi system. The correct command
signals to each provide nearly the correct displacement at each depth
for a wide range of frequencies.

Pig. 8. The woofer tweeter combination for shallow water.

An extra complication is caused by the fact that people who work
in shallow water nearly always vary the depth. We have had to make
provision to raise and lower the carrier hinge.



Directionality and Crest-length

The newcomer to oceanography is deeply impressed by the enormous
achievements in the understanding of the heights and lengths of waves.
There is a wealth of experimental data. The statistics for season and
place are splendidly detailed. Accurate predictions can be made from
wind speed, duration and fetch. Non-linear wave profiles can be
calculated to an extraordinary degree of accuracy. Exact answers are
instantly provided to every question. The newcomer believes that
oceanographers are truly omniscient, that is until he inquires about
crest-length.

We needed to know about crest-length because our wave energy
devices are mounted on a very long spine (several kilometers) and
the bending moments induced by waves in that spine are clearly of
extreme importance. We could measure all the forces acting on a
section of the device in a narrow tank. If we knew about the lengths
of the crests of waves in the sea we could try working out the bending
moments, shear forces and deflections of our long spines using the
established theory for beams, suitably modified for dynamic applications.
Bending moments for a static beam should be proportional to the square
of crest-length and deflections proportional to the fourth power.
What we needed was an extra dimension to the scatter diagram which
specified crest-length rather than wavelength. We could then go ahead
and design yielding joints to limit the bending moments and select the
optimum value for the amount of post-tensioning steel in the concrete
between them. But it was not to be.

Admittedly we were vague about how we would define crest-length
in anything but a quilted sea but we knew that the answer ought to be
in units of length. Instead we were shown kidney-shaped plots of
directional spectra and assured that these contained all the
information. It turned out that only a few hours of observations had
ever been made and that the angular resolution of the measuring
instruments was, to one who had previously worked with astronomers,
rather low. The wave gauges used to measure directionality seemed to
be much too close together. The last straw was that one of the
techniques of analysing the outputs of the gauges was called "the
maximum likelihood" method but could only be understood by an
unusually able Ph.D. student attached to our group. We encouraged
him to make it work. He did so and I am pleased to see that he will
be contributing to this conference.

There are two things calculated to make an engineer anxicus. One
is having to rely on data analysis methods that he does not truly
understand. The cother is having the results in the wrong units.

I hope that this conference will relieve my anxieties.

With the greatest hesitation I offer for your derision a method
for getting an indication of crest-length on which we have done a few

experiments. It is based on the calculation of the correlation
coefficients between the output signals of a group of wave gauges
arranged in line abreast. The correlation coefficient is much

despised by statisticians because its value can be unity for data
streams which are not causally related and zero for those which are.
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But for our work it has two advantages. The first is that it can be
computed 'on the fly' without storing long data streams by even the
most feeble microprocessors. The second is that it is very easy to
understand.

Fig. 9 shows some typical results. The points are experimental
measurements and the continuous curves are output from a 75 front
computer simulation. Between correlation values of 0.9 and 0.2 the
results are fairly linear. It would be possible to make a reasonably
accurate interpolation of the separation necessary for a value of 0.5
and then to use this distance as an indicator of crest-length. For a
simple quilt sea we should multiply this distance by 6 to obtain the
crest-length.

1-8
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Fig.9. Simuluted and measured correlation coefficients for
two spreading functions.

One further item will exhaust my knowledge on the subject. We
had read (6), that, in a wind sea, "crest-lengths" would be about 1.7
times wavelengths. Glenn Keller and I had the chance to fly in an
R.A.F. Nimrod and make simultaneous recordings of an accelerometer and
the aircraft's radar altimeter. We flew an accurate circle at
constant speed over a new wind sea and compared encounter zero-crossing
lengths across and along wind. The ratio was 1.66. Our faith in the
omniscience of oceanographers was instantly restored.

Summary

The displacement of a wave-maker is a bad signal to use for control.
The size of wave created is affected by reflections and waves from
adjacent units. Several techniques can be used to absorb unwanted
waves but force measurement is attractive on practical grounds.
Absorption makes for good stability. Asymmetric wave-makers save
power and the cost of power control elements. Asymmetry can be



achieved for piston displacers for shallow water but flaps are good for
deep water. Directional spectra can be generated by the superposition
of discrete monochromatic wave fronts. Provided that sufficient fronts
are used it is difficult to distinguish the sea state from that of a
continuous spectrum. The discrete method enables the controlled
composition of abnormal seas.
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