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Absorbing Wave-Makers and Wide Tanks 

t 

S.H. S a l t e r  

Abstract  

Experiments aimed a t  generat ing power from sea  waves used models which 
sometimes r e f l e c t e d  waves back t o  t h e  wave-maker. The d i f f i c u l t y  was 
avoided by changing t h e  wave-maker con t ro l  system so  t h a t  i t  could 
absorb r e f l e c t i o n s .  A wide tank using a bank o f  absorbing wave- 
makers is being used t o  t e s t  more advanced models i n  seas  of  con t ro l l ed  
angular  spread,  A crude measure of  crest- length can be obtained from 
measurement of  the c o r r e l a t i o n  c o e f f i c i e n t s  between wave-gauges a t  
d i f f e r e n t  separa t ions .  

Introduction 

I t  was with some h e s i t a t i o n  t h a t  I accepted an i n v i t a t i o n  to t a l k  
a t  t h i s  conference. Unt i l  r e c e n t l y  my only q u a l i f i c a t i o n  t o  work on 
waves was a t o t a l  absence of  any preconceptions. But i n  1973 I s e t  
o u t  t o  examine methods of  genera t ing  use fu l  power from them. For 
most of the  poss ib le  techniques t h e  sca l ing  r u l e s  opera te  extremely 
well and s o  a g r e a t  d e a l  of our work has  involved the  t e s t i n g  of 
models a t  s c a l e s  of about 1:100 i n  model seas  of progress ively  
increas ing realism. I bel ieved t h a t  a wave tank should behave l i k e  
the  instruments on t h e  test bench of an e l e c t r o n i c  engineer. I 
wanted t o  b e  able  t o  con t ro l  exac t ly  the  s i z e s ,  frequencies and angular  
spreads of t h e  sea  and t o  ar range  repeatable  ' f r e a k '  events  a t  w i l l .  
Furthermore it seemed c l e a r  t o  m e  t h a t  t h e  b e s t  wave energy device 
would have a very long crest-spanning configurat ion.  This  meant t h a t  
we would need t o  con t ro l  a l a r g e  width of  sea  f r o n t  r a t h e r  than t h e  
small  patch which would be acceptable  f o r  o i l - r i g  experiments. This  
paper descr ibes  t h e  s t e p s  towards t h a t  ob jec t ive .  

Early problems 

My f i r s t  in t roduct ion  t o  the  problems of  wave-making came i n  a 
borrowed narrow tank which was equipped with a hinged f l a p  wave-maker. 
I t  was driven through a crank and push-rod by a geared-down induction 
motor. Although the amplitude of t h e  angular  movement of the f l a p  
was cons tant ,  the  amplitude of the  waves o f t e n  showed v a r i a t i o n s  of 
up t o  30%, which made experimental measurements q u i t e  d i f f i c u l t .  The 
t rouble  seemed t o  be caused by r e f l e c t i o n s  from t t e  models. Indeed, 
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i f  I f i t t e d  the tank with a f u l l y  r e f l e c t i n g  c l i f f ,  the  r e s u l t  was a 
spectacular  growth of  wave amplitude. 

Let us consider t h e  ac t ion  of the hinged f l a p s  shown i n  Fig. 1. 
Although they a r e  both dr iven through t h e  same angle, t h e  one on the  
r i g h t  has i ts  hinge deeper than t h e  one on t h e  l e f t .  A s  a r e s u l t  i ts  
swept volume i s  l a r g e r  and t h e  wave t h a t  i t  makes w i l l  be l a rge r  too. 
Clear ly  the amplitude of t h e  wave-maker movement is not  s u f f i c i e n t  t o  
define the  amplitude of t h e  waves. We a l s o  need t o  know about the 
depth of  immersion of  the  hinge. 

~ i g . 1 .  &pt volwne depends on hinge depth which depends 
a many fac tor s .  Ref Zections mecm t roub le .  

I f  w'e ignore evaporation and leakage, t h e  following f a c t o r s  could 
a l t e r  the  water l e v e l  i n  f r o n t  of  a wave-maker. 

(1)  Ref lec t ions  from t h e  model o r  beach. 
( 2 )  The aftermath of previous ly  generated waves. 
( 3 )  The presence of o the r  components of a spectrum. 
( 4 )  Waves coming sideways from adjacent  u n i t s  i n  a bank of 

wave-makers. 
(5)  Waves coming across t h e  face  of a s i n g l e  wide u n i t ,  

which can be generated by end e f f e c t s ,  f l exure  o r  
uneven geometry. 

I f  we take  a l l  these  f a c t o r s  i n t o  account and r e c a l l  t h a t ,  fo r  a f l a p ,  
t h e  swept volume depends on t h e  square of the  hinge depth,  it seems 
t h a t ,  d e s p i t e  i t s  widespread use ,  displacement is a very bad i nd ica to r  
of t h e  s i z e  of wave t o  be generated. 

Poss ib le  so lu t ions  

Once unwanted energy is i n  the  tank the only thing t h a t  can be 
done is t o  absorb it. The f i r s t  appl ica t ion  of absorbing p r i n c i p l e s  
was reported by Milgram (1)  ( 2 )  i n  1965 and l a t e r  i n  1970. The usual 
conf igura t ion  of beach uses a l o t  of  tank length,  and performance 
very o f t e n  f a l l s  f o r  low values of  wave steepness.  Milgram wanted t o  
make a s h o r t  beach which would work well  a t  small  wave steepness.  
He placed a capacitance wave probe c lose  t o  the f r o n t  of a f l a p  and 
passed its output  through an a c t i v e  e l e c t r o n i c  f i l t e r  t o  an e l e c t r i c  



motor dr iv ing the f l ap .  He was able  t o  demonstrate s t a b l e  operation 
and good absorption b u t  has no t  reported t h a t  he went on t o  use the 
equipment a s  a wave-maker. 

