
Model Abstraction and Reusability in a
Hierarchical Architecture Simulation

Environment.

Lawrence Williams.

lmw@dcs.ed.ac.uk

1999.

Thesis presented for the degree of

DOCTOR OF PHILOSOPHY

University of Edinburgh

October 1999

Abstract

The practice of simulating real world systems on computers is widespread and forms

an important aspect of many different disciplines. A simulation model provides a simplified

view of a real world system facilitating interaction with key aspects of a system without the

distraction of unnecessary detail.

This thesis is concerned with the role of simulation in computer architecture design. It

is recognised that the use of simulation in the design lifecycle is expensive and has tended to

focus upon the register transfer (RT) level of design. The majority of design projects have no

need for fully articulated models in the initial stages; the designer is more involved with

fundamental decisions typically based upon choice of algorithm and high-level performance

analysis.

Following an overview of current simulation techniques and software, extensions to the

HASE simulation environment are proposed that classify simulation components according

to their communication interfaces. This facilitates the loose coupling of simulation entities

and consequently promotes component reuse. In addition, the problem of allowing entities

represented at different levels of architectural abstraction to communicate was examined and

a technique developed to allow entities to negotiate a level of service.

The MEDL and EDL languages were developed to enhance HASE's component library

and project storage facilities; other software tools allowing the visualisation of a hierarchical

model in terms of communication and abstraction were also developed.

Various model libraries were developed to investigate the trade-offs between model

accuracy, runtime and flexibility afforded by the new techniques. It was demonstrated that

the developed techniques facilitate component reuse and offer potential runtime reduction.

Declaration

I declare that this doctoral thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text. The following articles

were published during my period of research. Certain material and concepts from these

publications will necessarily be presented within the body of this work.

L. M. Williams and R. N. Ibbett, "Simulating the DASH Architecture in

RASE", p.137-146, 1996, Proc. 29th Annual Simulation Symposium.

P.S. Coe, F.W. Howell, R.N. Ibbett and L.M. Williams, "Hierarchical

computer Architecture design and Simulation Environment", ACM

Transactions on Modelling and Computer Simulation, vol. 8, no. 4,

October 1998.

P. S. Coe, R. N. Ibbett and L. M. Williams, "An Integrated Environment for

the Teachin2 of Computer Architecture". SIGCSE/SIGCUE Joint

Conference on Integrating Technology into Computer Science Education,

Barcelona, Spain, June 1996.

P. S. Coe, F. W. Howell, R. N. Ibbett, R. McNab and L. M. Williams, "An

Integrated Learning Support Environment for Computer Architecture",

3rd Annual Workshop on Computer Architecture Education at HPCA-3,

Texas, USA, 1997

P.S. Coe, R.N. Ibbett, N. Rafferty and L.M. Williams, "HASE: An

Environment for Hardware/Software Co-Design", IFIP Workshop on

Modelling of Microsystems: Methods, Tools and Application Examples,

University of Stirling, 3-4 July 1997.

Pj

Table of Contents

CHAPTER 1 INTRODUCTION 	 .15

1.1 	MOTIVATION ...16

1 .1.1 	Market Pressure ...16
1.1.2 	Design Exploration and Reuse...18
1. 1.3 	Model Abstraction and Reuse..19
1 .2 	ABSTRACTION..20

1 .2.1 	Generalisation..22
1 .3 	HIERARCHY ...22

1.3.1 	Hierarchical Classification ... 23
1.3.2 	Representation Relation...24
1.3.3 	Composition Relation ..24
1.3.4 	Substitution..26
1.3.5 	Specification ..27

CHAPTER 2 MODELLING AND SIMULATION...28

2.1 	SYSTEMS AND MODELS...28

2.2 	REPRESENTATION OF SIMULATION TIME..30

2.2.1 	Continuous Time..30
2.2.2 	Discrete Time...31
2.2.3 	Discrete Event Simulation ...31
2.3 	HIERARCHICAL MODELLING ...34

2.3.1 	Encapsulation...35
2.3.2 	Ports and Coupling...37
2.4 	ARCHITECTURAL HIERARCHY ... 39

2.4.1 	Defining Levels of Architectural Abstraction..40
2.4.2 	RTL..41
2.4.3 	ISP..41
2.4.4 	PMS ...42
2.4.5 	Summary..43
2.4.6 	Other Architectural Abstractions Commonly Used...43
2.5 	SIMULATION OF COMPUTER SYSTEMS ..45

2.5.1 	Programming language approach ..46
2.5.2 	Hardware Description Languages (HDLs) ..46

3

2.5.3 	High Level Languages (HLLs)..51
2.5.4 	Simulation Specific Languages..53
2.6 	INTEGRATED SIMULATION ENVIRONMENTS ...55

2.6.1 Simulation Mechanisms... 56
2.6.2 Graphical Manipulation of the Model.. 57
2.6.3 Hierarchy and Abstraction ... 60
2.6.4 Library Facilities and Reusability.. 62
2.6.5 Simulation control and Instrumentation Facilities... 63

CHAPTER 3 THE HIERARCHICAL ARCHITECTURAL DESIGN AND

SIMULATION ENVIRONMENT (BASE) ... 64

3.1 	THE HASE PLATFORM ...65

3.2 	SIMULATION COMPONENTS.. 67

3.2.1 	Ports and Links ..67
3.2.2 	Behavioural Code ..68
3.2.3 	Parameters..70
3.2.4 	Instance Attributes...72
3.2.5 	Graphical Attributes...72
3.2.6 	Text ... 72
3.3 	HASE SOFTWARE ARCHITECTURE ...73

3.3.1 	Design Mode..75
3.3.2 	Validate Mode..75
3.3.3 	Build Mode..75
3.3.4 	Simulate Mode...75
3.3.5 	Experiment Mode ..76
3.4 	ANATOMY OF THE HASE SYSTEM...77

3.4.1 	HASE Core .. 77
3.4.2 	External Tools..79
3.4.3 	Project Related Files..79
3.5 	OVERVIEW OF PROJECT DATA STORAGE..80

3.5.1 	GUI based Approach ...82
3.5.2 	C++ file based approach ..82
3.6 	PROJECT DATA STORAGE SOLUTION ..83

3.6.1 	Round Trip Editing..87
3.7 	FACILITIES FOR MODELLING HIERARCHY ...88

3.7.1 	Graphical Hierarchy...88
3.7.2 	Behavioural Hierarchy ... 90

4

3.8 	SUMMARY OF RASE DEVELOPMENT ..91

CHAPTER 4 THE ENTITY INTERCONNECTION PROBLEM..............................93

4.1 	THE HASE DASH NODE MODEL ..93

4.1 .1 Introduction to EDL File Structure.. 94
4.1.2 EDL Parameter Library Definitions... 94
4.1.3 EDL Global 	Declarations... 96
4.1.4 EDL Component Definitions ... 97
4.1.5 EDL Layout Definitions .. 99
4.1.6 Communication Nomenclature.. 100
4.2 SUMMARY OF DASH PROCESSING NODE.. 101

4.3 	MODEL REUSABILITY ...102

4.4 THE PROBLEM OF MESSAGE OVERLOADING..103

4.4.1 	Tight Coupling of Entities (Low levels of horizontal abstraction)105
4.4.2 	Current Tight-Coupling Solutions ...105
4.5 	USE OF GLOBAL STATE...107

4.6 USE OF NON PORT-BASED COMMUNICATION...108

4.7 	REUSABILITY AND VERTICAL LINKAGE..110

4.7.1 	Hierarchical Modelling in HASE ... III
4.7.2 	Simulation Model Aspects... 113
4.7.3 	Hierarchical Relations and Model Aspects in HASE .. 114
4.8 	RELATED RESEARCH...115

4.8.1 	Model Component Representation 115
4.8.2 	Interface Oriented Classification ... 117
4.8.3 	Entity and Method Construction Techniques ..121
4.9 	SUMMARY ..123

CHAPTER 5 LIBTOOL: DESIGN AND IMPLEMENTATION..............................126

5.1 EXTENDING THE MODELLING PROCESS..126

5.2 DESCRIBING A MODEL'S COMMUNICATION INTERFACE127

5.3 COMMUNICATION MODELLING: DESIGN ISSUES..128

5

5.4 DESIGN OF A META-EDL 	 . 129

5.4.1 	An Overview of MEDL ... 130
5.4.2 	Development Platform...133
5.4.3 	Representation of Communication Structures ...134
5.5 	THE HASE DESIGN LIFECYCLE...136

5.5.1 	Limitations of Traditional Lifecycle..138
5.5.2 	The Role of LibTool in the Design Lifecycle..139
5.6 	THE VALIDATION PROCESS..142

5.6.1 Parsing MEDL files and Creating LibraryStructure Objects142
5.6.2 	Further Structural Checks and Object Creation...145
5.7 	LIBTOOL FUNCTIONALITY ...147

5.7.1 	Navigation of a MEDL Library ...147
5.7.2 	Other Component Views ...151
5.7.3 	Identification of Substitute Components ...153
5.7.4 	Other Component Interface Properties ..159
5.8 	MANAGING PROJECTS AS LIBRARIES ..162

CHAPTER 6 MODEL GENERATION ...164

6.1 .1 	The Code Generation Interface..164
6.1.2 Modelling Non Communication-oriented Component properties in MEDL...........166
6.1 .3 	The EDL Code Generation Process...169
6.1.4 	The HASE+± Code Generation Process..172
6.2 AN EXPERIMENT IN COMMUNICATION MODELLING..175

6.2.1 	Overview of the RS232/v24 Protocol ..175
6.3 BUILDING THE RS232/v24 LIBRARY COMPONENTS AND MODELS........................178

6.4 	REFINING THE DCE/DTE COMPONENTS ..180

6.4.1 	DTE and DCE Implementation A..180
6.4.2 	DTE and DCE Implementation B..182
6.4.3 	Common Implementation Features..184
6.5 A HIERARCHICAL SIMULATION MODEL OF THE RS232/v24 PROTOCOL.............186

6.6 	PROTOCOL VALIDATION...188

6.6.1 	An overview of CommTrace ...189
6.6.2 	Validating the RS232/v24 Simulation Timing Characteristics................................192
6.7 	MODEL PERFORMANCE ..195

6.8 	SUMMARY ..199

6

CHAPTER 7 EXTENDING COMMUNICATION DETAIL 201

7.1 REQUIREMENT FOR EXTENDED MESSAGE TYPES ..201

7.1 .1 	Secondary Parameter Bindings..202
7.1.2 	The Mixed Abstraction Problem..203
7.2 	EFFICIENT PARAMETER NEGOTIATION...205

7.2.1 	Requirement for a Revised Message Format...205
7.2.2 	MEDL Generation of Parameter EDL...208
7.3 OVERVIEW OF SECONDARY PARAMETER HANDLING IN RASE210

7.3.1 	HASE++ Generated Support Functions...211
7.3.2 	Typical Event Handling Strategy...212
7.3.3 	VHDL+ Abstraction and Communication Mechanisms..214
7.3.4 	Comparison of VI-LDL+ and EDL..216
7.4 	COMMENTS..220

7.5 	MODELLING A MEMORY HIERARCHY...220

7.5.1 	The MEDL Memory Hierarchy Components..221
7.5.2 	Production of Cache Components ...222
7.6 EXAMPLE MEMORY HIERARCHY MODELS...225

7.6.1 	General Model Topology...225
7.6.2 	Single Cache Model Variants and Loading ...227
7.7 EXPERIMENTATION WITH MEMORY HIERARCHY MEDL LIBRARY.....................228

7.7.1 	Model Accuracy and Runtime ...230
7.7.2 	Other Memory Hierarchy Models..234
7.7.3 	Alternative Cache Components ...236
7.7.4 	Comment..237
7.8 CONTROLLING THE BEHAVIOURAL HIERARCHY..238

7.8.1 	The Full-adder MEDL Library ..238
7.8.2 	SimTree..242
7.9 MULTI LEVEL SIMULATION (PRAM ALGORITHM)...245

7.9.1 	Model Construction ..245
7.9.2 	The Sum Algorithm ...246
7.9.3 	Encoding the Algorithm in a HASE Entity..247
7.9.4 	Running the Algorithm ..248
7.9.5 	A More Elaborate Algorithm...249
7.10 	ADDING GREATER MODEL DETAILS..252

7.10.1 Integration of Components from Multiple MEDL files....... 	 255
7.10.2 	Summary... 	 257

7

CHAPTER 8 CONCLUSIONS 	 . 259

8.1 	MODELLING REQUIREMENTS...260

8.2 	MODELLING MECHANISMS...261

8.3 	EXPERIMENTATION...263

8 .4 	FURTHER WORK..264

8.4.1 	Extending the Use of Component Descriptions...265
8.4.2 	Enhancement of the I-IASE Design Window Facilities ...265
8.4.3 	Extensions to the MEDL Library Description Specification 265

CHAPTER 9 	REFERENCES..267

APPENDIX A - EDL GRAMMAR ..278

A.! 	DASH NODE DEMONSTRATION MODEL...281

A.2 	DASH NODE SAMPLE INPUT ...283

APPENDIX B - OVERVIEW OF JAVA PACKAGES..284

B.1 	THE LIBRARYSTRUCTURE PACKAGE..284

B .2 	THE LIBTOOL PACKAGE ...284

B.3 	THE COMMTRACE PACKAGE ...285

B.4 	THE SINTREE PACKAGE ...285

B.5 	MEDL PARSER SPECIFICATION ..285

B.6 MEDL DESCRIPTION OF THE DASH NODE MODEL..290

B.7 	TYPICAL MEDL CONSOLE LOG..292

B.8 	MEDL TEST LIBRARY DETAILS..293

8

B.9 OUTPUT FROM TEXTUAL DESCRIPTION PANE IN LIBT00L's INTERFACE VIEWER

296

APPENDIX C RS232/V24 MEDL LIBRARY...297

C.1 	COMPLETE MEDL DESCRIPTION ...297

C.2 MODEL STRUCTURE DIAGRAMS FOR RS232/v24 EXPERIMENT MODELS303

C .2.1 	Model 1 ...303
C.2.2 	Model 2 ...304
C.2.3 	Model 3 ... 305
C.2.4 	Model 4 ...306
C.2.5 	Model 5 ...307
C.3 	COMMTRACE PROTOCOL FIGURES ..308

C.3.1 	Mode14 with two communicating caller entities ...308
C.3.2 Mode14 communicating parties based on PC and MODEM entities..........................309

APPENDIX D - THE MEMORY HIERARCHY MEDL LIBRARY311

D.1 	MEDL LIBRARY DESCRIPTION...311

D.2 	COMPOSITE CACHE MODEL TOPOLOGY..320

D.3 	THE ADDER LIBRARY...320

List of Figures
Figure 1 - The Relationship between Concepts and Objects.. 22
Figure 2 - Parent/Child Relationships in Hierarchy .. 23
Figure 3 - Composition 	Relation . .. 25
Figure 4 - Substitution 	Relation 26
Figure 5 - Morphic 	Reduction ... 27
Figure 6 - Specification Relation 27
Figure 7 - Simulation Project Design Lifecycle 29
Figure 8 - Typical Discrete Simulation Event Two-Phase Loop 33
Figure 9 - Set of entities supporting encapsulation and ports 38
Figure 10 - Coupling of Entities.. 39
Figure 11 - Overview of the PMS, ISP and RTL System Hierarchy Model 40

Figure 12 - Typical output from circuit level simulation 44
Figure 13 - VHDL Structural and Behavioural Components.. 47
Figure 14—Overview of HDS . 	.. 59
Figure 15 - The Ptolemy System: An Overview 61
Figure16 - Edit Port Dialog 67
Figure 1 7 - Ports and 	Links . 	.. 68
Figure 	18- Entity Parameter Display.. 71
Figure 19 - Entity Name and Position Display.. 72
Figure 20 - Typical HASE Design Session.. 73
Figure 21 - Contextual menus according to selected mode...74
Figure 22 - Context sensitive pop-up menus in (a) design mode and (b) simulate mode. 74
Figure 23 - The Animator Control Dialog...76
Figure 24 - Multiple Experimental Run Control . .. 77
Figure 25 - HASE Software Architecture..78
Figure 26 - Original 	storage method . 	.. 80
Figure 27 - Use of ObjectStore for model storage...81
Figure 28 - Hybrid approach to model storage..81
Figure 29 - EDL input mechanism ..84
Figure 30 - On-screen display of sender/receiver model...86
Figure 31 - Round trip editing of EDL and ELF files . .. 87
Figure 32 - Model Hierarchy...88
Figure 33 - The entity tree before an expansion operation..89
Figure 34 - Entity tree after expansion 90
Figure 35 - Selection of behavioural code...91
Figure 36 - DASH Processing Node Configuration 94
Figure 37 - p1_link Structure 96
Figure 38 - 1-IASE's 'free-port' 	Mechanism..99
Figure 39 - Identification of HASE Model Attributes ... 100
Figure 40 - Use of Compatibility Interface Entities 107
Figure 41 - Comparison of Port and Non-Port based Communication 110
Figure 42 - Generation of Code According to Abstraction . .. 112
Figure 43 - Using Abstract C++ Classes to Aid Simulation Reusability............................. 122
Figure 44— Encapsulation Vs Entity-coupling 124
Figure 45 - The Composite Cache Component ... 133
Figure 46 - Layers of Model Representation... 134
Figure 47 —Class Structure for a Model Library ... 136
Figure 48— Elements of the unmodified HASE design lifecycle 138
Figure 49— LibTool's role in the design lifecycle . .. 141
Figure 50—The LibTool console... 145
Figure 51 - The Library Browser... 149
Figure 52 - Manipulation of Library Browser... 150
Figure 53 - Using the Library Browser to View Composite Entities 151

10

Figure 54—Entity Interface Viewer...152
Figure 55 - Textual Component Description... 153
Figure 56 - Example Equivalence Tests for MEDL Test Library 155
Figure 57—The LibTool Class Viewer Window... 160
Figure 58— Example Output from the Order ':!~ ' Relation... 162
Figure 59—The Target Specification Window.. 165
Figure 60 - Changing the Target Code Type... 166
Figure 61 	- The EDL Header Specification... 166
Figure 62 - LibTool's Embedded EDL View.. 168
Figure 63 - EDL Generation Classes... 169
Figure 64 - The RS232/v24 Protocol (a) DTE/DCE Positioning (b) Protocol Trace.......... 177
Figure 65 - Most Abstract Representation... 178
Figure 66 	-HASE Display of Initial Model... 179
Figure 67— Use of the Connection Message Type .. 180
Figure 68— RS232/v24 Model Using entities pcdetail and modemdetail................ 184
Figure 69 - Refined DTE/DCE Component Hierarchies... 185
Figure 70 - Mode12 and Model3 Message Sequence .. 185
F igure 71 - Models with multiple behavioural abstractions..187
Figure 72— RS232/v24 Component Classes..188
Figure 73 - The Main CommTrace Window...189
Figure 74 - The Commlrace Trace File Viewer...190
Figure 75 - CommTrace Protocol Viewer (Detailed View) ..191
Figure 76 - The CommTrace Protocol Viewer (Thumbnail View).....................................192
Figure 77 - Using CommTrace to Compare Protocol Timing Characteristics194

Figure 78— Model Configurations a-c . .. 195
Figure 79—Model Configurations d-e...195
Figure 80— Model Configuration f..196
Figure 81 —A Possible Solution to Handling Secondary Parameters...................................203
Figure 82 - Mixing Entity Abstractions...204
Figure 83 - Passing Task Parameters in HASE...213
Figure 84— VHDL+ Interface and Unit Composition . .. 215
Figure 85 - Comparison of HASE and VHDL+ Communication Placement......................217
Figure 86—Migration of VHDL+ interface logic into units..218
Figure 87— Communication Across Abstractions in VHDL+ ... 219
Figure 88 - General Memory Hierarchy Model Topology..226
Figure 89(a-d)— Graphical Traversal of the 1-bit Adder Model..239
Figure 90— The 8-bit Adder Entity Tree..241
Figure 91 - The SimTree Main Window ...243
Figure 92— The 1-bit Adder Model Viewed in Thumbnail Mode.......................................244
Figure 93(a-c) Modification of the Behavioural Hierarchy ...244
Figure 94 - The PRAM Architecture...246
Figure 95(a-e) - Tracing the Algorithm's Progress via a Memory Array............................249

Figure 96— Exploration of the 8-bit Adder Component.. 256
Figure 97 - Comparison of Traditional and LibTool-based Model Constraints................... 262

List of Programs
Program I - Java Fragment showing Composition relation .. 25
Program 2 - Sample of EDL file.. 85

Program3 	- ELF Fragment . .. 86
Program 4—mips_state enumeration 95
Program 5 - Definition of a link parameter ... 95
Program 6 —Global Variable Declarations ... 96
Program 7 - Typical Atomic Entity Definition .. 97
Program 8 - Composite entity Definition .. 98
Program 9— Layout Declarations .. 99
Program 10 —Use ofsim. get 	entity 	 id() .. 109
Program 11 —Fragment of DASH node MEDL library... 130
Program 12 - MEDL Definition of a Composite Entity.. 132
Program 13 - Fragment of the Entity class definition... 135
Program 14 - Fragment of LibTool's Parser Specification ... 144
Program 15 - The BuildEquiv () 	Method.. 157
Program 16 - The Equivalence Test Methods ... 159
Program 17 - Sample Component with Embedded EDL... 168
Program 18 - Sample Comment Block from EDL Generation.. 170
Program 19 —EDL ENTITYLIB Entry. Generated from MEDL Processor Definition...... 171
Program 20 - LibTool Output: HASE++ Message and Event Prototypes........................... 173
Program 21 - Definitions of Message and Event Handlers ... 174
Program 22 - Generated Body Code Definition .. 174
Program 23 - Connection message 	type .. 178
Program 24— Sample abstractcaller Event-handler Code 180
Program 25 —The r s 2 3 2 Message Type..181

Program 26 - A Sample of HASE++ Behaviour for Entity pc. .. 182
Program 27 - Alternative Message Types for RS232/v24 Signal Modelling......................182
Program 28— Fragment of pcdetail HASE++ Behavioural Code183

Program 29 —The MEDL Message Type Definition for connection 206

Program 30 - The Automatically Generated EDL Definition of the connection link type
..206

Program 31 - Example MEDL Parameter Definition .. 207
Program 32 - Binding a Parameter to a Message Type ...208
Program 33 - Setting a Parameter Binding to 'Unsupported ... 208
Program 34 - EDL Message Type Definition Including Parameters...................................209
Program 35 - The Complete Message Type Definition and Link Specification209
Program 36 —Local Parameter Mask in EDL Entity ...210

12

Program 37—New HASE++ Event Handler Routines .. 211
Program 38— Sample VHDL+ Interface Specification ... 215
Program 39— MEDL Definition of Address Parameter and Message Bindings.................. 222
Program 40 - CacheContains() Method of Fully Associative Cache 223
Program 41 - CacheContainsO Method of Direct-Mapped Cache....................................... 224
Program 42— The GLOBAL 	READ Method.. 248
Program 43 - The GLOBAL 	WRITE Method.. 248
Program 44— The Copy Operation .. 248
Program 45 - STRUCTs for each Instruction.. 253
Program 46 - The INSTR Command... 254
Program 47 - A Local Memory Program Fragment for the Algorithm 1 Copy Operation.. 254

List of Tables
Table I - Possible Entity states..33
Table 2 - Hierarchical Relations and Model Aspects.. 113
Table 3 - Component Interface Properties... 161
Table 4— RS232/v24 Signal Assignments... 176
Table 5 - Task Parameter Types in MEDL.. 207
Table 6— Message Type Definitions for MEDL Memory Hierarchy Library..................... 221
Table 7 - Cache Component Parameters ... 224
Table 8 - Dinero 	Event Tags 	... 226
Table 9 - The MEDL Adder Library Components.. 239
Table 10 - Step 2.1 for the First Four Processors when pl6 and n=64 (First 2 Iterations) 251
Table 11 - A Modified Sequence of Global Memory Accesses for Processors One to Four.

.. 252
Table 12 - The proc 	b 	instruction set... 253

List of Graphs
Graph I - Model Configuration and Simulation run time ...197
Graph 2 - Model Configuration Vs Trace File Size and Explicit Sends..............................198
Graph 3 - Hit Rate Vs Cache Size for Detailed Fully-associative Cache Model229
Graph 4 - Hit Rate Vs Cache Size for Detailed Direct-Mapped Cache Model....................229
Graph 5 Comparison of Hit Rate Vs Cache Size for Abstract and Detailed Cache Models 230
Graph 6 - Runtime Gains of Abstract Cache over Detailed Cache231
Graph 7 - Comparison of Abstract and Detailed Fully-Associative....................................233
Graph 8 - Comparison of Abstract and Detailed Fully-Associative Cache runtimes for N-

Queens Benchmark ..234
Graph 9 - Comparison of Abstract and Detailed Fully-Associative Cache runtimes for

MatmulBenchmark..234
Graph 10 - Hit Rate for Multi-level Caching Model...236

13

14

Chapter 1

Introduction

The practice of simulating real world systems on computers is widespread and forms

an important aspect of many different disciplines. For example, simulation is used by

financial institutions to predict market fluctuations and by military organisations for the

training of pilots (flight simulation). Factories frequently use simulation when calculating

how best to deploy assembly line resources.

All of these applications see the use of a simulation model to describe a complex, real-

world system. Normally, the simulation model will provide a simplified view of a real world

system allowing interaction with key aspects (for a given task) of a system and without the

distraction of unnecessary detail.

Simulations are often used in situations when the building and/or use of the real

physical system would be too expensive or too dangerous or would need to rely on new

(unavailable/untested) technologies. Computer based simulation has been defined as:

"The discipline of designing a model of an actual or theoretical

physical system, executing the model on a digital computer, and

analysing the execution output." Paul A. Fishwick, [Fishwick94].

This thesis is concerned with the use of simulation in computer architecture design.

Simulation gives the computer architect an insight into the performance and behaviour of a

system, before committing a design to silicon. By allowing the refinement of a design

15

through experimentation, designers can test and debug a new design without the expense of

failed silicon implementations (i.e. simulation facilitates rapid prototyping).

However, it is recognised that the use of simulation in the design lifecycle is expensive

(due, in part, to low levels of design reuse [Fishwick96]) and has tended to focus upon the

RT (register transfer) level of design [Ekas99].

1.1 Motivation

The work presented in this thesis is concerned with the provision of a set of

techniques/mechanisms that allow the modelling of systems at multiple levels of abstraction

within a single model. In addition, we offer a model representation that facilitates model

reuse. The thesis is not directly concerned with producing complex simulation models of

new 'products'.

In order to offer an insight into areas where this research may be applied, the following

section contextualizes the provision of a simulation environment that offers better model

abstraction and reuse facilities in terms of the commercial arena.

1.1.1 Market Pressure

As demands for processing power and product diversity have increased, the average

shelf life of a typical microelectronics based product has fallen [Sheikh98] in both the

industrial and domestic markets. A good illustration of this phenomenon is the home

' entertainment market where the telephone, cable, consumer electronics and computer

industries are all trying to exploit new niches at the expense of their competitors [Lee98].

Consequently, fast and accurate simulation throughout the design lifecycle of a product has

become a major factor in satisfying 'time to market' requirements for technology

manufacturers [Rowson97], [Martin97a], [Morris].

16

The requirement to target niche IT markets often involves providing a range of very

similar products in which different versions are targeted at specific groups of end users

(sometimes termed the 'integrated platform' approach [Martin98]). For example, Intel's

range of microprocessors is built around a common set of architectural features (i.e. each

features some on-chip cache, instruction pipelining and one or more branch prediction

mechanisms). However, Intel partitions its product into different classes of chip (currently

Pentium, Pentium Pro, Celeron, Pentium II and Pentium III) according to specific

implementations/deployment of these common features. Each class of Intel microprocessor is

aimed at a specific market (i.e. home, business workstation and server) and each is itself

available in a variety of guises. For example, the Celeron is available in 266 and 300 MHz

clock versions with or without Intel's MMX instruction set extensions [Intel98].

As a response to 'time to market' demands, many microelectronics manufacturers and

Electronic Design Automation (EDA) tool manufacturers have become involved in the

emerging 'system on a chip' (SOC) design approach. Soc design combines many function

specific sub-components (or "intellectual property (IP) blocks") onto a single chip. SOC

requires the type of flexibility afforded by a rapid prototyping approach and a high level of

reusability is essential.

Recently Scottish Enterprise (in association with cadence Design Systems Inc.)

formulated plans for a Virtual component Exchange (VCX) to be based in Livingston,

Scotland. The aim of the virtual component exchange is to allow system developers and

integrators to source, evaluate and contractually acquire IP blocks from third parties across

the globe.

17

1.1.2 Design Exploration and Reuse

In order to facilitate a design flow allowing for the rapid exploration of new

architectural designs, (probably based around well-known architectural features or previous

design work) simulation environments offering facilities for design reuse are desirable.

Martin and Salefski state that "failure to hit market windows equals product death"

[Martin97b] therefore the removal of 'wheel reinvention' from the design lifecycle has the

potential to reduce time to market delay.

It is also recognised that system designs that start at the RT level have hit a plateau in

terms of reuse and productivity. Designs captured at the RTL-C' level are known to be

difficult to reuse and at the RT level testing can only occur after a low level elaboration

process [Martin97a].

Another problem encountered at the RT level is the nature of inter-block

communication. A designer wishing to change a design by substituting a functional block

must go through a time consuming design modification cycle. Typically, the replacement of

an existing functional block involves removing the old block, re-routing the communication

mechanisms within the model to accommodate the new block and finally rewiring the new

functional block to allow connection to the exiting communication structures. This cycle is

very time consuming and is not conducive to effective exploration of the design space or

component reuse.

RTL-C is a widely used extension to the C programming language which allows C to represent
concurrency as found in languages such as VHDL but run orders of magnitude faster. RTL-C is a
commercial offering from CAE-Plus [Goering97].

2 I.e. full clocking, pin out and block signal definitions must be provided.

18

1.1.3 Model Abstraction and Reuse

Significantly, it is worth noting at this point that in initial design work there is no real

need for fully articulated models. Indeed, the designer is probably more involved with

making fundamental design decisions based upon (say) choice of algorithm and high-level

performance analysis. These types of activity do not require low level inter-entity

communication or gate-level simulation. Moving initial simulation to an abstraction above

that of the RI level potentially relieves the designer of the time consuming low-level design

cycle.

However, a move to represent systems in a more abstract form than that found at the

RT level can be problematic in terms of reusability. Whilst considering the problems

associated with publishing digital simulation objects via the internet, Fishwick points out that

problems arise with component reuse (a major influence upon design lifecycle length

reduction) when dealing with abstract simulation objects [Fishwick98].

Whilst the production of reusable simulation objects is not trivial, current moves

toward a platform based approach to system design can only realistically be achieved if well

defined reusable and multifaceted simulation object libraries exist. Lee and Messerschmitt

note that:

"Detractors will often argue that making components reusable

compromises efficiency or performance. But failing to do so has much more

dire consequences: It makes only trivial designs feasible ", [Lee98].

Further to the issue of reusability, the desire to move the design process away from

circuit level detail towards a high level system's view of a model, naturally lends itself to the

idea of a design hierarchy. It has been shown that the use of hierarchical modelling concepts

can provide a useful way of managing model complexity [Luna93]. However, in 1993

19

Sargent noted that although one would "expect that hierarchical modelling would be a

'standard' capability in simulation languages", in fact "none of the major discrete event

simulation languages provided for hierarchical modelling" [Sargent93].

This thesis addresses the issues involved in providing a structured design environment

capable of dealing with computer systems design at levels of architectural abstraction above

the usual RT level. In addition, the environmental framework proposed is designed to allow

the loose coupling of design components in order to facilitate high levels of design reuse.

We are concerned that the designer be able (I) to describe systems models at multiple

(high) levels of abstraction whilst (ii) retaining a high level of design reuse for future projects

without incurring excessive expense in terms of time or ease of use.

Although demonstrated within an existing architectural simulation environment

(HASE) the solutions offered here should be applicable in the wider context of computer

systems simulation.

Having outlined the broad motivating factors underlying this work, the remainder of

this chapter discusses the principles underlying various aspects of this thesis.

1.2 Abstraction

The ability of the human mind to conceptualise and filter the environment in which we

live allows us to organise the masses of complex information we are constantly in contact

with on a day to day basis. This organisational skill allows us to achieve goals by removing

unnecessary detail from tasks.

20

Without the appropriate mental tools to aid us, even simple tasks would become very

complex. Odell proposes that one of our most useful tools is the acquisition of concepts'.

Concepts are the result of abstraction where:

"Abstraction is the act or result of removing certain distinctions

between objects so we can see commonalities" [Ode 1192].

To illustrate this, consider the contents of a traditional library. It is not useful to think

in terms of each individual item in the library's collection in its own right (each item could

be described by its title, author, number of pages and binding). Instead, we abstract the

common attributes of each item and say a library is a holding place for large numbers of

what we have conceptualised as a 'book'. Without this abstraction, we would only know that

all the items in a library were different. The ability to abstract allows the management of real

world complexity.

Consider now the domain of computer systems simulation. We can see a similar

situation to the real world problem described above. By applying the technique of abstraction

to simulation model construction, we can move from viewing a system as millions of

individual transistors to more useful discrete sections of functionality (e.g. memories,

processors etc.).

According to many philosophers and psychologists, an object without a concept cannot

be perceived. Odell notes that in object oriented programming an object without a class

cannot be created or manipulated. It is interesting to note that whilst an object without a

concept cannot be perceived it is possible to have a concept without an object. Extending the

software engineering analogy, this is equivalent to a class without any instantiated objects.

The relationship between concepts and objects is illustrated in Figure 1 below.

Psychologists may refer to a concept by the name schema.

21

is instantiated by

Concept
	

Object

is classified as

Figure 1 - The Relationship between Concepts and Objects.

1.2.1 Generalisation

We can further organise objects by deciding when one abstraction is more useful than

another (for a given task). This process of distinguishing when one concept is more

encompassing than another is sometimes referred to as generalisation. This provides another

valuable technique with which to organise large sets of data. We can use different

generalisations to create hierarchies of concepts.

It is important to distinguish between abstraction and generalisation. In the former, we

remove distinctions between objects, with the latter we remove types of distinctions between

types of objects.

1.3 Hierarchy

The Concise Oxford English dictionary describes a hierarchical system as "A system in

which grades of status or authority are ranked one above the other" [0xf93].

Given the above definitions of hierarchy and the previous discussion regarding

generalisation (section 1.2.1) we can see that a conceptual hierarchy can be formed by

ranking concepts according to their generality. This notion of hierarchy lends itself to the

familiar idea of an 'up' and 'down' relation being present between adjacent layers of the

hierarchical structure. A plethora of other terms used to describe these same two relations

22

can be found in the literature, the most common being 'parent' and 'child' (Figure 2 depicts

these terms for a three-layer hierarch Y4).

level a

level b

level c

Figure 2 - Parent/Child Relationships in Hierarchy

1.3.1 Hierarchical Classification

When considering the relationship between adjacent layers of a hierarchy we find that

various different hierarchical relationships can exist. One of the most useful broad

categorisations is put forward by Luna [Luna93]. Under Luna's taxonomy, there are four

types of hierarchical relationship.

" Note 'parent' relationships are shown with dotted line and 'child' relationships with solid
lines.

23

1.3.2 Representation Relation

In this relation, the higher level is a representation of its lower level 5 and contains no

unique features itself. Consider a 'hi-fl' system. The high level 'hi-fl' object represents an

audio system's various components (i.e. amplifier, tape deck, compact disc player etc.).

There is no single, real world entity called a 'hi-fl'.

1.3.3 Composition Relation

In this relation, each component in the hierarchy has its own behaviour. In addition,

higher level components may call upon lower level components to perform tasks for them.

This situation is illustrated in Figure 3 where we see how the behaviour of the component

labelled B includes references to the behaviour of its lower level components E and F. In

turn, F relies upon functionality held in its lower level components G and H.

This hierarchical relation is similar to that found in Object Oriented programming

languages such as Smalltalk or Java. In these languages, a class of objects is often composed

of other class instances 6 that act as part of an overall behaviour. In Program I below, we see

how component B could be represented by a Java class structure (we assume classes E and F

to be previously defined).

We do not talk about higher levels rather level because the relation we are talking about
applies to adjacent levels. Of course, these relations may be applied numerous times within a
hierarchical structure.

6 This is not the same as the notion of a sub-class in which classes are derived from a base class
(see section 1.3.5 for more detail about derived sub classes).

24

behaviour A

I CALL I CALL I CALL

B

behaviour B
	

behaviour. C
	

behaviour. D

behaviour. E
	 r behaviour F

L _ CALL CALL

- behaviour cJ 	1pbehaviour H 	-'

Figure 3 - Composition Relation.

public class B
II Declare class data mermbers
private E myS = new E;
private F myF = new F;
private mt mylocalVar;

II Constructor
public datalnt(String nameln, String descriptionln){

this .mylocalVar=1404 69;

public getE()
meE. do Something ;

public getF()
meF.doSomething;

Program I - Java Fragment showing Composition relation

25

1.3.4 Substitution

The substitution relation can be broken down into two subclasses of relation. The first

of these is 'abstraction by reduction'. This can be considered as a shift between formalisms.

Zeigler [Zeigler84] refers to this relation as abstraction and concretization. In Figure 4 we

see how a system can be considered at the lower level as a set of connected finite state

machines or at the higher level at a simple directed graph.

MW 	 MW 	
1-0
	 Abstraction

,F FSM L_• [SM)
	 I 	I

H- -- 	Concretization

FS 	. b FSM

Figure 4 - Substitution Relation.

The other subclass of substitution relation is termed morphic reduction. In this relation,

a simplification of a 'larger' system takes place resulting in a 'smaller' system. Unlike the

composition relation, the higher level component's functionality replaces lower level

functionality. Luna constrains this relation by saying that the system specification is the same

at the higher and lower levels (opposed to the abstraction by reduction where a change of

formalism occurs). The higher level is simpler but homomorphic with the lower level.

Morphic reduction is illustrated in Figure 5 where we see single higher level components

replacing multiple lower level components.

26

ABDCEXYZ

.1.

xYz

(B)

Figure 5 - Morphic Reduction

1.3.5 Specification

The final hierarchical relation in Luna's taxonomy is specification. This relation relates

higher and lower levels by type. Usually, a lower level is a more specific type of the higher

level. This relation is often used in object-oriented languages to provide a mechanism for

constructing a class hierarchy. It is illustrated in Figure 6.

Generalisation

Class: Shape

Class: 4-Sided
	

Class: 3-Sided Id

Class: Square
	

Class: Rectangle
	

Class: Triangle

Specialisation

Figure 6 - Specification Relation.

Chapter 2

Modelling and Simulation

Having discussed at a high level the fundamental motivation for this thesis, we now

introduce essential areas of background knowledge in order to define the context of this

work. This includes a discussion of systems and models along with an examination of the

implementation options for the simulation modeller. This exploration of modelling facilities

includes a review of several actual systems available from both academic and commercial

bodies.

2.1 Systems and Models

Real world systems can be thought of as collections of interacting components that

work together towards some goal. Examples of real world systems are telecommunication

systems, on-line reservation systems and navigation systems such as the GPS. Such real

world systems can contain very large numbers of components and exhibit very complex

behaviour.

The process of simulating a system involves the creation of a simplified model that

represents only the salient elements of the real world system. By representing the behaviour

of a system in an abstract and manageable way, the user can learn (interactively) about the

behaviour of the real world system. The process of simulation embodies the principle of

"learning by doing" [Fishwick95].

Typically, simulation projects can be broken down into three identifiable processes:

model design: consideration of the real system and the aspects to be represented in the

Either theoretical or physical.

28

model, model execution: providing input stimulus and observing the model's output and

model analysis: extraction of results from the model's output. These three processes form the

simulation lifecycle illustrated in Figure 7.

Model
Design

Model 	
" (

Execution
Execution Analysis

-

Figure 7 - Simulation Project Design Lifecycle

Zeigler [Zeigler84] identifies five main aspects of the relationship between the real

world system and the model, which provide a useful insight into the modelling and

simulation process.

I. The first of these aspects is the 'real system' which is defined by the examination

of the real-world system for observable data sources. (these sources can be

considered as either inputs (causes) or output (effects) and may be further

classified as to whether or not they are observable or non-observable). Next is the

experimental frame which described the limited conditions for which the model

behaves as the real system. Such sets of conditions or experimental frames

characterise a subset of the real system's observable input and output. A single

model may have many experimental frames associated with it. If the input/output

values of a simulation correspond to those observed at the real system, a model is

said to be valid for the given experimental frame. The base model aspect is a

notional model that represents all possible input/output data for the actual system

961

being modelled. For most systems, the construction of the base model will be

impossible. Zeigler states that even if it were possible to construct the base model,

for most systems the complexity of the components and their interactions would be

so great that the computing resources required to simulate the system would often

be unrealistic. Whilst the base model is usually an unrealistic implementation goal,

the careful construction of an experimental frame can mean that a relatively simple

model can often be created which is valid for a particular line of investigation.

These simple models are referred to as lumped models. The final aspect described

by Zeigler is that of the computer. Zeigler defines the computer as "the device with

whose help the input-output pairs of the lumped model are generated". The process

of generating the input-output pairs is referred to as simulation.

2.2 Representation of Simulation Time

One of the most prominent differences between simulation model implementations is

the way in which real (system) time is represented. Time can be represented as a continuous

variable or as a discrete variable.

2.2.1 Continuous Time

If the modelling process treats time as a continuous variable, the states within a system

can be represented by a set of differential equations. If this technique is used the computer

solves the differential equations in order to compute the output of the model for any given

instant in (simulation) time. This continuous simulation technique is often used in the

simulation of computer systems at the circuit level. In this case, lists of low level electronic

components are represented by differential equations (see section 2.4.6).

30

2.2.2 Discrete Time

In many systems, changes in state only occur at certain discrete points in time. These

systems are sometimes termed discrete systems. For example, synchronous computer

architectures can be considered discrete systems in which events and system state changes

occur with respect to a known clock period.

A discrete-event simulation is one in which the representation of time can be made by

considering only the various points in time that a system state-changing event occurs. These

system events occur at discrete, possibly random, time points known as event-times.

2.2.3 Discrete Event Simulation

Real world components are represented in a discrete-event simulation model by

entities8 . These entities generate events according to their specified behaviour. During a

simulation run a clock variable is maintained (tracking simulation time). This clock advances

in discrete (probably unequal) steps during a simulation run.

In addition to the clock, a discrete-event simulation maintains a list of events that are

occurring (or scheduled to occur) in the system at a given clock value. This structure is

referred to as the event list.

During the course of a simulation run, two phases are repeated until the system enters a

state where the event list is empty (alternatively the simulation may also be terminated by

specifying a maximum value for the clock). The first phase is the advancement of the clock

to the time of the earliest event on the event list; the second sees the execution of all

behavioural code scheduled for the current clock time. The execution of this code will

normally generate more events to be placed in the event list. We note (for a single processor

31

simulation platform) that although many events may be scheduled for a single simulation

time point, in reality only one of these events will be active at any point in real-time. The

two-phase loop described above is illustrated in Figure 8 below.

During the course of a simulation run, an entity may be in one of a number of states.

