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Come Holy Spirit, fill the hearts of Your faithful 

and kindle in them the fire of Your love. 

Send forth Your spirit and they shall be created, 

and shall renew the face of the earth. 

To my family. All of them. 



Abstract 

We consider "minimal" vector fields on a surface E with genus g. These are 

non-degenerate vector fields with the minimal number of vanishing points that 

satisfy a set of technical conditions to exclude pathological cases. We show that 

a minimal vector field gives rise to a directed graph with 2g - 2 vertices such 

that each vertex has two edges entering and leaving it, a "dual" pair of circuit 

decompositions of equal size and a function that pairs up the circuits of this 

dual pair. Conversely, we show that given such a graph with a pair of circuit 

decompositions and such a function we can construct a unique minimal vector 

field. 

This correspondence enables us to classify these vector fields. The proof of the 

correspondence result requires several invariants, one each from graph theory and 

the topology of the surface. These invariants are, respectively, the directed graph 

F formed by the non-compact flowlines of the vector field and a neighbourhood 

of this graph. Invariants arising from the homology of the pair (E, V) are also 

discussed, where V is the set of vertices of the directed graph F. 

Further, we show how to construct all possible minimal vector fields from a given 

graph provided the graph satisfies certain natural properties and give an algorithm 

that identifies which circuit decompositions have a suitable dual. 

We obtain some new results on the Martin polynomial, a skein-type polynomial 

of graphs first identified by P. Martin (1977). Some other combinatorial results 

concerning polynomials and graphs are proved. 
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Chapter 0 

Introduction 

We shall look at some little studied areas of dynamical systems. Here one is 

concerned with flows or vector fields on a surface and the properties of such flows 

up to global diffeomorphism. A common theme running through the study of 

such systems is that of stability. Such systems are defined using both local and 

global properties, including a description of the behaviour of the system around 

each vanishing point, or zero. Stable systems have been central to the study 

of dynamical systems resulting in many works being written on them, including 

their classification by Morse and Smale. 

Here we shall take a topological look at another type of dynamical system, one 

that would be considered highly unstable by the above authors. We shall (by 

making use of the well-known identification of flows with their generators, vector 

fields) call these unstable systems minimal vector fields and it is the intention of 

this thesis to classify and count the number of minimal vector fields on a surface. 

A minimal vector field on a surface is defined in terms of its behaviour near its 

fixed points, with conditions on the flowlines away from these points. In fact, the 

vector fields can be described by the following properties: 

All zero points are saddle points. 

There are the minimal number of saddle points. 

There are only finitely many non-compact flowlines (equivalently, all but a 

finite number of flowlines are periodic). 

We shall see that this description gives that minimal vector fields, unlike stable 

systems, are such that every point is non-wandering and that the set of points 

that are on periodic orbits is dense in the surface. 
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We shall show that a minimal vector field can, up to an equivalence to be defined, 

be described uniquely in terms of an embedded 2-regular digraph. This digraph 

will be described in terms of the fixed points and non-compact fiowlines of the 

vector field. In order to completely describe the embedded graph, however, we 

shall make use of the ideas of a ribboned graph and a circuit decomposition of a 

2-regular digraph. 

The first chapter of the thesis recalls the concepts in dynamical systems that we 

shall use. It then proceeds to show that the above conditions are both natural 

and equivalent to a series of other conditions. This shows that minimal vector 

fields, whilst rare (indeed, finite up to an equivalence which we define), are still 

natural animals in the zoo of flows. 

In chapter 2 we switch from differential topology to algebraic topology and calcu-

late the automorphism group of the first homology group a surface with n points 

on it, i.e. H, (E, V) where V is the set of points and E the surface. As almost 

all of the flowlines of a minimal vector field are periodic, we may consider the 

homology classes of such flowlines. Indeed, whilst the set of such classes does not 

completely define a minimal vector field, the relations developed in this chapter 

will be essential in proving the final classification theorem. 

In chapter 3 we change tack and view the fixed points and the non-compact 

edges of a minimal vector field as the vertices and edges of an embedded 2-

regular digraph. At this point we shall develop the graph theory we need for 

our classification result. One key idea here is that of a circuit decomposition i.e. 

a partitioning of the edges into circuits. Related to the definition of a circuit 

decomposition is that of a dual decomposition which we shall define. We shall see 

that the embedded 2-regular digraph of a minimal vector field, together with fur-

ther combinatorial data concerning circuit decompositions of the graph is enough 

to classify minimal vector fields up to a surface diffeomorphism. However, not all 

circuit decompositions will be suitable for our purposes. We will see that only 

those circuit decompositions of equal cardinality to their dual arise by consider-

ing the embedded graph of a minimal vector field. So we shall need a means of 

distinguishing such circuit decompositions and an algorithm for doing this will be 

presented. We also introduce a series of polynomials of graphs, beginning with 

the Martin polynomial, a skein-type polynomial defined using a series of iterative 

relations. Using this we define a series of related polynomials that identify which 

decompositions arise from a minimal vector field. We will have then completed 

one side of the classification result, namely constructing the invariants from the 

vector field. 

viii 



In chapter 4 we reverse direction and consider how one might construct a minimal 

vector field given a 2-regular digraph and a suitable circuit decomposition. We 

will first construct a ribboned graph, which is a 2-manifold with boundary on 

which is embedded the graph in such a way that the circuit decompositions of 

the graph correspond to the boundary components of the manifold. From this, 

we will construct the minimal vector field. We conclude this chapter with some 

results concerning when such objects can be constructed. 

Chapter 5 consists of the theorems that together make up the classification result. 

Also included here is a discussion of other invariants of minimal vector fields, 

including several that arise from the homology groups discussed in chapter 2. 

By the end of this chapter we shall have completed our classification of minimal 

vector fields. We shall thus be in a strong position to count them. 

Chapter 6 is a detour concerning some new results on the Martin polynomial that 

arose from the above work, which include extensions of work by Ellis-Monaghan 

on the undirected Martin polynomial to the directed Martin polynomial. In this 

chapter we discuss the formation of the Martin polynomial axiomatically and 

show it is, in some sense, unique (i.e. it is the only polynomial of graphs that 

satisfies a set of general axioms) and then define it in terms of the incidence 

matrix of a 2-regular digraph. We conclude this chapter with a discussion of 

when a polynomial is the Martin polynomial of some graph. 

We end with chapter 7, which revolves around a partially successful attempt to 

enumerate minimal vector fields in terms of the genus g of E and contains several 

results concerning combinatorics. Included here are results on the enumeration 

of graphs, together with a proof of the result that any finitely generated group is 

the automorphism group of some 2-regular digraph. 
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Chapter 1 

On flows, vector fields and 
conditions of minimality 

The purpose of this chapter is to establish definitions of differential topology that 

we need. In this chapter we define 

a smooth vector field X on a compact surface E of genus g. 

the conditions under which two vector fields are equivalent. We will do this 

by reference to the equivalent problem for flows. 

a minimal vector field X, which is the main object of study. 

We start with some basic definitions. 

1.1 Basic vector field definitions 

Definition 1.1.1 (Surface). A (topological) 2-manifold is a paracompact Haus- 

dorif space E for which each point p has an open neighbourhood U homeomorphic 

to an open subset V of Euclidean space R 2 , i.e. there exists a homeomorphism 

U - V. The triple (0, U, V) is called a chart at p. A set of charts whose 

domains cover E is called an atlas for E. 

For each p, q E E there exists open subsets U,, U. of E, open subsets V, V of R 2  

and maps 

çbq :Vq  —*Uq  

Suppose U, fl Uq  0. Define V7  = ; 1 (U fl Uq ) and V similarly. Let 

Vpq  - V be the function qpq = q5 1  oq. Then we say the manifold is smooth 
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if all the maps q5,, are diffeomorphisms. A surface is a smooth 2-manifold. All 

our surfaces will be compact. 

Definition 1.1.2 (Tangent bundle). The tangent bundle of a surface E is the 

manifold 

TE = {(p, v) E E X TE} = U(p,Tp). 
pCE 

with a certain topology, which we do not specify here. The tangent bundle is 

smooth if it is a smooth manifold, i.e. it has a smooth atlas. For the definition 

of TE and a smooth atlas of a vector bundle, together with the details that TE 

is a smooth manifold, see [19] pp2-5, [10] p11  and [13] Appendix A, p208. Notice 

that a tangent bundle has an associated map ir TE - E given by 7r(p, v) = p. 

Definition 1. 1.3 (Vector Field). A smooth vector field is a smooth map 

X:E —*T 

such that ir o X is the identity on E. Intuitively, it is a map which smoothly 

assigns to each p E E a vector X(p) E T,E. 

Definition 1.1.4 (Zeros of a vector field X). A zero of a vector field X is a 

point p e X such that X(p) = 0. We define the set Z(X) to be the set of all 

zeros of X. 

Definition 1.1.5 (Integral curves or flowlines of a vector field). An inte-

gral curve or flow line of a vector field is a map y : I -p E such that 

X o 7(t) = Y(t) = d 
r=t 

for all t e I, where I C IR is an interval containing 0. It is a standard result 

(for example [8], remark 1.3, Theorem 1.4 p2  and Theorem 1.12, p8) that integral 

curves both exist and, on a compact manifold without boundary, may be extended 

uniquely to a map satisfying the above condition for all t E R. 

Notice that a flowline as defined above has both a speed and a starting point. 

However, we will say that two fiowlines are equivalent if they are the same up 

to a time change, i.e. if and only if there exists r e JR such that for all t E JR 

71 (t) = 72 (t + r). 

If E is a surface with non-empty boundary i9E then any connected component of 

E that is also an integral curve is called a boundary circuit. 
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Definition 1.1.6 (Index of a point w.r.t. a vector field on R 2 ). The 

following discussion and definition owes much to [13] pp133-135 . 

Suppose X is a continuous vector field on an open subset V of the Euclidean 

plane and suppose 'y is a simple closed curve in V that does not pass through 

any zero of X. Then we can associate with 'y an integer, its index with respect to 

X. We can describe this as follows. Consider a point p that moves around -y in 

the anti-clockwise direction, starting at po.  The angle 6(p) that the vector X(p) 

makes with the x-axis is only defined up to a multiple of 27r. However, if we 

start with, say 0 < 9(po) < 27r, we can choose a representative O(p) that varies 

continuously with p. When we return to Po  after traversing 'y once 9(p) may not 

return to its original value, O(po).  But it will take a value that differs from 9(Po) 

by 2n7r, for some integer n. Thus 2n7r is the total angular variation of the vector 

field around the curve 'y. The number n, which obviously does not depend upon 

the starting point Po  and the speed with which p moves round 'y, is the index of 

y. 

It is clear that if we deform 'y continuously into a curve ' through a family of 

curves, none of which contains a zero of X then the index changes continuously. 

As it is an integer, it is constant. Thus, for an isolated zero p of X we can 

unambiguously define the index of p with respect to X to be the index of any 

sufficiently small (i.e. encloses no other zeros) circle with centre p. 

Definition 1.1.7 (Index of a point w.r.t. a vector field on a surface). 

Let X be a continuous vector field on a smooth, oriented surface E. Let y  be 

a simple closed curve in E such that XI y  =h  0 and let C be an oriented collar 

around -y.  Let  f : C -* 11 2  be an orientation-preserving homeomorphism of C 

into the plane. This sends 'y  to a simple closed curve in an open subset of R 2 . 

Thus it has an index with respect to the vector field induced from X. We define 

the index of y  with respect to X, mdx (y)  to be the index of the embedding of 'y 

with respect to the induced vector field. It can be shown that this is well-defined 

and independent of the choice of embedding f (see [13] ppl33-142, in particular 

the discussion on p136). 

Using this, we can define the index of a point p E E with respect to X, Ind (p) as 

the index of a suitable small curve around p. See Figures 1.2 and 1.3 for examples. 

In this situation the following, well-known theorem is useful. 

Theorem 1. 1.8 (Poincaré-Hopf Index theorem). For a smooth vector field 
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X with isolated zeros on a compact surface E 

>1 Indx(p)=2-2g 
pEZ(X) 

where g is the genus of E 

Proof: This 2-dimensional version of this theorem was proved by Poincaré in 

1885. The full n-dimensional theorem was proved by Hopf in [11] in 1926 after 

earlier partial results by Brouwer and Hadamard. 

For a simple and clear (albeit incomplete) proof, see [7, Theorem 8.3]. A complete 

proof is given in [8] Chapter 5 Theorem 3.1). 	 0 

We can extend this result with the following lemma. 

Lemma 1.1.9. If X is a smooth vector field with isolated zeros on a smooth, 

oriented surface E with genus g and k boundary circuits 'yl . . . 'Yk then 

mdx (p) = 2 - 2g - 	 mdx (fyi) 
pEZ(X) 	 i=1 

where Z(X) = { p e E : X(p) = O}. 

Proof: Span the 'y's by discs D 2  which are disjoint from the interior of E and let 

V 2  E int(D2 ), i.e. the interior of D2 . Then extend Xl yi  to a smooth, non-vanishing 

vector field X' on each D2  - v2 . By Definition 1.1.7, Irtdx('y) = Indx'('y2 ) = 
Indx'(v 2 ). 

By the Poincaré - Hopf Theorem (theorem 1.1.8) 

Indx'(p) + 	Indxi(v) = 2 - 2g 
pEZ(X) 	 i=1 

which is 

Indx (p)=2-2g—Indx('y 1 ) 

pEZ(X) 	 i=1 

U 

Corollary 1.1.10. If all the boundary circuits of a smooth surface E with genus 

g and boundary circuits y 1 , . . . , 'y are fiowlines of a smooth vector field X, then 

i Indx(p)=x(E) 
pEZ(X) 
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Proof: As in Lemma 1.1.9 span each boundary circuit -Y i  by a disc D2  which 

is disjoint from the interior of E. But in this case ^/ i  is a fiowline of the induced 

vector field on the disc. So each disc is diffeomorphic to the unit circle. As 

-yi  is a fiowline of X, so the unit circle is a flowline of the induced vector field. 

Now the total angular variation of the tangent to the unit circle S' is 27r. Hence 

Indx(y) = 1. 

So 

k 	

= k Indx (70 

Substituting this into Lemma 1.1.9 we have 

Irtdx (p)=2-2g—k 
pEZ(X) 

and the right hand side is equal to x(E), the Euler characteristic of the surface 

Definition 1.1.11 (Derivative dXv). As E is a smooth manifold, for any point 

p E E there exists an open neighbourhood U of p that is diffeomorphic to some 

open ball around the origin in the plane Tl2.  This gives local coordinates (x, y) 

for U. With respect to these local coordinates the vector field X takes the form 

X(p) = (X i  (p), X 2  (p)). As X is smooth, so X 1  and X2  are smooth. Thus the 

differential matrix 

i 
ax P Ox P 

dX= 
Q 	a r 	a P ay  

exists and the sign of the determinant of this matrix is independent of the choice 

of local coordinates (see, for example [19] p6,7). 

Now, using this definition, we can classify zeros of a vector field as follows; 

Definition 1.1.12 (Degeneracy). The vector field X is non-degenerate at the 

singular point p E E if the linear transformation dX is nonsingular and there 

exists a smooth function f : E —* R such that for all q in a neighbourhood of p, 

(Of Of 
X(q)=(— , 

\Ox q 011 q 

It is degenerate otherwise. 

Lemma 1.1.13. The index of X at a non-degenerate zero is either +1 or -1 

according as the determinant of dX is positive or negative. 
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Proof: See [19, p37 Lemma 4] 	 1J 

Note that it can be shown that there is only one type (up to a local homeo-

morphism taking orbits to orbits and preserving an orbit's orientation) of non-

degenerate zero with negative index, called a saddle point, but there are two with 

positive index, called maxima, and minima (see Figure 1.1). See Figures 1.2 and 

1.3 for the calculation of the index of these zeros. 

Notice that Definition 1.1.12 has two conditions on the vector field near p for 

it to be non-degenerate. Some authors (e.g. [19]) have only the first condition. 

If we were not to have the second condition (namely the existence of a smooth 

f) then there would be other non-degenerate zeros with positive index that we 

would have to consider (for example, the centre discussed later in example 1.3.2). 

Equally, we would also have to consider that there would be other zeros with 

negative index. But, by insisting that locally our vector field X is the gradient 

of some map f, we need only consider the two zeros of index +1 and the single 

zero of index —1 mentioned above. 

1: Saddle point 

2 & 3: Maximum and minimum 

Figure 1.1: Non-degenerate zeros 



Figure 1.2: How to calculate the index of a saddle point 

1.2 Flows and Equivalence of vector fields 

By the end of this section we will have defined the conditions under which two 

(smooth) vector fields are equivalent. We will start with some flow definitions. It 

is well-known that flows and vector fields are two different ways of describing the 

same thing. For example, for the 2 dimensional case, see [8], p5  remark 1.3. 

As before, let E be a smooth, compact surface of genus g. Let X be a vector field 

on. 

Definition 1.2.1 (Flows). A flow is a smooth map f : E x R - 	with the 

properties 

f(p,O)=p 	f(p,t i +t2 )=f(f(p,ti),t2), 	p  E, ti ER 

The trajectory of the point p is the set 

l(p)={f(p,t):tETR} 

Proposition 1.2.1. There is a bijective relationship between vector fields and 

flows on a given surface E 

Proof: The bijection is defined as follows. Given a flow f the related vector 

field is simply the vector field X 1  such that, at each point p E E 

X1 (p) = f (PI  t) dt 
I t=O 
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Figure 1.3: How to calculate the index of a maximum (or, by reversing all direc-
tions, a rniiiirnuin) 

The inverse is defined corresponding to the vector field X by defining the flow fx 

as 

fx(p,t) =y(t) 

where 'y  is the flowline of X through p. It now remains to show that this is indeed 

a flow. We need to check the two properties given above. But the condition that 

fx(p, 0) = p follows immediately from the fact that fx(p,  t) = -y (t) where 'y  is 

the flowline through p, hence 'y( 0) = p. As for the second condition, observe that 

if 'yi (t) is the flowline through p and 'y2 (t) is the fiowline through fx(p,  t 1 ) then 

72 (t2) = 'y i (t i  + t2 ). So, using the uniqueness of flowlines (up to a time change, 

see Definition 1.1.5) 

fx(fx(p, t 1 ), t 2 ) = _Y2 (t2) = yi(ti + t2) = fx(p, ti + t) 

as required. 

Hence the above relationship is a bijection. 	 I. 

Notice, however, that a set of trajectories (where a trajectory is the curve made 

by a flowline, i.e. the trajectory of the flowline 7 is the set {y(t) : t E R}) does 



not uniquely define a flow. It can only define a flow up to multiplication by a 

smooth map F E - IR+, as we shall see. 

The following is a standard definition (see for example [20], page 3) 

Definition 1.2.2 (Flow equivalence). Two flows are equivalent if there exists 

a homeomorphism of E that takes the trajectories of one onto the trajectories 

of the other and preserves the direction of travel along trajectories. 

This equivalence is commonly called topological equivalence. For an example of 

its definition and extended use, see [13] p32  onwards. 

Now, suppose we have two vector fields X, Y such that the two flows fx, fy are 

equivalent. We can use the equivalence of the flows to define an equivalence 

relation for the vector fields. 

Definition 1.2.3. Two vector fields X, Y are equivalent if and only if the cor- 

responding flows fx, fy are topologically equivalent. In this situation, we say 

X r..dY. 

1.3 Pseudo-Minimal vector fields 

In this section we shall begin the process by which we define minimal vector fields. 

We shall begin by first defining a pseudo-minimal vector field as a "nice" (in a 

sense to be defined) vector field with the minimum number of "nice" zeros. In a 

later section we shall then be able to define a minimal vector field as a pseudo-

minimal vector field satisfying extra conditions. By the end of this section the 

reader should understand what a pseudo-minimal vector field is. 

All the following definitions are defined using flows. The previous section showed 

how a definition written in terms of a flow can be re-written in terms of a vector 

field. For example, a fixed point of a flow becomes a zero of a vector field. 

Many of the definitions that follow are adapted from [20], p 2 . 

Definition 1.3.1 (Trajectory definitions). Let f be a flow on a compact sur-

face E and let p be a given point in E. 

The trajectory 'y of p is the union of the positive and negative semi-trajectories, 

i.e. 'y = 'y+ U  'y_,  where the positive semi-trajectory of p is the set 

'y+={f(p,t):t>_O} 



and the negative semi-trajectory of p is the set 

	

= {f(p,t) : t 	0} 

So the trajectory of a flowline is the set of all points on that flowline. For most 

purposes these two concepts are interchangeable, hence the tendency to call the 

trajectory of the flowline -y by the same name, y. If it could be ambiguous, it will 

be made clear which concept is being used. 

The limit set of a trajectory -y is the union of the w and a limit sets of y, where 

	

the w-limit set of the positive semi-trajectory 	is the set 

w = { q E E: there is a sequence (t,),>0 tending to + 00 

such that f(p,tr) - q} 

and the a-limit set of the negative semi-trajectory -y_ is the set 

a = {q E E: there is a sequence (t,),> tending to - 00 

such that f(p,t r) - q} 

• trajectory is recurrent if it is contained in its limit set. 

• fixed point and a periodic trajectory are considered to be trivial recurrent 

trajectories. Any other recurrent trajectory is called a non-trivial recurrent tra-

jectory. 

• quasiminimal set is the closure of a non-trivial recurrent trajectory. 

• flow is regular if it has no non-trivial recurrent trajectories. 

A vector field is regular if the associated flow is regular. So a regular vector field 

has no quasiminimal sets. All vector fields considered here will be regular and on 

a compact, oriented surface. Hence they will not contain quasiminimal sets. The 

definition of non-trivial recurrent trajectories and quasiminimal sets is included 

for completeness only. For examples of flows with quasiminimal sets, see [20] 

pp15-16. The examples given there are of Denjoy and Cherry flows. 

To illustrate the concepts, consider the following examples. 

Example 1.3.2. Consider the two vector fields on JR 2  given by 

Xi (x,y) = ( — Y, X) 	 X 2 (x,y) = (X, — Y) 

X1  is called a centre and X 2  is called a saddle. Both vector fields are zero at 

the origin, so the origin is a fixed point of both flows, i.e. a trivial recurrent 
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trajectory. In the case of X i , all flowlines not passing through the origin are 

periodic, so every fiowline of X 1  is a trivial recurrent trajectory. In general, the 

fiowline of X1  through a point (x o , Yo)  is the circle x 2  + y2  = x + y and the 

flowline of X2  through the same point is the connected component of xy = xoyo  

containing the point (x 0 , yo).  Figure 1.4 shows the two vector fields. 

X, 

Figure 1.4: The two vector fields X 1  and X2  from example 1.3.2. 

To further illustrate the concepts defined above, consider the fiowline y of X 2  

through the point (0, 1). It is given parametrically by y(t) = (et, 0) so its positive 

semi trajectory is homeomorphic to the half-open interval [1, oo). Its negative 

semi-trajectory is homeomorphic to the half-open interval (0, 1]. Its w-limit is at 

infinity whilst its a-limit is the fixed point at the origin. 

It is easy to see that in fact X 1  is degenerate at the origin, whilst X2  is non-

degenerate, as the function 

f(x,y) 
= X - 

satisfies the conditions of Definition 1.1.12 and the determinant of dX 2  is 1 ev- 

erywhere. 	 El 

Example 1.3.3. Consider the universal covering of the torus, ir : R 2 -p  T2 given 

by *(x, y) = (e, e). Let q be irrational. The vector field X(x,y) = ( 1,q) 

defines a flow on the torus that has no fixed points. For any point p e T2  the 

flowline through that point is not periodic and the limit set of such a fiowline is 

the whole surface. Thus any fiowline is non-trivial recurrent. Thus for this flow 

the whole surface is quasiminimal. 

This example shows that it is relatively easy to construct flows with quasiminimal 

sets if we allow such sets to be the whole surface. However, the construction of 

flows with non-trivial quasiminimal sets is known to be hard. Examples of such 

flows include Denjoy and Cherry flows, and are given in [20] pp15-16. D 
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Definition 1.3.4 (Non-degenerate vector fields). A non-degenerate vector 

field is one such that no zero is degenerate. 

Hence a non-degenerate, regular vector field is equivalent to a regular flow with 

non-degenerate fixed points. 

Note the following "simplification" theorem, from [20], page 3. This is also re-

ferred to by some authors as the "flow box" theorem. The proof that follows is 

taken from [8], page 13. An alternative proof may be found in [10], page 243. 

Theorem 1.3.5 (Rectifiability Theorem). Let f be a flow on E and p E 

a regular point. Then there is a neighbourhood U 	p and a diffeomorphism 

: U -* 1 2  such that for every trajectory y, 'y fl U 54 0, each connected component 

of -y fl U is mapped by 0 to the line y =constant. 

Proof: As this is a local theorem, it suffices to consider the case of X, a vector 

field on T1 2  =< x 1 , x2  > such that X(0, 0) = . We define 0 to be the map 

defined in a small neighbourhood of the origin by 

0(x 1 ,x2 ) = fx((0,x2),xl) 

Now, the Jacobian of 4 at the origin is the identity, hence we can apply the 

Inverse Function Theorem (see [10] Appendix IV for a statement and proof) to 

get an inverse for 0 in an open neighbourhood U of the origin that defines the 

required coordinate system. 0 

Definition 1.3.6 (Transversal). An arc C E is called a transversal to X if 

for every point p E 'r there is a rectifying diffeomorphism q: U -+ 1R2  that takes 

'r fl U to the line x = constant. In this case notice that 0 o X is parallel to ox 

Definition 1.3.7 (One-sided circuit). A one-sided circuit is a simple, closed, 

one-sided curve, i.e. a circuit for which any neighbourhood is homeomorphic to a 

Möbius strip. Notice that the existence of a curve with only one side on a surface 

E without boundary implies that the surface is non-orientable. 

Note the following classification theorem for flowlines, from [20], page 35. 

Theorem 1.3.8. Let f be a flow with finitely many fixed points on a compact sur-

face E and let 'y+  be a positive (negative) semi-trajectory. Then the w(a)—limit 

set of 'y+ is one of the following types: 

1. a fixed point, 
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a periodic trajectory, 

a one-sided circuit, 

a set consisting of a finite number saddle points together with separat rices 

connecting them, or 

a quasiminimal set 

Proof: This result is adapted from a core result in the area of dynamical systems 

on surfaces. Indeed, the theorem in a form similar to that given above has been 

constructed in [20] using several cited works. The proof relies on showing that 

any limit set that is not one of the first four types must be quasiminimal. For 

the summary of the proof, see [20], page 35. 0 

However, the following corollary is sufficient for our purposes here. 

Corollary 1.3.9. If  is the flow of X, a non-degenerate, regular vector field with 

finitely many fixed points on a compact orientable surface E then the w(a)—limit 

set of a positive (negative) semi-trajectory is one of the following types: 

afixed point, 

a periodic trajectory 

a set consisting of a finite number saddle points together with separatrices 

connecting them. 

Proof: By Theorem 1.3.8 we need only show that no semi-trajectory can have, 

as its limit set, a one-sided circuit or a quasiminimal set. But the first case is 

excluded by the orientability of E and the second by the regularity of X. 	0 

Thus we have the following theorem. 

Theorem 1.3.10. Suppose X is a regular vector field on a compact oriented 

surface E with genus g> 1 such that X is non-degenerate. Then X has at least 

29 - 2 zeros. 

Moreover, if there exists an X that has precisely 2g —2 zeros then all the zeros are 

saddle points and the w(a)-limit sets of all half-flowlines of X are either periodic 

cycles, zeros or sets consisting of a finite number of saddle points together with 

separatrices connecting them. 
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Remark 1.3.11. We should note that this theorem only shows that the mini-

mum possible number of zeros of a non-degenerate vector field is 2g - 2. It does 

not show that such a vector field exists as it assumes it can be constructed. The 

main aim of this thesis is to show that such vector fields exist and to classify 

them. 

