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Gene targeting is a method for introducing mutations into specific genes of an organism. To date most work in the field has
focused on the creation of insertion or deletion events to generate a null allele in the gene of interest in murine embryonic
stem (ES) cells, with the objective of introducing this mutation into the mouse germline. This has facilitated the study of the
in vivo role of many genes at the level of the organism and provided a ready source of cell lines carrying the desired mutation
for further analysis. The generation of more subtle mutations, where function of the gene is modified rather than ablated, is
also desirable. This thesis is concerned with "Hit and Run" gene targeting in ES cells, a method designed with the objective
of introducing small mutations into the genome. The procedure relies on the integration of a vector carrying the desired
mutation, and positive and negative selectable markers. After isolation of an event which has introduced the vector into the
target locus by positive selection and genomic screening, a second selection performed upon the negative selectable marker is
carried out. This should select for clones which have undergone an intra-chromosomal recombination event which removes
the vector sequences and restores the locus. Some of the reverted clones obtained will have retained the mutation.
The hit and run targeting technique relies on a high degree of fidelity in the homologous recombination process, to avoid the
introduction of mutations other than the desired mutation into the target locus. However, relatively little is known about the
fidelity of gene targeting homologous recombination events. Part of this thesis examines this question in a model gene, the
hprtb'm3 null mutant locus. This allele is useful for studying gene targeting reactions because selections either for or against
gene activity may be simply achieved by in vitro chemical selection. The hprtb'm3 gene was targeted with an insertion-type
vector designed to restore hprt gene function which also incorporated the positive selectable marker neo. The neo gene was
initially used to select stably-transfected clones. The clones were then studied genotypically and phenotypically to seek events
where apparently correct homologous recombination events at the hprt locus failed to restore gene function and thus
suggested errors in the targeting process. The data indicate that the rate of error in recombination must be low.
Mutations in the kirsten-ras proto-oncogene are recognised to be of great significance in neoplasia, but relatively little is
known about its function in normal mammalian development. Several features of the gene make it suitable for study by
means of hit and run gene targeting: it has an untranslated 5' exon of undefined function, may be activated by point
mutations, and contains alternative C-terminal exons. Hit and run experiments designed to modify these features of the gene
have been carried out. A hit and run vector designed to delete a 2.5kb region surrounding the promoter/exon 0 region
targeted the locus at a low but observable frequency. However, closer examination of the targeted locus revealed a more
complicated structure than that predicted, and reversion events under back-selection were found to produce either a variant of
the structure predicted for an insertion event or a wild-type structure. It is suggested that a combination of concatenation and
extra-chromosomal recombination events resulted in a complex insertion structure which was capable of undergoing multiple
excision events.

Hit and run vectors were also used with the objective of introducing point mutations into exons 1 and 4B of the K-ras gene.
After an unmeasurably low targeting frequency was observed for the first of these vectors, a "Fast-Track" protocol was
attempted with both of these vectors which was designed to expand the effective number of potentially targeted clones
backselected. This method was shown to enrich slightly for events at the target locus in the case of the construct used to
delete exon 0, but was unsuccessful in generating the designed target locus in these experiments. RT-PCR of the modified
gene was found to be a good method of screening targeted clones for subtle modifications not detectable by Southern analysis.
As a complement to the targeting studies of splicing variants in the K-ras gene, splicing variant usage in the tissues of the
developing mouse was also analysed by RT-PCR using primers specific for both variants and comparing quantities of each
message. Consistent with other work in the field, this analysis demonstrates that K-ras1 is ubiquitously expressed in the
developing mouse. However, previous work has failed to differentiate between splice variants of Y-ras mRNA. Here it is
shown that whilst K-rcwB has a ubiquitous pattern of expression, the pattern of Y-rasA expression appears to be more
limited, and K-raxA is usually expressed at a lower level than K-rcwB. Little or no temporal variation of relative splice
variant usage within tissue types was observed, suggesting that the definition of Y-ras expression patterns is an early event in
organogenesis. Analysis of differentiaiing ES and EC cells suggests that upregulation of Y-rasA expression is associated
with tissue differentiation.
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CHAPTER 1-

INTRODUCTION



Introduction

1.1 Mammalian Genetics

Much of eucaryotic genetic analysis has been carried out in organisms such as yeast,

Drosophila melanogaster and Caenorhabditis elegans (see, for example, Alberts et

al., 1994). These species are of small size and typically have short generation times

which permit the relatively simple creation and analysis of a wide variety of

mutations. As a model system for the genetic analysis of mammals however, such

species are somewhat limited. The size and generation times of mammals, together

with the large genome size (approximately 3xl09 bp/haploid genome), makes such

studies more difficult. In the mouse over 1300 loci are known with naturally-

occurring mutations, many of which are for genes which have not as yet been cloned

(Green, 1989). This compares poorly with an estimated complement of 104-105 genes

in the mammalian genome (Alberts et al., 1994). Thus many mammalian genes,

notably some involved in immune system function or implicated in the development

ofmalignancy, have no known naturally-occurring mutants.

Several thousand genetic diseases are known in humans (McKusick, 1978), most of

which have no direct parallel in an experimental animal which may be used as a model

in the study of the disease and as a test-bed for potential therapies.

1.1.1 Transgenic Mammals

Transgenic mammals, most usually mouse, but also other species both laboratory and

domestic, have been created by the micro-injection of DNA into oocytes or retroviral

insertion (reviewed in Palmiter & Brinster, 1986; Jaenisch, 1988) and have proved

very helpful in the study of many genes. This technique however is limited by the fact

that genetic material may only be added to the genome, not subtracted, at genetic loci
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and in copy numbers which may not be predicted. Phenotypes obtained by such

procedures may be affected by both the position and the number of copies of the

injected sequence which integrate into the genome (reviewed by Palmiter & Brinster,

1986). Local position effects at the site of integration or the lack of introns or

enhancer elements within the transgene can cause attenuation of expression to below

physiological levels (Jaenisch, 1988). Conversely, integration of multiple tandemly-

arrayed copies (a common event) or the presence of cryptic promoter sequences in

the transgene can cause unexpectedly high expression in a tissue (e.g. Al-Shawi et al.,

1991). Should the transgene integrate into an endogenous gene the results of the

experiment may be complicated by additional effects due to loss of activity of the

integration locus.

It is often beneficial to generate a null allele for a gene of interest. However, the use

of transgenic expression of antisense sequences with the objective of effectively

deleting a gene, although successful in some cases where a complete ablation of

function is unnecessary to generate a phenotype (Katsuki et al., 1988), is of variable

and unpredictable efficiency (Katsuki et al., 1988; Munir et al., 1990).

Reverse genetics of mammals, most notably in the mouse, has been revolutionised in

the past decade by the combination of two systems. These are the

Embryonal/Embryonic Stem Cell (ES Cell) system, and the Gene Targeting system.

1.2 Embryonal Stem Cells

1.2.1 Early Murine Development (Hogan et al, 1986)

After fertilisation, the egg divides during its journey down the oviduct to produce a

morula (ball of cells) within the zona pellucida. As it reaches the 8- to 16-cell stage

the cells (a.k.a. blastomeres) flatten and become polarised (compaction). Further

division produces a blastocyst, which consists of a layer of cells (the trophoectoderm)
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derived from the apical domains of the polarised cells surrounding a fluid-filled cavity

(the blastocoel) and the cells of the inner cell mass (ICM), which are derived from the

basal domains of the polarised cells. The blastocyst expands and by the 64-cell stage,

when the ICM consists of approximately 20 cells, it hatches from the zona pellucida

and implants into the uterine epithelium, 4-4.5 days post-coitum (p.c.).

Just before implantation the primitive endoderm, a layer of epithelial cells,

differentiates from and surrounds the ICM. These cells go on to form the yolk sac of

the embryo. The core of the ICM forms a layer of cells called the epiblast and this

forms the ectoderm, endoderm and mesoderm. The ICM therefore gives rise to the

entire foetus.

1.2.2 The Germline

The primordial germ cells (PGCs) originate from extra-embryonic tissue (Ginsburg et

al. 1990) and migrate from the extraembryonic mesoderm to the gonads by day 12.5-

13.5 p.c. (Ginsburg et al., 1990; Fox et al., 1981; Stinnakre et al., 1981). They

generate the germ cells in the adult embryo. However, they may only be cultured in

vitro for a limited period before reaching mitotic arrest (Matsui et al., 1991) and

appear to be incapable of contributing to tissues in a chimaera following direct

explantation from an embryo (Stewart et al., 1994). Embryonic Germline (EG) cells

are derived from PGCs by inducing them to divide in culture for long periods in the

presence of multiple growth factors (Matsui et al., 1992; Resnick et al., 1992), and

have recently been shown to be capable of contributing to the somatic tissues and

germline of chimaeras (Stewart et al., 1994; Matsui et al., 1992).

1.2.3 Teratomas: Tumours of the Germline

Teratomas and teratocarcinomas are tumours which occur most commonly in the

gonads, but they are also observed at other sites. They are defined by a confused
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appearance due to the presence of multiple differentiated cell types usually derived

from all three germ layers, which differentiate from a malignant developmentally

pluripotent cell population: the embryonal carcinoma (EC) cells (Solter & Damjanov,

1979; Martin, 1980; Mintz & Fleischman, 1981; Silver et ai, 1983; Gardner, 1983).

If all the EC cells differentiate the result is a benign teratoma; any malignancy is due

entirely to the remaining EC cells. In mouse strain 129 spontaneous testicular

teratomas are observed frequently (Stevens, 1983) and they can also be induced in a

histocompatible recipient by grafting of the male genital ridges from a 129-strain

embryo. Such transplanted tumours are therefore derived from PGCs (see previous

section). Grafts from early stage embryos of many mouse strains can also produce

teratomas in the recipient, but these are derived from the epiblast. This has been

interpreted as meaning that EC cells behave malignantly by virtue of their local

environment (at least initially), rather than being triggered to do so by an oncogenic

stimulus at the genetic level. The fact that EC cells may originate either from the

epiblast or the PGCs (reviewed in Hooper, 1992) suggests a close relationship

between all of these cell types.

Chimaeras may be made with EC cells by either injecting a blastocyst with EC cells

or aggregating EC cells with morulae (Bradley, 1987). They have a variety of

possible fates: (1) failure to integrate; (2) colonisation of the extra-embryonic tissues;

(3) proliferation resulting in the death of the host embryo; (4) integration into the

embryo to produce tumours; (5) integration into the embryo and contributing to the

somatic tissues or (6) integration and contribution to the functional germline cells of

the embryo. Depending on the EC cell line used to make the chimaera, the relative

frequency of each of the above possibilities can vary (reviewed in Papaioannou &

Rossant, 1983). Importantly however, possibility (6), that is colonisation of the

germline by EC cells in chimaeras, is very rare (Papaioannou & Rossant, 1983;

Stewart & Mintz, 1981, 1982). This is likely to be due to the fact that selection either
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in the primary tumour or as the cell undergoes adaptation to culture conditions

results in a specific, germline-incompetent, subpopulation outgrowing the truly

pluripotent EC cells. Despite their relatively homogenous appearance, different EC

lines vary in their required culture conditions and the extent to which they will

differentiate. Few have a normal diploid karyotype. (Table 1, Appendix of Silver et

al., 1983).

1.2.4 Embryonal Stem Cells

The apparent similarity between pluripotent EC cells and the cells of the epiblast and

PGCs suggested that cell lines derived directly from the ICM might also be expected

to be pluripotent. Embryonal (or embryonic) stem cells (ES cells) were first isolated

from blastocysts by isolation and disruption of the ICM followed by subculture of the

cells on feeder cell layers (Evans and Kaufman, 1981) or in EC cell-conditioned

medium (Martin, 1981) to prevent differentiation. ES cells are pluripotent, and like

EC cells may be induced to differentiate into a variety of different lineages in vitro

(reviewed by Hooper, 1992). Injection of ES cells into blastocysts creates chimaeric

progeny which may include ES cell-derived tissues in all three germ layers including

the germline and the extraembryonic membranes (Bradley et al. 1984; Beddington &

Robertson, 1989). Levels of chimaerism can be extremely high with ES cell-derived

chimaeras. Because ES cells also contribute to the germline of a chimaera, it is

possible to generate mice derived from ES cells which have undergone manipulation

in vitro (Gossler et al., 1986; Robertson et al., 1986).

Most ES cell lines described have a 40, XY karyotype (Robertson et al., 1983) and

are therefore male as opposed to the majority of EC cell lines which are XO. This is

of benefit because male animals have a higher reproductive potential than females and

so ES cell-derived germ cells present at a low frequency will be easier to detect.
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Pluripotency is obviously a defining characteristic of ES cells, and it is important that

it be preserved while the cells are manipulated in vitro. Differentiation was originally

prevented in ES (and EC) cells by co-culturing the ES/EC cells on layers of

mitotically inactivated mouse embryo fibroblasts (Martin & Evans, 1975). ES cells

may also be cultured on permanent fibroblast lines such as STO fibroblasts.

Subsequently medium conditioned by the Buffalo Rat Liver (BRL) epithelial cell line

(Smith & Hooper, 1987) or human bladder carcinoma 5637 cells (Williams et al.,

1988) was shown to include an efficient inhibitor of differentiation which permitted

the continuous culture of ES cells in the absence of feeders. Isolation of the anti-

differentiating activity showed that it is identical to the leukaemia inhibitory factor,

LIF (Williams et al., 1988; Smith et al., 1988; Moreau et al., 1988), so-called

because in vitro it inhibits the M1 myeloid leukaemia cell line. More recently, ciliary

neurotrophic factor (CNTF) has also been shown to maintain the pluripotency of ES

cells in vitro (Ip et al., 1992; Wolf et al., 1994), as has human oncostatin M (OSM)

(Gearing & Bruce, 1992).

The ability of the ES cells to contribute to the germline of the developing mouse thus

provides a means of creating a mouse strain carrying a desired modification if such a

change can be introduced into the ES cell.

1.3 Homologous Recombination in Mammalian Cells

Homologous recombination (HR) is recombination between DNA molecules

dependent on homology between the recombining sequences and not on the specific

sequence per se. In addition to procaryotic organisms, it also occurs in eucaryotic

organisms during meiosis, mitosis and DNA repair (reviewed in Bollag et al., 1989;

Hooper, 1992). Evolutionarily HR functions to generate genetic variation and to

rescue genetic information which may be lost in DNA damaging events by repairing a

DNA molecule using information from the sister DNA molecule. Mammalian cells
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may also undergo other types of recombination such as nonhomologous

recombination and specific recombination types such as occurs in developing

lymphocytes during immunoglobulin gene rearrangement.

HR occurs in mammalian cells between introduced free DNA molecules (Extra-

Chromosomal Recombination, ECR), between homologous sequences in the

chromosomes (Intra-Chromosomal Recombination [ICR] between homologous

regions on a chromosome, and inter-chromosomal recombination, between

homologous sequences on sister chromatids) and between an introduced sequence

and a chromosomal sequence (gene targeting, considered in more depth in the next

section) (reviewed in Bollag et al., 1989; Hooper, 1992).

Whilst there are variations which attempt to account for certain specific observations,

the models of recombination all invoke a free end of a single-strand of DNA which

invades into a homologous double-stranded DNA molecule to produce a

heteroduplex structure (so called because it involves a single strand from two

different DNA molecules and thus mismatches in base-pairing are possible). The

pairing of the strands releases a single strand of uncut sequence from the recipient

molecule in a structure called a D-loop in response to repair synthesis at the end of

the invading strand forcing it from the recipient duplex. The D-loop may then

hybridise with the remaining strand of the donor molecule. This forms a strand

exchange structure called a Holliday Junction (Holliday, 1964). The two major

models suggest either a single-stranded nick (Meselson & Radding, 1975) or a

double-stranded break (Orr-Weaver et al., 1981) in the initiating strand. Depending

on how the Holliday junctions are resolved (see figures 1-1 and 1-2), crossover, gene

conversion or a combination of possibilities may be the result. Schematic diagrams of

the Meselson-Radding and double-strand break-repair models of recombination are

shown in figures 1-1 and 1-2.
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Figure 1-1: Meselson-Radding Model of Homologous Recombination

Each line represents a single strand of DNA with the 3' end marked by an arrow.
Newly-synthesised sequence is drawn as a fine line. Recombination is initiated by a
single-stranded nick in one of the recombining molecules. The 3' end of the nick acts
as a primer for repair synthesis and the newly-synthesised strand displaces a single-
stranded D-loop from the other homologue as it invades (1). The D-loop is degraded,
and by a combination of this degradation of the recipient and synthesis on the donor
an asymmetric heteroduplex (a heteroduplex on only one of the homologues) forms
(2). Ligation produces a Holliday Junction which may move along the paired
molecules by branch migration (3). As shown the Holliday Junction has two crossed
and two uncrossed strands. If the crossed strands are cut (4), the structure resolves
to give two double stranded molecules, each consisting of a strand which is identical
to the parent and one of which has undergone a gene conversion event without a
crossover. The size of the region having undergone gene conversion differs between
the molecules (it is smaller in the "lower/grey" case) because the newly-synthesised
sequence was copied from the donor homologue. The Holliday Junction may
alternatively isomerise, so that the crossed strands become uncrossed, and vice-versa
(5). When this structure resolves, it produces crossover products with a segment that
has undergone gene conversion (6).

(Adapted with permission from Hooper, 1992).
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Figure 1-2: Double-Strand Break-Repair Model of Homologous
Recombination

Recombination is initiated by a double-stranded break in one of the homologues,
which is followed by exonuclease digestion to leave a gap flanked on either side by 3'
overhanging ends. A 3' end can invade the other duplex, displacing a D-loop (1). As
repair synthesis enlarges the D-loop, this free strand may anneal to the free 3' end at
the other end of the gap (2). This strand then acts as a template for repair synthesis,
thus repairing the gap (3). Ligation results in the formation of two Holliday
Junctions, both of which may branch migrate. Depending on whether neither (4), the
left (5), the right (6), or both (7) Holliday Junctions undergo isomerisation prior to
resolution, there are several possibilities for the final structure. Resolutions 5 and 6
lead to a crossover event, whereas 4 and 7 do not.

(Adapted with permission from Hooper, 1992).
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Figure 1-2
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The outcome (reviewed in Bollag et al., 1989; Hooper, 1992) of a recombination

event may be either a reciprocal exchange between the DNA molecules (crossover), a

non-reciprocal exchange (gene conversion), a gene conversion with an associated

crossover or a non-conservative recombination event. These possibilities are shown

in figure 1-3.

1.3.1 Extrachromosomal Recombination

ECR has been extensively studied and has provided much information on the

mechanism and requirements for recombination in mammalian cells. It should be

noted however, that there are important differences between ECR and recombination

involving the chromosomes (see below).

ECR studies (reviewed in Bollag et al., 1989) have typically involved the

introduction of a defective selectable system into the cultured cells, followed by

selection as an assay for recombination. Such systems are typically either defective

viral genomes, which produce a functional virus upon recombination and are

monitored by the appearance of a plaque of lysed cells, or a selectable marker such as

defective neo genes which confer resistance to the aminoglycoside G418 upon

recombination to produce a functional gene. ECR may be assayed either by direct

selection for the recombined marker, which relies on subsequent integration of the

plasmid into the genome, or by harvesting of the low molecular weight DNA and

transformation of recombination-incompetent bacteria followed by selection for

recombination-dependent and recombination-independent markers. ECR frequencies

of 1-20% have been measured in the former systems, and 10~2-10"4 in the latter. Both

intra- and inter-molecular recombination events have been observed. It has been

suggested that almost every transfected DNA molecule may undergo at least one

ECR event (Folger et al., 1985). The mechanism of ECR may employ part of the

molecular machinery required for integration of the molecule into the genome, which

13



Figure 1-3: The Possible Results of a Recombination Event

A and a, B and b, C and c represent different alleles at a genetic locus undergoing
recombination. Each line represents a double stranded DNA molecule. Crossover
results in the translocation of information, whereas gene conversion may result in the
loss of genetic information. Non-conservative recombination results in the
destruction of one of the recombining molecules, and hence always results in the loss
of information.
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is why those assays for ECR reliant on subsequent stable transformation of the

recombined plasmid give higher HR frequencies. In Rat-20 cells which had

undergone an ECR event which reconstructed the aprt gene 50% of the cells went on

to stably integrate the gene into the genome, in contrast to only 5% of cells

transfected with wild-type aprt (measured in a transient expression assay) (Wong and

Capecchi 1986).

Recombination is modulated temporally: DNA molecules must be introduced into the

cell within an hour of each other for recombination to occur (Folger et al., 1985),

suggesting that within a relatively short time they become refractory to

recombination, perhaps by assembly into chromatin. ECR in the aprt system was

shown to occur preferentially (15-fold higher) during early to mid-S phase than in

early Gi phase of the cell cycle (Wong & Capecchi, 1987). Transcription stimulates

recombination six-fold in mammalian cells (Nickoloff & Reynolds, 1990), also

suggesting a role for the "activity" of DNA in recombination.

The homology requirements for HR are an important consideration. They differ

between different types of recombination. For ECR the recombination frequency

shows a biphasic relationship increasing with the length of homology, interpreted as

there being two systems in mammalian cells capable of accomplishing ECR, with one

operating on shorter lengths of homology than the other (Rubnitz & Subramani,

1984; Ayares et al., 1986). This biphasic relationship was not however observed with

replicating substrates (Ayares et al., 1986). The transition occurs in the range of

about 150-400 base pairs, with recombination still measurable with lengths of

homology as short as 14 bp (Rubnitz & Subramani, 1984). 19% nucleotide

mismatches reduce the frequency of ECR 3- to 15-fold compared to perfectly

homologous sequences, which is a much smaller attenuation than the reduction in

ICR under such conditions of over 1000-fold (Waldman & Liskay, 1987).
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As expected from the yeast paradigm (Orr-Weaver et al., 1981), double-stranded

breaks within or near the region of homology increase the frequency of ECR some

10-fold (reviewed in Bollag et al, 1989). A break some distance from the homology

has a smaller effect, but small heterologies do not significantly affect the

recombination frequency. (Wake et al., 1985).

1.3.2 Intrachromosomal Recombination

Intrachromosomal Recombination (ICR) occurs at lower frequencies (typically 10~6-
10~5 events/cell/generation) than ECR in mammalian cells (reviewed in Bollag et al,

1989) and requires longer lengths of homology than ECR: a minimum of between

134 and 232 bp (Waldman & Liskay, 1988). The recombination frequency increases

in a linear fashion as the length of homology increases from 292-2000 bp (Liskay et

al., 1987). Regions of heterology reduce the frequency of ICR, but an adjacent

region of perfect homology ameliorates this effect suggesting that initiation rather

than propagation of the event is mainly affected and that the recombination efficiency

is determined by the maximum length of perfect homology (Waldman & Liskay,

1988). ICR shows very high fidelity of recombination (Stachelek & Liskay, 1988). As

is the case with ECR, the rate of ICR is enhanced by transcriptional activity of the

recombining loci (Nickoloff, 1992).

1.3.3 Gene Targeting

The observations considered above have encouraged the use of homologous

recombination as a strategy for modifying the mammalian genome. HR between

introduced plasmid DNA sequences and homologous chromosomal sequences is

called gene targeting.

Initial experiments, as with ECR and ICR, relied on the reconstruction of a crippled

selectable marker as a method of selection for HR events and targeting frequencies of
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3 7 2 5
10" to 10" with ratios of homologous to non-homologous events of 10 " to 10 were

observed (reviewed in Bollag et al., 1989; Hooper, 1992).

Based on the finding that linearisation of the targeting vector within the region of

homology increases the targeting frequency by up to 1000-fold in fungi (reviewed in

Orr-Weaver & Szostak, 1985) and also stimulates ECR in mammalian cells (see

section 1.1.6.1), mammalian gene targeting vectors are also linearised. Targeting

constructs carrying a double-stranded break or gap in the homology undergo HR

between 33 and 140 times as efficiently as uncut (supercoiled) plasmids (Valencius &

Smithies, 1991a; Jasin & Berg, 1988) and the presence of a gap instead of a break

does not significantly reduce the targeting frequency because the gap is repaired by

gap repair, using information from the target gene (see figure 1-2). Heterologies

close to the gap are often lost, suggesting that the gap may be enlarged during repair

and/or that the free ends of DNA may not always directly participate in HR events;

therefore perhaps the improvement is due to the greater steric freedom of linear DNA

molecules than supercoiled ones (Shulman et al., 1990; Valencius & Smithies, 1991a;

Hasty et al., 1992; Kumar & Simons, 1993; Deng et al., 1993).

Copy number of either target sequence or vector is irrelevant to targeting frequency

(Thomas et al., 1986; Zheng & Wilson, 1990) and this has generally been taken to

imply that the step of homologous sequence location by the targeting vector is not

rate-limiting in a gene targeting reaction.

The first endogenous gene to be modified by gene targeting in mammalian cells was

the (3-globin gene, in human cells (Smithies et al., 1985). Currently most gene

targeting is carried out on murine ES cells with the objective of creating mice

carrying specific mutations.



1.3.3.1 Gene Targeting Strategies

Two major systems are available when considering the strategy of a gene targeting

experiment, which utilise different recombination possibilities observed in initial

targeting experiments. Insertion (O-type) vectors are linearised within the region of

homology and integrate in their entirety into the genome by means of a single

crossover event at the site of linearisation. They thus result in a duplication of the

homology region within the genome, separated by the vector sequences and

selectable marker. Replacement (Q-type) vectors are linearised outwith the region of

homology and result in the replacement of a length of the genomic sequence with

vector sequence comprising the homology which is divided into two lengths by

intervening sequence, usually a selectable marker . This is usually assumed to occur

by means of two separate crossovers although the observations that both types of

vector can have similar efficiencies (Thomas & Capecchi, 1987) and that the length

of homology on the small arm of the vector does not effect its targeting frequency

provided it is above a minimum of less than 470 bp (Hasty et al., 1991a) suggested

that in fact only one crossover is necessary. Branch migration of the crossover

through the vector to resolve at the other region of homology may be the mechanism

(Ellis & Bernstein, 1989). These two strategies are shown in figure 1-4 parts (a) and

(b).

There is some debate about the relative advantages of these two strategies both in

terms of their targeting efficiencies and the nature of the structure they are likely to

produce upon integration. Initial reports suggested that replacement and insertion

vectors targeted the locus at the same frequency (Thomas & Capecchi, 1987, Deng

& Capecchi, 1992), but some workers have found targeting an order of magnitude

(Hasty et al., 1991b) or greater (Dickinson et al., 1993; Rudolph et al., 1993a) more

efficient with insertion vectors. Furthermore, it has been argued that replacement



Figure 1-4: Gene Targeting Strategies

(a) Gene Targeting by Insertion

The bars represent genomic sequence, and lines represent vector (bacterial plasmid)
sequence. A region of homology (light grey) to the genomic locus of interest
(stippled grey) is linearised internally, so that recombination results in a locus
containing a duplication of the region of homology interrupted by the vector
sequence. Selection for a positive integration event using the neo gene, which confers
resistance to G418 (orientation indicated by an arrow) and Southern analysis are used
to identify the correctly-targeted clone.

(b) Gene Targeting by Replacement

The homology (light grey) to the target locus (stippled grey) is interrupted with the
selectable marker (neo; orientation indicated by an arrow) to create a mutation. The
vector is linearised outside the region of homology. A double-crossover event results
in an exchange of vector sequence with the chromosomal sequence.
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vectors can frequently recombine in an unexpected fashion (Hasty et al., 1991b;

Zhang et al., 1994), but this may be related to the lengths of homology on each arm

of the vector, and provided each arm is over 1 kb in size the replacement vector will

recombine as predicted (Thomas et al., 1992).

1.3.3.2 Homology Requirements for Gene Targeting

The length of homology required for efficient gene targeting events has been studied

to a limited extent, mostly in selectable genes such as hprt which provide a simple

means of isolating and characterising homologous recombinants (See section 1.1.8).

In common with other types of HR event in mammalian cells (see above), the

targeting frequency of the hprt gene shows a dependence on the length of homology

but there is some doubt about the exact relationship, since differences have been

observed between experiments even in the same system. At the murine hprt locus in

ES cells, an approximately linear relationship between targeting frequency and length

of homology was observed over the homology range 1.3-6.8kb (Hasty et al., 1991a),

but an exponential relationship was observed by other workers (Thomas & Capecchi,

1987; Deng & Capecchi, 1992). There was also an exponential increase in targeting

frequency at the aprt locus in Chinese hamster ovary (CHO) cells between 896 bp

and 3275 bp (Scheerer & Adair, 1994). A greater than linear relationship between

length of homology and targeting frequency was observed at the p. immunoglobulin

locus in hybridomas, where an increase in targeting frequency of 4-fold was observed

with an increase in homology from 4.3-9.5kb (Shulman et al., 1990). Concordant

with these observations, an increase in targeting frequency of 1.7-fold was seen at the

unselectable cftr locus in murine ES cells when the homology was increased in size

from 3.5kb to 4.3kb (Dickinson et al., 1993).



Sizeable interruptions in homology are largely irrelevant to the targeting frequency

(Mombaerts et al., 1991; Zhang et al., 1994), permitting the creation of relatively

large insertion or deletion mutations.

The maximum size of homology resulting in an increase in targeting efficiency is an

important factor, balancing ease of construction of the targeting vector with high

targeting frequency (see above). Based on the initial finding that a relatively small (2-

fold) increase in homology produced a large improvement (20-fold) in targeting

efficiency (Thomas & Capecchi, 1987), it was suggested that the use of very large

pieces of homology (greater than 30kb) would be of benefit (Bollag et al., 1989). In

experiments studying the relationship between length of homology and targeting

frequency (see above) saturation of the mammalian HR apparatus appeared to occur

in the region of 14 kb (Deng & Capecchi, 1992). With an isogenic construct

incorporating 17kb of homologous sequence, 78% of integration events were by

homologous recombination (Te Riele et al., 1992), which suggests that under

optimised conditions, HR rather than random integration can be the major event in

mammalian cells, as it is in yeast (Rothstein, 1991). Several workers have reported

much higher targeting frequencies than were first observed in gene targeting

experiments when using vectors with upwards of about lOkb of homology (Rudolph

et al., 1993a; Deng & Capecchi, 1992).

A related issue to the length of homology in a targeting vector is the extent to which

small mismatches in the homology can reduce the efficiency by reducing the size of

the maximum length of uninterrupted homology (see section 1.1.6.2). Several studies

have shown improvements in targeting frequency of between 4- or 5- and 25-fold by

the use of isogenic constructs (Te Riele et al., 1992; Van Deursen & Wieringa, 1992;

Deng & Capecchi, 1992) over the use of non-isogenic DNA which had small

heterologies of approximately 0.7-2% (Te Riele et al., 1992; Van Deursen &
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Wieringa, 1992). A Ren-ID targeting vector which was also greater than 95%

homologous to the Ren-2 gene was observed to target only Ren-ID (Miller et al.,

1992). However, individual mismatches separated from the site of linearisation by

2.4kb and 3.2kb of isogenic sequence did not adversely affect targeting frequency,

suggesting that the minimum length of perfect homology required for efficient

targeting is smaller than this (Dickinson et al., 1993).

