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Abstract 

The practice of simulating real world systems on computers is widespread and forms 

an important aspect of many different disciplines. A simulation model provides a simplified 

view of a real world system facilitating interaction with key aspects of a system without the 

distraction of unnecessary detail. 

This thesis is concerned with the role of simulation in computer architecture design. It 

is recognised that the use of simulation in the design lifecycle is expensive and has tended to 

focus upon the register transfer (RT) level of design. The majority of design projects have no 

need for fully articulated models in the initial stages; the designer is more involved with 

fundamental decisions typically based upon choice of algorithm and high-level performance 

analysis. 

Following an overview of current simulation techniques and software, extensions to the 

HASE simulation environment are proposed that classify simulation components according 

to their communication interfaces. This facilitates the loose coupling of simulation entities 

and consequently promotes component reuse. In addition, the problem of allowing entities 

represented at different levels of architectural abstraction to communicate was examined and 

a technique developed to allow entities to negotiate a level of service. 

The MEDL and EDL languages were developed to enhance HASE's component library 

and project storage facilities; other software tools allowing the visualisation of a hierarchical 

model in terms of communication and abstraction were also developed. 

Various model libraries were developed to investigate the trade-offs between model 

accuracy, runtime and flexibility afforded by the new techniques. It was demonstrated that 

the developed techniques facilitate component reuse and offer potential runtime reduction. 
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Chapter 1 

Introduction 

The practice of simulating real world systems on computers is widespread and forms 

an important aspect of many different disciplines. For example, simulation is used by 

financial institutions to predict market fluctuations and by military organisations for the 

training of pilots (flight simulation). Factories frequently use simulation when calculating 

how best to deploy assembly line resources. 

All of these applications see the use of a simulation model to describe a complex, real-

world system. Normally, the simulation model will provide a simplified view of a real world 

system allowing interaction with key aspects (for a given task) of a system and without the 

distraction of unnecessary detail. 

Simulations are often used in situations when the building and/or use of the real 

physical system would be too expensive or too dangerous or would need to rely on new 

(unavailable/untested) technologies. Computer based simulation has been defined as: 

"The discipline of designing a model of an actual or theoretical 

physical system, executing the model on a digital computer, and 

analysing the execution output." Paul A. Fishwick, [Fishwick94]. 

This thesis is concerned with the use of simulation in computer architecture design. 

Simulation gives the computer architect an insight into the performance and behaviour of a 

system, before committing a design to silicon. By allowing the refinement of a design 
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through experimentation, designers can test and debug a new design without the expense of 

failed silicon implementations (i.e. simulation facilitates rapid prototyping). 

However, it is recognised that the use of simulation in the design lifecycle is expensive 

(due, in part, to low levels of design reuse [Fishwick96]) and has tended to focus upon the 

RT (register transfer) level of design [Ekas99]. 

1.1 Motivation 

The work presented in this thesis is concerned with the provision of a set of 

techniques/mechanisms that allow the modelling of systems at multiple levels of abstraction 

within a single model. In addition, we offer a model representation that facilitates model 

reuse. The thesis is not directly concerned with producing complex simulation models of 

new 'products'. 

In order to offer an insight into areas where this research may be applied, the following 

section contextualizes the provision of a simulation environment that offers better model 

abstraction and reuse facilities in terms of the commercial arena. 

1.1.1 Market Pressure 

As demands for processing power and product diversity have increased, the average 

shelf life of a typical microelectronics based product has fallen [Sheikh98] in both the 

industrial and domestic markets. A good illustration of this phenomenon is the home 

' entertainment market where the telephone, cable, consumer electronics and computer 

industries are all trying to exploit new niches at the expense of their competitors [Lee98]. 

Consequently, fast and accurate simulation throughout the design lifecycle of a product has 

become a major factor in satisfying 'time to market' requirements for technology 

manufacturers [Rowson97], [Martin97a], [Morris]. 
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The requirement to target niche IT markets often involves providing a range of very 

similar products in which different versions are targeted at specific groups of end users 

(sometimes termed the 'integrated platform' approach [Martin98]). For example, Intel's 

range of microprocessors is built around a common set of architectural features (i.e. each 

features some on-chip cache, instruction pipelining and one or more branch prediction 

mechanisms). However, Intel partitions its product into different classes of chip (currently 

Pentium, Pentium Pro, Celeron, Pentium II and Pentium III) according to specific 

implementations/deployment of these common features. Each class of Intel microprocessor is 

aimed at a specific market (i.e. home, business workstation and server) and each is itself 

available in a variety of guises. For example, the Celeron is available in 266 and 300 MHz 

clock versions with or without Intel's MMX instruction set extensions [Intel98]. 

As a response to 'time to market' demands, many microelectronics manufacturers and 

Electronic Design Automation (EDA) tool manufacturers have become involved in the 

emerging 'system on a chip' (SOC) design approach. Soc design combines many function 

specific sub-components (or "intellectual property (IP) blocks") onto a single chip. SOC 

requires the type of flexibility afforded by a rapid prototyping approach and a high level of 

reusability is essential. 

Recently Scottish Enterprise (in association with cadence Design Systems Inc.) 

formulated plans for a Virtual component Exchange (VCX) to be based in Livingston, 

Scotland. The aim of the virtual component exchange is to allow system developers and 

integrators to source, evaluate and contractually acquire IP blocks from third parties across 

the globe. 
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1.1.2 Design Exploration and Reuse 

In order to facilitate a design flow allowing for the rapid exploration of new 

architectural designs, (probably based around well-known architectural features or previous 

design work) simulation environments offering facilities for design reuse are desirable. 

Martin and Salefski state that "failure to hit market windows equals product death" 

[Martin97b] therefore the removal of 'wheel reinvention' from the design lifecycle has the 

potential to reduce time to market delay. 

It is also recognised that system designs that start at the RT level have hit a plateau in 

terms of reuse and productivity. Designs captured at the RTL-C' level are known to be 

difficult to reuse and at the RT level testing can only occur after a low level elaboration 

process  [Martin97a]. 

Another problem encountered at the RT level is the nature of inter-block 

communication. A designer wishing to change a design by substituting a functional block 

must go through a time consuming design modification cycle. Typically, the replacement of 

an existing functional block involves removing the old block, re-routing the communication 

mechanisms within the model to accommodate the new block and finally rewiring the new 

functional block to allow connection to the exiting communication structures. This cycle is 

very time consuming and is not conducive to effective exploration of the design space or 

component reuse. 

RTL-C is a widely used extension to the C programming language which allows C to represent 
concurrency as found in languages such as VHDL but run orders of magnitude faster. RTL-C is a 
commercial offering from CAE-Plus [Goering97]. 

2 I.e. full clocking, pin out and block signal definitions must be provided. 
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1.1.3 Model Abstraction and Reuse 

Significantly, it is worth noting at this point that in initial design work there is no real 

need for fully articulated models. Indeed, the designer is probably more involved with 

making fundamental design decisions based upon (say) choice of algorithm and high-level 

performance analysis. These types of activity do not require low level inter-entity 

communication or gate-level simulation. Moving initial simulation to an abstraction above 

that of the RI level potentially relieves the designer of the time consuming low-level design 

cycle. 

However, a move to represent systems in a more abstract form than that found at the 

RT level can be problematic in terms of reusability. Whilst considering the problems 

associated with publishing digital simulation objects via the internet, Fishwick points out that 

problems arise with component reuse (a major influence upon design lifecycle length 

reduction) when dealing with abstract simulation objects [Fishwick98]. 

Whilst the production of reusable simulation objects is not trivial, current moves 

toward a platform based approach to system design can only realistically be achieved if well 

defined reusable and multifaceted simulation object libraries exist. Lee and Messerschmitt 

note that: 

"Detractors will often argue that making components reusable 

compromises efficiency or performance. But failing to do so has much more 

dire consequences: It makes only trivial designs feasible ", [Lee98]. 

Further to the issue of reusability, the desire to move the design process away from 

circuit level detail towards a high level system's view of a model, naturally lends itself to the 

idea of a design hierarchy. It has been shown that the use of hierarchical modelling concepts 

can provide a useful way of managing model complexity [Luna93]. However, in 1993 
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Sargent noted that although one would "expect that hierarchical modelling would be a 

'standard' capability in simulation languages", in fact "none of the major discrete event 

simulation languages provided for hierarchical modelling" [Sargent93]. 

This thesis addresses the issues involved in providing a structured design environment 

capable of dealing with computer systems design at levels of architectural abstraction above 

the usual RT level. In addition, the environmental framework proposed is designed to allow 

the loose coupling of design components in order to facilitate high levels of design reuse. 

We are concerned that the designer be able (I) to describe systems models at multiple 

(high) levels of abstraction whilst (ii) retaining a high level of design reuse for future projects 

without incurring excessive expense in terms of time or ease of use. 

Although demonstrated within an existing architectural simulation environment 

(HASE) the solutions offered here should be applicable in the wider context of computer 

systems simulation. 

Having outlined the broad motivating factors underlying this work, the remainder of 

this chapter discusses the principles underlying various aspects of this thesis. 

1.2 Abstraction 

The ability of the human mind to conceptualise and filter the environment in which we 

live allows us to organise the masses of complex information we are constantly in contact 

with on a day to day basis. This organisational skill allows us to achieve goals by removing 

unnecessary detail from tasks. 
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Without the appropriate mental tools to aid us, even simple tasks would become very 

complex. Odell proposes that one of our most useful tools is the acquisition of concepts'. 

Concepts are the result of abstraction where: 

"Abstraction is the act or result of removing certain distinctions 

between objects so we can see commonalities" [Ode 1192]. 

To illustrate this, consider the contents of a traditional library. It is not useful to think 

in terms of each individual item in the library's collection in its own right (each item could 

be described by its title, author, number of pages and binding). Instead, we abstract the 

common attributes of each item and say a library is a holding place for large numbers of 

what we have conceptualised as a 'book'. Without this abstraction, we would only know that 

all the items in a library were different. The ability to abstract allows the management of real 

world complexity. 

Consider now the domain of computer systems simulation. We can see a similar 

situation to the real world problem described above. By applying the technique of abstraction 

to simulation model construction, we can move from viewing a system as millions of 

individual transistors to more useful discrete sections of functionality (e.g. memories, 

processors etc.). 

According to many philosophers and psychologists, an object without a concept cannot 

be perceived. Odell notes that in object oriented programming an object without a class 

cannot be created or manipulated. It is interesting to note that whilst an object without a 

concept cannot be perceived it is possible to have a concept without an object. Extending the 

software engineering analogy, this is equivalent to a class without any instantiated objects. 

The relationship between concepts and objects is illustrated in Figure 1 below. 

Psychologists may refer to a concept by the name schema. 
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is instantiated by 

Concept 
	

Object 

is classified as 

Figure 1 - The Relationship between Concepts and Objects. 

1.2.1 Generalisation 

We can further organise objects by deciding when one abstraction is more useful than 

another (for a given task). This process of distinguishing when one concept is more 

encompassing than another is sometimes referred to as generalisation. This provides another 

valuable technique with which to organise large sets of data. We can use different 

generalisations to create hierarchies of concepts. 

It is important to distinguish between abstraction and generalisation. In the former, we 

remove distinctions between objects, with the latter we remove types of distinctions between 

types of objects. 

1.3 Hierarchy 

The Concise Oxford English dictionary describes a hierarchical system as "A system in 

which grades of status or authority are ranked one above the other" [0xf93]. 

Given the above definitions of hierarchy and the previous discussion regarding 

generalisation (section 1.2.1) we can see that a conceptual hierarchy can be formed by 

ranking concepts according to their generality. This notion of hierarchy lends itself to the 

familiar idea of an 'up' and 'down' relation being present between adjacent layers of the 

hierarchical structure. A plethora of other terms used to describe these same two relations 
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can be found in the literature, the most common being 'parent' and 'child' (Figure 2 depicts 

these terms for a three-layer hierarch Y4). 

level a 

level b 

level c 

Figure 2 - Parent/Child Relationships in Hierarchy 

1.3.1 Hierarchical Classification 

When considering the relationship between adjacent layers of a hierarchy we find that 

various different hierarchical relationships can exist. One of the most useful broad 

categorisations is put forward by Luna [Luna93]. Under Luna's taxonomy, there are four 

types of hierarchical relationship. 

" Note 'parent' relationships are shown with dotted line and 'child' relationships with solid 
lines. 
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1.3.2 Representation Relation 

In this relation, the higher level is a representation of its lower level 5  and contains no 

unique features itself. Consider a 'hi-fl' system. The high level 'hi-fl' object represents an 

audio system's various components (i.e. amplifier, tape deck, compact disc player etc.). 

There is no single, real world entity called a 'hi-fl'. 

1.3.3 Composition Relation 

In this relation, each component in the hierarchy has its own behaviour. In addition, 

higher level components may call upon lower level components to perform tasks for them. 

This situation is illustrated in Figure 3 where we see how the behaviour of the component 

labelled B includes references to the behaviour of its lower level components E and F. In 

turn, F relies upon functionality held in its lower level components G and H. 

This hierarchical relation is similar to that found in Object Oriented programming 

languages such as Smalltalk or Java. In these languages, a class of objects is often composed 

of other class instances 6  that act as part of an overall behaviour. In Program I below, we see 

how component B could be represented by a Java class structure (we assume classes E and F 

to be previously defined). 

We do not talk about higher levels rather level because the relation we are talking about 
applies to adjacent levels. Of course, these relations may be applied numerous times within a 
hierarchical structure. 

6  This is not the same as the notion of a sub-class in which classes are derived from a base class 
(see section 1.3.5 for more detail about derived sub classes). 
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behaviour A 

I CALL I  CALL I  CALL 

B 

behaviour B 
	

behaviour. C 
	

behaviour. D 

behaviour. E 
	 r behaviour F 

L _ CALL CALL 

- behaviour cJ 	1pbehaviour H 	-' 

Figure 3 - Composition Relation. 

public class B 
II Declare class data mermbers 
private E myS = new E; 
private F myF = new F; 
private mt mylocalVar; 

II Constructor 
public datalnt(String nameln, String descriptionln){ 

this .mylocalVar=1404 69; 

public getE() 
meE. do Something ; 

public getF() 
meF.doSomething; 

Program I - Java Fragment showing Composition relation 
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1.3.4 Substitution 

The substitution relation can be broken down into two subclasses of relation. The first 

of these is 'abstraction by reduction'. This can be considered as a shift between formalisms. 

Zeigler [Zeigler84] refers to this relation as abstraction and concretization. In Figure 4 we 

see how a system can be considered at the lower level as a set of connected finite state 

machines or at the higher level at a simple directed graph. 

MW 	 MW 	
1-0 
	 Abstraction 

,F  FSM L_• [ SM ) 
	 I 	I  

H- -- 	Concretization 

FS 	. b FSM 

Figure 4 - Substitution Relation. 

The other subclass of substitution relation is termed morphic reduction. In this relation, 

a simplification of a 'larger' system takes place resulting in a 'smaller' system. Unlike the 

composition relation, the higher level component's functionality replaces lower level 

functionality. Luna constrains this relation by saying that the system specification is the same 

at the higher and lower levels (opposed to the abstraction by reduction where a change of 

formalism occurs). The higher level is simpler but homomorphic with the lower level. 

Morphic reduction is illustrated in Figure 5 where we see single higher level components 

replacing multiple lower level components. 
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Figure 5 - Morphic Reduction 

1.3.5 Specification 

The final hierarchical relation in Luna's taxonomy is specification. This relation relates 

higher and lower levels by type. Usually, a lower level is a more specific type of the higher 

level. This relation is often used in object-oriented languages to provide a mechanism for 

constructing a class hierarchy. It is illustrated in Figure 6. 

Generalisation 

Class: Shape 

Class: 4-Sided 
	

Class: 3-Sided Id 

Class: Square 
	

Class: Rectangle 
	

Class: Triangle 

Specialisation 

Figure 6 - Specification Relation. 



Chapter 2 

Modelling and Simulation 

Having discussed at a high level the fundamental motivation for this thesis, we now 

introduce essential areas of background knowledge in order to define the context of this 

work. This includes a discussion of systems and models along with an examination of the 

implementation options for the simulation modeller. This exploration of modelling facilities 

includes a review of several actual systems available from both academic and commercial 

bodies. 

2.1 Systems and Models 

Real world systems can be thought of as collections of interacting components that 

work together towards some goal. Examples of real world systems are telecommunication 

systems, on-line reservation systems and navigation systems such as the GPS. Such real 

world systems can contain very large numbers of components and exhibit very complex 

behaviour. 

The process of simulating a system  involves the creation of a simplified model that 

represents only the salient elements of the real world system. By representing the behaviour 

of a system in an abstract and manageable way, the user can learn (interactively) about the 

behaviour of the real world system. The process of simulation embodies the principle of 

"learning by doing" [Fishwick95]. 

Typically, simulation projects can be broken down into three identifiable processes: 

model design: consideration of the real system and the aspects to be represented in the 

Either theoretical or physical. 
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model, model execution: providing input stimulus and observing the model's output and 

model analysis: extraction of results from the model's output. These three processes form the 

simulation lifecycle illustrated in Figure 7. 

Model 
Design 

Model 	
" ( 

Execution 
Execution Analysis 

- 

Figure 7 - Simulation Project Design Lifecycle 

Zeigler [Zeigler84] identifies five main aspects of the relationship between the real 

world system and the model, which provide a useful insight into the modelling and 

simulation process. 

I. The first of these aspects is the 'real system' which is defined by the examination 

of the real-world system for observable data sources. (these sources can be 

considered as either inputs (causes) or output (effects) and may be further 

classified as to whether or not they are observable or non-observable). Next is the 

experimental frame which described the limited conditions for which the model 

behaves as the real system. Such sets of conditions or experimental frames 

characterise a subset of the real system's observable input and output. A single 

model may have many experimental frames associated with it. If the input/output 

values of a simulation correspond to those observed at the real system, a model is 

said to be valid for the given experimental frame. The base model aspect is a 

notional model that represents all possible input/output data for the actual system 
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being modelled. For most systems, the construction of the base model will be 

impossible. Zeigler states that even if it were possible to construct the base model, 

for most systems the complexity of the components and their interactions would be 

so great that the computing resources required to simulate the system would often 

be unrealistic. Whilst the base model is usually an unrealistic implementation goal, 

the careful construction of an experimental frame can mean that a relatively simple 

model can often be created which is valid for a particular line of investigation. 

These simple models are referred to as lumped models. The final aspect described 

by Zeigler is that of the computer. Zeigler defines the computer as "the device with 

whose help the input-output pairs of the lumped model are generated". The process 

of generating the input-output pairs is referred to as simulation. 

2.2 Representation of Simulation Time 

One of the most prominent differences between simulation model implementations is 

the way in which real (system) time is represented. Time can be represented as a continuous 

variable or as a discrete variable. 

2.2.1 Continuous Time 

If the modelling process treats time as a continuous variable, the states within a system 

can be represented by a set of differential equations. If this technique is used the computer 

solves the differential equations in order to compute the output of the model for any given 

instant in (simulation) time. This continuous simulation technique is often used in the 

simulation of computer systems at the circuit level. In this case, lists of low level electronic 

components are represented by differential equations (see section 2.4.6). 
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2.2.2 Discrete Time 

In many systems, changes in state only occur at certain discrete points in time. These 

systems are sometimes termed discrete systems. For example, synchronous computer 

architectures can be considered discrete systems in which events and system state changes 

occur with respect to a known clock period. 

A discrete-event simulation is one in which the representation of time can be made by 

considering only the various points in time that a system state-changing event occurs. These 

system events occur at discrete, possibly random, time points known as event-times. 

2.2.3 Discrete Event Simulation 

Real world components are represented in a discrete-event simulation model by 

entities8 . These entities generate events according to their specified behaviour. During a 

simulation run a clock variable is maintained (tracking simulation time). This clock advances 

in discrete (probably unequal) steps during a simulation run. 

In addition to the clock, a discrete-event simulation maintains a list of events that are 

occurring (or scheduled to occur) in the system at a given clock value. This structure is 

referred to as the event list. 

During the course of a simulation run, two phases are repeated until the system enters a 

state where the event list is empty (alternatively the simulation may also be terminated by 

specifying a maximum value for the clock). The first phase is the advancement of the clock 

to the time of the earliest event on the event list; the second sees the execution of all 

behavioural code scheduled for the current clock time. The execution of this code will 

normally generate more events to be placed in the event list. We note (for a single processor 
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simulation platform) that although many events may be scheduled for a single simulation 

time point, in reality only one of these events will be active at any point in real-time. The 

two-phase loop described above is illustrated in Figure 8 below. 

During the course of a simulation run, an entity may be in one of a number of states. 

These states reflect the entities relationship to the simulation environment's resources. For 

example, an entity may be waiting to be processed, waiting for time to advance or waiting 

for some environmental condition to be met. These possible states are described in Table 1. 

8  The term entity is a generic one referring to simulation component. Other systems (academic 
and commercial) use different terms to describe this fundamental simulation unit. 
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Active 	The entity is scheduled for the current simulation clock 
time and is currently being processed. 

Ready 	If more than one entity is scheduled for the current event 
time all entities are considered to be in the ready state 
whilst waiting for real processor time. The entities' 
states will eventually change to the active state. 

Time- 	An entity in a time-delayed state is waiting until the 
Delayed 	simulation clock time reaches a known value so that it 

can re-enter the ready state. This state often represents 
an entity performing some work. 

Condition 	This state is entered when an entity is waiting for a 
Delayed 	specified condition to be met within the simulated 

system. For example, an entity may enter this state if a 
limited resource is currently in use and required for 
processing to continue. 

Table I - Possible Entity states 

Simulation Run Start 

Advance the simulation 
clock to the time of the 

next scheduled event on 
the event list. 

I 	Carry out all actions 
No 	 scheduled for the 

current simulation time. 

Is the event 
queue empty? 

Yes 

+___ 

(Simulation Run Stop 

Figure 8 - Typical Discrete Simulation Event Two-Phase Loop. 
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Finally, we note that it is possible (albeit unusual) to combine discrete and continuous 

time within a simulation model. For example, a simulation of a computer system's 

components (i.e., memory units, processor components and interconnection mechanisms) is 

well suited to discrete event simulation. However, the model of the computer system may 

well need to take account of the computer's operating environment (errors could occur if the 

unit were to work under extreme temperatures for example). The heating effects of the 

environment could be represented by a set of differential equations representing external and 

internal heat sources. 

2.3 Hierarchical Modelling 

In our previous discussion of systems and models (section 2.1), we noted that a model 

provided a useful abstract representation of a complex real world system allowing analysis of 

the system to be performed. 

However, it may be necessary to view a system at different levels of abstraction 

depending upon the features of the system that are of interest to the modeller for a particular 

experiment. One possible solution to this 'multiple abstractions' requirement is to construct 

several different models of the same real world system each addressing a different 

experimental requirement. However, the construction of multiple models forms an expensive 

development path in terms of the modeller's time and effort. In addition, this approach raises 

questions about model consistency across the different levels of abstraction. 

By composing a model hierarchically, we can employ the parent/child relation 

previously discussed in section 1.3 across the model structure allowing a single model to 

represent multiple abstractions (in effect multiple lumped models) of the same real world 

system. The way in which the hierarchy behaves (e.g. at what level the execution of the 
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simulation takes place, and how adjacent levels of the hierarchy communicate etc.) is 

dictated by one of the hierarchical relations described in sections 1.3.2-1.3.5. 

A hierarchical modelling approach has the benefit of reducing the amount of modelling 

effort (by the effective exploitation of entity reuse - i.e. some entities will remain the same 

regardless of abstraction level). In addition, the model validation process can be 

strengthened, by checking that different model abstractions of the same real world system 

produce identical results. 

Sargent [Sargent93] questions why hierarchical modelling is not readily available in 

most simulation packages and claims the main reason is that "Hierarchical modelling usually 

requires encapsulation". 

2.3.1 Encapsulation 

Encapsulation is a concept frequently used in object-oriented programming languages 

such as C++ or Java. Flanagan defines encapsulation (in software engineering terms) as: 

" ...hiding the implementation of a class from its users 9, which means 

that you can change the implementation without it affecting the 

users. "[Flanagan9 7] 

In terms of simulation models, encapsulation means that each simulation entity hides 

its associated state variables and behavioural definition from other entities in the model. 

Encapsulation in software engineering is typically provided by the following 

mechanisms: 

. The class structure itself (including special methods for the construction and 

destruction of class instances). 

We note that the term 'users' can mean other objects within a software system as well as the 
programmer. 

35 



. The use of variable declarations allowing the scope of a variable to be well 

controlled (For example, C++'s private, protected and public scope modifiers). 

. The use of 'accessor' methods to allow private and protected variables to be 

manipulated in a controlled manner. The communication of objects is controlled by 

method invocation. 

Frequently, object-oriented methodologies disallow objects from communicating 

by global variables, whilst not strictly an encapsulation mechanism this reinforces 

the importance of limiting an object's dependency on non-local data. 

Whilst these facilities come as standard in object oriented programming languages 

Cota and Sargent note that: 

"Unfortunately, traditional simulation languages and traditional 

approaches to modelling do not support encapsulation. For example the 

preemption ofajob in service by a higher priority job is usually modelled by 

having one active component change the next event time and/or reactivation 

point of a second component" [Cota92] 

Encapsulation is valuable in the model design process because it allows the modeller to 

concentrate on the structure of one part of the model at a time. In addition, encapsulation 

facilitates model modification by removing the effects of change on the rest of the model. 

This is a valuable attribute in terms of long term maintenance of a model. 

In terms of reuse, an entity that is encapsulated is easier to deploy in a new project, as 

it will not directly reference other entities' internal data members. If external references were 

present, the referenced entities would need to be aggregated with the migrating entity before 

it could be used again; in especially complex models, this aggregation may be impossible. 

The HASE environment (described in detail in Chapter 3) provides entities with some 

of the encapsulation features described above (e.g. the protection of entity data members). 
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This is a direct effect of the behavioural descriptions and automatically generated entity 

skeletons being described in C++. 

However, as a simulation model's communication is described via discrete event 

library extensions rather than pure C++ method invocation, it is possible for inter-entity 

communication to circumnavigate the formal C++ definition of an entity. An entity may 

assume knowledge of remote entities' behaviour and/or informal communication may take 

place via the event queue. A major proportion of the work of this thesis is concerned with 

restricting communication to well defined inter-entity communication protocols. Where a 

high-level language (e.g. C++) compiler enforces strict method parameter checking at 

compile time we propose a system for simulation model validation which aims to improve 

the level of entity encapsulation. This is discussed in detail in Chapter 5. 

Another observation made by Cota and Sargent is that because encapsulation allows a 

model's composition to be changed relatively quickly, it provides the basis for a mechanism 

allowing the switching between abstractions within a hierarchical model. However, the 

observation concludes that encapsulation itself is not enough to allow hierarchical modelling. 

There is also a requirement for a coupling mechanism. 

2.3.2 Ports and Coupling 

One of the advantages of encapsulation is that simulation components become 

independent of each other in terms of internal state and behaviour. However, a simulation 

model requires that they work together in order to simulate aspects of a real world system. In 

software engineering, inter-object communication is usually achieved by classes having input 

and output methods which allow them to be manipulated by other objects and to manipulate 

other objects respectively. 
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In simulation, a similar input/output capability is often achieved via the use of ports. A 

port is a communication point allowing the functionality of an entity to be accessed in a 

controlled manner. Zeigler uses the term module to describe an entity supporting 

encapsulation and the use of ports as follows: 

a program text that can function as a self contained autonomous 

unit in the following sense: Interactions of such a model with other modules 

can occur only through predeclared input and output ports" [Zeigler84] 

Consider the simulation entities shown in Figure 9 below. Each entity has a collection 

of ports (marked with the notation EntityName: I 10: Number - where I 10 indicated 

either Input or Output and number is a unique id for the port). Each entity also contains 

encapsulated state variables and behaviour. In order to create a hierarchical structure we can 

connect entities together by mapping the output ports of one entity to the input ports of 

another. This process is referred to as coupling [Luna92]. 
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Figure 9 - Set of entities supporting encapsulation and ports. 

In Figure 10 we see how various entities shown in Figure 9 are coupled to form a new 

coupled entity 'F'. Some ports remain unconnected; these form the input/output interface of 

the coupled entity. The new entity 'F' may itself be combined with other entities to form a 
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new, coupled model. We note that the new, coupled entity 'F' could be substituted for entity 

'C' (each has an identical interface; 2 output ports, 2 input ports). 

Figure 10 - Coupling of Entities. 

Of course, this substitution assumes that the input and output values of entity 'F' are 

compatible with model 'C'. We return to this problem later in Chapter 4. 

Zeigler [Zeigler90] uses coupling to define a hierarchical model as follows: 

An atomic model is a hierarchical model. 

A coupled model whose components are hierarchical models is a hierarchical 

model. 

2.4 Architectural Hierarchy 

In order to concentrate upon the simulation domain in which we will employ 

hierarchical modelling, it is useful to look at how computer architecture can be considered in 

terms of a hierarchical arrangement. 
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2.4.1 Defining Levels of Architectural Abstraction 

The concept of a computer system as a hierarchy of related components has been well 

understood for some time; Bell and Newell put forward a classification system for computer 

hardware [Bell7 1] in the early seventies. More recently, the field of codesign has frequently 

made use of a hierarchical model when considering the partitioning of software and hardware 

elements of a computer system [Rozenblit95]. 

The partitioning scheme proposed by Bell and Newell considers several levels of 

hierarchy when describing a given system (Figure 11). The hierarchy includes, from top to 

bottom, the PMS, ISP, RTL (Register Transfer Level - see section 2.4.2) and circuit levels. 

The levels below RTL are of less interest in the context of this thesis because well defined 

notations and tools/systems already exist to allow the modelling/simulation of systems at 

these relatively low levels of abstraction. 

[Structures Network, Computer 
Components Processors, 
memories, switches, controls, 

PMS 
	

[transducers, data operators, links. 

Isp_ 

[ Structures Programs, 
Subprograms 
Components State, Instructions, 

[Operators, Controls, Interpreter. 

[Circuits Arithmetic Unit, 
Counters, function generator, 
encoders, decoders, iterative 
networks. 
Components Registers, transfer 
controls, data operatoros, flip-
flops, AND, OR, NOT, NAND, 

Figure II - Overview of the PMS, ISP and RTL System Hierarchy Model. 
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2.4.2 RTL 

The Register Transfer level of abstraction sits on top of the (well defined) circuit level 

description of the physical hardware. This level of abstraction provides a description of a set 

of registers and the transfers that take place between them. 

A typical operation sees the values of specified registers being combined according to 

some given rule and the result of this combination being stored in another register elsewhere. 

Examples of typical events at the RT level are shown in Table 1. 

Table I - Typical RTL Operations. 

When considering Bell and Newell's RTL abstraction we should consider exactly why 

it proves a useful expression of a system's components. After all, it is possible to consider 

processor registers as collections of 1-bit memories each with their own logic equations. 

Why consider them as discrete entities? Consider now the task of examining how to best 

arrange registers for a given task within a machine. It is natural to think of the task being 

performed across registers rather than on a series of ]-bit memories. The design process is 

aided by the more 'appropriate' characterisation of the lower level components as higher 

level (RTL) structures. 

2.4.3 ISP 

Sitting atop the RTL abstraction is the Instruction-Set Processor level. This abstraction 

considers structures such as programs and subprograms which are typically comprised of 

components including state (memory cell contents), instructions and operators. 
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This level of the abstraction hierarchy allows us to examine the behaviour of a 

processor as controlled by a set of instructions stored in a memory. Typically, this level of 

description is useful to a programmer who needs to know how instructions issued will be 

interpreted by the processor. 

Of course, we could use the RTL abstraction to determine how a given instruction (bit 

pattern in some memory) works, but only after a detailed examination of the internal register 

sequences invoked by the calling instruction. Clearly, this is another valuable abstraction 

away from the base perspective of the underlying electronics. 

2.4.4 PMS 

The Processor, Memory and Switch level forms the most abstract description of a 

system. This view of a system treats the entire computer system as a set of related 

components (each with its own set of operations) that work on some common medium - 

information. 

At this level of abstraction, no attention is paid to the details of a system's lower level 

representations. Indeed Bell and Newell suggest only seven basic component types 

distinguished by their actions within a given system. These component types are memories 

(M), links (L), control components (K), processors (P), switches (S), data operations (D) and 

transducers (T). 

Given these basic high level building blocks, one can express hardware configurations. 

For example, a MIPS processor and its first and second level caches could be represented 

thus (note that links in the system are denoted by the '-' symbol): 

 -M-   -M-   -T -x 



Here Cmjps  represents the MIPS processor and its caches by showing the connections 

between PMS components representing the processing unit (P a) and its primary and second 

levels caches (M and M respectively). Note that a transducer is used to indicate the place 

that input is received by the system from some external source (X). 

The PMS level offers a useful abstraction from the programming and underlying levels 

in that it provides a basis for considering the high level construction and performance of a 

system. In terms of data obtainable from using a model at this level, it provides the system 

level designer with information allowing the analysis of component utilisation and 

architectural data flow. 

2.4.5 Summary 

The hierarchical model discussed above illustrates how a single system can be 

considered at many different levels of abstraction. Depending on the problem in hand, 

different abstractions will be suitable, for example physical construction (electrical 

engineering), register layout design/analysis (RTL), system programming (ISP) or 

performance evaluation (PMS) of the system as a whole. 

We have described how information available at a particular level of abstraction can 

also be obtained from any of the lower levels supporting it. However, abstraction allows 

lower level constructs to be summarised in a way that makes the data set size of a particular 

problem domain manageable. 

2.4.6 Other Architectural Abstractions Commonly Used 

As previously mentioned in section 2.4.1 this thesis is generally concerned with high 

levels of architectural abstraction. This is because as we descend the computer system 

hierarchy we find that commercial simulators and tools describing the implementation of 
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devices in silicon are well established. However, issues concerning the speed of systems 

simulation at this low level and the suitability of discrete versus continuous modelling 

techniques make this low level a worthwhile area of investigation. The lowest conceptual 

level of a computer system is often regarded to be the circuit level. Circuits are described in 

terms of transistors, wires, capacitors and resistors. At this level of system simulation, the 

focus is upon accuracy. For instance heating effects and component layout geometry all 

influence simulation results. These results usually take the form of analogue waveforms that 

describe the real-world behaviour of the circuit. Figure 12 shows typical simulation output 

from a circuit level simulation of a two-input OR gat& ° . 

Al—ALCATEL or2 extracted Jul 13 173521 1999 

Transient Response 

time 

Figure 12 - Typical output from circuit level simulation. 

The simulation process involves node-extraction (analysis of the circuit's devices and 

their interconnection). Having obtained a list of devices to be simulated, appropriate device 

'° This particular output was generated by the H-SPICE [Hspice90] circuit level simulation 
package. 



models" are selected according to the specification of the final fabrication process. 

Typically, circuit-level simulation uses continuous simulation techniques to solve the 

equations derived from the node-extraction phase. 

Whilst this process generates very accurate results, the technique is exceedingly 

computationally expensive; consequently simulation speed is very poor. 

Logic level simulation aims to improve simulation performance by substituting discrete 

logic values (i.e. 0, 1, and X) for the continuous analogue data used in circuit-level 

simulation. Often further simplifications, such as discarding wire delay information, are 

made. 

Logic-level simulators can be divided into two sub-categories, switch-level and gate-

level simulators [Craig96]. Switch—level simulators abstract individual transistors into little 

more than switches (i.e. other transistor characteristics such as operating conditions are 

removed) thus reducing the amount of time a simulation result takes to complete. Gate-level 

simulation sees the lower level components (resistors, capacitors etc.) being replaced by 

logic gates (e.g. AND, NOT, OR). Because gates are composed of transistors, this 

abstraction gains even more performance than switch-level simulation. Switch and gate-level 

simulation packages usually employ discrete-event simulation engines. 

2.5 Simulation of Computer Systems 

In this final section of this chapter, we aim to give an overview of existing simulation 

system and modelling approaches; the tools reviewed being provided by both academic 

institutions and commercial vendors. 

These device models are usually supplied by semiconductor manufacturers and consist of 
mathematical characterisations of each device's behaviour. 
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2.5.1 Programming language approach 

A popular approach to building a simulation model of a computer system is to hand-

craft a simulator in an appropriate programming language. The language choice for 

simulation implementation generally falls into one of two categories: general-purpose high 

level programming languages (HLLs) or problem specific hardware description languages 

(HDLs). Each offers advantages over the other. 

2.5.2 Hardware Description Languages (HDLs) 

Popular choices for hardware modelling are VHDL (Very high speed integrated circuit 

Hardware Description Language) [Vhd188] and Verilog, as each is well supported by the 

electronic design automation (EDA) industry' 2 . Both VHDL and Verilog offer means of 

representing both hardware structure and abstract behaviour. In [Smith96] it is claimed that 

any HDL should support these two aspects of model design so that: 

"Modelled hardware behaviour is not prejudiced by structural or 

design aspects of hardware intent and that hardware structure is capable of 

being modelled irrespective of the design's behaviour" 

Clearly, HDLs (as one would expect) tend to reflect the low-level concerns of a design 

eventually destined for a silicon implementation. Correspondingly, VHDL and Verilog 

provide excellent facilities for the modelling of concurrency and accurate timing 

[Howe1196a]. In addition, when we examine the low-level language constructs of VHDL we 

see provision of two-input logical operators such as NAND, NOR and XNOR. Similarly, 

Verilog supports constructs for modelling cell primitives of ASIC and FPGA libraries. 

12  VHDL has been an IEEE standard since 1987 and Verilog since 1995. 
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This is not to suggest that higher level behavioural modelling is ignored. Indeed, 

VHDL offers packaging statements to allow encapsulation of models (promoting reuse) and 

commands to allow the replication of structure (the generate command facilitates the 

generation of large, regular designs). VHDL also has facilities for the generic description of 

objects (e.g. bus widths may be characterised by the number of bits). 

Structural and behavioural specifications are dealt with separately in VHDL with a 

model's structure being independent from its behaviour. This means that (say) an adder can 

be structured as n 1-bit adders (each of which has a specified input/output interface) and 

behaving according to a specified behaviour (Figure 13). 

STRUCTURAL DEFINITION 	I 	BEHAVIOURAL DEFINITIONS 
(psuedocode) 

for adder = 1 t n 	 BEHAVIOUR 

of component 1-bit ad,c, 	 adder _A 

with BEHAVIOUR / 	 BEHAVIOUR 
interconnection _sc 	 adder B 

using 
behaviour add 'r B 	

N 	 BEHAVIOUR 

F ModeL ' 7ir/al

d  

, 	
N 

( 

1-bit adder 	/1-bit adder 	 1-bit add 
(1) 	 (2) 	 (n) 

adder B 4 Cadde ( adder_ B 

Figure 13 - VHDL Structural and Behavioural Components 

Verilog is less well equipped with high level constructs; only parameter overloading is 

supported. 

VHDL supports hierarchy by allowing the specification of a model in terms of sub-

components and their associated linkage (i.e. it provides coupling). However, components in 
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VHDL model compositions still tend towards dividing functionality into typical hardware 

blocks due to the nature of the interface description (signals and wires) - after all these are 

hardware description languages. A VI-IDL model can mix both behavioural level blocks and 

lower level (say) RTL level blocks (which will contain accurate timing detail). However, the 

behavioural model must provide communication based around the lower-level signalling 

model. 

The transition from an algorithmic/behavioural description of a component to a lower 

level concurrent signalling model requires components to be rewritten with an appropriate 

subset of VHDL. This is true even when moving from a low level RTL model to a model 

capable of being synthesised (a strict, limited subset of the language must be employed to 

satisfy most EDA tool requirements). 

Experience has shown that whilst VHDL provides mechanisms for describing 

architectures with some degree of abstraction, it is best suited to gate-level designs. For 

instance, at the systems design level, the modeller is often concerned with issues of 

performance evaluation. In [McHenry94] the authors found it necessary to write external C 

routines 13  to support the performance evaluation of multicomputer interconnection networks. 

This lack of suitability for high level modelling was a major concern for the RASSP 

(Rapid Prototyping of Application-Specific Signal Processors) program as discussed in 

[Swamy95] and resulted in the development of 00-VHDL [Oovhdl95]. 00-VHDL was 

implemented in the form of a pre-processor allowing object-oriented features such as 

inheritance and class variables to be used to extend VHDL. The result of running 00-VHDL 

source through the pre-processor was the automatic generation of IEEE compliant VHDL 

that could then be used with standard EDA tools. 
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Another interesting extension to the VHDL standard is VHDL+ [Vhdlplus96] from 

ICL/Fujitsu. The objectives of this project are stated as follows: 

"The VHDL+ extensions are aimed primarily at the system designer. 

While VHDL has many strengths for the design implementor, it does not 

provide the system level paradigms which help at the early stages of a 

system's design ". 

These 'system level design paradigms' include the conceptualisation of a system as a 

system of asynchronous communicating processes (rather than VHDL's highly structured 

processes and signalling models). Accordingly, VHDL has been extended to allow 

communication via high-level protocols. Another example 'system level' facility offered by 

VHDL+ is dynamic process creation/disposal. This can be used to test (say) the evaluation of 

concurrency versus performance. This is not possible in IEEE VHDL as (quite reasonably 

for any model ultimately aimed at hardware production) models must have a fixed number of 

component instances. 

The structures central to this new functionality are interface specifications and design 

units. 

A VHDL+ unit encapsulates a VHDL entity and architecture pair. The complexity of a 

unit can vary from a simple component (e.g. a single gate) to a large system description (e.g. 

a complete processor). 

The traditional method of communication between VHDL entities is via well defined 

hard-coded ports. In keeping with this approach, VHDL+ units can communicate via these 

VHDL communication constructs. As VHDL+ units support hierarchy, they may be 

composed of other units communicating via the VHDL ports. However, to allow designs to 

13  Routines to support random number generation, queueing primitives and statistic gathering 
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communicate across various levels of abstraction, unit hierarchies can instead be composed 

using the VHDL+ interface structure. 

Interface specifications are freestanding software entities and can be developed in 

isolation from specific entity/architecture pairs (units). Interface specifications are positioned 

between units and define named 'ends'. These ends are analogous to ports in their facilitation 

of unit linkage. Unit compositions map entity input/output to interface ends. Interfaces have 

the capability to describe communication between units which exist at different levels of 

abstraction. 

This cross-abstraction communication is based on two structures introduced as part of 

the VHDL+ language. The most abstract of these structures is the 'transaction' which 

specifies two-way communication across an interface. Next is the 'message' construct which 

defines a unidirectional stream of information from one end of an interface to another. These 

messages can be decomposed into other messages and can be defined in multiple versions to 

allow operation at differing levels of abstraction. At the lowest level of abstraction, messages 

are defined in terms of standard VHDL signals. For decomposition into pure VHDL, this 

level is essential. 

The decision to use interface specifications or traditional VHDL port constructs is 

typically governed by the advance of a design towards the gate level. For example, an initial 

design may be specified using the new VHDL+ constructs, as design decisions are finalised 

the traditional communication structures are inserted. 

VHDL+ itself is not used as input to a simulator. Rather it is compiled down to 

standard VHDL in an intermediate stage. ICL produce a compiler named Supervise 

were created. 
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[Hodgson97] for this purpose. We examine VHDL+'s abstraction mechanisms in more detail 

in section 7.3.3. 

Finally, we note that whilst VHDL allows very accurate timing models and excellent 

facilities for modelling concurrency, ultimately the performance of VHDL simulation is poor 

when compared to higher level programming language solutions. 

It is in response to this deficiency that companies such as CAE have developed RTL 

level modelling facilities with products such as RTL-C. RTL-C allows the designer to 

capitalise upon the execution speed of C/C++ by extending these languages with VHDL-like 

support for concurrency and timing [Mohammad98]. RTL-C features include: 

Support for a set of bit-width functions to support structural design 

C language procedures with support for all C data types and structures. 

Support for hardware concurrency. 

. Integration with a C/C++ development environment. 

CAE claim that on a Pentium 133MHz an RTL-C simulation can proceed at up to 

15000 cps (processor cycles per second) whereas an equivalent VHDL/H DL model can 

achieve around 15 cps [Cae99]. 

2.5.3 High Level Languages (HLLs) 

High-level languages offer another popular starting point for the handcrafting of a 

simulation model. Modern high-level languages such as C++[Dewhurst89] and Java 

[Flanagen97b] offer excellent facilities for component data encapsulation (via the 

protected and private data and method declarations) and model refinement (via 

inheritance). 

C++ allows. a wide range of commercially available libraries to be linked into a model 

by use of the standard 'include' compiler directive. This means that performance 
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modelling requiring statistical measures need not involve modellers developing their own 

distribution and analysis functions. In addition, simulation output can benefit from the 

variety of graphical library packages available under C++. 

In addition, C++ lends itself naturally to the modelling of high level communication 

constructs without the need for detailed signalling models (messages may be formed using 

structure or objects and reflect a number of high level attributes). Of course, discrete and 

continuous simulation functionality does not come as a standard part of the C++ language 

definition. However, various commercial and academic based simulation libraries exist, thus 

alleviating the need to develop each simulation model from scratch. 

Typically, simulation libraries offer facilities for event queue management, output 

report generation and simulation input generation (Examples of such library extensions are 

Sim++ [Simpp9l] and HASE++ - see section 3.1). 

