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Abstract 

Genetic linkage analysis is the primary method for the identification of loci contributing 

to complex disease susceptibility. Linkage analysis techniques can be applied to both dis-

ease status (discrete traits) and to quantitative trait measures (quantitative trait loci or 

QTL mapping). Such techniques will be most effective if they can be applied to all of the 

available data; in human, ecological and livestock genetics this often means families with 

complex pedigree structures. The analysis of complex pedigrees is more difficult, both in 

terms of model formulation and computational ease, than similar studies of small fam-

ily structures such as affected sibling pairs (ASP). Univariate variance component (VC) 

techniques suitable for QTL analysis of both quantitative and qualitative (via a threshold 

model) traits are described. Extensions to the univariate VC methods are proposed, al-

lowing QTL analyses of longitudinal data in complex pedigrees, with polynomial based co-

variance functions offering a parsimonious description of the covariance structure across 

measures. Computer simulations are used to show that, under a range of realistic sce-

narios, the longitudinal QTL method offers more power to detect QTL than univariate 

or repeated measures methods. The longitudinal method is subsequently applied to 330 

extended families from the Framingham Heart Study, allowing the identification of QTL 

for a number of cardiovascular disease risk factors. The maximum LOD score (3.12) is ob-

tained on chromosome 16 for Body Mass Index (BMI) and subsequent multivariate anal-

yses showed that this QTL is most relevant to BMI at early ages. Threshold model based 

VC and parametric linkage analyses are applied to a set of Scottish families affected by 

psychiatric disease. The results from this analysis are in agreement with previous results 

implicating chromosome 1q42 in psychiatric disease susceptibility. The broad application 

of the VC techniques is further demonstrated by applying the techniques to a QTL map-

ping problem in a very large Red Deer (Cervus Elaphus) pedigree. 

Linkage analysis is commonly used to identify candidate regions for further study. 

These candidate regions will be the chromosomal segments shared among related indi-

viduals with common diagnoses, with recombination events delineating the regions of in-

terest. However in genetically complex traits, the relationship between phenotype and 

genotype is not one to one. The effect of changing the parameters defining the relation-

ship between phenotype and genotype is investigated, both analytically and by computer 

simulation. Increasing the rate at which affected individuals without mutations in the 

disease region of interest occur in the sample (the phenocopy rate) is found to have a large 



effect on the validity of the inferred region. This has implications in genetic studies of 

common disease (e.g. schizophrenia), where the phenocopy rate will often be non-zero. 

The use of extended families for linkage mapping has become a controversial issue, 

with the field of psychiatric genetics somewhat polarised; a number of groups have col-

lected mainly extended family data whilst others have focused on small ASP family struc-

tures. Whilst the advantages of a given study design will vary depending upon the un-

known 'true' disease model, it is argued that extended families will often be more useful 

for locus identification than sib pair based studies. It is shown that the heterogeneity in-

troduced by collecting large numbers of sib pairs from a number of different populations 

will impact significantly upon the power to detect the effects of any single gene. 
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Chapter 1 

Introduction 

1.1 Identifying genetic variation underlying human dis-

ease 

Many of the diseases that affect human populations are known to be subject to a degree of 

genetic control [38]. The World Health Organisation (WHO) places human diseases into 

two broad categories: one covering communicable disease (such as infectious and parasitic 

diseases) and one covering non-communicable disease (such as cancers and cardiovascular 

disease (CVD)) (ht tp: I/www3 .who. int/whosis/menu.cfm?path=evidence, burden, 

burden-estimates). In the developed world, the vast majority (-80% of all deaths) of 

the disease burden is a result of non-communicable disease; this is due in large part to su-

perior health care and nutrition. Since the effects of communicable disease are small, in 

Europe and North America, cancers and CVD account for over two-thirds of all deaths and 

are the subject of intense research. Although many environmental risk factors have been 

identified, there is a (substantial) genetic component to most cancers [1911 and to heart 

disease (e.g. [145], see also section 1.2.2 and chapter 4). Future research into reducing 

the impact of these diseases has therefore focused on the identification of the underlying 

disease genes. In particular, the pharmaceutical industry has invested heavily in genet-

ics/genomics, with the hope being that an understanding of the genetic components of 

disease will lead to the identification of novel drug targets. In the developing world, the 

disease burden is mainly a result of communicable disease (-75% of all deaths): many 

of these deaths could be avoided with the provision of suitable health care and nutrition. 

If the effects of communicable disease can be reduced, genetic research may also have a 

substantial impact on public health in the developing world. 

1.1.1 Mendelian Disease 

The simplest diseases genetically are those that arise as a direct result of the genotype an 

individual has at a single (disease) locus. These are known as Mendelian diseases. For 



such diseases a particular inheritance pattern can be clearly seen in families. If the (dis-

crete) character or disease is expressed in individuals who have one or two copies of the 

disease allele, the character is dominant. Assuming the presence of the character does not 

affect the parents decision to have further children (ascertainment bias), the inheritance 

pattern observed in families will be distinctive, with half of the offspring of an affected 

parent exhibiting the character (assuming that the affected parent is heterozygote and 

the other parent is unaffected). When the character is only expressed in homozygotes, 

the character is recessive and again assuming no ascertainment bias, one quarter of the 

offspring of two heterozygous parents will exhibit the character. There are over 14000 

Mendelian characters known in humans, with over 8000 mapped to a particular chro-

mosome (http: //www.ncbi .nlm.nih.gov/omim/) . Techniques for mapping genes to 

particular chromosomal regions are described later in the chapter. 

With the advent of molecular marker technology there has been an explosion of in-

terest in the identification of genes underlying human Mendelian disease. In the initial 

stages of this era, marker information was used to test for phenotypic-genotypic correla-

tions in genomic regions thought to play a biological role in a particular disease, the can-

didate gene (or functional cloning) paradigm. Subsequently, marker technology became 

sufficiently inexpensive to allow coverage of the whole genome in the search for genetic 

determinants, the positional cloning paradigm [42, 431. The ready availability of genetic 

markers for this genome scan approach has allowed researchers to find more than 1000 

genes associated with human disease [168]. In the vast majority of cases genomic regions 

have been found by first examining individuals in pedigrees and applying linkage analysis 

techniques. Subsequent to a successful linkage analysis, linked regions have often been 

narrowed (or fine mapped) by techniques such as Linkage Disequilibrium (LD) mapping 

(e.g. Cystic Fibrosis, Nijmegen breakage syndrome [2201). Linkage analysis (discussion 

in detail in section 1.3.1) relies upon the co-segregation of disease loci with nearby linked 

marker loci. LD (discussed in section 1.4) is a population level phenomenon, describing the 

degree to which the frequency of two alleles (at two different loci) differs from the expected 

frequency assuming they occurred independently. LD may exist between nearby loci if the 

alleles in two 'unrelated' individuals occur together (i.e. in a haplotype, see section 1.3.1) 

as a result of transmission from a common ancestor; these haplotypes, whittled down by 

many generations of recombination events, may be useful for the fine mapping of QTL. 

A classic example of the efficacy of positional cloning in Mendelian disease mapping 

was in the recessively inherited disease Cystic Fibrosis (CF, OMIM 219700). Linkage 

analysis was used to map CF to chromosome 7q [234]. Although this result strongly im-

plicated this region, due to the small number of recombination events available within the 

affected families, it was not possible to directly identify the gene responsible. LD based 

mapping techniques were then applied, allowing the identification of the gene responsible 

for CF [201. This led to a significant increase in the understanding of CF pathogenesis. 

In the near future, techniques based on knowledge of the underlying biology, such as gene 

therapy, may allow more effective treatment of CE 
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Diseases with Mendelian inheritance tend to be rare because the strong phenotypic 

effect of the disease mutation on fitness will ensure that the mutations will be rapidly 

purged from the population (assuming that the disease decreases fitness). Exceptions 

to this include cases such as CF where heterozygous advantage (i.e. where individuals 

heterozygous for the disease allele have greater fitness than the wild type homozygote) 

maintains it the disease at a frequency of about 1 in 2000 in the UK population. Similarly, 

the incidence of Duchenne Muscular dystrophy is maintained by high levels of recurrent 

mutation and late onset diseases such as Huntington disease only present after reproduc-

tive age [2201. 

1.1.2 Complex Disease 

Given the successes with Mendelian disease, the linkage analysis -> LD analysis proce-

dure was extended to deal with traits in which there is not a one to one correspondence 

between genotype and phenotype. Such traits are referred to as complex traits. Complex 

traits will be caused by a multitude of genetic factors; this may involve a number of genes 

of moderate effect, oligogenes, or a large number of genes of small effect, polygenes. The 
genes involved may only cause disease in the presence of a particular set of background 

genes or environmental circumstances. There may be genetic heterogeneity, with differ-

ent populations having substantially different distributions of disease genes. There are 

two main types of genetic heterogeneity; locus heterogeneity and allelic heterogeneity. Lo-
cus heterogeneity refers to the situation where there are multiple disease susceptibility 

loci segregating; any single locus may contribute to disease susceptibility in a particular 

sub-population but be unnecessary for disease in another sub-population. Non-syndromic 

deafness is the classic example of locus heterogeneity with over 60 distinct loci reported to 

date [171]; in this case each individual mutation at one of the distinct loci is sufficient to 

cause the disease. For complex diseases, the locus heterogeneity model may be less clear 

cut, with individual loci only increasing the risk of disease, with affection determined as 

a result of a number of genetic and environmental factors. Allelic heterogeneity refers 

to the situation where there are multiple alleles at a single locus, each of which may be 

sufficient to cause disease. CF is the classic example of a disease exhibiting allelic hetero-

geneity, with some variants only arising in isolated populations [120]. Due to the effects 

of these multiple genetic and environment factors, progress in disease gene mapping of 

complex disease has been substantially slower than that observed in genetic studies of 
Mendelian disorders. 

Complex traits commonly targeted for genetic analysis include schizophrenia, bipo-

lar disorder, hypertension, cancer and diabetes. In terms of public health these common 

(defining common as being >1 case per 1000 people [2311) complex diseases are substan-

tially more important than the numerous, but rare, Mendelian diseases. Even in cases in 

which there is a mechanism for the maintenance of a disease mutation in the population 

(for example as in the case of CF), Mendelian diseases rarely become common. 

The potential of the positional cloning approach for a common disease gene mapping 
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has been been demonstrated in the case of Crohn's disease [106]. Crohn's disease is com-

mon (incidence 1 in 1000), causing chronic inflammation of the gastro-intestinal tract. It 

is thought to result when particular environmental factors arise in genetically predisposed 

individuals [106]. In this case researchers were able to follow up a positive signal from 

linkage analysis with LD based analysis and, after some luck with sequencing a region 

only weakly associated with the disease, they were able to identify the variant conferring 

susceptibility to the disease. 
To improve the efficacy of the positional cloning approach in complex disease various 	- - 

refinements have been utilised. Some of the successes have relied upon the identification 

of genes for particularly extreme forms of a disease. This approach is based upon the 

expectation that such subsets may be more genetically homogeneous (less phenotypic het-

erogeneity). A case in point is Alzheimer's disease; analysis of early onset cases allowed 

the identification of mutations causing the deposition of amyloid fi peptides in plaques in 

the brain, leading to greater understanding of disease pathogenesis [94].  Another possible 

way forward involves identifying subsets of the disease which have near-Mendelian inher-

itance patterns; this approach has been successful in the identification of loci for breast 

cancer (genes BRCA1; OMIM 113705 [157], BRCA2; OMIM 600185 [2571). 
Another promising approach for complex trait dissection involves finding pedigrees in 

which chromosomal abnormalities segregate with the phenotype of interest. One applica-

tion of this approach considered a balanced chromosome 1;11 translocation in a Scottish 

family affected by major psychiatric disease [216]. Subsequent linkage analysis using the 

translocation as a marker generated a substantial test statistic, illustrating that it was 

very likely that the translocation interrupted a gene conferring susceptibility to psychi-

atric disease [26] (see also section 1.2.1). 

1.2 Primary Research Areas 

1.2.1 Psychiatric genetics 

One of the foci of this thesis is psychiatric genetics. Mental health problems such as 

depression, anxiety and schizophrenia account for 12 percent of the United Kingdom 

National Health Service budget (http: / /www. doh. gov . uk/dohreport/report2 000/ 

dr2000-11 . html). Twin studies comparing trait incidence in monozygotic and dyzygotic 

twins have shown that diseases such as schizophrenia have a strong genetic component 

[242]. The proportion of variance attributable to genetic factors is generally estimated 

at around 80% in schizophrenia and bipolar disorder [148]; this proportion is lower, but 

still substantial, for disorders such as anxiety (-35% [1011) and (unipolar or recurrent 

major) depression (-50% [1471). These proportions are particularly high when one consid-

ers the difficulty in unambiguously diagnosing these disorders. Interestingly, it has been 

suggested that disorders such as schizophrenia and bipolar disorder, which are generally 

regarded as clinically distinct, may share susceptibility genes [22, 24, 261. The evidence 
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for a strong genetic component, together with suitable marker data, has led researchers 

to devote substantial resources to identifying the genes responsible for susceptibility, with 

the hope that knowledge of these genes will improve understanding of the pathophysi-

ology of diseases such as schizophrenia and lead to more effective treatment. Even if a 

single gene, perhaps of minor effect on schizophrenia, could be unambiguously identified, 

the biochemical pathways and molecular mechanisms suggested by this gene might prove 

to be of relevance to the disorder in general [96]. 

When faced with the difficult task of identifying genes for complex disease appropriate 

study design is crucial. In psychiatric genetics there are two popular designs for linkage 

analysis. The first is based upon collections of affected sibling pairs (ASP). The second 

concentrates on large extended families. The rationale behind the ASP approach is that 

sibling pairs offer more power than other pairs of relatives (such as cousins) for relatively 

small effect sizes [189]; small effect in this case is defined as having a A 8  value less than 
say 2. A, is defined as the conditional probability an individual is affected by a disease 

given its sibling is affected, divided by the population prevalence of that disease. ) for 

schizophrenia is around 10 [188] but there are likely to be multiple susceptibility loci, giv-

ing a lower locus specific A 8 . Sib pair samples can also be less expensive to recruit than 

extended family samples, allowing larger sample sizes. The advantage of the extended 

family design lies with the potential for reduced locus heterogeneity within the sample; 
large families are unlikely to harbour more than one risk allele. Since schizophrenia is 

known to have multiple susceptibility loci, every care should be taken to minimise locus 

heterogeneity within a sample. As ASP samples are based on large numbers of unrelated 

families they will sample much more widely from the population(s) of interest. In partic-

ular, a few recent studies have considered large ASP meta-analyses. These meta-analyses 

include families from a diverse range of populations [137, 199, 1341, making it unlikely 

that they all result from a single cause. The efficacy of each of the methods will depend 

upon the true (unknown) disease model. Genes detected by the ASP based design may be 

of greater relevance to the population in general than rarer genes detected in extended 

pedigrees. However, definite identification of even a single schizophrenia susceptibility 

gene is likely to be of substantial significance [961.  In the past some researchers have 
favoured the ASP design because the statistical analyses are more tractable; however, the 

methods described in this chapter, chapter 2 and chapter 5 illustrate that this should no 

longer be a concern. The effect that locus heterogeneity has on the power to detect any 

single susceptibility locus is discussed in chapter 6. 

1.2.2 Cardiovascular disease and quantitative genetics 

Another focus of this thesis is the analysis of quantitative risk factors affecting cardiovas-

cular disease (CVD). Globally, CVD accounts for a third of all deaths 
(http: I/www.who. int/cardiovascular_diseases/priorities/en/). Large scale 
epidemiological studies such as the Framingham heart study ([1751, chapter 4) have shown 

that diseases such as heart disease are affected by a large range of factors such as smok- 
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ing, blood pressure, cholesterol, physical activity and poor diet. Some of these factors have 

been shown to have a genetic basis and hence have been targeted for genetic (linkage) 

analysis. Unlike the qualitative disease outcomes commonly studied in psychiatric genet-

ics, factors such as blood pressure, cholesterol and obesity (often expressed as Body Mass 

Index or BMI; this is weight in kilo-grams divided by height in metres squared) are quan-

titative. Genomic locations containing one or more genes influencing a quantitative trait 

are commonly assessed in terms of the amount of variation they explain in the observed 

phenotype. Such genomic regions are referred to as Quantitative Trait Loci or QTL.AQTL - -- --

with a large effect upon the trait may be composed of either two or more proximal genes 

modestly affecting the trait value (in the same direction) or, alternatively, a single gene 

with a large effect upon the trait. Separating the effects of nearby QTL requires large 

amounts of data and it will not usually be possible to distinguish between the effects of a 

number of small (linked) effects and a single larger effect. Genetic analysis of quantitative 

traits requires methods different to those commonly applied to qualitative traits. There 

have been many genetic linkage studies of quantitative traits truncated to be qualitative 

(e.g. truncation of blood pressure to a yes/no definition of hypertension [121). However, 

there will be more power to detect loci affecting the trait when the underlying quanti-

tative traits are analysed [70].  As with the ASP analysis methods for qualitative traits, 

historically some researchers favoured binary traits over quantitative traits because they 

were simpler to analyse. The methods described in chapter 2 show that quantitative traits 

can be effectively analysed without the need for truncation to a qualitative trait. Since 

many of the quantitative traits affecting CVD change throughout life, appropriate data 

sets should allow characterisation of the composition of the traits over time. Analysis 

methods suitable for longitudinal quantitative trait analysis are described in chapter 2 

and applied to real and simulated data in chapters 4 and 3, respectively. 

1.3 Analysis methods 

A large number number of techniques exist for extracting linkage information from sets of 

genotyped relatives. In the thesis linkage methods, based on both qualitative and quanti-

tative traits, are applied. The basic methods are introduced below with pointers given to 

related chapters. 

1.3.1 Parametric analysis 

Genetic linkage analysis is a technique for assessing the recombination frequency between 

loci in pedigrees. A few definitions are required to explain this further. A haplotype is a se-

ries of alleles found at adjoining loci on a chromosome. These haplotypes are broken down 

by the recombination events which occur when the gametes are formed in reproduction. 

By examining two distinct molecular markers it is often possible to count the proportion of 

gametes in a sample in which the parental haplotypes are conserved (or non-recombinant) 
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at these two loci. This haplotype conservation will occur most frequently if the two loci 

in question are close together on the same chromosome. Alternatively, if the loci are very 

far apart, or on different chromosomes, the two loci will segregate independently, with the 

alleles being both derived from the same parent 50% of the time. The probability that the 

haplotype is not conserved (or recombinant) is the recombination fraction, 9. This can be 

mapped from a fraction in [0,0.51 to a measure of genetic distance, m, in the range [0,00) 

with a map function. Popular map functions are the Haldane map function 

m= —ln(l-29), 

which ignores interference (a phenomenon which inhibits recombination events from oc-

curring in close proximity), and the Kosambi map function 

1 In 
( 1-20

l+28'\ 
m= 	

)' 

which takes interference into account. 

Genetic linkage analysis can be employed for disease gene mapping by assuming a 

person's genotype can be inferred from their phenotype, usually by assuming the disease 

gene is dominant or recessive in its effect upon the phenotype. Assuming the haplotype 

formed by this inferred genotype and a molecular marker can be assessed in a sample of 

individuals, it is possible to gauge whether the disease gene is likely to be on the same 

chromosome as the molecular marker (i.e. 9 < 0.5), or some other chromosome (i.e. 9 = 

0.5). If the recombination fraction between the marker and the putative disease locus is 

less than 0.5 the loci are said to be linked. 
In cases where haplotype status (known as the phase of an individual) and hence the 

recombination events cannot be unambiguously determined, it is possible to write down a 

likelihood for the pedigree, incorporating the probabilities of the unknown elements (such 

as the initial haplotype status of the founder individuals), which can then be maximised 

to assess the distance between the putative disease locus and the marker. The importance 

of the disease locus can be assessed by applying tests based on likelihood theory. 

Since some individuals may not have genotype information available, the population 

frequency of the genotypes can be factored into the likelihood. This population frequency 

is usually estimated either from genotyped founder individuals or from suitably matched 

unrelated individuals. By far the most common test statistic used in human genetics is a 

form of the likelihood ratio (LR) test known as the LOD score. The LOD score is defined 

as the base 10 logarithm of the ratio of the likelihood that the recombination fraction is 

some value 9 to the likelihood under the hypothesis of no linkage (i.e. 9 = 0.5). LOD scores 

can be converted to traditional 2 ln(LR) statistics by multiplying them by 2 In(10) = 4.6. 

For example, consider the family in figure 1.1. The family is typed for a single molec-

ular marker (with alleles A and a) in three generations, with all individuals assumed to 

be affected (shaded) or unaffected (unshaded) as a result of the genotype at a putative 
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Figure 1.1: Likelihood calculation example 

disease locus (assumed to have disease allele D and wild type allele d). Assuming domi-

nant inheritance, the inferred disease genotype is shown in grey. In the grand-parental 

generation the haplotype status of the individuals are known (AD/Ad and ad/ad) but the 

recombination status cannot be determined. The father in the second generation must 

have inherited the haplotype 'ad' from his mother and the haplotype 'AD' from his father; 

the recombination status is not known however as both grandparents are homozygous at 

the typed marker. In the third generation the recombination status of the children can be 

determined. Since the father in the second generation inherited the 'AD' and 'ad' haplo-

types, any children inheriting these haplotype must be non-recombinant (non-rec in figure 

1.1) with respect to these two loci. Since the mother in the second generation always trans-

mits an 'ad' haplotype (irrespective of recombination), children II to V must have inherited 

the 'AD' or the 'ad' haplotype from the father. Conversely, child I must have inherited an 

'Ad' haplotype from his father (alongside the 'ad' haplotype from the mother). This means 

child I is a recombinant (rec in figure 1.1). The likelihood function is constructed based on 

this information. Since each gamete has a probability 9 of being recombinant and (1-9) of 

being non-recombinant the likelihood is 

L(0) = (1 - 9)491. 	 (1.1) 

Maximising the likelihood gives the maximum likelihood estimate (MLE) for 9, usually 

denoted 9. The MLE is obtained by differentiating equation 1.1 and equating to zero. 

Computing log10  of the maximised likelihood divided by the likelihood evaluated assuming 

no linkage (9=0.5) yields the LOD score. In this example the MLE is = 0.2 and the LOD 

is logi o N0.5 

If

= logjo (2.62) = 0.42. 
If the same family was used but there was no information on the either the disease 
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status or the marker genotypes at the disease locus in the grandparents it would not 

be possible to determine the haplotype of the father. The likelihood must therefore be 

constructed allowing for the possible haplotypes carried by the father. Assuming the two 

possible haplotypes (i.e. AD, ad or Ad, aD) are equally likely the likelihood is 

L(9) = (l - 9)194 + (l - 9)491 

In this case W = 1  - 	0.21 and the LOD is 0.12. The estimate of 9 is larger here (and 

the LOD is lower) than in the first case because there is greater uncertainty about the 

number of recombinations inferred to have occurred. 

Even when the disease appears to be Mendelian it is not uncommon for environmen-

tal factors and/or genetic factors unlinked to the region to influence the phenotype of an 

individual [168]. Therefore, the specification of a set of penetrance parameters is inte-

gral to parametric linkage analysis based disease mapping. Penetrance is defined as the 

probability that a person with the risk genotype develops the disease; that is, P(disease I 
has risk genotype). Similarly, the probability that affected persons do not have the risk 

genotype of interest is the phenocopy rate; that is, P(disease I does not have risk genotype). 

Assuming the parental origin of the allele is of no consequence (no imprinting), there 

will be three possible risk genotypes (DD, Dd and dd) to specify (i.e. three penetrance 

parameters). If the effect of the locus on disease is thought to be dominant, then the 

penetrances for individuals with one or two copies of the disease allele should be set 

to be equal (i.e P(disease I DD) = P(disease I DD)). Under recessive inheritance, the 

penetrances for individuals with zero or one disease allele should be set to be equal (i.e 

P(disease I Dd) = P(disease I dd)). The penetrance values are factored into the likelihood 

function described in the last paragraph. 

Choosing appropriate penetrance parameters is clearly non-trivial for diseases in which 

the Mendelian inheritance model is, at best, approximate. In fact, it can be shown that, 

in the presence of multiple trait loci, it is sometimes impossible to correctly assign pen-

etrances for all loci simultaneously ([2011, p121). Nonetheless, a number of studies have 

shown that only a small number of penetrance sets (e.g. recessive, dominant) are neces-

sary to ensure the power to detect linkage is near optimal (e.g. [881) when single marker 

analysis is performed. A separate analysis is performed for each penetrance set of interest. 

Furthermore, fitting a model with incorrect penetrances and disease allele frequencies has 

been shown not to increase the type I error rate for detection of linkage [2551 (although 

erroneously specifying marker allele frequencies in ungenotyped founder individuals to be 

lower than they should be may lead to false positives [861). What happens in practice is 

that when some of the parameters are mis-specified or there are genotyping errors, the 

lack of fit of the model is absorbed in the distance (the recombination fraction) between 

the putative disease locus and the marker of interest. Any model which is similar to the 

true model will still give evidence for linkage but, since the recombination fraction has 

absorbed some of the noise in the model, the recombination fraction will be overestimated 
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[201, 851. This means that the parametric linkage method, despite its original concep-

tion as a method for the analysis of Mendelian disorders, can be effectively applied to 

linkage detection (but not, for example, location estimates) for complex diseases in which 

the inheritance pattern is not Mendelian. The serendipity of this result has led to some 

misconceptions however. Some researchers, accustomed to applying Mendelian models to 

non-Mendelian traits for linkage detection, have reported the regions derived from their 

family based complex disease samples as if they were known without error. The effect of 

inferring disease regions in this way is investigated in chapter 7. 

For truly Mendelian disorders, where the model can be specified accurately, linkage 

analyses utilising multiple markers simultaneously (multipoint linkage) usually gives 

greatest power. This follows because the use of multiple markers reduces the chance of 

there being no marker information, useful for linkage, in the region of interest. However, 

since evidence for linkage and the distance of the putative disease region from the tested 

marker are assessed together (confounded), true linkage to a single marker under mis-

specified parameters often results in the maximum LOD score occurring too far from the 

actual locus (i.e. over-estimation of the recombination fraction). If multiple markers are 

used then the maximum LOD is often shifted outside of the range of all of the markers. 

This happens because, in cases in which the over-estimation of the recombination frac-

tion leads to recombination fraction estimates larger than the known distance between 

the some of the loci, the only location compatible with the markers and their pre-specified 

locations is before the first marker or beyond the last. That is, the maximum LOD score 

cannot be further from every marker simultaneously. As a result of this, the multipoint 

LOD score can be rather low when there is parameter mis-specification. For this reason, 

multipoint analyses are often not utilised in parametric analysis of complex disease data. 

Providing one does not require accurate estimates of the recombination fraction, two point 

(a single marker together with the putative disease locus) linkage analysis is often a ro-

bust method for linkage detection. Whilst an estimate of the disease gene location may be 

desirable, estimation of the position of the true locus is rather difficult in linkage analysis 

(see Chapter 7), not least because of the relatively small number of recombination events 

delineating the region of interest in realistically sized human genetic data sets. A possi-

ble alternative, avoiding the problems of parameter mis-specification and/or genotyping 

error effects, involves explicitly modelling the mis-specification with one extra parameter 

[85]. Another possibility is maximisation of the likelihood over all of the model parame-

ters (penetrances, allele frequencies, recombination fraction) [47]; however interpretation 

of statistical significance is more difficult in such cases and requires alternative methods 

such as computer intensive simulations. Note that even in linkage analyses which only 

use the markers one at a time, multiple markers may still be very useful in the initial 

stages because they can be used to identify unlikely double recombination events between 

tightly linked sets of markers. Programs such as Merlin [1] flag such events as they are 

likely to be genotyping errors. 

An important consideration in complex disease may be locus heterogeneity. Whilst 
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linkage studies are immune to the effects of allelic heterogeneity (since all families will 

show linkage to the same chromosomal region, irrespective of which mutation is present in 

that family), locus heterogeneity will dramatically reduce power to detect linkage (Chapter 

6). The effects of recombination fraction heterogeneity (i.e. 9 between the putative disease 

locus and the marker is <0.5 in some families and 0.5 in the other families) can be mod-

elled in the likelihood formulation of parametric linkage analyses. Smith [2101 proposed 

fitting an additional parameter, a, in the likelihood. A proportion, a, of the families are - 

assumed to be 'linked' (i.e. the recombination fraction between the putative disease locus 

and the marker is less than 0.5) to the disease locus of primary interest. In the remaining 

1 - a families, the disease status is segregating independently of the disease locus of pri-

mary interest (i.e. that linked to the marker being analysed); that is, the recombination 

fraction between the locus causing the disease in these families and the disease locus of 

primary interest is assumed to be 0.5 (or linked marker). The disease allele frequency and 

penetrances specified for this model are particular to the locus (marker) of interest in the 

a x 100% of the families that are 'linked'. Since the disease state of the other (1 - a) x 100% 

of the families is not linked to this locus (marker), the parameters relating the disease 

phenotype to underlying genotype are of no relevance to these 'unlinked' families. In com-

plex disease there may of course be many disease susceptibility loci but generally only one 

is of interest at any one time. The heterogeneity model only deals with one locus at any 

given time, with all other unlinked disease loci ignored in this formulation. It is important 

to note that whilst this heterogeneity model may be an improvement over the standard 

model (i.e. with a = 1) when there are families affected as a result of mutations segre-

gating at loci unlinked to the one of primary interest, allowing a to be less than 1 is not a 

panacea for poor study design (see also chapter 6). 

The likelihood under the heterogeneity model is maximised over both a and 9. Call the 

likelihood with both parameters unrestricted Li and the likelihood with either a = 0 or 

o = 0.5 LO (either condition is sufficient for the other to hold). The likelihood ratio test 

(log10  version) of Li versus LO is often referred to as the HLOD statistic. 

Likelihood calculation can be achieved in arbitrary pedigree structures by use of the 

Elston-Stewart algorithm [661. This algorithm uses a technique known as peeling. Peeling 

works by splitting the extended pedigree into nuclear families and calculating the likeli-

hood for each nuclear family separately. The overall likelihood is calculated by summing 

over all the nuclear families, taking into account the possible genotypes of the individuals 

linking the nuclear families. The likelihood of any single nuclear family only need consider 

three individuals simultaneously (the mother, father and, sequentially, each child). If the 

nuclear family computation is inexpensive and there are a limited number of admissible 

genotypes for the linking individuals then the peeling also allows extended families to be 

dealt with efficiently. This approach requires all the possible genotypes of each individual 

to be considered at each stage. Whilst this may be simple when there are few marker 

loci, when there are many genotyped loci, this part of the calculation can be computation-

ally expensive (assuming a multipoint analysis of all markers simultaneously is required). 
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For this reason, the peeling based algorithm works well on large pedigrees but only when 

there are few marker loci. A popular implementation of the Elston-Stewart algorithm is 

in the program FASTLINK [44]. 
An alternative algorithm for likelihood computation is the Lander-Green algorithm 

[130]. First note that the linkage information of a haplotype can be expressed solely in 

terms of whether the allele was passed from the parent's paternal or maternal side. In 

the algorithm, all of the informative gametes in the non-founder individuals are treated 

simultaneously by specifying a binary digit for the status of each allele (i.e. whether the 

allele was from the parents maternal or paternal haplotype). The binary digits can be 

assembled into inheritance vectors, summarising the flow of allele transmissions in the 

pedigree at that marker. In some cases there may be sufficient marker information to 

unambiguously determine the inheritance vector at a given marker. More likely however, 

the marker information will only be sufficient to reduce the set of inheritance vectors, to a 

smaller subset (the legal set of vectors [212, 90]) of possible inheritance vectors. The like-

lihood at this marker is then based upon the probabilities of each of the 2 "  inheritance 

vectors (assuming i non-founders) having occurred, conditional on the observed marker 

data. For additional markers we treat the vectors along the chromosome as hidden states 

of a Markov model with the transition probabilities between the state of the vector at one 

marker and the next determined by the genetic distance between them. Under the Markov 

model all other vectors beyond the adjacent marker are independent, conditional on the 

adjacent vector. This means that the algorithm is very efficient for large numbers of loci 

with computational time only increasing linearly with the number of markers. In contrast, 

the Elston-Stewart algorithm scales exponentially with the number of markers. However, 

dealing with large numbers of related individuals is computationally expensive with the 

Lander-Green algorithm since the inheritance vector becomes very large in large pedigrees 

(vector has 22j  elements with i non-founders). Implementations of the Lander-Green al-

gorithm include GENEHUNTER [127], Allegro [90] and Merlin [1] (see also section 2.3). 

The Lander-Green and Elston Stewart algorithm can hence be seen to be complementary, 

with one dealing with large numbers of markers in small pedigrees and one dealing with 

large numbers of individuals and a few markers. 

For multipoint analyses of many markers in large pedigrees approximations to the ex-

act likelihood are available. These approximations work by sampling inheritance vectors 

(called descent graphs in [211]) via a Markov Chain Monte Carlo based scheme. Samples 

from the set of possible (consistent with the observed marker genotypes) inheritance vec-

tors are drawn in proportion to their likelihood, allowing an approximation to the true 

likelihood based on a large number of simulation iterations. The number of iterations re-

quired to provide a good approximation to the true likelihood depends upon factors such 

as number of pedigree loops, number of markers and inter-marker spacing. This method 

is implemented in the programs SIMWALK [211] and Loki [99]. The method allows anal-

yses of large numbers of markers in relatively large pedigrees. Inheritance vector based 

methods also allow simple calculation of identity by descent (IBD) coefficients. Two mdi- 
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viduals are IBD for a given allele if the allele can be traced back through the inheritance 

vectors to the same ancestor. There are more details on IBD coefficients in section 1.3.3 

and section 2.3. 

Within the candidate gene paradigm the significance of one single marker (or genomic 

location) can be assessed by standard asymptotic theory. Given a large enough sample the 

likelihood ratio test comparing twice the in-likelihood difference between the likelihood at 

the likelihood maximum (over 0 < C < 0.5) and the likelihood evaluated at 9 = 0.5 will 

be asymptotically distributed as a mixture of x? and a point mass at 0. This distribution 

is a mixture because 9 under the null distribution is on the boundary of the parameter 

space (9 = 0.5); see [2001 and Chapters 2 and 3. The HLOD statistic does not converge 

to an asymptotic distribution (since either a = 0 or 6 = 0.5 specify the null) but it can 

be approximated by a 50:50 mixture of 0 and the larger of two independent X2 variables 

1201]. 
In contrast to the single marker (candidate gene) case, under the vastly more popu-

lar positional cloning paradigm, a large number of genomic locations are considered. The 

standard statistical method for dealing with such multiple testing issues is the Bonfer-

roni correction. This correction assumes that n independent tests have been done. The 

corrected p-value, p, is given by 

P*=1_(1_P)n=1_( )(_P) 1 _(1+n(_P=nP for small P 

where p is the p-value obtained in a given test. However, the assumption that the tests 

along the genome are independent is unreasonable for closely linked loci. This multiple 

testing issue has received considerable attention in the literature with the most cited ar-

ticle on the issue (Lander and Kruglyak, [1291) suggesting an approximation based on the 

assumption that a genome scan with an infinitely dense marker map has been performed. 

The Lander and Kruglyak article proposed that a LOD score of 3.3 be deemed sufficient 

for evidence of genome wide linkage. Assuming the asymptotic mixture distribution de-

scribed above this corresponds to a p-value of 5 x 10. If there is prior evidence for 

linkage to a particular region, perhaps because there have been linkages reported to the 

region previously, then there may be justification for lowering this threshold. Significance 

thresholds can also be determined by simulation. However, in parametric linkage analy-

sis, the true disease model is unknown, so simulations based upon the assumed disease 

model (e.g. using SLINK [244]) may not provide a true reflection of the null distribution. 

Furthermore, methods based upon generation of marker data under the null hypothesis 

that there is no linkage between any marker and the disease locus may generate data 

which is not representative of the actual marker data. Sham [201] gives an example of a 

single, phase known, three generation family (as in figure 1.1 but with 1 third generation 

offspring). Assume that the available marker linked (with 9=0) to the disease locus was 

fully informative (i.e. the male parent in figure 1.1 is a heterozygote at both the marker 

and the inferred disease locus). The LOD score of the family will then be logi02 0.3. 
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Assume next that data are simulated so that the marker genotypes are generated on the 

basis of a set of allele frequencies. The possible LOD values in the simulation replicates 

will depend entirely on the specified set of allele frequencies. If the allele frequencies are 

such that one allele is very rare then most replicates will yield a LOD of 0 as a result of 

the male parent in figure 1.1 being a homozygote (and hence uninformative for linkage). 

The empirical threshold (for a given significance level) from such a simulation may hence 

be artificially low. 

Power calculation for parametric linkage analysis can be performed using computer 

simulation. More details are given in chapter 6 study design. 

1.3.2 Non-parametric analysis 

A popular alternative to parametric linkage analysis considers allele sharing in pairs of 

individuals with the same phenotype. Allele sharing (alternatively, non-parametric or 

model free) techniques aim to avoid the need to specify the set of parameters needed for 

parametric linkage. Since affected individuals with the disease are thought to be better 

predictors of disease allele carrier status than unaffected individuals are of wild type allele 

carrier status, most allele sharing analyses only consider affected individuals [201]. A 

common design involves pairs of affected sibling pairs or ASPs. The basic idea is to look for 

deviations from expectation in the proportion of alleles shared identity by descent (IBD). 

For example, sib pairs are expected to share 1 allele IBD. At any given genomic location 

they may in fact have 0, 1 or 2 alleles in common. If the genomic location influences 

disease status, then sibs who share more alleles IBD will be more likely to have the same 

phenotype. A common test of linkage for ASPs is based on the mean number of alleles 

shared IBD (the ASP mean test). The properties of this test, including statistical power, 

are considered in more detail in chapter 6. Alternatives to the ASP mean test include tests 

for sibs sharing 2 alleles IBD at a marker and a likelihood based formulation [189, 1901 

which considers the number of ASPs sharing 0, 1 or 2 alleles IBD. Other relative pairs, 

such as cousins, can be considered in a similar fashion. 

Extensions of the relative pair allele sharing approach to general pedigrees have been 

suggested [127, 2461. However, there are many ways of accounting for the fact that the 

relative pairs in a single pedigree are correlated with each other. Indeed one reasonable 

way of structuring the data to account for the correlation between relative pairs would 

be to fit a parametric model with penetrances et cetera [87, 201]. Given the aim in non-

parametric analyses is to not specify a model, some other arbitrary weighting scheme 

needs to be specified. A variety of weighting schemes based upon IBD configurations 

within pedigrees (a vector of the allelic state of all of the individuals in a pedigree in terms 

of the founder alleles [246]) or inheritance vectors (from the Lander-Green algorithm) 

[2111 have been proposed. Sobel and Lange propose five different weighting schemes based 

on inheritance vectors [2111. Furthermore, with multiple pedigrees, each of different size, 

there is no single optimal way to weight the contributions from different pedigrees [201]. 

Inevitably, some of the weighting schemes proposed are more powerful for dominant type 
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inheritance patterns, whilst others are more powerful when the true mode of inheritance 

is close to being recessive [246, 2111. Although these weighting schemes are not based 

on a 'genetic model', clearly there is some choice amongst the possible non-parametric 

analyses. This makes the claim that non-parametric methods are completely free of model 

specification untenable. This has also led to comments that whilst parametric methods 

require specification of parameters that are only approximations to reality, at least the 

model fitted is more transparent [201]. It has also been shown that the ASP mean testis 

algebraically equivalent to a parametric analysis with the disease allele frequency set to - 

a very small number (say 10-6),  the penetrance of individuals carrying one disease allele 

set to 0 and the penetrance of individuals carrying two disease alleles set to a very small 

number (say 10_6);  under these conditions only individuals homozygous for the disease 

allele will have the disease and even then huge numbers will have to be ascertained to 

find individuals who exhibit the phenotype [122, 871. This means that whilst the ASP 

mean test does not explicitly assume a parametric model, in actual fact it is equivalent to 

a rather unrealistic parametric model. 

1.3.3 Quantitative trait analysis 

The methods described in sections 1.3.1 and 1.3.2 considered linkage methods for analy-

sis of disease status (qualitative traits). For quantitative traits alternative methods are 

utilised. One of the simplest methods suitable for QTL mapping is based upon the differ-

ence in trait value in sib pairs. If the marker locus of interest is linked to the QTL, as the 

number of alleles shared IBD at the marker increases (from 0 to 1 to 2), the difference in 

the trait value between a pair of sibs will be expected to decrease. The Haseman-Elston 

(HE) test [97] regresses the squared trait value difference on the number of alleles shared 

IBD between a pair of sibs. A significant slope term in the regression indicates linkage. 

Univariate normality of the squared sib pair difference in each of the IBD classes is gener-

ally assumed, allowing significance to be assessed with results based on asymptotic theory. 

This approximation has been shown to be robust, even in small samples [2561. Other func-

tions of the sib pair trait values have since been considered [651 and offer additional power 

under certain circumstances [238, 2021. 

An obvious limitation of the HE approach is that only sib pairs can be used. Other 

relative pairings, such as cousin pairs (but not parent-offspring pairs as there is no varia-

tion in the number of alleles such pairs share IBD), can be used instead but it is unclear 

how to include different sets of pairs from the same pedigree in a single analysis. Even 

in the simple case of a sibship data there have been many proposed corrections for the 

non-independence of sib pairs within a sibship ([201, 139], see also chapter 6). Extensions 

of regression based methods to general pedigrees [203] have been proposed but these are 

only applicable to relatively small pedigrees in practice and require further work to assess 

their utility. 

An alternative to HE regression is variance component (VC) analysis. VC methods 

are explained in detail in chapter 2. A brief introduction is given here. Variance com- 
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ponent techniques partition the observed phenotypic variation into different components. 

With information on individuals' relationships and phenotypes it is possible to estimate 

a genetic and an environmental part. When there is molecular marker information, the 

genetic part can be split into a component due to a particular genomic region (the QTL 

part) and a component attributable to the remainder of the genome (the polygenic part) 

[83, 8, 6, 791. The estimation of a QTL specific variance (the variance associated with a 

genomic region) can be contrasted with the parametric linkage approach (section 1.3.1) 

where a single gene effect was specified in terms of its frequency and effect. The VC tech-

nique utilises a matrix of relationships (the numerator relationship or A matrix) between 

the pedigreed individuals to allow estimation of polygenic genetic effects and a matrix of 

marker specific estimated allele sharing (IBD) probabilities between individuals to allow 

estimation of QTL effects. The covariance between different individuals' trait values will 

depend upon the degree to which they share polygenic (this depends on the individuals' 

relationships, i.e. the A matrix) and QTL specific effects (this depends on the alleles at 

the specified locus present in the individuals, i.e. the set of marker IBD probabilities be-

tween individuals). The VC method also has the advantage of allowing the estimation of 

fixed effects at the same time as the (random) genetic effects are estimated. This means 

that any measured environmental effects can be appropriately accounted for. By assuming 

multivariate normality of the phenotypic values it is possible to write down a likelihood 

based on the phenotypic values and the known covariance structure in the whole pedi-

gree. This likelihood can be maximised, yielding estimates of the proportion of variance 

attributable to polygenic and QTL effects. The significance of the QTL can be assessed 

with tests based on likelihood theory. The likelihood ratio test of positive QTL variance 

versus no QTL variance is asymptotically distributed as 1  X1  : 1 0. This follows because the 

variance parameter under the null distribution is on the boundary of the parameter space 

[2001. If a base 10 logarithm is used in the likelihood ratio the asymptotic distribution is 

the same as for the parametric linkage LOD. Providing calculation of the A matrix and 

estimation of the matrix of marker specific IBD probabilities is possible (see chapter 2), 

the VC method will be suitable for analysis of arbitrary pedigrees. In contrast with rela-

tive pair based approaches, where there is a problem with a lack of independence between 

pairs, the VC approach maximises the likelihood jointly over all individuals, conditional on 

their relationship in the pedigree. The likelihood formulation is also very flexible, allowing 

the simple inclusion of the effects of measured covariates. Maximisation of likelihoods is 

computationally more intensive than regression based procedures such as the HE method 

but, for all but the simplest pedigree structures, HE type approaches have problems with 

the non-independence of related relative pairs. Both VC and HE approaches make nor-

mality assumptions to allow significance testing based on asymptotic results: in the case 

of VC analysis the phenotypic data are assumed to be multivariate normal, in the case of 

HE analysis the distribution of the squared sib pair difference in the IBD sharing classes 

is assumed to be univariate normal [2491. Note however that the HE approach does not 

depend upon the normality assumption for estimation but that the VC approach requires 
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multivariate normality of the phenotypes to hold for unbiased estimation. 

Further discussion of the analysis methods suitable for quantitative trait analysis is 

deferred to chapter 2. 

1.4 LD mapping 

LD mapping is an important component of the positional cloning paradigm. On the one 

hand, linkage analyses provide a crucial method for the initial identification of complex 

disease loci; the limited number of recombinations available in human genetic linkage 

studies ensures only a relatively sparse map (5-10cM) is required to extract all of the 

linkage information from a data set ([1391, p397). On the other hand, LD measures the 

association between alleles at a population level and as such utilises the information on 

all of the recombination events that have occurred since the most recent common ancestor 

of two 'unrelated' individuals. This means that the mapping resolution is in principle 

substantially higher, providing appropriate markers are available. 

It is important to note that factors such as population stratification and natural se-

lection may generate LD and this should be accounted for in any analysis using LD to 

map disease genes. If the sample are a collection of unrelated cases and controls, popula-

tion stratification should be minimised by drawing the control individuals from the same 

population as the case individuals. Assuming that markers from several chromosomes 

are available for analysis, methods that use unlinked markers to correct for the effects of 

stratification have been proposed [55]. Alternatively, samples with 'internal' controls may 

be gathered by genotyping the parents of affected individuals. This works by genotyping 

parent-offspring trios and treating the two untransmitted parental alleles as a control 

sample. This will only work if the parents are heterozygous, otherwise the transmitted 

and untransmitted alleles are indistinguishable. This approach is used in, for example, 

the TDT statistic [215] and, assuming the marker of interest is biallelic and denoting the 

number of times an allele is transmitted as T and the number of times it is not as N, it can 

be written as 
TDT T—N2 

- (T+N) 2  

This statistic is distributed asymptotically as x?. If the affected individuals are picked at 

random from the population the TDT offers a test of both linkage and LD. Alternatively, 

if the affected individuals are all derived from single large pedigree in which there is a 

single disease allele, derived from a single founder, the TDT is only a test of linkage. 