These states reflect the entities relationship to the simulation environment's resources. For

example, an entity may be waiting to be processed, waiting for time to advance or waiting

for some environmental condition to be met. These possible states are described in Table 1.

8 The term entity is a generic one referring to simulation component. Other systems (academic
and commercial) use different terms to describe this fundamental simulation unit.

32

Active 	The entity is scheduled for the current simulation clock
time and is currently being processed.

Ready 	If more than one entity is scheduled for the current event
time all entities are considered to be in the ready state
whilst waiting for real processor time. The entities'
states will eventually change to the active state.

Time- 	An entity in a time-delayed state is waiting until the
Delayed 	simulation clock time reaches a known value so that it

can re-enter the ready state. This state often represents
an entity performing some work.

Condition 	This state is entered when an entity is waiting for a
Delayed 	specified condition to be met within the simulated

system. For example, an entity may enter this state if a
limited resource is currently in use and required for
processing to continue.

Table I - Possible Entity states

Simulation Run Start

Advance the simulation
clock to the time of the

next scheduled event on
the event list.

I 	Carry out all actions
No 	 scheduled for the

current simulation time.

Is the event
queue empty?

Yes

+___

(Simulation Run Stop

Figure 8 - Typical Discrete Simulation Event Two-Phase Loop.

33

Finally, we note that it is possible (albeit unusual) to combine discrete and continuous

time within a simulation model. For example, a simulation of a computer system's

components (i.e., memory units, processor components and interconnection mechanisms) is

well suited to discrete event simulation. However, the model of the computer system may

well need to take account of the computer's operating environment (errors could occur if the

unit were to work under extreme temperatures for example). The heating effects of the

environment could be represented by a set of differential equations representing external and

internal heat sources.

2.3 Hierarchical Modelling

In our previous discussion of systems and models (section 2.1), we noted that a model

provided a useful abstract representation of a complex real world system allowing analysis of

the system to be performed.

However, it may be necessary to view a system at different levels of abstraction

depending upon the features of the system that are of interest to the modeller for a particular

experiment. One possible solution to this 'multiple abstractions' requirement is to construct

several different models of the same real world system each addressing a different

experimental requirement. However, the construction of multiple models forms an expensive

development path in terms of the modeller's time and effort. In addition, this approach raises

questions about model consistency across the different levels of abstraction.

By composing a model hierarchically, we can employ the parent/child relation

previously discussed in section 1.3 across the model structure allowing a single model to

represent multiple abstractions (in effect multiple lumped models) of the same real world

system. The way in which the hierarchy behaves (e.g. at what level the execution of the

34

simulation takes place, and how adjacent levels of the hierarchy communicate etc.) is

dictated by one of the hierarchical relations described in sections 1.3.2-1.3.5.

A hierarchical modelling approach has the benefit of reducing the amount of modelling

effort (by the effective exploitation of entity reuse - i.e. some entities will remain the same

regardless of abstraction level). In addition, the model validation process can be

strengthened, by checking that different model abstractions of the same real world system

produce identical results.

Sargent [Sargent93] questions why hierarchical modelling is not readily available in

most simulation packages and claims the main reason is that "Hierarchical modelling usually

requires encapsulation".

2.3.1 Encapsulation

Encapsulation is a concept frequently used in object-oriented programming languages

such as C++ or Java. Flanagan defines encapsulation (in software engineering terms) as:

" ...hiding the implementation of a class from its users 9, which means

that you can change the implementation without it affecting the

users. "[Flanagan9 7]

In terms of simulation models, encapsulation means that each simulation entity hides

its associated state variables and behavioural definition from other entities in the model.

Encapsulation in software engineering is typically provided by the following

mechanisms:

. The class structure itself (including special methods for the construction and

destruction of class instances).

We note that the term 'users' can mean other objects within a software system as well as the
programmer.

35

. The use of variable declarations allowing the scope of a variable to be well

controlled (For example, C++'s private, protected and public scope modifiers).

. The use of 'accessor' methods to allow private and protected variables to be

manipulated in a controlled manner. The communication of objects is controlled by

method invocation.

Frequently, object-oriented methodologies disallow objects from communicating

by global variables, whilst not strictly an encapsulation mechanism this reinforces

the importance of limiting an object's dependency on non-local data.

Whilst these facilities come as standard in object oriented programming languages

Cota and Sargent note that:

"Unfortunately, traditional simulation languages and traditional

approaches to modelling do not support encapsulation. For example the

preemption ofajob in service by a higher priority job is usually modelled by

having one active component change the next event time and/or reactivation

point of a second component" [Cota92]

Encapsulation is valuable in the model design process because it allows the modeller to

concentrate on the structure of one part of the model at a time. In addition, encapsulation

facilitates model modification by removing the effects of change on the rest of the model.

This is a valuable attribute in terms of long term maintenance of a model.

In terms of reuse, an entity that is encapsulated is easier to deploy in a new project, as

it will not directly reference other entities' internal data members. If external references were

present, the referenced entities would need to be aggregated with the migrating entity before

it could be used again; in especially complex models, this aggregation may be impossible.

The HASE environment (described in detail in Chapter 3) provides entities with some

of the encapsulation features described above (e.g. the protection of entity data members).

cri

This is a direct effect of the behavioural descriptions and automatically generated entity

skeletons being described in C++.

However, as a simulation model's communication is described via discrete event

library extensions rather than pure C++ method invocation, it is possible for inter-entity

communication to circumnavigate the formal C++ definition of an entity. An entity may

assume knowledge of remote entities' behaviour and/or informal communication may take

place via the event queue. A major proportion of the work of this thesis is concerned with

restricting communication to well defined inter-entity communication protocols. Where a

high-level language (e.g. C++) compiler enforces strict method parameter checking at

compile time we propose a system for simulation model validation which aims to improve

the level of entity encapsulation. This is discussed in detail in Chapter 5.

Another observation made by Cota and Sargent is that because encapsulation allows a

model's composition to be changed relatively quickly, it provides the basis for a mechanism

allowing the switching between abstractions within a hierarchical model. However, the

observation concludes that encapsulation itself is not enough to allow hierarchical modelling.

There is also a requirement for a coupling mechanism.

2.3.2 Ports and Coupling

One of the advantages of encapsulation is that simulation components become

independent of each other in terms of internal state and behaviour. However, a simulation

model requires that they work together in order to simulate aspects of a real world system. In

software engineering, inter-object communication is usually achieved by classes having input

and output methods which allow them to be manipulated by other objects and to manipulate

other objects respectively.

37

In simulation, a similar input/output capability is often achieved via the use of ports. A

port is a communication point allowing the functionality of an entity to be accessed in a

controlled manner. Zeigler uses the term module to describe an entity supporting

encapsulation and the use of ports as follows:

a program text that can function as a self contained autonomous

unit in the following sense: Interactions of such a model with other modules

can occur only through predeclared input and output ports" [Zeigler84]

Consider the simulation entities shown in Figure 9 below. Each entity has a collection

of ports (marked with the notation EntityName: I 10: Number - where I 10 indicated

either Input or Output and number is a unique id for the port). Each entity also contains

encapsulated state variables and behaviour. In order to create a hierarchical structure we can

connect entities together by mapping the output ports of one entity to the input ports of

another. This process is referred to as coupling [Luna92].

A EA.01

Li

L (Behaviour) 	:2j

B

FBAAJ P(sT

T t___ C
(State)

L2
(aviour) 	

2j

rState

T 12

JA 	E 	L0: 1i
State

I viour (
E:I:2 	 [io:]

Figure 9 - Set of entities supporting encapsulation and ports.

In Figure 10 we see how various entities shown in Figure 9 are coupled to form a new

coupled entity 'F'. Some ports remain unconnected; these form the input/output interface of

the coupled entity. The new entity 'F' may itself be combined with other entities to form a

38

new, coupled model. We note that the new, coupled entity 'F' could be substituted for entity

'C' (each has an identical interface; 2 output ports, 2 input ports).

Figure 10 - Coupling of Entities.

Of course, this substitution assumes that the input and output values of entity 'F' are

compatible with model 'C'. We return to this problem later in Chapter 4.

Zeigler [Zeigler90] uses coupling to define a hierarchical model as follows:

An atomic model is a hierarchical model.

A coupled model whose components are hierarchical models is a hierarchical

model.

2.4 Architectural Hierarchy

In order to concentrate upon the simulation domain in which we will employ

hierarchical modelling, it is useful to look at how computer architecture can be considered in

terms of a hierarchical arrangement.

39

2.4.1 Defining Levels of Architectural Abstraction

The concept of a computer system as a hierarchy of related components has been well

understood for some time; Bell and Newell put forward a classification system for computer

hardware [Bell7 1] in the early seventies. More recently, the field of codesign has frequently

made use of a hierarchical model when considering the partitioning of software and hardware

elements of a computer system [Rozenblit95].

The partitioning scheme proposed by Bell and Newell considers several levels of

hierarchy when describing a given system (Figure 11). The hierarchy includes, from top to

bottom, the PMS, ISP, RTL (Register Transfer Level - see section 2.4.2) and circuit levels.

The levels below RTL are of less interest in the context of this thesis because well defined

notations and tools/systems already exist to allow the modelling/simulation of systems at

these relatively low levels of abstraction.

[Structures Network, Computer
Components Processors,
memories, switches, controls,

PMS
	

[transducers, data operators, links.

Isp_

[Structures Programs,
Subprograms
Components State, Instructions,

[Operators, Controls, Interpreter.

[Circuits Arithmetic Unit,
Counters, function generator,
encoders, decoders, iterative
networks.
Components Registers, transfer
controls, data operatoros, flip-
flops, AND, OR, NOT, NAND,

Figure II - Overview of the PMS, ISP and RTL System Hierarchy Model.

40

2.4.2 RTL

The Register Transfer level of abstraction sits on top of the (well defined) circuit level

description of the physical hardware. This level of abstraction provides a description of a set

of registers and the transfers that take place between them.

A typical operation sees the values of specified registers being combined according to

some given rule and the result of this combination being stored in another register elsewhere.

Examples of typical events at the RT level are shown in Table 1.

Table I - Typical RTL Operations.

When considering Bell and Newell's RTL abstraction we should consider exactly why

it proves a useful expression of a system's components. After all, it is possible to consider

processor registers as collections of 1-bit memories each with their own logic equations.

Why consider them as discrete entities? Consider now the task of examining how to best

arrange registers for a given task within a machine. It is natural to think of the task being

performed across registers rather than on a series of]-bit memories. The design process is

aided by the more 'appropriate' characterisation of the lower level components as higher

level (RTL) structures.

2.4.3 ISP

Sitting atop the RTL abstraction is the Instruction-Set Processor level. This abstraction

considers structures such as programs and subprograms which are typically comprised of

components including state (memory cell contents), instructions and operators.

41

This level of the abstraction hierarchy allows us to examine the behaviour of a

processor as controlled by a set of instructions stored in a memory. Typically, this level of

description is useful to a programmer who needs to know how instructions issued will be

interpreted by the processor.

Of course, we could use the RTL abstraction to determine how a given instruction (bit

pattern in some memory) works, but only after a detailed examination of the internal register

sequences invoked by the calling instruction. Clearly, this is another valuable abstraction

away from the base perspective of the underlying electronics.

2.4.4 PMS

The Processor, Memory and Switch level forms the most abstract description of a

system. This view of a system treats the entire computer system as a set of related

components (each with its own set of operations) that work on some common medium -

information.

At this level of abstraction, no attention is paid to the details of a system's lower level

representations. Indeed Bell and Newell suggest only seven basic component types

distinguished by their actions within a given system. These component types are memories

(M), links (L), control components (K), processors (P), switches (S), data operations (D) and

transducers (T).

Given these basic high level building blocks, one can express hardware configurations.

For example, a MIPS processor and its first and second level caches could be represented

thus (note that links in the system are denoted by the '-' symbol):

 -M- -M- -T -x

Here Cmjps represents the MIPS processor and its caches by showing the connections

between PMS components representing the processing unit (P a) and its primary and second

levels caches (M and M respectively). Note that a transducer is used to indicate the place

that input is received by the system from some external source (X).

The PMS level offers a useful abstraction from the programming and underlying levels

in that it provides a basis for considering the high level construction and performance of a

system. In terms of data obtainable from using a model at this level, it provides the system

level designer with information allowing the analysis of component utilisation and

architectural data flow.

2.4.5 Summary

The hierarchical model discussed above illustrates how a single system can be

considered at many different levels of abstraction. Depending on the problem in hand,

different abstractions will be suitable, for example physical construction (electrical

engineering), register layout design/analysis (RTL), system programming (ISP) or

performance evaluation (PMS) of the system as a whole.

We have described how information available at a particular level of abstraction can

also be obtained from any of the lower levels supporting it. However, abstraction allows

lower level constructs to be summarised in a way that makes the data set size of a particular

problem domain manageable.

2.4.6 Other Architectural Abstractions Commonly Used

As previously mentioned in section 2.4.1 this thesis is generally concerned with high

levels of architectural abstraction. This is because as we descend the computer system

hierarchy we find that commercial simulators and tools describing the implementation of

43

/tn2

6.0 	• br

5.0

4.0

3.0

2.0

1.0

0.0

—1.0

devices in silicon are well established. However, issues concerning the speed of systems

simulation at this low level and the suitability of discrete versus continuous modelling

techniques make this low level a worthwhile area of investigation. The lowest conceptual

level of a computer system is often regarded to be the circuit level. Circuits are described in

terms of transistors, wires, capacitors and resistors. At this level of system simulation, the

focus is upon accuracy. For instance heating effects and component layout geometry all

influence simulation results. These results usually take the form of analogue waveforms that

describe the real-world behaviour of the circuit. Figure 12 shows typical simulation output

from a circuit level simulation of a two-input OR gat& ° .

Al—ALCATEL or2 extracted Jul 13 173521 1999

Transient Response

time

Figure 12 - Typical output from circuit level simulation.

The simulation process involves node-extraction (analysis of the circuit's devices and

their interconnection). Having obtained a list of devices to be simulated, appropriate device

'° This particular output was generated by the H-SPICE [Hspice90] circuit level simulation
package.

models" are selected according to the specification of the final fabrication process.

Typically, circuit-level simulation uses continuous simulation techniques to solve the

equations derived from the node-extraction phase.

Whilst this process generates very accurate results, the technique is exceedingly

computationally expensive; consequently simulation speed is very poor.

Logic level simulation aims to improve simulation performance by substituting discrete

logic values (i.e. 0, 1, and X) for the continuous analogue data used in circuit-level

simulation. Often further simplifications, such as discarding wire delay information, are

made.

Logic-level simulators can be divided into two sub-categories, switch-level and gate-

level simulators [Craig96]. Switch—level simulators abstract individual transistors into little

more than switches (i.e. other transistor characteristics such as operating conditions are

removed) thus reducing the amount of time a simulation result takes to complete. Gate-level

simulation sees the lower level components (resistors, capacitors etc.) being replaced by

logic gates (e.g. AND, NOT, OR). Because gates are composed of transistors, this

abstraction gains even more performance than switch-level simulation. Switch and gate-level

simulation packages usually employ discrete-event simulation engines.

2.5 Simulation of Computer Systems

In this final section of this chapter, we aim to give an overview of existing simulation

system and modelling approaches; the tools reviewed being provided by both academic

institutions and commercial vendors.

These device models are usually supplied by semiconductor manufacturers and consist of
mathematical characterisations of each device's behaviour.

45

2.5.1 Programming language approach

A popular approach to building a simulation model of a computer system is to hand-

craft a simulator in an appropriate programming language. The language choice for

simulation implementation generally falls into one of two categories: general-purpose high

level programming languages (HLLs) or problem specific hardware description languages

(HDLs). Each offers advantages over the other.

2.5.2 Hardware Description Languages (HDLs)

Popular choices for hardware modelling are VHDL (Very high speed integrated circuit

Hardware Description Language) [Vhd188] and Verilog, as each is well supported by the

electronic design automation (EDA) industry' 2 . Both VHDL and Verilog offer means of

representing both hardware structure and abstract behaviour. In [Smith96] it is claimed that

any HDL should support these two aspects of model design so that:

"Modelled hardware behaviour is not prejudiced by structural or

design aspects of hardware intent and that hardware structure is capable of

being modelled irrespective of the design's behaviour"

Clearly, HDLs (as one would expect) tend to reflect the low-level concerns of a design

eventually destined for a silicon implementation. Correspondingly, VHDL and Verilog

provide excellent facilities for the modelling of concurrency and accurate timing

[Howe1196a]. In addition, when we examine the low-level language constructs of VHDL we

see provision of two-input logical operators such as NAND, NOR and XNOR. Similarly,

Verilog supports constructs for modelling cell primitives of ASIC and FPGA libraries.

12 VHDL has been an IEEE standard since 1987 and Verilog since 1995.

46

This is not to suggest that higher level behavioural modelling is ignored. Indeed,

VHDL offers packaging statements to allow encapsulation of models (promoting reuse) and

commands to allow the replication of structure (the generate command facilitates the

generation of large, regular designs). VHDL also has facilities for the generic description of

objects (e.g. bus widths may be characterised by the number of bits).

Structural and behavioural specifications are dealt with separately in VHDL with a

model's structure being independent from its behaviour. This means that (say) an adder can

be structured as n 1-bit adders (each of which has a specified input/output interface) and

behaving according to a specified behaviour (Figure 13).

STRUCTURAL DEFINITION 	I 	BEHAVIOURAL DEFINITIONS
(psuedocode)

for adder = 1 t n 	 BEHAVIOUR

of component 1-bit ad,c, 	 adder _A

with BEHAVIOUR / 	 BEHAVIOUR
interconnection _sc 	 adder B

using
behaviour add 'r B 	

N 	 BEHAVIOUR

F ModeL ' 7ir/al

d

, 	
N

(

1-bit adder 	/1-bit adder 	 1-bit add
(1) 	 (2) 	 (n)

adder B 4 Cadde (adder_ B

Figure 13 - VHDL Structural and Behavioural Components

Verilog is less well equipped with high level constructs; only parameter overloading is

supported.

VHDL supports hierarchy by allowing the specification of a model in terms of sub-

components and their associated linkage (i.e. it provides coupling). However, components in

47

VHDL model compositions still tend towards dividing functionality into typical hardware

blocks due to the nature of the interface description (signals and wires) - after all these are

hardware description languages. A VI-IDL model can mix both behavioural level blocks and

lower level (say) RTL level blocks (which will contain accurate timing detail). However, the

behavioural model must provide communication based around the lower-level signalling

model.

The transition from an algorithmic/behavioural description of a component to a lower

level concurrent signalling model requires components to be rewritten with an appropriate

subset of VHDL. This is true even when moving from a low level RTL model to a model

capable of being synthesised (a strict, limited subset of the language must be employed to

satisfy most EDA tool requirements).

Experience has shown that whilst VHDL provides mechanisms for describing

architectures with some degree of abstraction, it is best suited to gate-level designs. For

instance, at the systems design level, the modeller is often concerned with issues of

performance evaluation. In [McHenry94] the authors found it necessary to write external C

routines 13 to support the performance evaluation of multicomputer interconnection networks.

This lack of suitability for high level modelling was a major concern for the RASSP

(Rapid Prototyping of Application-Specific Signal Processors) program as discussed in

[Swamy95] and resulted in the development of 00-VHDL [Oovhdl95]. 00-VHDL was

implemented in the form of a pre-processor allowing object-oriented features such as

inheritance and class variables to be used to extend VHDL. The result of running 00-VHDL

source through the pre-processor was the automatic generation of IEEE compliant VHDL

that could then be used with standard EDA tools.

48

Another interesting extension to the VHDL standard is VHDL+ [Vhdlplus96] from

ICL/Fujitsu. The objectives of this project are stated as follows:

"The VHDL+ extensions are aimed primarily at the system designer.

While VHDL has many strengths for the design implementor, it does not

provide the system level paradigms which help at the early stages of a

system's design ".

These 'system level design paradigms' include the conceptualisation of a system as a

system of asynchronous communicating processes (rather than VHDL's highly structured

processes and signalling models). Accordingly, VHDL has been extended to allow

communication via high-level protocols. Another example 'system level' facility offered by

VHDL+ is dynamic process creation/disposal. This can be used to test (say) the evaluation of

concurrency versus performance. This is not possible in IEEE VHDL as (quite reasonably

for any model ultimately aimed at hardware production) models must have a fixed number of

component instances.

The structures central to this new functionality are interface specifications and design

units.

A VHDL+ unit encapsulates a VHDL entity and architecture pair. The complexity of a

unit can vary from a simple component (e.g. a single gate) to a large system description (e.g.

a complete processor).

The traditional method of communication between VHDL entities is via well defined

hard-coded ports. In keeping with this approach, VHDL+ units can communicate via these

VHDL communication constructs. As VHDL+ units support hierarchy, they may be

composed of other units communicating via the VHDL ports. However, to allow designs to

13 Routines to support random number generation, queueing primitives and statistic gathering

49

communicate across various levels of abstraction, unit hierarchies can instead be composed

using the VHDL+ interface structure.

Interface specifications are freestanding software entities and can be developed in

isolation from specific entity/architecture pairs (units). Interface specifications are positioned

between units and define named 'ends'. These ends are analogous to ports in their facilitation

of unit linkage. Unit compositions map entity input/output to interface ends. Interfaces have

the capability to describe communication between units which exist at different levels of

abstraction.

This cross-abstraction communication is based on two structures introduced as part of

the VHDL+ language. The most abstract of these structures is the 'transaction' which

specifies two-way communication across an interface. Next is the 'message' construct which

defines a unidirectional stream of information from one end of an interface to another. These

messages can be decomposed into other messages and can be defined in multiple versions to

allow operation at differing levels of abstraction. At the lowest level of abstraction, messages

are defined in terms of standard VHDL signals. For decomposition into pure VHDL, this

level is essential.

The decision to use interface specifications or traditional VHDL port constructs is

typically governed by the advance of a design towards the gate level. For example, an initial

design may be specified using the new VHDL+ constructs, as design decisions are finalised

the traditional communication structures are inserted.

VHDL+ itself is not used as input to a simulator. Rather it is compiled down to

standard VHDL in an intermediate stage. ICL produce a compiler named Supervise

were created.

50

[Hodgson97] for this purpose. We examine VHDL+'s abstraction mechanisms in more detail

in section 7.3.3.

Finally, we note that whilst VHDL allows very accurate timing models and excellent

facilities for modelling concurrency, ultimately the performance of VHDL simulation is poor

when compared to higher level programming language solutions.

It is in response to this deficiency that companies such as CAE have developed RTL

level modelling facilities with products such as RTL-C. RTL-C allows the designer to

capitalise upon the execution speed of C/C++ by extending these languages with VHDL-like

support for concurrency and timing [Mohammad98]. RTL-C features include:

Support for a set of bit-width functions to support structural design

C language procedures with support for all C data types and structures.

Support for hardware concurrency.

. Integration with a C/C++ development environment.

CAE claim that on a Pentium 133MHz an RTL-C simulation can proceed at up to

15000 cps (processor cycles per second) whereas an equivalent VHDL/H DL model can

achieve around 15 cps [Cae99].

2.5.3 High Level Languages (HLLs)

High-level languages offer another popular starting point for the handcrafting of a

simulation model. Modern high-level languages such as C++[Dewhurst89] and Java

[Flanagen97b] offer excellent facilities for component data encapsulation (via the

protected and private data and method declarations) and model refinement (via

inheritance).

C++ allows. a wide range of commercially available libraries to be linked into a model

by use of the standard 'include' compiler directive. This means that performance

51

modelling requiring statistical measures need not involve modellers developing their own

distribution and analysis functions. In addition, simulation output can benefit from the

variety of graphical library packages available under C++.

In addition, C++ lends itself naturally to the modelling of high level communication

constructs without the need for detailed signalling models (messages may be formed using

structure or objects and reflect a number of high level attributes). Of course, discrete and

continuous simulation functionality does not come as a standard part of the C++ language

definition. However, various commercial and academic based simulation libraries exist, thus

alleviating the need to develop each simulation model from scratch.

Typically, simulation libraries offer facilities for event queue management, output

report generation and simulation input generation (Examples of such library extensions are

Sim++ [Simpp9l] and HASE++ - see section 3.1).

Another high-level language increasingly used for discrete event simulation modelling

is Java. Java offers a feature-rich object-oriented language, which is well suited to web-based

simulation (due to the inclusion of many networking libraries as standard, and the high level

of platform independence its intermediate byte code representation facilities [Flanagan97]).

One of the first simulation projects to embrace Java as a platform for discrete event

modelling was SimJava [Howe1197]. SimJava offers two special java packages that are

accessible via Java's import statement. The first package (eduni . simjava) provides

discrete event-queue manipulation functions (including output trace generation and basic

statistical functions) based on HASE++. The second package (eduni. simanim) provides

a visualisation library allowing the animation of a simulation's output trace file in a Java

applet.

Whilst Java offers excellent object-oriented programming facilities, it also has

limitations in terms of performance when compared to mature high-level languages such as

52

C and C++. One comparative study found Java simulations to run, on average, ten times

slower than their C++ equivalents [Simjava96].

In an effort to address concerns about Java's performance as a simulation platform,

several projects, such as Sandia National Laboratories IDES [Nicol98], have produced a

distributed simulation library allowing the simulation load to be spread across multiple

processors.

2.5.4 Simulation Specific Languages

Another option when considering the modelling of high-level system behaviour is the

use of a high-level simulation-oriented language. Languages of this type offer high-level

programming constructs as found in C++/Java but with the advantage that simulation control

mechanisms are core functions of the language itself.

One such simulation-oriented language is DEMOS (Discrete event modelling on

Simula14) [Birtwistle85]. Within the DEMOS environment, active objects (or entities)

communicate via methods allowing operations upon passive objects (or resources). These

operations are realised via use of the WAITQ object class 15 and the synchronisation primitive

000PT. Whilst DEMOS provides good facilities for the description of process-oriented

simulation models DEMOS does not boast the performance of C++ or the extensive range of

readily available domain-specific link-in libraries. This lack of integration with 'standard'

libraries is often a limitation of simulation-oriented languages.

Another simulation-specific language, SIMAN [Glavach93], offers continuous and

discrete simulation facilities. Whilst SIMAN has been predominantly used in the simulation

of manufacturing systems (it provides simulation objects representing conveyors,

" DEMOS is implemented as a Simula context (itself a simulation specific language).

53

transporters and 'blockages'), it does offer general-purpose simulation functionality. In order

to allow integration with existing programs SIMAN provides special facilities for reading

input data according to the input field specification of well-known high-level languages (e.g.

C++, FORTRAN). Typically, SIMAN is used in conjunction with the Cinema/V system that

provides animation facilities allowing the visualisation of a simulation run. The Cinema/V

system allows the visual description of a simulation model to be specified hierarchically

(allowing for management of on-screen complexity of designs). However, SIMAN's

simulation facilities do not support hierarchy.

MODSIMIII from CACI Products [Mullarney96] provides an object-oriented

simulation-specific language suitable for general-purpose discrete-event simulation

construction. MODSIMIII attempts a level of entity encapsulation by defining each entity in

two separate sections. An entity's variables and methods are formally described in the

'definition block'; its behavioural description of simulation then follows in the 'method

block'. This approach is similar to that found in the programming language modula-2

[Beidler86].

Special purpose simulation functions provided by MODSIMII! include the ability for

entities to interrupt and suspend each other (through use of the INTERRUPT and WAIT

primitives respectively). This mechanism raises problems with encapsulation however, as an

entity wishing to interrupt a remote entity often needs to assume some knowledge about the

remote entity's operation. MODSIMIII also provides graphical rendering of models in a

similar way to Cinema/V.

Mesquite Software's CSIM 18 [Schwetman96] whilst not a simulation language in its

own right offers a discrete-event simulation specific 'engine' which can be embedded in

s Used to resolve the event handler finding two objects involved in the same process at the

54

applications. For example, C/C++ applications can use the linkable CSIM18 object code for

managing all aspects of simulation:

. Data input management - through special data collection classes (e.g.

TABLE - real number storage, QTABLES - integer and char storage)

. Process-oriented discrete-event simulation - modelling of processes, facilities

(active resources) and storages (passive resources) are provided.

Performance analysis facilities - including the provision of 'meter' object

used to measure the flow of resources past a given point in the model and

'boxes' which are used to collect data on the time spent in a specified range

of activities.

CSIM 18 has been used as the simulation core in various commercial projects including

Visual Solutions Inc.'s VisSim [Vissim95] (a package for developing hybrid systems

models) and ArchGen from CAE+ Corp. [Archgen98]. In ArchGen, CSIM 18 provides the

underlying simulation functionality for a graphical design environment allowing architectural

features such as concurrency, pipelining, conditional branching and clocked events to be

specified by block diagrams.

2.6 Integrated Simulation Environments

The previous sections have outlined languages suitable for programming simulation

models from 'scratch'. One of the major drawbacks of this approach is that there is a degree

of wheel reinvention with each project the designer embarks upon. Even though simulation

libraries help provide standard facilities for statistical functions, entity creation and

simulation time management, they still need to be reincorporated into each project. In

same time.

55

general, the programming approach does not encourage component reuse and models are

frequently thrown-away after analysis has been performed [Muller96].

Computer system simulations typically share many common features; most will

provide result analysis tools, visualisation methods, simulation object management methods

and perhaps more importantly simulation entities. It is therefore logical to seek some form of

solution to the 'wheel reinvention' problem facing the designer. The designers of various

integrated simulation environments promise such a solution. The following sub-sections

discuss the facilities typically offered by such environments.

2.6.1 Simulation Mechanisms

Central to any integrated simulation environment is the provision of a simulation

engine. The simulation mechanisms afforded to the user may well be implemented in one of

the languages outlined in sections 2.5.1-2.5.4; normally the user will be presented with an

environment specific API and will be 'protected' from the details of the simulation engine.

Some simulation environments are confined to either discrete or continuous model

construction, others attempt to provide a heterogeneous environment for simulation. The

Ptolemy [Ptolemy94] project at Berkeley (designed to assist with the design of signal

processing systems) is one such example of this. Ptolemy is an object-oriented system based

around an abstract C++ based simulation kernel that defines a set of extensible classes

referred to as domains. Domains usually address a specific problem area (several predefined

domains are included with Ptolemy - discrete event simulation being just one). In addition,

the user may define additional domains. Essentially, the generic simulation kernel is used as

a base class from which application specific objects can be derived.

56

2.6.2 Graphical Manipulation of the Model

One of the benefits of building a simulation model within an integrated environment is

the opportunity for the environment to provide a standard graphical representation of the

model (i.e. without the programmer having to invest extra programming effort).

The presentation of a model as a picture allows the designer to conceptualise the exact

component topologies/relationships in a simulation project without having to resort to the

examination of behavioural code descriptions; this can aid in the-debugging of a model's

construction.

Hierarchical graphical representations allow the control of large design spaces through

an 'expand and collapse' approach to model exploration. BONeS [Schaffer94] (Block

Oriented Network Simulator) from Cadence Design Systems Inc. offers a simulation

platform for designers of computer and communication networks and incorporates a

hierarchical, graphical representation of a model. The programmer can manipulate (e.g. drag

and drop) low-level blocks that represent communication hardware components from a core

library 16 onto the design window. After placing core components in the design window,

subsets of the core components can be grouped together to form larger composite objects that

are represented on screen by a single 'meta-icon'. The data structures that flow between

blocks can also be graphically edited, consolidating the GUI based approach to design.

Ptolemy offers an X 1 based graphical user interface in addition to its standard text-

based shell. By writing appropriate Tcl/Tk [Ousterhout93] toolkit scripts, the programmer

can construct animations of simulation output. However, this requires a certain amount of

programming effort (i.e. animations are not 'for free').

16 Typically, functions of the core components support discrete event simulation by allowing the
modelling of delays, queues, contention, statistics gathering mechanisms and data structure
manipulation methods.

57

The Hardware Design System (1-IDS) [A1ta95] from the ALTA group of Cadence

Design Systems offers an integrated environment for the design and implementation of DSP

and other systems. It is used in conjunction with Cadence's SPW (Signal Processing

WorkSystem) which sits atop of 1-IDS - see Figure 14).

HDS itself is broken down into three distinct modules according to the particular

abstraction in hand:

I. lIDS Analyser takes input from SPW and allows the user to build a block

diagram on-screen. Blocks in the diagram can originate from a library of

standard components or can be user-specified (by use of an external C library).

By interconnecting the blocks on screen, it is possible to form a signal flow

diagram specifying an algorithm's behaviour. The algorithm can then be tested

via simulation.

lIDS Architect allows work to be carried out at a lower level of architectural

abstraction. In this module, the designer can specify the implementation (as

opposed to the behaviour) of an algorithm. Again, a GUI provides the

mechanism for user input to the module. As the modules in HDS are integrated,

it is possible to synthesise an HDS Architect project from a higher-level HDS

Analyser design.

IIIDS VhDL Link is an automated process that interfaces HDS Architect to an

externally provided synthesis and simulation tool. This is achieved by automatic

generation of VHDL code compatible with the lower-level tool.

58

Design Level 	 System Level

Specification

Signal Processing 	 sw
Worksystem 	I 	(Domain

Algorithmic 	 -j

HDS

Bit Accurate Algorithmic .HDS Analyser 	
HDS

Archftectura. .HDS Architect 	
(Domain

RT Level 	 .HDS VHDL Link

HDL

Gate Level 	
Synthesis Tool Domain

.......................... [------- 	

Figure 14— Overview of HDS.

One of HDS's most powerful features is that all modules share a common graphical

user interface, thus removing the burden of having to navigate different user interfaces

depending on the level of abstraction currently in hand.

The MOOSE [Moose98] (Model based object-oriented systems engineering) system

from the University of Manchester Institute of Science and Technology also emphasises a

graphical approach to model manipulation. MOOSE pursues an object-oriented approach to

model design (in an attempt to facilitate component reuse) and utilises a GUI (termed the

MOOSEbench) to allow the construction of model diagrams. These diagrams consist of

nodes and connections which describe how simulation entities interact with each other (e.g.

by discrete event or continuous data and whether the interactions contain single or multiple

(termed 'bundled') data values. The model view is interactive (models can be directly

manipulated) and hierarchical (users can expand nodes which themselves represent several

sub-nodes).

The VCC (Virtual Component Co-design) environment [Vcc98] also allows the

graphical construction of a model through a drag and drop style GUI.

2.6.3 Hierarchy and Abstraction

Integrated environments may allow modelling at multiple levels of abstraction, in an

effort to reduce the project lifecycle period by both removing the need for the modeller to

use a multiplicity of heterogeneous environments and allowing high-level abstractions of a

system to be simulated with a reduced runtime.

Hierarchical specification is made possible in Ptolemy via the block construct, which

allows a model's hierarchy to be specified by differentiating whether components are atomic

(a star) or composite (a galaxy). Objects derived from a scheduler class determine the

order of execution of blocks. Inter-block communication is achieved by exchanging data

packaged in particles. Particles are can be of integer, complex, real, fixed point or structure

type. Figure 15 shows the relationship between the various components of the Ptolemy

system.

Standard Domains

MQ
(Message
Queue)

DE
(Discrete Event)

Scheduler
Class

User Defined Domain

SDF
(Sync. Dataflow

Domain)

Ptolemy
Kernel Block 	Block

(Star) 	 (Star)

Block (Galaxy)

Other
Predefined 	 pa rticle
Domains ~Vx

Figure 15 - The Ptolemy System: An Overview.

Hierarchy is included in some integrated environments as it forms a convenient

structural mechanism for the support of rapid prototyping (top-down refinement of a design).

For example, HDS allows movement down the design hierarchy by synthesis. However,

there is no way of automatically moving back up the design hierarchy. Designers wishing to

alter high-level model abstractions are required to perform a complete design cycle flow

from the point of modification downwards.

At Stanford University, the SimOS project [Rosenblum97] examined running large-

scale application codes on simulation models. SimOS acknowledges the importance of

having models available at various abstraction levels of the hierarchy. For example, one of

the CPU models available with SimOS uses dynamic binary translation techniques to run

actual operating system code; as the CPU models become more detailed, run-time overheads

increase by orders of magnitude. Being able to perform abstract trade-off investigations

without incurring a large simulation time overhead is a valuable feature of this architecture.

RI

VCC's modelling process supports the notion of behavioural and graphical hierarchies.

However, components must be simulated at a single level of behavioural abstraction in the

current release.

2.6.4 Library Facilities and Reusability

Integrated simulation environments often attempt to provide library facilities to allow

component storage in a manner independent of a particular modelling exercise. The

motivation for these facilities is component reuse. Typical library facilities include the ability

to import and export components, build application specific sub-libraries and add component

descriptions (this allows guidance as to the suitability of components for specific modelling

tasks).

Some manufacturers of commercial environments sell components for use within their

own environments. For example, BONeS libraries are available [A1ta94] which allow the

rapid prototyping of new network configurations based upon well-known technologies e.g.

Ethernet, Token Ring, FDDI and lOOBase-T.

One of the most interesting aspects of the VCC environment is its ability to use

commercially available libraries consisting of so-called "black box" behavioural

descriptions. The library components, supplied by various IP vendors, allow the use of VCC

as a high-level evaluation tool for real-world microelectronics components. The entities

provide a detailed representation of a component's behaviour and timing characteristics

allowing the designer to experiment with existing products. However, the libraries are

constructed in such a way as to hide the behavioural implementation of the components from

the end user. This means that vendors can both distribute an accurate model library of their

product and protect their intellectual property content.

62

2.6.5 Simulation control and Instrumentation Facilities

Finally, integrated simulation environments often include facilities for controlling

multiple simulation runs. This usually involves varying parameters across specified value

ranges and collating the results in a structured manner.

In the BONeS environment, multiple simulation runs take place under the control of a

simulation manager module, which allows the specification of key parameters, their ranges

and the number of simulation iterations to be performed. The selection of the required output

results for a particular set of simulation runs is controlled via the BONeS GUI; a 'probe' may

be placed on any of the links connecting blocks together and all messages passing the probe

will be gathered.

VCC allows the identification of key model parameters and supports results output in

MS-Excel format spreadsheets.

Having obtained a set of output results most environments offer either built-in facilities

for the generation of histograms, Gantt charts and graphs or suitable linkage to external tools

such as Gnuplot or MS-Excel. VCC allows various chart types to be associated with specific

simulation parameters (e.g. it is possible visualise network activity via a 'temperature map'

which indicates levels of network saturation).

63

Chapter 3

The Hierarchical Architectural Design and Simulation

Environment (HASE)

The Hierarchical computer Architecture design and Simulation Environment (HASE)

developed at the University of Edinburgh has now existed in various guises since 1992. The

main goal of the project has been to provide computer architects with tools that allow the

rapid development and exploration of computer architecture designs. The initial ideas for

HASE were investigated as a PhD project [Robertson96], but it has evolved significantly as a

result of various research projects. HASE's evolution is well documented in the literature

[Ibbett96], [Coe98].

The author first used HASE as the modelling environment for a simulation of the

Stanford DASH 17 multiprocessor in 1994 [Williams96]. The HASE simulation concentrated

on implementing the DASH cache coherency protocols [Lenoski92] and the animation

facilities in HASE were used to check that the simulation conformed to the architecture.

In terms of this thesis, the DASH simulation model was important in that it highlighted

HASE's ability to pick out salient architectural details from a simulation's animated output.

For example, it was possible to hide low level (snoopy-bus) coherency protocol activity and

allow the designer to concentrate on higher level distributed directory mechanisms.

17 The DASH architecture was designed to prove the feasibility of building a scalable high
performance machine with multiple coherent caches and a single address space.

64

Conversely the designer could 'zoom' into a node and examine the detailed operation of a

single processor without regard for higher level mesh based activity. However, whilst the use

of this graphical hierarchy proved valuable, behavioural code was only ever executed at a

single level of abstraction. It was noted that if simulation code could have been executed at a

higher level of abstraction, a simpler assessment of certain protocols properties would have

been possible. The reason for this was that in order to extract even small amounts of high

level protocol related data, many thousands of low level operations needed to be executed. If

a high level (more abstract) interpretation of the system's behaviour could have been

executed across the model, this high level information could have been obtained in a much

reduced runtime.

This section of the thesis aims to offer a sufficiently detailed insight into HASE's

architecture and operation to allow the reader to see how the new work presented here

integrates with the existing HASE environment.

3.1 The HASE Platform

HASE is currently available on both the Solaris and Windows NT4.0 operating

systems. The environment is coded in a combination of C++ and Java' 8 and uses the

following library extensions:

. HASE++ discrete event simulation library: HASE originally used the SIM++

discrete event simulation library for C++ from Jade Simulations [Simpp9l]. This

allowed the behaviour of entities to be coded as C++ classes, and provided the

underlying simulation support for the HASE system. Using a commercial product

meant that I-IASE could not be made freely available. For this reason, and also due

65

to the desire to run simulations on platforms not supported by Jade (such as Linux

and Cray systems), the HASE project developed a new discrete event simulation

library (named HASE++ [Howe1196b]). HASE-H- uses the same API as Jade's

SIM±± and is implemented in C++. HASE++ employs a standard discrete event

simulation algorithm (i.e. pop the next event off the future queue, enable the

corresponding entities, wait for them to finish, repeat until no more future events).

More details about the most commonly used elements of the HASE++ API can be

found in section 3.2.2.

• XfMotif to provide the GUI on the Solaris implementation of HASE.

• Java Swing [Gutz98] to provide a platform independent GUI library for the

various Java tools. This means that when external tools such as the hierarchy

viewer (see section 7.8.2) are run on Solaris or Windows NT, the tool is rendered

correctly with either the appropriate local GUI controls or a user specified look and

feel.

• CUP [Cup96] (or Constructor of Useful Parsers) was used in the Java library

management software to provide Yacc type functionality under Java. This allowed

an EDL parser to be created in Java.

EDL (or Entity Description Language) is themodel description language

used by RASE. It allows the modeller to define all the properties of a HASE model

including custom data types, communication links, the simulation entities

themselves and a composition of the entities that form the actual model. EDL is

covered in more depth in section 3.6.

18 The Java based components of the HASE environment have been added as part of this body
of research.

3.2 Simulation Components

Central to HASE's operation is the idea of manipulation of multifaceted simulation

objects in order to create a simulation model. These objects are referred to as simulation

entities. The representation of a computer system's components as objects is a natural one

allowing the designer to model discrete architectural components with a one-to-one mapping

between simulation entities and system components. Entities have several types of

information associated with them.

3.2.1 Ports and Links

Entities communicate with each other via ports. Ports provide a named transmission or

reception point for communication to take place. The HASE GUI supports port specification

via the dialog shown in Figure 16. The user can specify an icon, a name with which to

identify the port and the type of link to vk hich it can he attached.

Port 	 Icon

PcgtNne I1;1*11111I 1

Dypay Stde 1Rt 	-

Displacerr,eM jci

Icon Name In
L nk Type Name fLNK_memreu1t

Put Type I:cJE;r:E

OK 	 Ooze

Figure 16 - Edit Port Dialog.

A link is a specification of the data that will be handled at the port. The link definition

describes the format of the packets that can be passed between connected entities. There may

67

be more than one type of packet associated with a particular link type. Figure 17 shows

typical port/link configurations for two connected entities.

