
The interaction of an internal solitary 

wave with surface gravity waves 

H 
Alexandra Elizabeth Thomas 

Doctor of Philosophy 

The University of Edinburgh 

2002 



Abstract 

Solitary waves are nonlinear, non-oscillatory disturbances of permanent form. Re-

cent advances in synthetic aperture radar imaging and analysis techniques have 

confirmed in situ observations and measurements that the passage of oceanic in-

ternal waves, including internal solitary waves, is associated with modulations in 

sea surface roughness. Such measurements have not only revealed the ubiquity of 

this phenomenon but also demonstrated the existence of large amplitude, tidally 

induced, internal solitary waves. It appears that little laboratory-based research 

has been carried out in this field. This work, therefore, focusses on the study 

of the velocity and density fields resulting from the interaction between a sur -

face wave train and an internal solitary wave, propagating in a two-layer fluid. 

Digital Particle Image Velocimetry (DPIV) and Planar Laser Induced Fluores-

cence (PLIF) were employed to provide two-dimensional instantaneous velocity 

and density information, respectively. Previous studies in this field have been 

performed using intrusive probe techniques. Results from a preliminary DPIV 

investigation on single internal solitary waves concurred with previous research 

and highlighted the constraints of the DPIV system. The results were also com-

pared to a recently developed and validated fully nonlinear numerical method. 

In the interaction investigations, both wavelength and amplitude modulations of 

the surface waves were observed. In some cases, the shape of the internal wave 

was distorted. Velocity profiles were compared to the linear superposition of sur-

face wave linear theory and the fully nonlinear numerical method predictions. In 

addition, the PLIF analysis showed that, for the wave and stratification param-

eters investigated, there was no evidence for the compression and expansion of 

the density interface during the interaction. 
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Chapter 1 

Introduction 

This laboratory-based study investigates the interaction processes resulting from 

a small amplitude surface wave train passing over an internal solitary wave of 

depression. It is now well-known that internal waves are a ubiquitous natural 

phenomenon, occurring in the stratified medium of either the atmosphere or 

the ocean. Internal solitary waves are localised pulse-like disturbances, of either 

elevation or depression. They occur due to a balance of nonlinear wave-steepening 

effects and linear wave dispersion [27] and consequently can maintain their shape 

over considerably long distances. 

Many observations of solitary waves have been reported over the past 40 years. 

As in the case of other gravity waves, they have been detected in the atmosphere 

[95, 84, 671 and, of particular relevance in the present work, in the ocean [70], 

in both shallow water and deep sea regions. Here, many are tidally induced, 
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Chapter 1 - Introduction 

occurring due to a change in bottom topography [11, 691. In some cases, their 

amplitudes have been measured to be from 20m to in excess of lOOm and with 

characteristic length scales of 200 to 3000m, the longer length scales associated 

with the larger waves. They have also been associated with strong currents. 

In situ measurements of these waves are difficult to obtain. As a result, their 

space - time evolution is difficult to follow. However, recent progress in satellite 

technology and in associated imaging techniques has revealed that the passage of 

oceanic internal waves is linked to changes in sea surface roughness [4, 7, 12, 131. 

In some cases, the surface wave modulation has been so intense it has lead to 

surface wave breaking [70]. These advances in detection techniques have enabled 

a considerably better understanding of the nature of these waves. 

The global occurrence of internal solitary waves has promoted much interest 

within all branches of research. For example, their passage can affect marine 

nutrient and animal distributions [70] and induce large hydrodynamic forces on 

surface and sub-surface structures [11, 29]. 

The increase in interest in these waves in oceanographic and other fields has 

given an impetus for solitary wave laboratory-based investigations [51, 44, 65, 

291. Most previous work has been concerned with validations of shallow and 

deep water theories. In particular, the weakly nonlinear Korteweg - de Vries 

(KdV) approximation has been found to be capable of predicting small amplitude 

solitary wave characteristics only. In contrast, a recently developed fully nonlinear 
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numerical model [30, 28] has been shown to successfully model large amplitude 

solitary wave properties [30, 28, 29, 34]. 

Although there is now much evidence of surface wave modulation as a result of 

internal wave propagation, little laboratory or theoretical work appears to have 

been carried out on the subject. Most previous laboratory work has been per-

formed using oscillatory surface and internal wave trains [23, 58, 52]. A recent 

investigation, involving small amplitude solitary waves of depression [33, 32], was 

performed using resistive and capacitative probes. Such measurement techniques 

have the disadvantage of disturbing the flow and only providing measurements at 

single points within the fluid. Most comparisons with theory in such work have 

been made using derivations of a theory initially presented by Longuet-Higgins 

and Stewart (LHS) [61, 33, 63]. As in the case of prior laboratory investiga-

tions, this predicts amplitude and wavelength modulations of small amplitude 

oscillatory surface waves riding on an oscillatory internal wave train. 

The present work intends to further the laboratory study of surface wave mod-

ulation by the passage of an internal solitary wave in two ways. Firstly, two 

non-intrusive laser measurement techniques, as opposed to the previously used 

intrusive probe methods, will be applied; namely Digital Particle Image Velocime-

try (DPIV) and Planar Laser Induced Fluorescence (PLIF). These optical mea-

suring techniques have the advantage of providing instantaneous two-dimensional 

velocity and concentration information, respectively, within a plane of the flow 

3 
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under study. This will allow entire velocity and concentration fields, defined by 

the laser light sheet dimensions, to be investigated. Furthermore, in contrast to 

previous studies, this work will investigate primarily the surface wave - solitary 

wave interaction processes for large amplitude solitary wave flow. As earlier work 

has shown that existing analytical models cannot adequately predict these waves' 

properties, the fully nonlinear numerical method [30, 28] will be appealed to, to 

provide a comparison with the DPIV measurement results. In addition, the re-

sults will be compared to the theory originally presented by LHS[61] and adapted 

to the case of solitary waves. 

In the first instance, an introduction to the subject is given in chapter 2. Previous 

laboratory and field-based work on solitary waves is reviewed. Relevant theories 

and their assumptions, pertaining to the propagation of surface waves and to the 

propagation of internal solitary waves, are given. Lastly, a development of the 

LHS theory [61] to determine surface wave amplitude and wavelength modulation 

for surface wave trains riding over an internal solitary wave is presented. 

Chapter 3 presents the theory and practical application of the measurement tech-

niques to be used throughout the course of the study; namely Digital Particle 

Image Velocimetry (DPIV) and Planar Laser Induced Fluorescence (PLIF). The 

experimental facilities are presented and the method of generating both internal 

solitary waves and a surface wave train are explained. 

Chapters 4 and 5 present the results of the investigation using each of the mea- 
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surement techniques, DPIV and PLIF, respectively. The layout of each chapter 

is similar. First, the parameter space of the investigation is assessed within the 

context of the available experimental facilities and the application of the appro-

priate technique to two-layer fluid flow. Each is applied in the first instance to 

the study of single internal solitary waves of depression, and, in the case of DPIV, 

to the study of small amplitude surface wave trains, before being employed to in-

vestigate the interaction between an internal solitary wave and a train of surface 

waves. All the internal waves are generated at a brine - fresh water interface. 

Lastly, chapter 6 draws together the main points raised throughout the discussion 

sections. The experimental set-up and procedure and the main results of the 

investigation are summarised. The advantages and drawbacks of the techniques 

used are identified. Suggestions for further work are presented. 

In summary, therefore, the overall aims of this work are as follows: 

. 
to apply Digital Particle Image Velocimetry (DPIV) to a laboratory study 

of a surface wave train - internal solitary wave interactions 

to apply Planar Laser Induced Fluorescence (PLIF) to a laboratory study 

of internal solitary waves 

• to apply PLIF to a surface wave train - internal solitary wave interaction 

• to assess the effect of the interaction on the resulting flow fields using both 

the DPIV and PLIF measurement techniques 

5 
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. to identify any surface wave or internal wave modulations resulting from 

the interaction process 



Chapter 2 

Internal Solitary Wave and 

Surface Wave Dynamics 

The main objective of this study is to investigate the interaction processes that 

occur between an internal solitary wave and a train of surface water waves. In 

order to understand the motivation for this work, it is necessary to gain an ap-

preciation of the concept of a solitary wave and the historical background of 

previous research in this field, both in the laboratory and the ocean. This chap-

ter first introduces solitary and internal solitary waves and presents the main 

results from the Korteweg de Vries equation; a weakly nonlinear, weakly disper -

sive long wave approximation to solitary wave propagation. The work to date 

assessing the validity of the KdV theory is reviewed in the context of both oceanic 

and laboratory-generated solitary waves. Finally, a theory describing the inter- 

7 



Chapter 2 - Internal Solitary Wave and Surface Wave Dynamics 

action and ensuing amplitude and wavelength modulations of short waves riding 

on an internal solitary wave is presented. The motivation for this study and the 

proposed approach is then justified within the context of previous publications. 

2.1 Gravity Waves and Stratified Fluids 

2.1.1 Gravity waves 

Gravity waves are characterised by a balance between gravity and fluid inertia 

[59]. Under gravity, the fluid, when disturbed, has a tendency to return to a 

state of stable equilibrium. The associated restoring force allows waves to be 

supported. These waves can exist at the interface between different fluids or 

within the body of a single fluid. For the latter case, the undisturbed variation 

in density can be represented as either a discontinuous or continuous function of 

distance from the fluid surface. Such a density variation with depth is known as 

a stratification, in either a multi-layer or continuously varying configuration. 

Often quoted examples of continuously stratified media are the atmosphere and 

the ocean. In contrast, a discontinuous stratification is step-like, the discontinuity 

arising at the horizontal boundary between two homogeneous fluids of different, 

but constant, density. Effectively, any stratification can be considered to consist 

of discrete layers of fluid. The density variation is then confined to the surface 

N. 
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separating two adjacent layers and gravity acts to restore the "flatness" of this 

surface when disturbed. 

Waves propagating upon an air - water surface are referred to as surface gravity 

waves. Immiscible fluid systems, such as those composed of oil and water, have 

a similar step-like density profile. Now, however, with any disturbances confined 

to the surface between the adjacent, immiscible fluids, the waves are said to be 

internal. The waves generated within this configuration are isotropic. This is a 

much simpler stratified configuration than the continuous case and as a result, 

continuous stratifications are, wherever possible, represented by a discrete layer 

system. Some situations where this simplification may apply are discussed in 

section 2.4.1. 

2.1.2 Buoyancy frequency and the Richardson number 

In experimental fluid dynamics, researchers are often required to investigate a full-

sized object or system, in order to investigate its dynamical characteristics and 

properties. In many cases, this is impractical so the apparatus must be modelled 

and scaled appropriately. As the dimensions of the test piece or test facilities 

have been altered, the resulting properties of the flow may not necessarily match 

those of the original. In order to ensure that the model properties and behaviour 

can be transferred to full scale, conditions of geometric and dynamical similarity 

must be satisfied. This constraint ensures that the problem under investigation 
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is posed in terms of a set of dimensionless groupings, the values of which should 

match their corresponding full-scale counterparts. Non-dimensional numbers rely 

on relevant quantities such as length and velocity scales that characterise the 

flow system under consideration. A well known non-dimensional number is the 

Reynolds number, which relates the inertial and viscous forces in a fluid. It is 

defined as 

Re = UL 
	

(2.1) 
V 

where U is a velocity scale, L is a length scale and ii is the kinematic viscosity of 

the fluid (the ratio of the dynamic viscosity, j.t, to the fluid density, p). 

Dimensionless numbers are also useful in classifying fluid flow systems. The 

Reynolds number is often used to provide a guide as to whether a flow is lami-

nar or turbulent. Such numbers are used as "bench marks", enabling particular 

dynamical set-ups to be compared to other systems, situations or models. Di-

mensional analysis is therefore also applicable to theoretical studies, allowing the-

oretical results to be compared to experimental work or other theoretical models. 

In stratified fluids, the static stability of the system requires that the density of 

the fluid, p, increases with depth from the fluid surface, such that 	<0, where 
Oz 

the vertical coordinate z increases positively upwards from the quiescent fluid 

free surface. Consider a particle of fluid in a continuously stratified, statically 

stable medium. If this fluid particle moves a small distance vertically upwards 

from a reference point z to z + Sz, where the density is slightly reduced from that 
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at the reference position, po, the particle has an excess density over that of the 

surrounding fluid. As a result, the particle experiences a downwards gravitational 

restoring force proportional to this density difference. It then overshoots its 

equilibrium level and experiences an upward force due to a buoyancy deficit. As 

a result, the displaced particle oscillates vertically until its motion is sufficiently 

damped for the motion to cease. The buoyancy frequency, N(z), is the natural 

frequency of oscillation associated with the above simple harmonic motion of a 

neutrally buoyant fluid parcel, moving vertically in a water column, when it is 

given a small displacement from its equilibrium position. Effectively, it provides 

a measure of the stability of a stratified water column against small vertical 

perturbations. In the laboratory set-up presented in this work, it can be written 

to a good approximation as [59] 

[9m] --N2(z) - (2.2) 
Po  

where g is the acceleration due to gravity. 

The vertical distribution of N(z) is one of the most important dynamical char -

acteristics of the ocean, classifying its static stratification. The corresponding 

period can vary from a few minutes to several hours in the deep ocean. 

The Froude number, Fr, relates the inertial forces to the gravitational forces in 

a suitable non-dimensional ratio and is a guide to the relative importance of the 

11 
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inertial and gravity terms, where a liquid free surface is involved. It is defined as 

U 
Fr 

= (gL) 1 12  
(2.3) 

where the length scale, L, usually represents the water depth or wavelength. 

The corresponding non-dimensional parameter, for stratified fluid systems, is the 

internal Froude number, Fr t  = U/(g'L) 1/ 2 , where g' = gLp/p. It is sometimes 

expressed in terms of the bulk Richardson number, Ri. Both Fr2t  and Ri relate 

the inertial forces to the buoyant forces within a fluid with Ri = (1/Frt) 2 . It is 

sometimes useful to describe the flow in terms of the gradient Richardson number, 

Rig, defined as 

Ri 	
N2(z) 	 (2.4) 9=— 	2' 

() 

where 	is a characteristic velocity gradient within the fluid. 
OZ 

In some circumstances in stratified media, there may exist a primary parallel shear 

flow in which a horizontal velocity varies with depth, u(z). When such a system is 

subject to small disturbances, the static stability requirement of <0 may not 

be sufficient to prevent instability. Howard [40] suggests that a sufficient condition 

for dynamic stability of a stratified shear flow is that Rig  ~! 
0.25 everywhere 

within the flow field. This criterion is referred to, amongst others, by Grue et at 

[29] and Kao et at [44] where it is investigated as a characterisation of instability 

in the propagation of internal waves. 

12 
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2.1.3 Density profile and interface thickness 

The shape of a static two-layer density gradient is often described empirically by 

a hyperbolic tangent profile [64, 44]. The profile is given by 

p(y) = 	tanh() + 
, 	 (2.5) 

where zp = pi -  P2 is the density difference across the lower and upper layers of 

densities p' and P2 respectively, j5 is the average density of the stratification and 

/.h describes the interface thickness. The vertical coordinate y increases posi-

tively upwards away from the interface. Figure 2.1 shows a typical density profile, 

p against y, encountered throughout the course of the experimental work carried 

out in this study (chapters 4 and 5). The corresponding "tanh" profile fit is also 

shown. The stratification consists of a fresh water layer (y> 0) separated from 

a denser saline layer (y < 0) by a very thin region over which the density varies 

continuously such that the profile is almost step-like. The density profile was 

obtained using a microconductivity probe [36], the details of which are described 

in section 3.2.5. 

The quantity Lh, derived from the best fit tanh profile, provides a convenient 

measure of the interfacial width, though other methods could be employed. For 

example, two isopycnals, or constant density contours, of a particular value can 

be located within the flow field, say 0.8 x and 1.2 x p, and tracked over time 

13 
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Figure 2.1: A typical density profile of the stratifications used throughout this 
work and the hyperbolic tangent fit using (2.5). 

[21]. A measure of the instantaneous thickness of the interface is then defined 

empirically as the vertical distance between the two reference isopycnals at any 

time. A measure of the interface thickness can also be obtained from the vertical 

profile of either the density gradient or the buoyancy frequency, since there is a 

peak in the graph of density gradient with depth at the point of inversion. The 

width of the interface can then be taken empirically to be the width of the peak 

at, say, its half height. 

2.2 Small Amplitude Surface Waves: Linear 

Theory 

In this section, an overview of first order surface wave theory is given. This will 

be useful both in section 2.5.1 where a theoretical description of the interaction 

14 
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of a soliton and a train of surface waves is described and in section 4.4.2 where 

linear theory is used to validate the results of surface wave train experiments. 

Small amplitude, linear, surface gravity wave theory describes the two-

dimensional propagation of small surface waves in a homogeneous inviscid fluid of 

constant depth. Such waves may also be known as "first order Stokes' waves" or 

"Airy waves", named after the first two researchers, in the mid 1800's, to derive 

the expressions presented below. 

The subscript S in the following sections and throughout the remainder of this 

work is used to refer to surface wave characteristics. Linear theory is pertinent 

to periodic surface waves whose amplitude, as, is much smaller than their wave-

length, As , and the water depth, H. The wave steepness, defined as 2as/As, is 

therefore much less than 1, a condition which also applies to the surface waves 

used throughout this investigation. As a result, these waves are sometimes re-

ferred to as infinitesimal or small waves. This constraint allows the boundary 

conditions of the problem to be linearised. The fluid is assumed to be incom-

pressible, inviscid and irrotational. In this instance, the flow is referred to as 

potential flow. The motion is also assumed to be "steady" in an inertial frame 

of reference, such that the waves are of constant period. The effect of surface 

tension may also be neglected, provided that the wavelength is sufficiently long 

(section 4.2.2). 

One problem of surface wave dynamics is that the position of the free surface 

- 
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is not known a priori. However, as the wave amplitude is small, the linearised 

boundary conditions are applied at the mean water level (MWL) (see figure 2.2), 

which is the level at which the area above the wave trough is equal to the area 

under the wave crest. A consequence of this property is that the expressions 

below are valid within the main body of the fluid; from the bottom, z = —H, 

to the level of the wave trough. Hence, the main errors in velocity predictions 

for the fluid motion (equations (2.12) and (2.13)) are likely to arise in the region 

z = +7/s, above the height of the wave trough. 

LX 
ks 

 

MWL 

Figure 2.2: Diagram illustrating the surface wave terminology and coordinate 
system used in this work for a homogeneous fluid. 

Surface gravity waves are dispersive; the speed of wave propagation increases with 

wavelength. The dispersion relation is written as [77] 

= gkstanh(ksH), 	 (2.6) 

16 
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where WS is the angular frequency and ks is the wave number, given by 

k5 = 
21r- . 	 (2.7) As  

Hence as WS = c5ks, CS, the phase velocity of the wave, can be written as 

f2irH\ 
cS=\/tauh(% As ). 

	
(2.8) 

The group velocity, C95, or energy transport velocity of a wave group or packet, 

is given by 

C9 = 
dw5 	 (2.9) 
As 

Hence, 

1 / 	2k5H \ 
C9S 	CS + 

sinh(2ksH)T 	
(2.10) 

The surface elevation of the wave motion, ris, is written as 

ijs (x,t) = as cos(wst - ksx), 	 (2.11) 

where as is the amplitude, t is time, and x is the horizontal coordinate. 

The horizontal and vertical fluid particle velocity components at a fixed point 

(x, z) are respectively [77] 

cosh[ks(z + H)] 
Z '  t) = w5a5 sinh(ksH) 	

cos(wst - ksx), 	(2.12) 

17 
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and 

vs (x,z,t) = — wsas 
sinh[ks(z + H) ] 

Sifl(Wt - ksx). 	(2.13) 
sinh (ksH) 

The fluid particle trajectories are elliptical. The longer the wave relative to the 

water depth, the more elongated the ellipse. The ellipse also becomes "flatter" 

with depth, being reduced to a purely horizontal motion at the bottom boundary. 

2.3 Interfacial Solitary Waves 

In this section, the concept of an internal solitary wave is presented. The Ko-

rteweg - de Vries (KdV) theory, known to describe the propagation of small ampli-

tude solitary waves, is examined. Previous laboratory-based studies are discussed 

in order to compare and contrast this theory with other, more recently developed 

approximations. Finally, the range of validity of the KdV theory, investigated in 

previous research, is reviewed. 

2.3.1 Background 

In 1834, John Scott Russell made the first recorded observation of what he termed 

"a great primary wave of translation" whilst walking along the banks of the Union 

canal, in Scotland. He published his findings in 1845 [78]: "I was observing the 

motion of a boat which was rapidly drawn along a narrow channel [..] when the 
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boat suddenly stopped - not so the mass of water in the channel which it had put 

in motion: it accumulated around the prow of the vessel in a state of violent agita-

tion, then suddenly leaving it behind, rolled forward with great velocity, assuming 

the form of a solitary elevation, a rounded smooth and well defined heap of water, 

which continued its course apparently without change of form or diminution of 

speed'. He later characterised this wave as a solitary wave. 

2.3.2 Surface solitary waves 

Russell's systematic series of experiments was the first step in the development 

of today's widely accepted solitary wave, shallow water, theory. He performed a 

set of detailed investigations, firstly in the mouths of the rivers Dee and Clyde. 

His later experiments in artificial channels, however, enabled him to deduce much 

clearer conclusions. 

Following his discovery of the solitary wave, he went on to classify water waves 

into four distinct orders [80]: 

Waves of translation 

Oscillating waves 

Capillary waves 

Corpuscular waves 
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It is in the first of these categories, also referred to as waves of first order, that 

he classed solitary waves. He remarked that these waves are characterised by the 

fact that the total fluid mass is moved from one place to another and that the 

motion of the fluid does not correspond to the motion of the wave, that itself has 

a uniform velocity. He noted that the new waves had certain properties. These 

are listed below. 

. The solitary wave travels without distortion of form. Viscous action and 

friction with the channel sides and bottom cause an attenuation of height 

but not a change of form. 

. The wave reflects off a wall and continues to move in the opposite direction 

without change of form. 

. On collision, the waves maintain their form. 

. The wave breaks when wave height exceeds water depth. 

He also verified experimentally that the speed of the wave, c, in a flat channel of 

depth H, was related to its amplitude, a, by the relationship 

c=/iI+a). 	 (2.14) 

In order to generate a solitary wave in his laboratory, Russell used a channel of 

rectangular cross section and tried various generation mechanisms. One of these 

20 



Chapter 2 - Internal Solitary Wave and Surface Wave Dynamics 

was to use a vertical plate to hold back a volume of water. Upon it's release, 

the wave took shape. A similar system is used in this work to generate internal 

solitary waves (section 3.2.6). Another method was to drop a mass, such as a 

brick, into the channel. This displaces a mass of water that then develops into 

a solitary wave. A vertical plate, placed at one end of the channel, which is 

then suddenly moved towards the other end, was also successful. Russell also 

recognised that it was almost impossible to generate a solitary wave perfectly. 

He remarked that if a very large volume of water is displaced, the initial wave 

will separate into an ensemble of solitons, a leading solitary wave followed by 

a series of other smaller waves. These latter waves, being smaller in height, 

have a correspondingly reduced velocity. In some circumstances, he noticed an 

oscillatory wave train tail follows the wave or waves. Russell acknowledged that 

not all initial disturbances evolve into solitary waves. This was confirmed later 

in the subsequently developed theory. 

2.3.3 The Korteweg - de Vries theory 

The set of experimental observations made by Russell represent a milestone in 

the subsequent mathematical evolution of wave theories. It wasn't until over 50 

years after Russell's first publication that a theory of solitary wave propagation 

was developed, published by Korteweg and de Vries in 1895. Although the first 

description of a wave of permanent form was discovered by Boussinesq in 1871, 
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it was Korteweg and de Vries' work [53] that yielded more accurate results to 

describe the waveform and to determine the maximal possible wave height. They 

aimed initially to settle the, at-the-time-controversial, issue of whether the shape 

of advancing surface solitary waves in a rectangular channel behaved, as surface 

sinusoidal waves do, by becoming steeper at the front and less steep behind, even 

when friction is neglected. They considered the effect that both nonlinearity 

and dispersion would have on the speed of long wavelength surface waves in a 

irrotational, inviscid and incompressible fluid. Long water waves are described 

as such if H/A << 1 where A is the wavelength, or a characteristic length scale 

associated with the wave, and H is the mean water depth. 

Their work resulted in an equation, now known as the Korteweg-de Vries (KdV) 

equation, describing the long time evolution of small, but finite amplitude, long 

dispersive water waves down a channel of rectangular cross section. This equation 

is given to first order in a/H, where a is the maximal amplitude of the wave, in 

equation (2.15). 

71t + CO 7)z +Ci?Plx +C21)xzx = 0 7 	 (2.15) 

where q is the surface elevation as a function of time, t, and distance down the 

channel, x, c0  is the associated linear long wave phase speed and c1  and C2 are 

constant coefficients. The subscripts refer to partial derivatives with respect to 

the variable concerned. 

The type of solution resulting from this equation depends on the importance of the 
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term 	relative to the nonlinear, dispersive term c1ip. This is determined 

by the non-dimensional parameter aA 2/H3 , where a is the maximal amplitude 

of the wave. When this parameter is large enough, the nonlinear effects cause 

the wave front to steepen as the waves advance. In contrast, if aA2 /H3  = 0(1), 

then there is a balance between wave steepening and dispersion and the periodic 

waves retain their form as they propagate. When aA 2/H3  -+ 0, the wave profile 

approaches that of a sinusoidal wave, as the nonlinear term has only a small 

contribution. 

Cnoidal waves are a set of steady periodic wave train solutions to the KdV equa-

tion and were so-called because they follow the form of the square of the Jacobian 

elliptic function, cn. As the period of the wave, T, is increased such that T -+ 00 

and therefore that the wavelength also tends to infinity, the cnoidal waveforms 

degenerate into a series of isolated "humps". Between them, the water surface is 

almost undisturbed. It is in this limiting configuration of the cnoidal wave, when 

the nonlinear and dispersion terms balance, that the solitary wave solution oc-

curs. The solution represents a non-periodic, non-oscillatory, single isolated mass 

of water, propagating without change of form. The limiting solution, describing 

the wave profile ij(x, t), is given by 

i7(x,t) = asech2 [(x - CKdVt)/)L]. 	 (2.16) 

Hence, according to KdV theory, the form of a shallow water solitary wave follows 
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a "sech squared" profile. ). is now a characteristic length associated with the 

solitary wave and CKdV its speed. 

It must be noted that the equations given here refer to mode 1 solitary waves. 

For each wave mode, there exists a corresponding KdV equation. The waves 

are more energetic with increasing mode number. As only first mode waves are 

investigated in this study, wherever a solitary wave is mentioned, it is assumed 

that the wave is of the first mode type. 

Following Korteweg and de Vries' work, there was little further investigation of the 

subject. However, interest in solitary waves was revived in the 1960's. Nearly 70 

years after their discovery, Zabusky and Kruskal [97] made a computer simulation 

of the KdV equation to simulate the collision of two solitary waves. Contrary to 

expectations, the waves did not undergo a strong nonlinear interaction. Instead, 

the waves retained their shapes and propagation velocities after the collision. 

Due to their particle-like properties, the researchers coined the phrase "soliton" 

to describe them. Solitons are therefore often used to describe a solitary wave 

when it is infinitely separated from any other soliton [171. In 1967, Gardner et al. 

developed a method to solve the KdV equation as an initial value problem. This 

allowed an analytical prediction of the evolution in time of an arbitrary initial 

waveform, ij(x, 0). If the waveform is sufficiently localised, it will evolve into a 

finite set of rank-ordered solitons followed by a dispersive wave train. Since these 

developments, the KdV equation has been used in a variety of applications across 
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many areas of science involving solids, liquids, gases and plasmas [66, 56]. 

2.3.4 Internal solitary waves and the extension of KdV 

theory to two-layer fluids 

The KdV shallow water wave theory, where the wave motion is weakly nonlinear 

and the waves are long relative to the depth of fluid, can be extended to cover 

internal solitary waves propagating at the interface between two fluids of different 

density. Throughout the course of this study, p refers to fluid density and the 

subscripts 1 and 2 refer to the bottom and top fluid layers respectively. 

For a single fluid, the waves can occur either as waves of elevation, a bump of 

fluid rising above the free surface, which are gravity dominant, or as waves of 

depression, where capilliarity dominates. The wave type, in this case, depends 

on whether the water depth, H, is less than or greater than a critical depth, 

H = (3a/pg) where a is the surface tension coefficient and p is fluid density 

[92]. For water, in which a = 0.073N/m, this critical depth is He,. = 0.47cm. 

Keulegan [48] found that, in the case of a statically stable two-layer fluid, such 

that p2/p' < 1, and neglecting capilliarity, it can be predicted that the solitary 

wave will be a wave of elevation if h1 /h2  < 1, where h is fluid layer depth. 

Conversely, if h1 /h2>> 1, the wave will be one of depression. The critical value 

of the depth ratio dividing the two wave regimes is, however, very sensitive to 
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the upper boundary condition; that is whether the upper surface is a rigid lid 

or a free surface. Walker [92] investigated the relationship between waves of 

elevation and depression and expanded the theoretical work to include the effect 

of interfacial surface tension in both the rigid lid and free surface formalism. For 

the parameters used in this experimental study, the interfacial surface tension 

effects are not significant and the solitary waves generated are all gravity driven. 

As the values of lower layer depth to upper layer depth ratios, h1 /h2 , used in 

this work are greater than 1 in all cases, only solitary waves of depression are 

investigated. 

In the same way as for a single fluid, the internal wave motion can be described by 

balancing nonlinear and dispersive effects. This leads to the two-layer fluid KdV 

equation which, to first order in (a/h2), has the same form as equation (2.15). 

However, (x, t) is now the interfacial displacement between the two fluids and 

the constants take on a slightly different form. The coordinate system and the 

relevant parameters are shown in figure 2.3. Various KdV theoretical models have 

been developed in the past [48, 60, 51, 68, 82, 441 to describe the evolution of 

weakly nonlinear interfacial gravity waves. A theory, as originally proposed by 

Long [60] and detailed by Grue et al. [29], is presented below. 

The constants c0 , c1  and c2 , in (2.15), are defined as 

=ghih2(pi - p2) 	 (2.17) 
0 	p2hl+plh2 
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1 h2  

h 1  

Figure 2.3: Coordinate system used in the KdV two-layer fluid approximation. 

I 	 Ihi/h2   	 (2.18)Ci = (co/h2) 	
Li+ iIa\ 

hi/h2) 

and 	

h1  [P1/Th+2l 	 (2.19) c2= (coh) x 	

L6 (i + iuia)j 
hl/h2 

The wave speed, CKdV is written as 

I 	a(p2h—pih) '\ 	 (2.20) 
CKdV = c0  + 2h2h1 (p2hi  +pih2)) 

The form of an internal KdV soliton also follows a "sech-squared" profile and the 

characteristic wavelength, )¼ is defined as 

1 	3a{1 - (pi h) /(p2 h)] 

= 

	

	
(2.21) 

4hh1  (p, /p2 + h2 /h1 ) 

27 



Chapter 2 - Internal Solitary Wave and Surface Wave Dynamics 

and the horizontal particle velocity profiles, in the upper layer where 0 <y < h2  

and in the lower layer where —h1  <y <0, are written to second order in (a/h2) 

as 

u2 (x,y,t) = c0 	
+ a(p2h - pih) i 	

2 	h277 	77zx(Y -h2)2} 

I h2  L 	(p2hi + pih2)j - 	- 6 + 2h1h2 
	

2h2 

(2.22) 

- 	I 	I 	 ) 1 	2 	h1i7 	i7(y+hi) 2  
- 	

l 
ui (x,y,t) c0 -- ii + 

a(p2h —pih 
	 i - -- 	+ 

	

h 1  L 	2h 1h2(p2hl+plh2)j 	h 1 	6 	2h 1 	j 

(2.23) 

where 71,, is the second derivative of the interfacial displacement with respect to 

x. There is a flow reversal in the bottom layer such that there exists a velocity 

shear across the interface, separating the two fluids, with the velocity having a 

zero value at a location within this layer. 

Other internal solitary wave theories 

Aside from the shallow water internal wave theory, characterised by the KdV 

equation, other analytical models have been developed to classify and describe 

internal waves in both the deep water regime, where the wavelength is much 

smaller than the overall water depth, and in fluids of finite extent, where the 

wavelength is of the same order as the fluid depth. The first of these theories, the 

deep water theory, was developed by Benjamin [10] and the governing equation is 

known in the literature as the Benjamin-Ono equation. The total fluid depth is 

infinite, and the density variations only extend over a limited depth. The internal 
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wave is long relative to the intrinsic length scale of the stratification. These waves 

are more dispersive than the shallow water wave type. Benjamin [10] found the 

resulting solitary wave solution to have a Lorentzian profile. In the finite depth 

theory, presented by Kubota et al. [54], the pycnocline is much smaller than the 

total fluid depth. The finite depth evolution equation has been shown to reduce 

to the KdV equation and the Benjamin-Ono equation in the shallow and deep 

water limits respectively. Joseph [43] found the solitary wave solution to this 

equation. 

Laboratory validations of internal wave theories 

The range and validity of KdV theory for internal solitary waves propagating in 

a two-layer fluid system has been investigated by a large number of researchers. 

Here, some of the most recent and pertinent investigations to the present study 

are reviewed. 

In [51], Koop and Butler investigate the domain of validity of both the shallow 

water, deep water and KdV theories, extending the KdV equation to second order 

such that the effect of including higher order terms may be assessed. An immis-

cible two fluid system consisting of Freon and fresh water was used, generating 

solitary waves by means of an electronically controlled sub-surface paddle. Mea-

surements were made using capacitance gauges along the length of the wave tank 

in order to determine interfacial displacement. They found, from experiments 
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performed in both the deep and shallow water configurations, that the Korteweg 

- de Vries theory agrees relatively well quantitatively with both the wave shape 

and the amplitude - wavelength scaling for solitons in the shallow water regime. 

In addition, they found that extending the KdV equation to second order sub-

stantially increases the range of validity of the theory and concluded that the 

KdV analysis is capable of satisfactorily modelling small amplitude solitons in 

fluids of limited vertical extent. The KdV equation, to second order in a/h2  

becomes [51] 

Tlt + CO 77, + CllllJx + C277xxx + C3715x + C4(7171xx)x + c5( 113)x + c(17 )z = 0, (2.24) 

and the solitary wave solution to this extended equation is given by 

i(x,t) = a 
- sech2[(x - ct)/A] {i + 

h2 	h2 

I- 	31 

-C tanh2[(x - ct)R]} + o 
h2 	 h2 

(2.25) 

where the constants c2 , c3 , c4 , c5 , C6 and C are given in appendix B. For the deep 

water case, Koop and Butler argue that the range of validity of this theory is 

limited and that their results fall outside this range. In the case of the finite depth 

theory, where the experimental conditions are suitable however, they remark that 

the discrepancies are not easily explained. Similar conclusions were also drawn 

by Hammack, Leone and Segur [82]. 

Kao et al. [44] and Grue et al. [29] also investigated experimentally the range 
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of validity of the KdV theory for internal solitary waves. Kao et al. [44] used a 

two-fluid fresh water - brine configuration. To generate the solitons, they used a 

guillotine-style gate system, a method also used by Grue et al. [29] and in the 

work presented here. This system is described in section 3.2.6. Four different 

measurement techniques were employed to characterise the waves. Direct flow 

visualisation by photography was used and an interface follower tracked a partic-

ular density contour of the pycnocline. Hot-film anemometry and the hydrogen 

bubble technique were employed to measure wave particle velocities and study 

the vertical shear structure respectively. They ran a series of experiments varying 

both the volume of water trapped behind the gate and the depth ratio of the two 

layers. They found, in agreement with Koop and Butler [51], that the KdV the-

ory provides a suitable description of small amplitude solitons in a finite depth 

fluid. They observed the existence of a systematic deviation of the experimental 

results from the theory as the amplitude of the solitary wave was increased. 