1.3.3.3 Fidelity of Gene Targeting

When introducing subtle mutations into the genome, the fidelity of gene targeting by

HR is an important consideration because the effect of the intended change may be

complicated by the presence of subsidiary mutations introduced by the HR process.

Unfortunately this is an area where relatively little information exists. Some early

results suggested that targeted HR may introduce mutations at the target locus

(Thomas & Capecchi, 1986; Doetschman et al., 1988; Thompson et al., 1989;

Brinster et al., 1989), in contrast to ICR which is known to be very accurate

(Stachelek & Liskay, 1988). Thomas & Capecchi observed that in targeting

experiments designed to correct a deficient neo gene by HR, 50% of the recovered

clones had a second mutation rather than a correction at the site of the first mutation.

Since not all introduced mutations are likely to result in restored neo function the

actual mutation rate was probably much higher. Doetschman et al. and Thompson et

al. reported that deletions were observed in the hprt gene after targeting. Brinster et

al., using pronuclear injection as their method of introducing DNA, found 15 new

mutations introduced into a 1.5kb length of sequence. However, to date only one

systematic high-resolution study of the fidelity of gene targeting reactions has been

carried out (Zheng et al., 1991). In this study though, chemical cleavage of sequence

mismatches surrounding the site of integration of the targeting vector showed only



two point mutations in 80kb of sequence from 44 studied clones, and thus it was

concluded that gene targeting can be extremely accurate.

1.3.3.4 Enriching and Screening for Targeting Events

In the majority of gene targeting experiments, integration of the targeting construct

occurs rarely compared to the number of electroporated cells (typically around 10~5)
and of these integration events the proportion of legitimate HR events may vary

widely (over 3 orders of magnitude) between genes (reviewed in Camerini-Otero &

Kucherlapati, 1990). The reasons for such wide variability are unknown, and

conclusions are difficult to draw because of the complication of the picture by the

very different strategies, characteristics of homology used etc, in different targeting

experiments. The organisation into chromatin of genes, or their location in "hot-

spots" for recombination, or regions where it is suppressed, may be a significant

factor. Whilst transcription of genes may improve targeting efficiencies (Mansour et

al., 1988), it is not essential for a gene to be "targetable" by HR (Smithies et al.,

1985; Johnson et al., 1989; Jeanotte et al., 1991).

Therefore selective methods and/or rapid screening techniques are required in order

to isolate the desired clones. Some initial targeting experiments in ES cells were

carried out on the hprt locus, permitting direct selection of targeted recombinants

(Thomas & Capecchi, 1987; Doetschman et al., 1987, 1988; Thompson et al., 1989),

but clearly methods applicable to unselectable genes are required.

Expression of a positive selectable marker is used to isolate those clones derived

from cells which have stably integrated the targeting plasmid into the genome.

Usually this is neo, which confers resistance in vitro to the synthetic aminoglycoside

G418 (Southern & Berg, 1982), but others such as hyg, conferring resistance to

hygromycin B, and hprt minigenes (Selfridge et al., 1992; Detlott et al., 1994) are



also available. Multiple selections to enrich for HR events at the expense of non¬

homologous events have been applied and this has increased the efficiency of

selection to such an extent that isolation of targeted clones is often a relatively simple

matter.

The first of these is the positive-negative selection (PNS), used with replacement

vectors (Mansour et al., 1988), and this has become the standard method for the

production of gene knock-outs in mice over the past few years. The strategy is shown

in figure 1-5. Initially PNS was reported as giving enrichments of 2000-fold for HR

events over illegitimate events (Mansour et al., 1988), but this appears to be the

exception rather than the rule and more normally enrichments of about 2-20-fold are

observed (Zijlstra et al., 1989; Mombaerts et al., 1991; Rudolph et al., 1993a;

Hanson & Sedivy, 1995). This is likely to be due in part to exonuclease degradation

of the negative selectable marker prior to integration of the plasmid into the genome.

Such reductions in enrichment may be ameliorated by the presence of additional

sequence or hairpin-shaped oligonucleotide linkers on the free ends of the construct

to protect the negative selectable gene (Bernetgrandaud et al., 1992; Horie et al,

1994; Horie & Shimada, 1994). The diphtheria toxin A chain has also been used as

the negative selectable marker in the PNS procedure, where a 9- to 29-fold

enrichment for HR events was observed (McCarrick et al., 1993).

An alternative strategy for enrichment of homologous recombination events is to use

a selectable marker gene in the construct lacking either a functional promoter or

polyadenylation sequence or requiring the trapping of an enhancer (Doetschman et

al., 1988; Dorin et al., 1989; Jasin & Berg, 1988; Sedivy & Sharp, 1989;

Schwartzeberg et al., 1989; Joyner et al., 1989; Jeanotte et al., 1991). Such an

approach enriches for correctly-targeted events by preventing expression of the

positive selectable marker when an illegitimate recombination event occurs: it is



Figure 1-5: Positive-Negative Selection

The strategy is a refinement of targeting by replacement (figure 1-4). Another
selectable marker (HSVtk) is situated outside the region of homology. This selectable
marker permits negative selection with ganciclovir (GANC). A faithful homologous
recombination event results in the loss of this marker, so that a correctly-targeted
clone is G418r, because of the neo insertion, and GANCr, because the HSVr& gene is
not incorporated (upper structure). A random insertion of the vector into the genome
is most likely to occur via the free ends of the structure however, so that the HSVY/:
gene is also likely to become integrated (lower structure). These events may be
eliminated by virtue of their susceptibility to GANC, thus enriching for correctly-
targeted events.



Figure 1-5

/ V
c

HSVd- \

I
Homologous

neo i^-B^twam Recombination:

G418r GANCr

Illegitimate
Recombination:

G418rGANCs

28



relatively improbable that the construct will integrate adjacent to a sequence capable

of activating expression of the neo gene, so that it remains silent and the cell dies.

Different selections vary in efficacy, for example hyg produces 200-fold fewer

colonies than wild-type neo\ a weaker mutant neo was used to improve the targeting

efficiency of the c-myc gene, which is expressed at a relatively low level (Hanson &

Sedivy, 1995). Selectable markers should therefore be selected according to their

biological properties and those of the gene to be modified. Wild-type neo is such a

strong selection that it may be used without a promoter to target genes with

extremely low levels of expression (Jeanotte et al., 1991; DeGregori et al., 1994).

Screening of the resultant clones by Southern analysis or PCR is then used to identify

those clones which have undergone an HR event at the desired locus. PCR across the

junction of the insertion of the vector (Kim & Smithies, 1988) provides one of the

most sensitive methods of detection of targeted clones, permitting the use of pools of

clones to screen very large numbers, but is prone to error (Frohman & Martin, 1990;

Kim et al., 1991) and should therefore be used in conjunction with a confirmatory

screen carried out by Southern analysis. A similar method of screening large cell

numbers in groups is to enrich for the desired cells by sib-selection (Cavalli-Sforza &

Lederberg, 1956) coupled to PCR.

More recently the detection of homologous recombinants has been achieved by

assaying for secretion of a protein which will only occur in recombinants (Itzhaki &

Porter, 1991; Smith & Kalagerakis, 1991), either using an inducible promoter or

modifying an allelic variant of the targeted secreted protein.



1.3.3.5 Strategies for Site-Directed Mutagenesis in the Mouse

The discussion above pertains to gene targeting in general. Most targeting

experiments described to date have had the objective of introducing a large mutation

into a gene in ES cells to create a null allele, with the aim of generating a "knockout"

mouse as an aid to study of the gene's function in vivo and as a source of cell lines

carrying defined mutations. Phenotypes obtained with knockout mice have varied

from having no observable effect on health and viability to being lethal in early

embryonic life, and different targeted mutations in the same gene have produced

different phenotypes. In the case of the cystic fibrosis transmembrane receptor cftr a

complete knockout (Snouwaert et al., 1992; Colledge et al., 1992; O'Neal et al.,

1993) has a perinatal lethal phenotype, but a mutation achieved by insertion can be

spliced out in a minority of transcripts and the reduced level of expression provides a

model of human cystic fibrosis (Dorin et al., 1992). Similarly, mutations in the Hox

2.6 gene have subtly different phenotypes depending on the site of interruption of the

gene (Ramirez-Solis et al., 1993), and a knockout of the N-myc proto-oncogene is

lethal at day 10.5 of embryogenesis (Stanton et al., 1992; Charron et al., 1992; Sawai

et al, 1993) whereas a "leaky" mutation permits survival to birth (Moens et al.,

1992). Some mutations have proved to be disappointing in that they produce a

phenotype which gives little clue as to the function of the gene, or do not model the

human disease for which they were designed.

The introduction of more subtle mutations such as missense mutations to modify

specific functions of a protein is therefore desirable and likely to become more

important. Such small modifications to the genome present problems in terms of their

creation without other changes being co-introduced, and in terms of their detection.

A point mutation may introduce a selectable phenotype as is sometimes the case with

conventional gene inactivation; for example introduction of a point mutation into



RNA polymerase II conferred resistance to a-amanitin (Steeg et al., 1990), but this is

likely to be the exception rather than the rule. There are several strategies now

available for such experiments, including microinjection of a targeting construct with

no selectable marker (Zimmer & Gruss, 1989) or coelectroporation of the selectable

marker (Shulman et al., 1990; Davis et al.. 1992), replacement where the selectable

marker is located in a nominally "neutral" part of the homology (Rubinstein et al.,

1993), "plug & socket" targeting (Detlott et al., 1994; figure 1-6), "tag and

exchange"/double replacement targeting (Askew et al., 1993; Stacey et al., 1994; Wu

et al., 1994; figure 1-7), site-specific recombinase systems (Gu et al., 1993; Fiering et

al., 1993; Jung et al., 1993) and "hit and run"/"in-out" targeting (Hasty et al., 1991c;

Valencius & Smithies, 1991b; figure 1-8). They have slightly different characteristics,

so that selection of the technique can be chosen according to the objectives of the

experiment. The technique of Rubinstein et al is essentially a standard

replacement/PNS-type strategy. However, instead of incorporating a deletion or

insertional mutation caused by the neo gene interrupting exonic sequence into the

homology, they inserted a point mutation into the proopiomelanocortin (POMC)

gene, and located the neo cassette downstream of the polyadenylation site. Although

they showed that the POMC gene was not activated in reverse by the PGK promoter,

as may have been expected (Johnson & Friedman, 1990), this system obviously relies

on the fact that a suitably innocuous region of the genome will be available.

Especially for large genes, and occasions where a mutation is to be introduced into an

exon which is some distance from sequences outwith the gene, an intronic site would

have to be selected. This may be problematic due to the interruption of enhancer-type

sequences or the introduction of cryptic splice-acceptor sites within the selectable

marker. For example, an insertional disruption of the mouse major adult (3-globin

gene created a much more severe phenotype than a deletion at the locus, and it was

suggested that this was due to the presence of the additional promoter driving the
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Figure 1-6: "Plug and Socket" Gene Targeting

The targeting is carried out in hprt cells, to permit selection for hprt in the second
step. The regions of homology (medium grey and white) are interrupted by a neo
gene, to permit positive selection for a correctly-targeted clone, and a defective hprt
gene. Vector 1 is targeted into the locus by replacement using neo selection, to create
the "socket". This clone, which is G418r, HATS, is then targeted with vector 2 (the
"plug"), carrying a subtle mutation (light grey), and another defective hprt gene.
Since there are different deletions in the hprt genes in both vectors 1 and 2 (hatched
regions), the only HATr clones resulting are those which have correctly recombined
to give a functional hprt gene at the target locus, and in the process introduced a
subtle mutation into the target gene. Screening of HATr clones is then carried out to
identify those carrying the linked mutation.
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Figure 1-7: Double Replacement Gene Targeting

This strategy also uses two vectors, like plug and socket targeting. In the figure an
hprt minigene is used for both positive and negative selection, but neo for positive
selection and HSVtk for negative selection have also been successfully employed (see
text). In the first step, PNS targeting is used to generate a HATr knockout clone.
Here a selection based on hypoxanthine and azaserine (which does not inhibit
thymidylate synthetase) would be used to avoid the thymidine present in HAT
medium rescuing the HSVtk selection. The targeted clone is then re-targeted with a
second vector carrying homology identical to the endogenous locus except for the
desired mutation (light grey square). The double-targeted clone is once again HATS,
and is then screened to check for presence of the designed mutation.



Figure 1-7

Target Locus

Vector 1

I
"hsvit k

Homologous
Recombination:

HAP GANCS

Knockout

Vector 2 j { { ^ |

Homologous
Recombination:

HAP

35



Figure 1-8: Hit and Run Gene Targeting

An insertion vector carrying both positive and negative selectable markers (neo and
HSWtk respectively) and a subtle mutation in the region of homology is used to target
the locus of interest, generating a structure consisting of a linear duplication of the
region of homology interrupted by the vector sequence, which is neo . Depending on
the result of any branch migration event, the mutation may be in either the left
duplication, the right duplication, both duplications or neither duplication of
homology. The clone is then subjected to backselection (negative selection; in this
case GANC) and intra-chromosomal recombination events between the duplications
of homology either regenerate the wild-type structure or insert the mutation,
depending on the site of crossover.
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Figure 1-8
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neo cassette introduced into the region interacting with the Locus Control Region at

the expense of endogenous promoters driving globin gene transcription (Shehee et

al, 1993).

The plug and socket system developed at North Carolina also leaves the selectable

marker in the genome and so the same caveat must apply here as well. However, this

system is useful where many mutations are to be produced, since the same "socket"

can be used to generate many different mutants by the use of different "plug"

constructs. The positive selection at the second step is also more effective than

negative selection strategies, such as are used in hit and run or tag and exchange.

Recombinase enzyme systems rely on the use of either the Cre/lox-P (derived from

bacteriophage PI) or FLP recombinase (derived from yeast) systems to remove the

selectable marker sequence. Recombinase-mediated systems require the placement of

the necessary ds-acting sequences either side of the sequence to be deleted, and leave

a single copy of this sequence in the genome (about 50 bp) after excision by the

specific enzyme, but are very efficient.

Targeted recombination events are rare, of the order of 10~5 to 10~6 per transfected

cell (see above), but as only 1 in 10 cells integrates the transfected DNA it is possible

to enrich for targeted clones by selecting for transfected cells with a selectable

marker. Thus the coelectroporation strategy also introduces a selectable marker into

the genome, but relies on the fact that the mouse genome is sufficiently large (2000

centimorgan) that the chance of the introduced mutation and the neo selectable

marker becoming closely linked is only about 0.05%. Separation of the selectable

marker from the introduced point mutation can therefore be achieved by meiosis.

However, with this strategy a laborious PCR screen is required and a mouse must be



generated before the allele of interest can be studied in the absence of the selectable

marker.

The only methods therefore which definitively effect the precise modification of the

genome and introduce no other changes which might complicate analysis of the

phenotype are microinjection of sequences, tag and exchange and hit and run. The

former however has only been achieved on one occasion, as yet without germline

transmission of the produced allele, and therefore its generality as a strategy must

remain in doubt.

The hit and run strategy was the first of the latter two to be shown to be practicable

(Hasty et al., 1991c; Valencius & Smithies, 1991b), and has been employed on

several occasions since (Rudolph et al., 1993a, 1993b; Serwe & Sablitzky, 1993;

Bautista & Shulman, 1993; Ernst et al., 1994; Gorry et al., 1994). This system

requires the construction of only one vector, making it preferable in situations where

only one mutation is to be introduced at the locus. As shown in the diagram,

reversion may be either to wild-type or the desired mutant. Reversion occurs at

widely different frequencies depending on the gene studied (Hasty et al., 1991c), as is

seen for initial targeting events (Camerini-Otero & Kucherlapati, 1990). "Hit and

run" has also been used to generate conventional insertion-mutant type structures

where replacement vectors have proved ineffective (Rudolph et al., 1993a).

Tag and exchange, or double replacement, relies on a second targeting event with

another construct to introduce the planned mutation (figure 1-7). This method is

likely to be useful where multiple independent modifications of the locus are required,

since the same "tagged" gene may be used for any number of exchanges.

Furthermore, the tag itself may have utility as a knockout allele against which to

compare subsequent, more subtle, mutations. In such cases however, it should be

noted that the use of the HSWtk gene as the negative selectable marker is
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inappropriate because testicular expression from a cryptic promoter is incompatible

with germline transmission of the mutant allele (Al-Shawi et ai, 1991). Loss of the

second selectable marker can occur in ways other than by HR, and a high background

of non-targeted cells has been observed after electroporation of the second vector

(Bradley, 1993), but this should be less of a problem when using hprt selection rather

than, for example, HSVtk selection (Stacey et al., 1994) because positive selection

for gene function may be maintained until introduction of the second construct.

1.4 The Hprt System (Reviewed by Stout & Caskey, 1985)

The hypoxanthine-guanine phosphoribosyltransferase {hprt) gene has proved to be a

useful system in studies aimed at developing gene targeting strategies or studying the

mechanism of HR in mammalian cells. Two features make hprt suitable for such

experiments. Hprt is X-linked, and therefore a single copy of the gene may still be

observed at the level of the phenotype, because the gene is hemizygous in males and

in females only one copy of the gene will be expressed because of X-chromosome

inactivation. As remarked in section 1.1.5, most ES cells are male and therefore can

be expected to behave identically with respect to /i/?/t-dependent selection. Hprt

function may be selected either for or against in cultured cells by chemical selection,

and thus a simple phenotypic change can be used to follow the genotype of the gene.

Hprt is a housekeeping gene, expressed at a low level in most tissues. It is a part of

the purine metabolism pathway (figure 1-9; see, for example, Voet & Voet, 1990),

serving to salvage hypoxanthine and guanine by transfer of a phosphoribosyl group

from 5'-phosphoribosyl-1-pyrophosphate (PRPP) to produce inosine monophosphate

(IMP) or guanosine monophosphate (GMP), respectively. Cells can also synthesise

these mononucleotides de novo, but this pathway is blocked by the drug aminopterin

and the cell can thus be made dependent upon its salvage pathway and will die unless

functional hprt can provide purines. This is the basis of the HAT (hypoxanthine-



Figure 1-9: Purine Metabolism

The figure shows a schematic outline of the purine salvage pathways in mammals.
Abbreviations: ADA, adenosine deaminase; AMP, adenosine monophosphate;
AMPRT, amidophosphoribosyltransferase; ATP, adenosine triphosphate; GMP,
guanosine monophosphate; HPRT, hypoxanthine-guanine phosphoribosyltransferase;
IMP, inosine monophosphate; N, nucleotidase; Pi, inorganic phosphate; PNP, purine
nucleoside phosphorylase; PPit pyrophosphate; PRPP, 5'-phosphoribosyl-l-
pyrophosphate; R-l-P, ribose-1-phosphate; UO, urate oxidase (this step does not
occur in humans); XO, xanthine oxidase
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aminopterin-thymidine) selection (Szybalski & Szybalska, 1962): hypoxanthine is

provided as a substrate for /zprr-catalysed purine conversion because aminopterin

blocks the de novo pathway; thymidine is also included in the selection as

aminopterin, being an antifolate drug, also inhibits the thymidylate synthase reaction.

Hprt is also capable of phosphoribosylating the toxic guanine analogue 2-hydroxy-6-

mercaptopurine (6-thioguanine, 6-TG) and this is fatal for the cell (Stutts &

Brockman, 1963). It is thus possible to select either for function or for lack of

function in hprt very simply.

The structure of the murine hprt gene is shown in figure 2-1, together with the

structure of the mutant hpri*m-3 allele in the ES cell line E14TG2a (Hooper et al.,

1987), which carries a deletion encompassing the promoter sequences and exons 1

and 2 (Thompson et al., 1989).

1.5 The Kirsten-/?as Proto-Oncogene.

1.5.1 General Introduction: The Ras Genes

The ras genes comprise a gene family and are ubiquitous amongst eucaryotic

organisms, having been identified in mammals, birds, insects, molluscs, nematodes,

fungi and plants (reviewed by Barbacid, 1987; Valencia et al., 1991). They are part

of a greater superfamily of genes which all encode small guanine nucleotide-binding

proteins of 20-25kd in size, which as well as ras also include the families of the rac,

rap, rab, ral and rho genes.

Mammals encode 3 ras genes, designated K-ras-2, H-ras-1 and N-ras, in the mouse

present on chromosomes 6, 7 and 3, respectively (O' Brien, 1984). They encode

highly-related proteins generically known as p21 (Shih et al., 1979). In humans and
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rats, pseudogenes of H-ras (H-ras-2) and K-ras (K-ras-1) have also been

characterised.

The Kirsten-ras proto-oncogene (hereafter, K-ras) was one of the first genes

discovered to have an association with malignancy, being described in the context of

the Kirsten rat sarcoma vims as the transforming element of the vims (Kirsten &

Mayer, 1967). K-ras was subsequently shown to be a mutant homologue of a cellular

gene transduced by the retrovirus (Ellis et al., 1981). H-ras was identified similarly

(Harvey, 1964; DeFeo et al., 1981). N-ras was identified as a transforming gene

present in a neuroblastoma cell line homologous to H-ras and K-ras (Shimizu et al.,

1983a).

The biology of ras has provoked intense study in the last 15 years because of the

association of the ras genes with human malignancies (reviewed by Bos, 1989);

approximately 30% of cancers, including almost 100% of pancreatic carcinomas,

50% of colon and thyroid cancers and 30% of lung malignancies and myeloid

leukaemias, have mutant ras alleles.

The effects of ras may be observed in bioassays, where ras genes or proteins are

added to a system to elicit a r<zs-dependent response. This may be cell-proliferation

dependent, such as focal transformation of established rodent fibroblasts, DNA

synthesis, tumour formation or transformation of a primary cell line in cooperation

with another oncogene such as myc, or morphological such as the induction of

differentiation in an appropriate cell type (reviewed by Lowy and Willumsen, 1993).

The wide variety of bioassays available for ras is a reflection of its involvement in

diverse effects such as proliferation and differentiation in a multitude of biological

systems.
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1.5.2 Structure of the Ras Genes

In this and the following sections, it should be noted that many characteristics of K-

ras also apply to other ras genes as well, and therefore where appropriate ras or

p2lras will be used to denote general findings.

The three mammalian ras genes have a similar structure, consisting of a 5' noncoding

exon (exon 0) and four coding exons. The introns however are very heterogeneous,

so that the genes vary in size: N-ras and H-ras span approximately 7kb and 3 kb

respectively, whereas K-ras is much larger, covering 35-40kb. K-ras also differs from

the other ras genes in that it codes for alternative fourth coding exons designated 4A

and 4B (McGrath et al., 1983; Shimizu et ai, 1983b; Capon et al., 1983), making a

total of 6 exons in all coding for two isomorphic proteins which differ in their C-

terminal regions. A diagram of the K-ras gene and its transcription and translation

products is shown in figure 1-10. N-ras, H-ras and K-rasA all encode proteins of 189

amino acids; exon 4B has one less codon and therefore K-ras is 188 amino acids

long. Between ras genes the splicing junctions of the exons correspond exactly,

suggesting that the proteins are derived from a common ancestral protein. They are

highly conserved both between species and between each other (Barbacid, 1987;
A B

Lowy & Willumsen, 1993). K-ras and K-ras proteins are identical from the N-

terminus to residue 164 (i.e. to approximately 1/3 way through exon 4) except for

differences at residues 151 and 153, but are then extremely heterogeneous in the

remaining 24/25 amino acids leading to the C-terminus. However, between species

exons 4A and 4B are highly conserved, suggesting that the heterogeneous regions of

the proteins are associated with specificity of function. This structure of a highly-

conserved N-terminal region and a divergent C-terminal region is usual in ras genes

(Barbacid, 1987; Valencia et al., 1991; Lowy & Willumsen, 1993), but within the

heterogeneous region some conservation is observed. A cysteine residue is always
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Figure 1-10: The Kirsten-ras Gene

K-ras is a gene comprising 6 exons, including a 5' untranslated exon (exon 0) and five
translated exons, designated 1, 2, 3, 4A and 4B, spanning approximately 40kb of
genomic sequence (not to scale). Alternative splicing possibilities may generate two
mRNA species, depending on whether exon 4A is included or not. Because there is a
nonsense codon at the end of exon 4A, the two protein isoforms generated either
have the amino acid sequence corresponding to exons 1-2-3-4A or 1-2-3-4B,
differing just at their C-termini.
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Figure 1-10
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present at codon 186 (185 in K-ras8) and is followed by two aliphatic amino acids

and a residue which is usually either serine or methionine. The C-terminal four

residues are therefore collectively referred to as the CAAX motif, and their strong

conservation between genes and species reflects their importance for ras function

(see section 1.2.3.2).

The promoter of K-ras, like that of the other two ras genes, is located in the region

of the untranslated exon 0 (Jordano & Perucho, 1986; Hoffman et al., 1987;

Yamamoto & Perucho, 1988). It lacks a TATA and CAAT box, but contains multiple

copies of the GC box sequences GGGCGG/CCGCCC both 5', 3' and internal to exon

0. Transcriptional activity appears to be bi-directional from these sites (Hoffman et

al., 1987). Such sequences are recognised by the Spl transcription factor (reviewed

by Kadonaga et al., 1986) and are characteristic of "housekeeping" genes. Sequences

at the 5' end of the promoter region have also been shown to have enhancer-like

activity (Jordano & Perucho, 1988) and to bind nuclear factors other than Spl

(Jordano & Perucho, 1988; Hoffman et al., 1990).

1.5.3 Biological Activities of Ras: Proliferation, Differentiation and

Neoplasia

The ras genes and proteins have been implicated in a diverse collection of cellular

phenomena, with observations depending on the system under study. Ras mutations

are observed in many cancers (Bos, 1989), and the ras status of the cell affects the

way it behaves in vitro and in vivo.

Microinjection of oncogenic p2\rai protein induces proliferation of resting cells

(Feramisco et al., 1984; Stacey & Kung, 1984), and the introduction of an activating

point mutation into the endogenous H-ras gene of immortal untransformed

fibroblasts predisposed them to transformation (Finney & Bishop, 1993). Transgenic



mice carrying activated ras alleles are predisposed to tumours of the tissues in which

the promoter driving expression of the transgene are active (Quaife et al., 1987; Sinn

et al., 1987). Transformation may also be induced by overexpression of the c-one

form of ras, suggesting that the transformation of cells by ras is an inappropriate

manifestation of a normal cellular process (Chang et al., 1982). Conversely,

disruption of activated K-ras by HR in colon carcinoma cell lines resulted in a less

malignant phenotype as defined by morphology, the ability to grow in soft agar, and

growth rates both in vitro and as tumours in nude mice (Shirasawa et al., 1993).

Activation of ras is observed in response to external mitogenic signals such as

epidermal growth factor (Kamata & Feramisco, 1984), and the action of the ras

proto-oncogene-mediated signalling pathway(s) is essential for the proliferation of

NIH3T3 cells in response to serum-stimulation (Mulcahy et al., 1985; Cai et al.,

1990). Ras proteins also induce processes such as membrane ruffling and pinocytosis

in addition to proliferation in resting cells (Bar-Sagi & Feramisco, 1986). In yeast, a

deficiency of both the RAS genes was observed to be incompatible with viability

(Tatchell et al., 1984). Thus the ras signalling pathway plays a vital role in the

cellular activation, proliferation and function of normal cells.

In addition to its role in cellular proliferation, which upon deregulation may create a

transformed phenotype, ras has also been shown to play a role both in promoting and

inhibiting differentiation. Pheochromocytoma line PC 12 cells differentiate in response

to nerve growth factor, observed morphologically by the generation of neurites, but

microinjection of inactivating antibodies to p21rai prevents this response (Hagag et

al., 1986), as does the transfection of a dominant-negative H-ras mutant (Szerberenyi

et al., 1990). By contrast, myogenic differentiation is inhibited by the expression of

activated ras proteins in immortal myoblasts (Olson et al., 1987; Gossett et al., 1988)

but not in EC cells (Rudnicki et al., 1989). This difference in the differentiation
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response of cells to p2\rai indicates that factors other than ras status, such as

interactions with other oncogenes and the exact lineage of the cell, are also important

in its decision to commit to a certain pathway of differentiation.

Ras is now known to be directly involved in several specific eucaryotic

developmental processes, including vulval induction in C. elegans (Han & Sternberg,

1990; Beitel et al., 1990), eye development of Drosophila (Simon et al., 1991), and

the progression of preimplantation-stage embryos in the mouse (Ahmad & Naz,

1993; Yamouchi et al., 1994)

1.5.4 Biochemistry of Ras

1.5.4.1 The GTP-GDP Cycle

The ras genes encode small monomelic molecules which migrate as a 21kd protein.

p2\ras is a guanine-nucleotide binding protein, specifically GTP and GDP, (Scolnick

et al., 1979; Shih et al., 1980; Tamanoi et al., 1984; Temeles et al., 1985) and

incorporates a GTPase activity (Gibbs et al., 1984; McGrath et al., 1984; Sweet et

al., 1984; Manne et al., 1985; Temeles et al., 1985). This GTPase activity effectively

limits the half-life of the GTP-bound form of the molecule, and is attenuated in
12

oncogenic mutants of ras such as the val mutant. The GTP*p21 form of the protein

has been shown to be the physiologically "active" form of the protein. In vitro GTP*

p21 but not GDP*p21 causes activation of Saccharomyces cerevisiae adenylyl

cyclase (Field et al., 1987; 1988). Microinjection into various cell types of p2\ras

complexed to non-hydrolysable analogues of GTP but not GDP was found to induce

effects similar to those observed in bioassays of activated oncogenic ras proteins

(Trahey & McCormick, 1987; Satoh et al., 1987).

The p2lras proteins bind guanine nucleotides with very high affinity (Kd~10 11 M)

(Feuerstein et al., 1987a; 1987b) and thus the spontaneous rate of dissociation of the
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nucleotide-p21 complex is very low, =10° moles s"1 mof1 complex (John et al.,

1990). This binding is much tighter than is required to saturate the p21rai with

nucleotide with the concentrations of GTP (>10~4 M) and GDP (>105 M) found in

the cytoplasm, so that p2\ras effectively cycles slowly between its GTP- and GDP-

bound forms. Because the cellular concentration of GTP is higher than that of GDP

dissociation of the bound nucleotide results in its rapid replacement from the cytosol

by GTP, and thus dissociation of the nucleotide*p21 complex "activates" the

molecule (see above). Certain point mutations change the exchange rate and are

activating because they are associated with an unusually high level of GTP*p21

(reviewed in Lowy & Willumsen, 1993). The intrinsic GTPase activity of p21ra'5 is

also very low, &cat.GiP of the order of 0.02 min'1 (Neal et al., 1988). Therefore in the

cell the p2\ras molecule effectively binds GTP, where it is in the active form, and

subsequently hydrolyses the GTP to GDP and P, with a half-life of 1-5 hours, in the

process inactivating itself. Activated mutant ras molecules have a GTP*p21 half-life

of 3-9 times longer (Sweet et al., 1984; Gibbs et al., 1984; Lacal et al., 1986; John et

al., 1988). The GTP*p21 form of the complex is thought to have several

conformations, one of which is an efficient catalyst for hydrolysis of GTP (reviewed

in Bourne et al., 1991). This explains its intrinsically slow rate of hydrolysis, although

other possibilities such as participation of GAP residues directly in the hydrolysis

mechanism have been proposed (Bollag & McCormick, 1991).