In reality, many samples will be a mixture of these two extremes and hence will detect 

some LD effects alongside the effects of linkage on the marker tested [201]. In practice, 

the need for heterozygous parents means that TDT approach may be inefficient in terms 

of data. Furthermore, in the analysis of late onset disease, parental genotypes may not 

be available. Although it is possible that population stratification caused the sea of false 

positive LD mapping results observed in studies of complex diseases such as schizophrenia 
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Q2421, there have been >50 Web of Science listed journal articles with "no association" and 

"schizophrenia" in the title since 1995, most of these contradicting previous results), low 

statistical power and excessive multiple testing seems just as likely to have generated 

these artefacts. 

Whole genome association? Some researchers have advocated the use of LD tech-
niques for initial detection of complex disease susceptibility genes [192, 182, 751. Such 

techniques rely on the huge amounts of single nucleotide polymorphism, or SNP, marker - - 

data that are being generated (the SNP Consortium ht tp: / / snp . c shi . org/). However, 

doubt has been cast upon the efficacy of whole genome association (WGA) techniques for 

complex disease mapping [245, 241, 391. For the WGA techniques to be effective the risk 

alleles must be at appreciable frequencies (>1%, say) in the population of interest and the 

number of risk alleles must be small [208]. That is, the common disease common variant 

(CD/CV) hypothesis [184] must be true. The allele frequency spectrum for neutral SNPs 

is known from theoretical studies [69] to be rather wide. Reich and Lander [184] have 

suggested that disease susceptibility alleles will in fact be common and have simple spec-

tra but other authors do not share their optimism [178, 1791. Another problem with the 

population based LD techniques lies in the fact that population derived samples will be 

very genetically heterogeneous, leading to low correlations between phenotype and any 

single underlying risk genotype [245, 2591. 

LD based techniques will be most effective when the observed marker polymorphism 

is the actual disease variant; indeed this was the hope when Risch and Merikangas pub-

lished their paper [1921 on the future of genetic studies of complex human disease in 1996. 

More likely however, the observed SNP in WGA studies will not be the actual variant and 

mapping will depend upon the marker SNP being in significant LD with the disease poly-

morphism [1261. There is considerable variation in LD levels across the genome [112, 2351, 

making it unclear what density of markers would be required for the WGA strategy to 

work. Variations in the extent of LD across the genome will mean that initial predictions 

[126], made based on the assumption of homogeneity in the extent of LD, will have under-

estimated the number of SNPs required to effectively cover the whole genome. If there is 

allelic heterogeneity and the marker is not the causal variant it has been demonstrated 

that the required sample size may reach unattainable levels [2081. To date, the vast major-

ity of genes affecting complex human disease have been initially identified using linkage 
not LD mapping. 

It remains to be seen whether new developments such as the 'Hap-map' project [75, 

1661, a project aimed at identifying the blocks of highly conserved haplotypes that exist 

in the human genome, will improve the utility and success of genome wide association 

studies. Despite controversy over issues such as block definition [172, 371, the Hap-map 

project seems likely to offer advantages over single marker association analyses due to 

the identification of tagging SNPs [113, 1541 which efficiently summarise the information 
contained in a set of associated SNPs. 
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1.5 Applications in non-human populations 

The emphasis throughout the thesis is on methods suitable for analysis of general pedi-

grees. This means that the methods described may have application in non-human popu-

lations. Indeed, some of the methods described in chapter 2 are modifications of methods 

originally proposed for animal breeding applications. The broad application of the vari-

ance component methods are well illustrated in chapter 2. In chapter 2 variance compo-

nents methods are applied to a QTL mapping problem in a natural population of red deer 

(Cervus Elaphus). Since many of the problems encountered, such as identity by descent co-

efficient estimation in large pedigrees, are common to all (human and non-human) natural 

populations, progress will be made most rapidly by assimilating methods from different 

disciplines. 
Although the methods applied will sometimes be similar in all (natural) populations, 

there are differences in the basic properties of the populations studied. In animal breed-

ing and model organism (e.g. mice) applications animals can be bred, allowing (arbitrarily) 

large sample sizes and efficient experimental design. Obviously this will be impossible in 

humans and in ecological genetics applications. In samples in which it is not possible to 

arrange the matings to allow simple assessment of linkage by the counting of recombi-

nation events it will be necessary to impose some sort of 'model' for the transmission of 

genetic effects. As discussed above, this will either take the form of a parametric model or 

some sort of arbitrary weighting scheme (for example based on inheritance vectors). 

The use of relatively small numbers of animals in the initial stages of animal breed-

ing/model organism applications will ensure that the effective population size will be 

rather smaller than in humans. Effective population size is the size of a hypothetical 

population that would experience the same loss of genetic diversity due to random (ge-

netic drift) effects as the loss observed in an actual population. Estimates of the effective 

population size of the human population are in the range 10 000-100 000 [183, 14, 2271 

whilst the effective population sizes of most livestock or model organism populations are 

unlikely to exceed 1000 [70]. Similarly, some natural populations of mammals such as 

deer will often have small effective population size, particularly since in many cases a few 

males will mate a disproportionate number of times [2091. If a high proportion of males 

in a population do not mate the effective population size will be much smaller than the 

census population size [70]. These relatively small populations sizes mean that, compared 

with human populations, there will be differences in the extent of LD in mammals. Even 

taking into account substantial variation in LD levels in the human genome (see section 

1.4) the orders of magnitude differences in effective population size between humans and 

many other mammals will mean that LD is likely to extend substantially less far in hu-

mans. This will mean that unlike in human populations, LD analyses in mammals may 

not provide substantially greater mapping resolution than that offered by analyses based 

on linkage information. 
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1.6 Summary 

Whilst there are a striking number of single genes causing human (Mendelian) disease, 

such disease alleles are uncommon in human populations and only contribute a small 

amount to morbidity and mortality. In terms of overall public health, complex diseases 

such as cardiovascular disease and psychiatric disease are of substantially greater impor-

tance. Considerable resources have been devoted to the identification of the genes un-

derlying these complex diseases. In this thesis the main foci are problems in psychiatric 

disease and cardiovascular disease. 

In this introductory chapter I have described various methods for linkage analysis of 

family data. Providing a small range of disease models are used, parametric linkage anal-

ysis offers a robust method for detection of loci affecting qualitative disease traits. There 

are a number of non-parametric analysis methods available but in complex pedigrees they 

simply represent alternative ways of structuring the available pedigree to account for 

the correlation between individuals. The effectiveness of any particular technique will 

usually depend upon the true, but unknown, genetic model applicable to the disease in 

question. Becoming overly dogmatic about the choice of method seems unwise; a recent 

paper compared the discussion to the controversy over the positioning of the table flags in 

the Panmunjom armistice talks ([871, http: / /www. gluckman. com/NKBorder . html). 

For analysis of quantitative traits, the VC approach provides a flexible framework, 

suitable for analyses of arbitrary pedigrees. In cases in which there is some additional 

relevant information available in the data set, such as covariates describing pertinent 

environmental factors, the variance components (VC) approach allows flexible removal 

of unwanted (environmental or perhaps background genetic) noise. VC approaches can 

also be used for binary traits (e.g. disease status) via a threshold model (see chapter 

5). Furthermore, the VC approach can be extended to multiple traits, with a particular 

parameterization (see chapter 2) allowing efficient analyses of data sets with multiple 

trait measures over time. 

Summary As indicated in this introductory chapter, this thesis can be regarded in two 

parts; one addressing gene mapping in cardiovascular disease (CVD) and the other ad-

dressing problems in psychiatric disease. The data analysed here are quantitative in the 

case of CVD and qualitative in the case of psychiatric disease. In chapter 2 analysis meth-

ods for quantitative trait locus mapping (quantitative traits) are laid out; the first part 

of this chapter describes techniques suitable for univariate measures before describing 

in detail methods suitable for longitudinal data. Incorporated into the discussion of this 

chapter is a description of an analysis of a quantitative trait in Red Deer. The Red Deer 

work provides an excellent illustration of the broad application of the VC techniques with 

the VC method also being applied to human CVD and psychiatric disease data sets. The 

objective of chapter 3 is to examine some of the properties of the longitudinal QTL anal-

ysis techniques described in chapter 2. This simulation chapter allows an assessment 
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of the appropriateness of these complex multivariate models for analyses of human (or 

other natural population) data sets and the discussion section takes up again some of 

the methodological issues discussed in chapter 2. Chapter 4 describes a data analysis 

of a remarkable set of 330 extended families, measured for a range of CVD risk factors, 

made available as part of Genetic Analysis Workshop 13 (GAW13, [51). Analyses of sim-

ulated data rarely provide a true reflection of the difficulties encountered in analyses of 

real data sets and this chapter demonstrates what can be achieved in practice. Chapter 

5 describes a genome scan of a set of families collected as part of a European Science  

Foundation (ESF) project looking at mental illness. An additional analysis utilising ad-

ditional families is also performed. The ESF chapter illustrates the application of two 

different methods for linkage analysis of binary (qualitative traits); parametric linkage 

analysis (described in this chapter) and variance components linkage analysis (described 

in this chapter, chapter 2, as well as chapter 5). Study design for linkage-based mapping 

of psychiatric disease has become a hot topic in the past year or so and chapter 6 considers 

some of the issues involved. In this chapter the effect of locus heterogeneity upon linkage 

analysis is examined and the results of some recent meta-analyses are discussed. Chap-

ter 7 looks at a particular aspect of parametric linkage analysis, the effect of phenocopies 

upon disease region identification. The aim of this chapter is to quantify the effect of these 

phenocopies; this is done both analytically and through computer simulation. Finally, the 

last chapter gives an overview of the current state of human genetics and discusses future 

directions. Where possible technical or methodological issues are discussed in the indi-

vidual chapters, allowing the final chapter to tie together the findings from the different 

subject areas. 
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Chapter 2 

Analysis of longitudinal 
quantitative trait data in 
complex pedigrees: Theory 

In this chapter various methods suitable for linkage analysis of quantitative traits in ex-

tended families are described. All of the methods are based upon variance component (VC) 

techniques which partition the phenotypic variance into polygenic, QTL specific and envi-

ronmental components. The chapter begins with univariate polygenic models. The models 

are expanded, first to include molecular marker information and then subsequently to 

allow analyses of multivariate data. 

The univariate methods are utilised in the ESF schizophrenia and bipolar disorder 

data analysis (Chapter 5), the GAW data analysis (Chapter 4) and the Red Deer data 

analysis (see Discussion section of this chapter). The multivariate methods are used in 

the simulated data chapter (Chapter 3) and the GAW analyses. To reduce repetition, the 

methods are not described separately in those chapters. 

2.1 Univariate methodology 

The basic principle underlying most quantitative genetic methodology is the partitioning 

of the observed or phenotypic variance into separate components. By examining quan-

titative trait values in individuals of known relationship it is possible to partition this 

phenotypic variance into components attributable to genetic factors and components at-

tributable to environmental factors. With the advent of molecular marker technology, it 

became possible to further partition this genetic component into variance associated with 

regions of the genome. These regions of the genome that explain some of the observed 

variation in the trait of interest are known as quantitative trait loci or QTL. 

Consider first of all the case where there is no marker information. Assume that there 



is one trait measure per individual. The main interest is in the random additive genetic 

effect, a. The phenotypic value is modelled as 

yj - j + a2  + e2 	 (2.1) 

where z represents the overall mean, y, the phenotype of individual i and e the random 

environmental effect. Cases in which there are fixed effects other than the mean are 

discussed below. The covariance between each of the y2 depends upon the relationships ------

between the individuals. If the relationships are known this information can be used to 

determine the variance of the set of a values. 

In a non-inbred population the coefficient of coancestry, O,, of individuals i and j is 

the probability of the same allele (identical by descent) being drawn at random from i 
and from j. Multiplying this value by 2 will give the average number of alleles shared 

identical by descent. Using 2E) ij  to describe the degree of relatedness between individuals 

and assuming no shared environment effects, the covariance between any two relatives 

can be written as 

p(yi,yj) = 2®,0r. 	 (2.2) 

The values 2E)ij  are commonly assembled into a matrix, A, describing the relationships 

between all individuals of interest (the numerator relationship matrix). 

Assuming the genetic and environmental effects are independent, the covariance ma-

trix for both random effects can be written as 

p01yg = Au 2  +10, 

Once o and o are estimated (below) they can be used to calculate parameters of interest 
such as the heritability (h2 ) of the trait. h2  is defined to be 

Instead of dealing with additive genetic effects averaged over the whole genome (poly-
genic effects), the phenotypic value can be decomposed into the effects of Q QTL 

Q 
yj = , + a 2  + 	q1 + e2  

In matrix form this is 
Q 

y=1[L+a+qk+e. 	 (2.3) 

Assume that for a single QTL, R23  is used to denote the fraction of genes shared identical 

by descent (IBD) between individuals i and j at the QTL (this fraction is only < 0.5 if 
the population is non-inbred and there are no monozygotic twins). The values of R 3  are 
estimated using molecular marker information; this is discussed in section 2.3 below. For 
the Q QTL affecting the trait, the phenotypic covariance from equation 2.2 can be re-

expressed as 
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Q 

	

P(Yi,Yj) = >  Rijk o•q2k 	 (2.4) 

where R 3 k is the R23  value for the ktz  QTL and 	is the variance attributable to the kt 
qk 

QTL. In practice, modelling all Q QTL simultaneously is intractable. Instead a few of the 

largest QTL (although henceforth one QTL is assumed) are modelled explicitly. The effects 

of the other smaller QTL are then incorporated into the polygenic term; in effect this term 

represents the rest of the genome not explicitly modelled. Assuming a single QTL with 

variance o-2 , and assuming no shared environmental effects, the covariance between a pair 

of relatives can be then expressed (cf. equations 2.2 and 2.4) as 

	

p(yj,yj) +2®a 	 (2.5) 

where Rij  is the fraction of genes shared identical by descent (IBD) at the putative QTL 

and 20 are the entries of the numerator relationship matrix A. When there is no marker 

information E(R) = 20. Note that since the model is now includes a QTL effect, the 

polygenic variance term,o, now represents the variance attributable to the rest of the 

genome (i.e., all genes outside the QTL region). Furthermore, the genetic contribution 

of the QTL is assumed to be independent of those of other loci. Non-Independence will 

arise if there is linkage disequilibrium (LD) between the QTL and the other loci ([701, 

p130). If the QTL is unlinked to the other genes, then LD will not be present from a 

shared genealogy. Disequilibrium between unlinked loci can, however, be generated by 

other forces. For example as a result of admixture or migration. Thus the model is most 

appropriate when the QTL is unlinked to other genes that contribute to the trait and when 

the population is homogeneous. The QTL specific heritability, h, is defined to be 01 

Assembling the Rij into a matrix R (i.e. [R] 3  = R23 ), the covariance matrix can then 
be written as 

	

= Ra + Aa. +10' . 	 (2.6) 

This expression (equation 2.6) is the basis of the univariate QTL variance components 

method; the covariance is split into the covariance attributable to the main QTL of inter-

est, a polygenic effect representing the rest of the genome and an error term absorbing all 

other terms (environment, non-additive genetic variance, epistatic variance). 

If multivariate normality of the y j  is assumed and the covariance matrix is as in equa-

tion 2.6, parameter estimation can proceed via the log-likelihood of the pedigree(s) 

1nL(t,,c I ) cx —ln 1111 - (y - i12)Tf_l(y - 1t) 	 (2.7) 

where .'c = (o, a, o). Estimates of the vector tc can be obtained by forming the score 

vector (i.e. the first partial derivative of equation 2.7) and equating it to zero for each 
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variance term of interest [1391. The equations resulting from the score are 

where 

tr(IF1) 	yTfiyfora2 	 (2.8) 

tr(ñ'A) = Y T- 'A) 	 (2.9) 

tr(_ 1 R) = yTPRy for  a2 	 (2.10) 

p = 	- ç_1i(iTç1_1i)_11Tf_1 	 - 	11) 

Equations 2.8, 2.9 and 2.10 contain the parameters of interest (K) on both sides of the 

equations (P is given a hat in the score equations to denote that it is a function of the 

variance parameters). This means that in practice numerical methods must be used to 

f I if  o=o. 
obtain estimates of the parameters of K. Define an  =Qj 	A if a? = 	. Taking 

( Rif cr=o 
the second partial derivatives of equation 2.7 and taking expectations yields the expected 

information matrix, F, with elements 

/ôlnL \ 
F23  —E (p282) = 	 (2.12) 

The inverse of the matrix F provides sampling variances for the elements of the vector 

K. This information matrix can also be used to increase the efficiency of the numeri-

cal maximisation needed to estimate K. The method is based upon a modification of the 

Newton-Raphson algorithm, Fisher's method of scoring. Given an initial estimate of K, 

an update of K is 

= K 0  +F'U(k ° ) 	 (2.13) 

where U(K(0))  is the score vector and F is the expected information matrix, evaluated at 

K (0)  [80]. This updating process continues until stable estimates of K are obtained. In 

practice the computation of equation 2.12 can be difficult and modifications are needed. 

ASREML uses the average information (AT) algorithm [801 to obtain an approximation 

(the average information matrix) to the required information matrix. This approximation 

can be used both in the updates in equation 2.13 and to obtain estimates of the variances 

of the estimates of K. 

In the previous paragraphs it has been assumed that there were no fixed effects other 

than a mean. This is the case in chapter 5 where there were no covariates available and 

in chapter 3 (Simulated data) where no fixed effects were simulated. If there are other 

fixed effects, arranged in a design matrix X, the vectors of ones in equation 2.11 should be 

replaced by Xs and there will be a number of other (fixed) effects to estimate alongside the 

#c parameters discussed above. When there are a large number of fixed effects it will be 

advantageous to use residual maximum likelihood (REML) based estimation instead of the 

maximum likelihood (ML) based procedure described here. REML estimates are obtained 
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by applying a linear transformation to the observed trait values, y1 . This transformation 

is chosen such that it removes the effects of the fixed terms. ASREML uses REML whilst 

SOLAR [6] uses standard ML. In most human data sets there are few or no fixed effects; 

this means the results from a ML analysis will be very similar to those obtained from a 

REML analysis. 

Although the IBD values must also be estimated from the available data it is common 

to estimate these first [79]. The analyses then proceed assuming that the IBD values are - - 

known without error. A likelihood ratio (LR) statistic can be calculated to assess the sig-

nificance of the putative QTL. The main test of interest in linkage/QTL analysis compares 

the likelihood fitting the full model (equation 2.7 with ,c = (cr, o, o)) with one fitting 
only the polygenic and environmental terms (,c = (or 2 , o- )). In human genetics it is com-

mon to take base 10 logarithms of this likelihood ratio; this is referred to as the LOD 

score. LOD scores can be converted to traditional 2 ln(LR) statistics by multiplying them 

by 2 ln(10) 4.6. 2 ln(LR) is distributed asymptotically as jX2 : 0. This follows because 

this is a test of a parameter (o) on the boundary of its parameter space under the null 

[200]; if the true value of the additional variance parameter, o, is zero then half of the 

time the likelihood ratio test statistic will be zero (see also section 3.2.3 for multivariate 

analogues). This is the same asymptotic distribution as the one for the parametric LOD 

score for discrete traits described in the introduction (Chapter 1). In the case of the para-

metric LOD the estimated parameter is the recombination fraction; this too has a value 

on the boundary of the parameter space (since the recombination fraction cannot exceed 

0.5) under the null. 

2.2 Multivariate methodology 

The univariate variance component approach can be extended to deal with multiple trait 

measures. Equation 2.3 can be re-written as 

= ,* +a* + q*  + e*. 	 (2.14) 

where jf = (ii, ..,p, ..,p, 	is the vector of fixed effects, 
a* = (a1, .., a, a1, .., 	.., a,1, .., a w ) T  is the vector of additive genetic effects, 
q* = (q1, 	 ..,q, ..,q,,1, 	 is the vector of QTL effects and 

e* = (e 1 , .., e, e 1 , .., 	.., e, , e*)T is the vector of environmental effects for traits 1 
to w. The phenotypic data is written y' = (Yli, .., Ylw, Y21, .., 1/2w, .., 1/n1, .., y)', where n is 
the number of individuals. Let N = nw. If w = 1 then a* = a, et cetera as before. 

For many traits there will be a correlation between the different trait measures within 

an individual. Assuming the genetic and environmental components are uncorrelated we 

can re-write equation 2.6, accounting for the covariances between relatives and between 

34 



multiple trait values as 

1= A®KA+RØKQ +I®KE 
	 (2.15) 

where KA is a w x w matrix of additive genetic covariances between records, KQ is a 

w x w matrix of additive QTL covariances between records and KE is a w x w matrix of 

environmental covariances between records. ® denotes the direct product of two matrices; 

for example 

	

( [K]11 •.. 	[KE]l 	
( 0 

	0 

	

[K]l ... 	[KE}) 	 0 ... 	0 

I. KE 

o ... o 	
( [

KE] 11 	... 	[KE]i 

	

o •.. 	) 	 [KE]l ... [KE]ww  

where [KE]i3  denotes the ijIh entry of KE.  Matrices  KA,  KQ and KE have w(w + 1)/2 
(co)variances to estimate when there are w trait measures. For example, with 5 traits 
there are 15 (co)variances to estimate for each. This model is referred to as the full mul-

tivariate model. 
Estimation of the random effects of interest proceeds in a similar way to that described 

for the univariate analyses. The variance covariance matrix in equation 2.15 is used in 

equation 2.7. The vector it now contains w(w + 1)/2 (co)variances for each of the random 

effects a, p and q. As a result there may be substantially more score vectors to calculate 

and the information matrix may be very large. The computational demands, when there 

are more than a few traits, will be considerable and alternative methods for dealing with 

multiple traits will often be required. 

Hypothesis testing under the full multivariate model can be performed by appealing to 

asymptotic results based on known distributions. The main (null) hypothesis of interest is 

that the QTL (co)variances are all zero. This is compared with the alternative that some 

are non-zero. For two traits, the likelihood ratio statistic comparing the two hypotheses is 

distributed asymptotically as 10: jX2 : jX2. This statistic has this mixture distribution 

because there are two variance terms and these are on the boundary of the parameter 

space under the null. When performing the likelihood ratio test, one quarter of the time 

both of the variances are estimated to be positive (and their covariance can be non-zero), 

one half of the time one of the variances is at zero and one quarter of the time all 3 

(co)variances are at zero. Generalising to w traits the mixture distribution of primary 
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interest is 

rer  Ow{( ) 2 mixtu 	
1 

= 	 X±±i > 	 (2.16) 2w  2 	J 
W  

where i 	i = 	is the binomial coefficient. To see this first consider case 9 in the 
r ) 	

( w-r).r. 

Self and Liang paper [2001. Case 9 states that with w independent terms (trait variances 

here), all on the boundary of their parameter spaces, the asymptotic distribution of the LR 

statistic will be based on x2  distributions with 0,.., w degrees of freedom, with the mixing 
(w 

probabilities for x component given by 	. This would hold if we constrained the 

covariances between the w variance terms (e.g. to be the square root of the product of the 

two variance terms, see discussion and [1461).  With the covariances unconstrained, the 

mixture distribution must include additional degrees of freedom for the cases in which 

there are covariances between the variance terms. With r positive variance terms there 

are r(r-1)  non-zero covariance terms to estimate. Adding in the r variance terms gives the 

degrees of freedom (r + r(r-1) = r(r±i)) specified in equation 2.16. 

2.2.1 Repeatability Model 

A special case of the full multivariate model where there are multiple measurements of 

the same trait is often called the repeatability model. This model assumes that the poly-

genic, QTL and environmental correlations (across multiple measures) are 1. In this case 

the computational demands are considerably lower because a single parameter can be 

used to model the effect of the QTL and polygenic genetic effects. Since there may be en-

vironmental effects which are not constant over time there are two effects fitted alongside 

the QTL and polygenic effects. The first of these, commonly called the permanent environ-

mental effect, models environmental effects that are present in all of an individual's trait 

measures. The variance associated with this permanent environmental term is labelled 

o. The second effect models the additional environmental effects that are not constant 

over time; this is the temporary environmental term, with associated variance term de-

noted a. This second term also serves as an error term for other effects not modelled by 

the other random effects (such as genetic dominance effects). 
Phrasing the repeatability model in terms of the full multivariate model, the covari-

ance matrices, KA and KQ modelling the relationship between the different trait mea-

sures in equation 2.15, are now 110 and respectively. The full multivariate 

covariance matrix is split into two under the repeatability model; the matrix KE becomes 

11cT + INo. The overall variance covariance matrix is hence 

= A® (iio) + R® (iici) + I ® (iia) + INo 	(2.17) 
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Estimation is as in the univariate case but with o, 2  added to ,c and f from equation 2.17. 

Since only one parameter is added cf the univariate case, parameter estimation is possible 

in most practical circumstances. Hypothesis testing of this one additional parameter is as 

in the univariate case. 

The ratio of between individual variance (o + cr + a) to the total variance is often 

termed the repeatability. Since the repeatability cannot be smaller than the heritability, 

h2 , the repeatability offers an upper bound for h2 . 

2.2.2 Longitudinal Analysis 

Although the repeatability model assumption may be a tenable one for a few traits that 

have multiple measures over time, in most cases it will not be reasonable. Such longitu-

dinal traits are likely to change in composition over the life of the individual and are the 

subject of the remainder of this chapter. For longitudinal traits it is desirable to explicitly 

model the relationship between age and the genetic and environmental components of the 

trait. Doing so will enable the components of the trait to be analysed more reliably than 

in a repeatability analysis as well as providing an estimate of how the trait composition 

changes over time. To achieve this a multivariate analysis is performed in which it is 

assumed that something is known about the covariances between the different trait mea-

surements. The main issue is therefore replacing the unstructured covariance structure 

from the full multivariate model with one which utilises the natural ordering in time of 

the trait measurements. Kirkpatrick et al. [121] consider such 'function valued' (varying 

with time) traits, referring to them as infinite dimensional, with infinitely many possible 

realisations across time. Since in practice the trait may only be observed at a finite num-

ber of time points (i.e. w(w + 1)/2 distinct (co)variances in a w x w covariance matrix, G), 

consider a covariance function (CF) linking the covariances as a function of time. A CF, 

denoted £i, is a continuous function which describes the covariance between any two time 

points. For ages t0 and t 1 the CF is 

= cov(y o ,y j ) 

where yio  and y21 denote the trait values at times t0 and t 1 . In practice, a separate CF 

is fitted for the QTL effect, the polygenic effect and the permanent environmental effect, 

with the effects assumed to be independent of each other. Given the assumption of inde-

pendence, the overall phenotypic CF is given by summing the component Us. 

To estimate Us from the available data polynomials of age can be used. Henceforth 

the term order is used to denote the highest power in a polynomial. For example x 2  + x + 1 

is of order 2, with (assuming all the coefficients are non-zero) 3 terms in the expression. 

Whilst an order w - 1 polynomial will fit the w-trait data exactly by fitting a line through 

all the points, in reality a smoother curve which ignores stochastic variation is required. 

In practice orthogonal polynomials are used. Orthogonal polynomials have the advantage 

of retaining the values of the lower order coefficients when the order of the polynomial fit 

37 



is increased; non-orthogonal polynomials can exhibit large changes in the estimated coef-

ficients when there are small changes in the observed phenotypes. Legendre orthogonal 

polynomials are used here. Such polynomials are defined on (-1,1) and hence the age val-

ues of interest are scaled to have maximum value 1 and minimum value -1. An expression 

for the CF of interest, , can be written in terms of the polynomials chosen, qj (x), and a 

matrix of coefficients, C, 

k-1 k-1 

£(to , t1) - 	 (2.18) 
i=O j=O 

where k is the number of terms in the polynomial (i.e. the order of the polynomial, call 

this k*,  is k - 1) chosen and to and t 1  are the scaled ages. 

Kirkpatrick et al. [121] propose a method whereby one can estimate the matrix of 

coefficients, C, from the observed data. This coefficient matrix can then be inserted into 

equation 2.18 to obtain an estimate of the CF (as a function of age). This function can be 

evaluated at any age of interest, allowing the covariance to be estimated at any age (not 

just at the ages present in the data). 

Since this function can be evaluated at any age of interest we are not restricted to 

considering only the ages present in the data set. 

The method proposed by Kirkpatrick et al. [1211 to estimate the coefficient matrix 

involves rearranging expression 2.18. Letting [ 4i ] ij  =q(t 2 ) (numbering the matrix indices 
0 to k-i), the elements of(t o , t 1 ) can be written in the form of a covariance matrix, G, 

G = 4CT. 	 (2.19) 

Whilst this equation can be solved for C when the number of terms in the polynomial k is 
equal to the number of trait measures (w), when w > k 4 is not invertible and estimation 

of C is not trivial (Kirkpatrick, [1211 Appendix A). An alternative method for estimating 
C is now considered. 

Estimation of the coefficient matrix in a general pedigree using Random Regres-
sion 

Meyer [156] explains how the coefficients of the matrix C above can be estimated if one 

utilises random regression. Now follows a short explanation of Random Regression (RR). 

Consider a basic mixed model in which there is a single random factor of interest along- 

side fixed effects such as sex. The interest is in the deviations of the random effects from 

the base level of the fixed effects. That is, the distribution of the random effects is the 

primary focus. Consider the case where the phenotype is known to change with the level 

of some factor such as age and assume the effect of age on phenotype is linear. The change 

in age can be accounted for by fitting age as a fixed effect. The interest is now in the devi- 

ations about this fixed regression line; consider now deviations about the linear term and 
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about the constant term. In the following equation, i is the individual and j is the mea-
sure. fo  and fl  are the fixed effects whilst the random effects of interest are a20, the usual 
random effect and a21 , the random effect with linear age dependence. Yij  is the phenotype 
and eij  is the error term. 

	

Yij = fo + f1 t3  + a20 + a 1 t + eij 	 (2.20) 

Additional terms allowing for permanent environmental effects, p2., and for QTL effects, 

qj., may be added. The QTL effects can be estimated by utilising marker information in 

a similar way to the univariate analyses in section 2.1. The practical problems that arise 
in the implementation of this are discussed in section 3.2.1. Allowing all three sets of 
random effects to vary with time yields 

Yij = fo + f1  t3  + a0 + ail  t + PiO + p21  t3  + q2o + q21  t3  + 	 (2.21) 

Although the two equations above fit mean and a linear terms for the fixed effects and 

random effects, there is no reason why these two should have the same number of terms. 

In practice, even if one is only interested in linear deviations from the fixed effects, it may 

be best to fit a higher order polynomial for the fixed effects to ensure that all systematic 

effects (e.g. the effects of age on the mean function) are removed before the deviations are 
considered. 

Usefulness of RR Random regression is useful because the covariance between polyno-

mials of age in a random regression can be related to the covariance function coefficients 

of interest. The random regression model which allows this is 

k. -1 	 k-1 	 k, -1 

Yi j  = A + E aimcm(tij) + E pi. cbm(tij) + E 	qi. 	+ c23 . 	(2.22) 
M=0 	 m=0 	 m=0 

Equation 2.22 is an extension of 2.21 to arbitrary polynomial orders. ka, k and kq  denote 
the number of terms in each polynomial (=order of the polynomial -1) for the additive ge-
netic, permanent environmental and QTL effects, respectively. tij  is the time at which the 
measure Yij  is taken; this is a generalisation of the t3  in equation 2.21, allowing different 
individuals to be measured at different ages. Each individual now has w2  measures, where 
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it is possible that w, 54 w for some individuals. The covariance structure of such a model is 

Cov(y,y') 
= 	

Cov(ajm , ail) 	 m (tjj )j(tjj') + (2.23) 
M=0 1=0 
k-1 k-1 

Cov(pjm ,pjj )q5m (tij )ç51(tjj') + (2.24) 
M=0 1=0 
k q l k g l 

Cov(qjm ,qji)cbm (t jj)cbj(tjj ') + (2.25) 
m=O 1=0 

+Cov(e 3 , (2.26) 

Each of the covariance terms 2.23, 2.24 and 2.25 can now be seen to be of the same form 

as equation 2.18. If we can estimate these covariance terms in a random regression these 

can be used directly in equation 2.19 to obtain a covariance matrix for the additive genetic, 

permanent environment and QTL effects. 

To fit the RR model the full multivariate model is re-parameterised. In this re-parameterization 

we replace the set of trait measures with an order k polynomial for each effect of interest 

(permanent environment, polygenic, QTL). The full multivariate model is then fitted with 

these polynomial coefficients regarded as correlated traits. To do this, begin by writing 

equation 2.22 in matrix notation 

= 
A 

R + ZAaR  + ZQqR  + ZppR  + e  

where y' = (yii, .., 	, Yi) .., Y2w2) .., Yni, .., YnW,) are the phenotypes, 

ii' = (lu, ..,/-1w1, .., P1  I 	 is the vector of fixed effects, 

a = (aio, .., a1(k_1), .., a,o, .., afl ( k _ l )) T  is the ka  x n vector of polygenic random regres-

sion coefficients, qR = (qio, ..) q1(k-1), .., quo, .., qfl(1))T is the k q  x n vector of QTL ran-

dom regression coefficients, p' = (plo, ..,P1(k-1), •,PnO, .. ) pfl ( k _ l ))T is the k x n vector 

of permanent environmental random regression coefficients and eRis  the E 1  w2  vector of 

temporary environmental terms (note this is w x n if all r individuals are measured for 

all traits, i.e. if wi  = w for all i). ZA is a E 1 w by flk a  matrix of orthogonal polynomial 

coefficients, 

ZA = 

k_1(t11) 

	

0411) . . 	. 	k_141w1) . 

o 	o 	0 

o 	o 	0  

0 

0 

o 	o 

o 	o 
o 	o 

o 	o 
q5o(tj) 

q5o(t) 

0 

0 

0 

0 

4)k_1(tn1) 

k-1 (t) 
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ZQ  and Zp are defined similarly, with ka  replaced by k q  or k. The covariance terms for 

the vector a   are given in equation 2.23 and, assuming the systematic age effects have 

been removed by the fixed effects, can be written as a   N(O, A (9 K), where K is the 

k a  X  ka  matrix of CF coefficients (named C above) for the polygenic effects. In a similar 

fashion q   N(O, R® K) and R  N(O, I® K). Written as a full variance-covariance 

matrix, 

Il = ZA(A 0 K)Z + ZQ(R 0 K)Z + Zp(I 0 K)Z + 

where u2  is the temporary environmental variance term. Estimation is as in the multi-

variate case. ic now has k,, (k,,+ 1)/2 entries for the polygenic effect and equivalent terms 

for the QTL and permanent environmental cases. 

Details of the process of hypothesis testing and model selection for longitudinal models 

is deferred to chapter 3 (Simulation Chapter). 

2.3 Discussion 

The discussion first looks at issues in univariate analysis before considering issues partic-

ular to multivariate methods. 

2.3.1 Univariate 

This chapter described variance components methodology, suitable for QTL analysis with 

complex pedigrees. The method allows for straightforward removal of environmental ef-

fects through the fitting of fixed effects. The univariate techniques are tractable with all 

but the smallest data sets. The univariate methods have been shown to yield unbiased 

estimates of the variance components of interest [6] and are now routinely applied to hu-

man, livestock and natural population data sets. However, the estimation procedure relies 

upon the assumption of normality of the data and under deviations from this the likeli-

hood ratio statistics calculated may be biased [3]. This bias has been shown to depend 

upon the degree of kurtosis of the data [291.  Furthermore, whilst single point estimates of 

QTL specific variance may be accurate, if a large number of genomic locations are tested, 

selecting the highest test statistic will result in upward biases in the QTL specific vari-

ance at the test statistic maximum [21]. This is due to the strong correlation between 

the magnitude of the test statistic for significance of the QTL and the size of the QTL 

in terms of variance explained. Additionally, the stochastic variation in each individual 

study leads to some QTL being more readily detectable in that sample than other QTL; 

the effect size of the QTL that are detected will hence be overestimated. It is not uncom-

mon for the QTL specific variances to be so overestimated at the LOD score peaks from 

genome scans that the (additive) QTL explains all of the additive genetic variation (i.e. 

the polygenic variance is estimated as being zero at the LOD peak). This can be seen in 

the univariate analyses of the GAW13 data (Chapter 4). Categorical data can be analysed 
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using the described univariate methods through the use of a threshold model (Chapter 

25 of [139], [60]). Threshold models assume there is a continuous distribution underlying 

the observed categories and that parameter estimation can be performed by fitting some 

function (such as the probit or logit function) which maps the categories to the continuous 

distribution. A threshold model is used to allow analyses of binary disease outcomes in 

Chapter 5 and further details are given in that chapter. The model described in section 2.1 

can also be extended to deal with dominance and epistatic effects [61 (this can be applied 

to both polygenic and QTL effects). - 

A basic component of all variance component linkage (QTL) analyses is the marker 

information matrix R. Estimation of R from multiple markers is not trivial in large pedi-

grees and may constitute a significant part of the computational burden. A number of dif-

ferent methods for the computation of marker specific IBD coefficients have been proposed 

and subsequently implemented. The methods can be split into exact methods [176, 174, 11 

and Markov chain Monte Carlo (MCMC) based approximation methods [211, 99, 61 (see 

also chapter 1, introduction). Measuring pedigree complexity as twice the number of non-

founders minus the number of founders (number of pedigree 'bits', [1271), exact methods 

can generally be used for pedigrees of less than 30 bits; the major determinants of com-

putational cost for IBD estimation are number of markers, marker spacing, proportion 

of untyped founder individuals and number of pedigree loops. There have been studies 

of the relative performances of the available methods. One study [212] compared two of 

the MCMC approximations (SIMWALK2 [211], SOLAR [6]) with one of the exact methods 

(Genehunter [1761). Another [174] compared a deterministic approach with the approach 
implemented in Loki [99].  The main conclusions of these studies were that SOLAR was 

less accurate than either Genehunter or SIMWALK2. However, Genehunter does not work 

on large pedigrees and SOLAR is faster than SIMWALK2. Loki was found to give similar 

results to those from the deterministic approach employed in [174]. There have been no 

comparisons in the literature between SOLAR/SIMWALK2 and Loki. SOLAR is quicker 

than some of the other methods because it does not attempt to use multiple marker in-

formation simultaneously. Instead, it first calculates single marker IBD coefficients. It 

uses these single point estimates in a weighted regression, allowing estimation of IBD 

coefficients at points between the available markers. The weights in the regression are 

dependent upon a set of formulae which use the relationships between individuals. For 
this reason SOLAR will not work on arbitrarily large pedigrees. 

IBD estimation for the Framingham data (Chapter 4) was performed using SOLAR and 

took 1 week of computing time on a 700MHz Intel Pentium processor. Although it would 

be preferable to estimate the variance components and IBD coefficients simultaneously 

this is likely to take orders of magnitude longer than the two step procedure [79, 61 and 

hence be untenable for many data sets. With the two stage procedure the IBDs can be 

calculated and stored for use in analyses. This was crucial in the Framingham analyses 

as a number of traits and analysis methods were then used. 

IBD estimation was investigated as part of a project investigating a quantitative trait, 
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birth weight, in Red Deer (Cervus Elaphus) [209]. My contribution to this paper was 

to investigate the calculation of IBD estimates in a very complex deer pedigree (a pic-

ture of the pedigree is in figure 2.1; this was drawn with the program pedfiddler http: 

Ilwww.stat.wash±ngton. edu/thompson/Genepi/Pedfiddler . shtml) and to com-

pare two possible analysis methods. The two methods were; a regression based analysis 

[123] based on splitting the full pedigree into 17 half sib families (program QTL Express 

[1981) and a VC analysis of the full pedigree, performed as described in section 2.1. For 

one of the detected QTL there were discrepancies between the results obtained from the 

two methods (although there was good agreement for the two other QTL detected). These 

discrepancies may have been due in part to problems with marker specific IBD estimation 

in such a large pedigree. To investigate, the IBD estimation was performed with SOLAR 

and with Loki and the results compared. The estimates from SOLAR were single marker 

based because, as a result of the pedigree having some animals with very distant relation-

ships, the regression based multipoint estimation procedure failed in SOLAR. Note how-

ever that the authors of SOLAR have previous reported [254] multipoint linkage analyses 

of a pedigree of similar complexity to the one in figure 2.1 (i.e. they are likely to have 

used a newer, not publicly available, version of the program). The IBD estimates from 

Loki used all of the marker information simultaneously. The IBD estimates from Loki re-

quired extensive reformatting before they could be incorporated into the SOLAR routines 

for likelihood maximisation. Although there were minor differences in the IBD estimates 

obtained from the two programs, the test statistics based on them were similar, indicating 

that the discrepancies between the half sib and full pedigree analyses were not caused by 

problems of IBD estimation in the full pedigree. In a small number of cases the full pedi-

gree likelihoods (parameters estimated under the QTL plus polygenic effects model and 

under the polygenic effects only model) were maximised in SOLAR and in a maximisation 

program written by P.M. Visscher (University of Edinburgh). In all cases both programs 

gave very similar test statistics (this part of the analysis was done by P.M. Visscher). This 

meant that neither differences in the the maximisation procedures nor IBD computation 

issues could explain the differences in the results obtained. The regression and VC meth-

ods make different assumptions about the underlying model and it seems likely that this 

explains at least some of the discrepancy. The regression approach assumes a biallelic 

QTL segregating in the half sib families with the QTL fitted as a fixed effect. This QTL 

effect is assumed to fit a genetic model with a 'substitution effect', the effect of replacing 

one allele from a common parent with the other in the offspring. The regression approach 

does not account for any background (polygenic) variation within the half sib families. In 

comparison, the VC approach considers the whole pedigree at once, makes no assumptions 

about the number of QTL alleles and, instead of assuming the QTL is a biallelic fixed ef-

fect, the QTL is assumed to be a random effect (i.e. drawn from a distribution of possible 

effects). In the VC approach the phenotypic values are assumed to be drawn from multi-

variate normal distribution (see section 2.1); both the polygenic and the QTL effects are 

assumed to be additive (dominance effects can also be included in the VC approach but 
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estimation of the required marker specific matrix of two allele sharing IBD coefficients is 

not implemented in any programs at present). Since the VC approach was able to handle 

the whole pedigree at once, the number of phenotyped animals in the VC analysis was 

rather larger than the number included in the half sib regression analysis (295 animals 

in the full pedigree, just over 100 in the half sib families). Applying the VC analysis to 

just the half sib families (i.e. ignoring the known relationships between the half sib-ships 

and ignoring known full sib relationships) increased the concordance between the results 

of the two analysis methods but some discrepancies remained. These discrepancies are - 

therefore likely to be attributable to the different assumptions required to apply the two 

methods. 

The power of univariate VC methods to detect QTL has been studied by a number of 

authors. Analytic power calculations have been performed in [250, 186, 2381 whilst sim-

ulation studies appeared in [165, 2511; if the data have been ascertained irrespective of 

individuals' trait values these studies provide a guide to the available power. However, in 

some cases individuals are selected for analysis on the basis of the trait of interest and 

this may render such power calculations invalid. The type I error of the test statistics 

calculated from a VC analysis will be somewhat inflated in highly selected samples [3]. 

Conditioning on the trait values [204, 32, 49, 1031 is the most popular correction for pos-

sible ascertainment bias and this is implemented in programs such as SOLAR. Selection 

schemes for sib pairs have been proposed [1931 and may offer additional power if phe-

notyping is inexpensive relative to genotyping. However, this is generally not the case 

in human genetic studies. If genotyping is substantially more expensive than phenotyp-

ing there may be financial benefit in only genotyping individuals at the extremes of the 

phenotypic distribution. 

The main alternative to VC methods for human quantitative trait data are methods 

based on functions of sib pair phenotypic measures. The initial method regressed sib pair 

differences on IBD proportions [97] with subsequent approaches using other functions of 

sib pair measures [651. Such methods have the advantage of being considerably simpler 

computationally than VC based methods but they cannot be readily extended to large 

pedigree structures. In the case of sib pair only data, VC and regression based sib pair 

analysis have been shown to be asymptotically equivalent [2021, provided the component 

of variance attributable to the QTL is relatively small. Attempts have been made to extend 

regression based methods to general pedigrees [203] but such methods are only applicable 

to relatively small pedigrees in practice and require further work to assess their utility. 

Regression based approaches have been shown to offer less power than VC approaches 

[249, 111 in extended pedigrees. 

2.3.2 Multivariate 

This chapter extended the univariate techniques to consider data sets with multiple trait 

measures. The multivariate techniques required to effectively analyse such data are more 

involved than those for single trait measures. This, together with the relative paucity of 
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suitable data, goes some way toward explaining the lack of research in this area. In this 

chapter, particular attention has been paid to data with multiple trait measures of the 

the same trait over time (longitudinal traits). Such traits are often not well described by 

single, cross sectional, phenotypic measures but, as has been described, the conceptually 

simple full multivariate model requires the estimation of large numbers of parameters 

when there are more than a few time points. Since the data sets commonly available for 

genetic studies in natural populations are small, the full multivariate approach has some-

what limited application. By their very nature, longitudinal traits will be relatively highly 

correlated across multiple measures of the same trait compared with non-longitudinal 

multivariate measures (e.g. multivariate analysis of height and weight, say). In Chapter 

3 it will be seen that when traits are highly correlated the estimation of large numbers 

of parameters is difficult. The covariance function based approach may have considerably 

more utility than the full multivariate model as it can reduce the number of parameters 

in the model. Fitting a polynomial with order plus one (i.e. k terms in the polynomial) 

equal to the number of age points in the data is equivalent to a full multivariate model. 

Fitting lower order polynomials smooths the estimated covariance function, removing in-

dividual deviations which are likely to be due to stochastic variation. Testing procedures, 

suitable for choosing the order of polynomial used for each effect of interest (permanent 

environment, polygenic, QTL), are discussed in chapter 3.2.4. In reality, it may not be pos-

sible to fit a number of different polynomial orders to the data and choosing an particular 

polynomial order (say linear or quadratic) in advance may be a reasonable procedure (see 

also the discussion of chapter 3). The covariance function approach will be particularly 

useful when the data are measured at a large number of ages, perhaps with irregular 
gaps between measures; this is because the approach fits a polynomial through the set 

of ages available for each individual. Furthermore, individuals only measured for a few 

ages can still contribute to the analysis by providing information on the coefficients of the 

lower order polynomials (information available on constant and linear terms when there 

are two age measures and so on). These advantages are very well illustrated in chapter 4 

where there were 76 different ages in the data set with individuals measured for between 

1 and 21 of these ages. 