Grue et al. [29] extended their investigations to cover large amplitude solitary 

waves. In a series of laboratory experiments, they used a salt water - fresh water 

system, using a density difference of around 2% with a sharp pycnocline. Mea-

surements were performed using an optical particle tracking technique, capable 

of determining wave particle velocities. The results supported those of Kao et 

al. [44], demonstrating that first order KdV theory provides a good description 

of small amplitude solitary waves, for a wide range of layer depth ratios, h2 /h1, 

up to non-dimensional amplitudes of around a/h2  0.4. In particular, the re- - 
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sults validated their new fully nonlinear numerical model, capable of correctly 

modelling large amplitude solitary waves [28]. This model, used to validate soli- 

tary wave generation experiments performed in this study, is further described in 

section 4.3.2. 

The KdV equation neglects the effect of dissipation. Russell [78] noticed that 

a surface solitary wave propagates without change of form, but that it does ex-

perience amplitude attenuation due to friction. Grue et at. [29] also noted in 

their experimental work on internal solitons that the velocity in the lower layer 

is reduced with distance travelled and is exhibited by the resultant decay in am-

plitude. The viscous decay of surface solitons was investigated by Keulegan [47] 

and by Hammack and Segur [41] who presented a procedure for estimating the 

decay of a leading soliton within a train of solitary waves. Koop and Butler [51] 

discussed how existing theories could be extended to include viscous effects for 

internal solitons. Leone et at. [57] derived a formula for the decay of a long inter -

nal solitary wave propagating in a quiescent two-layer fluid. In this experimental 

study, however, amplitude attenuation by viscous dissipation is not considered 

to be an important factor given the distance over which the investigated solitary 

waves are measured (section 3.2.4). 
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Main assumptions of the Korteweg de Vries theory 

In summary, the main assumptions leading to the KdV equation, which is weakly 

nonlinear and weakly dispersive, are 

. The motion is 21) 

. The fluid is incompressible and irrotational 

. The waves are long relative to total fluid depth 

. The wave amplitudes are small but finite so that 

77 	<<1 	 (2.26) 
h 1  +—h2  

. Viscous effects are weak and can therefore be ignored 

2.4 Internal Solitary Waves in the Ocean and 

the Atmosphere 

2.4.1 The ocean and the atmosphere as stratified fluids 

Both the ocean and atmosphere are well-known examples of stratified media. The 

structure of the ocean is concentrated upon here, although some references and 

examples of atmospheric stratification are also given. 
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In the ocean, the density of sea water is a function of pressure, salinity and 

temperature. Temperature variations are responsible for density variations of 

around 0.5% whereas salinity changes can affect changes in density of about 

0.2%. Ocean dynamics are heavily influenced by these latter two variables and 

their effects are generally much more important than that of pressure. In general, 

there is a decrease in temperature with depth from the surface and an increase 

in salinity. 

In the deep ocean, particularly in equatorial and tropical regions, there exists 

a surface zone of approximately uniform density. Changes in temperature and 

salinity, initiated at the surface, become well-mixed by surface waves and insta-

bilities within this upper layer. This area is therefore known as the "mixed layer" 

and can be from approximately 25m to 250m in depth. Figure 2.4 illustrates 

a typical temperature distribution within the deep ocean in tropical and mid-

latitude regions. Below the mixed layer, there lies a zone in which the density 

increases rapidly with depth, before the density gradient decreases. This mid-

dle region, where the temperature gradient is greatest, is called the thermocline. 

Correspondingly, it is in this region that the buoyancy frequency, N, is at a max-

imum. The thermocline can be thought of as the interface between two layers 

of water of different temperature. In the summer months, the mixed layer can 

become stratified due to heating at the surface, hence a seasonal thermocline can 

develop. Although the ocean is certainly an example of a continuously stratified 

fluid, the thermocline can be viewed as a relatively thin layer when compared 
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to the overall depth. Internal waves can become trapped within the thermocline 

zone. The oscillations are restricted to this region and can only propagate in a 

horizontal direction [59]. 
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Figure 2.4: Typical temperature distributions in the deep ocean, which lead to 
changes in density with depth. Graphs of temperature change with depth are 
shown for the Mid Latitudes and tropical regions [72]. 

In the open ocean, most variations in density are continuous and can be linked 

to variations in temperature. In shallow seas and coastal shelf regions, the strati-

fication often has a pronounced two layer profile. The mixed layer is still present 

but represents a substantially greater proportion of the total depth. A temper-

ature gradient can gradually be restored within this region in calm conditions. 

Insolation from the surface and an influx of cooler water from the open ocean can 

result in a sharp thermocline being established either near the surface, or close to 

the sea floor. The density gradient is almost exclusively determined by variations 

in temperature and the salinity is approximately constant with depth [70]. This 
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density gradient may be referred to as a shelf therinocline. 

In contrast, in fjords [28] and estuaries, and in some polar regions, salinity is often 

the controlling stratification factor. Sharp stratifications are also observed in such 

areas. Fresh water, moving seaward, overlies the heavier, salt water. If the sea 

surface remains relatively calm, the tidal motions are too weak to overcome the 

buoyancy force of the stratification and so the density gradient is preserved. The 

two fluids are then separated by a thin region over which the density changes 

continuously. In such circumstances, internal waves can propagate along the 

density gradient region, as in the deep ocean example above. Such a system can 

be simplified to that of the discontinuous stratification case if the interface is 

considered as a thin surface. Any effects of diffusion of salt into the fresh water 

are neglected. 

The structure of the stratification inherent in the atmosphere is somewhat differ-

ent from the oceanic density profile. The density decreases rapidly with altitude. 

As a result, the buoyancy frequency is not sharply peaked as in the thermo-

dine, but varies more gradually. Internal waves in the atmosphere can have 

wavelengths of the order of kilometres, upon which scale N(z) varies slowly. In 

addition, winds interact with and can modify the characteristics of waves in the 

atmosphere. Stationary atmospheric waves can occur over large topographic fea-

tures such as mountains in a steady wind. They can often be identified by flat 

lenticular-shaped clouds to the lee of the obstacle. 
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2.4.2 Oceanic and atmospheric solitary waves 

Observations of internal solitary waves in nature are widely documented in both 

the ocean [70] and the atmosphere [84, 67, 95]. This section introduces oceanic 

and atmospheric internal waves and discusses the motivation behind their contin-

ued study. Some of the quantitative studies of oceanic solitary waves that have 

been published in the last 20 years are then reviewed. 

Internal gravity waves in the oceans and the motivation for their study 

Unsurprisingly, over the past century, many observations of internal gravity waves 

have been reported in both the ocean and the atmosphere. In 1896, Fridtjov 

Nansen, a Norwegian explorer on an expedition to the Arctic, noticed that his 

ship was experiencing some resistance to forward motion, even though the water 

surface was calm [28]. His ship had experienced what is now called the "dead 

water phenomenon". Although no waves were visible at the water surface, internal 

waves, propagating at the interface between a surface layer of fresh water and a 

lower, more dense, saline layer beneath it, inhibited the ship's velocity. 

Oceanic internal gravity waves are oceanic motions which occur, typically, on a 

characteristic scale of between lOm and 10km [70]. As the temperature or salinity 

gradients tend to be quite sharp, any disturbance to the thermocline or pycnocline 

will usually propagate away from the region of generation as an internal wave. 
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The seasonal variability of the density structure of the ocean is reflected in the 

variability of internal wave characteristics, affecting for instance the direction of 

propagation and the size of the waves. Oceanic internal waves may propagate in 

a direction different or opposed to the general surface wave direction and can be 

generated by a variety of mechanisms [61: 

. tidal flows of stratified water over and around topographical features (illus-

trated in figure 2.5), such as islands and continental shelf edges 

. atmospheric forcing via pressure changes and surface stress 

. other mechanisms displacing the pycnocline from its equilibrium position 
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Figure 2.5: Some features of coastal and deep water oceans. 

The study of internal waves is relevant to many fields of research. As internal 

waves carry with them considerable momentum and energy, their propagation can 
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dramatically influence the characteristics of both the local and global oceanic 

environment. Changes in currents, caused by internal waves, can induce large 

forces on both static and floating marine structures such as oil platforms and 

risers. As a result, the study of internal waves is very pertinent to some areas 

of engineering. One particular example where knowledge of such hydrodynamic 

loading is important is in the recently projected construction of a submerged 

floating tunnel in Rogaland, Norway [28, 29]. 

Knowledge of the properties of internal waves is interesting from a biological view-

point. The vertical displacement of the thermocline, as a result of internal wave 

propagation, can also affect temperature and therefore marine nutrient distribu-

tions within the ocean [20]. This, in turn, can affect marine animal populations 

[6]. 

There also exists widespread interest in internal wave propagation in meteorolog-

ical fields. Ocean - atmospheric coupling is known to play a role in both local 

and global climate changes [25, 6]. An often-quoted example of the effects of this 

interaction is the El Niño - Southern Oscillation (ENSO) phenomenon whereby 

a large-scale equatorial internal wave travels eastwards across the Pacific ocean. 

The resulting deepening of the thermocline, in the vicinity of the South Ameri-

can coast causes a significant warming of the surrounding waters and a dramatic 

change in the region's climate marked by torrential rains and a drop in the ma-

rine fish population. These climatic changes are strongly linked to a reversal of 
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the Trade winds, known as the Southern Oscillation. Global short term changes 

in climate have also been observed as a result and much research is continually 

being focused on understanding the dynamics, causes and consequences of the 

phenomenon [35, 88, 42]. 

Within the oceanic environment, however, obtaining accurate measurements and 

a complete description of internal wave trains is a difficult task. It is difficult to 

track a wave over both long periods of time and long distances in order to build 

up a picture of how the wave evolves. Until recently, information could only be 

gathered at a series of closely spaced points at the water surface, using underwater 

acoustics and hydrographic sensors. Such in situ techniques can only provide 

localised measurements which do not yield all the hydrodynamical information, 

for instance, the mean flow field. 

However, the passage of internal waves may create a "signature" on the water 

surface, caused by a straining of the shorter surface waves. These patterns are 

indicated by the appearance of areas of increased surface roughness and, in some 

cases, breaking waves, which subsequently dissipate [69, 13]. Such surface wave 

manifestations can be detected by optical and radar devices from aircraft or 

satellites, as the resulting change in sea surface pattern can alter the reflectivity 

of surface waves [5, 70, 7, 13]. The leading edge of a wave train appears as a 

bright streak on a radar image, corresponding to a region of enhanced surface 

roughness. In particular, the synthetic aperture radar (SAR) has been shown 

40 



Chapter 2 	Internal Solitary Wave and Surface Wave Dynamics 

to be very sensitive to small variations in surface reflectivity [4]. It is a further 

understanding of the manifestation of these surface wave signatures that provides 

the principal motivation for this work. 

Observations of atmospheric and oceanic solitary waves 

There have been many observations of oceanic solitary waves. A sudden dis-

turbance to the density distribution, for example at a tidal sill, can lead to the 

formation of solitons or solitary wave packets, rank-ordered in amplitude, wave 

spacings and crest lengths. There seems to be two possible generation mecha-

nisms of solitary wave trains; either by evolution from an initial waveform over 

water of constant depth or by fission of an initially stable soliton propagating over 

water of decreasing depth [5]. They are usually solitary waves of depression as the 

stratification is generally strongest near the surface. They also exhibit remarkable 

coherence and permanence [11], travelling for long distances without appreciable 

attenuation, and having strong associated currents. They are often observed on 

a 12 hour cycle, suggesting that they are associated with changes in the diurnal 

tide [69, 11, 7]. Only recently has it become possible to identify with certainty 

the occurrence of solitary wave trains in the ocean due to the introduction of the 

use of SAR, used in combination with older in situ methods. 

Solitary waves have also been detected in the atmosphere [95]. One of the most 

famous examples manifests itself over the northern coast of Australia, and due to 
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its most common appearance at sunrise is known as "the Morning Glory" [84]. It 

is associated with a single long horizontal roll , or series of rolls, of low cloud which 

appears on the eastern skyline, usually in calm cloudless conditions. It advances 

rapidly bringing with it sudden, short lived, wind squalls, easily identified by a 

sudden jump in atmospheric pressure. There is rarely any precipitation associated 

with the squalls. Although the dynamical mechanism behind the generation of 

Morning Glories, in some cases, is still not fully understood, they are identified 

as large amplitude solitary waves. The roll cloud appears as a result of warm, 

moist sea air being entrained upwards and condensing along the leading edge of 

the cloud [14]. They are most frequently observed in the spring months. The 

Morning Glory can extend for considerable distances, sometimes over 1000km, 

travelling inland at a speed of around 10ms' [67]. The cloud base is usually 

rather low, at around 300m above the land surface. A photograph of the Morning 

Glory is shown in figure 2.6. 

The applicability of KdV theory to solitary wave occurrences in the 

ocean 

KdV theory has been validated by field work results in coastal areas, the deep 

sea, lakes and enclosed seas, such as the Mediterranean. There also exists a large 

quantity of well documented evidence that the passage of internal waves affect 

the shape of waves at the surface. Ostrovsky and Stepanyants [70] provide an 

42 



Chapter 2 	Internal Solitary Wave and Surface Wave Dynamics 

Figure 2.6: The Morning Glory phenomenon, off the coast of North Australia 
in the Gulf of Carpentaria [1]. 

overview of some accounts of field work observations of solitary waves most rele-

vant to this work. Three examples [5, 7, 131 of such accounts are reviewed here 

both in the context of the applicability of the KdV theory to internal oceanic 

solitary waves and the change in surface roughness due to the passage of such 

disturbances. A summary of the parameters used in the three publications men-

tioned is given in table 2.1. The variable Po  refers to a reference density. 

Authors I  h 1  (m) h2  (m) [a (m) I  h 1 /h2 
 

I 	a/h2  ] _ P/Po 

Osborne & Burch (1980) 863 230 60 3.75 0.26 N/A 

Alpers & Salusti (1983) 450 40 15 11.25 0.375 0.0013 

Brandt et al. (1999) 976 24 32 30.5 1.33 0.0023 

Table 2.1: Summary of the data collected in fieldwork [5, 7, 13] and used for 
comparison with KdV theory. 

In 1980, Osborne and Burch [5] undertook a series of measurements in the An- 
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daman Sea, south-east of the Bay of Bengal. In this area, regions of short, 

choppy, breaking surface waves, known as tide rips, had been previously observed 

and were thought to be associated with the passage of long internal waves. The 

internal waves are caused by strong tidal currents flowing over a varying bottom 

topography and through inlets that oppose surface wave propagation. The ocean 

density structure in this region is quite stable during the late summer months, 

when this study was carried out. Sea water temperature was measured at vari-

ous depths at one location. A well mixed surface layer extends to around 60m, 

the subsequent temperature variation with depth then provides a significant ver -

tical density stratification. Large, rank-ordered increases in temperature were 

attributed to packets of solitary waves of depression. Analysis of the results was 

supported by satellite photographs of the sea surface, taken above the experi-

ment location. It was deduced that the internal waves could have amplitudes 

as large as 60m. The internal wave packets occurred approximately in 12 hour 

cycles, indicating that the waves were tidal in origin. A KdV two-layer model 

was used to interpret the data. Although better agreement was found with a con- 

tinuous stratification model, the authors remark that the first order KdV theory 

adequately predicts two important characteristics; firstly, there exists no particle 

velocity decay with depth below approximately 600m; secondly, the ratio of hor - 

izontal particle speeds in the two layers is close to the depth ratio of the layers. 

They justify the use of this theory as these properties are not predicted by the 

Benjamin - Ono equation. 
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The strait of Messina in the Mediterranean, separating the Italian peninsula and 

the island of Sicily, has always been associated with strong currents and vortices. 

The sill, located at the strait, acts as a submarine barrier to water flowing through 

the channel. Legends claim that the currents were caused by two monsters, Scylla 

and Charybdis, but they are now known to occur as a result of tidal action. In 

the strait, lighter water from the North converges with denser, more saline water 

from the South, yielding a density difference of around 0.1%. Tidal currents are 

superimposed on these "stationary" currents, which lead to the formation of tidal 

bores at the sill. These develop into solitary wave trains further away from the 

strait. Alpers and Salusti [7] compare KdV theory to data collected from satellite 

images taken over the area. For the purpose of implementing the theory, they 

used in situ measurements obtained two years prior to when the satellite images 

were taken. The magnitude of these parameters can be seen in table 2.1. They 

argue that results obtained from the KdV equation for wave propagation velocity 

compare favourably with those obtained from the SAR images, once differences in 

the environmental conditions between the two data collection periods were taken 

into account. 

More recently, Brandt, Romeiser and Rubino [13] used a two-layer KdV low order 

theory to validate two methods of interpreting SAR images in order to detect sea 

surface patterns of internal solitary waves. The images were taken over the Strait 

of Messina, off the East coast of Sicily. The data compared favourably with the 

theoretical results for which wave parameters were estimated from hydrographic 
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measurements taken at the sea surface. 

2.5 The Interaction of an Internal Solitary 

Wave and a Train of Oscillatory Surface 

Waves 

The investigations discussed in the previous section show that the passage of 

oceanic internal waves is characterised by a change in the sea surface roughness. 

In some cases, the distortion is great enough to cause the surface waves to break. 

In fact, when gravity waves of short wavelength ride upon the surface of much 

longer waves, the wavelength of the shorter waves tend to become shorter and 

steeper at the crests of the longer waves. Conversely, the short waves become 

longer and lower in the troughs. In addition, there is a corresponding increase in 

the amplitude of the shorter waves. This phenomenon was initially investigated 

by Unna [89] and later expanded by Longuet-Higgins and Stewart (LHS) [61]. In 

this section, the theory presented by LHS [61] is discussed in the context of short 

surface waves interacting with internal solitary waves. 
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2.5.1 The theory of the interaction following Longuet - 

Higgins and Stewart 

Longuet-Higgins and Stewart (LHS) [61] present a rigorous and complete method 

to calculate the changes in amplitude and wavelength arising from the nonlinear 

interactions between two oscillatory wave trains, one with a much longer wave-

length than the other. The theory is based on an evaluation of the wave motion 

following a classical Stokes' expansion. The general results, derived using Stokes' 

nonlinear surface wave approximation, are extended to cover various wave con-

figurations, including progressive wave trains in water of both infinite and finite 

depth and trains of standing waves. 

In order to arrive at the derivations, LHS [61] assume that 

. the fluid is irrotationai 

. the fluid is inviscid 

• one of the waves is much shorter than the other such that kc < ks where k is 

the wave number and S and L refer to the short and long waves respectively 

• the shorter waves are superimposed on the longer waves 

• the waves satisfy Stokes' nonlinear surface wave approximation 

In the same publication [61], the same expressions were also derived by an al- 

ternative reasoning using the same assumptions, by considering the effect that 
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the long waves have at the fluid free surface. This approach is pertinent to the 

present study as it does not depend on the long waves being sinusoidal in nature, 

only on them being progressive. LHS assume that the orbital motion of the longer 

waves stretch the free surface, thus expanding proportionally the wavelength of 

the shorter waves. If the long wave is sufficiently long relative to the wavelength 

of the shorter waves, then it can be assumed that the orbital velocity of the long 

wave, u, does not change considerably over one period or wavelength of the short 

waves and so can be considered to be constant. Thus, in this limit, the effect the 

long waves have on the shorter waves can be thought of as analogous to that of 

a current. 

By considering the rate at which two fluid particles at the water surface separate, 

with an initial separation dx, they find that the relative change in short wave 

wavelength A'5  /As can be written as 

= 1 + dt. 	 (2.27) 
As 	 8x 

In order to obtain an expression for the change in amplitude of the short waves, 

LHS assume that: 

. the energy density of the short waves is given by 

/ 	1ôv\ 
E = pga4 I%1 	

+ 	
(2.28) 
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where a'8  is the modified amplitude of the short waves, 	is the vertical 

acceleration at the free surface due to the presence of the long internal wave, 

p is the density of the fluid and g is the gravitational acceleration 

. the rate of transfer of short wave energy, E, is given by 

E = Ec98 + E u + Su1, 	 (2.29) 

where S is the radiation stress of the short waves and UI:: is horizontal 

velocity associated with the long waves, near the free surface. The three 

terms, in order of appearance, represent 

the bodily transport of energy by the group velocity of the surface 

waves 

the bodily transport of energy by the horizontal fluid velocity associ-

ated with the long wave 

the work done by the horizontal fluid velocity of the long wave against 

the radiation stress of the waves 

. the short wave energy is conserved 

They subsequently find that the relative increase in short wave amplitude, a' /as 

can be written as 

as 	% . C5 	4Jcc 	4gOt' 
	 (2.30) 
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where CS is the phase speed of the short waves given by equation (2.8) and vc is 

the vertical particle velocity of the long wave near the free surface. 

As equations (2.27) and (2.30) do not depend on the long waves being sinusoidal 

in nature, they may be adapted to apply to the case of short waves riding upon 

an internal solitary wave. In previous sections (2.3.4 and 2.4.2), it has been 

shown that the range of validity of the KdV theory is fax reaching, providing 

a good approximation of deep and shallow water, small to medium amplitude, 

solitary wave characteristics in both laboratory and oceanic situations. KdV 

theory is, therefore, applied to provide the relevant expressions for the solitary 

wave horizontal particle speeds and wave velocity. The KdV notation from section 

2.3.4 is used such that uc = 'U2, where u2 is the horizontal particle velocity at 

the free surface y = h2  given by equation (2.22). CKdV refers to the speed of the 

solitary wave. 

In equation (2.30), the term 11g(ov,c1at), a normalised vertical acceleration due 

to the long wave fluid motion, is small when compared to uc/cc and can therefore 

be neglected, such that the relative change in amplitude for a train of surface 

waves riding on an internal solitary wave becomes, 

=i+ (+) 
U2 1yh2 	 (2.31) 

a 	cs 4 CKdV 

where now the subscript S refers to the surface wave notation introduced in 

section 2.2. Similarly, the expression for the relative increase in wavelength can 
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be written as 

As 	ch2 	(1+a_

(p2h—piF4)Co  --i1(x,t) 	
2hih2(hi+pih2)) . 
	(2.32) 

Here, only the first term of U21y=h2 in equation (2.22), is used such that the 

approximation to the velocity at the fluid free surface due to the solitary wave 

is to first order. Neglecting terms 2 and 3 greatly reduces the complexity of the 

resulting expression. The characteristic shape of the functions in equations (2.31) 

and (2.32) is shown in figure 2.7. The graphs of relative change in amplitude 

(figure 2.7 (a)) and wavelength (figure 2.7 (b)) are plotted against solitary wave 

"phase", or non-dimensional distance, x/A, from the maximum depression of the 

solitary wave shape. It can be seen that whilst the amplitude of the surface wave 

rises, its wavelength decreases. In both cases, the greatest change is located about 

the maximum amplitude of the solitary wave. 

2.5.2 Laboratory investigations of internal wave - surface 

wave interactions 

The Longuet-Higgins and Stewart (LHS) theory and the development of the ra-

diation stress concept has been the motivation and basis for subsequent studies 

and investigations [62, 23, 58, 49, 52, 33]. These studies are reviewed here so as 

to provide a context for the present work. 
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Figure 2.7: Relative change in surface wave amplitude and wavelength, calcu-
lated from equations (2.31) and (2.32), against solitary wave "phase", or non-
dimensional distance from the maximum depression of the solitary wave, x/A. 

Gargett and Hughes [23] investigated the interaction between short surface waves 

and a periodic mean current propagating in a direction oriented at an angle Oo 

to the surface waves, using an approach based on LHS. Their theory is compared 

to field work measurements of wind-generated surface waves. Over the crests of 

the internal wave, they found that if the component of the speed of the surface 

wave in the same direction as the internal wave train is smaller than the speed of 

the internal wave, the surface wave is turned away and its amplitude decreased. 

Over the internal wave troughs, the opposite occurred. 

Lewis et al. [58] presented the results of a series of experiments investigating 

the interaction of monochromatic internal and surface waves, propagating in the 

same direction, such that the angle between the direction of propagation of the 

two wave trains was 0 = 0. A two-layer fluid system, composed of water and a 
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kerosene and Freon mix, was used to measure modulations of wave characteristics. 

The density variation was of the order of 1% across the interfacial region. Two 

resistance wave gauges were used to measure internal and surface wave profiles 

and a specially designed optical device measured the wave slope directly. A theory 

was also developed, based on the LHS approach and was found to agree with the 

experimental results. The authors found that the magnitude of the modulations 

depended strongly on the relative wave speeds, the maximum interaction effect 

occuring when the phase speed of the internal wave and the group velocity of the 

surface wave were matched. They referred to this regime as the resonant case. 

Koop and Redekopp [52] presented a theory and supplementary experimental 

results, investigating the generation of a low frequency long internal wave mod-

ulated by a high frequency internal wave train. The dynamic coupling and ex-

change of energy between the two wave trains was investigated. They used a 

three-layer immiscible fluid system using fresh water, a kerosene and Freon mix 

and a saline lower layer. The high frequency wave propagated at the upper in-

terface and the low frequency wave at the lower interface. Waves were generated 

along the upper pycnocline and the response to this forcing was studied at the 

lower interface. An infrared optical interfacial wave gauge was used to measure 

interfacial displacements. They found that good agreement between the theory 

and the experimental results was obtained. 

In [32], Guizien and Barthelemy investigated the interaction between an internal 

53 



Chapter 2 	Internal Solitary Wave and Surface Wave Dynamics 

solitary wave of depression and a monochromatic surface wave train in a salt water 

- fresh water stratification. Internal and surface waves could be produced such 

that they either propagated in the same or opposite directions. Hence, 0 = 0 

or ir. Different layer depth ratios were used such that h1 /h2  2.5 to 4. The 

density gradient used was of the order of 2 - 3% and the pycnocline thickness was 

approximately 0.15 times the depth of the top layer. Small amplitude surface 

waves, with a frequency of around 211z, were generated using a plunger-type 

wave maker and scaled as shallow water waves. Measurements of the surface 

wave amplitude modulation were taken using a series of capacitance probes. The 

range of solitary wave amplitudes was limited to small amplitudes such that 

I al/h2 's-' 
0.3 - 0.4. The solitary wave characteristics were calculated using a low 

order KdV approach. Table 2.2 provides a summary of the parameters used. Clear 

amplitude modulations were detected by the measurement probes. They noted 

that any surface wave phase modulation, however, proved difficult to quantify 

[32]. In [33], they compare their results to those of Lewis et al. [58] whose 

theory assumed that the horizontal velocity profile of the internal wave did not 

vary with depth. This is not true in the case of small amplitude solitary waves 

for which horizontal velocity in the upper layer increases with distance from the 

interface. They concluded that short wave energy may not be conserved when the 

wavelength of the surface wave train is not much smaller than that of the internal 

wave. They added that such wave energy conservation may only apply to wind 

generated surface waves in the deep ocean, whose wavelength is sufficiently small 
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when compared to typical internal wave length scales. 

Characteristics  

Density difference, Lp 2 - 3%  

Layer depth ratios, h1 /h2 2.5 - 4 

Surface wave frequencies (Hz) 2 - 2.5  

Surface wave amplitude, as (m) 0.006 - 0.008 

Surface wave steepness, 2as/As 0.03 

Soliton wavelength (m) 1.2 

Soliton amplitude, al/h2 0.3-0.4 

Table 2.2: Summary of main parameters used by Guizien et al. [32] 

2.6 Motivation for the Study and Review of 

Chapter 2 

In this chapter, phenomena involving stratified fluids and internal gravity waves 

were introduced. Stokes' linear surface wave approximation was presented. The 

concept of a solitary wave was then put forward, from its initial discovery by 

Russell in the late 19th century, to observations of internal solitary wave trains 

in the ocean made by synthetic aperture radar, as recently as two years ago. 

The development of the KdV theory, a weakly nonlinear, weakly dispersive ap-

proximation, which describes the propagation of solitary waves in a rectangular 

channel, was outlined. The applicability of this theory to the propagation of both 

laboratory generated internal solitons in a two-layer fluid and oceanic solitary 
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wave measurements was reviewed. In general, KdV theory adequately predicts 

the form and amplitude - wavelength scaling of small amplitude solitons in a 

range of depth regimes, but breaks down in the large amplitude limit. It was 

also seen that extending the KdV equations to second order in a/h2  increased 

the range of validity of the theory. However, the numerical fully nonlinear model 

presented by Grue et al. [30, 28, 29] is successful in predicting large amplitude 

soliton characteristics where the KdV model fails. 

It was shown (section 2.5.1) that the assumptions of the Longuet - Higgins and 

Stewart (LHS) theory [61] can be applied to the interaction of an internal soliton 

in a two-layer fluid with a train of short wavelength surface waves. The use of 

the KdV theory in the approximation is also justified. So far, there seems to 

have been little investigation of the applicability of the LHS interaction theory. 

The few studies, which have already been undertaken, have mainly been done in 

the field of oscillatory internal waves, and have been discussed in section 2.5.2. 

Although the work presented by Guizien and Barthelemy [33] is concerned with 

surface wave amplitude modulations as a result of internal solitary wave - surface 

wave interactions, the range of wave characteristics of both wave types were 

rather limited. Only two surface wave frequencies were used and only small 

amplitude solitary waves were generated. The LHS theory is referred to but only 

an approximation to the LHS results seems to have been used. The data sets 

were therefore somewhat restricted. As a result, it is evident that there exists 

plenty of scope for further work in this field. 
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The laboratory experiments on internal solitary waves propagating in a two-layer 

fluid, carried out to date by other researchers and reported in this chapter (sec-

tions 2.3.4, 2.4.2 and 2.5.2), have, with the exception of Grue et al. [29], been per-

formed using non-quantitative flow visualisation methods and intrusive probes, 

which can obstruct the flow and yield only temporally- and spatially-averaged 

information. In this respect, this study differs. Here, full field, instantaneous, 

non-intrusive flow visualisation will be used, namely Digital Particle Image Ve-

locimetry (DPIV) and planar laser induced fluorescence (PLIF), to provide quan-

titative velocity and density maps of the flow respectively. Both techniques are 

described in the next chapter. 

This work firstly enables the suitability of these techniques to be assessed in 

the context of two-layer fluid solitary wave investigations. In addition, as these 

methods are non-intrusive, there will be no distortion of any observed surface 

wave modulation, or of any soliton modulation. The full field nature of the 

techniques also allow the surface and internal effects of the interaction to be 

observed simultaneously. Grue et al. [29] also mention that the exact density 

structure of the interfacial region remains unknown when the gate generation 

method (section 3.2.6) is used. This question could possibly be resolved using 

PLIF. 

The motivation of this study is therefore two-fold. The first goal is to successfully 

apply DPIV and PLIF measuring techniques to the investigation of laboratory 
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generated internal solitary waves propagating at a brine - fresh water interface. 

The aim is to then extend this work to investigate surface wave - internal solitary 

wave interactions and compare the results with a theory initially developed by 

Longuet - Higgins and Stewart [61] and adapted to the case of internal solitary 

waves following KdV theory. 



Chapter 3 

Experimental Measurement 

Techniques and Facilities 

This chapter details the experimental measuring techniques used throughout this 

work, in addition to the experimental facilities and apparatus. Emphasis is put 

on the theory behind the techniques and their general application to experimental 

fluid dynamics. Inherent errors in the techniques are also considered. Specific 

aspects of the techniques pertaining directly to the study of surface waves and 

stratified flows are reserved for chapter 4 where they are discussed in the context 

of the experimental apparatus and facilities. 
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3.1 Experimental Measurement Techniques 

In this section, the measurement techniques used throughout this work are in-

troduced and discussed. The techniques employed are Digital Particle Image 

Velocimetry (DPIV) and Planar Laser Induced Fluorescence (PLIF). Both ap-

plications are non-intrusive, planar flow visualisation techniques. In this study, 

they both rely on a laser light sheet to illuminate a vertical plane of the flow in 

order to obtain velocity information, in the case of the former, and density dis-

tribution information, in the case of the latter. There are, in effect, two stages to 

each technique; the data acquisition process and the analysis. The principles, the 

applications of the techniques and the acquisition and analysis methods of each 

are considered. The specific set-up and relevant parameters for each technique 

are then discussed in the chapters 4 and 5 as the experimental work they were 

applied to is presented. 

3.1.1 Digital Particle Image VelocimetrY 

In the field of experimental fluid mechanics, particle image velocimetry (PIIV) 

is now a well established optical measurement technique. It is an optical ve-

locity information acquisition technique, allowing instantaneous quantisation of 

twodimenSi011al velocity characteristics within a plane of the flow, without the 

intrusion of measurement probes, which obstruct the fluid motion. It has been 
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used successfully in turbulent, laminar or high speed regimes. As the methods 

of data acquisition for PIV have been both extensively developed and employed 

over the past few decades, many detailed descriptions and discussions of the mea-

surement technique have been published [76, 93, 2]. The aim here is to give a 

general overview of the technique with particular reference to how Digital Par-

ticle Image Velocimetry (DPIV) can be used to yield accurate and reliable flow 

measurements in stratified fluid flow experiments. 

The general principles of particle image velocimetrY 

Raw PIV data are obtained by imaging the flow under investigation. The area 

of interest in the flow is exposed to a planar light sheet. The light scattered 

by seeding particles introduced into the fluid prior to starting the measurement 

is then recorded using an imaging system. Successive recordings of the flow at 

known time intervals, 6t, can be made, either on the same frame or consecutive 

frames. This yields a series of tracer particle "patterns" which are then subjected 

to a statistical analysis routine to determine the average particle displacement. 

The entire image is divided up following a regular lattice pattern, into small, 

usually square, areas, known as interrogation spots. A spatial correlation routine 

is then performed over each image. In an interrogation area of 
N x N pixels, the 
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maximum spatial frequency, f, that can be measured is 

fs= 	 (3.1) 

In order to sample this frequency correctly, according to the Shannon (or Nyquist) 

sampling theorem, the images must be sampled at twice that spatial frequency, 

2f3 . This is equivalent, in real space, to a spatial interval of 1/218 pixels. Imposing 

a regular sampling grid of spacing x pixels on each image will give a 50% 

overlap between interrogation areas in the correlation routine. 

grid spacing 
= 

1 	N 

 

Any smaller overlap will result in the data being oversampled. The statistical 

measurements of the particle displacements are distributed across the image plane 

upon a regular two-dimensional lattice, determined by the dimensions of the 

sampling grid. The result is, therefore, a two-dimensional velocity vector map for 

every image pair of the flow. 

The correlation routine can either be performed on consecutive images, each 

containing one exposure of the tracer particles or on a single image, contain-

ing multiple exposures of the flow. In the former case, the process is that of 

cross correlation, in the latter, that of auto-correlation. The work presented 

here only concerns itself only with cross-correlation as this method has two very 
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useful advantages. Figure 3.1 show schematically the principles of both the auto-

correlation and cross-correlation analyses respectively. 

Whereas the auto-correlation process yields a series of peaks in the correlation 

plane, consisting of a self-correlation peak in the centre and smaller peaks, sym-

metrically either side of the centre peak, the cross-correlation technique gives only 

one significant peak corresponding to the average displacement of the particles 

within the interrogation area. In the auto-correlation plane, the symmetrical na-

ture of the secondary peaks relative to the central one highlights the issue of 180 0  

directional ambiguity. This ambiguity, however, is removed in cross correlation. 

In addition to this, the dynamic velocity range of the system is increased; that 

is, that small velocities close to zero, which would result in overlapping particles 

in a multiply exposed image, can be detected as there is no self correlation peak 

to mask the displacement peaks [18]. 

The development to digital image capture and analysis: Digital Particle 

Image Velocimetry 

In the earlier years of PIV development and measurements, images of the flow 

were captured using wet-film photography. Computational speed and memory 

limitations meant that the mean displacement evaluation was performed opti-

cally using double or multiple exposures of particle patterns on a single frame. 

With the advent of digital imaging systems, now more readily available due to 

AV 



flow camera 

computer 
and frame grabber 

Chapter 3 - Experimental Measurement Techniques and Facilities 

self correlation peak 
nterOqi' 	 , 	

displacement peaks 

00 9 

	

c N 
autocorrelation plane -- resultant vector in 

the interrogation area 
• ~time

shown  
 p

o   

acquisition 
	 analysis 

Auto-correlation 

displacement peak 
laser $  

camera  

area 

- - 	

resultant vector 
in interrogation 

- 	

- 	 ii_ 	 [attioit 	
cross correlation plane 

O pa 

-r- 	
computer 

. w and frame grabber 

acquisition 	 analysis 

Cross-correlation 

Figure 3.1: The stages of PIV auto-correlation (a) and cross-correlation (b). 
In (a) the image is multiply exposed, whereas in (b) two separate exposures are 

cross correlated. 

decreases in cost and increases in computing power, sequences of images are usu-

ally captured electronically. As the analysis can also be performed digitally, the 

rapidity with which results can be calculated means that digital PIV (DPIV) is 

now the favoured technique and is employed here. The operation of a digital 

camera and a description of the system used in this work is presented in section 

3.2.7. 
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Digital Particle Image Velocimetry analysis; peak detection and bias 

error 

In cross-correlation, used throughout this work, individual exposures of the tracer 

particles are captured on separate consecutive images. Nevertheless, it is useful 

to think in terms of particle image pairs where a pair refers to the image of a 

particle captured at a time t on a first exposure and the image of the same particle 

on a second subsequent exposure, at a time t + St later. 