Such low intrinsic activities both for the rate of exchange (activation) of ras and the

rate of hydrolysis (inactivation), but with the rate of hydrolysis exceeding that of

exchange, mean that in most cells, ras is predominantly in the GDP*p21 state (Gibbs

et al., 1990; Satoh et al., 1990a; Downward et al., 1990). Activation of the cell, for

example activation ofmouse fibroblasts by epidermal growth factor (EGF) or platelet

derived growth factor (PDGF) elevates GTP*p21 levels some 2-4-fold (Gibbs et al.,

1990; Satoh et al., 1990a, 1990b), or in human T-cells GTP*p21 increases from 5%
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total complex to 80% total complex upon stimulation (Downward et al., 1990). To

activate the cell by increasing the fraction of ras in the GTP*p21 state requires a 100-

fold drop in the ratio of exchange rate:GTPase rate. Regulation of this ratio, and

hence of the biological activity of pl\ras, is believed to be achieved through effector

proteins which either accelerate the rate of GTP hydrolysis (GTPase activating

proteins, GAPs) or nucleotide exchange (guanine nucleotide exchange factors,

GEFs), thus moving the equilibrium of GTP*p21: GDP*p21 (reviewed by Bollag &

McCormick, 1991; Boguski & McCormick, 1993; Feig, 1994). In mammals the

GAPs include pl20GAP (Trahey & McCormick, 1987) and neurofibromin (the

product of the NF1 neurofibromatosis tumour suppressor gene: Xu et al, 1990); the

GEFs include mSosl, mSos2 and hSosl, (murine and human homologues of the

Drosophila Son of Sevenless gene: Bowtell et al., 1992; Chardin et al., 1993), Ras-

GRF/cdc25Mm (a homologue of the yeast cdc25 gene: Martegani et al., 1992; Shou et

al., 1992; Wei et al., 1992) and Vav (Gulbins et al., 1993). The exchange factor

SmgGDS (Small GTP-binding protein Guanine nucleotide Dissociation Stimulator:

Yamamoto et al., 1990) appears to be specific for K-ras amongst the ras proteins,

although it does interact with related proteins such as Racl, RhoA and Rap 1A. These

results taken together have lead to the proposal of a model for p2lras action as is

shown in figure 1-11.

1.5.4.2 Subcellular Localisation: C-Terminal Modification

Ras proteins are synthesised on ribosomes in the cytosol (Shih et al., 1982; Ulsh et

al., 1984; Fujiyama & Tamanoi, 1986) but are localised at the inner surface of the

plasma membrane (Willingham et al., 1980; Willumsen et al., 1984a; Fujiyama &

Tamanoi, 1986). This localisation is essential for the normal activity of ras proteins

and mutants which remain in the cytoplasm are incapable of transforming cells, even

if they carry oncogenic mutations as well (Willumsen et al., 1984a, 1984b), or of
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Figure 1-11: The ras GTP-GDP Cycle

Regulation of p2lras by guanine nucleotide exchange factors (GEFs), which activate
p2lras by catalysing exchange of bound GDP for cytosolic GTP, and GTPase
activating proteins (GAPs), which inactivate p2\ras by accelerating hydrolysis of
bound GTP to GDP. Unbound p2\ras is not shown because the binding constant of
the molecule for guanine nucleotide is so high that these species are very short-lived
and thus presumed to have little biological significance.
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Figure 1-11
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activating the MAP kinase cascade in fibroblasts (see below; Leevers & Marshall,

1992). Membrane localisation is mediated by several post-translational modifications

of the protein which increase the hydrophobic nature of the molecule rather than the

presence of hydrophobic sequences within the primary structure (reviewed by

Newman & Magee, 1993; Glomset & Famsworth, 1994). Attachment to the

membrane requires the prenylation of p21r<"; a farnesyl (CI5) moiety is added to the

sulphydryl group of cys186/185 (the C of the CAAX motif) by a thioester link

(Hancock et al., 1989, 1991). In the case of H-ras, N-ras and K-rasA the cysteine
186 B

residues slightly N-terminal to cys are also palmitoylated, but K-ras , which lacks

the necessary cysteine residues, has a polylysine motif present in the heterogeneous

C-terminal region of the protein which is involved in membrane targeting (Hancock

et al., 1990; Jackson et al., 1994). The basic residues of the polylysine region may

enhance the membrane targeting of the molecule by permitting charged interactions

with negatively charged head groups of acidic membrane phosphoglycerides

(Glomset & Farnsworth., 1994), and this domain has recently been shown to be

required by K-ras in malignant transformation ( Jackson et al., 1994). Following the

isoprenylation reaction, the terminal three amino acids of the CAAX motif are

removed by proteolysis and the C-terminal carboxyl group is methylesterified, and

these steps are required for fully efficient membrane localisation (Hancock et al.,

1991).

1.5.4.3 How p21ras Activates the Cell

Results obtained in the last two years have now produced a very clear picture of the

way in which ras is able to activate the cell (figure 1-12; for reviews see McCormick,

1993; Feig, 1993; Moodie & Wolfman, 1994; Hall, 1994; Avruch et al, 1994). Sos

has recently been shown to be an activator of p21ras in response to cellular activation,

for example by EGF activating the EGF receptor tyrosine kinase. Interestingly, Sos



Figure 1-12: Ras Activation of the Cell

A mitogen, such as EGF, binds to its receptor tyrosine kinase (RTK), which is
activated and autophosphorylates. The phosphorylated cytoplasmic domain of the
RTK may then bind with the SH2 domain of an adapter protein such as Grb2. The
SH3 domains of Grb2 interact with Sos, recruiting it to the cell membrane. There is
therefore a high effective local concentration of Sos at the plasma membrane. Sos is a
GEF for p21r<", and thus ras is activated by exchange of GDP for GTP. ras then
recruits raf to the membrane, interacting through its CR1 region. Once raf is
membrane-localised, it may interact with other proteins (?) and activate the MAP
kinase cascade, leading to upregulation of various cell effectors such as transcription
factors.
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requires prenylation of ras to efficiently promote guanine nucleotide exchange

(Porfiri et al., 1994). Guanine nucleotide exchange is promoted through adapter

proteins such as Grb2 (the mammalian homologue of Sem-5 of C. elegans and drk of

Drosophila), so called because it has both SH2 and SH3 "Src homology domains".

The SH2 and SH3 domains provide a link between the activated

(autophosphorylated) receptor and Sos, respectively. Once converted to the GTP*

p21 state by Sos in response to the extracellular mitogenic signal, ras may initiate a

kinase cascade. Ras recruits another member of the GTPase superfamily to the

complex, namely raf. The localisation of raf at the plasma membrane allows

activation by raf of the MAPK (mitogen activated protein kinase) cascade. This

cascade has pleiotropic affects on the cell, influencing cytoplasmic organisation,

cytoplasmic phospholipase A2, other serine/threonine kinases such as Rsk and

MAPKAP-K2 and transcription factors such as c-fos, c-myc, c-jun, ATF-2 and Elk-1.

1.5.5 Expression ofRas

Several workers have investigated the expression of ras genes in both normal and

dysplastic tissue, at the RNA and protein levels. In tumours the expression of ras

genes is elevated with respect to control tissues in about 50% of cases when RNA

transcripts are assayed, and similar results have been obtained with immunoblot assay

of p21 ras proteins (reviewed by Barbacid, 1987). Mutant alleles of K-ras have been

observed to be preferentially expressed over normal alleles in about two thirds of

colorectal carcinomas examined (Kotsinas et al., 1993), and this may provide a

selective growth advantage to the tumour.

In normal proliferating liver, ras was observed to be upregulated several-fold

(Goyette et al., 1983). Systematic studies of ras expression in the normal tissues of

several mammalian species have also been undertaken, to clarify the role of the genes



in development and in normal cell function. The ras genes appear to be expressed

ubiquitously, but with variations in levels between different genes and cell types. In

the mouse, the H-ras gene is expressed ubiquitously at approximately constant levels

in both the embryo and extra-embryonic tissues, with higher levels observed in bone,

kidney, brain and skin post-natally (Muller et al., 1982; Slamon & Cline, 1984; Leon

et al., 1987). K-ras is also expressed ubiquitously at approximately constant levels

until about day 16 of development, when levels decrease to about 25-50% relative to

those observed in midgestation embryos (Muller et al., 1983). In the adult K-ras is

most prevalently expressed in the gut, lung and thymus, and was less represented in

tissues such as skin, liver, skeletal muscle, ovary and spleen (Leon et al., 1987). K-

ras transcript and protein levels are modulated in some tissues with age (Tanaka et

al., 1986; Leon et al., 1987). It is of note that H-ras appeared to be most highly

represented in the skin because H-ras, and not K-ras or N-ras, is a target for

oncogenic mutations in the skin of mice with chemically induced tumours (Balmain et

al., 1984).

N-ras was expressed at highest levels in thymus and testis, and lowest in liver and

kidney, but again appears to be represented to some extent in all tissues (Leon et al.,

1987).

Consistent with the observation that ras genes are ubiquitously expressed, they have

also been observed in very early-stage embryos and in cells of the germline. In male

germ cells the 3 ras genes show distinct levels of expression: K-ras mRNA being

elevated in pachytene cells and N-r&y in early round spermatids. In contrast, H-ras

expression is constant during spermatogenesis (Sorrentino et al., 1988). In

preimplantation-stage mouse embryos all three ras genes are expressed (Pal et al.,

1993). Modulation of expression of H-ray and K-ras was not observed during

differentiation of F9 EC cells (Lockett & Sleigh, 1987).
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During rat development, analysis with a polyspecific anti-p21 ras antibody showed

very wide protein expression of p21 ras, but in earlier stages of development staining

was weaker in some extraembryonic tissues (Brewer & Brown, 1992). Despite the

association of ras with proliferation of tissues, examination of tissues with anti-p21ras
monoclonal antibodies has frequently revealed the highest levels of expression in

terminally differentiated tissues, such as adult (and embryonic) brain and epithelial

cells of the endocrine glands, or non-dividing tissue such as heart muscle (Spandidos

& Dimitrov, 1985; Tanaka et al., 1986; Furth et al., 1987; Chesa et al., 1987).



CHAPTER 2-

THE FIDELITY OF GENE
TARGETING



The Fidelity of Gene Targeting

2.1 Introduction

Much of this thesis (chapters 4 and 5) concerns itself with hit and run gene targeting.

Because this technique was designed for the purpose of introducing small mutations

into the genome, a high degree of precision is required to produce the desired results,

arguably not the case for knockout-type experiments. As described in the

introduction, section 1.3.3.3, relatively little is known about the fidelity of gene

targeting events. Some early results suggested that the recombination process may be

prone to errors (Thomas & Capecchi, 1986; Doetschman et al., 1988; Thompson et

al., 1989; Brinster et al., 1989). Although intra-chromosomal recombination is

known to be very accurate (Stachelek & Liskay, 1988), it is not possible to

extrapolate this assumption to gene targeting because some of the enzymatic systems

which accomplish this HR event are likely to be different, perhaps including some of

those involved in the extra-chromosomal recombination mechanism. Because intra-

chromosomal recombination seems to proceed with fidelity, it is likely that undesired

mutations co-introduced in a hit and run experiment would be introduced with the

initial insertion event ("hit" stage).

The only precise study of the fidelity of gene targeting, by chemical mismatch

analysis, suggested that gene targeting is in fact quite accurate (Zheng et al., 1991).

Zheng and co-workers used a knockout of the hprt locus in mouse and human cells

as their test system, and then analysed independent G418- and 6-TG-resistant clones

for the presence of mutations suggesting errors in the targeting process. Then-

analysis relied on the mutation being relatively close to the site of integration (within

approximately 700bp of the insertion site), and was designed primarily to detect small

mutations within this region.
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The experiments described in this chapter were intended to further the understanding

of the fidelity of insertion events in the context of a hit and run experiment.

2.2 Experimental Design

The hprtb'"u mutation (Thompson et al 1989), present in the E14TG2a ES cell line

(Elooper et al.. 1987), was chosen as a convenient system in which to study errors in

recombination for reasons already outlined in section 1.4. To this end, a targeting

event was designed, such that accurate recombination would restore function in the

hprtb'm3 gene. Many errors in recombination would therefore be observable at the

level of the phenotype. The structure of the hprtb ,rLi locus is shown in figure 2-1,

where it may be seen that the mutation rendering the E14TG2a line resistant to 6-TG

is a deletion encompassing the promoter region and exons 1 and 2. There is thus no

significant possibility of background reversion to wild-type, as there might be with a

point mutation. The experimental design is shown in figure 2-2. A vector

incorporating sufficient upstream control sequences to drive the repaired hprt gene

(Melton et al., 1986) plus a fragment spanning exons 1 and 2 is therefore capable of

repairing the hprtb',ru gene (Doetschman et al., 1987; Thompson et al., 1989). A neo

gene was also included in the construct, and was used to initially select the clones on

the basis of their resistance to G418 rather than to HAT medium. Clones were then

studied both by Southern analysis and HAT selection. This allowed the comparison

of genotype with phenotype; a lack of correlation between the results of the Southern

analysis and the ability of the cell to survive or otherwise in HAT medium might

signify a clone which has failed to recombine correctly. The level of hprt enzyme

activity was also assessed in HAT-resistant (HATr) clones, in case small mutations

introduced during the insertion event had deleterious effects on the protein but did

not completely ablate gene function, resulting in an hprt allele with reduced activity

compared to wild-type.
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Figure 2-1: The Murine hprt Locus

The structures of the wild-type (HATr/6-TGs) hprt locus and the mutant (HATs/6-
TGr) hprtb m3 locus, present in the E14TG2a murine ES cell line. Exons are marked
as grey blocks, with transcribed but untranslated regions hatched. Intronic sequence
is shown as a black line. The sizes of different restriction fragments observable with
exon-specific probes are shown in kb. Selected restriction enzyme sites marked: B,
BamW I; E, EcoR I; X, Xho I.
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Figure 2-1

x

E 6.3 E E

B 115 B

2

s4
1.3

5.5 E E

5
a

7.0

Es.o

B 4.9 BB

78 9

9.3

11.9 B

Wild-Type

X

B 9.5

Es.o

B 4.9 BB

78 9

iiji |in | i m
E E Es.o E 9.3 E

11.9 B

E14TG2a
Deletion

65



Figure 2-2: A Strategy for Examining the Fidelity of Gene Targeting

The hprtb m3 locus is targeted with a correction vector designed to convert phenotype
from HATs/6-TG" to HATr/6-TG\ Clones are isolated by virtue of their resistance to
G418, rather than HAT, and therefore selection is not dependent upon restoration of
function. The correction vector is based upon pDWMlOl (Thompson et al., 1989)
and is shown in figure 2-3. Vector pDWMlOl contains 9kb of the murine hprt gene,
between 2.3kb and 4.2kb of which is homologous to the mutant hprtb-m3 allele
(depending upon the exact but unknown location of the 3' endpoint of the deletion
encompassing exons 1 and 2 in E14TG2a). The vector has the same organisation as
the wild-type gene except that intron 1 is reduced from 10.8kb to 4.1kb. The
homologous sequence is derived from a mouse myeloma library (Melton et al., 1984)
and as such is considered not isogenic with the 129/ola sequence of the target locus.

In experiment HPRT/I, a single plate of electroporated cells was selected in HAT
medium, to generate targeted clones selected at the level of the phenotype as positive
controls for those generated by selection in G418; These clones were designated
HI/Hx.

After isolation, clones are then screened in duplicate, at the level of the genotype by
Southern analysis and at the level of phenotype by HAT selection. Clones which
appear targeted by Southern analysis but which are HATS may indicate errors in the
HR process.

The hprt enzyme activity of a cohort of targeted clones was also analysed to check
for anomalous levels of activity as a consequence of point mutations which do not
completely ablate gene function.
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Such an analysis may detect mutations not obvious from the study of Zheng et al.

These include point mutations, small rearrangements and deletions occurring at some

distance from the site of integration of the vector. There is some evidence that such

mutations occur during insertion events (Doetschman et al., 1987; Thompson et al.,

1989). Such errors may be difficult to detect by Southern analysis, and unless they

occurred close to the linearisation site would not have been detectable by mismatch

analysis of PCR products from around this site. Unlike the Zheng study, the clones

described in this chapter were not pre-selected as being of the predicted targeted

structure before analysis.

2.3 Targeting Vector pDWMlOlneo

The targeting vector pDWMlOlneo was constructed as a variant of pDWMlOl

(Thompson et al., 1989), provided as a gift by Dr David W. Melton of the

Department of Molecular Biology, Edinburgh. A neo gene under the control of the

PGK promoter and PGK polyadenylation sequence was excised from the vector

pSPGKneo (obtained from Hein te Riele of Amsterdam; shown in figure 7-1 [a]) as a

1.5kb Bgl II fragment. This fragment was cloned into the Sal I site of pDWMlOl by

blunt-ended ligation to create pDWMlOlneo. pDWMlOlneo is shown in figure 2-3,

together with the predicted structure of the correctant hprt allele. The vector was

linearised at the Xho I site in exon 3.

2.4 Results

In two separate electroporations, vector pDWMlOlneo was transfected into

E14TG2a ES cells as described, and clones were selected in 300|ig/ml G418 and

expanded to approximately lxlO6 cells (a confluent single well of a 24-well tissue

culture plate). They were then split into two, with half being used for Southern

analysis and the remainder tested for the ability to survive in HAT medium. The hprt
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Figure 2-3: hprt Correction Vector pDWMlOlneo

a) Vector pDWMlOlneo, derived from vector pDWMlOl (Thompson et al., 1989).
The vector includes exons 1-3 inclusive and 650 bp upstream sequence, shown as
grey or hatched blocks respectively, which is sufficient to drive corrected hprt
gene expression (Melton et al., 1986). Intronic sequence is shown as a thick
black line; bacterial sequence as a thin black line. A PGK-neo cassette was cloned
into the vector, orientation as shown. The vector is linearised at the unique Xho I
site in exon 3. Selected restriction enzyme sites are shown: B, BamH I; E, EcoR
I; X, Xho I; s and b, Sal I and Bgl II sites lost upon blunt-ended cloning-in of the
neo construct.

b) Restriction enzyme digestion of vector pDWMlOlneo. Lanes: 1, Uncut (Sal I); 2,
EcoR I; 3, DNA molecular size markers.

c) Predicted structure o.. n _ conected hprtbm3 allele. BamH I restriction enzyme
sites are shown, with fragment sizes shown in kb.
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cDNA plasmid pHPT5 (obtained from Dr David W. Melton; Konecki et al., 1982)

was used as a source of probes for Southern analysis. Either a 170 bp Xho l/Hinc II

fragment largely comprising exon 3 or a 1.3kb fragment comprising the entire hprt

cDNA was used as a probe. Table 2-1 shows the results of these experiments. Figure

2-4 shows the results of Southern analysis of some HAT-resistant clones and some

G418r, HATS clones, using exon 3 of the hprt gene as a probe.

2.4.1 Accuracy of HAT Selection Data

From table 2-1 it may be seen that the frequencies of targeting measured by

phenotype (i.e. HAT resistance) are higher than those suggested in the Southern

analysis. This was more noticeable in the second experiment. Especially in experiment

HPRT/II, it was observed that clonal growth rates in HAT varied widely. This was

unexpected, and suggested that many clones may be mixed rather than clonal, and

that the variable rate of growth in HAT medium was related to the initial proportion

of HATS contaminating cells. To test this hypothesis, HATr clones obtained in both

experiments HPRT/I and HPRT/II were re-tested for their ability to survive in HAT

medium. The results of this experiment are shown in table 2-2. Clearly, some clones

were originally incorrectly assigned as HATr. Two tested "clones" were seen to be

capable of surviving in both HAT and 6-TG. One of these (HI/122) was a targeted

clone from the G418 selection of experiment HPRT/I and the other (HI/H5) was a

clone originally selected in HAT medium. To differentiate between the possibilities

that either these two clones might be failed recombinants which maintained a

sufficient level of hprt activity to survive, albeit poorly, in HAT as well as 6-TG, or

were mixed clones, they were split into two and selected in both selective media for

10-14 days. Southern analysis and HPRT enzyme activity analysis (see below) were

then performed on the selected cell populations, and it was concluded that these were

mixed clones. Figure 2-5 shows Southern analysis of HATr and 6-TGr subclones from
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Figure 2-4: Southern Analysis of Clones Obtained with Vector

pDWMlOlneo

The figure shows the results of Southern analysis on E14TG2a clones incorporating
pDWMlOlneo. BamH I digest, probed with exon 3 of the murine hprt gene. The
9.5kb E14TG2a band, and the 15.5kb and 7.0kb bands diagnostic for the correctant
structure are shown.

Lanes 1-5: Targeted clones carrying a corrected hprt gene, and G418r/HATr; lanes 6-
16: Untargeted clones carrying a random integration of vector pDWMlOlneo, and
G418r/HATS. Some clones, such as those in lanes 6 and 14, show an extra band of an
unpredicted size. These clones are interpreted as ones where recircularisation of the
vector has probably occurred prior to vector integration at a random locus. The
vector copy of exon 3 (the linearisation site) is thus protected from exonucleolytic
degradation at the ends of the vector prior to recombination and will therefore give a
signal upon probing a restriction digestion with an exon 3 probe.

Table 2-1: Clones Obtained with Vector pDWMlOlneo

The table summarises the genotypic (Southern) and phenotypic (HAT selection)
results for the clones obtained with pDWMlOlneo.
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Figure 2-4 Southern Analysis of Clones Targeted and Untargeted
with Vector pDWMlOlneo

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 2-1. Clones Obtained with Vector pDWMlOlneo
Experiment #G418r #G418r + # Screened # Not # Targeted

HATr by Targeted by Southern
(1) Southern by

(2) Southern

HPRT/I 167 5

3%
96Ci) 93 3

HPRT/II 284 60 75(4) 73 2

21%

Notes:

1) Clones selected in 300|ig/ml G418.

2) The number of clones originally selected in G418 initially scored as positive for
the ability to survive in HAT medium.

3) Includes those clones assessed as G418r/HATr in column 3; 2 clones, HI/36 and
HI/56, appeared to be untargeted when studied by Southern analysis.

4) Includes 18 of those clones assessed as G418r/HATr; 16 clones appeared to be
untargeted when studied by Southern analysis.
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Table 2-2: Analysis of Targeted Clones

Unexpected results described in the text (section 2.4.1) where it was observed that
some clones initially assigned as HATr appeared to be untargeted when studied by
Southern analysis suggested that many clones from this experiment may in fact be
mixed. The results of additional selection experiments carried out on these "nominally
targeted" clones to test this hypothesis are summarised in the table. The second
column shows whether the clone was derived from an initial selection in HAT
medium or in G418. The next column shows the number of clones tested. Not all
clones were HATr upon re-selection. For clones from experiment HPRT/I, it was
found that clone HI/56 was in fact HATs/6-TGr (i.e. mutant phenotype), and that
clones HI/H5 (initial selection HAT) and HI/122 (initial selection G418) appeared to
be HATr/6-TGr. These latter two clones were then accordingly re-tested at the level
of the genotype as shown in figure 2-5.

Figure 2-5: Mixed HATr/HATs Clones

The figure shows the results of Southern analysis on subclones obtained from clones
HI/H5 and HI/122 by re-submitting the clones to either HAT or 6-TG selection for a
period of 10-14 days. BamH I digest, using the murine hprt cDNA as a probe. It may
be seen that subclones obtained by 6-TG selection have the 9.5kb band (present in
E14TG2a) diagnostic of the deletion spanning the promoter and exons 1 and 2.
These are therefore clones carrying a random integration of vector pDWMlOlneo
and are hprt. The subclones subjected to HAT selection for the same time lack this
band, but show the 7.0kb band diagnostic of a targeted correction and are therefore
hprt+.

Because a full-length cDNA clone was used as a probe in this experiment, other
bands are also visible. The 15.5kb correctant band and the murine hprt pseudogene
are visible as a single large intense band at the top of the blot, above the 9.5kb hprtp-

deletion band. The small band common to all lanes below the 7.0kb correctant

band is the 4.9kb band encompassing exon 4 (see figures 2-1 and 2-3).
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Table 2-2 Phenotypic Analysis of
Experiment Initial #HATr #HATron # Tested

Selection of Clones Re- for 6-TG
Clones Tested Selection Resistance

HPRT/I G418
HAT

4

1

2
1

#6-TGr on

Re-Selection

2

1

"(I)"

HPRT/II G418 26 7 ND ND
27%

Note:

(1) These two clones comprise one found to be HATr, but which grew slowly in
HAT (HI/122), and one HATS (HI/56).

Figure 2-5 Southern Analysis of HATr and 6-TGr Subpopulations of
Clones HI/H5 and HI/122.

HI/122 HI/H5
HAT 6-TG HAT 6-TG

Jtojjajk .. . *
Hi'

-7.0
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HI/H5 and HI/122, where it is clear that each is in fact a mixture of two clones, only

one of which is targeted, and a second round of HAT selection was required to

completely purify the clone. Table 2-3 and figure 2-6 (see below) also include the

hprt enzyme activity data for both HAT and 6-TG-selected subpopulations of HI/122

and HI/H5, where it may be seen that they have significantly different levels of hprt

activity depending on which subpopulation has been selected.

2.4.2 Enzyme Activity Analysis of Clones Targeted with

pDWMlOlneo

No clones which appeared to be targeted by Southern analysis were found to be

HATS. This suggests that failed recombinants are relatively rare, but it is likely that in

some cases small mutations in a gene would not completely ablate function, but result

in a reduced level of activity. A clone with a residual level of hprt activity may still be

capable of surviving in HAT medium. To examine this possibility a cohort of the

HATr clones from both experiments were analysed for HPRT enzyme activity.
* •

In addition to the G418r/HATr clones tested, the hprt activity of E14 and E14TG2a

was also measured as positive and negative controls. To examine the possibility that

targeting and selection procedures may alter hprt activity relative to wild-type as an

artefact of culture, some E14 clones which have integrated an irrelevant construct at

random loci, and some G418r/HATS clones from experiment HPRT/I, were also

analysed.

The results of this experiment are shown in table 2-3 and figure 2-6.
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Table 2-3. HPRT Enzyme Activity of Targeted and Untargeted Cells

Notes:

1) An hprt enzyme assay was always run with E14 (hprt) and E14TG2a (hprt)
cells present as positive and negative controls, respectively. The hprt enzyme
activity was calculated by multiple linear regression for all the clones present in a
particular assay based on a zero value and three different protein concentrations
(1, 5 and lOpg), corrected for background counts with an EDTA-poisoned blank.
Calculations were carried out with the "Minitab" version 9 statistical package or
the Jandel Scientific "Sigmastat" statistical package.

2) Standard deviation for the activity coefficient calculated from the regression is
shown, and is given as an error bar in figure 2-6.

3) P value gives the significance of the recorded activity coefficient. Only ElATr
clones have a significant level of enzyme activity (P<0.05).

4) Clones HI/H2, HI/E14 and HI/H5 were initially selected in HAT medium as
controls for clones isolated by virtue of their resistance to G418 in experiment
HPRT/I. HI/H5 had appeared to be both HATr and 6-TGr (see table 2-2, line 2).
Clones HI/8, HI/9, HI/36, HI/46, and HI/150 are HATS, untargeted negative
controls. Clone HI/56 originally appeared to be targeted but was subsequently
shown not to be (table 2-2, row 1, final column). Clone HI/122 appeared to be
both HATr and 6-TGr, and was shown to be a mixed clone like HI/H5 (table 2-2
and figure 2-5). Both these clones appear in the table twice, defined by the
selection to which each pure subclone is resistant. Clones HI/122 (HATr) and
HI/149 are targeted clones obtained from experiment HPRT/I by G418 selection
(table 2-1, row 1). Clones HII/252, HII/349, HII/361 and HII/464 are HATr
clones obtained by G418 selection in experiment HPRT/II (table 2-1, row 2), and
shown to be HATr (table 2-2, row 3).
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Table 2-3. HPRT Enzyme Activity of Targeted and Untargeted Cells

Type Clone HATr HPRT Activity
(cpm/gg Protein)

Std.
Dev.

P Value

WT E14 V 1402 124 <0.001
WT E14 S 1160 73 <0.001
WT E14 </ 1328 55 <0.001
WT E14 </ 498 95 0.002
WT P66 (El4) •/ 946 135 <0.001
WT W38 (El4) ■/ 1069 120 <0.001
WT W44 (El4) •/ 1249 165 <0.001
WT W55 (El4) •/ 964 180 <0.001
WT W65 (El4) V 1311 184 <0.001
WT W76 (E14) V 1045 150 <0.001
WT W85 (El4) s 773 163 <0.001

Mutant E14TG2a X -201 169 0.24
Mutant E14TG2a X 86 73 0.25
Mutant E14TG2a X -64 52 0.25

Mutant E14TG2a X -26 95 0.79
HATr HI/H2 S 669 153 <0.001
HATr HI/H4 •/ 734 157 <0.001
HATr HI/H5 (HATr) y 233 73 0.005

G418r/HATS HI/8 X -214 153 0.17
G418r/HATS HI/9 X -131 149 0.39

G418r/HATS HI/36 X -201 153 0.20
G418r/HATS HI/46 X -169 157 0.29
G418r/HATS HI/56 X -54 73 0.47
G418r/HATS HI/122 (6-TGr) X 115 73 0.13
G418r/HATS HI/150 X -136 155 0.39
G418r/HATS HI/H5 (6-TGr) X 60 73 0.42
G418r/HATr HI/122 (HATr) s 387 73 <0.001

G418r/HATr HI/149 •/ 804 142 <0.001

G418r/HATr HI/149 •/ 700 73 <0.001
G418r/HATr HII/252 </ 326 52 <0.001

G418r/HATr HII/349 V 299 95 0.020
G418r/HATr HD/361 S 364 52 <0.001

G418r/HATr HII/464 V 1193 5 <0.001
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Figure 2-6 HPRT Enzyme Activities of Targeted ES Cell Clones

The figure shows the hprt enzyme activity for each clone tested (see table 2-3 for
values).

Multiple points in a single column indicate that more than one value has been
obtained for a particular type of clone.

Symbols:

1) Inverted solid triangles. E14 cells (4 values).

2) Upright solid triangles. E14 cells which have integrated an irrelevant vector at a
random locus (7 values). Reading from left to right, clones: P66, W38, W44,
W55, W65, W76, W85.

3) Solid squares. E14TG2a cells (4 values).

4) Open upright triangles. E14TG2a cells transfected with pDWMlOlneo but not
targeted at the hprt locus (6 values), reading from left to right: HI/36, HI/150,
HI/8, HI/9, HI/46, HI/56.