I n  p r i n c i p l e  the re  a r e  many techniques ava i l ab le  which would g ive  
a wave-maker information of what the  water i s  doing. We could use 
r e s i s t i v e  o r  capac i t ive  wave gauges l i k e  Milgram. We could use radar ,  
sonar  o r  l a se r s .  We could measure pressure  o r  force .  The s i g n a l s  
from any such sources could be processed t o  produce any of t h e  o t h e r s  
and, provided t h a t  t h e  instruments a r e  working proper ly ,  the re  i s  
l i t t l e  t h e o r e t i c a l  d i s t i n c t i o n  between them. 

Unaware of Milgram's work, I decided t o  measure force on the  wave- 
maker. I be l i eve  t h a t  t h i s  has th ree  advantages. F i r s t l y ,  a s i n g l e  
f o r c e  sensor  takes  a mean value of  water condi t ions  across  the  whole 
of t h e  wave-maker f ron t .  To obta in  a s  good a s t a t i s t i c a l  sample i n  
t h e  presence of c r o s s  waves would requi re  taking an average from probes 
a t  many po in t s  ac ross  t h e  wave-maker. 

Secondly, fo rce  sensors  can be e n t i r e l y  f r e e  from the  chemical and 
b io log ica l  vagar ies  of  tank water. We have found t h a t ,  d e s p i t e  
at tempts t o  compensate f o r  conduct iv i ty  changes, we have not  been ab le  
t o  guarantee long term s t a b i l i t y  from every member of a l a r g e  batch  of  
r e s i s t i v e  gauges. We have a l s o  found t h a t  capac i t ive  gauges w i l l  
eventual ly  develop a su r face  f i lm which introduces a l ag  t o  the  output  
s i g n a l  f o r  f a l l i n g  water l eve l s .  The t roub le  i s  t h a t  tank water is 
an i l l -de f ined  medium. Minerals a r e  present .  Corrosion i n h i b i t o r s  
are added. Biologica l  growths and sl imes form. Biocides a r e  used t o  
k i l l  them. People s p i l l  o i l .  Dust s e t t l e s .  Residues a r e  l e f t  by 
evaporation. Conditions o f  t h e  probe a r e  d i f f e r e n t  above and below 
water l eve l .  Examination of  g l a s s  tank-windows a f t e r  s i x  months shows 
how d i r t y  the  su r faces  of our gauges must be. We have not  y e t  
developed a wave gauge which can be t r u s t e d  without frequent  cleaning 
and c a l i b r a t i o n  and this i s  n o t  acceptable  f o r  a l a r g e  bank of wave- 
makers. 

A t h i r d  advantage of  fo rce  measurement i s  t h a t  it is  easy t o  
combine t h e  s i g n a l  from t h e  fo rce  transducer with t h a t  from a ve loc i ty  
t ransducer,  and thereby f i x  t h e  r a t e  a t  which energy is given t o  the 
water. I have a g r e a t  r e spec t  f o r  t h e  soundness of the  p r i n c i p l e  of 
t h e  conservation of energy. Many successful  machines have been b u i l t  
which demonstrate its usefulness.  While we a l l  t r e a t  water waves a s  
i f  they were s inusoids  we know t h a t ,  a s  the  s teepness  inc reases ,  this 
approximation becomes q u i t e  s e r i o u s l y  wrong. The troughs a r e  shallower 
and the  c r e s t s  a r e  sharper  and higher than i n  a s i n e  wave. I argue 
t h a t  it is  b e t t e r  t o  provide t h e  r i g h t  amount of energy a t  each 
frequency than t o  t r y  t o  enforce  a s inuso ida l  form t h a t  the  waves do 
not  l i k e .  We should leave the  waves t o  decide f o r  themselves which 
o rde r  of Stoke ' s  co r rec t ions  is  appropr ia te ,  how t o  mix the frequencies 
together ,  and what shape s u i t s  them bes t .  

G i l b e r t  ( 3 )  r e j e c t s  fo rce  measurement on the ground t h a t  the  
fo rce  s i g n a l  is corrupted by t h e  need t o  acce le ra te  the d i sp lace r .  
However the mechanical i n e r t i a  i s  constant  and i t  is not d i f f i c u l t  t o  
make i t  small .  If this is done, the  fo rce  needed t o  acce le ra te  i t  



w i l l  be small i n  comparison with t h e  fo rce  needed t o  move the  water 
and can be allowed f o r .  Furthermore the  laws governing force,  mass 
and accelera t ion  a r e  by now r a t h e r  well  understood. 

To summarise: the re  a r e  many ways t o  con t ro l  a wave-maker. The 
displacement of t h e  moving element is the  worst. Force techniques 
have the  v i r t u e  t h a t  they sample the  whole frontage,  t h a t  the  
transducers a r e  i s o l a t e d  from both chemical and b io log ica l  p roper t i e s  
of tank water thereby achieving good long-term s t a b i l i t y ,  and t h a t  by 
con t ro l l ing  energy they bypass many of  t h e  problems of non-l ineari ty 
involved i n  generat ing s t e e p  waves. 

Wave-maker design 

I f  we decide t o  measure fo rce  we must ensure t h a t  the  force  s i g n a l  
does no t  include con t r ibu t ions  from waves crea ted  behind t h e  wave-maker. 
This  could be arranged by f i t t i n g  t h e  wave-makers with a force-  
s e n s i t i v e  f r o n t  panel.  But I be l i eve  t h a t  it i s  b e t t e r  t o  avoid the  
problem a l toge the r  by using an asymmetric arrangement with no waves 
crea ted  behind. In  this way we halve  t h e  r a t i n g  of  motors and power 
ampl i f i e r s  and a l s o  halve  t h e  energy consumed. 

There a r e  s e v e r a l  ways of  producing the  asymmetry, th ree  of  which 
are  shown i n  Figs.  2 , 3 , 4 .  I t  i s  genera l ly  t h e  case t h a t  s l i d i n g  
c o n s t r a i n t s  a r e  more d i f f i c u l t  t o  implement than r o t a t i n g  ones, and 
t h i s  is p a r t i c u l a r l y  t r u e  underwater. We have the re fo re  not used the 
s l i d i n g  wedge. But we have obtained s a t i s f a c t o r y  r e s u l t s  with both 
the 'duck' and t h e  sea led  f l a p .  
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F i g .  4 .  The 'Be lofnun ' membrane seal.  