Although the overall accuracy of DPIV measurements is the result of a combina-

tion of experimental design and analysis factors, one key aspect is the location 

of the correlation peak. Particle image size, the seeding density and the presence 

of strong velocity gradients all influence the overall quality of the peak detection 

and hence the displacement estimate. The resulting effects of these combine to 

bias the measurement in various ways and are collectively known as bias error. 

The particle images are not ideal; their spatial intensity distribution, known as 

their point spread function, is not a 8-function but can be well approximated by a 

normalised Gaussian curve [76]. Consequently, the signal peak in the correlation 

plane is a displacement function rather than a sharp peak. Each particle image 

pair in the interrogation area contributes to the overall shape of the resultant cor-

relation signal. It is therefore useful to ensure that the individual contributions 

are as well defined as possible. If a velocity gradient exists over the interroga-

tion spot, the shape of the displacement function will also broaden and small 
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displacements will contribute more to the height of the peak than larger ones. It 

is, therefore, also desirable that the velocity gradient over the interrogation area 

is small. 

As the image is captured electronically, on a CCD array, locating the correlation 

peak to the nearest array element position, or pixel, is not satisfactory as this 

will result in a large error in the estimation of the displacement. Therefore, sub-

pixel accuracy must be achieved. In digital imaging where the particle images 

are of the order of 2 - 3 pixels in diameter, this can be done by interpolation; 

fitting a "three point estimator" to the peak. This finds the highest point of 

the peak to within +1/10 to 1/20pxl [93, 76, 94]. One of the most common 

routines to be employed for this purpose is the Gaussian peak fit [94] where 

the displacement correlation peak is assumed to be Gaussian in shape since the 

particle image intensity distribution can be well represented by such a curve. In 

the case where the particle image diameter is rather small, there may not be 

sufficient information to fit the curve well, as adjacent values to the peak can be 

hidden within the background noise. Conversely, if the particle image diameter is 

too big, the correlation peak increases in width and decreases in height and the 

same problem arises, thus leading to spurious peaks being detected. 

Finally, there exists a finite probability that a peak from the background noise 

in the correlation plane may be detected as the highest peak in the plane and 

therefore as the signal peak. This will lead to an erroneous velocity vector known 
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as an outlier. This probability can be reduced if the peak is substantially larger 

than the background noise. Keane and Adrian [38] suggest that the height of the 

signal peak should be between 1.2 and 1.5 times larger than any other. In this 

work, the factor used has a value of 1.2. If this condition is not met, then a gap 

in the vector map will appear. This can be interpolated at a later stage in the 

analysis. 

DPIV set-up optimisation 

In addition to the consequences of digital analysis and location of the correlation 

peak, there exist other aspects of the DPIV set-up which can also substantially 

affect the quality and accuracy of the results. A key requirement of any PIV 

set-up is that the seeding particles can be assumed to faithfully follow the flow, 

without altering the fluid properties and also without interacting with each other. 

The smaller the particles, the more likely it is that they do follow the flow motion. 

Here, there must be a trade-off between the ability of the particles to scatter light 

effectively and to track the flow accurately. Experiments in water require either 

larger particles than those in air or brighter illumination, as particles in water 

scatter approximately ten times less effectively than those in air [2]. In the work 

presented here, conifer pollen, a common seeding material for PIV experiments 

[75, 18], is used. 

A number of recommendations, aimed at optimising the PIV set-up, are sum- 
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marised by Adrian [3] and Westerweel [94]. These recommendations are often 

referred to as "design rules". The seeding density across each interrogation area 

should be uniform and such that each area contains many particle images. This 

also implies that the particle images must be small. The estimation error in the 

displacement is a minimum when 

d/d 	2, 	 (3.3) 

where dt  is the particle image diameter and dr  is the pixel length. 

For the velocity gradients over an interrogation area to be small, it is important 

that the velocity variations, lAul, are also small. If 

IuI öt << d/M, 
	 (3.4) 

where 6t is the time interval between two correlated images and M is the magni- 

fication of the imaging system, then the displacement field can be considered to 

be locally uniform [94]. 

The homogeneity of the seeding over the measurement area is also important. The 

greater the particle density, the greater the probability of a valid displacement 

detection. The number of particle pairs over an interrogation area depends on 

the overall particle density, Al and the amounts of in plane and out-of-plane dis-

placement, F1  and F0 respectively. If there is no in or out of plane displacement, 
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the values of both F1  and F0 are unity. 

F0 is expressed as the normalised correlation of the intensities of two consecutive 

image intensities in terms of the out-of-plane displacement, 6Z [46], and can be 

interpreted as the loss of particle image pairs due to motion perpendicular to the 

plane of the light sheet [93]. It is given by [45] 

f10(Z)10(Z+SZ)dZ 	 (35) - 

F0(SZ) 
- 	 fI(Z)dZ 

where Io is the intensity distribution of the light sheet and 6Z is the displacement 

of the particles out of the light sheet, perpendicular to the (X, Y) image plane. 

The in-plane displacement is denoted F1 and is defined as the normalised corre-

lation of the interrogation area intensity [46] 

f11(X)Ii(X+s)dX 	 (3.6) F,(s)— 
- 

	 I'? (X)dX 

where I is the intensity over the interrogation area centred at coordinates X i  = 

(X i , Y1 ) 

and s is the spatial frequency coordinate in the Fourier transform plane 

The product of these three parameters is a measure of the effective particle image 

pair density. It was shown [46], using Monte Carlo simulations, that for the cross-

correlation technique, the product Jsf F1F0 must be greater than 10 to yield valid 

measurements in around 95% of the interrogation areas. Particle image density 
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also directly affects the measurement uncertainty. The more correlation pairs 

in the interrogation area there are, the stronger the correlation peak signal will 

be. Thus, if a flow can be densely seeded, then a high detection rate and low 

measurement uncertainty can be achieved. 

Overall, over an interrogation area of 32pxlx32pxl, the relative error on a DPIV 

measurement is of the order of 1% for a displacement equal to about one quarter 

of the interrogation area [94]. 

Post processing of PIV measurements and data validation 

It is almost inevitable that, in some instances, a tall background noise peak will 

be incorrectly selected as the displacement peak leading to an erroneous velocity 

vector, commonly known as an outlier. In most cases, these can be easily detected 

by eye in the vector map, as their magnitude and direction are often considerably 

different from the surrounding flow field and they appear as single anomalous 

vectors. They are also more common at the edge of the illuminated area under 

study. Although the outliers could be detected manually, it is useful, especially 

in the case of large data sets containing many vector maps, to employ a data 

validation algorithm which can identify these data drop-out points. Interpolation 

or extrapolation can then be used to fill the gaps left by the validation routine. 

There are various routines which can be implemented [76, 93]. The method of 

validation and interpolation used here is that of a local median filter. 
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Median filtering is often applied in image processing to remove binary noise. The 

principle behind this routine is that the 8 nearest neighbours of a single vector 

v(i, j) at position (i, i) are linearly ordered with respect to either their magnitude 

or their i and j components. The median value V,,,, that is the middle value of 

the ordered set, is then compared to the value under scrutiny. If 

Vmed - v(i,j)I 
> fthrmh 	 (3.7) 

v(i,j) 

where fthmh 
is some pre-determined threshold, then the value v (i, j) is replaced 

by the value of the median. 

There are two advantages to using a median as opposed to a mean filter [93]. The 

first is that the median filter technique is non-linear. A spurious vector will have a 

much larger or smaller value which distinguishes it from those of the valid vectors 

around it. Computing the median will place the spurious vector at the beginning 

or end of the ordered set. The median value, therefore, does not depend on the 

value of the outlier. In contrast, the outlier will strongly influence the value of 

the mean, deviating it from the expected value. The second advantage is that the 

median filter preserves edges, that is that gradients are not smoothed out. This is 

useful in internal solitary wave studies in a two-layer fluid, where a discontinuity 

in the velocity profile exists at the density interface. 
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3.1.2 Planar Laser Induced Fluorescence 

Planar Laser Induced Fluorescence (PLIF) is a measuring technique also based 

on laser sheet visualisation and digital image processing. Following a calibration 

procedure, the fluorescence intensity of a passive tracer that is excited by the laser 

light, is measured to yield the concentration of the tracer over the illuminated 

area of the flow. The tracer can either be a species already present in the flow or 

added for the purpose of the measurement. 

PLIF in stratified flows 

In the past, mixing processes and stratified flow characteristics have been in-

vestigated in a variety of situations using a variety of experimental techniques. 

They either involve probing the flow in some way, to measure variables such as 

conductivity [65, 92] or by observing the flow with an optical flow visualisation 

technique. 

Optical techniques include direct visualisation whereby a marker, either a dye, 

bubbles or solid particles, are followed along with the fluid motion. In the case of 

stratified flows, for instance, a dye can be used to indicate one of the fluid layers 

[44, 37] or a constant density contour, known as an isopycnal [151. Alternatively, 

a measurement of the change in refractive index of the medium can be made. 

These methods include Schlieren techniques [16], shadowgraph and interferomet- 
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nc techniques, all of which can be used to relate changes in refractive index to 

changes in density in transparent media. 

There exist, however, drawbacks with both investigative methods. Probes are 

intrusive in nature and can therefore disturb the fluid motion and upset the 

stratification. They can also only provide spatially and temporally averaged 

quantitative information. Shadowgraph and Schlieren techniques are most com-

monly used to provide only qualitative flow visualisation [26]. Interferometnc 

methods give space-averaged information, masking many aspects of any fine mix-

ing structures present in the flow and are also difficult to construct for large scale 

experimentation. 

Laser Induced Fluorescence (LIF) and its two-dimensional counterpart, Planar 

LIF (PLIF), have been successfully used over the past twenty years or so in 

a variety of applications to investigate velocity [55, 79], temperature [79] and 

density [21, 55, 91 fields as well as concentration and mixing [50, 24]. In contrast 

to probe or other optical experimental techniques, PLIF is particularly attractive 

for the investigations of mixing in stratified flows. As it is non-intrusive, the layers 

are not disturbed by the measurement procedure. The fast response time of the 

dye allows rapid changes in concentration to be observed and the sensitivity of 

the fluorescence to small changes in dye concentration mean that very small scale 

concentration fluctuations can be studied. Lastly, it enables a large region of a 

flow to be observed at one time. 
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Fluorescence 

The fluorescence spectrum of a compound results from the emission of radiation 

that has been absorbed by the compound. A molecule absorbs energy in the form 

of light at one frequency and emits this energy a short time later of the order of 

nanoseconds, in the form of light, at a lower frequency. The wavelength of the 

emitted fluorescence is thus longer than that of the absorbed light. The emission 

and absorption spectra of the fluorescent molecule is broad. A full description of 

this phenomenon can be found in [31]. 

There are various aspects of fluorescence that, when used as an analytical tool, 

could pose disadvantages if they are not taken into consideration. Firstly, the 

fluorescence of a compound can increase with viscosity; as the number of molec-

ular collisions is reduced, the energy transfer is also reduced . The fluorescence 

of a species can also be affected by photo-decomposition. The incident light on 

the compound can affect the ability of the compound to fluoresce, thus reducing 

the emission intensity with time [8]. Lastly, fluorescence can undergo a process 

known as quenching. This is where there is a reduction of fluorescence due to de-

activating effects, sometimes from other substances in the solution. Three causes 

are mentioned briefly here: 

• quenching due to temperature increases 

• oxygen quenching, whereby concentrations of oxygen present in the fluo- 
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rescing solution reduce the fluorescence 

• concentration quenching 

The last of these three cases is most pertinent to the work undertaken here. As 

fluorescence occurs by absorption of light at a certain wavelength, if the concen-

tration of dye is too large, the tracer nearest the light source absorbs most of 

the radiation. As a result, less incident light can reach the solution at greater 

distances away. In the case of PLIF, where attenuation of the laser light sheet 

with distance from the source inevitably leads to inhomogeneous fluorescence, the 

solution is used only at low initial dye concentrations. 

Fluorescent dyes 

Various dyes have been investigated over the years for their suitability as fluores-

cent tracers for concentration measurements. Arcoumanis et al. [8} discuss this in 

some detail, comparing three dyes commonly employed in this technique, namely 

fluorescein, rhodamine 6G and rhodamine B. They compare the performance of 

the dyes with increasing dilution in tap water. The dye characteristics are set 

out in table 3.1 below. Considerations taken into account include 

• the absorption and emission spectra of the dyes for the range of wavelengths 

available in modern instrumentation 

• the requirement that the overlap between these spectra is small 
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• the quantum efficiency such that there is a high signal to noise ratio 

• the solubility of the dye in the medium of the flow and the susceptibility 

of the dye to factors such as temperature, pH number, concentration and 

oxygen 

Whilst in the earlier years of laser induced fluorescence development, fluorescein 

dye was one of the more common tracers to be used [91, 50], Arcoumanis et al. [8] 

find it to have significant disadvantages over rhodamine. In the case of fluorescein, 

there exists a reduction of fluorescence intensity with time, the rapidity of which 

increases with increased laser power. This quenching also increases with dye 

concentration. Overall, rhodamine B and 6G are more stable, and rhodamine B 

is the most cost effective. In addition, the response of rhodamine B fluorescence 

to the laser light was linear at concentrations of less than 0.08 mg/i in tap water; 

the intensity of the light emitted is a measure of the concentration of the dye at 

any point in the measurement plane. For these reasons and because its emission 

spectrum is almost completely separate from the absorption spectrum, rhodamine 

B is used throughout this work. Also, the molecular diffusivities of rhodamine and 

salt are equivalent [21]. Changes in the concentration of dye can, therefore, be 

linked to changes in the concentration of salt. In this way, constant light intensity 

contours yield constant density contours in the flow field. This is pertinent to the 

work described here, where solitary waves are generated in a brine - fresh water 

two-layer stratification. 
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dye absorption spectrum I emission spectrum 

(nm) (nm) 

lower upper maximum lower upper 	maximum 

fluorescein 430 520 	490 490 600 	510 

rhodamine B 460 590 	550 550 680 	590 

rhodamine 6G 460 560 	530 540 660 	560 

Table 3.1: The absorption and emission spectra of fluorescein, rhodarnine B and 

rhodamine 6G, taken from [8]. 

PLIF experimental design and optimisation 

Having suitably introduced a fluorescent, the area of the flow under study must 

be illuminated using a laser light sheet of a suitable wavelength to excite the dye 

and recorded. As in the case of PIV, a sequence of images can be acquired either 

digitally using a CCD camera, or using conventional photography or video with 

subsequent digitisation. The scattered light from the laser is filtered out using a 

high pass filter placed in front of the camera lens such that only the intensity of 

the fluorescence is recorded. 

In optical measuring techniques using CCD imaging, each pixel in the image 

corresponds to a small volume of the illuminated cross-section of the flow. The 

number of photons reaching each pixel is inversely proportional to the square of 

the camera lens f-number [90]. In performing PLIF measurements, it is therefore 

advantageous to use a low f-number lens. When imaging large regions of a flow, 

the signal is ultimately limited by the low light intensity per pixel. 
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Houcine et at. [39] show that, to a good approximation, the pixel greylevel value 

is independent of the distance between the laser sheet and the front lens of the 

camera. They also find that the relationship between greylevel and tracer concen-

tration is linear provided that the initial concentration used is low and the laser 

power is high, such that the intensity of fluorescence of even small concentrations 

of dye are still detectable by the CCD sensors. This concurs with the results of 

Arcoumanis et al. [8]. 

In summary, a PLIF set-up can be optimised as follows: 

. by increasing the intensity of the laser beam 

. by choosing a tracer dye with characteristics most suitable for the experi-

mental set-up 

. by ensuring the relationship between dye concentration and fluorescence 

intensity is linear, i.e. the dye is used in its optimal dynamic range 

. by reducing the f-number of the camera lens 

. by maximising the CCD camera signal to noise ratio 

Post processing of PLIF images 

Post processing of the PLIF images is important if quantitative information about 

density distribution in the flow is to be retrieved. Normalisation of the concen- 
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tration intensities with respect to a background intensity field has the effect of 

removing any non-uniformities in the greylevel distribution on the image that 

are due to non-uniformities in the laser light sheet rather than due to changes 

in concentration. It also removes the effects of laser light dissipation within the 

fluid, which causes a reduction in the fluorescence intensity with distance from 

the laser light source. 

A background intensity can be obtained by imaging the flow field where the dye 

has been homogeneously mixed over the measurement volume. For a raw image 

taken at time t, the greylevel value of each pixel G, (i, j, t), at image coordinates 

(i,j), is divided by the corresponding pixel's greylevel value, GB(i,j), in the 

background image. This ratio is then scaled up by a appropriate factor, S, such 

that the resulting greylevel value, GN(i, j, t), is [73] 

- Gr(j,j,t) 	 (3.8) GN(i,j,t) 
- GB(i,j) 

In order to relate changes in fluorescence intensity to changes in salinity in a 

quantitative manner, a calibration must be carried out. A series of solutions which 

are increasing dilutions of the initial dye concentration are exposed to the same 

laser light intensity, under the same experimental conditions. This procedure has 

several goals. Firstly, it allows the relationship between fluorescence intensity and 

concentration to be determined. It is advantageous to ensure not only that the 

response of the emitted light intensity to concentration is linear, but also that the 
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dynamic range of the set-up is maximised. The gradient of the response should be 

high, such that small changes in concentration produce big changes in intensity. 

Secondly, the procedure maps each dilution of the initial concentration to an 

average pixel greylevel value such that at zero dye concentration, there should 

be no fluorescence. The filter should successfully remove the incident laser light, 

thus resulting in a measured emitted light intensity of zero and therefore a pixel 

greylevel value of zero. 

Having obtained normalised intensity images of the flow field, the greylevel values 

can be mapped to concentration levels using results from the calibration procedure 

that have been normalised in a similar way. A schematic of a two-layer fluid PLIF 

set-up, similar to that used in this investigation and presented in chapter 5, is 

shown in figure 3.2. 

laser sheet 	 intensity  
top layer 	

ty 
 

interfacial 
area 

owerdyed 
fer 	 — 

layer 	 concentration 

 curve 
normalised11 	

;= 	

calibration 

computer 	
resultant density profile 

upper 
layer 

dyed 
fluid 

arid frame grabber 

acquisition 	 analysis 

Figure 3.2: The two stages of the digital PLIF experimental procedure for strat- 
ified flows; the data collection and analysis. In the analysis, once the image is 
normalised, the greylevel pixel values can be related to density using the calibra- 

tion curve 
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3.2 Experimental Facilities 

In this section, the experimental facilities are described and the experimental set-

up is explained. The operational range of the facilities are given. Any necessary 

calibrations of the equipment are also summarised. 

3.2.1 The wave tank 

All the laboratory experiments in this work are carried out in a wave flume, 

designed and built at the University of Edinburgh [83]. The flume, built in four 

sections, is 7.5 m long and 0.4 m wide. The sides are constructed from glass 

25mm thick. The tank supports are made from box section mild steel. A hinged 

wave paddle is built into the flume at one end. The still water level (SWL) is 

designed to be 0.71m, such that the wave maker (section 3.2.2) operates correctly. 

A diagram of the tank is shown in figure 3.3. 

3.2.2 Generating surface waves 

The surface waves can be generated in the flume by means of a hinged absorbing 

wave paddle manufactured by Edinburgh Designs Ltd. It comprises a force and 

velocity transducer that measures the reflected wave component on the wave 

maker and subtracts this from the outgoing wave signal. The paddle can produce 

sinusoidal wave trains in the frequency range of 0.8 to 1.4Hz, when the water 
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level in the flume is equal to the SWL. 
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Figure 3.3: The wave flume and scanning beam system; an front elevation and 

plan view. 

3.2.3 Wave gauges 

Wave gauges allow the free surface elevation and the frequency of the surface 

waves to be measured. The gauges each consist of two parallel steel rods and 

a sinusoidal carrier signal is supplied to them. The output signal, in volts, is 

a measure of the conductivity and depends linearly on the submersion of the 

gauges in fresh water. Following a calibration (figure 3.4), achieved by sampling 

the gauge output at a series of submersion depths when the water surface is 

11.9 
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quiescent, the output voltage can be related to the free surface elevation, in units 

of length. 
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Figure 3.4: Free surface elevation from the SWL in cm against the wave gauge 
output voltage. The relationship is linear when fresh water is used. 

In the present study, when required, the gauges were fixed vertically at regular 

space intervals in the flume such that they were equidistant from the front and 

back glass panels of the tank. The wavemaker hardware controls the operation 

and sampling time of the gauges. Sampling, set at a rate of 16Hz, is triggered to 

start at a user-defined instant within the wave paddle control software. The data 

are stored on the wave paddle personal computer (PC) for subsequent analysis. 

3.2.4 The scanning beam illumination system 

In large scale experimental fluid dynamics, two types of illumination system are 

commonly used; pulsed laser systems and scanning beam systems. While the 

pulsed laser system is useful in rapid flows, delivering short bursts of laser light, 
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the scanning beam alternative is more suitable for flows with velocities of the 

order of a metre per second and is therefore employed here. 

A collimated beam from an argon ion 15W continuous wave laser, of wavelength 

514nm, is shone onto a rapidly rotating octagonal mirror. The frequency of 

rotation can be accurately adjusted in the range 50 to 200rps. The mirror scans 

the beam across a parabolic mirror, creating a pseudo-light sheet, the extent of 

which is determined by the dimensions of the parabolic mirror. The system, 

encased in a box, is situated below the glass bottomed wave flume such that 

the light sheet is directed vertically upwards through the fluid, as illustrated in 

figure 3.3. Although to the human eye, it appears that a plane of light is directed 

through the base of the flume, in fact the beam illuminates a volume of the fluid, 

the width and breadth of the laser beam, for a very small time interval. Each 

region is then re-illuminated on every subsequent scan. The total measurement 

volume is about 0.7m wide and 2mm thick. 

In multiply exposed images, the scan rate determines the time between expo-

sures. It will be seen in section 3.2.7 that, in the case of the DPIV single frame 

exposures sequences obtained throughout this investigation, the scan rate is also 

an important consideration. In the PLIF experiments, however, presented in 

chapter 5, the scan period does not affect the time interval between exposures, 

but can affect image quality. If the exposure time of the images and scan rate 

are not chosen carefully, the images may be unevenly illuminated. This irregular 

- 
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illumination will vary with consecutive frames. 

3.2.5 Setting up a stratification 

A two-layer brine - fresh water stratification can quite easily be achieved. Salt 

water, of the desired density, is pre-prepared and stored in two large reservoirs 

of dimensions 1.5m by 0.9m by 0.8m. These tanks are situated in the laboratory 

such that the brine reaches ambient room temperature. To ensure that the salt 

is homogeneously mixed, once dissolved, it is stirred using a submersible pump 

placed inside each reservoir. The salt water is then pumped into the wave flume to 

the desired level. The fresh (tap) water is put into a series of plastic storage boxes 

placed above the wave flume, each with a small outlet from which the flow can 

carefully be controlled. In this way, the fresh water can reach the same ambient 

temperature as the brine. A sharp stratification can be obtained by allowing the 

fresh water to drip very slowly through floating sponges initially placed on the 

salt water surface. 

In the experiments performed for this study, the density of the saline layer and the 

density profile of the stratification is obtained using a microconductivity probe 

[36]. The probe is driven vertically through the fluid by a stepper motor which 

can be accurately controlled and is interfaced by a PC. The output from the probe 

is an analogue voltage, digitised by an analogue to digital converter card in the 

PC. Once calibrated, the data, in volts, can then be interpreted as a measurement 
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of density. Figure 3.5 shows the linear relationship between the probe output and 

density of salt water. The graph shows two independent calibration runs (black 

and red data points respectively). A line of best fit has been fitted to each data 

set 
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Figure 3.5: Calibration of the microconductivity probe: the relationship be-
tween output voltage and density of salt water is linear. 

3.2.6 Generating single internal solitary waves 

Internal solitary waves are generated by means of a sliding "gate" system, similar 

to that used by Kao et al. [44] and Grue et al. [28, 291. The gate frame is fitted 

at a distance of 0.4m from the back wall of the tank, at the opposite end from 

the wave paddle, and sealed in place. Once a two-layer stratification has been 

set up, the gate, a heavy duty, made-to-measure sheet of perspex, is slotted into 

the frame until there is but a small gap between the tank base and the bottom 

edge of the gate. An additional known volume of fresh water is then added, again 

[S1& 
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using a floating sponge, behind the gate. The gap at the base of the gate allows a 

corresponding mass of salt water to move to the other side such that hydrostatic 

balance is maintained. A schematic of the resulting stratification is shown in 

figure 3.6. 

gate wave paddle 
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(diagram not to scale) 

Figure 3.6: Diagram showing the stratification configuration for generating an 

internal solitary wave. 

Upon removal of the gate, achieved by sliding the perspex sheet upwards and 

out of the frame, the extra volume of fresh water is released and develops into a 

solitary wave a short distance down the tank, before reaching the measurement 

region. By carefully choosing the volume of water added, a single solitary wave 

can be generated. Any disturbance caused by fluid motion around the sliding gate 

supports will have damped out by the time the fully-formed solitary wave reaches 

the measurement region. Previous work [34] had not noted that such disturbances 

affected the results [96], as good agreement with numerical simulations [30, 841 

were found. However, a recent development in the experimental facilities in Oslo 

University has meant that a sliding gate support is now no longer necessary. 

AM 
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This new sliding gate mechanism relies on a tight fitting sheet of strong plastic 

material which is released using a compressed air controlled system. This also 

means that there is no manual intervention in opening the gate. Such a system 

was not available for the present work. 

3.2.7 Imaging the flow 

Charged couple device cameras 

As planar flow visualisation techniques have moved away from the use of con-

ventional photography to digital imaging due to the overwhelming decrease in 

acquisition and processing times, it is useful to briefly describe how a digital 

camera operates. 

A charged coupled device (CCD), in a digital camera, is a two-dimensional array 

of sensors that convert quanta of light into electric charge. Each element in the 

array is called a pixel. The array consists of a semi-conducting substrate with 

a series of metal conductors on the surface with an insulating oxide layer below. 

An incident photon on the semi-conductor generates an electron-hole pair, the 

hole is absorbed whilst the electron is stored in a potential well. This process is 

illustrated in figure 3.7. The output voltage signal is directly proportional to the 

charge stored. There is, therefore, a linear relationship between the scattered light 

from the flow under study and the output voltage from each pixel. The voltage is 
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Figure 3.7: A basic model of how a pixel works (taken from [76]). 

then converted to a grey scale pixel value by an analogue to digital converter. In 

this study, an 12-bit camera is used. This implies that there exist a possible 4096 

(=2 12 ) grey scales for each pixel. This allows a much finer contrast resolution to 

be achieved. More conventionally, however, 8-bit cameras and computer displays 

are used, which allow 256 (=28) greylevels in an image. A pixel value of 0 thus 

corresponds to black and one of 255 to white. 

Properties of the CCD array can affect the quality of any acquired images. The 

pixel sensitivity and it's spectral response vary with the wavelength of light in-

cident on the array. The dynamic range of the sensors must also be optimised. 

This range is a measure of the full well capacity and the background current noise. 

This noise increases with temperature of the array, it is therefore important that 

the CCD array is kept at a cool and constant temperature. Another important 

consideration is the physical size of the pixels and the size of the pixel array, as 
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this determines the resolution of the camera. 

Digital imaging systems use frame grabbing hardware to capture and store the 

images prior to them being transferred to the hard drive of the computer, for 

storage and analysis. The memory available on the frame grabber board limits 

the number of images that can be taken in one run or experiment, whilst the 

frequency at which the images can be captured and then transferred to the board, 

from the camera, puts a limit on the minimum time interval between images. In 

the case of conventional digital imaging, photography or video, this time interval 

is fixed. For certain systems, however, it is now possible to set two different time 

intervals. The images are downloaded to the frame grabber in pairs such that the 

time interval between the two images of a single pair, 5t, and the time interval 

between successive image pairs, Lit, can be defined separately. This is particularly 

useful in the particle image velocimetry cross-correlation technique, described in 

section 3.1.1, where the analysis is performed over pairs of consecutive exposures. 

As ideally, öt << At, a series of image pairs can be taken over a longer time 

period than using a fixed time separation between every exposure without either 

jeopardising the optimisation of the PIV technique, or requiring a considerable 

amount of computer memory to store a large number of images. Such a system 

is used in the work presented here. 
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Operation of the camera system 

In all the experiments, the flow was imaged using a digital CCD "Sensicam" cam-

era made by PCO Optics GmbH. This 12-bit camera has a scan area of 8.6mm by 

6.9mm, with an array size of 1280 by 1024 pixels. This gives actual pixel dimen-

sions of 6.7jim by 6.7pm. The spectral sensitivity and quantum efficiencies of the 

CCD sensors is almost optimal in the range of the wavelengths of light of interest, 

that is between 514nm and 570nm [71]. The camera is designed to capture a se-

ries of image pairs, operating under software written by the manufacturers. The 

images are downloaded in pairs to a PC, via a standard BNC connection. The 

2 12  greyscale levels are mapped to the more conventional 2=256 greylevels, or 

8-bit display, by a linear look-up table. The characteristics of the look-up table 

are user-defined within the software package, prior to grabbing a series of images. 

The mapping used for these experiments is shown in figure 3.8. 
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Figure 3.8: The look-up table used in the experiments to map the 2 12  greylevels 

of the "Sensicam" camera to the 8-bit computer display. 
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As the camera can capture pairs of images, the system is particularly useful 

for DPIV experimentation. The middle section of the schematic in figure 3.9 

shows the stages of the image capture process. The first integration time, I, is 

user-defined and is determined by the duration of an input TTL pulse from an 

external timing box to the frame grabbing board. Reception of the rising edge 

of the TTL signal triggers the capture of every image pair. The subsequent and 

second integration time, 12, is completely determined by the readout time of the 

first image and is set at 125ms. By default, however, there exists only a very 

short time interval, of the order of 200ns, between two exposures of a pair. This 

interval is referred to in figure 3.9 as the "dead time". The interval, At, between 

image pairs is determined by the frequency with which the TTL pulse is sent to 

the board. The frequency of image pair capture is limited by the overall time it 

takes to download each image pair to the board from the CCD array. In the case 

of the system presented here, this results in a minimum time interval between 

image pairs of 0.55 seconds. 

A mechanical shutter allows both the exposure time of the second image, iE2 , 

and the time interval between the two exposures, 8t, to be controlled. The shutter 

is fitted to the camera, behind the camera lens and is also operated by sending a 

TTL signal of suitable width from a pulse generator to the shutter control box. It 

is set to be leading edge active, opening for the duration of the pulse it receives. 

Figure 3.10 shows a schematic of the camera and shutter set-up and the triggering 

mechanism. 
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There are two possible ways in which this camera - shutter system can be used. 

The synchronisation of the TTL pulses sent to the camera and shutter depend on 

the method chosen. The shutter can either be opened and closed once (method 

1) or twice (method 2) for each image pair. In the former case, the scan rate of 

the laser beam determines both the exposure of the second image and the time 

between them, R. In the latter case, where the shutter opens twice, St is the time 

over which the shutter remains closed between the two exposures. The schematic 

in figure 3.9 shows the TTL pulse synchronisation for the camera and shutter for 

both shuttering techniques. The application of these two alternative methods to 

the DPIV study of internal solitary waves and surface wave trains is discussed in 

sections 4.3.1 and 4.4.2. 

I scan 	 I scan 
shutter status 	 Ideal 

real shutter timing cycle 	open - 	-- ----- 

dead tree -20Ons 

camera operation cycle 	 i[instt 	1, 	 12 =125ms  

	

read out time 1 	 read out time 2 

Figure 3.9: The "Sensicam" camera. The schematic shows both the operation 
of the CCD array in the camera and that of the mechanical shutter (two possible 
methods), used to define the interval St and the exposure time /.E2 . 

The shutter and the camera are selected to be leading edge active, such that both 

are triggered on the rising edge of the input pulses. The shutter used throughout 

this work is the VS25 model made by Vincent and Associates. It is 25mm in 
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diameter and allows a Nikon lens to be attached to the front. All experiments 

described in this work use a 28mm Nikon lens at f 2.8. Table 3.2.7 summarises 

the main details of camera and shutter system used. 

Camera properties 

Camera type 	PCO Sensicam, double shutter version, 12-bit 

Array size (pxl) 	1280 x 1024 

Pixel size (pm) 	6.7 x 6.7 

Lens 	 Nikon 28mm, f 2.8 

Trigger mechanism TTL pulse, rising edge active 

Minimum At (s) 	0.55 

Shutter properties 

Shutter type 	Vincent and Associates VS25 

Diameter (mm) 	25 

Trigger mechanism TTL pulse, rising edge active 

Table 3.2: The main characteristics of the camera and shutter system used 

throughout the course of this work 

TTL pulse (2) 
Shutter trigger 

UL pulse (1)
In r - 

Camera trigger  

AE1 	At 	 BNCt0 
PC 	out 

28mm 

Nikon lens 

camera 

(not to scale) 

Figure 3.10: The camera system used in the experiments presented in this work. 

Ultimately, the camera system is limited by the maximum number of bitmap 

images the frame grabber can store. This puts an upper bound on the number 

of images that can be taken in one experiment and is limited to approximately 
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60 image pairs in the set-up used here. 

3.2.8 Scaling the images 

In order to determine the magnification of the optical set-up, a grid was placed at 

the position of the laser light sheet inside the full wave flume. The grid is a sheet 

of 6mm thick perspex with a 5cm by 5cm square lattice etched onto one side and 

fixed onto a perspex stand. It was ensured that the base and sides of the grid were 

square with the tank base and front and rear panels. The lattice is highlighted 

when exposed to a low power laser light sheet. The camera can then be focused 

on the grid and the illuminated area is imaged. This procedure also ensures the 

proper alignment of the camera with the light sheet. Misalignment of the camera 

can result in errors in the measurements taken, caused by a reduction in image 

quality. By carefully ensuring that the camera is correctly positioned, these errors 

can be minimised. The magnification of the system in all experiments was of the 

order of M ".- 0.01. The actual measurement area that could therefore be viewed 

by the camera, given the lens system and magnification used, was approximately 

60 x 50cm2 . 
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3.2.9 The complete laboratory set-up 

A plan view of the complete laboratory set-up is shown below (figure 3.11). The 

camera is aligned with the measurement plane, defined by the laser light sheet and 

is situated at approximately 2m in front of the front glass panel. This distance 

is limited by the size of the laboratory. 
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Figure 3.11: A plan view of the complete laboratory set-up. 

3.3 Review of chapter 3 

In this chapter, the experimental techniques used, namely Digital Particle Image 

Velocimetry (DPIV) and Planar Laser Induced Fluorescence (PLIF), were intro-

duced. Their general application to experimental fluid dynamics was discussed. 

A specific description of their application to the interaction of a solitary wave 

with a train of surface waves is left to chapters 4 and 5. In addition, the ex- 
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perimental facilities were introduced and described. Particular set-up details will 

be described in the relevant results sections, 4.3 and 4.4, for the case of DPIV 

measurements, and 5.2 and 5.3 for the PLIF measurements. 
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Chapter 4 

The Interaction of a Surface 

Wave Train and an Internal 

Solitary Wave: A DPIV 

Investigation 

4.1 Introduction 

The underlying motivation of the present study is to investigate the interaction 

processes that occur when an internal solitary wave of depression passes under 

a train of progressive surface waves in a two-layer brine - fresh water fluid. In 
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this chapter, an investigation of the interaction using Digital Particle Image Ve-

locimetry (DPIV) (section 3.1.1) is presented. To the author's knowledge, such 

an investigation has not been performed before. Previous studies [33, 321 have 

employed only intrusive probe techniques to determine surface wave amplitude 

modulation. This study, in contrast, is intended to reveal the velocity structure 

of the flow as the interaction occurs, in addition to any wave modulation. 