Another high-level language increasingly used for discrete event simulation modelling 

is Java. Java offers a feature-rich object-oriented language, which is well suited to web-based 

simulation (due to the inclusion of many networking libraries as standard, and the high level 

of platform independence its intermediate byte code representation facilities [Flanagan97]). 

One of the first simulation projects to embrace Java as a platform for discrete event 

modelling was SimJava [Howe1197]. SimJava offers two special java packages that are 

accessible via Java's import statement. The first package (eduni . simjava) provides 

discrete event-queue manipulation functions (including output trace generation and basic 

statistical functions) based on HASE++. The second package (eduni. simanim) provides 

a visualisation library allowing the animation of a simulation's output trace file in a Java 

applet. 

Whilst Java offers excellent object-oriented programming facilities, it also has 

limitations in terms of performance when compared to mature high-level languages such as 
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C and C++. One comparative study found Java simulations to run, on average, ten times 

slower than their C++ equivalents [Simjava96]. 

In an effort to address concerns about Java's performance as a simulation platform, 

several projects, such as Sandia National Laboratories IDES [Nicol98], have produced a 

distributed simulation library allowing the simulation load to be spread across multiple 

processors. 

2.5.4 Simulation Specific Languages 

Another option when considering the modelling of high-level system behaviour is the 

use of a high-level simulation-oriented language. Languages of this type offer high-level 

programming constructs as found in C++/Java but with the advantage that simulation control 

mechanisms are core functions of the language itself. 

One such simulation-oriented language is DEMOS (Discrete event modelling on 

Simula14) [Birtwistle85]. Within the DEMOS environment, active objects (or entities) 

communicate via methods allowing operations upon passive objects (or resources). These 

operations are realised via use of the WAITQ object class 15  and the synchronisation primitive 

000PT. Whilst DEMOS provides good facilities for the description of process-oriented 

simulation models DEMOS does not boast the performance of C++ or the extensive range of 

readily available domain-specific link-in libraries. This lack of integration with 'standard' 

libraries is often a limitation of simulation-oriented languages. 

Another simulation-specific language, SIMAN [Glavach93], offers continuous and 

discrete simulation facilities. Whilst SIMAN has been predominantly used in the simulation 

of manufacturing systems (it provides simulation objects representing conveyors, 

" DEMOS is implemented as a Simula context (itself a simulation specific language). 
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transporters and 'blockages'), it does offer general-purpose simulation functionality. In order 

to allow integration with existing programs SIMAN provides special facilities for reading 

input data according to the input field specification of well-known high-level languages (e.g. 

C++, FORTRAN). Typically, SIMAN is used in conjunction with the Cinema/V system that 

provides animation facilities allowing the visualisation of a simulation run. The Cinema/V 

system allows the visual description of a simulation model to be specified hierarchically 

(allowing for management of on-screen complexity of designs). However, SIMAN's 

simulation facilities do not support hierarchy. 

MODSIMIII from CACI Products [Mullarney96] provides an object-oriented 

simulation-specific language suitable for general-purpose discrete-event simulation 

construction. MODSIMIII attempts a level of entity encapsulation by defining each entity in 

two separate sections. An entity's variables and methods are formally described in the 

'definition block'; its behavioural description of simulation then follows in the 'method 

block'. This approach is similar to that found in the programming language modula-2 

[Beidler86]. 

Special purpose simulation functions provided by MODSIMII! include the ability for 

entities to interrupt and suspend each other (through use of the INTERRUPT and WAIT 

primitives respectively). This mechanism raises problems with encapsulation however, as an 

entity wishing to interrupt a remote entity often needs to assume some knowledge about the 

remote entity's operation. MODSIMIII also provides graphical rendering of models in a 

similar way to Cinema/V. 

Mesquite Software's CSIM 18 [Schwetman96] whilst not a simulation language in its 

own right offers a discrete-event simulation specific 'engine' which can be embedded in 

s Used to resolve the event handler finding two objects involved in the same process at the 
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applications. For example, C/C++ applications can use the linkable CSIM18 object code for 

managing all aspects of simulation: 

. Data input management - through special data collection classes (e.g. 

TABLE - real number storage, QTABLES - integer and char storage) 

. Process-oriented discrete-event simulation - modelling of processes, facilities 

(active resources) and storages (passive resources) are provided. 

Performance analysis facilities - including the provision of 'meter' object 

used to measure the flow of resources past a given point in the model and 

'boxes' which are used to collect data on the time spent in a specified range 

of activities. 

CSIM 18 has been used as the simulation core in various commercial projects including 

Visual Solutions Inc.'s VisSim [Vissim95] (a package for developing hybrid systems 

models) and ArchGen from CAE+ Corp. [Archgen98]. In ArchGen, CSIM 18 provides the 

underlying simulation functionality for a graphical design environment allowing architectural 

features such as concurrency, pipelining, conditional branching and clocked events to be 

specified by block diagrams. 

2.6 Integrated Simulation Environments 

The previous sections have outlined languages suitable for programming simulation 

models from 'scratch'. One of the major drawbacks of this approach is that there is a degree 

of wheel reinvention with each project the designer embarks upon. Even though simulation 

libraries help provide standard facilities for statistical functions, entity creation and 

simulation time management, they still need to be reincorporated into each project. In 

same time. 
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general, the programming approach does not encourage component reuse and models are 

frequently thrown-away after analysis has been performed [Muller96]. 

Computer system simulations typically share many common features; most will 

provide result analysis tools, visualisation methods, simulation object management methods 

and perhaps more importantly simulation entities. It is therefore logical to seek some form of 

solution to the 'wheel reinvention' problem facing the designer. The designers of various 

integrated simulation environments promise such a solution. The following sub-sections 

discuss the facilities typically offered by such environments. 

2.6.1 Simulation Mechanisms 

Central to any integrated simulation environment is the provision of a simulation 

engine. The simulation mechanisms afforded to the user may well be implemented in one of 

the languages outlined in sections 2.5.1-2.5.4; normally the user will be presented with an 

environment specific API and will be 'protected' from the details of the simulation engine. 

Some simulation environments are confined to either discrete or continuous model 

construction, others attempt to provide a heterogeneous environment for simulation. The 

Ptolemy [Ptolemy94] project at Berkeley (designed to assist with the design of signal 

processing systems) is one such example of this. Ptolemy is an object-oriented system based 

around an abstract C++ based simulation kernel that defines a set of extensible classes 

referred to as domains. Domains usually address a specific problem area (several predefined 

domains are included with Ptolemy - discrete event simulation being just one). In addition, 

the user may define additional domains. Essentially, the generic simulation kernel is used as 

a base class from which application specific objects can be derived. 
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2.6.2 Graphical Manipulation of the Model 

One of the benefits of building a simulation model within an integrated environment is 

the opportunity for the environment to provide a standard graphical representation of the 

model (i.e. without the programmer having to invest extra programming effort). 

The presentation of a model as a picture allows the designer to conceptualise the exact 

component topologies/relationships in a simulation project without having to resort to the 

examination of behavioural code descriptions; this can aid in the-debugging of a model's 

construction. 

Hierarchical graphical representations allow the control of large design spaces through 

an 'expand and collapse' approach to model exploration. BONeS [Schaffer94] (Block 

Oriented Network Simulator) from Cadence Design Systems Inc. offers a simulation 

platform for designers of computer and communication networks and incorporates a 

hierarchical, graphical representation of a model. The programmer can manipulate (e.g. drag 

and drop) low-level blocks that represent communication hardware components from a core 

library 16  onto the design window. After placing core components in the design window, 

subsets of the core components can be grouped together to form larger composite objects that 

are represented on screen by a single 'meta-icon'. The data structures that flow between 

blocks can also be graphically edited, consolidating the GUI based approach to design. 

Ptolemy offers an X  1 based graphical user interface in addition to its standard text-

based shell. By writing appropriate Tcl/Tk [Ousterhout93] toolkit scripts, the programmer 

can construct animations of simulation output. However, this requires a certain amount of 

programming effort (i.e. animations are not 'for free'). 

16  Typically, functions of the core components support discrete event simulation by allowing the 
modelling of delays, queues, contention, statistics gathering mechanisms and data structure 
manipulation methods. 
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The Hardware Design System (1-IDS) [A1ta95] from the ALTA group of Cadence 

Design Systems offers an integrated environment for the design and implementation of DSP 

and other systems. It is used in conjunction with Cadence's SPW (Signal Processing 

WorkSystem) which sits atop of 1-IDS - see Figure 14). 

HDS itself is broken down into three distinct modules according to the particular 

abstraction in hand: 

I. lIDS Analyser takes input from SPW and allows the user to build a block 

diagram on-screen. Blocks in the diagram can originate from a library of 

standard components or can be user-specified (by use of an external C library). 

By interconnecting the blocks on screen, it is possible to form a signal flow 

diagram specifying an algorithm's behaviour. The algorithm can then be tested 

via simulation. 

lIDS Architect allows work to be carried out at a lower level of architectural 

abstraction. In this module, the designer can specify the implementation (as 

opposed to the behaviour) of an algorithm. Again, a GUI provides the 

mechanism for user input to the module. As the modules in HDS are integrated, 

it is possible to synthesise an HDS Architect project from a higher-level HDS 

Analyser design. 

IIIDS VhDL Link is an automated process that interfaces HDS Architect to an 

externally provided synthesis and simulation tool. This is achieved by automatic 

generation of VHDL code compatible with the lower-level tool. 
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Figure 14— Overview of HDS. 

One of HDS's most powerful features is that all modules share a common graphical 

user interface, thus removing the burden of having to navigate different user interfaces 

depending on the level of abstraction currently in hand. 

The MOOSE [Moose98] (Model based object-oriented systems engineering) system 

from the University of Manchester Institute of Science and Technology also emphasises a 

graphical approach to model manipulation. MOOSE pursues an object-oriented approach to 

model design (in an attempt to facilitate component reuse) and utilises a GUI (termed the 

MOOSEbench) to allow the construction of model diagrams. These diagrams consist of 

nodes and connections which describe how simulation entities interact with each other (e.g. 

by discrete event or continuous data and whether the interactions contain single or multiple 

(termed 'bundled') data values. The model view is interactive (models can be directly 

manipulated) and hierarchical (users can expand nodes which themselves represent several 

sub-nodes). 



The VCC (Virtual Component Co-design) environment [Vcc98] also allows the 

graphical construction of a model through a drag and drop style GUI. 

2.6.3 Hierarchy and Abstraction 

Integrated environments may allow modelling at multiple levels of abstraction, in an 

effort to reduce the project lifecycle period by both removing the need for the modeller to 

use a multiplicity of heterogeneous environments and allowing high-level abstractions of a 

system to be simulated with a reduced runtime. 

Hierarchical specification is made possible in Ptolemy via the block construct, which 

allows a model's hierarchy to be specified by differentiating whether components are atomic 

(a star) or composite (a galaxy). Objects derived from a scheduler class determine the 

order of execution of blocks. Inter-block communication is achieved by exchanging data 

packaged in particles. Particles are can be of integer, complex, real, fixed point or structure 

type. Figure 15 shows the relationship between the various components of the Ptolemy 

system. 
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Figure 15 - The Ptolemy System: An Overview. 

Hierarchy is included in some integrated environments as it forms a convenient 

structural mechanism for the support of rapid prototyping (top-down refinement of a design). 

For example, HDS allows movement down the design hierarchy by synthesis. However, 

there is no way of automatically moving back up the design hierarchy. Designers wishing to 

alter high-level model abstractions are required to perform a complete design cycle flow 

from the point of modification downwards. 

At Stanford University, the SimOS project [Rosenblum97] examined running large-

scale application codes on simulation models. SimOS acknowledges the importance of 

having models available at various abstraction levels of the hierarchy. For example, one of 

the CPU models available with SimOS uses dynamic binary translation techniques to run 

actual operating system code; as the CPU models become more detailed, run-time overheads 

increase by orders of magnitude. Being able to perform abstract trade-off investigations 

without incurring a large simulation time overhead is a valuable feature of this architecture. 
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VCC's modelling process supports the notion of behavioural and graphical hierarchies. 

However, components must be simulated at a single level of behavioural abstraction in the 

current release. 

2.6.4 Library Facilities and Reusability 

Integrated simulation environments often attempt to provide library facilities to allow 

component storage in a manner independent of a particular modelling exercise. The 

motivation for these facilities is component reuse. Typical library facilities include the ability 

to import and export components, build application specific sub-libraries and add component 

descriptions (this allows guidance as to the suitability of components for specific modelling 

tasks). 

Some manufacturers of commercial environments sell components for use within their 

own environments. For example, BONeS libraries are available [A1ta94] which allow the 

rapid prototyping of new network configurations based upon well-known technologies e.g. 

Ethernet, Token Ring, FDDI and lOOBase-T. 

One of the most interesting aspects of the VCC environment is its ability to use 

commercially available libraries consisting of so-called "black box" behavioural 

descriptions. The library components, supplied by various IP vendors, allow the use of VCC 

as a high-level evaluation tool for real-world microelectronics components. The entities 

provide a detailed representation of a component's behaviour and timing characteristics 

allowing the designer to experiment with existing products. However, the libraries are 

constructed in such a way as to hide the behavioural implementation of the components from 

the end user. This means that vendors can both distribute an accurate model library of their 

product and protect their intellectual property content. 
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2.6.5 Simulation control and Instrumentation Facilities 

Finally, integrated simulation environments often include facilities for controlling 

multiple simulation runs. This usually involves varying parameters across specified value 

ranges and collating the results in a structured manner. 

In the BONeS environment, multiple simulation runs take place under the control of a 

simulation manager module, which allows the specification of key parameters, their ranges 

and the number of simulation iterations to be performed. The selection of the required output 

results for a particular set of simulation runs is controlled via the BONeS GUI; a 'probe' may 

be placed on any of the links connecting blocks together and all messages passing the probe 

will be gathered. 

VCC allows the identification of key model parameters and supports results output in 

MS-Excel format spreadsheets. 

Having obtained a set of output results most environments offer either built-in facilities 

for the generation of histograms, Gantt charts and graphs or suitable linkage to external tools 

such as Gnuplot or MS-Excel. VCC allows various chart types to be associated with specific 

simulation parameters (e.g. it is possible visualise network activity via a 'temperature map' 

which indicates levels of network saturation). 
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Chapter 3 

The Hierarchical Architectural Design and Simulation 

Environment (HASE) 

The Hierarchical computer Architecture design and Simulation Environment (HASE) 

developed at the University of Edinburgh has now existed in various guises since 1992. The 

main goal of the project has been to provide computer architects with tools that allow the 

rapid development and exploration of computer architecture designs. The initial ideas for 

HASE were investigated as a PhD project [Robertson96], but it has evolved significantly as a 

result of various research projects. HASE's evolution is well documented in the literature 

[Ibbett96], [Coe98]. 

The author first used HASE as the modelling environment for a simulation of the 

Stanford DASH 17  multiprocessor in 1994 [Williams96]. The HASE simulation concentrated 

on implementing the DASH cache coherency protocols [Lenoski92] and the animation 

facilities in HASE were used to check that the simulation conformed to the architecture. 

In terms of this thesis, the DASH simulation model was important in that it highlighted 

HASE's ability to pick out salient architectural details from a simulation's animated output. 

For example, it was possible to hide low level (snoopy-bus) coherency protocol activity and 

allow the designer to concentrate on higher level distributed directory mechanisms. 

17  The DASH architecture was designed to prove the feasibility of building a scalable high 
performance machine with multiple coherent caches and a single address space. 
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Conversely the designer could 'zoom' into a node and examine the detailed operation of a 

single processor without regard for higher level mesh based activity. However, whilst the use 

of this graphical hierarchy proved valuable, behavioural code was only ever executed at a 

single level of abstraction. It was noted that if simulation code could have been executed at a 

higher level of abstraction, a simpler assessment of certain protocols properties would have 

been possible. The reason for this was that in order to extract even small amounts of high 

level protocol related data, many thousands of low level operations needed to be executed. If 

a high level (more abstract) interpretation of the system's behaviour could have been 

executed across the model, this high level information could have been obtained in a much 

reduced runtime. 

This section of the thesis aims to offer a sufficiently detailed insight into HASE's 

architecture and operation to allow the reader to see how the new work presented here 

integrates with the existing HASE environment. 

3.1 The HASE Platform 

HASE is currently available on both the Solaris and Windows NT4.0 operating 

systems. The environment is coded in a combination of C++ and Java' 8  and uses the 

following library extensions: 

. HASE++ discrete event simulation library: HASE originally used the SIM++ 

discrete event simulation library for C++ from Jade Simulations [Simpp9l]. This 

allowed the behaviour of entities to be coded as C++ classes, and provided the 

underlying simulation support for the HASE system. Using a commercial product 

meant that I-IASE could not be made freely available. For this reason, and also due 

65 



to the desire to run simulations on platforms not supported by Jade (such as Linux 

and Cray systems), the HASE project developed a new discrete event simulation 

library (named HASE++ [Howe1196b]). HASE-H- uses the same API as Jade's 

SIM±± and is implemented in C++. HASE++ employs a standard discrete event 

simulation algorithm (i.e. pop the next event off the future queue, enable the 

corresponding entities, wait for them to finish, repeat until no more future events). 

More details about the most commonly used elements of the HASE++ API can be 

found in section 3.2.2. 

• XfMotif to provide the GUI on the Solaris implementation of HASE. 

• Java Swing [Gutz98] to provide a platform independent GUI library for the 

various Java tools. This means that when external tools such as the hierarchy 

viewer (see section 7.8.2) are run on Solaris or Windows NT, the tool is rendered 

correctly with either the appropriate local GUI controls or a user specified look and 

feel. 

• CUP [Cup96] (or Constructor of Useful Parsers) was used in the Java library 

management software to provide Yacc type functionality under Java. This allowed 

an EDL parser to be created in Java. 

EDL (or Entity Description Language) is themodel description language 

used by RASE. It allows the modeller to define all the properties of a HASE model 

including custom data types, communication links, the simulation entities 

themselves and a composition of the entities that form the actual model. EDL is 

covered in more depth in section 3.6. 

18  The Java based components of the HASE environment have been added as part of this body 
of research. 



3.2 Simulation Components 

Central to HASE's operation is the idea of manipulation of multifaceted simulation 

objects in order to create a simulation model. These objects are referred to as simulation 

entities. The representation of a computer system's components as objects is a natural one 

allowing the designer to model discrete architectural components with a one-to-one mapping 

between simulation entities and system components. Entities have several types of 

information associated with them. 

3.2.1 Ports and Links 

Entities communicate with each other via ports. Ports provide a named transmission or 

reception point for communication to take place. The HASE GUI supports port specification 

via the dialog shown in Figure 16. The user can specify an icon, a name with which to 

identify the port and the type of link to vk hich it can he attached. 

Port 	 Icon  
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L nk Type Name fLNK_memreu1t 

Put Type I:cJE;r:E 

OK 	 Ooze 

Figure 16 - Edit Port Dialog. 

A link is a specification of the data that will be handled at the port. The link definition 

describes the format of the packets that can be passed between connected entities. There may 
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be more than one type of packet associated with a particular link type. Figure 17 shows 

typical port/link configurations for two connected entities. 
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Figure 17 - Ports and Links. 

A link is inserted into an architectural design by specifying a source and destination port (i.e. 

routing information) either on screen (by drawing a link between the desired ports) or in the 

EDL file by means of a CLINK 19  command. Prior to the research described in this thesis, no 

checks were made as to the link validity. For example, the user could draw a line between 

ports that specify different (therefore incompatible) link types. 

3.2.2 Behavioural Code 

An entity's behavioural code takes the form of a C+±/HASE++ coded file which is 

compiled into the simulation model as required. The body code can contain special directives 

" The CLINK command is discussed in detail in 4.1.4. 
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allowing for, amongst other things, report generation and pre/post run set-up/analysis 

routines to be included in the model. 

The HASE++ simulation library provides typical event queue manipulation primitives 

and predefined (by HASE) macros. A detailed account of these primitives and macros can be 

found in [Howe1196b]. However, a brief summary of the more commonly used commands for 

receiving and sending events is given below: 

Event Reception Primitives 

GET—NEXT 0: When this call is made from within an entity's body code the next 

pending event for this entity is removed from the event list. This call is blocking and is 

a HASE provided macro coded in HASE++ as follows: 

if (sim.waiting(SIM.ANY) ? 0) 
sim.select (ev,SIM.ANY); 

else 
sim.wait (ev); 

. SIM GET Q: This call is made after a call to GET—NEXT () to extract the event 

(ev) data itself. 

. scheduled _by () and from _port (port): These functions are used to 

determine which entity sent an event and which port the event was received on 

respectively. These functions frequently form the basis for an entity's event handler 

code (e.g. an entity can decide on an action according to the event source). 

. sim_hold_for 0: The user can specify a time period in which no pending events 

can be processed by using this primitive. This is most useful for making an entity 

'busy'. 
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Event Transmission Primitives 

• Send_<PKTlabel> 0: This is the complementary HASE macro to 

GET—NEXT 0. This macro sends a data packet of type PKTlabel to a specified 

port. This packet transmission is logged as an event in the simulation trace file and 

will be visible in any simulation animations that are generated. 

• SIM_PUT Q: This function places event data into an event body for later 

transmission. This complements the S IN GET () function discussed above. 

• Sim _schedule 0: Whereas S IM PUT () sends a data packet to a port and writes 

an entry in the trace file, sun—schedule () only generates a message (no output is 

made in the trace file). This means that the event transmission will not be visible in 

any generated animation. This is a useful mechanism in that it can be used to reduce 

the complexity of the output animation. 

3.2.3 Parameters 

One of 1-LASE's most powerful features is the ability to parameterise an entity's key 

attributes. The parameters themselves are defined, along with their default values, in the 

model's EDL file (see section 3.6). They are manipulated using the HASE parameter dialog 

shown in Figure 18. The dialog is split into two main panels, the uppermost of which details 

the entity's identity within the model. The lower panel displays each defined parameter of 

the entity on a separate line of the display. Each line of the display consists of the following: 

I. The parameter name as specified in the EDL file. 

2. A slot for the value of the parameter to be entered. Depending on the type of the 

parameter, the value can be typed into the value slot (integer, real or string types) 

or selected from a pull down menu (enumerated parameter types). 
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A pull-down allowing the control of a parameter's display. Parameters can be 

shown in the display window as an icon or as a textual description. 

A check box, in the column labelled exp, allowing the user to specify whether the 

parameter should be included in a sweep (see below). 

A check box, in the column labelled 'tim', indicating whether state changes of 

this parameter should he reflected in the simulations output timing diagrams. 
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Figure 18- Entity Parameter Display. 

Having defined a set of parameters for an entity it is possible (by selecting the 'exp' 

checkbox) to perform parameter sweeps (via HASE's experimentation mode). This can 

reveal how the various aspects of an entity's construction affect a model's performance. The 

HASE GUI provides a form-based dialog that allows the user to specify values for any 

defined parameters 20 . More details of these facilities can be found in section 3.3.5. 

20  A separate dialog allows the specification of parameter sweep ranges (Figure 24). 
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3.2.4 Instance Attributes 

Each entity in a simulation is an instance of a class of a simulation object. As such, 

each needs to have a unique name associated with it. This is made up from a combination of 

the type (class) name of the entity and an instance name. The name of an entity can be 

inspected/set via the Entity Attributes dialog (Figure 19). 
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Figure 19— Entity Name and Position Display. 

3.2.5 Graphical Attributes 

As 1-IASE is a graphical environment, details of the icons used to represent entities on-

screen (along with the entities display co-ordinates) are stored for each entity. Other 

graphical attributes include link styles, link colours, port co-ordinates and port icons. 

3.2.6 Text 

Finally, a simulation entity can have a textual description associated with it. This 

allows a model to be documented. 
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3.3 HASE Software Architecture 

A typical design session in HASE is illustrated in Figure 20. There are five modes of 

operation: Design, Validation, Build Simulation, Simulate System and Experiment. The user 

switches between modes by using the buttons below the menu bar. The mode selection 

facility formalises the design cycle and allows a proper separation of concerns between the 

different phases of simulation activity. This is illustrated in Figure 21. which shows how the 

available menu options vary according to the mode selection. 

Fda 	Liv 	ER Tools 	Ho 

I a_lIao EItAd 	 SooA&.e 

Psoovt 	Is11s1 -- 
i 	osa\c000Ass_ath\oosodafl 

XUI 

u 	 U 	 MSK1 

T— 0,7 10 
I 	s_.e_spe 	eed 	I I I aCcs_Cus 

11  

Iacda_sseooc.eso_BIND_MSK 	1 1 . 	 -. 	 ..... 

o&*_BIND)dSK -1 F,_Ioa_wdh • 1 

Sea Iow_bus_ats • 4 
access_count 	(I 	 005_coon 	U 

e,C_00050 	 U 

-Ii-----. dan 	OCC0 	 05 = sad 
seameac reed dalau 	50 	read peaooO 	050 
nserrrory_oede_del.o -50 	o=ee_paroort = 050 

bc 	roon000uass_BIND_MSK- 1 
bu 	eou 	BIND MOO .1 bcal rrearrooeoe, BIND MSK 	1 

_.ok4,_8IND_MSK 	1 
Sc_reerraeasd(_BIND_MSK 	1 

Sc_Sek.eeano_BIND_MSK -1 

__1Tr -n 

Figure 20 - Typical HASE Design Session. 

The modes not only control access to the appropriate design window menu options, but 

also allow different pop-up menu options to be associated with an entity. Thus in Design 

mode, the entity menu associated with (say) a memory, allows the parameters of the memory 

(number of words, word length, etc.) to be adjusted. However, in Simulate mode it allows 
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selection of a file containing the software to be loaded into the memory at the start of a 

simulation run. This is illustrated (for a processor entity) in Figure 22(a) and (b). 

Fie Leafy 	EcM Tools Help  

Vabde Bold Srrolate Eepeoosert 

Mode 

Switch 

Fie Toth Help 

Bold Sxniate Eimsent 

Mode 

Switch 

ERM 
Fie Bold Tools 	Help 

Design 	Vatidsle Siiiulete Eepeierent 

- 	 Mode 
Switch 

Frsz1 
Fie SetsMie Tools Help 

Deogn 	Validake 	Bold 	 Eicpeiorent 

Figure 21 - Contextual menus according to selected mode. 
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Figure 22 - Context sensitive pop-up menus in (a) design mode and (b) simulate mode. 
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3.3.1 Design Mode 

The operations available to the designer in Design mode include add/remove entity, 

adjust connections between entities and add/remove parameters/ports from components. The 

effect of using the design mode is to generate an EDL description of the simulation model. 

The designer can also choose to edit the EDL description directly. HASE supports so-called 

'round trip' editing of experimental models (see section 3.6.1). 

3.3.2 Validate Mode 

The Model Validation mode allows checks to be performed regarding the correctness 

of the system design. For example, checks are made to determine whether the entities at each 

end of a link are expecting the same type of packet. The functionality of this mode is central 

to this thesis and is examined in detail later in Chapter 5. 

3.3.3 Build Mode 

The Build Simulation mode is used to create an executable simulation of the modelled 

architecture. The options available include the selection of the simulation language to be 

used 2 ' and the type of simulation to be created; for example, real time animation or trace file 

generation. 

3.3.4 Simulate Mode 

The Simulate mode allows the simulation to be run and the graphical display of the 

design to be animated. It also allows system parameters to be changed and timing diagrams 

for system components to be viewed. 

21  Usually HASE++ but Sim++ is available for running legacy code. In the future other options 
may be made available (e.g. VHDL). 

75 



During a simulation run HASE writes an event sequence into an event trace file and 

subsequently this trace can be played back to provide the user with a visual display of 

activity in the system. The trace is produced automatically from the simulation model with 

no need for the user to write explicit animation code. Activity in the simulation model can be 

visualised in a variety of ways, e.g. through moving icons showing data packets flowing 

between processors in a mesh or by changing a component's icon to reflect its current state. 

The important benefit of the animator is that it lets the user check that the model produces 

correct results. The animated output of a simulation run is controlled by a 'VCR like' panel 

allowing the playing, searching/reviewing and pausing of the animation as requested. (Figure 

23). 
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Figure 23 - The Animator Control Dialog 

3.3.5 Experiment Mode 

The final mode, Experiment, allows automatic multiple executions of the simulation to 

be performed. with different parameter settings used in each execution. 

This mode was provided as many of the measurements which users require involve (a) 

making repeated simulation runs, using a different input parameter value at each run, and (b) 

plotting graphs of some output values as a function of the varying input parameter. 
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In order to automate this process, an experiment dialog was created to allow easy 

control of parameters and execution (Figure 24). The step field on the dialog allows 

parameters to be varied by a given increment each iteration. The group checkbox can be used 

to 'tie' together groups of related parameters that should be varied in lock step with each 

other (this helps eliminate experimentation across irrelevant parameter combinations) 

Once the multiple simulations have been performed, the generated trace files are 

processed in order to generate appropriate Gnuplot [Williams95] or MS-Excel files of the 

results. 
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Figure 24 - Multiple Experimental Run Control. 

3.4 Anatomy of the RASE System 

The various software components and data files required to support HASEs project 

lifecycle are illustrated in Figure 25. The components fall into three broad categories, and are 

described briefly in the three following sections. 

3.4.1 RASE Core 

The I-IASE core functions (shown in the blue box of Figure 25) include the EDL parser 

(section 3.6 below), the HASE++ simulation engine, code generation routines and the GUI 
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based design window and animator. These functions are concerned with simulation and 

manipulation of a HASE model via GUI manipulation 

Another important function of the core HASE code is the production of simulation 

output in the form of a trace file. The trace file records various events and state changes that 

occur whilst a model is being executed. Users can also specify their own data to be output to 

the trace file via the HASE++ command sirn trace o.  

Figure 25 - HASE Software Architecture 
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3.4.2 External Tools 

HASE provides several software components concerned with the analysis of model 

execution output (contained in the green rectangle of Figure 25). Aside from HASE built-in 

timing diagram facilities (which draws Gantt charts showing how an entity's state parameters 

vary according to time) and the HASE animator, new tools have been added as part of this 

research. These include the CommTrace module that allows the visualisation of 

communication taking place at a given entity's ports, a model hierarchy viewer and library 

management tools. These new tools are outlined in detail in Chapter 5. 

3.4.3 Project Related Files 

Various data files are used by HASE whilst performing design, simulation and 

analysis. These are shown in the yellow rectangle in Figure 25. 

Three files are used for model representation: 

I. EDL: The Entity Description Language file contains a description of the logical 

structure of the model (see section 3.6). One EDL file is used for each simulation 

project. 

ELF: The Entity Layout File details the model's on-screen representation 

including entity topology, parameters to be displayed and link routing between 

entities (see 3.6). 

User Code: This behavioural (HASE++) code file is provided for each class of 

simulation entities. 

The other files used in a project's lifecycle are concerned with run control and post-run 

analysis. 

1. COMM: This special type of trace file records the messages transmitted between 

the interfaces of all simulation entities. This file can then be used in conjunction 
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with the CommTrace tool to visualise the communication taking place between 

entities. This file is not generated by default, rather the user specifies via the 

simulate menu that a simulation run is to generate a communications trace file. 

This helps avoid an unnecessary processing overhead. 

lITER: This file represents the hierarchical structure of the model. It is used by a 

hierarchy viewer to aid model navigation (see section 7.8.2). 

PARAMS (or 'User parameters'). This file contains the current parameter values 

for a model's entities. 

3.5 Overview of Project Data Storage 

During the lifetime of HASE, project data storage methods have changed several times. 

Initially the only method of specifying the composition of a model was via a low-level C++ 

file. This file was linked into the HASE object code via a re-compilation of HASE itself (a 

far from elegant solution!). Any modification of the model required 1-IASE to be recompiled. 

This method is illustrated in Figure 26. 
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compile 

Definition 	—VI (static model 
[compiled in) 

Figure 26— Original storage method. 

In a later version of RASE, ObjectStore [Ostore93] was introduced in an effort to 

investigate the use of object-oriented database technology for persistent storage (and 

retrieval) of experimental data structures. Accordingly, HASE's GUI was updated to allow 

users to interactively create/modify architectural models stored in a database. As the two 

headed arrow in Figure 27 implies, this meant that any changes in the database model were 
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immediately available in the HASE environment (i.e. recompilation of HASE was 

necessary). 
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Figure 27 - Use of ObjectStore for model storage. 

However, some users still preferred to specify their model's form by use of the C++ 

file. For this reason the C++ file based approach to model specification was reintroduced to 

1-IASE environment creating the system illustrated in Figure 28. 

This allowed for a hybrid model creation technique involving the initial specification 

of a model by C++ (label 1 in Figure 28) which was then converted to a corresponding 

ObjectStore database (label 2). Following the initial database creation, any changes made to 

the model via the GUI (label 3) were only reflected in a database version of the model (i.e. 

the C++ file became outdated). 

C++ Model 	
Manipulate \ Database 

Definition 	 GUI 

	

create 	
Structures) 

Figure 28 - Hybrid approach to model storage. 

This hybrid model of model storage was the mechanism in place at the outset of this 

research. This left the user with the choice of one of three design paths outlined above. 
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Namely, (I) a high level GUI based design technique with an ObjectStore representation, (2) 

a low-level C++ input to the RASE system or (3) an initial C++ specification that was 

converted to an ObjectStore database. Each of these approaches offered advantages and 

disadvantages with respect to the others. 

3.5.1 GUI based Approach 

By use of the model editing facilities provided within RASE, the user manipulates on-

screen icons representing simulation entities. Relationships between entities are identified by 

connecting on-screen ports together with communication links. 

Typically these design layout tasks are handled well by such a high level interactive 

interface as it removes the need for tedious trial and error programming when specifying a 

design's on-screen appearance. This approach also allows a design to be conceptualised by 

considering the components of a 'picture' rather than some abstract code fragment. 

However, other tasks are not so well served by the GUI approach. For example, 

entering information regarding link or state parameters requires laborious menu manipulation 

(typically five or six menu commands to complete the addition of a simple link parameter). 

Another major disadvantage of the GUI based approach was that the experiment was created 

as a permanent entity only in terms of an ObjectStore database. This meant that there was no 

easy means of re-creating the experiment if database integrity was breached. 

3.5.2 c++ file based approach 

Although this technique required a detailed understanding of HASE's internal 

structures in order to describe an experiment in C++, it did offer various advantages over the 

GUI based approach including: 
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• The ability to re-create a simulation should the experimental database be damaged in 

any way. 

• Allowing C++ constructs such as loops to be employed when creating multiple 

instances of entities. 

• Providing a terse, simple and text based input for specifying link, global and state 

parameters. 

Of course, this technique has limitations when compared to the GUI based approach 

when we consider the ease with which a design layout is specified with the former technique. 

3.6 Project Data Storage Solution 

In practice, the performance of ObjectStore proved to be unsatisfactory as the size of 

simulation models grew, both in terms of the storage space required and the time taken to 

load an experiment into the HASE environment. This effect was particularly noticeable 

when working with template based architectures. The commercial licensing restrictions 

imposed by ObjectStore also limited the free distribution of HASE within the academic 

community. However, the removal of ObjectStore meant that the original problem of project 

storage, which this system had been introduced to overcome, had to be solved in some other 

way. 

The approach taken was to strike a balance between the expressive (but sometimes 

laborious) graphical interface and the low-level (but flexible) C++ architecture design file. 

The problem of devising a flexible simulation specification mechanism resulted in the 

generation of the Entity Description Language (or EDL) [Coe97b]. EDL is a human readable 

text file that describes (at a high level) the structure of simulation entities. EDL files are read 

in by HASE (at project load time) and the architecture is created (in terms of C++ structures) 

from them. 
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EDL has been implemented using Lex and Yacc [Levine92]. By specifying a file 

containing regular expressions (which form the EDL language keyword and parameter 

specifications) the lexical analyser (Lex) searches user input and executes C routines upon 

pattern matches. Yacc is a parser generator that converts a context-free grammar (in this case 

describing EDL) into a set of tables. These tables are used to automatically parse a given 

input stream. Clauses in the grammar have an optional C routine associated with them, which 

is executed upon an input stream match. This makes the construction of parse trees a 

relatively simple task. In the case of HASE, the input stream presented to the Yacc generated 

routines is a file of EDL keywords generated by Lex. 

The process of EDL input to HASE model generation is shown in Figure 29. The full 

EDL grammar is presented in this report as Appendix A. 

EDL Based Model 	 I Tokenised 	 Parse 	Generate HASE 
Specification. 	

LEX 	
EDL 	

YACC 	
Tree 	Data Structures 

Figure 29 - EDL input mechanism 
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PROJECT 
PREAMBLE 
MANE "prjsimple" 
DESCRIPTION ("Sender and receiver") 

PARAMLIB 
STRUCT(DataPacket, [RINT(ProcessorNo,O),RINT(NoOfBytes,l)]); 
LINK(SimpleLink, [(DATAPKT,RSTRUCT(DataPacket,DP))]); 

GLOBALS(RINT(PacketsToSend,2) ;RINT(PacketsReceived,2); 

ENTITYLIB 
ENTITY sender 

DESCRIPTION ("Sender entity") 
PARANS (RINT (delay, 1);) 
PORTS (PORT (OUT, SimpleLink, portr);) 

ENTITY receiver 
DESCRIPTION ("Receiver entity") 
PARANS (RINT (delay, 1);) 
PORTS (PORT (IN, SimpleLink, portr) 

LAYOUT 
LENTITY sender SENDER 

DESCRIPTION("Instance of sender entity") 

LENTITY receiver RECEIVER 
DESCRIPTION("Instance of receiver entity") 

CLINK(sender.SENDER[OUT]->receiver.RECEIVER[IN],5); 

Program 2 - Sample of EDL file 

A typical fragment of EDL is shown in Program 2. This simple description defines a 

model containing two entities - a sender and a receiver (the model is described textually by 

the PREAMBLE section). 

The entities are defined in the ENTITYLIB section of the EDL file. The specification 

includes a short textual description, a parameter that characterises the entity (in this case 

some 'delay' related information) and a description of a single communication port. 

The ports are further defined as allowing connection to a link of type SimpleLink 

that is defined in the PARAI'4LIB section of the EDL. The PARAMLIB allows the definition 

of data structures and types that can be used in the construction of simulation models. In this 
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example. the structure of a data packet is defined and then this structure is bound to the 

SimpleLink type. In essence, the EDL file describes the component's logical structure. 

As mentioned in section 3.4.2, another file referred to as the Entity Layout File (or 

ELF), complements the EDL file and contains information relevant to the physical display, 

i.e., where components, ports and displayed variables are positioned on the screen. 

Continuing our simple sender receiver example, Program 3 presents a very simple ELF file 

for the sender/receiver model and illustrates how port information and entity co-ordinates are 

assigned. Other, more complex facilities exist within the ELF format to allow the assignment 

of animated icons, dogleg routed links and dynamic textual labels to simulation entities. 

Figure 30 illustrates the on-screen rendering of the EDL and ELF files given above. 

SENDER 	position (20,20) 
SENDER port OUT side RIGHT position middle 
RECEIVER : position (200,20) 
RECEIVER : port IN side LEFT position middle 

Program 3 - ELF Fragment. 

_lnI XII 
File Library Edit 	 Tools Help 

\ 4d ' ie 	Burid 	S imulate 	Epterneril 

Pioject None 
Directory: None 

Sender 	 Receiver 

Design Status: Idle 	- - - 	 [Selected None 

Figure 30— On-screen display of sender/receiver model. 

86 



3.6.1 Round Trip Editing 

In keeping with the idea that some tasks are better suited to a graphical editor and 

others to code manipulation, the RASE environment provides round trip editing. 

This means that both the EDL and ELF descriptions can be edited via the GUI or a text 

editor (both EDL and ELF are human readable) without concern for previous editing 

decisions. The editing cycle (or round trip) available in HASE is illustrated in Figure 31 

below. 

HASE GUI 
Manipulation of on-screen entities 

- 	P 
Load/Reload 

"\ 

 
Project IW 

and 

EDL Ii 
Edted text sanedtO 
the EDL Pie and then 
the current projects 
reloaded' 

ELF  

Edified text 	àved t: 
the ELF file and the 
'reloadtrefresir' the 

design window 

Load Tent 
Editor 

Manipulation of EDL/ELF source 

Text Editor 

Figure 31 - Round trip editing of EDL and ELF files. 
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3.7 Facilities for Modelling Hierarchy 

The hierarchy shown in Figure 32 represents a model of a communication system 

consisting of two callers and a public communications network. This hierarchy shows the 

relationship between all the model's entities. 

HASE supports the notion of a model hierarchy in either (1) a graphical sense or (2) a 

behavioural sense. 

3.7.1 Graphical Hierarchy 

Firstly, in terms of HASE's graphical interface, a model can be represented on screen 

in a hierarchically structured figure. The mechanism for exploring this figure is provided by 

'expand' and 'collapse' functionality in the GUI. 

Model of 
communication 

[Caller:  A 	L PSTN: A 	FCaller: B 

[Comuter A Hem A 

Figure 32 - Model Hierarchy. 

Figure 33 and Figure 34 illustrate how the visual hierarchy is navigated by use of the 

'expand' and 'up level' (i.e. close) menu commands. Note the entities visible on screen are 

marked with a blue band in the corresponding entity tree. In addition, we see how HASE's 

context sensitive menus change with respect to the levels of hierarchy (i.e. 'expand' is no 

longer available at the leaf node entities). 

Computer:
B 	

Modem:B 
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Model of 
CoDE 	 communication 

Caller: A 	PSTN: A 	Caller: B 

/\ 

Computer: A 	Modem: A 	 Computer: B 	Modem: B 

ls H& 

v avaleJ 	Boid 	 Eçrter 

Pra1ect mode6 
Diectoiy 

Satu& Ida  

Figure 33 - The entity tree before an expansion operation. 

89 



OIAR 
phase 	 TaD 

II  

KEY 	 Model of 
coce 	 communication 

Caller: A 	PSIN: A 	Caller: B 

/\ 

Computer: A 	Modem: A 	 Computer: B 	Modem: B 

Ecpefmert 

Protect nxxieE 
Qiectcxv d'Hase\Pro4edAMode 

: S.Wkb StatLw Ie 
	

S&eced 

Figure 34 - Entity tree after expansion. 

3.7.2 Behavioural Hierarchy 

The second hierarchical notion supported by BASE is that of behavioural code 

placement. By use of the 'simulate at this level'/'simulate at lower level' toggle the user can 

indicate which components in a model's hierarchy should execute their behavioural code for 

a given simulation run. Figure 35 shows the parameters dialog for one of the 'Caller' entities 



in the communication example. The check box labelled Simulate Level allows the user to 

specify whether code provided at the 'caller' level of the hierarchy should be executed or 

whether lower level I-IASE±± code should be used provided in the 'computer' and modem' 

entities. 

I 	 - Dlxi 

ise FLame 

Irrta4am  

SgruLate Leve f LOWER 

Paameres V&ue 	 D 	MO& 	 Ep Tm 

CLEAR 	 J 
hu 

OK _________ 

Figure 35 - Selection of behavioural code. 

Prior to the work described in this thesis, much use had been made of the visual 

hierarchy but none of the simulation code hierarchy. In all previous simulation models, code 

had only been provided in the leaf nodes of the entity tree. 

3.8 Summary of HASE Development 

This final section summarises the contributions made by the author to the current 

version of the I-IASE environment. 

At the start of this research, the HASE project lacked facilities for a textual 

representation of a model (and consequently round trip project editing). The EDL (see 

section 4.1) language was devised and implemented 22  to address this deficiency. EDL also 

provides a target model representation for the MEDL modelling language. 

22  The implementation of EDL was performed in collaboration with Paul Coe (HASE group). 



MEDL is the representation used in the modelling tools developed as part of this 

research. The modelling tools include an inter-entity communication analyser (section 6.6.1), 

a hierarchy viewer (section 7.8.2) and library management tools (chapter 5). Associated with 

these tools are two new file types COMM (used by CommTrace) and HIER (generated by 

the hierarchy view). 

The final impact of this research on the HASE software package was the integration of 

a new modelling mode within the main RASE GUI. The HASE validation mode (section 

3.3.2) was added to allow a development path between the main HASE simulation window 

and the external tools. 
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Chapter 4 

The Entity Interconnection Problem 

This chapter explores the problems associated with providing facilities for both entity 

reuse and abstraction in RASE. By examining current modelling practice and investigating 

why levels of component reuse have been low in previous HASE-based projects we show 

how the areas of entity reuse and model abstraction are closely related. 

We propose a system that attempts to facilitate the loose coupling of simulation 

components therefore aiding both reusability and model abstraction. Although HASE is used 

here as the vehicle for discussion, the following applies equally well to other event—driven 

simulation environments. 

4.1 The HASE DASH Node Model 

As a vehicle for this exploration, we use a small (but typically constructed) simulation 

model based around a subsection of a large HASE simulation model of the Stanford DASH 

architecture [Williams96]. The model serves to introduce typical EDL constructs and model 

features (such as ports, links and entities). 

Our demonstration model represents a single processing node of the DASH 

architecture and is a modified version of a model in regular use as an interactive tool for the 

teaching of an undergraduate course in computer architecture [Coe96, Coe97]. The DASH 

processor node is composed of a MIPS R3000 processor, primary and secondary cache 

memories and a bus interface [Lenoski92]. In order that the node can be exercised, we will 
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also represent a generic bus and memory unit. The model configuration and communication 

paths are illustrated in Figure 36. 

PCache 

Figure 36 - DASH Processing Node Configuration. 