Sl id ing  s e a l s  a r e  used success fu l ly  a t  t h e  l a r g e  manoeuvering 
tank a t  Gothenburg i n  Sweden b u t  a s  we wanted t o  avoid f r i c t i o n  fo rces  
we p re fe r red  the membrane "Belofram" p r i n c i p l e  reported by Taniguchi 
and Kasai (4)  i n  1972. We f i n d  t h a t  polyurethane-impregnated nylon 
f a b r i c s  a r e  exce l l en t .  But it i s  e s s e n t i a l  t h a t  they a r e  mt requi red  
t o  bend i n  two d i r e c t i o n s  a t  t h e  same time i n  t h e  same p lace .  This  
d i f f i c u l t y  i s  most acute  a t  the  p o i n t  where t h e  back l i n e  of  the  gusse t  
meets the l i n e  of t h e  hinge,  and ca re fu l  design is  necessary t o  avoid 
e a r l y  f a i l u r e .  

Figure 5 shows t h e  arrangement of our  c u r r e n t  design. The f l a p  
c o n s i s t s  of a r i v e t e d  18 gauge l igh t -a l loy  p r i smat i c  box which is both 
l i g h t  and r i g i d .  The d r i v e  comes f ran  a low-inert ia  p r i n t e d  armature 
motor. It is connected by a mult i-s trand s t a i n l e s s - s t e e l  wire 
wrapped seven times round a screw-threaded pul ley  on t h e  motor s h a f t .  
Some c a r e f u l  development was necessary t o  choose t h e  s i z e  of t h e  pul ley .  
We want it t o  b e  small  so  t h a t  the  e l e c t r i c  motors can run East  and 
be e f f i c i e n t .  But i f  we make it too small we run i n t o  f a t i g u e  
problems from bending the wire  round too  t i g h t  a curve. Our p resen t  
combination has n o t  given a f a t i g u e  f a i l u r e  f o r  three  years  from a 
sample of e ighty  u n i t s .  



WATER 

a, Low iner t ia  motor 
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& f i t t ed  with 

tucho-generator 

Threaded puZZey 

The h y d r o s t a t i c  fo rce  t r y i n g  t o  push t h e  wave-maker backwards is 
balanced by a spr ing .  Its r a t e  is chosen t o  resonate  with the  mass 
and added mass o f  t h e  f l a p  system a t  a  frequency a l i t t l e  above the  
cen t re  of the  working band. This  means t h a t  most o f  t h e  power goes 
i n t o  making waves r a t h e r  than a c c e l e r a t i n g  and dece le ra t ing  i n e r t i a .  
Two power t r a n s i s t o r s  working i n  c l a s s  B a r e  more than enough f o r  
f u l l y  developed waves a t  1 H z ,  The resonance of the  f l a p  i s  s o  
damped t h a t  i t s  e f f e c t s  a r e  spread  over  a  l a rge  f r a c t i o n  of t h e  
working band and t h e  t r a n s f e r  funct ion  of the  wave-maker is  a g e n t l e  
curve. We t r y  t o  make the  wave-maker behave l i k e  a  c o r r e c t l y  matched 
source impedance analogous t o  an e l e c t r o n i c  pulse  genera tor  d r iv ing  a 
co-axial  cable.  An e l e c t r o n i c  network produces the  e f f e c t  of 
"negative spr ing"  a t  low f requencies  and arranges t h a t  the  damping 
c o e f f i c i e n t  of t h e  f l a p  v a r i e s  c o r r e c t l y  over  the  frequency band. 
The design has t o  compromise between t h e  requirement of generat ing 
l a r g e  waves a t  low f requencies  and t h a t  of absorbing a t  high 
frequencies,  

Fig. 5. An absorbing 
me-maker,  1977 
design. 80 are 
used i n  l i ne  

The wire d r i v e  allows cons iderable  to lerance  i n  motor-to-wavemaker 

. . 
..(1: 

* . . .  
. . 

abreast. 



alignment and avoids the e x t r a  bearings t h a t  would be needed f o r  the 
coupling of a more r i g i d  a c t u a t o r  t o  the arc of movement of the wave- 
maker f l a p .  The wires a r e  happy i n  the splash  zone and need no 
lubr icant .  They a r e  s t i f f  enough f o r  the required gain-bandwidth 
product. 

Clear ly  w i r e s  cannot push t h e  wave-maker. A l l  the  force  t o  push 
it backwards comes from t h e  water.  I t  i s  never necessary t o  move t h e  
f l a p  backwards f a s t e r  than t h e  water can follow it. I f  we t r i e d  to 
do so ,  t h e  water would be l e f t  behind and we would be t ry ing  t o  make 
waves i n  air. 

To summarise: wire d r i v e s  can provide the r i g h t  speed r a t i o  and 
can be designed t o  escape bending fa t ique .  They a r e  t o l e r a n t  of 
misalignment and can work i n  dus ty ,  wet condit ions.  Their frequency 
character is ti.^^ a r e  adequate. But above a l l  they a r e  very, very cheap. 

Force sensing - 
Our f i r s t  force-sensing t ransducers  used etched f o i l  s t r a i n  gauges. 

But we found t h a t  it was e a s i e r  t o  achieve a h igh s t i f f n e s s  value with 
p iezo-e lec t r i c  c r y s t a l s .  These have t h e  f u r t h e r  advantage of no t  
needing a s t a b l e  energis ing  supply and n o t  minding a l a r g e  standing 
b i a s  force .  The a v a i l a b i l i t y  of  cheap f i e l d - e f f e c t  ope ra t iona l  
ampl i f i e r s  has  opened up many l o w  frequency app l i ca t ions  f o r  piezo- 
c r y s t a l s ,  b u t  they cannot, of course,  work down t o  zero frequency. 
This means t h a t  t h e  low frequency a s  we l l  a s  the high frequency 
c h a r a c t e r i s t i c s  of t h e  c o n t r o l  loop must b e  c a r e f u l l y  designed t o  
ensure s t a b i l i t y .  