In the first instance, the aim of the work presented in this chapter is to provide 

a reference data set of characteristics for both non-interacting wave types, which 

can be then compared with the interaction experiment results. Hence, DPIV 

experiments are performed separately on both single internal solitary waves of 

depression and small amplitude surface waves (sections 4.3 and 4.4), before an 

investigation of their interaction is made (section 4.5). Before discussing the 

experimental procedure and results for the two wave types, the limitations of the 

experimental apparatus are identified in the context of generating a brine - fresh 

water two-fluid system (section 4.2.1). An investigation into the suitability of the 

chosen seeding material (pollen) used for all DPIV measurements performed in 

this study, is also made (section 4.2.2). 

DPIV measurements are performed on a set of four solitary waves of depression; 

two of small amplitude and two of large amplitude, each generated by means of a 

sliding gate mechanism (section 3.2.6). The experimental method is outlined in 

section 4.3.1 whilst the results and analysis are presented in section 4.3.2. The 
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wave characteristics; amplitude and wave shape, are obtained from the measure-

ments and compared to KdV theory (section 2.3.4) and a recently developed and 

validated fully nonlinear numerical method [30, 28]. Vector maps and velocity 

profiles of the flow are presented. Drawbacks of the available camera - shutter 

system (section 3.2.7) and their effect on the dynamic range of the measurement 

technique are discussed. The repeatability of the sliding gate generation mecha-

nism is also investigated. 

The experimental set up for the DPIV investigation of small amplitude surface 

wave trains and the results are presented in sections 4.4.1 and 4.4.2 respectively. 

The choice of surface wave amplitudes and wavelengths are justified within the 

context of the operational range of the wave paddle (section 3.2.2). Surface wave 

trains are generated in three fluid configurations; homogeneous fresh water and 

two two-layer fluid regimes. In all three cases, profiles of maximum velocity 

are presented and surface wave profiles are obtained from the DPIV images. A 

comparison of surface wave characteristics propagating in different fluid configu-

rations appears not to have been made before. The results are compared to linear 

theory predictions (section 2.2). 

Lastly, interaction processes resulting from progressive surface waves passing over 

a large amplitude internal solitary wave are investigated (section 4.5). Amplitude 

and wavelength modulation of the surface wave train is identified. Surface wave 

profiles are compared to surface wave linear theory. Amplitude and wavelength 
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modulations are compared to the predictions of the Longuet - Higgins and Stewart 

theory (section 2.5.1). DPIV measurements yield quantitative velocity informa-

tion about the interaction flow field. Velocity profiles at surface wave crests and 

troughs are obtained. The results (section 4.5.2) are compared to the linear su-

perposition of the non-interacting flow fields obtained from the previous DPIV 

experiments on the individual wave types (sections 4.3.2 and 4.4.2). 

The aims of this chapter can thus be summarised as follows: 

. to assess the parameter space of the experimental system for the generation 

of internal solitary waves and their interaction with surface wave trains in 

a brine - fresh water stratification 

. to determine the repeatability of both wave generation mechanisms; the 

sliding gate mechanism (section 3.2.6) and surface wave paddle (section 

3.2.2) 

. to compare the results from both surface waves and internal solitary wave 

measurements to the appropriate theory and also, in the case of the solitary 

waves, a nonlinear model [30, 28] 

. to obtain reference data sets for both wave types for comparison with the 

interaction experimental results (section 4.5) 

to provide instantaneous, quantitative velocity information for the flow field 

resulting from the interaction between an internal solitary wave of large 
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amplitude and a train of progressive surface waves 

. to assess any surface wave amplitude and wavelength modulation resulting 

from the interaction process 

4.2 Investigating Two-Layer Fluid Flow using 

DPIV 

In this section, the constraints imposed on generating a two layer fluid strati-

fication, given the available experimental facilities (section 3.2), are considered. 

The effect on the parameter space of the investigation is determined. Finally, the 

DPIV measuring technique, when applied to stratified flows, is discussed. 

4.2.1 Experimental facility constraints: Choosing the 

stratification parameters 

A two-layer stratification can be characterised in terms of the density difference, 

/.P/P2 = (p1 - p2)/p2, and the layer depth ratio, h 1 /h2 , of the two fluids where 

the subscripts 1 and 2 refer to the lower and upper layers of the stratification 

respectively. These are key defining parameters in determining the resulting 

characteristics of the solitary waves generated. The density difference across the 

salt water - fresh water interface determines the speed of the waves; the larger 
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the density difference, the greater their speed. The layer depth ratio determines 

the extent, or wavelength, of the solitary wave [28]. The smaller the depth layer 

ratio, the broader the wave. 

The values of both AP/P2 and h, /h2,  selected for this investigation, are justified in 

terms of the limitations imposed by the available experimental facilities. As one of 

the aims of the work on single solitary waves presented in this section is to identify 

the characteristics of the solitary waves to be used in the subsequent surface wave 

train - internal wave interaction experiments (section 4.5), a consideration of the 

requirements of these experiments was also necessary. This imposed additional 

constraints on the stratification parameter space, which are also discussed below. 

The available water storage facilities imposed a maximum and minimum value 

upon the quantity h1 /h2 . The bottom layer fluid depth, h 1 , was restricted by the 

maximum volume of brine that could be held in the two large reservoirs in the 

laboratory. Similarly, the upper layer depth, h2 , was limited by the maximum 

volume of fresh water that could be kept in the storage containers above the wave 

flume. To generate calibrated surface wave trains (section 3.2.2), the fluid free 

surface was required to be level with the still water level (SWL) of the built-in 

wave paddle. This is equivalent to a total fluid depth of 0.71m. All experiments 

were therefore carried out such that H = h1  + h2  = 0.71m. To investigate the 

effect of the top layer fluid depth on the surface wave - internal wave interaction, 

it was desirable to use two different layer depth ratios, h 1 /h2 . Consequently, the 
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two extremes of the range of possible layer depth ratios were chosen, h1 /h2  4 

and h 1 /h2  6. 

The value of /.p/P2  used in the present work can be explained by, again, consider-

ing the principal aim of this work, namely to investigate the interaction between 

an internal solitary wave and a train of surface waves. The limited range of the 

layer depth ratio resulted in very broad solitary waves. Neither the width of the 

measurement volume, defined by the laser light sheet (section 3.2.4), nor the field 

of view of the single camera were sufficient to image the whole length of the inter-

nal wave instantaneously. In addition, surface wave generation using the in-built 

wave paddle was inhibited by the length of the wave flume of 7.5m. Standing 

waves were set up quite quickly after the paddle had been put in motion (section 

4.4.1). For the interaction to be successfully observed over the entire length of the 

solitary wave, the internal wave needed to have completely passed the measure-

ment area before the standing waves developed. As the density difference across 

the interface determines the speed of the wave, a larger density difference than 

that used in previous studies [44, 28, 29] was necessary, such that the density 

difference, AP/P2 '-'a 5%• 

As the brine had to be prepared in two separate reservoirs (section 3.2.5), there 

was a possibility that the salt water in each was of a slightly different density. To 

ensure that the saline water was uniform in density once it had been pumped to 

the desired water depth in the wave flume, the submersible pumps were used to 
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thoroughly mix the brine, before adding the fresh water layer. Advantage of this 

was taken to introduce either the pollen, for the DPIV experiments (sections 4.3.1, 

4.4, 4.5), or the rhodamine dye, in the case of the PLIF experiments (chapter 5), 

so as to ensure that these too were homogeneously mixed along the length of the 

flume and throughout the depth of the saline fluid. 

4.2.2 Considerations of the DPIV technique in stratified 

fluids 

Although previous work, reviewed in section 2.3.4, has already investigated in 

some detail internal solitary waves in a two-layer fluid, some aspects of the present 

work are different. Firstly, there appears to be little published research into 

internal solitary waves using DPIV [29]. Particle Tracking Velocimetry (PTV), 

which relies on similar principles, has been more extensively employed [29, 34]. 

In particular, pollen, the seeding material used in the present work, was not used 

in these earlier investigations. This section, therefore, discusses the suitability 

of pollen as a seeding material for use in the two-layer flows encountered in this 

study. 

In the case of the all DPIV experiments carried out in this work, the flow was 

uniformly seeded with conifer pollen. When wet, the pollen, which has an average 

diameter of around 60iim, has approximately the same density as fresh water and 

therefore has only a small tendency to float. It was, however, necessary to ensure 
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that the pollen was not only approximately neutrally buoyant in fresh water but 

also in a salt water stratification with an appropriate density change across the 

interface. 

A small glass tank of dimensions 50cmx35cm and 65cm in height was placed 

inside the wave flume on a stand that allowed the laser light sheet to shine up 

through the base. A stratification, where AP/P2 - 5%, was set up in the manner 

described in section 3.2.5. The bottom layer was over-seeded with pollen before 

slowly adding the upper fresh water layer. The pollen rises through the fluid as the 

upper layer is introduced, such that, if the quantity of pollen is carefully chosen, 

the particle density is approximately uniform throughout the fluid on completion 

of the filling procedure. The experiment must then be performed shortly after 

this. A long delay will result in inhomogeneous seeding, the majority of the pollen 

settling at and just below the free surface. All subsequent DPIV two-layer fluid 

investigations were seeded in the same way. 

The camera set-up was typical of all the experiments presented in this work. A 

spatial calibration (section 3.2.8) was performed to determine both the magni-

fication of the imaging system and to align the camera with the measurement 

volume determined by the laser light sheet. Having allowed time for currents in-

duced by the filling process to dissipate, a series of image pairs of the undisturbed 

fluid were captured. The rise time of the particles was found to be of the order 

of 0.25mms 1 , a result which is in agreement with that stated by Quinn [75]. In 
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addition, the magnitude of the velocities were found to be of the same order in 

the lower and upper layers of the stratification. 

Although a few more outliers were present in the interfacial region, they were 

suitably interpolated by the post processing local median routine (section 3.1.1). 

It was noted that there was no noticeable deflection of the laser beam as it passed 

through the interfacial region. 

Once the stratification had been set up, it was impossible to introduce more pollen 

into the bottom layer. Under-seeding the flow would lead to a poor correlation 

in the DPIV analysis. Over-seeding, on the other hand, would result in a large 

quantity of pollen accumulating, over time, at the free surface. Selecting a volume 

of pollen that would minimise the risk of either of these situations was therefore 

advantageous. The quantity of pollen depended on the time taken to fill the tank 

to the still water level, which, in turn, depended both on the layer depth ratio, 

h 1 /h2 , and on the additional volume, V, of fresh water introduced behind the 

gate. A smaller layer depth ratio and large volume, V, substantially increased 

the filling time and hence a larger quantity of pollen was required. Typical filling 

times for the top fresh water layer in the experiments described in this work were 

of the order of 2 to 3 hours. For a given h 1 /h2  ratio, the faster the filling time, 

the thicker the interface became. The brine was made up using 75kg of salt for 

each experiment. Table 4.1 shows the volume of pollen used for each solitary 

wave set-up. This was optimised according to the time taken to fill the top fluid 
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Solitary wave depth ratio depth ratio 

amplitude h 1 /h2 	4 h 1 /h2 	6 

small amplitude 
80m1 7Oml 

a/h2 i'-'  —0.5 
large amplitude 

170ml 150m1 
a/h2  < —1  

Table 4.1: Optimal pollen volumes for the investigations involving internal soli-
tary waves. 

layer. 

As the pollen accumulates at the fluid free surface, it creates a surface film, which 

may act to reduce the surface tension. The first order dispersion relation [17] 

3 ) 

cis = (gks  + tanh k 8H (4.1) 

describes the orbital frequency, WS, of waves on a free surface, where g is the 

acceleration due to gravity, k 5  is the wave number, a is the surface tension, p 

is the fluid density and H is the total fluid depth. Plots of phase velocity, c5 , 

against wavelength, .A s , are shown in figure 4.1, where both equation (4.1) (red 

line) and the dispersion relation neglecting the surface tension term (equation 

(2.6), black line) are plotted. At small wavelengths, the surface tension term 

dominates. At larger wavelengths, gravity is the significant restoring force and 

the effect of surface tension is negligible. Svensen [85] states that for A s  > 3cm, 

surface tension will have no significant effect on the wave motion. Pullen [74] 
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also investigated the effect of surface films on paddle-generated surface waves. 

His findings also concurred with existing theories. The range of wavelengths that 

call be produced by the surface wave paddle is also marked in the graph in figure 

4.1. It can be seen that, as this lies outwith the range of wavelength values that 

will be affected by changes in surface tension, the pollen is expected to have no 

significant influence in the characteristics of the generated waves. 

1.5 

- without surface tension term 
with surface tension term  

CM 

E 
	

/ 
C) 

0.5 

wave paddle 
operative range 

0'.. 
0 0.1 02 0304 050.60708 09 1 11 12 1.3 

/ m 

Figure 4.1: Graph of phase velocity, CS, of deep water waves against wavelength, 
both neglecting surface tension (black hue) and including the surface tension 

term in equation (4.1) (red line). 

It is important to assess the ability of the pollen to follow accurately the fluid 

motion under investigation. The particle Reynolds number, Re p , is given by 

Re— (
17f  —vu

) d (4.2) 

where ii is the kinematic viscosity such that v = ji 1 /p1 , fif being the dynamic 

viscosity of the fluid and p f  its density. d refers to the diameter of the particle 

and lvf - v' is the instantaneous relative velocity between the particle and the 

109 



Chapter 4 - Interaction Processes: A DPIV Investigation 

fluid. If Re << 1, then the particles can be considered to closely follow the flow 

and viscous effects dominate. In this regime, the Stokes' drag, D, approximates 

the force acting on each particle, such that 

D = 67r pj v 2  Rep . 	 ( 4.3) 

The balance of momentum of a particle in the flow can thus be written as 

67rpfv2Re 	
47r

= 	 (4.4) 

Following the scheme detailed by Grue et al. [29], '5p 	IVp(max)I/T, where T 

is the time over which a seeding particle is accelerated from rest to lVp(max)l, its 

maximum particle velocity. Substituting for 'O, and Re (equation (4.2)), equation 

(4.4) can be rearranged: 

Vp( ma4 	 (4.5) Vf - VpI 9vT 

In these experiments, for solitary waves, T 	5s, IVp(rnux)I 	0.2ms' and for 

pollen, d = 6 x 10 5m. Substituting the result of equation (4.5) into equation 

(4.2), the particle Reynolds number is much less than unity, with a value of 

the order of 10-4  . The particles, therefore, can be assumed to follow the flow 

closely. The accuracy, determined by the ratio kJ -VP I [29], is in the case of the 
p(max) 
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experiments performed here much less than 1%. 

In conclusion, therefore, despite the pollen not being completely neutrally buoyant 

in the fluids used for this study, the rise time is sufficiently low and the particles 

track the flow sufficiently well, for the seeding material to be used in the DPIV 

investigations that follow in sections 4.3.1, 4.4 and 4.5. 

4.3 A DPIV Investigation of Single Internal 

Solitary Waves in a Two-Layer Fluid 

This section presents and discusses results from the DPIV investigation on single 

internal solitary waves of depression. The experimental set-up is described. Lim-

itations of the data acquisition system are discussed. The results are compared 

to theoretical predictions and to previous work. 

4.3.1 DPIV experimental set-up and method for the in- 

vestigation of single internal solitary waves 

This section focusses on the details of the experimental set-up for the investigation 

of single internal solitary waves of depression propagating at a brine - fresh water 

interface. The experimental method is outlined. Use of the camera system is 

explained and justified within the context of both its operating limitations and 
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those of the illumination system available. 

For every solitary wave experiment described, the total fluid depth, H = h1  + h2 , 

was equal to that of the wave paddle still water level (SWL), such that H = 0.71m. 

The two-layer fluid was set-up in the way described in section 3.2.5, the pollen 

being mixed into the saline layer prior to the fresh water being introduced. A 

reference density profile was obtained in the quiescent stratification using the 

microconductivity probe (section 3.2.5) prior to each experiment. The depth of 

the upper layer was determined by locating the point of inflection on the profile. 

The solitary waves were generated as described in section 3.2.6. 

In the first instance, suitable values of V, the extra volume of fresh water intro-

duced behind the gate, and D, the distance to the sliding gate from the end wall 

of the wave flume, were selected such that a single large amplitude (a/h2  < —1) 

internal solitary wave of depression and a single small amplitude (a/h2 ".i  —0.5) 

internal solitary wave could be generated respectively in each of the two strat-

ification configurations h1 /h2  4 and h 1 /h2  6. This trial experimentation 

allowed the optimal amount of pollen to be found for each set of DPIV measure-

ments. It was ensured that the wave had formed completely before reaching the 

measurement volume, which was determined by the position of the laser light 

sheet. In both stratification regimes, the maximum amplitude wave was deter-

mined by the maximum volume of water which could be introduced behind the 

gate, whilst still only generating a single solitary wave. The position of the gate 
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Configuration - 	Configuration 
h 1 /h2  4 	 h 1 /h2  6 

a/h2  < —1 a/h2 r'  —0.5 a/h 2  < —1 a/h2  —0.5 

H (m) 	0.71 	0.71 	0.71 	0.71 

V(1) 	79 	20 	80 	20 

D (m) 	0.4 	0.4 	0.4 	0.4 

Table 4.2: Summary of the parameters used to generated the four solitary waves 
investigated in this study. 

was fixed at D = 0.4m for every solitary wave investigated. Overall, therefore, 

DPIV measurements were performed on four separate internal solitary waves. Ta-

ble 4.2 summarises the parameters pertaining to the initial experimental set-up 

used for each. The characteristics obtained from the DPIV measurements are 

fully detailed in table 4.4 and are discussed in the next section. 

Although the general ideas underlying the DPIV measuring technique have been 

described in the previous chapter, here, the details of the DPIV data acquisition 

procedure used in this study are presented. The Nikon 28mm lens was set at 

f 2.8, using a magnification of I MI '-.- 0.01 (sections 3.2.7 and 3.2.8). 

In section 3.2.7, two methods of controlling the exposures for the PCO Sensicam 

camera were introduced. The first system (figure 3.9, method 1) relies on the 

scan rate of the laser beam across the parabolic mirror to determine the interval 

between the two exposures, öt, whilst a mechanical shutter, placed behind the 

camera lens, prevents the second image from over-exposing. Given that the second 

exposure commences 200ns after the first integration time of the CCD array is 
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completed, if the exposure time of each image of a pair is exactly equal to the 

scan rate of the laser beam, then the time between the two consecutive exposures 

is equal to the scan rate also. This is because although the laser beam appears 

to be a sheet of light permanently illuminating the measurement volume, it is in 

fact illuminating a very small portion equal to the width of the beam at any one 

instant. Therefore, on any subsequent scan, the particle has moved on and will be 

illuminated a time 5t later, equal to the scan rate of the laser beam. So, the time 

interval between exposures is constrained by the slowest speed of the rotating 

mirror in the scanning beam box. The slower the speed, the longer the time 

interval ôt. Hence, for the set-up described here, if the first method was used, the 

maximum time interval possible between two images of a pair was öt = 2.5ms. 

In the second method (figure 3.9, method 2), the mechanical shutter was used to 

control both the time interval between exposures and the length of the second 

exposure, by opening and closing twice for each image pair. This method, how-

ever, is constrained by the rapidity with which the shutter can open and close. 

The larger the shutter, the slower it is. This imposes a minimum second exposure 

time, LE2  urns, which, in the case of the large amplitude solitary waves, gave 

blurred particle images. Whilst the first exposure is completely determined by 

software control of the camera CCD array, the second exposure depends on the 

length of time the shutter remains open. As the array is still active during this 

latter period, the intensity of the second image is affected by the additional time 

necessary for the shutter to both fully open and to fully shut. In contrast to 
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the first shuttering method, this set-up presented no practical limit for the time 

interval, R, so long as the CCD was still active for the second exposure. This 

interval could therefore be optimised to yield a sufficient particle displacement 

between particle images. 

In this study, particle velocities within the large amplitude solitary wave (a/h2  < 

—1) flow field are about 6 times larger than those in the small amplitude solitary 

wave flows, with a/h2 r.-'  —0.5. It was found that the first shuttering set-up was 

most suitable for use with the large amplitude solitary waves as, although the 

time interval between the images was small (giving small particle displacements), 

the images remained in focus. In contrast, the second system was used in the 

small amplitude solitary wave experiments, as the longer time interval between 

two images of a pair gave greater seeding particle displacements for the DPIV 

analysis. 

Exposure control could also have been achieved by placing a shutter across the 

laser beam path. In this case, the diameter of the shutter could be reduced 

as it needs only to accommodate the diameter of the laser beam. This would, 

therefore, be capable of much shorter exposures. However, the laser power used to 

illuminate the flow in these experiments is around 16W and would burn straight 

through any such device. Though an opto-acoustic light modulator could be used 

in a similar way to shut off the laser beam between exposures, this option was 

not available for this study and is therefore not discussed here. 
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solitary wave 	solitary wave 

	

a/h2  —0.5 	 a/h2  < — 1 

exposure time / delay exposure time / delay 

AE, (ms) 	 9 	 2.5 

öt (ms) 	 57 	 2.5 

AE 2  (ms) 	 11 	 2.5 

At (ms) 	 550 	 550 

Table 4.3: Table showing the timings used in the image capture of DPIV images 
for the single solitary wave experiments. 

It is important to note that in both cases, the DPIV camera - shutter system was 

used at the limits of the range of timings available for it. The camera timings 

used in both the large and small amplitude wave sets are summarised in table 

4.3. In all cases, the time between image pairs, At was 0.55s. This is equivalent 

to the maximum grabbing frequency of the camera system, allowing the maxi-

mum possible number of velocity maps to be obtained as each wave passed the 

measurement volume. 

In all of the experiments, the camera was first aligned with the laser light sheet 

in the manner described in section 3.2.8. Frame grabbing was activated on the 

opening of the sliding gate so as to ensure that the entire progression of the 

solitary wave was recorded. This also allowed the time taken for each wave to 

reach the measurement region to be determined. A maximum of 60 image pairs 

could be acquired by the camera in one run. This gave an overall experiment 

run-time of 33s. 
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The DPIV cross-correlation analysis was performed on a grid of 16pxl x 16pxl and 

with an interrogation area of 32pxlx32pxl. Spurious vectors on all the resulting 

vector maps were interpolated using a median filter routine. They were then 

scaled using the results from the spatial calibration. 

4.3.2 DPIV results and discussion of the single internal 

solitary wave experiments 

The analysis of the measurements presented in this section focusses on the as-

sessment of both the solitary wave generation mechanism and the ability of the 

DPIV measurement facility to measure the velocity fields of the solitary waves 

produced. The ultimate aim of the analysis was to provide quantitative infor-

mation about the velocity fields, against which the experimental results obtained 

from the interaction investigation (section 4.5.2) could be compared. In partic-

ular, the defining characteristics of the waves, namely their amplitude and their 

shape, are obtained from the resulting scaled vector maps of the flows. These 

results are compared to Kd\ theory (section 2.3.3) and to a previously validated 

fully nonlinear numerical model [30, 28]. 

Table 4.4 summarises the characteristics of the four solitary waves investigated 

here using the DPI\T measuring technique. Similar waves were subsequently used 

for the surface wave - internal solitary wave interaction investigations (sections 

4.5 and 5.3). The values of the non-dimensional density difference, AP/P2, be- 
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depth ratio volume amplitude density difference KdV linear wave speed nonlinear wave speed 

hi/h2 V a/h2 CO C 

(1)  (%) (cm.s') (cm.s') 

4.0 79 -1.24 5.5 24.57 30.34 

3.93 20 -0.48 4.0 21.13 23.98 

6.25 80 -1.95 4.94 20.15 28.61 

6.1 20 -0.68 4.2 18.71 24.33 

Table 4.4: Table showing the characteristics of the 4 single solitary waves inves-
tigated using DPIV. 

tween the two fluid layers are obtained from the calibrated conductivity probe 

measurements taken prior to each experiment. The wave amplitudes, a/h2 , were 

found from analysis of the DPIV vector maps and will be discussed further. The 

KdV linear wave speed, c0 , is calculated following equation (2.17). The nonlinear 

wave speed, c, is the nonlinear method prediction [30, 28] calculated with initial 

conditions a/h2 , h 1 /h2  and AP/p2 , as detailed in the table. 

The preparation of each experiment was very lengthy due to the time needed to 

prepare the salt solution and also set up the two-layer fluid. At least 24 hours 

were needed to ensure that the salt had thoroughly dissolved, before starting the 

filling process. A large volume of fluid, approximately 20001, was required to fill 

the tank to the correct level (SWL) and the top layer needed to be introduced 

very gradually. As a result, only one experiment could be performed in a day. 

Once the stratification was in place, the measurements were carried out within 

one hour, before the seeding particles became too sparse in the lower layer. 
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In addition to the above considerations, each stratification could only be used 

once. The wave motion took over one hour to damp out completely. During this 

time, the pollen continued to rise. When the fluid was once again quiescent, the 

interface had thickened considerably and little seeding remained in the lower layer 

of the stratification. As a result, it was not possible to re-use the brine - fresh 

water set-up. The graphs in figure 4.2 show both a plot of non-dimensional fluid 

density (p - p2)/p2 versus y/h 2  and the corresponding plot of N(y/h 2 ), before 

and after the passage of a large amplitude internal solitary wave in the quiescent 

4 regime. The initial conditions of the set-up were the same as those 

summarised in table 4.4, although the density difference was slightly smaller. 

The broadening of the buoyancy frequency peak and the reduction in the peak 

height indicate that the interface has widened. The centre of the interface can 

also be seen to have been pushed down by the mixing process, following repeated 

reflection of the decaying solitary wave from each end of the wave flume. 

Re-use of the salt water was attempted by pumping the brine out from the bottom 

of the wave flume through a filter to remove the pollen, back into the laboratory 

reservoirs. However, not all of the pollen was removed by the filter and, in 

the ambient temperature of the laboratory, turned the salt water cloudy. This 

cloudiness reduced substantially the contrast in the raw DPIV images in the 

subsequent experiment. This, in turn, reduced the quality of the resulting vector 

maps. 
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Figure 4.2: Density profiles (left hand graph) and the corresponding buoyancy 
frequency. N(y/11 2 ) ( right hand graph) of the stratification before (black line) and 
after (red line) a large amplitude solitary wave passed the measurement area. The 
profiles were taken when the fluid was quiescent. 

A sequence of three consecutive vector maps of each solitary wave (table 4.4) are 

shown in figures 4.3, 4.5, 4.7 and 4.9. The times refer to the elapsed time from 

when the gate is opened at t = Os. The coordinates of the plots are given in terms 

of y. the distance from the interface and .r. the distance across the measurement 

area (figure 2.3). Plots of isovelocity contours, where the blue contours indicate 

u, horizontal velocity, and the red contours indicate v, vertical velocity, have 

also been shown. The velocities are in units of cm.s 1  such that the horizontal 

velocity contours are plotted in intervals of 4cm.s . and vertical velocity contours 

are plotted every 2cm.s The same vector maps are shown in the adjacent plots 

in figures 4.4. 4.6. 4.8 and 4.10 for the same waves, however, here contours of 

absolute vorticity, 1 11V I . have been included. The vorticitv is defined as the curl of 

the velocity vector and for the two-dimensional velocity plots presented here is 
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given by the vertical component 

Dv au 
Dx Dy ,  

(4.6) 

such that it is directed normal to the plane defined by the laser light sheet. 

As the waves are very broad, each vector map only displays a portion of the 

waveform. The two layers of fluid can be distinguished by the horizontal velocity 

shear across the interface. The horizontal velocities in the top fluid layer are 

positive (in the direction of increasing x), where as those in the bottom layer 

are negative. The interface can be easily distinguished on the absolute vorticity 

plots as a broad band of high vorticity. This is also true of the fluid free surface, 

above which (u, v) = (0, 0). The isovelocity plots show that the horizontal ve-

locities tend to zero in the interfacial region. Thus, locating the position of zero 

horizontal velocity, 'a = 0, can provide an indication of the interface position, 

across each map. By tracking the location of zero horizontal velocity at a 

particular vector column over a sequence of velocity maps, a profile of interface 

position against time can be obtained. Hence, both the wave shape and the max-

imum amplitude j(x)/h 2  = a/h2  of each wave can be determined from the DPI\ 

measurements. 

Previous work has found first order KdV theory (section 2.3.4) to be successful 

in describing small amplitude solitary waves where a/h2 r>  —0.4. Extending the 

theory to second order was seen to slightly increase its range of validity. There 
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Figure 4.3: Vector maps and isov'-
!oCitV contours for a solitary wave 
(h 1 /h2 = 3.4 and 0/112 = — 1.24). 

(c )  t = 22.55s 

Figure 4.4: Vector maps with vor-
ticitv contours for the solitary wave in 
figure 4.3. 
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figure 4.7. 
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lacks, however, an analytical model that can describe suitably large amplitude 

solitary waves for which a/h2  < — 1. Recently (section 2.3.4), a fully nonlin-

ear time-stepping model [30, 28] has been developed and validated successfully 

against experimental data [30, 28, 29, 34] for both small and large amplitude 

interfacial solitary waves. An overview of the model method and assumptions, 

followed by a brief review of the literature, is given here. 

The method models solitary waves of permanent form in a two-layer fluid of 

infinite horizontal extent, but of finite depth, in a frame of reference moving with 

the wave speed, c. A boundary integral method representation based on Cauchy's 

theorem is used. Boundary-Integral Methods (BIM), first proposed by Svensen 

[86], have been found to be very accurate in modelling nonlinear free-surface flows 

[22]. The underlying assumption of the BIM is that the fluid is homogeneous and 

incompressible and the fluid motion is irrotational, such that the velocities are 

found from potential theory. The motion of a fluid in potential flow is completely 

determined by the fluid velocities around the fluid boundary. Consequently, only 

the fluid motion at the boundaries needs to be resolved and only the boundary 

itself needs to be discretised. This has significant computational advantages, 

reducing both the complexity of the problem (the number of variables) and the 

computational time [22]. 

For the model discussed here, the behaviour of the two-layer fluid, where ,o i  > P2, 

under the action of gravity is considered. The interface separating the layers is 
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taken to be infinitely thin. The pressure in each of the fluids is determined from 

the Bernouilli equation such that the pressure is continuous over the interface. 

As the speed of the internal waves is small, there is little vertical motion of the 

fluid in the vicinity of the free surface. As a result, the application of a rigid 

lid condition at the free surface is justified [28, 29] such that V21yh2 = 0. In 

addition, the kinematic boundary condition along the bottom of the lower fluid 

layer is v 1  Iy=-hi = 0. It is assumed that the length of the wave is much greater 

than the thickness of the interface. 

In this work, the initial conditions for the model are prescribed in terms of a 

small initial wave amplitude a/h2 , the stratification configuration, h 1 /h2  and 

the density difference, /p/p2,  across the two fluid layers. Initial guesses for the 

particle velocities and wave speed are calculated using KdV theory. Then, at 

each time step, the position of the interface and the velocity potentials in the 

upper and lower layers are found. Further details of the model can be found in 

[30], [28] and [29]. 

In [28], experiments were performed in a two-layer fluid with h1 1h2 	4 and 

= 2%. Amplitudes considered were between a/h2 	—0.2 and -1.5. The 

model was in agreement with the experimental measurements over the whole am-

plitude range. For small amplitudes, the method was seen to agree well with 

KdV and other assymptotic theories; finite depth and deep water theories (sec-

tion 2.3.4). A short review of the capability of the model to predict internal 
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solitary wave characteristics is given in [30], where the model also performs well. 

Likewise, similar experimental parameters are used in [29]. The method was com-

pared to internal solitary waves of depression obtained both from PTV and DPIV 

measurement methods, a comparison pertinent to the present work. Overall, a 

discrepancy of 7% to 8% was found between the nonlinear predictions and the 

PTV and DPIV results for measurements of non-dimensional horizontal velocity, 

u/co . In addition, theoretical results were found for two other depth layer ratios, 

h 1 1h2  = 10 and h 1 /h2  = 100. In [34], reference experiments for a range of soli-

tary wave amplitudes and depth layer ratios were carried out and compared to 

the fully nonlinear model before investigating the distortion of internal solitary 

waves by a finite amplitude bottom ridge. The density difference across the in-

terface ranged from 1.25% to 2.15% and h1 /h2  = 4 to h, /h2  = 8. Here too, the 

model provided a good fit to the experimental data. 

The velocity shear, apparent on the isovelocity contours for each wave, can be 

identified in all four graphs of non-dimensional velocity u/c o  against depth y/h 2 , 

shown in figure 4.11. The velocities remain relatively constant within both the 

upper and lower fluid layers respectively, tending to 0 at the density interface. It 

can be seen that the velocities in the small amplitude waves in either stratification 

are smaller than their large amplitude counterparts where the velocities in the 

upper layer tend to the upper limit of (u/co)/(a/h2 ) = 1. This concurs with 

findings made in previous work [44, 29]. 
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Figure 4.11: Velocity profiles through the maximum depression of each of the 
solitary waves investigated. KdV (blue line) and fully nonlinear theory predictions 
(red line) are also shown. 

In the large amplitude wave velocity plots (figure 4.11 (a) and (c)), the exper-

imental measurements show reduced velocity values in the region of 'Y/h 2  0. 

This is deemed to be a spurious effect. caused by pollen sticking to the glass flume 

sides and obscuring the cross-correlation analysis. When the fresh water layer was 

added initially to the free surface of the brine layer, the filling rate had to be very 
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slow to avoid mixing the two fluids. During this time, pollen accumulated at the 

free surface of the fluid and caused a smearing effect on the glass in this region. 

The rate of filling could be increased as the top layer increased in depth. For 

two reasons, the deviation is less apparent in the small amplitude wave measure-

ments, performed using shuttering method 2. Firstly, the tank filling procedure 

was faster and, secondly, the seeding particle displacements between images of a 

pair were much greater than in the large amplitude wave investigations. 

In the present work, KdV theory (blue line) fails to predict adequately the velocity 

profile for the large amplitude waves in either depth layer ratio regime (figure 4.11 

and (c)) but provides a far better estimation of the velocities in the small 

amplitude solitary wave a/h2  = —0.48, where h 1 /h2  = 3.9 (figure 4.11 (b)). In 

contrast, the numerical model (red line) gives a better match to all experimental 

results, particularly in the case of the small amplitude solitary waves (figure 4.11 

and (d)). 

Figure 4.12 shows the resulting wave shape 71/h2  against non-dimensional time, 

CKdVt/.\, where cKdv  is the KdV wave speed and \ is the KdV characteristic 

length scale (equation (2.21)), for each of the four solitary waves. The wave 

shapes were obtained by finding the coordinate y/h 2  where u/co  = 0 in a specified 

column of each vector map in an experimental sequence. This method gives an 

error of z(a/h2 ) = +0.02 for h 1 /h2 	4 and an error of L(a/h2 ) = +0.04 for 

h 1 1h2 	6. In each graph, results have been shown for different columns in 
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the centre of the vector map sequences (denoted by LI, A and ). The column 

numbers have been specified in each graph legend. First order KdV theory (blue 

dashed line) and the fully nonlinear numerical model (red line) results are also 

plotted. In addition, second order KdV theory has been included in (b) and can 

be seen to provide a closer fit to the data than the first order approximation. In 

all other cases, (a), (c) and (d), it was found that the value of a/h2  was too large 

to include second order terms. 

The nonlinear numerical model provides a very good description of the large 

amplitude wave in figure 4.12 (a). The fit to the wave in (c) is less good, the 

laboratory generated wave being slower (the plot is wider) than that predicted. 

However, the stratification and amplitude of this wave are not covered in the pa-

rameter ranges in which the model has been verified previously. This observation 

is discussed further in section 5.2.2. 

In figure 4.12 (b), the variation in the measurements at i7/h2  = a/h2  is around 

3 x A(a/h). In figure 4.12 (b) and (d), there is a greater spread in the data 

points in the range —10 < ct1h2  < 10. It was found that when the exposure 

of the first image, AE, -' lOms, as in the case of the small amplitude solitary 

wave experiments, the images experienced an enhanced "blooming" effect [71]. 