I Link Type A - packetTh

field 1
field 2

I 	- field 3
A

- -. Output port 	 Input port

	

T undmessa9ei$ 	Link type A

	

- 	Input/Output 	 Input/Output
port 	

Link type A 	

port

inbound message 	 Link type B

	

en ItY H 	Input port 	 Output port 	 entity

Link Type B -packet

field
field 2

Figure 17 - Ports and Links.

A link is inserted into an architectural design by specifying a source and destination port (i.e.

routing information) either on screen (by drawing a link between the desired ports) or in the

EDL file by means of a CLINK 19 command. Prior to the research described in this thesis, no

checks were made as to the link validity. For example, the user could draw a line between

ports that specify different (therefore incompatible) link types.

3.2.2 Behavioural Code

An entity's behavioural code takes the form of a C+±/HASE++ coded file which is

compiled into the simulation model as required. The body code can contain special directives

" The CLINK command is discussed in detail in 4.1.4.

68

allowing for, amongst other things, report generation and pre/post run set-up/analysis

routines to be included in the model.

The HASE++ simulation library provides typical event queue manipulation primitives

and predefined (by HASE) macros. A detailed account of these primitives and macros can be

found in [Howe1196b]. However, a brief summary of the more commonly used commands for

receiving and sending events is given below:

Event Reception Primitives

GET—NEXT 0: When this call is made from within an entity's body code the next

pending event for this entity is removed from the event list. This call is blocking and is

a HASE provided macro coded in HASE++ as follows:

if (sim.waiting(SIM.ANY) ? 0)
sim.select (ev,SIM.ANY);

else
sim.wait (ev);

. SIM GET Q: This call is made after a call to GET—NEXT () to extract the event

(ev) data itself.

. scheduled _by () and from _port (port): These functions are used to

determine which entity sent an event and which port the event was received on

respectively. These functions frequently form the basis for an entity's event handler

code (e.g. an entity can decide on an action according to the event source).

. sim_hold_for 0: The user can specify a time period in which no pending events

can be processed by using this primitive. This is most useful for making an entity

'busy'.

M.

Event Transmission Primitives

• Send_<PKTlabel> 0: This is the complementary HASE macro to

GET—NEXT 0. This macro sends a data packet of type PKTlabel to a specified

port. This packet transmission is logged as an event in the simulation trace file and

will be visible in any simulation animations that are generated.

• SIM_PUT Q: This function places event data into an event body for later

transmission. This complements the S IN GET () function discussed above.

• Sim _schedule 0: Whereas S IM PUT () sends a data packet to a port and writes

an entry in the trace file, sun—schedule () only generates a message (no output is

made in the trace file). This means that the event transmission will not be visible in

any generated animation. This is a useful mechanism in that it can be used to reduce

the complexity of the output animation.

3.2.3 Parameters

One of 1-LASE's most powerful features is the ability to parameterise an entity's key

attributes. The parameters themselves are defined, along with their default values, in the

model's EDL file (see section 3.6). They are manipulated using the HASE parameter dialog

shown in Figure 18. The dialog is split into two main panels, the uppermost of which details

the entity's identity within the model. The lower panel displays each defined parameter of

the entity on a separate line of the display. Each line of the display consists of the following:

I. The parameter name as specified in the EDL file.

2. A slot for the value of the parameter to be entered. Depending on the type of the

parameter, the value can be typed into the value slot (integer, real or string types)

or selected from a pull down menu (enumerated parameter types).

70

A pull-down allowing the control of a parameter's display. Parameters can be

shown in the display window as an icon or as a textual description.

A check box, in the column labelled exp, allowing the user to specify whether the

parameter should be included in a sweep (see below).

A check box, in the column labelled 'tim', indicating whether state changes of

this parameter should he reflected in the simulations output timing diagrams.

I - 	 j x

F
N

- 	 I -

Panetn
Display Mode Exp Tan

c&nnacs.IND_MSK Ii JN 	d v.I. 1 1

oca1_mennenu_IN0_MSK (i rd .'ake E

traces INore 20

t(t_pioce-sci(_deIay IN nea d\aI r r

Curerg-lim It

ordi eo zi 	IName and Value r 1

Faceo_rn_:rw lab j 	jNarfle and Value 	:I r r

dei rasue type read
.
jFF.. and Value r r

defauLbrs._wdtb fi INarne and '-aim

OK Cone

Figure 18- Entity Parameter Display.

Having defined a set of parameters for an entity it is possible (by selecting the 'exp'

checkbox) to perform parameter sweeps (via HASE's experimentation mode). This can

reveal how the various aspects of an entity's construction affect a model's performance. The

HASE GUI provides a form-based dialog that allows the user to specify values for any

defined parameters 20 . More details of these facilities can be found in section 3.3.5.

20 A separate dialog allows the specification of parameter sweep ranges (Figure 24).

71

3.2.4 Instance Attributes

Each entity in a simulation is an instance of a class of a simulation object. As such,

each needs to have a unique name associated with it. This is made up from a combination of

the type (class) name of the entity and an instance name. The name of an entity can be

inspected/set via the Entity Attributes dialog (Figure 19).

Tp Nati,e

instance Nne 	Ii..':.

X Poon 128

YPoition

Lw 	I

UNIQUE ID = din tdprocessor: :dln_tdprocessorjnst

Figure 19— Entity Name and Position Display.

3.2.5 Graphical Attributes

As 1-IASE is a graphical environment, details of the icons used to represent entities on-

screen (along with the entities display co-ordinates) are stored for each entity. Other

graphical attributes include link styles, link colours, port co-ordinates and port icons.

3.2.6 Text

Finally, a simulation entity can have a textual description associated with it. This

allows a model to be documented.

72

3.3 HASE Software Architecture

A typical design session in HASE is illustrated in Figure 20. There are five modes of

operation: Design, Validation, Build Simulation, Simulate System and Experiment. The user

switches between modes by using the buttons below the menu bar. The mode selection

facility formalises the design cycle and allows a proper separation of concerns between the

different phases of simulation activity. This is illustrated in Figure 21. which shows how the

available menu options vary according to the mode selection.

Fda 	Liv 	ER Tools 	Ho

I a_lIao EItAd 	 SooA&.e

Psoovt 	Is11s1 --
i 	osa\c000Ass_ath\oosodafl

XUI

u 	 U 	 MSK1

T— 0,7 10
I 	s_.e_spe 	eed 	I I I aCcs_Cus

11

Iacda_sseooc.eso_BIND_MSK 	1 1 . 	 -. 	

o&*_BIND)dSK -1 F,_Ioa_wdh • 1

Sea Iow_bus_ats • 4
access_count 	(I 	 005_coon 	U

e,C_00050 	 U

-Ii-----. dan 	OCC0 	 05 = sad
seameac reed dalau 	50 	read peaooO 	050
nserrrory_oede_del.o -50 	o=ee_paroort = 050

bc 	roon000uass_BIND_MSK- 1
bu 	eou 	BIND MOO .1 bcal rrearrooeoe, BIND MSK 	1

_.ok4,_8IND_MSK 	1
Sc_reerraeasd(_BIND_MSK 	1

Sc_Sek.eeano_BIND_MSK -1

__1Tr -n

Figure 20 - Typical HASE Design Session.

The modes not only control access to the appropriate design window menu options, but

also allow different pop-up menu options to be associated with an entity. Thus in Design

mode, the entity menu associated with (say) a memory, allows the parameters of the memory

(number of words, word length, etc.) to be adjusted. However, in Simulate mode it allows

73

selection of a file containing the software to be loaded into the memory at the start of a

simulation run. This is illustrated (for a processor entity) in Figure 22(a) and (b).

Fie Leafy 	EcM Tools Help

Vabde Bold Srrolate Eepeoosert

Mode

Switch

Fie Toth Help

Bold Sxniate Eimsent

Mode

Switch

ERM
Fie Bold Tools 	Help

Design 	Vatidsle Siiiulete Eepeierent

- 	 Mode
Switch

Frsz1
Fie SetsMie Tools Help

Deogn 	Validake 	Bold 	 Eicpeiorent

Figure 21 - Contextual menus according to selected mode.

File Library Edit 	 TocLi Help 	 e
	

Sirnolate 	 Toth Help

I F Vds 	 Dud
	

Deegrr 	ValidateJ 	Build

Pr
Diteclop d\
	

Ditectory ii \baui

Trace Driven
CT:D 1

Processor

Current Trace L,.-,e Edit

0 tjp

din_issue_type Loiiht AU

td_piocessos_de, - ItTIT1sIuuuI!

Copy

Iocal_rriernacceos_BI hi C Delete
local memiesutt BIND err

(a)

deeW

- TD car Trace Driven
Procesisor

1etulibur 	-'ii

Cunert Trace 	 patron Pararicicir

din
-

Load Penury

din-issue-type =

Id_processor_delay = 5
Owe
hir

lscel_memacceso_BIND_MSr. =

local meinresuB BIND MSK 	1

(b)

Figure 22 - Context sensitive pop-up menus in (a) design mode and (b) simulate mode.

74

3.3.1 Design Mode

The operations available to the designer in Design mode include add/remove entity,

adjust connections between entities and add/remove parameters/ports from components. The

effect of using the design mode is to generate an EDL description of the simulation model.

The designer can also choose to edit the EDL description directly. HASE supports so-called

'round trip' editing of experimental models (see section 3.6.1).

3.3.2 Validate Mode

The Model Validation mode allows checks to be performed regarding the correctness

of the system design. For example, checks are made to determine whether the entities at each

end of a link are expecting the same type of packet. The functionality of this mode is central

to this thesis and is examined in detail later in Chapter 5.

3.3.3 Build Mode

The Build Simulation mode is used to create an executable simulation of the modelled

architecture. The options available include the selection of the simulation language to be

used 2 ' and the type of simulation to be created; for example, real time animation or trace file

generation.

3.3.4 Simulate Mode

The Simulate mode allows the simulation to be run and the graphical display of the

design to be animated. It also allows system parameters to be changed and timing diagrams

for system components to be viewed.

21 Usually HASE++ but Sim++ is available for running legacy code. In the future other options
may be made available (e.g. VHDL).

75

During a simulation run HASE writes an event sequence into an event trace file and

subsequently this trace can be played back to provide the user with a visual display of

activity in the system. The trace is produced automatically from the simulation model with

no need for the user to write explicit animation code. Activity in the simulation model can be

visualised in a variety of ways, e.g. through moving icons showing data packets flowing

between processors in a mesh or by changing a component's icon to reflect its current state.

The important benefit of the animator is that it lets the user check that the model produces

correct results. The animated output of a simulation run is controlled by a 'VCR like' panel

allowing the playing, searching/reviewing and pausing of the animation as requested. (Figure

23).

— Dlxi
Trace File

D ha e FTflIPLt As inple_arLhntodel1 	Change

Time

10
Speed

0,O,fluIIflIH,,iflIU;$IflU;I;HIU,flflht$l,Il,flbflflU,O.Ofl,fl,flhJHH,ttflflflhIDt 15 1:1

Figure 23 - The Animator Control Dialog

3.3.5 Experiment Mode

The final mode, Experiment, allows automatic multiple executions of the simulation to

be performed. with different parameter settings used in each execution.

This mode was provided as many of the measurements which users require involve (a)

making repeated simulation runs, using a different input parameter value at each run, and (b)

plotting graphs of some output values as a function of the varying input parameter.

,t1

In order to automate this process, an experiment dialog was created to allow easy

control of parameters and execution (Figure 24). The step field on the dialog allows

parameters to be varied by a given increment each iteration. The group checkbox can be used

to 'tie' together groups of related parameters that should be varied in lock step with each

other (this helps eliminate experimentation across irrelevant parameter combinations)

Once the multiple simulations have been performed, the generated trace files are

processed in order to generate appropriate Gnuplot [Williams95] or MS-Excel files of the

results.

E.uner0 Ntun Cuthee - teu 1 	 Oey 0

Vatr~ Range -
 -- 	 broup

step

,p4_I3unejn_Id_poce,un_rutJ 	Idt 	 j 	Ite 	 J 	l 	 r

traces - a run(1n tdpoceaun 	 114 CIBOk

VAR_ce_.fa_the_ec_n.) 	1 2 	 l 2 	 r

chebua_wlathejec_nat) 	12 	 0

Run] 	 [6p] 	- 	 Ck.se

Figure 24 - Multiple Experimental Run Control.

3.4 Anatomy of the RASE System

The various software components and data files required to support HASEs project

lifecycle are illustrated in Figure 25. The components fall into three broad categories, and are

described briefly in the three following sections.

3.4.1 RASE Core

The I-IASE core functions (shown in the blue box of Figure 25) include the EDL parser

(section 3.6 below), the HASE++ simulation engine, code generation routines and the GUI

VIN

based design window and animator. These functions are concerned with simulation and

manipulation of a HASE model via GUI manipulation

Another important function of the core HASE code is the production of simulation

output in the form of a trace file. The trace file records various events and state changes that

occur whilst a model is being executed. Users can also specify their own data to be output to

the trace file via the HASE++ command sirn trace o.

Figure 25 - HASE Software Architecture

78

3.4.2 External Tools

HASE provides several software components concerned with the analysis of model

execution output (contained in the green rectangle of Figure 25). Aside from HASE built-in

timing diagram facilities (which draws Gantt charts showing how an entity's state parameters

vary according to time) and the HASE animator, new tools have been added as part of this

research. These include the CommTrace module that allows the visualisation of

communication taking place at a given entity's ports, a model hierarchy viewer and library

management tools. These new tools are outlined in detail in Chapter 5.

3.4.3 Project Related Files

Various data files are used by HASE whilst performing design, simulation and

analysis. These are shown in the yellow rectangle in Figure 25.

Three files are used for model representation:

I. EDL: The Entity Description Language file contains a description of the logical

structure of the model (see section 3.6). One EDL file is used for each simulation

project.

ELF: The Entity Layout File details the model's on-screen representation

including entity topology, parameters to be displayed and link routing between

entities (see 3.6).

User Code: This behavioural (HASE++) code file is provided for each class of

simulation entities.

The other files used in a project's lifecycle are concerned with run control and post-run

analysis.

1. COMM: This special type of trace file records the messages transmitted between

the interfaces of all simulation entities. This file can then be used in conjunction

79

with the CommTrace tool to visualise the communication taking place between

entities. This file is not generated by default, rather the user specifies via the

simulate menu that a simulation run is to generate a communications trace file.

This helps avoid an unnecessary processing overhead.

lITER: This file represents the hierarchical structure of the model. It is used by a

hierarchy viewer to aid model navigation (see section 7.8.2).

PARAMS (or 'User parameters'). This file contains the current parameter values

for a model's entities.

3.5 Overview of Project Data Storage

During the lifetime of HASE, project data storage methods have changed several times.

Initially the only method of specifying the composition of a model was via a low-level C++

file. This file was linked into the HASE object code via a re-compilation of HASE itself (a

far from elegant solution!). Any modification of the model required 1-IASE to be recompiled.

This method is illustrated in Figure 26.

C++ Model 	 HASE
compile

Definition 	—VI (static model
[compiled in)

Figure 26— Original storage method.

In a later version of RASE, ObjectStore [Ostore93] was introduced in an effort to

investigate the use of object-oriented database technology for persistent storage (and

retrieval) of experimental data structures. Accordingly, HASE's GUI was updated to allow

users to interactively create/modify architectural models stored in a database. As the two

headed arrow in Figure 27 implies, this meant that any changes in the database model were

80

immediately available in the HASE environment (i.e. recompilation of HASE was

necessary).

HASE
ObjectStore -

HASE VManipulate Database
GUI 	Entities 	(Persistent C++

V 	Structures)

Figure 27 - Use of ObjectStore for model storage.

However, some users still preferred to specify their model's form by use of the C++

file. For this reason the C++ file based approach to model specification was reintroduced to

1-IASE environment creating the system illustrated in Figure 28.

This allowed for a hybrid model creation technique involving the initial specification

of a model by C++ (label 1 in Figure 28) which was then converted to a corresponding

ObjectStore database (label 2). Following the initial database creation, any changes made to

the model via the GUI (label 3) were only reflected in a database version of the model (i.e.

the C++ file became outdated).

C++ Model 	
Manipulate \ Database

Definition 	 GUI

	

create 	
Structures)

Figure 28 - Hybrid approach to model storage.

This hybrid model of model storage was the mechanism in place at the outset of this

research. This left the user with the choice of one of three design paths outlined above.

81

Namely, (I) a high level GUI based design technique with an ObjectStore representation, (2)

a low-level C++ input to the RASE system or (3) an initial C++ specification that was

converted to an ObjectStore database. Each of these approaches offered advantages and

disadvantages with respect to the others.

3.5.1 GUI based Approach

By use of the model editing facilities provided within RASE, the user manipulates on-

screen icons representing simulation entities. Relationships between entities are identified by

connecting on-screen ports together with communication links.

Typically these design layout tasks are handled well by such a high level interactive

interface as it removes the need for tedious trial and error programming when specifying a

design's on-screen appearance. This approach also allows a design to be conceptualised by

considering the components of a 'picture' rather than some abstract code fragment.

However, other tasks are not so well served by the GUI approach. For example,

entering information regarding link or state parameters requires laborious menu manipulation

(typically five or six menu commands to complete the addition of a simple link parameter).

Another major disadvantage of the GUI based approach was that the experiment was created

as a permanent entity only in terms of an ObjectStore database. This meant that there was no

easy means of re-creating the experiment if database integrity was breached.

3.5.2 c++ file based approach

Although this technique required a detailed understanding of HASE's internal

structures in order to describe an experiment in C++, it did offer various advantages over the

GUI based approach including:

82

• The ability to re-create a simulation should the experimental database be damaged in

any way.

• Allowing C++ constructs such as loops to be employed when creating multiple

instances of entities.

• Providing a terse, simple and text based input for specifying link, global and state

parameters.

Of course, this technique has limitations when compared to the GUI based approach

when we consider the ease with which a design layout is specified with the former technique.

3.6 Project Data Storage Solution

In practice, the performance of ObjectStore proved to be unsatisfactory as the size of

simulation models grew, both in terms of the storage space required and the time taken to

load an experiment into the HASE environment. This effect was particularly noticeable

when working with template based architectures. The commercial licensing restrictions

imposed by ObjectStore also limited the free distribution of HASE within the academic

community. However, the removal of ObjectStore meant that the original problem of project

storage, which this system had been introduced to overcome, had to be solved in some other

way.

The approach taken was to strike a balance between the expressive (but sometimes

laborious) graphical interface and the low-level (but flexible) C++ architecture design file.

The problem of devising a flexible simulation specification mechanism resulted in the

generation of the Entity Description Language (or EDL) [Coe97b]. EDL is a human readable

text file that describes (at a high level) the structure of simulation entities. EDL files are read

in by HASE (at project load time) and the architecture is created (in terms of C++ structures)

from them.

83

EDL has been implemented using Lex and Yacc [Levine92]. By specifying a file

containing regular expressions (which form the EDL language keyword and parameter

specifications) the lexical analyser (Lex) searches user input and executes C routines upon

pattern matches. Yacc is a parser generator that converts a context-free grammar (in this case

describing EDL) into a set of tables. These tables are used to automatically parse a given

input stream. Clauses in the grammar have an optional C routine associated with them, which

is executed upon an input stream match. This makes the construction of parse trees a

relatively simple task. In the case of HASE, the input stream presented to the Yacc generated

routines is a file of EDL keywords generated by Lex.

The process of EDL input to HASE model generation is shown in Figure 29. The full

EDL grammar is presented in this report as Appendix A.

EDL Based Model 	 I Tokenised 	 Parse 	Generate HASE
Specification. 	

LEX 	
EDL 	

YACC 	
Tree 	Data Structures

Figure 29 - EDL input mechanism

84

PROJECT
PREAMBLE
MANE "prjsimple"
DESCRIPTION ("Sender and receiver")

PARAMLIB
STRUCT(DataPacket, [RINT(ProcessorNo,O),RINT(NoOfBytes,l)]);
LINK(SimpleLink, [(DATAPKT,RSTRUCT(DataPacket,DP))]);

GLOBALS(RINT(PacketsToSend,2) ;RINT(PacketsReceived,2);

ENTITYLIB
ENTITY sender

DESCRIPTION ("Sender entity")
PARANS (RINT (delay, 1);)
PORTS (PORT (OUT, SimpleLink, portr);)

ENTITY receiver
DESCRIPTION ("Receiver entity")
PARANS (RINT (delay, 1);)
PORTS (PORT (IN, SimpleLink, portr)

LAYOUT
LENTITY sender SENDER

DESCRIPTION("Instance of sender entity")

LENTITY receiver RECEIVER
DESCRIPTION("Instance of receiver entity")

CLINK(sender.SENDER[OUT]->receiver.RECEIVER[IN],5);

Program 2 - Sample of EDL file

A typical fragment of EDL is shown in Program 2. This simple description defines a

model containing two entities - a sender and a receiver (the model is described textually by

the PREAMBLE section).

The entities are defined in the ENTITYLIB section of the EDL file. The specification

includes a short textual description, a parameter that characterises the entity (in this case

some 'delay' related information) and a description of a single communication port.

The ports are further defined as allowing connection to a link of type SimpleLink

that is defined in the PARAI'4LIB section of the EDL. The PARAMLIB allows the definition

of data structures and types that can be used in the construction of simulation models. In this

85

example. the structure of a data packet is defined and then this structure is bound to the

SimpleLink type. In essence, the EDL file describes the component's logical structure.

As mentioned in section 3.4.2, another file referred to as the Entity Layout File (or

ELF), complements the EDL file and contains information relevant to the physical display,

i.e., where components, ports and displayed variables are positioned on the screen.

Continuing our simple sender receiver example, Program 3 presents a very simple ELF file

for the sender/receiver model and illustrates how port information and entity co-ordinates are

assigned. Other, more complex facilities exist within the ELF format to allow the assignment

of animated icons, dogleg routed links and dynamic textual labels to simulation entities.

Figure 30 illustrates the on-screen rendering of the EDL and ELF files given above.

SENDER 	position (20,20)
SENDER port OUT side RIGHT position middle
RECEIVER : position (200,20)
RECEIVER : port IN side LEFT position middle

Program 3 - ELF Fragment.

_lnI XII
File Library Edit 	 Tools Help

\ 4d ' ie 	Burid 	S imulate 	Epterneril

Pioject None
Directory: None

Sender 	 Receiver

Design Status: Idle 	- - - 	 [Selected None

Figure 30— On-screen display of sender/receiver model.

86

3.6.1 Round Trip Editing

In keeping with the idea that some tasks are better suited to a graphical editor and

others to code manipulation, the RASE environment provides round trip editing.

This means that both the EDL and ELF descriptions can be edited via the GUI or a text

editor (both EDL and ELF are human readable) without concern for previous editing

decisions. The editing cycle (or round trip) available in HASE is illustrated in Figure 31

below.

HASE GUI
Manipulation of on-screen entities

- 	P
Load/Reload

"\

Project IW

and

EDL Ii
Edted text sanedtO
the EDL Pie and then
the current projects
reloaded'

ELF

Edified text 	àved t:
the ELF file and the
'reloadtrefresir' the

design window

Load Tent
Editor

Manipulation of EDL/ELF source

Text Editor

Figure 31 - Round trip editing of EDL and ELF files.

87

3.7 Facilities for Modelling Hierarchy

The hierarchy shown in Figure 32 represents a model of a communication system

consisting of two callers and a public communications network. This hierarchy shows the

relationship between all the model's entities.

HASE supports the notion of a model hierarchy in either (1) a graphical sense or (2) a

behavioural sense.

3.7.1 Graphical Hierarchy

Firstly, in terms of HASE's graphical interface, a model can be represented on screen

in a hierarchically structured figure. The mechanism for exploring this figure is provided by

'expand' and 'collapse' functionality in the GUI.

Model of
communication

[Caller: A 	L PSTN: A 	FCaller: B

[Comuter A Hem A

Figure 32 - Model Hierarchy.

Figure 33 and Figure 34 illustrate how the visual hierarchy is navigated by use of the

'expand' and 'up level' (i.e. close) menu commands. Note the entities visible on screen are

marked with a blue band in the corresponding entity tree. In addition, we see how HASE's

context sensitive menus change with respect to the levels of hierarchy (i.e. 'expand' is no

longer available at the leaf node entities).

Computer:
B 	

Modem:B

88

Model of
CoDE 	 communication

Caller: A 	PSTN: A 	Caller: B

/\

Computer: A 	Modem: A 	 Computer: B 	Modem: B

ls H&

v avaleJ 	Boid 	 Eçrter

Pra1ect mode6
Diectoiy

Satu& Ida

Figure 33 - The entity tree before an expansion operation.

89

OIAR
phase 	 TaD

II

KEY 	 Model of
coce 	 communication

Caller: A 	PSIN: A 	Caller: B

/\

Computer: A 	Modem: A 	 Computer: B 	Modem: B

Ecpefmert

Protect nxxieE
Qiectcxv d'Hase\Pro4edAMode

: S.Wkb StatLw Ie
	

S&eced

Figure 34 - Entity tree after expansion.

3.7.2 Behavioural Hierarchy

The second hierarchical notion supported by BASE is that of behavioural code

placement. By use of the 'simulate at this level'/'simulate at lower level' toggle the user can

indicate which components in a model's hierarchy should execute their behavioural code for

a given simulation run. Figure 35 shows the parameters dialog for one of the 'Caller' entities

in the communication example. The check box labelled Simulate Level allows the user to

specify whether code provided at the 'caller' level of the hierarchy should be executed or

whether lower level I-IASE±± code should be used provided in the 'computer' and modem'

entities.

I 	 - Dlxi

ise FLame

Irrta4am

SgruLate Leve f LOWER

Paameres V&ue 	 D 	MO& 	 Ep Tm

CLEAR 	 J
hu

OK _________

Figure 35 - Selection of behavioural code.

Prior to the work described in this thesis, much use had been made of the visual

hierarchy but none of the simulation code hierarchy. In all previous simulation models, code

had only been provided in the leaf nodes of the entity tree.

3.8 Summary of HASE Development

This final section summarises the contributions made by the author to the current

version of the I-IASE environment.

At the start of this research, the HASE project lacked facilities for a textual

representation of a model (and consequently round trip project editing). The EDL (see

section 4.1) language was devised and implemented 22 to address this deficiency. EDL also

provides a target model representation for the MEDL modelling language.

22 The implementation of EDL was performed in collaboration with Paul Coe (HASE group).

MEDL is the representation used in the modelling tools developed as part of this

research. The modelling tools include an inter-entity communication analyser (section 6.6.1),

a hierarchy viewer (section 7.8.2) and library management tools (chapter 5). Associated with

these tools are two new file types COMM (used by CommTrace) and HIER (generated by

the hierarchy view).

The final impact of this research on the HASE software package was the integration of

a new modelling mode within the main RASE GUI. The HASE validation mode (section

3.3.2) was added to allow a development path between the main HASE simulation window

and the external tools.

92

Chapter 4

The Entity Interconnection Problem

This chapter explores the problems associated with providing facilities for both entity

reuse and abstraction in RASE. By examining current modelling practice and investigating

why levels of component reuse have been low in previous HASE-based projects we show

how the areas of entity reuse and model abstraction are closely related.

We propose a system that attempts to facilitate the loose coupling of simulation

components therefore aiding both reusability and model abstraction. Although HASE is used

here as the vehicle for discussion, the following applies equally well to other event—driven

simulation environments.

4.1 The HASE DASH Node Model

As a vehicle for this exploration, we use a small (but typically constructed) simulation

model based around a subsection of a large HASE simulation model of the Stanford DASH

architecture [Williams96]. The model serves to introduce typical EDL constructs and model

features (such as ports, links and entities).

Our demonstration model represents a single processing node of the DASH

architecture and is a modified version of a model in regular use as an interactive tool for the

teaching of an undergraduate course in computer architecture [Coe96, Coe97]. The DASH

processor node is composed of a MIPS R3000 processor, primary and secondary cache

memories and a bus interface [Lenoski92]. In order that the node can be exercised, we will

93

also represent a generic bus and memory unit. The model configuration and communication

paths are illustrated in Figure 36.

PCache

Figure 36 - DASH Processing Node Configuration.

As described in section 3.6.1 the designer of a HASE model can use both the GUI and

the raw EDL files to specify a project design. In either case, the model will be represented on

screen via a diagram and textually in an EDL file. For the purposes of this section, we will

discuss the essential elements of the EDL representation of the DASH node mode 123.

4.1.1 Introduction to EDL File Structure

EDL models start with a PREAMBLE section that defines meta-information about the

project such as author, version, code location (as absolute paths) and a brief description. For

a full explanation of the preamble (and all other) EDL syntax, readers are referred to

[Coe97b]; a grammar for EDL can be found in Appendix A of this thesis.

Following the preamble, the EDL file is divided into four major sections. Each of these

sections is described below.

4.1.2 EDL Parameter Library Definitions

The first EDL section following the preamble is the PAPAMLIB (or parameter library).

This section of EDL allows the definition of custom data types; EDL supports certain

23 For completeness, the entire EDL file for the DASH node model is given in Appendix C.

94

primitive data types as standard (integers (RINT), floating point numbers (FLOAT), character

strings (STRING) and arbitrarily large integers (HINT) are all supported).

An example of a user defined parameter from the DASH node model is the

mips state enumeration which defines the set of states that the MIPS processor can

enter during a simulation run (see Program 4).

ENUM (mips state, [N WAITING:mips waiting
MRUNNING : mips running
N STOPPED:mips 1);

Program 4—mips_state enumeration.

More importantly, in the context of this work, the parameter library is the place in

which communication link types are defined. The definition of link data type involves

creating the data types to be passed along a link and then binding these types to a LINK

parameter. Later we see how these link definitions are in turn bound to entities' ports.

-- Struct definition for simple data packet and its associated link param

STRUCT (plstruct , [RINT (p1_address , 0)
RSTRING (plrw,
RSTRING (phd,

LINK 	(p1—link , [(DATAPKT , RSTRUCT(plstruct, DP))]);

Program 5 - Definition of a link parameter

Program 5 illustrates the creation of a data structure (STRUCT) composed of one

integer (named p1_address) and two strings (pl_rw and phd). Once defined, this

structure is made available through the parameter type pl_struct. The creation of a link

type (named p1 link) which is capable of passing messages of type (plstruct) is then

made by defining a packet type name (in this case labelled DATAPKT) and associating it with

95

an instance of the structure plstruct 24 . The resulting data structure is illustrated in

Figure 37.

Binding of pi_struct
to p1_link

p1iink—.------

pi_struct

INT p1_address

*[STRING pl_rw

[iiIN
G 	 id STRING

 37 —p1_link Structure.

4.1.3 EDL Global Declarations

The next section of an EDL project definition is the declaration of a project's

GLOBALS. These global variables are accessible by all entities in a simulation model.

Program 6 shows two of the global variable declarations for the DASH node model

(representing the delay for a MIPS processing cycle and the size, in lines, of the primary

cache respectively).

GLOBAL S
RINT (mips delay , 1);
RINT (p_cache_size , 8);

Program 6 —Global Variable Declarations

24 Note the STRUCT is referenced by the RSTRUCT command

061

4.1.4 EDL Component Definitions

The EDL description continues with the definition of the entity library (ENTITYLIB).

This section is further divided into the specification of atomic entities and composite entities.

Atomic entities are defined by specifying a type name, short description, local

parameters (for use only by this entity type) and any communication ports. Program 7 shows

the atomic entity definition for the MIPS processor (actually the MIPS entity is an abstract

mechanism for address generation, it does not model specific features of the MIPS real

processor, rather it provides a stream of address requests via a predefined trace - see section

4.2). In this example, the previously defined link parameter (p1 link) is bound to the port

named p cache. EDL also allows the specification of a bitmap name that will be used to

represent the port on screen; in this case, an icon file portdot . bmp is specified. HASE

automatically checks for the existence or either a . gi f or .bmp file (i.e. specification of the

extension is implicit). If no icon is provided HASE provides a default image.

ENTITYLIB
ENTITY mips

DESCRIPTION ("Nips Address Generation Box.")
PARANS

RINT (TC,O);
RINT (TRACES,0);
RARRAY (memory trace,mem trace);
RENUM (mipsstate,curstate,O);

PORTS
PORT (p-cache, plunk, portdot);

ATTRIB ()

Program 7 - Typical Atomic Entity Definition.

Composite entities are defined in terms of their sub-components. Sub-components are

declared in the DESCENDANTS section. The child entities are listed along with their

coupling specification. Whilst the syntax of the coupling command (CLINK) is 'portX ->

97

portY' nothing about the direction of traffic on the link is implied; all links are bi-

directional.

COMPENTITY node
DESCENDANTS

CHILD (mips , MIPS , ATTRIB
CHILD (p_cache , P CACHE , ATTRIB
CHILD (s_cache , S_CACHE , ATTRIB
CLINK (mips .MIPS [p cache] ->

p_cache. P_CACHE [mips] , 1);
CLINK (pcache. PCACHE[s cache] - >

scache.SCACHE [p_cache], 1);

DESCRIPTION ("Node Containing MIPS box and caches")
PARAMS
PORTS
ATTRIB

Program 8 Composite entity Definition

Closely related to the coupling specification is HASE's mechanism for hierarchical

model construction. This mechanism is referred to as 'free-port resolution'; when an EDL

project file is parsed (or when ports and links are graphically manipulated in HASE's design

window) a list of all ports in a composite entity's children is created. As the coupling links

are formed between the various child components, each linked port is removed from the port

list. After all couplings for the composite entity have been processed, any ports left on the

list are considered 'free'. These ports migrate to the higher-level entity and form the

input/output ports for the higher-level structure. This situation is illustrated in Figure 38

where we see composite entity XYZ inheriting the free ports of children X, Y and Z.

98

h_____
input 	L1 	XYZ 	 output

LocaportsThnksIosth
• 	-7 abstraction. 	/ \

input
	 output

Figure 38 - HASE's 'free-port' Mechanism.

4.1.5 EDL Layout Definitions

The final section in a project is the LAYOUT declaration. This section specifies

instances of the entities previously described in the entity library. Essentially this section

defines the simulation model structure. A section of the DASH node layout declarations is

shown in Program 9. Instances of entities are linked to each other using the CLINK

command in the same way that composite entities are formed.

LAYOUT
LENTITY node NODE

DESCRIPTION ("Single DASH Node")
ATTRIB ()

CLINK (mpbus .MP BUS [to_c_memory]->
cmemory.CMEMORY[frommpbus] , 1);

Program 9 - Layout Declarations

4.1.6 Communication Nomenclature

The DASH node demonstration model is hierarchical in structure. In order to describe

the relationships between the model's entities we now define some general terms with which

to describe entity communication mechanisms.

Figure 39 shows a generic entity 25 (labelled EA(o)) and the various terms associated with

its communication mechanisms. In the figure, entities EA(o), EB(o) and Ec(o exist at the same

level of abstraction (some arbitrary level '0')

Pab 	 Pab'

0

L A0
	

Ec(o)

Pab
	 :IBC

En

EB(-l) P C
4

Figure 39 - Identification of HASE Model Attributes

Entity ports are labelled P,, where x is the port name. Ports are connected together by

links. Links carry data between ports according to some data packet definition and

programmer defined protocol. For example, ports PA and PB communicate using protocol Pab.

We term the set of ports, links and protocols, which connect together two entities as the

interface. For example, entities EA(o) and EB(o) have an interface 1AB•

As HASE supports model hierarchy we can see that in our example EB(o) has two other

representations. These are a more abstract version Es(l) and the more detailed representation

EB(1). We refer to entities that belong to the same level of abstraction and which are

connected to each other, as being horizontally linked; we refer to this sub-set of an entity's

ports, protocols and data structures as being its horizontal linkage. Similarly, entities linked

across different levels of abstraction are said to be vertically linked; the communication

attributes of these vertically linked entities is termed the 'vertical linkage'.

4.2 Summary of DASH Processing Node

Having examined the structure of a project's EDL definition and the general

communication mechanisms used by a HASE model, the details of the DASH node model

will now be consolidated.

Each entity in a HASE model has a behavioural description (coded in C++ with

HASE++ extensions as described in section 3.2.2). This code manipulates the parameters of

an entity and co-ordinates entity communication. The following list describes the behaviour

of each of the DASH node's entities.

. MIPS Processor: This entity reads a previously created text file description of

memory addresses and access types (read/write). Each line of the input file consists

of a triple specifying an address, an identifier for instruction or data access and the

access type (read/write) 26 . Rather than being a detailed processor description, the

25 I.e. the entity is not DASH node specific.
26 In fact, the model only ever uses data references as only the data path is modelled.

an

entity simply issues read/write requests according to the contents of its input file (a

sample input file is included in Appendix Q.

• Primary and Secondary Caches: The caches are the most complicated entities in

the DASH node simulation. The primary and secondary cache models describe

direct-mapped write-through and direct-mapped write-back caches respectively.

Each contains an array parameter to store memory contents and each has a state

parameter used to track the cache's state (hit, miss or idle).

• Node: The node entity is the only composite entity in the model. It has no

behavioural specification itself. It is used as a useful container for the lower level

MIPS and cache entities. As such, it is used in the model's graphical display to

'hide' lower-level communication detail; allowing (where appropriate) the user to

concentrate on node to memory communication across the bus.

• Bus: The bus is simply a message forwarding entity. Memory and cache bound

packets are forwarded across the bus after a parameterised delay.

• Memory: The memory unit is modelled as a simple fixed delay. It also has an on

screen display reflecting whether the last access was a read or write. Interestingly,

the memory unit does not model addresses or values. This is because the DASH

node model is primarily a vehicle for cache evaluation and as such, the main

memory contents do not need to be modelled.

4.3 Model Reusability

One of the main goals underlying HASE's inception was to provide a high level of

model reusability [Hug99,Ibbett96]. Accordingly, HASE's main support for model reuse was

to be a component library from which simulation entities could be taken and used in new

simulation models.

102

In trying to provide library facilities within HASE, the issue of reusability has been

shown to be problematic. In early versions of HASE, the user employed a graphical user

interface to select components from either a global library of "approved" components or a

private local library. In fact, this system provided little more than a solution to component

storage and offered no real facilities for integrating stored library components into new

simulation models.

In the present version of HASE, models are specified via an EDL file. Consequently,

all entities have a text file based representation making the storage issues addressed in early

library interfaces trivial (a component can be inserted/removed into/from an entity library

file via a text editor's cut and paste facilities!).

However, the present notion of a HASE library remains nothing more than a way to

collect entities in a single place and consequently offers little to encourage model reuse.

4.4 The Problem of Message Overloading

HASE offers an open message passing mechanism that allows any C++ data structure

(modelled in EDL) to be passed between entities via the event queue.

This affords the programmer flexibility to specify detailed communication protocols in

the behavioural code definition of connected entities. However, as HASE offers nothing

more formal than HASE++ macros to facilitate the transport of messages between entities

(i.e. via the event queue manipulation macros SEND PKT () and GET NEXT ()) it is

possible for the programmer to specify a very complex inter-entity protocol based upon

specific values passed in event messages. These messages form the inter-entity control

103

mechanism for a RASE simulation 27 (intra-entity control being specified in the C++ 'body'

of an entity).

For example, in section 4.1.2, we saw the definition of the link type pistruct (in

the full scale DASH multiprocessor simulation, this was one of several link types used). The

first field of type pistruct contains a memory address value. The second field actually

has multiple uses; either marking a packet as a read/write request/reply (as originally

intended) or overloading the field to take some control code value (used to co-ordinate the

protocol, or change the state of another entity). The third field is similar to the second in that

it specifies whether a request/reply contains an instruction/data item or some control code

information.

The use of communication structures in this manner requires the entities at both ends of

a communication link to have an intimate knowledge of the way in which the other remote

entity uses the message structure fields. For example, if the read/write field is overloaded

with the value 'reset', because (say) the field was freely available to the entity's

programmer, then the receiving entity must be able to understand what the remote entity

means by 'reset'.

The assumption that certain fields will be used for more than one type of data (e.g.

Read-Write/Instruction-Data classification and Control data) is not unrealistic; in fact, the

vast majority of HASE models currently fit into this category.

27 Excluding communication via global variables.

104

4.4.1 Tight Coupling of Entities (Low levels of horizontal abstraction)

This thesis proposes that this ad hoc use of message structures is central to the problem

of reusability because it limits the ease with which an entity can be removed from a model

and another inserted in its place.

As HASE has previously placed no restrictions on the values of a field other than by

the data types described in EDL, the encapsulation of an entity's communication protocols is

difficult. Such entities can be referred to as being 'tightly coupled' (i.e. the behaviour of an

entity relies on the way in which specific message structures are used in remote entities).

For example, suppose one of the DASH node entities was removed from the model and

stored in some form of library facility for later reuse. Any model attempting component

reuse must ensure that entities connected to the library-based component conform exactly to

the protocol implicitly specified by the behaviour of the library component. All message

structures generated by and received from the library-based entity must be used in the

'appropriate' manner.

This problem is concerned with the level of horizontal abstraction in the model; i.e. the

level of independence an entity has from its communication interface(s).

4.4.2 Current Tight-Coupling Solutions

Of course, it is possible for a modeller to examine the behavioural description of a

stored entity and carefully form an understanding of its specific message structures and

behaviour. However, as HASE affords the programmer complete flexibility over the way

messages are structured, individual programming styles and practices often make the task of

understanding protocols tedious, time consuming and error prone. Typically, stored

components will require a degree of reengineering in order for them to work in a new model.

105

Another approach to overcoming the tight coupling of simulation entities is to build a

set of compatibility interface entities for stored components. These entities sit between the

stored entity and its remote communication partner(s). The compatibility entity simply acts

to translate messages passed between communication entities. This approach still requires a

full understanding of message structure use and protocol timing, however it does allow the

stored entity to remain unmodified and helps separate the concern of entity communication-

compatibility from that of behaviour. This situation is illustrated in Figure 40 where entity

'A' has been extracted from some library system and inserted into a model consisting of

entities 'F' and 'C'. Entities used to convert communication structure fields have been

inserted between 'F' and 'A', and between 'C' and W. This approach will incur a

simulation overhead in converting message formats.

Neither of the above solutions is effort free; whilst the latter removes some of the need

for direct modification of the library component's behavioural code, a full understanding of

the idiosyncrasies of the component's communication mechanisms is still required.

In object-oriented software engineering, it is possible (at least in theory!) to substitute

different versions of an object with relatively little effort. The mechanism that permits this is

the formal method declaration. Providing each substituted object has a matching method

name (and suitable parameter list), objects can interact with each other. Of course, no

assumptions can be made about the correctness of an object's behaviour. In HASE, there is

no support for restricting 'available' methods in terms of inter-entity communication.

10161

Stored Entity A

Message Type Message Type
A4 A2

Message Type Message Type
Al A3

Library
Facility

Model Entity F

assag
F

ort 	 Port

l~t3
F Behavioural
Description

Model Entity C

Message Type

Port
Message Type

Al

ABehaoural J 	

L 	Li
Compatability Entity Cl

Message Type 	

p

11 Message Type 	- -

A4 	Port

Message Type 	 Message Type
Fl 	i--"f 	Al

Cl Behavioural
Description

Compatability Entity C2

Message Type

	

Message

::

 Port

A3 	 Al

C2Behavioural
Description

Figure 40 - Use of Compatibility Interface Entities.