5) Open circles. Correctant E14TG2a clones targeted at the hprt locus with
pDWMlOlneo and selected for that event in HAT medium (3 values). Reading
from left to right, clones: HI/H2, HI/H4, HI/H5. The value with a filled circle in
the same column as HI/H5 is the subclone selected from HI/H5 for the ability to
survive in 6-TG. It may be seen that this clone has the mutant genotype and is
thus a separate, untargeted clone, by referring to figure 2-5.

6) Open diamonds. Correctant E14TG2a clones targeted at the hprt locus with
pDWMlOlneo and selected for that event in G418 (7 values). Reading from left
to right, clones: HI/149 (duplicate values were obtained for this clone), HI/122,
HII/252, HII/361, HII/464, HII/349. The value with a filled diamond in the same
column as HI/122 is the subclone selected from HI/122 for the ability to survive
in 6-TG. It may be seen that this clone has the mutant genotype and is thus a
separate, untargeted clone, by referring to figure 2-5.
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Figure 2-6
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2.5 Discussion

2.5.1 Failed Recombinants Appear to be Rare
In experiments HPRT/I and HPRT/II a total of 451 G418r clones were isolated and

analysed by phenotype. A little over a third of these (171; 38%) were screened by

Southern analysis using either exon 3 or the entire cDNA of the hpri gene as a probe,

and no evidence was found for failed recombinants; that is, there were no clones

which had a defined targeting event when analysed by Southern hybridisation which

were HATS. This result places an upper bound on the frequency of such events, with

a 95% confidence limit of 2% of stably-transfected cells, or 46% of targeted events,

although here (targeted clones analysed by Southern hybridisation) the sample size is

small (5 clones) and the frequency of failed recombinants may be much lower.

2.5.2 Mixed Clones Were Obtained at High Frequency

A surprising result from these experiments was that there was a sizeable proportion

of clones which were HATr yet when analysed by Southern appeared to be

untargeted. This was, if anything, the exact opposite of what was expected from the

experiment, since even if HR insertion events proceed with perfect fidelity the

number of HATr clones may only equal the number of clones shown to be targeted at

the level of the genotype, but never exceed it. This therefore suggested that some

"clones" were in fact mixtures, and that depending on the nature, or lack, of the

selection applied to a subculture of cells, different populations of cells outgrew the

others to become the majority. A small proportion of HATr cells present may not be

noticeable on Southern hybridisation but following subculture and selection in HAT

medium, may overgrow the untargeted hpri cells.

Therefore groups of clones originally assigned as HATr were re-tested for their ability

to survive in HAT medium. These results suggested that a sizeable proportion (about
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50-75%) of "clones" so produced were in fact mixtures, with a very few HATr cells

contaminating a majority of G418r/HAT cells. In the case of two clones which

appeared to be resistant to both HAT and 6-TG, it was formally shown by repeated

Southern analysis after subselection that the clones were mixed.

This problem may have arisen for several reasons. For example, it is very difficult

when plating out ES cells to ensure perfect cloning because ES cells tend to form

clumps of a very few cells when they first adhere to the substrate. At higher plating

densities, clones can grow into each other, so that what may appear to be a single

clone is in fact composed of more than one clone. The creation of mixed clones from

otherwise pure populations of cells is also possible during either feeding of plates

during selection or picking clones, because cell aggregates are released from the plate

surface into the medium by mechanical disruption, allowing the movement of cells to

other sites on the plate or their contamination of wells containing other clones, during

the picking process.

2.5.3 HPRT Activities of Targeted Clones Are Lower than those of

Wild-Type.

It may be that a mutation introduced into the locus by the recombination event affects

the function of the protein but does not completely destroy it, and therefore the

relative hprt enzyme activity of a group of the targeted (HATr) clones was analysed

biochemically and compared to that of wild-type and mutant cells. The individual

results for each clone tested are shown in table 2-3 and figure 2-6. The clones were

also grouped according to the starting cell type (wild-type E14 or mutant E14TG2a),

whether they had been subjected to a targeting procedure or not, and of those

transfected with vector pDWMlOlneo, whether they were untargeted or were

identified as targeted after initial selection in G418 or HAT medium. Between 3 and

8 values were obtained for each cell type, and the mean hprt enzyme activity for each
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is shown in table 2-4 and figure 2-7. Using the Mann-Whitney non-parametric two-

sample rank test it was shown that there is no significant difference in hprt enzyme

activity between unmodified E14 cells and E14 cells carrying a neo-containing

construct at an irrelevant locus. There was also no significant difference in hprt

enzyme activity between unmodified E14TG2a cells and E14TG2a cells transfected

with pDWMlOlneo but which have not undergone a recombination event at the hprt

locus. However, the difference in hprt enzyme activity between wild-type and mutant

cells is significant, as expected. It was therefore concluded that any observed

differences in enzyme activity could not be attributed to culture or selection artefacts.

There was also no significant difference in hprt enzyme activity between E14TG2a

cells targeted with pDWMlOlneo whether the cells were selected initially in HAT

medium or in G418. This suggested that the hprt gene is no more likely to be

mutated if the correction event is selected at the level of phenotype or screened at the

level of genotype, and was therefore taken as implying that the recombination event

generally proceeds with fidelity. However, it is obvious from figure 2-7 that there is a

striking difference in hprt activity between wild-type cells and targeted correctants,

and this difference is significant. The standard deviations of these groups appear

comparable, suggesting similar distributions around different mean enzyme activities.

Does this suggest that most of the correctants have undergone errors in

recombination, with perhaps clone HII/464 being the only faithful event out of the 9

clones analysed (see figure 2-6)? This is a possible explanation, but the Dixon

parameter for the hprt enzyme activity of this clone in comparison with the other

clones targeted with pDWMlOlneo is 0.493, providing no evidence that this clone is

a significant outlier from the group (P>0.05; Dixon, 1953). Furthermore, it is now

known that in ES cells and mice carrying an hprt allele corrected with the parent

vector (pDWMlOl) of the construct used in the present study hprt transcription

occurs at a reduced level (in most tissues, approximately 30% of normal) compared

83



Table 2-4 and Figure 2-7: Mean HPRT Enzyme Activities

This Table and Figure together show the mean hprt enzyme activity for each type of
clone described in the present study. These are:

1) Wild-type E14 cells (hprt+\ HAT1).

2) E14/G418r clones are E14 (and thus HATr) clones which have been subjected to
G418 selection and cloning. They were included in the analysis to monitor for any
change in hprt activity caused by long-term culture and selection.

3) E14TG2a cells (,hprtbm'3; HATS).

4) E14TG2a/G418r/HATs clones are a cohort of clones from experiment HPRT/I
which were shown to be untargeted both by Southern analysis and HAT
selection.

5) E14TG2a/HATr clones were targeted with vector pDWMlOlneo and selected in
HAT medium as positive controls for the predicted targeted repair of the hprt
gene.

6) E14TG2a/G418r/HATr clones were targeted with vector pDWMlOlneo and
selected in G418. Analysis by Southern and/or HAT selection showed they were
targeted at the hprt locus.
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Table 2-4 Mean HPRT Enzyme Activities

N* Clone Type n Mean Activity Std. Dev. Std. Error

1) E14 4 1097 412 206

2) E14 /G418r 7 1051 184 70

3) E14TG2a 4 -51 118 59

4) E14TG2a/G418r/HATs 8 -90 123 44

5) E14TG2a/HATr 3 545 272 157

6) E14TG2a/G418r/HATr 6 499 346 141

Figure 2-7
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to that of the wild-type allele (Melton, 1990). This was attributed to suppression of

transcription caused by the presence of bacterial plasmid sequences immediately

upstream of the hprt promoter. This is most likely to be the cause of the reduction in

hprt activity seen in these clones.

2.6 Conclusion

There was no incontrovertible evidence obtained in this study for a high frequency of

unfaithful HR events occurring in insertion events. Although most targeted correctant

events analysed had a variably-reduced level of hprt activity compared with wild-type

ES cells, it is unlikely that such changes were caused by the introduction of

deleterious mutations during the integration event. No clones analysed at the level of

Southern blot showed anomalous patterns and the reduction in hprt enzyme activity

was also observed to an identical extent in clones which were directly selected for

targeted correction of the hprt allele in HAT as well as those subjected to selection in

G418, (and which were thus not dependent upon the restoration of gene function for

their survival). The introduction of the neo gene may have contributed to the effect

on expression caused by the bacterial plasmid sequences, resulting in a wide

variability of expression. This objection peTiaps represents a fault in the experimental

design (which was not obvious initially) as pDWMlOl was originally thought to fully

restore hprt activity (Thompson et al., 1989). The reduction in expression observed

makes the separation of those clones which have a reduced level of transcription due

to interfering sequences from those with a point mutation difficult. Further work to

clarify this issue is required. I suggest the use of RT-PCR of the hprt mRNA from

targeted clones followed by single-stranded conformational polymorphism (SSCP)

analysis as a possible strategy. Digestion of the cDNA into 3 or 4 approximately

equal-sized fragments prior to separation and SSCP analysis could be expected to

detect 80-90% of mutations introduced into the coding sequence of the gene
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(Hayashi, 1992). Subject to these reservations however, the conclusion from this

work is that, consistent with previous results (Zheng et al., 1991), gene targeting by

insertion does appear to proceed with a level of accuracy compatible with the

accomplishment of experiments requiring a high degree of fidelity in the HR event,

such as hit and run.
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CHAPTER 3-

INTRODUCTION OF A
DELETION BY HIT AND RUN



Introduction of a Deletion by Hit and Run

3.1 Introduction

The advantage of the Hit and Run technique is its fine control of the genetic changes

created; that is the ability to introduce a mutation into the mammalian genome with

great precision, leaving no other changes which might feasibly complicate analysis of

the phenotype produced. It is therefore likely to find most application in the creation

of subtle mutations, such as single base-pair substitutions, with the objective for

example of producing strains of mice which provide models of human congenital

diseases by carrying similar alleles in homologous genes. Precise analysis of this

process is difficult as such mutations are often difficult to detect because the analysis

must be locus and sequence-specific. To permit the relatively simple study of a hit

and run experiment through each step, it was therefore decided that the mutation

should be sufficiently large as to be observable by Southern blot at each step.

Frequencies of all the observed events would therefore be easily calculable, without

the need either to study a selectable gene such as hprt, or to analyse by sequencing

large numbers of clones.

This experiment used the vector pKiDOPNT described below to attempt the deletion

of a 2.3kb region encompassing exon 0 and the associated promoter sequence of the

murine K-ras gene. In addition to the characterisation of the hit and run process, it

was expected that a K-ras knockout would be produced, which would be a valuable

resource in the study of K -ras involvement in development and neoplasia.

3.2 Targeting Vector pKiDOPNT

Targeting vector pKiDOPNT was constructed by Dr D. James Williamson of our

group, designed to introduce a deletion into the K-ras gene of the mouse. The

predicted deletion would span approximately 2.3 kb of sequence 5' to the first
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translated exon of the K-ras gene, completely encompassing the untranslated exon 0

and the promoter region. It was constructed from the vector pPNT (Tybulewicz et

al., 1991; see figure 7-1 [b]) by incorporating a 4 kb Sal I fragment from vector

PBKT-142 (Guerrero et al., 1984) from which a 2.3 kb Xba I fragment containing

exon 0 and the surrounding sequence had been removed. The vector is shown in

figure 3-1, and figure 3-2 shows the predicted changes in the genome made by this

vector.

3.3 Results

3.3.1 Insertion Step

Vector pKiDOPNT was electroporated into E14 ES cells as described, and 158 G418r
clones were successfully screened using probe 3 (figure 3-2) as an external probe

located within the region of homology. Probe 3 comprises the Xba I fragment of the

deletion and is therefore an external probe because it is not homologous to any vector

sequences. This slightly unconventional strategy was adopted because problems of

specificity were initially experienced with the probes designed for this experiment,

probes 4' (5' external) and 5 (internal). One clone, designated P66, gave a band-shift

to a larger size as expected for a hit event, and was accordingly screened further to

verify its structure. Use of probe 4' initially suggested that P66 was a targeted clone

of the structure indicated in figure 3-2 (see figure 3-3 [a]).

3.3.2 Back Selection of Clone P66: High Cell Density

gClone P66 was accordingly expanded to 10 cells and back-selected in ganciclovir

with the objective of producing clones carrying the 2.3 kb deletion in the K-ras gene.

The density of cells was 5xl06 cells per 100mm plate. 36 clones were obtained,

designated P66/1-P66/36 inclusive.
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Figure 3-1: Targeting Vector pKiDOPNT

a) The structure of vector pKiDOPNT. The vector carries 3.5kb non-isogenic
homology (source: hybrid of mouse strains AKR-RF/J) to the 5' upstream
sequences of murine K-ras (grey block). A short region of bacterial plasmid
derived from the construct PBKT-142 (Guerrero et al., 1984) is also present
(black block). The vector carries a 2.3kb deletion including the promoter
sequences and exon 0, encompassed by two Xba I sites (X). The vector is derived
from pPNT (see figure 7-1 [b]) and as such includes a neo and an HSNtk gene
(orientation as shown) and a bacterial plasmid (pUC 18, shown as a thick black
line). Relevant restriction sites are shown: B, BamH I, which is the linearisation
site of the vector; X, Xba I; P, Pvu II; K, Kpn I; E, EcoR I. The sizes in kb of
fragments from selected restriction digestions of the construct are shown.

b) Restriction enzyme digestion of vector pKiDOPNT. Lanes: 1, BamH I; 2, BamH I
& EcoR I; 3, EcoR I; 4, Pvu II; 5, Xba I; 6, DNA molecular size markers. N.B.:
the 0.8kb Pvu II fragment is not visible in lane 4 because it is too small.
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Figure 3-1
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Figure 3-2: Targeting Structures for Vector pKiDOPNT

The figure shows, to scale, the structure of the wild-type murine K-ras locus in the
exon 0-exon 1 region, and the predicted insertion and deletion structures introduced
at the locus with vector pKiDOPNT. Relevant probes are shown: 4' and KR8XK, 5'
external; probe 5, internal; probe 3, external located internal to the homology.
Relevant restriction sites are also shown: B, BamYL I; E, EcoR I; X, Xba I; K, Kpn I;
H, Hind III.

The expected band sizes (in kb) for each of the possible structures with internal and
external probes on an EcoR I digest are shown in the table below:

Probe Wild-Type "Hit" Insertion "Hit & Run" Deletion
Internal (Probe 5) 8.7+1.5 9.6(5')+ll(3')+1.5 7.8
5' External (Probe 4') 8.7 9.6 7.8
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Figure 3-3: Vector pKiDOPNT Integrates at the K-ras Locus

a) Use of 5' external probe 4' to check an EcoR I digest of DNA prepared from neo+
clones obtained with vector pKiDOPNT and initially screened with probe 3. The
8.7kb band due to the wild-type allele and present in all clones is indicated.

b) The same blot of 129/Ola wild-type (lane 1), and clone P66 (lane 2) DNAs
digested with restriction endonuclease EcoR I, probed with a 5' external probe
(KR8XK; left-hand blot) and internal probe 5 (right-hand blot).
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Figure 3-3
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These clones were analysed by Southern Blot and PCR, using the following analyses:

1) Internal Probes (P5, neo, HSWtk)

2) 5' External Probes (P4' & KR8XK)

3) neo PCR

Sample data obtained with internal probe 5 are shown in figure 3-4. The clones

appeared to fall into several broad classes (table 3-1).

3.3.3 Back Selection of Clone P66: Low Cell Density

Small numbers of clones were obtained in the selections described in sections 3.3.2,

3.3.5.2 and 4.4, and this was probably due in major part to metabolic cooperation

deleting many clones by "kiss of death" which would otherwise have survived. This

hypothesis was tested as described in section 4.5.1, and it was concluded that for

ganciclovir selection 1()5 cells/lOOmm plate is the optimum number to plate. P66 was

therefore plated out at this cell density, and the backselection was repeated. 90 clones

were screened using internal probe 5 and 5' external probe KR8XK. The result of this

selection is shown in table 3-2 with sample data from the Southern analysis shown in

figure 3-5.

3.3.4 Clone P66 has a Modified K-Ras Allele, but with an

■Unpredicted Structure

■Figure 3-3 (b) shows the results of Southern analysis of HM1 (strain 129) wild type

-and P66 K-ras-modified ES cell genomic DNA with internal probe 5 and 5' external

irobe KR8XK, performed on the same blot. Although P66 was originally thought to

le a correctly-targeted clone, the data in the figure, and the results of the back

selection at a low cell density (described in the previous section) suggest that this is
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Figure 3-4: Backselection of Clone P66 (High Cell Density)

The figure shows sample data obtained with internal probe 5 on an EcoR I digest of
some clones obtained by backselection of clone P66. The 8.7kb wild-type band is
indicated. The clone in lane 18 was originally thought to be a hit and run revertant
carrying a deletion.

Table 3-1

All the data obtained for the 36 clones obtained by backselection of clone P66 under
high cell density with all the probes shown are summarised.
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Figure 3-4

Table 3-1.

High-Density Backselection of K-ras Clone P66
Internal Probe External Probe neo Status Number

Class 1 WT WT - 14

Class 2 WT WT + 5
Class 3 WT+1 band WT + 9
Class 4 WT+1 band WT - 1

Not fully assigned; WT based on a subset of the probes described 2
Not fully assigned; neo+ 5

Note: "WT" indicates the band pattern expected for a clone which is wild-type at the
K-ras locus is observed; i.e. an 8.7kb band is detected with internal probe 5 and 5'
external probe 4' on an EcoR I digest.
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Figure 3-5: Backselection of Clone P66 (Low Cell Density)

The figure shows sample data obtained with internal probe 5 on an EcoR I digest of
some clones obtained by backselection of clone P66. The 8.7kb wild-type band and
large band (~18kb) due to the modified allele of clone P66 are both indicated. Lane 1
is wild-type 129/Ola strain DNA, and lane 2 is clone P66. Lanes 3-13 inclusive are
revertant clones of P66 obtained after selection in ganciclovir. Two patterns are
observed for the revertant clones; either a pattern identical to that of the wild-type
allele, or a pattern lacking the middle, 3', band, but retaining a wild-type and a large,
5', band.

Table 3-2

All the data obtained for the clones obtained by backselection of clone P66 under low
cell density with both internal (probe 5) and 5' external (KR8XK) probes are
summarised.
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Figure 3-5
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Table 3-2

Low-Density Backselection of K-ras Clone P66
Internal Probe
WT

WT+18kb band

External Probe
wf
WT+18kb band

Number
55
35

Class 1
Class 2

Note: "WT" indicates the band pattern expected for a clone which is wild-type at the
K-ras locus is observed; i.e. an 8.7kb band is detected with internal probe 5 and 5'
external probe 4' on an EcoR I digest.
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not the case. As can be seen from the Southern analysis, the band pattern differs from

that expected. The smallest band, of approximately 8.7 kb, is due to the wild type

allele on one chromosome. For a correct targeting event of the kind shown in figure

3-2 two larger bands are expected with internal probe analysis. These additional

bands are 9.6kb (5' fragment) and 1 lkb (31 fragment) in size. The largest fragment

observed is approximately 18kb. Because this fragment is also observed with the

external probe, it is concluded that the K-ras gene is disrupted, with the larger

fragment at the 5' end of the modified locus. Because the large fragment was also

observed in many clones obtained upon back selection of P66, it was concluded that

this fragment does not incorporate a functional HSWtk gene. This discrepancy is not

due to a simple error in genomic mapping because were the 5' EcoR I site located

further away from the locus, making the targeted fragment larger, the wild-type

fragment would also be correspondingly large.

As shown in figure 3-1, there is an EcoR I site in vector pKiDOPNT, immediately 5'

to the HSVf/t gene, and it is this site which should limit the size of the detected 5'

£coR I fragment of the targeted locus to 9.6kb. The fragment observed is some 8kb

larger than expected, indicating that an fcoR I site is missing. On back selection even

an unfaithful excision event would usually be expected to remove this site because of

its proximity to the HSVrA: gene, and thus change the observed sizes of both the 3'

and 5' fragments by merging them into one fragment. It was therefore concluded that

either the 3' EcoR I site of the 18kb 5' fragment is not the 5' £cc>R I site of the 3'

fragment, or that the commonly occurring excision event restores a fragment of the

same size (18kb).
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3.3.5 Fast-Track Hit and Run with pKiDOPNT

3.3.5.1 Rationale

The targeting frequency of K-ras with vector pKiDOPNT is low: less than 1% of

integrations result in a homologous recombination event. Furthermore, the only event

observed was not the one anticipated in the experiment design. This may be due to a

feature of the experimental design, or of the K-ras locus in the mouse-for example

the location of the gene may attenuate expression, thus selecting for competing

events such as the one suggested for P66 by selecting for events which integrate

more than one neo gene at the insertion stage (see discussion section).

In an attempt to circumvent this, and also to investigate the efficiency of the hit and

run process, the experiment described in section 3.3.5.2 was performed. The

assumption upon which this experiment rests is that the number of clones subjected

to backselection is much increased; to approximately 4000 in this case. Thus the

chance of carrying out the backselection upon a rarely-occurring correctly targeted

clone is increased some 27-fold. The individual number of cells representing each

neo+ clone is smaller, but still numbers approximately 5xl04 cells for each clone. If it

is assumed that the majority of clones are random integrants, the corresponding

majority of cells in the selection will lack the requisite duplication of homology to

undergo a homologous recombination event and will die in ganciclovir selection.

Some such cells can be expected to form clones by undergoing a point mutation or

6 8
deletion in the USVtk gene. A mutation frequency of between 1 in 10-10 may be

expected (data on hprt, see, for example, Valencius and Smithies, 1991b) resulting in

about 20 ganciclovir clones derived from random events (mutation rate of 1 in 107
8 3

on 2x10 cells) expected in this experiment. Reversion frequencies of from 1 in 10 to

1 in 106 have been recorded for backselection of characterised "hit" clones (Valencius

& Smithies, 1991b, Hasty et al., 1991c). This suggests a range of approximately 2-
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2000 revertant clones would be obtained from such an experiment, assuming an initial

targeting frequency of 1 in 150 G418r colonies. It was therefore expected that the

Fast-Track protocol would produce relatively few clones at the end of the

experiment, but that those obtained would be enriched for ones which had reverted

back to wild type or the desired mutant from a targeted hit event over those derived

from random integration events which had managed to survive by loss of the HSVYA:

gene by mutation.

3.3.5.2 Results of the Fast-Track Hit and Run Experiment

HM1 cells were used for this targeting experiment because of their reputedly highly
g

efficient targeting and germline transmission frequencies (Magin et al., 1992). 10

ES cells were electroporated with pKiDOPNT as described, and subjected to

selection in G418 for 14 days. Approximately 4000 clones were obtained. All these
g

clones were pooled and expanded to 2x10 cells. These cells were then also subjected

to back selection as described in section 7.4.2. 58 clones were obtained, designated

HKiD01-FlKiD058 inclusive. These clones were studied by Southern analysis as

shown in figure 3-6 and summarised in table 3-3.

3.3.6 Chimaera Production

Initial results based on internal probe data (probe 5) suggested that 4 clones, P66/32,

HKiD0/10, HKiD0/52 and HKiD0/55 had undergone the desired "run" event to

produce a clone carrying the intended deletion. These clones were injected into

blastocysts and chimaeras were made. Germline transmission was not observed. After

1 year, the 5 chimaeras were killed, subjected to necropsy and the tissue samples

taken were examined histologically by a pathologist (Dr David J. Harrison,

Edinburgh). Three of the mice had tumours. The first mouse had a teratoma.
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Figure 3-6: Fast-Track Hit and Run with Vector pKiDOPNT

The figure shows sample data obtained with internal probe 5 on an EcoR I digest of
some clones obtained by a fast-track hit and run protocol as described in the text. The
8.7kb wild-type band is indicated. Clones in lanes 10 and 13 were originally thought
to be potential hit and run deletion revertants. Lane 17 includes a wild-type control.

Table 3-3

All the results obtained with the probes shown for the clones derived by the fast-track
hit and ran protocol described in the text are summarised.
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Figure 3-6
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Table 3-3

Clones Obtained by Fast-Track Hit and Run with pKiDOPNT
Internal Probe External Probe neo Status Number

Class 1 WT WT - 16
Class 2 WT WT + 2

Class 3 WT+1 band WT + 9
Class 4 WT+1 band WT - 3
Class 5 WT+>1 band WT - 1

Class 6 WT WT+18kb - 1

Class 7 WT+>1 band WT+18kb - 1

Class 8 WT+1band WT+18kb - 1

Not fully assigned; WT based on a subset of the probes described 18
Not fully assigned; neo+ 6

Note: "WT" indicates the band pattern expected for a clone which is wild-type at the
K-ras locus is observed; i.e. an 8.7kb band is detected with internal probe 5 and 5'
external probe 4' on an EcoR I digest.
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Teratomas have a high incidence in strain 129 (Stevens, 1983; Hardy et al., 1990)

and it is therefore unlikely that this tumour was a direct result of the mutation at the

K-ras locus. A second animal, (a female), had a malignant liver tumour. However, a

PCR (Cui et al., 1993; kindly performed by Dr Jane Armstrong) to decide the sex of

the tumour tissue showed it to lack a Y chromosome. This result does not formally

exclude the possibility that the liver tumour was derived from a karyotypically

abnormal cell (e.g. an XO segregant of an ES cell-derived XY cell). However,

because the mouse was a female and the levels of chimaerism observed, as estimated

by coat colour mosaicism, were uniformly low (<10%), it was most likely that the

tumour was in fact derived from host blastocyst tissue rather than the XY (male) E14

ES cell line. The third animal examined had a malignant leukaemia. Glucose

phosphate isomerase isozyme analysis was performed on part of the tissue, and

showed a slight elevation in GPI-lsa. The host strain of mouse is GPl-lsb, whereas
strain 129 is GPI-lsa. However a representation of GPI-Isa of approximately 20%

minimum is necessary to conclude that a tissue is composed to a significant extent of

ES cell-derived cells because of the relatively high background of GPI isozyme

analysis, and the slight elevation observed in the leukaemia sample was not sufficient

to confirm that the tumour was ES cell-derived. From these results it was concluded

that none of the chimaeras' disease could be unequivocally attributed to the

introduced mutation and, because of the small sample size of the chimaeras, no

further analysis was carried out on these animals.

3.4 Discussion

3.4.1 The Structure of Clone P66

Only one clone characterised at the stage of insertion of vector pKiDOPNT into the

ES cell genome appeared to have integrated the vector at the K-ras locus. This
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clone was designated P66. As considered in section 3.3.4, it appears however that

this clone does not have the structure predicted (shown in figure 3-2).

3.4.1.1 Common Competing Events Seen in Targeting Experiments
Do Not Account for the Results Obtained with Clone P66.

The following sections consider possible structures for the unpredicated K-ras

insertion clone P66, and some mechanisms which might have produced such

structures.

3.4.1.1.1 Recircularisation of the Vector

Should the linearised vector recircularise prior to integration into the genome by

homologous recombination, it may undergo either an insertion event at an unplanned

point in the locus or integrate by replacement. Here however, the insertion would

result in either the designed structure shown in figure 3-2 or a reverse, discussed as

possibility (2) in the next section. If the vector integrates by replacement, it would

produce a deletion at the designed site but this would never be detected because the

resulting clone would be neo and therefore fail to survive G418 selection.

Recircularisation of the vector prior to integration by HR in an unplanned fashion

therefore does not account for the structure of P66.

3.4.1.1.2 Branch Migration

Upon generation of a cross-over structure at the insertion site of the vector, branch

migration of the Holliday Junction along the homology can occur. This may result in

the changing of the structure obtained from that predicted by conversion of a

mutation to wild-type or vice-versa when the heteroduplex is repaired (Hasty &

Bradley, 1993). Four possibilities may be expected in the case of an insertion vector

carrying a mutation in an arm of homology. First, the predicted structure, where the
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mutation is present in one of the linear duplications of homology (in this case, the 5'

one), derived from the vector, and the other duplication is wild-type, being derived

from the endogenous locus. This structure has been ruled out above (see section

3.3.4). Second, a reverse of the predicted structure, where the mutated duplication

and the wild-type one are swapped relative to each other due to branch migration and

heteroduplex repair. The third possibility is a locus where both of the duplicated

regions of homology are wild-type. Fourth, a locus where both of the duplicated

regions of homology contain the mutation. These possible structures are shown

schematically with the predicted EcoR I fragments detected with internal and external

probes in figure 3-7.

None of the above listed events can account for the structure of P66, because none of

these possibilities would result in a structure with such a large 5' fragment.

Possibilities (2) and (3), where there would be no 2.3kb deletion at the 5' duplication

of homology, would appear completely wild-type when tested with the external

probe. Possibility (2) would only produce one larger band (approximately lOkb)

detectable by the internal probe, plus a small band of 3.6kb. Possibility (4) would not

have been identified by the initial screen, which relied on the presence of the 2.3kb

fragment in the targeted locus, and in any case would give the mutated band size

(9.6kb) for the 5' fragment with the external and internal probes which was not

observed, and a 3' fragment of only approximately lOkb when analysed with the

internal probe.

Furthermore, there is no reason to suggest that a backselection carried out on any of

these possible structures would result in an unpredicted event in preference to a

conventional homologous recombination which deletes the vector and one of the

regions of duplicated homology.
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Figure 3-7: Structures Produced Upon Branch Migration by
pKiDOPNT

The figure shows, to scale, the alternative possible structures produced at the K-ras
locus by vector pKiDOPNT, should branch migration and heteroduplex repair occur
during homologous recombination. Below each structure the predicted band sizes
which would be observed with a 5' external probe or internal probe are shown.
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3.4.1.1.3 Concatenation of the Vector.

Vector pKiDOPNT is linearised with the restriction endonuclease BamH. I, and as

such has cohesive ends when electroporated into ES cells. Thus multiple tandem

copies of the vector could conceivably become integrated into the genome by

concatenation into a linear array by virtue of their sticky ends prior to insertion.

However, were this the case one would expect to see a minimum of 4 bands when

studying the locus by EcoR I digestion and internal probe analysis. These would be

the bands expected for the targeting event as predicted, and extra band(s)

representing additional copies of the vector in the genome. Integrated copies of the

vector arranged "head-tail" would give an extra 12kb band with the internal probe

representing one or more copies of the complete vector. This band would be

expected to become progressively more intense depending on the number of copies

of the vector integrated. A 9kb fragment would be observed for an event linking two

long arms of homology. The internal probe would fail to hybridise with certain EcoR

I fragments of concatamers joined short arm to short arm, because it has no

homology to this arm of the vector. The possible results of such an event are shown

in figure 3-8. One would expect that the backselected clones obtained from a clone

carrying multiple copies of the vector would be comparable with those obtained from

a clone with a single copy, because survival in ganciclovir demands that all of the

integrated copies of the HSVr& gene be removed in the excision event. My

observations were not consistent with these predictions, and therefore it is concluded

that integration ofmultiple copies of the vector in a tandem array into the K-ras locus

do not account for the structure of clone P66.