As described in section 3.6.1 the designer of a HASE model can use both the GUI and 

the raw EDL files to specify a project design. In either case, the model will be represented on 

screen via a diagram and textually in an EDL file. For the purposes of this section, we will 

discuss the essential elements of the EDL representation of the DASH node mode 123. 

4.1.1 Introduction to EDL File Structure 

EDL models start with a PREAMBLE section that defines meta-information about the 

project such as author, version, code location (as absolute paths) and a brief description. For 

a full explanation of the preamble (and all other) EDL syntax, readers are referred to 

[Coe97b]; a grammar for EDL can be found in Appendix A of this thesis. 

Following the preamble, the EDL file is divided into four major sections. Each of these 

sections is described below. 

4.1.2 EDL Parameter Library Definitions 

The first EDL section following the preamble is the PAPAMLIB (or parameter library). 

This section of EDL allows the definition of custom data types; EDL supports certain 

23  For completeness, the entire EDL file for the DASH node model is given in Appendix C. 
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primitive data types as standard (integers (RINT), floating point numbers (FLOAT), character 

strings (STRING) and arbitrarily large integers (HINT) are all supported). 

An example of a user defined parameter from the DASH node model is the 

mips state enumeration which defines the set of states that the MIPS processor can 

enter during a simulation run (see Program 4). 

ENUM (mips state, [N WAITING:mips waiting 
MRUNNING : mips running 
N STOPPED:mips 1); 

Program 4—mips_state enumeration. 

More importantly, in the context of this work, the parameter library is the place in 

which communication link types are defined. The definition of link data type involves 

creating the data types to be passed along a link and then binding these types to a LINK 

parameter. Later we see how these link definitions are in turn bound to entities' ports. 

-- Struct definition for simple data packet and its associated link param 

STRUCT (plstruct , [RINT (p1_address , 0) 
RSTRING (plrw, 
RSTRING (phd, 

LINK 	(p1—link , [(DATAPKT , RSTRUCT(plstruct, DP))]); 

Program 5 - Definition of a link parameter 

Program 5 illustrates the creation of a data structure (STRUCT) composed of one 

integer (named p1_address) and two strings (pl_rw and phd). Once defined, this 

structure is made available through the parameter type pl_struct. The creation of a link 

type (named p1 link) which is capable of passing messages of type (plstruct) is then 

made by defining a packet type name (in this case labelled DATAPKT) and associating it with 
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an instance of the structure plstruct 24 . The resulting data structure is illustrated in 

Figure 37. 

Binding of pi_struct 
to p1_link 

p1iink—.------

pi_struct 

INT p1_address 

*[STRING pl_rw 

[iiIN
G 	 id STRING 

 37 —p1_link Structure. 

4.1.3 EDL Global Declarations 

The next section of an EDL project definition is the declaration of a project's 

GLOBALS. These global variables are accessible by all entities in a simulation model. 

Program 6 shows two of the global variable declarations for the DASH node model 

(representing the delay for a MIPS processing cycle and the size, in lines, of the primary 

cache respectively). 

GLOBAL S 
RINT ( mips delay , 1 ); 
RINT ( p_cache_size , 8 ); 

Program 6 —Global Variable Declarations 

24  Note the STRUCT is referenced by the RSTRUCT command 
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4.1.4 EDL Component Definitions 

The EDL description continues with the definition of the entity library (ENTITYLIB). 

This section is further divided into the specification of atomic entities and composite entities. 

Atomic entities are defined by specifying a type name, short description, local 

parameters (for use only by this entity type) and any communication ports. Program 7 shows 

the atomic entity definition for the MIPS processor (actually the MIPS entity is an abstract 

mechanism for address generation, it does not model specific features of the MIPS real 

processor, rather it provides a stream of address requests via a predefined trace - see section 

4.2). In this example, the previously defined link parameter (p1 link) is bound to the port 

named p cache. EDL also allows the specification of a bitmap name that will be used to 

represent the port on screen; in this case, an icon file portdot . bmp is specified. HASE 

automatically checks for the existence or either a . gi f or .bmp file (i.e. specification of the 

extension is implicit). If no icon is provided HASE provides a default image. 

ENTITYLIB 
ENTITY mips 

DESCRIPTION ("Nips Address Generation Box.") 
PARANS 

RINT (TC,O); 
RINT (TRACES,0); 
RARRAY (memory trace,mem trace); 
RENUM (mipsstate,curstate,O); 

PORTS 
PORT (p-cache, plunk, portdot); 

ATTRIB () 

Program 7 - Typical Atomic Entity Definition. 

Composite entities are defined in terms of their sub-components. Sub-components are 

declared in the DESCENDANTS section. The child entities are listed along with their 

coupling specification. Whilst the syntax of the coupling command (CLINK) is 'portX -> 
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portY' nothing about the direction of traffic on the link is implied; all links are bi-

directional. 

COMPENTITY node 
DESCENDANTS 

CHILD (mips , MIPS , ATTRIB  
CHILD (p_cache , P CACHE , ATTRIB  
CHILD (s_cache , S_CACHE , ATTRIB  
CLINK (mips .MIPS [p cache] -> 

p_cache. P_CACHE [mips] , 1); 
CLINK (pcache. PCACHE[s cache] - > 

scache.SCACHE [p_cache], 1); 

DESCRIPTION ("Node Containing MIPS box and caches") 
PARAMS 
PORTS 
ATTRIB 

Program 8 Composite entity Definition 

Closely related to the coupling specification is HASE's mechanism for hierarchical 

model construction. This mechanism is referred to as 'free-port resolution'; when an EDL 

project file is parsed (or when ports and links are graphically manipulated in HASE's design 

window) a list of all ports in a composite entity's children is created. As the coupling links 

are formed between the various child components, each linked port is removed from the port 

list. After all couplings for the composite entity have been processed, any ports left on the 

list are considered 'free'. These ports migrate to the higher-level entity and form the 

input/output ports for the higher-level structure. This situation is illustrated in Figure 38 

where we see composite entity XYZ inheriting the free ports of children X, Y and Z. 
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Figure 38 - HASE's 'free-port' Mechanism. 

4.1.5 EDL Layout Definitions 

The final section in a project is the LAYOUT declaration. This section specifies 

instances of the entities previously described in the entity library. Essentially this section 

defines the simulation model structure. A section of the DASH node layout declarations is 

shown in Program 9. Instances of entities are linked to each other using the CLINK 

command in the same way that composite entities are formed. 

LAYOUT 
LENTITY node NODE 

DESCRIPTION ("Single DASH Node") 
ATTRIB () 

CLINK (mpbus .MP BUS [to_c_memory]-> 
cmemory.CMEMORY[frommpbus] , 1); 

Program 9 - Layout Declarations 



4.1.6 Communication Nomenclature 

The DASH node demonstration model is hierarchical in structure. In order to describe 

the relationships between the model's entities we now define some general terms with which 

to describe entity communication mechanisms. 

Figure 39 shows a generic entity 25  (labelled EA(o))  and the various terms associated with 

its communication mechanisms. In the figure, entities EA(o), EB(o) and Ec(o exist at the same 

level of abstraction (some arbitrary level '0') 

Pab 	 Pab' 

0 

L A0 
	

Ec(o)  

Pab 
	 :IBC 

En 

EB(-l) P C 
4 

Figure 39 - Identification of HASE Model Attributes 

Entity ports are labelled P,, where x is the port name. Ports are connected together by 

links. Links carry data between ports according to some data packet definition and 

programmer defined protocol. For example, ports PA and PB communicate using protocol Pab. 



We term the set of ports, links and protocols, which connect together two entities as the 

interface. For example, entities EA(o) and EB(o)  have an interface 1AB• 

As HASE supports model hierarchy we can see that in our example EB(o) has two other 

representations. These are a more abstract version Es(l) and the more detailed representation 

EB(1). We refer to entities that belong to the same level of abstraction and which are 

connected to each other, as being horizontally linked; we refer to this sub-set of an entity's 

ports, protocols and data structures as being its horizontal linkage. Similarly, entities linked 

across different levels of abstraction are said to be vertically linked; the communication 

attributes of these vertically linked entities is termed the 'vertical linkage'. 

4.2 Summary of DASH Processing Node 

Having examined the structure of a project's EDL definition and the general 

communication mechanisms used by a HASE model, the details of the DASH node model 

will now be consolidated. 

Each entity in a HASE model has a behavioural description (coded in C++ with 

HASE++ extensions as described in section 3.2.2). This code manipulates the parameters of 

an entity and co-ordinates entity communication. The following list describes the behaviour 

of each of the DASH node's entities. 

. MIPS Processor: This entity reads a previously created text file description of 

memory addresses and access types (read/write). Each line of the input file consists 

of a triple specifying an address, an identifier for instruction or data access and the 

access type (read/write) 26 . Rather than being a detailed processor description, the 

25  I.e. the entity is not DASH node specific. 
26  In fact, the model only ever uses data references as only the data path is modelled. 
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entity simply issues read/write requests according to the contents of its input file (a 

sample input file is included in Appendix Q. 

• Primary and Secondary Caches: The caches are the most complicated entities in 

the DASH node simulation. The primary and secondary cache models describe 

direct-mapped write-through and direct-mapped write-back caches respectively. 

Each contains an array parameter to store memory contents and each has a state 

parameter used to track the cache's state (hit, miss or idle). 

• Node: The node entity is the only composite entity in the model. It has no 

behavioural specification itself. It is used as a useful container for the lower level 

MIPS and cache entities. As such, it is used in the model's graphical display to 

'hide' lower-level communication detail; allowing (where appropriate) the user to 

concentrate on node to memory communication across the bus. 

• Bus: The bus is simply a message forwarding entity. Memory and cache bound 

packets are forwarded across the bus after a parameterised delay. 

• Memory: The memory unit is modelled as a simple fixed delay. It also has an on 

screen display reflecting whether the last access was a read or write. Interestingly, 

the memory unit does not model addresses or values. This is because the DASH 

node model is primarily a vehicle for cache evaluation and as such, the main 

memory contents do not need to be modelled. 

4.3 Model Reusability 

One of the main goals underlying HASE's inception was to provide a high level of 

model reusability [Hug99,Ibbett96]. Accordingly, HASE's main support for model reuse was 

to be a component library from which simulation entities could be taken and used in new 

simulation models. 
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In trying to provide library facilities within HASE, the issue of reusability has been 

shown to be problematic. In early versions of HASE, the user employed a graphical user 

interface to select components from either a global library of "approved" components or a 

private local library. In fact, this system provided little more than a solution to component 

storage and offered no real facilities for integrating stored library components into new 

simulation models. 

In the present version of HASE, models are specified via an EDL file. Consequently, 

all entities have a text file based representation making the storage issues addressed in early 

library interfaces trivial (a component can be inserted/removed into/from an entity library 

file via a text editor's cut and paste facilities!). 

However, the present notion of a HASE library remains nothing more than a way to 

collect entities in a single place and consequently offers little to encourage model reuse. 

4.4 The Problem of Message Overloading 

HASE offers an open message passing mechanism that allows any C++ data structure 

(modelled in EDL) to be passed between entities via the event queue. 

This affords the programmer flexibility to specify detailed communication protocols in 

the behavioural code definition of connected entities. However, as HASE offers nothing 

more formal than HASE++ macros to facilitate the transport of messages between entities 

(i.e. via the event queue manipulation macros SEND PKT () and GET NEXT ()) it is 

possible for the programmer to specify a very complex inter-entity protocol based upon 

specific values passed in event messages. These messages form the inter-entity control 
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mechanism for a RASE simulation 27  (intra-entity control being specified in the C++ 'body' 

of an entity). 

For example, in section 4.1.2, we saw the definition of the link type pistruct (in 

the full scale DASH multiprocessor simulation, this was one of several link types used). The 

first field of type pistruct contains a memory address value. The second field actually 

has multiple uses; either marking a packet as a read/write request/reply (as originally 

intended) or overloading the field to take some control code value (used to co-ordinate the 

protocol, or change the state of another entity). The third field is similar to the second in that 

it specifies whether a request/reply contains an instruction/data item or some control code 

information. 

The use of communication structures in this manner requires the entities at both ends of 

a communication link to have an intimate knowledge of the way in which the other remote 

entity uses the message structure fields. For example, if the read/write field is overloaded 

with the value 'reset', because (say) the field was freely available to the entity's 

programmer, then the receiving entity must be able to understand what the remote entity 

means by 'reset'. 

The assumption that certain fields will be used for more than one type of data (e.g. 

Read-Write/Instruction-Data classification and Control data) is not unrealistic; in fact, the 

vast majority of HASE models currently fit into this category. 

27  Excluding communication via global variables. 
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4.4.1 Tight Coupling of Entities (Low levels of horizontal abstraction) 

This thesis proposes that this ad hoc use of message structures is central to the problem 

of reusability because it limits the ease with which an entity can be removed from a model 

and another inserted in its place. 

As HASE has previously placed no restrictions on the values of a field other than by 

the data types described in EDL, the encapsulation of an entity's communication protocols is 

difficult. Such entities can be referred to as being 'tightly coupled' (i.e. the behaviour of an 

entity relies on the way in which specific message structures are used in remote entities). 

For example, suppose one of the DASH node entities was removed from the model and 

stored in some form of library facility for later reuse. Any model attempting component 

reuse must ensure that entities connected to the library-based component conform exactly to 

the protocol implicitly specified by the behaviour of the library component. All message 

structures generated by and received from the library-based entity must be used in the 

'appropriate' manner. 

This problem is concerned with the level of horizontal abstraction in the model; i.e. the 

level of independence an entity has from its communication interface(s). 

4.4.2 Current Tight-Coupling Solutions 

Of course, it is possible for a modeller to examine the behavioural description of a 

stored entity and carefully form an understanding of its specific message structures and 

behaviour. However, as HASE affords the programmer complete flexibility over the way 

messages are structured, individual programming styles and practices often make the task of 

understanding protocols tedious, time consuming and error prone. Typically, stored 

components will require a degree of reengineering in order for them to work in a new model. 
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Another approach to overcoming the tight coupling of simulation entities is to build a 

set of compatibility interface entities for stored components. These entities sit between the 

stored entity and its remote communication partner(s). The compatibility entity simply acts 

to translate messages passed between communication entities. This approach still requires a 

full understanding of message structure use and protocol timing, however it does allow the 

stored entity to remain unmodified and helps separate the concern of entity communication-

compatibility from that of behaviour. This situation is illustrated in Figure 40 where entity 

'A' has been extracted from some library system and inserted into a model consisting of 

entities 'F' and 'C'. Entities used to convert communication structure fields have been 

inserted between 'F' and 'A', and between 'C' and W. This approach will incur a 

simulation overhead in converting message formats. 

Neither of the above solutions is effort free; whilst the latter removes some of the need 

for direct modification of the library component's behavioural code, a full understanding of 

the idiosyncrasies of the component's communication mechanisms is still required. 

In object-oriented software engineering, it is possible (at least in theory!) to substitute 

different versions of an object with relatively little effort. The mechanism that permits this is 

the formal method declaration. Providing each substituted object has a matching method 

name (and suitable parameter list), objects can interact with each other. Of course, no 

assumptions can be made about the correctness of an object's behaviour. In HASE, there is 

no support for restricting 'available' methods in terms of inter-entity communication. 
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Figure 40 - Use of Compatibility Interface Entities. 

4.5 Use of Global State 

Aside from the level of horizontal abstraction available at inter-entity interfaces, 

another entity reuse problem currently encountered in HASE is reliance upon global state 

information. We saw in section 4.1.3 how the DASH node model uses the EDL GLOBAL 

declaration to define global parameters within the model. For example, the declaration 

RINT ( p_cache_size , 8 ); 

is used to declare the size of the primary cache in lines. This variable is then open to any 

model entity wishing to base calculations upon the size of the cache. This is another clear 

breach of data encapsulation. Another typical use of the GLOBALS declarations is to assign 
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ID's to a set of entities of the same class (e.g. to assign a unique index to each processor in 

an array). In order that an entity that references a global variable be reused in a different 

model, the new model must provide the same global variables. In addition, access to these 

global variables must be identical to that found in the original entity definition. Misuse of a 

global variable (i.e. non-compliant access) may result in a modelling error. All recent HASE 

models have made extensive use of global variables for high-level model co-ordination. 

Again, in many high-level object-oriented programming languages the use of global 

variables is disallowed to overcome similar problems. 

4.6 Use of Non Port-Based Communication 

The problem of encapsulating communication is further exacerbated in some HASE 

models by the programmer's decision to circumnavigate the port/link constructs entirely. 

This is possible by scheduling events to entities directly, via use of the 

sim schedule hand sim.getentityid(") methods ofHASE++. 

As each entity in a HASE model has a unique identifier (a character string 

comprising type name and instance name - see section 3.2.4) it is possible to obtain a 

pointer 28  to any simulation entity (given prior knowledge of an entity's name) via the 

sim. get_entity_id () method. Having obtained a pointer to a remote entity, a 

message can be sent to it by use of the sim_schedule () method (using the previously 

obtained pointer as a parameter). The event will be received, at the scheduled time, by the 

remote entity, however it not is received at a specific port. The event can be retrieved using 

the usual GET—NEXT (ev) macro (Typical behavioral code for this approach is given in 

28  A pointer in this sense is a HASE++ sim entity_id typed variable. 
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Program 10). The from_port (port) primitive described in section Chapter 0 will not 

have any value for an event transmitted in this manner. 

This communication mechanism is illustrated in Figure 41, which compares standard 

port based event transmission (labeled method 1) with the non-port based communication 

(method 2) described above. 

// Find the id of the entity to send to 
simentityid ei = sim.get entity id("ENTITY NAME"); 

//send the event 
sim schedule (ei 3 O. 0, DATAPKT, SIMPUT(tDataPacket)); 

Program 10 —Use ofsim.get_entity_idO. 

One possible motivating factor for programmer's to use the above communication 

method is that the on-screen complexity of a design is reduced (links need not be drawn, and 

events not animated). However, this approach requires an entity's behavioural code to have 

'hard-coded' knowledge of communication partners (i.e. their type/instance names). 

Encapsulation of an entity that employs the above method is difficult, as the entity is 

required to store knowledge of other objects in the model. The redeployment of such entities 

will necessarily involve modifying the entity's behavioural description. 
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Figure 41 - Comparison of Port and Non-Port based Communication. 

4.7 Reusability and Vertical Linkage 

The ability to easily replace an entity is desirable not only in terms of component reuse 

but as an enabling method for hierarchical modelling. Such an environment requires that a 



model can reflect a real world system at varying levels of abstraction. It is advantageous if 

the reconfiguration of a model into various abstract representations is a simple procedure. In 

HASE, the reconfiguration of an entity abstraction hierarchy results in a flat simulation 

model. This is because HASE generates hierarchical models using the composition relation 

(see section 1.3.3). The task of forming a new entity composition is essentially the same task 

as inserting library components into an existing model (i.e. a subsection of the model is 

replaced by different entities). 

By using entities that avoid the trappings of tight coupling (as described in sections 

4.4-4.6) it should be possible to loosely couple entities not just horizontally but also 

vertically (across multiple abstractions). 

4.7.1 Hierarchical Modelling in HASE 

The current version of HASE allows models to be generated at different levels of 

abstraction via the 'Simulate level' switch on an entity's 'parameters' dialog (section 3.7.2). 

The state of the 'Simulate level' switch, combined with the 'build model' command, forces 

code to be compiled for a particular combination of entity abstractions. Figure 42(a) and (b) 

illustrate the C++ files generated for two different abstractions of model 'M'. 

Whilst HASE provides facilities for model composition and generation, no 1-IASE 

project to date has used behavioural code at more than one level of abstraction. 

Conversely, one of HASE's most well used features is the hierarchical model display. 

In a simulation supporting the investigation of various combinations of parallel architectures 

and algorithms [lbbett96b,Ibbett97], it was used to great effect by reducing the complexity of 

a model's on-screen design, allowing users to concentrate on (say) the global partitioning of 

an architecture's resources rather than lower level communication detail. This mechanism 

has been used in various other projects in a similar way [Williams96, Coe95, Rafferty97] 



HASE therefore supports two types of design hierarchy - an on-screen, interactive 

representation of a model and a behavioural description of a particular model abstraction. 
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Figure 42 - Generation of Code According to Abstraction. 
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4.7.2 Simulation Model Aspects 

The ability of a model to represent different hierarchical relationships (e.g. graphical 

and behavioural) is discussed by Luna [Luna93] and a useful taxonomy of so-called 'model-

aspects' is described. The four model aspects identified by Luna are outlined below: 

System Aspect: This is a preconceived model of the system - based on observations. 

Typically, this is manifested as the modeller's mental model of the real-world 

system. It is this aspect where the modeller considers the hierarchical structure of the 

real world system. 

Representation Aspect: This is the expression of a model via some form of 

notation. This could be graphical (an on-screen figure) or mathematical (series of 

equations). The representation presents the model to the user in a readily 

comprehensible form (usually abstracted away from actual implementation details). 

Implementation Aspect: This is the representation of the model as some form of 

computing device implementation (e.g. the model's source code). 

Organisation Aspect: This aspect refers to the organisation of a model's 

implementation. This is typically concerned with the simulator or (as in the case of 

HASE) the simulation environment and its relationship with a model's components. 

Luna relates these model aspects to the four types of hierarchical relation described in 

sections 1.3.2-1.3.5 stating which relation(s) can be applied to the various aspects. The 

applicability of the various relations to the model aspects is given in Table 2. 

Model Aspect 	Representation 	Composition 	Substitution 	Specification 

System 

Representation 	X 	 X 

Implementation 	 X 

Organisation 	 X 	 X 	 X 

Table 2 - Hierarchical Relations and Model Aspects 
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4.7.3 Hierarchical Relations and Model Aspects in HASE 

In HASE, the ability to manipulate the model's hierarchy graphically (allowing 

exploration of a sub section of interest to the modeller) is an instance of the representation 

relation applied to the representation model aspect. This relation/aspect combination is the 

one most commonly found in simulation environments. For example, Orca Inc.'s VSE 

(Visual Simulation environment) [Orca97] allows the construction and organisation of a 

discrete-event simulation model via on-screen entity manipulation. VSE allows several 

entities to be 'grouped' together and represented by a single meta-icon, a model's structure 

can then be defined in terms of these higher level constructs. However, VSE only defines 

simulation behaviour in the lowest level entities in the graphical hierarchy. This use of a 

graphical design hierarchy and a 'flat' behavioural description is also employed by the 

SIMAN/Cinema package combination and in MODSIMIII (see section 2.5.4). 

Whilst the combination of the representation relation and representation aspect allows 

manipulation of a hierarchical 'view' of a model, it is important to note that executable code 

only exists at the leaf nodes of the graphical tree. 

In addition to this graphical hierarchy, HASE allows the specification of different 

abstract behavioural representations of a modelled system. This is facilitated by the 

substitution of a composite entity for several (atomic or composite) lower-level entities. In 

terms of Luna's taxonomy, this is the use of the substitution relation in the organisational 

model aspect. However, Luna notes: 

"It appears, however, that organisation of model elements by 

substitution, so that a user may select one of several elements based on the 

desired simplicity or complexity, still needs to be implemented." 
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Clearly, HASE supports the structures needed for the substitution relation, however 

this facet of HASE remains unexplored due to the difficulties associated with tight entity 

coupling. 

4.8 Related Research 

The problem of creating a development environment supporting model reuse is not 

new and has been addressed in other projects. The following sub-sections outline various 

previous research efforts that go some way towards offering a solution to the problem of 

model reuse. 

4.8.1 Model Component Representation. 

At the University of Manchester, an investigation into methods for facilitating model 

reuse proposed the use of an object-oriented database as a model repository and a wrapper 

front-end designed to wrap/unwrap model components depending on the requirements of a 

programmer's command/query [Lee96]. 

One of the main underlying concepts used in the design of the model repository based 

system was that: 

"To fully support model generation through the use of a model library, 

the atomic model component should be able to represent sufficient 

knowledge about its utility and areas of applicability, and should have some 

mechanism to assist in fulfilling a modelling decision." 

This requires that, unlike most conventional simulation models that specify only the 

behaviour of a component, both interface specification and some indication of intended 

usage be given. 
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Lee and Zobel describe three knowledge representations (originally described in 

[Gruber92]) that can be added to a model/library component in order to aid in the selection 

of components for a new model: 

Applicability Conditions: If these conditions hold; the behaviour represented in 

the component will occur. These conditions are generally specified by two 

subtypes: 

. Structural preconditions, which describe the data-types and configurations 

under which a model will operate (i.e. the environment into which it must be 

integrated). 

. Behavioural preconditions which state the dynamic conditions under which a 

model component operates (i.e. a specification of the acceptable input to a 

model in order that the expected behavioural output be produced). 

Behavioural Representation: This specifies how the real world entity reflected in 

the model is represented. Typically, a component's behaviour will be either discrete 

or continuous. 

Model Selection Heuristics: These are used to guide a search of the model 

repository in order to find components suitable for (re)use in a new project. The 

heuristics generally specify domain-specific information which can be used in 

deciding the level of applicability of a given repository component. 

In the current version of HASE, there is no library functionality other than 

save/retrieve. Ideally, it ought to be possible to select suitable components from alibrary 

based on the modelling problem in hand. For example, in a memory hierarchy simulation 

that includes a cache unit, a designer should to be able to select suitable substitute cache 

components from a library. This would require the library to hold some form of 'knowledge' 

about the components it contains (such as a component's input/output facilities and the 



domain of its intended use). Essentially there needs to be some way for HASE's library 

facilities to classify components available for use. 

4.8.2 Interface Oriented Classification 

At Daimler-Benz similar concepts to those expressed above regarding model 

classification (according to structure and available knowledge of entities) have been 

expressed as extensions to the well-known DEVS (Discrete Event System Specification) 

formalism. 

DEVS is a set-theoretic formalism that specifies discrete-event models in a hierarchical 

modular form [Zeig1er84,Zeigler90]. In DEVS, models are either atomic (i.e. describe a basic 

system component) or coupled (which define more complex system components in terms of 

atomic models). Coupled and atomic models may be used as sub-components in new models; 

DEVS models are hierarchical in structure. 

Thomas [Thomas94] explains that whilst DEVS models contain both behavioural and 

structural knowledge, the effective re-use of models requires a third type of knowledge - 

taxonomic. Taxonomic knowledge represents the common properties of models and the 

propagation of these properties through inheritance. By using the taxonomic information, 

models can be ordered into classes that aid the selection of models for reuse in different 

projects. 

More formally, a class of models M is a subset of all models M in some context. The 

class is identified by its name c that is a member of the set of all names C. In order to classify 

a model, a classification criteria is given via a functionf. This function checks all models 

under consideration (say in a given library) for the properties of interest. 

f:M—+C and M={meMIf(m)=c,cEC} 
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In typical simulation systems, models are implicitly classified according to their 

implementation (i.e. they are in the same class if their implementation is the same). This 

classification criteria is of little use when considering model reuse - rather (Thomas suggests) 

we are more interested in which inputs a model can process and the corresponding outputs a 

model will produce. These details can be obtained by examining a model's interfaces. 

This classification lends itself well to the DEVS formalism in which atomic models are 

described by the following: 

. X: The set of input ports through which external events are received. 

. Y. The set of output ports to which external events are sent. 

. S: A set of state variables and parameters (DEVS models usually have at least 

two state variables: phase and sigma. The model stays in current phase until 

time sigma has passed). 

. A time advance function r used to control the timing of internal state 

transitions (when the sigma state variable is present this function returns the 

value of sigma). 

. State transition functions S specifying the next state assumed by the model on 

the next internal or external event. 

. An output function X that generates an external output before an internal 

transition takes place. 

The model can therefore be described by the structure: 

M =(X,Y,S,8,2,r) 

Coupled DEVS models are described by a set of component names D and the 

corresponding set of models {M,}. Coupling of the model's components is specified by a set 

of influences (output to input port mappings) I, a set of output/input relations Z jj  for 
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component/influencee 29  pairs and ç a tie-break select function (this function embodies the 

rule employed to decide which component is allowed to carry out its next event). A coupled 

model can be described by the following structure: 

N 

DEVS (like HASE) uses the notion of ports to structure input and output to/from a 

model. The input (X) and output (1') sets of a model can be described as follows: 

X{( n, v )l nE Nx, vE V} and 

Y{(n,v)jnEN,vEV} 

Where NV and N' are the sets of input and output port names and vEV is the information 

represented in the messages (i.e. the external events). Whilst this approach to structuring 

input and output provides a sound mechanism with which to formulate inter-model coupling, 

we cannot infer anything about the correctness of the linkage between two ports in a coupled 

model because the only knowledge of the port structure is whether a port is used for input or 

output. 

In an effort to address this problem, Thomas suggests the use of typed inter-model 

messages. Each message is formed by a triple (n,u,v) where n is a port name, u is a message 

type name and v holds a value within the type u's range. 

Using this message-triple notation the input and output sets (X and Y) of a model can 

be described as: 

X = {(n,u,v) I n e NX,u  E U,,v E J/} and 

Y ={(n,u,v) I n E N,u e U,v E V} 

29  An influencee is a subcomponent that will receive the output of a component. 
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where N' and N' are the sets of input and output port names respectively. Thomas assumes 

that types with identical names have identical ranges and the range of a type does not change 

with respect to time. 

We can now describe all valid input messages to the model along with all possible 

output messages a model can generate by: 

J_<pXpY > 

where 	p" =< NX , {U In c= NA'} >is 	the 	set 	of 	input 	ports 	and 

pY =< N',{U In e N Y  ) > is the set of output ports. The structure I is referred to as the 

model's interface. 

Thomas goes on to show how the interface of a coupled model may be specified by 

examination of its constituent components' interfaces. 

Finally, relations that can be used to classify models according to their interface are 

given. Models can be placed in the same class M if their interfaces are equivalent, i.e.: 

	

A,B e M 	= 'B = 'C 

Ordering of models according to their classification is also possible. For example, if 

some classA contains the interface of another classB, the relationship between the classes can 

be described by the ordering relation: 

'c/ass/I 	'classil 

This ordering relation can be used to classify models in a similar way to the inheritance 

properties of objects in languages such as C++ and Java. For example, "classB is derived 

from classA". 

We believe that mechanisms based upon the techniques developed by Thomas could be 

applied within the RASE environment to aid the modelling process; firstly by providing a 

method of checking a link's syntactical correctness (allowing only ports of compatible types 

120 



to be connected) and secondly by facilitating interchangeability testing. This testing would 

identify cases where models can replace other components in coupled models without a 

change of the coupling (i.e. where substitution is possible). 

4.8.3 Entity and Method Construction Techniques 

Whilst sections 4.8.1 and 4.8.2 discuss possible entity storage/retrieval techniques and 

methods for ensuring entity interface compatibility, we still need to consider how the internal 

code structure of an entity can aid the practical implementation of such techniques. 

In the case of HASE, simulation code is written in C++ (with HASE++ library 

extensions). However, the use of C++'s object-oriented techniques is somewhat restricted in 

the HASE environment. This is because inter-entity communication takes place via the 

enforced port/link constructs rather then by object method invocation. An investigation into 

using C++ to provide generic simulation classes was completed as part of an investigation in 

performance modelling using object-oriented execution-driven simulation at North-Eastern 

University [Sampogna96]. In this work, models for generic simulation components are 

created as an abstract base class and specific experimental sub-classes are derived from this 

base class. 
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Figure 43 - Using Abstract C++ Classes to Aid Simulation Reusability 

To illustrate how the C++ language facilities support this modelling approach, consider 

Figure 43. A base class CACHE is provided with various protected data members 

representing attributes of a generic cache such as block, index and tag sizes and how it is 

extended in the derived class TWSA CACHE. The base class member functions are declared 

virtual void allowing derived classes to define their own specialised versions of these 

methods whilst keeping access methods for any type of cache consistent. Also note how the 

base class constructor utilises the parent's protected data elements as well as providing its 

own specialised data. 

The authors of this research state that (as with most object-oriented designs) the most 

useful components in terms of reusability proved to be those exhibiting loosely-coupled class 

design. They go on to conclude that: 

"The key to successful reuse is to begin with a proper decomposition 

of the system design being studied If done properly, nearly any system 

implementation can be simulated with very little programming effort." 
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Whilst, for the reasons of enforced class structure mentioned above, the HASE 

environment cannot directly take advantage of the C++ object-oriented method-

specialisation techniques employed in [Sampogna96], the work offers a valuable insight into 

the problems associated with providing a generic communication mechanism which could 

transcend abstraction levels. This is particularly important when messages of a generic nature 

(e.g. generic memory 'read' or 'write' requests) have to be interpreted by entities expecting 

different abstractions of message detail (e.g. a generic read operation vs a read operation 

supplied with an 8, 16 or 32 bit address). 

4.9 Summary 

Although HASE's original design goals stated that entity reuse was a benefit of using 

an integrated simulation system, in fact, RASE currently offers rather limited entity reuse 

and library facilities. 

There are parallels with object-oriented programming, where code reuse is a much-

touted benefit of languages such as C++ and Java. However, actual levels of code reuse have 

been shown to be low. This is largely for reasons similar to those found in simulation - i.e. 

the specification of objects and classes is often tightly bound to individual programming 

projects and little regard is given to preparing objects for reuse elsewhere [Stroustrup9l]. 

Reusable simulation entities offer potential benefits to an environment concerned with 

the creation of models representing a real-world system at multiple levels of abstraction as 

they help facilitate the hierarchical substitution relation. 

Whilst HASE uses two types of hierarchical structure in the modelling process 

(graphical and behavioural) Luna notes that most environments tend to offer one type of 

hierarchy and: 
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"While some of the hierarchical relations are currently implemented, 

the combination of hierarchical relations in the representation and 

organisation model aspects would significantly ease and enhance the 

simulation model design and construction process." 

Presently HASE uses the graphical hierarchy to advantage (fulfilling Luna's 

representation requirement). However, due to the tight coupling of entities, the facilitation of 

the organisation aspect is poor. 

We aim to offer a solution to this by offering a more structured approach to modelling, 

by limiting the way in which the HASE environment allows control of global variables and 

inter-entity communication. Clearly if programmers have total freedom to implement 

simulation entities as they see fit, the likelihood of creating a loosely bound set of reusable 

entities diminishes. We are therefore concerned with a trade-off between the flexibility 

afforded to the programmer for communication specification and the level of entity 

encapsulation (and consequentially reusability) within a model (Figure 44). 

Loose coupling 
High level of horizontal 
abstraction 

A 

High 
	 Level of Encapsulation 	 Lowj 

Tight coupling 
Low level of horizontal abstraction 

Figure 44 - Encapsulation Vs Entity-coupling. 

The implementation of mechanisms to support the loose coupling of entities in HASE 

is non trivial, as the types of data to be passed between entities must remain flexible enough 

to represent the abstract data types employed in high level systems simulation. In other, 

lower level simulation systems (i.e. those positioned below the register transfer level), this is 
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not such a concern, as models are largely concerned with low-level signalling models (e.g. 

signal high/low/unknown states on well defined 'wires'). 

Another problem with the addition of mechanisms to support loose coupling in HASE 

is that a large number of existing models exist already. Any modifications to the modelling 

process should therefore be transparent to existing models. A related problem is that as 

communication in 1-JASE is supported through a set of well-defined (and complex) C++ 

classes (e.g. ports and links) the direct modification of HASE's communication mechanisms 

is not desirable. 
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Chapter 5 

LibTool: Design and Implementation 

In this chapter, we discuss the basis for a solution to the component reuse and 

abstraction problem previously outlined in Chapter 4. This solution describes the 

development of a modelling tool (named LibTool) that allows the user to construct a library 

of components that can be placed into and removed from a simulation model with relatively 

little effort. In addition, LibTool provides automatic component classification, aiding the 

component selection process (based in part on the techniques described in [Thomas94]). 

An additional tool (called CommTrace) is introduced as a response to the problem of 

verifying model timing across multiple levels of abstraction 

5.1 Extending the Modelling Process 

The main factor prohibiting component reuse in HASE based simulation models is the 

low level of horizontal linkage abstraction between communicating entities (sections 4.4-

4.6). This has been shown to be a consequence of the high level of flexibility which HASE's 

EDL modelling language affords the programmer. Frequently, models circumnavigate 

HASE's port and link constructs and rely upon global state information. This has resulted in 

a low level of component reuse. 

EDL was introduced to the HASE system in order to address problems of model 

representation; essentially, it provides a simple editable text representation of a simulation 

model rather than a low level C++ input or purely graphical representation (section 3.6). 
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To this end, the introduction of EDL was successful. Indeed, EDL has been used as the 

representation of choice for all recent HASE based models. However, EDL still allows the 

programmer full control over link definition, port assignment, global state declarations and 

message type definitions. 

In order to restrict the programmer to functionality better suited to the generation of 

loosely coupled simulation entities, there was a need to consider the definition of 

communication structures more carefully. It was also noted that as a large number of existing 

projects rely on EDL, modification of the language itself was not ideal (i.e. any extensions 

resulting from this research should allow backward compatibility with existing model 

definitions). The vehicle for this new modelling process is 'Meta EDL' (or MEDL) - an 

extended super-set of the EDL language primarily concerned with modelling inter-entity 

communication structures. This approach has the advantage that EDL definitions for existing 

projects need not be modified because of this research (EDL's syntax remains unchanged) 

allowing backward compatibility to be available at zero cost. 

All extensions to the HASE modelling process take place outwith the existing HASE 

environment, thus facilitating a more general-purpose set of modelling tools. Whilst the 

primary target code generated by LibTool is EDL (i.e. an input to the HASE environment), 

alternative 'hooks' can be placed into the tool's source code allowing the generation of other 

target code types (e.g. VHDL descriptions or diagrammatic output in (say) PostScript or 

DaVinci format). 

5.2 Describing a Model's Communication Interface 

In section 4.8.2 we saw how, by considering the input/output messages of a model, the 

classification of DEVS models is possible. Central to this classification process is the use of 

a triple that describes the messages generated at a model's ports. Each message is formed by 
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the triple (n,u,v) where n is the port name, u is the message type name and v holds the 

message value within the type u's range.. 

This structure maps well onto the modelling constructs used in HASE where the 

notions of ports, message types and packets are already defined. 

By applying similar techniques to those used for the classification of models under the 

DEVS formalism to the HASE modelling process, a good foundation for a modelling and 

library management tool (aimed at the generation of loosely coupled simulation components) 

could be formed. 

Whereas EDL reflects the internal modelling structure of the HASE environment, it 

was essential that the new representation (i.e. MEDL) should offer the modeller a 

communication oriented language with which to represent the relationships between the 

modelled system's components. 

5.3 Communication Modelling: Design Issues 

In order to offer a set of tools with which to carry out the modelling of an entity's 

communication attributes (i.e. its horizontal and vertical linkage) the following design issues 

needed to be addressed: 

. Provision of library facilities: As the new tools are intended to facilitate model 

reuse it was desirable to offer an integrated solution to both component modelling 

and library management (facilities so far lacking in HASE). 

• A communication emphasis in the design process: The modelling process 

facilitated by the new tools should be oriented to the description of a model's 

communication attributes (in contrast to EDL's 'general purpose' model 

description language approach). An integral part of this new modelling process 
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should be the ability to automate the validation of link constructs and entity 

selection. 

. Suitable model representation: The expression of the new modelling process 

should be via an uncomplicated, readily comprehensible description. 

. Integration with the RASE design lifecycle: The new tools should integrate 

seamlessly with the existing HASE design lifecycle. This requires an 

understanding not only of the communication modelling process in the context of a 

HASE project but also the role of the library functionality offered by the new tools. 

The following sections of this chapter look in detail at how these design goals were 

explored and incorporated into an implementation of new HASE tools. 

5.4 Design of a Meta-EDL 

In order to help focus the design of new components on the communication attributes 

so important to model reuse, a new model representation was created which placed an 

emphasis on the port, link and messages structures of components. 

In addition, this new representation is also charged with providing HASE's library 

facilities, so (unlike EDL) it is project independent (i.e. it is not concerned with the 

representation of a single real-world system). 

The new representation borrows the essential features of EDL specific to 

communication modelling and diminishes the importance of other EDL constructs such as 

those concerned with a component's internal state. The new representation is called MEDL 

(Meta-EDL). 
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5.4.1 An Overview of MEDL 

A MEDL file is a text-based description suitable for use as both a modelling language 

and library description. Each MEDL file consists of a list of components that forms the 

notion of a library. The component list is divided in two. Firstly a sub-list of atomic 

components is specified, then a sub-list of composite components. Composite components 

must be described in terms of atomic entities found in the first section of the component list. 

Program 12 shows a MEDL fragment from a library that defines a new library and a 

single atomic component (in this case a DASH node model component based on the model 

introduced in section 4.1). Following some programmer comments, the first MEDL keyword 

is LIB (indicating the start of a library definition) followed by the name of the library and a 

short textual description of the library's contents. 

// Library file for DASHNODE model 

LIE dashnode "Small Processing Node Library" 

ENT 
NAME { P-CACHE) 
MTYPES 

MESSTYPE{MEMACCESS{get-addreSs, return-address} 

INPUT{ 
PORT{ IN, MEMACCESS} 
PORT {REPLY, MEMACCESS 

OUTPUT 
PORT { ANSWER, MEMACCESS 
PORT {REFER, MEMACCESS} 

EDL{ 

Program 12— Fragment of DASH node MEDL library 
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Definition of Atomic Components 

The ENT keyword indicates the start of an atomic component definition (in this 

example the component represents a cache). The component is assigned a name (p-

cache). The description of the component is broken down into the definition of message 

types (and their ranges), input ports, output ports and a section named EDL30 . 

In the example component definition, a message type named NEMACCESS is defined 

as having a range of possible message values (read-address or return-address). 

The message type (MTYPE) and message range (MESSTYPE) definitions parallel the u and v 

values introduced in section 4.8.2 respectively. 

The cache component is also defined as having two input ports (named IN and 

REPLY) each of which can handle messages of type MEMACCESS. Similar output ports 

definitions are also provided. The keywords INPUT and OUTPUT combined with the PORT 

declaration allow the definition of e and N' (the sets of input and output port names) for a 

particular component. In this case e = (in, reply) and N1'={answer, refer). 

Definition of Composite Components 

Program 12 shows a possible composite component that could be included in a library 

of components suitable for constructing DASH node-like models. Composite components are 

specified in a different manner to atomic components. The NAME and MTYPE definitions are 

still included (the MTYPES defined must include all the message types used in the entity's 

children), however no port definitions are specified. Instead, the CONTAINS keyword is 

used to list the child component and the INTLINKAGE command to describe how the 

30  The EDL section allows the storage of non-communication related structures in a library and 
is discussed later in section 6.1.2. 
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children are connected to each other. The composite component CONPCACHE (an entity 

modelling a two-level cache structure) consists of two child entities P-CACHE (a primary 

cache) and S-CACHE (a secondary cache). The INTLINKAGE section contains definitions 

of child component interconnections (INTLs). For example, the primary cache's memory 

referral port (REFER) is connected to the secondary cache's address request port (IN) and 

the secondary cache's address output port (OUT) is linked to the primary cache's address 

input port (REPLY). Unlike EDL's CLINK statement, the INTL command implies an 

ordering of its parameters; first the source port is specified then the destination port. This 

allows simple identification of input and output ports. The configuration described in 

Program 12 is illustrated in Figure 45. 

CENT{ 
NAME { CON PCACHE 
MTYPES 

MESSTYPE{MEMACCESS{get-addresS, return-address} 

CONTAINS { P-CACHE, S-CACHE 
INTLINKAGE 

INTL {P-CACHE{REFER}, S-CACHE{IN} 
INTL IS-CACHEj0UTj,P-CACHEjREPLYjj  

EDL{ 

II 

Program 12 - MEDL Definition of a Composite Entity 

As the MEDL representation is based around the concept of a library, there is no target 

model specified (unlike EDL's required use of the LAYOUT command). The full MEDL 

description of a library of DASH node components is given in Appendix B.6. 
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composite cache 

p cache 	scathe 

Composite-Cache 
Input Port List )iri,reply) 
Output Port List )refer,out) 
Entity List (P cache,S cache) 
Internal Linkage (Pcache.refer->S_CaChe.ifl,S_CaChe.Out>P_CaChe. reply) 

Figure 45 - The Composite Cache Component 

5.4.2 Development Platform 

The full range of C++'s object-oriented features is not directly available to the 

programmer of the existing HASE environment (section 4.8.3); therefore, the use of external 

(to HASE) tools affords the opportunity to reintroduce object-oriented management of a 

model's design (by allowing a well structured, object-oriented decomposition of HASE's 

communication modelling constructs). 

It was decided that Java [Flanagen97] would be used as the implementation language 

for the new HASE modelling/library management tools. Specifically, Sun Microsystems 

Java Development Kit (JDK) [Jdk99] was used. The new HASE tools are implemented using 

Sun's latest Java platform release - JDK 1.2. 

In addition to providing excellent object-oriented programming facilities, Java is also a 

platform independent language. This is a desirable property in terms of the HASE project, as 

two platforms are currently supported (Solaris and Windows NT 4.0). The use of Java to 

provide the new modelling and library management tools is shown with respect to the 

existing C++ implementation of HASE in Figure 46. The figure also illustrates how a 
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model's intermediate representations (MEDL and EDL) provide a bridge between Java and 

C++. 