Proof: We begin by showing that if X has the conditions given, then it has 

at least 2g - 2 zeros. But as X is non-degenerate every zero has index +1. By 

Theorem 1.1.8 the sum of the indices of the zeros is precisely 2 - 2g. So we 

immediately see that there are at least 2g - 2 zeros with index —1, hence X has 

at least 2g - 2 zeros. 

Now suppose X has precisely 2g - 2 zeros. We need to show that each zero is 

necessarily a saddle point. But each zero has index ±1 and the sum of the 2g —2 

zeros is 2 - 2g. Hence we immediately see that each zero has index —1. But 

the only non-degenerate zero with index —1 is a saddle point, so X has precisely 

2g - 2 saddle points, as required. 

The condition that the w(a)-limit sets of all half-flowlines of X are either periodic 

cycles, zeros or circles of separatrices linking fixed points is due to Corollary 1.3.9. 

0 

Definition 1.3.12 (Pseudo-minimal vector field). A regular vector field X 

satisfying the conditions of Theorem 1.3.10 with the added provision that the 

w (a)-limit sets of all half-flowlines of X are either periodic cycles or zeros is called 

pseudo-minimal. An example of such a vector field is shown in Figure 1.6. In this 

case, note that the two vector fields differ only on the left "handle" of the surface. 

The vector fields can be considered by cutting the handle away. Then it can be 

seen that the two vector fields are equivalent to the vector fields X(x, y, z) = 

(—y, x, 1) and X(x, y, z) = (—y, x, 0) on the unit cylinder (i.e. (x, y, z) e 1R such 

that x2  + y2  = 1, z E [0, 1]). The two vector fields on the cylinders are shown in 

Figure 1.5. 

1.4 Non-wandering points and 
the Poincaré Map 

In order to move now from a pseudo-minimal vector field to a minimal one, we 

need to take a slight detour and consider some properties of certain flows. For 

this we need the following. 
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A cylinder of a 
	

A cylinder of a 
pseudo—minimal 
	

minimal 
vector field 
	

vector field 

Figure 1.5: Cylinders with the restrictions of two vector fields, both pseudo-
minimal, with the second also being minimal. 

Definition 1.4.1 (Non-wandering points). A point p is called non-

wandering if, for any neighbourhood U(p) there is a sequence (t,),>0 such that 

tr -f +00 or tr  -p - 00 and Ufl f(U,t) 0 for all r. 

We define 1(X) to be the set of non-wandering points of X. 

We say a vector field (similarly, a flow) is non-wandering if (X) = (similarly 

= E). 

The following theorem is taken from [20], page 142: 

Theorem 1.4.2. Let E be a compact surface and suppose f is a non-wandering 

flow on E. Then E can be represented as a union E = U U Ek  of regions 

with pair'wise disjoint interiors and such that the boundary of aE 's is a union of 

flowlines -y such that 

lirn Xo'y(t)=X( urn 'y(t))=O 
t±OO 	 ±00 

and their limit points. 

The interior of each Ej  is one of the following: 

1. a disc region with a centre (i.e. a fixed point with index +1 surrounded 

arbitrarily closely by periodic orbits), 
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an annulus filled up with periodic trajectories, 

a Möbius strip filled up with periodic trajectories, or, 

a quasiminimal set. 

Proof: For a proof see [20], page 142. 	 0 

Corollary 1.4.3. Let X be a pseudo-minimal vector field on an orientable sur-

face E such that 11(X) = E. Then E can be represented as a union E = 

E 1  U U E, of regions with pairwise disjoint interiors and such that the boundary 

of 8E 's is a union of flowlines 'y such that X(limt ,'y(t)) = 0 and their limit 

points. 

Moreover, an interior of Ei  is an annulus filled up with periodic trajectories. 

Proof: As X is pseudo-minimal E contains no quasiminimal sets. By Corollary 

1.3.10, as X is pseudo-minimal no zero of X is a centre. As E is orientable, no 

subset of E can be a Mobius strip. To complete the proof now appeal to Theorem 

1.4.2 0 

The following lemma of Poincaré and the subsequent definition is quoted from [8] 

(pp 59-67): 

Lemma 1.4.4 (Poincaré). Let c be a periodic orbit of a period T of X and 

let p be a point of c. Let T be a curve on E transverse to X through p. The 

flow generated by X is denoted fx.  Then there exists open U C 'r, open V with 

T e V C IR and a function a: U -+ V, as smooth as X, satisfying the properties: 

a(p)=T 

fx(x,a(x)) Er for all  EU. 

Proof: See [8] (pp  59-67) 
	

. 

Definition 1.4.5 (Poincaré Map). This function a(x) may therefore be inter-

preted as the time of first return to r of the fiowline through x. 

The map g: U -p T given by g(x) = fx(x, a(x)) is called the Poincaré map of 'r. 

1.5 Minimal vector fields 

In this section we move from pseudo-minimal vector fields to minimal ones. The 

following theorem contains the essence of the definition. 
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Theorem 1.5.1. The following conditions are equivalent for a pseudo-minimal 

vector field X on a compact surface E. 

1. Each flowline of X is one of the following types: 

Zeros of X. 

Periodic cycles of X. 

y: R -* E such that X(1imj y(t)) = 0. 

2. X has only finitely many non-compact fiowlines. 

3. The set of points on periodic fiowlines is dense in E. 

4. If -y is a fiowline of X such that either its a— limit set, or its W— limit set 

contains a periodic cycle, then y is a periodic cycle. 

5. 1l(X)=E 

6. If y is a fiowline of X then 'y fl (a(y) U w(-y)) = 0 implies that both a(-y) 

and w(-y) are single points. 

We note in passing that our definition of pseudo-minimal vector fields implies 

that in a sufficiently small neighbourhood around the separatrices of the saddle 

points all flowlines satisfy condition 1. However, this proof will show that if any 

one of the above conditions is true, that the entire surface will be a "sufficiently 

small neighbourhood" in this context. 

Proof: The proof will show that 

Condition 1 implies condition 2 

Condition 2 implies condition 3 

Condition 3 implies condition 4 

Condition 4 implies condition 1 

Condition 3 implies condition 5 

Condition 5 implies condition 1 

Condition 1 implies condition 6 

Condition 6 implies condition 4 
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which demonstrates the equivalence required. 

So, part i. condition 1 implies condition 2. Now, the only non-compact fiowlines 

are those given in ic. As X is pseudo-minimal, each fixed point of X is a saddle 

point, and there are at most two such fiowlines coming in to each saddle. Thus, 

the number of non-compact fiowlines is less than or equal to twice the number of 

fixed points, which is finite. 

In fact, the number of non-compact fiowlines is can easily be seen to be twice 

the number of fixed points by this argument, as each non-compact fiowline has 

precisely one w-limit, and such a limit is a fixed point of X. But each fixed point 

of X is, by Definition 1.3.10, a saddle point, which has two such fiowlines as its 

w- limit 

Part ii. condition 2 implies condition 3. X has finitely many non-compact flow-

lines implies the compact fiowlines are dense. But a fiowline is compact if and 

only if it contains its limit points. Now, by Corollary 1.3.9 and the definition of 

pseudo-minimality the only limit points are fixed points or periodic cycles and it is 

easy to see that if -y is a compact fiowline that contains a fixed point (periodic cy-

cle) then 'y is a fixed point (periodic cycle). We know that as X is non-degenerate 

the number of fixed points is finite, hence the set of points on periodic cycles is 

dense in E. 

Part iii. condition 3 implies condition 4. Suppose c is the (w.1.o.g) w—limit cycle 

of some fiowline 'y.  Suppose further, for a contradiction, that 'y =A c. Let p E C. 

Consider the transversal T through p (defined by Definition 1.3.6). Let P0  be a 

point in y  fl r and define a sequence of points (MIEN  such that Pr 1S the r-th 

point of intersection of 'y  with T. It is easy to see that this sequence converges to 

p. However, as 'y  c we have that for all r, Pr  V C. 

As the set of points on the periodic flowlines is dense in E for each r there is some 

point q, E [Pr, pr+i] C r such that Cr,  the flowline through q,., is periodic. It is 

clear that, by this definition, the sequence (qr)rEN  also converges to p. 

Now, by Lemma 1.4.4 there exists U p, open in E and a function a : Uflr - 

such that c is the time of first return map for r. U is an open neighbourhood of 

p, so there exits RE N such that for all r > R, q E U. Thus [p, q] C Uflr. 

It is clear that as the Poincaré map g x - fx(x, a(x)) fixes p and q, and is 

continuous, so it sends [p, q] to itself. Thus the map a has the property that, for 

all x E [p, q,], fx(x, a(x)) E [p, q,], i.e. that the Poincaré map g maps [p, q] to 

itself. It is also clear that it preserves the orientations of [p, q]. 

Thus the sequence (pr)rN  E U given above is the sequence such that Pr+1 = 
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f(pr, a(pr)) for all r > R. 

Now, as the Poincaré map g fixes [p, q} set-wise and as the periodic cycles are 

dense in E, so the set of points fixed by g is dense in [p, q]. Thus by continuity 

g fixes [p, q,.] pointwise. Thus for all r, Pr+1 = f(Pr, Q(Pr)) = Pr and so -y is 

periodic. Thus -y = c, the required contradiction. 

Hence -y = c as required. 

Part iv. condition 4 implies condition 1. By Corollary 1.3.9 and the definition of 

pseudo-minimality if is a fiowline of X then the limit set of 'y is either a pair of 

fixed points, a single fixed point, or a periodic cycle. But by assumption, if the 

limit set contains a periodic cycle, then -y is that periodic cycle. Thus we need 

only consider the cases when the limit set contains a fixed point. But it is easy 

to see that the only two possibilities are then that either -y is a fixed point itself, 

or -y is a fiowline of the type described in condition 1, part ic 

Part v. condition 3 implies condition 5. Let p e E. Then, as the set of periodic 

flowlines is dense in E for any open neighbourhood U of p there exists some point 

x E U that is contained in a periodic flowline of X ('y, say). Thus we may choose 

our sequence (tr ) r>0 to be the r-th multiples of the period of 'y so that for all r 

f(x, tr) = x E f  tr). Thus for all r we have U fl f(U, tr) 0 as required. 

Part vi. condition 5 implies condition 1. By assuming that (X) = E we have 

satisfied all the conditions of Corollary 1.4.3. Thus if a fiowline -y  of X is not a 

fixed point or such that X(lim t ± -y(t)) = 0 then it is in the interior of a region 

Ej  as given by Corollary 1.4.3. But this corollary says that any such fiowline is a 

periodic orbit, as required. 

Part vii. condition 1 implies condition 6. Suppose -y is a fiowline of X satisfying 

y fl (a(y) U w(-y)) = 0. Then -y  is neither a zero of X not a periodic cycle, as 

flowlines of both types meet their limit sets. Hence 'y  must be a fiowline of type 

ic, which implies that both its a and w limit sets are single points, as required. 

Part viii. condition 6 implies condition 4. Suppose -y is a flowline of X such that 

(w.l.o.g.) y)  contains some periodic cycle c. Then condition 6 says that 'y  must 

meet its limit sets. Now, as X is pseudo-minimal, a('y) is either a periodic cycle 

or a zero of X. Hence a(y) is a periodic cycle and -y meets a(y) U w(7). 

Suppose y  doesn't meet a(-y). So 'y fl w(7) 54 0. Now, as X is pseudo-minimal, 

by definition 1.3.10 w(-y) is either fixed or periodic. But if w('y) is fixed, then -y 

contains a fixed point and so both 'y  and a(-y) are also fixed, which contradicts 

our assumption that a(-y) contains a periodic cycle. So w(y) is a periodic orbit, 

-y meets a periodic cycle and hence is a periodic cycle, as required. 
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Definition 1.5.2. A pseudo-minimal vector field that also satisfy the conditions 

of the above theorem shall be called minimal. An example of a minimal vector 

field is shown in Figure 1.6. 

Spiral 	
- 

Limit cydes - A 

A pseudo-minimal vector field 

Concentric curves 

A minimal vector field 

Figure 1.6: Two vector fields, both pseudo-minimal, with the second also being 

minimal. 

For the remained of this thesis we shall discuss the implications of this definition, 

including a complete classification of minimal vector fields. 
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Chapter 2 

On Dehn twists, embedded 
graphs and homology 

In the next few chapters we shall define and prove concepts and results required 

for the classification and construction of minimal vector fields. It will be eventu-

ally seen that a complete classification of such vector fields requires an invariant 

constructed from graph theory and one constructed from topology and combina-

torics. 

In this chapter we shall calculate the automorphism group of the first homology 

group of a compact oriented surface E with n fixed points. We shall show that it 

is a matrix group consisting of all matrices of the form 

WA 
Os 

where if e Sp(2g, Z), the symplectic group of 2g x 2g integer-valued matrices, 

A e M((2g, ri - 1), Z) and S E 8(n) for 8(n) a group to be specified. 

2.1 Preliminaries comments on homology 

Let E be a compact, oriented surface with genus g and let V = {pi,. . . , p} be 

a set of n points on E. We shall start with some basic comments concerning the 

homology of the pair (E, V). 

Consider the homology sequence of the pair (E, V) with Z-coefficients. 

-* H1(V)H 1 (E)H1 (,V)—LH0(V)----Ho(E)----*O 

This reduces to 

o -- 	H, (E, V) -L z -p z -p o 
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Thus H1 (, V) 	Z21. Note that we can also consider the short exact se- 

quence: 

0 —+ H, (E) 0—* H, (E, V) --* 11 0 (V) —p 0 	 (2.1) 

where p0 (V) = {>cv : ai  E Z and >2a2 = 01 C 110 (V). 

Now Ho  (V) has generators {pi, . . . , p}, i.e. we shall not distinguish between 

the points of V and the corresponding generators of H0 (V). To select a basis 

of ñ0 (V) we note that it is generated by elements of the form pi - Pi, which 

may be thought of as the directed edges of an abstract graph on the vertices 

{pi, . . . , p}. We use this idea to define a basis as follows. Let Kn  be the complete 

directed graph on the vertices {pi,. . . ,p,}. Choose a spanning tree T. This, 

necessarily, has n - 1 edges, each of the form p - pi. The edges of T form our 

basis 13T = { f l , .. . , fn- i},  dependent on the chosen spanning tree T. Note that, 

as T is a tree, it is contractible. This will be important later. Figure 2.1 shows an 

example of the selection of a basis using this method. In this figure, the basis 8 

is show in red. Note that direction arrows are not shown and that for each edge 

shown here, it would be more accurate to say there are two directed edges, one 

in each direction. 

Notice that the spanning tree T may be embedded on E so as to lie within a disc 

V on E . From now on we will assume that this is in fact this case, i.e. T C V C E, 

where V is a disc embedded in E hence contractible. It will be important later 

that this is the case. Thus we are choosing our basis in a geometrical way. 

We can then write H, (E, V) as 

H1 (>, V) =< a1 , b 1 , a2 , b2 ,. . . , a9 , bg , fl, f2, . . ,fnl > 	( 2.2) 

where a 1 , . . . , a9 , b 1 ,. . . , b9  are the "usual" generators for H, (E) as shown in Figure 

2.2 and each 1k  corresponds to an edge of T. 

Note 1. Strictly, the a, b, are the images under 0 of generators of H1 (E) but we 

shall ignore this subtlety. 

Thus H, (E, V) 	H1 (>) ED 110 (V). We shall refer back to this description of 

H1 (E,V) later. 

Definition 2.1.1. Aut(H 1 (E)) is defined to be the group of automorphisms of 

H1  (E) that can be realised by orientation preserving diffeomorphisms of E. 

The group Aut (H i  (>, V)) is defined similarly. 
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P 1 	 p,,1  

P7 

P3 

P5 

Figure 2.1: An example of how to select a basis of Ho  (V) from the complete graph 
K. 

(/ 
- 	 .$-l- 

 
- 

Figure 2.2: The "usual" or canonical basic curves that generate H1  (E) 

2.2 Dehn twists 

In this section we shall show that a Dehn twist induces a well-defined linear map 

on H1 (E,V). 

In what follows we shall assume that y  is some fixed, simple, closed curve on 

and a and are closed curves on E though not necessarily fixed. Also f will be 

an arc connecting two points of V, so that f represents a class in H1  (E, V) that 

does not vanish under 6. 

Definition 2.2.1 (Dehn twists). A Dehn twist D.,, around an oriented, simple, 

closed curve 'y is defined to be a diffeomorphism that is the identity everywhere 

on E save for a small band N (i.e. closed neighbourhood) about 'y. The action in 

this band, as shown in Figure 2.3. is to cut along one edge of the band, twist the 
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entire neighbourhood through a complete turn and reglue along the same edge. 

NY  

Figure 2.3: Effect of a Dehn twist around a curve y 

Dehn twists were first defined by Max Dehn in the early 1920s but not published 

by him at the time. They were later used by Goeritz in 1933 and revived by 

Lickorish in 1962, although we will refrain from referring to them as "Lickorish 

twists". 

Lemma 2.2.2. The homology class of a simple, closed curve 'y is primitive, i.e., 

if [-y] e H1 (, Z) satisfies [y] = k[w] for some k e 7Z, [w] E H, (E, Z) then k = ±1. 

Conversely, if c E H1  (E, Z) is primitive then there exists 'y, a simple closed curve 

on E such that -y is a representative curve for c (i.e. ['y] = c). 

Proof: This is a result of Poincaré 1904. See [21] 

Lemma 2.2.3 (Lickorish). Any piecewise linear, orientation preserving home-

omorphism of E is isotopic to a product of Dehn twists. 

Proof: See [16], Theorem 1, p536 	 0 

Lemma 2.2.4. Aut(H 1 (E,7L)) is generated by Dehn twists around 

simple closed curves. 

Proof: Recall that Aut(H i (>, Z)) is the group of automorphisms of H1 (E) 

that can be realised by orientation preserving diffeornorphisms of E. But it is 

well known that any orientation preserving diffeornorphisn of E is isotopic to a 

piecewise linear, orientation preserving homeornorphism of E, which, by Lemma 

2.2.3, is isotopic to a product of Dehn twists. So any orientation preserving 

diffeomorphism of E is isotopic to a product of Dehn twists. 

But two isotopic homeomorphisms induce the same map on homology. Hence 

the homology map induced by such a diffeomorphism is the product of the maps 

induced by a series of Dehn twists. 	 0 
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Definition 2.2.5 (Intersection Number). Suppose a and 'r are two curves on 

an oriented E such that, when they intersect, do so transversely in a finite number 

of points. To each intersection we define a weight ±1 (see Figure 2.4). Then the 

intersection number a r is the weighted sum of the intersections. 

+1 

Figure 2.4: Assigning weights at intersections 

We make the following observations about the intersection number. 

Lemma 2.2.6. The intersection number is a well-defined bilinear, skew form on 

the first homology group, i.e. we have a pairing 

H1 ExH1 E—Z 

given by 

([a],[T])—a.r 

that is well-defined, bilinear and skew. Moreover, using the basis given in (2.2) 

for H1 (E), we have that 

a a3  = 0 

b3  = 0 

a2  . b, = 

where Jij  is the Kronecker delta. 

Proof: This is a standard result. For a proof see [7] pp246-256. 	 D 

Lemma 2.2.7. Let y  be an oriented simple closed curve on E and 

D:E—E 
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be a Dehn twist about y. Then 

(D) : H1E - H1 

is linear and is given by the formula 

(D,). [o] = [a] + (a . -y)[-y] 

Moreover, if-'," is homologous to y then (D.),') = (D) 

Proof: The linearity of the right-hand side of the formula follows from bilinearity 

of (.) and the fact that homology classes are linear (i.e. [a+-y] = [a] + [-y]). That 

the Dehn twist actually has this effect follows by inspection, for every time a and 

-y intersect, the Dehn twist about 'y will add one copy of 'y to a if the intersection 

has weight +1, and subtract one if the intersection has weight —1. See Figure 

2.3. 

The proof of the last statement follows from the fact that the intersection number 

is well-defined on homology. See [7] pp357-359. 	 El 

This result can be extended to H1  (, V) as follows. 

Lemma 2.2.8. Let 'y be an oriented simple closed curve on E - V and let 

(E '  V) - (E '  V) 

be a Dehn twist about 'y.  Then 

H, (E, V) -' H, (E, V) 

is a well-defined linear map given by 

(D-,). [c] = [c] + ([c] . ['y]) [-y] 

where [c] E H1 (, V) 

Moreover, if IVI < 1 and 'y'  is homologous to 'y  then (D ) ') *  = (D). 

Proof: D )  is a Dehn twist around -y so it is a diffeomorphism of the pair (E, V) 

to itself. As such, there is an induced map on homology 

(D..) )* : H, (E, V) -p H, (E, V) 

which is linear and additive. So the essence of the claim here is two-fold. Firstly, 

that the function p H, (E, V) -p H, (E, V) defined by the formula 

p.,[c] = [c] + ([c] . [-y])[-y] 	 (2.3) 
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is well-defined for all [c] E H1  (E, V), and secondly that (D) 	p, - 

Now, from the previous lemma, we know that p, as defined by the formula given 

in (2.3) given above, is well-defined on all [c] such that [c] = 0, where c is defined 

in (2.1). So suppose [c] is an element of H1 (, V) such that 5[c] y 0. Then there 

exists a representative set of curves c e (, V) for [c]. We define c 'y  in the same 

way as given in Definition 2.2.5, i.e. as the weighted sum of the intersections of 

c and -y. So all we need show is that this definition is independent of the choice 

of C. 

So suppose ë is another representative of [c]. Then [c] - [c'] = 0 so, in particular 

- c'] = 0. Therefore [c - c'] e irn 3 and so ((c - c') . y) makes sense. But 

c - c' is homologous to zero, thus ((c - c') . 'y) = 0. Thus (c. y) = (c' . ) and 

the intersection number is well-defined on H1  (, V). Thus p is well-defined. It 

is also clear that p-, is linear. 

So all that remains is to show that (D.) 	p.) . But this follows by inspection 

in a similar manner to Lemma 2.2.7, that is, every time c (a representative curve 

for [c]) and intersect, a Dehn twist about 'y will add one copy of 'y  to c if the 

intersection has weight +1 and subtract one if the intersection has weight —1. 

But this shows that a Dehn twist around -y has the effect on homology given by 

Ay. But the map (D) is the induced map of the Dehn twist. Hence result. 

Note that if IV  < 1 then H, (E, V) 	H, E and by the previous lemma, y'  is 

homologous to y implies that 	= 

Figure 2.5 shows why y' '-'s  'y == (D.-') = 	no longer holds. Here 'y'  and 

y are identical outside the part of E shown. Thus the have the same homology 

class in H, (E). But f . -y' 	f . 'y. Hence (D..) ') 	(D.1 ), on H, (E, V). 	0 

Y 

P. 

f=p 1  . 	P. 
 J 

Figure 2.5: Example from Lemma 2.2.8 showing y, 'y' such that 
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2.3 Transvections and Sympletic groups 

We now take a slight detour to consider certain matrix groups to get results that 

will be required for the main theorem. 

We aim to prove that the group of integer-valued symplectic matrices is generated 

by integer symplectic transvections. 

We do not claim that this work is new. Indeed, it has long been known (see [5]) 

that every symplectic matrix can be written as a product of symplectic transvec-

tions. Other work in this field includes [17] on the number of transvection factors 

of a symplectic matrix and [2] on symplectic transvection in more general cases. 

Much of this work has also been inspired by [12]. 

Definition 2.3.1. The matrix group Sp(2g, T1) C GL(2g, R), the real symplectic 

group, is the group of all matrices 'I' with that satisfy 

WTJW_j 

where 

J1  

jq 

J1  

and 

0 —1 
J1=1 

0 

Such a matrix if is called a symplectic matrix The matrix group Sp(2g, Z) = 

GL(2g, Z) fl Sp(2g, IR), the integer symplectic group is the group of all symplectic 

matrices with integer coefficients. 

Definition 2.3.2. A matrix 'I' is a symplectic transvection if and only if 

W=I+ATJg  

where a E R2 , I is the 2g x 2g identity matrix and A e R. 

If a e Z29  and A e Z then 'I' is an integer .symplectic transvection. 

If a E Z 29  is not an integer multiple of any other b e Z2g (i.e. if a = kb then 

k = ±1) then we say a is primitive. 

If A = ±1 and a is primitive (and thus necessarily has integer coefficients) then 
IJ is a unit symplectic transvection (or u.s.t.). 



Note 2. The traditional definition of a transvection is of a linear transformation 

T of a vector space V such that 3 a E V, 0 E Vt such that for all x E V 

Tx = x + (x)a. 

So we have a theorem: 

Theorem 2.3.3. Suppose V is a symplectic vector space and T is a transvection 

which preserves the symplectic structure. Then 3 A E IR such that 

Tx = x + A(x a)a. 

Proof: If a = 0 then set A = 0 and the theorem is true. Otherwise, as the 

symplectic structure is non-degenerate, there exists Xa E V such that Xa a 0. 

Let 

q(xa) 

Xa a 

so TXa  = Xa + q(xa)a = Xa  + A(Xa a)a. 

Then, as T preserves the symplectic structure, for all x E V 

X Xa = Tx - TXa  

= (x + O(x)a) (Xa  + A(Xa . a)a) 

= (x Xa ) + q5(x)(a. Xa) + A(Xa  a)(x a) + q(x)A(xa  a)(a. a) 

But a• a = 0 and a• Xa = Xa a so qf(x)(x a . a) = A(Xa . a)(x . a) for all x e V, 

i.e. q(x) =A(xa) for all  e V. 	 0 

But x a = aTjgx  so Tx = (I + Aa aTJg)x,  which motivates our Definition 2.3.2 

Claim 2.3.4. If 'I' is a unit symplectic transvection, then 'I' E Sp(2g, Z) 

Proof: Note that 	i, J7  = —J and aTjga  = 0. Now, as P is a 

symplectic transvection, 

'P=I+AaaTJg  

MW 

XpTj g1p = (I + Aa aTj)Tj(I  + Aa aTj) 

= (I + AJ9Ta  aT)(j + AJ9a c&TJg) 

= Jg + AJ9Tc& aTJg + AJg aTJg + A 2JgT aTjga aTJg  

=Jg 



Thus 'I' is a symplectic matrix. It remains to show that it has integer coefficients. 

However, a has integer coefficients, so a &T  is a 2g x 2g integer matrix. Hence 

,\a aTJg  is a 2g x 2g integer matrix. Hence 'I' is. 

From now on, all symplectic matrices will be assumed to have integer coefficients. 

Theorem 2.3.5. Sp(2g, Z) is generated by unit symplectic transvections. 

Proof: Let a1  = e2 _ 1  and b1  = e21  where 1 < i < g and e3  is the unit column 

vector with 29 entries, all zero except for the j-th entry, which is one. 

For the sake of clarity, we shall list matrices by considering their actions on the 

column vectors a1 , b 1 ,. . . , ag , bg . 

Note that 

ajTjgai  = 0 

bTjg bi  = 0 

bTJaj = öij 

where 6ij  is the Kronecker delta, as before. 

Consider the following matrices (note that, in the following descriptions of trans-

formations, if a vector is not written then it is mapped to itself): 

Kj 

a1  -f b, 

b1  -p —a1  

14. For any permutation of g points, o, 

a2  - 

b, 	bai 

a2  - a2  + a3  

b3  -* —b, + b3  

a1  - a2  + b, 

ui,j  

Ti 
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z,j 

a —+ a + b 

a3  —* b, + a3  

It is easy to see that each of the above are in fact symplectic matrices, i.e. elements 

of Sp(2g, Z). Moreover if c is any integer combination of the a2  and b2  such that 

c is primitive and we define D = I + c cTJg,  (a u.s.t.) then by inspection it is 

easy to see that 

Ici  = Dbi  0 Da . 0 Dbi 

TiJ = D, o D, o D-1 b3  

U( 1 2) = D;ia2 o 5 o S 	where S = D 1  0 Da2  0 Db1_ 

Ujj  = D' 0 D- 1  0 Dbi+a, 

and as any permutation a can be decomposed into transpositions of ajacent ele-

ments we have that any element of type 14 is itself generated by elements of the 

form U(12) given above. 

Thus we have that each of the above matrices is a product of u.s.t's. 