Concatenation of the vector followed by its integration into the genome by

replacement instead of insertion also produces a structure similar to the predicted
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Figure 3-8: Structures Produced Upon Concatenation of pKiDOPNT

The figure shows, to scale, the two alternative structures produced at the K-ras locus
by vector pKiDOPNT should concatenation occur. The arrow indicates the direction
of the short arm (3' end) of the homology. Below the structure the bands observed by
Southern analysis with 5' external probes or internal probes on EcoR I digest are
shown. Structure 1 shows the bands obtained with a vector with concatenates "head-

tail", and structure two show the more complicated possibilities observed if "head-
head" or "tail-tail" concatenation events occur.
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event, or possibility (4) considered in section 3.4.1.1.2, which as already described is

incompatible with the observations.

3.4.1.1.4 Intra-Vector Recombination

As shown in figure 7-1 (b), targeting cassette pPNT also has internal linear

homologous duplications of sequence, namely the PGK promoter and poly-A

sequences which drive the two selectable markers. Each duplication is approximately

400bp long. Recombination can thus feasibly occur between these regions, resulting

in the deletion of either the neo gene (by recombination between the PGK promoters)

or the HSVrk gene (by recombination between the PGK poly-A sequences). Whilst

this mechanism is attractive in that it results in deletion of the EcoR I site, and thus

may result in a larger fragment than expected when analysed with the external probe,

the resulting clone would be either G418sor ganciclovir1) This is not the case: Clone

P66 was isolated after G418 selection, and is therefore neo+. The results of

backselection of this clone show that it is ganciclovir7 (and is therefore also HSWtk+).

3.4.1.2 Variations on a Theme

Intra-vector recombination is the only mechanism so far suggested which would

result in the loss of a restriction site and thus increase the size of the fragments

observed with the internal and external probes used to analyse this locus.

Concatenation of the vector prior to such an event could generate several

possibilities, shown schematically in figure 3-9. The final structure generated depends

on whether a neo or HS\tk gene is deleted by recombination between either the PGK

promoter or PGK poly-A sequences respectively, and whether such a recombination

occurs in the 5' or 3' copy of the vector.
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Figure 3-9: Structures Produced By Concatenation/ECR Events
With pKiDOPNT

Schematic structures obtained by a combined concatenation and ECR event upon
pKiDOPNT, leading to a double structure which has lost one of the selectable
markers. The BamH I site (where concatenation is assumed to occur) and diagnostic
EcoR I site are shown. The structures are described further in the text, but briefly, it
is seen that there are four possibilities depending on whether intra-vector
recombination occurs in the 5' (structures 1 and 2) or 3' (structures 3 and 4) copy of
the vector, and whether the neo (structures 2 and 4) or the HSVr£ (structures 1 and
3) gene is lost upon recombination.
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Structures of the type shown in parts 3 and 4 of figure 3-9 are not relevant to the

present discussion. This is because the deletion including the diagnostic EcoR I site is

at the 3' end of the construct, so that the 5' EcoR I fragment of the structure

detectable by the 5' external and internal probes is of the same size and structure as

that predicted and shown in figure 3-2. Structure 2 has an HSVtk gene in the 5' arm,

which appears unlikely because many clones obtained from back selection retain the

5' large fragment, yet survive ganciclovir selection. Inactivation of the remaining

HSVrA: gene by point mutation is unlikely in such cases because there are two copies

of the gene, and thus the chance of both copies being inactivated to permit survival in

ganciclovir is correspondingly smaller.

Therefore if such an event occurred in the system presently under discussion, the

integrated vector is most likely to be that of structure 1 in figure 3-9. Figure 3-10

shows the structure for clone P66, based on vector pKiDOPNT undergoing such a

concatenation/recombination event prior to insertion. The structure is consistent with

the Southern analysis data from both the internal and external probes, in that the 5'

fragment is the correct size, 18kb, making it the largest fragment to be observed at

the locus. An EcoR I site has been lost, resulting in only two (larger than wild type)

bands observable in the targeted locus with the internal probe, and one with the

external probe and probe 3. As suggested from backselection data, the large 5'

fragment has no HSVr/: gene.

3.4.2 Low Cell Density Back Selection of Clone P66

This back selection is discussed first, because the results obtained are less

heterogeneous than those obtained from the high density back selection of clone P66

and the "Fast-Track Flit and Run" protocol described.
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Figure 3-10: Structure of Clone P66

Clone P66 is postulated to have been generated from a pair of copies of vector
pKiDOPNT which have undergone a concatenationfiECR event prior to insertion into
the K-ras locus. The figure shows the suggested structure of the modified locus,
where it may be seen, consistent with experimental data, that:

1) By 5' external probe a large, 18kb, fragment is detectable.

2) This large fragment is also detectable with the internal probe.

3) A fragment larger than wild-type (8.7kb) and consistent with a targeted
modification of the gene, is detectable by the internal probe and the external
probe located within the region of homology at the 3' end of the locus.

4) The large 5' fragment has no copy of the HS\tk gene, and therefore
recombination events leaving the fragment in place will produce clones which are
GANCr/G418r, as observed.

5) The structure has a triplication of homology, and therefore multiple reversion
possibilities exist.
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Of the clones for which a result was obtained, 55 (61%) appeared to be wild type,

and 35 (39%) retained the 18kb band at the 5' end of the P66 targeted locus. As may

be seen from consideration of figure 3-10, there are more possibilities for intra-

chromosomal recombination within the P66 locus than in the simpler structure

originally predicted. This is because the K-ras locus is thought to contain a

triplication of the regions of homology, and also contains duplications of homology

due to the sequence of pUC and neo from the targeting cassette. Some of the

possibilities are irrelevant, as they do not result in loss of the HSVYA: gene, for

example between the two neo genes. There are four groups of possible combinations

for recombination. The first possibility is a resolution to wild-type, and is a result of

recombination between the outer two lengths of homology recombining 5' to the

intended deletion. Second, a hit and run deletion, as desired, can be produced by

recombination between the outer two lengths of homology 3' to the Xba I site which

forms the 3' boundary of the deletion. The third possibility is the production of a

modified locus with a single large EcoR I fragment, observable by both internal and 5'

external probes. This is 17-18kb in size, and as such is likely to be unresolvable from

the 18kb fragment of P66 by agarose gel electrophoresis. There are two possible

variants of this structure, depending on the site of cross-over, but both produce a

clone with a similar Southern analysis pattern because there is an ZscoR I site at the

extreme 3' end of the Xba I fragment comprising the deleted region. Both of these

possible structures are generated by recombination between the middle and 3'

homology repeats, or between the duplications of the pUC plasmid sequence. These

two additional possible recombinant structures are shown in figure 3-11. The fourth

and final possible recombination event which could occur and result in a GANCr

clone is the deletion of the remaining HSVtk gene by recombination of its poly-A

sequence with that of the adjacent neo gene.
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Figure 3-11: Alternate Reversion Structures from Clone P66

There are two additional possible reversion events from the structure of clone P66
shown in figure 3-10, which may be generated by recombination between the 3' and
middle triplications of homology, or between the duplication of plasmid sequences.
These structures are shown opposite. It may be seen that both structures lack an
HS\tk gene and are therefore GANCr, and that each generates a large EcoR I
fragment detectable with both the internal and 5' external probes and indistinguishable
in size from the 5' fragment of clone P66. No other fragment, other than the wild-
type 8.7kb fragment expected from the unmodified allele on the other chromosome,
is detectable with the internal probe, i.e. the approximately lOkb 3' fragment seen in
clone P66 with the internal probe is lost.

Table 3-4: Reversion of Clone P66

The table shows the possible reversion structures obtained from a back selection
experiment upon clone P66, and the approximate frequencies expected for each
structure should the probability depend exclusively upon the length of homology
involved in the recombination event generating that structure.
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Thus it is concluded that on backselection of P66, events of type 1 and 3 are

observed, but not events of type 2 or 4. Table 3-4 gives the approximate length of

homology available in the P66 structure over which a recombination event would

generate each type of reversion event delineated above. The penultimate column

shows the expected frequencies for each type of event if it is assumed that each has a

probability proportional to the length of homology involved in producing the required

crossover. The final column shows the results actually obtained by experiment,

described in section 3.3.3.

The data do not closely fit with the predicted events. The most obvious possible

reason is because the suggested structure of P66, although it is the only one which

has been found to be consistent with the available data, has not been formally shown

to be the true structure. Thus the results obtained from backselections on this clone

could not agree with predictions because of inaccuracies in the supposed starting

structure. However, it is almost certainly naive to predict targeting frequencies based

simply on lengths of homology, as it is well-known that many other factors play a

part, for example whether the regions of homology recombining are isogenic (Te

Riele et ai, 1992; Van Deursen & Wieringa, 1992; Deng & Capecchi, 1992). Special

features of the primary sequence may also be significant, as is implied by the

observation that targeting frequencies have been found to vary by three orders of

magnitude between different genes (Camerini-Otero & Kucherlapati, 1990).

Although 400bp is not below the limit at which intrachromosomal recombination has

been shown to occur (Waldman & Liskay, 1988), such a short length of homology is

known to be less efficient at promoting recombination (Liskay et al., 1987). Thus a

frequency sufficiently small as to be undetectable in this analysis for event (4), that is

recombination between duplicated PGK polyadenylation sequences to delete the

HSVr& gene, does not seem surprising. However, reversion to wild-type is favoured
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over event (3), despite the length of homology available for such a cross-over being

approximately only 1/3 the size. Event (3) may be selected against because it leaves a

duplication of homology still present in the genome which is also capable of

recombination, and the conditions used have strongly selected for clones in which

homologous recombination events have occurred at this locus. Therefore there may

also be selection for an event which spans the entire locus rather than just a part of it,

since the machinery accomplishing the event is present at the locus and has a viable

substrate on which to work.

Why are no hit and run deletion events observed? A measurable percentage, albeit

not high, would be expected from the structure as drawn, as well as from the

designed structure or indeed many other structures which could be produced by

integration of this vector. This is difficult to answer. As previously remarked, branch

migration of the crossover is a common event during recombination. Should this

occur in this case, with the Holliday Junction moving through the site of deletion, a

large (2.3kb) region of single-stranded DNA is produced and in some cases this

would be repaired using information from the other strand. This would reduce the

frequency of backselected clones carrying a deletion, and also has the effect of

enriching for the reversion to wild-type event (as observed).

3.4.3 High Cell Density Back Selection of Clone P66

Results obtained from this population of clones more closely resembles those

obtained from the Fast-Track protocol than the clones obtained by backselection of

Clone P66 at a low cell density. In both of these experiments the cells were selected

at a sufficiently high density that metabolic cooperation could occur. Because a

widely differing population of revertant clones was obtained by backselection of

clone P66 depending on the plating density, it was concluded that metabolic co-
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operation during the selection significantly changes the nature of the selection (and

hence the population of surviving clones).

Clones characterised as showing a wild type pattern constituted the largest single

group of clones in this population, as might be expected from the discussion of the

other backselection on this clone described in section 3.4.2 above (39%-44%).

3.4.3.1 Random Deletion

Random deletion (unfaithful excision) is a strong candidate as a mechanism for

removal of the HSVtk gene under conditions of metabolic stress caused by

backselection at a high cell density. The EcoR I site is immediately adjacent to the

HSVr/c gene and as such would be expected to be lost in the majority of such

deletions, resulting in an EcoR I fragment of any size between 2-3kb and 30kb. As

there are two neo genes present in the locus, it is quite feasible that the clone remain

neo+ after such an event. However one would not expect clones which have

undergone such deletions to appear wild type when analysed with the external probe

as a rule. This is theoretically possible, in that the deletion may span from 5' of the

site of hybridisation of the external probe to the HSVr/: gene, but this is unlikely from

a statistical point of view to be the most common event; for it to be so would require

the HSVtk gene to favour deletion in the 5' direction and deletion to frequently

initiate within the gene or plasmid sequence so that a band of unpredicted size is seen

with the internal probe. The result obtained for one clone, comprising a class 4-type

event described in section 3.3.2, is consistent with this mechanism.

3.4.3.2 Re-Integration Events

Pickup events, where a target sequence recombines with a vector and then re¬

integrates into the genome elsewhere have been recorded in the past (Adair et al.,

1989), and extrachromosomal events involving the association of homologous and
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non-homologous recombination events have recently been described (Sakagami et

al., 1994). It appears that in clones of classes 2 and 3 described in section 3.3.2 and

table 3-1, (that is wild-type by external probe but still having another band by one or

both of the internal probes 5 and neo), some vector sequence has re-integrated into

the genome at another locus, following excision of a region of sequence

incorporating the HS\tk gene. This conclusion was reached because the results

obtained with the external probe for the vast majority of these clones indicate a wild-

type structure, suggesting that a recombination event occured to regenerate the wild-

type K-ras locus. However, the internal probe indicates that vector sequence is still

present. The fragment observed is of a random size. Simple deletions are unlikely to

account for all of these clones because the diagnostic EcoR I site is immediately

adjacent to the HSVf/: gene and therefore in the majority of cases a band shift would

also be observed with the 5' external probe as well. Very large deletions

encompassing the entire region containing sequence homologous to the external

probe would usually be expected to encompass the regions of homology to probe 5,

and in these case the clones could no longer be neo+ (as is the case with clones of

class 2) and yet fail to generate a detectable signal with the internal probe.

3.4.4 Fast Track Hit and Run with pKiDOPNT

3.4.4.1 Screening of clones HKiD01-HKiD058

58 clones were obtained from this selection, as described in section 3.3.5.2. Overall

they were similar in character to those obtained from the high density backselection

of clone P66, but slightly more heterogeneous (as expected), and with certain

significant differences. 16 clones were defined as wild type, and another 18 clones

were wild type as far as defined, by external probe(s) and neo. Thus whilst some of

the 18 incompletely characterised clones were probably derived from random

integration events which were neo', it appears that the largest single group of clones

127



obtained from this selection are wild type (27.5%-58.6%). A significant difference

between this group of clones from the comparable group produced by backselection

of clone P66 is that they are derived from uncharacterised precursor cells: all that is

known about the cell from which each clone obtained in this backselection is derived

is that it is neo+. Therefore it is not known for each wild type clone obtained here

whether it is truly wild-type, having integrated the vector at the target locus and then

regenerated the wild-type locus by homologous recombination, or whether a random

integrant has excised the vector sequence by a deletion mutation so that it generated

no signal when analysed with the internal probe.

Most of the remaining clones obtained are wild-type when studied using the external

probe, but have one or more extra bands observed using the internal probes (table 3-

3: classes 3-6 inclusive). They may or may not be neo+. It is possible to account for

all of these clones as random integrations of the either vector or some part thereof

which have subsequently undergone point mutation or deletion to inactivate the

HSVtk gene. However, they could also be derived from targeted cells which have

undergone deletion/re-integration events similar to those considered in section

3.4.3.2.

3.4.4.2 Fast Track Hit and Run Does Enrich for Events at the Target
Locus

No hit and run deletion events were obtained in this experiment, as was the case with

both back selections on clone P66. However, three clones produced patterns similar

to that seen for some of the clones obtained in the previous backselection carried out

on a known clone (clone P66). Clones HKiD054, HKiD056 and HKiD057 (classes 6,

7 and 8, respectively) show a large band with the 5' external probe similar to that

seen with P66 and many of its derivative clones. This shows that an insertion event

has occurred at the target locus and that the clone is derived from a cell in which
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deletion of its functional copy of the HSVtk gene has occurred. However

consideration of the internal probe results for these clones shows differences between

these clones and their conventionally-produced counterparts. First, the internal probe

results are all different, showing each to be an independent clone; thus the enrichment

for recombination events at the target locus is increased (5.2% compared to 1.7%).

The other major difference is that the internal probe pattern does not correspond with

that of the external probe: the internal probe results are consistent with a wild-type

locus (HKiD054) or show one other smaller band (HKiD()57), or more than one

other band (HKiD056).

This may indicate a problem with transfer of larger fragments to the filter on the

Southern used for the internal probe, which could be the case for HKiD054.

However, the observed hybridisation by the internal probe to other clones in this

group argues against this, rather that the event occurring in these cells differs

significantly from that proposed to have occurred in clone P66. Because they are

undetectable by 5' external probe, the subsidiary bands seen are either at the 3' end of

the locus, or are elsewhere in the genome, perhaps present as the result of pickup

events. They may represent additional integrations of the vector into the genome at

random.

The exact nature of the event(s) occurring at the K-ras locus is difficult to resolve. It

is difficult to conceive of an event which produces a pattern so strikingly similar to

that seen on clones known to have undergone recombination at the intended locus,

albeit in an unpredicted event, and yet which does not appear to react with the

internal probe. This question cannot be answered categorically because the only

information reliably pertaining to the K-ras locus is that provided by the external

probe. Data generated using the internal probe may reflect the occurrence of events

elsewhere in the genome. However, the fragment size observed with the 5' external
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probe suggests an event similar to that occurring in clone P66, but clearly with

further complications: possibly a large deletion of the region generating a large

fragment containing no homology duplications. In a similar way to the majority of

clones obtained in the high cell density backselection of clone P66, the variably-sized

bands visible in the internal probe analysis are possibly due to pickup events, but the

possibility also remains that the entire locus has rearranged and created two different

fragments visible by internal or external probe.

3.4.5 High Cell Density in Backselection

In the backselections described in sections 3.3.2 and 3.3.5.2 the higher plating density

of cells present in the selection introduces other variables into the system. Cells able

to survive such selection conditions which eliminate their neighbours are unlikely to

be behaving in a similar physiological manner to the wild-type. By virtue of their

cellular environment, e.g. the position in the cell cycle, or accumulation of a

mutation, they may be more prone to undergoing changes than normal ES cells and

thus as well as surviving selection by loss of the HSVr& gene other changes permit

escape from "kiss of death", and incidentally produce a small but diverse group of

clones whose analysis suggests uncommon events. That these clones have arisen from

a population that in some way deviates from the normal ES phenotype is also

suggested by the fact that of the relatively few chimaeras created from these clones,

the level of chimaerism observed was not large (less than 10% by coat colour

estimation) and germline transmission of the allele was not achieved. It is therefore

likely that the cells surviving the selection were either differentiated or genetically

compromised, and the selection conditions enriched for a non-pluripotent subset of

cells which have undergone unpredicted events (Sheardown & Hooper, 1992). It is

generally regarded that for optimum transfer of the modified allele through the
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germline, ES cells should be at their lowest possible passage number and that they

should not be exposed to suboptimal growth conditions (Robertson, 1987).

3.4.6 Chimaera Studies

After initial internal blot data were obtained for clone P66/32 and clones HKiDOlO,

HKiD052 and HKiD055, which were initially thought to be targeted hit and run

deletions, some chimaeras were made whilst further verification of the structures was

sought. Unfortunately these results showed that the clones were not K-ras exon 0

deletion mutants and chimaera production was terminated. However, the chimaeras

were not killed until after a year, when they were then examined. Few chimaeras

were obtained, and those which were obtained were not highly chimaeric and did not

pass on their ES cell-derived mutation to their offspring as discussed above.

Although three out of five chimaeras had neoplastic malignancies in evidence upon

pathological examination, no significance to the status of the animal's K-ras gene

could be inferred from these tumours.

3.5 Conclusion

An attempt has been made to introduce a deletion mutation removing the exon 0

region from the K-ras gene of the mouse by hit and run gene targeting in ES cells.

Although events were observed at the K-ras locus itself, these occurred at a low

frequency and no event of the type expected was obtained. This may represent an

effect of the K-ras locus itself on the recombination process, for example being

located in a poorly recombinogenic region of the genome, or flanking sequences

complicating the selection by downregulating neo expression so that there is selection

for more than one neo gene to become incorporated. An insertion event (clone P66)

was observed at the K-ras locus, but this was an unpredicted event and backselection

of this clone failed to produce a hit and run deletion. The event producing clone P66
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appeared to involve a concatenation and extra-chromosomal recombination event

prior to the integration of the vector into the K-ras locus.

Backselection at a cell density high enough for the ES cells to participate in metabolic

cooperation was found to select for a small subpopulation of clones which have

undergone multiple events in the genome, thus producing a disparate collection of

clones many of which had one or more fragments of the vector incorporated in their

genomes. A low density of cells in backselection produces a clearer picture due to the

eradication of such complications but was still not able to generate a hit and run

mutation.

A "fast track" protocol based on backselection of all neo+ clones obtained from the

initial step with the objective of enriching for those clones which have undergone the

rare event of a targeted insertion was also unable to produce the desired mutation,

but it was shown that some 5% of the clones obtained by this procedure had

experienced a recombination event at the K-ras locus, suggesting that it may provide

the basis of an improved selective procedure if undesired competing recombination

events can be eliminated.
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CHAPTER 4-

INTRODUCTION OF POINT
MUTATIONS BY HIT AND RUN



Introduction of Point mutations By Hit and Run

4.1 Introduction

The impetus for the development of the hit and run technique is the desire to generate

precise, small mutations in the genome which will allow the creation of animal models

which are representative of human diseases, or permit studies of aspects of gene

function in vivo not possible with a knock-out type experiment. To this end, two

targeting vectors were used in experiments which aimed to introduce small mutations

into the K-ras gene. The first, pKiTPNT, aimed to introduce a point mutation into

codon 12 of the gene, and thereby introduce an activating gly—>asp mutation of the

type observed in malignancy. Vector pK4BAPNT was designed to introduce a frame-

shift into exon 4B prior to the polylysine domain and post-translational modification

site, with the objective of effectively deleting this splicing variant as a functional

molecule. Such experiments, which are designed to introduce smaller mutations, may

additionally shed light on the behaviour of pKiDOPNT described in the previous

chapter. A much more efficient targeting efficiency might suggest, for example, that

the mutation to be introduced by a hit and run experiment affects its efficiency and

that the method is not suitable for the creation of large deletions.

4.2 Targeting Vector pKiTPNT

This vector was constructed by Dr D. James Williamson in our group. It is derived

from the pPNT targeting cassette (Tybulewicz et al., 1991), described in chapter 7

and shown in figure 7-1, and includes a 2.8kb Xba l-Kpn I fragment of homology to

the murine K-ras gene derived from the plasmid PBKT-142 (Guerrero et al. 1984).

This fragment incorporates the murine exon 1 of K-ras, and carries a G—>A mutation

at position 35 which converts the wild type glycine residue to an aspartic acid
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residue. Vector pKiTPNT is shown in figure 4-1, and the structures of the wild-type

locus and the designed insertion event are shown in figure 4-2.

4.3 Targeting Vector pK4BAPNT

4.3.1 Design of pK4BAPNT

A distinctive feature of K-ras is that unlike its close relatives H-ras and N-ras, it has

two splicing variants which differ in their C-termini. The protein is linked to the inner

cell membrane by post-translational modifications at the C-terminus (see the

Introduction, sections 1.2.2 and 1.2.4), but little is known about the functional

differences of the two different K-ras p21 proteins. Part of the present study

therefore attempts to address this question using two approaches. In chapter 5, an

RT-PCR-based study is described which looks at the relative expression of the two

alternative fourth coding exons in different tissues during development of the mouse.

Secondly, targeting experiments are currently underway to delete one or other of the

exons, so that animals and ES cells which are only capable of manufacturing one

form of the protein may be studied. Dr D. James Williamson and Dr Charles Patek

are carrying out an experiment to force the use of exon 4B by removal of exon 4A by

replacement. Vector pK4BAPNT is designed as a complementary experiment, where

the exon 4A splicing variant is the only functional one.

As described in the introduction, section 1.2.4, p21K~™'Ui undergoes three post-

translational modifications, namely farnesylation of the cysteine residue of the CAAX

motif four amino acid residues prior to the C-terminus, followed by proteolytic

removal of the terminal three amino acids and carboxymethylation of the new C-

terminal substituted cysteine. These modifications are essential for the membrane

localisation of p21'", which is essential for function (reviewed in section 1.2.4).

135



Figure 4-1: Targeting Vector pKiTPNT

a) The structure of vector pKiTPNT. The vector carries 2.8kb of non-isogenic
homology (source: hybrid mouse of strains AKR-RF/J) to the region
encompassing exon 1 of murine K-ras (grey block). The vector carries an

activating gly-^asp codon 12 activating mutation generated by a G—>A transition
at position 35 of exon 1. The vector is derived from pPNT (see figure 7-1 [b])
and as such includes a neo and an USVA gene (orientation as shown) and a
bacterial plasmid (pUC 18, shown as a thick black line). Relevant restriction sites
are shown: S, Sal I, which is the linearisation site of the vector; X, Xba I; K, Kpn
I; E, EcoR I, St, Stu I. The sizes in kb of fragments from selected restriction
digestions of the construct are shown.

b) Restriction enzyme digestion of vector pKiTPNT. Lanes: 1, Stu I; 2, Sal I
(linearised); 3, DNA molecular size marker.
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Figure 4-1
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Figure 4-2: Targeting Structures for Vector pKiTPNT

The figure shows, to scale, the structure of the wild-type murine K-ras locus in the
exon 0-exon 1 region, and the predicted insertion structure introduced at the locus
with vector pKiTPNT. Because the introduced mutation is so small, at the scale
shown the wild-type and hit and run mutant structures are identical. Probe 3 is
shown. Selected restriction sites are also shown: B, BamU I; E, EcoR I; S, Sal I; K,
Kpn I; N, Not I; P, Pvu II.

The expected results for Southern analysis of targeted clones obtained with this
vector, using probe 3 are shown below:

Restriction Digest Wild-Type/"Run" "Hit" Insertion

Pvu II 9.5kb 6.5kb

BamH I >12kb 8.5kb
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The structure of the murine K-ras gene (George et al., 1985) is similar to that of the

human c-K-ras2 gene (Shimizu et al., 1983b, McGrath et al., 1983 & Capon et al.,

1983), and is shown schematically in the introduction. As may be seen from figure 1-

10, deletion of the entire exon 4B by replacement as planned for exon 4A is not an

appropriate strategy because immediately 3' to the exon 4B coding sequences are the

K-ras untranslated sequences, including the polyadenylation signal, and removal of

part or all of these sequences would also affect the behaviour of the exon 4A-

containing mRNA in addition to that of exon 4B.

Taking these two considerations together, hit and run was therefore selected as the

most appropriate strategy for this experiment. A small mutation introducing a

premature stop codon into exon 4B prior to the poly-lysine string and the CAAX

motif could be expected to functionally ablate the exon 4B variant p21™s protein by

preventing correct localisation of the molecule at the cell surface (see introduction).

The exon 4A-containing mRNA should be unaffected because no change has been

made to any of the untranslated sequences or the size of the mRNA, and therefore

the mRNA can be expected to behave identically to the wild-type with respect to

stability and polyadenylation.

4.3.2 Construction of pK4BAPNT

Vector pK4BAPNT was constructed as shown in figure 4-3. It is derived from the

pPNT targeting cassette (Tybulewicz et al., 1991), and vector pY413 (George et al.,

1985) which carries 3.6kb genomic sequence incorporating the murine K-ras exon

4B. The unique Hind III site in pPNT was removed by digestion of the construct

with Hind III, filling in of the cohesive ends by Klenow enzyme and then re-ligating

the ends. This permitted the use of the unique Hind III site in the homology as a

linearisation site prior to electroporation of the construct.
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Figure 4-3: Construction of Targeting Vector pK4BAPNT

A flowchart showing the steps involved in the construction of the targeting construct
designed to introduce a missense mutation into exon 4B of murine K-ras, pK4BA
PNT. The vector homology is derived from pY413 (George et al., 1985) and the
selectable markers and bacterial plasmid sequences from pPNT. The mutation was
introduced at a BstB I site near the start of exon 4B, and a small fragment containing
this exon was subcloned out of pY413 for the mutagenesis process because there is a
second such site in the homology region. This fragment was then replaced to restore
the homology region in vector pY413, and the complete, modified length of
homology was then cloned into pPNT lacking a Hind III site to generate the
targeting construct.
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Figure 4-3
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The small Hind III fragment of pY413 was removed by digestion with Hind III and

religation to generate the construct pY413AH, and the construct pK4Bg was

generated by the subcloning of the small Hind III fragment so produced into pUC19.

This smaller Hind III fragment contains K-ras exon 4B and only has one BstB I site

which is present in the exonic sequence. pK4Bg was digested at this site with BstB I,

treated with Klenow enzyme and then religated, to generate pK4BgAB which lacks

the BstB I site. Dideoxysequencing analysis showed the loss of a T residue in the site,

which resulted in a frame-shift giving a premature stop signal as shown in figure 4-4.

The small Hind III fragment was then cloned back into pY413AH at the Hind III site

to regenerate the genomic fragment contained in pY413, except that a point mutation

in exon 4B is now present at the BstB I site. Dideoxysequencing was used to check

that the orientation of the fragment was correct. The 3.6kb genomic fragment from

pY413AB was excised with the enzyme EcoR I and cloned into pPNT at the unique

EcoR I site to produce vector pK4BAPNT. Vector pK4BAPNT is shown in figure 4-

5, together with the wild-type and insertion locus structures.

4.4 Experiments with pKiTPNT

With the objective of generating an activating point mutation, vector pKiTPNT was

introduced into E14 ES cells. 150 clones successfully screened with probe 3 showed

no correctly-targeted insertion events, indicating a low targeting frequency with this

vector.

Because of this low targeting frequency, at the same time as the comparable

experiment with vector pKiDOPNT described in section 3.3.5.2 was carried out, the

vector was re-electroporated into ES cells and the approximately 1500 clones so

g
obtained were pooled, expanded to 2x10 cells and backselected in ganciclovir at a
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Figure 4-4: Point Mutation to be Introduced into K-ras Exon 4B

a) Dideoxysequence analysis of the start of murine K-ras exon 4B sequence, as
present in vector pK4BAPNT, showing the deletion of a thymidine at the BstB I
site of the wild-type gene.

b) The introduced mutation results in a frame-shift leading to a premature
termination of translation of the K-ras exon 4B splicing variant prior to the
essential post-translational modification domains.
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Figure 4-4

(b)

Intron I Exon 4B

I
rATTTCAG GGTGTTGACGATGCCTTCTATACATTAGTCCGAGAA.VrjCGAAAAC/i.TAAAGAAAAGAT

—

BstB I

Poly-Lysine String CAAX Motif Ter

CiAGCAAAGATGGGAAGAAGAAGAAGAAGAAGTCAAGGACAAGGTGTACAGTTATGTGA
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Figure 4-5: Vector pK4BAPNT and its Targeting Structures

The figure shows, to scale, the structure of vector pK4BAPNT, the wild-type murine
K-ras locus in the exon 4B region, and the predicted insertion structure introduced at
the locus with vector pK4BAPNT. Because the introduced mutation is so small, at
the scale shown the wild-type and hit and run mutant structures are identical. To the
right of the vector structure is shown a restriction enzyme digestion of pK4BAPNT.
Lanes: 1, Hind III (linearised); 2, EcoR I; 3, DNA molecular size marker. As with the
other vectors designed to target K-ras described in this thesis, pK4BAPNT is based
on pPNT and as such has a neo gene as a positive selectable marker and an HSVtk
gene as a negative selectable marker (orientation as shown). The asterisk indicates
the site of the point mutation. The sizes in kb obtained by EcoR I restriction enzyme
digestion of pK4BAPNT are shown.