MEDL 	
Component 

iI 	
(modelling in EDL) 	

Modelling Tools 

Generate 

EDL 	 - 
(Entity Description Language) 

Generate 

C++ 	 HASE System 
(HASEs Internal Routines) 	Code (C++) 

Compile ___________________________________ 

H 	

Simulation Executable 	
1 

(Compiled HASE++) 

Figure 46 - Layers of Model Representation 

5.4.3 Representation of Communication Structures 

In order to represent HASE's communication structures in a flexible object-oriented 

manner, a Java package 31  (named LibraryStructure) was created. 

The essential elements of communication (i.e. ports, message types and links) are 

represented in the LibraryStructure 32  package by the classes Port, Mtype and LinkSpec 

respectively. 

The Port class holds name and message type information. The Mtype class holds the 

name of a message type and data describing the valid message range (implemented using an 

instance of Java's vector 33  class). Finally, the LinkSpec class holds details about ports 

that are connected to each other (the source/destination attribute of the ports is maintained in 

this class). 

31  Package is the Java term used to represent a library. 
32  LibraryStructure is a large package comprising some thirty classes, a complete list of 

which is given in Appendix B. 1. 
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Objects representing a model's ports, messages and links are maintained in special list 

classes (again based upon Java's Vector class). For example, ports can be added to a 

portList object. 

In turn, instances of the list types are associated with objects representing atomic and 

composite entities (classes entity and its derived class compEntity respectively). Each 

atomic entity has two PortList objects associated with it (one for input ports and one for 

output ports) and an MtypeList for the storage of its local message types. Program 13 

presents a fragment of the Entity class definition illustrating the use of these structures. 

package phd.LibraryStructure; 

import java.util.*; 

public class Entity 

protected String Name 	 = null; 
protected String Description = new String(""); 
protected String DetDesc 	= new String(""); 
protected PortList 	InputForts 	= new PortListO; 
protected PortList 	OutputPorts = new PortList; 
protected MTypeList NTypes = new MTypeList; 

Program 13 - Fragment of the Entity class definition. 

Composite entities (represented by CompEntity objects) inherit the properties of 

atomic entities and add data members for details of their children's internal linkage 

(implemented as a Vector containing LinkSpec objects). 

Finally, lists of atomic and composite entities are maintained within a class 

representing a library of components. This class, LibraryStructure, is the main 

holding class for all the objects being modelled. The class configuration for a typical 

simulation is illustrated in Figure 47. 

u The Vector class is a general-purpose heterogeneous list class. 
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Figure 47 - Class Structure for a Model Library 

5.5 The HASE Design Lifecycle 

This section considers how the LibTool software fits into the HASE design lifecycle. 

Subsequent sections of this chapter will look in detail at the functionality of the tool and the 

software mechanisms it employs. Figure 48 illustrates the traditional HASE lifecycle (i.e. 

pre-LibTool functionality). The key stages are as follows: 

1. Generation/modification of project file: A single project file containing the 

definitions of all simulation entities in a model is created by use of HASE's 

graphical user interface (label ]a) and/or by direct editing of the project EDL file 

(label 1 b). 
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C++ model source code generation: The C++ description of the modelled system is 

generated according to the EDL and HASE++ entity definitions. 

Simulation object code generation: The previously generated C++ model is 

compiled. A simulation model executable is created which includes user defined 

parameter settings. Any syntax errors in the user's HASE++ code will be trapped 

here. If errors do occur, the programmer returns to design mode, modifies the model 

accordingly and starts the lifecycle again (indicated by the arc back to label Ib). 

Analysis of simulation output: The simulation model is executed and output is 

analysed. The analysis phase may highlight modelling problems (e.g. deadlock due 

I. to bad behavioural code specification). If modelling errors exist, the model is 

modified (the arc back to label I b). If the model behaviour is correct, the user may 

alter the parameters of the simulation model and rerun the model (i.e. follow the arc 

to label 3). 
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Figure 48 - Elements of the unmodified 1-IASE design lifecycle. 

5.5.1 Limitations of Traditional Lifecycle 

The hifecycle described has a number of limitations. Firstly, it includes no library 

management facilities. Rather, a single project file is created by the user for each simulation 

experiment and iterations of the lifecycle see the development of this project file (i.e. there is 

no environmental support for importing components from a library). At the end of a 

simulation project all the entities developed for a model are contained in a single project file 

with no environmental support for exporting them to future simulation projects. 

Secondly, HASE has no method of checking that a model's composition is valid. For 

example, it is possible to connect ports together without considering the messages types and 
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ranges used by the connected ports. This means that whilst a model appears to be constructed 

correctly on-screen, only at simulation run time are incompatibilities in port connectivity 

highlighted. Even after the generation of run-time errors, the identification of the exact 

modelling problem is only possible after inspection of the trace file and/or by use of a 

traditional debugger. 

Thirdly, as HASE provides no library facilities, no support for identification of 

possible entity substitution opportunities exists. Often in an experiment, it is desirable to 

compare and contrast different implementations of a particular component. For example, in a 

memory hierarchy simulation, cache memories can be compared according to caching 

mechanisms/policies (direct-mapped, fully associative, write-through, write-back etc.). By 

considering a component's communication interfaces (and intended use), entities could be 

pulled from a library of pre-programmed components and substituted for a model's existing 

cache. 

5.5.2 The Role of LibTool in the Design Lifecycle 

Figure 49 illustrates the role LibTool plays in modifying the traditional HASE 

lifecycle. The various stages of the modified lifecycle are described below: 

Starting at label one in the figure, a library of components is loaded into LibTool 

(indicated by the arc to label 2). Components are added to a MEDL library through 

text-based cut and paste operations. 

The chosen MEDL file is parsed and the library components communication 

structures are validated. Following the parse process the following courses of action 

may be taken: 

a. The user can re-edit the MEDL file and revalidate failed model structures 

(indicated by the arc to label 1). 
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The user may perform various checks upon components in the library (e.g. 

searching for components with equivalent communication interfaces). 

When the user has completed the communication structure modelling an 

EDL file for the project is generated (indicated by the arc to labels 3a/3b). 

Following the EDL generation the design may be edited via the HASE GUI or direct 

EDL manipulation. 

The C++ description of the modelled system is generated according to the EDL and 

HASE++ entity definitions, as is the case in the traditional model lifecycle (label 4). 

However, the user has the option to ensure that the modifications made to the 

LibTool-generated EDL have not invalidated the model's communication structures 

by using the validate mode (illustrated by the arc labelled 'validate'). This validate 

option (if used) can identify some of the problems which traditionally can give rise 

to the need for trace file level debugging later in the design lifecycle. If the validate 

option is taken a MEDL description of the current project is generated (effectively a 

small library consisting of the only components required for the current model). This 

description is passed through LibTool (which validates the model structures) and, 

assuming no errors are found, an output EDL file is regenerated. (This takes the user 

through points 1, 2 and 3 of the lifecycle again. The passage through these lifecycle 

points is largely automatic (i.e. the user only need confirm the output location of the 

EDL. Of course if modelling errors are found during the validate cycle the user must 

reconsider the model's design based on the error messages generated by LibTool. 

As in the traditional lifecycle, a simulation model executable is created (including 

parameters). Syntax errors in the user's HASE++ code will be trapped here. In the 

event of errors the user returns to design mode and modifies the model behaviour 

(indicated by the arc back to label 3a). 
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6. The simulation model is executed and output is analysed. The analysis phase may 

highlight modelling problems. If the model contains errors. the designer can return to 

design mode or perform model validation post-run (assuming they did not choose 

this route at stage 4). 
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Figure 49 - LibTool's role in the design lifecycle. 
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5.6 The Validation Process 

A library file is considered valid after passing two checking phases. Firstly, a MEDL 

parser ensures that the library description is syntactically correct and triggers the creation of 

LibraryStructUre objects. Once the objects representing the library components have 

been created, the communication structure of the components is analysed and a further set of 

checks made. The remainder of this section gives an overview of the key aspects of both the 

syntactic and structural checks applied to a MEDL library file. Implementation details are 

given (where relevant) during the description. 

5.6.1 Parsing MEDL files and Creating LibraryStructure Objects 

The creation of a scanner and parser allowing the conversion of MEDL file 

descriptions into instances of the LibraryStructure classes described in 5.4.3 involved 

the creation of a dedicated Java package named LibraryParser. This package included a 

scanner class (a hand written Lex), a modified version of Scott Hudson's CUP package 

[Cup96] (a simple parser construction kit) and classes for allowing the generation of error 

messages (notably the ParseTranscript class). 

When LibTool is started (and an input file has been specified, either via a file dialog or 

as a command line parameter to LibTool) an instance of class LibraryParser is created. 

In addition, an instance of the scanner class is made. Following the on-screen rendering of 

the tool's GUI, a method 'openLibrary 0' is called which causes the selected input file 

to be tokenised by the scanner class instance. In turn, the LibraryParser object calls method 

getNextToken () (until the end of the input stream is reached) and forms the parse tree. 

Using CUP involves creating a simple specification of the grammar for which a parser 

is needed. The specification, whilst constructing a full parser, does not perform any semantic 
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actions (it only indicates success or failure of a parse). To allow checking of parsed values 

Java code is embedded within the parser, carrying out actions at various points. This allows 

errors in the MEDL library component descriptions to be trapped. 

In CUP, actions are contained -in 'code strings' that are surrounded by the delimiters 

'{ :' and': }'. 
To illustrate the use of embedded Java for error trapping Program 14 shows a 

fragment of the parser specification file used to define the syntax for a composite entity 

(indicated in MEDL by the keyword CENT). Aside from declaring the syntax of the CENT 

command (in a standard Yacc-like manner), three code strings are defined. The first code 

string (below comment 1) assigns a name to the instance of the CompEntity class object 

being constructed. Similarly, the second code string assigns a description (shown after 

comment 2). The final code string is more complicated; it checks that the name of the 

composite entity being defined is unique (via a call to the EntityDuplicate () method 

of an instance of a LibraryStructure object named ourlib). 

c_entity : := CENT LPAREN 
NAME LPAREN IDENT:i RPAREN 

*** Comment 1 *** 

{: tempCompEntity.setName(i.strval); 

DESC LPAREN STRING:s RPAREN 
cmess types 
contains 
INTLINKAGE LPAREN mt linkage RPAREN 

// *** Comment 2 *** 

{: tempCompEntity.clearEDLO; 
tempCompEntity.setDesc(s.strval); 

edi 
cpassive 
RPAREN 

Comment 3 *** 

{: 	 if (parser.ourLib.EntityDuplicate(temPComPEntity)) 
CtJP$parser.report fatal_error ("Library Error!: Duplicate Entity 

Name (name="+i.strval+") ",null); 
}else{ 

if (parser.DEBtJG) 
System.out.println("Adding CEntity : "+i.strval); 

parser. ourLib. addEntity (tempCompEntity); 

ternpCompEntity = new CompEntity(); 
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Program 14 - Fragment of LibTool's Parser Specification 

This third code string is typical of the various checks that are performed as a MEDL 

file is read into LibTool. Other checks performed at this point in LibTool's execution 

include: 

Checking that all atomic entity names are unique (using LibraryStructure 

method EntityDuplicate 0). 

Checking all composite entity definitions include all the message types referred 

to by their children. This is done by calling the CompEntity class method 

checkChildMTypesOK 0. 

Ensuring that all children of a composite entity have been previously defined 

(this includes both atomic and composite children). This is facilitated by 

recursive use of the LibraryStructure class method EntityExists 0. 

• Composite entity child linkage is also checked before being added to a 

composite entity object via the addlntLink(link) Two main checks 

are performed: 

o Checking that no child entity has one of its output ports connected to 

one of its own input ports. 

o Checking that source and destination ports use compatible message 

type/range structures. 

• All message types are checked to ensure type names are unique. 

• Message type ranges are also checked to make sure that all range items are 

unique. 

Input and output ports are checked in order to make sure all port names are unique 

within an entity. 
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The result of the parsing process is either the generation of an error log or the 

successful creation of an object of class LibraryStructure (and associated entity 

related objects). 

Throughout a LibTool session, all progress/error messages are directed to LibTool's 

console window. The LibTool console is shown in Figure 50. A transcript of a typical 

LibTool session (as reported in the console window is given in Appendix B.7) 

• • rciJ: 	 — 

Scanning Input Library pram.hlib ... 
Parsing Ubrary, 

Generating Hue Objects... 

Library pram.hhib OK 

wlding Port Defs. for CEntity <halfadder> 
ilding Port Defs. for CEntity modeIhalfadder 

Liliding Port Defs for CEntity <fulladder> 
uilding Port Defs for CEntity <modelfuIIadder 

uilding Port Deis. for CEntity <fuIladder8bit 
ujiding Port Defs. for CEntity <proc_b 

ullding Port Defs. for CEntity proc_a 
uilding Port Defs. for CEntity <modeladder8blt> 

uildlng Port Defs. for CEntity testMedLevPram 
uilding Port Dels. for CEntity <flnalPram 

.jilding Interface Delinitions 
eneratinq interface for AtornC Entity ADD8BITDRV 

Browse Library 	 Exit  

Figure 50 - The Liblool console 

5.6.2 Further Structural Checks and Object Creation 

Following the successful parsing of a MEDL file, LibTool creates more objects used to 

describe the communication properties of the library components. This section details each 

of these object creation phases and outlines the checks performed in each. 

Building Port Definitions for Composite Components 

As a MEDL file specifies the ports of a composite entity implicitly, (i.e. it lists the 
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ports of the child entities and the internal linkage of those ports only) LibTool forms a list of 

ports belonging to the higher-level composite entity component. It does this by inspection of 

the child entities (recursing down through composite children) linkage. PortDescriptor 

objects are created for all ports in a composite entity and free ports (section 4.1.4) are 

identified. This process is performed once only. From this point on in a LibTool session, port 

detail for composite entities is obtained via the PortDescriptor objects. This approach 

is taken because of the high processing overhead required to continually recurse and process 

the composite entity structure each time one is manipulated. 

Construction of Entity Interface Objects 

The next object creation phase builds interface definitions for each entity in the library, 

this is done to save processing overhead later in the LibTool session. 

Each component in a library has an object of class EntlFace associated with it which 

serves to hold the component's input/output port sets (Ny, Ni') along with the set of message 

types references by these ports (component u of the n,u,v typed-message triple previously 

discussed). 

The Ent lFace class defines storage for lists of input port names, output port names 

and message type names. Determining the interface definition for atomic entities is simply a 

matter of traversing the port and message type information in the entity definition. For 

composite entities, the previously generated PortDescriptor objects are used. 

Message Type Checking 

Once the interface definitions have been generated, the message types used by all 

components are checked against each other for global consistency. This is performed by 

LibTool's globalMessageTypeCk () method which ensures that message types with the 
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same type name which are used in more than one component have identical message range 

definitions. If the library fails this check, an error identifying the library source-code line 

containing the error is output to the console log and the LibTool session is terminated. 

Other Component Checks 

Assuming the message type checking phase is completed successfully, LibTool calls its 

checkAtomicPortBind () method, which checks that each port in an atomic entity is 

bound to a message type defined within that entity. This concludes the post-parse model 

checking. The user can now start an interactive LibTool session. 

5.7 LibTool Functionality 

This section outlines the functionality of LibTool as both a library management and 

model generation tool. The discussion is illustrated by the use of a small MEDL library. 

5.7.1 Navigation of a MEDL Library 

After successfully loading a MEDL library, the console window (Figure 50) enables 

the two controls labelled 'browser library' and 'exit'. Selection of the browser option enters 

the main LibTool screen. The library browser allows the selection, examination and 

manipulation of components in the library. A typical view of the library browser is shown in 

Figure 51. The test library contains eleven components (four atomic and seven composite). 

The components are abstract (i.e. they do not represent real world objects) and exhibit very 

simple behaviour. The key components of this library are component A which acts as a 

message generating source, component B which receives messages on its single input port 

(in) and outputs them after a fixed delay on its only output port (out) and component C 

which has a single input port (in) and acts as a message sink. Other composite components 
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are made up from various instances of component B. All of the components in the library use 

the same message type (PACKET) that has a range of values (message_a, message —b). 

The components in the demonstration library are described in more detail in Appendix B.8. 

The browser presents a tree-like structure initially divided into two main sections 

labelled 'Atomic Entities' and 'Composite Entities'. By clicking on the folder icons in the 

window, the tree can be expanded to reveal details of the components in the library. 

The browser uses two icons when describing the library structure. Firstly, the folder 

icons are used to group related information together and secondly the 'document' icon is 

used to represent information held in leaf nodes of the browser tree. 

The use of the folder controls is shown in Figure 52(a-c) where (a) the atomic entities 

folder is opened, (b) atomic entity 'b' selected and finally (c) the detailed information about 

the entity is displayed. For an atomic entity, the information displayed includes the short 

text-based description from the MEDL file, a subfolder of associated message types and a 

subfolder for both input and output ports. 

Composite entities have a different set of information displayed in the browser. This is 

illustrated in Figure 53 where composite entity 'BBB' is displayed. As with the atomic entity 

display, a description and list of message types is provided, however this is followed by a list 

of sub-entities and internal links. Finally, the 'Port Descriptor' subfolder (which is not 

expanded in Figure 53) provides a detailed attribute list for each port (e.g. message binding, 

free status and sub-entity ownership). 
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Figure 51 - The Library Browser. 
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Figure 52 - Manipulation of Library Browser 

In addition to the mouse based point and click operations, keyboard shortcuts are 

provided to allow the entire tree to be expanded or contracted with a single keystroke. 

The LibTool GUI is implemented using Sun Microsystems Java Foundation Classes' 

(sometimes referred to as 'Swing'.). These classes provide special support for building 

platform independent GUls. The library browser uses the Jtree class to represent the 

library structure. The tree is constructed (when the browser is launched from the LibTool 

console) by traversing the LibraryStructure entity representing the current MEDL 

library and extracting entity attributes from the atomic and composite component lists. 
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Figure 53 - Using the Library Browser to View Composite Entities 

5.7.2 Other Component Views 

In addition to the main library browser window, other methods for examining a 

component's structure exist via use of the 'View Entity Interface' control. To use this feature 

an entity is highlighted (by clicking in the browser window) and the view button pressed. 

This opens a new window that gives a more formal description of an entity's interface. 

The interface viewer was implemented to aid the development of this research (i.e. to 

automate the process of generating the set notation associated with models). It now forms a 

useful way in which to compare the communication interfaces of library components. 

Sample output from the interface viewer is given in Figure 54. 
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Figure 54 - Entity Interface Viewer 

In addition to the set notation view of the entity, the interface window also supports 

two other views of a component. The first allows a textual description of the component to 

be displayed and exported via the system clipboard to a text editor. This mode was 

implemented in an effort to provide library documentation within LibTool. The HLIB 

Description tab at the top of the interface dialog switches the display to the textual 

description mode. A sample description screen for a memory unit is shown in Figure 
5534 

 A 

description commences with a summary of the selected components message types and 

ports (this is generated by extracting details from the appropriate LibraryStructure 

object lists) and goes on to display a programmer supplied entity description. The 

34  The full output of the text description pane for this component is given in Appendix B.8. 
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programmer provides the description in the MEDL file by using the DESC{ } and 

DETDESC { } commands. 

hdertece HUB Description Embedded EDt 

Strui'J 	TOMI' 

lessage Types. 
memaccess 
memresult> 

put Ports: 
*REQIN: memaccess 

utput Ports: 
RESULTOUT: memresult> 

Description 

BEHAVIOURAL SUMMARY 
This entity represents a dineroUl trace complient address space (2*23  bytes) 

to which memory requests from a memaccess link are presented. 

rithir.-thi 

Figure 55 - Textual Component Description 

The final view of an entity supported by LibTool is the Embedded EDL' viewer. 

MEDL's facilities for embedding EDL code into a library are introduced later in this chapter 

(section 6.1 .2) and further discussion of this display mode is deferred until then. 

5.7.3 Identification of Substitute Components 

The mechanism used to determine entities suitable for substitution is interface 

equivalence. 

In section 4.8.2 it was shown that a component's interface can be represented 

by I = (PX pt) where P' = ( NW' ,{U I fl E N' is the set of input ports and 
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= (N Y , { U,, I n c N' is the set of output ports. For example, the interface of atomic 

component B in the MEDL test library is 

'B = (
pvpv) 

where 

PH  =(in},{{ PACKET) }) and 

13 =(lout), t (PACKET 
 ) 

When a MEDL library is read into LibTool, EntI Face objects representing the above 

structures are created for each component in the library (section 5.6.2). By comparing these 

interfaces, we can define relations over components. Of particular interest to this work is the 

equivalence relation (44 = I) presented by Thomas in [Thomas94]. This relation is defined 

as 

1A'B iff 

N' =N3v AU, =U,VnEN,' 

A 

N Y  =NY  AU,,4  =U,VneN 1  .4 

Less formally, this says that two models have equivalent interfaces if each has input 

and output ports that are identically named and with identical message types assigned to 

them. 

Performing the Equivalence Test in Lib Tool 

In LibTool, the equivalence test shown above can be performed by selecting the 

component to be tested against the rest of the library components and clicking the show 

equivalence' button. The result of this operation is a window listing the atomic and 

composite components that have identical interface specifications. Figure 56(a-c) illustrates 
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the use of the equivalence test on the MEDL test library components a, b and bbx2 

respectively. The results from these queries show which entities are suitable for substitution 

of the selected component. In this example component a has no possible substitutions 

(except itself— the browser-selected entity is always marked by the word [self]).  Entities 

b and bbx2 have several possibilities for substitution. 

a-. 

-j 

Composite Futt 

bbb 
bbb2 
bbx2 
bbx23 

41 

(a) 	 (b) 	 (C) 

Figure 56 - Example Equivalence Tests for MEDL Test Library 

Implementation of Equivalence Test 

Program 15 offers an insight into the implementation of the equivalence relation in 

LibTool. When an equivalence test is triggered, LibTool instantiates an object of class 

TestEquiv. This class has its own Swing derived window and widgets (representing the 

output panel shown in Figure 56). After the GUI initialisation calls, the first of two methods 

used to generate the equivalence test output (named buildEquiv ()) is called. 

BuildEquiv () acts to collate the results for the user specified equivalence test by calling 
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another TestEquiv method isEquiv () and recording the result in the output window. 

This procedure is outlined in more detail in the following two sub-sections. 

The buildEquiv () 
Method 

The buildEquiv () method operates on a class variable Ent (the Entity class 

instance represents the selected entity in the browser). The first test performed is to check if 

Ent is atomic or composite (the composite entity class is derived from the atomic entity 

class so this must be explicitly tested for); this code is shown below the comment labelled A. 

If the entity to be tested is composite, an atomic representation of the composite entity is 

made in order that the same code can be applied to any entity being tested (via the Entity 

class's method compShell 0).  This action is valid, as in an equivalence test only the 

external ports and message types of an entity are referenced. A Boolean flag is set according 

to whether the entity being tested is composite or not. 

Another flag recording the number of free ports (if the entity was originally 

composite) is also set. If the entity to be tested is composite and has zero free ports, the 

model is considered closed. As such, the entity cannot reasonably be substituted for anything 

other than a complete closed model. Consequently, the output window displays the tested 

entity's name with the message 'closed' next to it and the equivalence test is terminated 

(label B). 

The main equivalence-testing loop now commences (label Q. Each entity in the 

current library is tested (using method isEquiv () shown at label D) for equivalence 

against the entity selected in the library browser (any composite entities encountered are 

translated to an atomic representation as described above). 

The output window is updated by appending the results of each test to one of two 

lists (AtomList and CompList). 
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protected void buildEquiv{ 

EntlFace 
EntI Face 
Entity 
CompEntity 
boolean 
mt 
boolean 

IFaceln = null; 
IFaceTest = null; 
tempEnt = null; 
tempCEnt = null; 
wasComp = false; 
origEntNoFree = 0; 
origWasComp = false; 

IFaceln = Ent.getlFaceO; 

1* **** label A ** 
if (Ent.toString() .equals('CompEntity")) 

tempCEnt = (CompEntity)Ent; 
origEntNoFree=tempCEnt. getFreePortCount 0; 
Ent = tempCEnt.compShell(Lib); 
origWasComp=true; 

}else{ 
origWasComp=false; 

/* 	label B 
if ( (origEntNoFree==0) && (origwasComp)) 

CompList.append(Ent.getName0+" [CLOSED]\n"); 
)else{ 

/* 	label C 
for (mt 1=0; i<Lib.getNumEnts0; i++){ 

tempEnt = Lib.getEnt(i); 
if (tempEnt.toString() .equa1s("CompEntity')){ 

wasComp=true; 
tempCEnt 	(CompEntity)tempEnt; 
tempEnt = tempCEnt.compShell(Lib); 

}else{ 
wasComp=false; 

*** label D 
IFaceTest = tempEnt.getlFaCe0; 
if(!wasComp){ // atomic match 

if(isEquiv(Ent,IFaceln,tempEnt, IFaceTest)) 
// check for self reference 
if (Ent.equals(tempEnt)){ 

AtomList.append(tempEflt.getName0+" [SELF]\n"); 
}else{ 

AtomList.append(tempEnt.getName0+"\n'); 

else 
if (isEquiv(Ent, IFaceln, tempEnt, IFaceTest)) 

if (Ent.getName() .equals(tempEnt.getName0)){ 
CompList.append(tempEnt.getNalrLe0+" [SELF]\n"); 

}else{ 
CompList.append(tempEnt.getNaITleO+"\n"); 

Program 15 - The Bui ldEquiv () Method 
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The isEquiv() Method 

The equivalence of two entity interfaces is determined by the code presented in 

Program 16. In an effort to save processing time, an initial check is made on the number of 

input and output ports of the two components being compared. If these checks fail then the 

interfaces are not equivalent and isEquiv () returns false (label A). 

If the rudimentary port-list length check is passed the more processor-intensive task of 

comparing interface 'fingerprints' commences, first for input ports (label B) and then for 

output ports (label Q. 

The EntitylFace class defines the idea of a port fingerprint. Essentially a port 

fingerprint is a text-based representation of a port's name, message type and implicit 

message range. The EntitylFace class maintains lists of fingerprints for each 

component's input and output ports. 

Method isEquiv() compares the fingerprint list of the selected component against those 

of the other library components. If the fingerprint lists (implemented as Java Vectors) do 

not match at any point in the comparison process, the testing loop is exited and the method 

returns false. If the fingerprint testing completes with an identical match isEquiv () 

returns true. 

public boolean isEquiv(Entity EntA, EntlFace a, Entity EntB, EntlFace b){ 

boolean equiv = true; 
String tempS = null; 

quit: 
1* *** label A 	*1 
if ((a.getIPortSizeL==b.getIPortSizeO) 

&& (a.getOPortSizeo=b.getoPortSizeO)){ 

1* *** label B 
for(int i=O;i<a.getlFPrintSize();i++){ 

tempS = a.getlFPrint(i); 
if (!b.IFPDup(tempS) 

equiv= false; 
break quit; 
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1* *** label C *** 
for(int i==O;i<a.getorPrintSize(i;i++) 

tenipS = a.getOFPrint(i); 
if (!b.OFPDup(tempS)) { 

equiv=false; 
break quit; 

}else{ 
equiv= false; 

return equiv; 

Program 16 - The Equivalence Test Methods 

5.7.4 Other Component Interface Properties 

Another interface-related function of LibTool is the ability to assemble all components 

in classes. The classification of components is achieved by identifying groups of components 

with identical interfaces. That is to say, two models belong to the same class M if their 

interfaces are equivalent: 

A,BEM 	'A = 'B 'c 

LibTool supports a class-oriented view of library components via the browser 

window's 'Class Display' control. This function launches a window with a tree control 

(similar to that used in the main library browser). Each sub-tree of the window represents a 

class of components in the library. An expanded tree for the MEDL TestLibrary is shown in 

Figure 57. 

The equivalence class viewer offers another mechanism for locating components 

suitable for substitution. 
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Figure 57 - The Liblool Class Viewer Window 

Thomas defines an ordering relation over the interfaces of two models A and B by: 

14 'H 1ff 

N' 	AU çUVn€N 

A 

N cN AU, DU,VneN,neP1  

i.e. class A's interface is contained within class B's interface if at least all the names of class 

A's ports are contained in class B's interface. In addition, all input ports of B must use the 

same message types as the corresponding ports in model A. Finally, all output ports of model 

B must use the same message types as the corresponding output ports of model A. 

In order to illustrate this relation, consider components A and B from the MEDL 

TestLibrary that have the properties set out in Table 3 



Component Input Port 
Names (N") 

Output Port 
Names (N") 

Message Types for 
Input Ports 

Message Types for Output 
Ports 

UcUVncN UcUVneN 

A 0 {out} 0 {PACKET} 

B {in} {out} {PACKET} {PACKET} 

Table 3 - Component Interface Properties 

Testing if model A :!~ model B we see that the ordering relation holds true because for 

the input port and message type test f2{in} and [0),ç(PACKET) respectively. Similarly for 

the output port and message type test (out)çfout} and {PACKET}{PACKET}. 

In terms of interface inheritance, we can see that by ordering classes of model via this 

relation, an interface inheritance tree can be constructed. In this example, the more complex 

model B interface is an extended version of an inherited (interface) found in model A. 

Whilst the class display window does not support an interface inheritance view of 

component classes, LibTool does provide an 'Order' control which performs this test on the 

library components with respect to a component selected in the main browser. 

Output from this function is shown in Figure 58(a) and (b) for ordering test applied to 

TestLibrary components A and C respectively. 
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Figure 58 - Example Output from the Order !!~ ' Relation 

The implementation of the above ordering relation is a modified version of the code 

presented earlier for the equivalence relation (section 5.7.3). 

5.8 Managing Projects as Libraries 

It is important to emphasise the fact that Libtool is a library management tool in the 

sense that multiple target projects can be contained in a single MEDL (library) file. 

However, as previously mentioned in section 5.5.2, elements are added to or removed from a 

library via direct manipulation of the MEDL library source (using a text editor). This cut 

and paste' approach to component import/export is far from ideal (the technique is both 

cumbersome and error prone). Ideally, Libtool's functionality would allow for seamless 

reuse of library components across multiple MEDL files. This process could be realised via a 

GUI based control, allowing the user to visualise the constituent components of various 

library files (say) as icons and permitting drag and drop' operations to provide an intuitive 

import/export interface. However, it was felt that in the context of this work there was little 
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gain in developing another GUI control as, in the context of this work, the import/export 

functionality is of secondary importance to Libtool's inter-entity interface management 

facilities. 
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Chapter 6 

Model Generation 

Aside from library management and exploration, the other main function of LibTool is 

the generation of EDL code and HASE++ behavioural skeletons for use directly within the 

HASE environment. This section gives an overview of the code generation process 

highlighting key parts of the implementation where appropriate. 

6.1.1 The Code Generation Interface 

To start the generation of EDL and HASE++ code the user selects the target 

component (HASE model) in the browser window. Usually the selected component will be a 

closed model (i.e. it will be a composite component without free ports) and will represent a 

complete simulation mode1 35 . 

After target selection, the 'generate' control is selected and the user is presented with a 

window detailing options for code generation. The window is split between two panes of 

information. 

The first pane (labelled 'Target Spec.' and illustrated in Figure 59) allows the user to 

specify the output directory for the generated code and the target type. At present the only 

fully supported output type is EDL (and implicitly HASE++), however it is in theory 



possible to use LibTool as a general-purpose modelling tool. The output of different target 

code is a matter of writing the appropriate Java code generation routines (to replace the EDL 

generation class EDLLibGenerator). To this end, a basic PostScript target generator was 

written (to produce figures of entity's port and link configurations) in a different code 

generation class - PostScriptGenerator. The use of the target selection control is 

illustrated in Figure 60. 

$I  (ieneFate Code Settings 
	 xj 

Target Spec. EDL Header 

Gpnerato 1fV 	deIa 

ie = 	£01 

cphdtHLIBRocGenerated 	 Set Target Dir. 

Generate Tree Data 	V Generate EDL 	 V Generate C++ 

L-IASE Clipboard Mode 	Update Library 	v Utii. Methods 

Dismiss 	Generate 

Figure 59 - The Target Specification Window 

In addition to these options the Target Spec.' pane allows various switches to be set to 

control various attributes of the target code-generation process. For example, the Generate 

C++' switch toggles HASE++ code generation on and off. The other switches on this pane 

are discussed later in this work, at points appropriate to their introduction. 

This however is not a constraint and consequently it is possible to generate a HASE model of 
a single atomic entity or an open' composite entity. 
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Figure 60 - Changing the Target Code Type 

The second generation' pane (named 'EDL Header' and shown in Figure 61) allows 

the details of the generated model's EDL header (as discussed in section 4.1.1) to be 

specified. 

Target Spec. [DL Header 

rn'Jue 

Lu L 	tcu'i Uw [dmaseiprojects  

.upu.r iLawrence Williams 

VN 

	

Dismiss 	Generate 

Figure 61 - The EDL Header Specification 

6.1.2 Modelling Non Communication-oriented Component properties in 

MEDL 

Thus far, LibTool has been described with a communication-oriented emphasis. 

However, in any simulation model, communication is only one aspect of the design of a 

project. EDL supports other modelling features such as standard and user-defined parameters 

as well as special structures such as viewable memory arrays. 



Whilst this work is concerned with aiding levels of reusability and facilitating the 

generation of models at multiple levels of abstraction, the other aspects of a simulation 

component's representation cannot be ignored. 

As EDL already provides a good solution to the modelling of these other attributes the 

solution to the problem of allowing aspects other than communication to be represented in a 

MEDL library file is the use of embedded EDL descriptions. 

This is done via the EDL{ } construct within a component definition. Program 17 

presents the MEDL library description of a trace-driven processor model. Following the now 

familiar name, description, message type and port definition, the EDL construct is used to 

define various parameters of the component. The processor component defines embedded 

EDL to represent various component attributes including a general memory array type (for 

holding the processor driving trace file), a local (to the component) instance of the previously 

defined array type, and a delay parameter. 

Each line of embedded EDL is specified with one of three possible MEDL keywords as 

follows: 

I. PARNLIBINS: Embedded EDL following this command outlines the 

definition of a HASE instruction set (a special HASE data type used for 

representation of instruction sets). 

PARAMLIB: Lines of EDL following this keyword are inserted in the target 

project's PARAMLIB section (i.e. the global parameters section of the EDL as 

discussed in section 4.1.2). 

PARiNS: This keyword indicates that the related EDL fragment is an entity 

parameter that is to be included in the ENTITYLIB (section 4.1.4) definition 

of the component. 
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All the EDL encapsulated by the above keywords is standard EDL and must conform 

exactly to the standard EDL syntax. 

ENT 
NAME { td_processor} 
DESC{A Trace Driven Processor") 

DETDESC("\tThis simple entity reads a trace file and issues requests 
on a memory access port (of type memaccess). The processor 
entity models a cycle delay through the td_processor_delay 
parameter. After holding for the cycle delay and issuing a 
memory request the processor waits for a result on the 
MENRESULTIN port. \n\n" 

MTYPES 
MESSTYPE(memacCeSs (read_address, write_address)) 
MESSTYPE(memresult{returfl_address, ack write)) 

INPUT(PORT{MEMRESULTIN, memresult} 
OUTPUT(PORT{MEMREQOUT, memaccess} 

EDL 
/* Define the array (type) to hold memory contents / 

EDLCODE(PARAMLIB,"ARPAY ( ttrace line array , 250 , ttrace —line );"} 
1* Define the array (instance) to hold memory contents */ 
EDLCODE{PARAMS, "RARRAY ( t trace line array , trace line array);"} 
1* Parameter indicating the number of trace limes to be read */ 

EDLCODE{PARAMS,"RINT ( traces , 250 );"( 

1* Define the trace line structure (address,r/w) *1 
EDLCODE{PAPAMLIB,'STRUCT ( ttrace line , [RINT (address,0), RSTRING 

(action, \"NOP\") ] ) 
/* Define the delay parameter for a processor cycle */ 

EDLCODE{PARAMS,"RINT f tdprocessor delay , 5 );") 

Program 17 - Sample Component with Embedded EDL 

If an entity contains embedded EDL, the code can be viewed using the LibTool 

interface viewer's third pane as shown in Figure 62. 

lnterfce HuH t)escnptiun Embedded lEt)i 

PARiiENUM (t_di_sue_rP 	 U), 

IPJSAMSRINT ( memory_read_delay,50), 

PARAMSRINT (memory_write_delay, 50); 

PARAMS RINT (access_count, 0), 

PARAMS.RINT (read_count, 0), 

PARAMS:RINT (write_count, 0); 

PARAMS:RFLOAT (read_percent,0.0), 

ARAMSRFLOAT (write_percent,0.0), 

Figure 62 - LibTool's Embedded EDL View 
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6.1.3 The EDL Code Generation Process 

After the generation control has been activated, various objects are instantiated to 

facilitate EDL model generation. An overview of the key classes involved in the EDL code 

generation process is given in Figure 63. These classes are referred to in the remainder of this 

section, which provides an overview of the EDL code generation method. 

Class 
LibGenerateForrfl 

(derived from 
Swing.JFrame) 

Handles Interface issues for 
generation phase 

Class EDLHeader 
Storage and methods relating 

to EDL preamble fields 

Class EDLLibGenerator 
Generates actual EDL code and (optionally) l-&SE-f 	-- - generate. 

Skeletons. 	- - - 

/ 
/  

Target EDL 	K/ Generate EDL 
Code 

Tempory Buffers storing 
various EDL section 

1 

- - - 	 instance: 	 Class 

- - 1 tempParamLib 	EDLParamlib 
Holds and manipulates an 

- - 
	 EDL Parameters for 

generate 	communication structures. 

instance: 
tempEnrbedParamLib -- 

L Holds and d manipulates an 
EDL Paramlib defunitionfor 
component specific project 

paramlib entries. 

Figure 63 - EDL Generation Classes 

The code generation process starts with the creation of an object of type 

EDLL±bGenerator. When this class is created an object of type EDLHeader is passed to 

it as a parameter outlining the target EDL preamble (this data is obtained from the second 

generate window pane described in section 6.1.1). The EDLLibGenerator method 

processEDLFile () is then called which opens the target EDL file for writing. 
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The EDLLibGenerator object then instantiates an object of class EDLParamlib 

that is used to store and manipulate the EDL PARAMLIB commands related to port and 

message type definitions. In addition, another object of class EDLEmbedParamlib is 

created which is responsible for holding and manipulating all other PARAMLIB definitions 

(i.e. those extracted from the EDL { } sections of the MEDL library file). 

The generation process now outputs a header (in the form of EDL comments) 

indicating the date and time of model generation, the version of LibTool used, the name of 

target model and the responsible author (see Program 18). 

-- Generated Automatically With LibTool 2.0 
-- Target Entity: simple archldin 
-- Created At: Mon Dec 14 16:27:49 GMT 1998 (Author: Lawrence Williams) 

Program 18 - Sample Comment Block from EDL Generation 

Following this, the EDL preamble (section 4.1.1) is prepared and written to a 

temporary text buffer based on the values in the EDLHeader object previously passed to 

EDLLibGenerator. 

Now the more complex code generation task commences. Each component in the target 

model is examined and details of the message types used by the component are passed to the 

EDLParamLib object. This object analyses each message type and assembles a Vector of 

required message types (removing any duplicates which may be passed in). The 

EDLParamLib object also enforces a syntactically correct (in terms of EDL) order upon 

each entry in the PARAMLIB vector (e.g. message types are defined before the link types that 

refer to them) ensuring that HASE's 'one pass' EDL parser can handle any generated entries. 

At the end of this phase, the target PARAMLIB vector is transferred to a text buffer ready for 

output to the target EDL file. 
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After writing an empty EDL GLOBALS section, (the programmer is no longer afforded 

the luxury of global variables for the reasons outlined in section 4.5) the EDL ENTITYLIB 

(section 4.1.4) is generated in two main phases. 

Firstly all atomic components are translated into EDL representations (including the 

MEDL embedded EDL { } PARAMS code), then all composite entities are translated 

according to their MEDL definitions. Program 19 presents the output for the translation of 

the atomic MEDL . component given previously in Program 17. All the EDL PARANLIB 

entries are stored temporarily in a text buffer. 

TNT ITYLIB 
ENTITY din tdprocessor 
DESCRIPTION ("A Dineroill Trace File Compliant Processor") 
PARANS 

-- ** Encapsulated EDL from hub ** 

TINT ( traces , 250 ); 
TINT ( td_processor_delay , 5 ); 
RINT ( current—line , 0); 
RENUM ( t din issue type , din_issue_type , 0); 

PORTS 
PORT ( MENRESULTIN, LINK memresult , in port, SOURCE ); 
PORT ( MEMREQOUT, LINK memaccess , out port, DESTINATION ); 

ATTRIB 

Program 19 - EDL ENT ITYLIB Entry. Generated from MEDL Processor Definition 

A text buffer is then created to store the EDL LAYOUT definition. This section consists 

of a single layout entity representing the model selected in the LibTool browser for 

generation (this will usually be a composite component). 

All the separate intermediate text buffers are concatenated into a single text containing 

the target EDL and this is finally output to the target EDL file. 

If the 'generate C++ code' switch on the generate dialog is checked the l-IASE++ 

generation phase is now triggered. 
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6.1.4 The IIASE++ Code Generation Process 

In addition to generating EDL code, the user can choose to have HASE++ behavioural 

description files generated for each of the entities in the target model. These HASE++ files 

contain behavioural skeletons which specify event handlers for all possible messages that can 

be received at or sent to a component's ports. This option provides a standard approach to 

event handling for every generated entity and can help reduce the time taken to code a 

component's behavioural implementation 36 . Of course programmers are not obliged to use 

the event handling strategy generated by LibTool and may substitute their own. 

The code generation method writeHASECode () of class EDLLibGenerator 

generates a separate HASE++ file for each entity in the target model. Each generated 

HASE++ file contains the following sections: 

• General Header: the first generated section of a HASE++ file is a header 

detailing the time that code generation occurred followed by a set of comments 

extracted from the MEDL definition of the component (in an effort to provide 

a level of documentation within the 1-IASE++ source code). 

• Class Declarations Section: The automatically generated class declaration 

section defined the prototypes for all event handlers generated by LibTool. In 

addition, methods for the packing and unpacking of data packets are provided 

for each message type referenced by the component (these methods are 

required in all simulation entities but are traditionally hand-coded by the 

programmer). Sample prototype definitions for component B of the test library 

appear below as Program 20. 
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$class dec15 
1* Message Pack/Unpack Prototypes (Generated by LibTool). *1 
void PACKET unpackPkt(sim event &ev, t PACKET MSG &msg, tPACKETBIND 

&bind, tPACKETMSK &msk); 
void PACKET_pack (tPACKETSTR &pktln, t_PACKET_MSG msgln, 

tPACKETBIND bindln); 

/* Port Handler Prototypes (Generated by LibTool). */ 
void doilN (sin event &ev); 
void do o OUT (t PACKET STR in); 

Program 20 - LibTool Output: HASE++ Message and Event Prototypes 

. Class Definition Section: The next section of HASE++ code contains class 

definitions corresponding to the message pack/unpack prototypes (e.g. 

Program 21 presents the class definitions related to the prototypes of Program 

20). The event handlers are based around a case statement containing a clause 

for each possible value of the input message type's range. 

$cl as s_defs 
#include <math.h> 

1* Message Pack/Unpack Methods (Generated by LibTool). 
void b::PACKET unpackPkt(sim event &ev, tPACKETMSG &msg, tPACKETBIND 
&bind, tPACKETMSK &msk) 

t_PACKET_STR pktln; 

SIM GET (t PACKET STR, pktln, ev); 
bind = pktln.PACKET BIND INST; 
msg = pktln.PACKETMSGINST; 

void b: : PACKET_pack (tPACKETSTR &pktln, tPACKETMSG msgln, tPACKETBIND 
bindln) 

pktln.PACKET MSG INST = msgln; 
pktln.PACKET BIND INST = bindln; 

1* Entity Event Handler Methods (Skeletons Generated by LibTool). */ 
void b: :doilN (sin—event &ev) 

/* Define Storage for incoming event then unpack event */ 

tPACKETMSG pktinMSG; 
t PACKET BIND pkt in BIND; 
tPACKETMSK pktinMSK; 

PACKET unpackPkt (ev, pkt inMSG, pkt in BIND, pktinMSK); 

switch (pktinMSG) 
case message_a: 

break; 

36  Usually this option will only be used the first time a model is generated. 
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case message_b: 
break; 

default: 
break; 

Ii 

void b: :d000UT (tPACKETSTR in) 

1* The following defines a default send container and action */ 
tPACKETSTR pkt out; 
pkt_out = in; 

send MESS PKT (OUT, pkt_out); 

Program 21 - Definitions of Message and Event Handlers 

Body Code: The last automatically generated section of a component's 

behavioural code is the 'body' code. In this section, LibTool generates a 

general-purpose event handler which blocks waiting for the arrival of any input 

event. On receipt of an event the appropriate port's event handler is called. To 

complete the example being followed throughout this section, Program 22 

shows the body code generated for entity B. In this example, a single if 

statement dispatches events received on the entity's single input port (IN) to 

the method do_I_IN (ev). 

$body 
1* The following basic event loop was generated by LibTool. *1 
while(l) 

GET NEXT(ev); 
if (ev.fromport(IN)){ 

doilN(ev) 

Program 22 - Generated Body Code Definition 
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6.2 An Experiment in Communication Modelling 

The remaining sections of this chapter describe an experiment based around a MEDL 

component library that can be used to model the RS232/v-24 calling protocol 37 . The 

experiment demonstrates the following aspects of the LibTool based modelling process: 

• Support for entity selection based on interface-oriented classification of MEDL 

components. After an initial model configuration is created, entities within the 

model are tested to see if alternative substitute entities exist in the MEDL 

library. This is done via LibTool's entity-interface class viewer. 