In order to prove the theorem we shall need the following claim 

Claim 2.3.6. Suppose 'I' is a symplectic matrix. Then there exists a (necessarily) 

symplectic matrix fl = Q, ... 1 (where, Vj Q j  is an u.s.t.) such that 

a1 —p a 

b1  —* b1  

although it may have some non-trivial effect on the other a 2 , b 2 . 

Proof: Suppose that 

'P 

a1 
—f 	

Aa + 

v, a + i1b 
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Using the symplectic maps (which from above we know are themselves generated 

by u.s.t.'s) 71  and kC 1 T1 ,kCj'K we perform the Euclidean Algorithm (EA) 

to reduce W to the matrix: 

a1 
-p 	

Aa 

61 -* >uaj +ib 

Then, using the symplectic matrices U and U' we perform the EA to further 

reduce 4' to the symplectic matrix 4' 

a1  -p dial  

b 1  -+ 	pjaj  + qb 

But observe that 

1 = bfJ9ai 

= bWTJg 4'ai 	 as 'P is a symplectic matrix 

= (Wbi ) TJg  (IF ai ) 

= (pjaj  + qjbj)TJg(diai) 

= di(p(aJ9ai) + qj  (Vi  Jgai)) 

= d1 qö1 

= d1 q1  

But as d1 , q1  E Z we have that d1  = q1 = ±1, and as the matrix 	sends a1  to 

—a 1  and b1  to —b 1  we may assume that without loss of generality d1 = qi = 1. 

Thus we have reduced IJ  to the matrix 

a1  - a 1  

b 1  
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Now we can use the matrices Uk,1  for all k > 2, followed by the matrices 

C1XkT1,kKkKi for all k > 2 to reduce to the matrix 

a1  --4  a1  

b1  -* da1  + b1  

But this is just the matrix Td  so we're done. 	 U 

We can now proceed by induction on g. Our induction hypothesis is that if ijt  is 

a symplectic 2n x 2n matrix, where n < g then iji  is composed of u.s.t.'s. 

If 2g = 2 then claim 2.3.6 shows that 'I' is the product of u.s.t.'s. 

Suppose now that g > 1 and 'I' e Sp(2g, Z). By claim 2.3.6 there exists a 

symplectic matrix Il such that the matrix of TQ is 

I0 
BD 

where I is the 2 x 2 identity matrix, D is a 2k - 2 x 2k - 2 matrix and B is a 

2k - 2 x 2 matrix. 

Now, 'I'll is symplectic, so (iIJci)TJ(Wci) = Jg• But this implies that B = 0 and 

D is symplectic. Hence, by our induction hypothesis D = Dm  where Vj D, 

is a u.s.t. 

Now define A3  to be the augmented matrix 

I0 
0 D3  

which is clearly a u.s.t., and A = A 1  . . . Am . 

Then 'IJci = A and so I' = Af1', the product of u.s.t's. as required. 

FM- 

2.4  Preliminary Theorem 

Lemma 2.4.1. A Dehn twist around a simple closed curve y  induces a unit sym-

plectic transvection on H1 (>, Z). 

Conversely if 'I' is a unit symplectic transvection on H 1  (E, Z) then there exists a 

closed simple curve y in E such that JJ = 
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Proof: By Lemma 2.2.7 a Dehn twist, D, around -y  induces an integer symplectic 

transvection on H, (E, Z). But by Lemma 2.2.2 as -y is a simple, closed curve on 

, [-y] is not a multiple of any other homology class. Thus D is a unit symplectic 

transvection. 

Conversely, 'I' is a unit symplectic transvection implies that there exists a primi-

tive vector a E H1  (E, Z) such that 'I' = I +q aTYg.  Then, by Lemma 2.2.2 there 

exists y,  a representative curve for a such that y is a simple, closed, oriented 

curve and by Lemma 2.2.7 the Dehn twist around -y  induces a map (D.),) *  = I + 

aTJ=W on Hi (,Z). U 

Theorem 2.4.2. Ant (H 1 (E,Z)) = Sp(2g,Z). 

Proof: By Lemma 2.2.4 Aut(Hi (E, Z)) is generated by Dehn twists. 

By Theorem 2.3.5 Sp(2g, Z) is generated by u.s.t.'s. 

But it was shown in Lemma 2.4.1 that a Dehn twist around a simple, closed 

curve induces a unit symplectic transvection on H, (E, Z). Thus Aut(Hi (, Z)) 

is generated by unit symplectic transvections. 

Hence result. 	 0 

2.5 Main Theorem 

Theorem 2.5.1. Let g be the group 

1I Al ' 	

} 
c GL(2g + n — 1, Z) 

= [0 S. i  and S e 8(n) 

where M((2g, n - 1), Z) is the additive group of 2g x n - 1 matrices with inte-

ger coefficients and 8(n) is the group of n - 1 square matrices corresponding to 

permutations of n points. 

Then 9 = Aut(Hi (E, V)), the group consisting of automorphism of H, (E, V) that 

can be realised by diffeomorphisms of (E, V). 

Note 3. How can we say that 8(n) is a group of permutations of n points when 

it is a group of n - 1 square matrices? It is clear that a diffeomorphism of (, V) 

restricts to a permutation of V. But what does a permutation of V do to 10 (V)? 

Consider the following short exact sequence. 

o —p f1 0  (V) -f Ho (V) --* Z —*0 
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where, if HO  (V) =< v 1 , . . . , v > then ir is the map that sends E A ivi  to 

where Ai E Z. 

Let a be a permutation of V. Then or induces an automorphism a,1, : H0 (V) 

H0 (V). Then ir(a(x)) = ir(x) Vx E H0 (V). Hence o(o(V)) C ko (V). So a 

can be regarded as a map p0 (V) -* o (V) and with respect to our chosen basis 

it has some matrix which we refer to as a permutation matrix. 

Proof: Recall that H, (E, 	V) 	H1 (>) H0  (V), using the basis chosen for 

H, (E, V) in equation 2.2. 

The proof will be split into two parts; 

Every diffeomorphism of (E, V) induces a map of 

H, (E, V) H, (E) 11 0 (V) 

with a matrix of the required form to be an element of 9. 

Every matrix 

WA 
Os 

is realised by a diffeomorphism (by appropriate construction). 

So, part 1. Note that it is clear that any diffeomorphism of (E, V) induces a map 

of H, (E, V) H 1 (E)H0 (V). Now suppose  : H1 (E)H0 (V) -* H1 (E)Ho (V) 

is linear and is induced by a diffeomorphism of (E, V). Then it is clear that f is 

made up of 4 maps, 

fi,i : H1 E -* H1 E, 

fl,2 : 110 (V) - H1 (E), 

12,1 : H, (E) - H(V)O 

f2,2 : P10 (V) - E10 (V). 

Now, by Theorem 2.4.2 Ii,'  is symplectic (i.e. has a symplectic matrix w.r.t the 

basis given in (2.2)). By Note 3 12,2  is a permutation matrix. The question 

remains as to why f2,1  is zero. But consider the commutative diagram 

o 	H, (E) 	H1 (E,V) 	10(V) 	) 0 

	

j
11,1 	 tf 	t 

f2,2 

0 	H, (E) 	H1 (Y,V) 	ft. (V) 	) 0 
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The map f2,1  is the map So f 0/3 which is, by commutativity, the map 80/30 fii. 

But by exactness, 5 0/3 0 and we're done. 

It is also clear, by considering this commutative diagram, that the map 11,2  can 

be anything at all, hence an element of M((2g, n - 1), Z) 

Alternatively, the reason that the matrix of the diffeomorphism with respect to 

this basis must have a zero block in the bottom left corner is because, if it didn't, 

then the diffeomorphism would take closed curves to curves with boundaries, 

which is a contradiction. 

Now, part 2 is proved by constructing the necessary diffeomorphism. We first 

observe that 

1WAl 	Ij Ol 11 Al [11, 	0]
Eo sj 	Lo s] Lo I o I 

so we need only construct diffeomorphisms for the following matrices: 

1'IJO 

Lo I 

1' 0 
LU s 

IA 
0 I 

So, case 1: Diffeomorphisms that induce matrices of the form 

wo 
0I 

Notice that these diffeomorphisms fix V pointwise, i.e. are the identity when 

restricted to V. 

The essence of the idea here is that as V is contractible, any diffeomorphism f 

may be replaced by another diffeomorphism f such that f'is identical to f away 

from V and f fixes V pointwise. So, given a diffeomorphism of E that induces 

the matrix ijj  we can construct a related diffeomorphism of (E, V) inducing the 

required matrix. 

For this we require the following claim. Observe, as noted earlier, that we may 

choose a disc V such that V lies entirely within its interior. 

Claim 2.5.2. For any Dehn twist around a curve -y there exists a Dehn twist 

around a curve homotopic in E to 'y  that fixes V pointwise. 
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Proof: The idea is that, because V is contractible, we may replace any curve 'y 

that passes through V with another curve homotopic in E (i.e. representing the 

same element in H1  (E)) to it that is contained in i - V. 

We choose 'y' in [y] e H1 (>) such that y' C E - V as follows. Suppose there 

is some part of -y  that passes through V. Then we replace this with an arc 

that follows the boundary of V. These two curves are homotopic because V is 

contractible. (For a diagrammatic way of viewing this, consider Figure 2.6. What 

we do is to "complete" the part of -y  that passes through V and replace that part 

of 'y  with the other half of the "completion".) Then D y  J D  = Id. 0 

Y 

Figure 2.6: Selecting and "completing" p to form a closed, contractible curve that 
intersects f, once and does not intersect any other f3 

We may now continue with the proof of the main theorem. 

I 	o 
Let L 

w  
o 

- be an element of . We need to show that this is induced by a 

diffeomorphism of (, V). Now 'I' is symplectic, so by Theorem 2.4.2 it is induced 

by a diffeornorphism h of E. We shall use h to construct a diffeomorphism of 

(E, V) which induces the required map on H, (E, V). 

Now, by Lemma 2.2.4 we know that h is composed of Dehn twists of E around a 

series of curves 'Yi, . . . , C E. Now some of these curves 'yj may pass through V. 

However, Claim 2.5.2 shows that we may replace all such curves yj with curves 

homotopic to them in E that do not pass through V. So h is homotopic in E to a 

diffeomorphism h' of E that fixes V pointwise. So h and h' both induce the same 

map of H1 (), i.e. T. But h' fixes V pointwise. So we have a diffeomorphism h' 

of (, V) which induces the required map of H1  (E, V) with respect to the basis 

given. 

Thus for any sympletic matrix 4' we have constructed a diffeomorphism of (E, V) 

which induces an automorphism of H1  (E, V) with the required matrix. And thus 

the matrix 
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Case 2: Diffeomorphisms that induce matrices of the form 

I0 
Os 

Notice that these are diffeornorphisms of E with support contained within V (i.e. 

diffeomorphism that fix E - V pointwise), where V is the disc chosen such that 

V C V as before. 

Clearly, all we might be able to do to the points of V is to permute them, i.e. 

act on them with the symmetric group on n objects. We shall show that, in fact, 

this is precisely what we can do. 

Recall that the symmetric group is generated by transpositions. So, all we need 

do is show that for any two points in V, there exists a diffeomorphism of E that 

switches them round whilst leaving the remaining points of V fixed, fixing the 

rest of E pointwise and thus inducing the identity on H1  (s). 
Let the two points be p and q. Then there exists a curve 'y  contained within V 

that encircles p and q and no other point of V (i.e. if 'y  is taken to be the boundary 

of a disc, then the only points of V in the interior of y  are p and q). Take a band 

around y  with the same condition. Then apply the diffeomorphism shown in 

Figure 2.7, a "half-Dehn" twist. Notice also the effect this diffeomorphisrn has 

on a line passing between the two points. 

p n b 

)d 

I 

Figure 2.7: The half-Dehn twist that permutes the points p and q. 



Thus for any S an element of the n - 1 square matrix representation of 8(n) we 

have constructed a diffeomorphism of (>I, V) that induces the automorphism of 

H1 (E, V) with the required matrix. Thus 

I0 
0 ] 

E G 

Case 3: Diffeomorphism that induces matrices of the form 

IA 
0I 

Notice that these are diffeomorphism that add closed curves to the generators of 

the pre-image of p0 (V). 

To prove this, we will require two results. 

Lemma 2.5.3. Let E, 3  E M((2g, n - 1), Z) be such that E 2 ,3  has a 1 in the i, j-

th place, but zeros elsewhere. Then there exists c 2 , a generator of H1 (E), f3 an 

element of the basis '3T  of 1i0 (V) and a simple closed curve 5' E  (, V) such that 

a Dehn twist D around 5' induces the automorphism of H, (E, V) with matrix 

I E2 ,3  

01 

with respect to the basis given earlier in (2.2). 

Proof: Firstly, we must identify c2  and f3. But this is easy, as 

if i is odd 
c 	

tbi,2 	otherwise 

and f3 is simply the j-th element of the basis 13T• 

Now, the claim here is that this element f2 of the basis '3T  of H0 (V) and for 

any closed curve 'y  with homology class ci ,, there exists a curve 5' with the same 

homology class such that the intersection number of 5' and a curve in the homology 

class given by f3  is given by the Kronecker delta ö. If this can be shown, then a 

Dehn twist around a small band around 5' (chosen to be small enough not to affect 

any other generator) will send f2 to  f3 + cij , whilst leaving all other generators 

fixed. 

So, we proceed as follows. Firstly, let i be a curve with initial and final points 

on the boundary of D, otherwise contained within D, that intersects any repre- 

sentative of f only once (from now on we shall not distinguish between f3 and 
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its representative curve, and refer to them both as f3). Such a curve p exists 

because T is a spanning tree, hence contractible. Then "complete" i, i.e. make 

into a closed curve (which we shall also call ) by going round the boundary of 

V from one the final point of p to the initial point (see Figure 2.6). Thus we have 

a contractible curve which intersects ft once. We then homotope both 'y and p 

so that 5' = 'y + a is a simple closed curve. As such homotopies can be done away 

from the interior of V, so Dj  has the required property. 

Thus we have shown that any matrix of the form: 

[k 

Eii]€c 

where 'I' is the sympletic matrix that corresponds to the given Dehn twist applied 

to the a's and b's, as 5' may not necessarily have zero intersection number with the 

generators of H1  (s). But composition of diffeomorphisms corresponds to matrix 

multiplication, so matrices of the form: 

11 E2,31 - 1w 	
j Ej1 1w' 	E9 Lo iiLo 	ijLo 	I 

Lemma 2.5.4. Let A E M((2g,n - 1),Z) be the matrix A = (a, 3 ) where i = 

1 . . . 2g,j = 1 . . . n - 1. Then there exists a diffeomorphism fA  of (E, V) that 

induces an autornorphism of H1  (E, V) with matrix 

IA 
0I 

that consists of the composition of diffeomorphisms above. 

Proof: The key here is that composition of diffeomorphisms corresponds to 

matrix multiplication. So, as 

2g n-i 

A = 
i=1 j=i 

we have that 

I A 	
2g (n- i 	

,3

0  1=nn 	i 

	

1 	11L 	
]) 

iII] 



so fA  is the composition of Dehn twists around simple closed curves as required 

and we have constructed a diffeomorphism of (E, V) which induces the automor-

phism of H, (E, V) and has the required matrix with respect to the basis (2.2). 

So any matrix of the form 

IA 
0 

1 ] E 

So, in general, if 

A=E1 +E2 +•••+E 

then all matrices of the form 

1 ii Al 	11 0111 E11 11 E21 	11 E1 [11 0]

o sj = Lo siLo 'ILo I] •. Lo 	io I 

IMI 

is 
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Chapter 3 

On the graphical theory of 
minimal vector fields 

It is the intention in this chapter to concentrate on the graph theory required for 

our classification result. 

To this end, we shall restrict ourselves to a particular class of digraphs, which 

we shall define. In our discussion, we shall consider ways of breaking down a 

graph into smaller parts, and consider a polynomial which encodes how this may 

be done. We finish with an algorithm designed to allow us to pass from a graph 

in its simplest form to a balanced ribboned graph, a concept (which we define) 

that we shall show in a later chapter to be almost all we need to classify minimal 

vector fields. 

3.1 Definitions 

We start with some basic definitions. 

Definition 3.1.1 (Graph). A graph F consists of a (finite) set V of points, 

called the set of vertices, and a (finite) set E, called the set of edges. We also 

have a map p: E -p V x V assigning to e e E the end points of F. 

This is a slightly non-standard definition for a graph, as it is more usual to identify 

E with its projection under p. However, the reason for the technicality is that we 

shall need to consider graphs with more than one edge connecting the same pair 

of vertices. So we do not insist that p is one to one. 

In fact, the object defined here is more usually referred to as a multigraph. How-

ever, as we shall only deal with multigraphs, they can be referred to as graphs 

without confusion. 



Definition 3.1.2 (4-regular graph). A 4-regular graph is a graph F = (V, E) 

such that, for any v E V the number of edges with end point v is 4. 

Definition 3.1.3 (Directed graph). We now put a direction on every edge. A 

directed graph (or digraph) is a quadruple F = (V, E, t, T) consisting of a set V 

of vertices, a set E together with a projection map p: E -* V x V that assigns 

to each edge e E E an ordered pair of elements of V and two maps, t and T, the 

initial and terminal maps respectively. The relation between the maps p, t and r 

is that p(e) = (t(e),r(e)), for any e E E. 

For most purposes, it will suffice to treat E as merely a set of ordered pairs of 

elements of V and treat t and r as merely the first and second projection maps 

71 , 72  where 7r(ai , a2 ) = a2 , i.e. suppress the map p. 

Definition 3.1.4 (Degree of a vertex). If v is a vertex of F then we define 

d(v) (the incoming degree) to be the number of edges e with r(e) = v and d(v) 

(the outgoing degree) to be the number of edges e with t(e) = v. The sum of 

these two values is the degree of the vertex v. So the degree of v e V can be seen 

to be equal to c'(v)I + 1r 1 (v)I. 

Definition 3.1.5 (2-regular digraph). A 2-regular digraph is a digraph F = 

(V, E, t, T) such that the incoming degree of any v e V is equal to the outgoing 

degree, and both equal 2 (i.e. for any v E V we have c'(v)I = 2 = r'(v)l). 

Thus any such graph has, at each vertex, an edge pattern equivalent to that 

shown in Figure 3.1 

Figure 3.1: Vertex of a 2-regular digraph 

The following two definitions are by convention. 

Definition 3.1.6. The empty graph E is given as E = (0,0) whilst the graph 

consisting of one single loop with no vertices is denoted L (or 0) and is given as 

L = (0, {O}), where 0 is the empty set. 
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3.2 Circuit decompositions 

In this section, we shall consider a way of partitioning E, using circuits to form 

circuit decompositions of a graph. 

Definition 3.2.1 (Circuit). A circuit of a directed graph is an ordered subset 

C C E, i.e. 

C=(el,...,ek)CE 

such that r(e3 ) = t(e3+i) and T(ek) = t(e i ) for all j < k . Note that we do not 

insist on distinct vertices for a subset to be a circuit, i.e. all the graphs shown in 

Figure 3.2 are circuits of the graph F. 

C>= 
The graph I' 

Figure 3.2: Circuits of a graph F 

Note 4. Notice that in Figure 3.2, F is, itself, a circuit. It is always true that 

for connected 2-regular digraphs, the graph is a circuit of itself, as the following 

theorem shows. 

Theorem 3.2.2. A connected, directed graph is a circuit of itself if and only if 

for every vertex v, d+( v ) = d(v). 

Proof: An equivalent statement of this theorem states that a directed graph is 

Eulerian if and only if for every vertex v, d (v) = d (v). It is in this form that 

this theorem of Euler is discussed and proved in [4]. 	 0 

Definition 3.2.3 (Circuit decompositions). A circuit decomposition, C of a 

directed graph F is a partition of the set of edges E into circuits. The number of 

circuits in a circuit decomposition C is denoted by IC I. 
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Note 5. As decomposing a graph into circuits involves making a choice at each 

vertex as to how the incoming and outgoing edges are paired up, for a 2-regular 

digraph the maximum number of circuit decompositions (and indeed the number 

of labelled circuit decompositions) is 2 1 ' 1  where I VI is the number of vertices (i.e. 

the cardinality of V). In general, if C(n) is the number of ways of pairing up two 

sets, each of ri. objects, then the maximum number of circuit decompositions is 

[J C(d(v))öd+(),d-(V) 

vEV 

where 	is the Kronecker delta given by 

fli = fl 

otherwise 

Definition 3.2.4 (Dual circuit decomposition). Let C be a circuit decom-

position of a graph F. This amounts to a choice at each vertex of how to pair up 

the incoming and outgoing edges. As at each vertex there are two outgoing edges, 

there are two such pairings (see Figure 3.3). Define the dual circuit decomposition 

C' as being the set of circuits in which at each vertex the other choice is made, as 

in Figure 3.4. 

Figure 3.3: The two possible choices for circuits at a vertex. 

Note 6. Duality in this case is a local definition. Thus we do not necessarily 

have that a circuit has the same number of elements as its dual. 

The dual circuit decomposition defined above is a circuit decomposition, as a 

decomposition is clearly defined by the pairing of edges at all vertices of a graph. 

3.3 Local orientation systems 

In this section we shall consider a way of partitioning E to form the circuit 

decompositions defined above. This method, dependent on local orientations is 

easily seen to be relevant to an embedded graph. 
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Vertex with circuit 	 Vertex with circuit and dual circuit. 

Figure 3.4: A vertex with both a circuit and its dual. 

Definition 3.3.1 (Local orientation). For each v e V there are two incom-

ing edges e, e and two outgoing edges e?, e . An orientation or,, at v is an 

equivalence class of ordered sets, where 

(e , e?, e , e) 

(e 2 .e'j,e,e) 

See Figure 3.5 for an illustration of the two possible orientations of a given vertex 

v. If or,, is the orientation at v then the other possible orientation is called the 

dual orientation 

Define the set OR 	{or,, : v e V}. This is a local system of orientations for F. 

The set ORr = {,, : v E V} is the dual orientation system for F. 

Lemma 3.3.2. Every local orientation system OR r  defines a unique circuit de-

composition CORr.  Moreover, the dual decomposition CRF  is the circuit decom-

position given by the dual orientation, i.e. CRr = 

Conversely, every circuit decomposition defines a unique local orientation system. 

Proof: We need to define two operations. One is a function OR: E - E that 

sends an edge to the next edge in the orientation i.e. we say an orientation or,  

can act on an edge in the following manner: 

or, - 	
if or,, = (e, f, g, h) for some other edges g, h and r(e) = v 

undefined otherwise 

and define the action of OR on e as ORe = orr(e)e. 

The second operation is a relation 	If e, f e E then e OR f if and only if 

there exists a sequence of edges e0 , e 1 , . . . , 	e such that e0  = e, e = f and 

for all i =0,...,n -   1 e+i = orr(e)ei. 



We need to prove that OR  is an equivalence relation. To do this we first 

define the concept of a circuit centered at an edge. Suppose e E E. Then 

by continued application of the function OR to e we can construct the circuit 

Ce = (e, ORe, OR 2e, . .. , ORc e ) containing e. Notice that ORce = e so we may 

define the order o(e) of an edge e as the smallest non-zero integer k such that 

ORke = e. So o(e) = the length of the circuit defined by ORF  containing e. 

So, to prove e OR  e construct the circuit centered at e. The required chain is 

then the chain (Ce, ORce) = (e, ORe, .. . , ORv e , ORc e). 

To prove that, for two edges e, f if e OR f then  f OR e consider the circuit Ce 

centered at e. As e '"OR f we know that f is contained within Ce. Thus there 

exists some integer k < o(e) such that OR 'f = e. The required chain is then 

(ORk e, OR'e,.. . , OR(e) = (1' ORf,. . . , e). 

To prove that, for three edges e, f, g if e ''-'OR f and  f OR g then e OR  g we 

simply consider the chains (e,. . . , f) and  (f,. . . , g) and concatenate them to form 

the chain (e,. . . , f, . . . , g) which is the required chain. 

Now, as OR  is an equivalence relation on E, it partitions E into equivalence 

classes. But by considering the circuit centered at e we see that the equivalence 

class containing e is simply the circuit centered at e. Thus the equivalence classes 

are circuits, and E/ 'OR  is a circuit decomposition, defined uniquely in terms of 

ORE . We define CORr  to be this circuit decomposition. 

That the dual decomposition is the decomposition defined by the dual orientation 

follows immediately from the definitions of duality. 

To prove the converse, notice that at each v, a circuit decomposition is just a 

pairing of each incoming edge with a corresponding outgoing edge. This pairing 

is all that is needed to construct a local orientation system. 	 0 

Definition 3.3.3 (Automorphism group of a graph). For a 2-regular di-

graph F an automorphism is a pair of maps q = (cbv, E) where cbv : V - V and 

E - E (i.e. : F —+ F) such that the following diagrams commute: 

E OE  E E EE 

t 11 	 i't and t Ir 	 Ir t 
V 	V V 

c1v 

and for each v E V we define the orientation as follows. Suppose the orientation 

at v is or, = (e, e° , e, e'j. Then the orientation at V(v) is 

07 cbv(v) = cbEor = (4Ee, cbEe, cbEe, cbEe) 
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It is clear that the set of automorphisms form a group under composition. We 

call this group the automorphism group of the graph F, or Aut(F). 

Note that this is a non-standard definition. For the more standard definition we 

refer the reader to [22], p6 4 . 

Definition 3.3.4 (Ribboned graph of F). A ribboned graph R is a pair 

R = (F, {C, C'}) of a 2-regular digraph F together with a circuit decomposition C 

and its dual C'. 

In this case we say that F is the underlying graph (or underlying directed graph) 

of R. 

R is balanced if ICI = IC'I and in this case we say that C is a balanced circuit 

decomposition. 

The set of all ribbonings of a graph F is denoted S r . 

Definition 3.3.5 (Pairing of a ribboned graph). Given a ribboned graph 

(F, {C, C'}) a pairing of the ribboned graph is a bijection 'r : C - C'. Note that a 

necessary and sufficient condition for a ribboned graph to have a pairing is that 

the cardinality of C is equal to the cardinality of C'. We shall call a ribboned 

graph with a pairing a balanced ribboned graph. 

 

et. 

 

e1. 

 

   

e 
2 	 2 

P-0 	 ec  50 

Figure 3.5: The two possible orientations of a vertex v 

3.4 Transitions 

Now that we understand how to construct a circuit decomposition of directed 

graph F we shall consider how the information contained within such a decom-

position can be coded up as a polynomial dependent solely on the graph. To do 

this we need to consider the concept of a transition at a vertex v of F. 

This can be seen as a reformulation of the previous section. However, it will 

enable us to define a transition polynomial of a graph, as we shall see. 



Definition 3.4.1 (Splitting or transition at v). Let F be a connected 4- reg-

ular graph and v a vertex of F. If we "split" v according to the scheme shown in 

Figure 3.6 then we obtain another 4-regular graph with one less vertex. We can 

perform such a splitting in three ways. If one of the three splittings disconnects 

F then v is called a cut-vertex. 

Figure 3.6: Splitting at v 

Notice that a circuit decomposition is equivalent to a choice at each vertex v as 

to how to pair up the incoming edges to the outgoing edges. Such a choice is 

called a transition or splitting at v. 

Definition 3.4.2. Although there are three potential transitions at each vertex 

of a 2-regular digraph (i.e. pairings of edges at the vertex) one of these pairs up 

the two incoming edges and the two outgoing edges. We shall call this transition 

incoherent and the other two pairings coherent 

See Figure 3.7 for an example of the two coherent and one incoherent transitions. 

coherent 	 coherent 	 incoherent 

Figure 3.7: Coherent and incoherent transitions 

Note 7 (Dual Decomposition). A circuit decomposition is equivalent to a 

choice of splitting at each vertex v. At each vertex there are two possible co-

herent splittings and a circuit decomposition C will choose one of them. This 

leads to a natural definition of a dual decomposition to C, which we will call C', 

the circuit decomposition we get if we choose the other splitting at each vertex 

to the one chosen in C. This definition can easily be seen as equivalent to that 

given in Definition 3.2.4. 
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3.5 On transition polynomials of 2-regular di-
graphs 

In his thesis [18] of 1977, P. Martin introduced a class of iteratively defined poly-

nomials, the Martin polynomials, that depend solely on a 4-regular graph. We 

shall use these polynomials to define a slightly different polynomial that also de-

pends on a circuit decomposition of a 2-regular digraph and that gives information 

on the dual decomposition. 