Selected restriction sites are shown: Bg, Bgl II; E, EcoR I; H, Hind III; Bs, BstB I;
Ps, Pst I; Pv, Pvu II; He, Hinc II.
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density of 5xl()6 cells/lOOmm plate. 29 clones designated HK1-HK29 inclusive were

obtained from this experiment.

4.4.1 Screening of Clones HK1-HK29

The original objective was to screen these clones by Southern Analysis using probe 3

on separate Pvu II and BamH I digests as above, but this probe is unreliable because

of a relatively high level of non-specific hybridisation in comparison to specific

hybridisation. Alternative screening strategies were therefore devised. However, use

of the arms of the vector homology was unsuccessful because of very high

background hybridisation. Faint and non-specific hybridisation was observed to an

exon 1 genomic probe. No signal was obtained using the K-ras cDNA as a probe or

the Kpn I-Pst I fragment derived from PBKT-142 as a 5' external probe to analyse a

Kpn I digest. Oligonucleotide probing using the exon 1 PCR primer described in

section 7.4.3 end-labelled with P-33 was similarly unsuccessful due to lack of signal

at a high stringency wash (2xSSC at 56°C) or non-specific hybridisation at a low

stringency wash (6xSSC at room temperature).

It was therefore concluded that the genomic sequence of K-ras in the region of exon

1 is refractory to reliable Southern analysis because of poor probe specificity. For this

reason, a two-part strategy based on the PCR was adopted:

1) Screening for neo and the diagnostic mutation to test for the presence of vector

sequence and the mutant K-ras exon 1 sequence in the genome.

2) Clones designated neo in part 1 were then subjected to RT-PCR of K-ras RNA

followed by the diagnostic PCR to ascertain presence or absence of the desired

mutation at the K-ras locus, and confirming the generation of a functional mRNA

product carrying the mutation from the gene.
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Part 1 of the screen was carried out as described in section 7.3.6.3. Duplicate samples

of each clone's genomic DNA were run in parallel, one of which was spiked with an

equal quantity of genomic DNA from a clone known to be neo+. Thus false negatives

due to poisoning of the PCR by contaminants present in a particular DNA sample

were avoided. The diagnostic PCR designed to observe and follow the point mutation

was also run on each sample.

The second part of the screen relies on the fact that genomic DNA will not be

susceptible to the PCR because the introns make the fragment to be amplified too

large for the Taq polymerase enzyme (approximately 40kb). Thus the analysis works

at the level of transcription and a positive result indicates a clone which carries the

mutation and is correctly transcribing and splicing the gene with the desired mutation.

For this analysis, ES cells from each clone were grown and RNA prepared and

reverse transcribed as described for the analysis of splicing variant expression

described in chapter 5. The PCR amplifying the K-ras cDNA was run on the sample.

An aliquot was run on a 1.2% agarose gel and a plug of agarose from the K-ras

cDNA band was taken with a Pasteur pipette and blown into 500|al ddH20 and

incubated at 55°C for 10 minutes, lql of this dilute solution of RT-PCR product was

then used as template for the codon 12 mutation PCR described in section 7.3.6.2.

The results obtained from this screen are shown in table 4-1.

From table 4-1 it may be seen that unfortunately no correctly-targeted clones carrying

an activating mutation at codon 12 of exon 1 of the K-ras gene were obtained from

this experiment.
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Table 4-1

The table shows the results of the screening of clones HK1-29, obtained by a fast-
track hit and run protocol with vector pKiTPNT, by a two-part PCR strategy.
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Table 4-1

Genomic Screen Wt!Neo- Mutant/iVeo Wt/Ateo+ Mutant//Veo+

N2 Clones 4 2 12 6
(There were additionally 4 clones carrying the mutation, and 1 wild-type, which were
uncharacterised with respect to neo)

RT-PCR Tested 2 2 4 6

RT-PCR: WT 2 2 4 6
RT-PCR: Mutant 0 0 0 0

(All 4 clones carrying the mutation, but with an unknown status with respect to neo,
were also shown to be wild type at the K-ras locus by RT-PCR) ____
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4.5 Experiments with pK4BAPNT

4.5.1 Metabolic Cooperation In Ganciclovir Backselection

This vector, constructed as described in section 4.3, was electroporated into HM1 ES

cells, and submitted to the fast-track protocol as described. However, backselection

was carried out at different cell densities to monitor for distortion of the results by

metabolic cooperation, as was suspected to be the case in experiments described

previously. Cells were therefore plated out at different densities of cells per plate and

the number of colonies obtained was counted. The results of this experiment are

shown in table 4-2, and graphically in figure 4-6.

It was concluded that approximately 105 cells per 100mm plate is optimal for

selection in ganciclovir, providing a workable compromise between the number of

plates required for an experiment and the number of clones obtained, and this cell

density was accordingly used for the repeated backselection of clone P66 described in

section 3.3.3.

4.5.2 Screening of Clones obtained with Vector pK4BAPNT

188 clones were picked from the backselection described above, from the low cell-

density plates. To minimise labour in the screening process, the initial screen used

was somewhat similar to that finally used for the clones obtained with vector

pKiTPNT, namely RT-PCR of K-ras followed by enzymatic digestion of the product

with BstB I and agarose gel electrophoresis to separate the products. Loss of the

BstB I site would indicate a successful hit and run event producing a transcribed

mRNA with a mutation in exon 4B as designed. The K-ras allele on the other

chromosome provided a control for enzyme activity. Clones carrying such a mutation

could then be further screened to check for the presence of anomalous events, by

Southern analysis, dideoxysequencing or PCR as necessary, but of the 67 clones
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Table 4-2 and Figure 4-6: Variation in Cloning with Increasing Cell
Density in the Presence of Ganciclovir

HM1 ES cells were transfected with vector pK4BAPNT and subjected to G418
g

selection. Clones were pooled and the cells expanded to 2x10 cells. The table shows
the number of clones obtained by plating neo+ cells at different cell densities per plate
and subjecting the plated cells to ganciclovir selection. These data are also presented
in figure 4-6 as the number of GANCr clones obtained per original cell plated.
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Table 4-2
N2 Cells/lOOmm Plate N2 GANCr Clones

Obtained
Mean N2 of Clones/Cell

plated
ixioT 376 3.50x10 2

324

lxio5 2272 1.95x10 2
1620

lxlO6 1248 1.41x103
1576

lxlO7 0 0
0

Figure 4-6

Number of GANCr Clones Obtained/Number of Cells Plated

Plating Density (Cells/lOOmm Plate)
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successfully screened by this method none was found to be carrying the desired

mutation.

4.6 Discussion

4.6.1 Targeting Efficiency of Vector pKiTPNT

The targeting efficiency of this vector is clearly low, because no correctly-targeted

insertion events were observed. This is probably due to the nature of the homology

carried by the vector. The length of homology is 2.8kb, which is relatively short by

modern standards; many workers are currently using homologies in the region of

lOkb in targeting constructs to optimise targeting efficiencies (see, for example,

Rudolph et al., 1993a, 1993b; Ernst et al., 1994; Gorry et al., 1994). A marked

increase in targeting frequency was observed when the length of homology in the

targeting vector was increased from 1.3kb to 6.8kb (Hasty et al., 1991a). However,

2.8kb has been shown to be sufficient for measurable gene targeting to occur (Adair

et al., 1989; Schulman et al., 1990; Hasty et al., 1991a; Deng & Capecchi, 1992;

Scheerer & Adair, 1994).

Targeting efficiency is also affected by small divergences in homology. It has been

shown that targeting constructs built with homology regions derived from the same

strain of mouse as the ES cell to be targeted can be much more efficient than those

made from non-isogenic DNA (Te Riele et al., 1992; Deursen & Wieringa, 1992;

Deng & Capecchi, 1992). This reflects polymorphic differences in untranslated

sequence between the two strains, which reduce the maximum length of

uninterrupted homology of the targeting construct by mismatches. Elimination of

such differences by the use of isogenic DNA increases the effective length of

homology, and hence targeting efficiency, of the vector. The murine homology in this
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case is derived from an AKR-RF/J hybrid mouse, whereas the ES cells are 129/Ola-

derived, and therefore this may be a significant factor in this experiment.

Target genes also vary widely in their recorded targeting frequencies (Camerini-

Otero & Kucherlapati, 1990), for unknown reasons. This phenomenon may be related

to characteristics of the target locus such as its chromatin organisation. There are

some indications that the targeting frequencies of ras genes are low: Other work in

our group, some of which is described in this thesis, suggests this is the case, as have

informal discussions with a group involved in similar work (T. Jacks group; personal

communication) Targeting of the N-ras locus was observed to be very inefficient (a

targeting frequency of 1/5000-7000 transfected cells; Cases & Dautry, 1992;

Umanoff et al., 1995) when targeted by PNS-replacement. Efficient targeting of

human c-K-ra^-2 was observed (29% G418r colonies) but was carried out using a

PNS replacement vector with 6.7kb of homology and a promoterless neo gene as the

positive selectable marker on a transformed human cell line and therefore the

relevance to the present results is dubious (Shirasawa et al. 1993). An attempt to

target the H-ras gene was also unsuccessful (Crombie, R., Balmain, A., Clarke, A. R.

& Hooper, M. L.; personal communication).

4.6.2 Study of Clones Obtained By Fast-Track Hit and Run With
Vector pKiTPNT

Many problems were experienced during the screening of the potentially-targeted

exon 1 clones, which is why further electroporations of the vector were not carried

out to generate additional clones and increase the probability of obtaining a hit and

run activated K-ras gene. Since the locus appeared to be extremely refractory to

successful Southern analysis, an alternative analysis examining the K-ras locus at the

level of transcription, namely RT-PCR, was chosen as the best way of circumventing

the problems experienced. As well as showing the presence or otherwise of the
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desired alteration, it also shows that the modified gene is still operational and that

functions such as splicing have not been impaired by other mutations introduced by

the hit and run method.

Unfortunately no correctly-targeted hit and run clones have been identified from the

29 obtained. The largest group (12 clones) contain neo but are negative for the

mutation both at the genomic and transcribed levels. These are most probably clones

which have incorporated a proportion of the vector sequence at a random location in

the genome, but have excluded the fragment of homology incorporating the mutation

during the integration event, i.e. have not integrated the very 5' end of the construct.

However the possibility of a targeted event which has failed to recombine correctly

and produced a gene which fails to transcribe a stable mRNA is not formally

excluded by this analysis. Random integration is also the most likely explanation for

the second largest group of clones, namely those which have incorporated both the

neo gene and the point mutation into the genome but fail to express the mutation at

the level of mRNA. Four clones were completely wild-type by the analyses carried

out. These may be either random integration events largely or completely excised by

deletion or they may be hit and run events which have reverted to wild type. A hit

and run event which has resolved to wild type appears less probable, however, given

that there is no unequivocal evidence for a targeting event in any of the other groups

of clones. Again, random integration is the most likely explanation for clones which

are mutation positive at the genomic level but are neo , with a deletion removing the

selectable markers.

4.6.3 pK4BAPNT as a Hit and Run Vector

pK4BAPNT was designed and constructed as a hit and run vector whose purpose is

to introduce a frame shift mutation leading to a premature stop codon in exon 4B of

the murine K-ras proto-oncogene.
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An assay based on PCR followed by restriction endonuclease digestion, described in

section 4.5.2, has been designed and optimised which permits the identification of the

mutant murine gene.

Although only 37% of clones picked in this experiment were successfully screened no

clones characterised by the desired event were noted, as determined by K-ras RT-

PCR followed by restriction endonuclease digestion of the products and agarose gel

electrophoresis. A total of 67 clones were screened, and it is therefore not possible to

rule out low-frequency targeting as in the other two K-ras experiments described.

The genomic clone pY413 was the only available clone at the time of vector

construction, and therefore the length of homology within the constructed vector is

probably suboptimal. The mutation is necessarily at the 5' end of the vector

homology, so that most revertant cross-overs occurring in a targeted clone with an

insertion structure of the type shown in figure 4-5 are predicted to favour the

restoration of the wild-type exon. Approximately 8% of cross-overs between

homology duplications of this structure, calculated from a comparison of relative

lengths of homology on each side of the mutation, are predicted to leave the mutation

in the genome. However, branch migration events have been shown to be capable of

drastically modifying the frequency at which the mutation is observed in each of the

homology duplications (Hasty et al., 1991c) and it was therefore anticipated that

backselection would almost certainly occur on clones which have the mutation either

in both duplications or in the 5' duplication as well as that shown in figure 4-5. For

such clones the opposite applies: nearly all reversion events can be expected to retain

the mutation.

Ignoring branch migration and heteroduplex repair-mediated conversion of the 5'

homology duplication, the above calculation predicts that 8%, or about 5 clones out

of 67, might be predicted to have retained the point mutation in K-ras exon 4B, but it
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must be borne in mind that many of the G418r clones in the backselection are likely to

be random integrations, which have undergone mutations in the HSVtk gene to

produce GANCr clones, and therefore the expected number of targeted revertants is

reduced.

4.6.4 Fast-Track Hit and Run

A potential criticism of this protocol is that the background level of mutation of the

HSVr& gene actually observed would be too high to facilitate the isolation of targeted

clones. As may be seen from figure 4-6, at a cell plating density of lxlO4 cells/plate
2 6 r

3.5x10 clones/plated cell were obtained. This corresponds to 7x10 GANC clones

from 2xl()8 G418r clones. Therefore at such a sufficiently low plating density that

bystander killing by metabolic cooperation may be ignored, a much larger number of

GANCr clones was obtained than originally expected. The results of screening some

of the clones obtained by this procedure with vectors pKiTPNT and pK4BAPNT

tend to agree with this criticism, and it may be that the level of competing illegitimate

recombination events and mutations of the HSV4/: gene make the experiment

unworkable at the present locus. However, it will be remembered that in chapter 4,

evidence was presented for a measurable level of events at the target locus by vector

pKiDOPNT, even if the desired hit and run event was not observed. This is consistent

with the idea that hit and run reversion events will be favoured over the survival of

illegitimate recombination events by mutation but that because the vector fails to

target as predicted, the desired event was not detected in this case.

It is likely that the level of background GANCr clones in this experiment impeding the

isolation of targeted clones is an artefact of the negative selectable marker, and that

the premise of the experiment is correct. HSVf/: cannot be positively selected in wild-

type cells; in the vectors described in this thesis, neo was used as a positive selectable

marker. Furthernore, there is also the possibility that mutations in the HSVtk gene
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during propogation of the construct in E. coli will result in a cohort of clones

resistant to gancicolvir. After transfection of the vector and before backselection,

there is a significant time when HS\tk is not under selection-approximately 14 days

during the growth of clones under positive selection in G418, followed by pooling

(when each clone comprises approximately 1000-5000 individual cells), and then a

further 4-5 days of expansion to a total cell number of 2x10 cells prior to plating and

backselection the following day. This corresponds to approximately 18 cell

generations (our own observations; Hasty et al., 1991c), and constitutes a problem

because of the exponential growth of cells: a cell undergoing point mutation of the

HSWtk gene during the first cell generation and growing at the same rate as other ES

cells until backselection produces over 250,000 HSVt/c "daughter" clones upon

backselection. Thus reversion events due to intra-chromosomal recombination

(selected, predominantly, at the final cell generation when a single HS\tk~ cell

generates two clones) are swamped by the background of point mutations in the

negative selectable marker occurring during positive selection and expansion. The

conclusion from this experiment is therefore that HSVWGANC selection is an

inappropriate negative selection method for the fast-track hit and run technique. The

hprt gene, used as both a positive and negative selectable marker in hprt ES cells,

would represent a significant improvement on the present system, because HAT

selection could be maintained during cloning of transfectants and cell expansion, thus

eradicating the vast majority of spontaneous mutants. Enrichment for the desired

event over the present strategy would therefore be significantly improved, and thus

the isolation of the desired mutants is predicted to become a relatively trivial

problem. Because there is effectively an additional selection for homologous

recombination events at the target locus in addition to that for stable transfection

events, the frequency of targeted recombinants should be very high and with the

suggested refinement this strategy might have general applicability.
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4.7 Conclusion

Two vectors were constructed with the objective of introducing point mutations into

the murine K-ras gene. One such vector (pKiTPNT) was shown to have a very low

targeting frequency so that it was not possible to carry out a backselection on a

targeted clone. This experiment would be improved by the use of a vector with

increased, isogenic homology to the target locus to improve the targeting efficiency

and also by the development of efficient and specific screens for such clones. PCR

between the vector and the external genomic sequence may provide a more efficient

screen at this locus than Southern analysis, and with the advent of long-distance PCR

protocols becomes a much more realistic prospect for the screening of ES cell clones

for targeting events, because it is no longer necessary to keep one arm of the

homology very short to permit PCR amplification of a diagnostic fragment (Barnes,

1994; Cheng et al., 1994).

The targeting efficiency for vector pK4BAPNT is unknown because this vector was

only used in an experiment where the backselection was carried out on pooled clones.

This vector should therefore next be used to electroporate ES cells and screen clones

at the G418r stage to check the initial targeting frequency of this construct. Although

such a site is at present unknown, a linearisation site closer to the middle of the

region of homology than the Hind III site originally chosen may prove useful in

increasing the targeting efficiency (Dickinson et al., 1993). If targeted insertions can

be obtained, backselection can be expected to produce a low but observable number

of mutation events. A higher efficiency of retention of the mutation is predicted if a

clone which has the mutation in the 5' duplication of homology can be isolated.

Should this prove not to be the case, the vector homology should be expanded on the

5' arm of the homology containing the mutation. This should improve both the

targeting frequency and the frequency of reversions under backselection to the

161



mutant form. Use of the exon 4B reverse PCR primer described in section 7.4.3

combined with the "Vectorette" (ICI) single direction PCR-based genomic walking

system using a proof-reading polymerase would be an appropriate method of deriving

the required extra genomic sequences.

RT-PCR was a convenient and precise assay for point mutations introduced into the

mouse genome, showing whether or not the experiment had introduced the designed

mutation into the target gene, and that the modified gene still produced a functional

mRNA molecule.

4.7.1 Mutations Introduced by Hit and Run

Although the conclusion is a somewhat negative one, it now appears likely that the

lack of success in deriving insertion and hit and run revertant clones with vector

pKiDOPNT described in the previous chapter is not due to the specific nature of the

mutation (a large deletion) to be introduced, because similar results were obtained

with vectors designed to create either a tiny (lbp) deletion or a missense mutation. It

is therefore concluded that the vector architecture and the nature of the target locus

are the most important factors in determining the targeting efficiency in an

experiment and is furthermore predicted that there is no reason why the mutations

described may not be created in the future by further optimisation of the experimental

protocol.
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CHAPTER 5-

VARIATION OF EXON 4
SPLICING OPTIONS IN

MURINE DEVELOPMENT



Variation of K-Ras Exon 4 Splicing Options in
Murine Development

5.1 Introduction

As described in the Introduction, section 1.2.2, the K-ras proto-oncogene has two

alternative C-terminal exons, designated 4A and 4B. Although not associated with a

catalytic activity, these exons are regarded as essential to the function of the protein,

in that they encode the region of the protein at which the molecule is linked to the

inner surface of the plasma membrane. This has been shown to be necessary for

normal function of ras (Willumsen et al., 1984a, 1984b; Leevers & Marshall, 1992).

The exons differ somewhat, in that exon 4A lacks the poly-lysine string which

characterises exon 4B. Despite this, most studies, focusing on the behaviour of ras as

an oncogene or an effector of cell signalling function, have not differentiated between

the two forms of K-ras, or indeed usually between any members of the ras family,

and so subdivisions of function between isoforms remain unresolved. For example,

the v-onc form of K-ras is K-rasA (McGrath et al., 1983; Shimizu et al., 1983b), but

overexpression of K-ras has also been observed in transformed cells (George et al.,

1985). Relatively little is known of the more subtle, but presumably important,

differences in function suggested by the conservation of the ras genes. It was

therefore decided, in parallel with targeting experiments designed to separate the

function of the two K-ras isoforms, that the representation of the two different forms

of K-ras in different situations be investigated. Such a study would hopefully reveal

any subdivisions of function.

The objective of the experiment was to observe any differences in the relative

preferences of the two K-ras splicing variants in the mouse during development,

either between stages of development of the embryo or between tissue type, which

may indicate subdivision of function of one variant from another. The stratagem
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adopted was that of reverse-transcription-polymerase-chain-reaction (RT-PCR), to

measure the relative proportions of mRNA of each splicing variant, in a variety of

different tissues at different stages of development. RNA was prepared from each

tissue sample, and using oligo dT12.i8 as a primer cDNA was prepared. The cDNA

was then used as template in a K-ra.v-specific PCR and the relative amounts of

product of each splicing variant were determined. Determination of the proportions

of the mRNA species was achieved by separating the cDNA products by agarose gel

electrophoresis, Southern blotting the gel and hybridisation to a K-ras cDNA probe.

Densitometry of the autoradiographs provided a simple method of determining

relative proportions of each cDNA.

5.2 Results

5.2.1 Validation of the Analysis

It is clearly of prime importance that any differences in relative expression observed

represent real differences in the tissue under study, and not artefacts of the PCR

reaction or procedures used to analyse the products.

5.2.1.1 Primer/Template Sequence Considerations

The mRNAs of each splicing variant, as shown in the Introduction, both contain

exons 1 and 4B. There is therefore no difference in binding affinity between the

templates and primers for either of the 2 possible cDNA species which might lead to

an increase in amplification efficiency for one variant at the expense of the other.

5.2.1.2 Cycle Number

Care was taken to avoid allowing the PCR to progress significantly past the

logarithmic stage of reaction, and thus possibly introduce a limiting factor other than

the quantity of template. Figure 5-1 shows the amount of product obtained, measured
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Figure 5-1: Increase in Quantity of Specific Product With Increasing
Cycle Number for PCR of K-Ras cDNA

The figure shows the increase in product of the K-ras PCR with increasing cycle
number. This is measured as an increase in the size of the densitometric peak,
representing the product at the specified cycle number, after Southern hybridisation
as described in the text. Densitometry of the bands was used to generate a plot of
relative peak absorbance against cycle number. After printing, each peak was cut out
and the the mass of the peak, proportional to the amount of PCR product, was
measured.
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Figure 5-1

K-ras PCR: Variation of Product Quantity with Cycle

Cycle Number

167



densitometrically, versus cycle number of the PCR. All following PCRs were done at

21 cycles, which was shown empirically to produce a measurable quantity of product

in most cases and yet just precedes the plateauing of the PCR.

5.2.1.3 Quantification of Products

In order to confirm that the relative fractions of each PCR product as measured by

densitometry, corresponding to relative abundances of mRNA in a tissue, are an

accurate reflection of the proportions of each mRNA species the experiment shown in

figure 5-2 was performed. A total of lpg of the two cloned K-ras cDNAs was mixed

in different molar ratios as template, and then subjected to the PCR. The cDNAs were

obtained by RT-PCR of mouse strain 129/Ola liver RNA using the primers described

in section 7.4.3 and cloned into pUC19 (Yanisch-Perron et al., 1985). Dideoxy

sequencing revealed no differences from the published sequence (George et al.,

1985). The RT-PCR products were separated by agarose gel electrophoresis and

Southern blotted. The PCR products were then hybridised to the K-ras cDNA

containing exons 1, 2, 3, 4A and 4B, and the filter was autoradiographed.

Autoradiographs were taken at several exposures, to avoid the introduction of errors

as a consequence of saturation of the film.

Autoradiographs were analysed by scanning laser densitometry, and the relative band

densities were compared with the relative proportions of each template initially used

in each reaction.

As is shown in figure 5-2, there was very good agreement between the relative

proportions of each template in the reaction and the relative intensities of each band,

as measured on the autoradiograph by laser densitometry. A correlation coefficient

between the proportion of each cDNA present as template and the density of the band

representing it on the autoradiograph of greater than 0.999 was recorded.
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Figure 5-2: Quantity-Specific Nature of the PCR of K-Ras cDNAs

a) Southern analysis of K-ras PCR carried out on lpg of control murine K-ras
cDNAs, mixed in the molar quantities shown above the bands.

b) Graph of the observed splice variant proportion as a percentage of the total K-ras
PCR product against the proportion expected based upon the actual ratios of
template used in the PCR. Symbols: black triangle, expected values; white
squares, observed values. The P value gives the significance of the correlation
coefficient.
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Figure 5-2

(a) RT-PCR on K-Ras is Quantitative
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5.2.2 K-Ras Exon 4 Splicing Options in Murine Development

Balb/c mice were taken every three days of pregnancy from day 9 onwards to birth,

and sacrificed. Embryos were dissected as far as technically possible at each stage of

development. Embryos were not dissected earlier than day 9 post coitum because of

the technical difficulties of dissection and the problem of separating maternal from

embryonic tissue. Three to five samples of each tissue from different embryos were

analysed separately. In addition, ES and EC cells were analysed as an approximation

of early stage (day 3.5) development, although it should of course be borne in mind

that these are actually cell lines adapted to in vitro conditions. The ES and EC cells

were also subjected to induction of differentiation in vitro as described in chapter 7

and the differentiated populations studied.

Sample data, obtained by RT-PCR and Southern hybridisation to the K-ras cDNA, of

K-ras transcripts from ES and EC cells and isolated mouse tissues are shown in

figure 5-3.

Table 5-1 shows the results obtained for the exon 4 splice options analysis carried out

on the developing mouse embryo. These data are also presented in a graphical format

in figure 5-4, where any changes with time are perhaps more easily seen.

5.3 Discussion

5.3.1 PCR of Murine K-ras cDNA is Quantity-Specific

The major criticism of this type of analysis is that the data obtained, (i.e.

measurements of the relative proportions of each K-ras splicing variant for a given

tissue at a given stage in the development of the mouse embryo), may not accurately

reflect exon 4 expression patterns in the mouse. Discrepancies may arise because of

the introduction of artefacts or distortions at one or more of several stages: reverse
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Figure 5-3: Tissue Specific K-Ras Splicing Variant Preferences in
the Developing Mouse

The figure shows the results of Southern hybridisation of RT-PCR product of murine
K-ras transcripts to the K-ras cDNA probe containing exons 1, 2, 3, 4A and 4B.
Samples from various tissues at different stages of development are shown. The
examples of undifferentiated ES and EC cells at the top row ("E 3.5") are duplicated
at two different exposures of the autoradiograph to show that only the K-rasB
transcript was observed for undifferentiated E14, HM1 and PSA4 cells.
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Figure 5-3

Tissue-Specific K-ras Exon 4B Splicing Variant Occurrence in the
Developing Mouse Embryo
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Table 5-1: Tissue Specific K-ras Splicing Variant Preferences in the
Developing Mouse

A B
The table shows the relative proportions of K-r&v transcripts K-ras and K-ras
expressed in each tissue type, as a percentage of the entire K-ras mRNA measured.
Each value is given as a mean of up to 5 samples.

Notes:

1) Stage of development is given in days; "N" denotes a neonatal sample.

2) The number of samples is shown in column n.

3) "Diff. 1" indicates differentiation stage 1; see chapter 7.

4) "Diff. 2" indicates differentiation stage 2; see chapter 7.
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Tissue Day n 4B Mean (%) 4A Mean (%)
EX4 3.5 1 100 0

E14 (Diff 2) 3.5 2 90 10

HM1 3.5 1 100 0

HM1 (Diff 1) 3.5 1 53 47

HM1 (Diff 2) 3.5 4 85 15

PSA4 [EC] - 1 100 0

PSA4 [EC] (Diff 2) - 2 79 21

Embryo 9 5 100 0

Embryo+Yolk Sac 9 2 100 0

Embryo 12 5 99 1

Gut 15 4 77 23

Gut 18 4 60 40

Small Intestine N 4 48 52

Large Intestine N 3 50 50

Stomach N 3 70 30

Liver 12 4 89 11

Liver 15 4 60 40

Liver 18 4 77 23

Liver N 3 70 30

Kidney 15 4 86 14

Kidney N 4 85 15

Heart 15 4 97 3

Heart 18 4 99 1

Heart N 4 85 15

Lungs 15 4 72 29

Lungs 18 4 75 25

Lungs N 4 66 34

Spine 15 5 87 13

Spine 18 3 97 3

Spine N 4 90 10

Brain 15 5 99 1

Brain 18 4 97 3

Brain N 4 76 24

Brain Stem 15 3 91 9

Brain Stem 18 4 98 2

Brain Stem N 4 98 2

Eye 15 4 95 5

Eye N 4 94 5

Head 12 5 96 4

Head 15 5 99 1

Head N 1 100 0

Limbs 12 2 100 0

Limbs 15 5 71 29

Blood 15 1 92 8

Yolk Sac 12 5 56 44

Yolk Sac 15 5 54 46

Yolk Sac 18 4 44 56
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Figure 5-4: Tissue Specific K-ras Splicing Variant Preferences in the
Developing Mouse

The Figure shows the relative proportions of K-ras transcripts K-rasA (red) and K-
ras (blue) expressed in each tissue type, as a percentage of the entire K-ras mRNA
measured. Each value is given as a mean of up to 5 samples.

Notes:

1) Stage of development is given in days; "N" denotes a neonatal sample.

2) Error bars represent standard error of the mean for the tissue type and
development stage.

3) "Diff. 1" indicates differentiation stage 1; see chapter 7.

4) "Diff. 2" indicates differentiation stage 2; see chapter 7.
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are 5-4 K-ras Exon 4 Splicing Variant Expression in the
Mouse During Development
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transcription, PCR, Southern analysis, autoradiography. It was therefore essential to

optimise the analysis before proceeding to the mouse, and this is the purpose of the

experiments described in section 5.2.1.

The control experiments described in sections 5.2.1.2 and 5.2.1.3 were carried out

using 0.1-lpg of linear K-ras cDNAs mixed either in equimolar ratios (5.2.1.2) or in

varying molar ratios (5.2.1.3). This amount was chosen for the optimisation

experiments because it was likely to be representative of the quantities of K-ras

mRNA/cDNA recovered from tissue samples.

Experiment 5.2.1.2 shewed that the amount of product continues to increase during

the PCR up to approximately 22-23 cycles, and then the plateau effect begins to be

seen as the amount of new product synthesised begins to level off. 21 cycles was

therefore selected as the optimum number for the analysis because this is high enough

to give an easily detectable quantity of product and yet remain within the exponential

region of the PCR, and thus avoid any potential problems with preferential

amplification which may occur as the reaction begins to saturate. The cDNA is single

stranded and so only one PCR primer can bind the template on the first round of the

PCR. Consequently, at the start of the analysis there is one round of arithmetic rather

than geometrical amplification of the target sequence. Therefore 21 cycles of PCR on

the tissue-derived cDNA more properly equates to 20 cycles of PCR in the control

experiment, thus placing the system effectively in the middle of the exponential range

of the PCR.