We were concerned t h a t  t h e  humid condit ions of  a wave tank would 
n o t  b e  compatible with high-impedance c i r c u i t r y .  This  worry proved 
groundless. Every transducer had t o  survive  an i n i t i a l  24 hours 
immersion i n  60 cms o f  water. The few f a i l u r e s  showed up a t  the  very 
s t a r t  and we have no t  had a wet p iezo  c r y s t a l  f o r  th ree  years. A l l  
our  experience of doing e l e c t r o n i c s  i n  and under water confirms the 
b e l i e f  t h a t  impedance i s  i r r e l e v a n t  when the  c i r c u i t s  g e t  wet. Indeed 
high-impedance c i r c u i t r y  has  t h e  p o s s i b l e  advantage t h a t  it takes  
longer f o r  the  wires t o  be e l ec t ro -p la ted  away! 

Velocity sens ing 

Velocity is j u s t  a s  important  a s  fo rce .  Our ve loc i ty  t ransducers 
a r e  coupled t o  the  r e a r  s h a f t  o f  t h e  d r i v e  motors. Although we 
intended to use purpose-buil t  tacho-generators we were forced by 
de l ive ry  problems t o  use ordinary  i ron less - ro to r  D.C. e l e c t r i c  motors. 
The only  d i f fe rence  appeared t o  b e  a s l i g h t l y  wider spread of 
c a l i b r a t i o n  constant .  A l l  brush-commutated tacho-generators have 
small  sp ikes  p resen t  i n  t h e i r  ou tpu t  s i g n a l  which a r e  caused by the  
segments of  t h e  commutator. The s p i k e  r e p e t i t i o n  frequency is f a r  
above the  working band and s o  they cause no problems. But the sp ikes  
can be used t o  good advantage f o r  c a l i b r a t i o n  purposes. I t  i s  
poss ib le  t o  use them t o  t r i g g e r  a d iscr iminator  and thus obta in  very 
p r e c i s e  d i g i t a l  c a l i b r a t i o n .  



I t  i s  most des i rab le ,  p a r t i c u l a r l y  where mult iple u n i t s  a r e  
concerned, t o  avoid any c a l i b r a t i o n  adjustments which a r e  no t  
absolute ly  necessary. We p u t  a good dea l  of  e f f o r t  i n t o  an e l e c t r o n i c  
c i r c u i t  design which g ives  uniform behaviour with f ixed r e s i s t o r s .  
We managed with only one potentiometer.  

We designed t h e  u n i t s  f o r  mul t ip le  production and t e s t e d  a s i n g l e  
one i n  a narrow tank. Its hinge depth was 500 mm and it was optimised 
fo r  operat ion a t  1 Hz. The long-term s t a b i l i t y  of  wave amplitude has 
proved s a t i s f a c t o r y .  Even with a t o t a l l y  r e f l e c t i n g  c l i f f  giving a 
complete s tanding wave t h e  v a r i a t i o n s  amount t o  only a few p a r t s  per 
thousand. 

With t h e  h e l p  of the u n i t  i n  the  narrow tank we were able  t o  
develop the models of our wave energy devices s o  t h a t  they re f l ec ted  
very l i t t l e  of t h e  incoming power. This had exce l l en t  r e s u l t s  a s  f a r  
a s  our  p red ic t ions  f o r  f u l l - s c a l e  mooring fo rces  were concerned but  
t h a t  is p a r t  of  another s t o r y .  I t  was time t o  go to mul t i -d i rec t ional  
seas .  

Control l ing Direc t ion  

An e a r l i e r  mul t i -d i rec t ional  tank a t  the Hydraulics Research 
S ta t ion  Wallingford (5) employs amplitude v a r i a t i o n s  t o  con t ro l  
d i r e c t i o n .  A bank of  10 wave-makers a r e  arranged i n  a crescent  and, 
i f  it i s  required t o  increase  the  power from one d i r e c t i o n ,  the  
amplitude of t h e  u n i t s  i n  t h a t  d i r e c t i o n  is increased.  The technique 
works well  f o r  the  a rea  a t  t h e  c e n t r e  of  the  crescent  b u t  would n o t  
cover t h e  frontage needed f o r  long crest-spanning devices. 

The approach we s e l e c t e d  owes much t o  the  guidance of Longuet- 
Higgins and the  method he  used t o  teach us about d i r e c t i o n a l i t y .  
Fami l i a r i ty  w i t h  Huygen's p r i n c i p l e  i n  o p t i c s  o r  phased-array radars  
may be helpful .  

We assume t h a t  a s e a  s t a t e  i s  the  r e s u l t  of  t h e  superpos i t ion  of 
a l a r g e  number of ' f r o n t s ' .  A f r o n t  is a long-crested regu la r  t r a i n  
of waves spec i f i ed  by four numbers:- 

(1) The amplitude 
( 2 )  The frequency (or  per iod  o r  wave length)  
( 3 )  The angle  made t o  the  s i d e  of the tank 
( 4 )  A s t a r t i n g  phase r e l a t i v e  t o  o the r  f r o n t s .  

A f r o n t  would be generated by a bank of a l a rge  number of narrow wave- 
makers i f  the re  was a progressive phase s h i f t  $ of  t h e i r  command 
s igna l s .  In  Fig. 6 the f r o n t  angle i s  given by 

-1 
a = Sin - 

2nP 



F i g .  6 .  A phased army of wave-makers. 

Several  tanks have used this p r i n c i p l e  t o  generate r egu la r  monochromatic 
s i n g l e  f r o n t s .  The d r i v e  is taken along a comon r o t a t i n g  s h a f t  and 
the angle of  t h e  crank d r iv ing  each element is adjusted manually. 

There a r e  two minor l i m i t a t i o n s .  ?he wave-makers w i l l  move i n  
the  same way i f  $ = 0 ,+  2a, t  471 e t c .  This means t h a t  t h e r e  a r e  a 
number of poss ib le  va lues  of a. I f  we t ry  t o  make a = 0 and apply a 
l a r g e  command s i g n a l  a t  a h igh frequency we w i l l  sometimes generate a 
spurious p a i r  of  obl ique  f r o n t s  i n  addi t ion  t o  the  intended one. This  
i s  one way t o  produce c ross  waves i n  a narrow tank. 