• The use of composite entities to form a hierarchical model of the RS232/v-24 

protocol is demonstrated. 

• Timing characteristics of abstract and detailed component implementations are 

compared in order to verify that models based on abstract entities produce the 

same results (where possible) as models built from detailed components. This 

is done via a tool named CommTrace that allows the sequence of events 

occurring at an entity's communication interface to be viewed graphically. 

6.2.1 Overview of the RS232/v24 Protocol 

The RS232/v24 protocol defines a standard for the connection of a DTE (data terminal 

equipment) to a DCE (data communication equipment - usually a modem) via a 25-pin 'D-

type' connector. The relative positions of the DTE and DCE equipment are shown in Figure 

64(a). The protocol is primarily concerned with the activities of call origination, data transfer 

and call clearing (disconnection). The signal to pin assignments outlined in Table 4 provide 

an insight into the standard's signalling characteristics. 
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The TxD and RxD lines are used for data transmission and reception respectively. All 

other lines are used in the setting-up and clearing of a switched connection through a PSTN. 

Figure 64 (b) illustrates the sequence of signalling involved in a typical DTE to DTE data 

call. 

IPin Acronym Fun ction 
1 SHD (SHIELD GROUND) 
2 TxD TRANSMIT DATA 
3 RxD RECEIVE DATA 
4 RTS REQUEST TO SEND 
5 CTS CLEAR TO SEND 
6 DSR DATA SET READY 
7 SIG SIGNAL GROUND 
8 CD CARRIER DETECT 
15 TxClk TRANSMIT DATA TIMING 
16 TxClk TRANSMIT DATA TIMING 
17 RxClk RECEIVE DATA TIMING 
20 DTR DATA TERMINAL READY 
22 RI RING INDICATION 

Table 4 - RS232/v24 Signal Assignments 

37  A CCITT (Consultative Committee of the International Telegraph and Telephone) standard 
protocol for connecting a DTE to a DCE. 
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6.3 Building the RS232/v24 Library Components and Models 

When constructing the RS232/v24 library a top-down refinement process was adopted. 

This allowed an abstract prototype to be generated quickly and protocol detail to be added in 

later model compositions. 

Initially, the MEDL library contained three components representing an abstract view 

of the RS232/v24 protocol. The library comprised two atomic components representing an 

abstract caller' (a combined DTEIDCE entity) and the PSTN, alongside one composite 

component representing the target mode1 38 . The HASE entity hierarchy for this initial model 

is shown in Figure 65 and a screenshot of the model appears as Figure 66. 

pstn 

abstract  

abtraccaller[caIIeraJ

n 	

s 

 

Figure 65 - Most Abstract Representation 

The HASE model consists of two instances of the abstract caller entity (callera and 

callerb) each of which has on screen parameters indicating whether they are responsible 

for call origination and their current connection phase. The connection phase parameter 

values are based upon the connection set-up, data transfer and call clearing phases of the 

protocol illustrated in Figure 64. These caller entities are connected to the PSTN entity via 

ports that use the message type connection (shown in Program 23). 

MESSTYPE{ 
connectionsetup,setupack, data, dataack,clear, clear ack} 

Program 23 - Connection message type 

38  The use of a top-level target entity is a consequence of LibTool's model generation process, 
which requires a target entity to be selected for translation into EDL. Previously in HASE, models did 
not require a 'root' entity when describing model structure. 
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Figure 66 -HASE Display of Initial Model 

The connection message type is used to form an abstract version of the RS232/v24 

protocol, which models only the three protocol phases mentioned previously. The use of the 

connection message type's range elements, with respect to simulation time, is shown in 

Figure 67 (the coloured bands correspond to the colours in Figure 64 which identify the three 

protocol phases). 

The behavioural descriptions of the abstractcaller and pstn components are 

based upon LibTool's automatically generated event handlers. Each clause of the generated 

event handler is completed, by hand, with an appropriate behavioural description. For 

example, the abstractcaller method do_i_FROM_PSTN handles 'setup' messages as 

shown in Program 24. 
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switch (pkt FROM PSTN) 
case setup: 

II we should now switch to setup mode 
comms phase = SETUP; 
dump state U; 
simhold(l); 
do o TO PSTN(setupack); 

Program 24 -  Sample abstractcal ler Event-handler Code. 

0 	e It- 
Setup 

Setup  Setup 
phase 	 4 	Setup Ack 

Setup Ack  

_
4_Dat 

Data 	
a 

transfer 	

Data Ack 
Data 	:_______Data Ack  

Data phase  

I 

 Data 
Data Ack  

Clear 	
Clear 	 4 	

Data Ack 

prase 	4 	Clear 	
Clear 
Clear 

Figure 67 - Use of the Connection Message Type 

6.4 Refining the DCEIDTE Components 

The refinement of the model (to a more realistic representation of the real-world 

system) sees the division of the abstractcaller entity into distinct DTE and DCE 

components. Two versions of DTE and DCE components were created to represent different 

levels of modelling detail. 

6.4.1 DTE and DCE Implementation A 

The first DTE and DCE implementations involved the creation of atomic entities called 

pc and modem respectively. These entities each include two ports representing the RS232 



physical interface. These ports are bound to message type rs232 (Program 25) that has a 

message range capable of representing the signal assertions used in the rs232/v24 protocol. 

MESSTYPE{rs232 
{number, dtr on, dsr on, non, rts on, cdon, cts_on, txd, rts off, rxd_on, 
cdoff, cts off, dtr off, dsroff} 

Program 25 The r s 2 3 2 Message Type. 

The pc and modem entities have a more sophisticated behaviour which implements the 

full protocol shown in Figure 64. A sample for the pc entity's behavioural code (event 

handler do I FROM_MODEM) is shown in Program 26. In order to highlight the distinction 

between automatically generated and user supplied HASE+-+ code the user-supplied code is 

highlighted in red. 

// Entity Event Handler Methods (Skeletons Generated by LibTool). 
void pc: :doiFROM MODEM (sim event &ev) 

//Define Storage for incoming event then catch event (generated by LibTool) 

rs232 pkt FROM MODEM; 
SIN GET(rs232, pkt FROM MODEM, ev); 

switch (pkt FROM MODEM) 

case ri_on: 
coums_phase = SETUP; 
dump state 0; 
simhold(l); 
do o TO MODEM ( rtson) 
break; 

case cts_on: 
if (initiate call == YES)[  

/1 the calling machine 
simhold(l); 
dooTO MODEM (txd); 
simhold(l); 
conms phase = CLEAR; 
duinpstate0; 
simhold(3); 
dooTO MODEM (rts off); 

}else( 
II the called machine 
comms phase = DATA; 
dump state 0; 
sirnhold(l) 
do o TO MODEM(txcij 
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h:.ci1; 
dooTO1ODEMrts_off 

break; 

Program 26 - A Sample of HASE++ Behaviour for Entity pc. 

6.4.2 DTE and DCE Implementation B 

The second versions of DTE and DCE take a different approach to modelling the 

RS232/v24 protocol detail. The DTE and DCE are represented in the entities pcdetail 

and modemdetail respectively. The use of the word detail in the entity names reflects the 

fact that these entities feature a set of modelled LEDs (implemented as graphical entity 

parameters) which, during HASE animation of trace output, indicate the signalling on 

individual pins of the interfaces (these can be seen in Figure 68) revealing signalling signal 

slate detail. 

Rather than employ a small number of ports and an extensive message type, the RS232 

physical interface is represented by a large number of ports (one for each pin modelled) and 

a two simple message types (named rs232wire and rs232datawire) defined as shown 

in Program 27. The rs232wire message type is assigned to timing and control ports (pins), 

and the rs232dataw±re message type is assigned to data transmission related ports (the 

RxD and TxD pins). 

MESSTYPE{ rs232wire 
(on, off} 

MESSTYPE{rs232datawire 
datatrans, remotenumber 

Program 27 - Alternative Message Types for RS232/v24 Signal Modelling 
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As with the pc and modem entities the behavioural description is more complex than in 

the original abstractcaller entity. In the pcdetail/modemdetail entities extra 

behavioural code is included to set the on-screen LED parameters on or off according to the 

protocols progress. This parameter setting is illustrated in Program 28, which details the 

event handler on input port (pin) RI. 

switch (pktRl) 
case on: 

riled=ON; 
conuns_phase=SETUP; 
dump_state 0; 
sirnhold(1); 
dooRTS (on); 
riled=OFF; 
rtsled=ON; 
dump_state_i 0; 
break; 

case off: 
break; 

default: 
break; 

Program 28 Fragment of pcdetail HASE++ Behavioural Code 
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Figure 68 - RS232/v24 Model Using entities pcdetail and rnodemdetail 

6.4.3 Common Implementation Features 

Both DTE and DICE oriented models have a single level behavioural hierarchy as 

shown in Figure Both mode12 and mode13 implement the full RS232/v24 protocol 

with the messages shown in Figure 70 (mode12 using the rs232 message type as 

illustrated and mode13 using a combination of rs232wire and rs232datawire 

message types). 

° In addition. Appendix C.2 contains detailed diagrams of all the RS232 experiments model 
structure (including port/message type bindings and entity interconnection). 
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6.5 A Hierarchical Simulation Model of the RS232/v24 Protocol 

Having defined several atomic entities that have been used in individual (flat) models, 

the process of introducing hierarchy into the protocol simulation was the next issue to be 

addressed. An obvious first step was to consolidate the abs tractcaller component with 

the more detailed DTE and DCE components. Accordingly, two more composite components 

were created named caller and callerdetail. The caller component takes the 

behaviour of abstractcaller at the higher level and is composed of a pc and modem 

entity at the lower level. The callerdetail component also takes the behaviour of 

abstractcaller for its high level representation; at the lower level instances of 

pcdetail and modemdetail are coupled. The two composite entities are both 

considered valid by the LibTool validation process. Other (unrealistic) combinations were 

constructed and tested in MEDL but were correctly flagged as invalid by LibTool. 

Given the previously defined composite entities, it was possible to construct HASE 

models representing behaviour at multiple levels of abstraction. Behavioural level could be 

switched between in HASE via use of the 'simulate at this level' switch (section 3.7.2). 

These models represented the first ever HASE models to provide more than one behaviour 

for the same sub section of a simulated system. 

Initially two models were constructed, one using two caller entities at the higher level 

and one using two caller detail entities at the higher level. The HASE hierarchies for these 

two models are shown in Figure 71. 
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Figure 71 - Models with multiple behavioural abstractions 

Examination of LibTool's class viewer (section 5.7.4) showed component substitution 

could be performed for the abstractcaller, caller and callerdetail 

components. The class viewer makes the identification of substitute entities straightforward, 

the user simply finds the class in which the entity to be replaced resides and all other entities 

in the same class (sub-folder on screen) are suitable for substitution (the output from 

LibTool's class viewer with the MEDL RS232/v-24 library loaded is shown in Figure 72). 
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Figure 72 - RS232/v24 Component Classes 

6.6 Protocol Validation 

One problem encountered when code is executed at different levels of abstraction is 

ensuring that behavioural characteristics are identical irrespective of the selected abstraction. 

Typical of this problem is the task of ensuring timing information in detailed entities is not 

lost when moving to a more abstract representation. The responsibility for aligning' events 

in time across abstract representations ultimately falls to the programmer. However, tools 

can be employed to aid this process. 

The CommTrace tool was created as part of this research effort in an attempt to provide 

the programmer with a mechanism for visualising the events sent across inter-entity 

communication interfaces with respect to time. 
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6.6.1 An overview of CommTrace 

CommTrace is used post-simulation to analyse inter-entity communication. It is started 

by the generation of a special trace file, which is triggered by selecting the generate 

communication protocol' option from the tools menu. The CommTrace tool can then be 

launched by selecting view communication protocol' from the tools menu. 

The main CommTrace Window is divided into a console pane which displays system 

messages and a set of controls. The controls include two pull-down lists allowing the 

selection of two entities (the list of available entities is extracted from the CommTrace trace 

file) whose communication is to be examined, a control for launching a trace viewer and a 

control for starting the protocol viewer. The main CommTrace window is shown in Figure 

73. 

cirnrnTrace ""0.1 a(c)1 coo HASE Group 

Scnnlng Tracefile mad4-bothhigh cornms 

Tracefile mod4-bothhihcomms OK. 

'V 

ErvA layout rnodel4.callerajnst 

IUUIJ layout _rnodel4.PStflJflSt 

1r.icHOrnod4-Dothhftlhc ornms 

Comrns. Diagram 	View Trace Info. 	 AboUt :: 	Exit 

Figure 73 - The Main CommTrace Window 
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The Comm Trace Trace Viewer 

CommTrace allows the user to examine the trace file in a text based representation via 

the trace file viewer window. In this view sections of the trace file can be highlighted and 

manipulated on the system clipboard (useful when documenting entities). 

Tin Ertt. L Dest Frt F'1 C 

,rrl .tEE.iT - 

3.0 layout_mode14 path_inst TO_CALLERB Iayout_rnodet4 catierbinat FROM—PS MESSPKT setup 

4 0 layout model4 callerb_inst TO_PSTN 	layout_model4 path_inst FROM CA MESSPKT setup_ad 

5.0 layout_rnodel4 pstn_irist TO_CALLERA 	ayout_mode14 callera_inst FROM_PS. MESSPKT setup ack 

70 Iayout_model4 callerb_inst TO_PSTN 	Iayout_model4 pstn_tnst FROM_CA NtESSPKT data 

8.0 layout_mode14 caflerb_inst TO_PSTN 	layout_mode14 pstn_inst FROM—CA MESSPKT data —ark 

8.0 layout model4 pstninst TO_CALLERA layout_model4 callera_inst FROM_PS MESSPkT data 
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Figure 74 - The CommTrace Trace File Viewer 

The Comm Trace Communication Viewer 

The main CommTrace window is the protocol viewer. This allows the user to see a 

time ordered representation of the communication events between two entities over the 

course of a simulation run. The events are presented in a scrolling pane with two blocks 

representing the entities being investigated running lengthways down the screen (one in red 

and one in blue to aid message source identification). Events generated by either of the key 

entities are drawn as thick arrows indicating the direction of transmission. Events from other 

entities other than those being investigated (but forming part of either entity's 

communication interface) are represented as incoming thin arrows (from the left or right 
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sides of the figure). Each event is labelled with the message type name and range value. In 

addition, each message is annotated with the simulation time at which the event took place. 
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Right Iayut_moel4 psm_inst 

Figure 75 - CommTrace Protocol Viewer (Detailed View) 

The standard view dedicates a fixed vertical area of screen space to each simulation 

time unit. This means that for a period of (say) ten simulation time unit where no events take 

place there will be a vertical gap often time units (time units are highlighted by two shades 

of grey shading on the figure's background. 

CommTrace also provides a 'thumbnail' view of the communication trace (Figure 76) 

which compresses time vertically (i.e. if no event takes place in a given time unit nothing is 

output). In the thumbnail view, all events are time stamped and rather than individual event 

arrows being labelled each event is annotated in a column on the right of the display. The 

thumbnail view is useful for finding key events in large traces, as rendering of this view is 

much quicker than the detailed figure. 
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Figure 76 - The CornmTrace Protocol Viewer (Thumbnail View) 

Finally, the programmer can choose to filter events according to their source (either 

entity A, B or external). 

6.6.2 Validating the RS232/v24 Simulation Timing Characteristics 

The RS232/v24 models, which represent entities at multiple levels of abstraction, were 

examined using CommTrace following the implementation of detailed protocol timing in the 

lower level entities. By analysing the CommTrace output, it was straightforward to see if the 

timing characteristics of the higher abstraction level matched those of the more detailed 

lower level (and of course that the lower level exhibited the behaviour specified by the 

RS232/v24 standard). 

In fact, it was shown that the higher-level entities timing was not identical to that at the 

lower level and the higher level model was modified accordingly. This was because the 
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initial high-level model used programmer-estimated time delays rather than detailed timing 

measurements built up from a complete flow of events. 

Due to this extraction of timing information from the lower level and modification of 

the timing data in the higher level, it was possible to run the simulation in a more abstract 

manner (and consequently with a faster runtime) whilst retaining the timing accuracy of the 

lower level model. Of course, timing information was only available in the higher level 

entities for a sub-set of the events supported by the lower level implementation. 

However, it was possible to run a model with one communicating party at the higher 

level of abstraction and one at the lower thus allowing the full protocol detail to be viewed in 

one caller instance whilst the other being run at a high level of abstraction meant that overall 

runtime was reduced. Figure 77 shows CommTrace protocol diagrams for this model 

configuration. The first three parts of the figure show the individual interface timing 

characteristics for entities pc/modem, modemlpstn and pstn/caller. The final part of 

the figure is a composite of the previous three (thumbnail) protocol diagrams showing how 

the entire set of model interfaces match in terms of key events across the differing levels of 

abstraction. Appendix C.3 contains additional protocol diagrams for alternative model 

configurations. 
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Figure 77 - Using CommTrace to Compare Protocol Timing Characteristics 
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6.7 Model Performance 

As alluded to in the previous section, the ability to run sections of a model at different 

levels of abstraction offers the possibility of reducing simulation run time. To demonstrate 

this, three models based on the RS232/v24 MEDL library were configured to run with 

various entity abstraction combinations. The models used are illustrated in Figure 78, Figure 

79 and Figure 80. 

caller calIerb)K 

dem 

r1oaIIera1 

Base Model 

(a) 	 (b) 	 (c) 

Figure 78 - Model Configurations a-c. 

modemdetait 

demdetail 

callerdetail 
 2F pedetail 

Base Model 

IE 
Figure 79 - Model Configurations d-e 
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modemdetail 

modem 	

Cal detail 	

pedetail 

Base Model 

Figure 80 - Model Configuration f 

Each figure depicts a base model and various entity configurations. The configuration 

figures (a-f) indicate (by highlighting active entities in blue) the level of behavioural 

abstraction being used across the corresponding base model. 

In order to compare the performance of the different model configurations, three 

measures were used. The first metric is the number of user generated trace file lines, which 

gives a basic indication of the amount of state manipulation occurring in the model. 

Secondly, the number of explicit 'sends' (i.e. events generated) gives a measure of the 

communication overhead in each model. Finally, the execution time for the entire simulation 

to run gives a metric with which to compare the overall efficiency of a model configuration. 

Each of the simulation models was executed on a Sun Sparc 5 workstation and the 

execution time results presented here are the average values taken over 100 simulation runs. 

Graph I illustrates the comparative simulation run time of each model configuration. 

Configuration a has the best runtime as it executes all behaviour at the most abstract level 

(i.e. using entities of type caller). Models h and c see callers being switched one at a time 

to the lower level of abstraction in model 4 (pc and modem components are used). The run 



time increases with each low level caller. Configuration d see a relative improvement in run 

time compared to configuration c as although the callerdetail and pcdetail 

components are the most processor intensive entities only one caller is simulated at the low 

level. As expected, configuration e (in which both callers are simulated with maximum 

detail) produces the worst runtime performance. Finally, configuration f simulates the 

communicating parties with a combination of detailed behaviour (one party is represented by 

pc and modem entities and the other with pcdetail and modemdetail entities). In this 

case, a slight performance increase is gained over model e. The results indicate that pc and 

modem entities are more efficient in terms of runtime than the pcdetail and 

modemdetail entities. 
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Graph I - Model Configuration and Simulation run time 
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Investigation of Graph 2 gives an insight into the runtime performance of the different 

model configurations. The graph illustrates the contribution of explicit sends and user 

generated activity to the overall size of a model's simulation output trace file. The 'explicit 

send' entries are made automatically (by 1-LASE) in the trace file when an event is scheduled 

for transmission. All other trace file lines are classed as user generated; either explicitly via 

the user code including sim_trace commands or implicitly by the user changing an entity 

parameter and the value change being reflected in the trace file. 

120 
	 Trace File Output Size 

Graph 2 - Model Configuration Vs Trace File Size and Explicit Sends 

Model configurations a - c use an increasing number of explicit sends as the detailed 

lower level entities are enabled. In fact, configuration c models the RS232/v24 protocol in 

full detail and consequently this model has the joint highest number of explicit sends (along 

with configurations e and j).  However, whilst configurations c, e and f all use maximum 

protocol detail configurations d, e andf all generate larger traces. This is because the user 



generated proportion of the trace file size is increased significantly when entities pcdetail 

and modemdetail are used, as a consequence of the large number of state changes made 

to represent the physical interface LED arrays. 

6.8 Summary 

The process of generating the RS232/v24 model (using LibTool) was characterised by 

the following differences when compared to the traditional HASE modelling approach: 

• The combination of LibTool and HASE allowed the incremental development 

of a set of entities to be performed without the need for ad hoc project 

management. Previously the responsibility for capturing versions of a model 

configuration fell to the programmer, who was required to manipulate a 

complex directory structure representing different model versions. Using 

LibTool as a component repository allowed the incremental creation of a 

library of components. The deployment of these components in different 

models was facilitated by LibTool's EDL generation facilities. 

• After creating several 'flat' simulation models, the combination of different 

component abstractions was made simpler by LibTool's ability to examine an 

entity's communication interface. Previously the programmer needed to 

examine components' behavioural and structural (EDL) representations to 

ascertain the messages used by individual entities. The class viewer provided 

by LibTool allowed the quick identification of entities that could be substituted 

to form alternative models. 

• The automatic code-generation facilities provided by LibTool removed much 

of the tedious event handler writing required in a traditional HASE project. 



This allowed the implementation to concentrate on protocol modelling rather 

than simulation support functionality. 

. The CommTrace tool allows the programmer to extract detailed timing 

information from lower level (i.e. detailed) models by examination of an 

automatically generated protocol diagram. The programmer can then insert the 

timing information back into more abstract models to reduce simulation run 

time. CommTrace allows verification that low and high-level timing 

characteristics of a model are identical by identification of key communication 

events in the protocol diagram. 
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Chapter 7 

Extending Communication Detail 

This chapter presents extensions to the LibTool modelling system that allow inter-

entity communication structures to represent the detailed data required to model computer 

systems more realistically (e.g. the modelling of address ranges and operand values). In 

addition, we present a tool (named SimTree) that allows a component hierarchy to be 

visualised with respect to the behavioural composition of a model. 

Following an overview of the LibTool extensions, three simulation experiments are 

used to illustrate the practical application of the modelling mechanisms introduced here. 

7.1 Requirement for Extended Message Types 

So far, a degree of horizontal and vertical linkage abstraction has been obtained by use 

of entity-interface classification techniques. Fundamental to these mechanisms are the 

concepts of structured port, message and message-range types. 

However, whilst well-defined message types and ranges allow an entity's interface to 

reflect the problem domain to which it is to be applied, often a simulation model requires the 

passing of specific parameter values with an event. For example, in a memory hierarchy 

simulation, memory access events can be characterised by (say) a message type 

memaccess with a range {read data, readinstruction, write data}. 

However, memory hierarchy models wishing to simulate the contents of a memory and the 
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use of these contents throughout the memory hierarchy require a means of expressing 

address and data values within inter-entity events. 

Using the LibTool modelling techniques introduced so far it is possible (albeit tedious) 

to define a message type address with a range of elements representing all the possible 

addresses for a specific memory unit. This would result in a large, unwieldy message type 

(e.g. address = {1, 2, 3, 4, 5 .... Maxaddress}) whose intended domain of use is hard 

to ascertain from the range elements (it is desirable that range elements convey something 

about their intended domain of use). 

This chapter proposes that this type of message set is of secondary importance to that 

of the typical LibTool message types such as memaccess given above. The former is 

concerned with a system task (e.g. reading or writing data) where as the latter address 

type is concerned with what is essentially a task parameter of a read/write operation. 

However, there is no dispute that both types of message range (memaccess and address) 

are required in any flexible simulation system. There is a need therefore, to extend the 

structured message type approach to allow the use of detailed parameters without risking the 

loss of model reuse opportunity. 

7.1.1 Secondary Parameter Bindings 

The idea of so-called 'primary' and 'secondary' event types was investigated as an 

initial solution to the problem of handling task and parameter oriented event data 

respectively. This concept involved an active entity sending a packet representing the task in 

hand to the remote entity and then passing further events based upon the remote entity's 

parameter requirements. The basic mechanism is illustrated in Figure 81. The figure shows a 

processor entity requesting a memory location via an event that transmits a read address 

message-range item to the remote memory entity. Upon receipt of this message, the memory 

202 



entity responds with a packet identifying the parameters it requires in order to service the 

request (in this case it simply requires an address in the range 0.. .210).  The response packet is 

received by the processor entity that ascertains whether it can supply such an address (the 

entity may be very abstract and not support the notion of an 'address range'). If, however, it 

can furnish the address parameter, it responds by sending a parameter packet to the memory 

entity, which then carries out the read —address request. 

Entity: Processor 	-i 	 Entity: Memory Unit T 

flow of 
control 

SEND 	
Primary Packet: 	 =GETNT
read_address  

GET—NEXT 	 M,mo,yAddress 	 SEND 

- 	(event) 	 R1fle2 1 D Lit 	

._ 	

parameter request 

>ye s 
Can sati 	

SEND 	
Secondary Packet 	 GET — NEXT 

this pare 	 address—value 	 (event) 

no 

Figure 81 —A Possible Solution to Handling Secondary Parameters 

7.1.2 The Mixed Abstraction Problem 

The approach outlined above highlights problems with connecting together entities 

from a library of ready-made components. The components in a library can represent real 

world objects at various levels of abstraction; consequently, simply because one entity 

requires a certain parameter (e.g. address value) to continue processing, there is no guarantee 

that the parameter can be provided by the remote entity. Furthermore, if the remote entity 

does support the notion of an address it may only support a specific address range. 
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Figure 82 illustrates the problem of mixing components with different levels of 

abstraction. In the figure, we assume behaviour to be specified in all entities (a, al, a2, b, 

bi and b2) with entities a and b providing a more abstract behaviour than the lower level 

entities. Cases C and D illustrated below the 6 model configuration' section of Figure 82 

illustrate the 'abstraction matching' problem. In case C. an abstract entity is required to 

furnish a lower level (detailed) entity with parameters it does not support. In case D the 

lower-level (detailed) entity needs to pass a detailed event to an abstract entity where the 

parameters could potentially be lost due to the higher level's abstract implementation. 

Model configuration 

Bi 	B2_L 

M~~:52_ 	_1 

Case A: All simulation done at 
the most abstract level 

Case C; Mixed mode 
(high-low)  

Case B All simulation done at 	
Case D; Mixed mode 

the least abstract level 

--- -- 	

: 	
(low-high) 

Figure 82 - Mixing Entity Abstractions 

There is a need for entities to be able to negotiate the parameter types they 

support/require. This is handled in the primary and secondary event type strategy described 

above by an event driven protocol in which both entities decide if they can communicate at 

the required level of detail. Firstly, a task request is issued (i.e. read —address) then the 

required parameter information is agreed. 
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The mechanism presented in section 7.1 .1 was shown to work (with small hand-crafted 

test models), however the simulation runtime overhead was significant. For a message 

request requiring a single parameter three explicit sends were required, opposed to one in a 

traditional HASE model. 

7.2 Efficient Parameter Negotiation 

Having identified the importance of keeping explicit sends to a minimum, an 

alternative way of handling task parameters was sought. Central to the task of finding an 

efficient method for parameter handling is the knowledge that an entity possesses about the 

remote entity with which it communicates. In the previous technique, a negotiation protocol 

was implemented whereby the sending entity is told explicitly by the remote entity about its 

parameter requirements. An alternative approach would be to send all parameters supported 

by the sending entity to the remote entity, and leave the remote entity to make a 'best effort' 

with the provided parameter list; this is the approach used in the final LibTool 

implementation. 

7.2.1 Requirement for a Revised Message Format 

In order to support the passing of parameters, the message format used by LibTool was 

revised to support the embedding of task parameters. Before the message format extensions 

proposed here were introduced, LibTool generated EDL code representing a MEDL message 

type-definition based upon EDL ENUM and LINK commands. This is illustrated for the 

connection message type (from the RS232/v24 experiment of section 6.2) in programs 

Program 29 and Program 30 where the range elements from the MEDL definition are 

converted into a HASE enumerated parameter. This enumerated parameter is then bound to 

the link type LINK connection. 
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MESSTYPE{connection{setuP, setup_ack, data,data_ack, clear, clear ack} 

Program 29 —The MEDL Message Type Definition for connection. 

ENUM (connection 
(setup: ,setupack: ,data: ,data_ack: ,clear:, clear ack: 

LINK (LINK connection 
[(MESSPKT, RENUM (connection , connection_INST , 0))] 

Program 30 —The Automatically Generated EDL Definition of the connection link type 

In order to represent the task parameter data associated with a message type, a new 

EDL structure was required. The new structure needed to allocate storage for any parameters 

associated with a message type. 

The provision of storage for secondary data parameters is not complex (a HASE 

STRUCT parameter can be used to store each associated task parameter). However, as a 

message type may be associated with many different entities across various levels of 

architectural abstraction, there is also a requirement for an entity to be able to identify (to the 

remote communication party) which of the message type parameters it supports. In addition, 

any solution to the parameter specification problem should be in keeping with MEDL's 

simple code specification format (i.e. should not detract from the communication oriented 

approach of MEDL). 

Specifying Task Parameters in MEDL 

The MEDL language specification was extended with extra keywords allowing the 

representation of task parameters. The declaration of parameters is independent of library 

components. The task parameters are defined in a final section of a MEDL library 

description following the atomic and composite component lists. The parameter definition 

list is identified by use of the DATABINDINGS keyword. 
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Inside the DATABINDINGS section of a MEDL file, parameter definitions are 

identified by use of the DATAI TEN keyword. Inside a DATAITEM definition, a description 

of the parameter is specified using the DESC keyword and the type and name of the 

parameter are specified using the DATAPAIR keyword. The parameter types supported by 

MEDL are listed in Table 5: 

baselNT: 	 An integer parameter. 
baseRANGE: 	 An integer range (mapped onto HASE's range 
lowint, highint } 	type). 

baseFLOAT: 	 A floating point number. 
baseHINT: 	 An arbitrarily large integer (size specified by 
fhexdigitsl 	 supplying number of HEX digits that represent the 

size of integer). 
baseDARRAY: 	 A dynamically sized array (including the name of 
fsizeVAR,elementl 	a variable that sets size and array element type). 
baseINSTR: 	 A instruction set parameter. 

Table 5 - Task Parameter Types in MEDL 

A fragment of a MEDL library is given in Program 31, which illustrates the definition 

of a single integer parameter used to hold an address in a 2 32-word address space. 

DATABINDINGS 
DATAITEM{ 

DESC{"Represents a memory address in a 2"32 address 
space - 8 hex digits."} 

DATAPAIR(memaddress din , baseHINT {8} 

Program 31 - Example MEDL Parameter Definition 

Associating Task Parameters with Message Types 

The association of a parameter with a message type occurs in the BINDINGS section 

of the MEDL file via use of the keyword BIND. To complete the DATABINDINGS fragment 
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given in Program 31, Program 32 shows the memaddre s sdi n parameter being bound to 

message type memaccess. 

BINDINGS 
BIND{memaccess , memaddressdin} 

Program 32 - Binding a Parameter to a Message Type 

Component Support for Parameters 

The final extension to MEDL is the provision of a mechanism to allow a component to 

specify if it supports the parameters assigned to the message types it uses. This is achieved 

by extending the component definition syntax to include a section named PASSIVE. This 

section details the parameters of a message type not supported by a component. The 

identifier SET is used within the PASSIVE declaration to set the status of individual 

parameters to 'not supported'. Program 33 shows a MEDL fragment for an entity that uses 

message type memaccess but does not support the previously defined parameter 

memaddre s s_din. 

PASSIVE 
SET {memaccess , memaddressdin} 

Program 33 - Setting a Parameter Binding to 'Unsupported' 

7.2.2 MEDL Generation of Parameter EDL 

When the user generates an EDL target via LibTool's generate option, the resultant 

EDL needs to represent the message type information alongside the parameter list for that 

message type. Additionally, there needs to be some form of mechanism allowing entity 

instances to indicate which of the parameters they support (mirroring the MEDL PASSIVE 



definitions). Continuing the example based around the memaccess message type and the 

memaddress_din parameter, Program 34 shows three LibTool-generated EDL definitions 

that represent the parameter list, an expression of which parameters are supported and the 

message type definition. 

The parameter list is built as a HASE STRUCT parameter with one entry per bound 

parameter. The indication of parameters supported is made via a bit mask with one bit per 

parameter; the bit mask is defined in the PARAMLIB section of the output EDL with the 

mask bits being set inside entity definitions later in the file (see Program 36). Finally, a 

HASE ENUM is defined (in the usual manner) to represent the message type range 40 . 

STRUCT( tmemaccess BIND 
RH_TNT (memaddress din , FFFE'FFFF 

BIT (tmemaccessMSK , 1); 
ENUM (t mernaccessNSG , ( read address: , write address: H; 

Program 34 - EDL Message Type Definition Including Parameters 

These three HASE definitions are automatically tied together in another HASE 

STRUCT parameter (named t messagetypename_STR by convention). In turn, this 

STRUCT parameter is bound to a link specification (Program 35). 

STRUCT ( trnemaccessSTR 
RENUM ( tmemaccessMSG , memaccess MSG INST , 0 
RBIT (tmemaccessMSK ,memaccessMSKlNST, 0), 
RSTRUCT ( tmemaccess BIND , memaccess BIND INST) 

LINK (LINK niemaccess 
[(MESSPKT, RSTRUCT (tmemaccessSTR , memaccessSTRlNST))] 

Program 35 - The Complete Message Type Definition and Link Specification 

40  LibTool generates the three EDL structures according to the t_ message typename.X 
naming convention, where X is STR, MSK or MSG depending on whether the EDL is defining the 
parameter list, the parameter use mask or the message type respectively. 
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The final LibTool-generated EDL code is placed into the ENTITYLIB definitions of 

the model components. In each entity, a set of default mask values corresponding to the 

MEDL library's PASSIVE/SET values is generated. By convention the name of a parameter 

mask is local messagetypename_BIND_NSK. An EDL fragment for an entity using 

the memaddress_din parameter in message type memaccess is given in Program 36. 

ENTITYLIB 
ENTITY din tdprocessor 

DESCRIPTION ("A Dinerolll Trace File Compliant Processor") 
PARANS 

-- ** Define local message masks ** 

RBIT (tmemaccess NSF, local memaccess BIND NSF, 1); 

Program 36 - Local Parameter Mask in EDL Entity 

7.3 Overview of Secondary Parameter Handling in HASE 

Having seen the MEDL extensions provided to represent task parameter handling, we 

now examine the way in which the data contained in the new message structures is used to 

facilitate detailed parameter passing between entities in HASE. 

The general philosophy underlying the message structure is that an entity sending an 

event to a communication partner sends all the parameter detail it supports with 'no 

guarantees' as to being able to satisfy the remote entity's parameter requirements. Similarly, 

the remote entity receives events with no guarantee that it can process a message according 

to the parameters provided. However, there is always a guarantee that the message range 

element (e.g. read_address or write—address) is supported to some degree 

(otherwise the interface checking would not have allowed the entities to be connected 

together at all). 
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7.3.1 HASE+± Generated Support Functions 

In addition to the generation of EDL structures with which to represent messages with 

embedded task parameters, LibTool also generates HASE++ code to support the use of the 

parameter lists. 

Firstly, the standard event-handler support functions are extended to account for the 

more complex message structure. To this end the Xunpack_pkt now includes self 

commented code outlining the parameter assignments of each bit of the parameter mask and 

processes the more complex message structure. The X_pack routine is also extended to deal 

with the more complex message structure. An example of the new event handlers is given in 

Program 37. 

void din memory: :memaccess unpackPkt (sim event &ev, 
tmemaccessMSG &msg, tmemaccess BIND &bind, tmemaccessMSK &msk) 

1* The following comments outline this entities mask definitions 
* for message type memaccess (generated by LibTool) 
* 
* 	[idx) (value] 
* 
* 	(0] [memaccess,memaddress_din] 
* 
* 	Mask takes i. bits 
* 	Value(dec) = 0 
* 	Value(bin) = 0 
*1 

tmemaccessSTR pktln; 

SIB GET (t memaccess STR, pktln, ev); 
bind = pktln.memaccessBlND_INST; 
msg = pktln.memaccess MSG lNST; 
msk = pktln.memaccessMSK_INST; 

void din_memory: :memresult pack (tmemresultSTR &pktln, 
tmemresultMSG msgln, tmemresult BIND bindln) 

pktln.memresult MSG INST = msgln; 
pktln.memresultMSK_INST = local memresult BIND NSK; 
pktln.memresult BIND INST = bindln; 

Program 37 —New HASE++ Event Handler Routines 

211 



In addition to the upgraded event-handler code, a new support function 

bindingActive takes a parameter mask and an integer value (the bit to be tested) and 

returns true if the specified bit is active. This proves to be a useful function when writing 

conditional code for testing if a remote entity provided the parameters required by the local 

entity. 

7.3.2 Typical Event Handling Strategy 

Having now seen the support for the new message type definitions in HASE++, we 

conclude this section on task parameter passing by examining the typical event flow that 

occurs between two entities A and B, which employ the new message format (the event flow 

is illustrated in Figure 83). 

Entities A and B have two ports (one input and one output). The output port of A and 

the input port of B are bound to message type memaccess and the remaining ports are 

bound to message type mernresult. There is one parameter (of type memaddress_din) 

bound to both of the message types used in the model. Entity A supports the use of this 

parameter on both message types, entity B however does not support it on either. 

Communication begins when entity A schedules an event of type memaccess (with 

range value read—address) and sets the memory address related parameter 

(memaddress_din) to value 1234. The local (to entity A) bit-mask for message type 

memaccess is inserted in the event's mask field. The event occurs. 

Entity B receives the scheduled event and unpacks the various message structures. A 

call to the appropriate event handler for the input port is called and the appropriate branch 

into the CASE statement in the HASE++ behavioural description is taken (in this case via the 

read—address clause). 
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Figure 83 Passing Task Parameters in HASE 

Once inside the clause it is the programmer's responsibility to unpack the event's bit-

mask field and perform a logical AND with respect to the local entity's mask (i.e. B) for 

message type memaccess. In this case, the result of the AND operation is zero. This means 

that entity B cannot service entity A's request to the level of service it requires. However, the 

simulation need not halt at this point, it is quite conceivable that useful timing information is 



available within entity B even if access to modelled memory locations is not. Accordingly, 

an appropriate delay is performed before entity B schedules its own outgoing event of type 

memresult. 

Entity B's packet is sent in an identical manner to that of entity A (i.e. its local bit mask 

for message type memresult is inserted into the outgoing message). Upon receiving the 

response packet, entity A calls the appropriate input port handler and examines the returned 

bit-mask. On seeing that the memaddres sdin field bit is not set, entity A can ascertain 

that B did not offer the full 'level of service' it requested. None the less, the fact that it 

returned a packet of the correct type in response to the request means that entity A can make 

a 'best effort' attempt to use the response and continue processing. 

We note at this point that entity B could have halted the simulation and raised an 

exception if the programmer had desired. 

7.3.3 VHDL+ Abstraction and Communication Mechanisms 

As previously discussed (in section 2.5.2) VHDL+ [Vhdlplus96] aims to address 

VHDL's lack of support for system-level simulation, by allowing simulation components 

specified at different levels of abstraction to communicate with each other via the interface 

construct. This section examines the interface construct in more detail. 

Interfaces are optional communication mechanisms (traditional VHDL port definitions 

may be used in their place) used when composing a system model. ICL describe interfaces as 

"providing a firewall between units 41 , enabling them to be designed separately, whilst 

allowing them to communicate". This is illustrated in Figure 84 where a unit Uis composed 

hierarchically of two sub-units A and B, which communicate via an interface specification I. 

41  These architectural units comprise an entity/architecture pair. 
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Due to VHDL+'s hierarchical facilities, units A and B could be further composed of sub-

units which communicate via interface specifications. 

KEY: 

Interface 

Unit 

Decomposition 

4 Communication 

Figure 84— VHDL+ Interface and Unit Composition. 

An interface specification acts to define points of communication ('ends' in VI-IDL+ 

parlance). An interface definition consists of two main parts. First the between keyword 

identifies a list of connected ends. Following the between keyword are the so-called 

interface declarations, these typically consist of protocol, transaction, message and signal 

definitions. A sample interface specification is given below in Program 38. In the example, 

an interface is defined with two communication ends formally named MEN and PROC. 

Interface MEM INTERFACE is 
Between MEN, PROC; 
(Interface Declarations) 

End interface; 

Program 38 - Sample VHDL+ Interface Specification 

The interface declarations define communication across the interface at various levels 

of abstraction as follows (from most abstract to most concrete): 

The protocol interface declaration is mandatory and serves to define the most 

abstract level of communication between units (i.e. it conveys essential routing 
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information). Protocols define start/end points of communication with 

reference to the previously defined (in the between statement) interface ends. 

A protocol specified route always consists of a single source end and one or 

more destination ends. 

Transactions define two-way communication elements which are passed 

across an interface. They characterise communication by providing a 

transaction name (e.g. send, receive), parameters (message contents) and 

properties (for example timing characteristics). Transactions also have syntax 

to allow them to be mapped (hierarchically) to lower level communication 

abstractions (e.g. messages). 

• Messages provide a more concrete communication definition and specify a 

direction as well as name, parameters and timing properties. Depending on the 

level of abstraction of the units at either end of an interface route messages 

may be used instead of transactions. 

• Finally, the signal interface item provides a special type of message that is 

compatible with the traditional VHDL signal type. This lowest level is 

essential if the model is to be decomposed into pure VHDL. 

SuperViSE [Hodgson97] (the VHDL+ modelling environment) uses information from 

the above interface items to automate the translation of information across the interface into 

a pure VHDL model for simulation. 

7.3.4 Comparison of VHDL+ and EDL 

Figure 85 compares the interface construct of VHDL+ with the EDL communication 

structures of the HASE environment. The figure illustrates how EDL combines inter-entity 

communication with behaviour in a single object (entity) whilst VHDL separates behaviour 
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(units) and communication (interfaces) explicitly by placing each in a separate software 

structure. We note that EDL also separates communication from behaviour by placing 

behaviour in the EDL sub-section of an entity definition and the communication aspects of an 

entity in the PPRAMLIB and PORT structures. The figure also serves to highlight that in 

HASE the entire modelling and simulation process takes place in a single environment 

whereas VHDL+ is modelled in SuperVISE and simulated in a separate VHDL simulator. 

System Design Level 

Figure 85 - Comparison of HASE and VHDL+ Communication Placement 

Another difference in the placement of communication mechanisms is that 1-IASE's 

communication related code is always present in the same software component. In VHDL+ 

the communication elements of a model 'migrate' from the interface to the unit as the model 

becomes more concrete. This is illustrated in Figure 86 which shows a simple VHDL+ model 

in three stages of development (stages a-c). Note the shaded areas in the figure indicate the 

placement of communication related code. In stage a, the interface is defined by abstract 
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transactions (hence the two way communication arrows), in stage b the model defines 

communication using the message construct (communication is now unidirectional and the 

units contain more detail about the data required at the interface). In the final stage (c), the 

design is becoming more concrete with traditional VHDL port constructs being used. In this 

final case, all communication detail (for the ports based route) is kept in the unit. 

This approach differs from that of EDL/HASE in which all communication detail is 

kept in the simulation entity for the duration of a project. As the communication between 

entities becomes more elaborate, the extra detail is added to the PAR4LIB and PORT 

definitions. 

(a) H: 
EA  

riteiaI€.AB 

ntertace AB 

j 

H: 
r 

Unit  
10 

(c) 	Unit 	 Unit  

I 	4- Interface AB 

L 

Figure 86 - Migration of VHDL+ interface logic into units. 

In terms of specific communication constructs, parallels can be drawn between 

VHDL+'s protocol statement and the pre-EDL use of HASE's port construct. Both 

218 



define bi-directional paths of communication and can be restricted to unidirectional 

communication by applying another software construct. In the case of 1-IASE, this is the EDL 

CLINK construct and in VHDL+, it is the message structure. In terms of the work 

presented here EDL restricts use of the pre-EDL port structure, as all links in models must be 

defined to be unidirectional. This is a consequence of the underlying code used to check 

interface equivalence. 

The final area for comparison is that of communication abstraction. In VHDL+, a 

connection across an interface (protocol construct) simply identifies communication between 

connected units (irrespective of abstraction). The content of the remaining interface 

definitions specify the various abstractions of communication that can be exchanged (there 

are potentially many different transaction/message types defined in a single interface and the 

transaction/messages can be structured hierarchically). A unit can use any message or 

transaction from the available interface. Figure 87 illustrates this situation by showing 

various units communicating across two interface definitions (note the dashed unit boxes 

indicate possible higher level unit implementations). 

In1e3:i AB 	 fler1JC.o 

L Unit 	L— 	Tranp:tion 	-j 	Unit B 	- Transaction  

Transaction  

Transaction - -. 	Unit B 	- . Transaction 

Unit Aj 	tP1PP 

Figure 87 - Communication Across Abstractions in VHDL+ 



In EDL, rather than specifying multiple link types and message definitions, the design 

process allows message types to be extended to represent more complex (detailed) 

communication interactions as the design process progresses. By using masks to identify 

supported sub-sets of a message definition, entities coded at differing levels of abstraction 

can make a 'best effort' at communication, honouring supported message elements and 

acknowledging those parts of the message that are unsupported in its own message mask (as 

described in section 7.2). 