Experiment 5.2.1.3 showed that there was good agreement between the starting

ratios of the two variants at the beginning of the PCR and the ratios measured after

PCR, Southern blotting and autoradiography. Results gained from murine tissues

should therefore accurately reflect the relative amounts of each cDNA obtained after

reverse transcription.
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It should be borne in mind that this experiment is not a truly quantitative PCR in the

classical sense, because the objective is not to compare amounts of product between

samples, but rather to quantify the ratio of the two variants both present in the same

sample. For this reason it was unnecessary to include an internal standard in the PCR

reaction tube, but simply to show that measured ratios correspond well with the

ratios of starting template.

The only source of error unaccounted for in the above control experiments is the

starting material itself, i.e. RNA from tissue samples. Degradation of RNA by poor

handling can be expected to reduce yield, although the use of RNAse-free materials

and the use of liquid nitrogen to store RNA samples ameliorates this. However,

would one mRNA species be significantly more stable than the other? Such a

situation would result in poor estimates of relative expression by overestimating one

splicing variant at the expense of the other. This was thought unlikely here however

because of the relatively small size difference in the mRNA species (under 5%,

George et al., 1985) and the fact that the exon producing the size difference is

internal to the primers. Thus exonuclease-mediated degradation can be expected to

affect the quantity each variant obtained equally. Because both the mRNA species

have the same untranslated sequences and encode products of almost identical size
A B

(189 amino acids for K-ras and 188 amino acids for K-ras ) the "physiological"

stability of each mRNA species in the cell is almost certainly identical (Sachs, 1993).

5.3.2 K-Ras is Represented in All Tissues Studied

In agreement with previous work (Muller et al., 1983; Leon et al., 1987), K-ras

expression was observed in all embryonic tissues studied. The only exception to this

is blood, where it was rarely observed, but this was due to the difficulty of obtaining

adequate quantities of embryonic material.
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This analysis does not formally show that K-ras is expressed in every cell type,

because not every tissue type was examined, and most tissues comprise more .han

one cell type, but it appears likely from these observations that the K-ras gene is

ubiquitously expressed at the tissue level in the mouse.

5.3.3 K-Ras Exon 4B is Always Expressed in Cells, Whereas Exon
4A is Not

As can be seen from the results in table 5-1 and figures 5-3 and 5-4, the expression of

K-ras mRNA isoforms varies between tissue types. The mRNA of K-ras is present

in all tissues studied. Furthermore, this form is almost always the most abundant,

whatever the tissue. The only exceptions to this rule, neonatal small intestine and day

18 yolk sac, are where the values for exon 4A and exon 4B are sufficiently close that

they are within the errors of the experiment and therefore no significance can be

concluded from this.

K-rasA is usually expressed in lower amounts, and in some cases such as neural tissue

and muscle tissue is observed in very low quantities indeed (<10%). Further analysis

is required to show whether such cell types in fact produce only the exon 4B

transcript and the exon 4A transcript observed merely represents contamination from

other cell types present in the sample.

5.3.4 Within a Tissue, K-Ras Splicing Variant Expression Does Not

Usually Vary Significantly During Development

As is seen from the graphical presentation of the data, within any tissue type there is

usually no obvious trend with respect to the relative proportions of each K-ras

mRNA species over time. The Mann-Whitney non-parametric test was used to test

the significance or otherwise of differences between proportions of K-ras in similar

tissue samples at different stages of development.
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There are few exceptions to the finding that there are no significant differences in K-

ras exon 4 splicing variant expression over time within the same tissue type. In the
A

heart, a slight elevation in K-ras (from extremely low levels to 15% of the total) was

observed between day 18 embryos and newborn animals. In the liver between days 12

and 15 of development, an elevation in K-ras (from approximately 10% to 40% of

the total) was observed. However, in both these cases the importance of these

findings is cast into doubt by the lack of a significant difference between either of

these stages of development and any of the others measured for the same tissue. They

are therefore likely to be stochastic artefacts of the analysis.

In the case of the gut, there may be a slight increase in K-rasA during development.

There was no significant difference between large and small intestine of the neonate,

and so these values were pooled to form a group of 7 observations designated
A B

"neonatal gut". Significant increases in K-ras compared to K-ras were observed

between day 15 gut and neonatal gut and between day 18 gut and neonatal gut.

Although it is obviously important to avoid over-interpretation of the data, this

observation may reflect a small but significant change in K-ras expression patterns in

the gut during the later stage of development, when the gut is undergoing active

differentiation processes (see next section; Kaufman, 1992).

At day 9, no K.-rasA expression was observed in whole embryos, but within certain

individual tissues (e.g. yolk sac and liver) at day 12, expression of this variant was
g

observed. Thus it may be that for approximately the first half of development, K-ras

is the only significant K-ras isoform expressed. However, a finer-level analysis of

early-stage embryos is required to show this, as it may be that small amounts of K-

rasA present in particular cell types at this stage of development were not detectable
g

in the analysis due to an excess of competing K-ras , present in all tissues.
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In the majority of tissues studied significant modulation of K-ras expression patterns

during development was not observed. These tissues included the embryonic brain,

brain stem, spine, eye, heart, lungs, kidney, liver and yolk sac. As already seen

however, there are frequently significant differences between tissue types. This result

is consistent with the hypothesis that a cell type's pattern of K-ras expression

depends on the cell type and that proliferation of the tissue during growth does not

usually alter this; rather it is more likely that expression of K-ras is an early event in

development. The fact that K-ras is expressed, albeit as K-ras only, in ES cells, (see

also Pal et ai, 1993) is consistent with this hypothesis. It is therefore suggested that

the K-ras splicing pattern for a particular cell type is probably determined at or

before the time of differentiation into that cell type.

5.3.5 K-ras Splicing Variant Exon 4A is Associated with
Differentiation

The most significant findings from this work are those pertaining to the study of ES

cells and their differentiation. Three cell lines were studied-the ES cell lines E14 and

HM1, and the EC cell line PSA4. PSA4 is an EC cell line which shows a wide

spectrum of cell types upon in vitro differentiation (Table 1, and references therein,

of the Appendix, Silver et al., 1983). In addition to analysis of the parent cells, the

cells were subjected to the induction of differentiation in vitro as described in chapter

7 and the differentiated derivatives were also studied.

The major difference between the use of cell lines and tissues derived from a mouse is

that prior to any in vitro differentiation treatment the cells are a pure population, with

little or no contamination of the population by other minority cell types as is present

in tissues derived from the mouse. Therefore it was concluded that in ES and EC

cells, the exon 4B splicing variant is the only K-ras transcript expressed. However,

upon differentiation in vitro, K-rasA expression rapidly (within days of the removal of
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LIF) becomes upregulated to comprise an appreciable proportion of the total K-ras

mRNA as the cells lose their pluripotent phenotype and become committed to various

pathways of differentiation. Although not formally shown, it is likely that the

relatively wide variation in 4A:4B ratios recorded for individual populations of

differentiated ES and EC cells is a reflection of the extent of differentiation and the

proportions of particular lineages which developed from the pluripotent cells in the

different experiments. It is interesting to note that no evidence for the presence of the

K-rasA transcript was observed at day 9 of embryogenesis. Although this remains to

be confirmed by a finer-level analysis, it may suggest, in combination with the results

obtained from the in vitro differentation of pluripotent cells, that induction of K-rasA
transcription is a relatively late event in embryogenesis (between days 9 and 12).

As described above, some evidence for a role of K-rasA in gut development and

differentiation was also observed in this study.

Is the upregulation of K-rasA expression an initiating event in the formation of

different tissues from undifferentiated precursors, or merely an associated

observation? The fact that studies of ras on cell lines (Hagag et al., 1986;

Szerberenyi et al., 1990) suggest an important role for ras in differentiation may

argue for the former proposition: the presence of multiple splicing variants with

subtly different functions provides another level of control over ras-mediated

activation/differentiation of the cell. The different splicing variants may interact with

different upstream and downstream molecules to activate similar, but not necessarily

the same, genes in response to ras activation. This is also consistent with the other

major observation of this work, that splicing variant usage does not usually change

over time within a tissue type. It is suggested that once a cell is committed to a

certain lineage, K-ras splicing patterns tend to remain constant as one of the

functions of the molecule is to maintain the appropriate differentiated phenotype of
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the cell by activating the right genes in the right proportions. This may be upset in

neoplasms by mutation of ras, and indeed may be affected by the type of neoplasm

(tissue type) in question.

Further analysis of individual cell types derived from differentiated ES and EC cell

precursors, together with a finer-level analysis of the early-stage embryo, will be

important in verifying the association of K-ras expression patterns with pathways of

differentiation. Comparison of the ability of ES cells carrying homozygous mutations
B A

forcing the exclusive expression of either K-ras or K-ras to differentiate along

particular lineages as compared to their wild-type controls, and an analysis of the

same mutations in the context of the mouse embryo will formally show the

significance of varying K-ras expression patterns in particular developmental

processes. Since it is already apparent that quantitative differences in K-ras exon 4

variant expression are seen between different tissues, it is suggested that there may

also be phenotypic differences observed in mice heterozygous for mutations deleting
B A

either K-ras or K-ras as the appropriate quantitative balance between the two

isoforms of K-ras is perturbed.

B A
Should mice carrying mutations deleting either K-ras or K-ras prove to be viable,

an analysis of the profile of K-ras mutations in tumours in these animals and of the

spectrum of tumours which may be induced may also prove informative in the study

of the involvement of K-ras in malignancy.
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CHAPTER 6-

CONCLUDING DISCUSSION



Concluding Discussion

This study has examined some aspects of the hit and am gene targeting technique as a

method for the introduction of small mutations into the mammalian genome, and some

aspects of the function and expression of the K-ras proto-oncogene in vivo. An

important issue when attempting a hit and run experiment is the accuracy with which

the homologous recombination event between a chromosome and the introduced

plasmid is accomplished. A low level of fidelity in this process might engender the

introduction of undesired mutations together with the intended modification. This

question was investigated in the context of the hprt gene (chapter 2). It was

hypothesised that an error introduced into the target locus during a hit and run

experiment would most likely be introduced during the initial insertion ("hit") step of

the procedure, since unexpected mutations have previously been observed in gene

targeting experiments (Thomas & Capecchi, 1986; Doetschman et al., 1988;

Thompson et al., 1989; Brinster et al., 1989), but a high level of accuracy has been

observed in intra-chromosomal recombination events upon which the second, "run",

step of the procedure depends (Stachelek & Liskay, 1988). Therefore a strategy based

upon the correction of the hprtb m3 allele by an insertion vector was adopted to study

this problem. In addition to the required correcting sequences, a neo gene was included

in the targeting construct to permit the recovery of all "targeted" clones, whether they

were faithful or unfaithful recombinants. A comparison of Southern analysis and

phenotypic analysis (assessed by the ability of recombinant clones to survive in HAT

medium) was used to study the clones for evidence of errors occurring during HR and

resulting in a HATS phenotype. The hprt enzyme activity of targeted clones was also

analysed. A wider standard deviation of hprt enzyme activities for targeted clones as

compared with wild-type controls was expected if small errors in recombination

resulted in clones with an attenuated level of hprt activity which were still HATr.

Although the results were somewhat clouded by a reduced level of hprt enzyme

activity in the targeted clones, probably due to the presence of interfering bacterial

186



plasmid sequences in vector pDMWIOlneo (Melton, 1990), it has been possible to

make certain conclusions regarding the accuracy of HR events. No evidence was

obtained for the presence of deletions at the site of integration, as has been previously

reported (Doetschman et ai, 1988; Thompson et al., 1989). In the present study, there

was no reason why clones would not be identified in which deletions had occurred at

the 3' end of the integration site (as well as the 5' end as previously reported), resulting

in ablation of hprt function, because clone isolation was independent of gene function.

None of the clones shown to be targeted by Southern analysis were found to be HATS.
It was also observed that the mean level of hprt enzyme activity of a targeted clone

was independent of the method of selection of the clone, which is inconsistent with a

high rate of error in the HR process. It was therefore possible to set a upper limit on

the inaccuracy of gene targeting, despite the relatively small sample size, which is

compatible with the successful execution of hit and run gene targeting experiments.

Experiments were also carried out which had the objective of introducing small,

defined mutations into the murine K-ras gene, by hit and run (chapters 3 and 4). These

mutations were a large deletion covering the promoter/exon 0 region, a missense

mutation creating an activating mutation, and a deletion of a single base-pair leading to

a ffameshift and premature termination of translation of (specifically) K-ras . A low

targeting efficiency was observed. In the case of the vector designed to create a

deletion, only one clone which had undergone a recombination event at the target locus

was obtained, and this was subsequently shown to have been generated by an

unpredicted event. The event leading to the structure suggested is thought to have

involved the combined concatenation of two vector molecules and an intra-vector

recombination event to produce a more complicated targeting plasmid structure prior

to insertion. Upon integration of the rearranged construct into the target locus by

homologous recombination, a complex insertion structure resulted, containing a

triplication of homology and two copies of the positive selectable marker, but not the

negative selectable marker. This created multiple possibilities for intra-chromosomal
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recombination events upon backselection, some of which were observed, and some of

which (including, unfortunately, the desired deletion) were not.

Similarly, no targeted clones, suggesting a very low targeting frequency were observed

for the construct designed to introduce an activating mutation at codon 12 of the K-ras

gene. Further problems were experienced with this experiment, in that it proved

difficult to screen the clones obtained by Southern blot. Therefore, a "fast-track"

protocol was designed both to accelerate the production of and increase the probability

of obtaining the desired revertant mutation in a hit and run experiment. This protocol

was adopted with this vector and the other vectors designed to introduce mutations in

the K-ras gene. The fast-track protocol showed very little improvement over the

conventional approach with the selectable markers in use (neo and HSV4&) due to an

unacceptably high level of background mutation at the HS\T& gene. It is suggested

however, that this may be avoided by the use of an hprt minigene as both a positive

and negative selectable marker, which would eliminate the majority of background

clones obtained in this type of experiment. The problems experienced in the screening

of clones obtained with vector pKiTPNT were solved by the use of RT-PCR to

generate a substrate which could be subjected to diagnostic restriction enzyme

digestion, to directly analyse the mRNA of the target gene. This strategy was also used

to provide a rapid screen for clones obtained with the vector designed to introduce a

premature termination codon into the K-ras gene. No such clones were obtained,

probably because of the problem of HSWtk mutation described above, although

refinements to this experiment have also been suggested. The screen at the mRNA

level based upon RT-PCR represents a generalised approach to the screening of

targeted mutations which is unaffected by limitations of Southern analysis, such as

sensitivity and the size of changes introduced into the target locus which may be

studied.

The expression of the two alternative K-ras exon 4 splicing variants in the developing

mouse has also been studied (chapter 5), by means of an RT-PCR strategy which

188



amplifies both of the K-ras cDNA molecules in proportion to their original relative

amounts. This allowed a direct comparison of the ratios of the two mRNA species

from different tissues at different stages of development of the mouse to be made.

From the results obtained in this study, it is apparent that there is a significant, defined

subdivision of function of the two splicing variants of K-ras in vivo. In agreement with

previous work (Muller et al., 1983; Leon et al., 1987; Pal et ai, 1993) K-ras

expression was observed at all stages of development and in all tissues studied, but
A B

these studies have not sought to differentiate between K-ras and K-ras . Here,
B A

however, it was shown that whilst K-ras is ubiquitously expressed, K-ras has a more

limited pattern of expression, and where present is usually the minor component of the
A B

K-ras mRNA in a tissue. There was little evidence for changes in K-ras and K-ras

during the growth of differentated organs, suggesting that the K-ras expression pattern

for a particular cell- or tissue-type is an event determined early in development. An

association of K-ras splicing variant expression patterns with the differentiation of cell

types was demonstrated, based upon the observation that ES or EC cells, of different

lines, normally expressed exclusively K-ras but upon in vitro differentiation a

significant and rapid upregulation of K-rasA expression was observed.
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MATERIALS AND METHODS



Materials and Methods

7.1 Manipulation of DNA

7.1.1 Large-Scale Preparation of Plasmid DNA

7
Two 20(0.1 aliquots of competent Escherichia coli cells (>2x10 CFU/pg pUC19),

strain DH5a (Life technologies) were removed from -70°C storage and thawed on

ice. l|U.l (about ljig) of DNA solution was added to one of the tubes of E. coli cells

and the tubes incubated on ice for 30 minutes. The cells were heat-shocked at 42°C

for 40 seconds and placed on ice. 80pl of S.O.C. medium was added to the tube and

the cells were incubated at 37°C for one hour in a shaking incubator (225 rpm). The

transformation was plated out onto an L-amp plate (disposable 100mm bacterial

culture dish containing L-broth supplemented with 50jJ.g/ml ampicillin and 1.2%

bactoagar) and incubated overnight at 37°C.

S.O.C. Medium L-Broth

Bactotryptone 20g/l Bactotryptone lOg/T
Yeast Extract 5g/l Yeast Extract 5g/l
NaCl, MgCl2, MgS04 lOmM each NaCl 0.17mM
KC1 2.5mM in ddH20, autoclaved
Glucose 20mM Supplemented with 50|lg/ml ampicillin
in ddH20, filter sterilised where stated

Supplemented with 1.2% w/v Bactoagar for
plates

The next day a colony was picked from the plate transformed with plasmid DNA (the

other plate should give no colonies) and was placed in 10ml L-broth supplemented

with ampicillin and the cells grown for about 8 hours in a shaking incubator at 37°C.

This culture was added to a 500ml flask of L-broth with ampicillin and incubated

overnight in a shaking incubator at 37°C, 225 rpm.
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The following morning the cells were harvested by centrifugation at 4000xg for 10

minutes at 4°C. The supernatant was discarded and the cells lysed by resuspending in

10ml Solution 1 with 5mg/ml lysozyme and incubating at room temperature for 5

minutes.

Solution 1: Glucose 50mM
Tris.HCl pH 8.0 25mM
EDTA lOmM

20ml of fresh Solution 2 was then added, mixed by inversion and the lysate was

incubated on ice for 10 minutes.

Solution 2: NaOH 0.2M
SDS l%w/v

15ml Solution 3 was added, the lysate mixed by inversion and incubated on ice for 10

minutes.

Solution 3: Potassium Acetate 3M
Glacial Acetic Acid 11.5% v/v

The precipitated proteins were removed by centrifugation at 48000xg for 20 minutes

at 4°C and the DNA was precipitated from the supernatant by addition of 0.6

volumes of propan-2-ol, mixing by inversion and incubating at room temperature for

15 minutes. The DNA precipitate was recovered by centrifugation at 17000xg for 30

minutes at room temperature. The supernatant was discarded, and the pellet washed

with 70% ethanol and then dried under vacuum. The DNA was resuspended in 4ml

TE buffer.

TE Buffer: Tris.HCl pH 8.0 lOmM
EDTA ImM

4g of caesium chloride and 0.4ml lOmg/ml ethidium bromide were then added and

the DNA solution placed in a polythene tube. The tube was centrifuged in an

evacuated ultracentrifuge overnight (Beckman, rotor V65ti) at 2xl05xg, room
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temperature. The DNA band was visualised with long-wave U.V. radiation, and

recovered with a syringe and wide-bore needle. 6-10 extractions (two more

extractions than was sufficient to completely remove the red colour from the

solution) with CsCl-saturated propan-2-ol were then carried out to remove the

ethidium bromide from the plasmid. The plasmid DNA was precipitated by combining

0.45ml DNA solution with 0.5ml H20 and 0.54ml propan-2-ol and centrifugation at

13000rpm for 2 minutes in a microfuge. The supernatant was discarded and the pellet

air-dried and finally resuspended in 0.5ml TE.

7.1.2 Small Scale Preparation of Plasmid DNA

This method is a modification of the procedures described by Birnboim & Doly

(1979) and Ish-Horowicz & Burke (1981), described in Sambrook et at. (1989).

Solutionsl, 2 and 3 were as described in section 7.1.1. A single bacterial colony from

a lOOpl transformation was transferred to 1ml L-broth supplemented with 5()|lg/ml

ampicillin and incubated with shaking overnight at 37°C. The cells were harvested by

centrifugation in a microfuge for 30 seconds at 4°C and the supernatant discarded.

The pellet was then resuspended in 1 OOpl cold solution 1 (omitting lysozyme), mixing

by vortexing. 200|ll fresh solution 2 was added and mixed by inversion. 150pl

solution 3 was then added, the lysate again vortexed and incubated on ice for 5

minutes. The tube was centrifuged for 5 minutes in a microfuge, and the supernatant

transferred to a fresh tube. An equal volume of 50% phenol: 50% chloroform was

added, mixing by vortexing, and then microfuging for a further 2 minutes at 4°C. The

aqueous layer was removed and the DNA precipitated by addition of 2 volumes of

ethanol. After 2 minutes, the tube was microfuged for 5 minutes at 4°C and the

supernatant discarded. The pellet was air-dried and redissolved in 50|ul TE pH8.0

containing 20pg/ml DNAse-free pancreatic RNAse. Inserts of clones were then
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checked by restriction digestion and agarose gel electrophoresis, and dideoxy

sequencing, prior to transformation and large-scale preparation.

7.1.3 Preparation of DNA Fragments using Powdered Glass

The Geneclean Kit from Bio 101, La Jolla, USA was used for the preparation of

DNA fragments for ligations, probes, etc. Briefly, The desired amount of DNA was

digested with the appropriate restriction endonuclease, and separated on a 0.8%

agarose-TBE gel. The band was visualised quickly with U.V. light and excised from

the gel with a scalpel. 0.5 volumes of Bio 101's modifier solution for TBE gels and

4.5 volumes of 6M Nal solution were added and the gel dissolved at 55°C. lOpi, or a

larger amount if appropriate, ofGlassmilk1M were added and the sample incubated on

ice for 5-15 minutes. The glass was then recovered by centrifugation for 10 seconds

in a microfuge and washed 3 times with Bio 101's NaCl/Ethanol/H20 wash. The

DNA fragment was then eluted from the glass into TE at 55°C for 5 minutes.

7.1.4 DNA Ligation

Following fragment isolation, appropriate amounts of fragments calculated according

to Sambrook et al., 1989, from Dugaiczyk et al. 1975 (typically a total of about

150ng DNA) were mixed with 0.4 Weiss units T4 DNA ligase and ligation buffer and

incubated at room temperature for 4 hours.

Ligation Buffer: Tris.HCl pH 7.8 50mM
(Final conc.) MgCl2 lOmM

DTT ImM

ATP ImM

BSA lOOpg/ml
Hexamminecobalt (III) chloride ImM
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7.1.5 Klenow Reaction

DNA fragments were sometimes rendered blunt-ended by the use of Klenow

fragment (Sambrook et ai, 1989). After digestion, the solution was made to 25pM

for each of the dNTPs and 1 unit klenow enzyme added. The mixture was incubated

at 30°C for 15 minutes and then the enzyme was deactivated by heating to 75°C for

10 minutes. The DNA was then dialysed against water for 3-5 minutes prior to

further manipulations.

7.1.6 Dephosphorylation of Vectors

To increase the efficiency of ligation reactions by preventing re-circularization of the

vector, 1 unit Calf Intestinal Phosphatase (Boehringer Mannheim) was added to the

linearised vector with CIP Buffer and the mixture incubated at 37°C for 30 minutes.

The vector was then gel purified prior to ligation.

CIP Buffer: Tris.HCl pH 9.0 50mM
(Final conc.) MgCl2 ImM

ZnCl2 O.lmM
Spermidine ImM

7.1.7 DNA Sequence Analysis

7.1.7.1 DNA Template Preparation

DNA was sequenced directly from plasmid (Hattori & Sakaki, 1986), templates being

prepared as follows: 1-2 pmoles (usually about 2-4pg) plasmid DNA were diluted to

18pl with ddH20 and denatured by the addition of 2pl 2M NaOH and incubation for

5 minutes at room temperature. 8pi 5M ammonium acetate (pH 7.5, filter sterilised)

was added and the DNA precipitated by the addition of lOOpl ethanol and incubating

the tube at -70°C for 5 minutes. The denatured plasmid was recovered by

centrifugation at 1300()rpm for 15 minutes in a microfuge at 4°C and the supernatant

discarded. The pellet was washed with 500(0.1 75% ethanol, microfuged for 2 minutes
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at 4°C and dried under vacuum. The prepared template was finally resuspended in 7|i

1 ddH20 and sequenced.

7.1.7.2 Dideoxy Sequencing

Chain-termination sequencing (Sanger et al, 1977) was carried out using the
(R)

Sequenase Version 2.0 system from United States Biochemical, Cleveland, USA,

according to the manufacture's instructions. Briefly, template prepared as described

in section 7.1.7.1 was mixed with l|il (about 0.5pmol) sequencing primer and 2ql 5x

reaction buffer and the mixture incubated at 65°C for 2 minutes before being

permitted to cool to below 30°C over a period of 30 minutes to anneal the primer to

the template.

Reaction Buffer (5x): Tris.HCl pH 7.5 0.2M
MgCl2 0.1M
NaCl 0.25M

The template/primermix was then placed on ice and lql 0.1M DTT, 2(0.1 labelling mix

diluted 1:5 in ddH20, 0.5ql [a-35S ] dATP (lOqCi/ql, Amersham) and 2ql Sequenase

enzyme (diluted 1:8 in enzyme dilution buffer) were added, mixed and the reaction

incubated at room temperature for 2-5 minutes.

Labelling Mix: dGTP, dCTP, dTTP 7.5qM each

Enzyme Dilution Buffer: Tris.HCl pH 7.5 lOmM
DTT 5mM

BSA 0.5mg/ml

Reactions were then teminated by placing 3.5fil reaction into each of four tubes

warmed to 37°C, containing one of the four (A, C, G or T) termination mixes. The

tubes were incubated a further 3-5 minutes at 37°C and then reaction was halted by

the addition of 4|j.l Stop Solution.
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Sequencing reactions were denatured at 90°C for 2 minutes and immediately run on a

6% polyacrylamide, 8M urea 0.4mm sequencing gel prewarmed to 50°C. (Either lx

TBE or a 0.5-5x TBE gradient gel). Upon completion of elecrophoresis, the gel was

fixed for 20 minutes in 10% methanol, 10% acetic acid, blotted onto Whatman 3MM

paper, dried and exposed to autoradiography film overnight.

Termination Mixes: dATP, dCTP, dGTP, dTTP 80p.M each
One of ddATP, ddCTP, ddGTP, ddTTP 80|lM
NaCl 50mM

Stop Solution: Formamide 95% v/v
EDTA 20mM

Bromophenol Blue 0.5g/l
Xylene Cyanol FF 0.5g/l

7.1.8 Targeting Constructs

Targeting vectors are described in their respective chapters. The PGKneo component

of vector pDWMlOlneo was derived from pSPGKneo (a gift of Hein te Riele,

Amsterdam). This construct is shown in figure 7-1 (a).

The constructs designed for targeting of the K-ras gene were based upon pPNT

(Tybulewicz et al., 1991), a pUC-based cassette (Yanisch-Perron et al., 1985)

containing the neo gene as a positive selectable marker (Southern & Berg, 1982) and

the HSVri: gene (Colbere-Garapin et al., 1979) as a negative selectable marker. Both

genes are under the control of the phosphogycerate kinase (PGK) promoter and

polyadenylation sequences (Adra et al., 1987). Vector pPNT is shown in figure 7-1

(b).
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Figure 7-1: Targeting and Selection Constructs

a) pSPGKneo. This construct was used as the donor of the 1.5kb Bgl II neo
fragment cloned into vector pDWMlOl to generate pDWMlOlneo (see chapter
2). Selected restriction sites are shown: B, Bgl II; H, BamH I; P, Pst I; E, EcoR I.
The numbered blocks represent, respectively: 1, Phosphoglycerate Kinase (PGK)
promoter; 2, neo gene coding sequence with the orientation and translated region
shown by an arrow; 3, PGK polyadenylation sequence. The bacterial plasmid
sequence pSP72 is shown as a black line.

b) pPNT. This construct forms the basis of vectors pKiDOPNT, pKiTPNT and
pK4BAPNT (see chapters 3 and 4). Selected restriction sites are shown: H,
BamH I; P, Pst I; Pv, Pvu II; E, EcoR I; K, Kpn I; Hn, Hind III; X, Xba I. The
numbered blocks represent, respectively: 1, PGK promoter; 2, neo gene coding
sequence with the orientation and translated region shown by an arrow; 3, PGK
polyadenylation sequence; 4, Herpes Simplex Virus thymidine kinase (HSVr&)
gene coding sequence with the orientation and translated region shown by an
arrow . The bacterial plasmid sequence pUC 18 is shown as a black line.
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Figure 7-1
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7.2 Culture of ES Cells and EC Cells

7.2.1 Cell Lines

The following cell lines were used where mentioned in the appropriate chapters:

Cell Line ES / EC Cell Line Mouse Strain Reference
E14 ES 129/Ola Handyside et a/.,1989
E14TG2a ES 129/Ola Hooper et al, 1987
HM1 ES 129/Ola Magin et a/.,1992
PSA4 EC 129/Sv Martin & Evans, 1975

7.2.2 Routine Culture of ES and EC cells

7.2.2.1 Media

ES cells were cultured in Complete Medium (CM5:5) supplemented with LIF

(Leukaemia-inhibiting Factor) (Williams et al., 1988, Smith et al., 1988, Moreau et

al., 1988) prepared by transfection of Cos-7 cells (Chen and Okyama, 1987) and

O.lmM (3-mercaptoethanol or with CM5:5 supplemented with 60% CM5:5

conditioned by Buffalo Rat Liver (BRL) (Smith and Hooper, 1987) cells, and (3-

mercaptoethanol. Rarely, a feeder layer was used.

Complete Medium (CM5:5)
Glasgow's Modified Eagle's Medium (GMEM) (Life technologies)* lx
Foetal Calf Serum & Neonatal Calf Serum 5% v/v each
Non-essential amino acids (Life Technologies):
Glycine, L-alanine, L-aspartic acid, L-asparagine and L-glutamic acid 0. ImM each
L-proline and L-serine 0.2mM each

Sodium Pyruvate l.OmM

* lx GMEM includes L-Glutamine at 2.0mM and 2.5g/l Sodium Bicarbonate, but
these were added separately to the prepared medium

For preparation of BRL-conditioned medium, a confluent monolayer of BRL cells in

a 175cm2 flask was incubated with 60ml CM5:5 for 7 days and then the medium was

aspirated off and filtered through a sterile 0.8pm filter before storage at -20°C.
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To prepare feeder cells, a just-subconfluent layer of primary fibroblasts was cultured

for 2 hours in the presence of l()|ig/ml mitomycin-C in medium and then washed 3

times in PBS. The cells were removed from the flask by trypsinisation and seeded out

at lxlO6 cells/ 25cm2 flask.

For differentiation experiments, media CM(3 (CMS:5 supplemented with (3-

mercaptoethanol but not LIF) and EFN|3 (Medium as above containing (3-

mercaptoethanol but lacking non-essential amino acids, sodium pyruvate and LIF)

were used as described.