Note that the following discussion owes much to [14]. 

Definition 3.5.1 (Undirected Martin Polynomial). Let F be a 4-regular 

graph. Define a polynomial m(F; r) on F as follows: 

If v is not a cut-vertex of F, then m(F; r) = m(Fi ; r) +m(F2; T) +m(F3; r), 

where 171,  F2,  173  are the results of the three possible splittings at v. 

If v is a cut-vertex of F and 171, 172 are the components of F formed by this 

cut, then im(F; r) = r m(Fi ; T)m(F2; r) 

If L is a free loop (i.e. the connected graph on no vertices) then m(L; T) = 1. 

Martin introduced a similar polynomial, which we shall denote by m' for 2-regular 

digraphs, i.e. 4-regular graphs with a specified Eulerian orientation (an orienta-

tion that can be split into single loop in such a way that the orientation is pre-

served). The only way it differs from the previous definition is that there are now 

only two possible splittings at v (i.e. the two coherent splittings). The formal 

definition is: 

Definition 3.5.2 (Directed Martin Polynomial). The Directed Martin 

Polynomial of a 2-regular digraph F is a polynomial m'(F; r) defined on F 

as follows: 

If v is not a cut-vertex of F, then m'(F; r) = rn'(Fi ; r) + m'(F2 ; T), where 

F 1 , F2  are the results of the two possible coherent splittings at v. 

If v is a cut-vertex of F and F 1 , F2  are the components of F formed by this 

cut, then m'(F; r) = rm'(Fi ; r)rn'(F 2 ; r) 

If L is a free loop (i.e. the connected graph on no vertices) then m'(L; r) = 1. 

Note 8. From now on, F will assumed to be directed unless otherwise stated. 

- 
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Figure 3.8: Pictorial equations recursively defining m' 

It is convenient to visualize these rules in the pictorial form shown in Figure 3.8: 

Using these definitions we can now define a slightly adapted Martin polynomial. 

Definition 3.5.3 (Adapted Martin polynomial). Let F be a 2-regular di-

graph with a given circuit decomposition C. Let a and 3 be constants. We 

define the polynomial p(F, C, a, 0, r) pictorially in Figure 3.9. 

The key idea here is that when we split the graph at v, we have two possible 

coherent splittings, one of which will agree with the given circuit decomposition, 

i.e. splits the graph according to the transition given by the circuit decomposition. 

We label that splitting with a and label the other splitting with 0. The equivalent 

rules would then be: 

If v is not a cut-vertex of F, then 

= ap(F l , CI i1 ,a,i3,r)+/3p(F2,CIr2 ,a,/3,r) 

where 171, 172 are the results of the two possible coherent splittings at v, with 

F 1  the splitting agreeing with the circuit decomposition. Note that here CIr' 2  
is the circuit decomposition left after splitting the graph according to the 

transition that gives 17 2 . 

If v is a cut-vertex of F and F 1 , F2  are the components of F formed by this 

cut, then 

p(F,C,cr,/3,r) = (ra+)3)(p(F l ,C1r 1 ,a,/3,T)+p(F2,C1r 2 ,a,/3,T) 
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if the transition given by the circuit decomposition at v cuts the graph, and 

p(F, C, a,/3, r) = (r/3 + a)(p(F i ,C r1 , a, /3, T) +p(F2,CIr'2 1 a, )3, r) 

otherwise. Note that here C1r1  is the circuit decomposition given by restrict-

ing C to F2 . 

3. If L is a free loop (i.e. the connected graph on no vertices) then 

p(L,C,a,/3,r) = 1 

where C is the unique circuit decomposition on L. 

= 

>< =(a+)* 

A =(t+a)* 

Q=i 

Figure 3.9: Pictorial equations recursively defining the adapted Martin polyno-
mial p(F,C,a,/3,r) 

Before we move on we shall note the obvious connection between the Directed 

Martin polynomial and the Adapted Martin polynomial, namely: 

Lemma 3.5.4. For any circuit decomposition C of  

p(F,C,1,1,r) = m'(F,r+ 1) 

Proof: Simply compare the equations in Figure 3.8 with those in Figure 3.9 

when a=8=1. D 

We shall now consider the connection between recursive polynomials and transi-

tion polynomials. The following definition is taken from [14]: 
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Definition 3.5.5. Let T(F) be the set of circuit decompositions of a 4-regular 

graph F and let A be a map (called a weight function for F) that associates to 

every transition of F a weight chosen in some set of variables or constants. Then 

the associated transition polynomial Q(F, A, T) is defined by: 

Q(F,A,T)= i: 
teT(I') (H 

 A(t(v))) II (3.1) 

where t(v) is the splitting, or transition at v associated with C. 

For reasons of convenience we consider that P(L) contains one trivial circuit 

decomposition. 

The following three results are taken from [14]. The proofs given there are repro-

duced here for completeness. 

The first is straightforward. 

Proposition 3.5.1. Let F be a 4-regular graph with weight function A and v a 

vertex of IF. Let t 1 , t2 , t3  be the three transitions at v. Then: 

Q(F, A, r) = 	A(t 2 )Q(F * t2 , A/v, r) 
i=1,2,3 

where F * t, is the graph obtained by splitting F at v according to the transition t2  

and A/v is identified in the obvious way with a weight function on F * t 2 . 

Proof: This follows immediately from equation (3.1). 	 0 

The next two results require us to define two ways in which two weighted graphs 

may be put together. The first, denoted U is the disjoint union. The second, 

denoted =, is a linked union. Both of these are shown in Figure 3.10 

Also, if A 1 , A2  are weight functions for F1 , 172  respectively, then A 1 ,2  denotes the 

weight function for F that restricts to A 2  on F2 . 

Lemma 3.5.6. Let F 1 , F2  be two graphs with weight functions A 1 , A 2  respectively. 

Then 

Q(F1  U F2 , A 1 ,2 , r) = rQ(F1 , A 1 , 7- ) Q(F2 , A 2 , r) 

Q(F 1  = F2 ,A 1 , 2 ,r) = Q(171 ,A 1 ,7- ) Q(F2 ,A 2 ,T) 

Proof: Notice first that any circuit decomposition C of F can be identified with 

a pair of circuit decompositions (C1 , C2) of (F 1 , F2 ). Thus 

II Ai,2(C(v)) = ( fi Ai(Ci(v))  (fl A2(C2(v)) 
vEVr 	 / \VEVF2 
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U 	= 	* 

Figure 3.10: Diagram showing the two ways (U and =) of joining two 4—regular 
graphs. 

Moreover, it is clear that for case 1 I Cl = IC1I+1C21 and for case 2 ICl = IC, l+1C2l-1  
Then the result follows by plugging these into equation (3.1). We will explicitly 

do this for the first case. The second is similar. 

So, we have that 

Q(JT, A 1 ,2 , r) = 	fJ Ai,2(C(v))rICt_l 

CET(IT) vEVr 

= 	
( 	

(V E Vr2 

	

Ai,2(Ci(v))YIChI_1 	A1,2(C2(v))rIC2I_1

(C1,C2)eT(r'1ur2) \vEVr1 J 	 J 

=T 	 ( rl  A i,2 (Ci (v))r 1 I -1 	rl Ai,2(C2(v))r1C21_l 

C1ET(r1)C2ET(r'2) \vV'1 	 J 
( \VEVE'2 

= T ( 	H A1,2(C1(v))rIdhI_1 	 II A1,2(C2(v))T1C2I_l 

	

\C1ET(L'i) vEV1'1 	 ) ( \c2T(r2) vEV1- 2  

= TQ(F1,A1,T)Q(F2,A2,T) 

The pictorial representation of this lemma is shown in Figure 3.11 

Proposition 3.5.2. Let F be a -regular graph with weight function A and v a 

cut-vertex of F. Let t 1  be the separating transition at v and let t2 , t3  be the other 

transitions at v. Let F 1 , F2  be the two connected components of F * t 1 . Then: 

Q(F, A, r) = (A(ti)'r + A(t2 ) + A(t3 ))Q(F 1 , A 1 , r)Q(172 , A 2 , r) 

where A 2  is the restriction of A to the transitions at vertices of F,. 
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Figure 3.11: The pictorial representation of lemma 3.5.6. 

Proof: To prove this result we need merely observe that, as t 1  is the separating 

transition at v, so F * t 1  = F 1  U F2 . And similarly, as t2  and t3  are not separating, 

we have that F * t 2  = F * t3  = Fi  = F2 . So, by Lemma 3.5.6 we have 

Q(F * t 1 , A, 2 , 'r) = 'rQ(F i , A 1 , r)Q(F2 , A 2 , r) 

and 

Q(F * t2, A 1,, r) = Q(F * t3, A 1 , 2 , 7-) =  Q(F 1 , A 1 , 7- )Q(F2, A2,7- ) 

But since clearly A/v = A 1 , 2  the result follows by substituting these identities 

into equation (3.1). 	 D 

Consider the following example. Let A assign 1 to each coherent transition and 

0 otherwise. Then propositions 3.5.1 and 3.5.2 are just the rules of the Martin 

polynomial. So we have that Q(F, A, r) = rn'(F; T + 1). From this observation we 

may make the following immediate deductions. 

Proposition 3.5.3. Suppose F is a 2-regular digraph on n> 0 vertices. Then 

If m'(F; r+ 1) = >1j>1 	then the coefficient a 3  is the number of circuit 

decompositions of F of size j. 

m'(F,O)=O 

m'(F, 1) = the number of Eulerian circuits of F. 

m'(F,2)=2 

m'(Fi  = F2 ; 'r) = m'(F i ; 7-)m'(F2 ; 'r) 

m'(Fi  U F2 ; T) = (r - 1)rn'(F i ; 7-)m'(F2 ; r) 
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Proof: The first result follows immediately from definition 3.5.5 and the above 

observation that Q(F, A, r) = m'(F; r + 1), with result 3 following immediately 

from result 1. Result 4 follows from result 1, the observation therefore that 

m'(F; 1) is the total number of circuit decompositions and the observation in Note 

5 that this is 2'. Results 5 and 6 are just particular cases of Lemma 3.5.6. Result 

2 follows from the fact that as F has more than one vertex, so by considering 

the rules given in definition 3.5.2 we can see that, in the inductive process that 

defines m'(F; r) the last step but one always involves multiplying by r (as the 

last step but one reduces a graph with one vertex to a graph consisting of disjoint 

copies of L). 0 

This example motivates the following result. 

Theorem 3.5.7. Let F be a 2-regular digraph with a given circuit decomposition 

C. Let Ac be the weighting function given by: 

1 a ift(v)=C(v) 

Ac(t(v)) = 0 if t(v) C(v) but t(v) is still coherent 

10 if t(v) is incoherent 

for each t E T(F). Then Q(F,Ac,r) =p(F,C,a,3,r). 

Proof: Propositions 3.5.1 and 3.5.2 applied with weight function Ac are the 

equations given in Figure 3.9 and so give the result. 	 0 

We shall now connect this with dual circuit decompositions. Remember that 

a dual circuit decomposition is the circuit decomposition which has the other 

coherent transition at each vertex to that in the given circuit decomposition. 

Immediately we get the following result: 

Corollary 3.5.8. If C' is the dual decomposition to the circuit decomposition C 

then p(F, Cl, a, 0, r) = p(F, C,,3, a, r). 

Proof: By inspection of the formula in Theorem 3.5.7 	 0 

Definition 3.5.9. Consider the Adapted Martin polynomial of some graph F 

together with a circuit decomposition C. This is a finite sum of the form 

i,j,k 

for integers i, j and k where i + j = IVr I, the number of vertices of F. Define 

[a], = the value of k when i takes its maximum value, and 

[i3], = the value of k when j takes its maximum value 
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Corollary 3.5.10. In the polynomial p(F, C, a, 0, r) defined above, [a}. and 

[0] are well-defined, [a]p,, + 1 = ICI and [/3]. + 1 = IC'l where C' is the dual 

circuit decomposition to C. 

Proof: Notice that the maximum value of i (j) is lVr l (lVrl) and, by Theorem 

3.5.7, this occurs for only one circuit, namely C (C'). Hence [/3J,,,- are well-

defined. Moreover, from Theorem 3.5.7 we see that when t = C, we have 

(

H 	tv) nd_i = aIV n ICI_i 

vEVr 

so by definition [a]p,, = JCJ - 1. Similarly [i3], = IC'l - 1 	 0 

This means the following result, the result we need for future discussion, is now 

obvious. 

Corollary 3.5.11. A ribboned graph R = (F, {C, C'}) is balanced if and only if 

[a],,- = [/3]. where p is the adapted Martin polynomial on F and C. 

3.6 From digraphs to ribbon graphs 

In this section we shall present an algorithm that produces all the different bal-

anced ribbon graphs for a given digraph F. 

So, let F be a 2-regular digraph and let C(F) be the set of all circuit decompositions 

of IF. 

Step 1 For each circuit decomposition C e C(F) calculate the adapted Martin 

polynomial p(F, C, a, 0, n) and from it using corollary 3.5.11 identify if cir -

cuit decomposition C is balanced. Let 13(F) be the set of all balanced circuit 

decompositions of F. 

Step 2 For each balanced circuit decomposition C E 8(F) calculate the ribbon 

graph R = (F, {C, C'}). The set of all balanced ribbon graphs is 

Step 3 Factor Sr'  by the action of Aut(F) to give the set S r,  Aut(F) of all different 

ribboned graphs with F as their underlying graphs. 

See 3.14 for a flow-chart for this algorithm. 

Note that this method immediately gives an approximation for the number of 

balanced ribbon graphs with underlying graph F. This is because the size of Si' 

cannot be larger than the total number of ribbon graphs. But this figure is simply 
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the total number of pairs of circuit decomposition, and as there are 2I''rI  circuit 

decompositions and they are in pairs, there at 2(I1_1)  ribbon graphs. So the 

maximum number of balanced ribbon graphs is 2(IV'I1)  and if the total number 

of different ribboned graphs with underlying graph F is given by .Afr' we have the 

immediate result: 

Corollary 3.6.1. 

2(I'"U1 - ') 

r ~ IAut)I 

and for any even number 2n there exits a graph r2n  that satisfies 

2(2n_ 1) 

A"r2, = 
Ant (F2 ) 

Proof: 

F 

1. 	 2. 	 3. 	 4. 

Forms 

Figure 3.12: An example of a graph I72n  on 2n vertices that achieves the given 
bound for .N'r 

The above discussion shows why this is an upper bound. The graph 17 2  shown 

in Figure 3.12 is the required graph for n > 1. The graph on 2 vertices is 

shown in Figure 3.13. To prove that this is the case, we apply the Adapted 

Martin polynomial with some circuit decomposition C to each pair of vertices, 

working from the right in the diagram. It is easy to see that the for any circuit, 

the transition at the right-hand two vertices takes one of the four forms 1, 2, 3 

and 4 shown below the graph in Figure 3.12. So we apply the Adapted Martin 

polynomial to each one in turn. The results are shown below: 



I 
F 

2 

Figure 3.13: An example of a graph 172  on 2 vertices that achieves the given bound 
for Arr 

Forms 1 and 3 p(F, C, a, 13,F) = [(a2 +,32)T  + 2aI3]p(F2(_1), (, a, 01 r) 

Forms 2 and 4 p(F2 , C, a, ,3, r) = [2a/37-  + (a2+)32 )]P(F2(,,-1)1  C, a, 0, T) 

where C is the circuit decomposition of F 2(- i) gotten from C after the last two 

vertices have been removed from F 2 . So, by iteration, we find that the Adapted 

Martin polynomial of r2n  with some circuit decomposition C has the form 

[(a2+,32)7-  + 2a/3]Ic[2a/3r + (a2  + 

for some integer k depending on C. So thus [a], = k = [0]. and so the 

circuit decomposition is balanced. But C was any circuit decomposition, hence 

any circuit decomposition is balanced, and so the inequality is an equality in this 

case. Hence result. 11 

Note 9. Further to above theorem, it is interesting to note that the graph F 2, 

(with n> 1) shown in Figure 3.12 has a trivial automorphism group (i.e. Aut(F 2 ) 

= {Id}). To see this, notice that there only three vertices with parallel edges 

leaving them (i.e. only three vertices that send both out-going edges to the same 

vertex). So any automorphism of the graph must permute these three vertices. 

But by consideration of the other edges connected to these vertices it can be 

seen that the only map that does not lead to a contradiction is the identity map. 

Hence for n> 1 we have that 

At =2 2n-1 
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Start 

Pick C  in C(r) 
all C 	 not already 
examine '  examined. 

Calculate size 
Calculate 

Sr  

Aut(F) 

Stop] 
	 <J- is [a],,,= [p1,,, 

C is balanced. 
Put Cin B(fl 

Calculate &= (r,{c,c'}) 

Does there exist a in Aut([') 
mapping Q  to a balanced 
graph in Sr already examined? 

N 

Put R  in S, 

Figure 3.14: From 2-regular digraphs to ribbon graphs. An algorithm. 
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Chapter 4 

On the construction of minimal 
vector field 

It is the intention in this chapter to discuss results concerning the topology of 

graphs embedded on surfaces. We will give a topological definition for a ribboned 

graph and show that this is equivalent to the graphical definition given in the 

previous chapter. We will then show how to construct a minimal vector field from 

a 2-regular digraph, thus paving the way for the classification and combinatorial 

results that will follow in later chapters. 

We shall again start with some basic definitions. However, these definitions them-

selves rely on the definitions given in previous chapters. 

4.1 On defining ribbonings of graphs 

In this section we shall discuss a topological definition of a ribboned graph and its 

construction. To do this, we need to consider the following definitions concerning 

topological descriptions of graphs. 

Definition 4.1.1 (Thickened graphs and thickened edges). Let V be a set 

of discs, called thickened vertices. Let £ be a set consisting of pairs (e, 1) where 

e is a surface diffeomorphic to I x I ( where I is the unit interval) and f is a 

diffeomorphism f : I x I -* e, i.e. 

6 = {(e, f) f is a diffeomorphism of I x I into e} 

The set 6 is called the set of thickened edges. We form a thickened graph by gluing 

each end of an edge (e, f) E 6 to some disc v E V, as follows. 

Let (e, f) E. 6 be a thickened edge. Then the diffeomorphism f allows us to 

distinguish the ends of e as f(O, t) and f(1, t). We can then identify one end of e 
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Q) ()  
O== 

Figure 4.1: Gluing a thickened edge to a thickened vertex. 

with an arc of the boundary of a thickened vertex v, as in figure 4.1. Figure 4.2 

shows a thickened vertex with four edges glued to it. The thickened graph is the 

Figure 4.2: A thickened vertex glued to 4 thickened edges. 

ordered pair (V, E). 

The underlying graph of a thickened graph is the graph F = (V, E, t, r) that we 

get by retracting each disc in V to a point, and each edge in E to a line. Indeed, if 

(e, f) e E then one way to view this retraction is retracting the map f : I x I - e 

to a map from I x {p} for some point p. Thus the retracted edge does indeed 

connect to retracted vertices. An edge e of F has end points v 1  and v2  if and 

only if the ends of the thickened edge corresponding to e are glued to the discs 

corresponding to v 1  and v 2 . 

The purpose of specifying the diffeomorphism f is to allow us to give a direction 

to e. We shall say that if f : (r, t) - f(r, t) then e has direction corresponding to 

increasing r. We can define the initial and terminal vertices of a thickened edge e 

as the vertices glued to f(O, t) and f(1, t) respectively and define t and r for the 

underlying graph similarly. 
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We shall usually suppress the diffeomorphism f, and write a thickened edge (e, f) 

as just e. See figure 4.3 for an example of a thickened graph. 

All ribboned graphs that follow will be assumed to be 2-regular and directed, i.e. 

their underlying graphs will be 2-regular directed graphs. 

Figure 4.3: An example of a thickened graph with underlying graph F 

Thus a thickened graph is a 2-manifold with boundary. We will now define a 

ribboning of a graph as a thickened graph that retracts to a given graph. 

Definition 4.1.2 (Topological Ribboning of a graph F). A thickened 

graph 7?. is a ribboning of F if and only if F is the underlying graph of R. 

Notice that this definition is equivalent to the following. 

Definition 4.1.3. A topological ribboning 7?. of a graph F (equivalently, a topo-

logical ribboned graph) is a 2-dimensional manifold with boundary such that the 

following properties hold. 

F is a sub-manifold of 7?." = 1?.\07?.. Equivalently, F is a sub-manifold of 1?. 

such that F fl on = 0 

F is a deformation retract of R. 

Note that it is an immediate consequence of this definition that for any topological 

ribboning 7?. of some graph F, 7?. - F is the disjoint union of annuli and Möbius 

bands. 

The following two propositions show that any topological ribboned graph is also 

a ribboned graph in the sense of the previous chapter, and vice versa. 

Proposition 4.1.1. Let 1?. be an oriented topological ribboning of the graph 1'. 

Then OR can be partitioned into two sets, C and C' such that each corresponds to 

a circuit decomposition of F and together they form a dual pair. 
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Proof: Let A be a connected component of 7?. - F. It is clear that, as 7?. is 

oriented, A is an annulus. Hence it has precisely two boundary circuits, one of 

which is a circuit of F. Let c be the circuit of F and let OA be the other circuit. 

A is oriented as it inherits the orientation of R. c is oriented as it is a circuit 

of the 2-regular digraph F so we can talk about the normal to the tangent of 

c. However, we have to make a choice about the direction of this normal. We 

shall make a convention that the normal to the tangent at c points to the right 

of the direction along c. Thus the tangent to c points into A and the tangent 

to ÔÁ points out. Thus we can classify the boundary circuits of 7?. according to 

the direction of this tangent. Let C be the set of boundary circuits for which the 

tangent points in and C' be the set of remaining boundary circuits. 

We know need to show that these two sets are a dual pair of circuits decomposi-

tions of F. 

Pairing of edges generated at c 
	

Pairing of edges generated at c' 

by choice of normal to circuit c. 
	 by choice of normal to circuit c. 

Figure 4.4: How the direction of the normal on a circuit c corresponds to the 
local orientation of a vertex v. 

Now, this choice of direction is closely tied to the orientation of any vertex v 

that is in c. We can see this by considering figure 4.4. Here we see that by 

considering the chosen normal direction as being that to the right of the direction 

given to an edge, we have an orientation at v. Indeed, if we make the same 

choice of normal direction for each c E C (which we may as E is oriented) we 

can use this to define a local orientation system ORr. But we note that this 

local orientation system pairs up edges where the perpendicular direction points 

towards the circuit being defined, as figure 4.4 shows. Thus we can see that C is 

indeed a circuit decomposition and moreover, it contains c. 

Similarly C' is also a circuit decomposition. 

This also shows that they are a dual pair. 	 U 
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Proposition 4.1.2. Given two circuit decompositions of  that form a dual pair 

then there exists an oriented 2-dimensional manifold with boundary that is a rib-

boning of F with the given circuit decompositions as the boundary components. 

Moreover, this manifold will be unique up to the action of a diffeomorphism that 

induces the identity on homology. 

Proof: To construct 7?. we take one annulus for each element c of C and glue 

it onto the circuit of F represented by c. We repeat this for each element of C'. 

Then by Definition 4.1.2 7?. constructed in this way is a topological ribboning of 

F. The uniqueness comes from the fact that any two such constructions will be 

the same up to an action of a diffeomorphism that is the identity on F, and hence 

acts only on the annuli. Hence it is the identity on homology. El 

Thus we may conclude 

Lemma 4.1.4. Every oriented topological ribboned graph defines a graphical rib-

boned graph and vice versa. 

Proof: Given a topological ribboned graph 7?., proposition 4.1.1 shows that 

we may partition 87?. into the dual pair {C, C'}. Thus we can define a graphical 

ribboned graph R(7?.) = (F7 , { C, C'}), where l'iz is the underlying graph of R. 

Conversely, given a graphical ribboned graph R = (F, {C, C'}) proposition 4.1.2 

shows how we may construct a unique topological ribboned graph R. 	0 

4.2 Topological operations on Ribboned Graphs 

There are two topological operations that we may define on a ribboned (or a 

thickened) graph, namely edge-twisting an edge e E e, written ET, and vertex 

flipping a vertex v E V, written VF. We shall define both of these in this section. 

It should be noted that neither of these operations affect the underlying graph, 

i.e. if 7?. is a ribboning of F then ETe 7?. for e E -Er and VFV 7?. for any v E Vi-' are 

both ribbonings of F. 

Definition 4.2.1 (Edge Twist). The operator ET, is defined on the thickened 

edge e E e to be the map that cuts e in two, puts a half twist in one half of e and 

then glues the two edges back together. So ET, puts a half twist in the edge e. 

Figure 4.5 shows how a ribboned edge is twisted by this operator. 
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Figure 4.5: The action of the operator ET,. 

Figure 4.6: The action of the operator VF. 

Definition 4.2.2 (Vertex Flip). The operator VF,, is defined on the vertex 

V E Vr  in terms of the thickened edges at v. Formally, let e, e, e, e° be the four 

edges that have v as either the initial or final vertex. Then VF = ETi o ET 

ET,-1  0 ET,.. 

See figure 4.6 for the effect of the operator VF,, on the edges surrounding the 

vertex v 

It is easy to see that for any e E e, ET, is an involution, i.e. ETe7Z =A 1?.. in 

general, but ET1Z = R. Equally, for any v e V VF,, is an involution. 

Clearly for any thickened edge e, if 7?. is oriented then ETe7Z will not be orientable. 

However, in the next lemma we shall show that, for any v E Vi- , VF,, preserves 

orientability (i.e. VFV 7Z is orientable if and only if 7?. is orientable). 

Lemma 4.2.3. Let 7?. be a ribboning of some graph r. Then, for any v e V, 

VFV 7?. is orientable if and only if 7?. is orientable. 

Proof: Observe that, with regard to the definition of a ribboned graph in 

terms of local orientation systems, the operator VF interchanges or, and 
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So 7?. is orientable if and only if it defines a local orientation system, as Lemma 

4.1.4 shows. Thus if 7?. is orientable, then there is a local orientation system 

OR {or: w E V} defined by it, where V is the vertex set for the underlying 

graph of??.. Then VFV 7?. is defined by the orientation system {or w v}U{} 

hence is orientable. The converse is similar. 0 

Definition 4.2.4. The set of ribbonings of a graph F is defined to be R(F) 

We define a special subset of all ribbonings. 

Definition 4.2.5 (Balanced ribbonings). The set E(F) is defined to be the 

set of ribbonings of a graph F such that dual pair of circuit decompositions have 

the same cardinality. That is 

(F) = {(F,{C,C I D : I CI = IC'l} 

We call this set the set of balanced (or gluable) ribbonings. This will be important 

later when we attempt to construct minimal vector fields from ribboned graphs. 

4.3 Construction results for ribbonings of 
graphs 

We shall now discuss some construction results concerning ribbonings of graphs. 

In this section we shall show that any circuit of a graph F can be a boundary 

circuit of a ribboning of F. We shall also give a construction showing that for any 

surface with two or more boundary components there exists a graph such that 

the surface can be considered as a ribboning of that graph. 

Theorem 4.3.1. Let F be a 2-regular digraph with vertex set V and edge set 

E. A necessary and sufficient condition for a subset B C E to be a boundary 

circuit of some ribboning of F is that B is a circuit, i. e. a boundary circuit of an 

element of 7?.(F) is a circuit of  and conversely, given a circuit of  there exists 

a ribboning of the graph with the given circuit as a boundary circuit. 

Proof: That it is a necessary condition is clear. A boundary circuit clearly 

retracts to a circuit. 