7.4 Comments 

The approach to event parameterisation discussed in sections 7.2-7.3 offers a 

lightweight alternative to the problem of sending additional message data between entities 

(only one explicit send is required per event). The approach is 'optimistic' in its approach 

(all available data is sent in the hope that it can be handled), but allows for graceful recovery 

from non-serviceable event requests (via inspection of the returned bit-masks and 

programmer defined recovery routines). This enables valid aspects of an entity at a more 

abstract behavioural representation (i.e. one not supporting certain requested parameters) to 

offer a basic level of service (e.g. accurate delay insertion) to the requesting entity. 

The next section of this chapter introduces a detailed model of a memory hierarchy that 

demonstrates the use of task parameters as well as the previously explored facilities for entity 

substitution and library-based model construction. 

7.5 Modelling a Memory Hierarchy 

This section explores the design and implementation of models based around a MEDL 

library containing components for the construction of memory hierarchy simulations. The 
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memory hierarchy models make use of a task parameter that facilitates the passing of 

memory access detail with events. 

The various memory hierarchy models are used as a vehicle with which to further 

examine the relationship between model accuracy and the level of abstraction at which a 

component is represented. Trade-offs between runtime and model flexibility are also 

investigated. 

7.5.1 The MEDL MemoryHierarchy Components 

Each of the MEDL library components represents some element of a memory 

hierarchy; there are abstract processor components that drive both detailed and abstract cache 

memory components, abstract memories that can be used to represent main memory, a bus-

like component and several composite entities containing descriptions of full target models. 

Library components communicate using four message types. These types describe 

memory requests/results passing between the processor and bus (types mernaccess and 

memresult), the bus and cache (lookup, lookupresuit) and the bus and main 

memory (memaccess, memresult). The message ranges for these types are given in 

Table 6. 

M essage  Ty pI 
Merna c ce ss 	(read _address, write_address} 
Memre suit 	{return_  address, ack_write) 
Lookup 	{success, refer, wb} 
100 kup result { lu_read, lu_write, cache _update} 

Table 6 - Message Type Definitions for MEDL Memory Hierarchy Library 

Each of the message types listed in Table 6 has a single task parameter associated with 

it. This parameter (memaddress_din) allows message types to pass memory address 
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values with events. The MEDL definitions for the memaddress_din parameter and the 

associated message type bindings are given in Program 39. 

DATABINDINGS 
DATAITEM{ 

DESC{"Represents a memory address 
in a 2"32 address space B hex digits. (dinero III complient"} 

DATAPAIR{memaddress din , baseHINT {8} 

BINDINGS 
BIND{memaccess , memaddressdin} 
BIND{memresult , memaddressdin} 
BIND{lookup , memaddressdin} 
BIND{lookupresult , memaddressdin} 

Program 39— MEDL Definition of Address Parameter and Message Bindings 

7.5.2 Production of Cache Components 

The most complex components in the library are those representing cache memories. 

The cache components were designed to maximise code reuse by careful decomposition of 

the HASE++ behavioural description methods. The approach taken attempted to employ 

techniques similar to those found in [Sampogna96] (section 4.8.3). The authors of that 

research extended an abstract base class and although this is difficult to do in HASE given its 

software architecture (it limits the use of certain C++ object-oriented techniques such as 

inheritance), an approach with similar productivity gains was taken in HASE++. The 

technique was to isolate the different cache access mechanisms (e.g. direct mapping of cache 

lines and associative memory access etc.) whilst reusing the majority of the common cache 

behaviour (handling input requests and modifying state variables). 

The first cache to be constructed was the detailed fully associative cache. Functionality 

associated with the simulation of the associative store is encapsulated in the cache method 

cacheContains (Program 40), which acts as both a method for determining residence of 

a particular memory address in the cache (i.e. effectively returning true or false to a lookup 

222 



request) and as a mechanism for finding the specific line of the cache that an address resides 

in. All other functionality (i.e. event-handlers and initialisation of state variables) is located 

in the automatically generated (by LibTool) HASE±+ skeleton. 

mt fa cache::cache contains (integer ad.dressln) 

returns cache line if cache containd the address presented 

II or 	-1 if value not found. 

mt found=O; 	II is value in associative memory? 
mt loop=O; 	II loop value. 

integer boundStartToFifld = (addressln/4)*4; 
while ((loop<VAR_cache_SiZe)&&(!fOUfld)) 

if ((cache mem[loop] .valid) && (cache mem[loopl .addrl=boundStartToFind)) 
found-1; 

else loop++; 

if (!found) return -1; 
else return loop; 

Program 40— CacheContains() Method of Fully Associative Cache 

This meant that the implementation of behavioural code for a detailed direct-mapped 

cache required the generation of a new cacheContains method for the component (as 

shown in Program 41), indeed this was the only new code required for the creation of the 

detailed direct-mapped cache component. 
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mt dmcache: :cache contains (integer addressln) 

returns cache line if cache containd the address presented 
or 	-1 if value not found. 

mt found=O; 	// is value in memory? 

unsigned long mt temp = addressln.to_longO; 
unsigned long mt *slot = &(temp); 

*slot*siot>>2; II shift by block size (4) 

integer boundStartToFind = ( addressln/4)*4; 
*slot = *slot & (VAR—cache—size - 1); II in place of % 

if ((cache men[*slot] .addrl==boundStartToFind) && (cache mem[*slot] .valid==i)) 
found = 1; 

if (!found) return -1; 
else return (mnt)*slot; 

Program 41 - CacheContains() Method of Direct-Mapped Cache 

The cache components have a number of simulation parameters associated with them; 

these are listed in Table 7. 

The size of the cache in lines. 
A HASE array containing the cache contents for 
display on screen during model animations. 
Integer modelling the delay (in abstract 
simulation time units) for a lookup operation. 
Current access type (read request, write request, 
cache update, flush etc) defined here for use as 
an on-screen parameter. 
The current policy for write handling (either 
write-through or write-back). 
Current cache-line for on-screen display. 
Hit I Miss Indicator for last access. 
Parameters concerned with collecting hit rate 
statistics. 

Experimental control parameter stating how 
many times the simulation is to be run (can be 
varied using experimental control dialog). 

VAR—cache—size 
Tfacachememconteflts 

Lookup delay 

din—access—type 

write policy 

line contents 
hit status 
access count 
hit—count 
hit—percent 
Run 

Table 7 Cache Component Parameters 

Whilst not exhaustive, these parameters give an indication of how HASE can 

characterise a component both in terms of behaviour and on-screen appearance. 

224 



Abstract Caches 

In addition to the detailed fully-associative and direct-mapped cache components, an 

abstract cache component was developed. This uses a look-up table of hit-rate statistics to 

determine the outcome of a cache request. To facilitate this lookup table, extra parameters 

were added to the new cache components (these allow the selection of a set of statistics for 

various benchmarks/memory access counts and the write policy of the cache). 

Once again, the statistical functions determining success or failure of a cache access 

were provided in the cacheContains method of the abs_cache component meaning 

only one new HASE++ method was required. 

7.6 Example Memory Hierarchy Models 

This section examines various memory hierarchy model configurations and considers 

the ease with which the memory hierarchy models can be reconfigured using the LibTool 

modelling process. 

7.6.1 General Model Topology 

The general topology of the memory hierarchy models discussed in this section is 

shown in Figure 88. The models consist of a trace driven processor (labelled 

din—td—processor), a simple bus mechanism (labelled cache prociface), an 

abstract memory unit (din memory) and a component representing a cache memory. 

The cache memory is the most complicated entity in the models described here; it is 

shown as a shaded box in Figure 88 to indicate that different cache entities will be placed 

into the model (in order to construct an experiment comparing the performance of different 

types of cache memory). 
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Figure 88 - General Memory Hierarchy Model Topology 

The various models are driven by input trace files that are stored in Dinero format 

(memory accesses detailed in the trace files are issued by the abstract processor entity). The 

Dinero package is a well-known cache simulator that forms a part of the Wisconsin 

Architectural Research Toot Set [Hi1195]. Each line in the Dinero trace file consists of an 

access type identifier (described in Table 8) and an address (specified as a hexadecimal 

number in the range 0 to FFFFFFFF). 

0 	Read data 
Write data 

2 	Instruction fetch 
3 	Special: Unknown access type 
4 	Special: Cache flush 

Table 8 - Dinero Event Tags 

The input traces used in the experiments described in this section are taken from the 

University of Wisconsin's on-line trace archive and include traces of a C++ implementation 
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of the wordfreq (counting the frequency of words in a 7575 character file), n-queens 

(calculates how to place 8 queens on an ordinary chess board so that none of them can hit 

any other in one move) and matmul (multiplication of two SOxSO floating-point matrices) 

benchmarks. 

The detailed cache components have a fixed cache line structure, which models a line 

as containing 32 bytes of data (i.e. four main memory addresses). These caches store only the 

address values in cache lines (data values are not modelled). Only the detailed cache models 

use this cache line structure, the more abstract cache components use statistical lookup tables 

(generated from the results of running the detailed cache models) to ascertain a cache hit or 

miss. 

7.6.2 Single Cache Model Variants and Loading 

By using LibTool's substitute-entity identification mechanisms (in the same manner as 

described in section 6.5 for the RS232/v-24 models), it was straightforward to generate a 

series of models representing different memory hierarchy configurations. Three models 

based around the general topology shown in Figure 88 (i.e. using a single cache) were 

generated with the cache entity being replaced by the fully associative cache, the direct-

mapped cache and an abstract cache (this time using statistical lookup tables based on the 

results of the detailed fully associative cache component). 

The models were exercised by simulating memory accesses from each benchmark on 

each of the three models. In order to obtain accurate real-time measurements of a simulation 

run, each combination of model and trace-file input was run three times to remove anomalies 

in processor load. The simulations were run using the Windows NT version of HASE on a 

400MHz Pentium 11 machine. HASE's experiment mode was used to automatically 
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coordinate the multiple simulation runs by varying variables representing cache size, 

benchmark and run number for each model variant. 

7.7 Experimentation with Memory Hierarchy MEDL Library 

After checking that the HASE+± cache behaviour was correct for the detailed fully-

associative and direct-mapped cache models (HASE's animation facilities allowed visual 

verification of model behaviour), a series of simulation runs was performed using the full 

input trace files for the wordfreq (3700000 accesses), n-queens (2800000 accesses) and 

matmul (4000000 accesses) benchmarks. 

Hit-rates were obtained for each cache-type/trace combination across a range of cache 

sizes (64B - 512KB) in order to demonstrate a typical application of a memory hierarchy 

simulation model. The hit-rate results for the fully associative and direct-mapped caches are 

presented in Graph 3 and Graph 4 respectively; the results conformed to a set of 

independently produced statistics based on the same trace files and cache configurations 

[Coe99] confirming the cache's behaviour to be correct. 
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7.7.1 Model Accuracy and Runtime 

Of greater interest (in the context of this work) are the effects of model abstraction 

upon model accuracy and flexibility. To examine these simulation attributes, the abstract 

cache model was parameterised with hit-rate statistics obtained from running the detailed 

fully associative cache model. The extracted hit-rate statistics were inserted into the caches' 

look-up table parameter. The abstract cache was then run with the same three trace files and 

the output characteristics compared with those of the detailed mode l 42 . Graph 5 shows the 

resultant hit rate vs cache-size graph for the abstract cache model (the detailed model's hit 

rates are drawn as wide dotted lines for comparison). In this experiment the abstract cache 

model produced results accurate to within 0.02% of the detailed model. 
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The runtimes of both the detailed and abstract fully-associative cache components 

when running the wordfreq, n—queens and matmul benchmarks are presented in Graph 

7, Graph 8 and Graph 9 respectively (plotted as run time vs. cache size). Each of the 

benchmarks is shown to run considerably faster on the abstract cache model (as would be 

expected). For example, the wordfreq benchmark runs between 38 percent (for a 2 line 

cache) and 79.3 percent (for a 1024 line cache) faster than its detailed counterpart. The 

runtime efficiency gains for the three benchmarks when simulated using the abstract cache 

component are shown in Graph 6. 
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Graph 6 - Runtime Gains of Abstract Cache over Detailed Cache 

A number of factors make the detailed model's performance poorer than the abstract 

model. Graph 7 (the wordfreq benchmark) shows both cache runtime measures exhibiting 

42  The abstract cache sets the din memaddress task parameter passive by default, as it does 
not model cache line contents in detail. However if the task parameter is enabled any misses carry the 
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similar characteristics until the cache size grows to 128 lines in size; the dramatic increase in 

hit rate as the cache increases in size from 32 to 64 lines is mirrored in the runtimes of both 

models. However, the detailed model's runtime degrades rapidly as the cache size grows 

beyond 128 lines (2KB). This increase in time can be attributed to the increased processing 

time required to search the HASE memory array. The implementation of the cache lookup is 

a 0(n) sequential search. Clearly, the choice of lookup algorithm is a critical factor in the 

detailed fully associative cache's implementation. 

The placement of the benchmark problem in cache can have a direct effect on runtime 

performance. In Graph 8, the n-queens benchmark runtime remains largely constant after 

the cache size increases beyond 128 lines. This is because the n-queens problem can be 

contained completely in 151 cache lines (all capacity misses are eliminated). The larger 

cache sizes allow the entire problem to be resident in the cache after a fixed number of 

compulsory cache misses, the n-queens problem becomes resident in the 'top' of the 

cache, consequently limiting the number of iterations required for a sequential cache lookup. 

The wordfreq problem (Graph 7) fits completely into 8959 cache blocks, which explains 

why runtime starts to reduce again beyond cache sizes of 1024 - as larger and larger 

proportions of the problem become resident reducing the number of complete the sequential 

search and miss combination no longer dominates the runtime. Indeed, as the cache size 

increases beyond 8192 blocks the cache runtime falls to proportionally similar levels as 

found for small wordfreq cache sizes (i.e. 2 to 64 blocks). The matmul benchmark (Graph 

9) requires some 16902 discrete cache blocks to become resident. This offers some 

explanation as to why the recovery in runtime exhibited by the wordfreq benchmark is not 

replicated in this simulation output (i.e. the maximum cache size simulated in 16384 blocks). 

correct address request information. 
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Graph 8 - Comparison of Abstract and Detailed Fully-Associative Cache runtimes for 

N-Queens Benchmark 
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The local environment on which the simulations are being run will influence the 

runtime of any simulation model (e.g. physical cache/main memory size and processor load). 

However, the detailed cache simulation model may be more sensitive to (say) physical cache 

size as the simulation of large simulated caches could increase the likelihood of physical 

cache misses; the abstract cache component will always occupy the same amount of physical 

cache independent of the simulated cache's size. 

7.7.2 Other Memory Hierarchy Models 

In addition to the models discussed above, additional models based on the MEDL 

memory hierarchy library were used to explore the simulation of multi-level caches. This 
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gave the opportunity to introduce a level of abstraction representing the composite behaviour 

of the multi-level caches. The general model topology for these models is given in Appendix 

D.2. Three model variants were constructed as follows: 

I. Two detailed cache components were connected together and benchmark traces 

simulated. The full cache memories were simulated as in the previous single level 

cache experiments. 

The detailed cache components were replaced with abstract cache components 

(identical to those used in the previous single level cache simulations). This model 

employed two statistical lookup tables (one located in each abstract cache). As in 

the single cache models the hit rate accuracy was shown to be almost identical to 

that of the detailed simulation model and the runtimes of the abstract caches were 

greatly reduced compared to those of the detailed caches. 

The two abstract caches and the two cache prociface entities were replaced 

by a single entity (compcache) which employed a single statistical lookup table. 

This extra level of hierarchy is typical of the trade-offs abstract modelling involves. 

Whilst the runtime was further reduced (due to fewer entity thread switches, fewer 

event generation calls and a reduced number of lookups), the composite cache can 

only characterise the combined hit rate of the multi-level cache. 
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7.7.3 Alternative Cache Components 

A final cache abstraction took a different approach to reducing runtime based around 

the idea of trace generation. In this abstraction, the cache component can be simulated in one 

of two modes, record' or Splay-back'. In record mode, the cache acts exactly as the detailed 

cache model discussed above with one exception each reference to the cache is recorded 

alongside the lookup outcome (i.e. hit or miss) in a trace file. The cache's playback mode 

then employs the cache-generated trace file to allow the previous activity to be replayed' 

directly from the cache entity. Essentially this means that the processor component can be 

disabled when the cache is used in playback mode. This abstraction has the advantage that 

whilst the initial trace generation simulation incurs a runtime penalty (it is slower than the 

standard detailed cache due to file i/o), subsequent simulations gain from not having to 
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simulate either the statistical lookup behaviour of the standard abstract cache or the trace 

driven processor (this reduces the thread swapping incurred in simulation as well as the 

general behavioural simulation overhead). 

This abstraction could be usefully applied in (say) a multi-processor simulation which 

uses a two level communication mechanism (e.g. a bus for intra-cluster traffic and a mesh for 

inter-cluster traffic). In this situation, the use of the abstract caches to provide traffic to allow 

the testing of the communication mechanisms in the model for a set of benchmarks could 

benefit from reduced runtime. 

7.7.4 Comment 

The memory hierarchy simulations discussed above demonstrated again how the 

LibTool model generation mechanisms could be used to form a series of derivative models 

with relatively little effort. Detailed cache simulations made use of a task parameter 

describing an address in order to make the modelling of cache contents possible. 

In addition, examples were produced which employed abstract cache entities to gain a 

decrease in simulation runtime; the aforementioned task parameter was not required by the 

more abstract cache components so was disabled (set passive in the MEDL description) in 

order to indicate to its communication partners the level of service offered by the abstract 

caches. Even with this parameter disabled, the abstract cache was able to simulate accurate 

timing delays based on the outcome of statistical cache lookups. 

The runtime gains obtained by using abstract entities had to be traded off against model 

flexibility (e.g. in the case of a the most abstract composite cache component, data about the 

combined hit rate of the multi-level cache was the only measure available (less abstract 

models offered data describing the hit rate of individual cache levels). 
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7.8 Controlling the Behavioural Hierarchy 

In the modelling examples presented so far, behavioural code has been placed in 

relatively small simulation models with a maximum of two levels of code abstraction 

supported. The setting up of a model's behavioural hierarchy has been controlled by the use 

of HASE's 'simulate at' control (section 3.7.2). 

However, as models become more complex (i.e. as the hierarchy is populated with 

more entities at many different levels of abstraction) HASE's GUI offers no support for 

tracking the active behavioural model (the design window simply shows the current 

graphical hierarchy). There is a requirement for an additional tool allowing the user to 

visualise the level of behavioural abstraction a model is currently representing. In a response 

to this requirement, an additional tool named Sim Tree was created. 

7.8.1 The Full-adder MEDL Library 

In order to demonstrate SimTree's functionality, a model with a relatively large 

number of entities based around a MEDL library of components suitable for construction of 

adders is introduced. The components in the adder library are listed in Table 9. 

ADDSRC, HADDSRC, These atomic entities are used for testing various adder 
ADDSRC8BIT components. They provide a data source to which an adder 

component can be connected (the three variants serve a full 
adder, a half adder and an eight bit adder respectively). 

HADDS INK This entity acts as a sink for the output from a half adder. 
ADD8BITDRV An 8 Bit adder driver 
ADDINTNORN This atomic entity provides a single entity interface to two 

half adders, which in turn form a I bit adder). 
ADDSIGSPLIT This entity takes two input events and outputs four events 

(two replicas of each of the input events). 
GateAND, gateXOR, These atomic entities form the building blocks for all the 
gateOR adder components. They represent two-input AND, XOR 

and OR gates. 
Halfadder, These composite entities define different adders in terms of 
fulladder, AND XOR, OR half adder and full adder components. 
fulladder8bit 
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Modeihalfadder, 	 These composite entities contain target models for a half 
rrode]iuLiadder, 	 adder. 1-bit full adder and an 8-bit full adder complete with 
oodeaider8bit 	 . an Input generating source and an output sink. 

Table 9— The MEDL Adder Library Components 

The components used to form the adder models use a single message type SIGNAL 

with the range (low, high) representing signal input values to the adder logic (the adder 

components represent an additional internal state enumeration containing the range value 

undetermined that is used to model signal transitions and adder initialisation state. 

The graphical hierarchy of a one-bit adder is shown at various levels of expansion in 

Figure 89(a-d), in which the sub-figures form a sequence that result from graphical 

expansion of the model (the entities chosen for each stage of the expansion are circled in 

red). 
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Figure 89(a-d) - Graphical Traversal of the I-bit Adder Model 
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The one-bit adder model illustrated in Figure 89 is used as a building block for 

arbitrarily large adders. The 1-bit adder model contains some eleven entities and contains 

behavioural code in all but the top-level entity (three separate levels of behaviour are 

specified). The MEDL library's eight-bit adder component is built out of eight instances of 

the 1-bit adder plus an appropriate signal generator and sink entity; in total, the eight-bit 

adder model contains eighty-nine entities at four levels of abstraction (the and, xor and or 

level, half adder level, fulladder level and 8bitadder level). The entity tree for the 

8-bit adder model is shown in Figure 90. As models become more complex the number of 

possible abstraction levels increases along with the total entity count. Identifying the 

currently active behavioural entity tree becomes increasingly difficult without software 

support. 
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Figure 90 - The 8-bit Adder Entity Tree 
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7.8.2 SimTree 

The SimTree tool works in collaboration with the HASE design window offering an 

alternative view of the model structure. Whereas the HASE design window shows the 

architectural features of interest to the user, the SimTree window provides a complete entity 

tree display (SimTree was used to generate Figure 90) and has the ability to show the current 

'simulate at this level' switch options by superimposing the active behavioural code 

hierarchy on top of the entity tree. 

When started, SimTree presents the user with a split-pane window (the upper pane is 

used for system messages and the lower pane is used for rendering the entity tree) and a set 

- of controls.-The SimTree main window-is shown in Figure 91 (this figure shows a SimTree 

session with a I-bit adder loaded). The user selects a tree file via the 'open tree data' control 

(LibTool generates entity tree descriptions when the generate screens 'generate tree data' 

box is checked - Figure 59). 

When the tree is rendered the root entity (i.e. the target entity selected for generation in 

LibTool) is shown in a red box, all other entities are drawn in yellow boxes if they are 

composite and green boxes if they are atomic). 

SimTree supports two rendering modes; the standard mode discussed above labels 

entities whilst the thumbnail mode (activated by the 'thumbnail' control) renders each entity 

as a small coloured square (Figure 92 shows the thumbnail view of the 1-bit adder model). 

The thumbnail mode allows for quick navigation of especially large entity trees. 

The 'scan mode' control activates a communication thread in SimTree which reads 

values from a shared file written to by HASE each time the behavioural hierarchy is altered. 

This shared file contains the names of the active behavioural code bearing entities. Each of 

the entities named in the file is rendered in a blue box to allow easy identification of the 
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currently active behavioural entity tree. This is illustrated in Figure 93(a-c), which shows 

both the behavioural and graphical hierarchy of a model as it is altered from an initial 

abstraction (sub-figure a), by means of the parameter menu's 'simulate at' control (sub-

figure b), to reflect a new behavioural hierarchy whilst the original graphical view remains 

unaltered (sub-figure c). 
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mlree: Please Open Tree Data File 

:annlng Tracefile fulladderhtf 

eelile fulladderhIf OK 

ateOR 	 /4ADDSIsPLIT 

h5.dder (h21 gateAND I 
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Figure 91 - The SimTree Main Window 
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Figure 92 - The I-bit Adder Model Viewed in Thumbnail Mode 
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7.9 Multi level simulation (PRAM Algorithm) 

The final model presented in this chapter demonstrates how the modelling constructs 

developed throughout this work allow HASE to be used to develop a model from a basic 

algorithmic description to a more concrete architectural model. 

7.9.1 Model Construction 

The starting point for this experiment is an algorithm designed for execution on a 

parallel random access machine (PRAM) [Karp90. The PRAM described here is configured 

with a number of processors (each uniquely identifiable by a processor id land having access 

to a small local memory space), some global shared memory to facilitate inter-processor 

communication and an interconnection network connecting the processor to the global 

memory. Each of these components is represented in a MEDL library named PRANLIB. The 

PRAM configuration used in this section is illustrated in Figure 94. 
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Figure 94 - The PRAM Architecture 

7.9=2 The Sum Algorithm 

The algorithm demonstrated in this experiment is a simple summing algorithm as 

proposed by JáJá in [JáJá92]. The algorithm makes use of two operations for access to the 

shared memory named global read and global write. These are defined as follows: 

global read (X Y): This instruction moves a data item X from global shared 

memory to a processor's local memory and stores it in location V. 
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global write (U, V): This instruction moves a data item stored in processor memory 

location U to the shared global memory location V. 

Given these two instructions, an array A of n=2k  numbers and a PRAM with , 

processors (i.e. one processor per element in A), JáJá describes an algorithm to compute the 

sum S = A(1) +A(2) + ... + A(n). Each processor executes the same algorithm, which is 

described below for some arbitrary processor i in Algorithm 1. 

Sum on the PRAM Model 
Input: An array A of order n = 2" stored in the shared memory of a PRAM with n 
processors. The initialised variables are n and the processor number i. 
Output: The sum of the entries ofA stored in the shared location S. The array A holds 
its initial value. 
begin 

global read (A(i),a) 
global write (a,B(i)) 
for h=1 to log n do 

if (i< = n/2') then 
begin 

global read (B(2i-1),x) 
global read (B(2i),y) 
set z. = x+y 
global write (z,B(i)) 

end 
if i=1 then global write (z,S) 

end 

Algorithm 1 - Sum on the PRAM Model 

7.9.3 Encoding the Algorithm in a HASE Entity 

The PPAMLIB library contains an atomic component proc a, which is used to 

represent a PRAM processing node. The HASE++ behavioural code for this component is 

based around the automatically generated LibTool event handlers. In addition, the 

behavioural definition provides two methods to represent the read global and write global 

operations. These operations are shown in Program 42 and Program 43 respectively. 
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mt proc_a: :GLOBALREAD(integer location)(  
tmemaccess_BIND tmpBind; 
sim event ev; 

tmpBind.memaddress_difl = location; 
tmpBind.memcontentS = -1; 
memaccesspack(message, read address, tmpBind); 
dooREQOUT (message); 

GET_NEXT (ev); 
do_i_RESIN (ev) 
return readResult; 

Program 42 The GLOBAL—READ Method 

void proc a::GLOBAL WRITE(integer location, mt value){ 
tmemaccess_BIND tmpBind; 
sim event ev; 

tmpBind.memaddress_din = location; 
tmpBind.memcontents = value; 
memaccess pack (message, writeaddress, tmpBind); 
dooREQOUT (message); 

Program 43 The GLOBAL WRITE Method 

The body code of the proc_a entity uses these two functions to describe Algorithm 1 

in HASE±+. For example, steps I and 2 of Algorithm 1 make a copy of array A in shared 

memory; these operations are coded in HASE++ as shown in Program 44. 

x=GLOBAL READ (ABase+i); 
dump stateO; simhold(l); // insert some delay 
GLOBAL _WRITE (BBase+i, x); 
dump state(); simhold(1); 

Program 44 The Copy Operation 

7.9.4 Running the Algorithm 

When the algorithm is compiled and simulated, the global memory entity allows 

inspection of intermediate results of the algorithm via its memory array parameter. This is 

illustrated in Figure 95 which shows the contents of the global memory array for both the 

initial data array (labelled as area A) and the working copy of the array (area B) when n=16. 
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Sub-figures (a-d) show the algorithm's progress in summing the array contents for each 

iteration of step 3. Sub-figure (e) highlights the global memory location containing the result 

of the addition after completion of the algorithm. 
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Figure 95(a-e) - Tracing the Algorithm's Progress via a Memory Array 

7.9.5 A More Elaborate Algorithm 

The proc_a entity's body code allows different PRAM algorithms to be performed 

depending upon a parameter setting named algorithm (the value of this parameter defines 

the condition to be taken within a switch statement encompassing the various algorithms). 

Following the successful implementation of the sum algorithm for n processors and n data 

items, a more elaborate version of the sum algorithm (again proposed by JáJá) allowing the 
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summing of n data items with p processors (where I :!~ p !E-~ n) was implemented. The 

43 algorithm is shown in Algorithm 

Sum 
Input: An array A of size n = 2k stored in shared memory. The initialised local 
variables are the order n, the number p of processors, where p=2 q <= n, and the 
processor number s 
Output: The sum of the elements of A stored in the shared variable S. The array A 
retains its original value. 
begin 

1.forj =ltol(n/p)do 
Set B(l(s-l) +j): =A (7(s-1) +j) 

2.1 for h=l to log ndo 
if (k-h-q>0) then 

for j=2"(s-])+1 to 2"s do 
Set BO): = B(2j-1)+B(2j) 

2.2 Else {if (s<= 2kh)  then 
Set B(s): = B(2s - I)+B(2s)} 

3. if (s=l) then Set S: =B(l) 
end 

Algorithm 2 - The Modified Sum Algorithm 

After coding this algorithm in the body code of the proc_a entity, the simulation was 

run with the default number of processors set as 16 and the number of data items as 64 (these 

settings can be altered by parameter manipulation). The test data placed into the 64 global 

memory locations (i.e. array A) each contained the value 1. If the algorithm were 

implemented correctly, the expected result of the sum operation should equal 64. However, 

after simulation, the algorithm produced a result of 72. 

The unexpected result is a consequence of the assumed memory model. In steps 2.1 

and 2.2 values to be added together are read from and placed back into array B. Table 10 

illustrates the problem for an array of 64 data elements and 16 processors. The table details 

' In this algorithm, no explicit reference to the global read and global write operations is made. 
JaJa assumes that operations of the form Set A:=B+C (where A, B and C are shared memory 
variables) should be interpreted as global read (B,x), global write (Cy), Set z: =x+y, global read (z,A). 
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the assignments performed by the first four processors in the first two iterations of the inner 

for loop in step 2.1. 

Processor ID _II Il Ill III Ii 

(and iteration) 
1(i) B(1)=B(l)+B(2) 
1(u) B(2)=B(3)+B(4) 

2(i) B(3)=B(5)+B(6) 
2(u) B(4)=B(7)+B(8) 

3(i) B(5)=b(9)+B(10) 
3(u) B(6)=B(l 1)+B(12) 

4(i) B(7)=B(13)+B(l4) 
4(u) B(8)B(1 5)+B(16) 

Table 10 - Step 2.1 for the First Four Processors when p= 16 and n=64 (First 2 Iterations) 

Each of the four processors performs iteration i first. During this iteration processor 2 

(for example) adds global memory locations 5 and 6 and stores the result in global memory 

location 3. On iteration ii, processor I adds the contents of global memory locations 3 and 4, 

and stores the result in global memory location 2. However, the value of location 3 used in 

processor I's addition has already been overwritten with the result of adding locations 5 and 

6. Consequently, the algorithm fails because of the implementation assumption that global 

memory updates occur at the end of each algorithm time step. 

The problem was highlighted by examining the contents of global memory and 

watching the messages transferred between the processors via HASE's animation facilities. 

The experiment illustrates the importance of careful interpretation when implementing 

PRAM algorithms, even in relatively abstract simulation models, and demonstrates the 

usefulness of HASE's visualisation facilities in providing an understanding of how an 

algorithm is executed in practice. 

After further inspection of the algorithm it was noted that the correct result could be 

obtained by delaying the global memory updates performed in loop] of step 2.1 until the 

251 



loop is complete. This requires the processor to use local memory for the intermediate 

results. 

Another solution to the problem is to operate upon different data items in each iteration 

of the loop contained in step 2.1. A corrected order for the processor sequence shown in 

Table 10 is given in Table 11. If this approach is taken the original memory write structure 

can be retained. 

Processor 11) ii r 	.i 
(and iteration)  I 

1(i) B(1)=B(1)+B(2) 

1(u) B(5)=b(9)+B(1O) 

2(i) B(2)=B(3)+B(4) 

2(u) B(6)B(11)+B(12) 

3(i) B(3)=B(5)+B(6) 

3(ii) B(7)3(13)+B(14) 

4(i) B(4)=B(7)+B(8) 

4(ii) B(8)B(15)+B(16) 

Table 11 - A Modified Sequence of Global Memory Accesses for Processors One to Four. 

7.10 Adding Greater Model Details 

Having developed a PRAM simulation model it is reasonable to assume that the 

programmer would wish to refine the model in order to run the algorithm on a more realistic 

representation of a 'real-world' computer system. HASE's hierarchical modelling capability 

allows the model to be evolved into a more detailed representation of the problem by the 

addition of more detailed simulation entities within the framework defined by the abstract 

PRAM model. In order to test this development path, a more sophisticated processor entity 

was designed. This modified processor (named proc_b) is used in conjunction with another 

252 



new entity representing a small local processor memory (named instr mem) 44 . The 

memory stores instructions that the proc_b entity fetches and decodes. This shift away 

from an algorithmic description in the processors' behavioural code to a more realistic 

processor and program model makes use of a RASE instruction set parameter. The 

instruction set has the instructions listed in Table 12 

STOR reg global address 

BNZ reg 

ADD regl reg2 

HALT 

LOADRG req global address 
LOADRL req local address 

Write a value to global memory 
Branch if not zero 
Add contents of registers regi and 
reg2 and store the result in regl (8 bit 
integers). 
Stop program execution 
Load a register with value from global 
memory or local 	(instruction) 

Table 12 —The proc_b instruction set 

The instruction set is defined in the EDL file using STRUCT commands (one for each 

instruction) and an INSTR command to tie the previously defined STRUCT5 together. The 

EDL for the instruction set shown in Table 12 is given in Program 45 and Program 46. 

STRUCT (tStorStr, [ RINT (reg,0),RINT(address)1); 
STRUCT (tBnzStr, [RINT (req, 0)]); 
STRUCT (t_AddStr, [RINT(regl,0),RINT(reg2,0)1); 
STRUCT (tHalt, [RINT (dummy, 0)]); 
STRUCT (tLoadGStr, [RINT(reg,0),RINT(address,0)1); 
STRUCT (t LoadLStr,[RINT(reg,0),RINT(addre 55 , 0 )]h  

Program 45 - STRUCTs for each Instruction 

INSTR ( tinssetA 

LOADRG , RSTRUCT ( t_LoadGStr , LoadGStr ) ), 

LOADRL , RSTRUCT ( t_LoadLStr , LoadLStr ) ), 

44  In the previous model, the private local memory of the processor was represented by data 
members belonging to the proc a entity class. 
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STOR , RSTRIJCT ( tStorStr , StorStr ) ), 
BNZ , RSTRUCT ( tBnzStr , BnzStr ) ), 
ADD , RSTRUCT ( t_AddStr , AddStr ) ), 
HALT , RSTRJJCT ( tRait , Halt 

I , tlSet  

Program 46— The INSTR Command 

Having defined the instruction set it is possible to write programs that reside in the 

local memory entity associated with each processor. Program 47 illustrates a code fragment 

for processor I (of 8) performing its copy operation as shown in step I of Algorithm I. 

loadg ri, 1 
stor ri, 9 

Program 47 - A Local Memory Program Fragment for the Algorithm I Copy Operation. 

This extension to the modelling process allows the user to specify any algorithm 

(within the confines of the available instructions) without having to alter the behavioural 

code directly. It also shifts the problem representation to a more 'realistic' level. The cost of 

moving to this more detailed model abstraction is an increased simulation runtime (as 

previously demonstrated in the memory hierarchy simulations). 

However, the degree of slow-down can be controlled by configuring the model to use a 

single processor at the higher level of detail whilst the remaining processors operate at the 

lower level of detail. In order that the model function correctly when using this mix of 

abstractions, the programmer must ensure that message timing is consistent across 

abstraction levels. This can be achieved by using the CommTrace protocol viewer to verify 

that high and low level timing characteristics are consistent across multiple levels of 

abstraction (as demonstrated in the RS232/v34 simulation model in section 6.6.2). 
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7.10.1 Integration of Components from Multiple MEDL files. 

The final modification of the PRAM model was to introduce another abstraction 

allowing the detailed simulation of the addition that takes place in the sum algorithms. 

Rather than use direct execution (i.e use the native addition facilities of the machine running 

the simulation), a simulated functional unit was added based upon the MEDL adder library 

introduced in section 7.8.1. 

The adder components were imported into the PRAM library by simple text file 

manipulation (i.e. a 'cut and paste' operation in a text editor). 
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A third processor type was defined (named proc_c) which included an eight-bit 

adder. The adder component includes various levels of abstraction including a single eight-

bit adder entity, eight one-bit adders, sixteen half adders and finally the collection of logic 

gates which make up the half adders. The exploration of an eight-bit adder entity is 

illustrated in Figure 96. 

The addition of a complex entity such as the eight-bit adder dramatically increases the 

number of entities in the PRAM model (801 in total). In order to control the abstraction 

hierarchy SimTree was used to view the currently active model behaviour tree (as described 

in section 7.8). Whilst SimTree allowed management of the large model structure, use of 

HASE's design window was more problematic; this was due to the large number of entities 

that had to be accommodated in the limited on-screen design space. This meant that whilst 

all 801 entities were present in the model, a corresponding ELF file was not hand crafted due 

to the size of the layout task. 

As the adder sub-components use realistic timing information (taken from an H-SPICE 

[Hspice90] library description) at the lower level of abstraction to represent gate delays, the 

total amount of real time spent in the addition portion of the sum algorithm could be 

calculated with a reasonable degree of accuracy (the timing information was not completely 

accurate because effects such as wire-delays are not modelled). Once again, the penalty for 

obtaining this accurate timing information is an increased runtime. 

7.10.2 Summary 

The creation of a relatively large simulation model based initially around a simple 

PRAM algorithm demonstrated HASE's ability to expand a model's design by adding 

increasingly detailed representations of discrete components. This was facilitated by the 

LibTool generated model's ability to use common message types across differing levels of 
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abstraction (i.e. by using loosely coupled entities). Additionally, HASE was shown to have 

good facilities for the debugging of a model's behaviour (demonstrated here by the graphical 

identification of a problem contained in JáJá's more complex PRAM sum algorithm). 

The SimTree tool was shown to offer a practical solution to the management of a large 

behavioural hierarchy independently from the on-screen graphical hierarchy used in model 

animation. 

However, the final PRAM model served to highlight deficiencies with HASE's design-

Window size. As the number of entities in a design increases, design layout becomes more 

time consuming. This is exacerbated by the limited screen real estate. Possible solutions to 

this graphical hierarchy layout problem are outlined in section 8.4.2. 
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Chapter 8 

Conclusions 

By allowing the refinement of an architectural design through simulation and 

experimentation, designers can test and debug new computer architectures without the 

expense (or delays) of failed silicon implementations. Consequently, fast and accurate 

simulation throughout the design lifecycle of a product has become a major factor in 

satisfying 'time to market' requirements for technology manufacturers. However, it is 

recognised that the cost of simulation in the design lifecycle is expensive. This is due, in part, 

to low levels of design reuse and simulation time overhead. 

At present most architectural simulation takes place at the RT level of design. 

However, designs that start at the RT level have hit a plateau in terms of reuse and 

productivity. 

This thesis contributes towards the development of techniques that promote both model 

reuse and abstract modelling at levels above that of the RT level. These mechanisms are 

demonstrated within an existing architectural simulation environment (HASE). 

This chapter concludes the work of this thesis and is divided as follows: 

Section 8.1: Modelling Requirements - summarises the key areas of investigation and 

implementation essential to promoting model abstraction and reuse. 

Section 8.2: Modelling Mechanisms - summarises the extensions made to the HASE 

environment. 
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Section 8.3: Experimentation - consolidates the experimental findings resulting from 

the RASE modelling extensions/tools. 

Section 8.4: Further Work - Finally this section offers an indication of possible future 

extensions of this work. 

8.1 Modelling Requirements 

The first requirement was that a modelled system should be able to represent its 

associated real-world entities at multiple levels of abstraction. This is important because 

depending on the current design problem in hand different abstractions will be suitable, for 

example, register layout design/analysis (RTL), system programming (ISP) or performance 

evaluation (PMS) of the system as a whole. In HASE this ability was implemented around 

the existing (albeit unused) support for hierarchical model structures. Sargent notes that 

"hierarchical modelling is not readily available in most simulation packages" and that 

"Hierarchical modelling usually requires encapsulation" [Sargent93] (as it provides the basis 

for switching between abstractions within a hierarchical model). Cota [Cota92] extends the 

discussion by identifying the requirement for a coupling mechanism to facilitate linkage 

between abstractions. 

The second modelling requirement was that mechanisms should be provided to 

promote the reuse of components in multiple simulation projects. An investigation into why 

component reuse had been problematic in previous HASE modelling efforts revealed the 

causes to be a combination of 'unsuitable' programming techniques and a lack of 

environmental constraints. The key problem areas included programmer use of ad hoc 

message overloading (resulting in tightly coupled models), the use of global state 

information, and HASE++ constructs which allowed non port-based communication. The 
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last two problem areas were shown to impact upon the level of encapsulation exhibited by a 

model's simulation components. 

8.2 Modelling Mechanisms 

The HASE environment was extended by the creation of the LibTool, CommTrace, 

and SimTree tools all of which promote either hierarchical modelling and/or component 

reuse45 . 

LibTool allows the generation of HASE models that exhibit high-levels of entity 

encapsulation (this was achieved by placing modelling constraints upon the model structure 

generated by LibTool) and provides a system for the management of model coupling (based 

around entity communication interface classification). 

LibTool's component representation format is project independent and consequently 

provides the basis for a HASE component library. MEDL files are used as the repository for 

library contents and the LibTool browser allows examination of library components as well 

as offering facilities to validate proposed model compositions. 

The CommTrace package aids the hierarchical modelling process by providing a 

mechanism with which to compare the timing characteristics of model entities represented at 

multiple levels of abstraction. 

Finally, the SimTree tool aids the modelling process by separating control over the 

behavioural hierarchy from HASE's design window based graphical hierarchy. 

45  In addition, the introduction of EDL as the project specification method of input to HASE has 
been successful in removing much of the laborious work previously involved in defining a model via 
the HASE GUI. EDL also provided a modelling target for the Liblool application. 
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Figure 97 serves to summarise the main differences between the RASE modelling 

process before and after the work described in this thesis (in particular the constraints placed 

upon the modelling process are illustrated). The figure can be summarised as follows: 

. The use of global state information is disallowed in order to aid component 

encapsulation (this is indicated by the removal of the 'global vars' box in sub- 

figure b). 

. The constraint that port/link constructs are now unidirectional (as indicated by 

labels 2 and 3 in sub-figure b) means that interface classification based upon 

the input/output message sets of entities is possible. In turn, this means that the 

validation of a model's linkage is now possible automatically. 

. The enforcement of structured message input/output sets curtails the use of 

message overloading techniques (as described in section 4.4). This is indicated 

by the removal of sub-figure a's label 3 in sub-figure b.). 

A 	AB 	B 
0 	 I 	

r 

(a). Traditional HASE Model 	 (b).Liblool Generated HASE Model 

Figure 97 - Comparison of Traditional and LibTool-based Model Constraints 
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8.3 Experimentation 

In order to demonstrate the successful application of the tools/techniques presented in 

this thesis, a series of component libraries and models was constructed. 

The RS232/v-24 calling-protocol library demonstrated entity selection based on the 

interface-oriented classification of MEDL components. After presenting an initial model 

configuration, entities within the model were tested (via LibTool's entity-interface class 

viewer) to see if alternative substitute entities existed in the MEDL library. This substitution 

process proved straightforward with LibTool correctly identifying suitable replacement 

entities based upon component interface descriptions. The use of composite entities to form 

a hierarchical model of the RS232/v-24 protocol was also successfully demonstrated. 

The timing characteristics of abstract and detailed component implementations were 

compared using CommTrace in order to verify that models based on abstract entities 

produced the same results (where possible) as models built from detailed components. Whilst 

the responsibility for 'aligning' events across abstract representations ultimately falls to the 

programmer, the CommTrace utility provided a useful tool with which to aid timing 

comparison. Finally, it was shown to be possible to run an RS232/v-24 library based model 

across different levels of abstraction (e.g. one communicating party was simulated at the 

higher level of abstraction and one at the lower level). 

A library of components, allowing the modelling of memory hierarchies was generated 

in order to demonstrate the proposed approach to event parameterisation. Detailed cache 

simulations were introduced, which employed a task parameter describing a memory address 

in order to make the modelling of cache contents possible. In addition, example model 

configurations were produced which employed abstract cache entities to decrease simulation 

runtime; the task parameter was not required by the more abstract cache components so was 
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disabled in order to indicate to its communication partners the level of service it offered. 

Even with this parameter disabled, the abstract cache was able to simulate accurate timing 

delays based on the outcome of statistical cache lookups. It was shown that the decreased 

runtime obtained by using abstract entities must be traded against model flexibility. 

The SimTree tool was demonstrated with models representing a multiple abstraction 

adder. Prior to the work described here, HASE had no facilities for visualisation of the 

behavioural hierarchy (the design window only provided a graphical projection of a user 

selected 'view' of a model). SimTree was shown to allow management of the behavioural 

hierarchy through a simple graphical user interface that monitored the state of the active 

behavioural model. This mode facilitated the rapid the reconfiguration of the adder model 

(for various abstraction combinations). This process had previously been very time 

consuming and error prone. 