Secondly the re  i s  a r e s t r i c t i o n  on making s h o r t w a v e s  a t  l a rge  
values of  a. We cannot g e t  a up to 90° i f  X < 2P. This means t h a t  
we should make the  p i t c h  of  the  wave-makers a s  small  as  we can af ford  
and use a l a rge  number of them. 

The mechanical d r i v e s  could only produce one frequency a t  a time 
and must have been labor ious  t o  a d j u s t .  But modern e l e c t r o n i c  
technology allows the superposi t ion  of many s inuso ida l  command s i g n a l s  
and instantaneous changes of sea  s t a t e .  

A measure of t h e  d i f f i c u l t y  of the computing task is given by t h e  
product  of the  number of wave-makers times the number of f r o n t s  times 
the  number of samples per  second. The computer we use can run a t  a 
' d i f f i c u l t y  product '  above 10'. The Edinburgh tank has 80 wave 
makers. We update the command s i g n a l 2 0  times per  second. This  means 
t h a t  we can compute the command s i g n a l s  f o r  7 5  f r o n t s .  The newer 
model of the computer is f a s t e r  and s o  the l a rge  wave-makers i n  the  new 



tank a t  Trondheim can be updated a t  the lower r a t e  of 10 per  second. 
This allows them t o  produce more than one hundred f ron t s .  I f  it 
should be thought t h a t  a spectrum w i t h  one hundred d i s c r e t e  t e e t h  i s  
no t  a proper representa t ion  then it is no t  very expensive t o  add more 
computing power. Indeed it w i l l  probably turn o u t  b e t t e r  i n  f u t u r e  
t o  s p l i t  the  task  between severa l  slower machines. An a l t e r n a t i v e  is  
to d i t h e r  the t e e t h  of the  spectrum continuously. But we be l i eve  t h a t  
ne i the r  of these  is necessary because of  an i n t e r e s t i n g  e f f e c t  noticed 
by Glenn Keller .  

Ke l l e r ' s  Tooth-Breeding Experiment 

Kel ler  generated two long-crested f r o n t s  with frequencies c lose  to 
one another. He chose t h e  frequencies so  t h a t  they would both f i t  
exact ly  i n t o  the  r e p e a t  per iod  of h i s  sampling time and a l s o  would both 
l i e  on s i n g l e  l i n e s  of a f a s t  Fourier  transform. He used four t e s t  
condi t ions ,  generat ing both smal l  and moderate amplitudes and measuring 
them c lose  t o ,  and f a r  from, t h e  wave-makers. The small amplitude case 
behaved a s  one would expect.  But a t  a s teepness of only 1 to 30 the 
r e s u l t s  showed a very i n t e r e s t i n g  d isplay  of e x t r a  t e e t h  i n  the  Fourier  
transform which is shown i n  Fig. 7. The e f f e c t  is more marked a t  a 
d is tance  from t h e  wave-makers. The e x t r a  t ee th  a r e  spaced a t  i n t e r v a l s  
equal  t o  the o r i g i n a l  separa t ion  frequency b u t  a l so  occur below a s  w e l l  
a s  above t h e  o r i g i n a l  p a i r .  Furthermore the  envelope of t h e  group 
reminds one of the  shape of many t h e o r e t i c a l  s ~ e c t r a .  I f  we were t o  
l e t  the  process continue we would be able t o  produce a proper broad 
spectrum from a s i n g l e  p a i r ,  l i k e  r a b b i t s  i n  Aust ra l ia .  I f  two t ee th  
can do t h i s  i n  a few metres then 75 can do s o  a s  well.  

2 metre 

6 metre 

I 
o Fig. 7 .  Ke Z Zer ' s  too th  breeding expr imen  t .  The frequencies 1 . 1 ~ ~ 2  

1.5234 Hz and 1.6016 Hz. The FFT used 2048 sanplas ct 
20 Hz. Teeth are  bred a t  i n t e r v a l s  equal t o  the  
or.t'ginaZ separation above and below the  parents. 



Choosing the  f r o n t s  

The computer which genera tes  the wave-maker command s i g n a l s  ( a  
Plessey Miproc) runs with an e f f i c i e n t  b u t  obscure machine code program. 
The i n s t r u c t i o n s  a r e  produced by a slower high-level  language machine 
which o f f e r s  a g r e a t  v a r i e t y  of e d i t i n g  f a c i l i t i e s .  

The most b a s i c ,  c a l l e d  "brewing", allows us t o  choose the  f r o n t s  
by typing i n  four  parameters f o r  each. This  is used f o r  s i n g l e  f r o n t s  
and the b inary  f r o n t  " q u i l t "  b u t  i s  tedious f o r  l a r g e  numbers of f r o n t s .  
Programs have the re fo re  been w r i t t e n  which produce machine code f o r  the  
various t h e o r e t i c a l  s p e c t r a ,  w i t h  opt ions  to s e l e c t  any of t h e  spreading 
functions i n  t h e i r  o r i g i n a l  or a modified form. We can spec i fy  them 
by wind-speed o r  energy-period and introduce a model s c a l e  f a c t o r .  For 
example we can ask f o r  a Jonswap with cos42.4 spread o r  a Pierson- 
Moskowitz with Mitsuyasu spread,  modified s o  t h a t  the  c r e s t  lengths  a r e  
a l l ,  say,  1.5 times Mitsuyasu's recommendations. We can r o t a t e  t h e  
whole bank of  f r o n t s  through a s p e c i f i e d  angle,  modify individual  
f r o n t s ,  and carry  o u t  a v a r i e t y  of g loba l  e d i t i n g  functions.  

The amplitudes, frequencies and f r o n t  angles are chosen s o  t h a t  
each con t r ibu tes  a roughly equal  amount of  energy to the f i n a l  r e s u l t .  
The algorithms f o r  this a r e  due t o  Mollison, who has developed some 
e legan t  s t a t i s t i c a l  methods to ensure t h a t  the r e s u l t s  a r e  "more 
randomly d i s t r i b u t e d  than p l a i n  chance". 