That it is a sufficient condition is as follows. By induction, we construct a circuit 

decomposition of F that contains the circuit B. We can do this as deleting 

the edges contained in B leaves us with a graph with strictly fewer edges that 

F, and so the induction follows. Then we construct the dual decomposition as 

in Proposition 4.1.1. This gives us a pair of circuit decompositions which, by 

67 



Proposition 4.1.2, form a ribboning of F in which they are the boundary circuits. 

But one of these boundary circuits is, by construction, B. 	 D 

Theorem 4.3.2. Let S > 2. Then, for any surface E 9 ,6 with genus g and S discs 

removed, there exists a graph F which can be embedded in E in such a way as to 

make E E R(F), i.e. E is the ribboned graph of F. 

Proof: By demonstration. We shall write down the graph with the required 

property. 

First we note that given an enumeration of V we can uniquely describe a graph 

using a matrix Mr = (a2 ,3 ), where a,3  is equal to the number of edges e with 

t(e) = v2  and r(e) = v3 , and a2 ,, equals the number of single-edge loops at e. 

This matrix is the incidence matrix of F and will be discussed in greater detail 

in chapter 7. 

So to write down the graph F, we need only give the matrix and show how to 

embed it in E. The matrix Mr = (a2 ,3 ) is given below. 

Let n = 2g - 2+5 

12i=2 
a1,3 

= 10 j 2 

Ii j = 1,4 
a2,3 

= lo otherwise 

for 	1,2,2g-2,2g-1 

2 i0 mod 4 and j=i-1 

i 1 mod 4 and j = i + 1 

a2 ,3 = 1 i2 mod 4 and j=i±2 

i 3 mod 4 and j = i ± 2 

0 otherwise 

if n = 2g then 

12 2g2mod4andj=2g 

a29_1,3 = 1 2g 0 mod 4 and j = 2g, 2g - 3 10 otherwise 
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12 2g=0mod4andj=2g-1 

a2g,j =  1 2g2mod4andj=2g-2,2g-1 

1 0 otherwise 

if 72> 2g then 

12 2g2mod4andj=2g,2g+1 

a2g_1,j = 1 2g =—O mod 4 and j = 2g, 2g - 3 

110 otherwise 

11 2g0mod4andj=2g±1 

a29, = ' 	2g 2 mod 4 and j = 2g - 2,2g - 1 

1 0 otherwise 

1 j=2g+2 andn>2g+2orj=2g+l andn=2g+1 

2g 0 mod 4 and j = 2g — 1 
a2g+1,j 

2g 2 mod 4 and j = 2g 

0 otherwise 

and Vn > k > 2g + 2 

11 k4nandj=k±1 

ak,3= 	k = j = n 10 otherwise 

This gives a matrix which represents the required graph F. For sake of clarity, 

three examples are given in figures 4.7, 4.8 and 4.9. The first example shows 

the graph when ö = 2 (the minimum value it can take) and g > 0. The second 

example shows the graph when g = 0 (the minimum value it can take) and 6 > 2. 

The last example shows the graph in a particular case, namely g = 2 and 8 = 4. 

To produce the required ribboning, it may be necessary to flip some or all of the 

vertices v 2 ,v4 ,v6 , . . .,v29. 	
11 

4.4 On oriented ribbonings of a graph 

Now that we have shown that any surface is a ribboning of some graph, and 

defined an operation on ribbonings of a particular graph, we can show that any 

two oriented ribbonings of the same graph differ only by a finite number of vertex 

flips. 



Theorem 4.4.1. Suppose 7Z, and fl. 2  are two oriented ribbonings of the same 

graph F. Then there exists v 1 ,.. . , Vr E V such that VT,, o 	o VT r 'Ri = 1 2 

Proof: We know from Lemma 4.1.4 that an oriented ribboning of F defines a 

local orientation system. Let OR be the local orientation system defined by fi.,. 

Then there exists v 1 ,. . . , Vr E V such that the local orientation systems differ at 

each v. However, as there are only two choices of orientation at each v, it is 

clear that if OR, and OR2  differ at v, then VT,,, OR, and OR 2  agree there. Thus 

VT 1  o ... o VT,,,0R 1  = OR2. Hence result. U 

Assuming 2g = 2 mod 4 

40 

2 	 VI 	— ----- —P2p2 	 V4 

Assuming 2g = 0 mod 4 

Figure 4.7: First example: ö = 2 and g > 0 

C)(:::i 	11jul11 
1 1 	

12 

Figure 4.8: Second example: 5 > 2 and g = 0 
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Figure 4.9: Third example: 8 = 4 and g = 2 
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Chapter 5 

On invariants and the 
classification of equivalence 

classes of minimal vector fields 

The intention of this chapter is to discuss various invariants of minimal vector 

fields. We will show that we may combine some of these to form a complete set 

of invariants in the sense that they completely classify minimal vector fields up 

to the equivalence defined in chapter 1. In doing so, we will pull together all the 

work of the previous chapters to produce the classification result. 

The classification is contained within the following three theorems, which will be 

proved in the course of this chapter. Although all the graphical and topological 

concepts required by these theorems have been defined in previous chapters, how 

they relate to minimal vector fields has not yet been made clear. 

Theorem 1. For each minimal vector field X there exists a unique (up to diffeo-

morphism) balanced ribboned graph (Rx, TX)  defined in terms of X (i.e. there 

is a function between the set of minimal vector fields and the set of balanced 

ribboned graphs). 

Theorem 2. For each balanced ribboned graph B = (R, T) there exists a smooth 

vector field XB such that the balanced ribboned graph of X as given by Theorem 

1 is B (i.e. the function defined in Theorem 1 is surjective). 

Theorem 3. X Y if and only if (Rx, TX) (Ry, Ty). That is, X is equivalent 

to Y in the sense defined in chapter 1 if and only if the balanced ribboned graph 

of X is equal to the balanced ribboned graph of Y (i.e. the function defined in 

Theorem 1 is well-defined and injective). 

So, the aim of this chapter is to prove that there is a natural bijection between 

set of equivalence classes of minimal vector fields on E and the set of balanced 
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ribboned graphs. This is done by restricting to a surface of genus g. In this case 

the two sets are both finite and we shall prove that they have same number of 

elements. 

5.1 Graphical invariants of a minimal vector 
field X and the proof of Theorem 1 

We now define how the above graph theoretic definitions relate to a given vector 

field. Let E be a smooth, closed, compact, oriented surface with genus g> 1. 

Definition 5.1.1 (Graph of a minimal vector field). The graph of a mini-

mal vector field is the graph Fx = (V, E, t, r) where V is the set of zeros of X 

and E is the set of flowlines y of X that satisfy 

lim 'y(t) E V 
t—*±oo 

It is necessary to prove that E 0. However, X is a minimal vector field and 

hence by Theorem 1.5.1 and Definition 1.5.2 its fiowlines can be categorized into 

three distinct types, namely: 

Zeros ofX. 

Periodic cycles of X. 

-y : R -+ E such that X(1im t ± y(t)) = 0. 

It is clear then that V is the set of flowlines of the first type and E is the set of 

flowlines of the third type. t and r are defined as follows. For e, a flow-line of X 

in E 

i(e) = urn e(t) 
t-+-oo 

T(e) = lirn e(t) 
t-'+oo 

Now, as the zeros of X are all saddle points (as X is minimal and so pseudo-

minimal), so for any v E V there are two flowlines of the third type that terminate 

at v (i.e. satisfy T(e) = v). Thus, as no flowline can terminate at more than one 

vertex, E is non-empty and there are twice as many edges as there are vertices. 

We shall note in passing that 

Lemma 5.1.2. X Y implies Fx is isomorphic to Fy. 
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although the proof of this fact will be contained with the proof of Theorem 3, 

which occurs towards the end of this chapter. 

Definition 5.1.3 (Circuit decompositions of X). Theorem 1.3.10 and Defi-

nition 1.5.2 give that Fx is a 2-regular digraph on 2g - 2 vertices, where g is the 

genus of E. Moreover, as the vector field is smooth, we can see that it is embed-

ded on E in such a way that all vertices have the form shown in Figure 3.1 and 

thus have a local orientation. Thus, as Fx is embedded as a set on an oriented 

surface E we have a local orientation system ORrx  inherited from the embed-

ding. As a local orientation system (and its dual) together define a dual pair of 

circuit decompositions we can see that this defines the circuit decompositions of 
'P 

11'-
/U' 

/, 	X,'-
1,
x, 

That the circuit decompositions of X are indeed invariants of the equivalence 

class of X is one part of Theorem 3. Hence the proof of this fact will be delayed 

until later in this chapter. 

Definition 5.1.4 (Ribboned graph of a vector field). The ribboned graph 

of a minimal vector field X is the graphical ribboned graph 

(Fx , ICI C ID 

where rx is the graph of X defined above in Definition 5.1.1, and C and C are 

the circuit decompositions defined by the local orientation system, as given in 

Lemma 3.3,2. 

Definition 5.1.5 (Topological ribboning of a graph of a vector field). 

Suppose RX is the ribboned graph of a vector field. Then by Lemma 4.1.4 we 

can construct a 2-manifold with boundary, RX that is the topological ribboning 

equivalent to R. We call 'R.x the topological ribboning of rx. 

Now consider E - F. This is topologically identical to E - 7Zx, in the sense that 

each component of E - Fx is diffeomorphic to a component of E - R ,x and vice 

versa. 

Proposition 5.1.1. E - Fx consists of a finite number of annuli. Each annulus 

is diffeomorphic to the annulus, A in 1R 2  given by 

A = {(x, y) :1< x 2  +y2  <2}. 

Moreover, it is possible to choose this diffeomorphism in such a way that the 

flowlines of XIA  are concentric circles, centered at the origin. 
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Proof: That the boundary components are oriented circles is obvious (they are 

closed cycles of X). Now, let A be a connected component of E - Fx and let A 

have 8A  boundary components. Then it is easy to see that; 

X does not vanish on A. 

A is orientable. 

6A>O,9A>_°. 

Point 1. and Corollary 1.1.10 together imply that (A) = 0. 

Point 2. implies that A has a genus (gA  say). 

Thus (A) = 2 - 29A - = 0, and so this, together with point 3. implies then 

that 9A = 0 and 5A = 2. Hence A is a 2-punctured sphere i.e. an annulus. 

Now, by the definition of rx  we know that those fiowlines that do not make up 

IFX are periodic. So A is diffeomorphic to an annulus containing only periodic 

cycles. This is clearly diffeomorphic to A via a diffeomorphism that sends the 

fiowlines of X IA to concentric circles centered at the origin. 0 

Corollary 5.1.6. 8 is even. 

Proof: E - Rx is the union of finitely many annuli. Each annulus has 2 

boundary circuits and the total number of boundary circuits is J. Hence S is 

even. 	 0 

In order to define TX,  the pairing of Rx given by X we first need the following 

lemma. 

Lemma 5.1.7. Suppose A is a connected component of E — Fx and c is a bound-

ary circuit of A such that c E C. Then A has only two boundary circuits and the 

other one is some c' E C. 

Before we begin the proof, we shall note that the point of the above lemma is 

that every connected component of E - Fx contains two circuits, one in each of 

a dual pair of circuit decompositions. So every connected component pairs up a 

circuit in one circuit decomposition with a circuit in the dual decomposition. 

Proof: Notice that this proof follows the style of a previous proof, namely 

proposition 4.1.1. 

As E - Fx is the disjoint union of annuli (by proposition 5.1.1) it is clear that 

A, as a connected component of E - Fx has precisely two boundary circuits. Let 
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these be c and c'. We are given that c E C = E/ —oR,  so we only need to prove 

that c' E C'= E/ 

Consider A. A is oriented as it inherits the orientation of E. c is oriented as 

it is a circuit of the 2-regular digraph rX  so we can talk about the normal to 

the tangent of c. However, we have to make a choice about the direction of this 

normal. We shall make a convention that the normal to the tangent at c points 

into A at c. Notice that this same direction will point out of A at c'. 

As before, this choice of direction is closely tied to the orientation of any vertex v 

that is in c. In Figure 4.4 we see that by considering the chosen normal direction 

as being that to the right of the direction given to an edge, we have an orientation 

at v. Indeed, if we make the same choice of normal direction for each c e C (which 

we may as E is oriented) we just recover the local orientation system ORr. But 

we note that we can now define this local orientation system as that which pairs up 

edges where the perpendicular direction points towards the circuit being defined. 

We now consider the circuit c'. On this circuit the edges are paired up because 

the perpendicular direction points away from the circuit being defined. But by 

considering all such c' we can construct a circuit decomposition dual to C that 

contains c'. But by definition that circuit decomposition is C'. fl 

This lemma immediately allows us to conclude the following. 

Corollary 5.1.8. JCJ = JC'J, i.e. Rx is balanced. 

Proof: Lemma 5.1.7 shows that to each element of C there is a unique element 

of C' and vice versa. 	 0 

In fact, Lemma 5.1.7 does more than just show that Rx is a balancable graph 

(i.e. one for which we may define a pairing r : C -* C'), it provides an explicit 

pairing TX,  as the next definition shows. 

Definition 5.1.9 (Pairing of a ribboned graph). We define TX : C - C' as 

follows: TXC = c' A a connected component of E - Fx such that 9A = {c, c'} 

(i.e. the boundary circuits of A are c and c'). 

Moreover, as the above discussion shows, this definition is independent of the 

choice of vector field within the equivalence class containing X and hence unique. 

This proves Theorem 1 

This last comment allows to identify one last graphical invariant of X. 

Definition 5.1.10. Given a minimal vector field X, we can define the balanced 

ribboned graph of X, 13x = (RX, TX),  where Rx and TX are respectively the 

ribboned graph of X and the pairing of RX inherited from X. 
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5.2 Homological Invariants of X 

So far, we have discussed only results concerning the graph of a minimal vector 

field. Whilst it should be noted that this will eventually contributed to a complete 

classification of the class of minimal vector fields there are other invariants that 

can be mentioned. We shall discuss these in this and the next few sections. 

We have already discussed and defined ['x,  the graph of the minimal vector field 

X. We know that this is an embedded graph and that the embedding equips 

cx with a dual pair of circuit decompositions {C, C'}. We shall now consider the 

complement of Fx  in E. 

Recall that E - Fx consists of disjoint annuli. Let the number of these annuli be 

ar. Notice that these annuli are glued to the circuits of C and C' via the pairing 

T already discussed. We proceed by considering these annuli, together with the 

edges of the embedded graph cx. 
First, note that in chapter 2, we showed that the first homology class of the pair 

(E, V) is given by 

H1 (E, V) =< a1 , b1 ,. . . , a9 , b9 , fi,. . . , 	> z43  

Now each edge e2  of Fx is embedded on E, so it is a representative of a class in 

H, (E, V). So we have a map 

: H1(Fx,V) -* H(E,V) 

Proposition 5.2.1. The rank of this map q5 satisfies 

rank 0 + arx  = 4g - 3 

Proof: To prove this, consider the following relative homology sequence of the 

triple (E, rx, V) with ZZ-coefficients. 

-p H2(Fx, V) -* H2 (, V) —.-H 2 (E, Fx) 

-- Hi(Fx, V) --H 1 (E, V) - 	H1 (, Fx) --- 0 

Now, we know that the dimension of H1  (E, V) is 4g - 3. Also, it is clear that the 

dimension of H1(Fx, V) is 4g - 4 and that H2(Fx, V) has dimension 0. 

Notice also that the dimensions of both H, (E, Fx)  and H2(, r) are ark,  as 

- Fx is the disjoint union of arx  annuli. 
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So the above exact sequence reduces to 

	

0 -* 7Z -- 	Zarx 	z44 ±4  493 T!4 Zarx 

From this it is easy to see that the proof is now by diagram chasing. In the above 

exact sequence, we know that 

rank q + nullity 0 = 4g - 4 

But by exactness nullity 0 = rank /3. Now 

rank 3+ nullity 3 = ar 

and as nullity 3 = rank a = 1 we have that rank 0 = ar - 1. Hence 

rank q + ar = 4g —4+ ar - nullity 

= 4g - 4 + ar - rank /3 

= 4g - 4 + ar - ar + 1 

= 4g —3 

as required. 	 0 

Notice it is possible to recast this result using matrices as follows. 

Definition 5.2.1 (Homology matrix of the embedding of rx). Under 

the action of the map 0 , e, the i-th edge of Fx has homology class 

lei ] = )4a1  + 4b1  +... + Aa9  + ,4b9  + i4fi  + 	+ i49_3f29 _3  

where H, (E, V) =< a1 , b1 , . . . , a9 , b9 , fl , . . . , f2g-3 > and A, 4 and v are inte-

gers. 

Define mm as follows 

	

m_ 1 =A 	 for 1<jg 

	

m=j 	 for 1j ~ g 

for 2g-1j4g-3 

Define Mr to be the matrix that has entries m. Then Mr'x  is the homology 

matrix of the embedding of  rX 



There are two comments that can be made about this matrix. The first is obvious, 

namely that Mr, is the matrix of the map 0. The second is contained within the 

following proposition. 

Proposition 5.2.2. Suppose M is the matrix of a minimal vector field X and N 

is the matrix of a minimal vector field Y. Then X Y implies that there exists 

a 4g - 3 square matrix 'I' e Aut(H i (E, V)) and a 4g - 4 square matrix S in the 

group of permutation matrices (i.e. the matrix group of the set of permutations 

of 4g - 4 points) such that 

WMS=N 

Proof: X Y implies there exists a homeomorphism f of E that sends the 

fiowlines of X to the flowlines of Y. As the flowlines define the homology classes 

of rX  and Fy this is all we shall need. 

Now, chapter 2 showed that Aut (Hi  (, V)), the group of automorphisms of 

H1  (E, V) that are induced by a diffeomorphism of E, is a matrix group of 4g - 3 

square matrices. But as f is an orientation-preserving homeomorphism so it is 

isotopic to a product of Dehn twists by Lemma 2.2.3. So f induces a matrix XJJ  in 

this group that sends the homology classes of Fx to the homology classes of Fy. 

To complete the proof, we need only observe that by writing the homology classes 

of the edges of Fx as a matrix we are labeling them. It is possible that the labeling 

of the edges of Fy given by N are not that same as the labeling of the edges of 

rx = Fy given by M. However, they will be the same up to right multiplication 

by a permutation matrix S, as this will just permute the labels of the edges of 

the graph. Hence result. E 

We can thus conclude that Mr,,, is an invariant of X up to the equivalences given. 

However, it is not a complete invariant. It is possible for there to be two minimal 

vector fields X and Y such that WMr S = Mr, but X Y, as Figure 5.1 

shows. In this example, the two vector fields have the same graph F but different 

ribboned graphs, 'I' is the identity matrix and S is the matrix that sends f2  to 

12 - f. Now, consider the annuli themselves. By proposition 5.1.1 we know that 

X A  consists of concentric circles. Hence the vector field on A defines a unique 

homology class in H1  (E). So we may unambiguously talk of the homology class 

of an annulus. So we have a map 0 given by 

H1(Fx) -* Hi (E) 

The rank of this map is governed by a, k and g as the following proposition 

shows. 



Graph 1-' 

' 
A. 

Minimal vector field N 

N. 

Minimal vector vector field 

Ribboned graph f\  

----------------- 	------------- 	

------------- 

Ribboned graph r, 

Figure 5.1: An example showing that Mr, is not a complete invariant of X. 
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Proposition 5.2.3. 

rank +ar  =2g+k-1 

Proof: Consider the following diagram of exact sequence. 

	

o z 	______ 	 _____ 	
4' 

	

T 	T 	T 	I 
o 	112 (E) 	H2(>,Fx) 	

' 	
Hi(Fx) 	4' 	Hi  (E) 

-y > H1(E,Fx) 	
5

0 

_ 	
U 	 _ _ 

Ho(Fx) 	) Ho  (E) 	
T 

> 

From the observations made above, this is clearly 

o 	z 	
U 	Zarx 	(3 	 4' ) z - 

T 	T 	T 	I 
o 	z 	) 	 ) Hi(Fx) 	4' 	2g 

Y )Z' 

	

X 	>0 

I 

	

7Lk 	) 	Z 	
T 

The proof is then immediate by diagram chasing. 	 U 

5.3 Proof of Theorem 2 

Recall that Theorem 2 states that for each balanced ribboned graph there exists 

a smooth vector field. 

Proof: The proof is by construction. Given a balanced ribboned graph (R, r), 

where R = (Fx, {C, C'}) we use Lemma 4.1.4 to construct , an oriented manifold 

with boundary (i.e. the topological ribboned graph). We then construct E from 

7Z. by gluing up the boundary circuits of R. (which correspond to the circuits of 

R contained in C and C') in pairs by the rule c e C and c' e C' are glued together 

if and only if -rc = c'. This constructs E. 
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We now need to construct X on E. But this is just an extension of the vector 

field given by the graph Fx to the annuli that were glued to Fx to form R. It is 

done in such a way that the vector field on those annuli consists of closed compact 

flow-lines. We can then smooth the vector field to find the required vector field 

X. 0 

5.4 Definitions of equivalence 

In this section we restate some previously given equivalence definitions. Recall 

the following from chapter 1. 

Definition 5.4.1 (Vector field equivalence). Let X and Y be vector fields 

on E. Then X and Y are equivalent if and only if the corresponding flows fx,  fy 

are equivalent, i.e. there exists a homeomorphism of E which maps each flowline 

of Ix  to a flowline of fy and preserves orientation of orbits. 

This equivalence merely claims that the two vector fields are equivalent if the 

flowlines 'look' the same, i.e. are smoothly equivalent. We say that X Y 

Definition 5.4.2. Let (Rx, TX)  and (Ry, Ty) be two balanced ribboned graphs. 

Then they are equivalent (and we write (Rx, TX) (Ry, Ty)) if and only if there 

exists cr EAUt(Fx) such that a(Cx) = Cy i.e. R ''x RY and the following 

diagram commutes: 

CX  TX I 

or i 1 01 

i.e. TyJ = 	Note that if or instead maps Cx to C7 then we can compose with 

'ry to produce the necessary o from Cx to Cy. 

5.5 The Proof of Theorem 3 

Recall that Theorem 3 states that X Y if and only if (Rx, TX) (Ri', Ty) 

Proof: Suppose X '-' Y. Then by Definition 5.4.1 there a homeomorphism 

f of E such that maps every flowline of X to a flowline of Y, preserving the 

orientation. 

So consider f. As I, Fy, the graphs of X and Y respectively, are submanifolds 

of E, so f sends Fx to Fy. So it induces an isomorphism of graphs that we shall 



call fir.  Moreover f sends Cx to Cy and C I to C. Also, for a curve c E Cx, 
(Ty o f)(c) is that curve in that is glued to 1(c). But by definition of TX 

as the pairing of the balanced ribboned graph of X, the curve glued to f(c) is 

(f o 'ix)(c). So Ty o f = f OTX. So fir  Aut(F) such that -ry o fr = f' OTX and 

so (R, TX) (Ry, Ty) via f as required. 

Conversely suppose (Rx, TX) 	(Ry, Ty), that is, there exists ci E Aut(F) such 

that ciCx = Cy and Ty 0  ci = ci OTX. 

We claim that a E Aut(F) implies that there exits a homeomorphism f of E 

such that f induces ci. For o,CX  = Cy implies ciC C7, hence we have an 

automorphism that sends Rx to R. Now we can construct Rx and Ry using 

Proposition 4.1.2. Using this construction and the automorphism ci we can then 

construct a homeomorphism f : Rx - Ry such that f I  = a. The construction 

of ía away from F is simply that the annulus glued to a circuit c e Cx is mapped 

to the annulus glued to the circuit ac E Cy etc. That this is a homeomorphism 

is then clear. Moreover it is clear that f maps every fiowline of X to a fiowline 

of Y of the same type (as in periodic orbits go to periodic orbits, fixed points to 

fixed points etc.) and the orientation is preserved. 

Thus, by definition 5.4.1 X .-' Y 	 U 

The following corollary is thus immediate. 

Corollary 5.5.1. Let R be the set of all balanced ribboned graphs on 2g - 2 

vertices. Then the number of different equivalence classes of minimal vector fields 

on E9  is equal to the number of equivalence classes of the relation 	in R, i.e. 



Chapter 6 

On the Martin polynomial of a 
2-regular digraph. 

In chapter 3, we defined a polynomial of graphs, the Martin polynomial, first 

defined in [18]. However, previously this has only been used as a means to an 

end. In this chapter, we shall discuss the Martin polynomial as an end in itself. 

We shall aim to show that it is a polynomial that encodes a large amount of data 

of a 2-regular digraph. We shall also discuss the problem of deciding when a given 

polynomial is the Martin polynomial of some graph. 

We begin by recalling a few basic definitions. 

6.1 Basic definitions 

Recall that a directed graph (or digraph) is a quadruple F = (V, E, t, r) consisting 

of a set V of vertices, a set E that is projected onto a set of ordered pairs of 

elements of V and two maps, t and r, the initial and terminal maps respectively. 

Recall the definition of the Directed Martin Polynomial (or the Martin Polyno-

mial, when there is no confusion) from chapter 3, Definition 3.5.2. 

Definition 6.1.1 (Directed Martin Polynomial). The Directed Martin 

Polynomial of a 2-regular digraph F is a polynomial m'(F; r) defined on F 

as follows: 

If v is not a cut-vertex of F, then m'(F; 'r) = m'(Fi, r) + m'(F2 , r), where 

I', 172  are the results of the two possible splittings at v. 

If v is a cut-vertex of F and F 1 , F2  are the components of F formed by this 

cut, then m'(F; T) = Tm'(F i , 7_)m'(1F2,  r) 



3. If L is a free loop (i.e. the connected graph on no vertices) then m'(L, r) = 1. 

The following lemma of Las Vergnas [15] (also quoted by Jaeger [14] as proposition 

2) gives us a second formulation for the Martin polynomial which will suffice for 

most of what follows. 

Lemma 6.1.2 (Las Vergnas 1983). For a 2-regular digraph F let fr (F) be the 

number of circuit decompositions of F with r circuits. Then 

m'(F; i-  + 1) = 	fr+i(F)TT  
r>O 

Definition 6.1.3. Given a polynomial p(r) we say that the graph F expresses 

p(r) if 

m,  (IF; T) = p(T) 

In this case F is an expression of p( -r) as a Martin polynomial. 

Note that F need not be a unique expression of p(r). For example, the two 

graphs shown in Figure 6.2 both have Martin polynomial 4r 2  but are clearly 

non-isomorphic graphs. 

Notice that in the definition of the Martin polynomial we have two rules, 1 and 

2 such that the first can only be used on a non-cut vertex, and the second can 

only be used on a cut vertex. However, if we also extend the Martin polynomial 

by adding the following rule: 

If 1` 1  and F2  are two distinct graphs and ri  U F2  are the disjoint union of them, 

then we shall expand the above definition of the Martin polynomial by introducing 

a second variable a and added the rule: 

m'(Fi  U F2 ; T, a) = am'(F i ; r, a)m'(F 2 , r, a) 

So we can apply the first rule to all vertices. However, as we have shown in 

proposition 3.5.3, part 6, this only makes sense if a = r - 1. So the extra variable 

a is dependent on r and the Martin polynomial will be shown to be truly a 

polynomial in one variable. 

In chapter 3 we showed that the Martin polynomial is a transition polynomial. 

Previous work by Ellis-Monaghan [6] showed that the undirected Martin polyno-

mial is a translation of a Hopf map. As a consequence of this she was able to 

construct an iterative relation for the undirected Martin polynomial on an ex-

panded class of graphs. However the proof involved Hopf algebras. We given an 



analogous iterative result here for the directed Martin polynomial, which we have 

proved in a much more direct way. We then use this iterative result to obtain a 

series of results directly analogous to those obtained by Ellis-Monaghan for the 

undirected Martin polynomial. 

It can be shown that the directed Martin polynomial is also a translation of a 

Hopf map, in a directly analogous way to the method used by Ellis-Monaghan. 

However, we do not do this here. 
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6.2 An iterative formula for the Martin polyno-
mial 

By this we mean that we have the following result; for all T, 

rl 
 i m'(F 	

T+1 
m'(F; r) = 

4 	 A; 2 
Y+1 

)rn'(FIAc; 
2 

AEU(F) 

where U(F) will be defined. 