Finally, a relatively large model was constructed to demonstrate top down 

development. An initial model allowing abstract PRAM algorithms to be simulated was 

refined through a number of iterations of the HASE design lifecycle. This model 

consolidated each of the modelling techniques discussed above (i.e. LibTool model 

generation, CommTrace timing validation and SimTree hierarchy management). The various 

techniques were shown to work together harmoniously. 

8.4 Further Work - 

This final section presents possible extensions to the work presented in this thesis. The 

extensions proposed cover both the modelling process and the 'post-LibTool' HASE 

environment. 
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8.4.1 Extending the Use of Component Descriptions 

At present MEDL based simulation components have a textual description associated 

with them. However, this description is not used (by LibTool) in the component selection 

process. The author believes that by structuring the textural description more effectively (via 

the incorporation of component meta-data) the component selection process could be 

extended to include the selection of components not only based upon their communication 

interfaces but also upon (say) their intended application domain. At present, this must be 

done manually by examining the text descriptions in each of the entities returned from a 

component equivalence test. This extension would serve as a mechanism for the automated 

searching of model selection heuristics as described by [Lee96] (section 4.8.1). 

8.4.2 Enhancement of the HASE Design Window Facilities 

As a result of the work presented here it is now much simpler to create large, multiple 

abstraction models. This is due to the nature of sub-entity coupling as demonstrated in the 

PRAM model (section 7.10.1). Whilst SimTree allows the management of large behavioural 

hierarchies, HASE's original design window suffer from a lack of layout space. To alleviate 

this problem the author believes that new design display modes are required. Possible 

extensions to HASE's design window could include (i) the inclusion of a thumbnail map of a 

large model (allowing the rapid navigation of a large design display) and (ii) the ability to 

expand composite entities into a separate window (this would allow a model's subsystems to 

be displayed individually). 

8.4.3 Extensions to the MEDL Library Description Specification 

The MEDL specification does not currently support EDL templates (these templates 

allow entities such as processors to be 'dropped' into a parameterised model topology - e.g. 
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mesh, torus etc). Templates offer a useful way of reducing modelling effort for regularly 

structured configurations of entities. For example, the PRAM simulation presented in section 

7.9 could be placed into a two dimensional array template thus allowing the dynamic 

configuration of an n processor PRAM. 
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Appendix A - EDL Grammar 

proj -* 
PROJECT (preamble paramlib globals entlib layout) 

preamble - 
PREAMBLE (name directory author version desc) 

name -+ 
NAME string 

directory -* 
DIRECTORY string 

author -> 

C 

I AUTHOR string 

version -* 
C 

I VERSION integer 

desc -* 
6 

I DESCRIPTION (desclist) 

desclist -* 
string 
I string , desclist 

paramlib -* 
PARAMLIB (paramlist) 

paramlist -* 
C 

I param ; paramlist 

param -* 
ENUM (identifier, (enumlist)) 

I STRUCT (identifier, [ structlist  J) 
I RANGE (identifier, integer, integer) 
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I INSTR (identifier, [ linklist  1) 
I BIT (identifier, integer) 

I LINK (identifier, [ linklist  1) 
ARRAY (identifier, integer, identifier) 

enumlist -f 
identifier: identifier 
I identifier: identifier, enumlist 

structlist -+ 
rparam 
rparam , structlist 

linklist -> 
(identifier, rparam) 

I (identifier, rparam ), linklist 

rparam -* 
RIENUM (identifier, identifier, integer) 

I RSTRUCT (identifier, identifier) 

I RRANGE (identifier, identifier, integer) 
RINSTR (identifier, identifier) 

I RBIT (identifier, identifier, integer) 

I RLIINK (identifier, identifier) 

I RARRAY (identifier, identifier) 

I RTNT (identifier, integer) 
RFLOAT (identifier, float) 

I RSTRING (identifier, string) 

globals -* 
GLOBALS (rparamlist) 

rparamlist -* 
C 

I rparam ; rparamlist 

entlib -> 
ENTITYLIB ( entlist) 

entlist -4 

C 

I entity ; entlist 
I subentity ; entlist 

entity -+ 
ENTITY identifier ( desc params ports attributes) 

subentity - 
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COMPENTITY identifier ( descendants desc params ports attributes) 

params -* 
C 

I PARAMS ( rparamlist) 
ports -* 
C 

I PORTS (portlist) 

portlist -+ 
port 

I port ; portlist 

port - 
PORT (identifier, RLINK (identifier, identifier) , identifier) 

attributes -+ 

ATTRLB ( attriblist) 

attriblist -* 
C 
attrib ; attriblist 

attrib -* 
DISPLAYPARAM (identifier, identifier, identifier) 

descendants -* 
DESCENDANTS ( childlist childlinklist) 

childlist - 
CHILD (identifier, identifier, attributes) 

I CHILD (identifier, identifier, attributes) ; childlist 
childlinklist -~ 

6 

I clink; childlinklist 

clink -* 
CLINK (identifier. identifier [identifier] -> identifier. identifier [identifier] width) 

width - 
6 

I , integer 

layout -* 
LAYOUT ( layoutlist childlinklist) 
layoutlist -* 
C 

I lentity ; layoutlist 
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lentity —+ 
LENTITY identifier identifier ( desc attributes) 

A.! DASH Node Demonstration Model 

PROJECT 
PREAMBLE 

NAME "dashnode" 
DIRECTORY "/home/lmw/hasedir/myproj/daShflOde" 
AUTHOR "Lawrence Williams" 
VERSION 1 
DESCRIPTION ("Simple HASE Experiment based on single DASH node") 

PARAMLIB 

-- Struct definition for simple data packet and its associated link param 

STRUCT (plstruct , [RINT (p1_address , 0) 
RSTRING (plrw, ") 
RSTRING (phd,  

LINK 	(p1_link , [(DATAPKT , RSTRUCT(plstruct, DP))]); 

-- Struct for holding memory traces 

STRUCT (rnem trace struct , [RINT (mtaddress,0), 
RSTRING (mtrw,  
RSTRING (mtid,  

-- Struct for holding cache line information 

STRUCT (calinestruct , [HINT (cavahid,0), 
RINT (catag,0), 
RINT (ca cmblock,0), 
HINT (caaddl,0), 
HINT (caadd2,O), 
HINT (caadd3,0), 
RINT (caadd4,O), 
HINT (camod,O), 
HINT (cashare,0)]); 

-- Define the State enumerations for mips and caches. 

ENUM (mipsstate, [H WAITING:mips waiting 
H_RUNNING :mips running 
MSTOPPED:mips 1); 

ENUM (pcachestate, (P_HIT: 
P MISS: 
P IDLE: )); 

ENUM (s_cache_state, (S_HIT: 
S MISS: 
S—IDLE: )); 

-- Define storage arrays for cache contents and memory trace storage 

ARRAY (p_cache_memory, 8, calinestruct); 
ARRAY (S cache memory, 16, cahinestruct); 
ARRAY (memory trace, 100, mem trace struct); 
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GLOBALS 
RINT ( traces , 5 ); 

RINT ( mips delay , 1 ); 
RINT ( p_cache_size , 8 ); 
RINT ( s_ cache _size , 16 ); 
RINT ( p_cache_delay , 1 ); 
RINT ( s_  cache _delay , 1 ); 
RINT ( c_memory_delay , 1 ); 
RINT ( clus mem size , 1024 

ENTITYLIB 
ENTITY mips 

DESCRIPTION ("Mips Address Generation Box.") 
PARAMS 

RINT (TC,0); 
RINT (TRACES,0); 
RARRAY (memory trace,mem trace); 
RENUM (mips_state, cur_state, 0); 

PORTS 
PORT (p cache, pllink, portdot); 

ATTRIB () 

ENTITY p cache 
DESCRIPTION ("Primary Cache") 
PARANS 

RSTRING (status," -- "); 
RENUM (p cache state,cur_state,0) 
RARRAY (p_cache_memory, cache); 

PORTS 
PORT (mips, plunk, portdot); 
PORT (s_cache, pllink, portdot); 

ATTRIB () 

ENTITY s_cache 
DESCRIPTION ("Secondary Cache") 
PARAMS 

RSTRING (status,"--"); 
RENUM (scachestate,curstate,0); 
RARRAY (scachememory,cache); 

PORTS 
PORT (p_cache, plunk, portdot); 
PORT (mpbus, pllink, portdot); 

ATTRIB () 

ENTITY mpbus 
DESCRIPTION ("Very Simple Bus!") 
PARANS 
PORTS 

PORT (mipsl, pllink, portdot); 
PORT (from _c_memory, plunk, portdot); 
PORT (tocmemory, pilink, portdot); 

ATTRIB () 

ENTITY c_memory 
DESCRIPTION ("Cluster Memory Unit") 
PARANS ( 

282 



PORTS 
PORT (from mp bus, plunk, pdrtdot); 
PORT (to mp bus, pilink, portdot); 

ATTRIB () 

COMPENTITY node 
DESCENDANTS 

CHILD (mips , MIPS , ATTRIB  
CHILD (p_cache , P_CACHE , ATTRIB  
CHILD (scache , S_CACHE , ATTRIB  
CLINK (mips.MIPS[p cache] -> 

p_cache. P_CACHE [mips] ,1); 
CLINK (p_cache. P_CACHE [s_cache] -> 

scache.S_CACHE [p_cache], 1); 

DESCRIPTION ("Node Containing MIPS box and caches") 
PARANS ( ) 
PORTS 
ATTRIB 

LAYOUT 
LENTITY node NODE 

DESCRIPTION ("Single DASH Node") 
ATTRIB () 

LENTITY rap bus MP—BUS 
DESCRIPTION ("Simple Bus") 
ATTRIB () 

LENTITY c memory C_MEMORY 
DESCRIPTION ("Cluster Memory") 
ATTRIB () 

CLINK (node.NODE[mpbus] ->mpbus.MPBUS[mipsl], 1 ); 
CLINK (mp_bus .MP BUS [to_c_memory]-> 

cmemory.CMEMORY[frommpbus] , 1); 
CLINK (rap bus. NP_BUS [from_c_memory] -> 

cmeraory.CNEMORY[to_mp_bus] , 1); 

A.2 DASH Node Sample Input 

Address, id/rw sample to go here. 
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Appendix B - Overview of Java Packages 

B.1 The LibraryStructure Package 

binding. java, 	bindingMask. java Classes used to represent message type to 
port bindings. 

Entity. java, 	CompEntity. java Classes representing atomic and composite 
entities. 

dataDArray.java, 	dataFioat.java, 
dataHint.java, 	datalnstr.java, 
datalnt.java, 	dataltem.java, 
dataRange . java  

These classes represent the EDL data types 
dynamic array data type. 

EDLEmbedParamlib.java, 
EDLHeader.java, 	EDLitem.java, 
EDLList . java, 	EDLparamlib. java  

Classes used to hold the generated EDL 
output file sections 

EntlFace. java Class holding pre-calculated entity interface 
definitions 
This class represents an atomic entity. 

LibraryStructure.java The class which binds together all other 
model related objects 

LinkSpec. java Class representing a full link definition 
MarkSpec. java  

MType. j ava Classes used to manipulate Message Type 
definitions. MTypeList . java 

MTypeSet . java  
OutputGather. java Class used to hold code fragments generated 

by LibTool 
Port.java Classes 	for 	the 	manipulation 	of 

communication ports 
PortList . java  
PortDescriptor. java 

B.2 The LibTool Package 

CiassView. java GUI based class for display of class definitions 
EDLLibGenerator. java  
EntityDescEDL. java Classes associated with describing an entity's 

interface on screen. 

EntityDescription. java  

EntityDescHLlB. java 
EntityDesclFace. java 

IFaceFig. java GUI class used to render interface set notation 
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LibBrowserForm. java The GUI class for the Liblool browser 
LibGenerateForm. java The generation dialogs used in LibTool 
LibToolMain. java The main class which spawns the LibTool 

process 
OrderLess . java Ordering relation 
PostScriptGenerator. java Alternative output type generation class (not fully 

implemented) 
TestEquiv. java Class equivalence test class 
TreeGenerator. java Used to render the LibTool explorer. 

B.3 The ConunTrace Package 

CommTrace.java The main CommTrace process 
FigDisplay.java The rendering class 
ProtFig.java The canvas sub class 
TextDisplay.java Used to display the trace file 

view 
TraceLine.java Class holding a tempory copy of a 

trace file line 
traceScanner. java Scanner class for trace files 

B.4 The SimTree Package 

overlayScanner. java  
Polygon. java  
PolyLine. java  
searchQuery. java  
SimTree. java  
treeScanner. java  
WaiTreeCanvas . java  
WNode.java  
WTFactory. java 

B.5 MEDL Parser Specification 

II CUP Specification : MEDL Library File Format 
II 

mit with {: scanner.init(); 	:}; 	II mit feedback to gui console 
scan with {: return scanner.nexttokenO; 	:}; 

II routine to get next token 

/* Terminals */ 

terminal token 	LIB, ENT, MESSTYPE, NAME, INPUT, PORT, OUTPUT, 
LPAREN, RPAREN, MTYPES, COMMA, COLON, DESC, DATABINDINGS, 
CENT, CONTAINS, INTLINRAGE, INTL, EDL, EDLCODE, DATAITEM, 
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BINDINGS, DATAPAIR, baseRANGE, baselNT, baseFLOAT, 
baseDARRAY, baseINSTR, baseHINT, BIND, PASSIVE, SET, 

DETDESC, INENUM, INSTRUCTS, INSTRUCT, INSET; 

terminal str token IDENT, STRING; 

terminal mt token INTEGER; 

/* Non-Terminals */ 

non terminal symbol library def, entity_list, entity, input _list, 
output_list, oportlist, iport, messtypes, mtype list, mtype, oport, 
iportlist, messrange, rangenode, c_entity_list, c_entity, contains, 
subentlist, intlmnkage, entlistnode, link, cmess_types, cmtype list, 
cmtype, linkspec, linktypea, linktypeb, linktypec, linktyped, edl, edlcode, 
edlcode list, databindlist, databinditem, bind—list, binding, 
basetype, baseint, baserange, basefloat, basedarray, bindingdetails, 
passive, passive_list, passive _item, cpassive, cpassive list, 
cpassive_item, detdesc, detdesc list, descdef, basehint, baseinstr, inenurn, 
instructs, inset, instructs—list, instructs—item; 

/* The Grammar / 

start with library_def; 

library def ::= LID IDENT 
STRING: 5 
LPAREN 
entity_list 
c_entity_list 
DATABINDINGS LPAREN databind_list bindingdetails RPAREN 
RPAREN 

LIE IDENT 
STRING: S 

LPAREN 
entity_list 
DATABINDINGS LPAREN databind_list bindingdetails RPAREN 
RPAREN 

LIB IDENT 
STRING: S 

LPAREN 
entity_list 
c_entity_list 
RPAREN 

LIB IDENT 
STRING:s 
LPAREN 
entity_list 
RPAREN 

basetype ::= baseint I 
baserange 
basehint 
basedarray 
basefloat 
baseinstr; 

basedarray ::= ba5eDARRAY LPAREN 
IDENT: size 
COMMA 
IDENT :type 
RPAREN 
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baseint ::= baselNT 

basehint ::= baseHINT LPAREN INTEGER:hexnums RPAREN 

baserange ::= baseRANGE LPAREN INTEGER:rLow COMMA INTEGER: rHigh RPAREN 

base float : := baseFLOAT 

baseinstr : := baseINSTR LPAREN inenum instructs inset RPAREN 

inenum ::= INENUM LPAREN STRING:instrSetEnum RPAREN 

instructs ::= INSTRUCTS LPAREN instructs—list RPAREN 

instructs—list : := instructs—list instructs—item I 
instructs—item 

instructs item ::= INSTRUCT LPAREN STRING:structString RPAREN 

inset ::= INSET LPAREN STRING:inSetString RPAREN 

bindingdetails ::= BINDINGS LPAREN bind—list RPAREN; 

bind—list ::= bind—list binding 
binding 

binding ::= BIND LPAREN IDENT:mtype COMMA IDENT:dataitem RPAREN 

databind list ::= databind_list databinditem 
databinditem; 

databinditem ::= DATAITEM LPAREN 
DESC LPAREN STRING:desc RPAREN 
DATAPAIR LPAREN IDENT:name COMMA basetype RPAREN 
RPAREN 

centitylist: := c_entity_list c_entity 
C entity; - 

edlcode 	 ::= EDLCODE LPAREN 
IDENT:i COMMA STRING:s2 
RPAREN 

edlcode list ::= edlcode list edlcode 
edlcode; 

edl 	 :: EDL LPAREN RPAREN I 
EDL LPAREN edlcode list RPAREN 
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II comp entity - hold list of entities which _must_ be declared earlier than this 

c_entity 	::= CENT LPAREN 
NAME LPAREN IDENT:i RPAREN 
DESC LPAREN 
STRING: S 

RPAREN 
cmess types 
contains 
INTLINKAGE LPAREN mt linkage RPAREN 
edl 

cpassive 
RPAREN 

contains 	::= CONTAINS LPAREN subentlist RPAREN; 

subentlist ::= subentlist COMMA entlistnode 
entlistnode; 

entlistnode ::= IDENT:i 

II in the case of duplicate instances of the same sub entity... 

IDENT:i COLON IDENT:i2 

mt linkage ::= mt linkage link I 
link; 

linkspec ::= linktypea 

linktypeb 

linktypec 

linktyped 

linktypea.: := IDENT:elname LPAREN IDENT:elport RPAREN COMMA 
IDENT:e2name LPAREN IDENT:e2port RPAREN 

linktypeb ::= IDENT:elname LPAREN IDENT:elport RPAREN COMMA 
IDENT:e2name COLON IDENT:id2 LPAREN IDENT:e2port RPAREN 

linktypec ::= IDENT:elname COLON IDENT:idl LPAREN IDENT:elport RPAREN COMMA 
IDENT:e2name LPAREN IDENT:e2port RPAREN 

linktyped ::= IDENT:einame COLON IDENT:idl LPAREN IDENT:eiport RPAREN COMMA 
IDENT:e2name COLON IDENT:id2 LPAREN IDENT:e2port RPAREN 

link 	::= INTL LPAREN lmnkspec RPAREN 

passive_item ::= SET LPAREN IDENT:il COMMA IDENT:i2 RPAREN 

cpassive_item ::= SET LPAREN IDENT:ii COMMA IDENT:i2 RPAREN 

entity_list ::= entity—list entity I 
entity;  
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passive_list ::= passive_list passive—item 
passive—item 

cpassive_list ::= cpassive_list cpassive_item 
cpassive_item 

passive 	PASSIVE LPAREN passive_list RPAREN I 
PASSIVE LPAREN RPAREN 

cpassive 	PASSIVE LPAREN cpassive_list RPAREN I 
PASSIVE LPAREN RPAREN 

detdesc 	::= DETDESC LPAREN STRING:s2 
RPAREN 

detdesc list 	: := detdesc list detdesc I 
detdesc 

descdef 	::= DESC LPAREN STRING:s RPAREN 

DESC LPAREN STRING:s RPAREN 
detdesc list 

entity 	::= ENT LPAREN 
NAME LPAREN 
IDENT i 
RPAREN 

descdef 
mess_types 
input_list 
output list 
edl 
passive 
RPAREN 

mess—types ::= MTYPES LPAREN 
mtype_list 
RPAREN 

mtype list ::= mtype_list mtype 
mtype 

cmess types 	MTYPES LPAREN 
cmtype_list 
RPAREN 

cmtype list 	cmtype_list cmtype 
cmtype 

II check for duplicate message type names 

mtype 	 MESSTYPE LPAREN 
IDENT:i 
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LPAREN 
messrange RPAREN 
RPAREN 

cmtype 	::= MESSTYPE LPAREN 
IDENT: i 
LPAREN 
messrange RPAREN 
RPAREN 

messrange 	::= messrange COMMA rangenode I 
rangenode 

rangenode 	::= IDENT:i 

II input/output lists may have O->many ports. 
II 

input list ::= INPUT LPAREN RPAREN 
INPUT LPAREN 
iport_li-St 
RPAREN 

output_list :: OUTPUT LPAREN RPAREN 
OUTPUT LPAREN 
oport list 
RPAREN 

iport list :: iport_liSt iport 
iport 

oport_list ::= oport_list oport I 
oport 

iport 	::= PORT LPAREN IDENT:i COMMA IDENT:ii RPAREN 

oport 	 PORT LPAREN IDENT:i COMMA IDENT:ii RPAREN 

B.6 MEDL Description of the DASH Node Model 

Library file for DASHNODE model 
II 

LIB dashnode "Small Processing Node Library" 

ENT { 
NANE{P-CACHE} 
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MTYPES { 
MESSTYPE{MEMACCESS(get-addreSS, return-address) 

INPUT{ 
PORT (IN, MEMACCESS 
PORT (REPLY, MEMACCESS 

OUTPUT 
PORT {ANSWER, MEMACCESS) 
PORT { REFER, MEMACCESS 

EDL 

ENT 
NAME ( C PU 
MTYPES{ 

MESSTYPE{MEMACCESS (get-address, return-contents} 

INPUT{ 
PORT { IN, MEMACCESS 

OUTPUT 
PORT(OUT,MEMACCESS} 

EDL 

ENT 
NANE{S-CACHE} 
MTYPES { 

MESSTYPE{MEMACCESS (get-address, return-address)} 

INPUT( 
PORT{IN,MEMACCESS) 
PORT (REPLY, MEMACCESS) 

OUTPUT 
PORT {ANSWER, MEMACCESS} 
PORT { REFER, MEMACCESS 

EDL{ 

ENT 
NAME { MEMORY) 
MTYPES { 

MESSTYPE{MEMACCESS{get-address, return-address)) 

INPUT 
PORT{ IN, MEMACCESS} 

OUTPUT 
PORT {OUT, MEMACCESS) 

EDL 

CENT{ 
NAME { COMPCACHE} 
MTYPES { 

MESSTYPE{MEMACCESS{get-address, return-address}) 
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CONTAINS (P-CACHE, S-CACHE} 
INTLINKAGE 

INTL (P-CACHE{REFER},S-CACHE{IN}} 
INTL {S-CACHE{OUT} , P-CACHE{REPLY} 

EDL 

CENT{ 
NAME { COMPCACHE-3 
MTYPES { 

MESSTYPE{MEMACCESS{get-address, return-address} 

CONTAINS (P-CACHE, S-CACHE, COMPCACHE} 
INTLINKAGE 

INTL {P-CACHE{REFER}, S-CACHE{IN}} 
INTL {S-CACHE{OUT} ,P-CACHE {REPLY} 

EDL 

B.7 Typical MEDL Console Log 

LibTool V1.2 (c)1998 HASE Group. 

Scanning Input Library NEW-processor-memory.hlib 
Parsing Library. 
Generating HLIB Objects... 
Library NEW-processor-memory. hub OK. 

Building Port Oefs. for CEntity <testmodell> 
Building Port Defs. for CEntity <testmodel2> 
Building Port Defs. for CEntity <testmodel3> 
Building Port Defs. for Csntity <testmodel4> 

Building Interface Definitions... 
Generating Interface for Atomic Entity din tdprocessor. 
Generating Interface for Atomic Entity din-memory. 
Generating Interface for Atomic Entity cache_prociface. 
Generating Interface for Atomic Entity abs_cache. 
Generating Interface for Atomic Entity fa_cache. 
Generating Interface for Atomic Entity fa_cache_rec. 
Generating Interface for Composite Entity testmodell. 
Generating Interface for Composite Entity testmodel2. 
Generating Interface for Composite Entity testmodel3. 
Generating Interface for Composite Entity testmodel4. 
Finished Building Interface Definitions. 

Checking Global Message Type Consistency 
Testing din_td_processor for message type consistency 
Testing din_td_processor for message type consistency 
Testing din-memory for message type consistency 
Testing din memory for message type consistency 
Testing cache prociface for message type consistency 
Testing cache prociface for message type consistency 
Testing cache_prociface for message type consistency 
Testing cache_prociface for message type consistency 
Testing abs_cache for message type consistency 
Testing abs_cache for message type consistency 
Testing fa_cache for message type consistency 
Testing facache for message type consistency 
Testing fa_cache_rec for message type consistency 
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Testing fa cache rec for message type consistency 
Testing tetmodeT1 for message type consistency 
Testing testmodell for message type consistency 
Testing testmodell for message type consistency 
Testing testmodell for message type consistency 
Testing testmode12 for message type consistency 
Testing testmode12 for message type consistency 
Testing testmode12 for message type consistency 
Testing testmode12 for message type consistency 
Testing testmode13 for message type consistency 
Testing testmode13 for message type consistency 
Testing testmode14 for message type consistency 
Testing testmode14 for message type consistency 
Testing testmodel4 for message type consistency 
Testing testmodel4 for message type consistency 
Finished Checking Global Message Type Consistency 

Checking Atomic Entites Port->Message Type Bindings 
Testing din_td_processor for port->message definition inconsistency. 
Testing din—memory for port->message definition inconsistency. 
Testing cache_procif ace for port->message definition inconsistency. 
Testing abs_cache for port->message definition inconsistency. 
Testing f a_cache for port->message definition inconsistency. 
Testing fa_cache_rec for port->message definition inconsistency. 
Finished Checking Atomic Entites Port->Message Type Bindings 

Checking Free Port Count for Composite Entitites 
Finished Checking Free Port Count for Composite Entitites 
Checking Secondary Data Bindings 
Finished Checking Secondary Data Bindings 
Checking Passive Data Items 
Finished Checking Passive Data Items 
Creatino Passive Data Mask EDL 

B.8 MEDL Test Library Details 

Key entities are accompanied by a diagrammatic representation of the component's 

port configuration and the MEDL description. 
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Component 
Name 
A 

Description 

This atomic component acts as a message source. One thousand 
messages are transmitted from the sole output port (out) with a 
pause of one simulation time unit between transmissions 46 . 

ENT{ 
NAME (a) 
MTYPES {MESSTYPE { PACKET {message a, message b} 
INPUT{)  
OUTPUT{PORT{OUT, PACKET} 
EDL{ 

B This atomic component acts as a message-forwarding unit. It has two 
ports (in, out). Messages received on the in port are held for one 
simulation time unit and then retransmitted on the out port. 

ENT{ 
NAME { b 
MTYPES { MESSTYPE { PACKET {message a, message b}} 
INPtJT{PORT{IN, PACKET}} 
OUTPUT{PORT{OUT, PACKET} 
EDL{ 

C The atomic component 'C' acts as a message sink. It simply receives 
events on its only port (in). 

L1C 

ENT 
NAME { c 
MTYPES { MESSTYPE { PACKET {message a, message b}} 
INPUT{PORT{IN, PACKET) 
OUT PUT 
EDL{ 

BB Composite component BB contains two instances of component type 
B. The output of one instance is linked to the input of the other 
instance. Transmitted packets leave the component two simulation 

46  A simulation time unit is an abstract unit of time. Usually the modeller specifies how a 
simulation time unit maps on to some real measure of time. 

294 



time units after arriving (i.e. double the delay of a B component). 

CENT{ 
NAME { bb 
MTYPES ( MESSTYPE { PACKET {message a, message b 
CONTAINS {b:B1,b: B2} 
INTLINKAGE 

INTL 	{b:Bl{OUT},b:32{IN}} 

EDL( 

The use of the b: bi and b b2 notation allows reference to multiple 
instances of component of the same type. 

BBB This composite component is similar to BB however it includes three 
linked instances of component B. 

1313132 Component BBB2 consists of two instances of composite component 
BBB linked together. 

BBx2 Component BBx2 consists of two instances of component BB (itself 
a composite component) linked together. 

BBx2 

BB:bbl 	 BB:bb2 

LII B:bl  LIIj-fIB:b2_LI1-LI1 B:bl LI1-LI1 B:b2  LI1 

CENT{ 
NAME {bbx2} 
MTYPES { MESSTYPE { PACKET { mes sage_a , mes sage_b } 
CONTAINS{bb:bbl,bb:bb2} 
INTLINKAGE 

INTL 	{bb:bbl{OUT},bb:bb2{IN}} 

EDL{ } 

BBx2X3 This composite component is built from three BBx2 components. 
ModelA This component is closed (i.e. it has no free ports and is a complete 

model). It consists of an A (source) component connected to three 
linked BBx2 components (message forwarding entities) which is in 
turn linked to a C (sink) component. 

CENT 
NAME {modela} 
DESC{"Component Model A'} 
MTYPES { MESSTYPE { PACKET {message a, message_b }} 
CONTAINS{a,bbx2:bbxl,bbx2:bbx2,bbx2:bbx3,C} 
INTLINKAGE 

INTL 	{a{OUT},bbx2:bbxl{IN}} 
INTL 	{bbx2:bbxl{OUT},bbx2:bbx2{IN}} 
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INTL {bbx2:bbx2{0iJT},bbx2:bbX3{IN}} 
INTL {bbx2:bbx3{OUT},c{IN}} 

EDL{ 

B.9 Output from Textual Description Pane in LibTool's Interface 

Viewer 

Structure : ATOMIC 

Message Types: 
<memaccess> 
<memresult> 

Input Ports: 
<REQIN : memaccess> 

Output Ports: 
<RESULTOUT : memresult> 

Entity Description 

BEHAVIOURAL SUMMARY. 
This entity represents a dinerolli trace complient address space (223 bytes) 
to which memory requests from a memaccess link are presented. 

The entity simply models read and write cycle delays and is not 
concerned with keeping memory content state information. 

The memory's only output port (bound to a link of type memresult) responds to 
read requests by returning a 'return address' message, or to a write by a simple 
acknowledgement packet. 

PARAMETERS 
din _action _type 
simple_memory_read_delay 
simple_memory_write_delay 
access—count 
read count 
write—count 
read_percent 
write_percent 

records last action taken. 
read cycle delay 
write cycle delay 
total number of memory accesses 
number of reads 
number of writes 
percentage of total accesses (reads) 
percentage of total accesses (writes) 

SECONDARY DATA BINDINGS: 
The memaccess and memresult secondary data bindings are passive in this entity. 
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Appendix C 

RS232/v24 MEDL Library 

C.1 Complete MEDL Description 

LIB demo "rs232" 

ENT 
NANE{abstractcaller} 
DESC{"Composite (abstract) caller encompassing PC and MODEM"} 
MTYPES 

MESSTYPE{connection{setup,setup_ack,data,data_ack,clear,Clear_ack}} 

INPUT 
PORT { FROM PSTN, connection) 

OUTPUT 
PORT {TO PSTN, connection) 

EDL 
EDLCODE(PARAMLIB,"ENUM ( tcomms phase , [SETUP: , DATA: , CLEAR: 
EDLCODE{PARANLIB,"ENUM ( t_ initiate _call, [YES: , NO:));") 
EDLCODE{PARAMS,"RENUM ( tcomms phase , comms phase , 2 );"} 
EDLCODE{PARAMS, "RENUM ( tinitiatecall, initiate—call, 1);") 

ENT { 
NAME {pc) 
DESC{" (abstract) PC entity") 
MTYPES 

MESSTYPE{rs232{number,dtron,dSr_on,ri_On,rtS_on,cd_On,CtS_Ofl,tXd,rts_off,rXd_On, 
cdoff, ctsoff,dtroff,dsroff)} 

INPUT{ 
PORT{FROM MODEM, rs232} 

OUTPUT 
PORT {TO MODEM, rs232} 

EDL 
EDLCODE{PARANLIB,"ENUM ( tcomms phase , [SETUP: , DATA: , CLEAR: 
EDLCODE(PARAMS,"RENUM ( tcomins phase , comms phase , 2 );") 
EDLCODE{PARAMLIB,"ENUM ( tinitiate call, [YES: , 
EDLCODE{PARANS, "RENUM ( tinitiatecall, initiate —call, 1);") 

ENT 
NAME { pcdetail 
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DESC{" (detailed) PC entity with individual signal ports") 
MTYPES { 

MESSTYPE(rs232wire{On, off}} 
MESSTYPE{rs232datawire{datatrans, remotenumber) } 

INPUT{ 
PORT{RXD, rs232datawire} 
PORT{CTS, rs232wire} 
PORT{DSR, rs232wire} 
PORT {CD, rs232wire} 
PORT{RI, rs232wire} 

OUTPUT 
PORT {TXD, rs232datawire} 
PORT{RTS, rs232wire} 
PORT{DTR, rs232wire} 

EDL 
EDLCODE{PARAMLIB,"ENUM ( tcomms phase , [SETUP: , DATA: , CLEAR: 
EDLCODE{PARA11S,"RENUM ( tcoinmsphase , comms phase , 2 );"} 
EDLCODE(PARANLIB,"ENUM ( tinitiate call, [YES: , NO:]);") 
EDLCODE(PARAMS, 'RENUM C t initiate call, initiate _call, 1);") 
EDLCODE{PARANLIB,"ENUM ( trs232led, [ON:greenled , OFF:redled]);") 
EDLCODE{PARANS,"RENUM ( trs232led, rxd led, l);"} 
EDLCODE{PARAMS,"RENUM ( trs232led, cts led, 1);") 
EDLCODE{PARANS,"RENUM ( trs232led, dsr led, l);"} 
EDLCODE{PARAMS,"RENUM ( trs232led, cdled, l);"} 
EDLCODE{PARA4S,"RENUM ( trs232led, txd led, 1);") 
EDLCODE{PARAMS,"RENUM ( trs232led, rts led, l);"} 
EDLCODE{PARAMS,"RENUM ( trs232led, dtr_led, 1);") 
EDLCODE{PARAMS,'RENUM ( t_rs232led, riled, 1);") 

ENT { 
NAME {modemdetail} 
DESC{" (detailed) MODEM entity with individual signal ports") 
MTYPES { 

MESSTYPE{connection{setup,setUP_aCk,data,data_aCk,clear,cleat_ack}} 
MESSTYPE{rs232wire{On, off}} 
MESSTYPE{rs232dataWire{datatranS, rernotenuxnber} 

INPUT 
PORT { FROM PSTN, connection) 
PORT {TXD, rs232datawire} 
PORT {RTS, rs232wire} 
PORT{DTR, rs232wire} 

OUTPUT 
PORT {TO PSTN, connection} 
PORT{RXD, rs232datawire} 
PORT{CTS, rs232wire} 
PORT{DSR, rs232wire} 
PORT {CD, rs232wire} 
PORT {RI, rs232wire} 

EDL 
EDLCODE{PARAMLIB,"ENUM ( t_rs232led, [ON:greenled , OFF:redled]);"} 
EDLCODE{PARAMS,"RENUM ( trs232led, rxd led, l);"} 
EDLCODE{PARAMS,"RENUM ( t_rs232led, cts led, 1);") 
EDLCODE{PARAMS,'RENUM ( trs232led, dsr led, 1);") 
EDLCODE(PARAMS,"RENUM ( trs232led, cdled, 1);") 
EDLCODE(PARAMS,"RENUM ( trs232led, txd led, 1);") 
EDLCODE{PARANS,"RENUM ( t_rs232led, rts_led, 1);") 
EDLCODE{PARAMS,'RENUM C trs232led, dtr led, l);"} 
EDLCODE(PARAMS,"RENUM C trs232led, riled, 1);") 
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ENT 
NAME (modem) 
DESC{" (abstract) MODEM entity"} 
MTYPES 

MESSTYPE{connection{ setup, setup ack, data, data_ack, clear, clear ack} 

MESSTYPE{rs232{nujnber,dtrOrl,dsrOfl,ri_Ofl,rtS_On,cd_Ofl,cts_Ofl,tXd,rtS_Off,rXd_On, 
cdoff, cts_off, dtr off, dsr_off} 

INPUT{ 
PORT{FROMPSTN, connection) 
PORT{FROMPC, rs232} 

OUTPUT 
PORT {TO PSTN, connection} 
PORT{TOPC, rs232} 

EDL 

ENT 
NAME {pstn} 
DESC{" (abstract) Representation of switched network") 
MTYPES 

MESSTYPE{connection{ setup, setup_ack, data, data_ack, clear, clear ack} 

INPUT 
PORT { FROM CALLERA, connection) 
PORT { FROM CALLERB, connection) 

OUT PUT{ 
PORT{TOCALLERA, connection} 
PORT { TO CALLERB, connection) 

EDL 

CENT( 
NAME{caller} 
DESC{" (medium detail) PC and MODEM composite entity"} 
MTYPES { 

MESSTYPE{connection{setup, setup ack, data, data ack,.clear, clear_ack} 

MESSTYPE{rs232(number,dtrOn,dsron,riOfl,rtson,Cd_Ofl,CtS_Ofl,tXd,rtS_Off,rXd_Ofl, 
cdoff, cts off, dtr_off, dsr_off} 

CONTAINS {pc, modem} 
INTLINKAGE 

INTL {pc{TO MODEM} ,modem{ FROM PC} 
INTL {modem{TOPC),pc{FROMMODEM}} 

EDL 
EDLCODE{PARAMLIB,"ENUM ( tcomms phase , [SETUP: , DATA: , CLEAR: 
EDLCODE{PARAMLIB,"ENUM ( tinitiate call, [YES: , NO:]);"} 
EDLCODE{PARAMS,"RENUM ( tcomms_phase , comos phase , 2 );"} 
EDLCODE(PARP4S,"RENUM ( tinitiate call, initiatecall, U;"} 

CENT{ 
NANE{callerdetail} 
DESC{"(detailed) PC and MODEM composite entity"} 
MTYPES { 

MESSTYPE{connection{ setup, setup ack, data, data ack, clear, clear ack} 
MESSTYPE{rs232wire{on, off}) 
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MESSTYPE{rs232datawire{datatraflS, remotenumber} 

CONTAINS {pcdetail, moderndetail 
INTLINKAGE 

INTL {pcdetail{TXD},modemdetail{TXD}} 
INTL {pcdetail{RTS},modemdetail{RTS}} 

INTL {pcdetail{DTR},mOdemdetail{DTR}} 
INTL {pcdetail{RI} ,modemdetail{RI} 
INTL {pcdetail{CD} ,modemdetail{CD}} 

INTL {modemdetail{RXD},pCdetail{RXD}} 
INTL {modemdetail{CTS} ,pcdetail{CTS}} 
INTL {modemdetail{DSR} ,pcdetail{DSR}} 

EDL 
EDLCODE(PARANLIB,"ENUM ( tcomms phase , [SETUP: , DATA: , CLEAR: ]);"} 
EDLCODE(PARANLIB,"ENUM ( tinitiate call, (YES: , 
EDLCODE{PARANS,"RENUM ( tcomms_phase , cornms phase , 2 );"} 
EDLCODE{PARAI4S,'RENUM ( tinitiatecall, initiate call, 1);"} 

CENT 
NAME {modell} 
DESC{"Modell: 2 abstract callers and a data network'} 
MTYPES { 

MESSTYPE{connection{ setup, setup_ack, data, data_ack, clear, clear ack} 

CONTAINS {abstractcaller : callera, abstractcaller: callerb, pstn} 
INTLINKAGE{ 

INTL {abstractcaller:callera{TO_PSTN},pstfl{FROM_CALLERA}} 
INTL {abstractcaller:callerb{TOPSTN},pstfl{FROM_CALLERB}} 
INTL {pstn{TOCALLERA} , abstractcaller: callera{ FROM PSTN} 
INTL {pstn{TOCALLERB} , abstractcaller: callerb{FROM_PSTN}} 

EDL 

CENT{ 
NAME {model2 
DESC{"Model2: 2 pcs , 2 modems and a data network"} 
MTYPES { 

MESSTYPE{connection { setup, setup_ack, data, data ack, clear, clear ack} 

ME5STYPE{rs232{nurnber,dtrOn,dsrOfl,ri_On,rts_On,Cd_Ofl,Cts_On,tXd,rts_Off,rXd_On, 
cdoff, cts off, dtr off, dsr_off}} 

CONTAINS{pc :pca, pc:pcb,modem:modema,modem:mOdeTflb, pstn} 
INTLINKAGE 

INTL {pc :pca{TO MODEM} , modem:modema{FROM_PC} 
INTL {pc :pcb{TO MODEM} , modem:modemb{FROM_PC} 

INTL {modern:modema{TOPSTN} , pstn{FROM CALLERA} 
INTL {modem:modemb{TO__PSTN} , pstn{ FROM CALLERB} 
INTL {pstn{TOCALLERA} ,modem:modema{FROMPSTN}} 
INTL {pstn{TOCALLERB} ,modem:modemb{ FROM PSTN} 
INTL {modem:modema{TO PC} , pc:pca{FROM_MODEM} 
INTL {modem:modemb{TO_PC} , pc :pcb{FROMMODEM} 

EDL 

CENT 
NAME {model3 
DESC{"Model3: 2 Detailed pcs, two detailed modems and a data network") 
MTYPES { 

MESSTYPE{connection{setup,setupack,data,dataack,Clear,Clear_ack}} 
MESSTYPE{rs232wire{on, off}) 
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MESSTYPE{rs232datawire{datatraflS, remotenurnber}} 

CONTAINS{pcdetail :pca,pcdetail :pcb,modemdetail :modeina,modemdetail :modemb,pstn} 
INTLINKAGE { 

INTL {pcdetail :pca{TXD} ,modemdetail :modema{TXD}} 
INTL {pcdetail :pca{RTS} ,modemdetail :modema{RTS}} 
INTL {pcdetail :pca{DTR} ,modemdetail :modema{DTR}} 
INTL {pcdetail :pca{RI},modemdetail :modema{RI}} 
INTL {pcdetail :pca{CD} ,modemdetail :modema{CD}} 

INTL {modemdetail:modema{RXD},pCdetail:pca{RXD}} 
INTL {modemdetail:modema{CTS}, pcdetail :pca{CTS}} 
INTL {modemdetail :modema{DSR} , pcdetail :pca{DSR}} 

INTL {modemdetail:modema{TOPSTN}, pstn{FROMCALLERA}} 
INTL {pstn{TO_CALLERA} ,modemdetail :modema{FROM_PSTN} 

INTL {pcdetail:pcb{TXD},modemdetail:mOdeltlb{TXD}} 
INTL {pcdetail:pcb{RTS},modemdetail:mOdemb{RTS}} 
INTL {pcdetail :pcb{DTR} ,modemdetail :modemb{DTR}} 
INTL {pcdetail:pcb{RI},modemdetail:mOdemb{RI}} 

INTL {modemdetail:modeinb{RXD},pCdetailPCb{RXD}} 
INTL {modemdetail:modemb{CTS},pcdetail:pCb{CTS}} 
INTL {modemdetail:rnodern]D{DSR},pCdetail:pCb{DSR}} 
INTL {modemdetail:mOdemb{CD},pCdetailpCb{CD}} 

INTL {rnodemdetail :modernb{TO PSTN} , pstn{FROM_CALLERB}} 
INTL {pstn{TOCALLERB},mOdeflldetail :modenth{FROMPSTN}} 

EDL { 

CENT 
NAME {model4} 
DESC{"Model4: 2 abstract caller entities and a data network"} 
MTYPES { 

MESSTYPE{connection{ setup, setup_ack, data, data_ack, clear, clear ack} 

MESSTYPE{rs232{number,dtrorl,dSr_Ofl,ri_Ofl,rtS_Orl,cd_Ofl,ctS_Ofl,tXd,rts_Off,rXd_On, 
cdoff, cts_off, dtr off, dsroff}} 

CONTAINS {caller : callera, caller: callerb, pstn} 
INTLINKAGE{ 

INTL {caller:callera{TO_PSTN} , pstn{ FROM CALLERA) 
INTL {caller:callerb{TO_PSTN} , pstn{FROMCALLERB}} 
INTL {pstn{TOCALLERA}, caller:callera{FROM_PSTN}} 
INTL {pstn{TOCALLERB}, caller:callerb{FROMPSTN}} 

EDL{ 

CENT{ 
NAME {model5} 
DESC{'Model5: 2 detailed callers and a data network"} 
MTYPES { 

MESSTYPE{connection{setup,setUp_ack,data,data_ack,clear,clear_ack}} 
MESSTYPE{rs232wire{On, off})  
MESSTYPE{rs232datawire{datatrafls, remotenuxnber} 

CONTAINS{callerdetail : callera, callerdetail : callerb, pstn} 
INTLINKAGE{ 

INTL {callerdetail:callera{TOPSTN},pstfl{FROM_CALLERA}} 
INTL {callerdetail:callerb{TOPSTN},pstfl{FROM_CALLERB}} 
INTL {pstn{TOCALLERA},callerdetail:callera{FROMPSTN}} 
INTL {pstn{TOCALLERB} , callerdetail :callerb{FROM_PSTN}} 

EDL { 
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CENT{ 
NAME {model6} 
DESC{"Model6: 1 abstract callers, 1 detailed caller and a data network"} 
MTYPES { 

MESSTYPE{connection{setup,setup_ack,data,data_ack,Clear,clear_ack}} 

MESSTYPE{rs232wire (on, off}} 
MESSTYPE{rs232datawire{datatrafls, remotenunther} 

r4ESSTYPE{rs232{nunlber,dtron,dsr_on,ri_Ofl,rts_Ofl,cd_On,ctS_Ofl,tXd,rts_Off,rXd_Ofl, 
cdoff, cts_off, dtr_off, dsr_off}} 