4.5 Use of Global State

Aside from the level of horizontal abstraction available at inter-entity interfaces,

another entity reuse problem currently encountered in HASE is reliance upon global state

information. We saw in section 4.1.3 how the DASH node model uses the EDL GLOBAL

declaration to define global parameters within the model. For example, the declaration

RINT (p_cache_size , 8);

is used to declare the size of the primary cache in lines. This variable is then open to any

model entity wishing to base calculations upon the size of the cache. This is another clear

breach of data encapsulation. Another typical use of the GLOBALS declarations is to assign

lift

ID's to a set of entities of the same class (e.g. to assign a unique index to each processor in

an array). In order that an entity that references a global variable be reused in a different

model, the new model must provide the same global variables. In addition, access to these

global variables must be identical to that found in the original entity definition. Misuse of a

global variable (i.e. non-compliant access) may result in a modelling error. All recent HASE

models have made extensive use of global variables for high-level model co-ordination.

Again, in many high-level object-oriented programming languages the use of global

variables is disallowed to overcome similar problems.

4.6 Use of Non Port-Based Communication

The problem of encapsulating communication is further exacerbated in some HASE

models by the programmer's decision to circumnavigate the port/link constructs entirely.

This is possible by scheduling events to entities directly, via use of the

sim schedule hand sim.getentityid(") methods ofHASE++.

As each entity in a HASE model has a unique identifier (a character string

comprising type name and instance name - see section 3.2.4) it is possible to obtain a

pointer 28 to any simulation entity (given prior knowledge of an entity's name) via the

sim. get_entity_id () method. Having obtained a pointer to a remote entity, a

message can be sent to it by use of the sim_schedule () method (using the previously

obtained pointer as a parameter). The event will be received, at the scheduled time, by the

remote entity, however it not is received at a specific port. The event can be retrieved using

the usual GET—NEXT (ev) macro (Typical behavioral code for this approach is given in

28 A pointer in this sense is a HASE++ sim entity_id typed variable.

108

Program 10). The from_port (port) primitive described in section Chapter 0 will not

have any value for an event transmitted in this manner.

This communication mechanism is illustrated in Figure 41, which compares standard

port based event transmission (labeled method 1) with the non-port based communication

(method 2) described above.

// Find the id of the entity to send to
simentityid ei = sim.get entity id("ENTITY NAME");

//send the event
sim schedule (ei 3 O. 0, DATAPKT, SIMPUT(tDataPacket));

Program 10 —Use ofsim.get_entity_idO.

One possible motivating factor for programmer's to use the above communication

method is that the on-screen complexity of a design is reduced (links need not be drawn, and

events not animated). However, this approach requires an entity's behavioural code to have

'hard-coded' knowledge of communication partners (i.e. their type/instance names).

Encapsulation of an entity that employs the above method is difficult, as the entity is

required to store knowledge of other objects in the model. The redeployment of such entities

will necessarily involve modifying the entity's behavioural description.

IDJ

Entity

Use of ink resolves
the port in the remote
entity which will

, receive the event

OuT IN

Link
Event Placed On
Event List with

Method I

Entity A

Form data packet
structure

Bind message
structure to an

event

Send to known
local port name

OUT

Method 2

GET NEXT(ev)
Macro

Form data packet
structure

Non Port Based
Bind message Communication

structure to event
to an event

Get the entity ID of
known entity 'B'

return own Entity
ID

Send to known
remote entity ID

Event Placed On
Event List without

Port ID.

Receive Event via
GET_NEXT(ev)

Macro

Figure 41 - Comparison of Port and Non-Port based Communication.

4.7 Reusability and Vertical Linkage

The ability to easily replace an entity is desirable not only in terms of component reuse

but as an enabling method for hierarchical modelling. Such an environment requires that a

model can reflect a real world system at varying levels of abstraction. It is advantageous if

the reconfiguration of a model into various abstract representations is a simple procedure. In

HASE, the reconfiguration of an entity abstraction hierarchy results in a flat simulation

model. This is because HASE generates hierarchical models using the composition relation

(see section 1.3.3). The task of forming a new entity composition is essentially the same task

as inserting library components into an existing model (i.e. a subsection of the model is

replaced by different entities).

By using entities that avoid the trappings of tight coupling (as described in sections

4.4-4.6) it should be possible to loosely couple entities not just horizontally but also

vertically (across multiple abstractions).

4.7.1 Hierarchical Modelling in HASE

The current version of HASE allows models to be generated at different levels of

abstraction via the 'Simulate level' switch on an entity's 'parameters' dialog (section 3.7.2).

The state of the 'Simulate level' switch, combined with the 'build model' command, forces

code to be compiled for a particular combination of entity abstractions. Figure 42(a) and (b)

illustrate the C++ files generated for two different abstractions of model 'M'.

Whilst HASE provides facilities for model composition and generation, no 1-IASE

project to date has used behavioural code at more than one level of abstraction.

Conversely, one of HASE's most well used features is the hierarchical model display.

In a simulation supporting the investigation of various combinations of parallel architectures

and algorithms [lbbett96b,Ibbett97], it was used to great effect by reducing the complexity of

a model's on-screen design, allowing users to concentrate on (say) the global partitioning of

an architecture's resources rather than lower level communication detail. This mechanism

has been used in various other projects in a similar way [Williams96, Coe95, Rafferty97]

HASE therefore supports two types of design hierarchy - an on-screen, interactive

representation of a model and a behavioural description of a particular model abstraction.

This Level 	 Code Generated
Lower • M 	 A1.cpp

A2. cpp
B.cpp

This Level 	 This Level

Lower • A 	 B Lower

Al 	A2 	BI 	B2
This Level 	 This Level

Representation 1

This Level 	 Code Generated
Lower • M

A. cpp

- -
	 B.cpp

This Level • 	I 	 This Level •

Lower 	A 	 B Lower

Al 	A2 	Bl 	B2

Representation 2

Figure 42 - Generation of Code According to Abstraction.

112

4.7.2 Simulation Model Aspects

The ability of a model to represent different hierarchical relationships (e.g. graphical

and behavioural) is discussed by Luna [Luna93] and a useful taxonomy of so-called 'model-

aspects' is described. The four model aspects identified by Luna are outlined below:

System Aspect: This is a preconceived model of the system - based on observations.

Typically, this is manifested as the modeller's mental model of the real-world

system. It is this aspect where the modeller considers the hierarchical structure of the

real world system.

Representation Aspect: This is the expression of a model via some form of

notation. This could be graphical (an on-screen figure) or mathematical (series of

equations). The representation presents the model to the user in a readily

comprehensible form (usually abstracted away from actual implementation details).

Implementation Aspect: This is the representation of the model as some form of

computing device implementation (e.g. the model's source code).

Organisation Aspect: This aspect refers to the organisation of a model's

implementation. This is typically concerned with the simulator or (as in the case of

HASE) the simulation environment and its relationship with a model's components.

Luna relates these model aspects to the four types of hierarchical relation described in

sections 1.3.2-1.3.5 stating which relation(s) can be applied to the various aspects. The

applicability of the various relations to the model aspects is given in Table 2.

Model Aspect 	Representation 	Composition 	Substitution 	Specification

System

Representation 	X 	 X

Implementation 	 X

Organisation 	 X 	 X 	 X

Table 2 - Hierarchical Relations and Model Aspects

113

4.7.3 Hierarchical Relations and Model Aspects in HASE

In HASE, the ability to manipulate the model's hierarchy graphically (allowing

exploration of a sub section of interest to the modeller) is an instance of the representation

relation applied to the representation model aspect. This relation/aspect combination is the

one most commonly found in simulation environments. For example, Orca Inc.'s VSE

(Visual Simulation environment) [Orca97] allows the construction and organisation of a

discrete-event simulation model via on-screen entity manipulation. VSE allows several

entities to be 'grouped' together and represented by a single meta-icon, a model's structure

can then be defined in terms of these higher level constructs. However, VSE only defines

simulation behaviour in the lowest level entities in the graphical hierarchy. This use of a

graphical design hierarchy and a 'flat' behavioural description is also employed by the

SIMAN/Cinema package combination and in MODSIMIII (see section 2.5.4).

Whilst the combination of the representation relation and representation aspect allows

manipulation of a hierarchical 'view' of a model, it is important to note that executable code

only exists at the leaf nodes of the graphical tree.

In addition to this graphical hierarchy, HASE allows the specification of different

abstract behavioural representations of a modelled system. This is facilitated by the

substitution of a composite entity for several (atomic or composite) lower-level entities. In

terms of Luna's taxonomy, this is the use of the substitution relation in the organisational

model aspect. However, Luna notes:

"It appears, however, that organisation of model elements by

substitution, so that a user may select one of several elements based on the

desired simplicity or complexity, still needs to be implemented."

114

Clearly, HASE supports the structures needed for the substitution relation, however

this facet of HASE remains unexplored due to the difficulties associated with tight entity

coupling.

4.8 Related Research

The problem of creating a development environment supporting model reuse is not

new and has been addressed in other projects. The following sub-sections outline various

previous research efforts that go some way towards offering a solution to the problem of

model reuse.

4.8.1 Model Component Representation.

At the University of Manchester, an investigation into methods for facilitating model

reuse proposed the use of an object-oriented database as a model repository and a wrapper

front-end designed to wrap/unwrap model components depending on the requirements of a

programmer's command/query [Lee96].

One of the main underlying concepts used in the design of the model repository based

system was that:

"To fully support model generation through the use of a model library,

the atomic model component should be able to represent sufficient

knowledge about its utility and areas of applicability, and should have some

mechanism to assist in fulfilling a modelling decision."

This requires that, unlike most conventional simulation models that specify only the

behaviour of a component, both interface specification and some indication of intended

usage be given.

HMI

Lee and Zobel describe three knowledge representations (originally described in

[Gruber92]) that can be added to a model/library component in order to aid in the selection

of components for a new model:

Applicability Conditions: If these conditions hold; the behaviour represented in

the component will occur. These conditions are generally specified by two

subtypes:

. Structural preconditions, which describe the data-types and configurations

under which a model will operate (i.e. the environment into which it must be

integrated).

. Behavioural preconditions which state the dynamic conditions under which a

model component operates (i.e. a specification of the acceptable input to a

model in order that the expected behavioural output be produced).

Behavioural Representation: This specifies how the real world entity reflected in

the model is represented. Typically, a component's behaviour will be either discrete

or continuous.

Model Selection Heuristics: These are used to guide a search of the model

repository in order to find components suitable for (re)use in a new project. The

heuristics generally specify domain-specific information which can be used in

deciding the level of applicability of a given repository component.

In the current version of HASE, there is no library functionality other than

save/retrieve. Ideally, it ought to be possible to select suitable components from alibrary

based on the modelling problem in hand. For example, in a memory hierarchy simulation

that includes a cache unit, a designer should to be able to select suitable substitute cache

components from a library. This would require the library to hold some form of 'knowledge'

about the components it contains (such as a component's input/output facilities and the

domain of its intended use). Essentially there needs to be some way for HASE's library

facilities to classify components available for use.

4.8.2 Interface Oriented Classification

At Daimler-Benz similar concepts to those expressed above regarding model

classification (according to structure and available knowledge of entities) have been

expressed as extensions to the well-known DEVS (Discrete Event System Specification)

formalism.

DEVS is a set-theoretic formalism that specifies discrete-event models in a hierarchical

modular form [Zeig1er84,Zeigler90]. In DEVS, models are either atomic (i.e. describe a basic

system component) or coupled (which define more complex system components in terms of

atomic models). Coupled and atomic models may be used as sub-components in new models;

DEVS models are hierarchical in structure.

Thomas [Thomas94] explains that whilst DEVS models contain both behavioural and

structural knowledge, the effective re-use of models requires a third type of knowledge -

taxonomic. Taxonomic knowledge represents the common properties of models and the

propagation of these properties through inheritance. By using the taxonomic information,

models can be ordered into classes that aid the selection of models for reuse in different

projects.

More formally, a class of models M is a subset of all models M in some context. The

class is identified by its name c that is a member of the set of all names C. In order to classify

a model, a classification criteria is given via a functionf. This function checks all models

under consideration (say in a given library) for the properties of interest.

f:M—+C and M={meMIf(m)=c,cEC}

117

In typical simulation systems, models are implicitly classified according to their

implementation (i.e. they are in the same class if their implementation is the same). This

classification criteria is of little use when considering model reuse - rather (Thomas suggests)

we are more interested in which inputs a model can process and the corresponding outputs a

model will produce. These details can be obtained by examining a model's interfaces.

This classification lends itself well to the DEVS formalism in which atomic models are

described by the following:

. X: The set of input ports through which external events are received.

. Y. The set of output ports to which external events are sent.

. S: A set of state variables and parameters (DEVS models usually have at least

two state variables: phase and sigma. The model stays in current phase until

time sigma has passed).

. A time advance function r used to control the timing of internal state

transitions (when the sigma state variable is present this function returns the

value of sigma).

. State transition functions S specifying the next state assumed by the model on

the next internal or external event.

. An output function X that generates an external output before an internal

transition takes place.

The model can therefore be described by the structure:

M =(X,Y,S,8,2,r)

Coupled DEVS models are described by a set of component names D and the

corresponding set of models {M,}. Coupling of the model's components is specified by a set

of influences (output to input port mappings) I, a set of output/input relations Z jj for

118

component/influencee 29 pairs and ç a tie-break select function (this function embodies the

rule employed to decide which component is allowed to carry out its next event). A coupled

model can be described by the following structure:

N

DEVS (like HASE) uses the notion of ports to structure input and output to/from a

model. The input (X) and output (1') sets of a model can be described as follows:

X{(n, v)l nE Nx, vE V} and

Y{(n,v)jnEN,vEV}

Where NV and N' are the sets of input and output port names and vEV is the information

represented in the messages (i.e. the external events). Whilst this approach to structuring

input and output provides a sound mechanism with which to formulate inter-model coupling,

we cannot infer anything about the correctness of the linkage between two ports in a coupled

model because the only knowledge of the port structure is whether a port is used for input or

output.

In an effort to address this problem, Thomas suggests the use of typed inter-model

messages. Each message is formed by a triple (n,u,v) where n is a port name, u is a message

type name and v holds a value within the type u's range.

Using this message-triple notation the input and output sets (X and Y) of a model can

be described as:

X = {(n,u,v) I n e NX,u E U,,v E J/} and

Y ={(n,u,v) I n E N,u e U,v E V}

29 An influencee is a subcomponent that will receive the output of a component.

119

where N' and N' are the sets of input and output port names respectively. Thomas assumes

that types with identical names have identical ranges and the range of a type does not change

with respect to time.

We can now describe all valid input messages to the model along with all possible

output messages a model can generate by:

J_<pXpY >

where 	p" =< NX , {U In c= NA'} >is 	the 	set 	of 	input 	ports 	and

pY =< N',{U In e N Y) > is the set of output ports. The structure I is referred to as the

model's interface.

Thomas goes on to show how the interface of a coupled model may be specified by

examination of its constituent components' interfaces.

Finally, relations that can be used to classify models according to their interface are

given. Models can be placed in the same class M if their interfaces are equivalent, i.e.:

	

A,B e M 	= 'B = 'C

Ordering of models according to their classification is also possible. For example, if

some classA contains the interface of another classB, the relationship between the classes can

be described by the ordering relation:

'c/ass/I 	'classil

This ordering relation can be used to classify models in a similar way to the inheritance

properties of objects in languages such as C++ and Java. For example, "classB is derived

from classA".

We believe that mechanisms based upon the techniques developed by Thomas could be

applied within the RASE environment to aid the modelling process; firstly by providing a

method of checking a link's syntactical correctness (allowing only ports of compatible types

120

to be connected) and secondly by facilitating interchangeability testing. This testing would

identify cases where models can replace other components in coupled models without a

change of the coupling (i.e. where substitution is possible).

4.8.3 Entity and Method Construction Techniques

Whilst sections 4.8.1 and 4.8.2 discuss possible entity storage/retrieval techniques and

methods for ensuring entity interface compatibility, we still need to consider how the internal

code structure of an entity can aid the practical implementation of such techniques.

In the case of HASE, simulation code is written in C++ (with HASE++ library

extensions). However, the use of C++'s object-oriented techniques is somewhat restricted in

the HASE environment. This is because inter-entity communication takes place via the

enforced port/link constructs rather then by object method invocation. An investigation into

using C++ to provide generic simulation classes was completed as part of an investigation in

performance modelling using object-oriented execution-driven simulation at North-Eastern

University [Sampogna96]. In this work, models for generic simulation components are

created as an abstract base class and specific experimental sub-classes are derived from this

base class.

121

protected data

public functions

CacheO 	 CACHE
constructor 	 Base class for all 4 	

ride. Size

virtual void 	 types of cache

	

I41 	Tag Size okkUpEntryO 	 i- *

Extended in

Implemented in 	 0.

protected data
TWSA_CACHE

Stats M Derived class for 2-
 way set associative

111. 	 cache

Figure 43 - Using Abstract C++ Classes to Aid Simulation Reusability

To illustrate how the C++ language facilities support this modelling approach, consider

Figure 43. A base class CACHE is provided with various protected data members

representing attributes of a generic cache such as block, index and tag sizes and how it is

extended in the derived class TWSA CACHE. The base class member functions are declared

virtual void allowing derived classes to define their own specialised versions of these

methods whilst keeping access methods for any type of cache consistent. Also note how the

base class constructor utilises the parent's protected data elements as well as providing its

own specialised data.

The authors of this research state that (as with most object-oriented designs) the most

useful components in terms of reusability proved to be those exhibiting loosely-coupled class

design. They go on to conclude that:

"The key to successful reuse is to begin with a proper decomposition

of the system design being studied If done properly, nearly any system

implementation can be simulated with very little programming effort."

IPJOJ

Whilst, for the reasons of enforced class structure mentioned above, the HASE

environment cannot directly take advantage of the C++ object-oriented method-

specialisation techniques employed in [Sampogna96], the work offers a valuable insight into

the problems associated with providing a generic communication mechanism which could

transcend abstraction levels. This is particularly important when messages of a generic nature

(e.g. generic memory 'read' or 'write' requests) have to be interpreted by entities expecting

different abstractions of message detail (e.g. a generic read operation vs a read operation

supplied with an 8, 16 or 32 bit address).

4.9 Summary

Although HASE's original design goals stated that entity reuse was a benefit of using

an integrated simulation system, in fact, RASE currently offers rather limited entity reuse

and library facilities.

There are parallels with object-oriented programming, where code reuse is a much-

touted benefit of languages such as C++ and Java. However, actual levels of code reuse have

been shown to be low. This is largely for reasons similar to those found in simulation - i.e.

the specification of objects and classes is often tightly bound to individual programming

projects and little regard is given to preparing objects for reuse elsewhere [Stroustrup9l].

Reusable simulation entities offer potential benefits to an environment concerned with

the creation of models representing a real-world system at multiple levels of abstraction as

they help facilitate the hierarchical substitution relation.

Whilst HASE uses two types of hierarchical structure in the modelling process

(graphical and behavioural) Luna notes that most environments tend to offer one type of

hierarchy and:

123

"While some of the hierarchical relations are currently implemented,

the combination of hierarchical relations in the representation and

organisation model aspects would significantly ease and enhance the

simulation model design and construction process."

Presently HASE uses the graphical hierarchy to advantage (fulfilling Luna's

representation requirement). However, due to the tight coupling of entities, the facilitation of

the organisation aspect is poor.

We aim to offer a solution to this by offering a more structured approach to modelling,

by limiting the way in which the HASE environment allows control of global variables and

inter-entity communication. Clearly if programmers have total freedom to implement

simulation entities as they see fit, the likelihood of creating a loosely bound set of reusable

entities diminishes. We are therefore concerned with a trade-off between the flexibility

afforded to the programmer for communication specification and the level of entity

encapsulation (and consequentially reusability) within a model (Figure 44).

Loose coupling
High level of horizontal
abstraction

A

High
	 Level of Encapsulation 	 Lowj

Tight coupling
Low level of horizontal abstraction

Figure 44 - Encapsulation Vs Entity-coupling.

The implementation of mechanisms to support the loose coupling of entities in HASE

is non trivial, as the types of data to be passed between entities must remain flexible enough

to represent the abstract data types employed in high level systems simulation. In other,

lower level simulation systems (i.e. those positioned below the register transfer level), this is

124

not such a concern, as models are largely concerned with low-level signalling models (e.g.

signal high/low/unknown states on well defined 'wires').

Another problem with the addition of mechanisms to support loose coupling in HASE

is that a large number of existing models exist already. Any modifications to the modelling

process should therefore be transparent to existing models. A related problem is that as

communication in 1-JASE is supported through a set of well-defined (and complex) C++

classes (e.g. ports and links) the direct modification of HASE's communication mechanisms

is not desirable.

125

Chapter 5

LibTool: Design and Implementation

In this chapter, we discuss the basis for a solution to the component reuse and

abstraction problem previously outlined in Chapter 4. This solution describes the

development of a modelling tool (named LibTool) that allows the user to construct a library

of components that can be placed into and removed from a simulation model with relatively

little effort. In addition, LibTool provides automatic component classification, aiding the

component selection process (based in part on the techniques described in [Thomas94]).

An additional tool (called CommTrace) is introduced as a response to the problem of

verifying model timing across multiple levels of abstraction

5.1 Extending the Modelling Process

The main factor prohibiting component reuse in HASE based simulation models is the

low level of horizontal linkage abstraction between communicating entities (sections 4.4-

4.6). This has been shown to be a consequence of the high level of flexibility which HASE's

EDL modelling language affords the programmer. Frequently, models circumnavigate

HASE's port and link constructs and rely upon global state information. This has resulted in

a low level of component reuse.

EDL was introduced to the HASE system in order to address problems of model

representation; essentially, it provides a simple editable text representation of a simulation

model rather than a low level C++ input or purely graphical representation (section 3.6).

126

To this end, the introduction of EDL was successful. Indeed, EDL has been used as the

representation of choice for all recent HASE based models. However, EDL still allows the

programmer full control over link definition, port assignment, global state declarations and

message type definitions.

In order to restrict the programmer to functionality better suited to the generation of

loosely coupled simulation entities, there was a need to consider the definition of

communication structures more carefully. It was also noted that as a large number of existing

projects rely on EDL, modification of the language itself was not ideal (i.e. any extensions

resulting from this research should allow backward compatibility with existing model

definitions). The vehicle for this new modelling process is 'Meta EDL' (or MEDL) - an

extended super-set of the EDL language primarily concerned with modelling inter-entity

communication structures. This approach has the advantage that EDL definitions for existing

projects need not be modified because of this research (EDL's syntax remains unchanged)

allowing backward compatibility to be available at zero cost.

All extensions to the HASE modelling process take place outwith the existing HASE

environment, thus facilitating a more general-purpose set of modelling tools. Whilst the

primary target code generated by LibTool is EDL (i.e. an input to the HASE environment),

alternative 'hooks' can be placed into the tool's source code allowing the generation of other

target code types (e.g. VHDL descriptions or diagrammatic output in (say) PostScript or

DaVinci format).

5.2 Describing a Model's Communication Interface

In section 4.8.2 we saw how, by considering the input/output messages of a model, the

classification of DEVS models is possible. Central to this classification process is the use of

a triple that describes the messages generated at a model's ports. Each message is formed by

127

the triple (n,u,v) where n is the port name, u is the message type name and v holds the

message value within the type u's range..

This structure maps well onto the modelling constructs used in HASE where the

notions of ports, message types and packets are already defined.

By applying similar techniques to those used for the classification of models under the

DEVS formalism to the HASE modelling process, a good foundation for a modelling and

library management tool (aimed at the generation of loosely coupled simulation components)

could be formed.

Whereas EDL reflects the internal modelling structure of the HASE environment, it

was essential that the new representation (i.e. MEDL) should offer the modeller a

communication oriented language with which to represent the relationships between the

modelled system's components.

5.3 Communication Modelling: Design Issues

In order to offer a set of tools with which to carry out the modelling of an entity's

communication attributes (i.e. its horizontal and vertical linkage) the following design issues

needed to be addressed:

. Provision of library facilities: As the new tools are intended to facilitate model

reuse it was desirable to offer an integrated solution to both component modelling

and library management (facilities so far lacking in HASE).

• A communication emphasis in the design process: The modelling process

facilitated by the new tools should be oriented to the description of a model's

communication attributes (in contrast to EDL's 'general purpose' model

description language approach). An integral part of this new modelling process

128

should be the ability to automate the validation of link constructs and entity

selection.

. Suitable model representation: The expression of the new modelling process

should be via an uncomplicated, readily comprehensible description.

. Integration with the RASE design lifecycle: The new tools should integrate

seamlessly with the existing HASE design lifecycle. This requires an

understanding not only of the communication modelling process in the context of a

HASE project but also the role of the library functionality offered by the new tools.

The following sections of this chapter look in detail at how these design goals were

explored and incorporated into an implementation of new HASE tools.

5.4 Design of a Meta-EDL

In order to help focus the design of new components on the communication attributes

so important to model reuse, a new model representation was created which placed an

emphasis on the port, link and messages structures of components.

In addition, this new representation is also charged with providing HASE's library

facilities, so (unlike EDL) it is project independent (i.e. it is not concerned with the

representation of a single real-world system).

The new representation borrows the essential features of EDL specific to

communication modelling and diminishes the importance of other EDL constructs such as

those concerned with a component's internal state. The new representation is called MEDL

(Meta-EDL).

129

5.4.1 An Overview of MEDL

A MEDL file is a text-based description suitable for use as both a modelling language

and library description. Each MEDL file consists of a list of components that forms the

notion of a library. The component list is divided in two. Firstly a sub-list of atomic

components is specified, then a sub-list of composite components. Composite components

must be described in terms of atomic entities found in the first section of the component list.

Program 12 shows a MEDL fragment from a library that defines a new library and a

single atomic component (in this case a DASH node model component based on the model

introduced in section 4.1). Following some programmer comments, the first MEDL keyword

is LIB (indicating the start of a library definition) followed by the name of the library and a

short textual description of the library's contents.

// Library file for DASHNODE model

LIE dashnode "Small Processing Node Library"

ENT
NAME { P-CACHE)
MTYPES

MESSTYPE{MEMACCESS{get-addreSs, return-address}

INPUT{
PORT{ IN, MEMACCESS}
PORT {REPLY, MEMACCESS

OUTPUT
PORT { ANSWER, MEMACCESS
PORT {REFER, MEMACCESS}

EDL{

Program 12— Fragment of DASH node MEDL library

130

Definition of Atomic Components

The ENT keyword indicates the start of an atomic component definition (in this

example the component represents a cache). The component is assigned a name (p-

cache). The description of the component is broken down into the definition of message

types (and their ranges), input ports, output ports and a section named EDL30 .

In the example component definition, a message type named NEMACCESS is defined

as having a range of possible message values (read-address or return-address).

The message type (MTYPE) and message range (MESSTYPE) definitions parallel the u and v

values introduced in section 4.8.2 respectively.

The cache component is also defined as having two input ports (named IN and

REPLY) each of which can handle messages of type MEMACCESS. Similar output ports

definitions are also provided. The keywords INPUT and OUTPUT combined with the PORT

declaration allow the definition of e and N' (the sets of input and output port names) for a

particular component. In this case e = (in, reply) and N1'={answer, refer).

Definition of Composite Components

Program 12 shows a possible composite component that could be included in a library

of components suitable for constructing DASH node-like models. Composite components are

specified in a different manner to atomic components. The NAME and MTYPE definitions are

still included (the MTYPES defined must include all the message types used in the entity's

children), however no port definitions are specified. Instead, the CONTAINS keyword is

used to list the child component and the INTLINKAGE command to describe how the

30 The EDL section allows the storage of non-communication related structures in a library and
is discussed later in section 6.1.2.

131

children are connected to each other. The composite component CONPCACHE (an entity

modelling a two-level cache structure) consists of two child entities P-CACHE (a primary

cache) and S-CACHE (a secondary cache). The INTLINKAGE section contains definitions

of child component interconnections (INTLs). For example, the primary cache's memory

referral port (REFER) is connected to the secondary cache's address request port (IN) and

the secondary cache's address output port (OUT) is linked to the primary cache's address

input port (REPLY). Unlike EDL's CLINK statement, the INTL command implies an

ordering of its parameters; first the source port is specified then the destination port. This

allows simple identification of input and output ports. The configuration described in

Program 12 is illustrated in Figure 45.

CENT{
NAME { CON PCACHE
MTYPES

MESSTYPE{MEMACCESS{get-addresS, return-address}

CONTAINS { P-CACHE, S-CACHE
INTLINKAGE

INTL {P-CACHE{REFER}, S-CACHE{IN}
INTL IS-CACHEj0UTj,P-CACHEjREPLYjj

EDL{

II

Program 12 - MEDL Definition of a Composite Entity

As the MEDL representation is based around the concept of a library, there is no target

model specified (unlike EDL's required use of the LAYOUT command). The full MEDL

description of a library of DASH node components is given in Appendix B.6.

132

composite cache

p cache 	scathe

Composite-Cache
Input Port List)iri,reply)
Output Port List)refer,out)
Entity List (P cache,S cache)
Internal Linkage (Pcache.refer->S_CaChe.ifl,S_CaChe.Out>P_CaChe. reply)

Figure 45 - The Composite Cache Component

5.4.2 Development Platform

The full range of C++'s object-oriented features is not directly available to the

programmer of the existing HASE environment (section 4.8.3); therefore, the use of external

(to HASE) tools affords the opportunity to reintroduce object-oriented management of a

model's design (by allowing a well structured, object-oriented decomposition of HASE's

communication modelling constructs).

It was decided that Java [Flanagen97] would be used as the implementation language

for the new HASE modelling/library management tools. Specifically, Sun Microsystems

Java Development Kit (JDK) [Jdk99] was used. The new HASE tools are implemented using

Sun's latest Java platform release - JDK 1.2.

In addition to providing excellent object-oriented programming facilities, Java is also a

platform independent language. This is a desirable property in terms of the HASE project, as

two platforms are currently supported (Solaris and Windows NT 4.0). The use of Java to

provide the new modelling and library management tools is shown with respect to the

existing C++ implementation of HASE in Figure 46. The figure also illustrates how a

133

model's intermediate representations (MEDL and EDL) provide a bridge between Java and

C++.

MEDL 	
Component

iI 	
(modelling in EDL) 	

Modelling Tools

Generate

EDL 	 -
(Entity Description Language)

Generate

C++ 	 HASE System
(HASEs Internal Routines) 	Code (C++)

Compile ___________________________________

H 	

Simulation Executable 	
1

(Compiled HASE++)

Figure 46 - Layers of Model Representation

5.4.3 Representation of Communication Structures

In order to represent HASE's communication structures in a flexible object-oriented

manner, a Java package 31 (named LibraryStructure) was created.

The essential elements of communication (i.e. ports, message types and links) are

represented in the LibraryStructure 32 package by the classes Port, Mtype and LinkSpec

respectively.

The Port class holds name and message type information. The Mtype class holds the

name of a message type and data describing the valid message range (implemented using an

instance of Java's vector 33 class). Finally, the LinkSpec class holds details about ports

that are connected to each other (the source/destination attribute of the ports is maintained in

this class).

31 Package is the Java term used to represent a library.
32 LibraryStructure is a large package comprising some thirty classes, a complete list of

which is given in Appendix B. 1.

134

Objects representing a model's ports, messages and links are maintained in special list

classes (again based upon Java's Vector class). For example, ports can be added to a

portList object.

In turn, instances of the list types are associated with objects representing atomic and

composite entities (classes entity and its derived class compEntity respectively). Each

atomic entity has two PortList objects associated with it (one for input ports and one for

output ports) and an MtypeList for the storage of its local message types. Program 13

presents a fragment of the Entity class definition illustrating the use of these structures.

package phd.LibraryStructure;

import java.util.*;

public class Entity

protected String Name 	 = null;
protected String Description = new String("");
protected String DetDesc 	= new String("");
protected PortList 	InputForts 	= new PortListO;
protected PortList 	OutputPorts = new PortList;
protected MTypeList NTypes = new MTypeList;

Program 13 - Fragment of the Entity class definition.

Composite entities (represented by CompEntity objects) inherit the properties of

atomic entities and add data members for details of their children's internal linkage

(implemented as a Vector containing LinkSpec objects).

Finally, lists of atomic and composite entities are maintained within a class

representing a library of components. This class, LibraryStructure, is the main

holding class for all the objects being modelled. The class configuration for a typical

simulation is illustrated in Figure 47.

u The Vector class is a general-purpose heterogeneous list class.

IMI

Library Structure J

Entity List (v)

T Entity
]

Composite Entity 	
]

Port Li.t (v) Entry Mark lrkt (v) 	
]

Specification

of Input v_:____ V v.:_ 	v
Ports 1

Port I 	Mrtor Spe

Specification f
of Output V Ports 1

Port Link Spenttoaton

Meonage Type Liet to)
]

Port Al000ton Let (Vt

Note: (v) indicates a vector
MnageType L__Port Denoopto

or list class

Range (v) I
V

Range Element

Figure 47 - Class Structure for a Model Library

5.5 The HASE Design Lifecycle

This section considers how the LibTool software fits into the HASE design lifecycle.

Subsequent sections of this chapter will look in detail at the functionality of the tool and the

software mechanisms it employs. Figure 48 illustrates the traditional HASE lifecycle (i.e.

pre-LibTool functionality). The key stages are as follows:

1. Generation/modification of project file: A single project file containing the

definitions of all simulation entities in a model is created by use of HASE's

graphical user interface (label]a) and/or by direct editing of the project EDL file

(label 1 b).

136

C++ model source code generation: The C++ description of the modelled system is

generated according to the EDL and HASE++ entity definitions.

Simulation object code generation: The previously generated C++ model is

compiled. A simulation model executable is created which includes user defined

parameter settings. Any syntax errors in the user's HASE++ code will be trapped

here. If errors do occur, the programmer returns to design mode, modifies the model

accordingly and starts the lifecycle again (indicated by the arc back to label Ib).

Analysis of simulation output: The simulation model is executed and output is

analysed. The analysis phase may highlight modelling problems (e.g. deadlock due

I. to bad behavioural code specification). If modelling errors exist, the model is

modified (the arc back to label I b). If the model behaviour is correct, the user may

alter the parameters of the simulation model and rerun the model (i.e. follow the arc

to label 3).

137

HASE

ELF
Description \-
	Gphical Design Window

la

am

EDL DL
Descnpti

User Code

Parameter
C

Project
Storage

EDL L 	Internal Model
Parerp/ - RepresentationI

2 C

ode _Generation

Coç,pHa't1on 	Experiment
Control

%Ecutable
ulakw 3 	Run

 SettrRgs

\

\

Trace File ".
\ 4

Aniritec-

Figure 48 - Elements of the unmodified 1-IASE design lifecycle.

5.5.1 Limitations of Traditional Lifecycle

The hifecycle described has a number of limitations. Firstly, it includes no library

management facilities. Rather, a single project file is created by the user for each simulation

experiment and iterations of the lifecycle see the development of this project file (i.e. there is

no environmental support for importing components from a library). At the end of a

simulation project all the entities developed for a model are contained in a single project file

with no environmental support for exporting them to future simulation projects.

Secondly, HASE has no method of checking that a model's composition is valid. For

example, it is possible to connect ports together without considering the messages types and

138

ranges used by the connected ports. This means that whilst a model appears to be constructed

correctly on-screen, only at simulation run time are incompatibilities in port connectivity

highlighted. Even after the generation of run-time errors, the identification of the exact

modelling problem is only possible after inspection of the trace file and/or by use of a

traditional debugger.

Thirdly, as HASE provides no library facilities, no support for identification of

possible entity substitution opportunities exists. Often in an experiment, it is desirable to

compare and contrast different implementations of a particular component. For example, in a

memory hierarchy simulation, cache memories can be compared according to caching

mechanisms/policies (direct-mapped, fully associative, write-through, write-back etc.). By

considering a component's communication interfaces (and intended use), entities could be

pulled from a library of pre-programmed components and substituted for a model's existing

cache.

5.5.2 The Role of LibTool in the Design Lifecycle

Figure 49 illustrates the role LibTool plays in modifying the traditional HASE

lifecycle. The various stages of the modified lifecycle are described below:

Starting at label one in the figure, a library of components is loaded into LibTool

(indicated by the arc to label 2). Components are added to a MEDL library through

text-based cut and paste operations.

The chosen MEDL file is parsed and the library components communication

structures are validated. Following the parse process the following courses of action

may be taken:

a. The user can re-edit the MEDL file and revalidate failed model structures

(indicated by the arc to label 1).

139

The user may perform various checks upon components in the library (e.g.

searching for components with equivalent communication interfaces).

When the user has completed the communication structure modelling an

EDL file for the project is generated (indicated by the arc to labels 3a/3b).

Following the EDL generation the design may be edited via the HASE GUI or direct

EDL manipulation.

The C++ description of the modelled system is generated according to the EDL and

HASE++ entity definitions, as is the case in the traditional model lifecycle (label 4).

However, the user has the option to ensure that the modifications made to the

LibTool-generated EDL have not invalidated the model's communication structures

by using the validate mode (illustrated by the arc labelled 'validate'). This validate

option (if used) can identify some of the problems which traditionally can give rise

to the need for trace file level debugging later in the design lifecycle. If the validate

option is taken a MEDL description of the current project is generated (effectively a

small library consisting of the only components required for the current model). This

description is passed through LibTool (which validates the model structures) and,

assuming no errors are found, an output EDL file is regenerated. (This takes the user

through points 1, 2 and 3 of the lifecycle again. The passage through these lifecycle

points is largely automatic (i.e. the user only need confirm the output location of the

EDL. Of course if modelling errors are found during the validate cycle the user must

reconsider the model's design based on the error messages generated by LibTool.

As in the traditional lifecycle, a simulation model executable is created (including

parameters). Syntax errors in the user's HASE++ code will be trapped here. In the

event of errors the user returns to design mode and modifies the model behaviour

(indicated by the arc back to label 3a).

140

6. The simulation model is executed and output is analysed. The analysis phase may

highlight modelling problems. If the model contains errors. the designer can return to

design mode or perform model validation post-run (assuming they did not choose

this route at stage 4).

Hierarchy K
Viewer

(SimTree

Modelling
Tools

Model
Verification
and Library

Man9eTT1ent
Lib-Fool)
2'

H
Librar File

(MDL)

Protocol
Visualisation
(CommTrace)

HIER
tj 	File

Graphical Design Window

Par er 	Representation

User Code 	 Ce Gneration

I 	Compilatidç 	xperiment
I 	 - 	Control

H 	User 	
[

p 	 -
Parameters 	 Simulatic 	 un

Executab 5 	Sergs

Comm . 	Traè Q, le
File

Project 	 Animator
Storage

Figure 49 - LibTool's role in the design lifecycle.

I1

5.6 The Validation Process

A library file is considered valid after passing two checking phases. Firstly, a MEDL

parser ensures that the library description is syntactically correct and triggers the creation of

LibraryStructUre objects. Once the objects representing the library components have

been created, the communication structure of the components is analysed and a further set of

checks made. The remainder of this section gives an overview of the key aspects of both the

syntactic and structural checks applied to a MEDL library file. Implementation details are

given (where relevant) during the description.

5.6.1 Parsing MEDL files and Creating LibraryStructure Objects

The creation of a scanner and parser allowing the conversion of MEDL file

descriptions into instances of the LibraryStructure classes described in 5.4.3 involved

the creation of a dedicated Java package named LibraryParser. This package included a

scanner class (a hand written Lex), a modified version of Scott Hudson's CUP package

[Cup96] (a simple parser construction kit) and classes for allowing the generation of error

messages (notably the ParseTranscript class).

When LibTool is started (and an input file has been specified, either via a file dialog or

as a command line parameter to LibTool) an instance of class LibraryParser is created.

In addition, an instance of the scanner class is made. Following the on-screen rendering of

the tool's GUI, a method 'openLibrary 0' is called which causes the selected input file

to be tokenised by the scanner class instance. In turn, the LibraryParser object calls method

getNextToken () (until the end of the input stream is reached) and forms the parse tree.

Using CUP involves creating a simple specification of the grammar for which a parser

is needed. The specification, whilst constructing a full parser, does not perform any semantic

142

actions (it only indicates success or failure of a parse). To allow checking of parsed values

Java code is embedded within the parser, carrying out actions at various points. This allows

errors in the MEDL library component descriptions to be trapped.

In CUP, actions are contained -in 'code strings' that are surrounded by the delimiters

'{ :' and': }'.
To illustrate the use of embedded Java for error trapping Program 14 shows a

fragment of the parser specification file used to define the syntax for a composite entity

(indicated in MEDL by the keyword CENT). Aside from declaring the syntax of the CENT

command (in a standard Yacc-like manner), three code strings are defined. The first code

string (below comment 1) assigns a name to the instance of the CompEntity class object

being constructed. Similarly, the second code string assigns a description (shown after

comment 2). The final code string is more complicated; it checks that the name of the

composite entity being defined is unique (via a call to the EntityDuplicate () method

of an instance of a LibraryStructure object named ourlib).

c_entity : := CENT LPAREN
NAME LPAREN IDENT:i RPAREN

*** Comment 1 ***

{: tempCompEntity.setName(i.strval);

DESC LPAREN STRING:s RPAREN
cmess types
contains
INTLINKAGE LPAREN mt linkage RPAREN

// *** Comment 2 ***

{: tempCompEntity.clearEDLO;
tempCompEntity.setDesc(s.strval);

edi
cpassive
RPAREN

Comment 3 ***

{: 	 if (parser.ourLib.EntityDuplicate(temPComPEntity))
CtJP$parser.report fatal_error ("Library Error!: Duplicate Entity

Name (name="+i.strval+") ",null);
}else{

if (parser.DEBtJG)
System.out.println("Adding CEntity : "+i.strval);

parser. ourLib. addEntity (tempCompEntity);

ternpCompEntity = new CompEntity();

143

Program 14 - Fragment of LibTool's Parser Specification

This third code string is typical of the various checks that are performed as a MEDL

file is read into LibTool. Other checks performed at this point in LibTool's execution

include:

Checking that all atomic entity names are unique (using LibraryStructure

method EntityDuplicate 0).

Checking all composite entity definitions include all the message types referred

to by their children. This is done by calling the CompEntity class method

checkChildMTypesOK 0.

Ensuring that all children of a composite entity have been previously defined

(this includes both atomic and composite children). This is facilitated by

recursive use of the LibraryStructure class method EntityExists 0.

• Composite entity child linkage is also checked before being added to a

composite entity object via the addlntLink(link) Two main checks

are performed:

o Checking that no child entity has one of its output ports connected to

one of its own input ports.

o Checking that source and destination ports use compatible message

type/range structures.

• All message types are checked to ensure type names are unique.

• Message type ranges are also checked to make sure that all range items are

unique.

Input and output ports are checked in order to make sure all port names are unique

within an entity.

144

The result of the parsing process is either the generation of an error log or the

successful creation of an object of class LibraryStructure (and associated entity

related objects).

Throughout a LibTool session, all progress/error messages are directed to LibTool's

console window. The LibTool console is shown in Figure 50. A transcript of a typical

LibTool session (as reported in the console window is given in Appendix B.7)

• • rciJ: 	 —

Scanning Input Library pram.hlib ...
Parsing Ubrary,

Generating Hue Objects...