For some traits the repeatability model described above will be suitable for multivari-

ate data. This method is considerably simpler than the other multivariate methods with 

few parameters to estimate. The information loss in using this model compared with the 

more complex multivariate models is the subject of Chapter 3. 

There have been a number of other methods proposed to allow analyses of multivariate 

data. In most cases these are for distinct multiple traits (height, weight, etc) rather than 

longitudinal ones (height at age 20, at age 30,...). The simplest approach involves perform-

ing separate univariate analyses for each trait. This approach does not take advantage of 

the potential power gains inherent in the multivariate structure of the data. Furthermore, 

it is unclear how to keep the significance level at the desired level when there are multiple 

tests. A Bonferroni correction can be readily applied but this is almost certain to be overly 
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conservative. The next simplest alternative is to transform the multiple trait values into a 

single summary or composite measure, thus allowing a single univariate analysis method 

to be used. This composite measure can be constructed such that the calculated 'factor 

score' maximises some parameter of interest, such as the heritability [33]. Furthermore, a 

multivariate segregation analysis has been proposed for pedigree data [28] and this may 

allow the construction of a composite measure that is particularly suitable for mapping 

the major gene affecting a trait. However, even in this second case where there may be 

more power to detect a particular QTL or locus, neither method is likely to give an optimal - 

composite measure for other QTL or loci [61]. 
A number of authors have considered extensions of the sib pair regression methods to 

multivariate data [105, 4, 10, 51, 1591. Such methods offer advantages over the VC based 

multivariate approaches (introduced in this chapter) in terms of computational ease but, 

in addition to their unsuitability for extended families, they have been shown to offer less 

power than VC based approaches (for bivariate data [9]). The power of the sib pair regres-

sion methods has also been discussed in [68]. One of the regression based papers [105] sug-
gested a method suitable for bivariate sib pair data in which there is both a quantitative 

trait and a qualitative trait. Such techniques may be useful for some psychiatric diseases 

in which there are endophenotypes. For example, P300 measures (a quantitative trait 

measuring event-related potential amplitude and latency on the scalp) are often found to 

be higher in individuals affected by schizophrenia than in their unaffected relatives [25] 

and incorporation of this information into an analysis may improve power compared with 

methods which only utilise affection status. Methods for joint qualitative-quantitative 

trait analysis have also been proposed for VC based bivariate analysis [248, 2521; such 

methods are suitable for extended family data. Extensions to multivariate (more than 2 

traits) joint analysis requires further research. 

Attempts have been made to fit the full multivariate model (described in section 2.2) to 

longitudinal data [50, 511. In both papers the model is fitted to trivariate data but the six 

parameters (three variances, three covariances) could not be estimated simultaneously 

for all of the random effects. When the situation was approximated by three bivariate 

analyses, parameter estimation was possible. Given the data in [50] and [511 only support 

the estimation of three parameters it would probably be better to fit a first order CF to the 

full set of three traits than to fit 3 separate full multivariate analyses to three different 

subsets of the data. 
Multivariate linkage analysis related to that described in section 2.2 has been de-

scribed for sib pair data [61] and applied to developmental dyslexia data [1461. The method 

used in [146] fitted the polygenic effect as in section 2.2 but the covariance structure of 

the random effect for the QTL was constrained such that correlation between any two trait 

measures was equal to one. This is equivalent to the restriction that 

coy (trait2 , traits) = \/a?raitjc7t2raitj 
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for all traits i and j. This means that there are only k parameters to estimate when there 

are k traits (compared with k(k + 1)/2 with an unstructured QTL covariance matrix). 

Whilst this is highly unlikely to be true for all but the most strongly related traits, this 

model may allow parameter estimation in cases in which there are limited amounts of 

data (as in [1461). 

Another simplification of the full multivariate model may be possible for longitudinal 

traits. Consider the case where the primary focus is in whether there is a change in vari-

ance over time (e.g. the gene has large effect in early life but its importance with respect to 

the trait decreases over the life of the individual) and the covariance terms between differ-

ent ages are of little or no interest. Take for example the full multivariate model applied to 

data with 5 ages. This would require the estimation of 15 (co)variances (5 variances, 10 co-

variances). The likelihood of this model can be compared with the likelihood of a (reduced) 

model in which the diagonal elements are all constrained to be equal (requires the estima-

tion of 10 covariances and 1 variance). Consider the matrix of QTL specific (co)variances 
d11 d12  d13  d14 d15 

d2 1  d22 d23 d24 d2 5  

between the trait at the different ages, D*, 	d31  d32  d33  d34  d35  . The null hy- 

d4 1  d42 d43  d44 d45  

d51 d52 d53 d54 d55 

pothesis would be d11  = d22 = d33  = d44 = d55  with the alternative being that the t hi s are 

unequal. The likelihood ratio test for deviations from the null should be compared with a 

X4 distribution. Fitting the full model with ASREML [80] was sometimes computationally 

possible with the 150 family data set described in chapter 3 but, in practice, achieving 

convergence was often difficult. Instead of using a likelihood ratio test to test the signifi-

cance of this model, however, a Score test could be used (see also [109, 237]).  This test is 

based upon the score and the information matrix of the reduced model and hence has the 

advantage of not requiring the calculation of the maximum likelihood under the full model 

(this is required for a likelihood ratio test). ASREML generates the Score and Information 

matrix for this test and should give results that converge asymptotically to those obtained 

using the likelihood ratio test. Performing a score test in this way reduces the number of 

parameters requiring estimation from w(w+1)  (necessary for full model) to w2-w+2  (neces-

sary for reduced model) when there are w traits. Although this full multivariate approach 

allows testing of the hypothesis that there is a change in genetic variance over time it is 

clearly inefficient in terms of the number of parameters used. CF based models are less 

flexible in that they prescribe a particular covariance function at the same time as the 

variance terms but they are more efficient in terms of the number of parameters requiring 

estimation. 

Techniques for longitudinal QTL mapping in experimental crosses using character pro-

cess [1731 modelling have been developed [140]. However the techniques in [140] are not 

readily extended to the irregular family structures encountered in human genetic studies. 

In contrast, the CF based techniques can be applied to arbitrary family structures (see 
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chapter 4). 
A multivariate CF model may be possible for a set of longitudinally measured traits, 

e.g. weight at age 20,.., weight at age 50, height at age 20,.., height at age 50. The longi-

tudinal element of each trait could be fitted with the RR described above, with the covari-

ances between the RR parameters for different traits modelled as in the full multivariate 

analysis [156]. It seems unlikely however, that there will be many natural population data 

sets large enough to estimate the large number of parameters in such a model. - - 

Summary In summary, univariate variance component techniques can be applied to 

general pedigree data. The mixed model framework allows flexible modelling of both the 

quantitative and discrete trait values and allows covariate information to be included. 

There have been a number of extensions of the univariate analyses to multiple traits. 

Here, particular attention has been paid to longitudinally measured traits. Such traits 

can be efficiently (in terms of number of parameters) modelled using covariance functions, 

with suitably parameterised random regressions allowing parameter estimation. In chap-

ter 3 the relative power of the methods in section 2.2 are compared using computer sim-

ulation. The covariance function based methods are applied to a real data set in chapter 

4. 
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Chapter 3 

Analysis of longitudinal 
quantitative trait data in 
complex pedigrees: Simulation 

3.1 Introduction 

To assess the utility of a selection of the techniques available (detailed in chapter 2) for 

longitudinal data, computer simulations were run. Pedigree data were simulated with 

individuals assigned genotypes and multiple (longitudinal) trait values. The main inter-

est was in QTL detection and characterisation in samples of moderate size. The samples 

ascertained for QTL analysis in humans are typically rather small. This can restrict the 

application of very complex multivariate techniques that involve large numbers of param-

eters. 

Two sets of simulations were run. The first considered a simple model for the assigned 

trait values with the genetic correlations between different ages equal to one. This simula-

tion was useful because it facilitated simple assessment of the power to detect QTL using 

univariate, repeatability (denoted Re, see section 2.2.1) and random regression based CF 

methods (denoted RR, see section 2.2.2). In particular, this first simulation set considered 

whether it is possible to detect changes in QTL variance over time. The adequacy of the 

asymptotic likelihood ratio tests was also investigated using these data. 

The second set of simulations used a more realistic model for the phenotypic data in 

which the genetic correlation between QTL effects at different ages was not restricted to 

be one. Under this model, methods which do not model the covariance between the trait 

values at different ages (such as repeatability or univariate analysis) were expected to per-

form poorly and the main comparisons were between RR and full multivariate analyses. 

Simulations were also used to investigate different methods for overcoming the practi-

cal difficulties arising in the incorporation of IBD information into multivariate analyses. 
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3.2 Methods 

3.2.1 Identity by Descent (IBD) coefficient estimation 

IBD matrices were computed for the generated set of pedigrees using SOLAR [6]. SOLAR 

also performs the maximisation necessary for evaluation of equation 2.7. However SOLAR 

does not perform multivariate analyses. ASREML [80] was used for the multivariate 

analyses. The IBD matrices computed in SOLAR required inversion for incorporation into 

ASREML. In some cases the IBD matrices are singular. For example, for a 2 sib nuclear 

family with perfect marker information (i.e. parents heterozygous for different alleles) 

the QTL IBD matrix will be singular if the children share no or both alleles IBD at a 

marker. However, if one uses multipoint IBDs and evaluates these a small distance from 

each marker the resultant matrix will have entries that deviate slightly from 0, 0.5 or 1 (in 

the 2 sib nuclear family example) and will become invertible. Alternatively one may add 

a small positive number to the diagonal entries of the IBD matrix to ensure the matrix is 

invertible. If there is more than one family in the data set the IBD matrix will be block 

diagonal; only the diagonal entries of the families which generate singular sub-matrices 

at that genomic location need to be modified. 
Since SOLAR does not require the inverse of the IBD matrix and allows univariate QTL 

analyses, the results from SOLAR were compared with the results of univariate QTL anal-

yses performed in ASREML (after manipulation to make the IBD matrices non-singular). 

It is presumed that if the (singular) IBD matrices can be successfully incorporated into a 

univariate analysis they will also be suitable for a multivariate QTL analysis. 

Univariate analyses were done on two different simulated data structures. The first of 

these was a set of 200 4 sib nuclear families. The LOD scores and variance components 

were calculated in SOLAR and in ASREML with the two methods used to render the IBDs 

suitable for inclusion in ASREML. The second data structure was 200 2 sib nuclear fami-

lies. In the first case about 90% of families were expected to yield singular IBD matrices 

when IBDs were calculated at a marker completely linked to the simulated trait locus 

(see appendix of this chapter). In the second case fewer of the families (-45%) would be 

expected to have singular IBD matrices (see appendix of this chapter). 

Firstly, the IBD matrices were rendered suitable for inclusion in ASREML (made non-

singular) by adding 0.001 to the diagonal element of all 200 families. Secondly, the singu-

lar sub-matrices of the full 200 family IBD matrix were identified and individually modi-

fied to make them non-singular; the non-singular sub-matrices were unchanged. 10 repli-

cates were run in each case. 

The effect of adding different values to diagonal entries of singular sub-matrices was 

investigated by varying the value added from 0.1 to iO. Adding too much to the diagonal 

will cause the matrix to mis-represent the true marker information whilst adding too little 

will cause computational problems due to the matrix being close to being singular. 10 sets 

of 100 4 sib nuclear families were analysed. The simulated QTL specific h 2was 0.25. 

An alternative to modifying the diagonal elements of the IBD matrix (or relevant sub- 
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matrices) is bending [98, 214]. Bending refers to a procedure which modifies a non-positive 

definite matrix of interest to make it positive definite. In particular, the bending process 

alters the eigenvalues of the matrix; if the matrix is to be positive definite, all of the 

eigenvalues must be greater than zero. If one gradually alters the eigenvalues toward 

their mean until they are all positive and reconstructs the matrix one will (hopefully) 

obtain a matrix which has similar numerical properties to the original matrix yet is non-

singular. 

Matrix inversions were done in GNU OCTAVE (www. octave. org ). 

3.2.2 Simulating data 

To create data sets for analysis, random effects were drawn from normal distributions. 

If the random effects are drawn from normal distributions then the overall trait value 

will have a normal distribution, satisfying a basic assumption of the ML based estimation 

procedure. Environmental and genetics effects were assumed to be independent and were 

hence added sequentially. 

Environmental effects The permanent environmental effects were generated by adding 

a single normal variate from N(0,0.5) to each individuals' set of trait measures. Similarly, 

the temporary environmental effects were generated by adding a normal variate from 

N(0,0.5) to each separate trait measure in each individual. In simulation 1, the effect of 

changing these distributions to permanent environment, N(0,0.75) and temporary envi-
ronment, N(0,0.25), was investigated. 

Genetic effects No polygenic effects were simulated. QTL effects were simulated using 

three methods. 

1 Repeatability model For each founder individual two separate allelic effects were 

drawn from a univariate normal distribution with the required variance. These allelic ef-

fects were passed on to the non-founders (descendants) with a completely linked highly 

informative multi-allelic (20 alleles) marker. Once the first set of non-founders have been 

allocated genotypes and phenotypes any subsequent descendants can be given values in 

turn. Arbitrary pedigrees can hence be given simulated values. In contrast with a poly-

genic genetic effect, where effect transmitted is composed of both a Mendelian sampling 

component and two parental components (averaged over all genes), the (genotypic) QTL 

effect comes solely from the two transmitted allelic effects. The total variance attributable 

to the QTL of interest is the sum of the variances of these two allelic effects. 

2 Change in variance but correlations across ages equal to one In this case 
data were generated as in the repeatability model but a change in variance over time was 

induced by multiplying the two generated allelic effects in each founder by some function 

of age (e.g. QTL variance is 0.2 at age 1 and increases linearly to 0.4 at age 5). 
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3 Change in variance with general correlation structure In this case the two 

allelic effects for each founder were drawn from a multivariate normal distribution with 

specified variances and correlations. To generate the required multivariate normal (MVN) 

variates consider a p x p correlation matrix K and a diagonal matrix D of the required 

standard deviations. Let S = DKD and re-write S using the Cholesky factorisation as S = 

L'L(http: //mathworld.wolfram.com/CholeskyDecomposition.htxnl) . For an x  

matrix X of p univariate N(0,1) draws (ages) measured in n individuals, the matrix B = 

XL' has multivariate normal distribution with the correlations and variances specified in 

K and D. 
For the simulated data, no systematic change over time is simulated so whilst a con-

stant (fo)  and age dependent (f l ) overall mean are fitted in the RR analyses they are 

expected to both yield estimates that are close to 0. 

In simulation 1 (below), QTL effects were simulated using methods 1 and 2. In simu-

lations 2a and 2b (below), the QTL effects were generated using the multivariate normal 

distribution described in method 3. In all simulations 150 4 sib nuclear families (900 indi-

viduals) were simulated. All individuals had phenotypic and genotypic information. There 

were 5 ages, numbered 1 to 5. 

3.2.3 Simulation 1 

Basic model 

In simulation 1 the data were simulated using methods 1 and 2 described above. Under 

these models the genetic (QTL) correlation between different ages is generated to be one. 

Although these are unlikely to be realistic models this set up allows a simple test for de-

viations from the repeatability model (in which the genetic variance does not change over 

time and the genetic correlations are all one). Testing for deviations from the repeatabil-

ity model forms the first part of simulation 1. The second part of simulation 1 considers 

the power of RR based methods to detect QTL (QTL plus polygenic effect versus polygenic 

only). 

Deviations from Repeatability model 

The main interest here is in whether the repeatability model (i.e. a model only fitting 

a single effect, q, forthe QTL) is appropriate to the generated data or whether adding 

additional terms to the RR (qji in this case) significantly improves the fit to the data. The 

null is therefore q = 0 and the alternative is q2 > 0. 

Null model The adequacy of using asymptotic results based on known distributions was 

evaluated by simulating data under the null hypothesis. The empirical null distribution 

(repeatability) was evaluated by simulating data using method 1. The QTL variance was 

set to 0.2 at all ages. A linear RR was fitted to the data and compared with the repeatabil-

ity model. If one fits the linear term qj1 in the RR and constrains the covariance between 
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qo and qii to be zero, twice the log likelihood difference (2logLR, call this StatDevRel 

(statistic for deviations from repeatability model), see table 3.1) between the RR and the 

Re model is expected to be distributed as 1X2 : 1 0 [2001. This follows because under the 

null the additional variance term is on the boundary of the parameter space. If one fits 

both the variance and the covariance terms in the RR (subject to the constraint that the 

coefficient matrix remains positive definite), the 2logLR test statistic (call this StatDe-

vRe2) for the RR versus the Re model is a 50:50 mixture of xand a point mass at zero 

(x) Note this test statistic (with the covariance unconstrained) is not a mixture of x and 

X1 (this appears to be what is stated in [221, 156]).  This is because when the variance 

term associated with the qi, term is zero the covariance between the q10  and q2j terms 

must also be zero, resulting in a point mass at zero (x) not a50:50 mixtures of x 0 1.

and x (where df > 0) are simple to evaluate; to obtain an appropriate p-value one sim-

ply halves the p-value obtained from a x distribution. In practice, the first 2logLR test 

statistic (StatDevRel) is easier to compute in ASREML. The agreement between these 

asymptotic results and 1000 simulation replicates was assessed graphically. 

Alternative model To assess statistical power when the null hypothesis was false, the 

genetic variance was altered with increasing age (method 2). The genetic variance at-

tributable to the QTL was simulated to increase linearly from 0.20 at age 1 to either 0.33 

at age 5 (case 1) or 0.4 at age 5 (case 2). A further situation was considered in which 

the ratio of permanent to temporary environmental error variance was altered (case 3): 

instead of the 50:50 allocation in cases 1 and 2, more of the error variance was allocated to 

be common to every measurement taken on each individual. In this case the ratio of per-

manent environmental variance to temporary environmental variance was simulated to 

be 75:25. The genetic variances in case 3 were the same as those in case 1. 200 replicates 

were generated in each case. The utility of the two tests for deviations from the repeata-

bility model (StatDevRel and StatDevRe2, described above) was assessed by counting 

the proportion of replicates rejecting the repeatability model in favour of the linear RR 

model. 

Power to detect QTL using RR model 

The data from cases 1 to 3 was used to assess the power to detect the simulated QTL. This 

power was evaluated using 3 analysis methods. Firstly, the repeatability model was fitted 

to the data. The 2logLR test statistic for the test of (repeatability) QTL versus no QTL (call 

this Statdet3, statistic for detecting QTL effect) is assumed to be distributed as : 0. 

Secondly, the univariate 2logLR statistic was calculated; the maximum statistic from the 

5 single analyses and an analysis of the mean of the 5 trait values was obtained. Ignoring 

the multiple testing issue, this statistic (call this Statdet4) is assumed to be: 1 0. 

Bonferroni correction for 6 tests can be applied by reducing the significance level six-fold 

(call this Statdet4Bonferroni). Whilst some correction for multiple testing is in order, 

the Bonferroni correction is too conservative in this case because the 6 tests are correlated. 
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Table 3.1: Summary of Statistics, Simulation 1 
QTL RR coefficients in  

Statistic L 1  L 1  
Asymptotic distn. 

of 21n(L j /L o ) Notes 
StatDevRel qc qzo, qii 

1 	2 
: 

1 -o Deviation from Re model test 
StatDevRe2 q2 q1o, q2i, coy (qo, qii) : 	 0 Deviation from Re model test 

Statdet3 none qjo 121 
-x1 	-o Power to detect QTL test 

Statdet4 -n/a - n/a 
- 

10 Power Power to-detect QTL-univariate test 
none q, q2i, coy (qo, qii) X3 	!X': 	0 

Po___
wer to detect QTL test 

The true power at the given significance level is likely to lie somewhere between the power 

for Statdet4 and Statdet4Bonferroni. Thirdly, the linear RR was fitted to the data. The 

2logLR statistic for the test of QTL (with constant and slope terms) versus no QTL (all 3 

(co)variances set to zero; call this Statdet5) is assumed to be : : 0. This statistic 4 3

has this mixture distribution because there are two variance terms and these are on the 

boundary of the parameter space under the null. When performing the likelihood ratio 

test, one quarter of the time both of the variances are estimated to be positive (and their 

covariance can be non-zero), one half of the time one of the variances is at zero (together 

with the covariance, cov(qjo, qi), from equation 2.25) and one quarter of the time all 3 

(co)variances are at zero. 
Note that in the RR model we compare the QTL model with a model in which there 

is a polygenic variance term included but, in this study, the polygenic term does not vary 

with age. In practice, the test for a QTL under the RR model would allow the polygenic 

term to vary with age (via some polynomial of age). However, to allow a direct comparison 

between the RR and Re models a constant polygenic term is fitted here. 

A further test of significance of the QTL effect could be obtained by fitting a full mul-

tivariate model (i.e. 15 (co)variances) or higher order polynomial RRs to the data and 

comparing this with the univariate, Re and linear RR models. However, fitting these mod-

els to the data simulated in Simulation 1 (QTL genetic correlations equal to 1) proved 

impossible in practice. The estimation of large numbers of parameters is very difficult 

when the traits of interest are highly correlated. Estimation was more readily achieved in 

Simulations 2a and 2b where the correlation between the traits was reduced. 

The power of Statdet3, Statdet4 and Statdet5 to detect the simulated QTL was as-

sessed at 3 significance levels: 0.001, 0.0001 (asymptotically equivalent to a univariate 

base 10 logarithm of odds, or LOD, of 3) and 0.00001. 

For reference, the statistics calculated are given in table 3.1. 

3.2.4 More complex model with sloping covariance function (Sim-
ulation 2a) 

A more realistic model of the change in genetic (QTL) effect over time is one which al- 

lows the correlation between genetic effects to be below one, particularly for measures 
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Figure 3.1: Flat CF 
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Figure 3.2: Sloping CF 
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widely separated in time. Graphically, the correlation matrix with all ones results in 

a genetic (QTL) covariance function (CF) similar to that in figure 3.1. A more real-

istic situation may be similar to the one shown in figure 3.2 (half of the off-diagonals 

have been suppressed to make the diagram clearer) where the correlation matrix K*  is 
1 	0.9 0.8 0.7 0.6 

0.9 	1 	0.9 0.8 0.7 

0.8 0.9 	1 	0.9 0.8 

0.7 0.8 0.9 	1 	0.9 

0.6 0.7 0.8 0.9 	1 
In cases such as this the assumption that the genetic correlation is 1 is violated. This 

means that any model which allows the correlations to be less than one (such as a first or 

higher order RR) will give a better fit than the repeatability model, even when the genetic 
variance does not change over time. 

Apart from the change in the correlation structure the simulation set up was the same 

as in Simulation 1. The data are simulated from the MVN distribution (method 3 from 
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section 3.2.2) with the correlation matrix for the genetic effects specified to be K* (ma-
trix above) with the QTL variance rising linearly from 0.2 to 0.4. 200 replicates were 

generated. 

The models fitted to the simulation data were a no QTL (polygenic component only) 

model, a Re model (equivalent to an order 0 RR model), a series of RR models, with orders 

1 to 4 and a full multivariate model. This full multivariate model fits 5 variances for the 5 

different ages in the data and attempts to estimate separately all 10 covariances between 

the effects at different ages. This model should give identical likelihoods to the saturated 

fourth order RR model. Both fit the same number of parameters for the QTL effect (15 in 

all). The lower order RRs use polynomials to smooth the covariance function, reducing the 

number of parameters requiring estimation. Note that the simulated covariance function 

was not generated from a polynomial. Although the true shape of the CF will not be known 

in practice, it is highly unlikely to look exactly like that generated from a polynomial. 

Comparisons between the fitted models The models listed above are nested and are 

compared using likelihood ratio tests. Some of the comparisons are the same as those 

for Simulation 1. The test of Re vs. no QTL is Statdet3 above. The two tests for the 
significance of the linear RR are StatDevRel and StatDevRe2. Tests for the significance 
of the higher order polynomial RRs are analogous to StatDevRel and StatDevRe2. For 
the test of the full (i.e. all elements of the CF estimated) order k* + 1 RR versus the order k* 

model, twice the logLR was compared with a 0 distribution (rationale for this is 

given in section 3.2.3, analogous to StatDevRe2). Call this Statkfull. An alternative test 
uses the order k*  +1 RR with the correlations between the k* + 11h diagonal term of the CF 
and the first k*  RR coefficients constrained to zero (analogous to StatDevRel in section 
3.2.3, with the correlations between the first kt coefficients left unconstrained). The logLR 
statistic comparing this constrained fit to the order k*  RR has a : 10 distribution. Call 
this Statkconstrained. Note that as in section 2.2.2, k*  is the order of the polynomial 
and k is used for the number of terms in the polynomial; i.e. k* = k - 1. As before, the 

coefficient matrix as a whole was constrained to be positive definite. 

The best fitting model was selected by increasing the order of the RR until the addi-

tional terms were found to not significantly increase the likelihood. The higher order RR 

was deemed significantly better than the lower order RR if the p value for the higher order 

model was below 0.01; for example an order 1 RR was rejected in favour of an order 2 RR 

if the twice the difference in likelihood exceed 9.84, the 1% level of a : O distribution. 2 3

Once adding an additional term to the RR was found to be non-significant, higher order 
RRs were not considered. 

The RR fitting procedure models the random deviations from a fixed curve for each 

regression coefficient. In the fourth order RR case fourth order polynomials of age are 

hence required as a fixed effect. To ensure valid LR tests comparing different polynomial 

orders for the RRs this same set of fixed effects (i.e., fo + fj t3  + f2t + f3 t + f4t) were used 
for all fitted models. If the fixed effects are changed with the order of the RR, the LR test 
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Figure 3.3: Simulation. 2b: Simulated increase in QTL variance with age 
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3.2.5 Simulation 2b 

Simulation 2a was re-run with a non-linear change in the genetic variance over time. To 

achieve this, the simulated ages were re-scaled so that the increase in genetic (QTL) vari-

ance became logarithmic with age. Instead of instructing ASREML to compute orthogonal 

polynomials based on measures at ages 1 (genetic variance simulated to be 0.2), 2 (genetic 

variance simulated to be 0.25),.. ,5 (genetic variance simulated to be 0.4), the ages were 

specified as being 1 (genetic variance 0.2), 2 (genetic variance 0.25) , 5 (genetic variance 

0.3), 11 (genetic variance 0.35) and 21 (genetic variance 0.4). Note that this means that 

the trait measures are no longer evenly spaced. The simulated increase in QTL variance 

with age after this re-scaling is shown in figure 3.3. An alternative (not used here) to this 

re-scaling would be to generate 21 ages initially (with the variance starting at 0.2 at age 

1 and rising to 0.4 at age 21) and pick out ages 1, 11, 17, 20 and 21; labelling these 1 to 5 

and using these in ASREML would give a curve the same shape as in figure 3.3. Making 

the increase in variance logarithmic should make it more difficult for the polynomials to 

model the changes in the CF over time. 

The other parameters, models fitted and tests used in simulation 2b were the same as 

those in simulation 2a. 

3.3 Results 

3.3.1 IBD results 

Selection of families for modification 

As predicted, approximately of 45% of the generated 2 sib families and approximately of 
90% of the generated 2 sib families had singular IBD matrices. 
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Th1 	9 TBfl Mndiftinw i Sib Fmi1ip 

replicate SOLAR LOD ASREML LOD 
Modify all diags Modify only singular diags 

1 0.912 0.910 0.910 
2 4.428 4.443 4.443 
3 2.387 2.385 2.386 
4 2.065 2.060 2.060 
5 2290 2.293 2.294 
6 3.299 3.311 3.310 
7 2.843 2.855 2.856 
8 2.245 2.241 2.242 
9 1.101 1.108 1.108 
10 3.644 3.646 3.645 

Tcihlp 	TRD Mndifitiniv 9 Sib Fimi1icg 

replicate SOLAR LOD ASREML LOD 
Modify all diags Modify only singular diags 

1 0.003 0.003 0.003 
2 0.834 0.840 0.841 
3 0.569 0.573 0.574 
4 0.784 0.787 0.786 
5 0.218 0.219 0.219 
6 0.527 0.526 0.524 
7 0.875 0.881 0.880 
8 0.009 0.009 0.008 
9 0.240 0.237 0.238 
10 1.964 1.970 1.970 

The results from simulations in which the families' IBD matrices were either all mod-

ified to make them non-singular or only modified if they were actually non-singular are 

presented in tables 3.2 and 3.3. Table 3.2 has the results for the case in which most 

families required modification. Table 3.3 has the results for the case in which a smaller 

proportion required modification. These results show that it makes very little difference 

which method is used; one can simply add a small amount to all diagonal IBD matrix 

entries without biasing the results. 

Effects of adding different values to diagonal entries of singular sub-matrices. 

Table 3.4 indicates the absolute difference between the h2ILOD score estimates obtained 

with ASREML and the modified sub-matrix IBD values and those obtained with SOLAR. 

The difference between the LOD scores and the QTL specific heritabilities are given. Over 

the 10 replicates the average estimated QTL specific h2was 0.24 (simulated to be 0.25). 

Note there are small differences between the results as a consequence of minor differences 

between the maximisation algorithms used in SOLAR and ASREML (ASREML corrects 

for the bias introduced by fitting fixed effects but SOLAR does not; here the only fixed 



Table 4: Difference between ASREML based h2ILOD and SOLAR h2ILOD 
added value  

1 1 0.1 0.1 0.01 0.01 iO i -  iO iO 
rep h2  LOD h2  LOD h2  LOD  LOD h2  LOD 

1 0.0154 0.8460 0.0100 0.0160 0.0041 0.0118 0.0035 0.0140 0.0035 0.0140 
2 0.1254 1.914 0.0014 0.1629 0.0032 0.0084 0.0032 0.0249 0.0034 0.0267 
3 0.0714 0.1118 0.0123 0.0505 0.0043 0.0175 0.0035 0.0140 0.0036 0.0140 
4 0.0040 0.3672 0.0056 0.0107 0.0031 0.0080 0.0029 0.0102 0.0029 0.0089 
5 0.0048 0.3822 0.0078 0.0296 0.0038 0.0357 0.0034 0.0361 0.0034 0.0361 
6 0.1516 1.2043 0.0025 0.0956 0.0002 0.0016 0.0002 0.0070 0.0003 0.0062 
7 0.0499 0.1248 0.0057 0.0100 0.0000 0.0008 0.0007 0.0021 0.0007 0.0026 
8 0.0996 0.3925 0.0045 0.0334 0.0005 0.0025 0.0003 0.0001 0.0001 0.0009 
9 0.0269 0.0143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
10 0.0378 0.7827 0.0221 0.0764 0.0046 0.0208 0.0029 0.0142 0.0028 0.0142 

effect is the mean so the difference is negligible). There is little difference between the 

results obtained provided the added value is in the range (0.01, 0.0001). Adding 10 to 

the diagonals resulted in singularity (to machine precision) in all cases. 

Since the method of adding small values to the diagonal entries of the non-singular 

matrices proved perfectly adequate the more complicated procedures based on (matrix) 

bending were deemed unnecessary 

3.3.2 Simulation 1 

Repeatability null model The agreement between the expected asymptotic and sim-

ulation based empirical distributions when fitting the RR model to data simulated to fit 

the repeatability model (no change in variance over time, correlation between effects at 

different ages equal to one) was excellent. The two statistics of interest, StatDevRel 

and StatDevRe2 are expected to follow IX2 : 0 and jX2 : 0 distributions, respectively. 

They are shown in figure 3.4. For comparison the jX2 : distribution is shown; this 2 2

shows that neither StatDevRel or StatDevRe2 converge to this mixture (as suggested 

in [221, 156]).  Note that although the covariance is not constrained to 0 in StatDevRe2 
the overall coefficient matrix (C) is constrained to be positive definite. 

Deviations from repeatability model. Three cases were considered. In the first case 

the genetic (QTL) variance increased moderately (0.2 to 0.33); in the second the increase 

was larger (0.2 to 0.4). The third case was the same as the first but with the environmental 

component altered. The power in each case is given in table 3.5. 

The results indicate that StatDevRe2 is more powerful at detecting deviations from 

the repeatability model. One should note however that in some circumstances StatDe-
vRel is easier to compute than StatDevRe2. Reducing the relative amount of temporary 

environment (ratio of permanent to environmental variance 75:25 instead of 50:50) in case 

3 results in the change in genetic variance over time being easier to detect (more power to 
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Table 3.5: Simulation 1: Power (at 1% level) to reject the repeatability model 

StatDevRel I StatDevRe2 
Case 1 5% 1 	41% 
Case 2 12% 76% 
Case 3* 16% 1 	75% 

*Same as case 1 but with change in ratio of environmental effects 

Table 3.6: Simulation 1, Case 1. QTL variance 0.2 (age 1) to 0.33 (age 5) 

I_Statistic\Significance level 10 10 10 
Statdet3 (Re QTL vs. no QTL) 54 30 17 

Statdet4 (Univariate QTL vs. no QTL) 61 33 18 
Statdet4Bonferroni (Corrected Stat4) 38 21 9 
Statdet5 (Linear RR QTL vs. no QTL) 64 43 31 

detect deviations from repeatability in case 3 compared with case 1). 

Power to detect QTL: RR, Re and univariate models The power to detect a simu-
lated QTL was determined using three statistics, Statdet3, Statdet4 and Statdet5. The 
power (proportion of 200 replicates, expressed as a percentage) at different significance 

levels for case 1 (QTL variance 0.2 to 0.33) is given in table 3.6. 

The power (%) for the case 2 (QTL variance 0.2 to 0.4) simulation is given in table 3.7. 

The power (%) for the case 3 (QTL variance 0.2 to 0.33, permanent environment vari-

ance 0.75, temporary environment variance 0.25) simulation is given in table 3.8. 

Looking at the results from Statdet3 in tables 3.6 and 3.8 we see that much of the 
power in the repeatability analysis lies in the reduction in temporary environmental noise 

as a result of averaging over a number of measures; when the temporary environmental 

effects are small (as in case 3) the repeatability analysis has little power to detect QTL. 

By contrast, the model allowing for a change in QTL effect over time (Statdet5 linear 
RR) gains power when the temporary environmental noise is reduced. This is because the 

change in genetic variance over time can be more readily detected, increasing the power to 

detect the QTL when a parameter modelling the change in QTL effect over time is fitted. 

Table 3.7: Simulation 1, Case 2. QTL variance 0.2 (age 1) to 0.4 (age 5) 

L 	Statistic\Significance level 	J _10 	
] _iO 	

] 
10 

• 	 Statdet3 (Re QTL vs. no QTL) 67 41 21 
Statdet4 (Univariate QTL vs. no QTL) 75 47 24 
Statdet4Bonferroni (Corrected Stat4) 53 28 13 
Statdet5 (Linear RR QTL vs. no QTL) 85 78 65 
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Table 3.8: Simulation 1, Case 3. QTL variance 0.2 (age 1) to 0.33 (age 5) (0.75 perm, 0.25 
temp) 

Statistic\Significance level iO iO 10 

Statdet3 (Re QTL vs. no QTL) 30 13 5 
Statdet4 (Univariate QTL vs. no QTL) 39 18 6 
Statdet4Bonferroni (Corrected Stat4) 24 8 4 
Statdet5 (Linear RR QTL vs. no QTL) 75 64 46 

Note also that a modest increase in the genetic variance at age 5 (from 0.33 in case 1 to 0.4 

in case 2) has a relatively large effect upon the power when Statdet5 is used; the power 

to detect a LOD of 3 (significance level iO - ) rises from 43% to 78%. 

As mentioned earlier, the uncorrected Statdet4 overestimates the power whilst the 

Statdet4Bonferroni is too conservative. Assuming the true power value at the specified 

significance levels can be obtained by taking a power estimate between Statdet4 and 

Statdet4Bonferroni we see that the repeatability and univariate methods have similar 

power. 

3.3.3 Simulation 2a 

The procedure outlined above was used to determine the best fitting model to the data. 

79% of replicates rejected, at the 1% significance level, the no QTL model when the Re 

model was fitted. However, in all cases (200 replicates) the Re model was rejected in 

favour of the first order RR model (All p values less than 10 for StatDevRel and Stat-
DevRe2). This was unsurprising since the data were simulated so that the QTL variance 

changed over time and the genetic (QTL) correlations were <1. 64% of replicates rejected 

the linear RR in favour of the quadratic RR when Statkfull was used to compare the two 

models. When Statkconstrained was used only 23% of replicates provided evidence for 

the quadratic model. Using Statkconstrained for the test for a cubic RR compared with 

the quadratic fit (for replicates where the quadratic coefficient was significant) resulted 

in none of the replicates indicating the cubic fit was better. Assessing the further mod-

els (unconstrained cubic model and quartic model) proved difficult computationally, with 

many replicates failing to converge to a likelihood maximum. In the cubic case, roughly 

one-third of replicates failed to converge when the unconstrained cubic model (i.e. Statk-
full was calculated) was fitted. Taking the likelihoods as calculated (i.e. one-third of them 

are underestimates of the true likelihood maximum, biasing the test statistic for the sig-

nificance of the cubic term down-wards), 7% of replicates rejected the quadratic model in 

favour of the cubic model. Only in 35% of cases could the full multivariate model be max-

imised (the number of iterations for the likelihood maximisation was set to 100). Although 

the fourth order RR should maximise to the same likelihood as the full multivariate case, 

the RR converges less often than the full multivariate case. Hence, in practice it is some- 
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Table 3.9: Simulation 2a (QTL variance 0.2 (age 1) to 0.4 (age 5)): Best fitting model (%) 

Model Statkfull I Statkconstrained 
Repeatability 0 0 

Linear RR 36 77 
Quadratic RR 57 23 

Cubic RR 7* 0 
*One third of replicates failed to converge so this may be an underestimate 

Figure 3.5: Sample results, Simulation 2a 

times possible to test for the significance of the fourth order terms but not calculate the 

coefficients of the 5 by 5 CF. These results are summarised in table 3.9. 

For a few of the replicates all models could be maximised, a graphic representation of 

the results of one replicate is given in figure 3.5. The variance terms from the QTL RR 

are expressed as a proportion of the total variance (i.e. QTL heritability). For compari-

son, the univariate and repeatability model results are superimposed on the same graph. 

This shows that the repeatability model is a poor fit to the simulated model and that the 

univariate results, while following the simulated model to some degree, are rather noisy. 

All of the polynomial based RRs follow the simulated model well; the first order model of-

fers an excellent fit with only two extra parameters fitted compared with the repeatability 

model. The fourth order polynomial follows the univariate results more closely but in this 

case such variations from the simulated model are simply random variation; the lower 

order polynomials provide a better fit to the true (simulated) model. 
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Table 3.10: Simulation 2b (QTL variance 0.2 (age 1) to 0.4 (age 5)): Best fitting model (%) 

Model Statkfull I Statkconstrained 
Repeatability 0 0 

Linear RR 16 11 
Quadratic RR 67 85 

Cubic RR 17* 4** 

*Almost one third of replicates failed to converge so this may be an underestimate 
* * Five percent of replicates failed to converge so this may be a slight underestimate 

3.3.4 Simulation 2b 

Simulation 2b used the same generating model and analysis methods as simulation 2a 

but the age scaling was changed so that the increase in QTL variance with age followed 

the curve in figure 3.3. 71% of replicates rejected (significance level 1%) the no QTL model 

when the Re model was fitted. In all cases (200 replicates) the Re model was rejected 

in favour of the first order RR model (all p values less than 10-6  for StatDevRel and 

StatDevRe2). 84% of replicates rejected the linear RR in favour of the quadratic RR 

when Statkfull was used to compare the two models. When the Statkconstrained was 
used 89% of replicates provided evidence for the quadratic model (Note that although the 

likelihood ratio of Statkconstrained is lower than that of Statkfull, since the null dis-
tributions differ Statkconstrained can sometimes give smaller p-values). Using Statk-
constrained for the test for a cubic RR compared with the quadratic fit resulted in 4% of 
the replicates indicating the cubic fit was better. This may be a slight underestimate as 5% 

of the replicates failed to converge to a likelihood maximum. Using the unconstrained cu-

bic model in the test resulted in 17% of replicates rejecting the quadratic model although 

almost a third failed to converge fully. The quartic and full multivariate models could not 

be reliably fitted to these data. These results are summarised in table 3.10. 

The results of one replicate are given in figure 3.6. The simulated values are super-

imposed on the graph. As expected, when the change in QTL variance is non-linear the 

second and higher order RRs have more utility than the first order model. Nonetheless, 

even the first order RR is substantially better than the repeatability model. Once again 

the univariate results are rather noisy; univariate methods do not utilise the natural or-

dering in time of the genetic effects with adjacent measures often yielding very different 

estimates of QTL heritability. 

3.4 Discussion 

The results presented show that in a variety of realistic scenarios simple multivariate 

analyses such as repeatability (Re) analysis (equivalent to an 'average across all measures' 

univariate analysis when there is regular age spacing) are substantially less powerful 

than more complex multivariate techniques such as random regression based covariance 
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Figure 3.6: Sample results, Simulation 2b 

function methods (RR). Repeatability models are only useful for traits in which the genetic 

variance does not change over time and the genetic correlation between repeated trait 

measures is close to one. 

In simulation 1 it was shown that when there was a moderate increase in QTL effect 

over time fitting a first order RR increased the power to detect the QTL. This increase 

in power came solely from the RR modelling the change in QTL variance. The increased 

efficiency of the RR in modelling any decreases in the genetic correlation between trait 

measures below 1 was ignored by simulating data with no decline in genetic correlation 

with time. The increase in power was particularly large when the ratio of permanent to 

temporary environment was high (i.e. when most of the environmental 'noise' affects all 
of an individuals trait measures). 

At the GAW13 meeting [51 the genes that changed in their effect (variance) over time 

were often referred to as 'slope' genes [77, 1811. Simulation 1 allows a direct test for these 

slope genes. However, most QTL effects will not be completely correlated across ages 

and a more realistic simulation model will allow the correlations between QTL effects at 

different ages to decrease. 

In the case where the genetic correlation over time is not 1 all of the RR models (for 

all polynomial orders> 0) offer substantially more power than the repeatability model. 
For example, in simulation 1, case 2, StatDevRel rejected the repeatability model in 

12% of cases (significance level 1%). By comparison, when the data were simulated in 

simulation 2a with the same parameters apart from a change in the correlation structure, 

100% of replicates rejected the repeatability model (significance level 1%, although in fact 
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all rejected at significance level 0.001%). The univariate results for simulation 2a were 

similar (data not shown) to those obtained for the repeatability model and were hence 

substantially less powerful than those obtained from the RR model. 

Simulation 2a showed that when the increase in QTL variance was linear the best fit-

ting model was either a linear or quadratic RR (best model quadratic in 23% [constrained 

case] or 64% [unconstrained] of cases). When the increase was non-linear (figure 3.3, 

simulation 2b) the quadratic RR was usually the best fit (in -85% of simulation repli-

cates). Although the simulation 2b showed that polynomial based Us worked well with 

the simulated logarithmic increase in QTL variance with age (as shown in figure 3.3), non-

monotonic changes in QTL variance with age were not considered here (e.g. an increase 

in genetic effect at earlier ages, followed by a decline in later life). 

It is not possible to know what form real life genetic CFs will take. It was assumed in 

simulation 2a that the decline in correlation followed a steady decrease with increasing 

time separation. The correlation was assumed to remain relatively high over the range of 

ages of interest. This seems likely to be true for QTL effects (whose constituent element is 

one or more close linked genes) but may be less likely to hold for polygenic effects (whose 

constituent elements are more heterogeneous and will change over life). The shape of 

possible CFs for polygenic effects was considered in [108]. The models considered in [108] 

range from one in which the correlation structure remains high across ages to another 

in which the correlation becomes negative at widely separated ages. They conclude that 

RR models are effective for CFs whose correlation remain high across ages but are less 

effective for CFs with rapidly decreasing correlations [108]. 

The model selection in simulation 2a/2b was based on differences in likelihood but this 

may not be the most effective strategy. Exploratory simulation work on larger data sets 

indicated that even when the data are simulated under a relatively simple model (linear 

change in genetic variance, correlation structure as in simulation 2a), some of the higher 

order RRs give the most significant likelihood ratio statistics. In these cases the fitted 

RR models exploit the stochastic variation present in individual simulation replicates; in 

reality the true covariance functions are unlikely to follow 'wiggly' high order polynomi-

als and simpler polynomials should be chosen instead. In any event, with most realistic 

sample sizes high order polynomials are impossible to estimate and this problem will be 

of little practical consequence. Jaffrezic et al. [110] encountered similar problems when 

using likelihood as the criterion for model selection in large data sets. Further work on 

model selection may be useful for studies of particularly large data sets. 

Although fitting a model which estimates the full set of (co)variances in the data (there 
are w(w + 1)/2 to estimate when there are w trait measures ) can capture the change in 
QTL variance over time, such methods are inefficient in most cases and are difficult to 

apply in practice. One of the primary aims of this paper was to investigate how much 

information can be extracted from longitudinal data in realistic scenarios. The work here 

and other work on human data sets (Chapter 4, [50, 51]) indicate that approaches which 

do not simplify the covariance structure are unworkable in practice (the relatively small 
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data sets do not support the estimation of large numbers of parameters). Although some 

of the data sets simulated here supported the estimation of the full multivariate model 

parameters, the simulated data did not include age varying polygenic or permanent envi-

ronmental effects. In addition, all individuals had a full set of phenotypes and genotypes. 

In practice these complications will make estimating large numbers of parameters more 

difficult. These simulations also ignore one of the benefits of the RR procedure (compared 

with longitudinal analyses which do not incorporate age), namely the ability of the RR 

method to analyse data with phenotypes measured across a wide range of ages. In these 

simulations all individuals were assumed to be measured at all five ages. In reality hu-

man data sets will often feature individuals measured at a variety of different ages; a 

full multivariate analysis will usually require individuals at proximal ages to be grouped 

together, discarding information. In chapter 4 the RR method is used to allow an analysis 

of 76 distinct ages in a single analysis of a real data set. 