CONTAINS {callerdetail, caller, pstn} 
INTLINKAGE{ 

INTL {callerdetail{TOPSTN} ,pstn{FROMCALLERA}} 
INTL {caller{TOPSTN} ,pstn{FROMCALLERB}} 
INTL {pstn{TOCALLERA} , callerdetail{FROM_PSTN}} 
INTL {pstn{TOCALLERB} , caller{FROM_PSTN} 

EDL { 
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C.2 Model Structure Diagrams for R5232/v24 Experiment Models 
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C.2.3 Model 3 
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C.2.5 Model 5 
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C.3.2 ModeI4 communicating parties based on PC and MODEM entities 
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Appendix D - The Memory Hierarchy MEDL Library 

D.1 MEDL Library Description 

1* Library for DASHNODE_like demo *1 

LIB demo "Small Processing Node Library" 

1* din td processor / 

ENT{ 
NANE{dintdprocessor} 

DESC{"A Dineroill Trace File Complient Processor") 

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{"\tThis simple entity reads a Dineroill complient trace file (din 

format) \n"} 
DETDESC{"\tand issues requests on a memory access port (of type memaccess).\n\n"} 
DETDESC{"\tThe processor entity") 
DETDESC{"\tmOdels a cycle delay through the tdprocessor_delay parameter.\n"} 
DETDESC{"\tAfter holding for the cycle delay and issuing a memory request\n"} 
DETDESC{'\tthe processor waits for a result on the MEMRESULTIN port.\n\n"} 
DETDESC{"\tRather than use a standard HASE array to hold the input trace\n"} 
DETDESC{"\tthe dinero data is read in at run time from a file. This is done\n"} 
DETDESC{"\tin order to overcome the large amount of preallocated memory that 

would\n" 
DETDESC{"\totherwise be needed for a large trace input\n\n"} 

DETDESC{"\tPARAMETERS\n "} 
DETDESC{"\ttraces 	 : indicates the number of trace lines to be 

read. \n" 
DETDESC{\ttd_processor_delaY : delay parameter for a processor cycle.\n"} 
DETDESC{"\tcurrent_lifle 	 : Counter for the current trace file line being 

read. \n\n"} 

DETDESC{"\tSECONDARY DATA BINDINGS: \n"} 
DETDESC{"\tThe din_td_processor entity issues memresult requests including\n"} 
DETDESC{"\ta detailed specification of a memory address (in this case of\n"} 
DETDESC{"\ttype nemaddress_din\n\n"} 

DETDESC("\tln the case of a write the value to write is arbitary (from an mt 
counter) \n\n" 

DETDESC('\tln terms of input related secondary bindings the trace driven 
processor\n") 

DETDESC{"\tsets passive the byte—value data item.\n\n"} 

NTYPES 
MESSTYPE{memaccess (read_address, write address) 
MESSTYPE{memresult{return address, ack write}) 

311 



INPUT 
PORT {MEMRESULTIN, memresult} 

OUTPUT 
PORT (MEMREQOUT, memaccess 

EDL 
7* Enumeration of input trace lookup tables */ 
EDLCODE{PARA1LIB, "ENUM 	(t_input_trace 	, 	(wordfreq:, 	queens:, 	matmult:, 

fragtest:) ) ; 

/* Define the trace line structure (address,r/w) *7 

EDLCODE{PARANLIB,"STRUCT C t_trace_line , [RINT (label,0), RSTRING (address, 
\"NOP\") ] ) ;") 

7* Enumeration of din issue types *7 

EDLCODE{PARAMLIB, "ENUM 	 (t_din_issue_type 
(read:,write:,fetch:,UflkfloWn:,cacheflUsh)),"} 

/* Enumeration of input trace lookup tables */ 
EDLCODE{PARAMLIB,'ENUM (t—traces—to—run , (tarb:, t25k:, tl000k:, t3700k:, 

t2800k:, t4000k:));"} 

7* Parameter indicating the (default) number of trace lines to be read */ 
EDLCODE{PARANS,"RINT ( traces , 250 );"} 

7* Define the delay parameter for a processor cycle */ 
EDLCODE{PAPAMS,"RINT ( tdprocessor_delay , 5 );"} 

7* Counter for the current trace file line being read -- defined here for use 
as an on screen parameter / 

EDLCODE{PARAMS,RINT C current—line , 

/ trace input to use I 

EDLCODE{PARANS,"RENUM ( t_input_trace , input_trace , 0);") 

/ no of traces paran *1 
EDLCODE{PARAMS,"RENUM ( ttraces to run , traces_to_run , 0);") 

/* Counter for the current trace file line being read -- defined here for use 
as an on screen parameter *1 

EDLCODE{PARAMS,"RENUM ( t_din_issue_type , din_issue_type , 0);") 

/* Default bus width (in words) between processor and external device (cache, 

memory etc.) *7 

EDLCODE{PARAMS,"RINT ( default—bus—width , l);") 

PASSIVE 

/* din memory / 

ENT { 
NAME{dinnemory} 
DESC("Diaerolll complient (Abstract) main memory "} 

DETDESC('\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{'\tThis entity represents a dinerolil trace complient address space (223 

tes)\n"}  
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DETDESC{"\tto which memory requests from a memaccess link are presented.\n\n"} 
DETDESC{\tThe entity simply models read and write cycle delays and is not\n"} 
DETDESC{"\tconcerned with keeping memory content state information.\n\n"} 
DETDESC{"\tThe memory's only output port (bound to a link of type memresult) 

responds to\n" 
DETDESC{"\tread requests by returning a return address' message, or to a write 

by a simple\n" 
DETDESC{\tacknowledgement packet.\n\n"} 

DETDESC{"\tPARANETERS\n"} 
DETDESC { "\tdin_action_type 
DETDESC{"\tsimple memory_read_delay 
DETDESC { '\tsimple_memory_write_delay 
DETDESC { "\tacces s_count 
DETDESC { "\tread count 
DETDESC{ "\twrite count 
DETDESC { '\tread percent 
DETDESC { '\twrite_percent 

(writes)\n\fl'} 

records last action taken.\n"} 
read cycle delay\n" 
write cycle delay\n"} 
total number of memory accesses\n" 
number of reads\n" 
number of writes\n") 
percentage of total accesses (reads)\n"} 

percentage of total accesses 

DETDESC { "\tSECONDARY DATA BINDINGS: \n" 
DETDESC{'\tThe memaccess and memresult secondary data bindings are passive in 

this entity.\n"} 

MTYPES 
NESSTYPE{memaccess { read address, write_address) 
MESSTYPE{memresult{retUrfl address, ack write) 

INPUT 
PORT { REQIN, memaccess 

OUTPUT 
PORT { RESULTOUT, memresult 

EDL 
/ Enumeration of din issue types *1 
EDLCODE{PARANLIB, "ENUN 	 (t_din_issue_type 

(read: ,write:, fetch: ,unknown: , cacheflush:) ) ; 

/* Current access tpye -- defined here for use as an on screen parameter *1 

EDLCODE{PARAMS,"RENUM ( t_din_issue_type , din—access—type , 0);"} 

/* models read delay */ 
EDLCODE{PARAMS,'RINT C memory_read_delay , 50 );"} 

/* models write delay *1 
EDLCODE{PARANS,"RINT C memory_write_delay , 50 );") 

1* Pararnters concerned with collecting read/write statistics */ 
EDLCODE{PARANS,"RINT ( access count , 0 );"} 
EDLCODE{PARANS,"RINT C read—count , 0 );") 
EDLCODE{PARANS,'RINT C write _count , 0 );"} 
EDLCODE{PARJNS,"RFLOAT C read_percent , 0.0 C;') 
EDLCODE{PARPNS,"RFLOAT C write_percent , 0.0 );"} 

PASSIVE{ 

1* cache_prociface */ 

ENT { 
NAME { cache proci face) 
DESC{"Cache processor interface") 
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MTYPES 
MESSTYPE{memaccess{read address, write_address) 
MESSTYPE{memresult{return address, ackwrite} 
MESSTYPE{lookupresult{SUcCeSS, refer,wb) 
MESSTYPE{lookup{lu read, lu_write, cache update} 

INPUT{ 
PORT{MEMRESULTIN, memresult} 
PORT {MEMREQIN, memaccess} 
PORT{FROMSTORE, lookupresult} 

OUTPUT 
PORT { RESULTOUT, memresult 
PORT { REFER, memaccess 
PORT {TOSTORE, lookup} 

EDL 
1* Enumeration of write policies *1 

EDLCODE{PARANLIB,"ENUM (t_write_policy , (write —back:, write_through:));") 

/ Bus width (in words) between processor and cache interface logic */ 
EDLCODE{PARAMS,"RINT ( hier_high_bus_width , 1);") 

1* Bus width (in words) between cache interface logic and cache—memory */ 
EDLCODE{PARAMS,"RINT ( cache—bus—width , 4);") 

/* Bus width (in words) between cache interface logic and next lower memory 
hierarchy */ 

EDLCODE{PARAI1S,"RINT ( hier low bus width , 4);"} 

/* Current access tpye -- defined here for use as an on screen parameter *1 

EDLCODE{PARANS,"RENUM ( t_din_issue_type , din_access_type , 

/* Model cache access delay in following parameter *1 

EDLCODE{PARAMS,'RINT ( cache—access—delay , 

/* Model lower mem access delay in following parameter *1 

EDLCODE{PARANS, "RINT 	( lower mem access delay , 	1);"} 

/* Model higher mem access delay in following parameter *1 

EDLCODE{PARAMS,"RINT ( higher mem access delay , 	1);") 

/* Current access type -- defined here for use as an on screen parameter *1 

EDLCODE{PARAMS,"RENUM ( twrite policy , 	write_policy , 	0);") 

PASSIVE 

/* abs_cache / 

ENT 
NANE { abs_cache 
DESC{"Abstract cache using hitrate lookup table"} 
MTYPES { 

MESSTYPE{memaccess{readaddress,write_addreSS) } 

MESSTYPE{memresult{ return address, ack_write) 

INPUT 
PORT {MEMRESULTIN, memresult 
PORT {MEMREQIN, memaccess} 

OUTPUT 
PORT { RESULTOUT , memresult 
PORT{REFER, memaccess 
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EDL { 
1* Enumeration of cache sizes / 

EDLCODE(PARAMLIB,"ENUM (t_  cache _size , (c2:, c4:, c8:, cl6:, c32:, c64:, c128:, 
c256:, c5l2:, cl024:, c2048:, c4096:, c8192:, c16384:));"} 

1* Enumeration of input trace lookup tables */ 
EDLCODE{PARAMLIB,"ENUM (tlookup_table , (luarb:, lu25k:, lul000k:, 1u3700k:, 

1u2800k:, t4000k:));'} 

/ Enumeration of input trace lookup tables */ 
EDLCODE{PARAMLIB,"ENUM 	(t_input_trace 	, 	(wordfreq:, 	queens:, 	matmult:, 

fragtest:) ) ; 

1* Enumeration of write policies */ 
EDLCODE(PARANLIB,"ENUM (t write policy , (write back:, write through:)); 

/ Run control variable */ 
EDLCODE{PARAMS,"RINT ( run , 1);") 

/* Cache size in blocks (lines) */ 
EDLCODE{PARAS,'RENUM ( tcache size , cache—size ,O);"} 

1* Lookup up table to use *1 

EDLCODE{PARAS,"RENUM ( t_lookup_table , lookup table ,O);"} 

1* Lookup up table to use / 

EDLCODE(PARAMS,"RENUM ( tinput trace , input_trace ,O);"} 

/* Model cache access delay in following parameter *1 
EDLCODE{PARANS, "RINT ( cache_access_delay , 1); 11 ) 

/* Model cache lookup delay in following parameter *1 

EDLCODE{PARANS,'RINT ( lookup delay , 5);"} 

/* Model lower mem access delay in following parameter *1 
EDLCODE(PARA4S,"RINT ( lower mem access delay , 1);") 

/* Model higher mem access delay in following parameter *1 

EDLCODE{PARANS,"RINT ( higher mem access delay , 

1* Bus width (in words) between cache interface logic and cache —memory *1 

EDLCODE{PARANS,"RINT ( cache—bus—width , 4); 11 } 

/* Cache size in blocks (lines) *1 
EDLCODE(PARANS,"RHINT ( main_memory_size , FFFFFFFF);"} 

/* Current access type -- defined here for use as an on screen parameter *1 
EDLCODE{PARAMS,"RENUM ( t_din_issue_type , din_access_type , O);"} 

/* Current access type -- defined here for use as an on screen parameter *1 
EDLCODE{PARANS,'RENUM ( t_write_policy , write_policy , 

1* Hit / Miss Indicator for last access*/ 
EDLCODE(PARAMS,"RSTRING ( hit—status , \"MISSV');") 

/ Paramters concerned with collecting hit rate statistics / 

EDLCODE{PARAMS,"RINT ( access count , 0 );"} 
EDLCODE{PARANS,"RINT ( hit—count , 0 );"} 
EDLCODE{PARAMS,"RFLOAT ( hit_percent , 0.0 );"} 

PASSIVE 
SET {memaccess , memaddress din) 
SET {memresult , memaddress din) 
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* fa cache * 

ENT 
NAME { fa_cache 
DESC{"Fully associative cache memory module"} 
MTYPES { 

MESSTYPE{lookupresult{SucceSS, refer,wb}} 
MESSTYPE { lookup { luread, lu_write,cache_update } 

INPUT 
PORT(STOREIN, lookup) 

OUTPUT 
PORT{STOREOUT, lookupresult} 

EDL{ 
1* FA-Cache line structure / 

EDLCOD{PARAMLIB,"STRUCT ( t_fa_ cache _line , [RINT (valid,O), RHINT (addrl,O), 
RHINT (addr2,O),RHINT (addr3,O),RHINT (addr4,O), RINT (mod,O)fl;"} 

/* Cache memory array (type definition) */ 
EDLCODE(PARANLIB, "ARRAY 	(tfacachemem_contents, 	VAR_cache_size, 

tfa_cache_line) ; 

1* Enumeration of write policies *1 

EDLCODE{PARAMLIB,"ENUM (t write policy , (write —back:, write_through:)); 

/* Cache size in blocks (lines) */ 
EDLCODE(PARAMS,"RINT ( VAR cache size , 16); 

/* Cache memory array (contents) */ 
EDLCODE{PARAMS, "RARRAY (tfacachememcofltefltS, cache mem) ; 

/* Model cache lookup delay in following parameter *1 

EDLCODE{PARAMS,"RINT ( lookup delay , 5);"} 

/* Bus width (in words) between cache interface logic and cache—memory / 

EDLCODE{PARAMS,"RINT ( cache—bus—width , 4);"} 

/* Cache size in blocks (lines) */ 
EDLCODE(PARM4S, "RH_INT ( main_memory_size , FFFFFFFF) ; 

/* Current access type -- defined here for use as an on screen parameter *1 

EDLCODC{PARAMS,'RENUM ( t_din_issue_type , din_access_type , 0);") 

/* Current access type -- defined here for use as an on screen parameter *1 

EDLCODE{PARANS,"RENUM ( twrite policy , write_policy , 0);"} 

/ Line Accessed Display */ 
EDLCODE{PARAMS,"RSTRING ( line—contents  

1* Hit / Miss Indicator for last access*/ 
EDLCODE{PARANS,"RSTRING ( hit—status , \"MISS\");"} 

/ Paramters concerned with collecting hit rate statistics *1 

EDLCODE{PARANS,"RINT ( access _count , 0 );"} 
EDLCODE{PARAMS,"RINT ( hit—count , 0 );"} 
EDLCODE(PARAMS,"RFLOAT ( hit_percent , 0.0 );"} 

/ run counter / 

EDLCODE(PARAMS,"RINT ( run  

PASSIVE 
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* fa cache_rec * 

ENT { 
NANE{ facacherec} 
DESC{"Fully associative cache memory module which records its results in a trace 

file"} 
MTYPES 

MESSTYPE{lookupresult{success, refer, wb}} 
MESSTYPE{lookup{lu read, luwrite, cache update} 

INPUT 
PORT{STOREIN, lookup} 

OUTPUT 
PORT { STOREOUT, lookupresult 

EDL 
1* FA-Cache line structure / 

EDLCODE{PARAMLIB,"STRUCT ( tfa cache line , (RINT (valid,O), RHINT (addrl,O), 
RHINT (addr2,O),RHINT (addr3,O),RHINT (addr4,O), RINT (mod,O)]);"} 

/* Cache memory array (type definition) */ 
EDLCODE{PARANLIB, "ARRAY 	 (tfacachememcontents, 	VAR—cache—size, 

tf a_cache_line) ; 

/* Enumeration of write policies *1 

EDLCODE{PARANLIB,"ENUM (t write policy , (write back:, write_through:)); 

/* Cache size in blocks (lines) *1 

EDLCODE{PARAMS,"RINT ( VAR cache size , 16); 

/* Cache memory array (contents) */ 
EDLCODE{PARAMS, "RARRAY (tfacachememcontents, cache mem) ; 

/* Model cache lookup delay in following parameter *1 

EDLCODE{PARAMS,"RINT ( lookup delay , 5);"} 

/ Bus width (in words) between cache interface logic and cache_memory */ 
EDLCODE{PARANS,"RINT ( cache—bus—width , 4);"} 

/* Cache size in blocks (lines) *1 

EDLCODE{PARAMS,"R}{INT ( main memory size , FFFFFFFF);"} 

/* Current access type -- defined here for use as an on screen parameter *1 

EDLCODE{PAPAMS,"RENUM ( t_din_issue_type , din_access_type , O);"} 

/* Current access type -- defined here for use as an on screen parameter *1 

EDLCODE{PARAMS,'RENUM ( t write policy , write_policy , 

/ Line Accessed Display */ 
EDLCODE{PARAMS,"RSTRING ( line contents  

/* Hit I Miss Indicator for last access*I 
EDLCODE(PARAMS,"RSTRING ( hit—status , \"MISS\");"} 

1* Paramters concerned with collecting hit rate statistics *1 

EDLCODE{PARAMS,"RINT ( access count , 0 );"} 
EDLCODE{PARANS,'RINT ( hit—count , 0 );"} 
EDLCODE{PARN4S,"RFLOAT ( hit_percent , 0.0 );"} 

run counter *1 

EDLCODE{PARANS,"RINT ( run , 1 );"} 
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PASSIVE 

CENT{ 
NAME { testmodell 
DESC{'test'} 

MTYPES 
MESSTYPE{memaccess{read address, write address} 
ME55TYPE{memresult{ return address, ackwrite} 
MESSTYPE{lookupresult{success, refer,wb}} 
MESSTYPE{lookup{lu_read, luwrite, cache_update} 

CONTAINS{dintd_processor, din memory, cacheprociface, facache} 
INTLINKAGE { 

INTL {dintdprocessor{MEMREQOUT} ,cache prociface{MEMREQIN} 
INTL {cacheprociface{TOSTORE}, fa cache{STOREIN} 
INTL {facache{STOREOUT} , cacheprociface{FROMSTORE}} 
INTL {cacheprociface{REFER} ,din memory{REQIN} 
INTL {dinmemory{RESULTOUT} , cache prociface{MEMRESULTIN} 
INTL {cacheprociface{RESULTOUT} , din tdprocessor{MEMRESULTIN} 

EDL{ 

PASSIVE 

/ uses recording version of fa_Cache to generate cache activity trace *1 

CENT{ 
NAME { testmodel2 
DESC{"test"} 

MTYPES { 
NE5STYPE {memaccess { read address, write address} 
MESSTYPE{memresult{return address, ack_write} 
MESSTYPE{lookupresult{success, refer,wb}} 
MESSTYPE{lookup{lu_read, luwrite, cache_update} } 

CONTAINS {din tdprocessor, din memory, cache prociface, fa_cache_rec} 
INTLINKAGE 

INTL {dintdprocessor{MEMREQOUT} ,cache prociface{MEMREQIN}} 
INTL {cacheprociface{TOSTORE}, fa cache rec{STOREIN} 
INTL {fa cache rec{STOREOUT} , cache prociface{FROMSTORE} 
INTL {cacheprociface{REFER} ,din memory{REQIN} 
INTL {din memory{RESULTOUT} ,cache prociface{MEMRESULTIN} 
INTL {cacheprociface{RESULTOUT} ,din tdprocessor{MEMRESULTIN} 

EDL{ 

PASSIVE 

CENT 
NAME{testmodel3} 
DESC{"dinero trace driven processor and memory with abstract cache.") 

MTYPES 
MES5TYPE{memaccess{read address, write address} 
MESSTYPE{memresult{return address, ackwrite} 

CONTAINS {din tdprocessor, dinmemory, abs_cache} 
INTLINKAGE 

INTL {dintdprocessor{MEMREQOUT} ,abs_cache {MEMREQIN}} 
INTL {abscache{REFER} , din memory{REQIN} 
INTL {dinmemory{RESULTOUT} ,abs_cache {MEMRESULTIN} 
INTL {abs cache{RESULTOUT} , din tdprocessor{MEMRESULTIN} 
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EDL{ 

PASSIVE 

1* composite cache */ 

CENT{ 
NANE{testmodel4} 
DESC{" test "} 

MTYPES 
MESSTYPE(memaccess{read_address, write—address} 
MESSTYPE{memresult{return_addresS, ackwrite} } 

MESSTYPE{lookupresult{succesS, refer, wb}} 
MESSTYPE{lookup{lu read, luwrite, cache_update} 

CONTAINS {din td processor, din memory, cache prociface: ifacea, fa—cache: cachea, cache_pro 
ciface : ifaceb, fa cache :cacheb} 

INTLINKAGE { 
INTL {dintdprocessor{MENREQOUT} , cache_prociface :ifacea{MEMREQIN}) 

INTL {cacheprociface :ifacea{TOSTORE}, fa_cache :cachea{STOREIN} 
INTL {fa cache: cachea{STOREOUT} , cache prociface :ifacea{FROMSTORE} 
INTL {cacheprociface: ifacea{REFER} , cache_prociface : ifaceb{MEMREQIN} 
INTL {cache_prociface :ifaceb{TOSTORE}, facache:cacheb{STOREIN} 
INTL {fa cache :cacheb{STOREOUT} , cache prociface :ifaceb{FROMSTORE} 
INTL {cache_prociface :ifaceb{REFER} , din memory{REQIN} 
INTL {dinmemory{RESULTOUT} , cache prociface :ifaceb{MEMRESULTIN} 
INTL {cacheprociface : ifaceb{RESULTOUT} , cache_prociface :ifacea{MEMRESULTIN} 
INTL {cacheprociface: ifacea{RESULTOUT}, din tdprocessor{MEMRESULTIN}} 

EDL{ 

PASSIVE 

DATAOINDINGS 

DATAITEM{ 
DESC{"Represents a memory address in a 232 address space 8 hex diguts. (dinero 

III cornplient"} 
DATAPAIR{memaddress_din , baseHINT {8} 

BINDINGS{ 
BIND{memaccess , memaddress_din} 
BIND{memresult , memaddressdin} 
BIND{lookup , memaddressdin} 
BIND{lookupresult , memaddress_din} 
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D.2 Composite Cache Model Topology 

composite cache 

abstract or detailed cache. 

abstract or detailed cache 

C, Sr  

g 

5) 

CL 

D.3 The Adder Library 

LID demo "Adder Library" 

/* 8-bit adder driver *1 

ENT 
WANE { ADD8BITDRV 

DESC{'8 Bit adder driver"} 

DETDESC ( " \tBEHAVIOURAL SUMMARY. \n" 
DETDESC{"\tPARANETERS\rI "} 
DETDESC { " \tSECONDARY DATA BINDINGS: \n" 

MTYPES 
MESSTYPE{adderreq{add} 
MESSTYPE(adderres{reSult,OVerflOW}) 

INPUT{ 
PORT { RESULT, adderres 

OUTPUT 
PORT {OP1, adderreq} 
PORT{0P2, adderreq} 

EDL{ /* delay *7 

EDLCODE{PARANS,"RINT ( delay , 20);"} 

/* overflow counter *1 

EDLCODE{PARANS,"RINT ( ofcount , 0);")  
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1* request counter / 
EDLCODE{PARAMS,"RINT ( req , O);'} 

/* operand 1 initial value */ 
EDLCODE{PARANS,"RINT ( opi , 1); 

/* operand 2 initial value */ 
EDLCODE{PARAMS,"RINT ( op2 , 1);") 

/* operand 2 step modifier */ 
EDLCODE{PARANS,'RINT ( step , 1);") 

PASSIVE 

/* 8-bit adder src / 

ENT 
NAME { ADDSRC8BIT 

DESC{"8 Bit adder src"} 

DETDESC{"\tBEHAVIOURAL SUMNARY.\n'} 
DETDESC { "\tPARAMETERS\n "} 
DETDESC { "\tSECONDARY DATA BINDINGS: \n" 

MTYPES { 
MESSTYPE{signal{low,high)} 
MESSTYPE{adderreq{add} } 
MESSTYPE{adderres{result,overflOW)} 

INPUT{ 
PORT {RES1IN, signal} 
PORT {RES2IN, signal) 
PORT {RES3IN, signal) 
PORT {RES4IN, signal} 
PORT {RES5IN, signal} 
PORT {RES6IN, signal} 
PORT {RES7IN, signal} 
PORT {RES8IN, signal} 
PORT {OFLOWIN, signal} 
PORT {NUMBER1, adderreq} 
PORT { NUMBER2, adderreq} 

OUTPUT 
PORT {A1OUT, signal} 
PORT {A2OUT, signal} 
PORT {A3OUT, signal) 
PORT {A4OUT, signal) 
PORT {A5OUT, signal) 
PORT {A6OUT, signal) 
PORT {A7OUT, signal) 
PORT {A8OUT, signal) 
PORT{B1OUT, signal) 
PORT{B20UT, signal; 
PORT {B3OUT, signal) 
PORT {B4OUT, signal) 
PORT {B5OUT, signal) 
PORT{B60UT, signal) 
PORT {B7OUT, signal; 
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PORT {B8OUT, signal} 
PORT { FIXEDCARRYOUT, signal 
PORT {RESULTOUT, adderres} 

EDL 
/* delay */ 
EDLCODE{PARANS,"RINT ( delay , 20);"} 

/* op1 *1 

EDLCODE{PARANS,"RINT ( opl , 0);") 

/* op2 */ 

EDLCODE{PARAMS,"RINT ( op2 , 0); 

/* result */ 
EDLCODE{PARANS,"RINT ( res , 0);"} 

/* result bit status / 

EDLCODE{PARAIS,"RINT ( bi , 2);"} 
EDLCODE{PARANS,"RINT ( b2 , 2);'} 
EDLCODE{PARANS,"RINT ( b3 , 2);") 
EDLCODE{PARAI'4S,"RINT ( b4 , 2);") 
EDLCODE{PARPNS,"RINT ( b5 , 2);"} 
EDLCODE{PARANS,"RINT ( b6 , 2);"} 
EDLCODE{PARAI'4S,"RINT ( b7 , 2);"} 
EDLCODE{PARAMS,"RINT ( b8 , 2);"} 
EDLCODE{PARANS,"RINT C bof , 2);"} 

1* operandl bit status / 

EDLCODE{PARAI4S,"RINT ( 	 olbl 	, 2);"} 
EDLCODE(PARANS,"RINT C 	olb2 	, 2);") 
EDLCODE{PARANS,"RINT ( 	 olb3 	, 2);") 
EDLCODE{PARAMS,"RINT ( 	olb4 	, 2);") 
EDLCODE{PARANS,"RINT ( 	olb5 	, 2);") 
EDLCODE{PARANS,"RINT ( 	 olb6 , 	 2);"} 
EDLCODE{PARAMS,"RINT ( 	 olb7 , 	 2);"} 
EDLCODE{PARANS,"RINT ( 	 olb8 , 	 2);"} 

1* operand2 bit status *1 

EDLCODE{PARAMS,"RINT C o2bl , 2);"} 
EDLCODE{PARANS,"RINT C o2b2 , 2);") 
EDLCODE{PARAMS,"RINT ( o2b3 , 2);"} 
EDLCODE{PARAMS,"RINT ( o2b4 , 2);"} 
EDLCODE{PARAMS,"RINT ( o2b5 , 2);"} 
EDLCODE{PARAI4S,"RINT ( o2b6 , 2);"} 
EDLCODE{PARAI'4S,"RINT ( o2b7 , 2);") 
EDLCODE{PARANS,"RINT ( o2b8 , 2);'} 

PASSIVE 

1* 1-bit adder src / 

ENT 
NANE { ADDSRC 

DESC{"l bit adder test src"} 

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{"\tPARANETERS\n "} 
DETDESC{"\tSECONDARY DATA BINDINGS:\n"} 
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MTYPES { 
MESSTYPE{signal{low,high}} 

INPUT{ 

OUTPUT 
PORT { AOUT, signal 
PORT {BOUT, signal} 
PORT { CARRYOUT, signal 

EDL( 
/* delay */ 
EDLCODE{PARANS,"RINT ( delay , 20);"} 

/* delay */ 
EDLCODE{PARANS,"RINT ( sendsleft , 16);"} 

PASSIVE 

/* half adder src 

ENT { 
NANE{HADDSRC} 

DESC{"half adder test src'} 

DETDESC{'\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{"\tPARANETERS\fl "} 
DETDESC{"\tSECONDARY DATA BINDINGS:\n"} 

MTYPES 
MESSTYPE{signal{low,high}} 

INPUT 

OUTPUT 
PORT {AOUT, signal} 
PORT {BOUT, signall 

EDL 
/* delay */ 
EDLCODE{PARAMS,"RINT ( delay , lO);"} 

/* delay *1 
EDLCODE{PARANS,"RINT ( sendsleft , 8);"} 

PASSIVE 
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/* half adder sink */ 

ENT 
NA11E{HADDSINK} 

DESC{"half adder test sink"} 

DETDESC{"\tBEHAVIOURAL SUMNARY.\n"} 
DETDESC{"\tPARAMETERS\n "} 
DETDESC{'\tSECONDARY DATA BINDINGS:\n"} 

MT YPE S 
MESSTYPE{signal{low,high}} 

INPUT{ 
PORT{SUMIN, signal} 
PORT { CARRYIN, signal 

OUTPUT 

EDL{ 
/* delay */ 
EDLCODE{PARAMS,"RINT ( delay , 

/ sum on screen / 

EDLCODE{PARANS,"RINT ( sumos , 

1* carry on screen *1 

EDLCODE{PARM4S,"RINT ( carryos , 

PASSIVE 

/* 1 BIT ADDER INTERFACE *1 

ENT 
NANE{ADDINTNORN} 

DESC1 11 1 Bit Adder Inputs"} 

DETDESC{'\tBEHAVIOURAL SUMMARY. \n"} 
DETDESC{"\tPARANETERS\n "} 
DETDESC{"\tSECONDARY DATA BINDINGS:\n"} 

MTYPES 
F4ESSTYPE{signal{low,high}} 

INPUT 
PORT {ADDINA, signal} 
PORT {ADDINB, signal} 
PORT {ADDINCARRY, signal 
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OUTPUT 
PORT {ADDOUTA, signal) 
PORT (ADDOUTB, signal) 
PORT {ADDOUTCARRY, signal 

EDL{ 
/* delay *1 

EDLCODE{PARANS,"RINT ( delay , l);"} 

PASSIVE 

1* ADDSIGSPLIT *7 

ENT 
NANE{ADDSIGSPLIT) 

DESC{"A SIGNAL Splitter for the input to an add unit") 

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{"\tPABANETERS\n "} 
DETDESC { "\tSECONDARY DATA BINDINGS: \n" 

MTY PS S 
MESSTYPE{signal{low,high}} 

INPUT 
PORT{INA, signal} 
PORT{INB, signal} 

OUTPUT 
PORT {OUT1A, signal) 
PORT {OUT1B, signal} 
PORT {OUT2A, signal) 
PORT{OUT2B, signal} 

EDL{ 
/* delay */ 
EDLCODE{PARANS,"RINT ( delay , 

on screen state / 

EDLCODE{PARAMS,"RINT ( INASTATE , 2);"} 

on screen state / 

EDLCODE{PARANS,"RINT ( INBSTATE , 2);") 

PASSIVE 

7* gateAND Gate / 

ENT{ 
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NANE{gateAND} 

DESC{"An AND Gate"} 

DETDESC{'\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{"\tPARAMETERS\n '} 
DETDESC{"\tSECONDARY DATA BINDINGS:\n"} 

MTYPES 
MESSTYPE{signal{low, high} 

INPUT 
PORT{INA, signal} 
PORT{INB, signal} 

OUTPUT 
PORT {AANDB, signal} 

EDL 
on screen state *1 

EDLCODE{PARANS,"RINT ( INASTATE , 2);"} 

1* on screen state / 	- 

EDLCODE{PARAMS,"RINT ( INBSTATE  

I on screen state / 
EDLCODE{PARANS,'RINT ( OUTPUTSTATE , 2);"} 

1* output delays (ps) extracted from spice *1 

EDLCODE{PARANS,"RINT ( outputrisedelay , 533);"} 
EDLCODE{PARAMS,"RINT ( outputfalldelay , 923);'} 

/ on screen gate delay *1 

EDLCODE{PARANS,"RINT ( LastGateDelay , -1);"} 

PASSIVE 

1* gateXOR Gate *1 

ENT 
NANE{gateXOR} 

DESC{"An XOR Gate"} 

DETDESC{'\tBEHAVIOURAL SUNMARY.\n"} 
DETDESC{"\tPARANETERS\n "} 
DETDESC{'\tSECONDARY DATA BINDINGS:\n'} 

MTYPES{ 
MESSTYPE{ signal {low, high} 

INPUT 
PORT{INA, signal} 
PORT{INB, signal} 
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OUTPUT{ 
PORT {AXORB, signal) 

EDL{ / on screen state / 
EDLCODE{PARANS,"RINT ( INASTATE , 2);") 

/ on screen state / 
EDLCODE{PARANS,"RINT ( INBSTATE , 2);") 

/ on screen state *7 

EDLCODE{PARAI4S,"RINT ( OUTPUTSTATE , 2);") 

1* output delays (ps) extracted from spice *7 

EDLCODE(PARAMS,"RINT C outputrisedelay , 1539);") 
EDLCODE(PARAS4S,"RINT C outputfalldelay , 664);") 

1* on screen gate delay */ 
EDLCODE{PARANS,"RINT ( LastGateDelay , -1);") 

PASSIVE 

/* OR Gate / 

ENT 
NAME ( gateOR) 

DESC{"An OR Gate"} 

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"} 
DETDESC{"\tPARANETERS\n "} 
DETDESC{"\tSECONDARY DATA BINDINGS:\n"} 

MTYPES { 
NESSTYPE{signal{low,high}} 

INPUT 
PORT{INA, signal} 
PORT{INB, signal} 

OUTPUT 
PORT {AORB, signal} 

EDL{ 	
on screen state / 

EDLCODE{PARANS,"RINT ( INASTATE , 2);") 

/ on screen state */ 
EDLCODE(PARAMS,"RINT C INBSTATE , 2);") 

/ on screen state *1 
EDLCODE{PARAMS,"RINT ( OUTPUTSTATE , 2);"} 

1* output delays (ps) extracted from spice *7 

EDLCODE{PARANS,"RINT ( outputrisedelay , 672);") 
EDLCODE{PARANS,"RINT C outputfalldelay , 539);") 
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/* on screen gate delay */ 
EDLCODE{PARAMS,"RINT ( LastGateDelay , -1);") 

PASSIVE 

CENT 
NAME { halfadder 
DESC{"A Half Adder") 
MTYPES { 

MESSTYPE{signal{1OW,high}} 

CONTAINS { gateXOR, 
gateAND, 
ADDSIGSPLIT 

INTLINKAGE { 
INTL {ADDSIGSPLIT{OUT1A} , gateXOR{INA}} 
INTL {ADDSIGSPLIT{OUT1B} , gateXOR{ INB} 
INTL {ADDSIGSPLIT{OUT2A} , gateAND{INA} 
INTL {ADDSIGSPLIT{OUT2B) ,gateAND{INB}} 

EDL{ 
/ on screen state *1 

EDLCODE{PARAMS,"RINT ( INASTATE , 2);"} 

/ on screen state / 

EDLCODE{PARANS,"RINT ( INBSTATE , 2); 

1* on screen state *1 

EDLCODE{PARANS,"RINT ( SUMSTATE  

on screen state *1 

EDLCODE{PARAMS,"RINT ( CARRYSTATE  

xor output delays (ps) extracted from spice *1 

EDLCODE(PARAMS,"RINT ( xoroutputrisedelay , 1539);") 
EDLCODE{PARANS,"RINT ( xoroutputfalldelay , 664);") 

/* and output delays (ps) extracted from spice *1 

EDLCODE{PARANS,'RINT ( andoutputrisedelay , 533);") 
EDLCODE{PARAMS,"RINT ( andoutputfalldelay , 923);") 

PASSIVE 

CENT 
NAME{modelhalfadder) 
DESC("A Half Adder") 
MTY PS S 

MESSTYPE{signal{low, high}) 

CONTAINS { half adder, 
HADDSINK, 
HADDSRC 

INTLINKAGE { 
INTL {HADDSRC{AOUT) , haifadder{INA}) 
INTL {HADDSRC{BOUT},halfadder{INB}} 
INTL {halfadder{AXORB),HADDSINK{SUMIN}) 
INTL {halfadder{AANDB},HADDSINK{CARRYIN}} 
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EDL( 

PASSIVE 

II 

CENT 
NAME{fulladder} 
DESC{"A Full 1-bit Adder"} 
MTYPES 

MESSTYPE{signal{low, high)) 

CONTAINS {halfadder : hal, 
halfadder:ha2, 
gateOR, 
ADDINTNORM 

INTLINKAGE 
INTL {ADDINTNORM{ADDOUTCARRY) , halfadder:ha2{INA}} 
INTL {ADDINTNORN{ADDOUTA} , halfadder:hal{INA}} 
INTL (ADDINTNORM{ADDOUTB} , halfadder:hal{INB} 

INTL {halfadder:hal{AXORB},haltadder:ha2{INB}} 
INTL {halfadder : hal {AANDB} , gateOR{INA} 
INTL {halfadder:ha2{AANDB},gateOR{INB}) 

EDL{ / on screen state *1 
EDLCODE{PARANS,"RINT ( INASTATE  

/ on screen state *1 

EDLCODE{PARANS,"RINT ( INBSTATE , 2);") 

/ on screen state / 
EDLCODE{PARAMS,"RINT ( INCARRYSTATE , 2);") 

/ on screen state / 
EDLCODE{PARANS,"RINT ( OSUNSTATE , 2);"} 

/ on screen state / 
EDLCODE{PARAMS,"RINT ( OCARRYSTATE , 2);") 

/* processor cycle delay *1 

EDLCODE{PARAMS,"RINT ( delay , 2);") 

PASSIVE 

CENT{ 
NAME {modelfulladder} 
DESC{"l Bit adder with driving source and sink") 
MT YPE S 

MESSTYPE{signal{low,high)} 

CONTAINS{fulladder, 
ADDSRC, 
HADDSINK 

INTLINKAGE{ 
INTL {ADDSRC{AOUT}, fulladder{ADDINA} 
INTL {ADDSRC{BOUT} , fulladder{ADDINB) 
INTL {ADDSRC{CARRYOUT}, fulladder{ADDINCARRY} 
INTL {fulladder{AXORB},HADDSINK{SUMIN}} 
INTL { fulladder{AORB} , HADDSINK{CARRYIN} 
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EDL 

PASSIVE 

CENT 
NAME{ fulladder8bit} 
DESC{"l Bit adder with driving source and sink"} 
MTYPES { 

MESSTYPE{signal{low, high} 
MESSTYPE(adderreq{add} 
NESSTYPE{adderres{result,OverflOw}} 

CONTAINS 
fulladder addl, 
fulladder add2, 
fulladder add3, 
fulladder : add4, 
fulladder : add5, 
fulladder : add.6, 
fuiladder : add7, 
fulladder : add8, 
ADDS RC 8 BIT 

INTLINKAGE 

/ Bit 1 */ 
INTL {ADDSRC8BIT{A1OUT}, fuiladder:addl{ADDINA}} 
INTL {ADDSRC8BIT{B1OUT}, fulladder:addl{ADDINB}} 
INTL {ADDSRC8BIT{FIXEDCARRYOUT}, fulladder:addl{ADDINCARRY} 
INTL {fulladder:addl{AXORB},ADDSRC8BIT{RES1IN}} 

/ Bit 2 */ 
INTL {fuiiadder:addl{AORB}, fulladder:add2{ADDINCARRY}} 
INTL {ADDSRC8BIT{A20UT}, fulladder:add2{ADDINA}} 
INTL {ADDSRC8BIT{B20UT}, fuiladder:add2{ADDINB}} 
INTL {fulladder:add2{AXORB},ADDSRC8BIT{RES2IN}} 

/* Bit 3 */ 
INTL {fulladder:add2{AORB}, fulladder:add3{ADDINCARRY}} 
INTL {ADDSRC8BIT{A30UT}, fulladder:add3{ADDINA}} 
INTL {ADDSRC8BIT{B300T}, fuliadder:add3{ADDINB}} 
INTL (fulladder:add3{AXORB},ADDSRC8BIT{RES3IN}} 

1* Bit 4 */ 
INTL {fuiiadder :add3{AORB}, fulladder:add4{ADDINCARRY}} 
INTL {ADDSRC8BIT{A400T}, fuiladder:add4 (ADDINA}} 
INTL {ADDSRC8BIT{B40UT}, fulladder:add4{ADDINB}} 
INTL {fuiladder:add4{AXORB},ADDSRC8BIT{RES4IN}} 

1* Bit 5 */ 
INTL {fulladder:add4{AORB), fulladder:add5{ADDINCARRY}} 
INTL {ADDSRC8BIT{A50UT}, fulladder:add5{ADDINA} 
INTL {ADDSRC8BIT{B50UT}, fuiladder:add5{ADDINB}} 
INTL {fulladder:add5{AXORB} ,ADDSRC8BIT{RES5IN}} 

/ Bit 6 */ 
INTL {fuiladder:add5{AORB}, fuliadder:add6{ADDINCARRY}} 
INTL {ADDSRC8BIT{A60UT}, fulladder:add6{ADDINA} 
INTL (ADDSRC8BIT{B60UT}, fulladder:add6{ADDINB}} 
INTL {fuliadder:add6{AXORB},ADDSRC8BIT{RES6IN}} 

1* Bit 7 */ 
INTL {fulladder:add6{AORB}, fulladder:add7{ADDINCARRY}} 
INTL {ADDSRC8BIT{A70UT},fulladder:add7{ADDINA}} 
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INTL {ADDSRC8BIT{B70UT},fulladder:add7{ADDINB}} 
INTL (fulladder:add7{AXORB},ADDSRC8BIT{RES7IN}} 

1* Bit 8 */ 
INTL {fulladder:add7{AORB}, fulladder:add8{ADDINCARRY}} 
INTL {ADDSRC8BIT{A80UT}, fulladder:add8{ADDINA}} 
INTL {ADDSRC8BIT{B80UT}, fuiiadder:add8{ADDINB}} 
INTL {fuiiadder:add8{AXORB},ADDSRC8BIT{RES8IN}} 
INTL {fuiiadder:add8{AORB},ADDSRC8BIT{OFLOWIN}} 

EDL{ 

PASSIVE 

CENT 
NAME {modeladder8bit} 
DESC{"8 Bit adder with driving source-sink"} 
MT Y P C S 

MESSTYPE{signal{low,high}} 
MESSTYPE{adderreq{add} 
MESSTYPE{adderres{resuit,overflow}} 

CONTAINS{fuliadder8bit, 
ADD8 B I TDRV 

INTLINKAGE 
INTL (ADD8BITDRV{OP1}, fuliadder8bit{NUMBER1}} 
INTL {ADD8BITDRV{0P21, fuiiadder8bit{NUMBER2}} 
INTL {fuiladder8bit{RESULTOUT}, ADD8BITDRV{RESULT} 

CDL) 

PASSIVE 

*1 

*** 
DATABINDINGS 

DATAITEM{ 
DESC{8 bit operand value"} 
DATAPAIR{data8bit , baseRANGE {0,255} 

DATAI TEM 
DESC{"Instruction Set Type A"} 
DATAPAIR{inssetA 

baseINSTR 
INENUM { "ENUM ( tlSet, (LOADR, STOR, BNZ, ADD, HALT));" 
INSTRUCTS 

INSTRUCT { "STRUCT ( tLoadStr , [ RINT ( Reg , 0 
RINT ( Address , 0 ) I ) ;" 

INSTRUCT { "STRUCT ( tStorStr , [ RINT  ( Address , 0 
,RINT ( Reg , 0 ) ] ) ; " } 

INSTRUCT { "STRUCT ( tBnzStr , [ RINT ( Address , 0 
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INSTRUCT { "STRUCT ( tAddStr , ( RINT ( Regl , 0 
,RINT ( Reg2 , 0 ) ] );" 	

INSTRUCT { "STRUCT ( tHalt , ( RINT ( dummy , 0 ) I 
);" ) 

INSET { " INSTR ( tinssetA , [ ( LOADR , RSTRUCT C t_LoadStr 
LoadStr ) ), ( STOR , RSTRUCT ( t_StorStr , StorStr ) ), ( BNZ , RSTRUCT ( t_BnzStr 
BnzStr ) ), ( ADD , RSTRUCT C t_AddStr , AddStr C ), C HALT , RSTRUCT C t_Halt 

Halt C C I , tlSet 

BINDINGS 
BIND{adderreq , data8bit} 
BIND{adderres , data8bit} 

II 
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