Library pram.hhib OK

wlding Port Defs. for CEntity <halfadder>
ilding Port Defs. for CEntity modeIhalfadder

Liliding Port Defs for CEntity <fulladder>
uilding Port Defs for CEntity <modelfuIIadder

uilding Port Deis. for CEntity <fuIladder8bit
ujiding Port Defs. for CEntity <proc_b

ullding Port Defs. for CEntity proc_a
uilding Port Defs. for CEntity <modeladder8blt>

uildlng Port Defs. for CEntity testMedLevPram
uilding Port Dels. for CEntity <flnalPram

.jilding Interface Delinitions
eneratinq interface for AtornC Entity ADD8BITDRV

Browse Library 	 Exit

Figure 50 - The Liblool console

5.6.2 Further Structural Checks and Object Creation

Following the successful parsing of a MEDL file, LibTool creates more objects used to

describe the communication properties of the library components. This section details each

of these object creation phases and outlines the checks performed in each.

Building Port Definitions for Composite Components

As a MEDL file specifies the ports of a composite entity implicitly, (i.e. it lists the

145

ports of the child entities and the internal linkage of those ports only) LibTool forms a list of

ports belonging to the higher-level composite entity component. It does this by inspection of

the child entities (recursing down through composite children) linkage. PortDescriptor

objects are created for all ports in a composite entity and free ports (section 4.1.4) are

identified. This process is performed once only. From this point on in a LibTool session, port

detail for composite entities is obtained via the PortDescriptor objects. This approach

is taken because of the high processing overhead required to continually recurse and process

the composite entity structure each time one is manipulated.

Construction of Entity Interface Objects

The next object creation phase builds interface definitions for each entity in the library,

this is done to save processing overhead later in the LibTool session.

Each component in a library has an object of class EntlFace associated with it which

serves to hold the component's input/output port sets (Ny, Ni') along with the set of message

types references by these ports (component u of the n,u,v typed-message triple previously

discussed).

The Ent lFace class defines storage for lists of input port names, output port names

and message type names. Determining the interface definition for atomic entities is simply a

matter of traversing the port and message type information in the entity definition. For

composite entities, the previously generated PortDescriptor objects are used.

Message Type Checking

Once the interface definitions have been generated, the message types used by all

components are checked against each other for global consistency. This is performed by

LibTool's globalMessageTypeCk () method which ensures that message types with the

iEr .i

same type name which are used in more than one component have identical message range

definitions. If the library fails this check, an error identifying the library source-code line

containing the error is output to the console log and the LibTool session is terminated.

Other Component Checks

Assuming the message type checking phase is completed successfully, LibTool calls its

checkAtomicPortBind () method, which checks that each port in an atomic entity is

bound to a message type defined within that entity. This concludes the post-parse model

checking. The user can now start an interactive LibTool session.

5.7 LibTool Functionality

This section outlines the functionality of LibTool as both a library management and

model generation tool. The discussion is illustrated by the use of a small MEDL library.

5.7.1 Navigation of a MEDL Library

After successfully loading a MEDL library, the console window (Figure 50) enables

the two controls labelled 'browser library' and 'exit'. Selection of the browser option enters

the main LibTool screen. The library browser allows the selection, examination and

manipulation of components in the library. A typical view of the library browser is shown in

Figure 51. The test library contains eleven components (four atomic and seven composite).

The components are abstract (i.e. they do not represent real world objects) and exhibit very

simple behaviour. The key components of this library are component A which acts as a

message generating source, component B which receives messages on its single input port

(in) and outputs them after a fixed delay on its only output port (out) and component C

which has a single input port (in) and acts as a message sink. Other composite components

IEA

are made up from various instances of component B. All of the components in the library use

the same message type (PACKET) that has a range of values (message_a, message —b).

The components in the demonstration library are described in more detail in Appendix B.8.

The browser presents a tree-like structure initially divided into two main sections

labelled 'Atomic Entities' and 'Composite Entities'. By clicking on the folder icons in the

window, the tree can be expanded to reveal details of the components in the library.

The browser uses two icons when describing the library structure. Firstly, the folder

icons are used to group related information together and secondly the 'document' icon is

used to represent information held in leaf nodes of the browser tree.

The use of the folder controls is shown in Figure 52(a-c) where (a) the atomic entities

folder is opened, (b) atomic entity 'b' selected and finally (c) the detailed information about

the entity is displayed. For an atomic entity, the information displayed includes the short

text-based description from the MEDL file, a subfolder of associated message types and a

subfolder for both input and output ports.

Composite entities have a different set of information displayed in the browser. This is

illustrated in Figure 53 where composite entity 'BBB' is displayed. As with the atomic entity

display, a description and list of message types is provided, however this is followed by a list

of sub-entities and internal links. Finally, the 'Port Descriptor' subfolder (which is not

expanded in Figure 53) provides a detailed attribute list for each port (e.g. message binding,

free status and sub-entity ownership).

148

1TI 	 ME - 1c3II
!tetL 1 r 	 -

AtrrtiC Eriiti

Description Corn

Message Types

It En PACKET

message.

message.

Pons

' Cn Input

D IN IPACKt

Output

D OUT [PAC

En c
9 	Composite Entities

Cn bb

9 C1 bbb

Description: Con

9 F1 message Types

0- El PACKET

9 	SubEritities

b:til

Li b:B2

9 	: Internal Links

D b:81LOUT]-

b:92[OU11 -

Port Descriptors

0- 	bbb2

€i-Ibbx2

	

;un 	i. b

------j,-.-,--.--------..--..-.--,.-.--..-
Dismiss 	 Generate 	 View Entity Interface

Show EqWvalence 	 Show Order <= 	 Class Display
. 	..--... 	 	_

Figure 51 - The Library Browser.

149

Li tLiti1

Li omic Entities

€- 	Composite Entities

D Secondary Data Definitions

E Secondary Data Bindings

Epd

(a)

Li testLibi

Op Li Atomic Entities

Odecoy

e(Li}

Li Composite Entities

[Secondary Data Definitions

O Secondary Data Bindings

(b)

Li testLibi

9 Li Atomic Entities

Li decoy

9
Description: Component B

9 El Message Types

Li PACKET

0 message_a

message_b

Li Ports

Li Input

0 IN [PACKET]

9 Li Output

OUT [PACKET]

Li Composite Entities

Secondary Data Definitions

Secondary Data Bindings

(c)

Figure 52 - Manipulation of Library Browser

In addition to the mouse based point and click operations, keyboard shortcuts are

provided to allow the entire tree to be expanded or contracted with a single keystroke.

The LibTool GUI is implemented using Sun Microsystems Java Foundation Classes'

(sometimes referred to as 'Swing'.). These classes provide special support for building

platform independent GUls. The library browser uses the Jtree class to represent the

library structure. The tree is constructed (when the browser is launched from the LibTool

console) by traversing the LibraryStructure entity representing the current MEDL

library and extracting entity attributes from the atomic and composite component lists.

150

- 	Erittes

c 	 Composite Entities

Li bb

9 Libbb

Description Component BBB

9 Message Types

9 En PACKET

message_a

j message_b

9 LisubEnbtes

B b:B1

B b:82

B b:93

9 Li Internal Links

B b:B1 LOW1 - b:B20NI

B b:B2[OUT] - b:133N1

Li Port Descriptors

None

Dismiss 	 Generate 	 View Entity Interface

ShowEquivelence 	11 	Swder 1 	Class Display

Figure 53 - Using the Library Browser to View Composite Entities

5.7.2 Other Component Views

In addition to the main library browser window, other methods for examining a

component's structure exist via use of the 'View Entity Interface' control. To use this feature

an entity is highlighted (by clicking in the browser window) and the view button pressed.

This opens a new window that gives a more formal description of an entity's interface.

The interface viewer was implemented to aid the development of this research (i.e. to

automate the process of generating the set notation associated with models). It now forms a

useful way in which to compare the communication interfaces of library components.

Sample output from the interface viewer is given in Figure 54.

21

'Jill

Interface ILE DescriØWn Embedded EDL

TheJ,puarcg;tsncfr:istDt.;ar re:t.:sspeotsvety)by

X=(ry,v)Ifl EN id EU0 VOL' J j ard

Y= ((nv)In €N",u EU0.VEV5J

The sets of lnpet and ospsR post names for model <bbb2' (respectively) are

N'= (IN)

N=(OUT)

$e of al message type names in model <bbb2> for given inpss and os*pis posts

For U,= (PACKET)

For Y. U,= (PACKET)

The incoming and outgoing messages a composite model form Its interface

; = <pXpYs

PX=<N*jUn I n ENJ
pY 	

N'AU,5 I flEN')°

Compost. Wesrfan. for .esty <bW2>:

0bb2 = ° bo2bitbf

Pb)lbb2 = °{ IN},{{PACKET)}
= o{OUT){{PACKET}}>

L
F

Figure 54 - Entity Interface Viewer

In addition to the set notation view of the entity, the interface window also supports

two other views of a component. The first allows a textual description of the component to

be displayed and exported via the system clipboard to a text editor. This mode was

implemented in an effort to provide library documentation within LibTool. The HLIB

Description tab at the top of the interface dialog switches the display to the textual

description mode. A sample description screen for a memory unit is shown in Figure
5534

 A

description commences with a summary of the selected components message types and

ports (this is generated by extracting details from the appropriate LibraryStructure

object lists) and goes on to display a programmer supplied entity description. The

34 The full output of the text description pane for this component is given in Appendix B.8.

152

programmer provides the description in the MEDL file by using the DESC{ } and

DETDESC { } commands.

hdertece HUB Description Embedded EDt

Strui'J 	TOMI'

lessage Types.
memaccess
memresult>

put Ports:
*REQIN: memaccess

utput Ports:
RESULTOUT: memresult>

Description

BEHAVIOURAL SUMMARY
This entity represents a dineroUl trace complient address space (2*23 bytes)

to which memory requests from a memaccess link are presented.

rithir.-thi

Figure 55 - Textual Component Description

The final view of an entity supported by LibTool is the Embedded EDL' viewer.

MEDL's facilities for embedding EDL code into a library are introduced later in this chapter

(section 6.1 .2) and further discussion of this display mode is deferred until then.

5.7.3 Identification of Substitute Components

The mechanism used to determine entities suitable for substitution is interface

equivalence.

In section 4.8.2 it was shown that a component's interface can be represented

by I = (PX pt) where P' = (NW' ,{U I fl E N' is the set of input ports and

153

= (N Y , { U,, I n c N' is the set of output ports. For example, the interface of atomic

component B in the MEDL test library is

'B = (
pvpv)

where

PH =(in},{{ PACKET) }) and

13 =(lout), t (PACKET
)

When a MEDL library is read into LibTool, EntI Face objects representing the above

structures are created for each component in the library (section 5.6.2). By comparing these

interfaces, we can define relations over components. Of particular interest to this work is the

equivalence relation (44 = I) presented by Thomas in [Thomas94]. This relation is defined

as

1A'B iff

N' =N3v AU, =U,VnEN,'

A

N Y =NY AU,,4 =U,VneN 1 .4

Less formally, this says that two models have equivalent interfaces if each has input

and output ports that are identically named and with identical message types assigned to

them.

Performing the Equivalence Test in Lib Tool

In LibTool, the equivalence test shown above can be performed by selecting the

component to be tested against the rest of the library components and clicking the show

equivalence' button. The result of this operation is a window listing the atomic and

composite components that have identical interface specifications. Figure 56(a-c) illustrates

154

the use of the equivalence test on the MEDL test library components a, b and bbx2

respectively. The results from these queries show which entities are suitable for substitution

of the selected component. In this example component a has no possible substitutions

(except itself— the browser-selected entity is always marked by the word [self]). Entities

b and bbx2 have several possibilities for substitution.

a-.

-j

Composite Futt

bbb
bbb2
bbx2
bbx23

41

(a) 	 (b) 	 (C)

Figure 56 - Example Equivalence Tests for MEDL Test Library

Implementation of Equivalence Test

Program 15 offers an insight into the implementation of the equivalence relation in

LibTool. When an equivalence test is triggered, LibTool instantiates an object of class

TestEquiv. This class has its own Swing derived window and widgets (representing the

output panel shown in Figure 56). After the GUI initialisation calls, the first of two methods

used to generate the equivalence test output (named buildEquiv ()) is called.

BuildEquiv () acts to collate the results for the user specified equivalence test by calling

155

another TestEquiv method isEquiv () and recording the result in the output window.

This procedure is outlined in more detail in the following two sub-sections.

The buildEquiv ()
Method

The buildEquiv () method operates on a class variable Ent (the Entity class

instance represents the selected entity in the browser). The first test performed is to check if

Ent is atomic or composite (the composite entity class is derived from the atomic entity

class so this must be explicitly tested for); this code is shown below the comment labelled A.

If the entity to be tested is composite, an atomic representation of the composite entity is

made in order that the same code can be applied to any entity being tested (via the Entity

class's method compShell 0). This action is valid, as in an equivalence test only the

external ports and message types of an entity are referenced. A Boolean flag is set according

to whether the entity being tested is composite or not.

Another flag recording the number of free ports (if the entity was originally

composite) is also set. If the entity to be tested is composite and has zero free ports, the

model is considered closed. As such, the entity cannot reasonably be substituted for anything

other than a complete closed model. Consequently, the output window displays the tested

entity's name with the message 'closed' next to it and the equivalence test is terminated

(label B).

The main equivalence-testing loop now commences (label Q. Each entity in the

current library is tested (using method isEquiv () shown at label D) for equivalence

against the entity selected in the library browser (any composite entities encountered are

translated to an atomic representation as described above).

The output window is updated by appending the results of each test to one of two

lists (AtomList and CompList).

156

protected void buildEquiv{

EntlFace
EntI Face
Entity
CompEntity
boolean
mt
boolean

IFaceln = null;
IFaceTest = null;
tempEnt = null;
tempCEnt = null;
wasComp = false;
origEntNoFree = 0;
origWasComp = false;

IFaceln = Ent.getlFaceO;

1* **** label A **
if (Ent.toString() .equals('CompEntity"))

tempCEnt = (CompEntity)Ent;
origEntNoFree=tempCEnt. getFreePortCount 0;
Ent = tempCEnt.compShell(Lib);
origWasComp=true;

}else{
origWasComp=false;

/* 	label B
if ((origEntNoFree==0) && (origwasComp))

CompList.append(Ent.getName0+" [CLOSED]\n");
)else{

/* 	label C
for (mt 1=0; i<Lib.getNumEnts0; i++){

tempEnt = Lib.getEnt(i);
if (tempEnt.toString() .equa1s("CompEntity')){

wasComp=true;
tempCEnt 	(CompEntity)tempEnt;
tempEnt = tempCEnt.compShell(Lib);

}else{
wasComp=false;

*** label D
IFaceTest = tempEnt.getlFaCe0;
if(!wasComp){ // atomic match

if(isEquiv(Ent,IFaceln,tempEnt, IFaceTest))
// check for self reference
if (Ent.equals(tempEnt)){

AtomList.append(tempEflt.getName0+" [SELF]\n");
}else{

AtomList.append(tempEnt.getName0+"\n');

else
if (isEquiv(Ent, IFaceln, tempEnt, IFaceTest))

if (Ent.getName() .equals(tempEnt.getName0)){
CompList.append(tempEnt.getNalrLe0+" [SELF]\n");

}else{
CompList.append(tempEnt.getNaITleO+"\n");

Program 15 - The Bui ldEquiv () Method

157

The isEquiv() Method

The equivalence of two entity interfaces is determined by the code presented in

Program 16. In an effort to save processing time, an initial check is made on the number of

input and output ports of the two components being compared. If these checks fail then the

interfaces are not equivalent and isEquiv () returns false (label A).

If the rudimentary port-list length check is passed the more processor-intensive task of

comparing interface 'fingerprints' commences, first for input ports (label B) and then for

output ports (label Q.

The EntitylFace class defines the idea of a port fingerprint. Essentially a port

fingerprint is a text-based representation of a port's name, message type and implicit

message range. The EntitylFace class maintains lists of fingerprints for each

component's input and output ports.

Method isEquiv() compares the fingerprint list of the selected component against those

of the other library components. If the fingerprint lists (implemented as Java Vectors) do

not match at any point in the comparison process, the testing loop is exited and the method

returns false. If the fingerprint testing completes with an identical match isEquiv ()

returns true.

public boolean isEquiv(Entity EntA, EntlFace a, Entity EntB, EntlFace b){

boolean equiv = true;
String tempS = null;

quit:
1* *** label A 	*1
if ((a.getIPortSizeL==b.getIPortSizeO)

&& (a.getOPortSizeo=b.getoPortSizeO)){

1* *** label B
for(int i=O;i<a.getlFPrintSize();i++){

tempS = a.getlFPrint(i);
if (!b.IFPDup(tempS)

equiv= false;
break quit;

158

1* *** label C ***
for(int i==O;i<a.getorPrintSize(i;i++)

tenipS = a.getOFPrint(i);
if (!b.OFPDup(tempS)) {

equiv=false;
break quit;

}else{
equiv= false;

return equiv;

Program 16 - The Equivalence Test Methods

5.7.4 Other Component Interface Properties

Another interface-related function of LibTool is the ability to assemble all components

in classes. The classification of components is achieved by identifying groups of components

with identical interfaces. That is to say, two models belong to the same class M if their

interfaces are equivalent:

A,BEM 	'A = 'B 'c

LibTool supports a class-oriented view of library components via the browser

window's 'Class Display' control. This function launches a window with a tree control

(similar to that used in the main library browser). Each sub-tree of the window represents a

class of components in the library. An expanded tree for the MEDL TestLibrary is shown in

Figure 57.

The equivalence class viewer offers another mechanism for locating components

suitable for substitution.

159

iir%TA.l 	 _ID!j
:i teS1L 1 	 -

En classdecoy
decoy

E:O classb

Db
bb

D bbb

bbb2

bbx2

D bbx2x3
9 C1 classc

Dc
OP En classmodela

modea

modeib

- -

Dismiss

Figure 57 - The Liblool Class Viewer Window

Thomas defines an ordering relation over the interfaces of two models A and B by:

14 'H 1ff

N' 	AU çUVn€N

A

N cN AU, DU,VneN,neP1

i.e. class A's interface is contained within class B's interface if at least all the names of class

A's ports are contained in class B's interface. In addition, all input ports of B must use the

same message types as the corresponding ports in model A. Finally, all output ports of model

B must use the same message types as the corresponding output ports of model A.

In order to illustrate this relation, consider components A and B from the MEDL

TestLibrary that have the properties set out in Table 3

Component Input Port
Names (N")

Output Port
Names (N")

Message Types for
Input Ports

Message Types for Output
Ports

UcUVncN UcUVneN

A 0 {out} 0 {PACKET}

B {in} {out} {PACKET} {PACKET}

Table 3 - Component Interface Properties

Testing if model A :!~ model B we see that the ordering relation holds true because for

the input port and message type test f2{in} and [0),ç(PACKET) respectively. Similarly for

the output port and message type test (out)çfout} and {PACKET}{PACKET}.

In terms of interface inheritance, we can see that by ordering classes of model via this

relation, an interface inheritance tree can be constructed. In this example, the more complex

model B interface is an extended version of an inherited (interface) found in model A.

Whilst the class display window does not support an interface inheritance view of

component classes, LibTool does provide an 'Order' control which performs this test on the

library components with respect to a component selected in the main browser.

Output from this function is shown in Figure 58(a) and (b) for ordering test applied to

TestLibrary components A and C respectively.

IMi

a[SELF)
Atomic Orrei c

[SELF]

Composite Order <

bbb
bbb2

LA

(a)

Cotnposfle Order

F

y

Ill 	PH

(b)

Figure 58 - Example Output from the Order !!~ ' Relation

The implementation of the above ordering relation is a modified version of the code

presented earlier for the equivalence relation (section 5.7.3).

5.8 Managing Projects as Libraries

It is important to emphasise the fact that Libtool is a library management tool in the

sense that multiple target projects can be contained in a single MEDL (library) file.

However, as previously mentioned in section 5.5.2, elements are added to or removed from a

library via direct manipulation of the MEDL library source (using a text editor). This cut

and paste' approach to component import/export is far from ideal (the technique is both

cumbersome and error prone). Ideally, Libtool's functionality would allow for seamless

reuse of library components across multiple MEDL files. This process could be realised via a

GUI based control, allowing the user to visualise the constituent components of various

library files (say) as icons and permitting drag and drop' operations to provide an intuitive

import/export interface. However, it was felt that in the context of this work there was little

162

gain in developing another GUI control as, in the context of this work, the import/export

functionality is of secondary importance to Libtool's inter-entity interface management

facilities.

163

Chapter 6

Model Generation

Aside from library management and exploration, the other main function of LibTool is

the generation of EDL code and HASE++ behavioural skeletons for use directly within the

HASE environment. This section gives an overview of the code generation process

highlighting key parts of the implementation where appropriate.

6.1.1 The Code Generation Interface

To start the generation of EDL and HASE++ code the user selects the target

component (HASE model) in the browser window. Usually the selected component will be a

closed model (i.e. it will be a composite component without free ports) and will represent a

complete simulation mode1 35 .

After target selection, the 'generate' control is selected and the user is presented with a

window detailing options for code generation. The window is split between two panes of

information.

The first pane (labelled 'Target Spec.' and illustrated in Figure 59) allows the user to

specify the output directory for the generated code and the target type. At present the only

fully supported output type is EDL (and implicitly HASE++), however it is in theory

possible to use LibTool as a general-purpose modelling tool. The output of different target

code is a matter of writing the appropriate Java code generation routines (to replace the EDL

generation class EDLLibGenerator). To this end, a basic PostScript target generator was

written (to produce figures of entity's port and link configurations) in a different code

generation class - PostScriptGenerator. The use of the target selection control is

illustrated in Figure 60.

$I (ieneFate Code Settings
	 xj

Target Spec. EDL Header

Gpnerato 1fV 	deIa

ie = 	£01

cphdtHLIBRocGenerated 	 Set Target Dir.

Generate Tree Data 	V Generate EDL 	 V Generate C++

L-IASE Clipboard Mode 	Update Library 	v Utii. Methods

Dismiss 	Generate

Figure 59 - The Target Specification Window

In addition to these options the Target Spec.' pane allows various switches to be set to

control various attributes of the target code-generation process. For example, the Generate

C++' switch toggles HASE++ code generation on and off. The other switches on this pane

are discussed later in this work, at points appropriate to their introduction.

This however is not a constraint and consequently it is possible to generate a HASE model of
a single atomic entity or an open' composite entity.

165

EDL

T. c:hdiHUBROO5Ge 	 Set Target

C1*• 	 (..

Figure 60 - Changing the Target Code Type

The second generation' pane (named 'EDL Header' and shown in Figure 61) allows

the details of the generated model's EDL header (as discussed in section 4.1.1) to be

specified.

Target Spec. [DL Header

rn'Jue

Lu L 	tcu'i Uw [dmaseiprojects

.upu.r iLawrence Williams

VN

	

Dismiss 	Generate

Figure 61 - The EDL Header Specification

6.1.2 Modelling Non Communication-oriented Component properties in

MEDL

Thus far, LibTool has been described with a communication-oriented emphasis.

However, in any simulation model, communication is only one aspect of the design of a

project. EDL supports other modelling features such as standard and user-defined parameters

as well as special structures such as viewable memory arrays.

Whilst this work is concerned with aiding levels of reusability and facilitating the

generation of models at multiple levels of abstraction, the other aspects of a simulation

component's representation cannot be ignored.

As EDL already provides a good solution to the modelling of these other attributes the

solution to the problem of allowing aspects other than communication to be represented in a

MEDL library file is the use of embedded EDL descriptions.

This is done via the EDL{ } construct within a component definition. Program 17

presents the MEDL library description of a trace-driven processor model. Following the now

familiar name, description, message type and port definition, the EDL construct is used to

define various parameters of the component. The processor component defines embedded

EDL to represent various component attributes including a general memory array type (for

holding the processor driving trace file), a local (to the component) instance of the previously

defined array type, and a delay parameter.

Each line of embedded EDL is specified with one of three possible MEDL keywords as

follows:

I. PARNLIBINS: Embedded EDL following this command outlines the

definition of a HASE instruction set (a special HASE data type used for

representation of instruction sets).

PARAMLIB: Lines of EDL following this keyword are inserted in the target

project's PARAMLIB section (i.e. the global parameters section of the EDL as

discussed in section 4.1.2).

PARiNS: This keyword indicates that the related EDL fragment is an entity

parameter that is to be included in the ENTITYLIB (section 4.1.4) definition

of the component.

167

All the EDL encapsulated by the above keywords is standard EDL and must conform

exactly to the standard EDL syntax.

ENT
NAME { td_processor}
DESC{A Trace Driven Processor")

DETDESC("\tThis simple entity reads a trace file and issues requests
on a memory access port (of type memaccess). The processor
entity models a cycle delay through the td_processor_delay
parameter. After holding for the cycle delay and issuing a
memory request the processor waits for a result on the
MENRESULTIN port. \n\n"

MTYPES
MESSTYPE(memacCeSs (read_address, write_address))
MESSTYPE(memresult{returfl_address, ack write))

INPUT(PORT{MEMRESULTIN, memresult}
OUTPUT(PORT{MEMREQOUT, memaccess}

EDL
/* Define the array (type) to hold memory contents /

EDLCODE(PARAMLIB,"ARPAY (ttrace line array , 250 , ttrace —line);"}
1* Define the array (instance) to hold memory contents */
EDLCODE{PARAMS, "RARRAY (t trace line array , trace line array);"}
1* Parameter indicating the number of trace limes to be read */

EDLCODE{PARAMS,"RINT (traces , 250);"(

1* Define the trace line structure (address,r/w) *1
EDLCODE{PAPAMLIB,'STRUCT (ttrace line , [RINT (address,0), RSTRING

(action, \"NOP\")])
/* Define the delay parameter for a processor cycle */

EDLCODE{PARAMS,"RINT f tdprocessor delay , 5);")

Program 17 - Sample Component with Embedded EDL

If an entity contains embedded EDL, the code can be viewed using the LibTool

interface viewer's third pane as shown in Figure 62.

lnterfce HuH t)escnptiun Embedded lEt)i

PARiiENUM (t_di_sue_rP 	 U),

IPJSAMSRINT (memory_read_delay,50),

PARAMSRINT (memory_write_delay, 50);

PARAMS RINT (access_count, 0),

PARAMS.RINT (read_count, 0),

PARAMS:RINT (write_count, 0);

PARAMS:RFLOAT (read_percent,0.0),

ARAMSRFLOAT (write_percent,0.0),

Figure 62 - LibTool's Embedded EDL View

168

6.1.3 The EDL Code Generation Process

After the generation control has been activated, various objects are instantiated to

facilitate EDL model generation. An overview of the key classes involved in the EDL code

generation process is given in Figure 63. These classes are referred to in the remainder of this

section, which provides an overview of the EDL code generation method.

Class
LibGenerateForrfl

(derived from
Swing.JFrame)

Handles Interface issues for
generation phase

Class EDLHeader
Storage and methods relating

to EDL preamble fields

Class EDLLibGenerator
Generates actual EDL code and (optionally) l-&SE-f 	-- - generate.

Skeletons. 	- - -

/
/

Target EDL 	K/ Generate EDL
Code

Tempory Buffers storing
various EDL section

1

- - - 	 instance: 	 Class

- - 1 tempParamLib 	EDLParamlib
Holds and manipulates an

- -
	 EDL Parameters for

generate 	communication structures.

instance:
tempEnrbedParamLib --

L Holds and d manipulates an
EDL Paramlib defunitionfor
component specific project

paramlib entries.

Figure 63 - EDL Generation Classes

The code generation process starts with the creation of an object of type

EDLL±bGenerator. When this class is created an object of type EDLHeader is passed to

it as a parameter outlining the target EDL preamble (this data is obtained from the second

generate window pane described in section 6.1.1). The EDLLibGenerator method

processEDLFile () is then called which opens the target EDL file for writing.

IBM

The EDLLibGenerator object then instantiates an object of class EDLParamlib

that is used to store and manipulate the EDL PARAMLIB commands related to port and

message type definitions. In addition, another object of class EDLEmbedParamlib is

created which is responsible for holding and manipulating all other PARAMLIB definitions

(i.e. those extracted from the EDL { } sections of the MEDL library file).

The generation process now outputs a header (in the form of EDL comments)

indicating the date and time of model generation, the version of LibTool used, the name of

target model and the responsible author (see Program 18).

-- Generated Automatically With LibTool 2.0
-- Target Entity: simple archldin
-- Created At: Mon Dec 14 16:27:49 GMT 1998 (Author: Lawrence Williams)

Program 18 - Sample Comment Block from EDL Generation

Following this, the EDL preamble (section 4.1.1) is prepared and written to a

temporary text buffer based on the values in the EDLHeader object previously passed to

EDLLibGenerator.

Now the more complex code generation task commences. Each component in the target

model is examined and details of the message types used by the component are passed to the

EDLParamLib object. This object analyses each message type and assembles a Vector of

required message types (removing any duplicates which may be passed in). The

EDLParamLib object also enforces a syntactically correct (in terms of EDL) order upon

each entry in the PARAMLIB vector (e.g. message types are defined before the link types that

refer to them) ensuring that HASE's 'one pass' EDL parser can handle any generated entries.

At the end of this phase, the target PARAMLIB vector is transferred to a text buffer ready for

output to the target EDL file.

170

After writing an empty EDL GLOBALS section, (the programmer is no longer afforded

the luxury of global variables for the reasons outlined in section 4.5) the EDL ENTITYLIB

(section 4.1.4) is generated in two main phases.

Firstly all atomic components are translated into EDL representations (including the

MEDL embedded EDL { } PARAMS code), then all composite entities are translated

according to their MEDL definitions. Program 19 presents the output for the translation of

the atomic MEDL . component given previously in Program 17. All the EDL PARANLIB

entries are stored temporarily in a text buffer.

TNT ITYLIB
ENTITY din tdprocessor
DESCRIPTION ("A Dineroill Trace File Compliant Processor")
PARANS

-- ** Encapsulated EDL from hub **

TINT (traces , 250);
TINT (td_processor_delay , 5);
RINT (current—line , 0);
RENUM (t din issue type , din_issue_type , 0);

PORTS
PORT (MENRESULTIN, LINK memresult , in port, SOURCE);
PORT (MEMREQOUT, LINK memaccess , out port, DESTINATION);

ATTRIB

Program 19 - EDL ENT ITYLIB Entry. Generated from MEDL Processor Definition

A text buffer is then created to store the EDL LAYOUT definition. This section consists

of a single layout entity representing the model selected in the LibTool browser for

generation (this will usually be a composite component).

All the separate intermediate text buffers are concatenated into a single text containing

the target EDL and this is finally output to the target EDL file.

If the 'generate C++ code' switch on the generate dialog is checked the l-IASE++

generation phase is now triggered.

171

6.1.4 The IIASE++ Code Generation Process

In addition to generating EDL code, the user can choose to have HASE++ behavioural

description files generated for each of the entities in the target model. These HASE++ files

contain behavioural skeletons which specify event handlers for all possible messages that can

be received at or sent to a component's ports. This option provides a standard approach to

event handling for every generated entity and can help reduce the time taken to code a

component's behavioural implementation 36 . Of course programmers are not obliged to use

the event handling strategy generated by LibTool and may substitute their own.

The code generation method writeHASECode () of class EDLLibGenerator

generates a separate HASE++ file for each entity in the target model. Each generated

HASE++ file contains the following sections:

• General Header: the first generated section of a HASE++ file is a header

detailing the time that code generation occurred followed by a set of comments

extracted from the MEDL definition of the component (in an effort to provide

a level of documentation within the 1-IASE++ source code).

• Class Declarations Section: The automatically generated class declaration

section defined the prototypes for all event handlers generated by LibTool. In

addition, methods for the packing and unpacking of data packets are provided

for each message type referenced by the component (these methods are

required in all simulation entities but are traditionally hand-coded by the

programmer). Sample prototype definitions for component B of the test library

appear below as Program 20.

172

$class dec15
1* Message Pack/Unpack Prototypes (Generated by LibTool). *1
void PACKET unpackPkt(sim event &ev, t PACKET MSG &msg, tPACKETBIND

&bind, tPACKETMSK &msk);
void PACKET_pack (tPACKETSTR &pktln, t_PACKET_MSG msgln,

tPACKETBIND bindln);

/* Port Handler Prototypes (Generated by LibTool). */
void doilN (sin event &ev);
void do o OUT (t PACKET STR in);

Program 20 - LibTool Output: HASE++ Message and Event Prototypes

. Class Definition Section: The next section of HASE++ code contains class

definitions corresponding to the message pack/unpack prototypes (e.g.

Program 21 presents the class definitions related to the prototypes of Program

20). The event handlers are based around a case statement containing a clause

for each possible value of the input message type's range.

$cl as s_defs
#include <math.h>

1* Message Pack/Unpack Methods (Generated by LibTool).
void b::PACKET unpackPkt(sim event &ev, tPACKETMSG &msg, tPACKETBIND
&bind, tPACKETMSK &msk)

t_PACKET_STR pktln;

SIM GET (t PACKET STR, pktln, ev);
bind = pktln.PACKET BIND INST;
msg = pktln.PACKETMSGINST;

void b: : PACKET_pack (tPACKETSTR &pktln, tPACKETMSG msgln, tPACKETBIND
bindln)

pktln.PACKET MSG INST = msgln;
pktln.PACKET BIND INST = bindln;

1* Entity Event Handler Methods (Skeletons Generated by LibTool). */
void b: :doilN (sin—event &ev)

/* Define Storage for incoming event then unpack event */

tPACKETMSG pktinMSG;
t PACKET BIND pkt in BIND;
tPACKETMSK pktinMSK;

PACKET unpackPkt (ev, pkt inMSG, pkt in BIND, pktinMSK);

switch (pktinMSG)
case message_a:

break;

36 Usually this option will only be used the first time a model is generated.

173

case message_b:
break;

default:
break;

Ii

void b: :d000UT (tPACKETSTR in)

1* The following defines a default send container and action */
tPACKETSTR pkt out;
pkt_out = in;

send MESS PKT (OUT, pkt_out);

Program 21 - Definitions of Message and Event Handlers

Body Code: The last automatically generated section of a component's

behavioural code is the 'body' code. In this section, LibTool generates a

general-purpose event handler which blocks waiting for the arrival of any input

event. On receipt of an event the appropriate port's event handler is called. To

complete the example being followed throughout this section, Program 22

shows the body code generated for entity B. In this example, a single if

statement dispatches events received on the entity's single input port (IN) to

the method do_I_IN (ev).

$body
1* The following basic event loop was generated by LibTool. *1
while(l)

GET NEXT(ev);
if (ev.fromport(IN)){

doilN(ev)

Program 22 - Generated Body Code Definition

174

6.2 An Experiment in Communication Modelling

The remaining sections of this chapter describe an experiment based around a MEDL

component library that can be used to model the RS232/v-24 calling protocol 37 . The

experiment demonstrates the following aspects of the LibTool based modelling process:

• Support for entity selection based on interface-oriented classification of MEDL

components. After an initial model configuration is created, entities within the

model are tested to see if alternative substitute entities exist in the MEDL

library. This is done via LibTool's entity-interface class viewer.

• The use of composite entities to form a hierarchical model of the RS232/v-24

protocol is demonstrated.

• Timing characteristics of abstract and detailed component implementations are

compared in order to verify that models based on abstract entities produce the

same results (where possible) as models built from detailed components. This

is done via a tool named CommTrace that allows the sequence of events

occurring at an entity's communication interface to be viewed graphically.

6.2.1 Overview of the RS232/v24 Protocol

The RS232/v24 protocol defines a standard for the connection of a DTE (data terminal

equipment) to a DCE (data communication equipment - usually a modem) via a 25-pin 'D-

type' connector. The relative positions of the DTE and DCE equipment are shown in Figure

64(a). The protocol is primarily concerned with the activities of call origination, data transfer

and call clearing (disconnection). The signal to pin assignments outlined in Table 4 provide

an insight into the standard's signalling characteristics.

175

The TxD and RxD lines are used for data transmission and reception respectively. All

other lines are used in the setting-up and clearing of a switched connection through a PSTN.

Figure 64 (b) illustrates the sequence of signalling involved in a typical DTE to DTE data

call.

IPin Acronym Fun ction
1 SHD (SHIELD GROUND)
2 TxD TRANSMIT DATA
3 RxD RECEIVE DATA
4 RTS REQUEST TO SEND
5 CTS CLEAR TO SEND
6 DSR DATA SET READY
7 SIG SIGNAL GROUND
8 CD CARRIER DETECT
15 TxClk TRANSMIT DATA TIMING
16 TxClk TRANSMIT DATA TIMING
17 RxClk RECEIVE DATA TIMING
20 DTR DATA TERMINAL READY
22 RI RING INDICATION

Table 4 - RS232/v24 Signal Assignments

37 A CCITT (Consultative Committee of the International Telegraph and Telephone) standard
protocol for connecting a DTE to a DCE.

176

C
-5 CD

—1

(D

rri

Uq

CI)
t'J

I'J

1
C
-4

C C)
C

H

C.)

C
-4

C

-
1 C

C C)
C

1

CD

EIA-232DN.24 	 EIA-232DN.24

	

Calling DIE / I '\ DCE (modem) 	 DCE (modem) / I ' 	Called DIE

(PC/Terminal) \
	

with autodial ______ PSTN ______ with autoanswer \
	

(computer)

OTRon 	 d 	
DIR on

A
DSRon 	 t 	 OSRon

Number of called 	 to

	

Connection 	
modem sent to 	 • i 	

RI on

	

setup 	modem.
RTSon

Carrier On
CD on 	 short

delay 	 CS:

RxDon RISoR :.:

CD off 	T...4 	 . 	CTS off

0 	 .. 	RTS0n
Data

	

transfer 	 . ..
__—.-_____•_ r9_______

... 	 CD on

CTS on 	•.

TxO 	

RoD

RTSoC 	
I 	 	

RISoff

	

Connector 	 CTS off 	 . . 	- 	. 	 CTS off

	

cleared 	 .
CD off 	 r 	 CD off

	p.

DTR off 	 DIR off

DSR off 	 DSROR 	
Is

short

I

	

DIR on 	

delay

	

time 	 DSR on

6.3 Building the RS232/v24 Library Components and Models

When constructing the RS232/v24 library a top-down refinement process was adopted.

This allowed an abstract prototype to be generated quickly and protocol detail to be added in

later model compositions.

Initially, the MEDL library contained three components representing an abstract view

of the RS232/v24 protocol. The library comprised two atomic components representing an

abstract caller' (a combined DTEIDCE entity) and the PSTN, alongside one composite

component representing the target mode1 38 . The HASE entity hierarchy for this initial model

is shown in Figure 65 and a screenshot of the model appears as Figure 66.

pstn

abstract

abtraccaller[caIIeraJ

n 	

s

Figure 65 - Most Abstract Representation

The HASE model consists of two instances of the abstract caller entity (callera and

callerb) each of which has on screen parameters indicating whether they are responsible

for call origination and their current connection phase. The connection phase parameter

values are based upon the connection set-up, data transfer and call clearing phases of the

protocol illustrated in Figure 64. These caller entities are connected to the PSTN entity via

ports that use the message type connection (shown in Program 23).

MESSTYPE{
connectionsetup,setupack, data, dataack,clear, clear ack}

Program 23 - Connection message type

38 The use of a top-level target entity is a consequence of LibTool's model generation process,
which requires a target entity to be selected for translation into EDL. Previously in HASE, models did
not require a 'root' entity when describing model structure.

178

File Edit Build Simulate 	 - 	 - 	 Help

I 	r S1a7 	E,amma

Project: model 	--
File liomes/remotefalamodcs.ed.acuk)1mw/myprors232lunodell/model1 edt

Simulate Status Trace File Compressed OK 	
Trace Level ; User Conlig
Trace File : lastone.trace

DAT

11

Figure 66 -HASE Display of Initial Model

The connection message type is used to form an abstract version of the RS232/v24

protocol, which models only the three protocol phases mentioned previously. The use of the

connection message type's range elements, with respect to simulation time, is shown in

Figure 67 (the coloured bands correspond to the colours in Figure 64 which identify the three

protocol phases).

The behavioural descriptions of the abstractcaller and pstn components are

based upon LibTool's automatically generated event handlers. Each clause of the generated

event handler is completed, by hand, with an appropriate behavioural description. For

example, the abstractcaller method do_i_FROM_PSTN handles 'setup' messages as

shown in Program 24.

IVkJ

switch (pkt FROM PSTN)
case setup:

II we should now switch to setup mode
comms phase = SETUP;
dump state U;
simhold(l);
do o TO PSTN(setupack);

Program 24 - Sample abstractcal ler Event-handler Code.

0 	e It-
Setup

Setup Setup
phase 	 4 	Setup Ack

Setup Ack

_
4_Dat

Data 	
a

transfer 	

Data Ack
Data 	:_______Data Ack

Data phase

I

 Data
Data Ack

Clear 	
Clear 	 4 	

Data Ack

prase 	4 	Clear 	
Clear
Clear

Figure 67 - Use of the Connection Message Type

6.4 Refining the DCEIDTE Components

The refinement of the model (to a more realistic representation of the real-world

system) sees the division of the abstractcaller entity into distinct DTE and DCE

components. Two versions of DTE and DCE components were created to represent different

levels of modelling detail.

6.4.1 DTE and DCE Implementation A

The first DTE and DCE implementations involved the creation of atomic entities called

pc and modem respectively. These entities each include two ports representing the RS232

physical interface. These ports are bound to message type rs232 (Program 25) that has a

message range capable of representing the signal assertions used in the rs232/v24 protocol.

MESSTYPE{rs232
{number, dtr on, dsr on, non, rts on, cdon, cts_on, txd, rts off, rxd_on,
cdoff, cts off, dtr off, dsroff}

Program 25 The r s 2 3 2 Message Type.

The pc and modem entities have a more sophisticated behaviour which implements the

full protocol shown in Figure 64. A sample for the pc entity's behavioural code (event

handler do I FROM_MODEM) is shown in Program 26. In order to highlight the distinction

between automatically generated and user supplied HASE+-+ code the user-supplied code is

highlighted in red.

// Entity Event Handler Methods (Skeletons Generated by LibTool).
void pc: :doiFROM MODEM (sim event &ev)

//Define Storage for incoming event then catch event (generated by LibTool)

rs232 pkt FROM MODEM;
SIN GET(rs232, pkt FROM MODEM, ev);

switch (pkt FROM MODEM)

case ri_on:
coums_phase = SETUP;
dump state 0;
simhold(l);
do o TO MODEM (rtson)
break;

case cts_on:
if (initiate call == YES)[

/1 the calling machine
simhold(l);
dooTO MODEM (txd);
simhold(l);
conms phase = CLEAR;
duinpstate0;
simhold(3);
dooTO MODEM (rts off);

}else(
II the called machine
comms phase = DATA;
dump state 0;
sirnhold(l)
do o TO MODEM(txcij

181

h:.ci1;
dooTO1ODEMrts_off

break;

Program 26 - A Sample of HASE++ Behaviour for Entity pc.