This caused a loss of greylevel information, particularly in the central area of 

the images, considerably reducing the contrast between the illuminated seeding 

particles and the black background of the wave flume. The cross-correlation of 

131 



Chapter 4 
	

Interaction Processes: A DPI V Investigation 

.05 

	

\ / 	A 
/ 

n colurnn3d 	 I 

o column 35 	 I 

° column 36 	
* 

- fully nonlinear aide 

- Is? order 6dV Theory 

• 20 	 -10 	 0 	 10 	 20 

CK4VtTh2 

(a) h, /11,2 = 4.0, a/h2  = — 1.24  

-- 191 order l<1f4 theory 

0 column 34  

column 

4 column 

!e fully 

20 

	

.10 0 
110 	 2 

-0 

-o 

-0 

-0 

column 39 	
Ji 

0 column 40 

.0 5 	fully nonlinear code 

— 2nd order 6.04 theory 

I -- 

	

.20 10 0 10 	 20 

CKdVtItI2 

	

(b) h 1 /h2 	3.9, a/h2  =-0.48 

03 

04 

05 

06 	
- folly non linear theory 

• - KrN 191 order 

	

-20 	 -10 	 0 	 tO 	 2 

E 

C64vtJ112 	 CKdVt/fl2 

(c) h 1 /h 2  = 6.25, a/h2  = — 1.95 	 (d) h 1 /h 2  = 6.1, a/h2  = — 0.68 

Figure 4.12: The wave shapes of each of the solitary waves investigated. KdV 
theory (blue lines) and the fully nonlinear method (red line) predictions. 

such image pairs produced large numbers of spurious vectors in regions of the 

maps corresponding to the affected areas of the images. The noise in the velocity 

measurements is highlighted by the irregular nature of the isovelocity contours, 

notably in the centre of the plots shown in figures 4.3 and 4.9. A dip in the 

horizontal velocity contours is apparent in the centre of the plots, particular! x in 

figure 4.5. More than one attempt at both experiments was necessary to obtain 
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the vector maps shown. Given the time necessary and quantity of raw materials 

required for the experiments, recording the flow reliably was important. As a 

result of the reduced quality of the images acquired in the shuttering method 2, it 

was decided to use the camera in subsequent DPIV experiments using shuttering 

method 1 only. This imposed additional drawbacks on the camera system as the 

particle displacements in this latter set-up were very much smaller, reducing the 

accuracy and reliability of the DPIV measurements for slow flows. 

One of the main consequences of using of shuttering method 1 (section 3.2.7) is 

that as the minimum scan period of the laser beam was 2.5ms, the particle dis-

placements were small. The DPIV design rules set out in section 3.1.1, therefore, 

could not be adhered to. This increases the errors associated with the veloc-

ity measurements determined from the correlation peak detection routine. The 

lower signal to noise levels are reflected in the isovelocity contours plotted in fig-

ures 4.3 and 4.7 and in the horizontal velocity profiles (a) and (c) in figure 4.11. 

The increase in error in the estimation of the particle displacement by the DPIV 

analysis routine will be further discussed in section 4.4.2. 

It was remarked in [29] that the guillotine-style gate generation mechanism (sec- 

tion 3.2.6) produced repeatable internal solitary waves. In order to verify this, a 

series of three DPIV experiments were performed on single internal solitary waves, 

with the same initial condition values, namely V = 791, D = 0.4m, h 1 /h2 	3.9 

and AP/P2 	5%. The wave shape and the velocity profiles through the maxi- 
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mum amplitude of the waves are shown in figure 4.13. The plots show that the 

system does indeed produce repeatable waves, provided the variation in h 1 /h2  

and LP/,O2 is small. 

In practise, eliminating variations, from experiment to experiment, in these pa-

rameter values was found to be difficult. In particular, this was true for the layer 

depth ratio value, h 1 /h2 . The water level to which the saline fluid was filled, h 1 , 

was the same for all experiments carried out in the same stratification configura-

tion. It was found that even a small change in the flow rate of fresh water (held in 

the containers above the wave tank) from one experiment to another affected the 

thickness of the interface. In contrast to other work [33, 32], where h2  = H - 

the value of h2  here was determined from the location of the point of inflection 

in the plot of density versus fluid depth (figure 4.2). Consequently, the values of 

h 1 /h2  vary from experiment to experiment within the so-called "same" stratifi-

cation regime. Both methods of calculating h2  were used to run the nonlinear 

code. It was found that the speed of the solitary wave was sensitive to changes in 

the depth layer ratio. The nonlinear code output was found to provide a better 

match to the experimental results when the mid-point of the density interface 

was found. 

The largest amplitude solitary waves investigated travelled at speeds of around 

25cm.s 1 . The edge of the measurement area furthest from the sliding gate was 

situated around 2.5m from the end of the wave flume (at the surface wave pad- 
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Figure 4.13: Solitary wave generation: repeatability. The wave shapes and 
velocity profiles for three separate experiments with the same initial conditions-. 
V = 791, D = 0.4m, /11/112 3.9 and P/P2 5 1X. The results show that the 
syteni does generate repeatable solitary waves. 

cue) (figure 3.11). Hence, once the leading edge of the solitary wave had passed 

through the laser light sheet, there was a time "window" of approximately 20s 

before the solitary wave was reflected off the end wall of the tank and reached 

the measurement area once more. The time interval shown on the graph in figure 

4.13 (b) covers approximately lOs. The increased scatter in the data points in the 

region (,t/h2  > + 10 cannot, therefore, be attributed to reflections of the solitary 

wave off the end wall of the wave tank. At the leading and tailing edges of the 

wave, the characteristic form of the velocity profile (seen in figures 4.11 and 4.1:3 

(a)), in which the horizontal velocity tends to 0 in the interfacial region, is no 

longer found. Instead, the fluid motion is less well defined and the velocities are 

much smaller than those near the maximum depression. The method used to 
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determine the wave shape relies on locating the interface by finding the depth at 

which the horizontal velocity is zero. At the edges of the waveform, therefore, the 

scatter suggests that this method is no longer suitable for determining the wave 

shape. Measuring the wave shape over its full extent would be best achieved by 

locating the interface using an alternative optical method, such as PLIF (figure 

5.11). 

In [29], it was noted that in some cases, Kelvin-Helmholtz instabilities could be 

seen along the tailing edge of the solitary wave, at the interface between the two 

fluids. In this study, however, no such disturbance was observed. Section 2.1.2 

discussed the condition under which stratified fluid flows became unstable, namely 

if the gradient Richardson number, Ri g , drops below 0.25. The buoyant forces 

are then no longer sufficient to maintain the structure of the stratification and 

turbulent mixing can occur. Table 4.5 shows the gradient Richardson number 

for each of the four solitary wave flows discussed above. The non-dimensional 

density gradient is approximated by zp/p 2 Lh, where Ah, is the width 
P2 OY 

of the density interface and is given by the hyperbolic tangent fit to the density 

profile in the quiescent stratification (section 2.1.3). The velocity gradient is given 

by 8(u/c0 )/a(y/h 2 ) and is estimated from the velocity profiles in figure 4.11. In 

all four cases, Ri g  is much greater than 0.25, indicating that the stratification is 

highly stabilising. This concurs with the observations made as the experiments 

were carried out. 
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depth ratio amplitude density gradient buoyancy frequency velocity gradient 

hi/h2 a/h2 p/(p2h) N(y) 8(u/co)/a(y/h2) Ri g  

(s')  

4.0 -1.24 0.055 7.34 7.1 1.06 

3.9 -0.48 0.04 6.26 2.5 6.34 

6.25 -1.95 0.049 6.9 4.35 2.54 

6.1 -0.68 0.042 6.42 2.5 6.59 

Table 4.5: The gradient Richardson numbers of the waves listed in table 4.4. 

4.3.3 DPIV solitary wave investigation conclusions 

In this section, a DPIV study of single internal solitary waves propagating at a 

brine - fresh water interface was presented. In the first instance, the parameter 

range of the two-layer stratification, namely the density ratio across the interface 

and the layer depth ratio, was assessed in the context of the limitations of the 

experimental facilities. Suitable initial conditions were found that would generate 

a single large (a/h2  < — 1) and a single small amplitude solitary wave (a/h2  

—0.5) in both chosen stratification regimes. 

Velocity vector maps were obtained for each wave as it passed through the mea-

surement volume. As expected, a velocity shear was found across the interfacial 

region, characterised by an area of high vorticity. As the velocities for the two 

waves where a/h2  .' —0.5 were much smaller than those for the large amplitude 

waves, two different methods of shuttering the camera were employed (section 

3.2.7). The velocity profiles and wave shapes, found by locating the point of zero 
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horizontal velocity in a sequence of velocity profiles, were compared both to KdV 

theory and to the results of a fully nonlinear numerical method [30, 28]. KdV 

theory failed to adequately predict the solitary wave characteristics in either strat-

ification configuration for a/h2  < — 0.5, concurring with previous work [44, 29]. 

Overall, the nonlinear method provided a much better prediction of these waves' 

characteristics. The solitary wave generation mechanism was found to produce 

repeatable solitary waves, again, in accordance with findings made in previous 

work [29] although the interface thickness was found to be affected by the fill rate 

of the top fluid layer. The speed of propagation of the solitary wave was seen 

to be sensitive to the depth layer ratio, h 1 /h2 . The stratifications in which the 

waves were generated were found to be highly stable, with a Richardson number, 

Ri, greater than 0.25 in all cases. 

It was noted that the second shuttering technique (method 2), used for the small 

amplitude solitary wave experiments, caused a significant amount of data drop-

out noise in the images obtained. This resulted in low signal to noise correlations 

in large areas of the vector maps. In contrast, method 1 could only be used for 

measuring velocities in the faster, large amplitude, internal solitary wave flows. 

It was decided that due to the unreliability in image and therefore measurement 

quality caused by method 2, it would be abandoned in favour of method 1. This 

imposed additional limitations on the velocity measurement range. This difficulty 

is further discussed in the context of the DPIV surface wave train experiments 

(section 4.4.2). As the apparatus was used at the limits of its operational range, 
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effectively the system was optimised for the study of large amplitude solitary 

waves. 

In conclusion, single internal solitary waves were generated in a two-fluid system 

within the constraints of the experimental set-up. The internal solitary wave 

generation system has been validated. The DPIV system allowed both the wave 

generation parameters to be selected and the wave characteristics to be deter-

mined. To this end, the aims of this section have been met. 

4.4 DPIV Measurements on Small Amplitude 

Monochromatic Surface Waves 

In this section, the experimental set-up for the DPIV investigation of monochro-

matic small amplitude surface wave trains is described. As in the case of the 

individual solitary wave experiments (section 4.3), the aim of this investigation 

was to provide a reference data set against which the interaction experiments 

(section 4.5) could be compared. 

4.4.1 Experimental set-up 

All the experiments were carried out using the same experimental apparatus and 

facilities (section 3.2). In the first instance, limitations of the experimental pa- 
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rameter space for the generation of surface wave trains in the wave flume (section 

3.2.1) were assessed. The two parameters used here to characterise the surface 

wave trains are the amplitude, as, and the angular frequency, wS. One of the 

key assumptions in the Longuet-Higgins theory (section 2.5.1), describing sur-

face wave wavelength and amplitude modulation resulting from the passage of 

an internal solitary wave, is that the surface wavelength should be much smaller 

than that of the internal wave. The operative frequency range of the paddle was 

Is 0.7 to 1.4Hz. It was desirable to use wave frequencies close to these lim-

its. The range of wave amplitudes that could be generated by the paddle was 

restricted by the paddle displacement. It was found that for amplitudes in excess 

of around a s 	3cm, the motion of the wave paddle became unsteady. As a 

result, two amplitudes as c 0.5cm and as 	2.5cm were selected, again at the 

extremes of the range. The measured amplitude and angular frequency values 

from the wave trains that were generated are presented in table 4.6. 

The wave paddle could not instantaneously generate waves of the required am-

plitude and wavelength. It was necessary for it to progressively "ramp up" to the 

desired wave characteristics. This ramp-up time was equal to 2s. In addition to 

this, due to the presence of the sliding gate for solitary wave generation, the wave 

flume could not accommodate a beach to damp out the surface waves reaching 

the far end. As a result, standing waves were rapidly set up in the flume. Conse-

quently, as DPIV images of travelling surface waves were required, the operation 

of the experiment was designed to optimise the length of time over which the 
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experiment and, therefore, image grabbing could take place. The limitation of 

the image grabbing frequency of one image pair every 0.55s imposed by the cam-

era system (section 3.2.7) also limited the number of DPIV images that could be 

taken in one experiment. For the surface waves investigated, the wave speed is 

the order of 1m.s 1  (table 4.6), such that it takes around 7s for a wave to travel 

the full length of the tank. Surface waves of the desired amplitude arrived at the 

measurement area around 7s from paddle initiation (figure 4.15). This implied 

that there was only a short window of time in which images of travelling surface 

waves could be acquired. Once the first wave crest had passed the measurement 

area, it took in the region of 7s for it to return, having been reflected off the 

end wall of the flume. In order to ensure that only travelling surface waves were 

captured, a maximum of 10 image pairs were taken in each experimental run. 

The wave paddle motion was initiated by a keyboard command to the wave 

paddle PC. In all experiments involving surface wave trains, the image capture 

was triggered from the wave paddle control software. The trigger timing, which 

depended on the speed of surface wave under investigation and therefore on the 

wavelength, was the same for all experiments involving surface waves of the same 

wavelength. Image acquisition was started once the first wave crests, of the 

correct amplitude, had reached the measurement volume, situated at a distance 

of approximately 2.5m from the wave paddle. Three wave gauges (section 3.2.3) 

were positioned at regular intervals, adjacent to and following (in the direction 

of the surface wave propagation) the measurement volume. The sampling of the 
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gauge output began at the same instant the paddle was set in motion. 

The DPIV system was set up in the same way detailed in section 4.3.1, using 

the same lens and magnification. The fluid was uniformly seeded with pollen, 

introduced, in the case of the two-layer fluid experiments, in the manner described 

in section 4.2.1. The camera was operated using shuttering method 1 (figure 3.9). 

Hence, the camera timings and exposures used for the experiments described here 

were the same as those used in the investigation of the large amplitude solitary 

waves, listed in table 4.3. A schematic of the complete laboratory set-up is 

illustrated in figure 3.11. The DPIV analysis was performed using the same 

grid and interrogation area sizes as before, namely 16pxlx 16pxl and 32pxlx32pxl 

respectively. As in the previous DPIV analyses, the resulting vector maps were 

median filtered and scaled using the results of the spatial calibration performed 

before each experiment. 

Overall, four surface wave trains were investigated. Table 4.6 lists the charac-

teristics of each. The experiments on each wave train were first carried out in a 

homogeneous fluid consisting of fresh water. They were repeated in both strat-

ification configurations, h 1 /h2  = 4.0, where AP/P2 = 4.67%, and h 1 /h2  = 6.55, 

whereAP/P2 = 4.42%. This was to allow a comparison to be made between the 

velocity fields of the waves in the stratified fluids and those in a homogeneous 

fluid, which appears to not have been investigated in any previous work. 

Density profiles of the quiescent stratification were taken, using the microcon- 
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cluctivity probe (section 3.2.5), before and after each wave train experiment in 

a two-layer fluid. The paddle motion was ceased before standing waves could 

develop. The generation of surface waves was seen to preserve the initial density 

distribution in the two-layer fluids. Two examples of the density profiles before 

and after different surface waves were generated are shown in figure 4.14. Conse-

quently, 4 series of DPIV images. corresponding to the four different wave trains, 

were obtained in each two-layer fluid configuration without renewing the strat-

ification. Any fluid disturbance was allowed to settle between each of the runs 

and the image sequences were grabbed sufficiently rapidly that the pollen seeding 

was still uniformly distributed through the fluid. An image of the quiescent fluid 

to determine the position of the still water level was taken for each experiment. 

The fluid depth was always H = 0.71m. as required for the correct operation of 

the paddle. 
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Figure 4.14: Conductivity profiles before and after two wave trains were gener-
ated in the stratification configuration /1 1 / 11 2 = 6.55. 
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4.4.2 Results of the surface wave investigation 

In this section, an analysis of the DPIV surface wave investigation is presented. As 

in the case of the single internal solitary wave experiments, the aim of this DPIV 

study is, firstly, to assess the practical parameter space of the experiments in the 

context of the available DPIV data acquisition and the laboratory set-up, and, 

secondly, to provide reference data sets for comparison with the interaction results 

(section 4.5). The characteristics of the surface wave trains generated are verified 

and compared to linear surface wave theory (section 2.2). The repeatability of the 

surface waves generated using the hinged paddle (section 3.2.2) is also considered. 

A trace of free surface elevation, ?Is (X, t), in cm, against time, t, for a wave of 

amplitude as = 2.23cm and frequency WS = 9.03rad.s', is shown in figure 4.15. 

The ramp-up time of the paddle can be clearly seen between t 5s and t 7s. 

First order linear surface wave theory is also plotted. It can be seen that there 

is good agreement between the theory and the gauge trace after t 8s, once 

the wave desired amplitude and frequency have been established. In addition 

to providing the wave amplitude, the gauge output was also useful for verifying 

the frequency of the wave, either by fitting first order wave theory or by taking a 

Fourier transform of the portion of the trace in which the wave is well established. 

These frequencies and the corresponding wavelengths that are detailed in table 

4.6. 

In the stratified fluid experiments, it was found that the wave gauges proved 
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i Iurefore devised. As the pollen at the free surface strongly reflected the laser 

Iilit the pixel intensity values in this region were greater than in other part of 

the image. The coordinates (i, j) of the free surface in each image were obtained 

by locating pixels of a given threshold greylevel. 

Examples of the scaled surface wave profiles obtained using this method are shown 

in figure 4.16. Profiles from both the experiments performed in the homogeneous 

fluid and in the stratified fluid configurations can be seen. Surface wave linear 

theory (section 2.2) has been fitted to the plots (black line). A good fit between 

linear surface wave theory and the profiles is found even for the stratified fluid 
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9.04rad.s 1 	 9.04rad.s' 

Figure 4.16: Examples of scaled wave profiles obtained by locating the fluid free 
surface in the raw DPIV images. First order linear surface wave theory is also 
shown (black line). 

configurations. Deviations from the theory at the edges of the measured wave 

profiles are due to variations in laser light sheet intensity. In all plots in figure 

4.16, the x-axis spans a complete wavelength, highlighting the limited field of view 

of the camera. In particular, only about 1/4 of a wavelength of the as = 0.95, 
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wS = 5.87rad.s' wave could be seen in the image. This made fitting linear theory 

to these profiles difficult. The consequences of this will be further discussed in 

section 4.5.1. 

The fits provide a measure of both the amplitude and the frequency of the waves 

for all three fluid configurations. It was found that the frequency values obtained 

by the first order theory fit were in agreement with those obtained from the wave 

gauge readings. Table 4.6 summarises the amplitudes and wavelengths of the four 

surface wave trains generated by the wave paddle and investigated here. Although 

all the surface wave profiles were well described by a first order surface wave 

theory fit, there were small differences between consecutive profiles in the data 

sets obtained. This is probably a result of reflections of surface waves generated 

during paddle ramp-up off the far wall of the tank that altered the prescribed 

surface wave characteristics. This will be discussed further in the context of the 

measured velocity profiles seen in figures 4.19 and 4.23. Nevertheless, the good 

agreement found in all fluid configurations with a sinusoidal profile suggests that 

the shape of the surface waves is not affected by the presence of any internal wave 

modes set-up by the paddle motion. 

It was discovered that a "bug" existed in the wave paddle software such that 

the trigger pulse, sent from the wave maker control box to the camera, may 

be randomly sent just before or just after the specified time interval. This was 

disappointing as for any particular time t in, say, two experimental runs using 

147 



Chapter 4 - Interaction Processes: A DPIV Investigation 

the same wavelength, the same wave phase could not be obtained. This had 

implications for the interaction investigations (section 4.5) as it meant no direct 

comparison between surface wave profiles in the non-interacting and interacting 

case could be made. This matter will be further discussed in section 4.5.2. 

wave amplitude angular frequency deep water wavelength depth scaling wavelength wave speed 

as ws A. = gT 2 /(2ir) H/A 0  As cS 

(cm) (rad.s') (cm) (cm) (crn.s') 

0.87±0.023 9.04±0.019 75.57±0.156 0.94±0.007 75.53±0.532 108.64±0.1( 

0.95±0.15 5.87±0.076 177.05±1.249 0.401±0.004 176.54±1.243 164.26±0.71 

2.23±0.031 9.03±0.014 75.41±0.156 0.94±0.007 75.53±0.532 108.52±0.21 

2.4±0.11 5.9±0.027 178.77±3.278 0.397±0.008 174.94±1.232 1 	164.99±2.1 4  

Table 4.6: Table showing the surface wave amplitudes and wavelengths investi-
gated here in the homogeneous fluid and the two-layer fluids h 1 1h2  = 4.0 where 

AP/P2 = 4.67% and h1 /h2  = 6.5 where AP/P2 = 4.45%. 

The difficulties encountered in the analysis of the DPIV measurements in this 

section are caused by the very short time interval between exposures of a pair. The 

seeding particle displacements, particularly for the small amplitude surface waves, 

were effectively too small-Sub-pixel accuracy in DPIV particle displacements can 

be achieved by interpolation (section 3.1.1), applying a so-called "three point 

estimator" to the displacement correlation peak. Monte-Carlo simulations of 

DPIV measurements [93, 76, 94] have shown that the associated error in peak 

location with this estimator is between 	1/10 and '--i  1/20pxl when the particle 

image diameter, d 	2pxl. When the particle images are smaller than this, 

the estimation of the particle displacements can become biased towards integer 
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pixel values and is known as "peak locking". This particular problem is not 

encountered in this work as the particle images were optimised in the set-up. 

For a wave of amplitude as = 0.87cm and ws = 9.04rad.s', in a DPIV system 

where the magnification of the camera system M t-  0.01 and the time between 

images of a pair öt = 2.5ms, the maximum seeding particle displacements, pre-

dicted from linear theory (equations (2.12) and (2.13)), are j Aij f 0.4pxl. In 

this configuration, the absolute errors associated with the displacement estimates 

will be of the same order, or larger, than the displacement values themselves. 

However, for a wave of amplitude as = 2.23cm and wavelength WS = 9.03rad.s 1 , 

the displacements jAij < lpxl, of an order similar to those measured in the large 

amplitude internal solitary wave flow field (figure 4.11). 

Vector maps of a selection of the surface waves measured in the three different 

fluid configurations are shown in figure 4.17. Isovelocity contours are also shown, 

at intervals of 3cm.s' in (a), 2cm.s' in (b) and lcm.s' in (c) and (d). Vectors 

in the region above the free surface have been removed. Small amplitude surface 

wave fluid flow is well known to be irrotational, as assumed by linear theory [85]. 

In this regime, assuming the flow is two-dimensional and incompressible, the hor-

izontal and vertical velocity contours should intersect at right angles [19]. For 

as = 2.23cm and WS = 9.03rad.s', in figure 4.17 (a) where the particle velocities 

are -' 20cm.s 1 , the isovelocity contours are mostly perpendicular where they 

intersect. Where the seeding particle displacements are smaller < 0.5pxl, in the 
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Figure 4.17: Vector maps showing isovelocity contours for a train of sinusoidal 
surface waves propagating in the homogeneous fluid and the two two-layer fluid 

configurations. 

lower half of the plot, noise in the measurements affects the shape of the con- 

tours. This is also apparent in figure -4.17 (b) to (ci). As wave amplitude decreases 

and wavelength increases, the plots are increasingly affected by the increasingly 
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x/ cm  

'v1  Ill 
(a) h 1  /h 2  = 4.0 	 (h) h 1  /h 2  = 6.5 

Figure 4.18: Isovelocity contour plots for the wave train a. 5 = 2.23cm and 

= 9.03rad.s 	in the two stratified fluid configurations, h 1  /h2  = 4.0 (a) and 

h 1 /h2  = 6.5 (h). 

smaller particle image displacements such that in (d), the contours are very dis-

torted. The DPIV results in this limit become meaningless. Consequently, the 

focus of the analysis in the remainder of this section will be placed on the DPIV 

analysis of the wave train where aç = 2.23cm and WS = 9.03rad.s'. The most 

practical way to overcome the problems encountered here, allowing a more de-

tailed analysis of the results. would be to increase time at, between images of a 

pair. With the present camera system. this would involve using an alternative 

shuttering method to allow short exposure times. In this way, the seeding par-

tide images would remain in focus and the time interval between them would 

be sufficient to ensure the particle displacements are of the order of a kw pixels 

(section 3.1.1). 
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Figure 4.19: Surface wave maximum horizontal velocity profiles (a) and max-
imum vertical velocity profiles (b) scaled with asws and plotted against non 

dimensional depth z/H for the wave train as = 2.23cm and W = 9.03ral.s in 

the homogeneous fluid. Time t = Os corresponds to the instant the paddle was 
set in motion. 

Figure 4.19 shows non-dimensional maxiniurn horizontal and maximum vertical 

velocity profiles -u s /(aw) and vs/(asws) for the wave train a,,5 = 2.23cm and 

= 9.03rad.s with non-dimensional depth --/H from the mean water level 

(M\VL). In (a). the profiles are taken at three wave crests at times t- = 8.96s. 

t = 9.51s and t = 10.61s from paddle initiation, such that i 5 (x, t)/as = 1. In 
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(b), the profiles are taken from three different vector maps where 1]5 (x, t)/as = 0 

at times t = 8.41s, t = 9.51s and t = 11.71s. The error bars show the absolute 

error in the velocity, calculated by considering the contributions from the dis-

placement estimation error of +0.lpxl and the spatial scaling error. Both first 

and second order surface wave theory are also plotted (black full and dashed lines 

respectively). 

If second order terms in the Stokes' expansion are considered, the velocities are 

written as 

	

(1) 	(2) 
US 	U5 +U , 	 (4.7) 

	

(1) 	(2) 
V5 	V5 +v5 , 	 (4.8) 

where (i)  and (2)  refer to the order in (2a s /)). The first order velocity expres-

sions were given in equations (2.12) and (2.13). The second order terms for the 

horizontal and vertical particle velocities are [85] 

(2) 	3 ksas)2c5c05 21cs(2 + H)] 	 ig(2a5)2 	
(4.9) cos2(wst - ksx) 

- 

U5 = ( 	 sinh4 (k sH) 	 8 csH 

and 

(2) 	3(ksas)2cs52k5 + H)1 sin 2(wst - ksx). 	(4.10) V S  = - 
	 sinh4(ksH) 

Second order theory provides little improvement to the fit as the wave steepness, 

153 



Chapter 4 - Interaction Processes: A DPIV Investigation 

2as/)s = 0.059, is small. In the case of the vertical velocities in figure 4.19 (b), 

no difference can be seen between the two order predictions and hence only linear 

theory is shown. 

In both figures 4.19 (a) and (b), although the measurements follow the same trend, 

the velocities are generally greater than those predicted by theory as z/H - 0. A 

possible reason for this discrepancy could be due to transient wave components. 

These transient wave components were generated as the wave paddle "ramped 

up" to the required frequency and amplitude. These contained longer wavelengths 

that travel faster than the investigated wave train. These would therefore reflect 

off the end wall of the wave flume and return towards the measurement area, con-

sequently disturbing the flow. The small differences between consecutive wave 

profiles, discussed previously, supports this. There appears, however, to be no 

consistent deviation from the theoretical curve with time. This may also be due 

to the effect of the reflected components providing a smaller or greater contribu-

tion to the velocities depending on their phases. In addition, the validity of the 

equations derived using a Stokes' expansion, as previously discussed (section 2.2), 

is questionable as the level of the wave trough is approached from below. Hence, 

deviations from the theoretical curves in the region near the free surface are not 

surprising. Moreover, laser light reflections and the accumulation of pollen at the 

free surface will have affected the DPIV cross-correlation routine in this region. 

Horizontal and vertical velocity profiles of the same surface wave train as = 
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y/h 2 	 yTh 2  

(a) u.c/aS'S  at 71s (x, t) /a.,; 	1 	 (b) vs/a.cws at 1)S(x, fl/as = 0 

Figure 4.20: Profiles of surface wave horizontal velocity (a) and vertical velocity 
(h) in the stratification 11 1 /h2  = 4.0 at different times t from starting the wave 

Pa(ltllC. 

y/h 2 	 yJh2  

(a) -u./asws at 1/s(x, fl/as = 1 	 (b) vs/aswS at 1).c(x, fl/a.c 	0 

Figure 4.21: Profiles of surface wave horizontal velocity (a) and vertical velocity 
(14 in the stratification h1 1112 = 6.3 at different times t from starting the wave 

paddle. 

2.23cm and ws = 9.03rad.s 1  in the two stratification regimes 1 1 1h 2  = 1.0 and 

h 1  /112 = 6.3 are presented in figures 4.20 and 4.21 respect ivel. Each velocity 

profile was taken at a different tinie from paddle initiation. It was hoped that 

the effect of the sharp density gradient across the interfacial region (e.g. figure 
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4.14) could be identified and hence the non-dimensional velocities are now plotted 

against y/h 2  such that y/h 2  = 0 is the position of the interface in the quiescent 

fluid. To the authors knowledge, this aspect of this investigation has not been 

pursued before. 

The data appear to follow the same general trend as that in figure 4.19. Linear 

theory appears, again, to underestimate the horizontal velocities (figures 4.20 

(a) and 4.21 (a)). Light reflecting off pollen floating at, and just below, the 

free surface may have affected the accuracy of measurements in this region. An 

example of a DPIV image showing the area of the image affected by these surface 

reflections is shown in figure 4.22. This effect is more apparent here than in the 

homogeneous fluid case as substantially more pollen was present in this region, 

due to the additional time required to fill the top layer of fluid. This problem 

could probably be avoided if a longer time interval, 5t, between correlated DPI\ 

images was possible, as discussed above. Similarly to the homogeneous fluid 

case, variations with time in the velocities towards and away from the surface 

wave theory predictions can be observed. There appears to be no change in the 

trend in the horizontal velocity plots about y/h 2  = 0. In contrast, in figures 

4.20 (b) and 4.21 (b), there is a peak in the vertical velocities in this region of 

the graph. During the experiments, the interface was seen to move with the free 

surface as the surface wave passed. Hence, where 'qs(x, t) /as = 0, which is the 

case in the vertical velocity graphs, the interface will be found at its undisturbed 

position, y/h 2  = 0. 
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Figure 4.22: Upper sect ion of a DP!V image taken at t= 7.23s following paddle 
initiationNotice the laser light reflections (broad band of white light) and the 
pollen in the free surface region (greyish patches). 

In order to identify any changes to the velocity profiles caused by the presence of 

a density interface, a graph of all data sets plotted in figures 4.19 (a) and (b), 4.20 

(a') and (b) and 4.21 (a) and (b) can be seen in figure 4.23 (a) and (b) respectively 

(red data points: h 1  1h 2  = 4.0, blue data points: h 1  /h 2  = 6.5, black data points: 

homogeneous fluid). The spread in the data points near the free surface indicates 

the increased uncertainty in the velocity measurements in this region. The plot of 

vertical velocities in (h) clearly indicates that. in the stratified fluid cases, there 

is a marked decrease in vertical velocity above the interfacial position. Table 4.7 

shows the buoyancy frequencies associated with the stratification regimes used. 

The interface width is taken to l)e 1cm. The buoyancy frequency of each 

stratification is around 5 times larger than the surface wave frequency. As the 

surface wave motion imposes a forcing on the stratified fluid system, which is less 

than its natural frequeticv. the drop-off in (b) may be the result of non-resonant 

forcing of the vertical velocities. This matter is a subject for further work and 

could possibly be resolved by measuring the interfacial displacement due to the 

surface wave. Planar Laser Induced Fluorescence (PLIF), discussed in the next 
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Figure 4.23: A comparison of horizontal and vertical velocity profiles shown in 

figures 4.19. -1.20, 4.23 for the three fluid configurations. 

chapter, would l)e a suit able measurement technique for such an investigation as 

it would provide a non-intrusive means of visualising the interface. 

depth ratio density difference - buoyancy frequency 

It, 1h2 AP/P2 	 N(y) 

(%) 	 (s -  I 

4.0 	 4.67 	 6.8 

6.55 	 4.55 	 6.7 

Table 4.7: Table showing the buoyancy frequencies for the two stratificatioii 
configurations used in the surface wave train experiments. 

4.4.3 DPIV Surface wave experiment conclusions 

In this section, the experimental set-tip for the acquisition of DPIV images of 

trains of progressive surface waves was described and the results were presented. 

DPIV experiments were carried out in a single homogeneous fluid, consisting of 
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fresh water, and two stratification configurations, such that h 1 /h2  = 4.0 and 

= 6.5. As in the case of the single internal solitary wave experiments, the 

aim of the non-interacting surface wave DPIV investigation was to assess the ex-

perimental parameter space in the context of the available DPIV data acquisition 

set-up and the laboratory facilities. It was also hoped that the experimental re-

suits would provide a basis for comparison with the interaction results presented 

in section 4.5. 

Wave trains with amplitudes and frequencies at the two extremes of the available 

range were selected. The lengths of the surface waves and limited field of view of 

the camera and width of the laser light sheet meant that only a portion of even 

the smallest wavelength could be imaged at any one time. The limitations of the 

available DPIV camera system (section 3.2.7) had implications on the parameter 

range that could be measured and the accuracy of the results. Quantitative ve-

locity information could only be realistically extracted from the larger amplitude 

as = 2.23cm wave train where WS = 9.03rad.s' where the particle velocities were 

large enough to be adequately resolved by DPIV analysis. 

Although drawbacks to the camera - shutter system had been discovered, the 

DPIV images were, nevertheless, seen to provide a useful means of measuring 

the instantaneous free surface profile. In particular, it was shown that surface 

wave linear theory provided a good estimate of the surface wave profiles in all 

three fluid configurations investigated. This suggests that, for the amplitudes and 
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wavelengths investigated here, any internal fluid motion related to the disturbance 

of the stratified fluid column does not affect the surface wave shape. Such an 

observation appears to not have been reported before. This is an important 

consideration for the surface wave - solitary wave interaction investigation analysis 

where changes to the surface wave profile could be attributed to the interaction 

process rather than being an artefact of the surface wave generation system. 

Velocity profiles for the wave train as = 2.23cm, wS = 9.03rad.s' were compared 

to linear surface wave theory. The theory was seen to slightly under-predict the 

velocities near the mean water level (MWL) where free surface effects must be 

brought into consideration. It was thought that reflections of transient wave 

components generated during the paddle "ramp-up" caused a deviation of the 

measurements from the theoretical predictions. The velocity profiles for surface 

waves in a homogeneous fluid were compared to profiles for the same surface wave 

train in the two stratified fluid configurations. It was noticed that the vertical 

velocities in the latter case were reduced in the regions above and below the 

interface position when compared to the homogeneous case. It was suggested that 

non-resonant forcing of the interface caused by the wave paddle motion caused a 

drop-off in the velocities either side of the interfacial region. In addition, a greater 

accumulation of pollen near the free surface in the stratified fluid experiments is 

thought to have reduced the accuracy of the measurements in this region. 

The lack of quantitative velocity information restricted the scope of this DPIV 
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study. A broader investigation using a wider range of wavelengths and amplitudes 

would have been possible if a more appropriate time interval between DPIV 

images of a pair could have been used. This would be possible if an alternative 

shuttering method to the mechanical shutter used here was employed. This would 

allow the DPIV design rules to be followed, thus improving the accuracy of the 

DPIV measurements, and possibly reduce noise incurred by the presence of pollen 

near the free surface. 

4.5 A DPIV Investigation of the Interaction Be-

tween an Internal Solitary Wave and a Train 

of Surface Waves 

In this section, the interaction between a single internal solitary wave, propagating 

at a saline - fresh water interface, and a train of small amplitude surface waves, is 

investigated. To the author's knowledge, little research has been done in this field 

(section 2.5.2). The novelty of the present approach lies both in the investigation 

of large amplitude internal solitary waves and in the use of the non-intrusive DPIV 

technique to acquire full-field instantaneous two-dimensional velocity information. 
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4.5.1 DPIV experimental method for the investigation of 

internal solitary wave - surface wave train interac-

tions 

The experimental method for the investigation of the interaction between an 

internal solitary wave of depression and a progressive surface wave train is pre-

sented. The method builds upon the previous work performed using the same 

experimental facilities on the two waves types individually; internal solitary waves 

and surface wave trains. Consequently, sections 4.4.1 and 4.3.1 are referred to 

here. The solitary waves and surface waves were generated at the opposite ends of 

the wave flume, such that they travelled towards each other. The angle between 

the direction of propagation of the waves was therefore q = 7r. 