One disadvantage of the RR techniques is that the method depends on the shape of the 

full CF (i.e. the off-diagonals as well as the diagonals). A low order polynomial may be 

adequate to model the change in variance over time but inadequate for approximating the 

covariance structure or vice-versa. Alternative models which fit separate functions for the 

change in variance and the change in correlation or covariance have been proposed (Char-

acter process models, [1731). The utility of such models in characterising longitudinal QTL 

is an area which requires further study. 

In summary, covariance function techniques have been shown to provide considerably 

more power for QTL detection than univariate and repeatability techniques. It should be 

possible to take advantage of this extra power by fitting first order random regressions to 

most realistic human/natural population data sets. Larger data sets (e.g. animal breeding 

applications) that support the estimation of higher order polynomials will allow better 

characterisation of the change in genetic effect over time. 

3.5 Appendix 

3.5.1 Expected number of singular IBD matrices 

For 2 sib nuclear families, half of the time the offspring will share 0 or 2 alleles IBD and 

half of the time they will share 1 allele IBD. This gives a singular IBD matrix in half of all 

such families (assuming both parents are heterozygous and there are >3 alleles, i.e. fully 

informative). 

Proof that for ii> 3, fully informative nuclear families with n siblings will have 
singular marker-specific IBD matrices A few points to begin with. First of all, since 
the ordering of the sibs within the sibship is arbitrary, assume that if there is a sib who 

shares two alleles with any other sib, these two sibs are written as columns 3 and 4 of the 

IBD matrix; subsequent to this come individuals sharing one allele with the first sib fol- 



lowed by individuals sharing no alleles with the first sib. Secondly, if any column (or row) 

of a (IBD) matrix can be expressed as a linear combination of one or more other columns, 

the matrix is singular. Thirdly, although, in a sibship with fully informative parents, the 

entries of the IBD matrix can take values 0, 0.5 or 1, only certain combinations are com-

patible with the transmission of alleles from two parents. In the case of a 3 sib family, 

there are 9 possible arrangements of IBD coefficients in the matrix. The IBD matrix is of 

the following form 
1 	0 	0.5 0.5 0.5 

0 	1 	0.5 0.5 0.5 
R3  = 	0.5 0.5 	1 	x 	y 	 (3.1) 

0.5 0.5 	x 	1 	z 

0.5 0.5 	y 	z 	1 

where the values in the x, y and z positions are as follows. Only rows 1 to 4 are possible 

URUJLU 

UILUIJ 

Table 3.11: Possible IBD values 

given fully informative parents. The possible values are in bold text in table 3. 11, impossi-

ble values are in non-bold text. Note that since the ordering of the sibs within the sibship 

is arbitrary the x value can always be made to be one in rows 1, 2 and 3 of table 3.11 and 

made to be 0.5 in row 4 of the table. In terms of alleles, row 1 corresponds to the case 

where the parents are AB and CD and the offspring are AC AC AC. Similarly, row 2 is AB 

CD (parents), AC AC AD (offspring). Row 3 is AB CD (parents), AC AC BD (offspring) and 

row 4 is AB CD (parents), AC AD BC (offspring). 

Now consider the values in the four possible rows of the table. 

Rows 1, 2 and 3 For rows 1, 2 and 3 of the table, y must equal z; that is, the third 

sibling must share the same number of alleles IBD with sib 1 (column 3 of R3) and sib 2 

(column 4 of 113). Since column 3 of R 3  is then equal to column 4 of R3, the IBD matrix is 

singular. Furthermore, any further sibs in the sibship (fourth sib, fifth sib, ...) will have 

the same relationship to sibs 1 and 2 (since sibs one and two share 2 alleles IBD). This 

means columns 3 and 4 of the matrix will continue to be equal. 



Row 4 For row 4 of the table, x was assumed to be 0.5. Since the allocation of 0.5 and 

0 to y and z is also based upon the arbitrary ordering of the sibs (the allocation of the 0 to 

either x, y or z is dependent upon whether the first and second, first and third, or second 

and third sibs share 0 alleles IBD, respectively) the only case to consider is where y and z 

are 0.5 and 0. In this case column 4 plus column 5 of R3 equals column 1 plus column 2 of 

R3. This proves singularity in the 3 sib case. 

If there are 4 sibs in the sibship, the only case left to consider is the cases where the 

fourth sib is added to a 3 sib family with the row 4 of table 3.11 values and this fourth sib 

does not share 2 alleles IBD with any of the previous 3 sibs (otherwise the sibship could 

be rearranged to make the argument in the 'Rows 1, 2 and 3' paragraph apply). In this 

case the IBD matrix is 

0 0.5 0.5 0.5 0.5 

o i 0.5 0.5 0.5 0.5 

R4=[

1 

0.5 0.5 1 0.5 0 0.5 I 
I 	 (3.2) 

0.5 0.5 0.5 1 0.5 0 I 

0.5 0.5 0.5 0 1 0.5 
0.5 0.5 0 0.5 0.5 1 	j 

and column 4 plus column 5 equals column 3 plus column 6. For sib-ships of size 5 or 

greater at least 2 sibs must share 2 alleles IBD and the ordering of the sibs can be set so 

that columns 3 and 4 of the IBD matrix are the same (as above). 

Whilst it is not true that arbitrary pedigrees will give singular IBD matrices given fully 

informative markers (the 2 sib nuclear family case is a simple counter-example) it seems 

likely, given the result for 3+ sib nuclear families, that many extended pedigrees will have 

singular IBD matrices. In practice, extended families tend not to be fully informative at 

any marker because the founders are usually untyped (deceased). 

In the simulations a large number (20) of alleles were generated, resulting in the 

marker information being close to perfect. This meant that the expected number of singu-

lar IBD matrices would be -90% in the 4 sib nuclear family case and -45% for the 2 sib 

nuclear family case. 
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Chapter 4 

Longitudinal Variance 
Components Analysis of the 

Framingham Data 

4.1 Introduction 

This chapter presents the results of analyses performed on the Framingham Heart Study 

(FHS) data set [142, 76]. This data set was made available as part of Genetic Analysis 

Workshop 13 (GAW13, [51). The FHS was established in 1948, with the aim of increas-

ing understanding of the causes of cardiovascular disease (CVD). The FHS has helped 

establish the relationship between CVD and traits such as blood pressure, obesity and 

blood cholesterol [115, 117]. These risk factor traits are now a major focus of preventative 

strategies for the reduction of CVD levels [1161. Traits such as obesity and cholesterol 

concentration are now known to have a substantial genetic component [144, 1251. 

The FHS began by recruiting 5209 individuals from the town of Framingham, Mas-

sachusetts, U.S.A., and then followed their progress at regular intervals. Individuals were 

measured for a multitude of traits ranging from blood pressure and cholesterol levels to 

lifestyle factors such as smoking and drinking rates. A second cohort of individuals was 

recruited in 1971. Whilst the study was designed as an epidemiological study, mainly 

interested in the effects of environmental factors upon disease prevalence, many of the in-

dividuals were related to each other and in the late 1980s many individuals were grouped 

into family sets. In the mid 1990s 330 families were typed for markers across the genome. 

In this chapter a variety of methods are used to interrogate the FHS data. Both univariate 

and multivariate variance component techniques are used, with particular emphasis on 

how the genetic factors affecting a number of CVD risk factors change over the life of an 
individual. 
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4.2 Data 

4692 individuals were available as part of the GAW13 data set. The data were ascertained 

in two cohorts. The first had up to 21 trait measures for the 40 years following 1948. The 

second cohort had up to 5 trait measures for the 20 years following 1971. All individuals 

were measured at examination sessions held in 1948, 1950,... 1988 (cohort 1); 1971, 1979, 

1983, 1987, 1991 (cohort 2) but were different ages upon entering the study. 1702 indi-

viduals had genotype data. The vast majority of individuals in the study had all their 

measures when they were age 20 or older; measures at younger ages were not analysed. 

2885 individuals had phenotype data. In total, 26106 phenotypic records were used in the 

full multivariate analysis. The traits considered were Body Mass Index (BMI, calculated 

as weight in kilo-grams divided by height in metres squared), height (measured in inches), 

fasting high density lipoprotein cholesterol (HDLC, mg/dl) and Total Cholesterol (mg/dl). 

Other traits available for inclusion as covariates were cigarette consumption, alcohol con-

sumption, sex, hypertension treatment (yes/no) and cohort number. 

Manipulation of Data for analysis The data were reorganised to associate a record 

with an age rather than an examination number. Ages ranged from 20 to 95. 

For the repeatability and cross sectional univariate analyses the data were split into 6 

age bands; the bandings were trait at ages 20 to 30 (age nearest 30 used), trait at ages 30 

to 40 ... 70 to 80. The number of individuals with at least one record in the relevant age 

band are shown below. When an individual had 2 or more records in a given decade, only 

the latter of these measures was included. 

age 20-30 30-40 40-50 50-60 60-70 1  1410 

70-80 

number of individuals 783 1817 2263 1964 1 	879 

In addition, one single larger band was considered. This band utilised a single measure 

on an individual between the ages of 40 and 60 (age nearest 60 used) and is denoted the 

'40-60' band. This band facilitated a single univariate analyses of most of the individuals 

(up to 2560). 
The longitudinal analyses used all of the data simultaneously (i.e. 76 'bands' for ages 

20 to 95). Summary measures for the four traits are given in the table below. 

Trait n n ignoring repeated measures }_mean  standard deviation 

height 14929 2358 65.3 2.9 

BMI 14910 2357 26.4 4.5 

total cholesterol 16130 2219 218.3 42.9 

HDLC 8593 1629 49.6 14.3 
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4.3 Methods 

4.3.1 Univariate analyses 

For BMI and height, sex, cohort, cigarette consumption and alcohol consumption were 

screened for use as a covariates. For HDLC and Total Cholesterol, BMI and an indicator 

variable for hypertension treatment were screened in addition to the covariates used for 

BML Since BMIad a skewed distribution, logBMI was investigated alongside BMI. - - 

Polygenic 

The traits were examined for variation across time using Residual Maximum Likelihood 

(REML) (ASREML program, [801) to calculate polygenic heritabilities in the six age bands. 

QTL 

Univariate variance components (VC) analyses (Section 2.1) were done using SOLAR [61 

and confirmed using ASREML. Multipoint IBDs were calculated every 1cM using SOLAR. 

The additional modifications of the IBD matrices to allow them to be used in ASREML 

were as described in Section 3.2.1; all of the IBD matrix diagonals had 0.001 added to 

make them suitable for inversion. Random effects were fitted for polygenic, QTL, family 
environment (household) and environmental noise terms. 

4.3.2 Multivariate analyses 

Repeatability Model 

Repeatability analysis (Section 2.2. 1) was performed on the age band data using ASREML. 

The model included fixed effects described above as well as a linear polynomial of age. 

Random effects for additive genetic, permanent environment, temporary environment and 
family (or household) were fitted. 

For the repeatability analysis to be meaningful the trait measurements all need to be 

measures of what is genetically the same character over time (genetic correlation between 

trait measures equal to one). Furthermore, the variances of the measures should be equal 

with the environmental components remaining the same over multiple measures. In cases 

where the composition of a trait is likely to change over time it is desirable to explicitly 

model the relationship between age and the relevant effects. This was done by fitting a 
random regression model. 

Longitudinal Analysis 

Polygenic A random regression based covariance function model (Section 2.2.2) was 

fitted to the full (up to 26106 records) data set for each trait. This allowed estimation of 

the coefficient matrices associated with the covariance functions for additive genetic and 
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permanent environmental random effects. The order of polynomial used in the RR was 

one; this generated 2 x 2 matrices of coefficients. The coefficient matrices for the genetic 

and permanent environment terms are denoted by matrices A and P, respectively. The 

estimated matrices were used to calculate the covariance matrices for the full set of 76 

ages (ages 20-95) using equation 2.19. This gives the (co)variance decomposition for the 

76 x 76 matrix, T, of phenotypic measures as 

T = XAXT + XPXT  + el 	 (4.1) - 

where XT = 	
J 

 1 
	1 	... 	1 	

e is the (temporary environment) error van- 
\ 	e 	age2  ... age76  

ance, age,, is the n th  mean corrected age and I is the identity matrix. Fixed effects were 

included as described for the repeatability model and a random family effect was screened 

for significance. This family effect was assumed to be constant across measures. 

Note that although a linear polynomial of age is fitted to the data, the graph of vari-

ances against age are quadratic; this is because, for the polygenic effect (with coefficient 

matrix terms all,  a21, a12, a22) at age x, the variance contribution is 

all  +2x[x—]xa12+[x—] 2 xa22. 

An analogous term applies in the case of the permanent environmental effect. 

Estimates of the phenotypic and component variances (genetic, permanent environ-

ment, error) at any age are given by the appropriate diagonals of T, XAXT, XPXT and 

el respectively. Estimates of heritability were obtained from the relevant variances. In 

cases where a family effect was included an additional term, fvar XXT , where fvar is 
the variance term associated with the family effect, was added to equation 4.1. The off-

diagonals of the n x n matrices are the covariances between the ages. These covariances 

were standardised to give correlations between the different ages. 

The variance of the coefficient matrix entries can be estimated by calculating the in-

formation matrix associated with the fitted RR. To ease the computational burden the 

information matrix was replaced by an approximation, the average information matrix 

(see section 2.1). ASREML calculates the average information matrix and hence allows 

estimation of the variances of the covariance function coefficient matrix entries and of the 

variances of the functions of these values. Of particular interest here is the function 

[A] 11  + [A] 12  (age(i) + age(j)) + [A]22  (age(i)age(j)) 

which is the polygenic covariance between ages i and j (the i, jt' entry of XAXT).  This 

procedure was used to obtain standard errors on the estimates of the genetic correlations 

between ages 30 and 50, 50 and 70 and 30 and 70. Approximate 95% confidence inter-

vals were obtained by calculating values within 2 standard errors of the correlation point 

estimates. 
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QTL The above model was extended to include an additional term for an age dependent 

QTL effect. The CF coefficient matrix was estimated based on marker-specific IBD ma-

trices. The IBD matrices were calculated as described in the univariate QTL analyses 

(section 4.3.1). 

4.4 Results 

4.4.1 Univariate analyses 

Polygenic 

The polygenic heritabilities and variance components for Total Cholesterol and HDLC 

from the ASREML polygenic analyses are superimposed on the multivariate graphs (fig-

ures 4.1, 4.2, 4.3 and 4.4). The results for BMI and height are given in table 4.1. All of 

these results include a random effect for family environment (although in some cases it 

was zero). Without the family environment term the height h2  values were higher (greater 

than 0.80 for all age bands) than shown in table 4.1. 

age BMI height 

30 0.495 0.684 
40 0.405 0.487 
50 0.338 0.522 
60 0.307 0.526 
70 0.271 0.520 

ö 0.359 0.535 

Table 4.1: BMI and height univariate polygenic heritabilities 

QTL 

A summary of the highest univariate LOD scores and estimates of the proportion of vari-

ation explained by the QTL are given in table 4.2. The significance of the LOD scores 

should be down-weighted as they are the highest values obtained from tests on four dif-

ferent traits. As explained in the discussion of chapter 2, the estimates of the proportion 

of variation explained by the QTL are likely to be over estimates. This over-estimation is 

particularly obvious for the estimate of the proportion of variance explained by the QTL 

for age 70-80 HDLC on chromosome 12 where the estimate exceeds the estimate of the 

proportion of variance explained under the no QTL model (polygenic only model explained 

73% of the variation in age 70-80 HDLC). This trait also demonstrated the limitations 

of performing univariate tests. The LOD score and estimated proportion of variation ex-

plained by the putative QTL for the HDLC trait at the 119cM position was 0 when the 

trait measure for ages 60 -70 were used. The univariate tests do not take into account the 

fact that it is highly unlikely for there to be such a substantial change in the genetic effect 
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Table 4.2: Univariate QTL results 

chromosome Position (cM) Trait Age band LOD % Variation explained by QTL 
16 95 BMI 20-30 3.12 49 
5 183 height 60-70 2.61 49 
10 23 HDLC 70-80 2.50 44 
12 119 HDLC 20-30 2.46 81 
14 138 T.Chol 5060 -2.57 38 
19 101 T.Chol 50-60 3.11 38 
20 24 T.Chol 40-60 3.03 34 

Table 4.3: Repeatability Components of Variance 

trait h2 7 - - Repeatability 
height 0.498 0.171 0.254 0.924 
BMI 0.387 0.397 0.000 0.784 

Total Cholesterol 0.411 0.159 0.006 0.576 
HDLC 1  0.379 1  0.188 1  0.046 1  0.613 

over such a short period of time. Multivariate tests which incorporate age into the model 

(such as the RRs fitted) are more appropriate as these do not allow such large disparities 
between proximal ages. 

4.4.2 Multivariate analyses 

Repeatability Model 

Table 4.3 gives details of the various components of variance for the four traits. 

The repeatability analysis assumes that the genetic correlation across the repeated 

measures is 1. If this is true, the repeatability gives an upper bound to the total genetic 

component of variance. Estimates of the genetic correlations can be obtained from the 
following longitudinal analyses. logBMI (not shown) is similar to BMI. 

Longitudinal Analysis 

Polygenic The longitudinal analyses results for Total Cholesterol and HDLC are dis-

played in figures 4.1, 4.2, 4.3 and 4.4. The results are displayed in two ways. For each 

trait the variances are shown alongside the variances from the univariate polygenic anal-

yses. Also shown are the heritabilities with the univariate results again superimposed on 
the same graphs. 

The correspondence between the univariate and multivariate results is good, partic-

ularly in the middle age range (40 to 60). The curves are significantly less accurate for 
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Figure 4.1: 

Total Cholesterol: variances 
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Figure 4.2: 

Total Cholesterol: Multivariate (MV) and urrivariate (UV) heritabililies 
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Figure 4.3: 

HDLC: variances 

300 

250 

200 

Cd 

150 

100 

50 

n 

------------ 
x  

20 	 30 	 40 	 50 	 60 	 70 	 80 	 90 

age 

Figure 4.4: 

I1DLC Multivariate (MV) and univariate (UV) heritabibties 

MV_heritahtiity 

0.7 
	 "UV_heritability 

0.65 

06 

c. 0.55 

a 
0.5 

0.45 

0.4 
20 	 30 	 40 	 50 	 60 	 70 	 80 	 90 

age 

78 



Table 4.4: Phenotypic Correlations 

Trait Phenotypic correlations 
age 30-70 age 30-50 age 50-70 

height 0.79 0.90 0.89 
BMI 0.42 0.70 0.84 

Total Chol. 0.37 0.57 0.61 
HDLC 0.41 0.56 0.64 

Table 4.5: Genotypic Correlations 

Trait Genotypic correlations 
age 30-70 age 30-50 age 50-70 

height 0.83 (0.69,0.98) 0.96 (0.81,1.00) 0.95 (0.79,1.00) 
BMI 0.42 (0.28,0.57) 0.75 (0.59,0.91) 0.91 (0.74,1.00) 

Total Chol. 0.60 (0.44,0.76) 0.90 (0.74,1.00) 0.88 (0.69,1.00) 
HDLC 0.80 (0.62,0.98) 0.94 (0.74,1.00) 0.96 (0.77,1.00) 

extreme ages since most individuals only have records for ages 35 to 65. Whilst the low 

order polynomials do not allow the multivariate analyses to closely approximate the uni-

variate heritabilities for traits such as height and HDLC, the true relationship between 

these traits is likely to be simple, with the univariate results exhibiting stochastic varia-

tion about a true smooth curve. Pletcher and Geyer [173] discuss why biological processes 

are expected to yield reasonably smooth curves. 

Table 4.4 gives the phenotypic correlations between the traits at different ages. Table 

4.5 gives the genotypic correlations, estimated from the model fitting a linear polynomial 

based covariance function. Approximate 95% confidence intervals are given in brackets 

after each point estimate. With the exception of BMI, all traits exhibit high genetic corre-
lations across large time periods. 

QTL A full genome scan was not performed on the data. Instead a few of the QTL peaks 

indicated in the univariate analyses were investigated further. 

Firstly, the chromosome 16 peak indicated in the univariate analyses for age 20-30 BMI 

was investigated. Figure 4.5 shows the estimated QTL and polygenic heritability over a 

range of ages. This QTL is important at lower ages but becomes less so at later ages. The 

correlation between the QTL heritability at age 30 and at age 50 is high (0.86) but falls 

away more rapidly when one considers ages 50 and 70 (0.48) and ages 30 and 70 (-0.04). 

Since the QTL effect is small after the age of 50 it is unsurprising that the correlation is 
low for later ages. 

Secondly, the peak from the 40-60 univariate data for Total Cholesterol on chromosome 

20 was examined. Figure 4.6 shows the change in the QTL heritability as one moves along 
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Figure 4.5: 

BMI: Chromosome 16 94cM, OTI and polygenic hentabilities 
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chromosome 20. The correlation between the QTL effect at different ages was rather 

higher than for the chromosome 16 QTL, with the correlation between ages 30 and 70 at 

24cM being 0.45. This QTL accounted for a sizable proportion of the variance across the 

range of ages. 

Thirdly, the peak on chromosome 12 (HDLC) was considered. This QTL explained 5% 

of the total variation at age 30, with the effect rising to 20% at age 80. The correlation 

between the QTL effect at ages when the effect was largest was high (0.94 between ages 50 

and 70), with it decreasing for ages for which there was less of a QTL effect (0.60 between 

ages 30 and 50). 

The other four QTL peaks listed in the univariate results section were considered. 

However, convergence problems prevented further analyses of these QTL. Similar prob-

lems arose when second order polynomials were fitted to the data. 

4.5 Discussion 

The basic random regression model for polygenic genetic effects, described in [156], has 

been utilised to allow an analysis of a large number of complex human pedigrees. The 

covariance function framework has been extended (Chapter 2) to allow the inclusion of 

marker specific IBD information. This allowed QTL mapping in a large scale genome scan 

of longitudinal data. The longitudinal method presented efficiently deals with the longi-

tudinal structure of the data (by fitting a polynomial of age), allowing all of the available 

data to be used in a single, powerful analysis. Given the irregular spacing of the phe-

notypic measures over time, the fitting of a (covariance) function of age was crucial in 

allowing multivariate techniques to be utilised. 



Figure 4.6: 

Figure 6 Total Cholesterol: OTL heritabilities between positions 16 and 32 on Chromosome 20 
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The results described give a good indication of how the components of variance of these 

important traits change over time. The multivariate QTL analyses indicated that one of 

the QTL detected acted across the range of possible ages whilst the other two acted more 

strongly at the extremes of the age ranges. The agreement between the univariate and 

multivariate analyses performed was good and some of the larger QTL effects from the 

univariate analyses were more fully characterised in the longitudinal analyses. Although 

the repeatability analysis was easier to perform than the longitudinal analysis, the as-

sumptions inherent in such an analysis are likely violated for most of the traits here. In 

particular, BMI and total cholesterol were shown to have genetic correlations across ages 

significantly below one, making the repeatability model an inappropriate choice. Mod-

elling the age dependence with a function of age ensured that a sensible pattern of QTL 

effect changes was prescribed; by contrast, the univariate results implausibly suggested 

that the QTL effect for HDLC on chromosome 12 underwent dramatic changes in effect as 
age increased. 

For some of the known CVD risk factors there are clear secular trends in trait lev-

els. For BMI, the rise in individuals classified as clinically obese (BMI> 30) doubled in 

the United Kingdom between 1980 and 1991 with similar increases in the U.S.A. [177]. 

Whilst BMI is known to have a strong genetic component, with genetic factors explaining 

20 to 90% of the observed variation [144], environmental factors must be appropriately 
accounted for if the genetic component of BMI is to be properly characterised. In the anal-

yses described here, cohort (either 1 - 1948 or 2 - 1971) was fitted as a fixed effect in an 

attempt to remove the effects of secular trends. Given the rapid change in environment 

over secular time, a covariate which changes more than just twice in the data set (e.g. a 

birth data covanate with levels 1900 to 1970 instead of just 1 and 2 for the two cohorts) 
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may remove more environmental noise. Instead of just fitting year of birth it may be pos-

sible to identify some of the factors causing the secular trend. One of the the primary 

determinants of increased obesity levels over (secular) time appears to be the rise in phys-

ical inactivity [177]. There were no measures suitable for assessment of this in the GAW13 

data; measures such as hours of television watched' mirror obesity levels in recent years 

[177, 1801 and would be suitable covariates. Adult height is highly heritable (h2  = 0.8) 
and is known to have been subject to secular trends [207]. Both total and HDL cholesterol -- --

have shown small decreases with secular time in the late 201h  century [175, 1701. HOW- 
ever, the trends for height, total and HDL cholesterol are likely to have been less dramatic 

(in 201hz  century U.S.A. at least) than those for BMI and are probably fully accounted for 
by the fitted cohort fixed effect. 

The RR based analysis method provided estimates of the genetic correlations between 

different ages through the estimation of genetic covariance functions. These provided 

plausible estimates of genetic correlation for all of the traits. The estimate for the genetic 

correlation between ages 30 and 70 for height is less than 1 (0.83). Although this might be 

expected to be closer to 1 the confidence interval on the point estimate is close to including 

1 (0.69,0.98). Furthermore, the fitted covariance function is based upon phenotypic data 

predominantly measured in the middle age range (ages 40 to 60). Extrapolation beyond 

this range will lead to less accurate estimates of the true correlation. 

Fitting a higher order polynomial for the relationship between age and the genetic and 

permanent environmental effects may have resulted in a closer fit between the univariate 

and multivariate results but there will likely be practical problems fitting such models. As 

alternative to polynomial based random regression approaches, character process models 

[108] may be useful for longitudinal data analyses, particularly when the correlation be-

tween trait measures at distant ages is low. However, Jaffrezic and Pletcher [108] indicate 

that when the correlations between trait measures over time are high (as is the case for 
most of the traits here) polynomial based methods are effective. 

It should be borne in mind that for some traits there may be correlations between the 

trait value and survival. This may lead to biased QTL effects for QTL acting at later 

ages. It seems unlikely however, that any of the particular QTL considered here accounts 

for more than a small proportion of the variation in trait value (although the estimates 

of such variances may be over-estimates, see [21] and section 2.3). Such QTL are hence 

unlikely to be strongly purged from the population. Furthermore, the maximum likeli-

hood based procedure used here can account for selection (p793, [1391) when the founder 

individuals are unrelated, unselected and non-inbred and phenotypes are available for all 

non-founders. Although this property of ML based estimation may not necessary apply 

here alternative methods of estimation (such as least squares) do not account for selection 
either. 

The longitudinal multivariate QTL analysis using RR presented here enabled the char-

acterisation of QTL effects over time using all the available data. The RR method was seen 

to be more appropriate for these traits than simple repeatability or univariate methods. 



Time constraints prevented a full longitudinal genome scan for QTL. This analysis is now 

computationally feasible, however, and the results shown here indicate that this could be 

a very useful/informative approach, possible for other large data sets. 
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Chapter 5 

A Genome Scan and Follow Up 
Study Identify a Bipolar 

Disorder Susceptibility Locus 
on Chromosome 1q42 

5.1 Introduction 

Bipolar disorder (BPAD) and schizophrenia (SCZ) are severe psychiatric illnesses, with 

each affecting approximately 1% of most human populations. There is strong evidence for 

a genetic etiology in such disorders with high heritabilities reported in twin and adoption 

studies. However, the task of identifying genomic regions conferring susceptibility has 

yielded inconsistent results, with a large number of candidate regions identified [187]. 

In recent years, several studies have identified two regions of chromosome lq (1q21 

and 1q42) as important in the etiology of schizophrenia. At 1q21, a study of Canadian 

families produced a logarithm of odds (LOD) score of 6.5 [341, a study analysing British 

and Icelandic families generated a LOD of 3.2 [92] and a family based association study 

considering Spanish origin families reported a p of 0.003 [1951. A meta-analysis of most 

of the recent schizophrenia genome scans reported the 1q21 region as being amongst the 

most likely to harbour a schizophrenia susceptibility locus ([1371, but see also below for 

other meta-analysis results). However, this result arose at least in part as a consequence 

of the inclusion of the Brzustowicz et al. [34] and Gurling et al. [92] data in the meta-

analysis. Interest in 1q42 began when the region was implicated by the apparent effects of 

a chromosomal abnormality on major psychiatric disease in a large Scottish family [2161. 

The family segregated a balanced t(1;11)(q42;q14.3) translocation, with the presence of 

the translocation appearing to be linked with disease status. A linkage analysis consider- 
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ing the translocation as a marker generated a LOD of 3.6 [26] when individuals with SCZ 

were considered affected, a LOD of 4.5 when individuals with recurrent major depression 

or BPAD were considered affected and a LOD of 7.1 when individuals with SCZ, BPAD 

and recurrent major depression were treated as affected. The translocation was inferred 

to have directly disrupted 2 genes on chromosomes 1 and 11: these have been named 

DISC1 (OMIM 605210) and DISC2 (OMIM 606271), respectively [158]. Whilst this result 

shows a striking relationship between the presence of the translocation and psychiatric - - - 

disease, it was not immediately clear if this result was of relevance to other families in 

the general population. In the last five years however, a number of studies have reported 

independent evidence for the role of 1q42 in psychiatric disease susceptibility. Two studies 

in Finnish families affected by schizophrenia generated LODs of 3.82 and 3.21 [104, 621 

for markers close to the translocation break-point. A recent study of Taiwanese families 

reported nominally significant evidence for linkage to 1q42 for schizophrenia [1071. Since 

the translocation family also showed linkage between the translocation and recurrent ma-

jor depression and BPAD, the results of BPAD linkage studies are also of interest. A study 

of 22 families affected by bipolar disorder reported a LOD of 2.3 to chromosome 1q32, with 

allele sharing in affected individuals reported to extend across the 30cM region span-

ning 1q25-q42 [54].  Interestingly, 15 of these 22 families included at least one individual 

affected by schizophrenia or schizoaffective disorder. A genome scan of 65 North Ameri-

can bipolar families resulted in a LOD of 1.4 for linkage to a marker on chromosome 1q41 

[150]. Other positive reports of linkage between markers on chromosome 1q42 and bipolar 

disorder include a recent study of British and Icelandic families (maximum HLOD 2.0 at 

D1S251 [461), a study of North American families (maximum HLOD 1.98 at D1S103 [781) 

and a study of Old Order Amish families (p<0.0001 under one non-parametric weighting 

function at D 1S103 [128]).  Together, these results lend support to the hypothesis that 

bipolar disorder, recurrent depression and schizophrenia may share causal elements de-

spite clear diagnostic differences ([247, 23, 261, see also chapter 6). 

The population wide significance of these loci on lq has been the subject of recent lively 

debate [134, 143, 19, 133].  The results reported in a meta-analysis of affected sibling pairs 

(ASP) [1341 are in striking contrast to the strong linkages reported in analyses of extended 

family samples [26, 34, 921. It has been previously suggested (e.g., [1431, chapter 6) that, 

in the presence of locus heterogeneity, the power of data sets comprising small family 

structures such as sib pairs will be poor. Large extended families (which are likely to 

be more genetically homogeneous) have proved more useful in identifying susceptibility 

loci on lq thus far. For this reason the families ascertained for this study were primarily 

extended (average family size 18, average number of affected individuals per family 7). 

An initial genome scan for susceptibility genes was performed on 13 families affected 

by schizophrenia or bipolar disorder. These families were part of the European Science 

Foundation (ESF) project on the molecular neurobiology of mental illness (Full results un-

published). Secondary analyses were then performed on an extended superset of the ESF 

families and on 9 additional families on chromosome 1. All families were Scottish, car- 
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ned no known chromosomal abnormalities and were unrelated to the previously described 

translocation family [26]. Robust, multipoint variance components techniques were used 

to ensure maximal use of the available genotypic information. Additional parametric link-

age analyses were also performed. 

5.2 Materials and Methods 

5.2.1 Study Sample 

Sample collection 13 Scottish families (6 BPAD, 7 SCZ) were originally recruited to 

take part in the ESF project. 132 individuals (64 BPAD, 68 SCZ) were typed for 372 

microsatellite markers across the genome to identify regions contributing to psychiatric 

illness. Family members were interviewed by experienced psychiatrists (Douglas Black-

wood and Walter Muir, University of Edinburgh) using the schedule for affective disorders 

and schizophrenia (SADS-L) [951. Diagnoses, based on interviews, case note reviews and 

information from carers and relatives, were based on DSM IV criteria [7]. Families were 

categorised as either BPAD or SCZ. In the ESF project, families were included where rela-

tives of schizophrenic probands were diagnosed as schizophrenia, schizoaffective disorder 

or recurrent depressive disorder. Bipolar families included affected individuals with bipo-

lar I, bipolar II, schizoaffective manic or recurrent depressive disorder. Families in which 

both schizophrenia and bipolar disorder were diagnosed in relatives were not included in 
the ESF study. 

Subsequent to the ESF study additional families were recruited and some families ex-

tended. Since the family in which the t( 1; 11) translocation segregated with major mental 

illness included relatives with schizophrenia, recurrent major depression and a case of 

bipolar disorder, the secondary analysis (of the extended sample) included those families 

classified as "mixed". These "mixed" families had both schizophrenia and bipolar disor-

der diagnosed in relatives. In all cases the vast majority of individuals in each family 

were either schizophrenic or bipolar. The families are described in the results as "bipolar" 

or "schizophrenic" depending upon the predominant diagnosis. In the case of the largest 

family, a small nuclear sub-branch included a number of schizophrenic sib pairs but the 

remainder of the family included mainly affective disorder individuals. In this case the 

small schizophrenia sub-branch was considered a separate schizophrenia family with the 

rest of the large family considered a bipolar family. 

Including the ESF families, 22 families (10 bipolar, 12 schizophrenia) comprising 398 

(229 BPAD, 169 SCZ) individuals were considered for analysis. Whilst some families were 

nuclear (5 families) most were extended (17 families): the structures of two of the bipolar 

families are shown in figures 5.1 and 5.2. Individuals with bipolar or unipolar disorder are 

shaded in black, individuals with minor psychiatric illness (e.g. minor depression, anxi-

ety, alcoholism) or unknown phenotype are shaded in grey and unaffected individuals are 

shown with open symbols. Tables 5.1 and 5.2 indicate the number of individuals affected 



Figure 5.1: The largest bipolar family in the chromosome 1 analysis 

Figure 5.2: One of the densely affected bipolar families 
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disease definition 
[family number narrow] broad 

1 5 5 
2 6 6 
6 5 5 
9 4 4 
10 4 6 
11 4 6 
20 5 6 
19 4 8 
29 3 3 
33 4 5 
36 5 8 

500 4 4 
total 53 66 

Table 5.1: Schizophrenia families summary: number of affected individuals 

disease definition 
family number narrow broad 

4 8 9 
5 6 12 

12 5 7 
15 6 7 
18 3 6 
24 8 11 
26 5 7 
28 4 7 
32 5 7 
54 5 5 

total 55 78 

Table 5.2: Bipolar families summary: number of affected individuals 

under the narrow and broad definitions (see below for these definitions) of affection for the 

schizophrenia and the bipolar families. 

Genotyping methods The ESF families were typed at the Human Genome Research 

Centre Genethon. The 372 microsatellite markers were taken from the Genethon refer-

ence map [56] and were equally spaced across the genome. Mendelian inconsistencies 

were resolved before further analysis. 

The additional families were typed for 46 markers across chromosome 1. Many of these 

were single nucleotide polymorphism markers (SNP), typed in house (P. Thompson, Uni-

versity of Edinburgh). Additional microsatellite markers were also typed in some families. 

The markers in the 1q42 region are displayed in figure 5.3. 

The data were scanned to remove unlikely double recombinants (in addition to Mendelian 
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transmission errors, criteria for removal p<0.05 in MERLIN), using the program MERLIN 

[1]. Since several of the families were too large for exact analysis using MERLIN, some 

of the pedigrees had to be split up to perform error checking. The families were analysed 

whole in the single point parametric and multipoint VC linkage analyses however. Unlike 

the genome scan data, the additional families were not typed for all markers. Since we 

were particularly interested in the area around 1q42 all families were typed for marker 

D1S103, with the vast majority also being typed for D1S459 (266 and 221 individuals after 

data cleaning, respectively). Families which did not show evidence for linkage were not 

typed for further markers on the chromosome. Most other markers on chromosome 1 were 

typed in around 100 individuals. The uneven distribution of marker information is dealt 

with effectively by the multipoint procedures described below. 

Statistical Methods 

The same methods were applied to the BPAD sample and the SCZ sample and the meth-

ods described below apply in both cases. Two-point (i.e. one molecular marker together 

with the inferred disease genotype) parametric linkage analysis using FASTLINK [44] 

was performed across the genome. Two models were fitted to the data; one 'dominant' 

(labelled model b) and one 'recessive' (labelled model r). Further, under the dominant 

model, a narrow definition phenotype (labelled model a) was used in addition to the broad 

definition phenotype. For the schizophrenia families, the narrow definition considered 

schizophrenic and schizoaffective individuals as affected: the broad definition also con-

sidered recurrent depression individuals as affected. For the bipolar families, individuals 

with bipolar I, bipolar II and schizoaffective (manic) disorder were regarded as affected: 

the broad definition also considered recurrent depression individuals as affected. For the 

extended sample, families with both bipolar and schizophrenia were included (mixed fam-

ilies). In the mixed families the narrow definition included the diagnoses schizophrenia, 

schizoaffective, bipolar I and bipolar II. The broad definition added in recurrent depres-

sion. Recurrent depression individuals were regarded as disease status unknown for all 

narrow definition analyses. 

In the case of simple Mendelian dominant disorder the penetrance parameters in the 

parametric linkage analysis can be simply specified as being fo = 0 for homozygous wild 

type disease genotype carriers and fi = 12 = 1 for heterozygous or homozygous disease al-

lele disease genotype carriers, where f denotes the penetrance parameter for an individ-

ual carrying x disease alleles at the putative disease locus. The (conditional) probability 

of having the disease phenotype given the disease genotype would be ía = 0, Ii = 1, 12 = 1 

for affected individuals and 1 - fo = 1, 1 - Ii = 0, 1 - 12 = 0 for unaffected individu-

als. These probabilities are factored into the likelihood for each family in the data. To 

model the non-Mendelian inheritance pattern in the psychiatric diseases of interest here, 

a number of different sets of penetrance parameters (sometimes called liability classes) 

are specified. The penetrance parameters of the unaffected individuals are specified to 

take into account how long they have lived without being affected by disease. Since un- 



model b model a model r 
age fo 	fi 12 fo 	I 	fi I 	12 fo I 	fi f2 
<20 0.0005 0.19 0.19 0.0001 0.15 0.15 0.0003 0.0003 0.15 
<30 0.0025 0.77 0.77 0.0005 0.62 0.62 0.0012 0.0012 0.62 
>30 0.0025 0.88 0.88 0.0005 0.7 0.7 0.0012 0.0012 0.7 

Table 5.3: Penetrances: unaffected individuals 

model b 	11 model a 	11 model r 
definition fo 	I 	fi 	I 	12 	11  fo 	I 	11 	I 	12 	11  fo 	I 	fi 	f2 
narrow 0.0025 0.88 0.88 0.0005 0.7 0.7 0.0012 0.0012 0.7 
broad 0.0025 0.88 0.88 0.5 0.5 0.5 0.0012 0.0012 0.7 

Table 5.4: Penetrances: affected individuals 

affected older persons represent more reliable indicators of affection status three liability 

classes are specified for persons under the age of 20, under the age of 30 and over the 

age of 30. Two liability classes were specified for affected individuals: this allowed one 

analysis with both narrow and broad definition individuals regarded as affected and one 

analysis with narrow definition individuals regarded as affected but broad definition in-

dividuals regarded as having unknown disease status. The penetrance parameters are 

given in tables 5.3 and 5.4. For the affected individuals fo,  fl,  12  are factored into the 

likelihood whilst for the unaffecteds 1 - fo, 1 - fl
, 1 - 12 are used. The penetrance pa-

rameters are referred to as probabilities here but strictly speaking they need not lie in 

(0, 1); inference is based on ratios of the constructed likelihoods and multiplication of the 

penetrances values by an arbitrary constant will not change the likelihood ratio. 

As explained in chapter 1 the specified penetrance parameters are necessarily just 

educated guesses at appropriate values; single marker parametric analysis is robust to 

mis-specification of these parameters provided at least a dominant and a recessive disease 

model are used. Whilst multipoint parametric linkage analysis has greater power to detect 

loci when the putative locus is not near a fully informative marker, it is not robust to mis-

specification of the parameters in the model (Chapter 1, [2011). Explicit modelling of such 

mis-specification errors within the multipoint parametric framework is possible [85] but 

not attempted here. A convenient and robust alternative to multipoint parametric linkage 

analysis is multipoint variance component linkage analysis. 

For the extended samples (229 individuals for the BPAI) analysis, 169 for the SCZ 

analysis) two-point parametric linkage analysis was performed for the marker typed in all 

families, D1S103. Multipoint variance component (VC) linkage analysis was performed 

with the chromosome 1 markers. A random polygenic effect and a random effect for family 

were fitted as a basic model. Variance components attributable to quantitative trait loci 

(QTL) effects were calculated by utilising multipoint identity-by-descent (IBD) coefficients 

estimated from the marker data. The significance of including a component attributable to 



one or more such effects is tested via likelihood ratio tests. Standard VC analysis assumes 

that the phenotypic data are multivariate normal. Since the data are binary, a threshold 

model (e.g., [1391) was used within the program. The threshold model maps the binary 

observed phenotypes to an underlying normal distribution, via a probit transformation. 

Analysing binary data without the threshold model is known to affect the robustness of 

the test statistic with samples differing in the proportions of affected individuals yielding 

different type I errors [3]. The variance components technique was attempted for the 

ESF data set but, since the sample size was small, the variance components could not 

be reliably estimated. With the additional families the VC technique had greater utility, 

giving estimates of disease heritability in addition to measures of QTL significance (LOD 

scores). To minimise multiple testing only the broad definition phenotype was used for the 

chromosome 1 analysis. SOLAR [6] was used for the likelihood maximisations and IBD 

computation. 

Since some of the families were preferentially selected for typing at additional markers 

on chromosome lq (three of the families which showed no linkage signal to D1S103 were 

not typed for further markers), the single point LOD score calculated at markers other 

than D1S103 may be biased up-wards. However, if the markers are analysed within a 

multipoint framework the region around D1S103 should yield unbiased LOD scores. Since 

the heterozygosity of the microsatellite D1S 103 was 0.8 marker information was high for 

the majority of individuals around this region. We would expect the information content in 

all families to remain high enough for multipoint statistics to remain unbiased for at least 

10cM either side of D1S103. For this reason muitipoint LOD scores are only displayed in 

the region around 1q42. 

Although having more markers available in all families would have enabled more effi-

cient detection of genotyping errors, the small number of families (3) only typed at D1S103 

did not contribute to the linkage signal. Genotyping errors in such families would have lit-

tie impact on results since genotyping errors invariably decrease evidence for linkage (in 

families segregating the mutation of interest). The large number of markers around 1q42 

in the majority of families allowed efficient checks of genotyping errors to be performed in 

these families. 

'Non-parametric' procedures were not utilised since (1) they are no more powerful than 

VC methods [250] and (2) they can be shown to be equivalent to parametric methods given 

particular penetrance values ([87]: Goring and Terwilliger, 2000b). Goring and Terwilliger 

(2000b) detail why the distinction between the two is somewhat arbitrary and explain that 

one should not select a method simply because it is of a particular type. 

In addition to the linkage results we estimated the overall (polygenic) heritability of 

the traits on the binary (observed) scale. Robertson's equation 

h2 (1—) - binary P 
continous - 
	[P(XP)12 

1 	_2 
where p(xp ) 	e 2  and cI is the incidence 



disease chromosome I model I 	marker LOD 

bipolar lq b D1S229 1.55 
schizophrenia 3p a D3S3721 2.00 
schizophrenia Sp b D8S1989 1.71 

bipolar 8q b D8S1741 1.53 
bipolar 9q b D9S175 2.35 

schizophrenia 19q a D19S220 1.59 

Table 5.5: Maximum two-point LOD scores for ESF families - 

from Dempster and Lerner (1950) [53] was used to convert this binary scale measure to a 

continuous underlying scale heritability. To ensure there was no upward bias in this esti-

mate due to environmental effects, a random effect for familial environment (household) 

was fitted. 

5.3 Results 

5.3.1 ESF data: genome scan 

Parametric linkage LOD scores exceeding 1.5 are given in table 5.5. The highest LOD 

score achieved (chromosome 9) was not at a region previously identified as contributing 

to psychiatric disease. However, the genomic region identified on chromosome 1 is in 

close proximity to the DISC1 gene, a candidate gene for schizophrenia identified via a 

chromosomal translocation [216] and recently replicated in independent samples [62, 104, 

107]. 

5.3.2 Chromosome 1 analyses 

The above result prompted our group to type further markers around this region in the 

ESF families. Furthermore, several more families from a similar geographic location were 

also available for analysis and some of the ESF families were extended. 

Bipolar Results Analysing all bipolar families (229 individuals) together at marker 

D1S103 with the single point variance components procedure yielded a LOD score of 2.17 

(2.15 without familial environment removed with a random effect for family). The two 
point parametric LOD (broad definition, recessive model, 0= 0.1) was 2.56 at D1S103. 

The highest single family parametric LOD was 2.16 at marker D1S419. The next highest 

single family LOD, 2.00, was at D1S103 but this family was only typed at D1S103 and 

D1S459. Individual family LODs at D1S103 (9 = 0.1) are given in table 5.6. Note that the 

LOD scores shown in table 5.6 are not strongly negative in the families displaying evidence 

against linkage because the LOD is evaluated at 0 = 0.1 rather than at 9 = 0. That is to 
say, these families are not simply uninformative for linkage. At 0 = 0 the LODs are higher 
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Family I LOD 
4 -0.14 
5 1.75 
12 -0.32 
15 0.11 
18 -0.17 
24 1.21 
26 0.47 
28 -0.21 
32 0.09 
54 -0.24 

Table 5.6: Bipolar families: By family parametric LOD scores at marker D1S103 

in the familieg showing linkage but summed over all families the LOD maximum occurs 

when C = 0.1. The evidence for linkage under the narrow definition model was less than 

under the broad definition, with a maximum parametric LOD of 0.77. 

Multipoint variance component LODs are displayed in figure 5.3. The maximum LOD 

was 2.43 at position 233cM (near marker D1S419, 12cM from D1S103). The estimate of 

polygenic heritability was 0.71. Without a familial environment term this produced an 

(upwardly biased) estimate of 0.86. 