I f  the  model t o  b e  t e s t e d  has  some unusual property such a s  a 
p a r t i c u l a r l y  narrow resonance band, we w i l l  ob ta in  b e t t e r  r e s u l t s  by 
concentrat ing more f r o n t s  round t h a t  frequency and reducing t h e i r  
amplitudes t o  keep the  energy content  co r rec t .  Al ternat ive ly  i f  we 
want t o  exaggerate resonant  behaviour we can add a s t rong e x t r a  tooth  
to t h e  comb spectrum. We do everything poss ib le  t o  make our wave 
energy devices e x h i b i t  broad-band damped behaviour i n  every mode, and 
we have no t  found s t r u c t u r e s  w i t h  resonance peaks narrow enough to be 
l o s t  between sens ib ly  chosen t ee th .  

The r e l a t i v e  s t a r t i n g  phases of t h e  f r o n t s  a r e  usual ly  s e l e c t e d  on 
a pseudo-random b a s i s  with a seed number which can be changed t o  g e t  a 
d i f f e r e n t  second s e a  with the  same s t a t i s t i c a l  p r o p e r t i e s .  But we can 
ask f o r  the  s t a r t i n g  phases t o  be chosen with d e v i l i s h  malevolence so  
t h a t  f r o n t s  combine a t  an exac t ly  s p e c i f i e d  p lace  i n  the tank a t  an 
exact ly  s p e c i f i e d  time a f t e r  the  sequence starts.  This produces a 
f reak  wave w i t h  very low, b u t  n o t  zero,  s t a t i s t i c a l  p robab i l i ty .  I t  
is usual ly  devas ta t ing  f o r  s h i p  models and s o  we can exerc i se  mercy 
with a lower s p e c i f i e d  r a t i o  of peak-to-RMS value .  The maximum r a t i o  
i s  given by where N is  t h e  number of  wave f r o n t s .  For N = 75 
this comes o u t  t o  12.25. I f  we spec i fy  a high r a t i o  of peak t o  RMS 
value i n  a l a rge  s e a  a t  a p o i n t  which is  a long d i s t ance  from the  wave- 
makers, we may f i n d  t h a t  premature breaking s tops  us g e t t i n g  the  
expected r a t i o .  But by p u t t i n g  the  models c l o s e r  t o  the  wave-makers 
(two o r  th ree  metres a t  1 /100th)sca le  we can be sure  of t e s t i n g  i n  
condi t ions  beyond anything t h a t  sh ips  a r e  expected t o  take. We argue 
t h a t  the  'malice aforethought '  method g e t s  t e s t s  done more rapid ly  than 
a more random method because we do no t  have t o  wa i t  fo r  chance t o  come 
round. The quest ion is whether i t  is b e t t e r  t o  play u n t i l  the dea le r  



hands you a royal running flush i n  spades, o r  persuade him quiet ly  
before the game begins. A hundred years is a long time even a t  model 
scale. 

We found tha t  a par t icu lar ly  spectacular pat tern resu l t s  from 
making a l l  f ronts  have the same frequency but choosing the angles and 
phases so t h a t  they converge t o  one central  "bulls eye". Even though 
the wave i s  monochromatic and the water deep re la t ive  t o  the wavelength, 
t h i s  procedure produces a plunging breaker with a ve r t i ca l  in te rna l  
face and a height-to-length r a t i o  of about1 t o  4 . 5 .  As energy i s  
contributed by a l l  the wave-makers, the technique gives a method of 
making very large waves. The trough-to-crest height can be as large 
as  the hinge depth of the f laps .  

Testing Testing Tanks 

An accurate representation of the sea surface i s  and looks l i ke  a 
complicated mixture of frequencies and angles. A rigorous proof t h a t  
one is  achieving the desired objective i s  not easy. We are  a t  the 
ear ly  stages of a prqramne of work on multiple gauge measurements. 

I f  w e  choose an a r t i f i c i a l l y  sho r t  repeat-period fo r  a pseudo- 
random sequence and measure the output from gauges a t  points a l l  over 
the tank fo r  the exact repeat period, we should expect t h a t  the RMS 
value a t  each point would be the same. However the arrangement of 
our tank does not qui te  do th i s .  We have wave-makers along one of the 
long s ides  of the tank which are  faced by beaches on the other.  But 
while one of the shor t  s ides  of the tank is a l so  f i t t e d  with beaches 
it is  faced by a g lass  observation window which w i l l ,  of course, r e f l e c t  
oblique wave fronts.  I t  i s  no surpr ise  to discover tha t  the s ide 
beach causes a tr iangular area of reduced wave height. But we  also 
found an increase along a ridge pa ra l l e l  t o  the glass about two metres 
away from it. Other anomalies can probably be traced to sections of 
beach with s l i gh t ly  in fe r io r  absorption. We would a l so  expect tha t  
any wave-breaking would deplete the wave heights of a fan-shaped area 
down wave. 

However the var ia t ions i n  wave height over the cent ra l  three- 
quarters of the tank are  lower, and a good deal l e s s  than would occur 
a t  sea because of chance. I t  is  grat i fying t o  report  t h a t  wave 
recurds a re  very repeatable from run to run, and t h a t  the differences 
a re  about the same as  our l eve l  of confidence i n  the wave gauges. 

The test which shows up the defects  i n  a wide tank most eas i ly  
i s  t h a t  of producing long-crested monochromatic wave f ronts  as in a 
narrow tank. Wide, r i g id ,  non-absorbing wave-makers cannot do t h i s  
for  any length of time without building up ever la rger  amounts of 
cross-wave. We can detect  the presence of cross-waves i n  our tank 
but t he i r  amplitude does not continue to grow. Two very quick 
subjective t e s t s  can be carried out. In the f i r s t  of them we 
generate f a i r l y  large long-crested regular waves for several  minutes. 
We then switch off the wave-makers and observe the tank-surface a f t e r  
the end of the t r a in  has reached the beach. I n  a shor t  wide tank 
the cross-waves w i l l  s t i l l  be present. In the second t e s t  we 
generate the same wave t r a in  and then reduce wavelength and increase 



height ,  so t h a t  s p i l l i n g  breakers a r e  j u s t  formed. The amount of 
breaking a c t i v i t y  should be the same along the  whole frontage.  The 
pos i t ion  of abe r ra t ions  is c l e a r l y  marked. 