This result is an analogue of a result on the undirected Martin polynomial, proved 

by Ellis-Monaghan ([6]) using Hopf algebras. 

Definition 6.2.1. Define a polynomial K to be 

K(F; r) = 	fn  (IF) 
n>1 

where f(F) is (as above) the number of circuit decompositions of F of size Ti. 

By convention we define K(E; r) = 1 where E = (0, 0), the empty graph. This 

convention allows for the following: 

fo(F)={ 	
;: 

So the above definition can now be extended to 

K(F;r) = 
n>O 

Before we continue, we shall need the following well-known claim on multiplying 

polynomials. 

Claim 6.2.2. For any two power series we have 

br') (i CST3) =

T. 

r>O 	 s>O 	 n~O 	j=O 

Proof: Simply compare the coefficients of yfl• 

This polynomial, whilst not having the explicit recursive definition of the Martin 

polynomial, has two important properties, as the following lemma and theorem 

now show. 



Lemma 6.2.3. Suppose F 1 uF2  is the disjoint union of two distinct graphs. Then 

K(F 1  U F2 ; r) = K(F i ; r)K(F 2 ; T) 

Proof: The key to this proof is seeing that any circuit decomposition C of 

size n on F 1  U F2  splits into two circuit decompositions C1  and C2 on Fi  and 172 

respectively of total size n. Moreover, given two such circuit decompositions C2  

on F2  (i = 1,2) we have a circuit decomposition on ['1  U F2 . Thus for any n. 

f(F 1  U ['2) 

=
fr(Fi)fn_r(F2) 

The proof then proceeds as follows. 

RHS= 
( r>O

fr(Fl)Tr 

 ( 8>0

f(F)s 

  

= >1 i fr(Fi)fnr(F2)T 
n>O r0 

=E f(F1  U F2)yfl 

n>O 

=LHS 

as required. Claim 6.2.2 was used at the second step. 	 D 

Given A cE1 , define FIA = (V,A,tIA,TIA). 

Theorem 4. 

K(F;2r) = E  K(FI A ;T)K(FIAc;T) 
AEU(r) 

where U(F) = {A C Er : ['IA  and FIAc  are both Eulerian digraphs I. 

Proof: From Definition 6.2.1 we have that the right hand side of the above 

equation is 

	

RHS = 	

( 

fn(FIA)Tn) @i fr(FIAC)Tr 

n~ O 	 r

) 

AEU(F) 	 >O 

	

= 	 Tfflr(FIA)fr(FIAc) 
AEU(r) n>O 	r=1 

=Irn iE fnr (FIA)fr (1IAc) 
n~!O 	AEU(1') r=O 



where we have used claim 6.2.2 at the second step. So, if it can be shown that 

fnr(FlA )fr (FlAc) = 27(F) 
AEU(r) r=O 

then we would be done. 

The key point here, however, is observing that what we are counting is the size 

of the set 

{(A, C) : C is a circuit decomposition of F such that ICl = n and A C C} 

{(A, C) : A is a set of circuits of F and C = C1 U C2  where 

C1 is a circuit decomposition of FIA and 

C2 is a circuit decomposition of FIAC} 

It is clear that both of the above descriptions describe the same set and that 

l{(A, C) : C is a circuit decomposition of F, I C  = n and A C C}l = 2f(F) 

We can then notice that 

i 	fn_r(FlA)fr(FlAc) = 
AEu(r) r=O 

{(A, C) A is a set of circuits of F and C = C1  U C2 

where C1  is a circuit decomposition of FIA and 

C2  is a circuit decomposition of FlAc} 

which, from above 

=I{(A, C) : C is a circuit decomposition of F of size ri and A C C}l 

=2'f(F) 

It would be a fair question at this point to ask if K is related to in' in any way. 

It is, as the following lemma shows. 

Lemma 6.2.4. 

K(F;r) = Tm'(F;r+ 1) 

Proof: Simply compare the definition of K given in Definition 6.2.1 and Lemma 

6.1.2. 	 D 
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Corollary 6.2.5. 

m'(Fi  U 172; T) = (T - 1)m'(Fi ; 'r)m'(F 2 ; r) 

Proof: Simply substitute Lemma 6.2.4 into Lemma 6.2.3. 

Corollary 6.2.6. 

m'(F; 	
T-1 	 T+l)mF(F 	r+1 

	

T)= 	 m(FIA; 2 
	

IAC; 
2 4 AEU(I') 

Proof: Simply substitute Lemma 6.2.4 into Theorem 4 

Definition 6.2.7. Recall we defined E to be the empty 2-regular digraph, so 

K(E; r) = 1. Then by Lemma 6.2.4 we see that 

m'(E;r) 

and the following is an immediate consequence of Corollary 6.2.6 

Corollary 6.2.8. 

, Y+1 	T-1 	 , 	T+1 , 	T+1 

	

2 	
+ 4 
	

m (FIA; 
2 
 )m (FIAC; 2 

AEu(r)AE,r 

With corollaries 6.2.6 and 6.2.8 as tools we can construct many new results on 

the Martin polynomials of 2-regular digraphs. To do this, however, we need to 

recall the following results: 

Lemma 6.2.9. For any 2-regular digraph F = (lTr Er), 

m'(F;2) = 2' 

where n = I Vr I, the number of vertices in F. 

Proof: From Lemma 6.1.2 we can see that m'(F; 2) = > r>O f, (IF), i.e. that 

n-t'(F; r) is equal to the total number of circuit decompositions of F. But as a 

circuit decomposition requires choosing one of two possible local orientations at 

each vertex, there are precisely 2 n  such circuit decompositions. Hence result. D 

Lemma 6.2.10. [18] For any 2-regular digraph F = (Vr, Er'), 

M ,  (r; —1) = (-1)'(-2)' 

where n = IVr I, the number of vertices in F and A is the number of anti-circuits 

in r. 

. 
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Note that an anti-circuit is define to be a circuit for which the directions alter-

nate, i.e. an element of the circuit decomposition consisting of the incoherent 

transitions. 

Proof: This is a lemma of Martin [18], although also quoted by Jaeger [14] as 

proposition 3. 	 El 

Proposition 6.2.1. Let v(A) = the number of 2-regular vertices in FIA where 

A E U(F) and F is a 2-regular digraph. Then 

rn'(F; 3) = 	2v(rIA)+u(rIAc) 

AEU(r) 

This is in fact a special case of the more general Proposition 6.2.3, below. 

Definition 6.2.11. Define £2k(F), the set of Eulerian edge 2lc-partitions of F, as 

= {a = (ai , . . . , a2k) for each ai  FIa e U(F) U  ai  = Vr} 

and let N(a) = 
E2"

=  1 v(a) 

Then 

Proposition 6.2.2. 

m'(F; 1 + 2') = 2-k 	2N(a) 

aE62k (1') 

Proof: The proof is by induction on k. Firstly, note that the case when k = 0 

is covered by Lemma 6.2.9. Now, suppose that the statement is true for k. By 

Corollary 6.2.6 we have 

	

m'(F; 1 + 2k-F1) = 2k-1 	m'(FA; 1 + 2")m'(FlAc; 1 + 2k) 

A€U(I') 

	

—_2 k-1 	(2_k 	2N(b) ") (2_k 	2N(c) 

AEU(r) \ 	bEe2k(rIA) 	/ \ 	CE-2(fl) 

	

—_2 k-1 	2-2k 	 2N(b)+N(c) 

AEU(r) 	(b,C)Ee2k (rI A )xe2k  (rIA c) 

Note, however, that choosing A E U(F) and then choosing (b, c) is the same 

as choosing a e E2k+1 (F) and splitting it into two sets, b, c as we can identify 

(b, c) E £2k(FIA) x e2k(FIAC) with a E E2k+l(F) via the identification 

f bi 	for i = 1 ,.. .,2k 
ai 

- 

- 

	for i = 2k + 1,•,2k+1 
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Under this identification N(a) = N(b) + N(c), and so 

m'(F; 1 + 2'') = 2—(k+1) 	2N(a) 

aEe2k+l (I') 

as required, 	 D 

Definition 6.2.12. Define the set V2k(F), the set of cyclic edge 2'-partitions of 

r, as 

V2k(F) = {a = (ai ,. . . , a) : for each ai FIai is a disjoint union of cycles and 

Now, for some a E V2k(r) define q(a) = >Ii K(a) where K(a) = the number of 

connected components of FIaj. Then 

Proposition 6.2.3. 

m'(F; 1 - 2k) = _2—k E (_1)q(a) 

aEV2k (I') 

Proof: Again, the proof is by induction on k. 

We first need to consider one exceptional case, when F is a single circuit (i.e. the 

vertex set of F is empty). Then m'(F; T) = 1 and for any k I V2k(F)I = 2k and for 

all a e V2k(F), q(a) = 1. Hence the statement is true. 

For non-trivial F, the base step (i.e. k = 0) is vacuously true and the rest of 

the proof is analogous to the proof of proposition 6.2.2, the induction step being 

almost identical. 	 0 

At this point we may make an observation based on this proposition and Lemma 

6.2.10 as follows. 

Lemma 6.2.13. Let D(F) = {A C Er : FIA and  FIAC are disjoint union of 

cycles} and define t(A) = the total number of connected components in FIA  and 

FIAC. Then 

= 	(-1)'' 
AeD(r) 

Proof: Notice that D(F) is just V2 (F) and ic(A) is just q((A, Ac)). Then this is 

just the equating of Lemma 6.2.10 and proposition 6.2.3. 	 0 

92 



Proposition 6.2.4. 

m'(F; 1 - 2k) = 2—k 	( i ) N(a)( 2 )A(a)_1 

aEe2k (F) 

where A(F) is the number of anti-circuits of F and A(a) = > j 	A(F). 

Proof: The proof is again by induction on k and again is very similar to the 

proof of 6.2.2. In this case, the base step is covered by Lemma 6.2.10. 

6.3 The Martin polynomial of an incidence ma-
trix 

In this section we will define the Martin polynomial on the incidence matrix of 

a graph. We will do this by constructing the equivalent recursive rules for a 

matrix. But in order to retain many of the characteristics of the original Martin 

polynomial we will be forced to introduce certain restrictions. These restrictions 

will all have counter-parts in the graphical case, including the rule, previously 

observed in chapter 3, proposition 3.5.3, part 6, that the disjoint union of two 

graphs F 1  and F2  has Martin polynomial ('r - 1)m'(F i ; 7- )m'(F2 ; r). 

Definition 6.3.1. An incidence matrix of a graph F is an n x n matrix M 

defined so that the (i,j)—th entry M,3  is the number of edges of F of the form 

(v2 , v3 ). So for a 2—regular digraph, the sum of each row and column of the 

incidence matrix is 2. 

Conversely, any matrix with non-negative integer entries such that the sum of 

each row and column is 2 is the incidence matrix of some 2—regular digraph. 

It is clear that if we relabel the vertex set, provided we also consistently relabel 

the edge set, we change the incidence matrix without changing the underlying 

graph. Thus the incidence matrix is defined only up to the following equivalence. 

M .' N if and only if there exists S e Sym(n) such that S 1 MS = N. 

where Sym(m) is the symmetric group on n elements. 

Definition 6.3.2. We may now define the Martin polynomial, m' e Z[r, o], of 

the incident matrix of a 2—regular digraph F. The polynomial is defined on 

variables r, a in a recursive manner using the following rules, in which the initial 

matrix is an n x n incidence matrix. 
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112 0 •.• 	0 

M / 
I0 	

] 	J = 
{Taml(Ara) if AO 

I: 	A otherwise 

 

m' ([r ] , r, a) = r m' (A + 	a) 

 

M e + et 	A 	
, r, a) = m' (A + E,k + E,1,r, a) 

+ in'  (A + E2 ,1 + E3,k, r, a) 

M 
,([   0 

	2e2l 
e+er A] ra) =2m'(A+E,k+E,z,T,a) 

5. 

m'(L0 e2+e3l 
2e 	

A j , r, a) = 2 m' (A + E,k + E,k, r, a) 

2l 
M 

' ([ 	

2e ,r,
ra) =2m'(A+2E,k,T,a) 

where e, is the n - 1 length row matrix with j - th entry, 8, the Kronecker 

delta, and Es ,, is the n - 1 square matrix with k, l-th entry 6i,k6j,1  and A is a n - 1 

square matrix with non-negative integer coefficients. 

Lemma 6.3.3. M- N implies m'(M,r,a) = m'(N,r,a) if and only if  = r-1. 

Proof: 

We shall prove the only if direction by an example. Consider the graph on 5 

vertices shown in Figure 6.1. Two possible incidence matrices for this graph are 

01001 01100 
20000 00002 
00020,00020 
00101 10100 
01100 11000 
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Figure 6.1: The graph mentioned in Lemma 6.3.3 

Now we can calculate the Martin polynomial for each of the above matrices. 

1010011 '[10011 
12 0 0 0 01 0 	0 	2 	0 1 

M ' 	 10 

( 

0 0 2 0I,r,a  =2m' 

	

I 	T71 
0 	10 	i 
[iiooj 1001011 

L° 1 1 0 0] 
/10 	2 	ol 

=2rm'( i 	ü 	iI,r,al 
0 	1] 

=4rm' 
([ 	] 	

-r, or 

= 4'r2m' ([2] , 'r, a) 
= 47- 3 

and 

(by rule 5) 

(by rule 2) 

(by rule 4) 

(by rule 2) 

(by rule 1) 
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/10 
1 

1 1 0 01 
0 	0 	21 

1 
0 0 0 

1 10 0 	2 	0 1  
M ' 0 

Ii 
0 0 2 

01 

21) (10 

= 	
/ 

	

m 	I 0  J, T, a 

) Li 
0 1 0 L1 1 	0 	0] 1 0 0 oj 

( ro 	0 	0 	21 \ 

+ 
10 	0 	2 	01 

2 0 	0 I 	r, a) (by rule 3) 

L2 	0 	0 	oj 
/10 2 	01 

=2m'Ii 

0 	iIra) 
Li 0 	1] 

lb 	2 	0 
+2m' l2 	0 	0] ra) (by rules 	and 6) 

Lo 	0 	2 

=4m' 
([ ] 

Ta) 

+ 4in' 
([ ] 

, r, a) (by rule 4) 

=4rm' ([2] ,T,a) 

+ 4-rum' ([2], r, a) (by rules 2 and 1) 

= 4r2a + 4r2  (by rule 1) 

Now, as these are equivalent matrices, we require that the Martin polynomials 

coincide, i.e. that 

4T3  = 4r2a + 4r2  

that is, 

U =1-1 

as required. 

The proof for the other direction relies on the fact that if a = r - 1 then the 

above rules correspond to the graphical rules for the Martin polynomial given in 

chapter 3, defined using relations on graphs. So, if M(F) is the incidence matrix 

of a labeled 2—regular digraph I' then 

m'(M(F), r) = m'(F; r) 

and that if 17 1  and F2  are two labeled 2—regular digraphs that differ only in the 

labeling of the vertices, then 

m'(Fi , r) = m'(F 2 , r) 



i.e. the Martin polynomials coincide for different labelings of the same graph. So 

the Martin polynomial is defined for unlabeled 2-regular digraphs. 

Thus if M N then M, N are incidence matrices of two graphs that are merely 

two different labelings of some graph F and we have 

m'(M(F), r) = m'(F; r) = m'(N(F), r) 

as required. 

Whilst this is of interest, it should be noted that the Martin polynomial on 

its own cannot tell us much about the dual circuit decompositions of a given 

graph. Indeed, it is possible for two distinct graphs, with different balanced 

circuit decompositions, to have the same Martin polynomial, as the following 

example shows. 

I; 
	

I; 

Figure 6.2: The graphs F 1  and 172  for example 6.3.4 

Example 6.3.4. The two graphs F 1  and 172  are shown in Figure 6.2. The incident 

matrices are, respectively 

0200 1100 
1010 0020 
0002'0002 
1010 1100 

and so it is easy to see that the Martin polynomial for each graph is 

rn'(F2 , P7-) = 4T 2 
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Now, we may deduce from the Martin polynomial that for both graphs there are 

4 circuit decompositions of size 3, 8 of size 2 and 4 of size 1. 

However, in 1` 1  every circuit decomposition is balanced (i.e. has the same number 

of components as its dual decomposition) but in F 2  only those circuits of size 2 

are balanced. 

Hence we can see that the Martin polynomial does not contain enough information 

to distinguish balanced or dual decompositions. 	 0 

6.4 An axiomatic discussion of the Martin poly-
nomial 

In this section we shall prove that the Martin polynomial is the only polynomial of 

graphs that satisfies a particular set of conditions. We begin with some definitions 

of notation used in this section. 

Definition 6.4.1. The graph x used in the following theorem indicates a vertex 

within some graph F and I I and = are the results of the two possible splittings at 

that vertex. 

U indicates disjoint union. 

The graph F 1  x 172  is such that one of the possible splittings at the vertex marked 

by x splits the graph into two disjoint components F 1  and 172. 

To define the graph oc F suppose F = (V, E, t, r), where V = {v 1 , . . . , v,} and 

ej  E E. Then cxF =(VU{vo },E\{e}U{(te,v o ),(vo,vo),(vo,re)},t',r') where 

L' and T are the obvious extensions of t and r 

The graph F 1  = 172 is a graph such that there exists two edges e2 , e2  such that the 

removal of these edges separates the graph into two distinct subgraphs, 17 1  and 

172. Moreover, one edge has direction from F 1  to F2  and the other has the other 

direction. Two examples of such a graph is shown in Figure 6.3. 

Recall, the graph L is the graph on a single loop, with no vertices, i.e. L = 

(0, {O}). This is strictly different from the empty graph E = (0, 0). 

These definitions are made more explicit by Figure 6.4. 

) '\ 	Theorem 6.4.2. If p(F) is a polynomial on graphs in variables a,,3, u, 6, ,r, 4 that 

satisfies the following properties 

Property 1 p(x) = ap(II) + /3p(=) 



Figure 6.3: Two examples of a graph that can be written as 1` 1  = F2 . 

Property 2 p(F 1  U 172) = p(F 1 )p(F2 ) 

Property 3 p(cx F) = Sp(F) 

Property 4 p(L) = 1 

Property 5 p(Fi  x F2 ) = rp(F i )p(F2 ) 

Property 6 p(Fi = 172 ) = qp(1'1)p(1F2) 

then a = 0,r = 6 = a(i + 1), q = 1 and so p(F, a,,3, ji, 6, ,r, 0) = aI'Im'(F, T). 

The pictorial representation of these properties is given in Figure 6.4. 

Proof: We will first show that a = /3. But as the edges at the vertex in question 

are unlabeled this property must be symmetric. Hence a = 3. An example of 

this is shown in Figure 6.5. 

We will now show that r = 5 = a(j + 1) Consider Figure 6.6. This shows a 

graph F containing a single vertex loop. However, we can equally view this as 

two graphs F 1  and 172  joined by a cut point, where F 1  is a loop without vertices, 

i.e. p(F 1 ) = 1. Thus we have three potential ways of evaluating our polynomial 

on this graph, i.e. we can apply property 3, apply property 5 or we can use 

property 1. 

In the first case we get that 

p(F i  x F2) = Sp(F2) 



1. 	 /\:a 
, 

2 	 .L* 	* 

 

01 

5 	x t* 

.7 	t.  
6 	 * 

Figure 6.4: Pictorial axioms for the general polynomial p(F, a, ,3, tt , 5, 'r, 

In the second case we get that 

p(F i  x F2 ) = Tp(1F1)p(1F2) 

= Tp(F2) 

using property 4 at the last step. Thus we conclude that S = 'r. 

And in the third case we get: 

p(Fi  x F2) = ap(F 1  U ]T) + ap(Fi  = F2 ) 

= app(r2) + ap(F2 ) 

= a(+1)p(F2) 

using property 4 and the fact that F 1  = 1-2  is just 1-2  in this case. Thus r = 5 = 

a( + 1). 

Finally, we will prove that 4 = 1. Consider the graph shown in Figure 6.7. In 

this case we consider the situation with F 1  x 172  and evaluate in two ways, firstly 

using properties 1 and 6 and secondly using property 5. From this we get that 

rp(F1 )p(F2) = ap(Fi  U 172) + ap(F i  = F2 ) 

= aLp(F i )p(F2 ) + aqp(F1 )p(F2) 
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CS CS CS 
Figure 6.5: Demonstration why a = 

But as r = a( + 1) we must conclude that 0 = 1. 

So we have shown that a = 3, 'r = 5 = a(j + 1) and 0 = 1. Now, notice that 

every time we apply an operation to remove a vertex, we multiply by a. Thus we 

can conclude that 

p(F, a,,3, p, 5, r, 	= p(F, a, a, Al  a(JL + 1), a(i + 1), 1) 

= aI"Ip(F, 1, 1, T - 1, 7, 7., 1) 

But by considering the properties of the Martin polynomial given in defini-

tion 6.1.1, Lemma 6.2.5 and chapter 3, proposition 3.5.3, section 5 we see that 

p(F, 1, 1, r - 1, T, r, 1) = m'(F, r) as required. 

Thus we can now list the following as properties of the Martin polynomial. 

Property 1 p(x) = 	(II) +p(=) 

Property 2 p(F. U F) = (r - 1)p(F 1 )p(F2) 

Property 3 p(oc  I') = Tp(I') 

Property 4 p(L) = 1 

Property 5 p(Fi x ['2) = rp(F1 )p(['2 ) 

Property 6 p([' i  = 172) =P(r1)P(r 2) 

6.5 Characterising Martin polynomials? 

In this section we will discuss the problem of finding a graph to express a given 

polynomial p(T) as a Martin polynomial. We shall aim to show that this is a 
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><III) 	) By axiom 3. 

By axiom 5. 

By axiom 4. 

rU*() Q+ a*() 	By axiom 1. 

) * ED a  By axiom 2 

a*(+1)* 

 

By axiom 4. 

Figure 6.6: Pictorial equations showing r = 6 = a(.t + 1). 

1 >< 	* 	
) * 	

By axiom 5 

("\: 	a 	 By axiom i. 
\\ 	\J  

Byaoms2.&6. a 40 

a*(L+i) *  

Figure 6.7: Pictorial equations showing q = 1. 

difficult problem. After Lemma 6.2.4 we can see that this problem is equivalent 

to the graphical problem of constructing a 2-regular digraph that has f2 circuit 

decompositions of size j. But this is known to be a hard problem in graph theory. 

The problem here is that even if we restrict the degree of a Martin polynomial the 

number of vertices required to express it has no bounds. For example, consider 

the following lemma. 

Lemma 6.5.1. For any n there exists a polynomial p of degree 1 and 2-regular 

digraph r on n vertices such that p(r) = m'(F; r). 

Proof: Consider the operation on graphs shown in Figure 6.8. By considering 

the properties of the Martin polynomial discussed above, we can see that if we act 
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on a vertex of a graph using the above operation, then we increase the number 

of vertices by one and double the Martin polynomial. Thus by n - 1 application 

of the operation to the single vertex graph we obtain a graph F with n vertices 

and Martin polynomial 2 1 r, the polynomial of degree 1 as required. 

Figure 6.8: Operation on a graph F to double the Martin polynomial m'(F; r). 

So we can conclude that the degree of a Martin polynomial is no guide to the 

number of vertices of the graph required to express it. However, as we shall now 

show, it is always true that if we know that p(r) is a Martin polynomial of a 

graph F, then we know that F has 1092 (p(2)) vertices. 

So, we shall now consider a set of polynomials that has the Martin polynomials 

as a subset. Consider the cllowing results on the Martin polynomial: 

Lemma 6.5.2. For F a 2-regular digraph on n vertices (n > 0), with A anti-

circuits the following are true: 

m'(F;2)=2' 

m'(F;l)=fi (F) 

m'(F;O)=O 

m'(F; —1) = (-1)(-2)' 

where, as before f1 (F) is the number of Eulerian circuits of F. 

Proof: Condition 1 is just Lemma 6.2.9. Similarly condition 4 is just Lemma 

6.2.10. 

Similarly, condition 2 is proven by putting r = 0 in Lemma 6.1.2. 

To show that condition 3 is true, consider the definition of the Martin polynomial 

given in Definition 6.1.1. This shows that the Martin polynomial of the graph 
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with one vertex is r. But as the Martin polynomial is defined iteratively, we know 

that for any graph F on n > 1 vertices, the process that defines the polynomial 

will reduce F to a single vertex graph. Hence the Martin polynomial of such F 

will have no constant term. The exception to this occurs when F has no vertices 

in the first place, in which case the Martin polynomial is 1. But this case has 

been excluded from this lemma. 0 

Corollary 6.5.3. The equivalent conditions for K(F; T) are; 

K'(F;l) =2 

K'(F;O) = 0 

K'(F;-1)=0 

K'(I';-2) = (_ 1)n (_2)A 

Proof: All these conditions following from the fact that K(F; T) = rm'(F; T+ 1) 

and Lemma 6.5.2. 	 0 

It is now possible to construct the set of all polynomials with integer coefficients 

that satisfy the conditions shown in 6.5.2. However, we will initially construct the 

set of all polynomials with integer coefficients that satisfy the conditions shown 

in Corollary 6.5.3 as these are initially easier. Given this set, we will then be able 

to construct the set satisfying the conditions of Lemma 6.5.2. 

Lemma 6.5.4. Suppose p(-r) is a polynomial of degree n with integer coefficients 

with roots 1,0,—i, —2. Then 

p(-r) E P =<pr(T) : r =4,...,n> 

where 

Pr(T) = Tr + ((_2)r - 3(_1)r - 1) 

+ ((_1)' + 

+ (3(_1)T —1+ (_2)T1) 

Proof: The proof is by induction on n. For the base step, suppose n = 4. Then 

we need to show that any polynomial of degree 4 with roots 1, 0, —1, —2 and with 

integer coefficients is an integer multiple of p4(r) = r 1  + 2r3 - - 2r. But 

P4 (T ) = r4  + 2r3 - - 27- 

=r(r — 1)(T+1)(T+2) 
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so as the degree of p is 4, we can see that the base step is clear. 

Now for the induction step. Suppose that the result is true for any r < n and 

suppose p(r) satisfies the conditions of the lemma with degree n and the coefficient 

of T' is a E Z. Then as p(l) = p(0) = p(—l) = p(-2) = 0 we can see that 

p(-r) - apn(r) is a polynomial of degree strictly less than n satisfying all the 

conditions of the lemma. Thus by induction p(T) - apn (r) E P_ 1 , i.e. 

p(7-) - apn(T) = E arpr(r) 

for integers a,.. Hence 

P(T) = apn (r) + E ap,.(r) E Pn  

as required. 	 U 

Corollary 6.5.5. Suppose p(T) is a polynomial with non-negative integer coeffi-

cients such that 

p(l) = 22 

p(0) = 0 

p(—l)=O 

p(-2) = (-1)'(-2). 

Then 

where 

p(r) = q(r) + 

q(T) = (
2 - (_1)fl+A2A) + 2 1r2  + (2' + (-1)2) 

where ar  are integers and p,.(r) is defined in the previous lemma. 

Proof: It is easy to see that q(r) satisfies the 4 conditions given above. Thus 

(p - q)(-r) has roots 1, 0, —1, —2 and so is in P,.. Then the result follows from 

Lemma 6.5.4. The coefficients a, are necessarily integers and are chosen so that 

the coefficients of p are non-negative. 
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Notice that the conditions used in Corollary 6.5.5 are precisely those conditions 

that Corollary 6.5.3 says are necessary for a polynomial to be the polynomial 

K(F; r) for some graph F. 