Schizophrenia Results Analysing all schizophrenia families (169 individuals) together 
at marker D1S103 with the single point variance components procedure yielded a LOD 

score of 0. The single point parametric maximum LOD (dominant model, 0 = 0.3) was 0.25 
at D1S103. Multipoint variance component LODs were less than 0.2 in the 30cM around 

D1S103. The estimate of polygenic heritability was 0.64. There was no evidence for a 

family environment term. 

5.4 Discussion 

This chapter reported the results of a genome scan for psychiatric disease susceptibility 

loci in 13 Scottish families. In the genome scan, linkage peaks with LOD scores > 1.5 

were found on chromosomes lq (BPAD), 3p (SCZ), 8p (SCZ), 8q (BPAD), 9q (BPAD) and 

19q (SCZ). The linkage peak on chromosome lq was followed up in a substantially larger 

sample (22 in total, 398 individuals) of families affected by schizophrenia (SCZ) or bipo-

lar affective disorder (BPAD). Adding 9 extended families, together with more individuals 

from the original (ESF) families, increased the evidence for linkage to bipolar disorder 

(maximum single marker parametric LOD 2.56), providing further evidence for the im-

portance of the 1q42 region as a risk factor for psychiatric disease. Multipoint variance 

components linkage gave a maximum LOD of 2.43 12cM from the previously identified 
schizophrenia susceptibility locus, DISC1 [158]. 
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Figure 5.3: Multipoint Variance Components Linkage: Bipolar Families 
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To minimise the effect of genetic heterogeneity, large extended families (average family 

size >18) were ascertained. The families collected were Scottish, carried no chromosomal 

abnormalities and were unrelated to the large family previously reported as segregating 

a balanced t(1;11) translocation with major psychiatric disease. 

When DISC 1 was first identified in a Scottish family which segregated a balanced 

translocation with major psychiatric disease [216] it was not clear how relevant this locus 

was to other families or populations. Furthermore, whilst the translocation family which 

allowed identification of DISC 1 had several schizophrenic individuals, the highest LOD 

score was achieved when a number of unipolar individuals and a bipolar individual were 

included as affected. This study provides evidence for the effects of a susceptibility locus 

(or loci) for psychiatric diseases in the 1q42 region in a set of independent Scottish families. 

Some other studies have reported evidence for linkage of 1q42 to schizophrenia, with two 

Finnish studies [104, 621 and a Taiwanese study [107] providing evidence for the relevance 

of the 1q42 region in different populations. The 1q42 region has also been implicated in 

bipolar disorder susceptibility, with a number of studies, considering a number of different 

populations reporting evidence for linkage to 1q[54, 78, 128, 150, 461. The possibility of 

distinct psychiatric disorders such as bipolar and schizophrenia sharing susceptibility loci 

has received attention in the literature [23, 62, 261 and, given the main reports of linkage 

to lq have been in schizophrenia, the results presented here add weight to this assertion. 
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There is evidence for an increase in familial risk for one disorder in the presence of the 

other (e.g., [23], see also chapter 6) and the data presented here suggest that susceptibility 

loci such as DISC1, may be acting to increase the genetic risk of both. Interestingly, there 

was negligible evidence for linkage to 1q42 in the schizophrenia families considered here. 

However, the sample analysed had limited power to detect loci of small effect and, in 

the event of there being substantial locus heterogeneity, the sample may include families 

which by chance are affected by psychiatric disease as a result of loci unlinked to 1q42. It 

is therefore possible that the failure to detect linkage to schizophrenia in these families 

was a false negative result. 

The bipolar multipoint peak was -12cM from the marker D1S103, mainly as a result of 

2 of the families showing linkage to D1S419. It should be stressed that a 95% confidence 

interval on the peak is likely to be in the tens of centimorgans and that the marker infor-

mation was only complete across all families at D1S103. The DISC1 gene (MIM 615210, 

[158]), less than 1cM from D1S103 on 1q42.1, represents the strongest candidate gene 

and it seems likely that random variation (and/or possible bias due to selective typing of 

families for markers around D1S103) has moved the linkage peak from this point. 

Some 80cM from the DISC1 region, two other groups have reported strong linkage 

to chromosome 1q21 [92],[34].  These two studies are likely to have found evidence for 

linkage to a genomic region distinct from 1q42. The 13 family sample analysed here did 

not show linkage to 1q21 and there was insufficient marker information to adequately 

assess linkage to 1q21 in the additional families. The bipolar linkage described in [54] is 

likely to be to 1q42, particularly since the linkage they detected exhibited elevated IBD 

sharing across some 30cM of lq, including the DISC1 region. The other linkages on 1q42 

described above are clearly to the DISC 1 region. 

The maximum LOD for the 10 family bipolar data set was obtained when individu-

als with bipolar I, bipolar II, schizoaffective (manic) disorder or recurrent major depres-

sion were regarded as affected (broad definition of affection). The evidence for linkage 

decreased when individuals with recurrent major depression were regarded as disease 

status unknown in the analysis (narrow definition of affection). Although the individuals 

included in the narrow model definition may give a truer reflection of the underlying biol-

ogy than the grouping including recurrent depression individuals, the number of affected 

individuals in the analysis is reduced, potentially reducing power. It is worth pointing 

out that, whilst recurrent depression individuals under study here were included in the 

broad disease definition for both bipolar and schizophrenia families, the families were as-

certained through narrow definition probands. Furthermore, all families had a least three 

affected individuals using the narrow definition. The inclusion of recurrent major depres-

sion individuals in psychiatric genetic studies is not universally agreed upon and many 

investigators perform at least two separate analyses under different disease definitions 
(e.g. [150, 199]). 

The genome scan of the ESF families generated a number of positive results alongside 

the peak on lq. Of most interest amongst these was the LOD of 1.71 on chromosome 8p. 
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This region has been implicated in a number of independent studies [218, 31, 34, 921 and 

may merit further follow up in the 9 additional families described here. None of the other 

regions indicated by the ESF genome scan overlap with any other published reports of 

strong linkage. 

In summary, a genome scan of Scottish families affected by schizophrenia or bipolar 

disorder provided evidence for linkage to chromosome lq in bipolar families. In a further 

analysis of a larger sample of bipolar families a maximum LOD of 2.56 was found. This 

was close to the previously identified psychiatric disease susceptibility locus DISC 1. This - 

finding supports the results of previous studies implicating this locus in a small but signif-

icant subset of all families affected by psychiatric disease and suggests that schizophrenia 

and bipolar disorder may share a common genetic component in this region. 
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Chapter 6 

Study Design for Psychiatric 
Genetic Linkage Analyses 

Study design in psychiatric genetics has been the subject of intense debate recently [134, 

143, 19, 133, 1551. Although genetic linkage analysis has had some success in locating 

disease susceptibility genes for diseases such as schizophrenia [218, 222, 341, considerable 

resources have been required to reach this stage. Further progress (in linkage studies) will 

depend upon appropriate study design and analysis methods. 

6.1 Background 

Attempts at positional cloning of psychiatric diseases such as schizophrenia began around 

15 years ago. Since then, two study designs have emerged, with some research groups 

favouring the collection of extended families whilst others have focused on collecting af-

fected sib pairs (ASPs). First of all some of the studies utilising extended families are 

reviewed. ASP based studies are then considered and the recent use of meta-analyses in 

schizophrenia research is discussed. This chapter is based upon a short comment [1431 

discussing results obtained on chromosome lq; background details particular to lq are 

given below. 

6.1.1 Extended families 

A number of studies have concentrated on collecting extended families affected by schizophre-

nia; the main reason for this is that small numbers of large families may be more geneti-

cally homogeneous than large numbers of small families. In particular the aim is to reduce 

locus heterogeneity. It seems highly likely [188, 137, 92, 34, 242] that schizophrenia will 

have multiple susceptibility loci so reducing locus heterogeneity will be a very important 

consideration in study design. The extended family design may prove fruitful because 

(assuming risk alleles are relatively rare) large families are likely to only segregate one 
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risk allele, reducing the effects of locus heterogeneity compared with large numbers of 

unrelated ASPs. 

Studies analysing extended families affected by schizophrenia have included a study 

of Canadian families (average family size 14, average number of affecteds 4, highest LOD 

on chromosome 1q21 [341), a study of Micronesian families (average number of affected 

individuals per family 33, highest LOD on chromosome 2p13-14 [35]) and a study of a 

very large 12 generation Swedish pedigree (highest LOD on chromosome 6q25, [138]). 

In each of these three cases genome-wide significant linkage (as per the criteria laid out 

in [1291) was reported, with the maximum LOD occurring on a different chromosome in 

each case. A subsequent study of extended families (average number of affecteds per 

family 4, [921)  supported the findings of the Brzustowicz et al. [34] paper in addition to 

highlighting other chromosomes of interest. In chapter 5 the families considered for the 

analysis of data from of chromosome 1 were mainly extended with an average family size 

greater than 18 (average number of affecteds 5). In each of the above cases, the evidence 

for linkage derives from only a small number of families (sometimes one family) and the 

chance of the sample including more than one risk allele will be reduced compared with a 

data set which samples widely from a large number of families. Other studies have had 

some success when they recruited families from population isolates such as northeastern 

Finland [167, 63, 62, 104].  In these cases the potential for locus heterogeneity is reduced 

but it is worthwhile noting that several loci were detected in both the Finnish studies and 

a number of other studies (e.g. [34, 92, 35]). This suggests that locus heterogeneity may 

exist even within these isolates and that gathering large numbers of small families from 

within an isolate might still sample multiple susceptibility loci. 

A chromosomal abnormality, segregating with major psychiatric disease in a large Scot-

tish pedigree (mainly schizophrenia, with a few individuals with affective disorders), al-

lowed identification of the susceptibility locus on chromosome 1q42, DISC1 [216, 158]. 

When all individuals with major psychiatric disease were considered affected, this pedi-

gree generated a LOD of 7.1 [26].  A sample of British and Iceland extended families 

[2061 were used to look for evidence of linkage to another chromosomal region (5q11-13) 

suggested by cytogenetic abnormalities. This study [2061 was one of the earliest linkage 

studies of schizophrenia. Only 2 markers were genotyped but these were known to be near 

a chromosomal abnormality found in two Chinese schizophrenics. A LOD of 6.5 (asymp-

totic p-value 2.3 x 10-8)  was found in the densely affected families studied. A study giving 

a failed replication of this result was reported [119] at the same time as the Sherrington et 

al. [206] article and many researchers, including the original authors, subsequently con-

sidered the study of Sherrington et al. to be a false positive result ([114, 181, [220], p284). 

Interestingly, some recent studies have suggested that the 5q11-13 region may harbour a 

susceptibility gene after all [137]. 

In addition to the practice of seeking out the largest families possible, some researchers 

have specifically targeted particular inheritance patterns within the families. Both Brzus-

towicz et at [341 and Gurling et al. [92] selected families in which there was a single 



'source' of schizophrenia and that the transmission from this individual was unilineal 

(arising solely as a result of transmissions from this individual), with the mode of trans-

mission appearing dominant. This strategy is similar to that applied successfully to breast 

cancer (see chapter 1). Schizophrenia clearly does not segregate in this way in most pedi-

grees but this approach attempts to single out the few families in which the observed 

disease segregation pattern appears to be mainly caused by a locus with large effect. In 

reality there may be number of other background genetic effects conferring genetic suscep-

tibility; the hope would be that these families would segregate a risk allele that conferred 

substantial disease risk, given this genetic background. Obviously it is difficult to reliably 

assess the disease segregation pattern if one does not have affected individuals spanning 

multiple generations (i.e. extended families will be suitable but sib pairs will not be). 

6.1.2 Affected Sib Pairs 

As indicated in the introductory chapter (chapter 1), the ASP design is favoured because 

it allows collection of large sample sizes. Risch [189] discusses the use of different sets 

of relative pairs; he frames his results in terms of mapping genes for diseases in which 

there are different values of A. A 8  is defined as the conditional probability an individual 

is affected by a disease given its sibling is affected, divided by the population prevalence of 

that disease. This value reflects the overall increase in incidence in sibs as a result of both 

environmental and (polygenic) genetic effects. Risch [189] derives the power of different 

sets of relative pairs for different values of A 3 ; he concludes that for larger values of A 3  
(>3, say), second or third degree relatives will offer the most power, assuming relatively 

informative markers are available [190]. As the value of A 3  decreases (particularly below 

2) the power of second and third degree relative pairings is not appreciably more than that 

available for sib pairs. Since sib pairs are arguably easier to collect, Risch [189, 1901 rec-

ommends that they should be used for diseases with low values of A 8 . This does not mean, 
however, that only sib pairs should be collected, simply that it possible to show analytically 

that if a particular set of relative pairs is to be used then affected sibs offer similar power 
to other relative pairings when A 8  is low. In practice, samples may include families with 

a range of different family structures. In the third paper in a series, Risch [1901 showed 

there were differences in the degree to which marker polymorphism affected the utility of 

different relative pairs; when the polymorphism information content (PlC, a measure of 

marker informativity) was low, sib pairs were better than other relative pairings. Families 

with a variety of relative pairings (i.e. with more than 2 affected people in the family) may 

be difficult to appropriately analyse with methods that are based on pairs only (the non-

independence of pairings is difficult to deal with when there are multiple possible pairings 

within a family, see discussion of non-parametric methods in chapter 1). Arbitrary family 

structures can be readily analysed by methods which model the likelihood of all family 

members simultaneously (e.g. parametric linkage analysis for binary traits and variance 

components analysis for quantitative traits, see chapter 1). Since many of the diseases 

with large values of A 3 , that is diseases that have near-Mendelian inheritance patterns 



(e.g. Cystic Fibrosis with A 	500, [2201), have already been mapped, the primary inter- 

est is in (complex) diseases with low A 3  values. That is to say, for these complex diseases, 

all sets of relatives pairings, including sibs (who would be sub-optimal for diseases with 

large A8values), will be useful for disease gene mapping. It is important to be aware that 

although diseases such as schizophrenia have A., values greater than 2, it seems likely 

that there are multiple susceptibility loci involved. The appropriate A., value for use in 

predicting the power of a linkage analysis is the risk value attributable to the locus of 

interest. In this chapter, the symbol A.,1 inked  is used to denote the (genetic) effect resulting 

from the segregation of a susceptibility allele at this locus. For schizophrenia A., is 10 but 

the Aslinked  value for any single locus is unlikely to exceed 3 ([188], see also discussion in 

section 6.4.1). Furthermore, the A 3  value may also be inflated due to the effects of familial 

environment and hence its use may lead to an underestimate of the number of individuals 

needed for a given power. 

A number of groups have taken the recommendations in [189, 1901 and used them as a 

basis for their schizophrenia studies (see also [401). Cloninger et al. [41] describe the col-

lection of a sample as part of a United States National Institute of Mental Health (NIMH) 

initiative. The initiative employed a specific data collection scheme, resulting in a sample 

comprising almost entirely independent sib pairs (average number of affecteds per family 

<2.4). The collected sample was likely to be particularly diverse, with the families desig-

nated as being half 'European' and half 'African' [41]. No significant linkage (using the def-

inition of genome wide significance in [1291) was detected in the NIMH sample [71, 1181. 

Other recent genome scans based on predominantly ASPs (number of affecteds per family 

<3 in all cases, average family size -5 in most cases) include [136, 253, 36, 197, 224, 31]. 

Only one [31] of these scans reported significant [1291 linkage to any chromosome. These 

studies (i.e. [136, 253, 36, 197, 224, 31, 41])  were all included in a meta-analysis pub-

lished in 2002 [134]. The 2002 meta-analysis focused solely on chromosome lq, reporting 

no evidence for linkage [134]. 

6.1.3 Schizophrenia Meta Analyses 

Enough individual schizophrenia studies have now been performed to make meta-analyses 

possible. An impressive number of groups have taken part in these initiatives, resulting 

in a number of recent papers [15, 132, 137, 1341. Since there is substantial overlap in the 

studies included in these analyses only the recent analyses are discussed here. Badner 

and Gershon [15, 161 based their meta-analysis on the published results of schizophre-

nia studies, with a literature search used to accumulate data. Their analysis identified 

susceptibility loci on chromosomes 8p, 13q and 22q. Lewis et al. [137] gathered the test 

statistics (or p-values) across the genome from the component studies. The test statistics 

from the component studies were placed in -30cM long bins and the overall results as-

sessed based on ranks (this method was called the genome scan meta analysis or GSMA 

method, [1351).  The most significant chromosomal region was 2q with susceptibility loci 

also indicated on chromosomes 5q, 3p, llq, 6p, lq, 22q, Sp, 20q, and 14p (listed in de- 
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creasing order of significance). Despite there being some overlap in the studies used the 

linkage peaks on 22q and 8p only appear as the 6th  and 7th  highest results in the Lewis et 

al. [1371 GSMA. More strikingly, the 13q region did not approach significance in the Lewis 

et al. [137] analysis; it is unclear why this occurred. 

The addition of 11 more samples in the Lewis et al. [137] study compared with the 

Levinson et al. [1341 study resulted in a change in the results reported; the Levinson et 

al. [134] study reported no linkage to chromosome lq whilst the Lewis et al. [1371 study 

listed lq as one of the most likely regions to harbour schizophrenia susceptibility loci. 

6.1.4 Affective Disorders 

For convenience, the main part of the discussion presented here is restricted to schizophre-

nia and does not consider affective disorders (bipolar disorder, unipolar disorder). It 

should be pointed out however, that the long standing Kraepelinian dichotomy [131 - the 

fundamental distinction between schizophrenia and affective disorders - has been chal-

lenged [229, 1611. A continuum model, prescribing a gradual change in symptoms from 

unipolar disorder to bipolar disorder has been proposed, with some researchers extend-

ing this continuum from affective disorders to encompass schizophrenia [232, 1611. For 

the purposes of genetic studies, it is unclear where to include individuals with symptoms 

associated with both schizophrenia and affected disorders, referred to as schizoaffective 

individuals. The risk of schizophrenia in an individual closely related to a bipolar indi-

vidual is higher than the population average and vice-versa [213, 100, 2291. A degree of 

common biology may also be indicated by the efficacy of common sets of drug treatments 

in both cases [1611. There has been considerable speculation that there is overlap be-

tween the susceptibility loci identified in studies of affective disorders and schizophrenia 

([26, 24, 23, 1611, see also the results in chapter 5) . However, the results from linkage 

studies to date are still too inconsistent to make a firm statement about the existence of 

common susceptibility loci. A meta-analysis [1991 similar to that reported for schizophre-

nia [137] was performed for bipolar disorder. The results of this meta-analysis [1991 in-

dicated no evidence for strong linkage to any particular chromosome and were markedly 

less significant than those reported for schizophrenia [137]. The reasons for this may 

lie with higher levels of phenotypic heterogeneity (multiple disease definitions), genetic 

heterogeneity, smaller sample size and/or random variation in results. 

6.1.5 Chromosome 1 

A recent paper in Science [134] reported the results of a meta-analysis of families showing 

no major schizophrenia locus on chromosome lq and questioned the significance of several 

recent papers reporting susceptibility loci on lq. The results based on this multi-centre 

study of affected sib pairs (ASP) are in striking contrast to highly significant findings in 

extended families. Significant (HLOD 6.5) linkage at 1q21-22 was detected in Canadian 

families [34] and replicated in European origin families [92, 2051. At 1q42 Blackwood et al. 
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[261 obtained a LOD of 7.1 in a single Scottish family. Nearby, Ekelund et al. [62] obtained 

a LOD of 3.2 in Finnish pedigrees. Modest support for the importance of the 1q42 locus 

was recently reported in Taiwanese families [107]. How can these apparently conflicting 

results be reconciled? Levinson et at [134] suggest that their meta-analysis of -900 ASP 

would have sufficient power to detect the chromosome lq loci detected in the above studies. 

However, Levinson et al. [134] fail to take proper account of locus heterogeneity. In this 

chapter the effect of locus heterogeneity on the power of linkage analysis is investigated. 

6.2 Methods 

The effect of heterogeneity is considered in two different ways. The first calculates the 

power of the ASP based statistics, both with and without heterogeneity. Two ASP statis-

tics are considered, one based on the mean number of alleles shared identical by descent 

(IBD) and one based on number of pairs sharing 2 alleles IBD. The simple construction 

of these tests allows algebraic power calculations. Statistical power is also considered by 

simulating data and using parametric linkage techniques. In this case parametric linkage 

techniques are utilised, with the heterogeneity parameter c (see chapter 1, introduction) 

used to model the families not carrying a mutation at the locus of primary interest. 

6.2.1 ASP based tests 

Firstly, consider the power of the ASP mean test, a test based on the number of alleles 

shared IBD. 

ASP mean test 

Consider a sample of ASPs. The mean number of alleles shared identical by descent (IBD) 

at the genomic location of interest is p' + 2P2 where p3  denotes the proportion of paits 

sharing j alleles IBD. Let ri. denote the number of pairs and , an estimator of the propor-

tion of pairs sharing j alleles IBD. If there is no linkage then P1 + 2P2 has expectation 1 

and variance . The test statistic 

T. 
- ( 1 + 2 - 1) 	

(6.1) 

can be used to test for linkage with a sample of ASPs (equation 16.50b, [1391). With large 

samples Tm  is normally distributed. This test has been shown to be more powerful than 

alternative statistics (such as I'2,  see below) providing the effects of dominance are not 

strong [1391. The null hypothesis of no linkage implies ASPs share 1 allele IBD 50% of 

the time and 2 alleles IBD 25% of the time. The deviations from such a null are of interest 

when one wants to assess statistical power. The IBD distribution at the genomic location 

of interest can be expressed in terms of the null expectations and additional d3  terms, 
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representing the deviations due to linkage of this region to a risk locus 

p0 =O.25—do p1 =O.5—dj  p2=0.25+d2 

(equation 16.52a in [1391). The d, can be expressed in terms of the recombination fraction 

of interest and the relevant locus-specific ) (risk to sibs of affected individuals relative to 

the population risk). Assuming no dominance, d1  = 0, and we have 

(l_29) 2 	1 
(6.2) 

where 0 denotes the recombination fraction between the marker used and the putative 

disease locus [189]. This is one of the basic results in the paper by Risch [189]; that is, 

the deviations, d, from the expected IBD distributions can be expressed in terms of )t8 

(Risch [189] also considers other relative pairs) and these deviations can be used directly 

to determine power (see also below). Modifications of equation 6.2 to include the effects of 

dominance are given in [1891. 

The relative risk parameter A, represents an effect averaged over all families. We are 

particularly interested here in the increase in risk due to a segregating mutation in a sub-

set of families. As indicated above (section 6.1.2) the symbol A31kd  is used to represent 
the effects of an allele increasing risk only in those families where it its segregating (i.e. 

not averaged over all families). 

Power of ASP mean test 

Calculating Power The sample size for a normally distributed test statistic such as 

Tm , with significance level a, to have power 1 - )3 can expressed as 

2 
homog - ( z(i_)fl + Z(l_a)fO) 	

(6.3) Tm - 

ILl — p0 

(equation A5.4b in [139]) where the zs link the a and 3 to the normal distribution, the 

,us represent the test statistic means of the null and alternative hypotheses. nTm  is the 
number of pairs needed when using the statistic Tm . The f  are given by 

A2  =un 

where a.2  is the test statistic variance. 

For the ASP test Pi  is given by 

pi = P1 + 2P2 = (0.5 - d1 ) + 2(0.25 + d2) = 1 - d1  + 2d2 

whilst the null mean (po)  is simply 1 (the expected number of alleles shared IBD when 
there is no linkage). Details of calculation of the fj2  are given in Lynch and Walsh [139]. 
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f is 0.5 whilst f is given by 

f12  = 0.5 + d1  - (2d2  - d1 ) 2 . 	 (6.4) 

For all plausible values of d3  the values of fi  and fo  are very similar and number of sib 
pairs can be well approximated by altering the numerator of equation 6.3 so that Ii = fo. 
For example with ) = 3 (a moderate sized effect), recombination fraction 0.05 and 50% of 
families linked, f12  =0.464. With ) = 1.35 (one of the effect sizes considered in [1341), f? 
=0.494. 

Applying the approximation f? = 	= 0.5, the number of sib pairs needed under 
homogeneity is 

-homo9 	(Z(1_fl)+ Z(l)\ 2 - (Z(i_) 	+ Z(l_)\ 2 - 	

14 - P0 	) - 	
1 - d1  + 2d2  - 1 	) 

= (z +z 

a)v/0—.5
2 

2d2–d1 	
) 

ASP mean test power with heterogeneity 

Power with heterogeneity 

Under heterogeneity the alternative hypothesis the test statistic mean is given by 

Plh,t =PP1 +(1 –p)i0  

where p is the proportion of pairs segregating the mutation of interest. Inserting the 

terms f = f =0.5 into equation 6.3 gives, to a good approximation, the number of sib 
pairs needed as 

2 	 2 
hetero - (z(j_,3)v/0.5+z(j_,)N/0.5" 	(z(l_/ö + Z(l_)V 'O 
Tm 	 ppi+(l–p)/Ao–po ) = 	p(pi – ILo) 	) 

2 

- 

(z +za/OT\ 	

homo x 	(6.5) 
- 	p(2d2  - d1) 	

) 	
Tm  

This shows there is a simple relationship between heterogeneity and required sample size. 

Note that the "non-parametric" ASP mean test has been shown to be exactly equivalent 

to a "parametric" linkage analysis under a recessive model (see chapter 1 and references 

[122, 87]). 

ASP statistic (2 alleles shared) 

The calculations given above are based upon the mean number of alleles IBD at the locus. 

In the presence of dominance a test statistic based on individuals sharing 2 alleles IBD 
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will provide greater power. Consider a statistic based on the proportion, P2 (as above), of 
ASPs that share 2 alleles IBD. The estimator 2  has binomial distribution with mean 

and variance 	= --. The test statistic n 	16n 

- T2— - 	, 
An 

is similar to that described for the proportion of alleles shared IBD in equation 6.1. Again 

expressing deviations from null with a parameter d3  we have 

P2 = 0.25 + d2 (= p1 in this case) 

if the deviations from the null are true for all families. If there is locus heterogeneity, the 

null and alternative means are 

	

juo = 0.25 Plh.j 	0.25 +pd2. 

Again assuming the variances are similar under the null and alternative the number of 
ASP needed can be calculated using equation 6.3 as 

2
3 	

3 3 	V3  
hetero  
T2 	

= (Z(l_)V 1 + Z(1_a)\/) = (Z(l_$)\/+z(l_a) 	
2 

A
homog 

- 

(6.6) 
Using this 2 allele sharing test statistic 4etero  is the number of pairs need with hetero-
geneity and 4omofl  is the number of pairs need with homogeneity. The statistic T2  provides 
more power than Tm  in the presence of dominance [139] but equation 6.6 shows the similar 
relationship (n needed X ) between power and heterogeneity exists. 

6.2.2 Parametric linkage techniques 

Computer simulations were performed to evaluate the power of linkage analysis to detect 

disease loci. In particular, these facilitated the evaluation of a parametric model which 

allowed for locus heterogeneity in the analysis model. 

Allowing for locus heterogeneity 

Standard parametric linkage analysis (chapter 1, introduction) can be modified to allow 

for heterogeneity in the recombination fraction [2101. Assume there are two unlinked 

disease loci and that a molecular marker linked to one of these loci is typed in the families 

in the data set. A proportion, a, of the families are assumed to be affected by disease 

because of mutations at a single (primary) locus. The parameter a is traditionally written 

as a but a is used here to avoid a clash with the symbol for significance level in equations 

such as 6.6. In these families the recombination fraction between this disease locus and 

105 



the molecular marker is less than 0.5. The recombination fraction in the other (1 - a) 

families is assumed to be 0.5 (these other families are assumed to be affected as a result 

of other loci in the genome). 

Assume there are it families and that the family has likelihood function L(9). For 
example if the family was the same as that in figure 1.1 in the introductory chapter, then 

the likelihood for that family would be as in equation 1.1. The likelihood of each family 

can be rewritten with a used to index the families linked to the locus of interest 

L(9,a) = aL(9) + (1 - a)L1 (0.5). 

The likelihood of all families in the data set together is therefore 

L(9,a) = >Lj(9 ,a). 	 (6.7) 

This likelihood (equation 6.7) is maximised over both 9 and a simultaneously. Call the 

likelihood with both parameters unrestricted Li and the likelihood with either a = 0 or 
9 = 0.5 LO (either condition is sufficient for the other to hold). The likelihood ratio test 

(log10  version) of Li versus LO is often referred to as the HLOD statistic (as in chapter 

1, introduction) . The HLOD statistic does not converge to an asymptotic distribution 

(since either a = 0 or 9 = 0.5 specify the null) but it can be approximated (assuming 
conversion to 2x lOY e  scale from 10910 scale) by a 50:50 mixture of 0 and the larger of two 
independent x 2 1  variables [201]. As noted in the introductory chapter (chapter 1), the 

disease allele frequency and penetrances specified in this model are specific to the disease 
locus of interest (in the a x 100% of the families that are segregating mutations at this 

locus). 

Power of parametric linkage technique with heterogeneity 

The power of the parametric linkage analysis technique was assessed using SLINK [244]. 

SLINK is a program which allows ready generation of families for power calculation. In-

dividuals are given genotypes conditional on specified phenotypes and family structures. 

The first individual is given a marker genotype and a disease genotype; the parameters 

relating the genotypes at the two loci and the relationship between disease status and 

inferred disease genotype are given below. For subsequent individuals in the family the 

conditional distribution of genotypes given phenotypes is 

P(g/x) = P(gi /x i )P(92 191 , x2)P(93191, g, x 3 )... 	 (6.8) 

where the set of s phenotypes in a pedigree is denoted x = (x 1 , .., x3 ) and the set of geno-
types is denoted g =(gl,..,gs). 

The relationship between genotype and phenotype was specified to follow a specific 
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parametric model. For the simulation the marker locus was assumed to be linked with re-

combination fraction 0.05, to a disease locus (disease allele D, wild type d) with a dominant-

like effect on the phenotype. There were five equally frequent alleles at the marker and the 

disease locus parameters were P(disease/DD) = P(disease/Dd) = 0.5 and P(no disease/dd) = 

0.01. The disease allele was assumed to be moderately rare (frequency 0.004). The con-

ditional probabilities of all the possible multi-locus genotypes with phase, P(g1  /x), were 

calculated for the first individual. Based on these probabilities, marker genotypes were 

randomly generated. Subsequent individuals were then given marker genotypes in turn 

(conditional on the genotypes allocated for preceding individuals via equation 6.8). 

The generated data set consisted of sets of 60 nuclear families. Each family had 6 

genotyped affected siblings with untyped, disease status unknown parents. With 6 af- 

fected individuals in the sibship there are ( 
6 

 ) = 	
= 15 possible pairings per family 

and 900 in the whole sample of 60 families. The siblings within a family were assumed 

to be independent. Although this was clearly not true, for simplicity it was assumed that 

the pairs were independent. It has been shown ([171 chapter 17, [1391) that this should 

be a reasonable approximation in practice. If all sibs in a sibship are considered together 

in a likelihood approach then the false positive rates may increase ([171  chapter 17) but 

proposed weighting schemes (e.g. a weighting of 1  for sib-ships of size n, [2261) to account 

for this have been found to over-correct for this non-independence ([171 chapter 17). To 

emulate the effects of heterogeneity, varying proportions of families were assumed to be 

segregating mutations at the locus of interest. The proportions considered were 75%, 50% 

and 33%. The data were analysed using the parametric linkage analysis technique de-

scribed in the section above, with the parameter a fitted to model locus heterogeneity. The 

proportion of replicates achieving a HLOD of 3 or more were counted over 200 replicates. 

The analysis model (penetrance parameters and allele frequencies) used in the analysis 

was the same as that used to generate the families. This should mean that the power of 

the parametric analysis will be maximised. In practice, a small number of models (e.g. 

recessive, dominant, see chapter 1, introduction) need to be fitted in a parametric analysis 

to ensure near optimal power. [17] 

6.3 Results 

6.3.1 ASP mean test 

The number of sib pairs required to detect linkage was shown to be approximately pro-

portional to , where p is the proportion of pairs segregating the mutation of interest. 

Figure 6.1 shows the effect of heterogeneity on the power to detect linkage given the effect 

of an allele, segregating in the linked families, increasing risk to sibs by a given factor 

(i.e. Asjinked).  The graph shows the results for the ASP mean test. Notice the 10910 scaling 

of the y-axis. Three effect sizes are shown, representing a small (factor 1.35), moderate 

107 



10000 

a) 
S 
0 
0 

0 

0 

-D 

0 
w 
0, 

'a 

-ø 

•0 
a) 
C-) 
a) 
'a 
0 

z 
a) 
.0 
E 
Z 

1000 

100 

Figure 6.1: Power of ASP mean test at different heterogeneity levels 

Power of ASP mean test with heterogeneity 
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(factor 3) and large (factor 7) effect. "Detection" on the graph refers to a significance level 

assuming a LOD score of 3 is required (asymptotic p-value 0.0001) and "Replication" on 

the graph refers to a significance level assuming a LOD score of 1.2 (asymptotic p-value 

0.01). Historically a LOD of 3 was deemed suitable for a declaration of linkage [2011. 

Lander and Kruglyak [129] suggest a more stringent criteria of 3.6. Given strong prior ev-

idence of linkage and a very small number of markers typed around the region of interest 

a nominal p-value (p<O.Ol, LOD 1.2) may be sufficient for replication of a previous result 
[129]. 

Figure 6.1 uses the exact value of f? (calculated taking into account the change in 

fi for different levels of heterogeneity, effect size and recombination fraction; i.e. using 

equations 6.3 and 6.4) not the approximation used to show n X 

Figure 6.1 shows that a sample of less than 1000 ASP, as studied in [134], has little 

power to replicate linkage of schizophrenia to a locus that contributes to risk of illness in 

less than 20% of families. Even in cases in which there are large increases in risk in some 

of the families, the value of ) over all families may be very low. For example, when the 

,linked value is 7 in 20% of families and the remaining 80% of families are linked to other 

loci the value of A, over the whole sample is 1.21. An example in breast cancer illustrates 

this point well. Genes such as BRCA 112 have a large effect on risk (10-20 fold) in mutation 

carriers [1021 but, since they are very rare in most populations, they will not be readily 
detectable in large heterogeneous samples. 
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Table 6.1: Power to attain a HLOD of 3 with a parametric linkage analysis 

Proportion of families segregating mutations Power 
75% 84% 
50% 29% 
33% 7% 

6.3.2 Parametric linkage with heterogeneity 

The power to detect a HLOD of 3 decreased rapidly as the proportion of families segre-

gating the relevant mutation decreased. The power for different proportions of families 

with mutations segregating at the gene of interest are given in table 6.1. These results 

show that even when the effects of heterogeneity are explicitly modelled (using a within 

the parametric framework), the power to detect linkage to the locus of interest decreases 
dramatically as the proportion of linked families decreases. 

The parametric linkage analysis results are slightly different to those reported in [143] 

due to minor changes in the generating model and the number of replicates done. 

6.4 Discussion 

The results from both the "non-parametric" ASP mean test and the "parametric" linkage 

analysis of simulated data have shown that locus heterogeneity has a substantial effect 

on the power to detect linkage. Although the ASP mean test is only one of a number of 

possible tests (see also the discussion on the variety of possible "non-parametric" statistics 

in section 1.3.2 in the introduction) suitable for linkage assessment in ASPs it does allow 

simple assessment of power. The useful relation 'number of ASPs needed is inversely 
proportional to the heterogeneity proportion squared': 

1 
n needed o - 

p2  

allows one to appreciate the large drop in power when there is heterogeneity. Non-parametric 

methods such as the ASP mean test do not allow for locus heterogeneity ([171, chapter 17) 

and may hence be sub-optimal when heterogeneity is present. Nonetheless, the simula-

tion based analysis using SLINK showed that the power of linkage under heterogeneity is 

still poor even when heterogeneity is allowed for in the analysis. It is therefore crucial to 

collect samples which are unlikely to have high levels of heterogeneity. 

6.4.1 Locus heterogeneity 

Locus heterogeneity is an extremely important issue in study design for some relatively 

well understood Mendelian diseases. A case in point is non-syndromic deafness. To date 
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over 60 loci have been reported for non-syndromic deafness [1711. For this Mendelian 

condition the inheritance model is a strict locus heterogeneity model. That is to say, in 

affected families the inheritance is entirely due to the effects of a single mutation at one 

of the many distinct disease loci. New loci have been identified with some regularity in 

recent years with researchers relying on large families: for this form of deafness a study 

design based on large number of small families would be highly unlikely to identify any 

disease loci. 

The situation in schizophrenia is different to that seen in non-syndromlé deafness. It - 

seems highly likely that there are multiple susceptibility loci [188, 137, 92, 34, 2421 but 

the strict locus heterogeneity model observed in non-syndromic deafness is not observed 

in schizophrenia. Although some schizophrenia families show near Mendelian inheritance 

patterns (e.g. the Scottish translocation family described in [2161), such families are rela-

tively unusual. Risch [1881 considered the decline in AR values (where AR is the analogue 

of A for relative pair R) for different pairings of relatives (monozygotic twins, dyzygotic 

twins, sibs, parent-offspring, grandparent-grandchild, cousins) and showed that it may be 

possible to use data on a variety of AR values to make inferences about the number of loci 

and their interactions. If there is one locus, affecting the whole population, AR - 1 should 

half as the degree of the relative decreased. For example, assuming no dominance, "8 - 1 
should equal 2(Ah - 1) when there is a single disease locus, where Ah is the half sib risk 

ratio. When there is strict locus heterogeneity (as in non-syndromic deafness), the decline 

in AR - 1 was shown to be the same as in the single locus case. By contrast, when the loci 

interacted multiplicatively to determine risk of disease, the decline in AR was shown to be 

sharper than in the single locus or strict heterogeneity case. Risch [1881 showed that since 

the decline of AR - 1 in schizophrenia was greater than twofold with decreasing degree of 

relationship, there were likely to be a number of susceptibility loci. The results from var-

ious schizophrenia genome scans have given support to this assertion [137, 92, 34, 2421. 

Further, Risch [1881 found that the data best fitted a model in which all of the contribu-

tory loci had a relatively small effect (A 8  definitely less than 3 and probably less than 2 

for all loci). This means that linkage strategies, applied to large diverse samples, will re-

quire large sample sizes to detect these loci with small A 8values. However, if the families 

can either be selected so that they are more genetically homogeneous than the general 

population or selected to segregate alleles which significantly increase risk in particular 

(extended) families, the effects of individual loci may be easier to detect. The results in 

section 6.3.1 show that the increase in risk due to such rare alleles in the ascertained fam-

ilies may be substantial and that this may be equivalent to a small A 8  value over a diverse 

set of families (i.e. A si inked may be large but if the proportion of linked families is low then 

A 8  will be low). 

One cautionary note. Whilst it is impossible to know at this stage what distribution 

of genetic effects affecting schizophrenia will be it is important not to over-emphasise 

the significance of the results of linkage studies. A number of studies have suggested that 

their results show there is locus heterogeneity (based on linkage results) [223, 92, 132, 225, 

110 



1041. Whilst this may be true (and selecting large families may well be the best strategy 

in such cases), when the power to detect linkage is low, the effects detected in any given 

sample will be dictated largely by chance. For example, say there are several loci of equal 

additive effect on the phenotype (say for arguments sake pushing up an underlying trait 

toward a threshold of affection), then by chance only a few of these would show up in the 

linkage scan and it would not be unusual for each positive linkage to occur in only a subset 

of the families. Not knowing the true disease model it is tempting to suggest (wrongly in 

this hypothetical case) that such data is indicative of locus heterogeneity, when in fact no 

definite conclusions can be drawn. 

6.4.2 Particular aspects of Levinson et al. [134] analysis 

As indicated at the start of this chapter, this chapter was based on a correspondence dis-

cussing a paper reporting a meta-analysis of schizophrenia studies (Levinson et at [134]). 

The Levinson et al. [134] paper focused solely on the results from an analysis of mark-

ers on chromosome lq, concluding there was 'no major schizophrenia locus' on lq. I now 

discuss the various issues arising from this correspondence. 

In contrast to the GSMA used in [1371, Levinson et at [1341 analysed the raw data from 

the 8 constituent studies. They analysed the raw data using parametric linkage under the 

recessive model which generated the maximum LOD in the paper reporting linkage to 

1q21 [34]. However, as discussed in the introduction (chapter 1), the parametric method 

only has power for complex disease mapping when a small number of different analysis 

models are considered. In particular, at least a dominant and a recessive model should be 

fitted to the data set to ensure good power. 

Levinson et al. [1341 apply the ASP based "non-parametric" test described in Risch et 

al. [1891. To account for locus heterogeneity they apply a modification of the ASP based 

test [132]. This uses logistic regression to allow for interstudy heterogeneity. In the regres-

sion the logit of the probability of pairs sharing alleles IBD is the dependent variable with 

indicator variables for the different studies entered as the dependent variable. However, 

this only allows for heterogeneity between studies and will not be sensitive to heterogene-

ity within a particular study. In contrast, the parametric analysis using heterogeneity, de-

scribed in section 6.2.2, allows individual families to segregate different mutations within 

a particular study. As indicated previously, a number of studies [34, 92, 35, 311 have re-

ported multiple strong linkages within a single study/population. This means it may well 

be appropriate to allow for heterogeneity within studies as well as between studies. 

Results from meta-analyses 

The eight studies included in the Levinson et al. [134] study were unusual in some re-

spects. They were almost exclusively based upon constituent studies that gathered ASP 

data sets. The results of these studies individually were, with the exception of the Blouin 

et al. paper [31],  characterised by the lack of positive findings. In contrast, a more re- 
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cent meta-analysis paper [137], incorporated a wider range of data sets. In particular, in 

addition to the ASP data sets included in [134], the more recent paper [1371 included the 

studies by Brzustowicz et al. [34], Gurling et al. [92], Lindholm et al. [138] and DeLisi 

et al. [52] each of these additional papers found substantial evidence for linkage. The 

results from the more recent meta-analysis [137] indicated a number of regions of interest 

for further study: these included chromosome lq. The addition of the further samples, 

comprising mainly extended families, goes some way toward explaining the success of the 

Lewis et al. [137] paper and the inability of the Levinson et al. [134] study to detect the 

lq locus. It is still slightly surprising however, that chromosome lq region, together with 

a few other regions initially identified in extended family samples (chromosomes 2q, 6q, 

llq, [1371), generated a significant result in the Lewis et al. meta-analysis. The GSMA 

method weighted the studies by the root of the number of affected individuals; this would 

give greater weight to the studies composed mainly of ASP since these had larger numbers 

of affected individuals (although less affected individuals per family, typically 2.4 affect-

eds, as above). Lewis et al. [1371 suggested that this meant that these regions (lq, 2q, 6q 

and 11q) may be of significance to the populations outside of the population in which the 

putative disease locus was identified. 

Since this thesis focuses primarily on linkage studies, this chapter only considers study 

design for linkage analyses. The issue of study design for LD mapping (association stud-

ies) is of substantial importance to future human genetic studies. In chapters 1 and 8 

some of the factors determining the success or failure of whole genome association studies 

are discussed. There is now a substantial body of literature discussing LD study design 

and I will not attempt to summarise them in any detail here. The two most important 

considerations are that (i) the disease causing alleles should be common in the popula-

tion under study (e.g. isolates in which there are risk alleles descended from one or a few 

founding individuals) [169, 126, 258, 184] and (ii) the increase in risk of disease as a result 

of individuals bearing a risk allele are not too small [245, 259, 39]. 

6.4.3 Summary 

It has been shown here that, with locus heterogeneity, linkage studies of diseases such as 

schizophrenia will require extremely large samples. Study designs based on extended fam-

ilies are likely to reduce the degree of heterogeneity encountered, increasing the chances 

of the study detecting a single locus. Definite identification of even a single schizophrenia 

susceptibility locus may be of substantial significance, perhaps leading to greater under-

standing of disease pathogenesis (see also introduction and [961). Although there may be 

genes that affect most or all human populations, such genes will have a very low effect on 

risk in individual families and they will require unfeasibly large samples to detect. 
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Chapter 7 

False disease region 
identification in the presence of 
phenocopies 

In an attempt to locate disease genes many researchers have applied linkage analysis to 

identify chromosomal regions which segregate with the disease of interest in a pedigree. 

In particular, regions unbroken by recombination in affected individuals are sought out. 

For Mendelian disorders there is usually a single disease region which is completely as-

sociated with the disease phenotype. In complex disorders, there are typically multiple 

disease regions (or multiple ancestral haplotypes), some of which may be the result of 

mutations at distinct (unlinked) positions along the genome. Such regions may only be 

partially associated with the disease phenotype (region is neither necessary or sufficient 

for disease). Complex diseases are commonly modelled as if they were Mendelian, with 

individuals carrying a disease mutation but not exhibiting the disease phenotype labelled 

as non-penetrant and affected non-disease mutation carriers labelled as phenocopies. The 

focus of this report is these phenocopies. The phenocopy rate is defined as P(individual in 

sample is affected/individual does not carry disease mutation of interest) whilst the non-

penetrance rate is P(individual in sample is not affected/individual does carry the disease 

mutation of interest). Many complex diseases are caused by multiple unlinked loci, how-

ever, all individuals not carrying the mutation at the region of primary interest must be 

regarded as phenocopies. This will be particularly important for disease in which there is 

a least some degree of genetic (locus) heterogeneity. Individuals may also be phenocopies 

if they do not carry the disease gene of interest and are affected as a result of environmen-

tal factors. Since phenocopies either have the disease as a result of non-genetic factors or 

because of other mutations at unlinked chromosomal regions, the set of alleles they have 

at the putative disease region will be different to that of the other affected individuals. 

The set of alleles an individual holds along a chromosome can be referred to as a haplo- 
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type (chapter 1). Although the word haplotype can be used to describe the set of genotypes 

with phase passed from parent to offspring (i.e. in the context of linkage analysis), it is also 

used to refer to ancestral haplotypes. These ancestral haplotypes will have been subject to 

many generations of recombinations and will be smaller than the haplotypes observed to 

have been narrowed by recent recombinations in genotyped sets of individuals of known 

relationship. Since the rest of this chapter is not concerned with ancestral haplotypes, to 

avoid confusion, the term haplotype is not used. 