A Variant f o r  Shallow Water 

We have a s t rong  preference f o r  t h e  hinged f l a p  f o r  wave making 
i n  deep water tanks. Flaps g ive  a reasonable approximation t o  the 
exponential  decay of o r b i t a l  motion and do n o t  have too  much added mass. 
But many people engaged i n  c o a s t a l  engineering need t o  make l a rge  waves 
with long per iods  i n  shallow water. They requi re  a f l a t  e l l i p t i c a l  
motion of water p a r t i c l e s  and f i n d  t h a t  there  is  inadequate depth f o r  
a hinged f l a p .  We have c a r r i e d  o u t  design work on absorbing wave- 
makers s u i t a b l e  f o r  these  app l i ca t ions .  

The arrangement is shown i n  Fig. 8, and is the  sub jec t  of  
p rov i s iona l  p a t e n t  app l i ca t ions .  I t  c o n s i s t s  of two moving elements. 
A f l a p  which can genera te  and absorb a t  high frequencies i s  mounted 
with gusse t  s e a l s  i n s i d e  a c a r r i e r .  The c a r r i e r  i s  mounted from a 
second hinge wel l  above t h e  water.  Its r e a r  su r face  is  p a r t  of a 
c i r c u l a r  a r c  cent red  on its a x i s  of r o t a t i o n  s o  t h a t  water behind 
remains undisturbed. The c a r r i e r  hinges have t o  r e s i s t  a s u b s t a n t i a l  
upward force .  The wave-maker opera tes  a s  i f  the f l a p  was the ' tweeter '  
and t h e  c a r r i e r  t h e  'woofer' of a h i - f i  system. The c o r r e c t  command 
s i g n a l s  t o  each provide nea r ly  the  c o r r e c t  displacement a t  each depth 
f o r  a wide range of  frequencies.  

Pig.  8. The woofer tweeter combination for shaZZow trzter. 

An e x t r a  complication is caused by the f a c t  t h a t  people who work 
i n  shallow water near ly  always vary t h e  depth. We have had t o  make 
provis ion  to r a i s e  and lower t h e  c a r r i e r  hinge. 



Direc t iona l i ty  and Crest-length 

The newcomer t o  oceanography is deeply impressed by the enormous 
achievements i n  the  understanding of the  he ights  and lengths of waves. 
There is  a wealth of experimental d a t a .  The s t a t i s t i c s  f o r  season and 
place  a r e  sp lendidly  de ta i l ed .  Accurate predic t ions  can be made from 
wind speed, dura t ion  and f e t c h .  Non-line= wave p r o f i l e s  can be 
ca lcu la ted  t o  an extraordinary degree of accuracy. Exact answers a r e  
i n s t a n t l y  provided t o  every ques t ion .  The newcomer bel ieves  t h a t  
oceanographers a r e  t r u l y  omniscient,  t h a t  is u n t i l  he inqu i res  about 
crest- length.  

We needed t o  know about cres t - length  because our wave energy 
devices a r e  mounted on a very long spine  ( severa l  ki lometers)  and 
the  bending moments induced by waves i n  t h a t  spine a r e  c l e a r l y  of 
extreme importance. We could measure a l l  the fo rces  a c t i n g  on a 
sec t ion  of  the device i n  a narrow tank. I f  we knew about the  lengths 
of the  c r e s t s  of waves i n  t h e  s e a  we could t r y  working o u t  the bending 
moments, shear  forces  and d e f l e c t i o n s  of our long spines  using the 
es t ab l i shed  theory f o r  beams, s u i t a b l y  modified f o r  dynamic appl ica t ions .  
Bending moments f o r  a s t a t i c  beam should be propor t ional  t o  the  square 
of crest- length and d e f l e c t i o n s  propor t ional  t o  t h e  four th  power. 
What we needed was an e x t r a  dimension t o  the s c a t t e r  diagram which 
s p e c i f i e d  crest- length r a t h e r  than wavelength. We could then go ahead 
and design y ie ld ing  j o i n t s  t o  l i m i t  t h e  bending moments and s e l e c t  the  
optimum value  f o r  t h e  amount of  post-tensioning s t e e l  i n  the concrete 
between them. But it was n o t  to be. 

Admittedly w e  were vague about how we would def ine  crest- length 
i n  anything b u t  a q u i l t e d  sea b u t  we knew t h a t  the  answer ought to be 
i n  u n i t s  of length. Ins tead  we were shown kidney-shaped p l o t s  of 
d i r e c t i o n a l  s p e c t r a  and assured t h a t  these contained a l l  the 
information. I t  turned o u t  t h a t  only  a few hours of observations had 
ever been made and t h a t  t h e  angular  r e so lu t ion  of the  measuring 
instruments was, t o  one who had previous ly  worked with astronomers, 
r a the r  low. The wave gauges used to measure d i r e c t i o n a l i t y  seemed t o  
be much too c lose  together .  The l a s t  s traw w a s  t h a t  one of the 
techniques of analysing t h e  ou tpu t s  of the  gauges was c a l l e d  " the  
maximum l ike l ihood"  method b u t  could only be understood by an 
unusually able  Ph.D. s tuden t  a t t ached  t o  our group. We encouraged 
him to make it work. He d i d  s o  and I am pleased t o  see  t h a t  he w i l l  
be cont r ibut ing  tn t h i s  conference. 

There are  two th ings  c a l c u l a t e d  t o  make an engineer anxious. One 
i s  having t o  r e l y  on da ta  a n a l y s i s  methods t h a t  he does no t  t r u l y  
understand. The o the r  i s  having t h e  r e s u l t s  i n  t h e  wrong u n i t s .  
I hope t h a t  this conference w i l l  r e l i e v e  my a n x i e t i e s .  