In the experiments on surface wave trains (section 4.4.1), image capture was 

initiated from the paddle control software, such that the first fully developed 

wave crests had reached the measurement volume. Within the constraints of the 

experimental system, 10 DPIV image pairs following paddle ramp-up could be 

acquired, after which, standing waves started to develop. As a result, it was 

important to ensure that the paddle would only be started as the solitary wave 

approached the measurement region. The internal solitary wave experiments 

(section 4.3) established the approximate time for the solitary wave to reach the 

measurement volume. Hence, the wave paddle, and thus image acquisition, was 
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started following the sliding gate being opened, allowing for both paddle ramp-up 

to be completed and the solitary wave to reach the laser light sheet. The density 

change across the interface was around 5% as this ensured that the majority of 

the internal wave had passed the measurement area within the imposed time 

interval (section 4.2.1). 

The analysis of the surface wave profiles from the DPIV images on surface wave 

trains (figure 4.16 (d)) demonstrated that of the two wave frequencies investi-

gated, wS 9rad.s' and wS -' 5.9rad.s, the camera field of view could accom-

modate less than half a complete wavelength of the latter. In contrast, nearly 

a complete wavelength of the former wave train, where wS 9rad.s', could be 

seen. It was also seen that the available DPIV set-up was optimised for the study 

of large amplitude (a/h2  < — 1) internal solitary waves. Consequently, this inves-

tigation centres on interaction processes that occur when a wave train of angular 

frequency wS e'i 9rad.s' rides over a large amplitude internal solitary wave of 

depression. 

The results of four solitary wave - surface wave configurations are presented 

here. The two stratification regimes discussed previously (section 4.2.1), namely 

h1 /h2  4 and h 1 /h2  6, were used to generate the solitary waves. The fluid 

was seeded with pollen in the same way as for the other stratified fluid DPIV ex-

periments (section 4.2.2); by introducing the pollen into the lower fluid layer and 

letting it rise as the top layer was filled. Table 4.8 summarises the stratification, 
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the solitary wave and the surface wave parameters used. 

surface wave parameters stratification and solitary wave parameters 

as W S  2as/As h, /h2 'p/p2 V D a/h2  

(cm) (rad.$) (%) (1) (m) 

0.87+0.023 9.03±0.019 0.023±0.0008 3.8 4.7 79 0.4 -1.8±0.02 

2.23±0.023 9.04±0.019 0.059±0.0012 3.58 4.72 79 0.4 -1.95±0.02 

0.87±0.031 9.03+0.014 0.023+0.0008 5.96 4.99 80 0.4 -1.17±0.04 

2.23±0.031 9.04±0.014 0.059±0.0012 6.39 4.38 80 0.4 -1.16+0.04 

Table 4.8: Table summarising the parameters used in each of the DPIV internal 
solitary wave - surface wave train interaction experiments. 

4.5.2 Results and discussion of the interaction experi-

ments 

In this section, results from the DPIV surface wave - solitary wave interaction 

experiments are presented. The wave parameters used are summarised in table 

4.8. In the first instance, the effects of amplitude and wavelength modulation 

of the surface wave trains are considered. The effects of the interaction on the 

velocity fields are then investigated. 

The series of double graphs displayed in figure 4.24 (a) to (h) show the solitary 

wave profile (lower graphs) and the corresponding profile of the surface wave 

during the interaction (upper graphs). For comparison purposes, the upper graph 

set also shows the undisturbed surface wave profile, obtained in the surface wave 

DPI\T experiments (section 4.4.2). The initial surface wave steepness and angular 
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frequency were 2a s /)t s  = 0.023 and wS = 9.04rad.s' respectively. In this case, 

the (large amplitude) solitary wave is generated in a stratification where h 1 /h2  = 

3.8 and L.p/p2 = 4.7%. Both profiles are plotted with x, the distance in cm 

across the measurement area. The ordinate is plotted in terms of z, the distance 

directed positively upwards from the MWL (also in cm). There is a change in 

scale for this axis between the upper and lower plots. The times indicated in the 

captions refer to the time from paddle initiation. 

Previously (figure 4.12), the solitary wave profiles were found by determining 

the location of zero horizontal velocity as this was seen to mark the position of 

the density interface. The presence of the surface wave is an additional source 

of horizontal velocity within the interaction flow field. Theoretical interaction 

velocity profiles at surface wave crests and troughs (figure 4.32), obtained by linear 

superposition of the fully nonlinear solitary wave theory [30, 28] and linear surface 

wave theory, indicate that the surface wave contribution to this velocity field near 

the maximum depression of the solitary wave is positive at a surface wave trough 

throughout the fluid depth. Conversely, at a surface wave crest, the contribution 

is negative. The theoretical curve assumes an infinitely thin density interface and 

hence the position of zero horizontal velocity remains unaffected. In the case of 

the experiments performed here, the pycnocline has a finite width and hence the 

presence of the surface wave will alter this vertical location. However, using the 

maximum predicted change to the velocities at the interface, L(u/co) < 0.1, and 

the range of non-dimensional velocity gradients over the interfacial region, given 
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in table 4.5, the change in vertical interfacial position of zero horizontal velocity is 

less than the error on the measurements themselves (section 4.3.2). Consequently, 

the position of zero horizontal velocity in each column of a vector map can still 

be used here to determine the position of the interface and hence the solitary 

wave profile. The error bars in the resulting plots correspond to the uncertainty 

in the interfacial position. The black line represents the running average over the 

points. 

The graph sequence illustrates the progression of the internal solitary wave with 

time and the corresponding change in the surface wave shape. The plots also 

highlight the relative scales of both the surface and internal waves. Linear surface 

wave theory has been fitted to both surface wave profiles on each graph (black 

line: interaction data, red line: surface wave profile in the absence of the solitary 

wave, taken from the experiments discussed in section 4.4.2). In the case of the 

undisturbed surface wave profiles, the plots have been shifted along the x-axis 

in order to align either the surface wave crests or troughs. The linear theory fit 

(red line) has then been extrapolated over the complete x range for an easier 

comparison to be made between the two profiles. 

Surface wave linear theory still provides a good fit to the surface wave profiles, 

despite the presence of the solitary wave. This provides further support for the 

evidence in section 4.4.2 that the surface wave profile is not disturbed by the 

presence of a density interface. There is, however, a noticeable change in ampli- 
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Figure 4.24: Graphs of surface wave 2a, 5 /As  = 0.023, W5 = 9.04rad.s profile 
(upper) and large amplitude internal solitary wave profile (lower) for a stratifi-
cation where /11/112 = 3.8 and \p/p2 = 4.7%. Note the change in vertical axis 
scale between upper and lower graphs. First order linear theory is fitted to the 
surface wave profiles (black line: interaction data, red line: surface wave profile 
in the absence of the solitary wave). 

tude as the solitary wave passes. This is highlighted by the comparison with the 

non-interacting surface wave profiles. Likewise, a modulation of the wavelength 

also occurs. As the solitary wave moves through the measurement volume, there 

is also i slight rise in the surface level, which has been accounted for in the linear 

I Il(orv fit. A similar change in the fluid free surface level was also noticed during 

the course of the single internal solitar y  wave experiments (section 4.3). 

Similar plots of surface wave (upper graphs) and solitary wave (lower graphs) 

profiles with time are shown in order of increasing surface wave steepness, 2a/)s. 

and non-dimensional solitary wave amplitude, 0//12, in figures 4.25, 4.26 and 4.27, 

for the three remaining interaction cases (table 4.8) . Again, surface wave linear 

theory has been fitted to the surface wave profiles. 

168 



Chapter 4 - Interaction Processes: A DPIV Investigation 

The Longuet-Higgins and Stewart (LHS) theory describes the amplitude and 

wavelength modulation experienced by a surface wave riding over an internal 

solitary wave (section 2.5). The LHS theory predicts that, in a frame of reference 

moving with the solitary wave, the surface wave amplitude will increase and the 

wavelength will correspondingly decrease with distance towards the maximum 

depression of the soliton, or solitary wave "phase" (figure 2.7). Although the 

wave interactions observed here lie outwith the range of this theory (the theory 

assumes the wavelength of the surface waves to be very much smaller than the 

extent of the solitary wave and the solitary waves are described by KdV theory, 

which is not applicable to the large amplitude solitary waves investigated here), 

an increase in surface wave amplitude and a reduction in the wavelength was 

observed. This is substantiated by the fitted coefficient values, which are tabu-

lated in appendix C. These coefficients can only provide a guide to the actual 

amplitude and wavelengths of the profiles as in most cases less than a complete 

wavelength is available. The fit can, therefore, slightly under- or over-estimate 

the values, depending on the surface wave phase. In addition, changes in the laser 

light sheet intensity at the edges of the measurement area and the accumulation 

of pollen at the water surface lead to spurious points in the plots. Amplitude in-

creases were also noted in [33] and [32], although variations in surface wavelength 

were not observed (section 2.5.2). 

In some of the plots, the shape of the surface wave crests and troughs show 

marked departures from the sinusoidal fit. This noticeable skewing implies that 
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Figure 4.25: Graphs of surface wave 2as/kc = 0.023, Ws  = 9.04rad.s' profile 
(upper graph) and large amplitude internal solitary wave profile (lower graph) 
for a stratification where h 1  lb 2  = 5.96 and P/P2 = 4.99%. First order linear 
theory is fitted to the surface wave profiles (black line: interaction data, red line: 
surface wave profile in the absence of the solitary wave). 

the surface waves do not experience uniform wavelength and amplitude modu-

lation with solitary wave "phase'. In contrast to the LHS theory predictions, 

where the dependence on solitary wave phase is symmetric about the internal 

wave trough (figure 2.7), the surface wave distortion seems to be most apparent 

when the front end of the solitary wave is visible in the measurement area and to 

lesser extent when the tail end passes. In figures 4.24 (e), 4.25 (d) and 4.26 (e), 

\vllere the trough of the solitary wave is visible, the effect is reduced significantly. 

- 1 lie wave profiles become more sinusoidal. 

Distortion of the surface wave shape is most noticeable where the initial surface 

wave steepness is largest and. in particular, in figure 4.27, for which h 1  /h2  = 6.39 

and a/h2  = - 1.9-5. The magnitude of the solitary wave amplitude will most 

certainly affect the severity of the skew. For the experiment in figure 4.27, not 
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Figure 4.26: Graphs of surface wave 2a.5 /A s  = 0.059, Ws = 9.03rad.s 1  profile 
(tipper) and large amplitude internal solitary wave profile (lower) for a stratifica-
tion where h 1  /h 2  = 3.58 and \p/p2 = 4.72%. First order linear theory is fitted 
to the surface wave profiles (black line: interaction data, red line: surface wave 
profile in the absence of the solitary wave)_ 

only is the non-dimensional amplitude of the solitary wave greatest but also the 

fluid layer depth ratio is greatest of all four experiments, such that the interface 

is closest to the surface. Such observations of surface wave shape distortion, 

resulting from the passage of the internal wave, were not reported in previous 

\Vrk 3. 32. lhi is pi'ohal>Iv I>rcaii neil hirr t In' solitary wave amplitudes nor 

II Ifl\(r 	HIV/'I iWI \vrr I;ur 'inniIi (tablv 2.2). 

\h huiigli I I1I(' i 	I 1ilaIk(L 	1IaI1g( 	iii lilY 	1li)(' of 1114 , 	 IlIfR( 	\\1\( 	ila)V. I 

solitary wave profiles in the lower graphs provide little indication of any alteration 

to the solitary wave profiles. Though the spatial resolution of the measurement 

method used is limited, it does give a useful indication of the interface position 

as the wave passes. Solitary wave shape distortion due to the presence of the 

surface waves will. therefore. be  left to section 5.3. where it will be discussed in 
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Figure 4.27: Graphs of surface wave 2a.5 /A,5 = 0.059, ws = 9.03rad.s profile 
(upper) and large amplitude internal solitary wave profile (lower) for a stratifica-
tion where h 1  /h2  = 6.39 and .p/p2 = 4.38%. First order linear theory is fitted 
to the surface wave profiles (black line: interaction data, red line: surface wave 
profile in the absence of the solitary wave). 

the context of the PLIF surface wave - solitary wave interaction experiments. 

Vector maps of the interaction flow fields for a surface wave train 2US/)S = 0.059 

and w 5  = 9.03rad.s 1  in each of the stratification configurations considered, 

Ii /112 = 3.58 and h 1  /11 2  = 6.39, are shown in figures 4.28 and 4.29 (a) respec-

I ively. Both vector maps have been selected to show the trough of the large 

;lItIj)l it tide solitary wave. The vector maps in the adjacent figures 4.28 and 4.29 

I) lm(:)w the linear superposition of the vector maps obtained from the individ-

ual DPI\' experiments on both non-interacting wave types for each stratification 

configuration; that is the linear superposition of figures 4.3 (1)) and .1.18 (a) is 

shown in figure 1.28 (h), whereas the linear superposition of 4.7 (b) and 4.18 

(b) is shown in figure 4.29 (b). Horizontal (blue lines) and vertical (red lines) 
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isovelocity contours have been superimposed on each map at intervals of 7cm.s' 

and 4cm.s' respectively, in figure 4.28, and at intervals of 5cm.s' and 2cm.s' 

respectively, in figure 4.29. 

For the linear superposition, both the individual solitary wave and surface wave 

vector maps were appropriately shifted in order to ensure that the non-interacting 

surface and solitary wave profiles matched, to the nearest grid unit, the position 

of the profiles in the interaction vector maps (figures 4.28 and 4.29 (a)). Conse-

quently, some velocity information has been lost at the edges of the maps. This 

is particularly noticeable in figure 4.29(b). 

Qualitatively, similar features can be seen in the maps obtained from the inter-

action investigation and in those of the linear superposition. In figure 4.28, the 

isovelocity contours indicate that in the interaction case (a), the velocities are 

greater than in the linear superposition case (b) both near the surface and at the 

interface. In figure 4.29, however, the velocities are more similar at the interface, 

but are greater in the interaction case (a) near the fluid surface. 

To assess the magnitude of the velocity difference between the interaction and 

linear superposition cases, the interaction velocity field was subtracted from the 

corresponding linear superposition field. The resulting vector maps showing the 

difference in the velocity fields, illustrated in figures 4.28 and 4.29, are given in 

figures 4.30 and 4.31 respectively. Contours of absolute non-dimensional horizon-

tal velocity difference, Au/col, are superimposed on the plots in figures 4.30 and 
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Figure 4.28: Vector maps showing isovelocity contours for the interaction ex- 

periment: h11112 = 3.58, a/11,2 = —1.16. 2as /\ s  = 0.059 and w 9  = 9.03rad.s 1  
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velocity fields (14. 
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Figure 4.29: Vector maps showing isovelocity contours for the interaction cx-
perinnent: /11//12  = 6.39, a/h2  = — 1.95, = 0.059 and w.5  = 9.03rad.s 1  
(a) and a linear superposition of the individual surface wave and solitary wave 
velocity fields (1s). 

4.31 (a), whereas contours of absolute non-dimensional vertical velocity difference. 
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are plotted in figures 4.30 and 4.31 (b). 
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The solitary wave generated in the interaction experiment (figure 4.28 (a)) was of 

smaller amplitude than that generated to produce the linear superposition plot 

(figure 4.28 (b)). As a result, the two wave shapes do not match exactly. Cor-

respondingly, this difference is highlighted in the JAu/c o l contours in figure 4.30 

(a). In figure 4.31 (a), where the stratification characteristics in the interaction 

and non-interaction amplitudes were more similar, this feature is not apparent. 

Instead, however, bands of higher absolute horizontal and vertical velocity differ-

ence can be seen at the right and left edges of the vector maps. These are caused 

by a larger shift in the individual surface wave and solitary wave vector maps 

used to generate figure 4.29 (b). Despite the larger horizontal velocity difference 

seen in 4.30 (a) in the interfacial region, overall, the difference in the velocity 

fields is small in both stratification set-ups. The greatest changes appear to be 

associated with the horizontal velocity field, most particularly in the upper fluid 

layer. The largest horizontal velocity differences are found just below the fluid 

free surface. The vertical velocity differences appear to be more uniform over 

the fluid depth, again with the largest differences occurring just below the free 

surface. 

Figure 4.32 shows the horizontal velocity profiles versus non-dimensional depth, 

y/h 2 , taken at a wave crest (red data points) and/or at a wave trough (blue 

data points) for the four interaction cases investigated (table 4.8). The crests 

and troughs selected are those closest to the maximum depression of the solitary 

wave. For figure 4.32 (b) and (c), both a wave crest and trough were not available. 
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The initial conditions listed in table 4.8 are used in the fully nonlinear numerical 

method [30, 28] to obtain the theoretical velocity profile (black line) for a non-

interacting single solitary wave (section 4.3.2, figure 4.11). In each graph, the 

linear superposition of the numerical method prediction and surface wave linear 

theory (section 2.2) is also plotted, for both a wave crest (red line) and a wave 

trough (blue line). 

As it is not clear from the wave profiles whether the solitary wave shapes undergo 

any distortion, the amplitude values listed in table 4.8 are, in effect, only an ap-

proximation to the real amplitude of the solitary wave. A comparison of the am-

plitude values of the solitary waves generated here (table 4.8) with the amplitudes 

of the solitary waves previously discussed (section 4.3.2, table 4.4) reveals that, 

in figure 4.32 (a), (b) and (c), the interacting solitary wave non-dimensional am-

plitudes are smaller than their non-interacting internal wave counterparts. This 

is probably caused by differences in the initial stratification parameters (tables 

4.4 and 4.8), which although similar were not identical, rather than modulations 

of solitary wave amplitude. In particular, the depth layer ratios, h 1 /h2 , for the 

velocity profiles in figure 4.32 (a), (b) and (c) were smaller. This was due to a 

slightly faster fill-rate of the fresh water fluid layer. Consequently, the top layer 

depth was larger, yielding a smaller non-dimensional amplitude, a/h2 , for the 

same volume of water, V, added behind the sliding gate. A comparison between 

the percentage change in the values of h 1 /h2  in both experiment sets and the 

corresponding change in the values of a/h2  verifies this. 
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Furthermore, it osra.s  found that, for tile errors on the amplitude measure quoted 

for this work, the maximum change in the non-dimensional horizontal velocity 

prediction is ('u/co) y>/,2 
lYc for the velocities in the top layer for all four soli-

tary waves. The change in horizontal velocity in the lower layer. .\(u/c o ) 
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is slightly larger, between 2% and 4%. Nevertheless, as all the velocity measure-

ments show a much greater difference from the theoretical linear superposition 

predictions than these error bounds, the accuracy of the amplitude measurement 

is not considered to affect the outcome of the comparisons made here. 

Whereas the fully nonlinear theory [30, 28] assumes a step-like density profile 

between the two fluids (section 4.3.2), the finite width of the interface in the 

experiments is highlighted in the measurements by the velocity gradient across 

it. Nevertheless, qualitatively, the plots follow the same form as the theoretical 

linear superposition. In concurrence with the observations made above (figures 

4.30 and 4.31), there exists an increase in the fluid velocities near the free surface 

for both the experimental and theoretical results. The magnitude of the velocities 

with depth are systematically greater than the linear superposition predictions 

in all but one case (figure 4.32 (d), surface wave trough). It was for this solitary 

wave - surface wave interaction configuration (figure 4.27) that the maximum 

deformation of the surface wave profile was found, namely where the surface 

wave steepness, the depth layer ratio and the non-dimensional amplitude of the 

solitary wave were greatest. It could be, therefore, that this particular profile 

highlights nonlinearities in the velocity field, manifested at the free surface as a 

surface wave shape skewing. 
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4.5.3 Conclusions of the surface wave - internal wave in- 

teraction DPIV study 

The interaction between an internal solitary wave of depression and a small ampli-

tude progressive surface wave train was investigated using DPIV. The literature 

review (section 2.5.2) indicated that little work has previously been undertaken in 

this field. In particular, the novelty of this study lay in the investigation of large 

amplitude solitary waves (a/h2  < — 1) and the use of a non-intrusive full-field 

measuring technique (DPIV). 

The work followed on from the initial DPIV investigations on single internal 

solitary waves and small amplitude surface waves (sections 4.3 and 4.4). The 

same experimental facilities were used. In this way, considering differences in 

the stratification initial set-ups and their effects on the resulting velocity fields, 

the interaction experimental results could be compared to those obtained in the 

individual solitary wave and surface wave investigations. 

The waves approached each other from opposite ends of the tank, such that the 

angle between their direction of propagation was 0 = ir. Single solitary waves 

were generated in two different stratification regimes, h 1 /h2  4 and h 1 /h2  6. 

Two surface wave amplitudes of the same wavelength were employed, such that 

2a5 /A s  = 0.023 and 0.059. The wave profiles, in particular, were seen previously 

(section 4.4.2) to be described well by surface wave linear theory. 
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Progression of the solitary wave through the measurement area was tracked by 

determining the position of zero horizontal velocity within the interfacial region. 

Surface wave profiles were also obtained. In all cases, amplitude and wavelength 

modulation of the surface waves were observed. 

Quantitative comparison with predictions from the Longuet-Higgins and Stewart 

(LHS) theory (section 2.5.1) was not possible for two reasons. Firstly, the theory 

relies on first order KdV theory for the determination of the solitary wave char-

acteristics. It was seen (section 4.3.2) that this approximation did not provide 

a good description of the solitary waves investigated in this work. Secondly, the 

LHS theory requires that the length scales of the surface waves be much smaller 

than that of the solitary wave. This was not the case in the experiments per-

formed here. Nevertheless, analysis of the surface wave modulation showed that 

the LHS predictions were met qualitatively. That is, the amplitude of the surface 

wave increased and its wavelength decreased. Where the initial wave steepness 

was smallest, the surface wave shapes were found to be well described by sur-

face wave linear theory, despite the modulation effects. In contrast, for the larger 

wave steepness, distortion of the wave shape from a sinusoidal profile was evident, 

being most pronounced for the largest non-dimensional solitary wave amplitude 

and layer depth ratio. The skewing experienced by the surface wave train may 

depend on the solitary wave "phase" or, equivalently, with distance from the 

maximum depression of the wave. No reports of this observation seem to have 

been made by previous authors [33, 32]. Difficulties in detecting any distortion 
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of the solitary wave shape will be further discussed in section 5.3. A larger data 

sample would be required to parameterise the results and establish the relation-

ship between surface wave amplitude or wavelength modulation and solitary wave 

"phase". Possible extensions to the present case studies will be discussed further 

in section 6.4. 

Vector maps and velocity profiles of the interaction flow field were compared to 

the linear superposition of solitary wave and surface wave velocity field measure-

ments (sections 4.3 and 4.4) and to a linear superposition of solitary and surface 

wave theoretical predictions, respectively. Similar features were identified in both 

velocity fields, although the horizontal velocities in the region below the fluid free 

surface were larger in the interaction cases. This was reflected in the plots of 

velocity profile, where qualitative agreement between experiment and theory was 

found except where the greatest surface wave shape skewing was observed. These 

differences were attributed to nonlinearities in the velocity field, which were man-

ifested at the fluid free surface as a distortion to the surface wave profile. Further 

investigation of this is needed. 

4.6 Summary 

The aim of the work presented here was to investigate the interaction between 

a single internal solitary wave of depression, propagating in a two-layer stratifi- 

185 



Chapter 4 - Interaction Processes: A DPIV Investigation 

cation, and a train of progressive monochromatic small amplitude surface waves 

using Digital Particle Image Velocimetry (DPIV). To the author's knowledge, 

such an investigation using this particular measuring technique has not been per-

formed before. Previous work on the subject [33, 321 has been done using small 

amplitude solitary waves. In contrast, in the present study, large amplitude soli-

tary waves, that is waves with amplitudes greater than the depth of the top fluid 

layer, are investigated. 

The goal of the work presented in the first half of this chapter was to obtain char-

acteristic velocity data for both internal solitary waves (section 4.2) and surface 

wave trains (section 4.4), within the constraints imposed by the experimental 

facilities. This provided a set of reference measurements, which could be com-

pared to the subsequent interaction data sets, where solitary waves and surface 

waves with similar characteristics were employed. The second half of the chapter 

(section 4.5) focussed on the DPIV investigation of interaction processes result-

ing from a progressive surface wave train passing over a large amplitude internal 

solitary wave, whose direction of propagation was opposed to that of the surface 

wave. In all the experiments, the results were compared to the appropriate the-

ory. In particular, the interaction investigation yielded a number of interesting 

phenomena, which, to date, have not been reported. 

Hence, DPIV studies were performed separately on 

• large and small amplitude internal solitary waves of depression, propagat- 
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ing in a brine - fresh water two-layer fluid, generated by a sliding gate 

mechanism [44, 29] 

.. small amplitude progressive surface wave trains, generated by a computer 

controlled hinged wave paddle 

. a small amplitude progressive surface wave train passing over a single large 

amplitude solitary wave in a brine - fresh water two-layer fluid 

Overall this study has demonstrated that DPIV can be successfully applied to the 

study of two-layer (brine - fresh water) fluid flow. Even within the limitations 

of the available data acquisition system, which were in the first instance iden-

tified and subsequently overcome, the technique was seen to yield quantitative 

and qualitative velocity information. This provided encouraging initial results, 

which indicates that it would be worthwhile extending the present study in future 

investigations. This will be discussed further in chapter 6. 
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Chapter 5 

The Interaction of a Surface 

Wave Train and an Internal 

Solitary Wave: A PLIF 

Investigation 

5.1 Introduction 

In this chapter, Planar Laser Induced Fluorescence (PLIF) experiments, per- 

formed on single internal solitary waves propagating at a brine - fresh water 

interface, are presented. As in chapter 4, the study is extended then to look at 
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internal solitary wave - small amplitude wave train interactions. It appears, from 

a review of the literature (sections 2.3.4 and 2.6), that work has yet to be done 

in this field. 

The investigation of single internal solitary waves of depression in a brine - fresh 

water two-layer stratification is presented in section 5.2. The consequences of 

various drawbacks of the experimental apparatus, such as variations in intensity 

across the width of the laser light sheet, are identified and their effect on the 

raw images of the flow is discussed. An assessment of the most suitable analysis 

approach is made in the light of these drawbacks (section 5.2.2). The solitary 

wave amplitudes and wave shapes are determined from the post-processed images. 

The density profile and a measure of the density interface width, within the 

soliton waveform, is obtained. The suitability of the PLW technique to accurately 

measure density variations in the internal solitary wave flow field in a brine - fresh 

water stratification is also considered. 

A PLIF investigation into the interaction between a single internal solitary wave 

of depression with a small amplitude progressive surface wave train is presented 

(section 5.3). The image analysis techniques follow the same principle as those 

developed in the PLIF work on single internal solitary waves (section 5.2.2). 

Analysis of the results (section 5.3.2) focusses on assessing changes to the density 

structure of the stratification, with depth through the fluid, within the solitary 

waveform. 
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The aims of this chapter can thus be summarised as follows: 

• to assess the ability of the PLIF technique to provide quantitative density 

information on internal solitary wave flow in a brine - fresh water stratifi-

cation 

. to provide a reference data set against which PLIF solitary wave - surface 

wave interaction data may be compared 

. to assess the instantaneous effect of the solitary - surface wave interaction 

on the structure of the stratification 

• to assess any mixing processes that may occur as a result of the interaction 

5.2 Investigations of Single Internal Solitary 

Waves using Planar Laser Induced Fluores- 

cence 

As little, if any, work appears to have been done in this area of research, the 

primary motivation of the work presented in this section is to assess the ability of 

Planar Laser Induced Fluorescence (PLIF) technique to be used as a quantitative 

investigative tool in the study of single internal solitary wave flow in a brine - 

fresh water stratification. As remarked in [29], the structure of the interface 
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within the soliton waveform remains unknown. The use of PLIF may reveal the 

density structure and thickness within the internal wave. The suitability of the 

PLIF technique to the study of internal solitary waves is therefore considered. 

All the PLIF experiments performed throughout this work follow the principles 

outlined in section 3.1.2. The experimental set-up and method are presented 

(section 5.2.1). A discussion of the analysis approach and the experimental results 

then follows (section 5.2.2). 

5.2.1 The PLIF Setup and Experimental Method 

In this section, the PLIF experimental set-up is presented. The camera settings 

and timings are outlined and the method involved in performing the experiments 

is discussed in general terms. The description and discussion of the experimen-

tal analysis, involving image post-processing techniques and calibration of the 

resulting data, however, is left until section 5.2.2. 

Two separate experiments were performed on one single large amplitude (a/h2  < 

—1) and one single small amplitude (a/h2 r  —0.5) internal solitary wave in a 

stratification configuration where h 1 /h2  6. The upper layer depth, h2, was 

determined, as described in section 4.3.2, using the density profile of the strat-

ification. The wave flume set-up remained as before (section 3.2). Table 5.1 

summarises the parameters used. 
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small amplitude wave large amplitude wave 

a/h2 " —0.5 	 a/h2  < —1 

H (m) 	0.71 	 0.71 

h1 /h2 	6.24 	 5.82 

V(l) 	 20 	 80 

D (m) 	 0.4 	 0.4 

/.p/p2 	3.57 	 4.11 

Table 5.1: Table summarising the parameters used for each of the two PLIF 

internal solitary wave experiments. 

The basic camera and wave flume set-up of these single solitary wave PLIF ex-

periments remained as for the DPIV solitary wave measurements (section 4.3). 

The PLIF theory, presented in section 3.1.2 is referred to here. As previously, the 

PCO Sensicam camera was triggered on the opening of the sliding gate and image 

pairs were grabbed at the maximum possible frequency (one image every 0.55s). 

Again, this ensured that as many images as possible were captured as the wave 

passed the measurement volume. A cut-out filter was placed in front of the lens 

in order to remove the green laser light and reflections (section 3.1.2). Unlike in 

the case of the DPIV experiments, here, the ability of the PCO Sensicam camera 

to grab pairs of images was not important. As the first exposure could be more 

accurately controlled than the second, only the first image of every pair was used 

and the timings and shutter set up were selected to optimise the greylevel range 

of the first image. Care was taken to ensure that the first image was exposed for 

long enough to obtain the maximum contrast between the dyed saline layer and 

the upper fresh water layer without blurring. 
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In the first instance, a stock solution of dye (0.7g of rhodamine powder per litre 

of brine) was prepared. A known volume of this solution, according to the am-

plitude of the solitary wave generated, was mixed into the bottom layer of the 

stratification using the submersible pumps. In all cases, the initial concentration 

was around 0.01% of the stock solution. Following considerable mixing, the strat-

ification was completed, in the manner described in 3.2.5. Care was taken in the 

preparation of the stock solution and when adding it to the brine in tank, as the 

substance is extremely toxic. 

In order to assess the relationship between fluorescence intensity, or equivalently, 

image pixel greylevel, and dye concentration a calibration was performed. In 

each of the individual solitary wave PLIF experiments, a sample of the initial 

concentration of dye in the salt water layer was removed from the tank and 

diluted in 10% increments. The samples were placed in a series of sealed vessels 

in order of increasing concentration and were then suspended in a supporting cage 

in the path of the laser light sheet. The flume was filled with brine of the same 

density as in the experiment, such that the attenuation of the laser light with 

distance from the source could be taken into account. Care was taken to ensure 

that the vessels were positioned in the lower region of the measurement volume, 

which, during the experiment, would contain dyed fluid rather than fresh water. 

The resulting fluorescence intensity from the samples was recorded using the same 

exposure timings, camera position and set-up as for the wave experiments. 
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On completion of each experimental run, the dye in the tank was mixed, again 

using the submersible pumps, into both fluid layers so as to obtain a uniform 

concentration of dye across the measurement volume. Multiple images of this 

uniform dye concentration were then taken with the same camera exposure set-

tings as used for the main experiment. The resulting images were then smoothed 

and averaged in order to obtain a representative background intensity. A graph 

of average background intensity with j, image depth, where (i, i) = (0,0) is the 

top left hand corner of the picture, is shown in figure 5.1. The reflections at the 

water surface are characterised by a large increase in pixel greylevel at around 

j = 200pxl, such that the region 0 < j< 200pxl is above the water surface (in 

air). A second order fit to the data for j > 200pxl is also shown (red line) and has 

been extrapolated to j = Opxl. Using the quadratic coefficients, the pixel values 

in the image, in the region above the water surface, were recalculated to remove 

the artificial brightness. This technique is particularly useful for the analysis of 

the PLIF surface wave - internal solitary wave interaction experiments where the 

position of water surface changes from image to image due to the surface wave 

train (section 5.3). The interpolated background image was then used to nor-

malise the raw images from both the experiment and the calibration following 

the regime outlined in section 3.1.2. 

The normalised calibration images yield a series of "patches" of increasing 

greylevel, corresponding to increasing dye concentration on a background of small 

and constant greylevel. The intensity of each pixel within each of these patches, 
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Figure 5.1: An example of a plot of average background greylevel, GB, with 

image width, j. The quadratic fit to the data for j > 200pxl and the extrapolation 

to j = Opxl (red line) is also shown. 

once the images had been normalised, was averaged to yield a representative 

greylevel for each concentration value. The relationship between concentration 

and recorded fluorescence intensity could then be determined by plotting greylevel 

against concentration. This will be discussed further in the next section. 

5.2.2 PLIF Image Post Processing and Discussion of the 

Results 

The results from the Planar Laser Induced Fluorescence experiments performed 

on two individual internal solitary waves, one of large amplitude (a/h2 < —1) 

and one of small amplitude (a/h2 r'.i  —0.5), in a layer depth ratio of h1 1h2  6 7  

are presented. As no work appears to have yet been reported in this field, the 

experimental results are first considered for their ability to produce reliable and 
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quantitative information about the density distribution within the solitary wave-

forms. The second goal of these experiments, as in the case of the DPIV experi-

ments presented in section 4.3.2, is to provide a set of reference measurements for 

the PLIF surface wave - internal solitary wave interaction experiments, presented 

in section 4.5.2. In particular, the investigation focusses on the accuracy with 

which the density interface can be measured as the wave passes the measurement 

volume and the structure of the interface within the depression of the solitary 

wave. Throughout the discussion of the results, when images are referred to, 

they are assumed to be normalised with respect to the interpolated background 

image unless otherwise stated. 

For each of the two solitary wave experiments discussed here, a reference image 

of the still interface was taken, prior to the sliding gate being removed. Figure 

5.2 shows a graph of the average pixel greylevel, (j), where N refers to the 

fact that the pixel intensities have been normalised, at two different positions in 

the reference image, i 1  = 300pxl and i2  = 1065pxl, for the large amplitude wave 

experiment. The averages were performed over a section of the images, equivalent 

to a distance of 2.5cm, from i 1  and i2  respectively. Averaging over a section 

of this width was adequate to remove the noise from spurious pixel greylevel 

values whilst remaining much smaller than the wavelength of either the small or 

large amplitude solitary wave. Running averages of each profile are also shown 

(black lines) and can be seen to follow closely the shape of the mean intensity 

profiles, whilst reducing the noise in them. As a result, running average plots of 
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the intensity profiles will be used throughout the PLIF studies. 
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Figure 5.2: Average pixel intensity Figure 5.3: Density profile of relative 

profiles with image depth, j, for the change in density in percent from fresh 
reference image of the large amplitude water for the stratification used in the 
solitary wave experiment. The pro- large amplitude solitary wave PLIF ex-
files were found by averaging the nor- periment. The "tanh" approximation 
malised greylevels at two different hori- is also shown. 
zontal image locations, ii and i2 . Run- 
ning averages (black lines) over each 
plot are also shown. 

Both profiles in figure 5.2 follow the same form and clearly show the two layers 

of fluid of different density in the stratification, separated by a sharp interface. 

The water surface can be located by the sharp peak in the graphs at j '—' 150pxl. 

Secondary reflections of the free surface are also apparent between j 150pxl 

and j 200pxl. 

In each profile, the saline layer is characterised by a higher greylevel > 90 for j > 

450pxl. It can be seen, however, that the greylevel in this region is not constant 

but increases slightly with increasing j, or equivalently with depth through the 

fluid. This implies that the dye concentration was not constant but increased 

slightly with depth. It could be inferred from this therefore, that the salinity is 
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also increasing with depth. 