In this chapter the effect of phenocopies upon disease region identification is consid-

ered and it is shown that the regions inferred in the presence of phenocopies may not 

include the true disease locus. Such errors will impact significantly on subsequent at-

tempts to identify disease causing mutations. The effects of a variety of phenocopy rates 

are investigated. Calculations are done under the assumption that nuclear families are 

analysed. However, it is shown that the effect of phenocopies will be similar in larger 

family structures. To facilitate the evaluation of the effect of phenocopies, the distribution 

of the disease region length is calculated, both theoretically and empirically. Once the 

length of the disease region indicated by the affecteds (who carry a mutation at the locus 

of interest) has been calculated, it will then be possible to determine how likely pheno-

copies are to interfere with this region. Dominant gene action is assumed but extensions 

to recessive types are discussed. The effect upon the LOD score profile from a parametric 

linkage analysis is also considered. 

7.1 Phenocopies and disease regions 

To identify a disease region using affected individuals in families one uses the marker 

information to assess where recombination events have occurred. When one or more phe-

nocopies arise within a sample, the recombination events of these phenocopies are erro-

neously used to narrow the disease region. Consider the nuclear family in figure 7.1. 

Affected individuals are shaded in black, phenocopies are shaded in grey and unaffected 

individuals are unshaded. Assume the disease mutation in this region is dominant with 

alleles D and d. In this family a recombination event in affected individual 4 is used to 

narrow the disease region on the right of the true disease locus. Call the disease region in-

ferred from the affected individuals carrying the D allele minimal disease region or MDR. 

Suppose one of the individuals, numbered 6, is a phenocopy. This individual does not carry 

the disease allele, D, but does carry some of the marker alleles of its affected parent via a 

recombination. This means that the genomic region shared by all of the affecteds (D allele 

carriers and phenocopies) spans only the leftmost two markers and does not include the 

actual disease locus of primary interest. If the phenocopy rate is not low, or there are rela-

tively few affected individuals (with mutations at the locus of interest) available for study, 

the probability of this happening will be non-negligible. Note that although some pheno-

copies will occur in families otherwise unaffected by the disease (sporadic cases), linkage 

analysis samples are typically ascertained to have a large number of affected individuals. 
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Figure 7.1: Nuclear Family with a phenocopy 

3 
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The phenocopies ascertained and analysed are therefore likely to occur in circumstances 

similar to that of individual 6 in figure 7.1. 

The population prevalence of Psychiatric diseases such as bipolar disorder and schizophre-

nia rarely exceeds a few percent. Published estimates for the proportion of phenocopies 

amongst affecteds in the population are high for diseases such as bipolar disorder I (0.67, 

[1491) and broad definition schizophrenia (0.25, [351). However, estimating phenocopy 

rates that are appropriate for the families ascertained for linkage studies is difficult. 

Firstly, the rate of affection amongst such samples may reach high levels (for example, 

the proportion of individuals affected was 38% in the data set described in chapter 5). 

Secondly, ascertained families may be more genetically homogeneous than the general 

population, with some related individuals affected, at least in part, as a result of the ef-

fects of a common genetic background. Below we consider the rate at which phenocopies 

occur within a sample of non mutation carriers, to be from 0.01 to 0.08. 

To assess the probability of phenocopies making the MDR too small one must assess 

the distribution of disease region lengths and the likely number of phenocopies. 

7.2 Distribution of disease region lengths 

The length of the MDR can be calculated by considering the distribution of the recombi-

nation events. If one ignores linkage interference, the number of recombination events 

follows a Poisson distribution with parameter equal to 1 per Morgan of genome per meio-

sis. Consider a putative disease locus on a chromosome. The map distance to the first 

recombination event to the right is distributed exponentially with parameter 1 Morgan. 

Given a number of inherited chromosomes n, the distance from the putative disease locus 
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Figure 7.2: Distribution of region lengths 
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to the nearest recombination on the right is then distributed as exponential with param-
eter I . The distribution of the distance between the first recombination to the left and 

the first to the right is thus the sum of 2 exponential distributions. This has a gamma 

distribution with alpha equal to 1 and beta equal to. The distribution of region lengths 

for 20, 40, 60 and 80 affecteds is given in Figure 7.2. The mean region lengths in the four 
cases are 10cM, 5cM,3.3cM and 2.5cM, respectively. 

7.2.1 Quantifying the Effect of Phenocopies 

We assume that phenocopies who do not share any of the MDR are removed from the sam-

ple. This will usually happen in practice since otherwise it will not be possible to identify 

a disease region at all. In a nuclear family the probability of a phenocopy interfering with 

the MDR depends on the average length of the MDR and the probability distribution of 
the number of phenocopies. 

If the likely number of phenocopies is small then one can estimate the probability of 

at least one phenocopy having a recombination in the MDR (and hence carrying part of it, 

but not the disease locus of interest) by 

1 - (1 - L)W 

where w is the number of phenocopies and L is the length of the MDR measured in Mor-
gans (assume for simplicity the Morgan map function in which recombination fraction 
equals map distance). 

116 



Assume that a number of pedigreed individuals are ascertained for the analysis and 

that m of these do not carry the mutation of interest (these will commonly be unaffected 

individuals; if there is only 1 mutation causing the disease and no environmental factors 

generating phenocopies then these individuals will definitely be unaffected). If each of 

these .m individuals has probability p of being a phenocopy, the number of phenocopies in 

the sample will have a binomial distribution with parameters m and p. The probability of 

at least one phenocopy making the MDR too small (and ruling out the true disease locus) 

is therefore - - - 

( 

m )r(1)r_m(l(1L)r) 	 (7.1) 

This formula will not hold exactly when there exist two or more phenocopies in a sam-

ple since in such a case it may be possible for two of the phenocopies to have recombina-

tions in the MDR on opposite sides of the true disease locus. This means that both will 

agree with parts of the MDR but together they will rule out the whole of the MDR. The 

probability of this happening is low unless there are a large number of phenocopies in the 

sample. 

The results obtained using equation 7.1 are similar to those obtained using the exact 

formula (i.e. accounting correctly for multiple phenocopies) in most cases; the exact for-

mula is given in the appendix (section 7.6). All of the results given here use the exact 

formula. 

7.2.2 The effect of varying phenocopy rate and sample size 

In table 7.1 the effects of changing the phenocopy rate are shown. The probabilities in the 

table assume 20 affected (affected assuming the mutation is fully penetrant in its effect on 

the phenotype) mutation carriers have been included in the analysis. It is assumed that 

100 individuals not carrying the mutation have been considered alongside the affected 

individuals. The proportion of regions which falsely rule out the genomic region where the 

locus actually resides reaches worryingly high levels (>40%) if the phenocopy rate exceeds 

a few percent. 

In table 7.2 the effects of altering the number of mutation carrying individuals are 

shown. A phenocopy rate of 0.02 is assumed and again there are assumed to be 100 

individuals not segregating the mutation. The proportion of regions which include the 

actual disease locus is high provided the sample of affected individuals is not too small. 

7.3 Computer Simulation 

Two sets of computer simulations were performed. The first confirmed the theory above 

concerning the distribution of MDR lengths after a given number of recombinations had 

eroded the disease region. The second looked at affected 20 individuals in 5 families and 
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Table 7.1: Effect of varying phenocopy rate 

Phenocopy 
rate 

Probability region does 
include actual disease locus 

Probability region does not 
include actual disease locus 

0.01 0.91 0.09 
0.02 0.83 0.17 
0.03 0.76 0.24 
0.05 - 	 0.66 0.35 
0.08 0.56 0.44 

Table 7.2: Effect of varying number of affected (mutation carrying) individuals 

No. of 
Affecteds 

Probability region does 
include actual disease locus 

Probability region does not 
include actual disease locus 

10 0.70 0.30 
20 0.83 0.17 
30 0.88 0.12 
50 0.92 0.08 
100 0.96 0.04 

assessed the effects of a phenocopy upon the LOD score profile in multipoint linkage anal-
ysis. 

7.3.1 Simulation 1: Distribution of MDR lengths 

A program was written to allow the transmission of gametes, with recombination, from 

parents to offspring. A single founder parent with marker genotypes at 24 chromosomal 

positions was generated. This parent was set to be heterozygote for a disease allele at the 
12 1h  locus and was mated to individuals set to be homozygote for a wild type allele at this 

locus. The marker genotypes at all other loci were randomly generated from a pool of 40 

equally frequent alleles. Based on the generated genotypes for the parents, sets of either 

10, 20 or 40 offspring were generated. All 24 markers were linked, with the recombination 

fraction between adjacent loci set to be either 0.01 (40 offspring) , 0.02 (20 offspring) or 

0.03 (10 offspring). The length of preserved region in each child was counted by starting 

at position 12 and counting outward (in both directions) until the marker alleles observed 

in the child differed from that seen in the parent (indicating that a recombination event 

had occurred). 1000 replicates were used for 10, 20 and 40 offspring. The results obtained 

are given in table 7.3 and are in good agreement with those derived theoretically above. 

7.3.2 Simulation 2: Effect of phenocopies on LOD profile 

In this simulation 5 nuclear families, each with 4 affecteds, were generated. Chromosomes 

with 24 highly polymorphic, 2cM spaced markers were passed from parents to offspring. 
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Table 7.3: Simulation 1 results 

Average Length of region (Morgans) 
Number of affecteds Theory Simulation 

10 0.200 0.183 
20 0.100 0.105 
40 0.050 0.048 

A disease locus with a fully dominant disease allele was placed midway between markers 

11 and 12 (21.4 cM). LOD score profiles from multipoint parametric linkage analyses were 

calculated using the program Allegro ([901). As expected, the MDR in each case was visible 

as a plateau (region in which no recombinations occurred in the genotyped individuals, on 
average 10cM long) in the LOD profile. 

To assess the impact of phenocopies, a phenocopy was added to one family and the 

LOD profile re-calculated. Assuming phenocopies to be binomially distributed 1 pheno-

copy would arise in this way 37% of the time if 100 'unaffecteds' were ascertained with a 

phenocopy rate of 0.01. As predicted by the above theory, approximately 10% of these phe-

nocopy individuals shared some of the MDR (based on 300 replicates). Figure 7.3 shows 

the LOD profiles of three replicates (broken lines) where the MDR was falsely narrowed 

by recombination(s) in the added phenocopy. For comparison, a replicate in which the 

added phenocopy had no recombinations (solid line, labelled "no phenocopy") in the MDR 

is also shown in figure 7.3. When the phenocopy has recombination(s) in the MDR there 

is a region shared by 21 affected individuals, generating a LOD around 3.6. Conversely, 

when there are no recombinations around the disease locus in the phenocopy, there are 20 

individuals with a common set of alleles and one without this set of alleles. This typically 

generated a LOD of around 2.8. The addition of a phenocopy increases the maximum LOD 

score achieved but, crucially, indicates a genomic region which does not include the true 

location of the disease locus (since the phenocopy cannot actually share the genomic re-

gion with the disease gene on it, only a nearby region via a recombination in the affected 

parent). The discrepancy in location was up to 20cM. Allowing for phenocopies in the anal-
ysis (through the phenocopy rate parameter specified in a parametric analysis) does not 
improve the situation since the LOD peak is still at the point where most individuals share 

the same set of alleles. The only effect of setting the phenocopy rate parameter to 0.1 or 0.2 

is to reduce the overall LOD scores achieved; the percentage of replicates with the peak 

LOD distinct from true disease locus (i.e. there was a region over which all individuals, 

including the phenocopies shared alleles, and this region did not include the position of 

the true disease locus) was 11% for both the 0.1 and 0.2 analysis (as before, predicted by 

theory to be 10%). 300 replicates were generated in each case. 
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Figure 7.3: Four Simulation replicates 
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7.4 Extensions from dominant nuclear families 

The results in tables 7.1 and 7.2 were obtained by assuming that the phenocopies appeared 

in nuclear families in which there was dominant disease inheritance. However, similar 

problems will often arise when larger families and recessive types inheritance patterns 

are considered. The extension of the above argument to cases other than nuclear families 

is possible because of two factors: 

First Issue Families are generally only ascertained if they have a number of affected 

individuals. The presence of a single affected individual (perhaps affected as a result of an 

environmental influence) is unlikely to be enough for researchers to conduct further inves-

tigations. More likely, a phenocopy will be included in a disease mapping study alongside a 

number of other affected individuals (whose affection status is at least in part due to them 

possessing a particular gene). This will mean that the families used will be relatively 

densely affected and a number of affecteds will likely have some chromosomal regions in 

common. 

Second Issue As mentioned above, it is common for investigators to remove individuals 

whose set of alleles are completely distinct from that of the other affecteds. 

It is argued in this section that because of the ascertainment procedure and the dis-

carding of incongruous phenocopies (issues 1 and 2), nuclear families with phenocopies 
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often provide a good approximation to the situation where more general extended pedi-

grees are analysed. 

7.4.1 Extension to larger families (dominant inheritance) 

Consider extending a nuclear family through the offspring. There are 3 ways in which 

the grandchildren of the original founders can be phenocopies. Firstly, these grandchil-

dren may -be the offspring of an affected parent and be phenocopies (figure 7.4, case 1). 

In this case they may still inherit a section of chromosome near to the disease locus via 

recombination (this is the same situation as in the original nuclear family: unaffecteds 

and phenocopies can inherit regions of the genome near the disease locus by recombina-

tion). Secondly, there may be phenocopies who are the children of an unaffected individual 

(figure 7.4, case 2). This unaffected individual may possess regions of the genome near the 

disease locus (via recombination) and will pass this chromosome on to its offspring 50% 

of the time (any further recombination in the meioses forming the phenocopy will still re-

suit in the phenocopy getting at least some of the alleles near the disease locus). The other 

50% of the time individual 4 in the pedigree will pass on an chromosomal region unrelated 

to any of the other affecteds. In this case the phenocopy will often be removed from the 

group of affecteds since it does not share the MDR with them (issue 2). Thirdly, the grand-

children may be the children of a phenocopy (figure 7.4, case 3). This case is the same as 

the case where the grand-children's parent is unaffected but, unless the phenocopy rate is 

rather high, it is unlikely that two such phenocopies will occur. 

The family may be further extended to consider great-grandchildren. However, if a 

branch of the pedigree stems from a second generation individual who is unaffected and 

who has no affected offspring then the fourth generation is less likely to have been con-

sidered for inclusion in the study. In the unlikely event of one being included it will often 

be excluded because of issue 2, above. Branches with many affected individuals are much 

more likely to be included (issue 1). Any phenocopies arising in such a branch will hence 

share much of their genome with the true affecteds. In summary, in many cases the 

problems caused by phenocopies in nuclear families will also be present when extended 

families are considered. 

7.4.2 Extension to recessive cases 

If a disease gene that is recessive in its effect upon the disease is considered, a MDR 

can be identified where affecteds share two copies of a particular disease segment of the 

chromosome. In the case of a nuclear family, phenocopy offspring will cause problems 

similar to those in the dominant case (any recombinations in the transmission of alleles 

from unaffected carrier parents may falsely narrow the MDR if there are phenocopy off-

spring). Phenocopy parents will rule out part of the MDR (including the disease locus) 

obtained from the other affecteds (since they have at most 1 copy of the disease gene) but, 
in practice they will usually be removed from the group of affecteds (issue 2). 
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Figure 7.4: Extensions of nuclear families: dominant case 
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Unlike the dominant case, recessive type families are less likely to extend beyond the 

offspring generation. Clearly, in the dominant case, the disease will often be transmitted 

over multiple generations. In the recessive case, a new disease allele must be introduced 

for the disease to be transferred over more than one generation. Therefore, in the absence 

of high levels of inbreeding, recessive type extended families will be rarer than nuclear 

families. 

7.5 Discussion 

The phenocopy rate for a given disease is often difficult to assess but the above results 

show that in many cases phenocopies can adversely affect the size of region derived from 

a linkage or allele sharing analysis. Complex disease phenotypes are affected by both 

environmental effects and additional genetic effects such as unlinked loci (genetic hetero-

geneity, epistasis). These results show how to calculate the expected region length as a 

result of recombination events in a sample of mutation carriers. However, unless it is 

possible to be sure that all the affected individuals carry a mutation at the disease locus 

of primary interest (i.e. no phenocopies) researchers should not conclude that the disease 

locus is in the region obtained. 

Parametric linkage techniques are fairly robust to mis-specification of parameters such 

as penetrance ([2011, see also chapter 1, introduction). However, this only applies to the 

detection of linkage. The simulations described here show that correctly specifying the 

phenocopy rate in a parametric analysis will not prevent phenocopies from sometimes 

interfering with disease region identification. 

This work was motivated by our group's attempts to identify disease regions for bipolar 

disorder. A single large family affected by bipolar disorder and recurrent major depression 

generated a LOD of 4.8 at a marker on chromosome 4p [27].  Although this gives strong 

evidence for the relevance of this locus to disease susceptibility it is far from clear whether 

recurrent major depression and bipolar disorder have the same genetic cause(s). This 

means the phenocopy rate of relevance to this region is unlikely to be zero. In an attempt 

to narrow the disease region indicated by the initial linkage on 4p, another three families 

that also showed linkage to this region of 4p were collected. The region identified by 

the overlap of regions in the 4 families are shown in figure 7.5 (Kathy Evans, University 

of Edinburgh, http: //www.genetics.med.ed.ac.uk/psygen/4p/). There was some 

overlap between the disease regions identified in the families but there was no single 

region implicated by all four families. This implies that some of the affected individuals 

considered in these families segregated mutations at loci other than the one of interest 

here on chromosome 4p. That is, some of the affected individuals were in fact phenocopies 

(with respect to the 4p locus). 

Other researchers have encountered similar problems in identifying a single disease 

region in all affected individuals. For example, Angius et al. [12] looked at essential hy-

pertension, considering 35 affected individuals. Hypertension is almost certainly caused 
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by multiple loci [2581 and all affected individuals not carrying a mutation at the main 

locus (2p24) they reported will be phenocopies with respect to this locus. Angius et al. 

[12] were unable to identify a single set of alleles in this region carried by all the affect-

eds, indicating the existence of at least one phenocopy. The region they reported may not 

include the actual disease locus as a result of these phenocopies. In psychiatric disease, 

[35] performed linkage analyses on a relatively small schizophrenia data set (<50 affect-

eds) and concluded that, on the basis of traits known to have non-negligible phenocopy 

rates, the regions of interest for further work were 4.3 and 19.75cM in length. Whilst 

these are the regions indicated by recombination events in the 'affected' individuals, these 

regions will not necessarily include the disease locus. Further, investigators performing 

multiple statistical tests (e.g. fitting a dominant model, a recessive model, a model with 

broad/narrow disease definition etc.) will normally report the smallest possible 'region of 

interest' without due regard to the number of tests done. 

It may be possible to minimise the number of phenocopies by concentrating on more 

extreme (more 'genetic') forms of the disease of interest. However, in some cases this 

may decrease the number of available affecteds unacceptably. For example, in psychiatric 

disease it is unclear that diseases such as schizophrenia, bipolar disorder and recurrent 

major depression are genetically distinct (see also chapter 6) and one may acquire a large 

set of affected individuals if one treats them as a homogeneous group. However, since it 

has been postulated [24, 26] that there exist some susceptibility loci which affect both and 

some which do not, it is not clear a priori what effect merging the groups is likely to have 

on the phenocopy rate. Such 'heterogeneity of phenotype' may cause as many problems as 

the commonly quoted locus heterogeneity. 

It is assumed above that unaffected individuals are not used to help identify the MDR. 

Including such individuals would decrease the size of the MDR (since there are potentially 

more recombination events available to reduce the size of the region of interest) and re-

duce the chance of phenocopies causing problems. However it is rare in the analyses of 

complex traits for unaffected individuals to be afforded the same significance as affected 

individuals. For example, unaffecteds may not show disease symptoms because they are 

still relatively young. For diseases in which it is possible to be sure that unaffecteds are 
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truly unaffected (perhaps because they are significantly older than the typical age of onset) 

then it would be advantageous to include them. Most non-parametric and some paramet-

ric linkage analysis methods do not include unaffected individuals [127, 189, 201, 21, see 

also chapter 1. 

In the analyses of quantitative traits uncertainty in the position of the trait locus is 

dealt with by constructing appropriate confidence intervals. However, in the analyses of 

discrete complex traits some investigators are wont to forget that the affected individuals 

do not all necessarily carry the mutation of interest, resulting in the reporting of untenably 

small chromosomal regions. Confidence intervals in discrete trait linkage analyses are 

considered by [1941 but are rarely used in practice. More often researchers ignore the 

presence of phenocopies and report the smallest region they find. 

A more robust MDR may be constructed by removing the effects of certain recombina-

tion events. For example, if it is possible to be relatively sure that there exists at most 

1 phenocopy in the sample of 'affecteds', a robust MDR can be constructed by removing 

the two individuals who define the left and rightmost limits of the MDR. If the probabil-

ity of more than 1 phenocopy is non-negligible then more individuals could be removed, 

yielding a larger but more robust MDR. Removing such individuals will often only have 

a small effect upon the size of MDR obtained. In the 20 affecteds example, a phenocopy 

rate of 0.01 was considered and 100 'unaffecteds' (individuals not carrying the mutation of 

primary interest) were ascertained. As mentioned in section 7.2.1 (quantifying the effects 

of...) above, this would mean that the probability distribution of number of phenocopies 

would be binomial. Therefore the probability of more than 4 affecteds would be small 
100 	100 

(Pr(> 4 affecteds) = 	
( 	) 

0.01' (1 - 0.01)b00_x = 0.0034). A robust MDR can be con- 

struct using this information. The interval would be (20-4x2)  *100 = 16.7cM on average and 

would represent the widest possible disease region, even in the presence of phenocopies. 

On average this will be 67% larger than the original MDR (10cM) calculated assuming 

no phenocopies. With more affecteds but a similar number of phenocopies the effect of 

removing the nearby recombinants would be less severe. For example if there were 40 

affecteds, and at most 4 phenocopies the robust MDR would be (40-4x2) * 100 = 6.25cM on 

average. In comparison the original MDR was 5cM. However, if one is less sure of the true 

phenocopy rate it will not be obvious, a priori, how many individuals to remove to obtain a 

robust MDR. Clearly, there will come a stage where discarding a large number of affecteds 

will be counter-productive. 

If the available sample is large and/or there are likely to be few phenocopies the disease 

regions found may be reliable. However, as the number of affected individuals decreases 

and/or the phenocopy rate rises, investigators must be cognisant of the possibility that 

the disease region indicated by their linkage result may not necessarily include the true 

disease locus. Although it would still be recommended to begin fine mapping at the LOD 

score peak, the results presented here show, particularly in small samples, the LOD score 

peak may be some way from the true peak when phenocopies are present. 
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7.6 Appendix 

The equation given in section 7.2.1 is not strictly correct. When there are two or more phe-

nocopies in a sample it is possible for more than one to have a recombination in the MDR. 

These recombinations may indicate different regions of the MDR and hence together rule 

out the whole region. The probability of this happening can be incorporated into equation 

7.1 above, equation 7.1 needs to altered to include 05n-1  (where n is the number of phe-

nocopies),toensure that when there are 2 or more phenocopies that their recombination - 

events are on the same side. The full equation for the probability of a phenocopy making 

the MDR too small is therefore 

Pr(1 phenoc. has rec. in MDR) + Pr(2 phenocs. have rec. in MDR) x 0.5 + 

Pr (3 phenocs. have rec. in MDR) x 0.52 + = 

( 

r  ) L'(l - L)r_lP r (rphenocs.  in sample) + 

r=2 	( ) 

  L2(1 - L)r_ 2Pr (r phenocs. in  sample) + 

( ) L
3 (1 - L) 3 Pr(rphenocs.in  sample) + ... = 

0.5k_1 ( r )Lk(1_L)r_k( "n ) Pr(1_ P)r_mf r >k 

k=1 r=1 

where m is the number of 'unaffecteds' (individuals not carrying the mutation of pri-

mary interest), n is the number of phenocopies, L is the MDR length and p is the phenocopy 

rate. With 20 affecteds, 100 'unaffecteds' and a phenocopy rate of 0.01 equations 1 and 2 

give 0.095 and 0.093 respectively. With a phenocopy rate of 0.05, the difference is more 

substantial (0.346 cf. 0.393). 
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Chapter 8 

General Discussion 

Human genetics has become a very large and active field in recent years and seems set to 

continue to expand for the foreseeable future. The human genome project, together with 

other genome projects and related technologies have both driven and been part of this 

expansion. In terms of one of the major aims, the mapping of genes responsible for dis-

ease, only modest progress has been made. However, it seems inevitable that substantial 

further advances will be made over the next few years. The amount of time, effort and 

resources invested virtually guarantee success, with the only question being what factors 

will accelerate this discovery process. In many cases these factors will be based partly 

in the new technologies recently and continuing to be developed. Efficient (statistical) 

methodology and study design, together with advances in disciplines such as bioinformat-

ics and relevant clinical practice, will allow these new technologies to be used effectively, 

ensuring a continuing increase in the understanding of the genetic basis of disease. 

At different stages in recent history (since the discovery of the structure of DNA in 

1953, say), the emphasis in genetics has changed depending on the differing interests 

and technologies of the day. This has led to significant advances in fields such as live-

stock genetics (animal breeding), mouse genetics, fruit-fly (Drosophila) genetics and plant 

(breeding) genetics. Since there are substantial areas of common ground between say hu-

man, livestock and ecological (natural non-human population) genetics, success has been 

and will continue to be accelerated by meaningful cross-talk between the different but 

related areas of genetical research. 

In this chapter the current state of human genetics is reviewed. The impact that new 

technologies will have on future progress is discussed and predictions are made about the 

future of human genetic studies. 

Successes and Failures Consider first of all some of the successes in gene mapping. 

Considerable success has been achieved in many rare Mendelian diseases. The genes 

responsible for diseases such as Huntington's disease [93, 141] and cystic fibrosis (CF) 

[234, 1201 have been identified and lessons can be drawn from these. The most obvious 
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lesson is that the principal of reverse genetics is sound and approaches such as positional 

cloning (i.e. linkage followed by linkage disequilibrium) can provide insights, often un-

available otherwise, into the biochemical and development pathways involved. As time 

has passed it has become clear that even in these simple disorders, the relationship be-

tween phenotype and genotype is not necessarily simple. The genetic component of dis-

orders such as non-syndromic deafness [171] and blindness [259] has been shown to be 

rather complex, with many distinct loci (each individually causing Mendelian or near-

Mendelian inheritance) often causing the same end phenotype. Figure 8.1 (from Wright 

and Hastie [2591) illustrates the diversity of disease loci affecting vision. Even cystic fibro-

sis (a Mendelian trait where all disease genotype carriers are affected) has been shown to 

have modifier loci influencing disease development in individuals carrying the same mu-

tation at the major CFTR gene [153]. Although there are a few populations (e.g. Northern 

Europe; some recent papers have used CF data from Northern Europe as a test-bed for 

new multiple marker based linkage disequilibrium (LD) techniques [152, 162, 163])  in 

which a single mutation causes CF, there are in fact hundreds of different allelic variants 

that cause CF (OMIM 602421). It seems likely that many (genetically) complex diseases 

will also have substantial allelic (and locus, for that matter) heterogeneity. The genomic 

region responsible for Huntington's disease (HD) was identified in 1993 [141], some ten 

years after the initial linkage [93].  From a genetic perspective, discovery of the HD gene, 

together with a similar result in Fragile-X syndrome (OMIM 309550), was important be-

cause it allowed researchers to fully realise the basis for the decrease in the age of onset 

when the disease was passed from generation to generation (this phenomenon is known as 

anticipation). Prior to the full dissection of Fragile-X and HD, the anticipation effect was 

thought to be simply due to ascertainment biases in family collection (i.e. the only fami-

lies ascertained are those that have particularly severely affected children and relatively 

mildly affected parents). Anticipation has been reported in complex diseases such as bipo-

lar disorder [84, 240] and schizophrenia [151] and knowledge of the underlying genetic 

mechanisms in diseases like HD may usefully inform this new research. In Alzheimer's 

disease (AD), success came as a result of researchers concentrating on individuals with 

particularly early onset [81, 82, 2281. This success has taught us that definite identifica-

tion of even a single gene can be of substantial significance; in the case of Alzheimer's this 

led to greater appreciation of the role that amyloid 3 peptides (in plaques in the brain) 

played in the disease [94]. Such insights into disease pathogenesis will ultimately lead 

to improved diagnosis, therapeutics and pharmaceuticals. Furthermore, the AD studies 

indicated that selection of individuals with an extreme phenotype could increase the rel-

ative importance of any single genetic effect within a sample. In a similar fashion, breast 

cancer genes were found by examining those rare families who exhibited near-Mendelian 

inheritance (genes BRCA1; OMIM 113705 [157], BRCA2; OMIM 600185 [2571). A recent 

study identified a gene responsible for susceptibility to Crohn's disease, a common disease 

with non-Mendelian inheritance [106]. This success indicated that the techniques applied 

to Mendelian disease could be successful in common complex diseases. There was how- 
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ever, an element of good fortune in the Crohn's disease success (see chapter 1) and future 

studies will need to be more efficient (study design, phenotypic definition etc, see below) 

if the speed of progress is to properly reflect the massive investment of time, money and 

effort. 

Many of the characters under genetic study are quantitative not qualitative in nature 

(i.e. disease or no disease). Although quantitative traits can be analysed using qualitative 

methods by truncating the trait distribution, this discards useful information. Quantita-

tive trait locus (QTL) mapping was developed mainly in livestock, plant and model organ-
ism (e.g. mouse, drosophila) genetic applications, with human genetic applications and 

techniques only becoming widely used rather recently. There have been some successes in 

QTL studies with the regions indicated by genome scans beginning to allow identification 

of the underlying genes. For example, a recent paper showed that a QTL affecting a mea-

sure of growth in yeast was composed of 3 linked loci [219]. The 3 identified genes were 

each neither necessary nor sufficient to cause a discernible difference in trait value. This 

demonstrated that, whilst initial identification of the chromosomal region on which the 

QTL resided may be relatively simple, fine scale dissection of the gene or genes involved 

may be more difficult. It also serves as a reminder that the definition of a QTL is a chromo-

somal region contributing to the trait value and that in some cases this region will contain 

more than one gene contributing to the trait. Whilst every QTL will not necessarily be as 

complex as the 3 locus QTL for growth in yeast, dissection of the actual mutations will be 

difficult; even in cases in which LD is used to fine map the loci (see also below) it will not 

necessarily be obvious if the causative mutation has been identified; the identified poly-

morphism may simply be in strong LD with the disease polymorphism actually causing 

the disease. Knock outs or functional (expression) studies may help here but these rely on 

the existence of a suitable model organism (e.g. mouse). Korstanje and Paigen [1241 re-

viewed the (mammalian) QTL literature in 2002, reporting that up to that point 29 genes 

had been unambiguously identified after being initially implicated by genome scans (i.e. 

based on linkage, although note that some of the 29 genes were for qualitative not quanti-

tative traits). To gain some impression of the rate of progress, notice that another review 

of (mammalian) complex trait gene mapping in 2000 [91] reported there were no genes yet 

identified for quantitative traits. In livestock, genome scans for quantitative traits of com-

mercial importance have become relatively common, leading to the identification of the 

causative mutation in a few cases (subsequent to the studies reported in [124], positive re-

ports include [89, 73, 30]). These genome scans were based upon linkage initially, with LD 

mapping facilitating fine-mapping in some cases. In other cases, the post linkage mapping 

involved transgenic insertions, gene knockouts and/or examinations of functional differ-

ences in candidate genes. The multitude of techniques involved, stress that rapid future 

progress will depend upon the application of sets of complementary techniques. 

It may be instructive to look at cases in which genes have not (yet) been identified. 

Many psychiatric diseases have a strong genetic component (chapter 1) but research to 

date has produced inconsistent results. Possible reasons for this have been discussed else- 
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where in the thesis (chapters 1, 6); these include lack of knowledge of which phenotypes 

best reflect the underlying genotype, appropriate study designs (given the possibility of 

genetic heterogeneity), population choice (particularly for LD based methods), insufficient 

sample size, poor matching of case and control populations (again for LD based meth-

ods), poor incorporation of essential environmental factors and lack of appreciation of the 

difficulties inherent in dissecting epistatic genetic effects. In chapter 6 (section 6 study 

design) the problems with the first major positive linkage to schizophrenia were indicated 

([114, 181, [2201, p284). Such problems led Owen [164] to ask in 1992, 'will schizophrenia 

become a graveyard for molecular geneticists?'. A long series of unreplicated association 

study results (as in chapter 1, there have been >50 Web of Science listed journal articles 
with "no association" and "schizophrenia" in the title since 1995, most of these contradict-
ing previous results) in the years following 1992 only served to reinforce this pessimistic 

view. Events in bipolar disorder linkage mapping offered little in the way of encourage-

ment either. Guo and Lange [91] describe the initially positive linkage results for bipolar 

disorder. This positive result was followed in short order by a number of negative results 

(which in themselves do not necessarily disprove the validity of the initial linkage) and a 

retraction when the initial families were followed up in more detail. Such false starts are 

unfortunate in that they undermine funding and public support for future studies, per-

haps even suggesting to some of the public that these diseases are not genetic (there is a 

brief discussion of why they are highly likely to be genetic in chapter 1). These failures are 

useful in that they allow us to appreciate the need for rigorous application of standards for 

the declaration of significant linkage; researchers should be encouraged to correct appro-

priately for the multiple tests invariably applied in (psychiatric) disease (e.g. for multiple 

parametric models or disease definitions). The failures have also been useful in that they 

have forced investigators to critically re-evaluate the way in which they design their stud-

ies. Although, as discussed in chapter 6, there is no consensus on what constitutes the 

best way forward in terms of study design, the existence of a debate is healthy and the 

application of numerous approaches may be beneficial in the long run. The relative lack of 

progress may also serve as a reminder that, as discussed in chapters 1 and 7, whilst para-
metric models can be effective in extracting most of the information from non-Mendelian 

traits the inferences drawn from these should reflect the fact that the Mendelian model is 

only an approximation. Despite the fact that a first definite susceptibility locus for psychi-

atric diseases such as schizophrenia remains elusive, recent developments indicate that 

the field should be optimistic about further progress. The results of studies such as that 

reported in Iceland [218, 2171 and elsewhere indicate that the identification of a demon-

strably causal (increasing susceptibility) mutation is unlikely to be much more than a few 
years away. 

Study design and choice of phenotype Since the identification of the susceptibility 
loci responsible for genetic component of complex disease will be difficult, it will be neces- 

sary to choose an appropriate study design and trait. A general principle, relevant to most 
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diseases/traits relies upon increasing the relative importance of genetic effects. Further, 

since there are a great many more possible multi-locus models for disease than single locus 

models, single locus models will likely prove more useful; enriching the sample for a single 

genetic factor will increase the chance of such single locus models succeeding. There are 

a number of ways of acquiring a genetically homogeneous sample. As mentioned above in 

the context of Alzheimer's disease, individuals with more severe forms of the disorder may 

be selected Similarly, in bipolar disorder individuals with bipolar I (that is, individuals 

with severe bipolar disorder; cf. bipolar II the milder form) may be ascertained. Further-

more, families with bipolar I individuals are more likely to contain other individuals with 

affective disorders (recurrent major depression, bipolar II). Although the underlying bio-

logical relationship between these affective disorders is unknown, selecting sets of known 

relatives (extended families) may help increase the chances of the affecteds being affected 

as a result of genetic effects acting strongly in those particular families (chapter 6). This 

strategy was used with good effect in the analyses of families affected by schizophrenia 

and bipolar disorder in chapter 5. Samples may be selected to include individuals who are 

at low levels of environmental risk yet are still affected; e.g. non-smokers affected by lung 

conditions or cardiovascular disease sufferers in populations with low risk diets. Alterna-

tively ethnic groups with high prevalence despite relatively low risk environment may be 

selected; this may represent one case where the diverse north American population may 

have an advantage over less diverse populations. One example of this would be studies of 

type 2 diabetes in Mexican Americans, where prevalence is unusually high (despite their 

being subject to broadly the same environmental effects as the rest of the United States 

population)[45, 591. Furthermore, the incidence of traits such as type 2 diabetes [258] 

and BMI (see chapter 4, [177]) has changed with secular time, strongly suggesting that 

both environmental and genetic factors are of substantial importance. Assuming rele-

vant environmental factors can be identified and measured, the challenge is then to apply 

appropriate methods which recognise the effects of the environment upon the trait. The 

variance components approach employed in chapters 1, 2 and 6 allows ready incorporation 
of such information. 

In chapter 4 a number of cardiovascular disease risk factors were considered. In ret-

rospect, the traits chosen for this analysis may not have been the most appropriate. On 

the one hand all of the traits (height, body mass index (BMI), total cholesterol, high den-

sity lipoprotein cholesterol) had high heritabilities. On the other hand, whilst the highest 

univariate LOD score was achieved for BMI, some of the other phenotypic measures (such 

as the cholesterol measures or other traits measured in the FHS families such as fasting 

glucose levels) may have a simpler composition (in terms of the underlying genetics) and 

may be more suitable for genetic studies. 

Although many disease outcomes or traits in human genetics have binary clinical end-

points (e.g. schizophrenia, breast cancer), some have a quantitative trait, or endopheno-
type, closely related to the binary trait of interest. For example in Psychiatric disease, 

measures of certain electrical potentials on the scalp (P300, see chapter 2 and [251) can 
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be shown to be related to disease status in schizophrenia. In cardiovascular disease, a 

number of the traits (e.g. total cholesterol, high density lipoprotein cholesterol, fasting 

glucose) measured in studies such as the Framingham heart study may be useful for find-

ing genes responsible for traits such as hypertension and stroke. Joint quantitative and 

qualitative techniques have been described [252, 1051 and may be more useful for gene 

detection than simple binary trait analysis in some complex diseases. Similarly, if there 

are multiple quantitative trait measures available, general multivariate techniques will 

allow additional information to be extracted from the available data. In chapters 2, 3 and 6 

statistical techniques suitable for the analysis of longitudinal data were considered in de-

tail. Since many of the traits of interest in human genetics change over time, this form of 

modelling may prove invaluable for data sets such as the Framingham heart study. Other 

data sets amenable to this form of multivariate analysis include twin studies [144, 233], 

other studies of CVD risk factors [111, 185, 2361, a Framingham based study of children 

[180] and a number of behavioural genetic and psychiatric studies [160, 64, 671. 

For quantitative traits, the selection of individuals with extreme phenotypic values 

can be seen as the analogue of selecting densely affected families or only using early onset 

cases. Selective genotyping has long been used to minimise genotyping costs in experimen-

tal organisms [139]. Analogous schemes have been proposed for human genetic studies. 

Risch and Mang [1931 propose selecting extreme discordant sibs, showing large increases 

in power could be achieved. A nice application of this sampling scheme was reported in 

a paper analysing data from a questionnaire based study of anxiety [74]. However, col-

lecting sib pairs for studies based on clinical phenotypes may be more difficult. In such 

cases most individuals must be phenotypically assessed to determine where they lie in 

the trait distribution. As indicated in chapter 6, data that has already been collected (on 

additional relatives of the ascertained sib pairs) should not be discarded and should be 

analysed along with the sib pairs. If this means that additional methodology is required 

then it should be developed; data should not simply be discarded so that affected sib pair 

based methods can be applied. After all, whilst the costs of phenotyping and genotyping 

may vary from disease to disease, the costs involved in the statistical analysis are gener-

ally much less than those accumulated in the laboratory and in the clinic or hospital. Care 

must be taken, however, in applying linkage analyses to highly selected data sets. Simply 

applying the variance components techniques described in chapter 2 to data selected on 

the basis of observed phenotypes will lead to test statistics with unpredictable type I error 

rates (chapter 2), [31). Techniques such as conditioning on the phenotype of the selected 

individuals can be applied to remedy this problem [204, 32, 49, 103]. Larger families will 

also offer benefits in terms of the available information on linkage phase (the haplotype 

status of the parents will always be unknown in small data structures but may be inferred 

in larger families). For some late onset diseases, parental information may not necessarily 

be available but information from other relatives (half sibs, cousins, uncles, aunts, nieces 

and nephews) can often be included [91]. In human genetic studies the relative advan-

tage gained in selecting individuals will be small because the phenotyping: genotyping 

133 



cost ratio in humans is usually different to that in experimental organisms (phenotyp-

ing is generally much more expensive in human studies). As marker technologies become 

cheaper, the relative advantage of selective genotyping will be further diminished. A plau-

sible alternative to selecting individuals on the basis of extreme phenotype is to ascertain 

prospective samples of whole (extended) families. Ideally the samples will be measured 

for a number of different phenotypes. Since phenotyping many different traits costs little 

more than phenotyping one trait (providing they are measured at the same session at the 

clinic or hospital) this approach may be cost effective. A good example of this would be 

the Framingham heart study (chapter 4). When traits are measured in this way (i.e. not 

on the basis of phenotype) no correction is required for variance component analyses (as-

suming the traits are multivariate normally distributed). The presence of multiple trait 

measures also opens up possibilities for multivariate analyses (chapters 2, 3 and 4 and 

above). 

Studies based on model organisms are sometimes cited as holding great promise for 

disease mapping. Some of the advantages (ability to create knockouts, use of mutagen-

esis et cetera) of this approach were specified above in the discussion of fully dissected 

QTL. There are also other advantages. In the case of mouse models, large samples can 

be obtained relatively quickly. Once linkage signals have identified QTL, they can be re-

fined using a far wider range of techniques than those available in unmanipulated popu-

lations (recombinant progeny testing, interval specific congenic strains; reviewed in [481). 

Furthermore, appropriately annotated genomic information is now readily available for a 

number of model organisms. In many cases this facilitates the identification of genes with 

a common evolutionary origin (called homologs). There are also several problems with 

this approach however. An obvious disadvantage for some traits is the lack of comparable 

phenotype in animal models for diseases such as depression or schizophrenia. Inventive 

work by researchers in Oxford have allowed anxiety to be modelled as a quantitative trait 

in mice (using electric shocks and measures of excrement weight, [72]). However, even 

in cases in which there is an analogous phenotype, there are no guarantees that the un-

derlying genes have the same effects in different species. Guo and Lange [91] give two 

pertinent examples; one where a mutation identified in mice has negligible effects in the 

homologous gene in humans and another in which a mutation, known to adversely affect 

human carriers, has only minor effects in mice. A general problem, applicable to most 

model systems, is that the genetic diversity present is usually just a small fraction of that 

present in unmanipulated populations. The more the experimental organisms are mod-

ified to make them simple to dissect, the less they reflect the overall genetic picture in 
human populations [259]. 

Technology Advances in technology will offer exciting new approaches for genetic dis-

section in the future. The recent availability of gene expression data may offer new in-

sights into the genetic structure of many traits of interest. Microarray chips can be used 

to obtain measures of gene transcript levels in different tissues; simple applications may 
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involve comparisons of expression levels in diseased and healthy tissue or assessment of 

the transcript levels through a period of development. The measures of expression levels 

have been analysed within a QTL framework by treating the expression levels as 'traits' 

[58]. Although expression levels alone do not implicate the loci in question as causal 

factors for the disease or trait of interest, they may offer information on which genes con-

stitute good candidates for further study (after initial localisation in a phenotype based 

genome scan). Wayne et al. [2431 combine QTL mapping with expression level analysis by 

first performing a scan for QTL; this scan indicated over 5000 candidate genes. By sub-

sequently performing analyses of expression data Wayne et al [243] were able to generate 

a shortlist of only 34 genes. Since microarrays allow assessment of transcript levels in 

many genes, the joint effect of multiple loci may also be examined. If multivariate QTL 

analyses (applied to expression levels) can be used to identify interactions between loci 

then this may provide direct evidence for epistasis, providing insights into the regulatory 

effects occurring between genes [58]. Furthermore, if expression levels at different stages 

of development can be assessed, longitudinal analyses (similar to those described for lon-

gitudinal QTL mapping in chapters 2 and 3) may offer insights into the changes across 

time. Although multiple trait analysis of longitudinal traits (see discussion of chapter 2) 

requires further work before it can be applied, this form analysis may allow characterisa-

tion of regulatory genetic effects (at least some of which will switch on and off at different 
stages of development). 

Other advances in technology include laboratory methods for obtaining haplotypes di-

rectly and methods for pooling DNA. Whilst these advances are unlikely to substantially 

change the way we perform genetic studies some advantages may be discerned. In the 

case of 'direct' haplotypes, new molecular techniques [57] allow one to obtain the section 

of inherited chromosome; this offers more information than current methods which only 

allow the two alleles at a locus to be assessed together (it used to be impossible to directly 

infer whether alleles at nearby loci are part of the same haplotype). However, haplotypes 

can often be unambiguously reconstructed on the basis of known relationships (as in a 

multipoint linkage analysis) or estimated on the basis of LD between loci [230, 1961. DNA 

pooling [131] is a technique where, instead of typing individuals at each locus (assumed to 

be a single nucleotide polymorphism) individually, the DNA is pooled and the proportion 

of individuals carrying a particular allele is assessed. This offers no more information 

than conventional genotyping but the savings in cost may be substantial. A technique to 

correct for the bias introduced as a result of unequal amplification of the DNA has been 
proposed [239]. 

Linkage Disequilibrium mapping Although the main focus of this thesis has been on 
linkage analysis, the future of genetic studies will rely, to a greater or lesser extent upon 

association studies. As indicated in the introductory chapter, LD studies are an essential 

part of the fine mapping component of disease gene identification. Looked at from this 

point of view, LD studies are a relatively uncontroversial pursuit. The same cannot be 
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said of LD based whole genome association (WGA) studies. A parallel may be drawn here 

with the use of Bayes theorem in modern statistics; as a concept in probability theory 

Bayes theorem is thoroughly uncontroversial. The application of Bayes theorem as a ve-

hicle for the incorporation of prior information into statistical practice however, is fraught 

with dangers, not least because of the dogmatic stance of some statisticians. Some of the 

objections to the use of LD for initial detection of disease loci were detailed in the introduc-

tory chapter. In short, these are based upon the strong dependence of the WGA technique 

on some critical assumptions. These are that the distribution of mutations will have to 

be simple (in terms of the number of alleles) and that the samples collected from popu-

lation based samples will be reasonably homogeneous. Given the large amount of money 

invested in WGA methods, it seems important that the validity of these assumptions be 

rigorously tested. Although there has been considerable debate on this, there remains no 

consensus in the literature. Reich and Lander suggest that because alleles influencing 

common disease will not be under much selective pressure they may rise to high frequen-

cies [184]. However, simulations by Pritchard have indicated that, on balance, even small 

selective effects will often force alleles to become rare [178, 1791. Furthermore, experience 

with many of the diseases studied thus far indicate that most population based samples 

will in fact be genetically diverse (implying that any single locus will only have a marginal 
effect upon risk) [245, 258]. 