7.2.2.2 Serum

Two types of serum were used, foetal calf serum (FCS) and neonatal calf serum

(NCS). Batches were purchased from various manufacturers and tested before use by

being used to prepare standard medium, with LIF. ES cells were passaged by

standard trypsinisation and stopping the trypsin with the medium containing the

tested sera; this medium was then used to feed the culture of ES cells (10 cells in a

6cm culture dish) for 7 days, re-feeding after 3 days. The cells were stained with

1.5g/l Leishman's stain in methanol, and serum batches were deemed satisfactory if

cloning efficiencies of 20-30%, predominantly of undifferentiated cells, were seen.

7.2.2.3 Culture Conditions

ES Cells were routinely cultured by growing in CM 5:5 supplemented with LIF and (3

-mercaptoethanol on tissue culture treated plastic (Falcon, Nunc or Costar) coated

with swine skin gelatin (Sigma). A solution of 10g/l gelatin in ddFI20 was prepared

and autoclaved twice. This was then diluted 1:10 in ddH20 and tissue culture

plasticware was coated by covering the surface with the lg/1 gelatin solution and

leaving the plate or flask at room temperature for a minimum of 15 minutes. Cultures

were kept at a temperature of 37°C, in a humidified atmosphere of 5% C02, 95% air.
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Medium was changed as appropriate, usually every day or every other day, and cells

were passaged, usually about 1:6-1:10, just before confluence was reached.

7.2.2.4 Passaging ES Cells

To subculture ES cells, the cells were fed with fresh medium about 2 hours prior to

passaging. After this time, the medium was aspirated and the cells were washed twice

with sterile phosphate buffered saline (PBS, obtained as a tablet concentrate from

Flow Laboratories or lOx concentrate from Life Technologies).

Phosphate-Buffered Saline: NaCl 8g/l
(Calcium- and Magnesium-free) KC1 0.2g/l

Na2HP04 1.44g/l
KH2P04 0.24g/l

The PBS was aspirated and 1ml TVP for a 25cm2 flask was added and the cells

incubated at 37°C for 3-5 minutes.

TVP: Trypsin (Flow Laboratories) 0.25g/l
Chick Serum (Flow Laboratories) 10g/l
EDTA (Na2 salt) ImM
in Ca/Mg-free PBS, filter-sterilised

The cells were then disaggregated by a sharp tap to the flask and a minimum of an

equal volume of medium was added. The cells were then diluted as appropriate with

medium and replated on fresh plasticware coated with 0.1% gelatin. The ES cells

were refed after 2 hours.

7.2.2.5 Freezing Cells

ES and EC cells when not required were stored in the vapour over liquid nitrogen.

Cells were trypsinised as described in section 7.2.2.4, washed once by neutralising the

TVP with 10-20ml CM5:5 and centrifuging the cell suspension for 5 minutes at

lOOOrpm, and then resuspended in freezing medium. The cells were then cooled at an
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approximate rate of l°C/minute to -70°C overnight, and moved to storage over liquid

nitrogen the next day.

Freezing Medium: CM5:5 80% v/v
FCS 10% v/v
DMSO 10% v/v

(rendered slightly acid with sterile 1M HC1 and filter-sterilised)

To bring frozen cells back to culture, a freezing vial was removed from liquid

nitrogen and thawed in a 37°C water bath as quickly as possible. The cells were

washed in 10-20ml CM 5:5 before replating.

7.2.3 Transformation of ES Cells by Electroporation

ES cells were transformed by electroporation, using a BioRad Gene Pulser. 10s cells

(approximately one confluent 175 cm2 flask) were trypsinised as above and harvested

by centrifugation in a 20ml sterile universal for 5 minutes at lOOOrpm. The cells were

resuspended in 0.6ml PBS containing 150flg linearised plasmid DNA (verified by

agarose gel electrophoresis). The cell/DNA suspension was placed in a 1ml

electroporation cuvette (BioRad, path length 0.4cm) and an electric pulse (3|iF,

800V, time constant 0.1s) was applied. The ES cells were immediately transferred to

100ml CM5:5 and plated out in 90mm tissue culture dishes. The following day, the

medium was aspirated and selective medium added.

7.2.4 Selection of Transformed ES Cell Clones

ES cells plated out at a density of 107 cells/90mm plate (unless stated otherwise)

were subjected to selection for 10-14 days, until clones were visible to the naked eye

(l-2mm in diameter) and were then picked into individual wells of a 24-well plate and

disaggregated to permit expansion.
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On achieving confluence, wells were divided into two parts. Half the cells were

frozen, and the other half were used to prepare genomic DNA for screening of the

clones.

Selective Media

CM5:5 supplemented with LIF and (3-mercaptoethanol, supplemented with:

(1) HAT Hypoxanthine (Sigma)
Thymidine (Sigma)
Aminopterin (Sigma)

0.1mM

20jlM
0.8pM

(2) 6-TG 2-amino-6-mercaptopurine (Sigma) lOpg/ml

(3) G418 Geneticin Sulphate (Life Technologies) 300|ig/ml

(4) Ganciclovir Dihydroxy-propoxy-Guanine 2p.M

7.2.5 In-Vitro Differentiation of ES and EC Cells

2.5xl06 cells were seeded out onto a 60mm tissue culture dish and cultured in EFN(3

for 3 days. Clumps of cells were then dislodged from the dish by directing a jet of 5ml

medium across the bottom of the dish 3 times, and harvesting the cells by allowing

them to sediment out under gravity. The cells clumps were then transferred with a

wide-bore pipette to a 100mm dish previously coated with agarose: Solutions of 1%

agarose (Miles) and 2% agarose in PBS were autoclaved. A 100mm culture dish was

coated with a layer of 2% agarose, removing the excess, and when the layer had set

at room temperature, a 1% agarose layer was applied onto this. 10ml EFN(3 was

added and the agarose layers equilibrated overnight with medium at 37°C, 5% CO2 in

air. The cells were then cultured on agarose for about 6 days with EFN(3, changing

the medium every other day, until aggregates of cells with defined cavities were

observed. This was defined as "differentiation stage 1". Aggregates were then

harvested by sedimentation under gravity, and seeded out onto 4 non-gelatinised

60mm culture dishes, and cultured as a suspension in medium CM(3, changing the
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medium as often as required, for 4-5 weeks. The end of this period was defined as

"differentiation stage 2". Samples of cells were taken at the end of both stages for the

K-ras PCR analysis described in section 7.4.3.

7.3 Analysis of ES Cell Clones

7.3.1 Preparation of ES Cell Genomic DNA

ES cells were harvested by brief centrifugation in a microfuge, and then 0.5ml of lysis

buffer, supplemented with 600pg proteinase K (Sigma), was added. The cells were

incubated overnight at 37°C with shaking. The lysate was extracted twice with an

equal volume of phenol to remove the proteins, and then with an equal volume of

chloroform. The aqueous phase was taken and an equal volume of propan-2-ol was

added to precipitate the DNA. The tube was centrifuged for 2 minutes at 13000rpm

in a microfuge and the propan-2-ol/water mix discarded. The DNA pellet was then

briefly vacuum-dried and resuspended in 100-500(11 (depending on yield) TE buffer.

Lysis Buffer: Tris.HCl pEl 7.5 50mM
EDTA 50mM
NaCl lOOmM
DTT 5mM

Spermidine 2mM
SDS 1% w/v

7.3.2 Restriction Digestion and Agarose Gel Electrophoresis of
Genomic DNA

Approximately 10pg (30pl) ES cell clone DNA was digested overnight at 37°C with

a 3-fold excess of restriction enzyme in the manufacturer's recommended buffer

supplemented with ImM spermidine. 10% by volume loading dye was then added

and the digested DNA fragments were separated by agarose gel electrophoresis in a

0.8% w/v gel in lx TBE buffer at 40-100mA. The DNA was visualised by staining
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for 20 minutes in 0.5jig/ml ethidium bromide and then destained for 20 minutes in

dsH20.

Loading Dye (lOx): Bromophenol Blue 4g/l
Ficoll 400 300g/l

TBE Buffer: Tris-Borate 90mM
EDTA 2mM
Made to pH 8.0

Scaled-down versions of the above procedure were used for routine preparation of
DNA fragments for probes, ligations, to estimate DNA concentration, etc.

7.3.3 Southern Analysis of ES Cell Clones

7.3.3.1 Southern Transfer of Digested DNA

Transfer of DNA to hybridisation filters was carried out essentially as described by

Southern (1975), with modifications recommended by the membrane manufacturers

(Amersham). Briefly, the DNA was partially depurinated by treating the gel with

0.25M HC1 until the tracking dye had changed colour, and then rinsed in ddH20 for

30 minutes. This process is reported to enhance the transfer of larger fragments

(Sambrook et al., 1989). A capillary blot was then set up: A tray was filled with

0.4M NaOH, and a platform suspended above it. A wick made of Whatman 3MM

paper was laid over this and the gel placed on top. A piece of Amersham Hybond N+

nylon membrane was soaked in 0.4M NaOH and then placed on the gel. Another

piece ofWhatman 3MM paper, also soaked in 0.4M NaOH was placed over this and

then a layer of about 2 inches of paper towels. A weight of approximately 1kg was

placed on top. The area surrounding the gel was covered with Saran-Wrap to prevent

short-circuiting of the solution resulting in a poor DNA transfer. Gels were blotted

overnight.
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7.3.3.2 Hybridisation of Southern Blotted DNA

Hybridisations were carried out in a Hybaid hybridisation oven with rotisserie in glass

tubes at 65°C. A membrane was wetted in 2xSSC and then rolled up in a fine mesh

and placed in the tube. The 2xSSC was then replaced with 25ml

Prehybridisation/Hybridisation Solution.

20x Saline Sodium Citrate (SSC)
NaCl 3M
Sodium Citrate 0.3M

Prehybridisation/Hybridisation Solution
Dextran Sulphate 100g/l
SSC 6x
SDS 1% w/v

250pg/ml sonicated salmon sperm DNA (denatured by boiling for 5 minutes) was

added immediately before addition of the solution to the hybridisation tube. The

nylon filter was prehybridised at 65°C for a minimum of 2 hours prior to adding the

probe. Filters were hybridised overnight and then washed the next morning, rinsing

out the hybridisation bottle with 2xSSC followed by 4 washes for 15 minutes in

O.lxSSC, 1%SDS at 65°C. The bottle was rinsed again with 2xSSC and the filter

wrapped in Saran-Wrap and placed in an autoradiograph cassette with 2 intensifying

screens and a piece of autoradiography film (Kodak or Agfa). The cassette was

placed at -70°C to expose.

Filters were stripped to be re-probed according to Amersham's directions, briefly, a

30-minute wash at 45°C in 0.4M NaOH followed by a 15-minute wash at 45°C in

O.lxSSC, 0.1% w/v SDS, 0.2M Tris.HCl pH 7.5.

7.3.3.3 Preparation of DNA Probes

DNA probes were prepared by random priming of DNA fragments prepared by

restriction endonuclease digestion of the appropriate plasmid, agarose gel
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electrophoresis of the digested fragments and use of the Geneclean kit (Bio 101) to

purify the desired fragment. 25ng of linear DNA was denatured by boiling for 5

minutes. In the case of the Amersham Megaprime kit, the DNA was then snap-cooled

on ice for 5 minutes, but this is not necessary when using the Amersham Rediprime

kit. Both kits were used according to the manufacturer's instructions. Briefly, after

denaturing the DNA the deoxynucleotides, reaction buffer and 2 units of klenow

enzyme were added, either as solutions in the case of the Megaprime kit, or simply

resuspended in the solution of denatured probe in the case of the Rediprime kit. 50|i.

Ci a-32P labelled dCTP (Amersham) was added and the mixture incubated at 37°C

for 10 minutes (Rediprime) or 30 minutes (Megaprime). Rediprime kit reactions were

then halted by the addition of 1/10 volume of 0.2M EDTA. Probes were separated

from free nucleotides using a Pharmacia Nick Column (Sepharose G50) and then

denatured by boiling for 5 minutes and snap freezing on ice for 5 minutes. The

freshly-labelled probe was then added to the prehybridised filters.

7.3.6 Screening of ES Cell Clones by the Polymerase Chain Reaction

PCR reactions were carried out using Taq DNA polymerase and associated reagents

from Life Technologies, deoxynucleotides from Pharmacia and oligonucleotide

primers from Oswell on a Hybaid Omnigene heating block.

7.3.6.1 Technical Considerations Pertaining to PCR Conditions

PCR primers where appropriate are cited from the work of their original designers.

Other primers were designed by assigning the regions of the gene to be amplified, and

selecting a sequence of about 20 base pairs. If possible, a C:G pair would be chosen

for the extended end of the primer. Using the rule of thumb that the addition of a A:T

base pair would increase melting temperature by 2°C and the addition of a C:G base

pair would increase melting temperature by 4°C (Thein & Wallace, 1986), the
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melting temperatures of the two primers was kept close, and in the region of 55°C-

65°C. Suggested primer sequences were checked using the GCG v7.0 DNA sequence

analysis software "squiggles" to ensure the primer would not be excessively prone to

intra-molecular hybridisation which could interfere with the annealing step of the

PCR reaction.

Reaction programs were devised to minimise the denaturing time, as Taq DNA

polymerase has a reduced half-life at high temperatures. Initially annealing

temperatures were set at 5°C below the calculated melting temperature of the

template/primer hybrid, and refined empirically from this starting point. Extension

times were set bearing in mind that the maximum rate of synthesis of Taq DNA

polymerase is approximately 1000 base pairs per minute.

7.3.6.2 Codon 12 Activating Mutation Diagnostic PCR

This PCR introduced a diagnostic Hph I restriction endonuclease site in the product

if the murine K-ras proto-oncogene template contained an activating glycine—>

aspartic acid mutation in codon 12 (Kumar & Dunn, 1989). The primers are shown

below:

Forward Strand: 5'> ACT TGT GGT GGT TGG AGG TG < 3'

Reverse Strand: 5'> TCC ACA AAG TGA TTC TGA AT < 3'

A 50|dl reaction was set up, consisting of SOpmoles each primer, Life Technologies

Polymerase Reaction Buffer (20mM Tris.HCl pH 8.4, 50mM KC1 final

concentration), 1.5mM MgCl2, lOOpM each for dATP, dCTP, dGTP and dTTP, 5|ll

genomic DNA prepared as above as template and 2 units of Taq DNA polymerase.

50pl of paraffin oil was layered over the top of the reaction mixture, and the reaction

was run according to the program on the following page.
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1 Cycle 94°C 3 minutes

32 Cycles 94°C
58°C
72°C

30 seconds
30 seconds
30 seconds

1 Cycle 72°C 10 minutes

The PCR product was then digested with 2 units of Hph I (New England Biolabs) at

37°C overnight and the digested products separated by electrophoresis in lxTBE,

20% polyacrylamide to detect the presence or absence of the Hph I site. The PCR

product is a 75-mer of part of K-ras exon 1 which may be cloven into a pair of

fragments 46bp and 29bp in size by Hph I if there is a G—>A substitution in the first

position of codon 12.

7.3.6.3 Neomycin Resistance Gene PCR

To detect the presence of the neo gene in an ES cell's genome, this PCR was used.

The primers are shown below:

Forward Strand: 5' > GCG ATG CCT GCT TGC CGA <3'

Reverse Strand: 5'> GAA GGC GAT AGA AGG CGA < 3'

A 50|il reaction was set up, consisting of 45pmoles of each primer, Life Technologies

Polymerase Reaction Buffer (20mM Tris.HCl pH 8.4, 50mM KC1 final

concentration), 1.5mM MgCl2, 20jiM each for dATP, dCTP, dGTP and dTTP, 5|il

genomic DNA prepared as above as template and 2 units of Taq DNA polymerase.

50|Ul of paraffin oil was layered over the top of the reaction mixture, and the reaction

was run according to the following program:

1 Cycle 93°C 3 minutes

35 Cycles 93°C 1 minute
60°C 1 minute
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72°C 1 minute

1 Cycle 72°C 10 minutes

An aliquot of the reaction product was then run on a 2% agarose gel; presence of a

215bp band indicated presence of the neo gene.

7.3.6.4 K-Ras Exon 4B PCR

This PCR was designed to provide an easy diagnostic test for the point mutation

which was designed to place a premature nonsense codon in exon 4B of the murine

K-ras gene. The exon is amplified and digested with the restriction endonuclease

BstBI. Loss of the restriction site indicates that the mutation is present.

The reverse strand primer was that described in section 7.4.3, and the forward strand

primer is shown below:

Forward Strand: >5' GGA ATT CCT ATA TTT CAG GGT GTT GAC GAT <3'

This primer contains an EcoR I restriction endonuclease site at the 5' end should it

ever be desired to clone the PCR product. A 100(il reaction was set up consisting of

50pmoles of each primer, Life Technologies Polymerase Reaction Buffer (20mM

Tris.HCl pH 8.4, 50mM KC1 final concentration), 1.5mM MgCl2, 20|lM each for

dATP, dCTP, dGTP and dTTP, lOpl genomic DNA prepared as above as template

and 2 units of Taq DNA polymerase. lOOp.1 of paraffin oil was layered over the top of

the reaction mixture, and the reaction was run according to the following program:

1 Cycle 94°C 3 minutes

30 Cycles 94°C 30 seconds
55°C 30 seconds
72°C 30 seconds

1 Cycle 72°C 10 minutes
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The PCR product was extracted with chloroform to remove any paraffin oil and

digested at 65°C with the restriction enzyme BstB I (New England Biolabs) in the

manufacturer's recommended buffer overnight. The digested products were run on a

2% agarose gel to check for loss of the BstB I site; the full-length PCR product is

117bp in size, and is cloven into a pair of fragments 50bp and 67bp in size if the BstB

I site diagnostic of the wild-type allele is present.

7.4 Reverse Transcription PCR of K-Ras mRNA

7.4.1 Sample Preparation

Mice were killed and dissected in PBS. Tissue samples were placed in cryo-

preservation tubes, snap-frozen in liquid nitrogen and stored in the vapour over liquid

nitrogen until required.

7.4.2 Preparation of RNA using TRIzol Reagent

When working with RNA all plasticware was either guaranteed RNAse-free by the

manufacturer, or immersed overnight in ethanol containing 0.1% v/v diethyl

pyrocarbonate prior to autoclaving. 0.1% v/v DEPC was added to ddH20 prior to

autoclaving, and this was used for the making of all solutions.

TRIzol1M Reagent (Life Technologies) was used for the preparation of RNA

according to the manufacturer's instructions. TRIzol is a mono-phasic solution of

phenol and guanidine isothiocyanate, and based on the method of Chomczynski and

Sacchi (1987). Briefly, a small sample of tissue was mixed with 1ml TRIzol,

homogenised and incubated at room temperature for 5 minutes. 0.2ml chloroform

was added, the mixture inverted several times and then incubated at room

temperature for 2-3 minutes. The tube was centrifuged at 13000rpm in a microfuge

for 15 minutes at 4°C and the aqueous phase recovered. 0.5ml propan-2-ol was

212



added to precipitate the RNA which was recovered by microfuging at 13000rpm for

10 minutes at 4°C. The supernatant was discarded and the RNA pellet washed with

lml 75% ethanol, then microfuged at 6500rpm for 5 minutes at 4°C. The ethanol was

discarded and the RNA pellet was briefly dried under vacuum, prior to being

resuspended in 20|il RNAse-free ddH20. The pellet was pipetted a few times and

then incubated at 50°C for 10 minutes to aid solvation.

RNA was quantified spectrophotometrically by taking readings at 260nm and 280nm.

An O.D.260 of 1 corresponds to 40jJ.g/ml RNA. The ratio of O.D.250/O.D.2g0 was

calculated and deemed satisfactory if it was in the range 1.8-2.0. A ratio significantly

lower than 1.8 suggests contamination of the RNA with phenol or protein; higher

than 2.1 that the RNA is degraded and unsuitable for reverse transcription reactions.

For samples used in the experiments described in chapter 5, RNA quantities are

necessarily very small because of the amount of source material available, and

therefore representative samples from a set of preparations were measured as it was

impossible to test every sample to be used.

7.4.3 Reverse Transcription

Approximately l-5|ig RNA was made up to 11 pi with RNAse-free ddH20 and liil

(0.5|ig) oligo (dT)12_i8 primer (Life Technologies) was added. The mixture was

incubated at 70°C for 10 minutes and then chilled on ice. The reaction was then made

to 20pl with Reaction Mix, microfuged briefly and incubated at room temperature for

10 minutes, then 37°C for 60 minutes, and finally terminated at 90°C for 10 minutes.

Reaction Conditions: Tris.HCl pH 8.3 50mM
KC1 75mM

MgCl2 3mM
DTT lOmM
dNTPs 0.5mM
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The reaction was chilled on ice for 10 minutes, 1-4 units RNAse H were added and

the reaction incubated at 37°C for 20 minutes.

7.4.4 K-Ras PCR of Murine cDNA

lOjLLl cDNA was used as template in the PCR reaction. The primers are shown below:

Forward: 5'> GGA ATT CCG CCT GCT GAA AAT GAC TGA GT < 3'

Reverse: 5' > CGG GAT CCC GTG TAC ACC TTG TCC TTG ACT T < 3'

These primers incorporate an CcoR I (Forward) and a BamH I (Reverse) restriction

endonuclease site to permit easy cloning of the products when required. A 50|il

reaction was set up, consisting of 5pmoles each primer, Life Technologies

Polymerase Reaction Buffer (20mM Tris.HCl pH 8.4, 50mM KC1 final

concentration), 1.5mM MgCl2, 100p.M each of dATP, dCTP, dGTP and dTTP and 2

units of Taq DNA polymerase. 50(0.1 of paraffin oil was layered over the top of the

reaction mixture, and the reaction was run according to the program overleaf.

1 Cycle 94°C 3 minutes

21 Cycles 94°C 1 minute

The PCR generates two products 687bp and 565bp in size, representing K-rasA and

K-rosB respectively. This PCR was also used, at 32 cycles, for the preparation of

murine cDNAs to be cloned as probes, or to provide template cDNAs from clones to

be screened by other methods, e.g. that described in section 7.3.6.

55°C
72°C

1 minute
2 minutes

1 Cycle 72°C 10 minutes
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7.5 Hprt Enzyme Analysis

7.5.1 Protein Extract Preparation

A confluent 75cm2 or 162cm2 flask of ES cells was harvested as described, and the

cells washed twice in 10ml CM5:5, twice in 10ml PBS and then stored as a pellet at

-70°C until required. The pellet was resuspended in 0.5ml Extraction Buffer and

subjected to 3 freeze/thaw cycles, with agitation, in a propan-2-ol/dry ice and 37°C

water bath, respectively. The lysate was then cleared by centrifugation for 15 minutes

at 30,000xg and the supernatant protein extract was retained and stored at -70°C

until required.

Extraction Buffer: Sodium Phosphate 50mM
P-mercaptoethanol lOmM
pH 7.0

7.5.2 Protein Quantification

The Bio-Rad protein assay, (Bradford 1976), was used according to the

manufacturer's instructions. Briefly, volumes of ES cell extract (l-20|al) or known

quantities of BSA as a standard protein (0-1.4mg/ml) were diluted to 0.1ml with

extraction buffer, and 5ml 1:5 diluted and filtered dye reagent was added and the

solution mixed by inversion. After a minimum of 5 minutes at room temperature, the

OD595 was read versus the protein blank. Multiple linear regression was used to

calculate protein concentrations.

7.5.3 HPRT Enzyme Activity Assay (Gillin et al., 1972)

50jil reactions were set up in eppendorf tubes, consisting of 25|al 2xReaction Mix, 1-

10|ig protein extract, and ddH20 to a total volume of 50|il. Identical controls for

each tube also containing 30mM EDTA were run in parallel. Reactions were
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staggered at 20 second intervals, being started by the addition of either water

(blanks) or protein extract (samples) to the pre-incubated at 37°C reaction tube.

2xRM: 10()[il 1M Tris.HCl pH 7.4
200(0.1 ImM Hypoxanthine
5()0|il 2mM Phosphoribosyl Pyrophosphate (freshly prepared)
100|il 0.1M MgCl2
50(11 50|lCi/ml 8-14C Hypoxanthine (Amersham)
50(1.1 ddH20

Reactions were incubated for 40 minutes and then stopped by the addition of 1ml ice-

cold TB (samples) or 1ml TB-E (EDTA controls).

The sample was then filtered through a Whatman DE82 ion exchange disc with a

Millipore vacuum manifold. The tube was rinsed out with 1ml TB-E and this also

washed through the filter disc. The filter was washed twice with 5ml TB-E and then

dried overnight. The following day, the filters were counted in a scintillation counter.

7.6 Chimaera Production

7.6.1 Mouse Strains

The ES cells used (El4 and HM1) are both derived from the 129/Ola strain of

mouse, which carries the mutant alleles cch and p and as such give rise to a light

yellow mouse with pink eyes. They have the GPI-lsa isotype . Host blastocysts were

F2 crosses of CBAxC57BL/6, and thus give dark mice (25% black and 75% grey),

CBA being agouti and C57BL/6 black (a/a). They are homozygous for the GPI-lsb

TB: Tris.HCl pH 7.0
KC1
EDTA

ImM
ImM

1.5mM

TB-E: Tris.HCl pH 7.0
KC1

ImM

ImM
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isotype. Chimaerism in the coat could thus be estimated from the degree of light coat

colour on a dark mouse, and in other tissues from the relative proportion of GPI-lsa.

7.6.2 Collection of Embryos

Pregnant mice were killed 3.5 days post-coitum by cervical dislocation. The uterine

horns were dissected out, and the blastocysts flushed out by the insertion of a 25

gauge needle into the horn and injecting 1ml CM5:5 medium. The blastocysts were

collected in a 60mm tissue culture dish, from which they were picked out using a

binocular microscope and mouth-controlled pasteur pipette into a drop of medium.

This was kept under liquid paraffin at 37°C, 5% C02 in air until the embryos were

injected.

7.6.3 Injection of Blastocysts

About 1ml CM5:5 was placed at the bottom of a 90mm plastic petri dish and covered

with liquid paraffin. The blastocysts and a single-cell suspension of ES cells, prepared

by routine trypsinisation and resuspension in CM 5:5, were blown into this using a

mouth-controlled pasteur pipette. Injections were carried out using a Leitz Labovert

FS micromanipulator with a binocular microscope. About 12 ES cells, picked for

good morphology, were injected into each blastocyst, using a hand-made, rounded-

end glass pipette to hold the blastocyst and a narrower glass needle, pulled on a

Camden Instruments computer controlled electrode puller (model 773), and given a

"pen-nib" shaped point by hand, to pick up the ES cells themselves and inject them

through the zona pellucida and trophoblast layer of the blastocyst into the blastocoel.

The injected embryos were returned to the incubator, where they re-expanded, until

transfer to the foster-mother.
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7.6.4 Return of Blastocysts to Mothers

Pseudo-pregnant mice were anaesthetized by the intra-peritoneal injection of

O.lml/lOg body weight Hypnorm/Hypnovel mix (50|ig/ml fentanyl citrate, 1.7mg/ml

fluanisone,1.7mg/ml midazolam hydrochloride). Under a binocular microscope, the

appropriate area of the back was sterilised with 70% ethanol, and the end of the

uterine horn was carefully exposed, being located by its proximity to the slightly

darker ovary and the associated fat pad. A small hole was introduced into the uterus

wall with a 25 gauge needle, and then the blastocysts (8-12/each uterine horn) were

blown into the lumen through this incision using a mouth-controlled pasteur pipette.

The major incision was then sutured using a stitch for the peritoneum and 2 or 3

stitches, as required, for the skin. The mouse was then provided with a separate cage,

and kept warm over night.

7.7 Glucose Phosphate Isomerase Isozyme Analysis

The ubiquitous GPI-1 enzyme has two isoforms which can be distinguished

electrophoretically. The Gpi-lsa isoform is present in strain 129 (from which the ES

cell lines used are derived), and the Gpi-lsb isoform in CBA and C57BL/6 (F2

hybrids of which were used as host blastocysts). As described in Ansell and Micklem

(1986), this may be exploited to identify contribution of ES cell-derived tissue in a

chimaeric tissue of interest. 20mg tissue was homogenised with 50)lx1 sample buffer

and samples stored at -20°C until required.

Sample Buffer: Triethanolamine-HCl pH 7.6 50mM
Dithioerythritol 2mM
BSA 0.5mgl/ml
Digitonin 1.6mM

50ml Supre Haem buffer (Helena Laboratories, #5802) was placed in each electrode

reservoir of the gel tanks and wet Whatman 3MM paper wicks placed over the

supports to contact the buffer. Cellulose acetate sheets were pre-soaked in the supre
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haem buffer for 20 minutes, 8p,l sample was loaded at the anode of the sheet with an

applicator loop and the sample electrophoresed for 90 minutes at 4°C, constant

voltage 350V. The sheet was stained by pouring on 1.2% agarose in water containing

2.5ml Stain Solution and incubating in a dark box until bands appeared.

Stain Solution:
(Per sheet)

Assay Stock:

0.4ml Tris.HCl pH 8.0
1.0ml Assay Stock
15(0-1 Glucose-6-phosphate dehydrogenase
0.5ml * 1 Omg/ml Methyl thiazolyl tetrazolium
0.5ml *2.5mg/ml Phenazine methosulphate
* Added just before use

0.3mg/ml NADP
6.5mg/ml Fructose-6-Phosphate
in 1M Tris.HCl pH 8.0, stored at -20°C

The acetate plate was fixed and stored in a solution of 15% glycerol, 3% acetic acid,

and photographed.

7.8 Appendix: Abbreviations

6-TG

bp
BRL

CM

ddH20
DMSO

dNTP(s)
DNA
DTT
EC cell(s)
ECR
EDTA

EFN(3

ES cell(s)
FCS
GANC
GAP
GMEM

HAT

hprt

6-Thioguanine
Base Pairs
Buffalo Rat Liver

Complete Medium
Distilled, De-ionised Water
Dimethyl Sulphoxide
Deoxyribonucleotide Triphosphate(s)
Deoxyribose Nucleic Acid
Dithiothreitol

Embryonal Carcinoma cell(s)
Extra-Chromosomal Recombination

Ethylene Diamine Tetra-Acetic Acid
Eagle's medium, with Foetal and New-bom calf sera,
supplemented with (3-mercaptoethanol
Embryonal Stem cell(s)
Foetal Calf Serum
Ganciclovir
GTPase Activating Protein
Glasgow's Modified Eagle's Medium
Hypoanthine-Aminopterin-Thymidine
Hypoxanthine-guanine Phosphoribosyl Transferase

219



HR Homologous Recombination
ICR Intra-Chromosomal Recombination
kb 1000 Base Pairs
K-ras Kirsten ras proto-oncogene
LIF Leukaemia Inhibitory Factor
mRNA Messenger Ribose Nucleic Acid
NaCl Sodium Chloride
NCS Newborn Calf Serum
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction
PNS Positive-Negative Selection
RNA Ribose Nucleic Acid
RT-PCR Reverse Transcription-Polymerase Chain Reaction
SDS Sodium Dodecyl Sulphate
SSC Saline Sodium Citrate
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