6.4.2 DTE and DCE Implementation B

The second versions of DTE and DCE take a different approach to modelling the

RS232/v24 protocol detail. The DTE and DCE are represented in the entities pcdetail

and modemdetail respectively. The use of the word detail in the entity names reflects the

fact that these entities feature a set of modelled LEDs (implemented as graphical entity

parameters) which, during HASE animation of trace output, indicate the signalling on

individual pins of the interfaces (these can be seen in Figure 68) revealing signalling signal

slate detail.

Rather than employ a small number of ports and an extensive message type, the RS232

physical interface is represented by a large number of ports (one for each pin modelled) and

a two simple message types (named rs232wire and rs232datawire) defined as shown

in Program 27. The rs232wire message type is assigned to timing and control ports (pins),

and the rs232dataw±re message type is assigned to data transmission related ports (the

RxD and TxD pins).

MESSTYPE{ rs232wire
(on, off}

MESSTYPE{rs232datawire
datatrans, remotenumber

Program 27 - Alternative Message Types for RS232/v24 Signal Modelling

182

As with the pc and modem entities the behavioural description is more complex than in

the original abstractcaller entity. In the pcdetail/modemdetail entities extra

behavioural code is included to set the on-screen LED parameters on or off according to the

protocols progress. This parameter setting is illustrated in Program 28, which details the

event handler on input port (pin) RI.

switch (pktRl)
case on:

riled=ON;
conuns_phase=SETUP;
dump_state 0;
sirnhold(1);
dooRTS (on);
riled=OFF;
rtsled=ON;
dump_state_i 0;
break;

case off:
break;

default:
break;

Program 28 Fragment of pcdetail HASE++ Behavioural Code

183

File 	Edit 	Build 	Simulate Help

I ri 	i Si 	Fl
Project 	model3

File : ihomes/remote/alamo.dcs.ed.ac.uk1mW/mYprOrs2321mOdeI3Im0den.edl

Design Status : Idle Selected : None

CLEAR
TD

I
TxD

RID

I 	
RIS s 	 H
cts, °

r] 	
DSR .jDSR

MOCIM

ComçxEer 	o-ri ow
originator 	p1 l
NO

CLEAR 	 _
phase 	 TxD 	 TxD

R.D IS RxD

F17-1 cts% 	 cts
DSR _ P

CD 4

Camp1e 	DIR (DTP
originator 	RI 4 	 Rl

NO

Figure 68 - RS232/v24 Model Using entities pcdetail and rnodemdetail

6.4.3 Common Implementation Features

Both DTE and DICE oriented models have a single level behavioural hierarchy as

shown in Figure Both mode12 and mode13 implement the full RS232/v24 protocol

with the messages shown in Figure 70 (mode12 using the rs232 message type as

illustrated and mode13 using a combination of rs232wire and rs232datawire

message types).

° In addition. Appendix C.2 contains detailed diagrams of all the RS232 experiments model
structure (including port/message type bindings and entity interconnection).

184

modem Imodembi I 	

A,.detailmodembi

mode12 	modem Imodemal 	model3 	 modema)

p [pob]

- - 	I

Figure 69 - Refined DTE/DCE Component Hierarchies

Computer
	 Modem 	 PSTN 	

Modem 	 Co
(A)

4 	DTRon

4 	OSRon DSR 	i 	p

_ _____

DIR on____

- 	- Numoer- 	- 	10-
Setup

Setup_
RI on

4 	RTS on
Setup Ack______

Setup Ack
4 	CD on________

CTS on 	IN
4 	TxD

Data 	 RTS o ff
Data_____________ 4 Data Ack

4 	RXD on____________ Data Ack
l_CD off_

RISOn 	p
Data 	p

Data 	p
CD on

4-CTS on
p

Data Ack 	p
Data Ack 	p

RXD on
RIS off 	p off

CTSoff Clear
Clear

Clear 	 CIS off
CD off Clear 	 CDoff
DTR off 4 	DTRoff

_____ 	___________

4 	DSR off DSR off 	p

4 	DTRon
DSR0n 	p

I:i gure 70- ModeI2 and ModeI3 Message Sequence

185

6.5 A Hierarchical Simulation Model of the RS232/v24 Protocol

Having defined several atomic entities that have been used in individual (flat) models,

the process of introducing hierarchy into the protocol simulation was the next issue to be

addressed. An obvious first step was to consolidate the abs tractcaller component with

the more detailed DTE and DCE components. Accordingly, two more composite components

were created named caller and callerdetail. The caller component takes the

behaviour of abstractcaller at the higher level and is composed of a pc and modem

entity at the lower level. The callerdetail component also takes the behaviour of

abstractcaller for its high level representation; at the lower level instances of

pcdetail and modemdetail are coupled. The two composite entities are both

considered valid by the LibTool validation process. Other (unrealistic) combinations were

constructed and tested in MEDL but were correctly flagged as invalid by LibTool.

Given the previously defined composite entities, it was possible to construct HASE

models representing behaviour at multiple levels of abstraction. Behavioural level could be

switched between in HASE via use of the 'simulate at this level' switch (section 3.7.2).

These models represented the first ever HASE models to provide more than one behaviour

for the same sub section of a simulated system.

Initially two models were constructed, one using two caller entities at the higher level

and one using two caller detail entities at the higher level. The HASE hierarchies for these

two models are shown in Figure 71.

00-1

modem

caller Icallerb]

modeK

caller
 Lcallera1 PC

/EJ
modemdetail

model5' calleidetail

pcdetail

callerdetail (lleraJ 	

modeml

pcdetail

Figure 71 - Models with multiple behavioural abstractions

Examination of LibTool's class viewer (section 5.7.4) showed component substitution

could be performed for the abstractcaller, caller and callerdetail

components. The class viewer makes the identification of substitute entities straightforward,

the user simply finds the class in which the entity to be replaced resides and all other entities

in the same class (sub-folder on screen) are suitable for substitution (the output from

LibTool's class viewer with the MEDL RS232/v-24 library loaded is shown in Figure 72).

187

-

E1 rs232 	 -

ç 171 cIas.trticUe

B abstractcaller

B caller

callerdetail

£1 classpc

Bpc
4p En classpcdetail

pedetail

Cn classmodemdetail

modemdetail

E1 classmodem

modem

ç171 classpstn

B pstn

op En classmodell

B modell

model2

model3

B model4

O model5

modeI

Ji
Dismiss

Figure 72 - RS232/v24 Component Classes

6.6 Protocol Validation

One problem encountered when code is executed at different levels of abstraction is

ensuring that behavioural characteristics are identical irrespective of the selected abstraction.

Typical of this problem is the task of ensuring timing information in detailed entities is not

lost when moving to a more abstract representation. The responsibility for aligning' events

in time across abstract representations ultimately falls to the programmer. However, tools

can be employed to aid this process.

The CommTrace tool was created as part of this research effort in an attempt to provide

the programmer with a mechanism for visualising the events sent across inter-entity

communication interfaces with respect to time.

188

6.6.1 An overview of CommTrace

CommTrace is used post-simulation to analyse inter-entity communication. It is started

by the generation of a special trace file, which is triggered by selecting the generate

communication protocol' option from the tools menu. The CommTrace tool can then be

launched by selecting view communication protocol' from the tools menu.

The main CommTrace Window is divided into a console pane which displays system

messages and a set of controls. The controls include two pull-down lists allowing the

selection of two entities (the list of available entities is extracted from the CommTrace trace

file) whose communication is to be examined, a control for launching a trace viewer and a

control for starting the protocol viewer. The main CommTrace window is shown in Figure

73.

cirnrnTrace ""0.1 a(c)1 coo HASE Group

Scnnlng Tracefile mad4-bothhigh cornms

Tracefile mod4-bothhihcomms OK.

'V

ErvA layout rnodel4.callerajnst

IUUIJ layout _rnodel4.PStflJflSt

1r.icHOrnod4-Dothhftlhc ornms

Comrns. Diagram 	View Trace Info. 	 AboUt :: 	Exit

Figure 73 - The Main CommTrace Window

189

The Comm Trace Trace Viewer

CommTrace allows the user to examine the trace file in a text based representation via

the trace file viewer window. In this view sections of the trace file can be highlighted and

manipulated on the system clipboard (useful when documenting entities).

Tin Ertt. L Dest Frt F'1 C

,rrl .tEE.iT -

3.0 layout_mode14 path_inst TO_CALLERB Iayout_rnodet4 catierbinat FROM—PS MESSPKT setup

4 0 layout model4 callerb_inst TO_PSTN 	layout_model4 path_inst FROM CA MESSPKT setup_ad

5.0 layout_rnodel4 pstn_irist TO_CALLERA 	ayout_mode14 callera_inst FROM_PS. MESSPKT setup ack

70 Iayout_model4 callerb_inst TO_PSTN 	Iayout_model4 pstn_tnst FROM_CA NtESSPKT data

8.0 layout_mode14 caflerb_inst TO_PSTN 	layout_mode14 pstn_inst FROM—CA MESSPKT data —ark

8.0 layout model4 pstninst TO_CALLERA layout_model4 callera_inst FROM_PS MESSPkT data

9.0 layout _model4.pstri_'nst TO_CALLERA layoul_model4.callera_inst FROM—PS. MESSPKT data_acic

10.0 1ayout_rnodel4 callera_inst TO_PSTN 	layout_model4 pstn_inst FROM_CA MESSPKT data

11.0 layout_mode14 pstn_inst TO_CALLERS layout_model4 callerb_inst FROM_Ps. MESSPKT data 	-

130 layout_model4 callera_inst TO_PSTN 	layout_model4 p6th_inst FROM—CA. MESSPKT data —ark

140 layout_model4.pstn_iflSt TO—CALLERS layout _moclel 4 .callerb_inst FROM_PS... MESSPKT data_ack

17.0 layout model4 calera_inst TO_PSTN 	layout_moael4.pstn_inst FROM_CA . MESSPK[clear

17.0 layout_model4.callerb_inst TO_PSTN 	layout _model4 pstn_inst FROM—CA.. MESSPKT clear 	-

' 4 ! .. - _..,1....I
it 	45: lb 1 nt& SIMPAW Fumul 1LO Oil

Figure 74 - The CommTrace Trace File Viewer

The Comm Trace Communication Viewer

The main CommTrace window is the protocol viewer. This allows the user to see a

time ordered representation of the communication events between two entities over the

course of a simulation run. The events are presented in a scrolling pane with two blocks

representing the entities being investigated running lengthways down the screen (one in red

and one in blue to aid message source identification). Events generated by either of the key

entities are drawn as thick arrows indicating the direction of transmission. Events from other

entities other than those being investigated (but forming part of either entity's

communication interface) are represented as incoming thin arrows (from the left or right

13

14

I,

y. En(KeA(tnt$ 	 6 EM*yB Fs E,eernal Ecds 	 V RUSSW Ls 	 FWVWP0M Mode

COW

sides of the figure). Each event is labelled with the message type name and range value. In

addition, each message is annotated with the simulation time at which the event took place.

Left la-y:u 	Ci4 caIleran!
Right Iayut_moel4 psm_inst

Figure 75 - CommTrace Protocol Viewer (Detailed View)

The standard view dedicates a fixed vertical area of screen space to each simulation

time unit. This means that for a period of (say) ten simulation time unit where no events take

place there will be a vertical gap often time units (time units are highlighted by two shades

of grey shading on the figure's background.

CommTrace also provides a 'thumbnail' view of the communication trace (Figure 76)

which compresses time vertically (i.e. if no event takes place in a given time unit nothing is

output). In the thumbnail view, all events are time stamped and rather than individual event

arrows being labelled each event is annotated in a column on the right of the display. The

thumbnail view is useful for finding key events in large traces, as rendering of this view is

much quicker than the detailed figure.

191

Interface -e un=::nr AnalysIs.

Rlght 1ayout_*ode14 - pstn_anSt

1.

is
11.
1.2
2.2
14
1.2
11
1.?
1;

Time

1 	(A- A5 ,.t)
2 	(3-sE
4 	(X-SA
$ 	(A-)•3 	-

7 	(X-SA
$ 	 X-sA dt_ds((A—B
I 	(A-sD
1* 	(A- >D
LI. 	(B-sE data)

Li 	(A-SE
14 	(3-53

17 	(A-SB clear) 	(X->I

11 	(3-sE clear) 	(A->B 	clear)

hi

	

Entity A Events 	.' Entity B Events 	v External Events 	.' Message Labels
	

FmerPrUit Mode

	

OK 	 Print 	 Refresh
	 cw

Figure 76 - The CornmTrace Protocol Viewer (Thumbnail View)

Finally, the programmer can choose to filter events according to their source (either

entity A, B or external).

6.6.2 Validating the RS232/v24 Simulation Timing Characteristics

The RS232/v24 models, which represent entities at multiple levels of abstraction, were

examined using CommTrace following the implementation of detailed protocol timing in the

lower level entities. By analysing the CommTrace output, it was straightforward to see if the

timing characteristics of the higher abstraction level matched those of the more detailed

lower level (and of course that the lower level exhibited the behaviour specified by the

RS232/v24 standard).

In fact, it was shown that the higher-level entities timing was not identical to that at the

lower level and the higher level model was modified accordingly. This was because the

WA

initial high-level model used programmer-estimated time delays rather than detailed timing

measurements built up from a complete flow of events.

Due to this extraction of timing information from the lower level and modification of

the timing data in the higher level, it was possible to run the simulation in a more abstract

manner (and consequently with a faster runtime) whilst retaining the timing accuracy of the

lower level model. Of course, timing information was only available in the higher level

entities for a sub-set of the events supported by the lower level implementation.

However, it was possible to run a model with one communicating party at the higher

level of abstraction and one at the lower thus allowing the full protocol detail to be viewed in

one caller instance whilst the other being run at a high level of abstraction meant that overall

runtime was reduced. Figure 77 shows CommTrace protocol diagrams for this model

configuration. The first three parts of the figure show the individual interface timing

characteristics for entities pc/modem, modemlpstn and pstn/caller. The final part of

the figure is a composite of the previous three (thumbnail) protocol diagrams showing how

the entire set of model interfaces match in terms of key events across the differing levels of

abstraction. Appendix C.3 contains additional protocol diagrams for alternative model

configurations.

193

I 	(A-OP
1 	(A-OP

3 	(k-OP e0_O(

4 	 (A-OP ee.003 	 (P-OX

0 	 (A-OP
0 	 (k-OP od((P-OX

O 	 (A-OP eO,_ei1(

1.1. 	(A-OP

14 	(A-OP

17 	(A-OP eO,_,f6(- 	(P-OX 	e()
2.4 	(A-OP oO,_o6(

U 	(A- OP od_o(6(
16 	(A-OP &_ei6(

01. 	 (k-oP doe_efl(

14
11
10
10
16
If
1$
17
16
1(
0s

Ti—

dOr_co(

3 	(A >D ontep) 	(k-OX
4 	 (A-OP on_ok(
O 	(P- OX
4 	CA. >x
7 	(A-OP detO) • 	(P-OX dOic) 	 (A-OP
0 	(k-OX to_efl((P-OX

IL 	 (k-OP dt((A-OX od_oeo(

14 	(A-OP dot*_ok) 	 (A-OX 	 roodor(

13(A-OP .1.—)

1$ 	 (A-OX rto_066(
13 	 (k-OP o1no((P- OX 0014..r((A-OX 	ool_nifO

LI. 	 (k-OX

(.6

U

10

10

14
is
16
17
13
13
(4

Ti.,

Interface CoaLunicatiOfl naiysis.
Left: Lsyout_node14.ca11erb_2-nst.po_oflst
Right: 1ao3oda14 caiierb_inzt . odaa_inst

Interface ConunicatlOnS Analysis -
Left: 1ayout_aodO14.0a11erb_1flStaOde_Ofl3t
Right: 1ayout_aode14 . pptinst

Interface Conanlnicattons Analysis.
Left: Iayoo.ot_model4.pstfl_imst
Right: Iayout_odel4. cail.ra_init

(A-OP 	 OrOO(

0 	 (A-OX 	 O8tO4O(

S 	 (A-OP 	 tOP_A(

I 	 (A-OP
0 	 (k-OP
10 	 CA Oz

11 	 (A-OX 	 dote)

12 	 (k-OR
14 	 (A-OX 	 dat, ark)

17 	(k-OP 	Oiler)

10 	 (A-OX : oller((k-OP 	oiler)

1.

18

U

10

10
0.4

IS

10
1?

10

Tine

1

10

11

11

10

14
10

10

10

10

10

(8

100008

Figure 77 - Using CommTrace to Compare Protocol Timing Characteristics

194

6.7 Model Performance

As alluded to in the previous section, the ability to run sections of a model at different

levels of abstraction offers the possibility of reducing simulation run time. To demonstrate

this, three models based on the RS232/v24 MEDL library were configured to run with

various entity abstraction combinations. The models used are illustrated in Figure 78, Figure

79 and Figure 80.

caller calIerb)K

dem

r1oaIIera1

Base Model

(a) 	 (b) 	 (c)

Figure 78 - Model Configurations a-c.

modemdetait

demdetail

callerdetail
 2F pedetail

Base Model

IE
Figure 79 - Model Configurations d-e

195

modem

call er

modemdetail

modem 	

Cal detail 	

pedetail

Base Model

Figure 80 - Model Configuration f

Each figure depicts a base model and various entity configurations. The configuration

figures (a-f) indicate (by highlighting active entities in blue) the level of behavioural

abstraction being used across the corresponding base model.

In order to compare the performance of the different model configurations, three

measures were used. The first metric is the number of user generated trace file lines, which

gives a basic indication of the amount of state manipulation occurring in the model.

Secondly, the number of explicit 'sends' (i.e. events generated) gives a measure of the

communication overhead in each model. Finally, the execution time for the entire simulation

to run gives a metric with which to compare the overall efficiency of a model configuration.

Each of the simulation models was executed on a Sun Sparc 5 workstation and the

execution time results presented here are the average values taken over 100 simulation runs.

Graph I illustrates the comparative simulation run time of each model configuration.

Configuration a has the best runtime as it executes all behaviour at the most abstract level

(i.e. using entities of type caller). Models h and c see callers being switched one at a time

to the lower level of abstraction in model 4 (pc and modem components are used). The run

time increases with each low level caller. Configuration d see a relative improvement in run

time compared to configuration c as although the callerdetail and pcdetail

components are the most processor intensive entities only one caller is simulated at the low

level. As expected, configuration e (in which both callers are simulated with maximum

detail) produces the worst runtime performance. Finally, configuration f simulates the

communicating parties with a combination of detailed behaviour (one party is represented by

pc and modem entities and the other with pcdetail and modemdetail entities). In this

case, a slight performance increase is gained over model e. The results indicate that pc and

modem entities are more efficient in terms of runtime than the pcdetail and

modemdetail entities.

120

	

Simulation run Time 	
104

	

100 	[:]Total run time 	 95

U Time in main thread
79

	

80 	
72 	 72

0 	

63 	 62

	

60 	 56

43

40

20

ConfigA 	ConfigB 	ConfigC 	ConfigD 	ConfigE 	ConfigF

D Total run time 	 43 	 63 	 79 	 72 	 104 	 95

	

• Time in main thread 	30 	 45 	 62 	 56 	 82 	 72

Configuration

Graph I - Model Configuration and Simulation run time

IYA

Investigation of Graph 2 gives an insight into the runtime performance of the different

model configurations. The graph illustrates the contribution of explicit sends and user

generated activity to the overall size of a model's simulation output trace file. The 'explicit

send' entries are made automatically (by 1-LASE) in the trace file when an event is scheduled

for transmission. All other trace file lines are classed as user generated; either explicitly via

the user code including sim_trace commands or implicitly by the user changing an entity

parameter and the value change being reflected in the trace file.

120
	 Trace File Output Size

Graph 2 - Model Configuration Vs Trace File Size and Explicit Sends

Model configurations a - c use an increasing number of explicit sends as the detailed

lower level entities are enabled. In fact, configuration c models the RS232/v24 protocol in

full detail and consequently this model has the joint highest number of explicit sends (along

with configurations e and j). However, whilst configurations c, e and f all use maximum

protocol detail configurations d, e andf all generate larger traces. This is because the user

generated proportion of the trace file size is increased significantly when entities pcdetail

and modemdetail are used, as a consequence of the large number of state changes made

to represent the physical interface LED arrays.

6.8 Summary

The process of generating the RS232/v24 model (using LibTool) was characterised by

the following differences when compared to the traditional HASE modelling approach:

• The combination of LibTool and HASE allowed the incremental development

of a set of entities to be performed without the need for ad hoc project

management. Previously the responsibility for capturing versions of a model

configuration fell to the programmer, who was required to manipulate a

complex directory structure representing different model versions. Using

LibTool as a component repository allowed the incremental creation of a

library of components. The deployment of these components in different

models was facilitated by LibTool's EDL generation facilities.

• After creating several 'flat' simulation models, the combination of different

component abstractions was made simpler by LibTool's ability to examine an

entity's communication interface. Previously the programmer needed to

examine components' behavioural and structural (EDL) representations to

ascertain the messages used by individual entities. The class viewer provided

by LibTool allowed the quick identification of entities that could be substituted

to form alternative models.

• The automatic code-generation facilities provided by LibTool removed much

of the tedious event handler writing required in a traditional HASE project.

This allowed the implementation to concentrate on protocol modelling rather

than simulation support functionality.

. The CommTrace tool allows the programmer to extract detailed timing

information from lower level (i.e. detailed) models by examination of an

automatically generated protocol diagram. The programmer can then insert the

timing information back into more abstract models to reduce simulation run

time. CommTrace allows verification that low and high-level timing

characteristics of a model are identical by identification of key communication

events in the protocol diagram.

200

Chapter 7

Extending Communication Detail

This chapter presents extensions to the LibTool modelling system that allow inter-

entity communication structures to represent the detailed data required to model computer

systems more realistically (e.g. the modelling of address ranges and operand values). In

addition, we present a tool (named SimTree) that allows a component hierarchy to be

visualised with respect to the behavioural composition of a model.

Following an overview of the LibTool extensions, three simulation experiments are

used to illustrate the practical application of the modelling mechanisms introduced here.

7.1 Requirement for Extended Message Types

So far, a degree of horizontal and vertical linkage abstraction has been obtained by use

of entity-interface classification techniques. Fundamental to these mechanisms are the

concepts of structured port, message and message-range types.

However, whilst well-defined message types and ranges allow an entity's interface to

reflect the problem domain to which it is to be applied, often a simulation model requires the

passing of specific parameter values with an event. For example, in a memory hierarchy

simulation, memory access events can be characterised by (say) a message type

memaccess with a range {read data, readinstruction, write data}.

However, memory hierarchy models wishing to simulate the contents of a memory and the

201

use of these contents throughout the memory hierarchy require a means of expressing

address and data values within inter-entity events.

Using the LibTool modelling techniques introduced so far it is possible (albeit tedious)

to define a message type address with a range of elements representing all the possible

addresses for a specific memory unit. This would result in a large, unwieldy message type

(e.g. address = {1, 2, 3, 4, 5 Maxaddress}) whose intended domain of use is hard

to ascertain from the range elements (it is desirable that range elements convey something

about their intended domain of use).

This chapter proposes that this type of message set is of secondary importance to that

of the typical LibTool message types such as memaccess given above. The former is

concerned with a system task (e.g. reading or writing data) where as the latter address

type is concerned with what is essentially a task parameter of a read/write operation.

However, there is no dispute that both types of message range (memaccess and address)

are required in any flexible simulation system. There is a need therefore, to extend the

structured message type approach to allow the use of detailed parameters without risking the

loss of model reuse opportunity.

7.1.1 Secondary Parameter Bindings

The idea of so-called 'primary' and 'secondary' event types was investigated as an

initial solution to the problem of handling task and parameter oriented event data

respectively. This concept involved an active entity sending a packet representing the task in

hand to the remote entity and then passing further events based upon the remote entity's

parameter requirements. The basic mechanism is illustrated in Figure 81. The figure shows a

processor entity requesting a memory location via an event that transmits a read address

message-range item to the remote memory entity. Upon receipt of this message, the memory

202

entity responds with a packet identifying the parameters it requires in order to service the

request (in this case it simply requires an address in the range 0.. .210). The response packet is

received by the processor entity that ascertains whether it can supply such an address (the

entity may be very abstract and not support the notion of an 'address range'). If, however, it

can furnish the address parameter, it responds by sending a parameter packet to the memory

entity, which then carries out the read —address request.

Entity: Processor 	-i 	 Entity: Memory Unit T

flow of
control

SEND 	
Primary Packet: 	 =GETNT
read_address

GET—NEXT 	 M,mo,yAddress 	 SEND

- 	(event) 	 R1fle2 1 D Lit 	

._ 	

parameter request

>ye s
Can sati 	

SEND 	
Secondary Packet 	 GET — NEXT

this pare 	 address—value 	 (event)

no

Figure 81 —A Possible Solution to Handling Secondary Parameters

7.1.2 The Mixed Abstraction Problem

The approach outlined above highlights problems with connecting together entities

from a library of ready-made components. The components in a library can represent real

world objects at various levels of abstraction; consequently, simply because one entity

requires a certain parameter (e.g. address value) to continue processing, there is no guarantee

that the parameter can be provided by the remote entity. Furthermore, if the remote entity

does support the notion of an address it may only support a specific address range.

011191

Figure 82 illustrates the problem of mixing components with different levels of

abstraction. In the figure, we assume behaviour to be specified in all entities (a, al, a2, b,

bi and b2) with entities a and b providing a more abstract behaviour than the lower level

entities. Cases C and D illustrated below the 6 model configuration' section of Figure 82

illustrate the 'abstraction matching' problem. In case C. an abstract entity is required to

furnish a lower level (detailed) entity with parameters it does not support. In case D the

lower-level (detailed) entity needs to pass a detailed event to an abstract entity where the

parameters could potentially be lost due to the higher level's abstract implementation.

Model configuration

Bi 	B2_L

M~~:52_ 	_1

Case A: All simulation done at
the most abstract level

Case C; Mixed mode
(high-low)

Case B All simulation done at 	
Case D; Mixed mode

the least abstract level

--- -- 	

: 	
(low-high)

Figure 82 - Mixing Entity Abstractions

There is a need for entities to be able to negotiate the parameter types they

support/require. This is handled in the primary and secondary event type strategy described

above by an event driven protocol in which both entities decide if they can communicate at

the required level of detail. Firstly, a task request is issued (i.e. read —address) then the

required parameter information is agreed.

204

The mechanism presented in section 7.1 .1 was shown to work (with small hand-crafted

test models), however the simulation runtime overhead was significant. For a message

request requiring a single parameter three explicit sends were required, opposed to one in a

traditional HASE model.

7.2 Efficient Parameter Negotiation

Having identified the importance of keeping explicit sends to a minimum, an

alternative way of handling task parameters was sought. Central to the task of finding an

efficient method for parameter handling is the knowledge that an entity possesses about the

remote entity with which it communicates. In the previous technique, a negotiation protocol

was implemented whereby the sending entity is told explicitly by the remote entity about its

parameter requirements. An alternative approach would be to send all parameters supported

by the sending entity to the remote entity, and leave the remote entity to make a 'best effort'

with the provided parameter list; this is the approach used in the final LibTool

implementation.

7.2.1 Requirement for a Revised Message Format

In order to support the passing of parameters, the message format used by LibTool was

revised to support the embedding of task parameters. Before the message format extensions

proposed here were introduced, LibTool generated EDL code representing a MEDL message

type-definition based upon EDL ENUM and LINK commands. This is illustrated for the

connection message type (from the RS232/v24 experiment of section 6.2) in programs

Program 29 and Program 30 where the range elements from the MEDL definition are

converted into a HASE enumerated parameter. This enumerated parameter is then bound to

the link type LINK connection.

205

MESSTYPE{connection{setuP, setup_ack, data,data_ack, clear, clear ack}

Program 29 —The MEDL Message Type Definition for connection.

ENUM (connection
(setup: ,setupack: ,data: ,data_ack: ,clear:, clear ack:

LINK (LINK connection
[(MESSPKT, RENUM (connection , connection_INST , 0))]

Program 30 —The Automatically Generated EDL Definition of the connection link type

In order to represent the task parameter data associated with a message type, a new

EDL structure was required. The new structure needed to allocate storage for any parameters

associated with a message type.

The provision of storage for secondary data parameters is not complex (a HASE

STRUCT parameter can be used to store each associated task parameter). However, as a

message type may be associated with many different entities across various levels of

architectural abstraction, there is also a requirement for an entity to be able to identify (to the

remote communication party) which of the message type parameters it supports. In addition,

any solution to the parameter specification problem should be in keeping with MEDL's

simple code specification format (i.e. should not detract from the communication oriented

approach of MEDL).

Specifying Task Parameters in MEDL

The MEDL language specification was extended with extra keywords allowing the

representation of task parameters. The declaration of parameters is independent of library

components. The task parameters are defined in a final section of a MEDL library

description following the atomic and composite component lists. The parameter definition

list is identified by use of the DATABINDINGS keyword.

206

Inside the DATABINDINGS section of a MEDL file, parameter definitions are

identified by use of the DATAI TEN keyword. Inside a DATAITEM definition, a description

of the parameter is specified using the DESC keyword and the type and name of the

parameter are specified using the DATAPAIR keyword. The parameter types supported by

MEDL are listed in Table 5:

baselNT: 	 An integer parameter.
baseRANGE: 	 An integer range (mapped onto HASE's range
lowint, highint } 	type).

baseFLOAT: 	 A floating point number.
baseHINT: 	 An arbitrarily large integer (size specified by
fhexdigitsl 	 supplying number of HEX digits that represent the

size of integer).
baseDARRAY: 	 A dynamically sized array (including the name of
fsizeVAR,elementl 	a variable that sets size and array element type).
baseINSTR: 	 A instruction set parameter.

Table 5 - Task Parameter Types in MEDL

A fragment of a MEDL library is given in Program 31, which illustrates the definition

of a single integer parameter used to hold an address in a 2 32-word address space.

DATABINDINGS
DATAITEM{

DESC{"Represents a memory address in a 2"32 address
space - 8 hex digits."}

DATAPAIR(memaddress din , baseHINT {8}

Program 31 - Example MEDL Parameter Definition

Associating Task Parameters with Message Types

The association of a parameter with a message type occurs in the BINDINGS section

of the MEDL file via use of the keyword BIND. To complete the DATABINDINGS fragment

207

given in Program 31, Program 32 shows the memaddre s sdi n parameter being bound to

message type memaccess.

BINDINGS
BIND{memaccess , memaddressdin}

Program 32 - Binding a Parameter to a Message Type

Component Support for Parameters

The final extension to MEDL is the provision of a mechanism to allow a component to

specify if it supports the parameters assigned to the message types it uses. This is achieved

by extending the component definition syntax to include a section named PASSIVE. This

section details the parameters of a message type not supported by a component. The

identifier SET is used within the PASSIVE declaration to set the status of individual

parameters to 'not supported'. Program 33 shows a MEDL fragment for an entity that uses

message type memaccess but does not support the previously defined parameter

memaddre s s_din.

PASSIVE
SET {memaccess , memaddressdin}

Program 33 - Setting a Parameter Binding to 'Unsupported'

7.2.2 MEDL Generation of Parameter EDL

When the user generates an EDL target via LibTool's generate option, the resultant

EDL needs to represent the message type information alongside the parameter list for that

message type. Additionally, there needs to be some form of mechanism allowing entity

instances to indicate which of the parameters they support (mirroring the MEDL PASSIVE

definitions). Continuing the example based around the memaccess message type and the

memaddress_din parameter, Program 34 shows three LibTool-generated EDL definitions

that represent the parameter list, an expression of which parameters are supported and the

message type definition.

The parameter list is built as a HASE STRUCT parameter with one entry per bound

parameter. The indication of parameters supported is made via a bit mask with one bit per

parameter; the bit mask is defined in the PARAMLIB section of the output EDL with the

mask bits being set inside entity definitions later in the file (see Program 36). Finally, a

HASE ENUM is defined (in the usual manner) to represent the message type range 40 .

STRUCT(tmemaccess BIND
RH_TNT (memaddress din , FFFE'FFFF

BIT (tmemaccessMSK , 1);
ENUM (t mernaccessNSG , (read address: , write address: H;

Program 34 - EDL Message Type Definition Including Parameters

These three HASE definitions are automatically tied together in another HASE

STRUCT parameter (named t messagetypename_STR by convention). In turn, this

STRUCT parameter is bound to a link specification (Program 35).

STRUCT (trnemaccessSTR
RENUM (tmemaccessMSG , memaccess MSG INST , 0
RBIT (tmemaccessMSK ,memaccessMSKlNST, 0),
RSTRUCT (tmemaccess BIND , memaccess BIND INST)

LINK (LINK niemaccess
[(MESSPKT, RSTRUCT (tmemaccessSTR , memaccessSTRlNST))]

Program 35 - The Complete Message Type Definition and Link Specification

40 LibTool generates the three EDL structures according to the t_ message typename.X
naming convention, where X is STR, MSK or MSG depending on whether the EDL is defining the
parameter list, the parameter use mask or the message type respectively.

'I.

The final LibTool-generated EDL code is placed into the ENTITYLIB definitions of

the model components. In each entity, a set of default mask values corresponding to the

MEDL library's PASSIVE/SET values is generated. By convention the name of a parameter

mask is local messagetypename_BIND_NSK. An EDL fragment for an entity using

the memaddress_din parameter in message type memaccess is given in Program 36.

ENTITYLIB
ENTITY din tdprocessor

DESCRIPTION ("A Dinerolll Trace File Compliant Processor")
PARANS

-- ** Define local message masks **

RBIT (tmemaccess NSF, local memaccess BIND NSF, 1);

Program 36 - Local Parameter Mask in EDL Entity

7.3 Overview of Secondary Parameter Handling in HASE

Having seen the MEDL extensions provided to represent task parameter handling, we

now examine the way in which the data contained in the new message structures is used to

facilitate detailed parameter passing between entities in HASE.

The general philosophy underlying the message structure is that an entity sending an

event to a communication partner sends all the parameter detail it supports with 'no

guarantees' as to being able to satisfy the remote entity's parameter requirements. Similarly,

the remote entity receives events with no guarantee that it can process a message according

to the parameters provided. However, there is always a guarantee that the message range

element (e.g. read_address or write—address) is supported to some degree

(otherwise the interface checking would not have allowed the entities to be connected

together at all).

210

7.3.1 HASE+± Generated Support Functions

In addition to the generation of EDL structures with which to represent messages with

embedded task parameters, LibTool also generates HASE++ code to support the use of the

parameter lists.

Firstly, the standard event-handler support functions are extended to account for the

more complex message structure. To this end the Xunpack_pkt now includes self

commented code outlining the parameter assignments of each bit of the parameter mask and

processes the more complex message structure. The X_pack routine is also extended to deal

with the more complex message structure. An example of the new event handlers is given in

Program 37.

void din memory: :memaccess unpackPkt (sim event &ev,
tmemaccessMSG &msg, tmemaccess BIND &bind, tmemaccessMSK &msk)

1* The following comments outline this entities mask definitions
* for message type memaccess (generated by LibTool)
*
* 	[idx) (value]
*
* 	(0] [memaccess,memaddress_din]
*
* 	Mask takes i. bits
* 	Value(dec) = 0
* 	Value(bin) = 0
*1

tmemaccessSTR pktln;

SIB GET (t memaccess STR, pktln, ev);
bind = pktln.memaccessBlND_INST;
msg = pktln.memaccess MSG lNST;
msk = pktln.memaccessMSK_INST;

void din_memory: :memresult pack (tmemresultSTR &pktln,
tmemresultMSG msgln, tmemresult BIND bindln)

pktln.memresult MSG INST = msgln;
pktln.memresultMSK_INST = local memresult BIND NSK;
pktln.memresult BIND INST = bindln;

Program 37 —New HASE++ Event Handler Routines

211

In addition to the upgraded event-handler code, a new support function

bindingActive takes a parameter mask and an integer value (the bit to be tested) and

returns true if the specified bit is active. This proves to be a useful function when writing

conditional code for testing if a remote entity provided the parameters required by the local

entity.

7.3.2 Typical Event Handling Strategy

Having now seen the support for the new message type definitions in HASE++, we

conclude this section on task parameter passing by examining the typical event flow that

occurs between two entities A and B, which employ the new message format (the event flow

is illustrated in Figure 83).

Entities A and B have two ports (one input and one output). The output port of A and

the input port of B are bound to message type memaccess and the remaining ports are

bound to message type mernresult. There is one parameter (of type memaddress_din)

bound to both of the message types used in the model. Entity A supports the use of this

parameter on both message types, entity B however does not support it on either.

Communication begins when entity A schedules an event of type memaccess (with

range value read—address) and sets the memory address related parameter

(memaddress_din) to value 1234. The local (to entity A) bit-mask for message type

memaccess is inserted in the event's mask field. The event occurs.

Entity B receives the scheduled event and unpacks the various message structures. A

call to the appropriate event handler for the input port is called and the appropriate branch

into the CASE statement in the HASE++ behavioural description is taken (in this case via the

read—address clause).

212

- 	 Entity A B

local memacce:oaSk 	k 1) 	-
-. local memaccs 	"L-., 	 1

lolmocrc 	. 	 ak 	(Li Output Port 	 La1 aak (0)

(OUT) 	 Input

d000tJT V : 	 port
IN)

Packe

Parameters: S

doiOUT2 '• 	
- 	Memaddress_din 1#12341

do uN

switch primary—data
Bitmask. switch primary_data

case return address Message Type Range
case read address

] _______
secondary data: bitwise

(rsad_addfsM,wflte_addreSS) I

secondary data: bitwise

checking checking

case refer case write—address

F5econdary data: bitwise secondary data: bjtwise
checking checking

	

case default 	 case default

	

secondary data: bitwisei 	 Fsecondary data: bitwise
che cki 	 checking

Packe

Input 	
Parameters:

Port 	
Memaddress_din [#null]

(1N2) 	 _çask 	
- 	do_o_OUT2

	

_Message Type Range 	-
{retum_addmss.referj 	 4

	

KEY 	 Output
Port

utilitly routines provided, but no 	Secondary
automatic code generation 	Data Related

input port handler: behavioural 	-
skeleton automatically generated Primary

Data
output port handler behavioural 	Related
skeleton automatically generated

Figure 83 Passing Task Parameters in HASE

Once inside the clause it is the programmer's responsibility to unpack the event's bit-

mask field and perform a logical AND with respect to the local entity's mask (i.e. B) for

message type memaccess. In this case, the result of the AND operation is zero. This means

that entity B cannot service entity A's request to the level of service it requires. However, the

simulation need not halt at this point, it is quite conceivable that useful timing information is

available within entity B even if access to modelled memory locations is not. Accordingly,

an appropriate delay is performed before entity B schedules its own outgoing event of type

memresult.

Entity B's packet is sent in an identical manner to that of entity A (i.e. its local bit mask

for message type memresult is inserted into the outgoing message). Upon receiving the

response packet, entity A calls the appropriate input port handler and examines the returned

bit-mask. On seeing that the memaddres sdin field bit is not set, entity A can ascertain

that B did not offer the full 'level of service' it requested. None the less, the fact that it

returned a packet of the correct type in response to the request means that entity A can make

a 'best effort' attempt to use the response and continue processing.

We note at this point that entity B could have halted the simulation and raised an

exception if the programmer had desired.

7.3.3 VHDL+ Abstraction and Communication Mechanisms

As previously discussed (in section 2.5.2) VHDL+ [Vhdlplus96] aims to address

VHDL's lack of support for system-level simulation, by allowing simulation components

specified at different levels of abstraction to communicate with each other via the interface

construct. This section examines the interface construct in more detail.

Interfaces are optional communication mechanisms (traditional VHDL port definitions

may be used in their place) used when composing a system model. ICL describe interfaces as

"providing a firewall between units 41 , enabling them to be designed separately, whilst

allowing them to communicate". This is illustrated in Figure 84 where a unit Uis composed

hierarchically of two sub-units A and B, which communicate via an interface specification I.

41 These architectural units comprise an entity/architecture pair.

214

Due to VHDL+'s hierarchical facilities, units A and B could be further composed of sub-

units which communicate via interface specifications.

KEY:

Interface

Unit

Decomposition

4 Communication

Figure 84— VHDL+ Interface and Unit Composition.

An interface specification acts to define points of communication ('ends' in VI-IDL+

parlance). An interface definition consists of two main parts. First the between keyword

identifies a list of connected ends. Following the between keyword are the so-called

interface declarations, these typically consist of protocol, transaction, message and signal

definitions. A sample interface specification is given below in Program 38. In the example,

an interface is defined with two communication ends formally named MEN and PROC.

Interface MEM INTERFACE is
Between MEN, PROC;
(Interface Declarations)

End interface;

Program 38 - Sample VHDL+ Interface Specification

The interface declarations define communication across the interface at various levels

of abstraction as follows (from most abstract to most concrete):

The protocol interface declaration is mandatory and serves to define the most

abstract level of communication between units (i.e. it conveys essential routing

215

information). Protocols define start/end points of communication with

reference to the previously defined (in the between statement) interface ends.

A protocol specified route always consists of a single source end and one or

more destination ends.

Transactions define two-way communication elements which are passed

across an interface. They characterise communication by providing a

transaction name (e.g. send, receive), parameters (message contents) and

properties (for example timing characteristics). Transactions also have syntax

to allow them to be mapped (hierarchically) to lower level communication

abstractions (e.g. messages).

• Messages provide a more concrete communication definition and specify a

direction as well as name, parameters and timing properties. Depending on the

level of abstraction of the units at either end of an interface route messages

may be used instead of transactions.

• Finally, the signal interface item provides a special type of message that is

compatible with the traditional VHDL signal type. This lowest level is

essential if the model is to be decomposed into pure VHDL.

SuperViSE [Hodgson97] (the VHDL+ modelling environment) uses information from

the above interface items to automate the translation of information across the interface into

a pure VHDL model for simulation.

7.3.4 Comparison of VHDL+ and EDL

Figure 85 compares the interface construct of VHDL+ with the EDL communication

structures of the HASE environment. The figure illustrates how EDL combines inter-entity

communication with behaviour in a single object (entity) whilst VHDL separates behaviour

216

HASE

Entity A 	 Entity A
EDL 	 EDL

Communication 	 Communication
(message types/ports) 	 (message types/ports)

Behavioural Code 	 Behavioural Code

CL

HASE++
Simulation

I H II
CL

ii

vhdt+

I 	I
Entity A 	

4I-ItPr 	
Entity

vhdl. Unit 	I unit

VHDL
Simulation

VHDL Simulator

VHDL+
SUPERvIse

A?
0
E
0
0

(units) and communication (interfaces) explicitly by placing each in a separate software

structure. We note that EDL also separates communication from behaviour by placing

behaviour in the EDL sub-section of an entity definition and the communication aspects of an

entity in the PPRAMLIB and PORT structures. The figure also serves to highlight that in

HASE the entire modelling and simulation process takes place in a single environment

whereas VHDL+ is modelled in SuperVISE and simulated in a separate VHDL simulator.