The plot of non-dimensional density, (p - p4/p2, in percent, versus y/h2, no-

dimensional depth, in figure 5.3, was obtained from the micro-conductivity probe 

measurements, prior to removing the gate and at a location within the measure-

ment area. The graph shows that the density in the lower layer is constant within 

the depth of fluid considered in the image, around 35cm below the density in-

terface, such that the increase in dye in this region cannot be attributed to an 

increase in density. Instead, the intensity increase in the lower region of fluid 

demonstrates the difficulty encountered in uniformly mixing even a small quan-

tity of a high concentration tracer dye solution into a large volume of fluid (of 

the order of 20001). As one of the aims in this work was to assess the thickness 

of the interface, it was important that the dye was as homogeneously mixed as 

possible throughout the depth of the saline fluid prior to the experiment. This 

is because if any mixing occurred during the experimental run, it would cause 

changes to the initial vertical distribution of dye. A significant gradient in the 

intensity profile over the saline layer before mixing would result in a greater uncer-

tainty in the estimation of the interfacial width. This would render comparisons 

with measurements of the interfacial width post-mixing more difficult to inter-

pret. Even though the raw images were corrected for the horizontal variations in 

intensity across the laser light sheet and attenuation of the laser light through the 

fluid depth, this background correction procedure could not account for vertical 

changes in intensity caused by non-uniform initial dye distribution. 
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Although no dye was mixed into the top layer of fluid during the stratification 

preparations, not only is the average greylevel in this region not close to 0, but 

it is also not the same at the two image locations (figure 5.2). The average pixel 

greylevel in the top layer was not constant over the image width. The two profiles 

shown were taken in the lightest and darkest regions of the image respectively. 

The non-zero greylevel values in this region can be explained by the filling method 

(section 3.2.5). Floating sponges were used to slowly drip-feed the fresh water 

layer onto the dyed saline solution. It is likely that a very small amount of dye 

was drawn up from the bottom fluid as the top layer was filling. Thus, the top 

layer of the stratification, although consisting of fresh water, was not dye-free 

prior to the opening of the sliding gate. 

In the raw images, the non-uniformities in the laser light sheet, caused by dust 

and variations in the silvered coating on the parabolic mirror, are particularly 

apparent in the saline layer, where the dye concentration is strongest. They 

are visible across the raw images as vertical bands of higher or lesser greylevel 

such that for a constant dye concentration, the intensity of light recorded by 

the camera was not constant. The image normalisation process, described in 

the previous section 5.2.1, is relatively effective at removing these variations in 

light intensity in the saline layer, j > 450pxl. In this region, the difference in 

pixel contrast between the profiles is only 2-3 levels. In contrast, in the upper 

fluid layer where the concentration of dye is much less, the normaiisation process 

tends to reinforce the light sheet fluctuations, rather than reduce them. Thus, 
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for any fixed vertical coordinate j $ 350pxI, there exists variations in average 

pixel brightness of around 10 or so greylevels across the width of the normalised 

images. Reference to the density profile in figure 5.3 indicates that the upper 

layer of the stratification was constant in density and was equal that of fresh 

(tap) water. Hence, the top layer of fluid was neither saline nor non-uniform in 

density prior to the wave generation. 

The intensity variations in the top layer of fluid in the normalised images were 

reduced by linearly scaling them. If the brightness of a normalised pixel within 

a column i was less than the average brightness of the whole image, then the 

greylevel of the pixel was scaled by this value. The new greylevel of the pixel is 

denoted G'(i, j, t) and the subscript N, indicating that the pixel was previously 

normalised, has now been dropped. Figure 5.4 shows both the original intensity 

profile, (j), from location i2  in figure 5.2, and the recalculated intensity profile, 

(j). The graph shows that although the greylevel in the lower layer of fluid 

and the profile over the density interface remain the same, the greylevel in the 

fresh water layer has been increased. Thus, the scaling effectively removes some 

of the variations in greylevel in the top layer of fluid by collapsing the intensity 

profiles onto a representative greylevel of this layer. This process nevertheless 

preserves the characteristic shape of the intensity change across the interface and 

the greylevel value of the saline layer. Although the variation in greylevel across 

the normalised images was not removed completely by this transformation, it was 

improved significantly, reducing the variation to 3 or 4 greylevels. It was therefore 
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applied systematically to all images. 

60 
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Figure 5.4: Graph showing the average intensity profile over an image width of 

50pxl at i2  = 1065pxl in the reference image of the large amplitude wave, before 
and after linearly scaling the image greylevels. The running averages of both 
profiles are also shown (black lines). 

The horizontal variations in greylevel across the normalised images demonstrate 

the drawback of using a scanning mirror - parabolic mirror laser light sheet gen-

eration system (section 3.2.4) when a light sheet of constant intensity across the 

entire measurement area is required. As the parabolic mirror is a silvered perspex 

strip, it cannot be cleaned and is damaged easily. A light sheet perfectly uniform 

in intensity is, therefore, hard to achieve. Where a large measurement area is 

necessary, this drawback could be avoided in future by using a set-up similar to 

that used by Schlicke [81] where a rotating octagonal mirror is used to sweep a 

collimated laser beam through a fan-shaped 900  arc. 

The calibration described in the previous section was repeated for every PLIF 

experiment, as the initial dye concentration in the bottom layer could not be 
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guaranteed to be identical each time. The initial sample was taken from the dyed 

saline layer as far as possible from the surface, before the fresh water layer of 

the stratification was added. The calibrations were all carried out under similar 

conditions, without altering the magnification of the camera system, the laser 

power or the position of the supporting cage within the measurement area. Fig-

ure 5.5 shows the calibration results for both the large amplitude (a) and small 

amplitude (b) solitary wave experiments. Average greylevel is plotted against 

concentration of the initial dye solution in the lower layer of the stratification. 

As only five calibration vessels could fit across the width of the measurement 

area, the samples were thus imaged in two parts; from 100% to 60% and 50% 

to 10% of the initial concentration in the lower layer. The graph in figure 5.5 

(a) follows a linear trend, whereas in (b) this trend is not apparent. Instead, 

the trend appears to be linear over both concentration ranges imaged seperately 

(100% to 60% and 50% to 10%). 

Contrary to the theory, neither graph goes through the origin. However, this 

can be explained by the high sensitivity of the PCO Sensicam camera which is 

designed specifically to work in low light levels. The error bars are representa-

tive of the variation found over multiple calibration images of an experiment, 

grabbed consecutively within a time period of a few seconds and subsequently 

normalised by the background image (5.2.1). It had been noted [87], in recent 

PLIF experiments involving surface films, that the use of tap water, as opposed 

to distilled water, lead to discrepancies in the fluorescence - dye concentration 
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relationship, disturbing the linearity of the plot. It is evident that in this work, 

the use of distilled water in the preparation of the stratification was not possible, 

due to the large volume of fluid involved. In each experiment, the calibration 

vessels were always placed in the same order within the support. The nonlin-

eanty could therefore be an artefact of the horizontal intensity variations in the 

laser light sheet. The recorded fluorescence could be artificially enhanced or re-

duced by these defects as image normalisation did not wholly remove the intensity 

non-uniformities. 
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Figure 5.5: PLIF Calibration: graphs of average greylevel, GN, versus concen- 
tration of the initial dye solution in the lower layer of fluid in the stratification for 
each of the large and small amplitude internal solitary wave PLIF experiments 

respectively 

A common characteristic of both calibration graphs in figure 5.5 is the limited 

greylevel range over the concentration values. The pixel intensity range covers 

around 20 greylevels from a possible 256 and the pixel intensity jump between 
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each 10% increment in concentration is around 3 to 4 greylevels. This limited 

range reduces the resolution of the PLIF images such that small changes in fluo-

rescence intensity cannot be detected. The salinity of the lower fluid layer resulted 

in strong attenuation of the laser light through the fluid, resulting in a reduction 

in fluorescence. The attenuation could have been decreased by using a smaller 

amount of salt in the preparation of the saline solution. This would yield a smaller 

density difference, Lp/p2, across the interface. The solitary - surface wave in-

teraction experiments (section 5.3), however, required a density difference of the 

order of that considered here. 

In general, the density profile of a two-layer stratification can be approximated 

well by a hyperbolic tangent, or "tanh", fit (section 2.1.3). Figure 2.1 demon-

strated that the typical density profiles encountered in this work do indeed follow 

this trend. The equivalent "tanh" fit, following equation (2.5) and corresponding 

to the density profile for the initial stratification for the large amplitude inter-

nal solitary wave, is shown in figure 5.3. Again, the approximation can be seen 

to follow the density profile. Figure 5.6 shows the hyperbolic tangent fit to the 

running average plots of the two profiles previously shown in figure 5.2 above. In 

this instance, the ideal "tanh" profile is expressed as: 

AG' [t 

	Lj )] anh (j+JI\1  
d,  _U) = -i-- 	 +G flld , 	

(5.1) 

The fit is applied to the area of the intensity profile about the interfacial region. 
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The coefficients G' = 	- G'mjn  and GId = G 	G'mia such that G'r 	is 

a greylevel value representative of the pixel intensity in the saline fluid layer 

and G'm j n 
 is a greylevel value representative of the pixel intensity in the fresh 

water layer. Both G'r  and are derived from the curve fitting process. The 

coefficient Jr  is the displacement of the "tanh" profile in pixels from j = Opxl. 

The distance in pixels over which there exists an intensity gradient is given by 

Lj. 
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Figure 5.6: Intensity profiles G1 (j) and the corresponding hyperbolic tangent 
fit given by equation (5.1) for the two images locations in the reference image of 
the stratification for the large amplitude wave experiment. 

In the graphs in figure 5.6, the surface reflections in the fresh water layer, are 

characterised by a marked increase in greylevel at j 	200pxl. Similarly, for 

j 	600pxl there is a deviation from the tanh fit caused by the increase in dye 

concentration in the lower layer. Despite the difference in average greylevel in 

the upper fluid layer, the "tanh" approximation provides a good match to both. 

205 



Chapter 5 	Interaction Processes: A PLIF investigation 

All the intensity profiles shown in the figures above and discussed so far are taken 

from the large amplitude solitary wave experiment reference image. They are, 

however, characteristic of all the PLIF experiments performed in this work. It 

has been shown that some of the variations in greylevel within the PLIF images 

cannot necessarily be attributed to variations in dye concentration and thus to 

variations in density. Nevertheless, it is important to be able to relate changes in 

pixel intensity to changes in salinity quantitatively. 

The background fluorescence, present in the upper layer and attributed to the 

stratification filling technique, not only affected the dynamic range of the pixel 

intensities in the images, reducing it to 20 to 30 greylevels out of a possible 256, 

but also inhibited effective mapping of the pixel intensities to dye concentration 

using the calibration results. The good match between the "tanh" fits (equation 

(5.1)) and the intensity profiles across the density interface, in both solitary wave 

experiments, suggests that the relationship between fluorescence and salinity can 

be assumed to be linear. So long as this is true, changes in greylevel in the post-

processed images can be related directly to changes in density via the conductivity 

profile results, which, taken throughout both the DPIV and PLIF experiments, 

have been shown to be repeatable. 

By matching 	the representative greylevel in the upper layer, to p, the den- 

sity of fresh water, and GI a, the representative greylevel in the lower layer of 

the stratification, to P' the density determined by the micro-conductivity probe 
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calibration, the intermediate greylevels can be linearly mapped to the intermedi-

ate density values across the interlace. Equation (2.5) can thus be rewritten in 

terms of y/h2 , the non-dimensional vertical coordinate, and (p(y/h2) - 

the non-dimensional density difference, to give 

p(y/h2) - P2 = 	tanh 
1(y/h2  + /h2)1 + 	 (5.2) 

P2 	 [ Lh/h2  j 2p 

Here, an additional term ij/h2  has been included to describe the depression of the 

interlace due to the amplitude of the solitary wave. 

Figure 5.7 (a) and (b) show the non-dimensional density profiles with non-

dimensional fluid depth, resulting from scaling the intensity plots presented in 

figures 5.6 with the micro-conductivity probe measurements. The corresponding 

"tanh" fits, given by equation (5.2), are also plotted. By matching the greylevels 

in the upper and lower fluid layers to the appropriate densities, the intensity 

profiles from figures 5.6 have been successfully collapsed onto a representative 

density profile. The "tanh" approximations provide a good description of the 

density plots. Figures 5.8 (a) and (b) show the two equivalent density profiles, 

calculated under the same conditions, from the same locations i 1  and i2  in the 

small amplitude solitary wave experiment reference image. As the camera was 

not moved between the two experiments, both positions still correspond to areas 

in the image between which there exists a maximum contrast in greylevel. The 

same characteristics; surface reflections and slight increase in fluorescence inten- 
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sity in the bottom layer, can be distinguished here. Nevertheless, in this case 

also, the "tanh" profile provides a good approximation to the density change 

over the interfacial region. Moreover, a comparison between the resulting density 

profiles and the corresponding calibrated conductivity profile (figures 5.7 and 5.8 

(c)) shows the shapes of the plots are well matched. 

It has been shown that the intensity profiles, taken over two locations, i 1  and i2 , 

in a reference image of the initial stratification, where there exists a noticeable 

contrast in greylevel, particularly in the upper fluid layer, result in similar density 

plots with fluid depth. It has also been seen that these density profiles can 

be well approximated by a hyperbolic tangent fit given by equation (5.2). The 

coefficient Lh/h2  in the "tanh" approximation can therefore be used as a measure 

of the interfacial width. If it can be assumed that, for the reference image of the 

stratification, the interface width is constant over the width of the images, then 

the variation in width between these two locations provides an estimate of the 

accuracy of the measure. The variation in the measure of the width between 

areas of maximum contrast in the images, ii and i2 , was found to be 11.9% 

for the large amplitude solitary wave and 8.7% for the small amplitude solitary 

wave. This assessment will be useful for the analyses of the PLIF surface wave 

- internal solition interaction experiments discussed in the next section where 

the compression and expansion of the interface with surface wave phase will be 

investigated. It can also be applied to different images within the same experiment 

to assess the variation in interface width from one image to another. 
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The graphs in figures 5.9 and 5.10 are calibrated intensity profiles taken through 

the maximum depression of the large and small amplitude internal solitary waves, 

respectively. The images were selected such that the wave trough was located over 

the locations i 1  at time t 1  and i2  at time t 2 , such that calibrated intensity pro-

files from two images, between which there exists a maximum contrast in pixel 

greylevel, could be compared. It was assumed that there was no significant am-

plitude attenuation over the measurement volume imaged (a distance of < 60cm) 

[29] and also that the width of the interface through the maximum amplitude 

of the wave remained unchanged as the wave passed the measurement volume, a 

reasonable assumption as no mixing between the stratified layers was observed. 

The plots show that the interlace is no longer centred about y/h2  = 0 but has 

been pushed down, providing a measure of the solitary wave amplitude. This 

will be further discussed below. The hyperbolic tangent fits to both profiles are 

also shown. The sliding gate mechanism does not seem to alter the structure of 

the interfacial region as the "tanh" curves still provide a good fit to the profiles. 

This could be indicative of the stable nature of the stratification configurations 

used in this study (table 4.5) rather than a feature of the solitary wave generation 

method. For the large amplitude solitary wave, the variation in the estimation 

of the width from the "tanh" fits to each profile is 27.7%. In this instance, the 

fit provides a less useful measure of the variation in the width as the profiles 

are more curved near the fresh water layer and less curved near the saline layer. 

Nevertheless, the gradient of the "tanh" curve across the interface still provides 
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(a) Image location i1, t1 = 22.55s 	 (b) Image location i2, t2 = 24.75s 

Figure 5.9: Non-dimensional density plots with depth, y/h 2 , obtained from 

calibrating the intensity profiles from the conductivity probe measurements, for 
the large amplitude solitary wave. The profiles are obtained from two separate 

images taken at times t1 = 22.55s and t2  = 24.75s after the gate is opened, 

through the maximum depression of the wave at positions i t  and i2  respectively. 

The "tanh" fits, from which the width of the interface can be estimated, are also 

shown. 
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(a) Image location i 1 , t1 = 25.85s 	 (b) Image location i2, t2 = 28.05s 

Figure 5.10: Non-dimensional density plots with non-dimensional depth , 
obtained from calibrating the intensity profiles from the conductivity probe mea-
surements, for the small amplitude solitary wave. The profiles are taken from 
two images 2.2s apart through the maximum depression of the wave. The "tanh" 
fits, from which the width of the interface can be estimated, are also shown. 

211 



Chapter 5 - Interaction Processes: A PLIF Investigation 

a measure of the density gradient in this region. The equivalent variation in 

interface width for the small amplitude solitary wave is more reasonable, being 

8.1%. 

Table 5.2 summarises the measures of the interfacial widths, Lh/h 2 , for the ref-

erence stratification image and through the maximum amplitude of the wave at 

locations i 1  and i2  for both the large and small amplitude solitary waves. The 

larger amplitude wave stratification is associated with a thicker interface than is 

the small amplitude wave. In all cases, however, it can be seen that the den-

sity interface thickness is very small, such that Lh/h2  0.1. Similar analysis 

of profiles taken at various points across the solitary waveform did not suggest, 

for the stratification parameters investigated here and within the accuracy of the 

technique, that there existed any variation in interfacial thickness with solitary 

wave "phase" (or distance from the solitary wave trough). 

wave reference image maximum amplitude calibrated conductivity 

amplitude Ah/h2 	change in % Ah/h2 	change in % Ah/h2 

a/h2 ii 	12 Ii 	i2  

-1.8 0.099 	0.091 	8.8 0.12 	0.094 	27.7 0.125 

-0.64 0.113 	0.124 	9.7 0.11 	0.12 	9.1 0.0961 

Table 5.2: Table showing the interface widths at the two image locations i 1  and 

i2 , chosen to obtain the greatest contrast in pixel intensity, in the reference image 
and through the maximum depression of the wave, for each solitary wave. As the 
camera position was not changed between the two experiments, i 1  and i2 are the 

same in each. 

Two other methods of quantifying the interface width were also considered (sec- 
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tion 2.1.3). These were namely finding the derivative of the profile in the inter-

facial region and measuring the width at half height, and finding the distance 

between the coordinates, j, in the profiles where, for instance, p(j) - p2)/p2 = 

1.2 x Lp/2p2  and (p(j) —p2)/p2 = 0.8 x Ap/2p2 . Both approaches, however, were 

found to provide no better a measure of the width due to the inherent noise in the 

intensity profiles. Overall, the smallest discrepancy in the width approximations 

for each image was achieved using the "tanh" fit approach. 

When suitably calibrated, the normalised and scaled image intensity distribution, 

G'(i, j, t), which characterises the change in density over the interfacial region seen 

in figures 5.7, 5.8, 5.9 and 5.10 can yield density maps of the flow field. In both 

experiments discussed here, the PLIF images are composed of pixel intensities 

spanning a 20 to 30 greylevel range, depending on the pixel location within the 

laser light sheet. The dynamic greylevel range in the image was divided into 

discrete bands, each spanning an equal number of greylevels. Each band was 

mapped to a single greylevel value, which corresponds to the appropriate density 

range. Table 5.3 shows the banding scheme for the large amplitude solitary wave 

experiment. The contrast between each band was maximised by using the full 

dynamic range of the banded images. Effectively, the banding scheme serves as 

a look-up table to obtain density maps of the flow. 

The banded greylevel associated with the mid-density difference (p - p2)/Lip = 

1/2 is G3  = 127, in the case of the large amplitude wave images. The location of 

213 



Chapter 5 - Interaction Processes: A PLIF Investigation 

band number original greylevel range banded greylevel non-dimensional 

n G'(i,j,t) G(i,j,t) density range 
p(i,j) -p2 

4P 

1 0 < G'(i, j, t) <77 0 o <1 

2 77 	G'(i,j,t) <82 63 1 
5 

< 2  
5 

3 82 	G'(i,j,t) <87 127 
p(i,j) -p 

AP 
3 

<5 

4 87 < G'(i,j,t) <94 191 1<p < 4 

5 94 < G'(i,j,t) < 255 255 
1 < p(w -P2 

AD 

< 1 

Table 5.3: Table showing the PLIF banding scheme for the large amplitude 

solitary wave experiment. 

this density contour was picked out for each image in the experiment sequence. 

Following a smoothing routine, the result was a series of (i, i) plots of interface 

position. The shift, in pixels, between two consecutive plots of interface position 

where a portion of the wave was visible in the image, could be found using a 

least squares difference technique. The average shift over a sequence of interface 

profiles gave an estimation of the speed of the solitary wave. The error in the 

measure is given by the standard deviation from the mean shift value. 

Figure 5.11 shows the resulting scaled large amplitude wave profile, 1/h2 against 

x/A, the non-dimensional distance from the maximum amplitude of the wave. 

Although spurious points, which weren't removed by the filtering process can be 

seen in the region IxI > 5, the waveform is clearly defined. The equivalent plot 

for the small amplitude wave is also shown (figure 5.12). The irregularities in 

this graph are surprising. A slightly nonlinear relationship between dye fluores- 
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cence and concentration cannot be ruled out, particularly given the nature of 

the calibration results (figure 5.5 (b)). However, it would imply that a similar 

relationship existed for the large amplitude experiment as the initial dye con-

centration was the same. There is no evidence from the large amplitude wave 

calibration or other results that this was the case, particularly given the good 

match between the theoretical "tanh" fits and the intensity profiles across the 

density interface. If, on the other hand, the laser intensity had not been constant 

over time, but very slightly varying, consecutive images may not have received 

the same level of illumination. 

Both the solitary wave profiles (figures 5.11 and 5.12) and the calibrated density 

profiles through the maximum depression of each wave (figures 5.9 and 5.10) 

provide an measure of the internal wave amplitude (table 5.4). As remarked in 

the DPIV surface wave - internal solitary wave interaction investigation (section 

4.5), differences in the values of wave amplitudes between the amplitudes of the 

two waves investigated here and solitary waves generated in similar stratification 

configurations in the previous DPIV studies (table 4.4). These differences could 

be a result of slight differences in the initial stratification set ups, although it 

is possible that the locations of zero horizontal velocity, u(X,Y)/co = 0, used 

to characterise interfacial position in the DPIV investigations and that of the 

average density across the interface used here, are not the same. Simultaneous 

velocity and density visualisation techniques, such as DPIV and PLIF would be 

required in order to investigate this further. 

215 



Chapter 5 - Interaction Processes: A PLIF Investigation 

depth ratio amplitude density difference KdV linear wave shift wave nonlinear wave 

speed speed speed 

hi/h2 a/h2 AP/P2 (%) Co (cm.s') Cehift (cm.s') c (cm.$) 

5.82 -1.77 4.11 18.86 21.34 ±0.94 26.01 

6.24 -0.62 3.57 17.16 17.71 ±0.89 20.6 

Table 5.4: Table showing the characteristics of the 2 solitary waves investigated. 
The wave speeds found from the shift between consecutive wave profiles plots and 
the nonlinear method prediction are both shown. 

The average shifts, found between consecutive wave profile portions to obtain the 

graphs in figures 5.11 and 5.12, provided a measure of the speed of each wave, C8hjft . 

The predictions of the wave speed, c, from the nonlinear method (section 4.3.2) 

[30, 28], were also obtained (table 5.4). The nonlinear theory predicts a much 

greater wave celerity than that calculated from the PLIF images. A discrepancy 

of around 20% exists between the large amplitude wave speed prediction and 

measurement and 16% for the small amplitude wave. It was seen in section 4.3.2 

that the nonlinear code also overestimated the wave speed for the equivalent wave 

in the DPIV measurements. In [29], a comparison is made between the measured 

wave speed and the nonlinear method predictions for solitary waves of depression 

of amplitudes —1.55 < —a/h2  < —0.4 for a density difference of J.p/p2 2%. 

A deviation of around 5% from the theory at for larger wave amplitudes is seen. 

The large amplitude wave investigated here is around 20% larger than that in 

[29]. In addition, as the density difference and depth layer ratio are greater in 

the present work, a more detailed investigation of this discrepancy needs to be 

made. The clarity of the wave shape obtained (figure 5.11) by finding the mean 
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shift would indicate that the speed, Cshjft, had been suitably estimated. 

0.2 . 

0 

-0.2 

0 

-0.4 

-0.6 

Xa 

Figure 5.11: Large amplitude soli-
tary wave: scaled wave profile i/h2 

against non-dimensional distance from 
the maximum amplitude of the wave, 
x/A. 

Using the average shift found from the interface profile analysis, the images in 

each wave sequence were joined together, so as to obtain a picture of the whole 

wave. The banded images were false-coloured, each greylevel band being assigned 

a particular RGB (red-green-blue) value. This enhances the difference between 

each density level, making them easier to distinguish. The resulting density 

map for the large amplitude solitary wave is shown in figure 5.13 where purple 

corresponds to the maximum density difference, (p(i, j) - = 1, and red to 

corresponds to fresh water, (p(i, j) - p2)/Lip = 0. The image has been cropped 

such that only the area below the free surface is displayed. The noise, caused by 

the variations in the light sheet, is particularly visible on the left hand side of the 

map where the laser intensity in the light sheet was greatest. The concatenated 

Ica 

Figure 5.12: Small amplitude soli-
tary wave: scaled wave profile 7)/h2  

against non-dimensional distance from 
the maximum amplitude of the wave, 
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series of image sections in the right of the picture, each 232px1 in width, can be 

easily distinguished. Observation of the calibrated intensity profiles above showed 

that both the high density of the saline layer and the method of adding the upper 

fluid layer in this investigation generated a thin density interface. Despite this and 

the small number of density bands, the variation in density across the interface 

can still be seen. However, using a wider interface and reducing the salinity 

of the bottom layer, in future investigations, would improve both the spatial 

resolution within the interfacial region and the intensity resolution (and hence 

density resolution) across the entire image. 

Figure 5.13: The density map for the large amplitude solitary wave. The image 
was produced by joining the banded PLIF images together using the shift, found 
by matching successive interface profiles. The resulting image was then false 
coloured to highlight the different density levels. 

5.2.3 Conclusions from the single solitary wave PLIF ex-

periments 

Planar Laser induced Fluorescence (PLIF) experiments were performed on two 

internal solitary waves, one of large and one of small amplitude, in a two-layer 

stratification where h 1 /h2  6. To date, it seems that such an investigation had 
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yet to be completed (section 2.6). The density difference across the interface, as 

in the previous experiments was of the order of 5%. 

It was found that changes in image greylevel were not necessarily linked to changes 

in salinity. Variations in intensity caused by a non-uniform laser light sheet were 

found to be exacerbated in the top layer by image normalisation and were reduced 

subsequently by linear scaling. The stratification filling method (section 3.2.5), 

although providing a sharp interface, reduced the dynamic range of the pixel 

greylevels by drawing up dye from the saline layer as the top fluid layer was fill-

ing. In addition, there had been insufficient mixing of the dye in the saline layer, 

despite using submersible pumps to mix the fluid, causing an increase in pixel in-

tensity with fluid depth. These two considerations hindered the usefulness of the 

fluorescence intensity to fluid concentration calibrations. The images were cal-

ibrated using the micro-conductivity probe measurements (section 3.2.5), taken 

in the quiescent stratification and shown, in previous experiments performed in 

this study, to be repeatable. 

Hyperbolic tangent ("tanh") fits (equation (5.1)) to the calibrated profiles pro-

vided a measure of both the width of the density interface and also the accuracy 

with which such a measurement could be made in the post-processed PLIF im-

ages. The widths obtained by this method were comparable with those obtained 

by applying a "tanh" fit to the calibrated micro-conductivity probe output and 

were found to be around 0.1 times the width of the top fluid layer. The accu- 
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racy of this measure depended largely on the noise and defects in the raw images 

caused by surface reflections, variations in light sheet intensity across its width 

and a small pixel greylevel range. Overall, the margin of error associated with 

the method was in the region of 10%. Any changes in interfacial width as a result 

of a solitary wave - surface wavetrain interaction will be investigated in section 

5.3. 

Profiles of both solitary waves and density maps of the flow were obtained. The 

wave amplitudes were also determined. These were found to be smaller than 

those for waves with similar initial conditions, determined from the DPIV mea-

surements. The discrepancy could be a result of slight differences in stratification 

initial conditions or could be caused by a difference between the vertical position 

of the zero horizontal velocity contour and that of the mid-density contour. It 

was found that the fully nonlinear method [30, 28] predicted faster wave speeds, 

by around 20%, for both waves than that calculated by determining the shift 

between two consecutive portions of the wave profile and used subsequently to 

generate the complete wave profiles. A discrepancy in the predicted and mea-

sured wave speeds at larger wave amplitudes had been noted already [29], for 

a different stratification configuration. This could be further investigated. In 

addition, an investigation into the effect of initial interfacial width could help to 

determine the effect of interface width on the solitary wave characteristics. 

Overall, PLIF was successfully applied to internal solitary wave flow where the 
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stratification consisted of a two-layer brine - fresh water fluid. Quantitative in-

formation was obtained. A more extensive study, varying stratification initial 

conditions, h1 /h2 and zh, should be made. In addition, a reduction in laser 

intensity variations across the width of the light sheet would increase raw image 

quality. Likewise, a decrease in the salinity of the brine would reduce laser light at-

tenuation through the fluid. This would provide increased fluorescence intensity, 

and therefore density, resolution. The relationship between dye concentration 

and fluorescence intensity in saline solutions also needs further investigation. 

5.3 A PLIF Study of the Interaction between 

a Small Amplitude Surface Wave Train and 

an Internal Solitary Wave 

In section 4.5, an investigation of the interaction of an internal solitary wave of 

depression and a train of small amplitude surface waves was presented. Here, a 

study of the same interaction process is made using PLIF. As in the case of the 

PLIF work on single solitary wave flow in section 5.2, it seems that, to date, no 

work has been done in this field. 
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5.3.1 The PLIF experimental set-up and method for the 

interaction investigation 

In this section, the experimental method for the PLIF study of the interaction 

between an internal solitary wave of depression and a train of small amplitude 

surface waves is presented. As in the previous investigations (chapter 4 and sec-

tion 5.2), the same experimental facilities and apparatus are used. Consequently, 

the method brings together elements of both the previous work on the same in-

teraction process using DPIV (section 4.5) and the work performed using PLIF 

on single solitary waves (section 5.2). 

As before, the waves approach each other from opposite ends of the wave flume 

and thus the angle between the directions of wave propagation 0 = ir. The 

solitary waves were generated using the same sliding gate mechanism (section 

3.2.6). The surface wave trains were generated using the built-in surface wave 

paddle (section 3.2.2). Image acquisition was initiated in the same way as in the 

previous interaction experiments (section 4.5). 

Rhodamine dye was introduced into the saline fluid layer in the same manner 

as before, such that the initial concentration was around 0.01% of the stock 

solution. The intensity fluorescence was again calibrated using a series of known 

dye concentrations for each experimental run. The density difference across the 

interface was similar to that used previously. 
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The interaction was investigated in two experiments, using a large and a small 

amplitude solitary wave respectively. The DPIV study (section 4.5) used a single 

surface wave angular frequency, wS = 9.04rad.s 1  and two values of surface wave 

steepness, 2a5/As. The greatest surface wave shape distortion from a sinusoidal 

profile was seen when the surface wave steepness was largest, that is 2as/As 

0.059. It was therefore this particular set of surface wave characteristics (ws = 

9.04rad.s', 2as/)s = 0.059) that were used here. The experimental parameters 

are detailed in table 5.5. 

surface wave parameters 	 solitary wave parameters 

as 	 ws 	 2a5/As 	h1 /h2 	iXp/p2 	V 	D 

(cm) 	(rad.s') 	 (%) 	(1) 	(m) 

	

2.23±0.023 	9.04±0.019 	0.059±0.0012 	6.4 	3.95 	20 	0.4 

	

2.23±0.031 	9.04±0.014 	0.059±0.0012 	5.83 	3.87 	80 	0.4 

Table 5.5: Table summarising the parameters used in each of the PLIF internal 
solitary wave - surface wave train interaction experiments. 

Digital processing of the raw PLIF images followed the procedure outlined in sec-

tion 5.2.1. The artificial brightness in the vicinity of the (quiescent) free surface 

in the background intensity reference image was removed by extrapolation (figure 

5.1), before normalising the intensity distributions in the raw images. This en-

sured that the areas in the raw images above and below the SWL were normalised 

in the same regime (the position of the free surface in the raw images changed 

with the passage of the surface wave). Lastly, both experiment image sequences 

were greylevel-banded following a similar scheme to that described for the single 
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large amplitude solitary wave experiment (table 5.3). 

5.3.2 Results of the PLIF interaction investigation 

In this section, the results of the PLIF investigation into the interaction between 

an internal solitary wave and a small amplitude surface wave train are presented 

and discussed. The analysis of the results centres on the assessment of how the 

interaction process affects both the structure of the density interface within the 

solitary waveform and its shape. 

In the same vein as figures 4.24, 4.25, 4.26 and 4.27 for the DPIV investigations of 

solitary wave - surface wave interactions, figures 5.14 and 5.15 show the sequence 

of surface wave profiles (upper graphs) and solitary wave profiles (lower graphs) 

for each of the two PLIF interaction experiments. In both cases, the initial surface 

wave characteristics were the same. The times correspond to the time from wave 

paddle initiation. The vertical axis is again plotted in terms of z, the distance in 

cm from the MWL, directed positively upwards. The horizontal axis is plotted in 

terms of x, the distance in cm across the measurement volume. It must again be 

noted that the scale of the z axis changes between the upper and lower graphs. 

Surface wave linear theory has been fitted to the surface wave profiles (blue line). 

Unlike in the DPIV experiments, the free surface was not always well illuminated 

as the upper fluid layer was dark. Hence, in some cases, the profiles are rather 

noisy. 
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The solitary wave profiles shown in (solid) black are obtained directly from the 

banded PLIF images. The profiles correspond to the position of the mid-density 

contour, (p(i, j) - p2)//.p = 1/2. As the smaller amplitude solitary wave passes 

under the surface wave train (figure 5.14), both the surface and solitary wave 

shapes are altered. This is in contrast to the observations made in the (large 

amplitude solitary wave) DPIV interaction investigation, where no alteration to 

the solitary wave profile was measured. The interface can be seen to move with 

the free surface, being pulled up at a wave crest and pushed down at a trough. 

Although previous work [33, 321 has investigated small amplitude solitary wave 

- surface wave interactions, this phenomenon has not been remarked before. A 

possible reason for this is that the layer depth ratios used previously were smaller, 

such that the top fluid layer was deeper. The pycnocline was thus further away 

from the free surface. In addition, the ratio of the solitary wave to surface wave 

length scales used previously was larger than in the current work. 

It is possible, however, to correct for the distortion to the position of the density 

interface due to the presence of the surface waves. In deep water, an assumption 

which is valid in these experiments (table 4.6), the radius of the fluid particle 

orbits, a, decay exponentially with depth following [85] 

as  = as 
	 (5.3) 

For an initial surface wave profile of as cos(ksx - wst), an amount as cos(ksx - 
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Figure 5.14: Graphs of surface wave 2as/As = 0.059, Wg = 9.04rad.s' profile 

(upper) and small amplitude internal solitary wave profile (lower) for a stratifi-

cation where h 1 /h2 = 6.4 and L1p/p2 = 3.95%. First order linear theory (upper 

graph, black line) is fitted to the surface wave profiles. The solitary wave profiles 
have been corrected for the presence of the surface waves following equation (5.3) 
(lower graph, red line). The measured profiles are also shown for the interaction 
(lower graph, solid black line) arid the equivalent non-interacting solitary wave 

(lower graph, black dot-dashed line). 

w st) is subtracted from the measured interface profiles to allow for the surface 

wave motion at the interface. These corrected solitary wave interfacial profiles 

are also shown on the lower set of graphs (red line). 

For the initial surface wave characteristics used in these experiments, the fluid 
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particle orbits have decayed to around 1/4 of their original value at the interfa-

cial position of the small amplitude solitary wave. For comparison, the running 

average profile of the solitary wave, generated in the absence of surface waves and 

previously discussed in section 5.2.2, is plotted on the lower graphs in figure 5.14 

(black dot-dashed line). It can be seen that, once the motion of the fluid at the 

interface due to the surface waves is taken into account, the undisturbed solitary 

wave shape is retrieved, such that the movement of the interface (noticeable on 

the solid black line plots) is due only to the surface wave propagation. Discrep-

ancies between the corrected interfacial profile and that of the non-interacting 

solitary wave can be accounted for by the slight differences in the stratification 

initial conditions and the non-linearitieS apparent in figure 5.12. 