The analogous lemma for the Martin polynomial, proven in a directly analogous 

way is 

Lemma 6.5.6. Suppose we have a polynomial p(r) satisfying the following con-

ditions, for some integers ii and A: 

p(2) = 2' 

p(0) = 0 

p(—l) = (_1)n(_2)1\_ 1  

Then 

n-A+1 
p(T) = 2 1

7 ' + 	a3p3 (7- ) 

j=3 

where a3  are integers and 

pj(T) = (3i - (2i-1 + (_i)i)r2  + (_21  + 2(-1)')r) 

So we now have a list of possible candidates for the polynomial m'(F; r). We can 

further subdivide this list as follows. Let the set of all polynomials constructed 

in this way be M. Let Mn =  {p e M p(2) = 2} Then 

M= UMn 
n>O 

The list of Mn for  n < 5 found using this method is given in table 6.1. The list 

of equivalent K polynomials is not given. 

However, whilst we have shown that this list must contain all the Martin poly-

nomials, the converse statement is not true. There are polynomials in this list 

for which no graph F exists such that m'(F; r) is the polynomial. For example, 

the polynomial r 4  + 2r2  + 4T is one such polynomial as the following lemma now 

shows. 

Lemma 6.5.7. There does not exist a 2-regular digraph F such that m'(F; r) = 

T4  + 2r2  +4r =p(T) 
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i:i m'(F;r) 
T 

-;- T2 

2i- 
7 3 

T 2  + 2r 
27- 2 
4r 
.7 4 

372 + 2T 
+ 2r2  

2r3  
r3  + r2  + 2r 

2 -r2  + 4T 
4T2  
8r 

3T3  + 2r2  
2- 3 + 372  + 2r 
r3  + 4r2  + 4r 

5T 2  + 6T 
r4  + 2r3  

T4  + T3  + r2  + 2T 
r4  + 2r2  + 4r 

2r4  
Y 4  + r3  + 2r2  
r4  + 32  + 2T 

2i- 3 + 4T 2 
6r2  + 4r 

r3  + 5r2  + 2r 
4T3  

3r3  + 	+ 2r 
2r3  + 2r2  + 4r 

Y 3  + 3r2  +67-  
4-r 2  +  8r 

8r2  

16T 

Table 6.1: The list of all possible Martin polynomials expressible by graphs with 
less than or equal to 5 vertices. 
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Proof: Observe that p(2) = 2 5  so if F exists then F has precisely 5 vertices. 

Suppose for a contradiction that F exists. 

Recall from the properties discussed in Theorem 6.4.2 that a Martin polynomial 

can be constructed from Martin polynomials of smaller graphs in a finite number 

of ways. Moreover, all but one of these methods of building a Martin polynomial 

do so by multiplying Martin polynomials. But we can easily see that in this 

particular case, as the coefficient of r is non-zero that in order for this to be a 

Martin polynomial it must be constructed from previous Martin polynomials by 

the means of property 1 alone. Recall also that in the case of property 1 the graphs 

which are "added" to make F have precisely one less vertex. So we now consider 

possible pairs of Martin polynomials q1, q2  such that q1  (2) = q (2) = 2. But it is 

easy to see that in this case the only possible option is {qi,  q2} = { r4 , 2r2  + 47}. 

Now the Martin polynomial 27-2  + 4r has a unique expression (i.e. there is a 

unique graph F 1  such that m'(F i ; T) = 2r2  + 4'r) and there are precisely three 

possible graphs F, F, F expressing r4 . All these graphs are shown in Figure 6.9. 

However, inspection shows that it is impossible to construct F out of any pair 

F 1 , F. Hence result. . 

r 	 r 

Figure 6.9: The graphs F 1 , F, F, F used in Lemma 6.5.7. 

Thus we can see that although our set is necessary, it is not sufficient. Moreover, 

although we do have other results which could further allow us to restrict the 

size of the set, for example the results found using the inductive properties of 

the Martin polynomial, in practice it would appear that as each of these newer 

results is dependent on results already included, or requires detailed information 

about the graph concerned, we cannot further restrict our list of possible Martin 

polynomials. 

However, we can use this set to make the following observations: 



Claim 6.5.8. For any n there is a unique Martin polynomial pn  such that p(2) = 
2n and p(-1) = ( 1)z(2)1. 

For any n > 2 there is a unique Martin polynomial qn  such that q(2) = 2 n  and 

qn(-1) 	(_1)n (_2)n_ 2  

Proof: pn(r) = 2 1 r. q(r) = 2n_22• That these are Martin polynomials 

follows from respectively n - 1 and n - 2 applications of the operation shown in 

Figure 6.8 to the unique graphs that express the polynomials T and r2 . 

Uniqueness follows by considering that both Pn  and qn  must be in M. Now 

recall that for a polynomial p to be in M n means that it can be expressed in the 

form 

n-A+1 

p(r) = 2'r' + j cpr) 
j=3 

where c, are integers and 

pj(T) = 	- (2i1 + (-1))7-2  + (2_1  + 2(_i)i)y) 

But for A > ii - 2 the sum is empty and hence the polynomial is unique. 	0 

One other option available is to consider the polynomials constructed using the 

axioms for the Martin polynomial given in 6.1.1. By considering these as rules 

for building polynomials we have the following set 

Definition 6.5.9. The set P is defined to be the smallest set of polynomials such 

that 

rEP. 

If P1,P2  E P such that p2 (-1) = (_ 1)1(2)A and IA1 - A21 -5 1 then 

Pi +P2 E P. 

If p,q E P then rp(r)q(r) e P. 

Then we have the following lemma: 

Lemma 6.5.10. Suppose F is a 2-regular digraph. Then m'(F; T) E P. 

Proof: The proof is by induction on m, the number of vertices of F. For if n = 1 

then m'(I'; r) = r. By axioms 2 and 3 of the definition of the Martin polynomial 

this is a Martin polynomial. But T e 1', by rule 1. 



Now suppose that the Martin polynomial for any 2-regular digraph on r < it 

vertices is an element of P. Let F be a 2-regular digraph on n vertices. If F has 

a cut point, then let 17 1  and 172  be the two 2-regular digraphs on r and n - 1 - r 

vertices, respectively, for some 0 < r < n that are derived from F by removing 

the cut point. Then by axiom 2 m'(F; r) = rm'(F j ; 7-)m'(F2 ; r). But by rule 3 

7'm'(Fj ;r)m'(F2 ;r) E P as required. 

Now, if F does not have a cut point we can only use axiom 1. Suppose F 1  

and F2  are the two graphs formed by the application of axiom 1. Then we 

know that m'(F; T) e P by induction. Now suppose further that m'(F; —1) = 

(_1)1(_2)i_ 1 . Then by axiom 1 we know that m'(F i ; r)+m'(F2; r) is a Martin 

polynomial, so we can conclude that 

m'(F i ; —1) + m'(F2 ; —1) = (-1)(-2)" 

for some A. And so 

(_1)n '(_2)' + (_i)fl_1(_2)12_1 = (-1)(-2)' 

hence A 1  - A 2  = — 1,0, 1 as required. So, by rules 3 m'(F; r) E P as required. 

Moreover, if A 1  <A2  then A =A 1  and if A 1  =A2  then A = A 1 +1. 	 0 

So we now have another possible way of constructing a set which must contain 

all the Martin polynomials. This can clearly be seen to be of the form 

P= UPn 
n<O 

where P = {p e P : p(2) = 2}. 

So, in principle we now have two different ways of constructing potential Martin 

polynomials. In fact, as the following lemma shows, this new method is the more 

restrictive of the two. 

Lemma 6.5.11. PC M. 

Proof: We will show by induction that Pn  C M. Firstly, notice that M1 = 

{r}=Pi . 

Now suppose that for all k <n, Pk C Mk and suppose p E P. Then there are 

two cases. 
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Case one: p(T) = Tq(T) for some q E Pn_1 C M_1. But in this case 

p(2) = 2q(2) 

= 2 2' 

=2' 

p(0) =O q(0) 

=0 

p(—l) —q(-1) 

= (_l)fl(_2)A_1 

asqEMi. SopM. 

Case two: p(T) = q1 () +q2(r) for some qj  € l'n_i C M_1. But then in this case 

p(2) = q 1 (2) + q2 (2) 
= 2n1 +2 n-1   

p(0) = q, (0) + q2 (0) 

=0+0 

=0 

p(—l) = q 1 (-1) + q2 (-1) 
= (_l)n_1(_2)Al_1 + (_l)fl_1(_2)A2_1 

= (_1)n (_2)A 

as qj E M_1, where the last is by the definition of P,. Thus p € Mn as required. 

However the converse does not hold. Consider the polynomial 

P (r) = r4 +4r3 +r2 +6r 

This is clearly in M6 as p(2) = 2 6 ,  p(—l) 	—8 = (_1) 6 (_2) 3 , so A = 4. Also 

clear is that p(0) = 0. But p(r) V 1', for, if it was, then we would have P1, P2 E 

P5 =M5  such that p=pi+p2. Then either A 1  =A 2 =3orA 1  =A+1=5,but 

by inspection of the polynomials listed in table 6.2 this doesn't happen. Hence 

p(T) is not in P6. 	 D 

Table 6.2 shows P,, for n < 5. 

So, in principle we would appear to be in a better position. However, by inspec-

tion we observe that, for m < 5, Mn = P, so the counter-example for Mn is 
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ii 2i m'(F;r) 
11 '1 

2 2r 

72  + 2r 
2 2i 2  

3 47- 
--T 74 

3T 2 + 2r 
+27.2  

2 
+ T + 2r 
2r2 + 4r 

3 47- 2 
4 8T 

i T 

3T 3 + 272 

2T 3 + 372  + 2r 
r3  + 42 +47- 

5T 2 + 6T 
7-4  + 2r 

r4  + r3  + T2  + 27-  
+ 2r2  + 4T 

2 
+ 73  + 2r2  

T4  + 3T 2  +27- 
+ 42 

6r2 + 4r 
r3  + 5r2  + 2T 

3 43 

3r3  + T 
2 + 2r 

2T 3 + 2T2  + 47 
T 

3 + 32  + 67- 
42 + 8r 

4 87-2  

--- 16r 

Table 6.2: The list of all polynomials in the set P for n < 5. 
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still a counter-example for the conditions defining 7' being both necessary and 

sufficient. 

At this stage, we can observe that the only true statement we can currently make 

about when a polynomial is a Martin polynomial is that a polynomial is a Martin 

polynomial if and only if there exists a graph expressing it. 
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Chapter 7 

Counting minimal vector fields 
on a surface. 

In this chapter the intention is to produce some combinatorial results concerning 

the structures constructed in previous chapters. We shall attempt to answer 

questions such as "How many 2-regular digraphs are there on n vertices?". In 

many cases, it will prove easier to calculate values if we label some part of the 

structure. In such cases it is clear that the number of unlabelled structures 

is the number of orbits of some group acting on the labelling in such a way 

as to preserve the structure whilst changing the labelling. For example, when 

enumerating 2-regular digraphs one can first label each of the vertices v 1 , . . . , v 

and then consider all such labelled digraphs. Then we can act on a labelled 

digraph via the permutation group on n letters, Sym(n). The unlabelled graphs 

are then just the orbits of the labelled graphs with this action. 

An example of this is given in Figure 7.1 In this figure we see the three different 

CXDCEIIIIH 0  vi 	V2  

V2 	 V2  

Figure 7.1: The three 2-regular digraphs on 2 vertices. 

graphs on 2 vertices. For each graph we could obtain a potentially different 

graph by swapping the labellings of the vertices. However, in all three cases 

Aut(F) = C2 , so there exists an automorphism of the graph that swaps the 

labellings, so this will not produce a different graph in this case. 

For this reason we shall need the following lemma, usually known, incorrectly, as 

Burnside's lemma. 
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Lemma 7.0.12. If the group C acts on the set S with action o then the number 

of orbits r of this action is given by 

r=-
IGI

>fla(g) 
gEC 

where fix(g) = J{s E S : g o s = }i, i.e. the number of points in S fixed by g. 

Proof: This is a standard undergraduate result and as such the proof may be 

found in many text books. The one that follows here is adapted from the proof 

given in [3]. 

Consider the set 

X = {(g, s) E G x S : g o s = s} 

We shall calculate IXI in two ways. Firstly, counting by g E C it is 

X1 = i i{s E S : g o s = s}l 	 (7.1) 
gEG 

=fix(g) 	 (7.2) 
9EG 

Secondly, by counting by s E S it is 

lxi =l{gE G:gos=s} 
sES 

= E jStab(s)j  
sES 

where Stab(s) is the stabilizer of s. But by the Orbit-Stabilizer theorem we know 

that iStab(s)ll Orbit (s)l = G  for all s E S. Let the orbits of the action of C on S 

be S1 ,. . . , S and for each orbit Si let .s 2  be a representative element, i.e. si E S. 

Then for each s E S, l Orbit (s)i = I Orbit(sj ). Hence 

 IGI  IxI 
= > l Orbit (s)l 	

(7.3) 
sES 

r 
1 = 	E 	 (7.4) 

t=' s1ES1 
l Orbit (s j )I 

=lGIr 	 (7.5) 

Hence equating Equations 7.2 and 7.5 and dividing through by IGI gives the 

result. 	 D 

One further note concerns notation. We define 

(2n-1)!!=(2n-1).(2n-3) .....3•1= 
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7.1 How many labelled 2-regular digraphs are 
there on n vertices? 

In this section we shall answer this question in two separate ways, for, when 

we ask this question we must first decide how we are going to label a 2-regular 

digraph. We could label the edges, with the labelling on the vertices deriving 

from this labelling, or vice versa. We shall consider both methods as they shall 

both give new combinatorial results. 

7.1.1 How many 2-regular digraphs are there on n labelled 
vertices? 

We seek to count 2-regular digraphs on n vertices, labelled by vertices. Thus such 

a graph has vertex set V = {v i , . . . , v} and edge set E, labelled by V. So an 

edge e with initial and terminal vertices vi  and v3  will have label (i, i). For this 

reason if a graph has two edges with the same initial and terminal vertices then 

both edges will receive the same label. 

To do this, we shall use the incidence matrix of a graph F. Recall Definition 

6.3.1: 

Definition 7.1.1. An incidence matrix of a graph F is an n x n matrix M 

defined so that the (i,j)—th entry Mi ,, is the number of edges of F of the form 

(i, i). So for a 2—regular digraph, the sum of each row and column of the incidence 

matrix is 2. 

Conversely, any matrix with non-negative integer entries such that the sum of 

each row and column is 2 is the incidence matrix of some 2—regular digraph, as 

the matrix gives us a means of constructing the graph by connecting up each pair 

of vertices v, v 3  with rn23  edges. 

It is clear that if we relabel the vertex set, provided we also consistently relabel 

the edge set, we change the incidence matrix without changing the underlying, 

unlabelled, graph. Thus the incidence matrix of an unlabelled graph is defined 

only up to the following equivalence. 

M N if and only if there exists S E Sym(n) such that S'MS = N. 

where Sym(n) is the symmetric group on n elements. 

So, counting 2-regular digraphs with labelled vertices is precisely the same as 

counting incidence matrices up to this equivalence. We shall first count incidence 

matrices directly, then apply Burnside's Lemma (lemma 7.0.12). 
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Definition 7.1.2. A permutation matrix on n points is an n x n matrix P with 

entries 0, 1 such that the row and column sum is 1 for every row and column. 

Now, observe that as an incidence matrix is any matrix that has row and column 

sum 2, so a matrix is an incidence matrix if and only if it is the sum of two 

permutation matrices. So define the set P n  to be the set of all matrices that are 

the sum of two permutation matrices. Our problem is now calculating 

an  = jPnj 

Theorem 7.1.3. an  satisfies the following difference equation. 

an 
 = n2a_1 - n(n - 1)2  

a_2 	 (7.6) 
2 

and a0  = a1  = 1. 

Proof: Firstly observe that by convention there is only one non-empty graph 

with no vertices, namely the single loop. Also, there is clearly only one 2-regular 

digraph with one vertex, and that has incidence matrix [2]. Hence the values of 

the initial conditions are correct. 

Let b_ 1  denote the cardinality of the set of n x n matrices in Pn  such that the 

first two entries are 1. 

Then, by considering the possibilities for the first row we observe that 

an  = na 1  + ()b_ 1 	 (7.7) 

Now, the matrices in Tn consist of two types, according to what happens in the 

first column. We have those of type I, where both the ones are in the same row, 

and those of type II, where the ones are in two different rows. Counting the 

number of both types gives 

b_ 1  = (n - 1)a_2 + (n - 1)(n - 2)b_2 	 (7.8) 

To derive this last equation we proceed as follows. We shall aim to construct a 

matrix of type II and see what choices we have to make in doing so. We begin by 

putting the two is in the first two columns in the first row. We no longer have 

any choice over the entries for the remainder of the top row, they must all be 

zero. The matrix is of the form shown below: 

[1 1 0 	.. 0] 
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Now, we can put a single 1 somewhere in the remaining ri - 1 places in the first 

column, likewise in the second. If we decide to put them in the same row, then 

we have no choice about the entries for the rest of that row, leaving us with 

a n - 2 x n - 2 block. At this stage the entries for this remaining block are 

unrestricted, i.e. it is a n - 2 square matrix of type I. As we had a choice of n - 1 

possible rows in which to put our pair of is, we see that there is a contribution 

of (ii - 1)a_2 to b_ 1  and our matrix is equivalent to the one shown: 

iio ... 0 
110• 0 
00 

So all that remains is to consider what happens if we put our two is in different 

rows. Notice that we have a (n - 1) (n - 2) choices about how to distribute these 

is in this case. Any choice we make however is equivalent to putting them in the 

top two rows we can, i.e. rows 2 and 3. So we have a matrix of the form 

ilo ... O 
10 
01 

But in terms of the choices we are left with, this is equivalent to the transpose of a 

matrix of type II, i.e. a matrix with a i in the top two entries of the first column. 

So the number of choices we have left to make is b_2 . So the contribution from 

putting the two is in different rows is (n - 1)(n - 2)b_ 2 . 

Hence we have two Equations, 7.7 and 7.8 in an  and bn  for various different values 

of ri. We can now solve these equations for an  by substitution, as follows: 

Firstly, note that Equation 7.7 can be rewritten as 

an - nan_i = 
n(n—i)

b_1 
2 

which implies that 

(n-1)(n-2) 
= a_ 1  - (n - 1)a_2 	 (7.9) 

2 

We can now substitute Equation 7.9 into Equation 7.8 to get that 

b_ 1  = (n - 1)a...2 + 2a_1 - 2(n - 1)a_2 	 (7.10) 

= 2a_ 1  - (n - 1)a_2 	 (7.11) 
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And if we substitute Equation 7.10 into Equation 7.7 we get the desired result. 

0 

Theorem 7.1.4. The unique solution to Equation 7.6 is 

	

n! 
	(n)  

	

an  = - 	(2r - 1)!! 	 (7.12) 
r=O  

Proof: Just substitute Equation 7.12 in Equation 7.6. 	 0 

Whilst this proof is true, it is not exactly enlightening. We now give a non-

rigorous argument for interest showing how the solution may be derived. 

The key idea is to express Equation 7.6 in terms of a differential equation. Then a 

series expansion of the solution to this differential equation will give the required 

result. We begin by defining a function f as followings: 

f(x) =&2X 
n>O 

Then Equation 7.6 gives that f satisfies the following differential equation: 

2(1 - x)f'(x) = (2 - x)f(x) 

with initial condition f(0) = 1. This gives that 

1 
/ 	 \2 

f(x) 	
ex 

= 

which can then be expanded to give the above result. 

Table 7.1 shows the first 25 values of a. 

So we have now counted incidence matrices. To get the number of 2-regular 

digraphs we apply lemma 7.0.12 to this result. This method of calculation returns 

the first three values as 1,3 and 8. For n = 1 this is trivial. For n = 2 the set of 

matrices can be written as 121, I + J, 2J} where I is the 2 x 2 identity matrix and 

J is the other 2 x 2 permutation matrix. In this case the action of the permutation 

group is trivial, so the result is 3 as claimed. For n = 3 the result is only slightly 

harder to prove. In fact, if we label the 3 x 3 permutation matrices as I, the 

identity, T1 , T2 , T3 , the three matrices corresponding to each of the three single 

transpositions and R, R' corresponding to the two remaining elements then we 

see that the 8 incidence matrices are 21, 2T 1 , 2R, I + T1 , I + R, T1  + T2 , T1  + R, R+ 

R'. 
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an  

1 1 
2 3 
3 21 
4 282 
5 6210 
6 202410 
7 9135630 
8 545007960 
9 41514583320 
10 3930730108200 
11 452785322266200 
12 62347376347779600 
13 10112899541133589200 
14 1908371363842760216400 
15 414517594539154672566000 
16 102681435747106627787376000 
17 28772944645196614863048048000 
18 9055359650665478876752602576000 
19 3180421710272322693959227638192000 
20 1239478835770026698838614159977440000 
21 533252395391438018873200088469644640000 
22 252081447537135601618562725529257444320000 
23 130383002914395989243171450112555145979040000 
24 73500396649726353004992119083172037827383680000 
251 44998990285095319505569239986172126591065712000000 

Table 7.1: The first 25 values of a n  

120 



7.1.2 How many 2-regular digraphs are there with 2n la-
belied edges? 

We seek to count 2-regular digraphs on n vertices, labelled by edges. So such a 

graph has vertex set V = {v = ({ e, e3 }, {ek, ei})} and edge set E = { e,, . . . , e} 

where e2 , e3  are the edges with v as the initial vertex and ek,  el are the edges with 

v as the terminal vertex. 

To do this, we shall construct all such graphs from their circuit decompositions. 

The idea is that we start with a set of circuits and from it construct the 2-regular 

digraphs that have the given set of circuits as a circuit decomposition. 

Definition 7.1.5 (Partition). A partition of a number p is a set of integers 

p1,. . ,p such that , p2 = p. However, as there may be more than one 

occurance of p2  for any i we shall use the notation that a partition is 

-- 

where r1  < r2 < ..• < rj and r2  appears ni times in the partition. Thus 

nr2 = p So, for example, under this notation the two partitions of 2 are 

(1 2 ) and (2 1 ), whilst the three partitions of 3 are (i s ), (1 1 ,2 1 ), (3 1 ) 

Define P(p) to be the set of partitions of p 

So, we start with a set of circuits, of total length 2n. This is equivalent to taking 

a partition r = (r,. . . , m) of a set E of 2n edges and forming the edges of each 

part into a single circuit. Call the resulting partitioned set of edges E(). 

We then label the edges of this set of circuits according to the following definition. 

Definition 7.1.6 (Labelling). A labelling of a set E() of 2n edges is a bijection 

E(r) -+ {1,.. .,2n}. 

We now have a set E(r) of circuits of lengths given by the partition r and labelled 

by the labelling L. 

One step remains to form the 2-regular digraph. We need only to glue up the 

vertices of the circuits to make each vertex 2-regular. But such a gluing is a 

pairing of the vertices of E(L). So we have the following definition 

Definition 7.1.7. A gluing map for the set of labelled circuits E(t)  is a map 
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Notice that as the vertices of the resulting graph must be 2-regular, we immedi-

ately see that for any edge e, re e and 7-2e = e. Thus r is a free involution of 

E (r). 

In order to construct the graph given a gluing map, we glue two vertices together 

if they are the terminal vertices of edges e, f such that £'TC(e) = f 

So, all the information needed to form a 2-regular digraph from a circuit decom-

position is a triple (E(r), £, r) as defined above. 

As the labellings of the above are independent, the total number of such triples 

is given by 

No. of triples = No. partitions of 2n 

x No. labellings of a set of 2n points 

x No. of free involutions of a set of 2n points 

But it is clear that the number of labellings of a set of 2n points is (2n)!. The 

number of free involutions of a set of 2n points is given by the following lemma 

Lemma 7.1.8. The number of free involutions of a set of 2n points is 

(2n - 1)" - 
(2n)! 

- 2n! 

Proof: Notice that a free involution is a pairing of the points of the set. So, we 

can pick 2 points from the set and say those are paired, then pick another 2 from 

the remaining set and keep going till we have paired up all points in the set. The 

number of ways of doing this is 

(2n'\ (2n - 2'

)  

\ 	(2'\ - 	(2n)! 	(2(n - 1))! 

2 	2) 	2!(2(n-1))!2!(2(n-2))L"2!0! 

(2n)! 
2 

But this method of picking points to pair assumes an ordering of the couples. As 

there is no such ordering we must divide the above answer by n!, which gives the 

desired result. 	 D 

So, if we define the number of partitions of a set of p points to be P(p) then we 

conclude that 

Lemma 7.1.9. The number of triples is 

P(2n) x (2n)! x (2n - 1)!! 
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7.1.2.1 Consider different triples 

We may now consider the question of different triples. 

The first question that arises is "What does it mean for two triples to be the 

same?" We shall answer this by stating that two triples are the same if they 

define the same labelled digraph with given circuit decomposition. So it is clear 

that two triples (E(r1 ), £, r1 ) and (E(r2 ), £2, r2 ) are different if r1 2. So we 

shall fix the partition r = (r', .. . ,r). 

Claim 7.1.10. We claim that given the partition, the group of symmetries of the 

partitioned set is 

= k 

Cri  wr Sym(n 2 ) 

where A wr B is the wreath product of B with A. 

Proof: It is clear that, as we have labelled all the 2n edges any symmetry of 

our partitioned set can be taken to be an element of the symmetric group on 2n 

points. So suppose we have such a symmetry g. Consider what g may do. 

On each cycle g can only cause the cycle to rotate. Hence, when restricted to a 

cycle of length r2 , g is just an element of the cyclic group C. However, if we 

have more than one cycle of length ri  g may interchange them. Thus, for each i, 

g can be any element of the group of symmetries of n2  copies of cycles of Ti. But 

this is just C,. wr Sym(n 2 ). We can then form the product of all such groups to 

find the group of symmetries to be G() as claimed. El 

We shall now define the action of the group G(r) on a triple. 

Definition 7.1.11. Two triples (E(r), £, r1 ) and (E(r), £2, T2) are equivalent if 

there is an element g e G() that sends one to the other. 

We shall now discuss the implications of this definition. 

It is clear that, as mentioned above, we can view G(r) as a subgroup of the 

symmetric group on 2n points, in which case the action of the group on 11, . . . , 2n} 

is obvious. 

Firstly, we define the action of the group on a labelling L. Recall £ is a bijection 

between E(r)  and the set 11, .. . , 2n}. We define the action of the group on £ as 

the action on {l, . . ., 2n}, i.e. for e E E(L), (g o £)(e) = gC(e). 

Secondly, to define the action of the group on a free involution T recall that T 

is a permutation of {1,.. . , 2n}, hence an element of the symmetric group on 2n 
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points. Thus we define the group action as conjugacy, i.e. g o 'r = g'rg. Notice 

that as we glue the terminal vertices of two edges together if and only if £ 1 TC 

interchanges them, these two actions agree, i.e. £'(g o T)C = (g o £)'r(g o 

So, two triples (E(r), £, r1 ) and (E(r), £2, T2) are the same if there is an element 

g E G(z) such that 

g o (E(r), £, r1 ) = (E(r), gC1, g 1-rig) 	 (7.13) 

	

= (E(r),.C 2 ,r2 ) 	 (7.14) 

So, the number of different 2-regular digraphs labelled by edges with a marked 

circuit decomposition is (using Lemma 7.0.12) 

( Gr)I 	i 	fix(l,)(g) 
rEP(2n) 	- gEC(r) 

where 

flX(c,.r)(g) = I{(C,r) : gL = L,g'rg = T}j 

Fix £ as a labelling. Then the set of all labels is {aL : or E Sym(2n)} and for 

any a E Sym(2n), (Orr, T) is the same as (L, o,- 1 7-or). So we conclude that: 

fl-)(g) = {(S, r) gS = S, grg = 7-11 

= I{(a,r) : gaL = a/,g 'Tg = 

= Sym(2n) x I{(C, r) : g-  "rg = T}I 

= (2n)! X I{( r) : g1rg = 

= (2rt)! x 	: g 1 7-g = T}I 

so if we define fix( g ) = I{r : grg = r}I then we can conclude that: 

Lemma 7.1.12. The number of different 2-regular digraphs labelled by edges, 

(where two different labellings give two different graphs) with a marked circuit 

decomposition is 

(2n)! 	f(g) 
 

I G  (z) I rEP(2n) 	gEG() 

Now, it is easy to see that this last result will give (2n)! times the number of 

labelled graphs with a marked circuit decomposition, as it will regard two different 

labellings of the same labelled graph as different. So, we can further improve this 

result by dividing by (2n)!. To clarify this result, we shall make the following 

definition. 
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Definition 7.1.13. 
—1 1k 

bn(rfh  
1 ,...,rk  ) = (flrini!) 	 fix(g) 

\ i=1 Cr1  wr Sy-(n 1 ) 

Then our improved result is: 

Lemma 7.1.14. The number of different 2-regular digraphs labelled by edges with 

a marked circuit decomposition is 

1 
IG(r)I 	jflxr(g)= 

r€P(2n) 	- gEC(r) IT 1Z2 	

fix(g) 
gEC(r)n l r=(r1 ,...,rk ) 	- 

: 	(rni 
rl,...,rk) 

l 	'k r=(r1  ,...,rk ) 

where the equality is clear, because G( (, n
1 ,. 	r ,,,i = 	C,. wr Sym(n) 

Although actually calculating values with this formula is not simple, calculations 

for the first 3 values give 1, 3 and 8, which agree with the results in the previous 

section. 