System Design Level

Figure 85 - Comparison of HASE and VHDL+ Communication Placement

Another difference in the placement of communication mechanisms is that 1-IASE's

communication related code is always present in the same software component. In VHDL+

the communication elements of a model 'migrate' from the interface to the unit as the model

becomes more concrete. This is illustrated in Figure 86 which shows a simple VHDL+ model

in three stages of development (stages a-c). Note the shaded areas in the figure indicate the

placement of communication related code. In stage a, the interface is defined by abstract

217

transactions (hence the two way communication arrows), in stage b the model defines

communication using the message construct (communication is now unidirectional and the

units contain more detail about the data required at the interface). In the final stage (c), the

design is becoming more concrete with traditional VHDL port constructs being used. In this

final case, all communication detail (for the ports based route) is kept in the unit.

This approach differs from that of EDL/HASE in which all communication detail is

kept in the simulation entity for the duration of a project. As the communication between

entities becomes more elaborate, the extra detail is added to the PAR4LIB and PORT

definitions.

(a) H:
EA

riteiaI€.AB

ntertace AB

j

H:
r

Unit
10

(c) 	Unit 	 Unit

I 	4- Interface AB

L

Figure 86 - Migration of VHDL+ interface logic into units.

In terms of specific communication constructs, parallels can be drawn between

VHDL+'s protocol statement and the pre-EDL use of HASE's port construct. Both

218

define bi-directional paths of communication and can be restricted to unidirectional

communication by applying another software construct. In the case of 1-IASE, this is the EDL

CLINK construct and in VHDL+, it is the message structure. In terms of the work

presented here EDL restricts use of the pre-EDL port structure, as all links in models must be

defined to be unidirectional. This is a consequence of the underlying code used to check

interface equivalence.

The final area for comparison is that of communication abstraction. In VHDL+, a

connection across an interface (protocol construct) simply identifies communication between

connected units (irrespective of abstraction). The content of the remaining interface

definitions specify the various abstractions of communication that can be exchanged (there

are potentially many different transaction/message types defined in a single interface and the

transaction/messages can be structured hierarchically). A unit can use any message or

transaction from the available interface. Figure 87 illustrates this situation by showing

various units communicating across two interface definitions (note the dashed unit boxes

indicate possible higher level unit implementations).

In1e3:i AB 	 fler1JC.o

L Unit 	L— 	Tranp:tion 	-j 	Unit B 	- Transaction

Transaction

Transaction - -. 	Unit B 	- . Transaction

Unit Aj 	tP1PP

Figure 87 - Communication Across Abstractions in VHDL+

In EDL, rather than specifying multiple link types and message definitions, the design

process allows message types to be extended to represent more complex (detailed)

communication interactions as the design process progresses. By using masks to identify

supported sub-sets of a message definition, entities coded at differing levels of abstraction

can make a 'best effort' at communication, honouring supported message elements and

acknowledging those parts of the message that are unsupported in its own message mask (as

described in section 7.2).

7.4 Comments

The approach to event parameterisation discussed in sections 7.2-7.3 offers a

lightweight alternative to the problem of sending additional message data between entities

(only one explicit send is required per event). The approach is 'optimistic' in its approach

(all available data is sent in the hope that it can be handled), but allows for graceful recovery

from non-serviceable event requests (via inspection of the returned bit-masks and

programmer defined recovery routines). This enables valid aspects of an entity at a more

abstract behavioural representation (i.e. one not supporting certain requested parameters) to

offer a basic level of service (e.g. accurate delay insertion) to the requesting entity.

The next section of this chapter introduces a detailed model of a memory hierarchy that

demonstrates the use of task parameters as well as the previously explored facilities for entity

substitution and library-based model construction.

7.5 Modelling a Memory Hierarchy

This section explores the design and implementation of models based around a MEDL

library containing components for the construction of memory hierarchy simulations. The

220

memory hierarchy models make use of a task parameter that facilitates the passing of

memory access detail with events.

The various memory hierarchy models are used as a vehicle with which to further

examine the relationship between model accuracy and the level of abstraction at which a

component is represented. Trade-offs between runtime and model flexibility are also

investigated.

7.5.1 The MEDL MemoryHierarchy Components

Each of the MEDL library components represents some element of a memory

hierarchy; there are abstract processor components that drive both detailed and abstract cache

memory components, abstract memories that can be used to represent main memory, a bus-

like component and several composite entities containing descriptions of full target models.

Library components communicate using four message types. These types describe

memory requests/results passing between the processor and bus (types mernaccess and

memresult), the bus and cache (lookup, lookupresuit) and the bus and main

memory (memaccess, memresult). The message ranges for these types are given in

Table 6.

M essage Ty pI
Merna c ce ss 	(read _address, write_address}
Memre suit 	{return_ address, ack_write)
Lookup 	{success, refer, wb}
100 kup result { lu_read, lu_write, cache _update}

Table 6 - Message Type Definitions for MEDL Memory Hierarchy Library

Each of the message types listed in Table 6 has a single task parameter associated with

it. This parameter (memaddress_din) allows message types to pass memory address

221

values with events. The MEDL definitions for the memaddress_din parameter and the

associated message type bindings are given in Program 39.

DATABINDINGS
DATAITEM{

DESC{"Represents a memory address
in a 2"32 address space B hex digits. (dinero III complient"}

DATAPAIR{memaddress din , baseHINT {8}

BINDINGS
BIND{memaccess , memaddressdin}
BIND{memresult , memaddressdin}
BIND{lookup , memaddressdin}
BIND{lookupresult , memaddressdin}

Program 39— MEDL Definition of Address Parameter and Message Bindings

7.5.2 Production of Cache Components

The most complex components in the library are those representing cache memories.

The cache components were designed to maximise code reuse by careful decomposition of

the HASE++ behavioural description methods. The approach taken attempted to employ

techniques similar to those found in [Sampogna96] (section 4.8.3). The authors of that

research extended an abstract base class and although this is difficult to do in HASE given its

software architecture (it limits the use of certain C++ object-oriented techniques such as

inheritance), an approach with similar productivity gains was taken in HASE++. The

technique was to isolate the different cache access mechanisms (e.g. direct mapping of cache

lines and associative memory access etc.) whilst reusing the majority of the common cache

behaviour (handling input requests and modifying state variables).

The first cache to be constructed was the detailed fully associative cache. Functionality

associated with the simulation of the associative store is encapsulated in the cache method

cacheContains (Program 40), which acts as both a method for determining residence of

a particular memory address in the cache (i.e. effectively returning true or false to a lookup

222

request) and as a mechanism for finding the specific line of the cache that an address resides

in. All other functionality (i.e. event-handlers and initialisation of state variables) is located

in the automatically generated (by LibTool) HASE±+ skeleton.

mt fa cache::cache contains (integer ad.dressln)

returns cache line if cache containd the address presented

II or 	-1 if value not found.

mt found=O; 	II is value in associative memory?
mt loop=O; 	II loop value.

integer boundStartToFifld = (addressln/4)*4;
while ((loop<VAR_cache_SiZe)&&(!fOUfld))

if ((cache mem[loop] .valid) && (cache mem[loopl .addrl=boundStartToFind))
found-1;

else loop++;

if (!found) return -1;
else return loop;

Program 40— CacheContains() Method of Fully Associative Cache

This meant that the implementation of behavioural code for a detailed direct-mapped

cache required the generation of a new cacheContains method for the component (as

shown in Program 41), indeed this was the only new code required for the creation of the

detailed direct-mapped cache component.

223

mt dmcache: :cache contains (integer addressln)

returns cache line if cache containd the address presented
or 	-1 if value not found.

mt found=O; 	// is value in memory?

unsigned long mt temp = addressln.to_longO;
unsigned long mt *slot = &(temp);

*slot*siot>>2; II shift by block size (4)

integer boundStartToFind = (addressln/4)*4;
*slot = *slot & (VAR—cache—size - 1); II in place of %

if ((cache men[*slot] .addrl==boundStartToFind) && (cache mem[*slot] .valid==i))
found = 1;

if (!found) return -1;
else return (mnt)*slot;

Program 41 - CacheContains() Method of Direct-Mapped Cache

The cache components have a number of simulation parameters associated with them;

these are listed in Table 7.

The size of the cache in lines.
A HASE array containing the cache contents for
display on screen during model animations.
Integer modelling the delay (in abstract
simulation time units) for a lookup operation.
Current access type (read request, write request,
cache update, flush etc) defined here for use as
an on-screen parameter.
The current policy for write handling (either
write-through or write-back).
Current cache-line for on-screen display.
Hit I Miss Indicator for last access.
Parameters concerned with collecting hit rate
statistics.

Experimental control parameter stating how
many times the simulation is to be run (can be
varied using experimental control dialog).

VAR—cache—size
Tfacachememconteflts

Lookup delay

din—access—type

write policy

line contents
hit status
access count
hit—count
hit—percent
Run

Table 7 Cache Component Parameters

Whilst not exhaustive, these parameters give an indication of how HASE can

characterise a component both in terms of behaviour and on-screen appearance.

224

Abstract Caches

In addition to the detailed fully-associative and direct-mapped cache components, an

abstract cache component was developed. This uses a look-up table of hit-rate statistics to

determine the outcome of a cache request. To facilitate this lookup table, extra parameters

were added to the new cache components (these allow the selection of a set of statistics for

various benchmarks/memory access counts and the write policy of the cache).

Once again, the statistical functions determining success or failure of a cache access

were provided in the cacheContains method of the abs_cache component meaning

only one new HASE++ method was required.

7.6 Example Memory Hierarchy Models

This section examines various memory hierarchy model configurations and considers

the ease with which the memory hierarchy models can be reconfigured using the LibTool

modelling process.

7.6.1 General Model Topology

The general topology of the memory hierarchy models discussed in this section is

shown in Figure 88. The models consist of a trace driven processor (labelled

din—td—processor), a simple bus mechanism (labelled cache prociface), an

abstract memory unit (din memory) and a component representing a cache memory.

The cache memory is the most complicated entity in the models described here; it is

shown as a shaded box in Figure 88 to indicate that different cache entities will be placed

into the model (in order to construct an experiment comparing the performance of different

types of cache memory).

225

MEUREQIN 	TOSTORE STOREIN
)rnerrsaccess) 	(loolcup) (lookup

cache_prociface 	I I 	cache

On-screen drsplay of
cacrre contents
mode!ied by 	.ASE

I
address requested memory array fxec I
and mode of access i 	bLOck mze
.Jso data values
sent STOREOUT 4 I

(tookupresutU I
RESULTOIJT 	 I I
memreeult) 	 I

MEMREQOUT
(memaccess)

din_td_processor

-

1-

din_memory

MEMRESULT1N
(memresutt)

UMyiQRtr
(lookupresult)

REFER 	 __
(memacceSs)

I 	MEMRESULT1N
(memresult)

REQIN
(rnemaccess)

RESULTOUT
memresuft)

MESSAGE TYPE KEY
memaccess (read_address. write —address) [memaddress_din,
byte_value, cache_mem_block]
memresult {return_address, ack_wnte}
lookup (read, write) [memaddress_din byte valuel
lookupresult (success, refer)

Figure 88 - General Memory Hierarchy Model Topology

The various models are driven by input trace files that are stored in Dinero format

(memory accesses detailed in the trace files are issued by the abstract processor entity). The

Dinero package is a well-known cache simulator that forms a part of the Wisconsin

Architectural Research Toot Set [Hi1195]. Each line in the Dinero trace file consists of an

access type identifier (described in Table 8) and an address (specified as a hexadecimal

number in the range 0 to FFFFFFFF).

0 	Read data
Write data

2 	Instruction fetch
3 	Special: Unknown access type
4 	Special: Cache flush

Table 8 - Dinero Event Tags

The input traces used in the experiments described in this section are taken from the

University of Wisconsin's on-line trace archive and include traces of a C++ implementation

226

of the wordfreq (counting the frequency of words in a 7575 character file), n-queens

(calculates how to place 8 queens on an ordinary chess board so that none of them can hit

any other in one move) and matmul (multiplication of two SOxSO floating-point matrices)

benchmarks.

The detailed cache components have a fixed cache line structure, which models a line

as containing 32 bytes of data (i.e. four main memory addresses). These caches store only the

address values in cache lines (data values are not modelled). Only the detailed cache models

use this cache line structure, the more abstract cache components use statistical lookup tables

(generated from the results of running the detailed cache models) to ascertain a cache hit or

miss.

7.6.2 Single Cache Model Variants and Loading

By using LibTool's substitute-entity identification mechanisms (in the same manner as

described in section 6.5 for the RS232/v-24 models), it was straightforward to generate a

series of models representing different memory hierarchy configurations. Three models

based around the general topology shown in Figure 88 (i.e. using a single cache) were

generated with the cache entity being replaced by the fully associative cache, the direct-

mapped cache and an abstract cache (this time using statistical lookup tables based on the

results of the detailed fully associative cache component).

The models were exercised by simulating memory accesses from each benchmark on

each of the three models. In order to obtain accurate real-time measurements of a simulation

run, each combination of model and trace-file input was run three times to remove anomalies

in processor load. The simulations were run using the Windows NT version of HASE on a

400MHz Pentium 11 machine. HASE's experiment mode was used to automatically

PAN

coordinate the multiple simulation runs by varying variables representing cache size,

benchmark and run number for each model variant.

7.7 Experimentation with Memory Hierarchy MEDL Library

After checking that the HASE+± cache behaviour was correct for the detailed fully-

associative and direct-mapped cache models (HASE's animation facilities allowed visual

verification of model behaviour), a series of simulation runs was performed using the full

input trace files for the wordfreq (3700000 accesses), n-queens (2800000 accesses) and

matmul (4000000 accesses) benchmarks.

Hit-rates were obtained for each cache-type/trace combination across a range of cache

sizes (64B - 512KB) in order to demonstrate a typical application of a memory hierarchy

simulation model. The hit-rate results for the fully associative and direct-mapped caches are

presented in Graph 3 and Graph 4 respectively; the results conformed to a set of

independently produced statistics based on the same trace files and cache configurations

[Coe99] confirming the cache's behaviour to be correct.

228

100

90

80

70

60

50

= 40
/ 	 —e—WordFreq, c++., 3700000

30 	
—9 —N-Queens, c++, 2800000

20 	 --MatMult, c++, 4000000

10

ii

	

1 	 10 	 100 	 1000 	 10000
	

100000
Cache Size (lines)

Graph 3 - Hit Rate Vs Cache Size for Detailed Fully-associative Cache Model

	

100 	 u.—w p

90

80

70

go 60

0

	

40 	
—e--WordFreq,c++.,3700000

	

30 	 —e-- N-Queens, c++, 2800000

	

20 	
-fr- MatMult, c++, 4000000

10

n

1 	 10 	 100 	 1000 	 10000 	100000
Cache Size (lines)

Graph 4 - Hit Rate Vs Cache Size for Detailed Direct-Mapped Cache Model

229

7.7.1 Model Accuracy and Runtime

Of greater interest (in the context of this work) are the effects of model abstraction

upon model accuracy and flexibility. To examine these simulation attributes, the abstract

cache model was parameterised with hit-rate statistics obtained from running the detailed

fully associative cache model. The extracted hit-rate statistics were inserted into the caches'

look-up table parameter. The abstract cache was then run with the same three trace files and

the output characteristics compared with those of the detailed mode l 42 . Graph 5 shows the

resultant hit rate vs cache-size graph for the abstract cache model (the detailed model's hit

rates are drawn as wide dotted lines for comparison). In this experiment the abstract cache

model produced results accurate to within 0.02% of the detailed model.

100

90

80

70

60

50

: 40

30

20

10

n

rom

	

Jt' 	/ 	 Word Freq, Detailed. 3700000
/)r 	 N-Queens, Detailed, 2800000

	

/ 	 MatMult, Detailed, 4000000
>2<' > WordFreq, Abstract, 3700000

X N-Queens, Abstract, 2800000
E) MatMult, Abstract, 4000000

1 	 10 	 100 	 1000 	 10000
	

100000
Cache Size (lines)

Graph 5 Comparison of Hit Rate Vs Cache Size for Abstract and Detailed Cache Models

230

The runtimes of both the detailed and abstract fully-associative cache components

when running the wordfreq, n—queens and matmul benchmarks are presented in Graph

7, Graph 8 and Graph 9 respectively (plotted as run time vs. cache size). Each of the

benchmarks is shown to run considerably faster on the abstract cache model (as would be

expected). For example, the wordfreq benchmark runs between 38 percent (for a 2 line

cache) and 79.3 percent (for a 1024 line cache) faster than its detailed counterpart. The

runtime efficiency gains for the three benchmarks when simulated using the abstract cache

component are shown in Graph 6.

100.00

90.00

8000

70.00

60.00

50.00

40cr
cc

30 5:

20 C

10 C

0 c

• Word Freq

• N-Queens

• Matmu

IIIIIIIIii'III
2 	4 	8 	i 6 	32 	64 	128 	256 	512 	1024 	2048 4096 	8192 16384

Cache Size (lines)

Graph 6 - Runtime Gains of Abstract Cache over Detailed Cache

A number of factors make the detailed model's performance poorer than the abstract

model. Graph 7 (the wordfreq benchmark) shows both cache runtime measures exhibiting

42 The abstract cache sets the din memaddress task parameter passive by default, as it does
not model cache line contents in detail. However if the task parameter is enabled any misses carry the

231

similar characteristics until the cache size grows to 128 lines in size; the dramatic increase in

hit rate as the cache increases in size from 32 to 64 lines is mirrored in the runtimes of both

models. However, the detailed model's runtime degrades rapidly as the cache size grows

beyond 128 lines (2KB). This increase in time can be attributed to the increased processing

time required to search the HASE memory array. The implementation of the cache lookup is

a 0(n) sequential search. Clearly, the choice of lookup algorithm is a critical factor in the

detailed fully associative cache's implementation.

The placement of the benchmark problem in cache can have a direct effect on runtime

performance. In Graph 8, the n-queens benchmark runtime remains largely constant after

the cache size increases beyond 128 lines. This is because the n-queens problem can be

contained completely in 151 cache lines (all capacity misses are eliminated). The larger

cache sizes allow the entire problem to be resident in the cache after a fixed number of

compulsory cache misses, the n-queens problem becomes resident in the 'top' of the

cache, consequently limiting the number of iterations required for a sequential cache lookup.

The wordfreq problem (Graph 7) fits completely into 8959 cache blocks, which explains

why runtime starts to reduce again beyond cache sizes of 1024 - as larger and larger

proportions of the problem become resident reducing the number of complete the sequential

search and miss combination no longer dominates the runtime. Indeed, as the cache size

increases beyond 8192 blocks the cache runtime falls to proportionally similar levels as

found for small wordfreq cache sizes (i.e. 2 to 64 blocks). The matmul benchmark (Graph

9) requires some 16902 discrete cache blocks to become resident. This offers some

explanation as to why the recovery in runtime exhibited by the wordfreq benchmark is not

replicated in this simulation output (i.e. the maximum cache size simulated in 16384 blocks).

correct address request information.

232

9000000

8000000

7000000

6000000
U)

E
5000000

E
4000000

3000000

2000000

1000000

0
1 	 10 	 100 	 1000 	 10000

	
100000

Cache Size (lines)

Graph 7 - Comparison of Abstract and Detailed Fully-Associative

Cache Run Times for Wordfreq Benchmark

3500000

3000000

	

2500000 	
~ *28 2M"5121M42048 4056 6*02 *8484

1500000
48

1000000

	

500000 	 ---N-Oossns. 0094819d UCOS1

--N-O*se,. A148,48t Modd

0

1 	 10 	 100 	 1000 	 10000
Cache Size (lines)

ILSISIIISIS]

233

Graph 8 - Comparison of Abstract and Detailed Fully-Associative Cache runtimes for

N-Queens Benchmark

0

50000000

45000000

40000000

35000000

1
E

 30000000

a,
E 25000000
I-

20000000

15000000

10000000

5000000

0

10 	 100 	 1000 	 10000
Cache Size (lines)

100000

Graph 9 - Comparison of Abstract and Detailed Fully-Associative Cache runtimes for

Matmul Benchmark

The local environment on which the simulations are being run will influence the

runtime of any simulation model (e.g. physical cache/main memory size and processor load).

However, the detailed cache simulation model may be more sensitive to (say) physical cache

size as the simulation of large simulated caches could increase the likelihood of physical

cache misses; the abstract cache component will always occupy the same amount of physical

cache independent of the simulated cache's size.

7.7.2 Other Memory Hierarchy Models

In addition to the models discussed above, additional models based on the MEDL

memory hierarchy library were used to explore the simulation of multi-level caches. This

234

gave the opportunity to introduce a level of abstraction representing the composite behaviour

of the multi-level caches. The general model topology for these models is given in Appendix

D.2. Three model variants were constructed as follows:

I. Two detailed cache components were connected together and benchmark traces

simulated. The full cache memories were simulated as in the previous single level

cache experiments.

The detailed cache components were replaced with abstract cache components

(identical to those used in the previous single level cache simulations). This model

employed two statistical lookup tables (one located in each abstract cache). As in

the single cache models the hit rate accuracy was shown to be almost identical to

that of the detailed simulation model and the runtimes of the abstract caches were

greatly reduced compared to those of the detailed caches.

The two abstract caches and the two cache prociface entities were replaced

by a single entity (compcache) which employed a single statistical lookup table.

This extra level of hierarchy is typical of the trade-offs abstract modelling involves.

Whilst the runtime was further reduced (due to fewer entity thread switches, fewer

event generation calls and a reduced number of lookups), the composite cache can

only characterise the combined hit rate of the multi-level cache.

235

120

100 	 - 	-------- 	----".- 	.---.-.-.- 	-a

80

60

40

20

0
2/256 	 4/512 	8/1024 	16/2048 	32/4096 	64/8192 	128/16384

Cache Size (primary/secondary) in lines

Graph 10— Hit Rate for Multi-level Caching Model

7.7.3 Alternative Cache Components

A final cache abstraction took a different approach to reducing runtime based around

the idea of trace generation. In this abstraction, the cache component can be simulated in one

of two modes, record' or Splay-back'. In record mode, the cache acts exactly as the detailed

cache model discussed above with one exception each reference to the cache is recorded

alongside the lookup outcome (i.e. hit or miss) in a trace file. The cache's playback mode

then employs the cache-generated trace file to allow the previous activity to be replayed'

directly from the cache entity. Essentially this means that the processor component can be

disabled when the cache is used in playback mode. This abstraction has the advantage that

whilst the initial trace generation simulation incurs a runtime penalty (it is slower than the

standard detailed cache due to file i/o), subsequent simulations gain from not having to

236

simulate either the statistical lookup behaviour of the standard abstract cache or the trace

driven processor (this reduces the thread swapping incurred in simulation as well as the

general behavioural simulation overhead).

This abstraction could be usefully applied in (say) a multi-processor simulation which

uses a two level communication mechanism (e.g. a bus for intra-cluster traffic and a mesh for

inter-cluster traffic). In this situation, the use of the abstract caches to provide traffic to allow

the testing of the communication mechanisms in the model for a set of benchmarks could

benefit from reduced runtime.

7.7.4 Comment

The memory hierarchy simulations discussed above demonstrated again how the

LibTool model generation mechanisms could be used to form a series of derivative models

with relatively little effort. Detailed cache simulations made use of a task parameter

describing an address in order to make the modelling of cache contents possible.

In addition, examples were produced which employed abstract cache entities to gain a

decrease in simulation runtime; the aforementioned task parameter was not required by the

more abstract cache components so was disabled (set passive in the MEDL description) in

order to indicate to its communication partners the level of service offered by the abstract

caches. Even with this parameter disabled, the abstract cache was able to simulate accurate

timing delays based on the outcome of statistical cache lookups.

The runtime gains obtained by using abstract entities had to be traded off against model

flexibility (e.g. in the case of a the most abstract composite cache component, data about the

combined hit rate of the multi-level cache was the only measure available (less abstract

models offered data describing the hit rate of individual cache levels).

237

7.8 Controlling the Behavioural Hierarchy

In the modelling examples presented so far, behavioural code has been placed in

relatively small simulation models with a maximum of two levels of code abstraction

supported. The setting up of a model's behavioural hierarchy has been controlled by the use

of HASE's 'simulate at' control (section 3.7.2).

However, as models become more complex (i.e. as the hierarchy is populated with

more entities at many different levels of abstraction) HASE's GUI offers no support for

tracking the active behavioural model (the design window simply shows the current

graphical hierarchy). There is a requirement for an additional tool allowing the user to

visualise the level of behavioural abstraction a model is currently representing. In a response

to this requirement, an additional tool named Sim Tree was created.

7.8.1 The Full-adder MEDL Library

In order to demonstrate SimTree's functionality, a model with a relatively large

number of entities based around a MEDL library of components suitable for construction of

adders is introduced. The components in the adder library are listed in Table 9.

ADDSRC, HADDSRC, These atomic entities are used for testing various adder
ADDSRC8BIT components. They provide a data source to which an adder

component can be connected (the three variants serve a full
adder, a half adder and an eight bit adder respectively).

HADDS INK This entity acts as a sink for the output from a half adder.
ADD8BITDRV An 8 Bit adder driver
ADDINTNORN This atomic entity provides a single entity interface to two

half adders, which in turn form a I bit adder).
ADDSIGSPLIT This entity takes two input events and outputs four events

(two replicas of each of the input events).
GateAND, gateXOR, These atomic entities form the building blocks for all the
gateOR adder components. They represent two-input AND, XOR

and OR gates.
Halfadder, These composite entities define different adders in terms of
fulladder, AND XOR, OR half adder and full adder components.
fulladder8bit

238

Modeihalfadder, 	 These composite entities contain target models for a half
rrode]iuLiadder, 	 adder. 1-bit full adder and an 8-bit full adder complete with
oodeaider8bit 	 . an Input generating source and an output sink.

Table 9— The MEDL Adder Library Components

The components used to form the adder models use a single message type SIGNAL

with the range (low, high) representing signal input values to the adder logic (the adder

components represent an additional internal state enumeration containing the range value

undetermined that is used to model signal transitions and adder initialisation state.

The graphical hierarchy of a one-bit adder is shown at various levels of expansion in

Figure 89(a-d), in which the sub-figures form a sequence that result from graphical

expansion of the model (the entities chosen for each stage of the expansion are circled in

red).

sendl&t = 16 	 IN4STATE = 2 	,. Q,SUMSTATE 2 	 sun=• 1

INBSTATE (a) 	
tNCARYSTATE-2,

TATE=2 	 - catryos

SUMOS

1I 241
LIGIeDe 	= .1 	 = 1

ISO
- 	 - 	 Last6aIeDela = -1

LG-ILey -1 	 = 1

E 	
.1

2 LtGaeDeay = -1
LiE&ay

Figure 89(a-d) - Graphical Traversal of the I-bit Adder Model

239

The one-bit adder model illustrated in Figure 89 is used as a building block for

arbitrarily large adders. The 1-bit adder model contains some eleven entities and contains

behavioural code in all but the top-level entity (three separate levels of behaviour are

specified). The MEDL library's eight-bit adder component is built out of eight instances of

the 1-bit adder plus an appropriate signal generator and sink entity; in total, the eight-bit

adder model contains eighty-nine entities at four levels of abstraction (the and, xor and or

level, half adder level, fulladder level and 8bitadder level). The entity tree for the

8-bit adder model is shown in Figure 90. As models become more complex the number of

possible abstraction levels increases along with the total entity count. Identifying the

currently active behavioural entity tree becomes increasingly difficult without software

support.

240

Figure 90 - The 8-bit Adder Entity Tree

241

7.8.2 SimTree

The SimTree tool works in collaboration with the HASE design window offering an

alternative view of the model structure. Whereas the HASE design window shows the

architectural features of interest to the user, the SimTree window provides a complete entity

tree display (SimTree was used to generate Figure 90) and has the ability to show the current

'simulate at this level' switch options by superimposing the active behavioural code

hierarchy on top of the entity tree.

When started, SimTree presents the user with a split-pane window (the upper pane is

used for system messages and the lower pane is used for rendering the entity tree) and a set

- of controls.-The SimTree main window-is shown in Figure 91 (this figure shows a SimTree

session with a I-bit adder loaded). The user selects a tree file via the 'open tree data' control

(LibTool generates entity tree descriptions when the generate screens 'generate tree data'

box is checked - Figure 59).

When the tree is rendered the root entity (i.e. the target entity selected for generation in

LibTool) is shown in a red box, all other entities are drawn in yellow boxes if they are

composite and green boxes if they are atomic).

SimTree supports two rendering modes; the standard mode discussed above labels

entities whilst the thumbnail mode (activated by the 'thumbnail' control) renders each entity

as a small coloured square (Figure 92 shows the thumbnail view of the 1-bit adder model).

The thumbnail mode allows for quick navigation of especially large entity trees.

The 'scan mode' control activates a communication thread in SimTree which reads

values from a shared file written to by HASE each time the behavioural hierarchy is altered.

This shared file contains the names of the active behavioural code bearing entities. Each of

the entities named in the file is rendered in a blue box to allow easy identification of the

242

currently active behavioural entity tree. This is illustrated in Figure 93(a-c), which shows

both the behavioural and graphical hierarchy of a model as it is altered from an initial

abstraction (sub-figure a), by means of the parameter menu's 'simulate at' control (sub-

figure b), to reflect a new behavioural hierarchy whilst the original graphical view remains

unaltered (sub-figure c).

rnlree: Initialisation Complete

mlree: Please Open Tree Data File

:annlng Tracefile fulladderhtf

eelile fulladderhIf OK

ateOR 	 /4ADDSIsPLIT

h5.dder (h21 gateAND I
gateXOR

AD 0 S ID SP LIT

hatfadde, (hal] gateAND I

Iff
4 	 -J

Exit 	 qpen Tree Data
	

J, overlay -

Print 	 Thumbnail
	

scan Off 	-

Figure 91 - The SimTree Main Window

243

Figure 92 - The I-bit Adder Model Viewed in Thumbnail Mode

ADDININORM

ZF
LiSIOSPLIT

t.AND 	 Hase Dewgn Wodow Contents

 Adder

	

t:SPUT

t.AND 	 (a) The SimTree (behavioural) and HASE

	

SimTree atX0R 	 (modelling/graphical) views of the initial
configuration

Up Level

	

I 	 £cMSubccmporents
Espond

Entity Patametei Dialog 	 (b) The behavioural hierarchy is
Enlihj 	 modified

Type Narre 	ltddo 	
via the parameters menu -> simulate

nstwCe Name 	 level

Simulate Level ELOWEF 	 control.

Poranietco

MADDINT NORM

171 ,11
Hasa Desran Window Contents

' ra1 23 :

f:d:e AMOK

.AADDSIGSPUT I ________

haItadd 	[halt 5atNAND

(C) The behavioural hierachy
jt&mR I are reflected in the modifications Simiree Window Contents

Simlree window - the HASE design
view remains the same.

Figure 93(a-c) Modification of the Behavioural Hierarchy

244

7.9 Multi level simulation (PRAM Algorithm)

The final model presented in this chapter demonstrates how the modelling constructs

developed throughout this work allow HASE to be used to develop a model from a basic

algorithmic description to a more concrete architectural model.

7.9.1 Model Construction

The starting point for this experiment is an algorithm designed for execution on a

parallel random access machine (PRAM) [Karp90. The PRAM described here is configured

with a number of processors (each uniquely identifiable by a processor id land having access

to a small local memory space), some global shared memory to facilitate inter-processor

communication and an interconnection network connecting the processor to the global

memory. Each of these components is represented in a MEDL library named PRANLIB. The

PRAM configuration used in this section is illustrated in Figure 94.

245

- I
Fe Libiy Eck 	 To& Help

Build 	Shnulate J 	Expeener

P!o,ct: tetm.defl
Dfectory i d\he\ects'pram\pain1

-o 1=3
Y =O n=0

1=0 y=O
-o n=0

x=O =0
y=o

= n=0

1=0
yO

-
n=0

X=0 i=0
Y=O n=D

C0 i=0
n=0

x=0
Y =O 0 1-0 n=0

=0
y-O

= n=0

1C0 =0
y=O

= n=0

i=0
n=IJ

x=0 10
y=O

-
n=0

x=0 i=0
Y=O n=0

X=0 1=0
Y=O

2- -o n=0

x=0 I0
2-0

Y=O n=0

X-C
Y=O

z-o n=0

)l0 =0
Y=O

-
n=0

delay = 1 	 delay = 1
locel_rnenrel_BlND_MSK 1 	 locaLmemresulLBlND_MSK = 1
locaLmemacces_BIND_MSK = 11 	 IocaLmernacces_BlND_MSK = 11

Len 	 T 'JteI None

Figure 94 - The PRAM Architecture

7.9=2 The Sum Algorithm

The algorithm demonstrated in this experiment is a simple summing algorithm as

proposed by JáJá in [JáJá92]. The algorithm makes use of two operations for access to the

shared memory named global read and global write. These are defined as follows:

global read (X Y): This instruction moves a data item X from global shared

memory to a processor's local memory and stores it in location V.

246

global write (U, V): This instruction moves a data item stored in processor memory

location U to the shared global memory location V.

Given these two instructions, an array A of n=2k numbers and a PRAM with ,

processors (i.e. one processor per element in A), JáJá describes an algorithm to compute the

sum S = A(1) +A(2) + ... + A(n). Each processor executes the same algorithm, which is

described below for some arbitrary processor i in Algorithm 1.

Sum on the PRAM Model
Input: An array A of order n = 2" stored in the shared memory of a PRAM with n
processors. The initialised variables are n and the processor number i.
Output: The sum of the entries ofA stored in the shared location S. The array A holds
its initial value.
begin

global read (A(i),a)
global write (a,B(i))
for h=1 to log n do

if (i< = n/2') then
begin

global read (B(2i-1),x)
global read (B(2i),y)
set z. = x+y
global write (z,B(i))

end
if i=1 then global write (z,S)

end

Algorithm 1 - Sum on the PRAM Model

7.9.3 Encoding the Algorithm in a HASE Entity

The PPAMLIB library contains an atomic component proc a, which is used to

represent a PRAM processing node. The HASE++ behavioural code for this component is

based around the automatically generated LibTool event handlers. In addition, the

behavioural definition provides two methods to represent the read global and write global

operations. These operations are shown in Program 42 and Program 43 respectively.

247

mt proc_a: :GLOBALREAD(integer location)(
tmemaccess_BIND tmpBind;
sim event ev;

tmpBind.memaddress_difl = location;
tmpBind.memcontentS = -1;
memaccesspack(message, read address, tmpBind);
dooREQOUT (message);

GET_NEXT (ev);
do_i_RESIN (ev)
return readResult;

Program 42 The GLOBAL—READ Method

void proc a::GLOBAL WRITE(integer location, mt value){
tmemaccess_BIND tmpBind;
sim event ev;

tmpBind.memaddress_din = location;
tmpBind.memcontents = value;
memaccess pack (message, writeaddress, tmpBind);
dooREQOUT (message);

Program 43 The GLOBAL WRITE Method

The body code of the proc_a entity uses these two functions to describe Algorithm 1

in HASE±+. For example, steps I and 2 of Algorithm 1 make a copy of array A in shared

memory; these operations are coded in HASE++ as shown in Program 44.

x=GLOBAL READ (ABase+i);
dump stateO; simhold(l); // insert some delay
GLOBAL _WRITE (BBase+i, x);
dump state(); simhold(1);

Program 44 The Copy Operation

7.9.4 Running the Algorithm

When the algorithm is compiled and simulated, the global memory entity allows

inspection of intermediate results of the algorithm via its memory array parameter. This is

illustrated in Figure 95 which shows the contents of the global memory array for both the

initial data array (labelled as area A) and the working copy of the array (area B) when n=16.

248

Sub-figures (a-d) show the algorithm's progress in summing the array contents for each

iteration of step 3. Sub-figure (e) highlights the global memory location containing the result

of the addition after completion of the algorithm.

wir 	l xl

N 	 N

7,7
AnayRe 	 M,Fk

AN 	 MyNn

MyF 	r .' Aie

A

_________________ 	 Ii I 	_ 	 i 1

ti r
(a) 	 (b)

- I
1 1 1

I 1 1 1
I 1 1 1
I 1 1 1
I 1 1 1
I 1 1 1

1 1

(d)

ij

(e) (C)

Figure 95(a-e) - Tracing the Algorithm's Progress via a Memory Array

7.9.5 A More Elaborate Algorithm

The proc_a entity's body code allows different PRAM algorithms to be performed

depending upon a parameter setting named algorithm (the value of this parameter defines

the condition to be taken within a switch statement encompassing the various algorithms).

Following the successful implementation of the sum algorithm for n processors and n data

items, a more elaborate version of the sum algorithm (again proposed by JáJá) allowing the

249

summing of n data items with p processors (where I :!~ p !E-~ n) was implemented. The

43 algorithm is shown in Algorithm

Sum
Input: An array A of size n = 2k stored in shared memory. The initialised local
variables are the order n, the number p of processors, where p=2 q <= n, and the
processor number s
Output: The sum of the elements of A stored in the shared variable S. The array A
retains its original value.
begin

1.forj =ltol(n/p)do
Set B(l(s-l) +j): =A (7(s-1) +j)

2.1 for h=l to log ndo
if (k-h-q>0) then

for j=2"(s-])+1 to 2"s do
Set BO): = B(2j-1)+B(2j)

2.2 Else {if (s<= 2kh) then
Set B(s): = B(2s - I)+B(2s)}

3. if (s=l) then Set S: =B(l)
end

Algorithm 2 - The Modified Sum Algorithm

After coding this algorithm in the body code of the proc_a entity, the simulation was

run with the default number of processors set as 16 and the number of data items as 64 (these

settings can be altered by parameter manipulation). The test data placed into the 64 global

memory locations (i.e. array A) each contained the value 1. If the algorithm were

implemented correctly, the expected result of the sum operation should equal 64. However,

after simulation, the algorithm produced a result of 72.

The unexpected result is a consequence of the assumed memory model. In steps 2.1

and 2.2 values to be added together are read from and placed back into array B. Table 10

illustrates the problem for an array of 64 data elements and 16 processors. The table details

' In this algorithm, no explicit reference to the global read and global write operations is made.
JaJa assumes that operations of the form Set A:=B+C (where A, B and C are shared memory
variables) should be interpreted as global read (B,x), global write (Cy), Set z: =x+y, global read (z,A).

250

the assignments performed by the first four processors in the first two iterations of the inner

for loop in step 2.1.

Processor ID _II Il Ill III Ii

(and iteration)
1(i) B(1)=B(l)+B(2)
1(u) B(2)=B(3)+B(4)

2(i) B(3)=B(5)+B(6)
2(u) B(4)=B(7)+B(8)

3(i) B(5)=b(9)+B(10)
3(u) B(6)=B(l 1)+B(12)

4(i) B(7)=B(13)+B(l4)
4(u) B(8)B(1 5)+B(16)

Table 10 - Step 2.1 for the First Four Processors when p= 16 and n=64 (First 2 Iterations)

Each of the four processors performs iteration i first. During this iteration processor 2

(for example) adds global memory locations 5 and 6 and stores the result in global memory

location 3. On iteration ii, processor I adds the contents of global memory locations 3 and 4,

and stores the result in global memory location 2. However, the value of location 3 used in

processor I's addition has already been overwritten with the result of adding locations 5 and

6. Consequently, the algorithm fails because of the implementation assumption that global

memory updates occur at the end of each algorithm time step.

The problem was highlighted by examining the contents of global memory and

watching the messages transferred between the processors via HASE's animation facilities.

The experiment illustrates the importance of careful interpretation when implementing

PRAM algorithms, even in relatively abstract simulation models, and demonstrates the

usefulness of HASE's visualisation facilities in providing an understanding of how an

algorithm is executed in practice.

After further inspection of the algorithm it was noted that the correct result could be

obtained by delaying the global memory updates performed in loop] of step 2.1 until the

251

loop is complete. This requires the processor to use local memory for the intermediate

results.

Another solution to the problem is to operate upon different data items in each iteration

of the loop contained in step 2.1. A corrected order for the processor sequence shown in

Table 10 is given in Table 11. If this approach is taken the original memory write structure

can be retained.

Processor 11) ii r 	.i
(and iteration) I

1(i) B(1)=B(1)+B(2)

1(u) B(5)=b(9)+B(1O)

2(i) B(2)=B(3)+B(4)

2(u) B(6)B(11)+B(12)

3(i) B(3)=B(5)+B(6)

3(ii) B(7)3(13)+B(14)

4(i) B(4)=B(7)+B(8)

4(ii) B(8)B(15)+B(16)

Table 11 - A Modified Sequence of Global Memory Accesses for Processors One to Four.

7.10 Adding Greater Model Details

Having developed a PRAM simulation model it is reasonable to assume that the

programmer would wish to refine the model in order to run the algorithm on a more realistic

representation of a 'real-world' computer system. HASE's hierarchical modelling capability

allows the model to be evolved into a more detailed representation of the problem by the

addition of more detailed simulation entities within the framework defined by the abstract

PRAM model. In order to test this development path, a more sophisticated processor entity

was designed. This modified processor (named proc_b) is used in conjunction with another

252

new entity representing a small local processor memory (named instr mem) 44 . The

memory stores instructions that the proc_b entity fetches and decodes. This shift away

from an algorithmic description in the processors' behavioural code to a more realistic

processor and program model makes use of a RASE instruction set parameter. The

instruction set has the instructions listed in Table 12

STOR reg global address

BNZ reg

ADD regl reg2

HALT

LOADRG req global address
LOADRL req local address

Write a value to global memory
Branch if not zero
Add contents of registers regi and
reg2 and store the result in regl (8 bit
integers).
Stop program execution
Load a register with value from global
memory or local 	(instruction)

Table 12 —The proc_b instruction set

The instruction set is defined in the EDL file using STRUCT commands (one for each

instruction) and an INSTR command to tie the previously defined STRUCT5 together. The

EDL for the instruction set shown in Table 12 is given in Program 45 and Program 46.

STRUCT (tStorStr, [RINT (reg,0),RINT(address)1);
STRUCT (tBnzStr, [RINT (req, 0)]);
STRUCT (t_AddStr, [RINT(regl,0),RINT(reg2,0)1);
STRUCT (tHalt, [RINT (dummy, 0)]);
STRUCT (tLoadGStr, [RINT(reg,0),RINT(address,0)1);
STRUCT (t LoadLStr,[RINT(reg,0),RINT(addre 55 , 0)]h

Program 45 - STRUCTs for each Instruction

INSTR (tinssetA

LOADRG , RSTRUCT (t_LoadGStr , LoadGStr)),

LOADRL , RSTRUCT (t_LoadLStr , LoadLStr)),

44 In the previous model, the private local memory of the processor was represented by data
members belonging to the proc a entity class.

253

STOR , RSTRIJCT (tStorStr , StorStr)),
BNZ , RSTRUCT (tBnzStr , BnzStr)),
ADD , RSTRUCT (t_AddStr , AddStr)),
HALT , RSTRJJCT (tRait , Halt

I , tlSet

Program 46— The INSTR Command

Having defined the instruction set it is possible to write programs that reside in the

local memory entity associated with each processor. Program 47 illustrates a code fragment

for processor I (of 8) performing its copy operation as shown in step I of Algorithm I.

loadg ri, 1
stor ri, 9

Program 47 - A Local Memory Program Fragment for the Algorithm I Copy Operation.