W i t h  t h e  g r e a t e s t  h e s i t a t i o n  I o f f e r  f o r  your de r i s ion  a method 
fo r  g e t t i n g  an ind ica t ion  of cres t - length  on which we have done a few 
experiments. I t  is based on the  ca lcu la t ion  of  the  co r re la t ion  
c o e f f i c i e n t s  between t h e  ou tpu t  s i g n a l s  of  a group of wave gauges 
arranged i n  l i n e  abreas t .  The c o r r e l a t i o n  c o e f f i c i e n t  is much 
despised by s t a t i s t i c i a n s  because i t s  value can be uni ty  f o r  d a t a  
streams which a r e  not  causa l ly  r e l a t e d  and zero f o r  those which a r e .  



But f o r  our work it has two advantages. The f i r s t  is t h a t  it  can be 
computed 'on t h e  f l y '  without  s t o r i n g  long da ta  streams by even the  
most feeble  microprocessors. The second i s  t h a t  it i s  very easy t o  
understand. 

Fig. 9 shows some t y p i c a l  r e s u l t s .  The p o i n t s  a r e  experimental 
measurements and t h e  continuous curves a r e  output  from a 75 f r o n t  
computer s imulat ion.  Between c o r r e l a t i o n  values of 0.9 and 0 .2  the  
r e s u l t s  a r e  f a i r l y  l i n e a r .  I t  would be poss ib le  t o  make a reasonably 
accura te  i n t e r p o l a t i o n  of the  separa t ion  necessary f o r  a value of 0.5 
and then to use this d i s t ance  a s  an i n d i c a t o r  of crest- length.  For a 
simple q u i l t  s e a  we should mul t ip ly  this d i s t ance  by 6 to ob ta in  the  
crest- length.  

Corr. 
CoeFI 

F i g .  9 .  Sirnuluted and rncaoured correlation cos ff ic ients  for 
two spreading functions. 

One fu r the r  i t e m  w i l l  exhaust  m y  knowledge on the  s u b j e c t .  We 
had read (6), t h a t ,  i n  a wind s e a ,  "cres t - lengths"  would be about 1 . 7  
times wavelengths. Glenn Kel ler  and I had the chance t o  f l y  i n  an 
R.A.F. Nimrod and make simultaneous recordings of  an accelerometer and 
the  a i r c r a f t ' s  radar  a l t ime te r .  W e  flew an accura te  c i r c l e  a t  
cons tant  speed over a new wind sea  and compared encounter zero-crossing 
lengths  ac ross  and along wind. The r a t i o  was 1.66. Our f a i t h  i n  the 
omniscience of oceanographers was i n s t a n t l y  r e s to red .  

Summary 

The displacement of  a wave-maker is a bad s i g n a l  t o  use f o r  cont ro l .  
The s i z e  of  wave crea ted  is a f f e c t e d  by r e f l e c t i o n s  and waves from 
ad jacen t  u n i t s .  Several  techniques can be used t o  absorb unwanted 
waves b u t  fo rce  measurement i s  a t t r a c t i v e  on p r a c t i c a l  grounds. 
Absorption makes f o r  good s t a b i l i t y .  Asymmetric wave-makers save 
power and the c o s t  o f  power c o n t r o l  elements. Asymmetry can be 



achieved f o r  p i s ton  d i sp lace r s  f o r  shallow water b u t  f l a p s  a r e  good f o r  
deep water. Direc t ional  spec t ra  can be generated by the superposi t ion 
of d i s c r e t e  monochromatic wave f ron t s .  Provided t h a t  s u f f i c i e n t  f r o n t s  
a r e  used i t  is  d i f f i c u l t  t o  d i s t ingu i sh  the sea  s t a t e  from t h a t  of a 
continuous spectrum. The d i s c r e t e  method enables the cont ro l led  
composition of abnormal seas .  

Acknowledgements 

Wave energy research a t  t h e  University of Edinburgh is supported 
by the United Kingdom Department of  Energy. They paid f o r  the  tank 
and allow a generous sum f o r  maintenance and improvements. I would 
l i k e  to thank the  o f f i c i a l s  who a r e  keen t o  see  the  successful  
development o f  renewable energy and i n  p a r t i c u l a r  the o f f i c i a l  who 
author ised  t h e  construct ion of  the  tank i n  t h e  face  of  an exper t  
r e c m e n d a t i o n  t h a t  it would never work. (He was reprimanded f o r  
doing so.) To complete cons t ruct ion  wi th in  the  budget required a 
g r e a t  d e a l  of hard work from s tuden t s  and school-leavers who added 
temporary s t r eng th  t o  the wave energy research  group. 

This paper was w r i t t e n  f o r  t h e  Direc t ional  Wave Spect ra  Applications'81 
symposium, Berkeley, Ca l i fo rn ia  and i s  repr in ted  w i t h  permission from 
the  American Society of  C i v i l  Engineers. 

References 

(1) Milgram, J .H. ,  Compliant Water-wave Absorbers. M.I.T. Department 
of Naval Archi tec ture  and Marine Engineering Report no. 65-13. 
1965. 

(2) Milgram, J .H. ,  Active Water-wave Absorbers. J. Fluid.  Mech. 
vol .  43, p a r t  4 ,  pp 845-859, 1970. 

(3) G i l b e r t ,  G. Absorbing Wave Generators. H.R.S. Notes, no. 20, 
pp 3-4, 1978. 

(4) Taniguchi, K., Kasai, H . ,  A New Flap-type Wave-maker without  
Water on Back Side.  J. Soc. Nav. Archit.  of Japan, vol .  132, 
pp 129-136, 1972. 

(5)  Russe l l ,  R.C.H., Hydraulics Research 1973, pp 18-19, HMSO, 
London, 1974. 

(6) Rye, H . ,  Rela t ive  Crest- length of  Sea and Swell. J. Phys. 
Oceanography, vol .  3,  pp 492-493, 1973. 


	Untitled-26.pdf
	Untitled-27.pdf
	Untitled-28.pdf
	Untitled-29.pdf
	Untitled-30.pdf
	Untitled-31.pdf
	Untitled-32.pdf
	Untitled-33.pdf
	Untitled-34.pdf
	Untitled-35.pdf
	Untitled-36.pdf
	Untitled-37.pdf
	Untitled-38.pdf
	Untitled-39.pdf
	Untitled-40.pdf
	Untitled-41.pdf
	Untitled-42.pdf