In contrast, for the large amplitude wave, at the interfacial depths seen in figure 

5.15, the particle orbits have decayed to around 1/10 of their free surface value. 

Consequently, little change is seen between the corrected and measured profiles. 

In section 4.5.2, the solitary wave profiles found from locating the point of zero 

horizontal velocity had not been corrected for the fluid motion due to the surface 

wave train only. In fact, the change in position of the interface due to the surface 

waves is smaller than the resolution of this method. 

In both solitary wave cases, the surface wave linear fits show that the surface wave 

amplitude increases; a result which concurs both with previous work [33, 321 and 

with the findings of the DPIV investigation (section 4.5). They also indicate that 
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Figure 5.15: Graphs of surface wave 2as/.As = 0.059, wS = 9.04rad.s' profile 

(upper) and large amplitude internal solitary wave profile (lower) for a stratifi-

cation where h 1 1h2 = 5.83 and Lp/p2 = 3.87%. Note the change in vertical axis 
scale between upper and lower graphs. First order linear theory (upper graph, 
black line) is fitted to the surface wave profiles. The solitary wave profiles have 
been corrected for the presence of the surface waves following equation (5.3) (lower 
graph, red line). The measured profiles are also shown (lower graph, black line). 

the wavelength is also modulated. It appears that even for the small amplitude 

solitary wave, some skewing of the surface wave profile occurs. Skewing was 

also seen for the large amplitude solitary wave interactions with the same initial 

surface wave characteristics in the DPIV investigation (figures 4.26 and 4.27). 

Again, the phenomenon appears to be most pronounced as the solitary wave 
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trough moves through the measurement area and in particular under the leading 

edge of the internal wave. 

As the amplitude of this solitary wave is large, the solitary wave profile initially 

remains undisturbed and the trough is more easily discernible than in the smaller 

amplitude solitary wave interface measurements (figure 5.14, solid black line). As 

the wave moves through the volume, however, a disturbance develops towards 

the tail end of the wave (figure 5.15 (d)). This continues to develop as the wave 

moves through the measurement volume (figure 5.15 (d) to (j)) but remains fairly 

localised, moving with the wave. 

The interfacial disturbance is best seen in the time series of concentration maps 

in figure 5.16. These maps are the result of false-colouring the processed and 

greylevel-banded PLIF images from the experiment. The density levels are colour-

coded such that purple represents areas where the fluid is most dense, that is 

where (p(i,j) - p) /p = 1, and red represents fresh water, such that (p(i,j) - 

p2 )/Lip = 0. The same colour coding was used in figure 5.13. The light reflected at 

the free surface appears as a thin, mostly blue, "curvy" strip at the top of the map. 

The interface is characterised by another thin strip of blue, followed by green and 

yellow, between the saline (purple) layer and the fresh water (red/yellow) layer 

above. Variations in the laser light sheet intensity are apparent, particularly in 

the left of the images. These appear as yellow patches within the predominantly 

red background in the fresh water region. 
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(a) t = 9.51s 
	

(b) t = 10.06s 

(c) t = 10.61s 
	

(d) t = 11.16s 

(See caption next page) 
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(e) t = 11.71s 	 (f) t = 12.26s 

Figure 5.16: Times series of concentration maps for the large amplitude solitary 
wave (h 1 1h2  = 5.83, Lp/p2 = 3.95%) - surface wave (2a s /As  = 0.059, W = 
9 .O4rad .s') interaction experiment. 

Although the resolution of the map is limited, it can be seen that as the wave 

moves through the measurement area, a disturbance develops at the interface 

in the left-most area of the maps. The disturbance slowly grows into a series 

of rolls but remains localised about the tail end of the solitary wave. Table 4.5 

summarised the buoyancy frequencies and gradient Richardson numbers calcu-

lated using velocity gradients approximated from the DPIV single solitary wave 

measurements. In each case, the gradient Richardson number was found to be 

greater than 0.25 and, in accordance with the theoretical predictions [40], the 

interface remained stable within the entire waveform; Kelvin-Helmholtz instabil-

ities were not observed along the interface, behind the maximum depression of 

the solitary wave. Likewise, in the case of the PLIF study, there was no evidence 

of such instability formation. This was corroborated by the smooth appearance 

233 



Chapter 5 - Interaction Processes: A PLIF Investigation 

of the large amplitude solitary wave shape (figure 5.11). As this particular soli-

tary wave was generated in very similar conditions to the large amplitude solitary 

wave studied here, it would be expected that similar features should be seen in 

each. The observed disturbances must therefore be a result of the presence of the 

surface wave train. 

In the analysis of the DPIV interaction experiments, the horizontal velocities in 

the upper fluid layer were seen to increase as a consequence of the combined flow 

fields associated with the solitary and surface waves (figure 4.32). The distur-

bances observed at the interface are probably a consequence of this increase. The 

velocity profile behind the solitary wave trough becomes unstable as a result of 

the interaction. Thus, the stabilising effect of the density profile is no longer suf-

ficient to maintain the well-defined step-like interfacial structure observed within 

the solitary waveform in the non-interacting case (figure 5.9) and mixing occurs. 

Reference to figure 5.17 (a), showing graph 4.27 (h), reveals that the tail end 

of the solitary wave shape exhibits increased scatter in the data points close to 

x = 0cm. This DPIV experiment was performed in a stratification configuration 

with a sharper interface and slightly larger density difference (h1 /h2  = 6.39, Lp = 

4.38%) than that in the PLIF experiment discussed here (table 5.5). Nevertheless, 

in both experiments, the same initial surface wave parameters were employed. As 

the profiles in the DPIV measurements were obtained by locating the point of zero 

horizontal velocity within the interfacial layer, the scatter could be an indication 
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Figure 5.17: Surface wave and solitary wave profiles (as seen in figure 4.27 (h)) 
with similar initial characteristics to those in the equivalent PLIF experiment. 
The vector map from which the solitary wave profile was obtained is also shown 
(b). 

that instability rolls also developed during this interaction. This observation is 

corroborated by the rise in the horizontal velocity contours, plotted at intervals 

of 3cm.s', at the left hand edge of the vector map shown in figure 5.17 (b). 

This is the map from which the solitary wave shape shown in figure 5.17 (a) was 

obtained. The horizontal velocity contours highlight the position of the interface. 

The rise in the contours from their undisturbed position is of the order of 2cm. 

This is comparable with the radius of the area of mixing seen at the left of figure 

5.16 (e) and (f), or equivalently figure 5.15 (i) and (j) where the scale of the 

disturbance can be measured on the z axis. The area of small velocity vectors in 

the region —15 < y < —10cm also suggests that the disturbance extends into the 

saline fluid, as indicated in the PLIF data. Further work is required to measure 
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Figure 5.18: Non-dimensional density plots with depth, y/h 2 , obtained from 
calibrating the intensity profiles from the conductivity probe measurements for 
the small amplitude solitary wave - surface wave interaction. The profiles are 
taken at the surface wave crest and trough shown in figure 5.14 (a). 
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Figure 5.19: Calibrated intensity plots with non-dimensional depth, y/h 2 , taken 
at the surface wave crest and trough shown in figure 5.14 (b). 

and investigate the velocity fields in this region of the solitary wave waveform. 

It would be useful to ensure that equivalent stratification parameters are used in 

both sets of measurements. 
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Figures 5.18 and 5.19 show plots of non-dimensional density versus non-

dimensional depth at the surface wave crests (a) and troughs (b) shown in figure 

5.15 (a) and (b), respectively. The density plots were obtained in the same way as 

before (section 5.2.2), by calibrating intensity profiles from the processed PLIF 

images with the calibrated output from the micro-conductivity probe. Hyper-

bolic tangent fits, satisfying equation (5.2), are also plotted (red line). The pro-

files have been selected to be as close to the maximum depression of the solitary 

wave as possible. The same features, identified in similar plots obtained for the 

non-interacting solitary waves, (e.g. figures 5.7 and 5.8) can be seen here. The 

increase in rhodamine dye intensity with depth through the fluid in the bottom 

layer, caused by non-uniform mixing of the dye with the brine before adding the 

top fresh water layer, is indicated on the graph as an increase in fluid density. 

This is also true in the top layer, where dye has been drawn up through the 

top fresh water layer during the filling process. The laser light reflections at the 

fluid free surface are also shown as a pronounced density increase in this region. 

Similar plots of calibrated intensity profile with depth at a surface wave crest and 

trough, for the large amplitude solitary wave case, are shown in figures 5.20 and 

5.21. The plots are obtained from the crests and troughs in figures 5.15 (b) and 

(c). 

As in the case of the single solitary wave study (figures 5.9 and 5.10), the "tanh" 

fits show good agreement with the calibrated intensity profiles across the inter- 

facial region for both the large and small amplitude solitary wave experiments. 
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In addition, the micro-conductivity probe outputs, obtained by sampling each 

quiescent stratification configuration prior to the internal wave generation, were 

also found to be well-described by a "tanh" curve. This demonstrates that, de-

spite the presence of the surface wave train, the shape of the stratification is not 

disturbed. Although the graphs shown here (figures 5.18, 5.19, 5.20 and 5.21) 

are taken from positions within the solitary waveform close to its maximum de-

pression, intensity profiles at surface wave crests and troughs above the leading 

and tailing sections of the internal wave are were also found to be adequately 

described by the "tanh" fits. 

A comparison of the interfacial widths below both a surface wave crest and trough 

was made to assess the maximum compression or expansion of the interface. The 

minimum change in interfacial width that could be determined from the intensity 

profiles was around 10% (table 5.2). This limited accuracy was, in part, caused by 

the restricted resolution of the PLIF raw images and accounted for the horizontal 

variations in laser light sheet intensity. It was found that, where no interfacial 

mixing was observed, the interfacial width under a wave crest or trough changed 

by less than around 5% over each waveform. Consequently, if any compression or 

expansion did occur, the present PLIF set-up was not capable of measuring it. 

For the large amplitude solitary wave interaction, where rolls developed along the 

interface, behind the maximum depression of the internal wave (figure 5.16), an 

intensity profile taken at the wave trough shown in the upper plot of figure 5.15 
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Figure 5.20: Non-dimensional density plots with depth, y/h 2 , obtained from 
calibrating the intensity profiles from the conductivity probe measurements for 
the large amplitude solitary wave - surface wave interaction. The profiles are 
taken at the surface wave crest and trough shown in figure 5.15 (b). 
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Figure 5.21: Calibrated intensity plots with non-dimensional depth, y/h z , taken 
at the surface wave crest and trough shown in figure 5.15 (c). 

(i) (corresponding density map: figure 5.16 (e)), indicated that the interface had 

been thickened by the observed mixing processes. Nevertheless, the profile still 

followed the shape of a hyperbolic tangent curve across the interfacial region. In 
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contrast, at the wave crest, in the same figure, the profile was of a similar width 

to that at other locations within the waveform. This suggests that the observed 

mixing remains very localised within the tailing edge of the solitary wave shape. 

In these experiments, the interfacial width was of the order of 1cm, that is around 

one tenth of the top fluid layer depth. In addition, the density difference between 

the two fluid layers was large. Overall, this, as demonstrated by the values 

of gradient Richardson number calculated in the previous chapter (table 4.5), 

yielded a highly stable stratification. Performing a similar PLIF investigation 

using stratifications characterised by a smaller buoyancy frequency (and therefore 

a reduced gradient Richardson number) may give rise to other mixing processes 

and changes to the density structure of the stratification, which could not be 

observed here. 

5.3.3 Conclusions of the PLIF interaction investigation 

In this section, the interaction between an internal solitary wave and a train 

of small amplitude surface waves was investigated using PLIF. The experimental 

set-up and data acquisition method closely followed that described in the previous 

chapter for the investigation of the same interaction processes using DPIV (section 

4.5). The solitary and surface waves approached each other from opposite ends 

of the wave flume, such that the angle between their directions of propagation 

was 0 = ir. In contrast to the DPIV experiments however, both a large (a/h 2  < 
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—1) and a small (a/h2 	0.5) amplitude solitary waves were generated in two 

separate surface wave interaction experiments. To the author's knowledge, such 

an investigation had not been performed before. 

Simultaneous surface wave shape and solitary wave shape profiles with distance 

across the measurement area were obtained from the processed PLIF image se-

quences. The profiles indicated that both the surface wave and solitary wave 

shapes underwent distortion throughout the interaction. Solitary wave deforma-

tion had not been detected either in the previous DPIV experiments (section 4.5) 

or in previous work [33, 32]. In the small amplitude solitary wave - surface wave 

interaction, the interface moved with the free surface as the surface wave passed. 

In the case of the large amplitude solitary wave interaction, some distortion of 

the wave shape took place and Kelvin-Helmholtz type rolls were seen to develop 

behind the maximum depression of the wave. These were not observed in the 

previous non-interacting solitary wave experiments (section 4.3 and 5.2). It was 

suggested that the velocity gradient across the interface became unstable in this 

region of the waveform due to the interaction and thus lead to interfacial mixing. 

Surface wave amplitude and wavelength modulation was observed, as in the DPIV 

investigation. In addition, surface wave skewing was identified in both cases. 

Calibrated intensity profiles, taken at surface wave crests and troughs as the soli- 

tary wave progressed through the measurement area, were seen to be described 

well by a hyperbolic tangent fit across the interfacial region. Within the accu- 
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racy of the interfacial width measure, neither compression nor expansion of the 

interface with surface wave phase was observed. This could be due to the highly 

stable density stratifications employed in this study. Further work in this field 

needs to be performed to assess whether changing the stratification parameters 

would affect the structure of the interface in wave interactions of this type. 

5.4 Summary of Chapter 5 

An investigation of internal solitary wave flow was made using Planar Laser In-

duced Fluorescence (PLIF), a non-intrusive full-field laser measuring technique. 

This flow visualisation technique relies on digitally recording the flow and sub-

sequently post processing the resulting images. It appears, from a review of the 

literature, that no work with this particular investigative method has yet been 

done in this field. 

Single internal solitary waves were generated in a brine - fresh water stratification 

by means of a sliding gate system (section 3.2.6). The first goal of the work was to 

assess the ability of PLIF to be employed as a quantitative investigative tool in in-

ternal solitary wave flow. Secondly, as in the case of the DPIV investigations, the 

aim was to obtain reference data sets for the equivalent experiments performed 

for the interaction investigations (section 5.3). The work was then extended to 

investigate the interaction between a small amplitude surface wave train and an 
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internal solitary wave (section 5.3). As in the DPIV investigation of the inter-

action (section 4.5), the two wave types had opposite directions of propagation, 

being generated at opposite ends of the laboratory wave flume. Previous investi-

gations of internal solitary wave flow have focused mainly on obtaining velocity 

and wave shape information [92, 51, 44, 29] and consequently, the exact structure 

of the interface within the waveform remained unknown. These considerations 

provided the main motivation for this study. 

Further to the DPIV investigation (chapter 4), this PLIF study has revealed 

additional interesting processes that occur during the solitary wave - surface 

wave interaction process. In particular, in addition to surface wave modulation, 

distortion of the solitary wave shape was observed. It was also found that for 

the parameters employed in the study, there was no change in interfacial density 

structure with surface wave phase, except where interfacial mixing was observed. 

These phenomena would merit further attention in any subsequent investigation. 

The aims of this chapter (section 5.1) have been met overall. The present study 

was inhibited by the low intensity resolution of the raw PLIF images. Neverthe-

less, even given the difficulties, which were identified throughout the course of the 

analysis (section 5.2.2), this PLIF investigation has shown that the technique can 

provide quantitative concentration, and therefore density, information about two-

layer solitary wave flows. Any subsequent study would yield more far-reaching 

conclusions about the processes that occur in a solitary wave - surface wave train 
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interaction if a wider parameter space was utilised and if the disadvantages of the 

present set-up were reduced, if not removed. 
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Chapter 6 

Conclusions and Further Work 

6.1 Review of the subject 

Internal solitary waves are a common and important oceanic phenomenon. They 

have been measured to have large amplitudes, in some cases in excess of lOOm, 

and also to have large associated currents. Both in situ observations and, more 

recently, satellite imaging have shown that the passage of an internal wave modu-

lates the sea surface roughness. Little laboratory work, however, appears to have 

been done on the subject. This provided the main motivation for the present 

work. The interaction between an internal solitary wave of depression and a 

progressive, small amplitude surface wave train was investigated. In previous 

studies, measurements were performed using capacitative and resistive probes at 

single points in the flow. In contrast, here, non-intrusive quantitative flow visual- 
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isation techniques were employed, yielding two dimensional velocity and density 

information within a plane of the fluid. 

This chapter is intended as a summary of the investigation. A brief overview of 

the experimental measuring techniques and the experimental set-up is given. The 

main conclusions of the study are presented and suggestions for further work are 

outlined. 

6.2 Summary of the Experimental Set-Up, 

Measuring Techniques and Methods 

This laboratory investigation considered the interaction between small amplitude 

surface waves and a single internal solitary wave of depression. Two non-intrusive 

planar measurement techniques were applied to the study, namely Digital Particle 

Image Velocimetry (DPIV) and Planar Laser Induced Fluorescence (PLIF). These 

are both optical measurement techniques and rely on imaging a plane of the flow, 

illuminated by a laser light sheet. This yielded velocity and concentration (or 

density) maps of the flow respectively. 

Overall, two main groups of experiments were performed. DPIV and PLIF exper- 

iments were first carried out on large and small amplitude single non-interacting 

internal solitary waves. In this work, a large amplitude solitary wave was defined 
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as a wave with an amplitude greater than the depth of the top fluid layer. In 

addition, DPIV experiments were performed on a set of small amplitude sur-

face waves in a homogeneous (fresh water) fluid and two stratified fluid regimes. 

DPIV and PLIF experiments were then performed on the interaction case, where 

a single internal solitary wave passed under a small amplitude progressive surface 

wave train. 

All experiments were carried out in the same laboratory wave flume. The solitary 

waves were generated at a brine - fresh water interface over which the density 

varied continuously. The two fluid layers were separated by a thin density in-

terface, approximately one tenth of the upper fluid layer. The corresponding 

density profile was found to be step-like in structure and represented well by a 

hyperbolic tangent fit. The total density change across the interface was around 

5%. The top layer was filled by slowly feeding fresh (tap) water through floating 

sponges onto the saline fluid surface. A built-in hinged paddle at one end of the 

glass-walled tank generated the surface waves. This provided a limited range of 

both surface wave amplitudes and frequencies. The solitary waves were generated 

from the opposite end of the tank using a sliding gate mechanism, such that, for 

the interaction experiments, the two wave types travelled towards each other. 

In the case of the DPIV experiments, the flow was seeded with conifer pollen. 

For the PLIF experiments, a low concentration of rhodamime dye was mixed into 

the saline layer of the fluid. A scanning beam set-up produced a "pseudo" laser 
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light sheet that was directed upwards through the glass base of the wave flume, 

thus illuminating a plane of the fluid. In all experiments, the flow was recorded 

using a digital camera system. 

The relatively short wave flume (7.5m) caused standing surface waves to be set 

up shortly after paddle initiation. In addition, the frequency of image capture 

was limited by the camera system. Within these constraints, the system was 

optimised to acquire a maximum amount of data. The camera field of view was 

also maximised so as to image as much of the solitary wave in one exposure as 

possible. A mechanical shutter, placed behind the camera lens, fixed the exposure 

length of the images. In the case of the DPIV experiments, the time between 

exposures of an image pair was defined by the scan rate of the laser beam. This 

resulted in a short time interval that optimised the system for the study of large 

amplitude solitary wave flows. The salinity of the lower fluid layer, chosen to 

optimise the solitary wave speed for the interaction experiments, caused strong 

attenuation of the laser light. This reduced the intensity resolution of the PLIF 

images. 

6.3 Summary of the Main Results 

The application of each measuring technique, DPIV and PLIF, and the corre- 

sponding data analyses were discussed separately (chapters 4 and 5 respectively). 
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First, results from the non-interacting solitary wave cases were presented. In 

addition, in the case of the DPIV investigation, experiments on small amplitude 

surface wave trains were performed. A discussion of the interaction experiments 

followed. This section brings together the main conclusions drawn from these. 

The present work has, in effect, presented a series of case studies of internal 

solitary wave - surface wave interactions. It has helped to establish the limits 

on the properties of both wave types for which such modifications can be both 

qualitatively and quantitatively observed. First and foremost, the study has 

shown that when a train of small amplitude surface waves rides over an internal 

solitary wave, not only does the internal solitary wave have a measurable effect 

on the surface wave flow and characteristics, but also that the converse is true; 

a progressive surface wave train also affects the internal solitary wave flow field. 

This latter observation, in particular, does not appear to have been mentioned in 

previous studies of solitary - surface wave interactions [33, 321. 

The flow visualisation techniques used in the present work have confirmed previ-

ous reports [33, 321 that the presence of a solitary wave modulates the amplitude 

of a surface wave. Furthermore, it has shown that the surface wavelength is also 

modulated, which in the previous studies [33, 32] had not been detected. The oh-

served modulation of these surface wave characteristics also concurs qualitatively 

with the theoretical predictions proposed by Longuet-Higgins and Stewart [61] 

(section 2.5.1). Significantly, the modified surface wave profiles, initially sinu- 
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soidal in shape, become skewed. This skewness appears to increase with surface 

wave steepness and solitary wave amplitude. 

The PLIF study has, in addition, revealed that the solitary wave shape also 

undergoes some distortion. This was seen to be irrespective of the internal wave 

amplitude for large enough surface wave steepness. The application of PLIF also 

allowed observation of interfacial mixing processes, which were seen to develop 

along the tailing edge of the large amplitude internal waveform. The instabilities 

remained localised, but caused interfacial thickening in this region. Elsewhere, 

the density structure of the interface remained undisturbed from its initial profile 

and no change in interfacial width was observed with surface wave phase. 

This preliminary application of both DPIV and PLIF to the investigation of 

internal wave - surface wave interactions has revealed a number of interesting 

phenomena. It has shown that both DPIV and PLIF can be applied to internal 

wave - surface wave problems. Velocity and concentration maps of the flow were 

obtained and interesting features in both fields were identified. In addition, the 

present study has indicated how the two measuring techniques can complement 

each other such that together, they can provide a good description of two-layer 

fluid flow properties. Further development of the methods would be needed to 

extend the study undertaken here. This would increase their range of applicability 

within the presently available parameter space and allow parameterisation of any 

future results. Possible improvements to the measuring techniques and extensions 
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to the present study are discussed in the following section (section 6.4). 

Moreover, the results presented here may be of importance to other fields of 

research, specifically, to future oceanographic studies. In particular, the observed 

surface wave shape skewing may have implications for the use of satellite imaging 

to detect and track internal solitary waves. 

Overall, therefore, the present work has shown that: 

. DPIV and PLIF can be successfully applied to internal wave - surface wave 

interaction studies. 

. the interaction causes not only distortions to the surface wave profile but 

also to the solitary wave shape. 

. surface wave modulation observations were in accordance with theoretical 

predictions 

. the modulated surface wave profile exhibits some skewness, from an initially 

sinusoidal profile, for increased surface wave steepness and solitary wave 

amplitude. 

. for an initially thin, stable density interface, the interfacial width within 

the solitary wave waveform does not vary with surface wave phase. 

. the initially stable solitary wave velocity field, behind the maximum de-

pression, becomes unstable along the interface, during the surface wave 
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interaction, for the large amplitude solitary wave case. 

. further developments to increase the range of applicability of the measuring 

techniques would enable parameterisation of future results. 

6.4 Suggestions for Further Work 

The case studies presented here have provided necessary and extensive ground-

work for future internal solitary wave - surface wave interaction investigations. 

The work has identified many aspects of the experimental set-up that could be 

refined. Many of these improvements could not have been known a priori. Were 

these issues to be addressed in future studies, the scope of the present work could 

be significantly extended. Some of these are now considered. 

From one experiment to another, the layer depth ratio and the density of the 

saline layer varied. It was found that, as long as the variations were kept to 

a minimum, the solitary wave generation system produced repeatable waves. In 

practice, this proved difficult, in part due to the scale of the experimental facilities. 

Nevertheless, eliminating, or at least reducing, these differences would enable 

clearer conclusions to be drawn when comparing, for example, non-interaction and 

interaction solitary wave cases, using either the same or different measurement 

techniques. 

It must be emphasised that the limited velocity resolution, and hence accuracy, 
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encountered during the DPIV experiments were a consequence of the exposure-

control system used, rather than of the DPIV technique and analysis method 

themselves. Were the same camera system to be used in further work, these 

difficulties could be overcome by using an alternative shuttering method, such 

as an opto-acoustic light modulator. This would significantly enhance the range 

of fluid velocities and hence solitary wave amplitudes that could be accurately 

determined. 

An alternative scanning beam method, which does not rely on a parabolic mirror 

[81] would reduce the horizontal variations in laser light sheet intensity observed 

in the current work and thus increase the accuracy of the technique. The reduced 

intensity resolution of the PLIF images was also inhibited by the (unintentional) 

presence of dye in the upper fluid layer. This could be resolved best by dyeing 

the upper, fresh water, layer rather than the lower saline one. In order to do this, 

the dyed fresh water must be stored. This option, although considered,' was not 

adopted because the rhodamine dye is toxic and leaves a stubborn residue. 

In the current study, the length scales of each wave type were of the same order. 

Evidently, this does not mimic even closely oceanic conditions, where the surface 

waves would be of considerably smaller wavelength than the characteristic length 

of any solitary wave. Although the experiments presented here showed some 

surface wave modulation, it would be interesting to extend the work to cover 

configurations in which the solitary wave to surface wave length scale ratio is 
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greater. 

Although not possible within the framework of the present experimental set-up, it 

would be interesting to investigate the case where the two wave types propagate 

in the same direction. The previous work in this field [33, 32] has already investi-

gated, within a limited parameter range, this situation. Differences between the 

case where the wave propagation directions were the same and opposite were ob-

served. Measuring velocity and density fields in this alternative flow configuration 

would complement the present study. 

This work, in particular, has revealed that, although there are significant advan-

tages to using non-intrusive measuring techniques because they do not disturb 

the fluid flow, they do bring with them certain drawbacks. The low frequency of 

image capture, as well as the relative extent of the camera field of view to the in-

ternal and surface wave length scales, constrained the scope of the data analysis. 

In contrast, both continuous surface wave train wavelength and amplitude mod-

ulations in addition to solitary wave modulations could have been quantitatively 

obtained with time, using probe measuring techniques. Although such techniques 

only provide information at a single point in the flow, they would allow not only 

quantitative comparisons with surface wave amplitude and wavelength modula-

tion predictions to be made but also any change in the solitary wave speed to 

be measured. Perhaps, therefore, future studies should consider the possibility of 

using both probe and non-intrusive techniques to investigate surface and internal 
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wave interaction phenomena. 

This initial work on solitary - surface wave interactions provides many opportu-

nities to develop the experimental set-up and procedures to yield more accurate 

and more quantitative results than those presented. In addition, there is plenty of 

scope to extend the parameter space of the investigation and further investigate 

the interesting phenomena observed here. 
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Notation 

Ah 	interfacial width 

AP 	density difference between fluid layers 1 and 2 

At 	time between images 

6t 	time between exposures of an image pair 

out-of-plane displacement 

angle between wave propagation directions 

77 	solitary wave elevation 

1s 	surface wave elevation 

solitary wave characteristic length scale 

As 	surface wave wavelength 

modulated surface wave wavelength 

A 	dynamic viscosity 
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kinematic viscosity 

P 	fluid density 

mean density 

PO 	reference density 

Pi 	density of the lower fluid layer 

P2 	density of the upper fluid layer 

WS 	surface wave angular frequency 

A 	fit coefficient for surface wave profiles 

a 	solitary wave amplitude 

as 	surface wave amplitude 

a'5 	modulated surface wave amplitude 

B 	fit coefficient for surface wave profiles 

c 	solitary wave speed from nonlinear theory 

Co 	solitary wave KdV linear long wave speed 

CKdV solitary wave KdV speed 

CL 	long wave speed 

CS 	short wave speed 

CS 	surface wave speed 

c95 	short wave group velocity 

c95 	surface wave group velocity 

Cshift 	approximation to the solitary wave speed from PLIF measurements 
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D 	distance to sliding gate 

dt 	particle image diameter 

dr 	dimension of pixel 

E 	rate of transfer of short wave energy 

E5 energy density of short waves 

fs surface wave frequency 

f3 spatial frequency 

F1  in-plane displacement 

F0  out-of-plane displacement 

GB background greylevel value 

GN normalised greylevel value 

Gr raw greylevel value 

G' linearly scaled greylevel 

g gravitational acceleration 

H total water depth 

hi 	lower layer depth 

upper fluid depth 

10 (Z) intensity distribution of the laser light sheet 

11 (X) intensity over the interrogation area centred at X 

k5 	surface wavenumber 

L 	length scale 

258 



Appendix A - Notation 

M 	magnification of the camera system 

N 	dimension of DPIV interrogation area 

N(y) buoyancy frequency as a function of vertical coordinate y 

N(z) buoyancy frequency as a function of vertical coordinate z 

jV 	overall seeding particle density 

S 	PLIF normalisation scaling factor 

s 	spatial frequency coordinate in the Fourier transform plane of the image 

T 	time scale 

t 	time 

U 	velocity scale 

UZ 	horizontal component of particle velocity of long waves 

US 	horizontal component of surface wave particle velocity 

US 	horizontal component of particle velocity of short waves 

horizontal component of solitary wave particle velocity in the lower fluid layer 

U2 	horizontal component of solitary wave particle velocity in the upper fluid layer 

V 	additional volume of fresh water for solitary wave generation 

vc 	vertical component of particle velocity of long waves 

VS 	vertical component of surface wave particle velocity 

W 	z-component of vorticity 

X 	= (X, Y) in image plane 

X 	horizontal coordinate in image plane 
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X 	horizontal coordinate 

Y 	vertical coordinate in image plane 

Y 	vertical coordinate from the centre of the density interface 

Z 	DPIV coordinate perpendicular to the plane of the light sheet 

Z 	vertical coordinate from the mean water level 

260 



Appendix B 

The Second Order KdV Equation 

Following [51], the second order KdV equation in section 2.3.3 is given in terms of 

the elevation ij(x, t) of a wave propagating in a two fluid system where the upper 

and lower layers have depths h2  and h1  and densities p2 and pi  respectively, such 

that 

71t + Co 77x  + Clflhlx  + C277xxx + c3715 + c4(lp7zx)z + c5(773 ) + c6 (77) = 0, (B.1) 

where the constants c0 , c1  and c2  are defined in equations (2.17), (2.18) and (2.19) 

such that c1  and c2 can be written as 

c i  = (co/h2)ë, 
	 (B.2) 
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and 

= (co  h)6. 	 (B.3) 

The constants c3 , C4, c5 and c6  are given by 

Pi/P2+ 1 
1 3 	

(hj/h2)3 + 
	

(B.4)

3622 
C3 = ( h) x 

Qj )  go( 
 i + hi/h2 

= (co  h, 

	

p11P21 

+?] 	 (B.5) 
c4=(coh2)x 

I6(1+\ 
L 	hl/h2) 

= (coh2), 

P1/P2 	721 + (1/) 

L 	 (B.6) h1/h2 

= (co/h)â5 , 

P1/P21 	17C, I C6 = (coIi 	I2)
' (i + 	+ 12 

	
(B.7) 

= (coh2 )66. 

The corresponding solitary wave solution to this equation is 

I 	3' 

71(x,  t) = -sech2[(x - ct)/)tJ {i + 	tanh2[(x - ct)/A ] } + o [(i) ] h2  

(B.8) 

where the constant C is given by 

C = 3/4 - 5C1/4Q - 3é/2 1  + C6/2j2 - 	 (B.9) 
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Surface Wave Fit Coefficients 

The coefficients a 5 , k 5 , A and B were found by fitting the curve 

z = as cos(ks(A + x))+ B 	 (C.1) 

to the surface wave profiles obtained from digital post-processing of the DPIV 

images. 

C.1 Figure 4.24 

Figure Interaction/No interaction a8 
[_

ks A B 

(a) Interaction 

No interaction 

0.887 

0.88034 

0.09148 

0.07297 

-25.996 

99.626 

-0.049 

0.0941 
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 Interaction -1.0167 0.1034 -39.446 -0.170 

No interaction 0.99332 0.06747 102.275 0.1628 

 Interaction -1.1151 0.09885 -53.831 0.0737 

No interaction 0.8977 0.08157 59.044 0.0398 

 Interaction -1.093 0.08876 -71.291 -0.0283 

No interaction 0.85473 0.07624 122.014 0.0329 

 Interaction -1.0674 0.08496 90.732 -0.0552 

No interaction 0.79964 0.08096 95.844 -0.0678 

 Interaction -0.9592 0.0936 -1.9711 0.0255 

No interaction -0.9261 0.09046 92.934 -0.097 

 Interaction -1.057 0.09479 -117.411 0.004 

No interaction 0.899897 0.0804 130.693 0.0124 

 Interaction 0.995 0.09283 -134.68 0.0652 

No interaction 0.79509 0.0864 112.042 0.1423 

C.2 Figure 4.25 

Figure Interaction/No interaction a3 [_ks A B 

 Interaction 

No interaction 

0.893 

0.78909 

0.09452 

0.07178 

-18.042 

115.616 

0.1323 

0.098 

 Interaction -1.1321 0.1078 -14.431 0.0107 
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No interaction 0.84146 0.07258 124.44 0.0469 

 Interaction -1.1433 0.10274 -8.4465 0.2091 

No interaction 0.83802 0.07717 123.597 0.0003 

 Interaction -1.1495 0.08783 -0.11809 0.0536 

No interaction 0.97249 0.07208 144.274 -0.0171 

 Interaction -1.0034 0.10241 -2.61581 0.09715 

No interaction 0.89254 0.07778 140.458 0.04589 

 Interaction -1.0674 0.09562 -28.941 0.14387 

No interaction 0.852694 0.08077 142.045 0.01364 

 Interaction 1.0622 0.08778 -24.511 0.066 

No interaction 0.89254 0.07778 140.458 0.04589 

 Interaction -0.9719 0.09475 12.1236 0.065 

No interaction 0.89254 0.07778 140.458 0.04589 

C.3 Figure 4.26 

Figure Interaction/No interaction a3  k5 A B 

 Interaction 3.11627 0.07049 105.279 0.5184 

No interaction 2.52619 0.06247 124.752 0.5439 

 Interaction 2.86862 0.07426 81.4615 0.3561 

No interaction 2.07274 0.08022 59.0795 0.0111 
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 Interaction 2.61874 0.09414 42.1448 0.3275 

No interaction 2.14227 0.07911 68.4427 -0.014 

 Interaction 2.58173 0.09255 26.74 0.1946 

No interaction -2.11355 0.08712 71.733 0.3149 

 Interaction 2.57392 0.07964 17.155 0.36255 

No interaction 2.52619 0.06247 124.752 0.5439 

 Interaction 2.60492 0.07924 0.13921 0.26757 

No interaction 2.46433 0.07047 90.6215 0.2524 

 Interaction 2.51235 0.09247 80.63 0.1958 

No interaction 2.07274 0.08022 59.0795 0.0111 

 Interaction -2.39161 0.09481 61.2621 0.224 

No interaction -2.32258 0.05411 110.134 0.113 

C.4 Figure 4.27 

Figure Interaction/No interaction a3  (cm) k5 A B 

 Interaction 

No interaction 

-1.99883 

2.1833 

0.1093 

0.07367 

-3.676 

81.8324 

-0.242 

0.1082 

 Interaction 

No interaction 

-2.43593 

2.24808 

0.1058 

0.08117 

-14.255 

62.8634 

0.0337 

0.0687 

 Interaction -2.2937 0.1119 -26.1966 0.6123 
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No interaction 2.21988 0.08395 51.9097 0.2248 

 Interaction -2.375 0.08619 -42.748 -0.069 

No interaction 2.19681 0.08356 34.667 0.3494 

 Interaction -2.6831 0.07279 -69.092 0.829 

No interaction 2.0914 0.06499 25.09 0.0567 

 Interaction -2.2917 0.09311 -76.619 0.207 

No interaction 2.21988 0.08395 51.9097 0.2248 

 Interaction 2.43511 0.09569 -89.798 0.338 

No interaction 2.24808 0.08117 62.8634 0.0687 

 Interaction -2.3399 0.09574 -105.78 0.372 

No interaction 2.23465 0.07452 33.0192 0.123 
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