Although the fact that LD only extends small distances (an order of magnitude either 

side of 10kb depending on the population [1261) makes it ideal for fine-mapping loci, this 

also means that a massive number of markers are required to cover the human genome; 

appropriate correction for multiple testing is vital here. It is unclear at the moment to 

what extent the Hap-Map project (again see introductory chapter) will alleviate this mul-

tiple testing problem. A very optimistic view for the future would be that since isolated 

populations have high levels of LD, initial detection (using WGA) may be possible in these 

populations; very fine scale mapping could then proceed in populations known to have 

particularly low levels of LD (for example some African populations [1821). The success 

of such a strategy depends very heavily upon the assumption that the common disease 

common variant hypothesis (i.e. that the allelic spectrum is relatively simple) holds for 

the disease of interest. If there are indeed common loci with small effects in a substantial 

proportion of individuals one obvious question would be, would knowing about such minor 

effects be of any practical consequence? It seems unlikely that detection of very small 
genetic effects would impact significantly upon human disease prevention/health. 

Summary Despite some false starts, human genetics seems likely to advance signifi-

cantly in the next decade or so, offering new insights into the genetic component of human 

disease. Genetic studies of complex human disease will yield a steady stream of discov-

eries, with genes likely to be identified for many of the major diseases affecting human 

populations (although how much impact such discoveries will have on human health from 

an epidemiological point of view remains to be seen). These discoveries, fuelled by sub- 
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stantial investment from both governments and private companies, will come as a result 

of a combination of different approaches; for the immediate future, successes will come as 

a result of the application of positional cloning (linkage followed by LD) based techniques. 

The genes found with linkage analysis techniques may not necessarily be those that cause 

a substantial portion of the overall population disease risk. Nonetheless, knowledge of 

how these genes act in affected individuals will be invaluable, with the insights provided 

ensuring further progress is made. 
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Is Schizophrenia Linked to 
Chromosi 

Levinson et al. (1) reported the results of a 
meta-analysis of families showing no major 
schizophrenia locus on chromosome lq. 
These results, based -on amulticenterstudy of 
affected sibling pairs (ASPs), are in striking 
contrast to findings of several recent papers 
reporting susceptibility loci on I q in extended 
families. Significant linkage (LOD = 6.5) at 
1q21-22 was detected in Canadian families 
(2) and replicated in European origin families 
(3, 4). At 1q42, Blackwood etal. (5) obtained 
a LOD of 7.1 in a single Scottish family, 
while Ekelund et al. (6) obtained a LOD of 
3.2 in Finnish pedigrees. How can these ap-
parently conflicting results be reconciled? 
We suggest that locus heterogeneity ade-
quately explains the failure of an ASP study 
with any reasonable sample size to replicate 
results from large extended families, and we 
have strong reservations about the limited 
interpretation of the results in (1). 

We considered the effect of heterogeneity in 
two ways. First, we evaluated the power of the 
ASP mean test under heterogeneity. The num-
ber of sib pairs required to detect linkage is 
Inversely proportional to the square of the pro-
portion of linked families (7). Fig. 1 shows the 
ffect of heterogeneity on the power to detect 

linkage given the effect of an allele segregating 
n the linked families, which increases risk to 
;ibs by a given factor. Three effect sizes-small 
factor 1.35), moderate (factor 3), and large 
factor 7)-were considered. As shown, a sam- 

me lq' 
pie of less than 1000 ASPs, as studied in (1), has 
little power to replicate linkage of schizophrenia 
to a locus that contributes to risk of illness in less 
than 20% of families. Note that Levinson et al. 
used the relative risk to siblings of affected 
individuals across the whole sample [X S Ib in (1)] 
to determine power. Our interest is in showing 
how large a part heterogeneity plays in deter-
mining power. In the case of breast cancer, for 
example, the BRCA1 and BRCA2 genes have a 
large effect on risk (10- to 20-fold) in mutation 
carriers (8) but, because they are very rare in 
most populations, they are not readily detectable 
in large heterogeneous samples. 

We also considered the power of nuclear 
families using SLINK software (9). Sixty 
families (each with 6 individuals in the sib-
ship, equivalent to 15 ASPs) were simulated 
under a partially penetrant model and ana-
lyzed allowing for heterogeneity (10). The 
power to detect a LOD of 3 decreased rapid-
ly; power for 75%, 50%, and 33% of families 
with mutations segregating at the gene of 
interest was 80%,40%, and 5%, respectively. 

In concluding that there is no locus of 
major effect on chromosome 1 q, Levinson et 
al. have not appropriately considered locus 
heterogeneity. The logistic regression used in 
(1) ignores within-sample heterogeneity. 
Parametric linkage analysis incorporating 
heterogeneity is used but only with a reces-
sive model. To ensure good power one must 
also fit a dominant model (11). 

Though the results in initial genome scans 
are likely to be overestimates of effect size, 
the effects found in the studies reporting link-
age to chromosome 1q21-22 and 1q42 are 
unlikely to be small in magnitude. Such ef-
fects will account for a sizable proportion of 
the variance in liability in particular families. 
The distribution of risk to schizophrenia can 
be well described by a -model-that -incorpo-
rates genes of major effect and substantial 
locus heterogeneity. Under heterogeneity, 
ASP studies will require extremely large 
samples. Linkage analyses with large fami-
lies and identification of cytogenetic variants 
associated with schizophrenia are appropriate 
strategies when heterogeneity is expected. 
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ABSTRACT 
Recent empirical evidence indicates that although fitness and fitness components tend to have low 

heritability in natural populations, they may nonetheless have relatively large components of additive 
genetic variance. The molecular basis of additive genetic variation has been investigated in model organisms 
but never in the wild. In this article we describe an attempt to map quantitative trait loci (QTL) for birth 
weight (a trait positively associated with overall fitness) in an unmanipulated, wild population of red deer 
(Cervus elaphus). Two approaches were used: interval mapping by linear regression within half-sib families 
and a variance components analysis of a six-generation pedigree of >350 animals. Evidence for segregating 
QTL was found on three linkage groups, one of which was significant at the genome-wide suggestive 
linkage threshold. To our knowledge this is the first time that a QTL for any trait has been mapped in 
a wild mammal population. It is hoped that this study will stimulate further investigations of the genetic 
architecture of fitness traits in the wild. 

Acommon interpretation of Fisher's fundamental 
theorem of natural selection (FISHER 1958) is that 

selection will deplete additive genetic variance fastest 
for traits related to lifetime fitness (see also FRANK and 
SLATKJN 1992). By extension, fitness traits should be less 
heritable than other traits. Empirical studies provide some 
support for the theorem as there appears to be a nega-
tive relationship between a trait's heritability and its 
association with lifetime fitness (KIwuK et al. 2000; MER-
iiA and SHELDON 2000), and life history traits tend to 
be less heritable than morphometric traits (MOUSSEAU 
and ROFF 1987; ROFF and MOUSSEAU 1987). However, 
the low heritability of fitness traits appears to be attribut-
able to high levels of residual variance (e.g., environmen-
tal variance, maternal effects, nonadditive genetic vari-
ance) rather than to low levels of additive genetic variance 
(Kimux et al. 2000; MERILA and SHELDON 2000), and 
some studies suggest that traits closely related to fitness 
actually have the greatest additive genetic variance 
(HOULE 1992; MERILA and SI-LELDON 2000). 

The apparent maintenance of additive genetic vari-
ance for fitness-related traits raises several key questions 
that must be addressed to understand the mechanisms 
of natural selection (BARTON and KEIGHTLEY 2002). 
For example, can additive variation be attributed to 
many genes of small effect (polygenes) or relatively few 
of larger effect (oligogenes)? Are epistasis and pleiot-
ropy important forces in the maintenance of genetic 
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variation? One approach that can be used to address 
these questions is quantitative trait locus (QTL) map-
ping (MITCHELL-OLDS 1995). Over the last decade QTL 
mapping has been used to investigate the molecular 
basis of quantitative traits in disciplines such as medicine 
(RISCH 2000), animal and plant breeding (KEARSEY and 
FARQUHAR 1998; ANDERSSON 2001), and evolutionary 
genetics (LYNCH and WALSH 1998). 

QTL studies in evolutionary genetics can be broadly 
broken down into two areas. First, considerable progress 
has been made in understanding the genetic basis of 
reproductive isolation (e.g., BRADSHAW et at. 1995) and 
species differences (ORR 2001), by producing experi-
mental crosses between related species. A second major 
area of focus is the genetic architecture of quantitative 
traits within model species such as Drosophila (MACKAY 
2001). Using mapping resources such as recombinant 
inbred lines, a number of well-studied traits such as 
abdominal bristle number have been dissected so that 
their molecular basis is increasingly well understood. 
Recently, QTL have been detected for fitness compo-
nents in Drosophila (NUZHDIN et at. 1997; WAYNE et al. 
2001) and Caenorhabditis elegans (SHOOK et at. 1996). 
However, these experiments have all been conducted 
within specially created crosses, which invariably have 
elevated levels of phenotypic and genetic variation rela-
tive to the parental lines. No study to date has been 
conducted in an unmanipulated, wild population unless 
one regards humans as wild mammals. The extent to 
which the genetic architecture of fitness traits in the 
laboratory mirrors the situation in the wild is controver-
sial and unclear (HOFFMANN 2000). Quite clearly, data 
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are needed to assess the magnitude of QTL effects in 
the wild. 

Despite previous suggestions that QTL for fitness traits 
could be detected within natural populations (MITCH-
ELL-OLDS 1995), obtaining the necessary resources is 
not trivial. First, phenotypic data for traits known to 
influence lifetime fitness must be collected from a large 
sample of individuals—a notoriously difficult undertak-
ing in wild populations (ENDLER 1986). Second, a panel 
of mapped, variable markers is required. Third, the 
relationship between the phenotyped individuals must 
be established to follow the segregation of marker al-

- leles. Only when all of these criteria are met, can a 
genome-wide QTL scan can be conducted. 

The vast majority of QTL experiments involve spe-
cially created populations, such as an F 2  generation or 
backcross created from different parental strains. These 
crosses offer a powerful approach to detecting QTL, 
but cannot be created in an unman ipulated, wild popu-
lation. Similar limitations hinder complex disease gene 
mapping in human populations. To maximize the power 
of available pedigrees, sophisticated gene mapping algo-
rithms and methodologies have been developed (ALMASY 
and BLANGERO 1998; GEORGE et at. 2000). In particular, 
it has been suggested that complex multigenerational 
pedigrees offer greater power than the half-sib or full-
sib families nested within them (WILLIAMS et at. 1997; 
SLATE et at. 1999). The main drawback to complex pedi-
gree methods is that they are computationally de-
manding, especially when pedigrees contain loops due 
to inbreeding. However, their use is becoming increas-
inglywidespread, particularly in human populations. In 
natural populations where large sibships are generally 
uncommon, mapping in complex pedigrees may be the 
only available option. A two-step method to map QTL 
in complex pedigrees was recently described by GEORGE 
et at. (2000). First the number of genes identical-
by-descent (IBD) between all individuals in the pedigree 
at any given chromosomal location is estimated using 
a Markov chain Monte Carlo (MCMC) sampler (HEAT!-! 
1997). Once this IBD matrix is calculated, the contribu-
tion of the chromosomal location to the trait's variance 
is assessed using restricted maximum likelihood (REML). 
This methodology has been used to map a locus influ-
encing bipolar disorder in a complex human pedigree 
(VISSCHER et al. 1999) and has been shown to be capable 
of detecting QTL in simulated livestock pedigrees, even 
when some marker genotypes are absent (GEORGE et al. 
2000). Using this approach, it should be possible to 
map QTL in pedigreed wild populations, provided the 
necessary phenotypic and life history data are available. 

Here we describe an attempt to map QTL for birth 
weight in a wild population of red deer (Genius elaphus) 
on the Isle of Rum, Inner Hebrides, Scotland. The study 
population is well suited to QTL mapping for several 
reasons. Detailed life histories have been collected 
(CLUTTON-BROCK et at. 1982; KRUOK et at. 2000), exten- 

sive pedigrees have been determined (MARSHALL et at. 
1998; KRUUK et at. 2000), and the deer genome is 
mapped (SLATE et at. 2002). Furthermore, a previous 
quantitative genetic analysis estimated the heritability, 
additive genetic variance, and relationship to lifetime 
fitness of a number of traits (KRuux et al. 2000). Birth 
weight is a suitable trait for QTL analysis as it is known 
to have an additive genetic variance component (KRuux 
et al. 2000), does not have a skewed distribution (unlike 
many life history traits), is positively associated with sev- 
eral fitness components (CLEJTTON-BROCK et at. 1987; 
COULSON et at. 1998; KRUUK et at. 1999), and, perhaps 
most importantly, is recorded in more individuals than 
any other trait. 

MATERIALS AND METHODS 

Study population: Historically red deer were known to be 
resident on the 10,600-ha island of Rum (570' N, 6 °20' W), 
but they had been hunted to extinction by 1787. In 1845 
the island was restocked for stalking purposes, and further 
reintroductions were made during the nineteenth and twenti-
eth centuries. Introduced animals originated from at least five 
British deer parks or estates. The most recent introduction 
to the population is of greatest relevance to this article. In 
1970 a hummel (antlerless stag) was crossed to Rum hinds to 
investigate the inheritance of hummellism. All male offspring 
developed normal antlers and were released on Rum following 
vasectomy operations. However, one of these male offspring, 
MAXI, subsequently achieved considerable reproductive suc-
cess in the study area, siring over 30 offspring and having an 
estimated 400 descendants to date. 

Since 1971, the North Block population has been intensively 
monitored with all resident animals individually recognizable 
(CFUTTON-BROCK et at. 1982). In 1973 culling ceased in the 
study area and the population has remained stable at "-'270 
adult animals since 1982. Calves are routinely captured for 
marking and weighing and since 1982 have been sampled for 
genetic analysis. Other individuals born prior to 1982 were 
sampled postmortem or by chemical immobilization. Using 
nine microsatellite markers and three proteins, a detailed 
paternity analysis has been made (MARSHALL et at. 1998) with 
fathers assigned to 475 calves born between 1982 and 1996. 
Maternity is inferred from behavioral data and has never been 
contradicted by molecular data. A previous analysis concluded 
that the pedigree of animals descended from MAX! provides 
sufficient power to detect QTL (SLATE et at. 1999). We chose 
this pedigree for several reasons. First, the fact that MAX! was 
sired by an immigrant animal may aid QTL detection, due to 
the probable introduction of novel additive genetic variation 
and by virtue of the fact that MAX! is the most heterozygous 
animal in the study population (SLATE et at. 1999). Second, 
the MAX! pedigree contains many of the largest half-sibships 
documented in the study population, increasing the power to 
detect QTL (Figure 1). Finally, the reproductive success of 
MAX! and his descendants is such that it would have been 
impossible to construct a similarly sized pedigree of animals 
unrelated to MAXI. 

Genotyping The MAXI pedigree contained 364 individuals, 
of which 221 were known descendants of MAXI, and the 
remainder were "married-ins." The pedigree was typed for 
90 microsatellite loci, the majority of which were originally 
characterized in cattle or sheep and mapped in their species 
of origin. The remaining loci were derived in other ruminants: 
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red deer, caribou (Rangzfer tarandus) , gazelle (Gazella gazelle), 
and wapiti (Cervus eta/thus canadensis). Briefly, microsatellites 

- were amplified by PCR using direct incorporation of [ai °P] dCFP 
and products were run out on 6% polyacrylamide gels prior 
to visualization on X-ray film. Detailed amplification and elec- 
trophoresis protocols are described elsewhere (SLATE et at. 

CL bo 1998, 2000). 
Pedigree checking: Paternity assignment in the population 

CL was initially declared with 80 or 95% confidence, using a 
battery of nine microsatellite and three protein loci (MAR- 

- SHALL et at. 1998). Thus, a proportion of the paternities in 
the MAXI pedigree were likely to be wrong. By employing 
likelihood and multilocus genotypes at 84 loci, 44 of the 172 
patern i ties  initially included in the MAXI pedigree were identi- 
fled as erroneous (SLATE et at. 2000). All maternal relation- 
ships inferred from behavioral data were confirmed by mo- 
lecular evidence. The corrected pedigree is summarized in 
Figure 1. 

Map construction: A deer genetic linkage map was con- 
structed from the genotyped MAXI pedigree with the program 
CR1-MAP v2.4 (GREEN et al. 1990). Linked markers were mi- 
tially identified using a two-point threshold of LOD = 3.0. 

CL Markers were also assumed to be linked if they were supported 
by LOD> 1.0 and there was an a priori reason for expecting 

1- 
-g linkage: i.e., they were known to be linked in deer (SLATE et 

al. 2002) or in other ruminants (BARENDSE et al. 1997; MADDOX 

P. 
et at. 2001). Marker order and distances were determined using 
the BUILD and ALL commands. Any double-recombinant 
individuals were identified using the CHROMPIC command, 

bn bb and genotypes were reexamined. All genotypes found to be 
B misscored were corrected. 

(U 
In addition to the 90 microsatellite markers, the three pro- 

tein loci screened by PEMBERTON et at. (1991) were included 
in the CR1-MAP analysis and in subsequent QTL mapping 
analyses. To compare the location and order of markers with 

C their location on other ruminant maps the following sources 
were used: 

Cattle: Reference was made to three published cattle linkage 
. maps (MA et al. 1996; BARENDSE et at. 1997; BAND et at. 2000). 

Information from the maps can be accessed at the following 
C web addresses: 

The cattle genome database: http://spinal.tag.csiro.au/ 
CL The U.S. Meat Animal Research Center cattle genome mapping 

AR 
project: http://www.marc.usda.gov/genome/genome.html  

The ARK database maintained by the Roslin Institute (Roslin, 
UK): http://www.thearkdb.org/browser?species=cow  

- Sheep: Linkage information on sheep was obtained from the 
third-generation map (MADDOX et at. 2001). Data from this 

CL map can be obtained at the following addresses: 
bb Third-generation sheep map: http://rubens.its.unimelb.edu.au/ 

"-jillm/pages/gr_fig.htm CL 
— - The ARK database: http://www.thearkdb.org/browser?  species 

bb sheep 

Deer: A deer linkage map of >700 markers has now been 
completed (SLATE et at. 2002). An abbreviated version of this 
map can be viewed at: 

. The ARK database: http://www.thearkdb.org/browser?species=  
deer 

bo 
9) 

Birth weight: Since 1982, >80% of calves have been weighed 

- 
within 14 days of birth. Birth weight was estimated bybackdat- 
ing from capture weight, assuming a gain of 0.015 kg/hr 
(CrurroN-BR0cK et al. 1982), and was available for 295 indi- 
viduals in the MAXI pedigree. To maximize the chances of 
detecting birth weight QTL, attempts were made to control 



1866 
	

J. Slate et al. 

for potentially confounding environmental effects. A general 
linear model (GLM) identified four terms that explained 22% 
of the variation in birth weight: mean spring temperature in 
the April and May prior to birth, birth date (the number of 
days after May I that the calf was born), mother's reproductive 
status (a five-level categorical term describing whether the 
mother had produced a calf the previous year and how long 
she had reared it), and subdivision of study area (five-level 
categorical term). Residuals from the full model were used 
in subsequent QTL analyses. Model fitting was implemented 
in SPLUS v4.5 (MathSoft, Cambridge, MA). 

QTL analysis: Two methods were used to detect QTL. 
interval mapping by linear regression of half-sib families: The 

revised MAX! pedigree contained a number of moderately 
sized half-sib families(Figure 1). A total of 17 parents (8 male 
and 9 female) with ;~:5 genotyped and phenotyped offspring 
were identified (total number of offspring is 140). Seven par -
ents (4 male and 3 female) had 8 or more offspring. Two 
individuals (MAX! and his son, RED7) sired >20 progeny 
each. An interval-mapping by linear regression method, based 
on KNOTT et al. (1996), was implemented in the web-based 
software package QTL Express (SEATON et al. 2002). Briefly, 
the phenotype is regressed on the conditional probability (in-
ferred from the marker genotype) that a particular QTL allele 
was inherited from the sire. The analysis is nested within fami-
lies and the test statistic is an F ratio with numerator degrees 
of freedom equal to the number of families and denominator 
degrees of freedom equal to n - k - 1, where n is the total 
number of progeny and k is the number of families. The 
process is repeated at 1-cM intervals along the chromosome. 
Analyses were performed on sibships of 28 informative prog-
eny and on sibships of 2:5 informative progeny. Progeny were 
regarded as informative if typed for at least one marker on 
the linkage group and they were weighed at birth. Note that 
the inclusion of families with 2:5 progeny results in a greater 
number of progeny being analyzed, but may also result in a 
lower test statistic than when sibships of 2:8 are analyzed, as 
the test statistic has numerator degrees of freedom equal to 
the number of families. For this reason, half-sib families with 
<5 progeny were not analyzed. Interval mapping by linear 
regression is computationally undemanding, but does not uti-
lize the full power of the MAX! pedigree (SLATE et al. 1999). 
However, the empirical significance of possible QTL can be 
determined by permutation testing (CHURCHILL and DOERCE 
1994). 

The magnitude of QTL effects was calculated in two ways. 
First, the weighted mean of the absolute values of QTL allelic 
substitutions was calculated from only those families that ap-
peared to be segregating for a QTL (nominally significant at 
P < 0.05). Second, QTL effects were calculated by taking the 
weighted mean of the absolute values of QTL allelic substitu-
tions in every half-sibship with eight or more progeny. Weights 
were I /tr 2 , where cr is the standard error of the estimated al-
lelic substitution. Both approaches have their limitations. Un-
der the first approach an upward bias is introduced as those 
families in which the QTL effect is overestimated by chance 
sampling are the most likely to achieve statistical significance 
(BEAVIS 1994). The second approach introduces a downward 
bias (without correcting the upward bias) because the assump-
tion that every sire is segregating for QTL is unlikely to be 
correct. An additional upward bias is introduced by this ap-
proach. Because absolute effect sizes are used to estimate the 
mean effect size, every location in the genome will yield a 
positive effect size, even in cases where no QTL is present; 
i.e., the true effect size is zero. However, given the very small 
number of progeny involved in each half-sib family it seems 
likely that the latter estimate will provide more biologically 
realistic estimates and, despite the known downward bias, may  

still produce overestimates of QTL effect. The latter estimate 
of QTL effect is the focus of discussion in the remainder of 
this article. 

Two-step variance components analysis: At every marker loca-
tion and at 5-cM intervals IBD coefficients were determined 
between all individuals in the revised MAXI pedigree, using 
the software LOKI v2.3 (http://www.stat.washington.edu/ 
thompson/Genepi/Loki .shtml). IBD coefficients obtained 
after 1000 and 10,000 iterations of the program showed good 
concordance, and so we chose 1000 iterations as the default 
setting for subsequent analyses. IBD coefficients were esti-
mated at 2-cM intervals for any chromosomal regions that 
were suggestive of a QTL. Variance components (VC) analysis 
was performed as described in GEORGE et al. (2000): First, a 
mixed linear model-was fitted, under the assumption that 
birth weight was controlled by a number of unknown loci, 
acting additively and each of small effect. This model is termed 
the polygenic model and under matrix notation can be written 
as 

y=X3+Za+e, 	 (1) 

where y  is an (m X 1) vector of phenotypes, X is an (m X s) 
design matrix, 13 is a (s X 1) vector of fixed effects, Z is an 
(m X q) incidence matrix relating animals to phenotypes, a 
is a (q X 1) vector of additive polygenic effects, and e is a 
residual vector. 

The model provides an estimate of the trait's heritability, 
in addition to a likelihood value (L) for the REML solution. 
Essentially this model is the "animal model" used to estimate 
heritability and breeding values in animal breeding (LYNCH 
and WALSH 1998) and more recently in evolutionary genetics 
(KRUUK et al. 2000). 

A second linear model was fitted, which included all poly-
genic model terms plus a putative QTL effect at the location 
of interest. This model, termed the "polygenic + QTL model," 
may be written as 

y=X3+Za+Zq+e, 	 (2) 

where q  is a (q X 1) vector of additive QTL effects. 
Estimates of the polygenic heritability (h2 ) and the variance 

explained by the QTL (q2 ) are obtained, in addition to a 
likelihood value (L1 ). 

Comparison of the likelihoods from the two models pro-
vides a test of the statistical significance of a possible QTL. 
For a single chromosomal location, the likelihood-ratio test 
statistic, 

LRT = —2 In (Lo  - L 1 ) 

follows a 50:50 mixture distribution, where one component 
is a point of mass 0 and the other mixture component is a 

distribution (SELF and LIANG 1987; ALMASY and BEANGERO 
1998; GEORGE et al. 2000). The distribution of the chromo-
some-wide test statistic is dependent on a number of factors 
such as pedigree structure, chromosome length, and missing 
marker data. However, under a variety of conditions it approxi-
mates a x? distribution under the null hypothesis of no QTL 
segregating (GEORGE et al. 2000). 

Significance thresholds: Any genome scan for QTL involves 
a large number of statistical tests, and the use of stringent 
significance thresholds before declaring linkage is well estab- 
lished (CHURCHILL and DOERGE 1994; LANDER and KRUGLYAK 
1995; LYNCH and WALSH 1998). Permutation testing was used 
to assess statistical significance in the linear regression analysis 
because missing genotypes, differences in marker density, and 
segregation distortion are all accounted for (CHURCHILL and 
DOERGE 1994; LYNCH and WALSH 1998). Chromosome-wide 
statistical significance was determined using 10,000 permuta- 
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TABLE 1 

Summary of the markers typed in the MAX! pedigree 

Linkage Linkage 
group Markers (position) group Markers (position) 

I BR3510; FSHB (40.5); RM4 (50.3) 17 ILSTS93; BM1329 (35.0);JP27 (44.2) 
2 JP15; TGLA86 (40.9) 18 RM188; OarCP26 (49.7); MGTG413 (85.4) 
3 FCB5; AGLA293 (0) 19 OarMAFI09; BM6506 (27.6); INRAII (59.5); 

RT6 (73.5); TF (91.0); CSSMI9 (94.8) 
4 RT25; INRAI2I (17.8); IDVGA55 (64.3);JP23 (78.0) 20 INRA6; HUJ1177 (24.5); TG1A127 (65.2) 
5 TGLA322; OarVH98 (30); TGLA94 (49.0); IDVGA46 21 CSSM66; BM4513 (0); BM2934 (8) 

(63.0); OarFCBI93 (77.5); 10BT965 (82.0) 
6 ILSTS87 23 BMS1669; C217 (21.6); BLI071 (28.8); OarMAFI8 

(43.6); BMS2319 (49.2); AGLA232 (56.3) 
7 BM1815; BM1258 (13.9); BM1818 (36.4); PRL (50.7) 24 HUJ175; CSSM4I (33.6); OarFCB304 (52.0); 

HIS-HI (71.2) 
8 IDVGA37; IDH (16.4); TGLA226 (32.7) 26 RT1; BM4208 (8.5); MMI2 (18.9) 
9 RM12; ILSTS6 27 JP38; OarMAF35 (15.6) 

10 TGLA40 28 BM757; ETH225 (8.2) 
11 ILSTSI2; INRAI31 (9.1); CSSMI6 (16.5) 29 TGLAIO 
12 SPSII3; TGLA378 (11.2); RM90 (17.9); BM888 (23.8); 30 ILSTS33 

CSRM60 (42.0); CSSM39 (76.9) 
13 Oar\TH54; MCM527 (21.9); MPI (34.3); TGLA337 (34.3) 31 RM95 
14 INRA35; BM1706 (3.4); TGLA334 (16.6);JP14 (46.2) 32 CSSM43; BM203 (33.7) 
15 RT5; IRBP (34.7); ABSI2 (40.4); IDVGA8 (42.2); 33 INRA40 

PGAZac2 (60.8) 

Ninety-three markers (90 microsatellites and 3 allozymes) were typed and mapped to 30 linkage groups. Linkage groups 16, 
22, and 25 were not typed for any marker. The position of each marker (in Kosambi centimorgans) is indicated in parentheses, 
with the first marker given position 0 cM. Linkage groups are orientated in the same direction as reported in SLATE el al. (2002). 

tions of the data. A threshold for genome-wide significance can 
be obtained by correcting the chromosome-wide significance 
threshold for the number of chromosomes analyzed. If it is 
assumed that 30 chromosomes were analyzed (see RESULTS), 
then a threshold of P < 0.0017 represents genome-wide sig-
nificance. However, only 24 chromosomes were typed for two 
or more markers (Table I), making a threshold of P< 0.002 
appropriate. Confidence intervals for the location of possible 
QTL were determined by bootstrapping the data 1000 times 
(VISSCHER el al. 1996). 

Permutation testing is problematic for the VC approach as 
it is unclear how to permute the data while retaining the 
association between polygenic variation and marker informa-
tion (GEORGE el al. 2000). An alternative approach to permuta-
tion testing is to describe QTL as "suggestive" if they exceed 
a threshold expected to be observed once by chance in a 
genome scan and "significant" if exceeding a threshold ex-
pected to be observed by chance in only 5% of genome scans 
(LANDER and KRUGEYAX 1995). Solving the formula given in 
LANDER and KROGLYAE (1995), and assuming a map length 
of 1548 cM covering 30 chromosomes (see RESULTS), the 
suggestive and significant thresholds are equivalent to likeli-
hood-ratio test statistics of 7.02 and 13.64, respectively. How-
ever, these values assume an infinitely dense map of informa-
tive markers and it is suggested that significance thresholds 
are dropped by 20% for a map with 10-cM intervals (LANDER 
and KRUGLYAK 1995). In this study the average marker interval 
was >15 cM, but to be conservative we assumed a mean interval 
of 10 cM giving thresholds of 5.62 and 10.91. 

All regions of the genome that provided support for segre-
gating QTL at the nominal P < 0.05 significance level are 
reported. While it is probable that some of these possible QTL 
are false positives, it is generally regarded as informative to 
the mapping community to report all regions that offer any  

evidence of linkage (LANDER and KRUGEYAK 1995). Here we 
use the notation "possible QTL" to describe regions nominally 
significant at P < 0.05, while recognizing that QTL need to 
exceed a genome-wide threshold of 0.05 and be identified 
in a separate, independent sample of individuals or another 
population to be confirmed. 

RESULTS 

Genetic map: Ninety microsatellites and 3 allozyme 
loci were typed in the MAXI pedigree. Among the 93 
loci, 53 were linked to another locus with support of 
LOD> 3.0. A further 25 loci were mapped on the basis 
of a LOD >1.0 and an a priori expectation of assignment 
to that linkage group (on the basis of marker location 
on other ruminant maps). Of the remaining 15 loci, 6 
were expected to be singletons by inference from their 
location on other ruminant maps. The other 9 loci could 
not be placed on the expected (or any other) linkage 
group, presumably because they were relatively uninfor-
mative (observed heterozygosity <0.35) or their predicted 
location was >35 cM from the nearest mapped marker. 
One locus, McM527, mapped to deer linkage group 13, 
homologous to sheep chromosome 18, yet is mapped 
on chromosome 5 in sheep. The location of McM527 
had reasonably high support (LOD = 9.55), so the loca-
tion in deer was treated as genuine. It is assumed that 
the chromosomal segment containing McM527, under-
went a translocation during ruminant karyotype evolu- 
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TABLE 2 

Summary of chromosome-wide significant QTL 

Linear regression 
	 Variance components 

Linkage 	Position 	 Allelic 	Allelic 	Position 
group 	(CM) 	F 	d.f. 	P 	effect(1) (kg) 	effect(2) (kg) 	(CM) 	LRT 	P 	q2 	h2  

12 	75 	3.92 	5,61 	0.004* 	1.68 	 1.06 	76 	0.01 	0.5 	0.00 	0.25 
14 	47 	2.92 	4,55 	0.029 	2.111 	 0.82 	32 	4.36 	0.018* 	0.30 	0.00 
21 	 0 	1.67 	9,54 	0.119 	3.38 	 0.80 	0 	6.27 	0.006***  0.29 	0.00 

Possible QTL were detected using linear regression within half-sib families with eight or more progeny and by a VC analysis 
of the entire MAXI pedigree. Results for linkage groups 12, 14, and 21 are reported. For each methodology the location of the 
position (and associated nominal significance, P) giving the highest test statistic is reported. The linear regression yields an F 
ratio and the VC method yields a log-likelihood-ratio test statistic (LRT). The linear regression estimate of QTL magnitude is 
summarized as an allelic substitution effect in kilograms estimated from (1) families providing significant evidence for a segregating 
QTL or (2) all families of eight or more progeny. The VC estimate of QTL magnitude is summarized as the proportion of 
variance in residual birth weight explained by the QTL (q). For the VC method variance components are separated into the 
proportion of residual birth weight explained by the QTL (q2) and by polygenic effects at other loci (h2). *significant  at the 
chromosome-wide P < 0.05 level; "significant at the genome-wide suggestive linkage level. 

tion, but the ancestral state is unknown. All other mark-
ers mapped to locations consistent with their position 
on other ruminant maps. 

The total length of the map inferred from the MAXI 
pedigree was 978 cM. However, we considered any un-
linked marker as potentially capable of detecting QTL 
up to 10 c away in either direction. If the marker was 
predicted (from comparative location) to be at the end 
of a chromosome, then that marker was treated as capa-
ble of detecting QTL within 10 cM in one direction 
only. Using this somewhat arbitrary rule of thumb, it 
was predicted that the panel of 93 markers covered 1548 
cM. The deer genome is estimated to be 2500 cM long 
(SLATE et al. 2002); thus the entire panel of markers 
gives '-'62% genome coverage. Red deer have 33 au-
tosomes of which 30 were typed for at least I marker 
and 24 were typed for two or more loci (Table 1). No 
markers were mapped to the sex chromosomes. 

QTL analysis: In accordance with previous analyses 
(KRUUK et al. 2000), residual birth weight had a heritabil-
ity significantly greater than zero in the MAXI pedigree 
(h2  = 0.24, LRT = 9.99, P < 0.002). Statistical signifi-
cance ofpolygenic heritabilitywas determined byassum-
ing that the likelihood-ratio test statistic obtained from 
the polygenic model and a residuals-only model (i.e., a 
model without the polygenic component fitted) follows 
a x? distribution (LYNCH and WALSH 1998). 

Four linkage groups (LG8, -12, -14, and -21) provided 
evidence for birth weight QTL at the nominal P < 0.05 
significance level, of which three exceeded the chromo-
some-wide significance level (Table 2; Figure 2). One 
region (LG21) was significant at the genome-wide sug-
gestive linkage threshold. 

Linkage group 12: Linear regression within half-sib 
families provided evidence for a birth weight QTL at the 
chromosome-wide significance level whether families of 
eight or more progeny (F5 , 61  = 3.92, nominal P = 0.004,  

chromosome-wide P < 0.05) or five or more progeny 

(F16,103 =  2.36, nominal P = 0.005, chromosome-wide 
P< 0.01) were considered. The effect of an allelic substi-
tution at the possible QTL was estimated to be 1.06 kg. 
The QTL peak was at marker CSSM39 located at 76 
cM (Figure 2), although the 95% confidence interval 
covered the entire linkage group. In fact, all possible 
QTL identified in this study had 95% confidence inter-
vals that spanned the length of their linkage group. In 
contrast to linear regression, the VC analysis of the en-
tire pedigree provided no evidence for a QTL on linkage 
group 12 (see DISCUSSION). 

Linkage group 14: Linear regression of half-sibships 
with eight or more progeny provided evidence for a 
birth weight QTL (F4 ,55  = 2.92, nominal P = 0.029), but 
the test statistic was significant only at the chromosome-
wide level at P < 0.10. When families with five or more 
progeny were analyzed the test statistic was not signifi-
cant at the nominal level (14 = 1.61, nominal P = 
0.090) and did not exceed the threshold of F = 1.93 
required for chromosome-wide significance. The possi-
ble QTL was at 47 cM (at markerJP14), with an allelic 
substitution equivalent to 0.82 kg. 

The VC analysis of the full pedigree provided evi-
dence for QTL at the chromosome-wide level at two 
locations (Figure 2). The first location (3.4 cM) is the 
map position of marker BM1706 and the second (34 
cM) is flanked by markers TGLA334 and JP14. The 
second location provided a marginally higher test statis-
tic (LRT = 4.36, nominal P = 0.018) and was estimated 
to explain 30% of the variation in residual birth weight. 
Given the wide confidence intervals of each QTL it 
cannot be assumed that the two peaks represent differ-
ent QTL. The test-statistic profiles along the linkage 
group for the two methods are reasonably similar. 

Linkage group 21: Linear regression of half-sibships 
with eight or more progeny (F4 ,55  = 0.59, nominal P = 
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0.67) orwith five or more progeny (F10 ,83  = 1.57, nominal 
P = 0.13) did not provide evidence for a QTL segregat-
ing on LG21. However, a closer inspection of the data 
suggested that half-sibships in which the common par-
ent was a female MAXI descendant inheriting allele 96 
at marker BM2934 and allele 128 at marker BM4513 
were segregating for a QTL. Nine half-sibships (six ma-
ternal and three paternal) where the common parent 
had inherited the "96-128" haplotype from MAXI were 
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identified. Analysis of all nine sibships did not provide 
evidence that a QTL was segregating (F9 ,54  = 1.67, nomi-
nal P' 0.119, chromosome-wide P"= 0.103). However, 
the possibility of a parent-of-origin effect (i.e., paternal 
silencing) was further investigated by use of reduced 
linear regression where the sire QTL effects were set to 
zero in a reduced model (SEARLE 1971). This model 
provided evidence of a QTL in the maternal half-sib-
ships (F1,54 =  4.81, P = 0.005), but not in the paternal 
half-sibships (F6 , 54  = 0.30, P = 0.93). Ideally, a larger 
number of sibships are required before a paternally 
silenced QTL can be confirmed. - 

The VC analysis of the entire pedigree provided evi-
dence for a QTL that was significant at the suggestive 
experiment-wide level (LRT = 6.27, nominal P= 0.006, 
chromosome-wide P = 0.013). This possible QTL was 
located at marker BM2934 (0 cM) and explained 29% 
of the variation in residual birth weight. Note that the 
test statistic exceeded the chromosome-wide signifi-
cance threshold at every location between markers 
BM2934 and BM4513 (Figure 2). 

Linkage group 8: In addition to the previously men-
tioned linkage groups, LG8 provided very limited evi-
dence for a birth weight QTL. Linear regression in half-
sibships of eight or more progeny gave a nominally 
significant test statistic (F4 ,55  = 2.54, nominal P = 0.050), 
below the threshold required for chromosome-wide sig-
nificance (F = 3.00). In families of five or more progeny 
the test statistic approached nominal significance (Fg ,M  = 

2.21, nominal P = 0.053) but did.not exceed the chro-
mosome-wide significance threshold of F = 2.47. An 
allelic substitution at the possible QTL had an effect of 
0.76 kg. 

The VC method also provided weak evidence for a 
QTL at the nominally significant level (P = 0.05) but 
the test statistic did not exceed the chromosome-wide 
level. The possible QTL was estimated to explain 14% 
of variance in residual birth weight. The test-statistic 
profiles were similar for both methods, with the QTL 
peak located at marker TDVGA37. At present LG8 can-
not be regarded as the location of a birth weight QTL 

FIGURE 2.—Evidence for possible QTL on linkage groups 
12, 14, and 21. Results from linear regression in half-sib fami-
lies with eight or more progeny () and from VC analysis 
(0) of the entire MAXI pedigree are shown. The y-axis shows 
the statistic –log(P), where Pis the nominal significance for 
a QTL at that location. Horizontal lines represent nominal 
significance at P < 0.05 (—), chromosome-wide significance 
at P < 0.05 for the linear regression approach (. . .), and 
chromosome-wide significance at P < 0.05 for the VC ap-
proach (--- ).  Vertical arrows indicate marker location. Note 
that the test statistic for the VC method on linkage group 
21 also exceeds the threshold for suggestive linkage at the 
experiment-wide level. The profile for linear regression analy -
sis on linkage group 21 represents the nine families that inher-
ited the "96-128" haplotype from MAXI (see RESULTS). 
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although this region is worthy of investigation in follow-
up studies. 

DISCUSSION 

Using two alternative methodologies, possible QTL 
for birth weight were identified on three separate link-
age groups in a wild population of red deer. One possible 
QTL (on LG21) exceeded the threshold for genome-
wide suggestive linkage, while two others (on LGI2 and 
LGI4) were significant at the chromosome-wide level. 
Two of the possible QTL were detected using both linear 
regression in half-sib families and VC in the entire pedi-
gree, while the QTL on LGI2 was detected by linear 
regression only. All of the possible QTL were estimated 
to be of large effect whether measured as an allelic 
substitution effect (in kilograms) or in terms of the 
proportion of variation in birth weight explained. Thus, 
questions arising from this analysis are: (1) Are the 
possible QTL genuine?, (2) how inflated are estimates 
of QTL magnitude?, and (3) why do the two methodolo-
gies provide different results for LG12? 

Are the possible QTL genuine? Any genome-wide 
QTL mapping experiment is liable to generate false-
positive QTL at the nominally significant P < 0.05 
threshold, due to the large number of tests that are 
conducted (CHURCHILL and DOERGE 1994; LANDER and 
KR[JGLYAK 1995). We report all nominally significant 
chromosomal regions, but with a cautionary note that 
some of them may be artifactual. However, there is evi-
dence to suggest that these QTL are real. First, two of 
the three QTL were detected by two approaches that 
make different assumptions in the underlying model. 
Linear regression in half-sib families assumes a QTL is 
a fixed effect with two alleles segregating in each family; 
the analysis takes place within families, background 
polygenic variation is disregarded, and the conditional 
probability of inheriting a particular QTL allele is esti-
mated by the algorithm described in KNOTT et al. (1996). 
In contrast, VC makes no assumption about the number 
of QTL alleles segregating—rather, it assumes that the 
trait is described by a multivariate normal (MVN) distri-
bution; the entire pedigree is considered simultane-
ously; i.e., within- and between-family variances are uti-
lized, background polygenic variance is included in the 
model, and the probability of two individuals sharing a 
QTL allele identically by descent is derived by a MCMC 
estimator. Of course, the two methods were applied in 
data sets with a number of common animals and so 
cannot be regarded as two wholly independent tests. 

Further (admittedly weak) evidence that the QTL are 
genuine is provided by the location of birth weight QTL 
identified in related species. The only previous attempt 
to map birth weight QTL in deer identified loci on 
linkage groups 4 and 23 (GoosEN 1997). There was 
little evidence for birth weight QTL in these regions in 
the Rum study population, although both linkage 
groupswere reasonablywell mapped (four and six mark- 

ers, respectively). However, we are aware of three publi-
cations reporting birth weight QTL in cattle (DAvIs et 
al. 1998; STONE et al. 1999; GROSZ and MACNEIL 2001), 
located on bovine chromosomes 1, 2, 5, 6, 14, 18, and 
21. Bovine chromosomes 2 and 14 are homologous to 
deer linkage groups 8 and 21—two regions where we 
found possible birth weight QTL. The QTL on bovine 
chromosome 2 was flanked by markers BM2113 and 
FCB11 (GRosz and MACNEIL 2001), which also flank 
IDVGA37, the marker yielding a nominally significant 
QTL on LG8 in this study. Marker order appears to be 
conserved between cattle and deer in this region (SLATE 
et al. 2002). The study of bovine chromosome 14 (equiv-
alent to deer linkage group 21) indicated that two birth 
weight QTL may be segregating in cattle (DAvIS et al. 
1998), although the closest markers were not reported, 
making cross-species comparisons problematic. For the 
time being we simply note the overlap in the location 
of cattle and deer birth weight QTL. It is tempting 
to ascribe this concordance to conserved QTL, but we 
prefer to reservejudgment until the causative mutations 
are identified or, at the very least, until a formal test 
of the similarity of across-experiment genome-wide test 
statistics is conducted (e.g., KEIGHTLEY and KNOTT 
1999). Ultimately, it will be necessary to confirm the 
Rum birth weight QTL in a follow-up study. Since 1996 
r300 calves have been born and weighed, making this 
a feasible goal once these cohorts are pedigreed. 

How inflated are estimates of QTL magnitude? FAL-
CONER and MACKAY (1996) define a major gene as one 
that has an allclic substitution effect of 0.5 of a pheno-
typic standard deviation. The standard deviation of re-
sidual birth weight in the MAXI pedigree was 1.06 kg, 
and so QTL effects ranged from 0.75 to 1.0 phenotypic 
standard deviations (see Table 2). These estimates are 
at the upper end of the distribution of QTL effects 
described in domestic pig and dairy cattle QTL experi-
ments (HAYES and GODDARD 2001). Note that we esti-
mated these QTL effects from all half-sibships of eight or 
more progeny, weighting each estimate by its standard 
error. However, this conservative approach does have 
some limitations: In particular, the assumption that all 
sires are segregating for a biallelic QTL may be errone-
ous, while a mean effect size estimated from absolute 
values must, by definition, yield an effect size greater 
than zero. An alternative methodology to calculate QTL 
effect size is to estimate the proportion of overall varia-
tion explained by each QTL, using the mean squares 
from the reduced and full linear regression models (see 
KNOTT et al. 1996 for a detailed description). Using 
this approach the possible QTL on LG12, -14, and -21 
explained "-58, 27, and 25% of variation in birth weight, 
respectively. The VC method also estimated the QTL 
to be of large effect (each explaining ''30% of the 
variation in residual birth weight; Table 2). Given that 
the heritability of residual birth weight was estimated 
as only 0.24, these QTL estimates must be inflated. It 
is well known that estimates of QTL magnitude can 
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be upwardly biased, especially when sample sizes are 
relatively small (BEAvIs 1994). The so-called "Bcavis ef-
fect" is an issue in all QTL mapping experiments, and 
it has been suggested that 500 or more phenotype re-
cords are required to minimize any bias (BrAvis 1994; 
ORR 2001). Given that the linear regression analysis 
relied on little more than 100 phenotyped progeny (in 
some cases fewer) while the VC analysis relied on 295 
phenotypes, it is accepted that both methods, particu-
larly the former, would have provided upwardly biased 
estimates of QTL magnitude. In simulations involving 
500 individuals and some missing marker data, the VC 
method overestimated QTL magnitude more than two-
fold (GEORGE et al. 2000). Given the obvious problems 
associated with small samples, it would be preferable to 
estimate QTL magnitude from an additional data set 
of study area animals. In the meantime we hypothesize 
that the QTL effects described here are upwardly biased, 
although they are likely to be of moderate-to-large effect 
or theywould not have been identified. It is worth noting 
that the detection of QTL of smaller effect would have 
required sample sizes far larger than those available to 
us. In fact, it would probably require several centuries of 
intensive sampling of the study population to generate a 
suitably large data set. For example, if 100 half-sib fami-
lies, each with 40 progeny, were sampled, the power to 
detect an allelic substitution of effect 0.2 of a phenotypic 
standard deviation (at the relaxed threshold of a = 
0.05) would be only 0.40. This power calculation applies 
to least-squares linear regression in half-sib families as-
suming a heritability of 0.25 and was calculated using 
the approach described in SLATE et al. (1999). 