Example 7.1.15. n=1 This is the smallest possible case. Recall that Lemma 

7.1.9 gives that there are 4 triples. This gives us our first, albeit rather crude, 

estimate for the number of 2-regular digraphs with a marked circuit decomposition 

on a single vertex. 

Now, P(2) = 112 , 2 1 1 and for either partition G(r) = C2  =< (12) >. Also, the 

only free involution of a set of two points is the transition (12) so we have that 

for either g E C2, fix(g) = 1 SO 

IG(r)I 	
fixr(g)= 	(1+1) 

rEP(2n) 	- 9EC(r) 	rEP(2) 

=2 

so in this case, the count given by assuming that every triple corresponds to a 

graph is the same as that given by the more precise count given by assuming that 

every 2-regular digraph has a unique circuit decomposition, i.e. using Lemma 

7.1.12. However, this is assumption is clearly only an approximation. If we 

instead assume that two different labellings of the same graph should be counted 

as the same graph, then we use the count given by Lemma 7.1.14, which is a clear 

improvement. The 4 graphs of Lemma 7.1.12 are shown in Figure 7.2. It is easy 

to see, in this figure, the 2 graphs of Lemma 7.1.14 as to get these, we simply 

ignore the labelling in this case. D 
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E>~ D 
e2  

e 1 	 e, 	 e 2 	 e 1  

Figure 7.2: The 4 different 2-regular digraphs labelled by edges as given by Lemma 
7.1.12 

Example 7.1.16. r = 2n1  In this case we are counting the number of different 

labelled graphs with a single circuit of length 2n. But such a circuit will be 

Eulerian, by definition. However, we have previously shown that any 2-regular 

digraph has an Eulerian circuit. Thus we can see that the number of connected 

graphs with a marked Eulerian circuit is 

1 
IG(r)I 

	
fix,

(g) 
9EG(r) 

Now, in this case IG(r)I = C2n I  = 2n so the above becomes 

b=b(2n')=—E  fix, (g) 
gEC2 

Calculations for ri = 1, 2, 3 give that bn  is 1, 2, 5 respectively. 

We shall now give an explicit formula for this equation, due to Bar-Natan. 	0 

7.1.2.2 An explicit formula for the number of graphs with labelled 
Eulerian circuit 

Theorem 7.1.17 ([1]). The number of different free involutions on a set of 2n 

points (and hence the number of different graphs with labelled Eulerian circuit) is 

given by the formula 

2n 
ço(--)u(k, 2n) 

2n 	k 
kI 2n 

where 

( 	

k! (2n)ft 	 ifktri, k 
2 

u(k, 2n) = 	
k 	 k 	(k—j)! 

>j>O,k—j even () 
221(j)! 	

if kin 
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and ço(r) is the Euler-co function. 

Proof: It is an immediate consequence of Lemma 7.0.12 that the number of 

orbits of the action of the group G((2n)) = C2n on the set of free involutions of 

a set of 2n points, bn  is given by 

fix , (h) 
hEG 

=
fi( g IC) 

where C2n =< g>. 

Now, it is a further consequence of the results on cycle index discussed in [9], 

pp35-41 that this result is 

bn 
 = 12n 

2n i co(--) 
fix ,  (g, )  

kin 

It remains to prove that 

k' • d2 	 ifkn 

fix, (g') = u(k, 2n) 
= 2)! 

(k) (2j)!d1 if kin 

{ 

2ij! 

We proceed as follows. Suppose r is fixed by y1C•  Let dk = 2n. Let V, the set of 

2n points, be written as 

V = {po,P1,P2, • ,P2n} 

Let the action of C2 n  =< g : g  2 = 1 > on V be gpi  = Pi+1 Then we may write 

A = gzpo  and so V may be written as 

where 

V{gicp:O>i<k} 

Thus we see that 

V =  
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The idea of this proof is that T is defined entirely by its action on Vo . We may 

see this as follows. 

Suppose pi = gzpo  e V0. Then for all j, g ' po E Vj . So. 

Tgpo = (
gikyg_ik)g3ip 

= gikyg p0  

that is 

= gikTP  

so the action of T on pi  defines the action of r on all P3k+i• 

Notice also that, if rp2 = Pr then there exists suitable j, t such that r = jk + t 

and so 

Tgpo = 
g Itp0  

so 	 g_ikTgipo = 9
tp0  

that is 	 T : gpo 

which implies 	 T: g k p0  .
. 9

tp0  

that is, the action of r is given by pairing up p2  and Pt  within T/  together with a 

choice of V3 . 

Now, the question arises of when pi can be paired with itself in this manner, i.e. 

can we select some value of j such that r maps pi to Pjk+i  and vice versa. But as 

r is an involution, if such a j exists then r takes Pjk+i  to p2 . But we have seen 

above that r takes P—jk+i  to p2 . So P—jk+i = Pjk+i, that is 9 jk+i = gik+i. Thus 

gik = gik, i.e. g2J/ = g2Th ==id. So p2  can only be paired with itself if k divides it 

and in this case we have no choice over Vi that is p2  is paired with Pnk+i 

So, if k does not divide it then to define the action of r we simply pair up all the 

points of V0  and pick a j for each pairing. Thus there are precisely 

(k-1)!!d 

ways of doing this. Notice that this does not work if k is not even. However 

observe that if k is odd then d must be even. Thus d = 2r and so 2n = 2rk and 

hence k divides n. Thus if k does not divide it we may conclude that k is even. 

Now, if k does divide n then we may have up to k points of V0 paired with 

themselves. If we have j pairs of distinct points in V0  then the number of such T 

fixed by gk  is precisely 

()(2_ 1)!! d 
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and thus the number of 'r fixed by g   in general is the sum of this over all j, i.e. 

() 	
—1)!! d 

as required. 	 0 

This last result is well-known, and the set of free involutions of a set of 2n points 

is well-studied. They are usually studied up to the action of C2n  given above and 

as such are referred to as chord diagrams. See for example [1]. 

7.2 Given a 4-regular graph on n vertices, how 
many 2-regular digraphs can be constructed 
from it? 

The following is [6], corollary 5.5. 

Theorem 7.2.1. For G a 4-regular graph with n vertices, the number of Eulerian 

orientations F(G) of C (i.e. the number of 2-regular digraphs for which C is the 

underlying graph) is 

1 
F(G) = 	N(A) 

AEU(C) 

where N(A) is the number of 4-regular vertices of G and U(G) is the set defined 

in Theorem 4 in chapter 6. 

The proof is given in [6], page 345. It uses an inductive relationship on the 

undirected Martin polynomial, similar to that given in chapter 6. 

7.3 Given a 2-regular digraph, how many circuit 
decompositions are there? 

If we begin by considering the circuit decompositions to be labelled then we im-

mediately see that there is a one to one relationship between the local orientation 

systems of labelled graphs and the circuit decompositions of the same. This is 

because, as shown in chapter 3 a circuit decomposition both defines and is de-

fined by a local orientation system. But the number of local orientation systems 

is just the number of ways of making n independent choices, when each choice 

is between two options, i.e. 2. So, the number of circuit decompositions of a 

labelled graph on n vertices is just 2'. 
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To find the number of circuit decompositions of an unlabelled graph, we note 

that this is simply the number of orbits of the action of Aut(F) on the labelled 

graph F. So we can apply Lemma 7.0.12 to this result. However, for now we shall 

continue with the graphs labelled. 

Now, before we can proceed to the question of how many of these circuit decom-

positions are balanced, we should recall that in order to construct a ribboned 

graph we need a dual pair of circuit decompositions. Thus on a labelled graph, 

there are = 21 such labelled ribboned graphs. We may now ask how many 

of these are balanced. 

7.4 How many minimal vector fields can be con-
structed from a given balanced 2-regular di-
graph? 

Recall that a minimal vector field is equivalent to a balanced 2-regular digraph 

R with a pairing r : C - C', where I CI = ic So in the case of vector fields with 

labelled graphs, the question is equivalent to asking how many pairings there are 

of C with C. But this can easily be seen to be id. 

So, we now have a way of calculating the number of minimal vector fields X with 

a labelled graph F. And thus, to calculate the number of minimal vector fields 

without such a restriction we need only apply Lemma 7.0.12 using the group 

Aut(F). 

Performing this calculation in the case when g = 2 gives that there are 6 minimal 

vector fields. These can be constructed using the methods given in chapters 3 

and 4 and are shown in figure 7.3. The underlying graph of the ribboned graph 

is shown here in red, whilst typical periodic cycles are shown in blue. 

7.5 Given a graph C, when does there exist F(G) 
such that the automorphism group of F(G) 
is G? 

In this section we shall prove that for any finitely generated group G there exists 

a 2-regular digraph F such that the automorphism group of F is isomorphic to G. 

Theorem 7.5.1. For any finite group G there exists F(G) a 2-regular connected 

digraph such that Aut('F(G)) = C. 
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- 

-Ir 

Figure 7.3: The 6 minimal vector fields on a surface with genus 2. 

The idea behind the proof of this theorem is to construct a Cayley digraph F' of 

C with respect to a set of r generators S of G. This will be an r-regular digraph. 

We then replace each edge of F' by a"labelled" edge and each vertex by an 

cube" so that the resulting graph F(C) is 2-regular. Theorem 7.5.1 will then be 

a consequence of properties of r-cubes and a lemma about Cayley graphs. 

Notice that if r = 2 then we need only label the edges using loops (as discussed 

below) and we're done. If r = 1 then there is only one edge leaving each vertex, 

so we don't need to label it with loops. So we can "bud" a loop onto the Cayley 

graph of C, as shown in Figure 7.4, to make F(C), a 2-regular digraph as required. 

Thus from now on we shall assume that r > 2. 

Figure 7.4: How to bud loops to the vertices of a 1-regular digraph to make them 
2-regular 

The following discussion of Cayley graphs owes much to [3] 

Definition 7.5.2 (Cayley graphs). Let S = {s, . . . , S} be a set of r elements 

that generate the finite group C and no element is the inverse of another element 

in S. The Cayley graph F(G; 5) of C with respect to S is the digraph defined 
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with vertex set V = G and the edge set E defined as 

E = {(g,sg) : s ES andg E G} 

Notice that this is more usually called the Cayley digraph with the Cayley graph 

being the underlying graph. As we are not interested in undirected graphs, when 

we talk of the Cayley graph, we say be referring to the digraph defined above. 

Notice that we may regard the elements of S as labelling the edges, i.e. the edges 

(g, s2g) has label Si, or, for brevity, i. Notice that each vertex g has r edges 

coming in of the form (s' g, g), one for each of the r labels, and r edges coming 

out (g, .s jg), again one for each of the r labels, hence F(G; 8) is an r-regular 

digraph. 

Now, we have the following lemmas: 

Lemma 7.5.3. S generates C implies that r(G; 8) is connected. 

Proof: As S generates G, so any element g E C can be written as a product of 

elements of S and their inverses. But this product can then be used to define a 

path from the identity to g. Hence F(G; S) is connected. 	 0 

Lemma 7.5.4. For each g E C, the map p9  : x -f xg is an automorphism of 

F(G; S). 

Proof: This is clear, as if (x, sx) is an edge, then so is (xp9 , sxp9 ) = (xg, sxg). 

0 

Notice that the permutations p9  comprise a permutation group isomorphic to 

G. So there is an action of G on the vertices of F(G; S). Notice that this is a 

transitive action as for any g, h E C, p9-lh sends g to h. As we have used C to 

denote the vertices of the Cayley graph, we shall denote the permutation group 

by p(G). 

We also have the following lemma, which will be key in the proof of Theorem 

7.5.1. 

Lemma 7.5.5. Any automorphism of F(G; 5) which preserves the labels on the 

edges belongs to p(G). 

Proof: Let f be a label-preserving automorphism. Then, as all elements of p(G) 

are also label-preserving we can compose f with  pit-' to obtain an automorphism 

fixing the vertex corresponding to the identity of G. Thus we may assume f fixes 
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a vertex of l'(G; S). Now, for each si E S there exists a unique edge with label i 

and initial vertex the identity, namely (id, s 2 ) and a unique edge with label i and 

terminal vertex the identity, i.e. (sf', id). So f fixes all vertices si  and But 

we can iterate this result, which leads to the conclusion that f fixes all C and so 

f is the identity. Hence result. 0 

So we have constructed an r-regular digraph such that the group C is the group 

of automorphisms that preserve the labels on the edges of this graph. We now 

want to adapt this construction so that the graph is 2-regular and the edges 

are "labelled" in such a way as to force any automorphism to necessarily fix the 

labelling. 

This latter requirement is easy. If an edge (g, Sig) has labelling i then we replace 

it by an "edge" consisting of i loops, as shown in Figure 7.5. 

g 	 Sig 

p Q Q 	Q p 

g 	1 	2 	 i 	Sig 

Figure 7.5: The "edge" with label i that replaces the edge (g, s jg) 

So, all we need now do is to construct an r-cube F o  with the properties that 

F0  has r initial vertices and r terminal vertices. 

Aside from these initial and terminal vertices, all vertices of IT 0  are 2-regular. 

Any automorphism of F 0  that fixes the initial and terminal vertices neces-

sarily fixes 11 0  

An r-cube is merely a 2-regular subgraph that we will put in place of each of the 

r-regular vertices. It will consist of r primary "edges", each of which will have a 

single vertex in common with each of the others. Each of these primary "edges" 

will also have a certain number of loops attached to it in order to distinguish it 

from any other primary edges. The reason for this latter condition is to satisfy 

the restriction above that an automorphism that fixes the initial and terminal 
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2 

3 3 

Figure 7.6: A 3-cube and a 4-cube. 

vertices will fix the entire r-cube. Figure 7.6 shows a 3-cube and a 4-cube for 

clarity. 

We will construct an r-cube labelled by an element g E C. 

Definition 7.5.6 (An r-cube, F0). We define Fo  = (Vo , E0 ) where 

Vo 	{v( j,o,g) : j = 1,.. .,r} 

U{v({i,j}, g) : 	j = 1, . . . , r} 

U{V(j,1, g ) : j = 1,.. . , r} 

and 

E0  =1(v(j,o ,g), V({i,}, 9)) : j = 2, . . . , r} U {(v( i ,o ,9), V({1,2}, 9))} 

U{ (v({,}, 9), V({+i,},9)) : 2 < i + 1 <j} 

U1(v({_ l,)},v({ + l,},9)) : 1 <j <r} 

U{(V({i,j},g), V({i+1,j}, g)) : j <i < r - 1} 

U{(V({r,j}, g), V(,i, 9)) : j <r} U {(V({ r_l,r}, g), V(r,1,g))} 

The j-th line segment of 17 0 , i.e. the link between all vertices where j appears, is 

shown in Figure 7.7 

_________
- 	 p 

V( j ,o,g) 	 V({ j _1,j},g) 	 V( j ,1,g) 

V({ 
1 ,j },g) 	V({j+l,j },g) 

({2,j},g) 

Figure 7.7: The j-th line segment of the r-cube labelled by g. 
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Now, it is easy to see that such a gadget has r initial vertices, namely V(j,O,9) for 

j = 1,. . . , r and r terminal vertices, namely V( 3 , i,9) for j = 1,.. . , r. Moreover, it 

is clear that aside from these vertices all vertices of F 0  are 2-regular. However, to 

prove the last condition, i.e. that any automorphism of F 0  that fixes these initial 

and terminal vertices necessarily fixes F 0  we require the following lemma. 

Lemma 7.5.7. Let ci be some fixed automorphism of F0 . Define P(A) to be the 

set 

P(A) = { v({,k}, 9) : k 54 j 	A, 1 < j :5 g} 

Then ci fixes P(A) pointwise (i.e. civ = v for any v E P(A)) implies ci fixes 

P(A + 1) pointwise. 

Proof: Suppose ci fixes P(A) pointwise. Then we need to prove that for all 

j A + i, ci fixes V({j,.)+11,g).  So consider all edges with V({j,}, g) as the initial 

vertex, where j 54 A. These form the set 

E' = { ( V({j , }, g), V({+1,A},9)), (V({j,}, g), V({j,A+1},g) ) } 

But as ci fixes V({,)}, g) so ciE' = E' and as ci fixes v({j+l,)},g) so ci fixes v({j,x+1}, g). 

However, this still leaves v({),A+1},9). But the same logic still works using 

E' = {(V({A_1,A}, g), V({A_1,A+1},g)), ( V({.\_1,A},g), V({A,\+1},g))} 

as we've just shown that ci fixes V({A_1,A+1},g). Hence ci fixes P(A + 1) pointwise. 

0 

We now have all we need to prove the required results, namely 

Lemma 7.5.8. Suppose ci is an automorphism of F0  that fixes V(,,O,9) for i = 

1, . . . , r. Then ci is the identity automorphism. 

Proof: For all j 	1 we have that (v(j ,o,g), v({1, 3 }, 9)) is the unique edge leaving 

v(,,o,g) and that (v( 1 , 0 ,9), v(1 1 , 2 1,9)) is the unique edge leaving V(1,O,9). So as ci fixes 

v(3 ,o,9) it follows that ci fixes V({1, 2 }, g) and V({1,2}, g) for all j 1. Thus P(1) is fixed 

by ci pointwise. And so, by Lemma 7.5.7, we have that for all j P(j) is fixed by ci 

pointwise. Thus for all i 54 j ci fixes V({i, j }, g). Hence ci fixes Fo  and is the identity 

automorphism. 

So we now have all we need to prove Theorem 7.5.1. The proof proceeds as 

follows. 
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Proof: Define F(G) = (Vs, Ec) as follows: 

VG ={v(,o, 9) : j = 1, ...,r,g e G} 

U{v({,t}, 9) : j= 1,.. .,r,t < j,g E G} 

U{V(j,j ,Ioop,g) : i 	j, g E G} 

and 

EG = {(v(j ,o,g), V({i,}, 9)) : j = 2,. . . , r} U {(v( 1 ,0 ,9), V({i,2}, 9))} 

U{(v({i,j}, g), V({i+1,j},g)) : 2 < i + 1 <j} 

U{(v({_l,)}, V({j+1,j}, g)) : 1 <j <r} 

U{(V({i,j}, g), V({ + i,},9)) : j <i < r - 1} 

U{(V({ r,j}, g), v(j,1,g)) : j <r} U {(V({ r_l,r}, g), V(r,1,g))} 

U{(v(,t,Ioop,9), V(,t+1,1oop,g)) : 1< t <j - 1} 

U { ( v(,,100p,9), V(j,O,gs,) ) } 

U{(V(j,t,Ioop,g), V(j,t,loop,g)) : 1 < t < j} 

F(G) is formed by first constructing the Cayley graph F(G; S) for some set S of 

r-generating elements of C. The edges of F(G; S) are labelled by replacing them 

with the extended edges shown in Figure 7.5 with the vertex V(i3O,9)  added on the 

end in a similar form. Notice that these last vertices are distinguished by the fact 

that any vertex of this form has an edge to an r-regular vertex and they are the 

only such vertices. Thus they are distinguished as potential initial vertices of the 

r-cubes. Moreover, it is clear that any automorphism of this graph must fix the 

labelled edges, hence, by Lemma 7.5.5 is an element of the group G. 

Now, observe that each r-regular vertex is labelled by an element g of C. We 

now replace each r-regular vertex with the r-cube labelled by g. It is clear that 

the resulting graph is now F(G) as defined above. Moreover, any automorphism 

of the graph that fixed a particular r-regular vertex must now fix the initial 

vertices of the r-cube that replaces that vertex. And so, by Lemma 7.5.8 such an 

automorphism fixes all the r-cube. The resulting extended j-th line segment of 

the r-cube in shown in figure 7.8. 

We can now put these two results together. It is clear that any automorphism of 

F(G) must preserve the labelling of the edges. It is now also clear that if it fixes 

any vertex of the form V(3 ,o,g ) then it fixes the .r-cube labelled by g. Thus any 

automorphism of F(G) is in C. 

It is obvious that any element of G is an automorphism of r(G). Thus Aut(F(G)) 

= G as required. 	 11 
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V( ,0,g) 	 V( {j-1 'ii ,g) 	 V( ,1, Ioop,g) 	V( ,O, Si g ) 

V({1,j},g) 	V((j+lj}g) 	 V(j,2, loop,  g) 

V( { 2,j } ,g) 	 V( ( r,j } ,g) 	 V( ,r, loop, g) 

Figure 7.8: The extended j-th line segment of the r-cube labelled by g, with 
labelling loops. 

Corollary 7.5.9. The number of vertices in F(G) is lGIr2 . 

Proof: Simply count them. Each r-cube has r(r - 1)/2 vertices. Each labelled 

edge has j + 1 vertices (including the initial vertex of an r-cube as part of the 

preceding labelled edge). So the total number of vertices in each r-cube and its 

preceding labelled edges is 

r(r - 1) 	
r  

	+ 1) 
= 2  

2 	
+j+1=: 	

2 	
+ 	

2 	
r 

 
j= 1  

Moreover, as there are IGI vertices in the Cayley graph of G so there are IC 

r-cubes in F(G). Thus 

IVF(G) I = jGlr2  

as required. 	 U 

However, there is no reason to believe that this figure is optimal. There may well 

be other ways of constructing the r-cube and labelling the edges that result in 

fewer vertices being used. For example, the method of labelling the edges used 

here amounts to adding as many copies of a graph on one vertex as required. As 

there is only one such graph and only one way it may be adapted the number 

of vertices required to label the r-th edge is r. However, we could use graphs 

on more vertices to label an edge. Equally there may be ways of simplifying the 

r-cube. 

137 



Bibliography 

Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 

423-472. 

Ronald Brown and Stephen P. Humphries, Orbits under symplectic transvec-

tions. I, Proc. London Math. Soc. (3) 52 (1986), no. 3, 517-531. 

Peter J. Cameron, Combinatorics: topics, techniques, algorithms, Cambridge 

University Press, Cambridge, 1994. 

Gary Chartrand and Linda Lesniak, Graphs and digraphs, second ed., 

Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, Calif., 

1986. 

Jean Dieudonné, Sur les générateurs des groupes classiques, Summa Brasil. 

Math. 3 (1955), 149-149. 

Joanna A. Ellis-Monaghan, New results for the Martin polynomial, J. Com-

bin. Theory Ser. B 74 (1998), no. 2, 326-352. 

William Fulton, Algebraic topology, Springer-Verlag, New York, 1995, A first 

course. 

Claude Godbillon, Dynamical systems on surfaces, Springer-Verlag, Berlin, 

1983, Translated from the French by H. G. Helfenstein. 

Frank Harary and Edgar M. Palmer, Graphical enumeration, Academic 

Press, New York, 1973. 

Morris W. Hirsch and Stephen Smale, Differential equations, dynamical sys-

tems, and linear algebra, Academic Press [A subsidiary of Harcourt Brace 

Jovanovich, Publishers], New York-London, 1974, Pure and Applied Mathe-

matics, Vol. 60. 

H. Hopf, Abbildungsklassen n-dimensionaler Mannigfaltigkeiten, Math. An-

nalen 96 (1926), 225-250. 

138 



L. K. Hua and I. Reiner, On the generators of the symplectic modular group, 

Trans. Amer. Math. Soc. 65 (1949), 415-426. 

M. C. Irwin, Smooth dynamical systems, Academic Press Inc. [Harcourt 

Brace Jovanovich Publishers], New York, 1980. 

F. Jaeger, On transition polynomials of 4-regular graphs, Cycles and rays 

(Montreal, PQ, 1987), Kluwer Acad. Pubi., Dordrecht, 1990, pp. 123-150. 

Michel Las Vergnas, Le polynôme de Martin dun graphe eulérien, Combi-

natorial mathematics (Marseille-Luminy, 1981), North-Holland, Amsterdam, 

1983, pp.  397-411. 

W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, 

Ann. of Math. (2) 76 (1962), 531-540. 

Chang An Liu, An expression of symplectic matrices as a product of sym-

pleetic transvections, Kexue Tongbao (English Edition) 25 (1980), no. 2, 

116-121, A translation of Kexue Tongbao (Chinese) 25 (1980), no. 4, 145-

148. 

Pierre Martin, Enumerations eulériennes dans les multigraphes et invariants 

de tutte-grothendieck, (1977), Thesis. 

John W. Milnor, Topology from the differentiable viewpoint, The University 

Press of Virginia, Charlottesville, Va., 1965, Based on notes by David W. 

Weaver. 

Igor Nikolaev and Evgeny Zhuzhoma, Flows on 2-dimensional manifolds, 

Springer-Verlag, Berlin, 1999, An overview. 

H Poincaré, Cinquième complement a l'analysis situs, Rend. circ. mat. 

Palermo 18 (1904), 45-110. 

R. L. Graham, M. Grötschel, L. Lovász, Handbook of Combinatorics (Vol. 

I), North-Holland, 1995. 

139 



Index 

K(F;r), 87 gluing map, 121 

U(F), 88 graph, 42 

[a],,-, [i3],, 56 4-regular, 43 

M, 106 Cayley, 131 

7', 109 balanced ribboned 

r-cube, 134 equivalence, 82 

directed, 43 
atlas, 1 

homology matrix of, 78 
automorphism group 

pairing of a ribboned graph, 76 
Aut(H i (E)), 22 
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balanced, 48, 76 
of a graph, 47 

ribboned, 48 

chart, 1 ribbonings 

circuit, 44 balanced, 67 

centered at an edge, 47 gluable, 67 

circuit decomposition, 44 topological ribboning, 63 

balanced, 48 underlying, 48 

dual, 45, 49 
incidence matrix, 68, 93 

of a minimal vector field, 74 
Martin polynomial of, 93 

cyclic edge 2"-partition, 92 
index 

dXv , 5 of a curve, 3 

degree of a vertex, 43 of a point, 3 

Dehn twist, 23 intersection number, 25 

digraph, 43 
Kronecker delta, 45 

2-regular, 43 

E, 43 labelling, 121 
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a, 10 
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Eulerian edge 2!cp artition, 91 
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Martin polynomial 

adapted, 51 

directed, 50 

undirected, 50 

non-wandering points, 15 

one-sided circuit, 12 

order of an edge, 47 

partition, 121 

permutation matrix, 117 

polynomial expressing a graph, 85 

semi-trajectory 

negative, 10 

positive, 9 

surface, 2 

symplectic 

matrix group, 28 

transvection, 28 

tangent bundle, 2 

thickened 

graph 

underlying, 62 

graph, 61 

trajectory 

non-trivial recurrent, 10 

quasiminimal, 10 

recurrent, 10 

regular, 10 

trivial recurrent, 10 

transition, 49 

coherent, 49 

incoherent, 49 

transition polynomial, 53 

transversal, 12 

triple 

equivalence, 123  

vector field 

degenerate, 5 

equivalence, 9, 82 

fiowline, 2 

integral curve, 2 

minimal 

graph of, 73 

minimal, 20 

non-degenerate, 12 

pseudo-minimal, 14 

regular, 10 

ribboned graph of, 74 

topological ribboning of, 74 

zero, 2 

vertex flip, 66 
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