An important issue when measuring the magnitude 
of QTL in complex pedigrees is distinguishing between 
a relatively rare QTL allele of large magnitude and the 
scenario of more common alleles of smaller effect. This 
problem of confounding between one and several QTL 
alleles is likely to be an issue in all studies that aim to 
map QTL in complex pedigrees. One possible solution 
to this problem is to investigate the magnitude of QTL 
in both the overall pedigree and the constituent fami-
lies. This approach is reliant on the complex pedigree 
containing sufficiently large families to conduct the 
within-constituent family analysis. The MAXI pedigree 
probably represents a marginal case as only seven fami-
lies contained eight or more progeny. A related problem 
involves distinguishing between a single QTL of large 
effect and several tightly linked QTL of smaller effect. 
Here we have assumed that each possible QTL repre-
sents a single locus, although this assumption can be 
confirmed only by finer mapping using larger sample 
sizes and/or molecular cloning of the loci responsible. 

Comparison between the linear regression and VC 
methods: In general the two approaches yielded similar 
results, with possible QTL on LGI4 and -21 detected by 
both methods. However, the VC method did not detect 
a QTL on linkage group 12. One possible explanation 
for this discrepancy is that the significant test statistic  

obtained from the linear regression approach was due 
to type I error (i.e., a false-positive result). However, the 
test statistic was robust to permutation testing, and at 
least five sires appeared to be heterozygous for the QTL. 
Thus, we conducted a number of diagnostics to attempt 
to determine the cause of this discrepancy, using the 
software SOLAR 1.7.3 (http://www.sfbr.org/sfbr/pub-
lic/software/solar/index.html;  ALMASY and BLANGERO 
1998). SOLAR is similar to the approach we employed 
in that it uses IBD coefficients to perform QTL analysis 
by VC in a general pedigree framework, although a 
different algorithm is used. Although SOLAR was able 
to calculate only single IBD coefficients at marker lo-
cations rather than multipoint IBD coefficients at all 
positions, it was in agreement with our VC analysis in 
that no LG12 QTL was found in the MAXI pedigree. 
Points to note are that (i) LOKI and SOLAR provided 
similar IBD estimates at the marker locations and (ii) 
SOLAR provided the same maximum-likelihood solu-
tions (yielding a test statistic of zero) as the REML soft-
ware we used, even when handling IBD coefficients de-
rived from LOKJ. Thus, it seems unlikely that the failure 
of the VC method to find a QTL on LG12 can be attrib-
uted to problems associated with LOKI or with the 
REML program that provided the VC estimates. Both 
LOKI and SOLAR were subsequently used to conduct 
a VC analysis within the half-sibships where the linear 
regression approach had found evidence for segregat-
ing QTL. The VC methods found evidence (sometimes 
highly significant) for segregating QTL within these 
families, but generally with higher P values (i.e., less 
significant) than those obtained by linear regression. 
Given the different assumptions underlying the linear 
regression and VC methods, it is perhaps not surprising 
that the two approaches yielded some inconsistencies. 
The VC method assumes that QTL effects are additive 
and could be confounded by maternal effects or QTL 
acting in a nonadditive fashion (e.g., dominance). Reas-
suringly, the diagnostics suggested that the IBD coeffi-
cients estimated with LOKI were robust and accurate. 

Intuitively, the VC method might be expected to have 
greater power than the linear regression approach as 
more phenotypic records are used. However, we note 
that in a simulated four-generation sheep pedigree con-
taining 500 individuals, no inbreeding, and with highly 
informative markers (mean heterozygosity 0.88), the 
power of the VC method to detect a QTL that explained 
10% of trait variation was only 0.48 (GEORGE et al. 2000). 
Power declined to 0.30 when missing marker data 
were introduced into the simulations. Thus, the VC 
method may simply have failed to detect a genuine QTL 
on linkage group 12 (type II error). 

QTL for traits associated with fitness: Ideally it would 
have been desirable to perform a linkage analysis on 
traits more intimately related to lifetime fitness. As adult 
males and females in the study population have a mean 
longevity of 10.5 and 11.5 years, respectively (KRUUK et 
al. 2000), estimates of lifetime reproductive success were 
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not available for surviving individuals (a large propor-
tion of animals in the data set were still alive). However, 
this constraint is likely to be remedied within the next 
few years, and male lifetime reproductive success, which 
is known to have considerable levels of additive genetic 
variance (KRUUK et at. 2000), would be an interesting 
trait to investigate further. Given the highly skewed na-
ture of traits such as male reproductive success, it will be 
necessary to minimize the risk of type I error. However, a 
combination of permutation testing and perhaps non-
parametric QTL detection methods should overcome 
these difficulties. 

The observation that additive genetic variation for a 
trait related to fitness is at least partially explained by 
major genes is contrary to predictions made from Fish-
er's theorem. Birth weight may be under directional 
selection, as only positive associations between birth weight 
and fitness components have been reported in the study 
population (CLUITON-BROCK et at. 1987; COULSON et al. 
1998; KRUUK et at. 1999). Alternatively, birth weight may 
be under stabilizing selection as very large calves may 
result in dystocia (calving difficulty). Although major 
genes may persist longer under stabilizing than direc-
tional selection, it is nonetheless expected that QTL of 
large effect will be selected to fixation under equilib-
rium conditions. Of direct relevance to this study is the 
observation that QTL of moderate to large effect on 
Drosophila bristle number—a trait subject to stabilizing 
selection—appear to be segregating at intermediate fre-
quency in wild populations (LAi et al. 1994; LONG et aL 
1998). A number of not necessarily exclusive mecha-
nisms could result in the persistence of QTL of medium 
to large effect. Any wild population is likely to experi-
ence environmental heterogeneity and mutational in-
put—forces that can maintain and generate additive 
genetic variation (HOULE et at. 1996; BARTON and 
KEIGHTLEY 2002). The role of additional forces that 
could serve to maintain variation, such as epistasis and 
antagonistic pleiotropy, is unknown in this population, 
although there is evidence for the latter (PEMBERTON 
et al. 1991). The question of whether birth weight has 
a negative genetic correlation with other fitness-related 
traits is worthy of further investigation. 

Immigration from mainland populations has proba-
bly resulted in novel additive genetic variation being 
introduced to the study population. Despite being a 
descendant of the most recently introduced stag, MAXI 
does not appear to be heterozygous for the possible 
QTL on linkage groups 14 or 21, suggesting that poly-
morphism at these loci was already a feature of the 
study population. However, the role of gene flow in the 
maintenance of genetic variation in the wild is receiving 
increasing attention (SMITH et al. 1997). It is noteworthy 
that several other longitudinal studies of wild popula-
tions document introgression due to both conspecific 
and interspecific hybridization (GRANT and GRANT 2000; 
KELLER et al. 2001; VEEN et at. 2001). Confirmation and  

fine mapping of QTL in the study population will pro-
vide an opportunity to estimate the intensity of selection 
on recently introduced genes. 

In conclusion, the presence of QTL of moderate to 
large effect in this population is consistent with findings 
in Drosophila (MACKAY 2001), plants (KEARSEY and 
FARQUHAR 1998), livestock (ANDERSSON 2001), and in 
crosses between reproductively isolated species (ORR 
2001). Whether this consistency between experimental 
and wild populations will turn out to be a generalization 
remains to be seen. Clearly one of the major challenges 
awaiting evolutionary geneticists is to determine the 
molecular basis of additive genetic variation for fitness 
traits in the wild. It is hoped that this study will stimu-
late further attempts to address this crucial gap in the 
literature. 
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INTRODUCTION 

Longitudinal studies provide a valuable re-
source for investigating factors that affect long-
term averages and changes over time in a complex 
trait. Statistical methods that assume indepen-
dence across observations (e.g., standard linear or 
logistic regression) are not applicable to long-
itudinal data, due to the correlation among 
multiple measurements per subject. More ad-
vanced methods were developed to handle this 
intrasubject correlation [summarized in Diggle 
et al., 1995], including generalized estimating 
equations and hierarchical mixed models. These  

models have enjoyed wide application in epide-
miological studies. 

Family studies are a valuable resource for 
investigating genetic factors that influence an 
outcome. As with longitudinal data, standard 
statistical models will be inadequate due to the 
nonindependence in outcomes, in this case among 
related individuals. In fact, methods of genetic 
analysis rely on the correlation among family 
members' outcomes to infer genetic effects. 
Depending on the study goals and types of data 
available, the analyst will utilize methods appro-
priate for analysis of aggregation (e.g., heritabil-
ity), segregation, linkage, and/or association. 

© 2003 Wiley-Liss, Inc. 
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Methods for each of these types of analysis have 
typically been developed assuming that only one 
outcome value has been measured on each 
subject. 

The Framingham Heart Study (FHS) represents 
a marriage of longitudinal and family study 
designs. The FHS data provided to the Genetic 
Analysis Workshop 13 (GAWI3) participants 
include repeated measurements of several clinical 
outcomes (e.g., blood pressure, cholesterol) on 
2,885 individuals from 330 pedigrees. Recruitment 
occurred in two waves, producing two cohorts of 
individuals within the data set. The original 
cohort was initiated in 1948. Clinical measure-
ments on this cohort's subjects were scheduled 
every 2 years to the present, yielding as many as 
21 repeated observations on some subjects. The 
second cohort was initiated in 1971, and included 
the offspring of original-cohort members. Clinical 
measurements on these subjects were scheduled 
every 4 years, yielding up to five repeated 
observations per subject. The FHS has been a 
landmark study for advancing our understanding 
of factors, including diet and lifestyle, that affect 
coronary outcomes. 

Attention recently focused on the analysis of 
genetic factors that influence coronary outcomes 
in this data set. Levy et al. [2000] performed a 
linkage analysis of systolic blood pressure (SBP), 
using a panel of 399 markers spaced across the 
genome. They found significant evidence of 
linkage to a region on chromosome 17, and 
suggestive linkage signals on chromosomes 5 
and 10. In their analysis, Levy et al. [2000] first 
computed a person-specific residual SBP from a 
model that included age and other effects, and 
then utilized these residuals in the program 
SOLAR [Almasy and Blangero, 1998] to perform 
a variance-components linkage analysis. The 
residual used in the linkage analysis for a given 
subject represented their long-term average SBP, 
after adjustment for covariates. Their paper did 
not consider linkage analysis of change (slope) in 
SBP over time. 

There is a relative paucity of methods for 
genetic analysis of longitudinal data in families. 
Contributors to GAWI3 have developed a wide 
range of approaches to help fill this gap. Included 
in the Group 2 contributions are aggregation, 
segregation, linkage, and association analysis 
approaches to unraveling genetic effects on both 
long-term averages and changes over time. Meth-
ods were applied to the FHS and to similarly 
structured simulated data. This paper will de- 

scribe and compare methods proposed by Group 
2 contributors, summarize results of applications 
to FHS and simulated data, and synthesize the 
general lessons that were learned and issues that 
remain. 

METHODS 

OVERVIEW 

Thirteen papers were contributed by Group 2 
participants (Table I). Seven contributors applied 
their methods to the FHS data, with five focusing 
their primary analysis on SBP and two on body 
mass index (BMI). Six papers analyzed the simu-
lated data, with four focusing on SBP and two on 
cholesterol. Additional traits were considered in 
some papers. All contributions except one included 
some form of linkage analysis. The analytic 
approaches are described in some detail below. 

NOTATION 

We let Yij  denote the measurement of trait Y 
obtained on subject i at calendar time j, and let T 1  
denote the corresponding age of the subject at that 
time. We let X denote one or more covariates, with 
subscripts included as necessary to indicate 
whether X represents time-dependent (e.g., BMI) 
or time-independent (e.g., sex) variables. The 
methods used by Group 2 contributors can be 
categorized into one of two general types: a two-
step approach, or a joint model approach. These 
are described below. 

TWO-STEP MODELS 

Several contributors utilized a two-step ap-
proach, consisting of a longitudinal model in the 
first step, followed by a second-step linkage 
analysis of one or more statistics derived from 
the first-step model. 

The first-step models had the general form 

Y=a+b1  T+y'X1+e1 	 (1) 

where a, and b, are the subject-specific intercept 
and slope, respectively, and e ij  is a residual, 
assumed to be normally distributed with mean 
zero and variance cr 2. The slope b1  has the 
interpretation as the change in Y per increase of 
1 year in age. The intercept a, in this model can be 
interpreted as the mean of Y when T=0 (i.e., at 
birth) for a subject with all covariates X ij  equal to 
zero. Transformations to T or X (e.g., centering 
them on their means) are useful and will not affect 
b1  or e1 , but will change the estimates and 



S20 	 Gauderman et al. 

TABLE I. Summary of data sets and analytic approaches used by Group 2 

Data set 	Lead author Cohorts Reps. Traits  Markers Analysis approach 1' Software' 

Framingham de Andrade I and 2 N/A SBP Ch. 17 LI: longitudinal VC linkage ACT 
Barnholtz-Sloan I N/A SBP Ch. 10, 17 LI: linear mixed model; association SAS 
Briollais I and 2 N/A SPB All L2: linear mixed model, VC linkage SAS/SOLAR 
Cheng I and 2 N/A BMI All C2: linear model, VC linkage SAS/SOLAR 
Gee I and 2 N/A SBP All L2: linear model, segregation and linkage SAS/GAP 
Macgregor I and 2 N/A BMI All LI: heritability, VC linkage SOLAR/ASREML 
Rao 2 N/A SBP Ch. 10 L2: principal components, HE linkage SAS/SAGE 

Simulated 	Mirea 2 34 SBP All selected L2: linear mixed model, HE linkage SAS/SAGE 
LI: multivariate HE linkage by GEE SAS 

Scurrah I and 2 1 SBP All U: linear mixed model, VC linkage WinBUGS/Merlin 
Shephard I and 2 4, 10, 21 SBP All C2: heritability, VC linkage Stata/SOLAR/GH 
Suh I and 2 10 SBP Selected L2: linear model, HE linkage SAS 
Wang 1 and 2 All Chol Selected U: linear model, HE linkage SAS/SAGE/GH 
Yang I and 2 8 Chol All Li: heritability, VC linkage SOLAR/SAS 

Primary trait analyzed. In some contributions, additional traits were considered. 
bLI longitudinal one-step approach, with a single model that combines longitudinal and genetic analysis; L2, longitudinal two-step 
approach, with a first step longitudinal model and separate second step genetic analysis; C2, cross-sectional two-step approach, with a first 
step model of a selected time point and second step genetic analysis. 
CGH GENEHUNTER; GAP, Genetic Analysis Package; Ch, chromosome; Chol, cholesterol; NA, not applicable; see individual papers for 
descriptions of software programs and references. 

interpretation of the a•. The goal of the first-step 
analysis was to reduce the data to one observation 
per subject. 

The second-step model was a genetic analysis of 
a person-specific statistic obtained from the first 
model. Since there was only one value per subject, 
standard modern genetic analyses were possible. 
These included analysis of heritability, segrega-
tion, model-free and model-based linkage, and 
association. For those conducting linkage analysis, 
most used either the variance- components (VC) 
approach described by Almasy and Blangero 
[1998] or the revised Haseman-Elston (HE) 
approach described by Elston et al. [2000]. 

Below is a brief summary of the specific 
approach used by each contributor of a two-step 
method, highlighting the differences and simila-
rities among contributions. 

Briollais et al. [2003]. This contribution ex-
panded the first-step model in Equation (1) to 
include subject- and family-level models. Letting 
subscript f denote family, Tfi be the mean of 
observed ages for subject i, and T be the overall 
mean age in the sample, they used a three-level 
model of the form: 

Level 1: Yf1=af+bf (Tf—i'fi)+cf (T1 1  —i'fi) 2  

+y'XfI+ef. 

Intercepts 

Level 2: af=af+ (Tf—T)+ri'Xf+ef I . 

Level 3: af=a+ef. 

Slopes 

Level 2: bf=bf+w'Xf+hf. 

Level 3: bf=J3+hf. 

The intercept and slope residuals e and h at each 
level were assumed to have mean zero and 
unstructured covariance matrix. The second step 
was a VC linkage analysis conducted on the 
adjusted mean, using the sum of intercept 
residuals ef+ef, and on the slope, using sum of 
slope residuals hf+hf. Analyses were conducted 
on SBP in the FHS data set. 

Gee et al. [2003]. This paper utilized the first-
step regression model shown in Equation 1, 
applied to analysis of SBP in the FHS. In addition 
to the intercepts and slopes, they also derived 
person-specific standard errors of the intercepts 
(5,,i) and slopes (sb)  from the first-stage model. For 
a given subject, the magnitude of these standard 
errors was a function of the length of follow-up, 
the number and age distribution of measurements 
during follow-up, and the intraindividual varia-
tion in measurements over time. Subjects with 
longer follow-up tended to have lower estimated 
standard errors. The second step consisted of a 
formal segregation analysis of the intercepts and 
slopes, followed by parametric (LOD score) 
linkage analysis. The genetic analyses of the 
intercepts a, (or slopes b 1 ) incorporated weights 
based on 5,,i  (or sbl).  Use of these weights allowed 
subjects with more precise first-step regression 
parameter estimates to contribute more 
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information to second-step segregation and link-
age parameter estimates. 

Mirea et al. [20031. This paper evaluated the 
ability to detect linkage in a genome screen using 
HE analysis applied to several first-step statistics, 
including the first SBP, last SBP, mean SBP, time-
adjusted change between first and last SBP, and 
linear regression slope of SBP on age. Phenotypic 
data on Cohort 2 subjects in one replicate of 
simulated data were utilized, with multiple sib-
ships extracted from the pedigrees. An alternative 
joint-model analysis was also considered; this 
approach is described later. 

Scurrah et al. [2003]. These authors extended 
earlier work on generalized linear mixed models 
[Scurrah et al., 20001 to the longitudinal data 
setting. The approach utilized a more complex 
first-step model than that shown in Equation (1), 
including parameters for polygenic, common 
family environment, and common sibling envir-
onment effects on both the intercepts and slopes. 
The Markov chain Monte Carlo technique of 
Gibbs sampling was utilized to fit this model. 
The subject-specific polygenic residuals for inter-
cepts and slopes were derived from their first step 
and used in a VC linkage analysis. The method 
was applied to both cohorts in Replicate I of the 
simulated data. 

Wang et al. [2003]. This paper utilized all 
replicates of the simulated data to perform an 
analysis of the power to detect linkage using a 
variety of first-step statistics. They analyzed 
cholesterol and considered first-visit level, 
mean level, and slope (the b, values). Both 
two-point and multipoint linkage analyses 
were conducted. They analyzed markers near true 
trait-causing genes (to evaluate power), and 
markers on a chromosome not containing 
any trait-causing genes (to evaluate type I error 
rates). 

Rao et al. [20031. This contribution focused on 
Cohort 2 of the FHS and performed three different 
types of first-step models, each followed by a 
second-step HE linkage analysis. The first ap-
proach repeated the analysis of Levy et al. [2000] 
and thus focused the second-step genetic analysis 
on a measure of average SBP. The second 
approach utilized the model in Equation (1), 
focusing on slopes. The third was a principal 
components analysis, in which five separate 
components estimated in the first step were each 
utilized in the second-step linkage analysis. The  

first two components corresponded roughly to the 
overall mean and slope of SBP and explained most 
of the variation in the trait, while the remaining 
three components captured various nonlinear 
trends. 

Shephard et al. [2003]. This contribution 
utilized the first-step model in Equation 1, but 
with the slope on age treated as a fixed effect. In 
other words, the subject-specific slopes b, were 
replaced by a single slope parameter 13  common 
to all subjects. Subject-specific intercepts a 1  
were utilized in a second-step VC linkage 
analysis. Using simulated data, they compared 
the consistency of linkage results across three 
separate replicates, and also compared the results 
to results based on simply using the first-visit 
value. 

Cheng et al. [2003]. This paper analyzed 
repeated cross-sectional data, and attempted to 
infer trends in genetic effects across age. Measure-
ments of BMI obtained from FHS participants in 
1970, 1978, and 1986 were utilized in three 
separate VC linkage analyses. The first-step model 
was analogous to that in Equation (I) without the 
person-specific slope (b k) terms. These results 
were compared to similar analysis using the mean 
BMI from these three time points. 

Suh et al. [2003]. This paper used a first-step 
model similar to that of Levy et al. [2000], and 
utilized residuals from this model in an HE 
linkage analysis. In the linkage analysis, mixed 
models were used to incorporate a range of 
correlation structures. In the simplest model, they 
assumed independence for each pair, as in the 
standard HE approach. As alternatives, they 
compared two types of correlation: correlation 
among sib pairs sharing a common individual, 
and correlation among all sibs within the same 
family. The method was applied to SBP in the 
simulated data. 

Collectively, these contributions demonstrated 
many different approaches for reducing long-
itudinal data to obtain person-specific statistics for 
genetic analysis. 

JOINT MODELS 

In contrast to the two-step methods described 
above, the goal of these contributors was to 
simultaneously estimate genetic and longitudinal 
model parameters. A joint approach is appealing 
because estimates of genetic and longitudinal 
parameters will be mutually adjusted for one 
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another. Additionally, effects that cross models 
(e.g., interactions between genetic and longitudi-
nal parameters) are more naturally included in a 
joint model framework. A current limitation of 
joint models is the increase in computational 
demands relative to a two-step approach, which 
can limit the types of analyses that can be 
considered. Following is a brief summary of the 
work by joint-model contributors, highlighting 
these issues in the context of their specific 
approach. 

de Andrade and Olswold [2003]. This paper 
utilizes the method described by de Andrade et al. 
[2002], applied to SBP in the FHS. Their mean 
model had the form 

Y=ci+y'X+a+g+s+e. 

Here the terms a, g, s, and e represent matrices of 
additive polygenic, additive major gene, shared-
environment, and random-environment effects, 
respectively. The covariance between pairs of 
observations was specified using variances of 
these random effects, with specific contributions 
depending on the relationship between subjects 
and the time at which measurements were 
recorded. 

For example, the covariance of observations 
from two relatives was modeled as a function of it, 
the observed proportion of alleles shared identical 
by descent (IBD) at some marker locus, and terms 
that depend on whether measurements were 
recorded at the same or different times. No 
structure with respect to age or calendar year 
was assumed for the covariance matrix. While 
such an unstructured covariance matrix is appeal-
ing, the number of variance/ covariance terms to 
be estimated grows rapidly as the number of visits 
increases. Because of this, they restricted each 
analysis to two time points and focused on 
chromosome 17 markers. 

Yang et al. [2003] and Macgregor et al. [20031. 
These two contributions used very similar ap-
proaches and will be summarized together. Both 
papers focused on estimating age-specific herit-
ability across predefined intervals of age. They 
attempted to solve the computational difficulties 
alluded to above by modeling the covariance 
matrix as a smooth function of age. The rationale 
was based on the fact that repeated observations 
of a trait are ordered in time, and thus one might 
expect the variances and covariances of proximal 
measures to be more similar than measures  

widely separated in time. Both groups assumed 
a trait model of the form 

Y=c+y'X+(a1+a2T-Fa3T2+ . . .)+(g1 +g2T+g3T2+...) 
+(p1+p2T+p3T2+. . . )+f+e. 

The random effects a, g, and e are as described 
above, while p and f represent permanent envir-
onmental effects and time-constant family-speci-
fic effects, respectively. Legendre polynomials 
were used to model the a, g, and p random effects 
as a function of age. Yang et al. [20031 used a 
mixture of cubic and linear polynomials applied 
to age arranged into five age bands, averaging 
phenotypic and covariate values for subjects with 
more than one measurement within an age band. 
Macgregor et al. [2003] used linear polynomials 
applied to actual adult ages (i.e., 76 bands, one for 
each age between the ages 20-95). Both papers 
estimated age-specific total heritability and age-
specific heritability attributable to a specific 
quantitative trait locus (QTL). For the latter, they 
performed preliminary linkage analysis using a 
two-step VC approach to identify linked markers. 
The covariance for the major gene effects (g) was 
then was modeled as a function of it at a given 
marker to estimate QTL-specific heritability. Yang 
et al. [20031 analyzed total cholesterol (TO in the 
simulated data, while Macgregor et al. [20031 
analyzed BMI, TC, HDLC, and height in the FHS. 

Mirea et al. [2003]. In contrast to the above joint-
model methods, the unit of analysis in this 
approach was the sib pair. Focusing on selected 
loci, they developed an HE-type joint linkage 
analysis of repeated longitudinal measurements 
and compared this to their two-step HE approach 
described above. The joint analysis involved using 
generalized estimating equations (GEE) to account 
for serial correlation in repeated measures of the 
sib-pair trait cross-product over time, ignoring 
residual correlation among sib pairs within the 
same family. An advantage of this approach was 
that, once IBD estimates were obtained, the 
analysis was possible using standard statistical 
software, and gene x time or gene x age interac-
tions were easily incorporated. 

Barnholtz-Sloan et al. [2003]. This contribution 
was unique as it did not perform linkage analysis, 
but rather focused on association analysis. A 
preliminary association analysis was conducted 
using the binary trait "high SBP," defined as SBP 
above 140 on two consecutive visits, or reported 
use of hypertension treatment. A genome scan 
in the FHS revealed three markers showing 
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association to this trait. These markers were then 
analyzed in a joint model for SBP (in its 
continuous form), using mixed linear regression 
with random effects to account for family, sibship, 
and repeated measures. 

RESULTS 

FRAMINGHAM DATA 

Not surprisingly, the various analytic ap-
proaches produced many different types of 
results. Rather than cover each result in detail, 
we summarize some of the key findings and focus 
on comparisons /contrasts among findings. We 
refer to specific marker loci by their chromosome 
and location in centimorgans (cM), rather than 
using their specific locus names. 

There was much interest in chromosome 17 for 
SBP, given the LOD score of 4.7 (at 67 cM) 
observed previously by Levy et al. [2000]. 
de Andrade and Olswold [2002] were unable to 
detect any significant linkage to markers on 
chromosome 17 using their longitudinal VC 
approach. However, they also repeated the analy-
sis of Levy et al. [2000] on these GAW data, and 
found a LOD score of 3.0 at position 68 cM on 
chromosome 17, but only when the sample was 
restricted to ages 25-75. Briollais et al. [2003] 
found evidence of linkage on chromosome 17 
(62 cM), using intercept residuals in both an 
unselected (LOD=2.1) and selected (LOD=3.5) 
sample. Gee et al. [20031 did not find evidence of 
linkage in this specific region, but reported a 
modest linkage signal for intercepts to chromo-
some 17 (100cM, LOD=1.5). 

Evidence of genes on other chromosomes was 
also detected for those who analyzed SBP. Using 
first-step model intercepts, Gee et al. [2003] found 
LOD scores above 2.0 on chromosomes 1 (202 cM 
and 212cM), 9 (32cM), and 10 (125cM). Their 
LOD scores were generally larger in analyses that 
utilized weights based on first-step standard 
errors, compared with not using weights. Rao 
et al. [2003] also found linkage evidence at 
position 125 cM on chromosome 10, using either 
mean SBP, principal components, or selected 
cross-sectional observations. Interestingly, Barn-
holtz-Sloan et al. [20031 found evidence of 
association (P=0.02) to a marker in this region of 
chromosome 10 (at 135 cM). Briollais et al. [2003] 
did not find linkage evidence to any marker on 
chromosome 10, but did report LOD scores above 
2.0 for intercept residuals on chromosomes 2  

(38 cM), 3 (79 cM), 8 (37 cM), and 13 (64 cM). This 
was the only group to also find linkage support 
for genes that affect SBP slope, on chromosomes I 
(212cM), 3 (153cM), and 11(33cM). Briollais et al. 
[2003] reported that the magnitude of their LOD 
scores at all these markers was quite sensitive to 
whth they adjusted for BMI in their first-step 
model. They obtained lower LOD scores in 
models that did not include BMI. 

In two-step analyses of cross-sectional BMI 
observations, linkage to markers on chromosome 
16 was detected by both Cheng et al. [2003] (75 cM, 
LOD=2.4) and Macgregor et al. [2003] (95 cM, 
LOD=3.1). Based on subsequent joint-model 
analysis, Macgregor et al. [2003] reported that 
the heritability attributable to a gene linked to this 
95-cM marker varied substantially across the age 
range. Specifically, they estimated that 25% of the 
total variation in BMI could be attributed to this 
locus at age 20, but this declined to less than 5% 
for ages greater than 60. On the other hand, they 
found that a locus linked to total cholesterol 
(chromosome 20, 24 cM) accounted for a large 
proportion of variation in cholesterol across all 
age intervals. Cheng et al. [2003] also found 
linkage evidence for BMI on chromosomes 3 
(181 cM), 6 (146cM), and 9 (88cM). 

In summary, there was some agreement for 
genes affecting SBP on chromosomes 1, 10, and 17, 
and for a gene affecting BMI on chromosome 16. 
Linkage signals were generally higher for level-
type statistics (intercepts, means, and intercept 
residuals), and most contributors found no evi-
dence for genes affecting slopes. Two questions 
are suggested from analyses of the FHS data: 
1) When are longitudinal data superior to cross-
sectional data for genetic analysis? and 2) Do we 
have adequate power to detect slope genes? With 
these questions in mind, we turn to results from 
analyses of the simulated data. 

SIMULATED DATA 

There were six genes simulated to have direct 
effects on SBP, three with effects on baseline SBP 
(b34—b36), and three on slope over age (s10—s12). 
Slope genes slO and s12 were simulated to be on 
the same chromosome. 

Performing their analysis without knowledge of 
the answers, Mirea et al. [2003], Scurrah et al. 
[2003], and Shephard et al. [2003] were all able to 
successfully detect some of these genes by linkage 
analysis, each using different first-step ap-
proaches to modeling the longitudinal data. The 
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performance of the various methods cannot be 
directly compared, because each paper analyzed 
different replicates of the simulated data. How-
ever, some interesting trends emerged across these 
contributions with respect to the types of first-step 
statistics that showed the most significant linkage 
evidence. 

Mirea et al. [20031 found that linkage evidence 
for baseline genes b34 and b35 was much more 
significant using visit I SBP than using last SBP, 
mean SBP, or slope of SBP. This is not surprising, 
given that these genes were simulated to have 
their effect early in follow-up. What was surpris-
ing in their results, however, was that all three 
slope genes were detected with greater signifi-
cance using a first-step level-type statistic (e.g., 
mean SBP or last visit SBP) than by using a first-
step slope statistic. Scurrah et al. [2003] reported 
analogous results. Their most significant linkage 
evidence was for a marker near slope genes slO 
and s12, but the LOD score for this locus was 
much greater using a first-step intercept residual 
(LOD=12.9) than using a first-step slope residual 
(LOD=5.1). They also found suggestive linkage 
evidence for a marker near slope gene sli, here 
again using their intercept rather than slope 
statistic. Shephard et al. [20031 also found strong 
evidence of linkage near slO and s12, using the 
intercepts from their first-step longitudinal model. 
They reported greater LOD scores using long-
itudinal data in the first-step model, compared to 
simply using first-visit SBP, even for detecting 
baseline genes. In analyses conducted unblinded 
to the answers, Suh et al. [2003] were also able to 
detect linkage to slope genes using level-type 
statistics. 

Two contributors analyzed total cholesterol, 
which was simulated to depend on four baseline 
genes (b30—b33) and three slope genes (s7—s9). 
Without knowledge of the answers, Yang et al. 
[2003] were able to detect linkage to b30, b31, and 
b32 using visit I cholesterol. They were also able 
to detect slope gene s7, with a slightly higher LOD 
score using first-step mean (LOD=10.6) than first-
step slope (LOD=10.3). In their joint model 
analysis, they found that heritability was rela-
tively flat across age for baseline genes b30 and 
b32, but showed a marked increasing trend with 
age for s7. Wang et al. [20031 were the only 
contributors to analyze all 100 replicates in a true 
simulation study. They reported greater power for 
detecting the baseline genes using exam I choles-
terol, compared to using mean or slope of 
cholesterol. They reported the greatest power for  

detecting slope gene s7 using first-step slope 
(80%), although first-step mean also provided 
reasonable power (62%) for detecting this gene. 
Power was low with any statistic to detect slope 
genes s8 and s9. Wang et al. [2003] also analyzed 
several unlinked markers and reported acceptable 
type I error rates. - - 

Collectively, these simulated-data contributions 
shed some light on the questions raised by the 
FHS analyses. Well-selected cross-sectional data 
(e.g., first or last visit) provided good power for 
detecting some genes. However, summaries of 
longitudinal data (e.g., means, slopes) were gen-
erally most effective for finding genes, particu-
larly those that affected trends in outcome over 
time. Somewhat paradoxical was the general 
finding that level-type statistics (e.g., intercept, 
mean) provided greater power for detecting slope 
genes than did slope-type statistics. We now 
explore this finding further. 

A SMALL EXPERIMENT 

We performed a small experiment to investigate 
the use of intercept and slope statistics for 
detecting a slope gene. We simulated a sample 
of 1,000 independent individuals. Each individual 
was randomly assigned a genotype (G) at a slope-
affecting locus, with probability 50% each of 
carrying a normal (G=0) or variant (G=1) geno-
type. Age (T) was also randomly generated for 
each subject from a uniform distribution on the 
range 0-50 years. Conditional on G and T, the trait 
Y was randomly sampled from a normal distribu-
tion with mean 100+13G*T  and variance o2.  It is 
clear that under this model, the gene C has no 
baseline effect, but rather only affects slope. 

Can we detect this slope gene with more power 
using a test based on slope or mean statistics? We 
first fit a linear model of the form 

Y=o +fli G+fl2T+fl3G*T+e 	(2) 

where e was assumed to be normally distributed 
with mean 0 and variance oc 2  . The parameter /33 
quantifies the difference in slopes between G=0 
and G=1, and the estimated slope /1 3  can be used 
to form a slope-based test of the form t=fi 3 /se(fl3). 
We then considered a model of the form 

where the parameter #I  measures the difference in 
mean Y between genotype groups, with corre-
sponding mean-based test t=/3 1 /se($1 ). 

For three different settings of cr (1, 8, and 32, 
respectively), Figure 1 plots simulated Y vs. T 
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Fig. 1. Simulated SBP, based on model in equation (2), assuming 
jl=1, with 0=1.0 (top), e=8.0 (center), or a=32 (bottom). 
Gray dots have variant genotype (G=1); black dots have G0. 

by genotype G for 1,000 subjects, when f3 is set 
to 1.0. The difference in slope of Yon T between 
G=0 and G=1 is clear when cy=1, but becomes less 
obvious as a increases. 

Table II gives the expected t-statistic for the 
slope and mean-based tests when the true 13=1.0 
(as in Fig. 1), and for a larger slope effect (13=3.0). 
When a=l, the t-statistic (and thus power) is 
much larger for the slope test than for the mean 
test. However, as the variance increases, the 
power of the slope test is dramatically reduced, 
while the power of the mean test is much less 
affected. When c7=32, the mean test is more 
powerful than the slope test both for 3=1 and 
13=3. 

The conclusion one can draw from this experi-
ment is that when the residual variance is large, as 
it is for traits in both the FHS and simulated data, 
a test based on means can provide greater power 
to detect a slope-affecting gene than a test based 
on slopes alone. In practice, many additional 
factors will determine the relative power of a 
mean-based to slope-based test, including not 
only the underlying true effect sizes, but the 
number of repeated observations and the length of 
follow-up. Also important will be the relative 
magnitude of the within- and between-subjects 
variance of Y. 

TABLE II. Expected t-statistics for mean- and slope-
based tests 

Expected f-statistics 

cr 	 Mean test 	 Slope test 

38.2 	 229.3 
38.4 	 687.7 

29.9 	 28.7 
37.0 	 86.0 

32 	 1 	 11.0 	 7.2 
3 	 26.2 	 21.5 

DISCUSSION 

Complex traits such as SBP and cholesterol vary 
with age and likely depend on both genetic and 
environmental determinants. For such traits, long-
itudinal data allow one to disentangle genetic and 
environmental effects, both on the rate of change 
of the phenotype over time (e.g., slope) and on 
trait level (e.g., mean). Unlike the FHS, most 
family studies collect a single cross-sectional 
measurement on each subject. While this type of 
data can also be used to analyze mean and slope 
effects, estimates will be more prone to bias from 
confounding and more affected by measurement 
error. 

How does the current value of an age-depen-
dent trait depend on genotype? For simplicity, 
consider two groups of subjects, carriers (C) and 
noncarriers (N), respectively, of a variant allele 
at a particular locus. Differences in expected 
trait value between C and N groups at age T will 
be a function of their difference at birth plus 
any difference that accrues between birth and T. 
There are four possible scenarios: 1) C has no 
affect at birth or thereafter, 2) G only affects 
level at birth, 3) G has no affect at birth, but 
affects development, and 4) C affects both level 
at birth and development. Without knowing the 
truth, the analyst is faced with choosing the test 
statistic that provides the greatest power to 
detect C. 

Although the best statistic to choose will 
depend on the true situation, these CAW con-
tributions shed some light on the relative robust-
ness of different alternatives. Obviously, any 
statistic needs to have the correct test size when 
situation I holds. For situation 2, equivalent to a 
baseline gene in the CAW simulation, only level-
type statistics (e.g., mean or cross-sectional value) 
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provide power. This makes sense, since there is no 
difference between the C and N groups in slope. 
When the gene does affect slope (situation 3 or 4), 
statistics based on slope or change in level 
over time can be used. However, several contribu-
tions and the small experiment indicated that a 
mean-based statistic can often provide greater 
power for finding a slope gene than a slope-based 
statistic. 

The reason that a mean-based statistic has any 
power to detect a slope gene is that a slope gene 
will typically lead to a difference in the mean of 
the trait by genotype. This can be seen in Figure 1, 
for example, where the difference in means is 
approximately the difference in genotype-specific 
linear predictions at the midpoint of age (T=25). A 
notable exception will occur if genotype-specific 
baseline means are different and one slope is 
positive while the other is negative (graphically, 
an X-shape rather than the sideways V-shape 
shown in Fig. 1). However, such an X-shaped 
relationship is unlikely for most biological 
systems. 

When a slope gene does affect both slope and 
mean, neither the mean- nor slope-based statistics 
used by many contributors will be optimal for 
finding genes that affect rate of change. On the 
basis of the model in Equation (2), the null 
hypothesis we should be interested in for such a 
slope gene is 3=0 (no level effect) and f3=0 (no 
slope effect). A two-degree-of-freedom likelihood 
ratio test comparing the likelihood at the joint 
maximum likelihood estimate (MLE) of P, and 03 
to the likelihood with both fixed to zero would be 
appropriate. This type of test is analogous to 
previously proposed joint tests in the context of 
using gene x covariate interaction information to 
improve power for detecting linkage [Greenwood 
and Bull, 1999; Olson, 1999; Gauderman and 
Siegmund, 2000; Gauderman et al., 20011. In fact, 
one can think of the slope parameter P3  as a 
measure of gene x covariate interaction, in this 
case with age being the covariate. 

Careful consideration of covariates will be 
essential for understanding both environmental 
and genetic (through G x E interaction) determi-
nants of complex traits. The current value of an 
age-dependent trait will likely depend on both 
current and previous values of environmental 
covanates. There are several ways covariate 
information can be included in a model. One can 
include time-varying covariate values, e.g., smok-
ing status at each visit, directly into a multilevel or 
joint model. An alternative approach is to incor- 

porate cumulative exposure through a single 
covariate, e.g., total number of pack years of 
smoking. One may choose to focus on exposure 
during a critical period of life, e.g., in utero or 
early-life exposure to parental smoking. More 
complicated covariates can also be constructed, 
e.g., allowing current covariate effects to - be 
modified by previous exposure levels or by 
genotype. Of course, all these methods depend 
on the availability of reliable covariate data, which 
is more likely to derive from longitudinal rather 
than cross-sectional studies. 

In terms of modeling approaches, contributors 
to this group adopted either a two-step or joint 
model for the genetic analysis of longitudinal 
data. In general, a joint model should be prefer-
able for two main reasons. First, parameter 
estimates in the longitudinal and genetic models 
are mutually adjusted for one another. Second, a 
joint model correctly accounts for within-indivi-
dual and between-individual variability, so that 
uncertainty in the estimated phenotype (e.g., 
person-specific intercept or slope) is accounted 
for during the linkage analysis. While one can 
weight first-step summary statistics to account for 
the relative degree of within- and between-subject 
variance [Gee et al., 20031, such weighting comes 
about naturally in a joint model. 

While a joint modeling approach has theoretical 
advantages, the two-step approach is attractive for 
practical (computational) reasons. First-step long-
itudinal models can be fit using standard statis-
tical software packages (e.g., SAS, SPLUS, and 
STATA). Once subject-specific summary statistics 
are abstracted from this first step, a number of 
available programs can be used for linkage, 
heritability, or segregation analysis. Commonly 
used genetic software programs are not designed 
for longitudinal data analysis, and there is a clear 
need to develop integrated programs. Regardless 
of whether a two-step or joint approach is 
adopted, the analyst should always carefully 
consider model assumptions, e.g., normality and 
homoscedascity, since violations can lead to 
invalid conclusions. 

Multilevel modeling, which can take into 
account the hierarchical structure of the data, 
may help disentangle the proportion of the trait 
variability explained by fundamental variation in 
the mean trait and in the trait slope from the 
proportion explained by random within-indivi-
dual variability. Joint modeling in the multilevel 
model framework is theoretically possible. As an 
example, the multilevel model of Briollais et al. 
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[2003] can be expressed as a single mixed model, 
with the form 

)+13(Tfij —  Tfi)+y'Xfj+11'Xfj+o)'XfI 
x 	 - Tf1 ). 

This model is easily extended to include addi-
tional levels (e.g., sibships within family), with 
corresponding covariates and random effects. The 
variance-covariance matrix of the random effects 
(e and h values) can be expressed as a function of 
marker-IBD sharing probabilities among relatives, 
thus facilitating a test of linkage on intercepts 
and/or slopes. One could also include a marker 
genotype as a covariate in the above model, thus 
also providing tests and estimates of association 
on trait level and/or slope. This type of model 
generalizes the hierarchical modeling structure 
described by Fulker et al. [19991 in the context of 
cross-sectional data. 

In population studies of blood pressure, a 
significant proportion of blood pressure observa-
tions will be affected by hypertensive treatment 
(HRX). Levy et al. [2000] reported that 15.3% of 
observations reflected HRX in the FHS. In such 
observations, measured SBP will be lower than the 
"true" untreated SBP, which will impact estimates 
of genetic and environmental effects. Members of 
this group utilized various methods of accounting 
for this problem. These include ignoring the 
problem completely, excluding individuals on 
treatment, including HRX as a covariate, replacing 
the phenotypes of all individuals on HRX with a 
single high value, adding a constant (an average 
HRX effect) to observations on treatment, and 
imputing post-HRX SBP based on pre-HRX 
measurements and/or or the SBP of other family 
members. Some of these approaches will produce 
biased results, and the extent of the bias is likely to 
depend on the proportion of individuals on 
treatment and the actual effects of treatment on 
those individuals. The advantages and disadvan-
tages of each approach will not be discussed here, 
and we do not aim to recommend a single best 
approach, as the problem is still being researched 
[e.g., Cui et al., 20031. However, the results of any 
linkage analysis for such phenotypes will depend 
on the way in which treatment has been accounted 
for, and it is an issue that should be considered in 
population-based studies such as the FHS. 

Another important issue in longitudinal studies 
is that of missing data. All of the contributions in 
this group ignored the problem of missing data, 
focusing their analyses on observations with 
complete outcome and covariate data. It is well- 

known that the elimination of missing observa-
tions can lead to bias if data are not missing 
completely at random (MCAR), and particularly if 
there is informative missingness [Little and Rubin, 
20021. An example of informative missingness is 
cohort dilution, e.g., the elimination of subjects at 
later ages - from the cohort in a nonrandom way 
with respect to trait genotype. In some situations, 
one may need to specify a joint model of both the 
phenotype and the missingness process. This type 
of analysis was used to model survival and 
quality-of-life data in cancer patients, when 
quality of life was not missing at random 
EBillingham et al., 20011. Some approaches to 
dealing with missing data in the FHS have been 
developed [Badzioch et al., 2003], but this im-
portant topic needs further statistical attention. 

Understanding the magnitude of within- and 
between-subject variability in a trait is important 
in designing a longitudinal family study. When 
intrasubject variability in a trait is high (as was 
observed for SBP in the FHS), precision will be 
increased by having many repeated measure-
ments per subject. On the other hand, when 
intrasubject variability is low, power will be 
greater by increasing the number of individuals 
rather than by increasing the number of measure-
ments. This adds a level of complexity to the 
design of family studies, for which one also has to 
consider within- and between-family trait varia-
bility. In addition, practical considerations (e.g., 
stability of the population over time, cost of 
obtaining measurements) will play heavily in the 
design of a longitudinal family study. 

In conclusion, this group proposed, applied, 
and evaluated several approaches to the analysis 
of longitudinal family data. Collectively, our 
findings confirmed some of those previously 
reported by Levy et al. [2000], and indicated some 
additional chromosomal locations that may war-
rant further investigation. From a methodological 
standpoint, we described several variations of 
two-step and joint modeling approaches. Across 
many different approaches, we found that the use 
of a mean-based statistic is likely to provide more 
power for detecting a slope-affecting gene than a 
slope-based statistic. This finding warrants 
further study. Also an important topic for future 
research is the development of models that 
integrate the estimation of genetic and long-
itudinal parameters, along with associated soft-
ware for fitting the models. We encourage readers 
to see the individual contributions to learn more 
about each specific method. 
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