This extension to the modelling process allows the user to specify any algorithm

(within the confines of the available instructions) without having to alter the behavioural

code directly. It also shifts the problem representation to a more 'realistic' level. The cost of

moving to this more detailed model abstraction is an increased simulation runtime (as

previously demonstrated in the memory hierarchy simulations).

However, the degree of slow-down can be controlled by configuring the model to use a

single processor at the higher level of detail whilst the remaining processors operate at the

lower level of detail. In order that the model function correctly when using this mix of

abstractions, the programmer must ensure that message timing is consistent across

abstraction levels. This can be achieved by using the CommTrace protocol viewer to verify

that high and low level timing characteristics are consistent across multiple levels of

abstraction (as demonstrated in the RS232/v34 simulation model in section 6.6.2).

254

7.10.1 Integration of Components from Multiple MEDL files.

The final modification of the PRAM model was to introduce another abstraction

allowing the detailed simulation of the addition that takes place in the sum algorithms.

Rather than use direct execution (i.e use the native addition facilities of the machine running

the simulation), a simulated functional unit was added based upon the MEDL adder library

introduced in section 7.8.1.

The adder components were imported into the PRAM library by simple text file

manipulation (i.e. a 'cut and paste' operation in a text editor).

255

I (a) The 8-bit adder
Entity at
the highest level of
abstraon

(b) Expansion
to8 1-bit
adders

(C) Expansion
of five 1-bit
adders to a
half-adder level
representation

- 	 '3- (d) Full
exapnsion of

;i

100-

ion various half-
adders to logic
gate
abstraction

1

Figure 96 - Exploration of the 8-bit Adder Component

—U

A third processor type was defined (named proc_c) which included an eight-bit

adder. The adder component includes various levels of abstraction including a single eight-

bit adder entity, eight one-bit adders, sixteen half adders and finally the collection of logic

gates which make up the half adders. The exploration of an eight-bit adder entity is

illustrated in Figure 96.

The addition of a complex entity such as the eight-bit adder dramatically increases the

number of entities in the PRAM model (801 in total). In order to control the abstraction

hierarchy SimTree was used to view the currently active model behaviour tree (as described

in section 7.8). Whilst SimTree allowed management of the large model structure, use of

HASE's design window was more problematic; this was due to the large number of entities

that had to be accommodated in the limited on-screen design space. This meant that whilst

all 801 entities were present in the model, a corresponding ELF file was not hand crafted due

to the size of the layout task.

As the adder sub-components use realistic timing information (taken from an H-SPICE

[Hspice90] library description) at the lower level of abstraction to represent gate delays, the

total amount of real time spent in the addition portion of the sum algorithm could be

calculated with a reasonable degree of accuracy (the timing information was not completely

accurate because effects such as wire-delays are not modelled). Once again, the penalty for

obtaining this accurate timing information is an increased runtime.

7.10.2 Summary

The creation of a relatively large simulation model based initially around a simple

PRAM algorithm demonstrated HASE's ability to expand a model's design by adding

increasingly detailed representations of discrete components. This was facilitated by the

LibTool generated model's ability to use common message types across differing levels of

257

abstraction (i.e. by using loosely coupled entities). Additionally, HASE was shown to have

good facilities for the debugging of a model's behaviour (demonstrated here by the graphical

identification of a problem contained in JáJá's more complex PRAM sum algorithm).

The SimTree tool was shown to offer a practical solution to the management of a large

behavioural hierarchy independently from the on-screen graphical hierarchy used in model

animation.

However, the final PRAM model served to highlight deficiencies with HASE's design-

Window size. As the number of entities in a design increases, design layout becomes more

time consuming. This is exacerbated by the limited screen real estate. Possible solutions to

this graphical hierarchy layout problem are outlined in section 8.4.2.

258

Chapter 8

Conclusions

By allowing the refinement of an architectural design through simulation and

experimentation, designers can test and debug new computer architectures without the

expense (or delays) of failed silicon implementations. Consequently, fast and accurate

simulation throughout the design lifecycle of a product has become a major factor in

satisfying 'time to market' requirements for technology manufacturers. However, it is

recognised that the cost of simulation in the design lifecycle is expensive. This is due, in part,

to low levels of design reuse and simulation time overhead.

At present most architectural simulation takes place at the RT level of design.

However, designs that start at the RT level have hit a plateau in terms of reuse and

productivity.

This thesis contributes towards the development of techniques that promote both model

reuse and abstract modelling at levels above that of the RT level. These mechanisms are

demonstrated within an existing architectural simulation environment (HASE).

This chapter concludes the work of this thesis and is divided as follows:

Section 8.1: Modelling Requirements - summarises the key areas of investigation and

implementation essential to promoting model abstraction and reuse.

Section 8.2: Modelling Mechanisms - summarises the extensions made to the HASE

environment.

259

Section 8.3: Experimentation - consolidates the experimental findings resulting from

the RASE modelling extensions/tools.

Section 8.4: Further Work - Finally this section offers an indication of possible future

extensions of this work.

8.1 Modelling Requirements

The first requirement was that a modelled system should be able to represent its

associated real-world entities at multiple levels of abstraction. This is important because

depending on the current design problem in hand different abstractions will be suitable, for

example, register layout design/analysis (RTL), system programming (ISP) or performance

evaluation (PMS) of the system as a whole. In HASE this ability was implemented around

the existing (albeit unused) support for hierarchical model structures. Sargent notes that

"hierarchical modelling is not readily available in most simulation packages" and that

"Hierarchical modelling usually requires encapsulation" [Sargent93] (as it provides the basis

for switching between abstractions within a hierarchical model). Cota [Cota92] extends the

discussion by identifying the requirement for a coupling mechanism to facilitate linkage

between abstractions.

The second modelling requirement was that mechanisms should be provided to

promote the reuse of components in multiple simulation projects. An investigation into why

component reuse had been problematic in previous HASE modelling efforts revealed the

causes to be a combination of 'unsuitable' programming techniques and a lack of

environmental constraints. The key problem areas included programmer use of ad hoc

message overloading (resulting in tightly coupled models), the use of global state

information, and HASE++ constructs which allowed non port-based communication. The

260

last two problem areas were shown to impact upon the level of encapsulation exhibited by a

model's simulation components.

8.2 Modelling Mechanisms

The HASE environment was extended by the creation of the LibTool, CommTrace,

and SimTree tools all of which promote either hierarchical modelling and/or component

reuse45 .

LibTool allows the generation of HASE models that exhibit high-levels of entity

encapsulation (this was achieved by placing modelling constraints upon the model structure

generated by LibTool) and provides a system for the management of model coupling (based

around entity communication interface classification).

LibTool's component representation format is project independent and consequently

provides the basis for a HASE component library. MEDL files are used as the repository for

library contents and the LibTool browser allows examination of library components as well

as offering facilities to validate proposed model compositions.

The CommTrace package aids the hierarchical modelling process by providing a

mechanism with which to compare the timing characteristics of model entities represented at

multiple levels of abstraction.

Finally, the SimTree tool aids the modelling process by separating control over the

behavioural hierarchy from HASE's design window based graphical hierarchy.

45 In addition, the introduction of EDL as the project specification method of input to HASE has
been successful in removing much of the laborious work previously involved in defining a model via
the HASE GUI. EDL also provided a modelling target for the Liblool application.

261

Figure 97 serves to summarise the main differences between the RASE modelling

process before and after the work described in this thesis (in particular the constraints placed

upon the modelling process are illustrated). The figure can be summarised as follows:

. The use of global state information is disallowed in order to aid component

encapsulation (this is indicated by the removal of the 'global vars' box in sub-

figure b).

. The constraint that port/link constructs are now unidirectional (as indicated by

labels 2 and 3 in sub-figure b) means that interface classification based upon

the input/output message sets of entities is possible. In turn, this means that the

validation of a model's linkage is now possible automatically.

. The enforcement of structured message input/output sets curtails the use of

message overloading techniques (as described in section 4.4). This is indicated

by the removal of sub-figure a's label 3 in sub-figure b.).

A 	AB 	B
0 	 I 	

r

(a). Traditional HASE Model 	 (b).Liblool Generated HASE Model

Figure 97 - Comparison of Traditional and LibTool-based Model Constraints

262

8.3 Experimentation

In order to demonstrate the successful application of the tools/techniques presented in

this thesis, a series of component libraries and models was constructed.

The RS232/v-24 calling-protocol library demonstrated entity selection based on the

interface-oriented classification of MEDL components. After presenting an initial model

configuration, entities within the model were tested (via LibTool's entity-interface class

viewer) to see if alternative substitute entities existed in the MEDL library. This substitution

process proved straightforward with LibTool correctly identifying suitable replacement

entities based upon component interface descriptions. The use of composite entities to form

a hierarchical model of the RS232/v-24 protocol was also successfully demonstrated.

The timing characteristics of abstract and detailed component implementations were

compared using CommTrace in order to verify that models based on abstract entities

produced the same results (where possible) as models built from detailed components. Whilst

the responsibility for 'aligning' events across abstract representations ultimately falls to the

programmer, the CommTrace utility provided a useful tool with which to aid timing

comparison. Finally, it was shown to be possible to run an RS232/v-24 library based model

across different levels of abstraction (e.g. one communicating party was simulated at the

higher level of abstraction and one at the lower level).

A library of components, allowing the modelling of memory hierarchies was generated

in order to demonstrate the proposed approach to event parameterisation. Detailed cache

simulations were introduced, which employed a task parameter describing a memory address

in order to make the modelling of cache contents possible. In addition, example model

configurations were produced which employed abstract cache entities to decrease simulation

runtime; the task parameter was not required by the more abstract cache components so was

263

disabled in order to indicate to its communication partners the level of service it offered.

Even with this parameter disabled, the abstract cache was able to simulate accurate timing

delays based on the outcome of statistical cache lookups. It was shown that the decreased

runtime obtained by using abstract entities must be traded against model flexibility.

The SimTree tool was demonstrated with models representing a multiple abstraction

adder. Prior to the work described here, HASE had no facilities for visualisation of the

behavioural hierarchy (the design window only provided a graphical projection of a user

selected 'view' of a model). SimTree was shown to allow management of the behavioural

hierarchy through a simple graphical user interface that monitored the state of the active

behavioural model. This mode facilitated the rapid the reconfiguration of the adder model

(for various abstraction combinations). This process had previously been very time

consuming and error prone.

Finally, a relatively large model was constructed to demonstrate top down

development. An initial model allowing abstract PRAM algorithms to be simulated was

refined through a number of iterations of the HASE design lifecycle. This model

consolidated each of the modelling techniques discussed above (i.e. LibTool model

generation, CommTrace timing validation and SimTree hierarchy management). The various

techniques were shown to work together harmoniously.

8.4 Further Work -

This final section presents possible extensions to the work presented in this thesis. The

extensions proposed cover both the modelling process and the 'post-LibTool' HASE

environment.

264

8.4.1 Extending the Use of Component Descriptions

At present MEDL based simulation components have a textual description associated

with them. However, this description is not used (by LibTool) in the component selection

process. The author believes that by structuring the textural description more effectively (via

the incorporation of component meta-data) the component selection process could be

extended to include the selection of components not only based upon their communication

interfaces but also upon (say) their intended application domain. At present, this must be

done manually by examining the text descriptions in each of the entities returned from a

component equivalence test. This extension would serve as a mechanism for the automated

searching of model selection heuristics as described by [Lee96] (section 4.8.1).

8.4.2 Enhancement of the HASE Design Window Facilities

As a result of the work presented here it is now much simpler to create large, multiple

abstraction models. This is due to the nature of sub-entity coupling as demonstrated in the

PRAM model (section 7.10.1). Whilst SimTree allows the management of large behavioural

hierarchies, HASE's original design window suffer from a lack of layout space. To alleviate

this problem the author believes that new design display modes are required. Possible

extensions to HASE's design window could include (i) the inclusion of a thumbnail map of a

large model (allowing the rapid navigation of a large design display) and (ii) the ability to

expand composite entities into a separate window (this would allow a model's subsystems to

be displayed individually).

8.4.3 Extensions to the MEDL Library Description Specification

The MEDL specification does not currently support EDL templates (these templates

allow entities such as processors to be 'dropped' into a parameterised model topology - e.g.

265

mesh, torus etc). Templates offer a useful way of reducing modelling effort for regularly

structured configurations of entities. For example, the PRAM simulation presented in section

7.9 could be placed into a two dimensional array template thus allowing the dynamic

configuration of an n processor PRAM.

266

Chapter 9

References

[A1ta94] 	Alta Group, "BONeS Network Modules", Product Data Sheet,

Cadence Design Systems, 919 Hillsdale Blvd., Foster City, CA 94404,

ILSTI

[A1ta95] 	Alta Group, "Hardware Design System", Product Data Sheet,

Cadence Design Systems, 919 Hillsdale Blvd., Foster City, CA 94404,

1995.

[Archgen98] 	"Introducing ArchGen 2.0: An Advanced SoC Design

Environment", 	White 	Paper, 	CAE-Plus 	Inc., 	1998.

http://www.cae-plus.com/Products/ArchGen.html

[Beidler86] 	John Beidler and Paul Jackowitz, "Modula-2", PSW Computer

Science Publishing, Boston, 1986.

[Be1171] 	G. Bell and A. Newell, "Computer Structures: Examples and

Readings", McGraw-Hill, 1971.

[Birtwistle85] 	G.M. Birtwistle, "DEMOS: Discrete Event Modelling On Simula",

Prentice-Hall, Englewood Cliffs, NJ, 1985

[Cae99] 	 "Comparing RTL-C with other solutions", CAE-plus Product

Specification Sheet. CAE-Plus, 1999. URL:

http://www.cae-plus.com/Products/compare.html

267

[Coe95] 	Paul Coe, 	"An On-Line Teaching System for Computer

Architecture", University of Edinburgh, 4th Year Project Report, June

1995.

[Coe96] 	P.S. Coe, R.N. Ibbett and L.M. Williams, "An Integrated

Environment for the Teaching of Computer Architecture",

SIGCSE/SIGCUE Joint Conference on Integrating Technology into

Computer Science Education, Barcelona, Spain, June 1996.

[Coe97a] P.S. Coe, F.W. Howell, R.N. Ibbett, R. McNab and L.M. Williams,

"An Integrated Learning Support Environment for Computer

Architecture", 3rd Annual Workshop on Computer Architecture

Education at HPCA-3, Texas, USA, 1997

[Coe97b] 	P. S. Coe and L. M. Williams, "Entity Description Language

Manual (V1.0)", Computer Systems Group, University of Edinburgh,

Edinburgh, UK, March, 1997

[Coe98] 	P.S. Coe, F.W. Howell, R.N. Ibbett and L.M. Williams,

"Hierarchical computer Architecture design and Simulation

Environment ", ACM Transactions on Modelling and Computer

Simulation, vol. 8, no. 4, October 1998.

[Coe99] 	P. S. Coe, "Modelling and Evaluation of Distributed Shared-

Memory Multiprocessor Systems", PhD Thesis, In Preparation.

[Cota92] B. A. Cota and R. G. Sargent, "A Modification of the Process

Interaction World View", ACM Trans. On Modelling and Computer

Simulation, Vol. 2, No. 2, April 1992.

268

[Craig96] 	Donald C. Craig, "Extensible Hierarchical Object-Oriented Logic

Simulation with an Adaptable Graphical User Interface", PhD

Thesis, Dept. Computer Science, University of Newfoundland, 1996.

[Cup96]

	

	Georgia Institute of Technology, "CUP User's Manual (0.9).",

Graphics Visualization and Usability Centre, 1996.

[Dewhurst89] 	Stephen C. Dewhurst and Kathy T. Stark, "Programming in C++",

Prentice Hall, 1989.

[Ekas99] 	Paul Ekas, "Using Visual Architect for Designing Communication

and Multimedia Functional Blocks for Systems-on-a-chip", White

Paper, Alta Group, 1999.

http://www.cadence.com/alta/products/newdatasheets/va —whit

e . html

[Evans94] 	Brian L. Evans, Alan Kamas and Edward A. Lee, "Design and

Simulation of Heterogeneous Systems using Ptolemy", In Proc. 1st

Annual Conf. of RASSP, 1994.

[Fishwick98] 	P. A. Fishwick, "Issues with web-publishable digital objects"

SPIE Aerosense Conference, Orlando Florida. April 1998,

[Fishwick94]

	

	Paul A Fishwick, "Computer Simulation: Growth through

Extension", European Simulation Conference, Barcelona, Spain. 1994.

[Fishwick95] Paul A. Fishwick, "Computer Simulation: The Art and Science of

Digital World construction", technical Note, Computer &

Information Science and Engineering Dept., University of Florida,

CSE 301., September 1995.

269

[Fishwick96] 	Paul A. Fishwick, "Web-based Simulation: Some Personal

Observations", Proc. 1996. Winter Simulation Conference, Dec San

Diego. CA. Pp 772-779

[Flanagan97] 	David Flanagan, "Java Examples, in a Nutshell", O'Reilly, 1997.

[Flanagen97] 	David Flanagan, "Java in a Nutshell", 2nd Edition, O'Reilly, 1997.

[Glavach93] 	Mark A. Glavach, David T. Sturrock, "Introduction to

SIMAN/CINEMA", In. Proc. 1993 Winter Simulation Conference.

[Goering97] 	Richard Goering, "Systems-on-silicon designs talk in new

languages", EETimes, Issue 957, June 9, 1997.

[Gruber92] 	Gruber, T.R., "Model Formulation as a Problem Solving Task:

Computer-assisted Engineering Modelling.", In. International

Journal of Intelligent Systems, Vol. 8(1), pp. 105-127, 1992

[Gutz98]

	

	Steven Gutz, "Up to speed with Swing: User interfaces with Java

Foundation Classes", Manning Books, 1998.

[Hi1195] 	Mark Hill, James R. Larus, Alvin R. Lebeck, Madhusudhan Talluri and

David A. Wood, "Wisconsin Architectural Research Tool Set - An

Overview", Technical note, Computer Sciences Dept., University of

Wisconsin, W153706, May 1995.

[Hodgson97] 	S. Hodgson and M.M.K. Hashmi, "SuperVISE—System

Specification and Design Methodology", ICL Systems Journal,

November 1997, ICL High Performance Systems, Manchester, UK.

270

[Howe1196a] 	F.W. Howell and R.N. Ibbett, "State of the Art in Performance

Modelling and Simulation: Chapter 1 - Hierarchical Architecture

Simulation Environment", Gordon and Breach, Editors: K.Bagchi

and G. Zobrist, 1998.

[1-lowe1196b] 	Fred Howell, "HASE++, A discrete event simulation language with

a passing resemblance to Jade's SIM++" Technical NOTE, March

1996.

http://www.dcs.ed.ac.uk/home/hase/projects/hase++.html

[Howe1197] 	F.W. Howell, "A Guide to the SimJava Package.", April,

1997. 	http://www.dcs.ed.ac.uk/hase/simjava/simjava-

1. 2/doc/simj ava guide/index. html,

[Hspice90] 	"HSPICE User's Manual", Meta-Software, 1990.

[Hug99] 	"HASE User Guide On-Line Version", Computer Systems

Group, University of Edinburgh, Edinburgh, UK. 1999.

http://www.dcs.ed.ac.uk/home/hase/userguide/.

[lbbett96a] 	R. N. Ibbett and P. E. Heywood and F. W. Howell, "HASE: A

Flexible Toolset for Computer Architects.", The Computer Journal,

38(10), 1996.

[Ibbett96b] 	R. N. tbbett and T. Heywood and M. I. Cole and R. J. Pooley and P.

Thanisch and N. P. Topham and G. Chochia, P. S. Coe and P. E.

Heywood., "Algorithms, Architectures and Models of

Computation", CSG-22, Computer Systems Group, University of

Edinburgh, 1996.

271

[Ibbett97] 	R.N. Ibbett T. Heywood M.I. Cole R.J. Pooley P. Thanisch and N.P.

Topham, "Algorithms, Architectures and Model of Computation:

Simulation Experiments in Parallel Systems Design." EPSRC

Grant Report, April 1997.

{Inte]98] 	"Celeron: Basic PC Performance Brief", Intel, Report 243706-002,

June 1998.

[JáJá92] 	Joseph JáJá, "An Introduction to Parallel Algorithms", Addison-

Wesley Publishing Company, 1992.

[Jdk99] 	Sun Microsystems, "Java Development Kit 1.2 API Specification",

On-line Documentation, 1999

http://java.sun.com/products/jdk/1.2/index.htm1

[Karp90] 	Richard M. Karp, "Handbook of Theoretical Computer Science",

chapter 17 - Parallel Algorithms for Shared-Memory Machines,

Elsevier Science Publications B.V, 1990.

[Lee96] 	C.H Lee and R.N. Zobel, "Representations of Simulation Model

Components for Model Generation and a Model Library.", In Proc.

29th Annual Simulation Symposium, p.193-201,1996.

[Lee98] 	Edward A. Lee, David G. Messerschmitt, "Engineering an Education

for the Future", pp. 77-85, IEEE Computer, January 1998.

[Lenoski92] D.E. Lenoski, "The Design and Analysis of DASH: A Scalable

Directory-Based Multiprocessor", TR:CSL-TR-92-507, Stanford

University, 1992

[Levine92] 	John R. Levine, Tony Mason and Doug Brown, "Lex and Yacc",

O'Reilly and Associates, Inc., 1992

[Luna92] 	Joel J. Luna, "Hierarchical, Modular Concepts Applied to an

Object-Oriented Simulation Model Development Environment",

Proc. 1992 Winter simulation Conference.

[Luna93] 	Joel J. Luna, "Hierarchical Relations in Simulation Models", In

Proc 1993 Winter simulation Conference.

[Martin97a] 	Grant Martin, "Design Methodologies for System Level IP",

Cadence Design Systems, Alta business Unit. 1997.

[Martin97b] 	Grant Martin and Bill Salefski, "Methodology and Technology for

Design of Communications and Multimedia Products via System-

Level IP Integration", Cadence Design Systems, Alta Business Unit.

1997

[Martin98] 	Grant Martin, Lee Todd and Andy McNelly, "The Integration

Platform Approach to System On Chip Design", IP 98, 1998.

[McHenry94] John T. McHenry and Scott F. Midkiff, "VHDL Modelling for the

Performance Evaluation of Multicomputer Networks", In Proc.

MASCOTS '94, IEEE Computer Society Press, 1994.

[Mohammad98] 	Saleem Mohammad Ali, "RTL-C extensions deliver fast system

simulation", 	EDA 	Tools 	Part 	III, 	EElimes., 	URL:

http://pubsys.cmp.com/eet/edaadvantage/edaspecial/edatools

/edapart3 /eda7 . html

[Moose98] 	Computer Systems Design Group, "Moose Document: User Manual

V5.01", Department of Computation, University of Manchester

Institute of Science and Technology, 1998.

273

[Morris97] 	Derrick Morris, D. Gareth Evans and Simon Schofield, "Simulating

the Behaviour of Computer Systems: Co-simulation of

Hardware/Software", The Computer Journal, Vol. 40, No 10, 1997.

[Mullarney96]

	

	Alasdar Mullarney, "MODSIMIII: A Tutorial", CACI Products

Company, In. Proc. 1996 Winter Simulation Conference.

[Muller96] 	Daniel J. Muller, "What to do with the model afterward?",

Autos imu lations, In Proc. 1996 winter Simulation Conference.

[Nicol98] David M. Nicol, Michael M. Johnson and Ann Yoshimura, "IDES: A

Java-based Distributed Simulation engine", Proc. 1998 International

Workshop on Modelling, Analysis and Simulation of Computer and

Telecommunication Systems, Montreal, Canada, pp. 223-240, 1998.

[0de1192] James Odell, "Managing Object Complexity, Part 1: abstraction

and generalisation", In Journal of Object-Oriented Programming.

Vol. 5(5), p19-21., 1992.

[Oovhdl95] 	RASSP, "00-VHDL Language Reference", Vista Technologies,

Tech. Report TR-1.2.1 1.1.3-01, 1995.

[Orca97] 	Orca Computer Inc., "Visual Simulation Environment: Version 1.0

Product Overview", Virginia Tech Corporate Research Centre,

Blacksburg, VA 24060, 1997.

[Ostore93] 	Object Design Incorporated, "ObjectStore Release 3.0 User Guide",

Burlington, MA, December, 1993.

[Ousterhout93] 	J. K. Ousterhout, "Tcl: An Embedded Control Language", In Proc.

USENIX, Winter, 1993.

274

[Oxf'93] 	The Concise Oxford Dictionary, 9th Edition, Clarendon Press, Oxford,

1993.

[Ptolemy94] 	DSP Design Group, "An Overview of the Ptolemy Project",

Unpublished Memorandum, Dept. EECS, University of California,

Berkeley, March 1994.

[Rafferty97] 	N. Rafferty, "A Software Simulator for the Motorola M68HC08

Micro-Controller Unit", 4th Year Project Report, University of

Edinburgh, 1997.

[Robertson96] 	Alexander Ronnfeldt Robertson, "Hierarchical Architectural Design

and Simulation Environment", PhD Thesis, CST-125-96, University

of Edinburgh, Dept. of Computer Science. May 1996.

[Rosenblum97] 	M. Rosenblum, E. Bugnion, S. Devine and S. Herrod, "Using the

SimOS Machine Simulator to Study Complex Computer Systems",

ACM Trans. On Modelling and Compute Simulation, Vol. 7, No. 1,

pp. 78-103, January 1997.

[Rowson97] 	James A Rowson & Alberto Sangiovanni-Vincentelli, "Interface-

Based Design", 34 1h Design Automation 	Conference, Anaheim

Convention Centre, Anaheim, CA. June 9-13, 1997 (IEEE).

[Rozenblit95] 	J. RozenBlit & K. Buchenrieder, "Codesign: Computer Aided

Software/Hardware Engineering", IEEE Press, 1995

[Sampogna96] 	A. Sampogna, D. Kaeli, D. Green, M. Silva and C.J. Sniezek,

"Performance Modelling using Object-Oriented Execution Driven

Simulation", In Proc. 29th Annual Simulation Symposium, p.183-192,

1996.

275

[Sargent93] 	Robert G Sargent, "Hierarchical Modelling for Discrete Event

Simulation (Panel)", In Proc. 1993 Winter Simulation Conference,

1993.

[Schaffer94] 	Steven J. Schaffer and William W. La Rue, "BONeS Designer: A

Graphical Environment for Discrete Event Modelling and

Simulation.", MASCOTS 94, IEEE Computer Press, 1994.

[Schwetman96]

	

	Herb Schwetman, "CSIM18 - The Simulation engine", In Proc. 1996

Winter Simulation Conference, 1996.

[Sheikh98] 	Farhana Sheikh, "Visualizing Architecture and Algorithm

Interaction in Embedded Systems", Memorandum UCB/ERL

M96/50, Dept EE and CS, University of California, Berkeley

California 94720. Sept. 1998.

[Simjava96] 	R. McNab and F.W. Howell, "Using Java for Discrete Event

Simulation", In Proc. 1996 UK Performance Engineering Workshop,

Edinburgh Scotland, The Society of Computer Simulation, 1996.

[Simpp9l]

	

	Jade Simulations International Corporation, "Sim++ User Manual",

Calgary, Canada, 1991.

[Smith96] 	Douglas J. Smith, "VHDL & Verilog Compared & Contrasted",

33rd ACM Design Automation conference, 1996.

[Stroustrup9l] 	B. Stroustrup, "The C++ Programming Language", pages 382-384,

Addison-Wesley, 1991

[Swamy95] 	Sowmitri Swamy, Arthur Molin and Burton M. Covnot, "00-VHDL:

Extensions to VHDL", Computer, Oct 1995.

276

[Thomas94] 	Carsten Thomas, "Interface-Oriented Classification of DEVS

Models", AIS'94 Conf. Proc., 208-213, IEEE, 1994.

[Vcc98] 	 "Virtual Component Co-design Architecture Evaluation Guide:

Version 1.0", Cadence Design Systems Inc., San hose, CA 95134,

USA, 1998.

[Vhd188] 	IEEE Computer Society Press, "IEEE Standard VhDL Language

Reference Manual", IEEE Std 1076-1987, New York, 1988.

[Vhdlplus96] "VHIDL+ Extensions to VHDL for System Specification", Version

3.0 Product Manual., ICLlFujitsu high Performance Systems,

Manchester, UK.

[Vissim95] 	"VisSim Users Guide", Visual Solutions Inc., Westford, MA. 1995.

[Williams95] 	Thomas Williams and Cohn Kelley, "GNUPLOT: An interactive

Plotting Program - Version 3.0", Reprinted as University of

Edinburgh Computer Science Technote CS-TN-26.

[Williams96] 	L. M. Williams and R. N. Ibbett., "Simulating The DASH Architecture

In HASE", p.137-I46, 1996, Proc. 29th Annual Simulation

Symposium.

[Zeigler84] 	Zeigler, B. P., "Multifaceted modelling and discrete event

simulation", Orlando: Academic Press, 1984.

[Zeigler90] 	Zeigler, B. P., "Object-oriented Simulation with Hierarchical,

Modular Models - Intelligent Agents and Endomorphic Systems",

Academic Press, 1990.

277

Appendix A - EDL Grammar

proj -*
PROJECT (preamble paramlib globals entlib layout)

preamble -
PREAMBLE (name directory author version desc)

name -+
NAME string

directory -*
DIRECTORY string

author ->

C

I AUTHOR string

version -*
C

I VERSION integer

desc -*
6

I DESCRIPTION (desclist)

desclist -*
string
I string , desclist

paramlib -*
PARAMLIB (paramlist)

paramlist -*
C

I param ; paramlist

param -*
ENUM (identifier, (enumlist))

I STRUCT (identifier, [structlist J)
I RANGE (identifier, integer, integer)

278

I INSTR (identifier, [linklist 1)
I BIT (identifier, integer)

I LINK (identifier, [linklist 1)
ARRAY (identifier, integer, identifier)

enumlist -f
identifier: identifier
I identifier: identifier, enumlist

structlist -+
rparam
rparam , structlist

linklist ->
(identifier, rparam)

I (identifier, rparam), linklist

rparam -*
RIENUM (identifier, identifier, integer)

I RSTRUCT (identifier, identifier)

I RRANGE (identifier, identifier, integer)
RINSTR (identifier, identifier)

I RBIT (identifier, identifier, integer)

I RLIINK (identifier, identifier)

I RARRAY (identifier, identifier)

I RTNT (identifier, integer)
RFLOAT (identifier, float)

I RSTRING (identifier, string)

globals -*
GLOBALS (rparamlist)

rparamlist -*
C

I rparam ; rparamlist

entlib ->
ENTITYLIB (entlist)

entlist -4

C

I entity ; entlist
I subentity ; entlist

entity -+
ENTITY identifier (desc params ports attributes)

subentity -

279

COMPENTITY identifier (descendants desc params ports attributes)

params -*
C

I PARAMS (rparamlist)
ports -*
C

I PORTS (portlist)

portlist -+
port

I port ; portlist

port -
PORT (identifier, RLINK (identifier, identifier) , identifier)

attributes -+

ATTRLB (attriblist)

attriblist -*
C
attrib ; attriblist

attrib -*
DISPLAYPARAM (identifier, identifier, identifier)

descendants -*
DESCENDANTS (childlist childlinklist)

childlist -
CHILD (identifier, identifier, attributes)

I CHILD (identifier, identifier, attributes) ; childlist
childlinklist -~

6

I clink; childlinklist

clink -*
CLINK (identifier. identifier [identifier] -> identifier. identifier [identifier] width)

width -
6

I , integer

layout -*
LAYOUT (layoutlist childlinklist)
layoutlist -*
C

I lentity ; layoutlist

280

lentity —+
LENTITY identifier identifier (desc attributes)

A.! DASH Node Demonstration Model

PROJECT
PREAMBLE

NAME "dashnode"
DIRECTORY "/home/lmw/hasedir/myproj/daShflOde"
AUTHOR "Lawrence Williams"
VERSION 1
DESCRIPTION ("Simple HASE Experiment based on single DASH node")

PARAMLIB

-- Struct definition for simple data packet and its associated link param

STRUCT (plstruct , [RINT (p1_address , 0)
RSTRING (plrw, ")
RSTRING (phd,

LINK 	(p1_link , [(DATAPKT , RSTRUCT(plstruct, DP))]);

-- Struct for holding memory traces

STRUCT (rnem trace struct , [RINT (mtaddress,0),
RSTRING (mtrw,
RSTRING (mtid,

-- Struct for holding cache line information

STRUCT (calinestruct , [HINT (cavahid,0),
RINT (catag,0),
RINT (ca cmblock,0),
HINT (caaddl,0),
HINT (caadd2,O),
HINT (caadd3,0),
RINT (caadd4,O),
HINT (camod,O),
HINT (cashare,0)]);

-- Define the State enumerations for mips and caches.

ENUM (mipsstate, [H WAITING:mips waiting
H_RUNNING :mips running
MSTOPPED:mips 1);

ENUM (pcachestate, (P_HIT:
P MISS:
P IDLE:));

ENUM (s_cache_state, (S_HIT:
S MISS:
S—IDLE:));

-- Define storage arrays for cache contents and memory trace storage

ARRAY (p_cache_memory, 8, calinestruct);
ARRAY (S cache memory, 16, cahinestruct);
ARRAY (memory trace, 100, mem trace struct);

281

GLOBALS
RINT (traces , 5);

RINT (mips delay , 1);
RINT (p_cache_size , 8);
RINT (s_ cache _size , 16);
RINT (p_cache_delay , 1);
RINT (s_ cache _delay , 1);
RINT (c_memory_delay , 1);
RINT (clus mem size , 1024

ENTITYLIB
ENTITY mips

DESCRIPTION ("Mips Address Generation Box.")
PARAMS

RINT (TC,0);
RINT (TRACES,0);
RARRAY (memory trace,mem trace);
RENUM (mips_state, cur_state, 0);

PORTS
PORT (p cache, pllink, portdot);

ATTRIB ()

ENTITY p cache
DESCRIPTION ("Primary Cache")
PARANS

RSTRING (status," -- ");
RENUM (p cache state,cur_state,0)
RARRAY (p_cache_memory, cache);

PORTS
PORT (mips, plunk, portdot);
PORT (s_cache, pllink, portdot);

ATTRIB ()

ENTITY s_cache
DESCRIPTION ("Secondary Cache")
PARAMS

RSTRING (status,"--");
RENUM (scachestate,curstate,0);
RARRAY (scachememory,cache);

PORTS
PORT (p_cache, plunk, portdot);
PORT (mpbus, pllink, portdot);

ATTRIB ()

ENTITY mpbus
DESCRIPTION ("Very Simple Bus!")
PARANS
PORTS

PORT (mipsl, pllink, portdot);
PORT (from _c_memory, plunk, portdot);
PORT (tocmemory, pilink, portdot);

ATTRIB ()

ENTITY c_memory
DESCRIPTION ("Cluster Memory Unit")
PARANS (

282

PORTS
PORT (from mp bus, plunk, pdrtdot);
PORT (to mp bus, pilink, portdot);

ATTRIB ()

COMPENTITY node
DESCENDANTS

CHILD (mips , MIPS , ATTRIB
CHILD (p_cache , P_CACHE , ATTRIB
CHILD (scache , S_CACHE , ATTRIB
CLINK (mips.MIPS[p cache] ->

p_cache. P_CACHE [mips] ,1);
CLINK (p_cache. P_CACHE [s_cache] ->

scache.S_CACHE [p_cache], 1);

DESCRIPTION ("Node Containing MIPS box and caches")
PARANS ()
PORTS
ATTRIB

LAYOUT
LENTITY node NODE

DESCRIPTION ("Single DASH Node")
ATTRIB ()

LENTITY rap bus MP—BUS
DESCRIPTION ("Simple Bus")
ATTRIB ()

LENTITY c memory C_MEMORY
DESCRIPTION ("Cluster Memory")
ATTRIB ()

CLINK (node.NODE[mpbus] ->mpbus.MPBUS[mipsl], 1);
CLINK (mp_bus .MP BUS [to_c_memory]->

cmemory.CMEMORY[frommpbus] , 1);
CLINK (rap bus. NP_BUS [from_c_memory] ->

cmeraory.CNEMORY[to_mp_bus] , 1);

A.2 DASH Node Sample Input

Address, id/rw sample to go here.

283

Appendix B - Overview of Java Packages

B.1 The LibraryStructure Package

binding. java, 	bindingMask. java Classes used to represent message type to
port bindings.

Entity. java, 	CompEntity. java Classes representing atomic and composite
entities.

dataDArray.java, 	dataFioat.java,
dataHint.java, 	datalnstr.java,
datalnt.java, 	dataltem.java,
dataRange . java

These classes represent the EDL data types
dynamic array data type.

EDLEmbedParamlib.java,
EDLHeader.java, 	EDLitem.java,
EDLList . java, 	EDLparamlib. java

Classes used to hold the generated EDL
output file sections

EntlFace. java Class holding pre-calculated entity interface
definitions
This class represents an atomic entity.

LibraryStructure.java The class which binds together all other
model related objects

LinkSpec. java Class representing a full link definition
MarkSpec. java

MType. j ava Classes used to manipulate Message Type
definitions. MTypeList . java

MTypeSet . java
OutputGather. java Class used to hold code fragments generated

by LibTool
Port.java Classes 	for 	the 	manipulation 	of

communication ports
PortList . java
PortDescriptor. java

B.2 The LibTool Package

CiassView. java GUI based class for display of class definitions
EDLLibGenerator. java
EntityDescEDL. java Classes associated with describing an entity's

interface on screen.

EntityDescription. java

EntityDescHLlB. java
EntityDesclFace. java

IFaceFig. java GUI class used to render interface set notation

284

LibBrowserForm. java The GUI class for the Liblool browser
LibGenerateForm. java The generation dialogs used in LibTool
LibToolMain. java The main class which spawns the LibTool

process
OrderLess . java Ordering relation
PostScriptGenerator. java Alternative output type generation class (not fully

implemented)
TestEquiv. java Class equivalence test class
TreeGenerator. java Used to render the LibTool explorer.

B.3 The ConunTrace Package

CommTrace.java The main CommTrace process
FigDisplay.java The rendering class
ProtFig.java The canvas sub class
TextDisplay.java Used to display the trace file

view
TraceLine.java Class holding a tempory copy of a

trace file line
traceScanner. java Scanner class for trace files

B.4 The SimTree Package

overlayScanner. java
Polygon. java
PolyLine. java
searchQuery. java
SimTree. java
treeScanner. java
WaiTreeCanvas . java
WNode.java
WTFactory. java

B.5 MEDL Parser Specification

II CUP Specification : MEDL Library File Format
II

mit with {: scanner.init(); 	:}; 	II mit feedback to gui console
scan with {: return scanner.nexttokenO; 	:};

II routine to get next token

/* Terminals */

terminal token 	LIB, ENT, MESSTYPE, NAME, INPUT, PORT, OUTPUT,
LPAREN, RPAREN, MTYPES, COMMA, COLON, DESC, DATABINDINGS,
CENT, CONTAINS, INTLINRAGE, INTL, EDL, EDLCODE, DATAITEM,

285

BINDINGS, DATAPAIR, baseRANGE, baselNT, baseFLOAT,
baseDARRAY, baseINSTR, baseHINT, BIND, PASSIVE, SET,

DETDESC, INENUM, INSTRUCTS, INSTRUCT, INSET;

terminal str token IDENT, STRING;

terminal mt token INTEGER;

/* Non-Terminals */

non terminal symbol library def, entity_list, entity, input _list,
output_list, oportlist, iport, messtypes, mtype list, mtype, oport,
iportlist, messrange, rangenode, c_entity_list, c_entity, contains,
subentlist, intlmnkage, entlistnode, link, cmess_types, cmtype list,
cmtype, linkspec, linktypea, linktypeb, linktypec, linktyped, edl, edlcode,
edlcode list, databindlist, databinditem, bind—list, binding,
basetype, baseint, baserange, basefloat, basedarray, bindingdetails,
passive, passive_list, passive _item, cpassive, cpassive list,
cpassive_item, detdesc, detdesc list, descdef, basehint, baseinstr, inenurn,
instructs, inset, instructs—list, instructs—item;

/* The Grammar /

start with library_def;

library def ::= LID IDENT
STRING: 5
LPAREN
entity_list
c_entity_list
DATABINDINGS LPAREN databind_list bindingdetails RPAREN
RPAREN

LIE IDENT
STRING: S

LPAREN
entity_list
DATABINDINGS LPAREN databind_list bindingdetails RPAREN
RPAREN

LIB IDENT
STRING: S

LPAREN
entity_list
c_entity_list
RPAREN

LIB IDENT
STRING:s
LPAREN
entity_list
RPAREN

basetype ::= baseint I
baserange
basehint
basedarray
basefloat
baseinstr;

basedarray ::= ba5eDARRAY LPAREN
IDENT: size
COMMA
IDENT :type
RPAREN

286

baseint ::= baselNT

basehint ::= baseHINT LPAREN INTEGER:hexnums RPAREN

baserange ::= baseRANGE LPAREN INTEGER:rLow COMMA INTEGER: rHigh RPAREN

base float : := baseFLOAT

baseinstr : := baseINSTR LPAREN inenum instructs inset RPAREN

inenum ::= INENUM LPAREN STRING:instrSetEnum RPAREN

instructs ::= INSTRUCTS LPAREN instructs—list RPAREN

instructs—list : := instructs—list instructs—item I
instructs—item

instructs item ::= INSTRUCT LPAREN STRING:structString RPAREN

inset ::= INSET LPAREN STRING:inSetString RPAREN

bindingdetails ::= BINDINGS LPAREN bind—list RPAREN;

bind—list ::= bind—list binding
binding

binding ::= BIND LPAREN IDENT:mtype COMMA IDENT:dataitem RPAREN

databind list ::= databind_list databinditem
databinditem;

databinditem ::= DATAITEM LPAREN
DESC LPAREN STRING:desc RPAREN
DATAPAIR LPAREN IDENT:name COMMA basetype RPAREN
RPAREN

centitylist: := c_entity_list c_entity
C entity; -

edlcode 	 ::= EDLCODE LPAREN
IDENT:i COMMA STRING:s2
RPAREN

edlcode list ::= edlcode list edlcode
edlcode;

edl 	 :: EDL LPAREN RPAREN I
EDL LPAREN edlcode list RPAREN

287

II comp entity - hold list of entities which _must_ be declared earlier than this

c_entity 	::= CENT LPAREN
NAME LPAREN IDENT:i RPAREN
DESC LPAREN
STRING: S

RPAREN
cmess types
contains
INTLINKAGE LPAREN mt linkage RPAREN
edl

cpassive
RPAREN

contains 	::= CONTAINS LPAREN subentlist RPAREN;

subentlist ::= subentlist COMMA entlistnode
entlistnode;

entlistnode ::= IDENT:i

II in the case of duplicate instances of the same sub entity...

IDENT:i COLON IDENT:i2

mt linkage ::= mt linkage link I
link;

linkspec ::= linktypea

linktypeb

linktypec

linktyped

linktypea.: := IDENT:elname LPAREN IDENT:elport RPAREN COMMA
IDENT:e2name LPAREN IDENT:e2port RPAREN

linktypeb ::= IDENT:elname LPAREN IDENT:elport RPAREN COMMA
IDENT:e2name COLON IDENT:id2 LPAREN IDENT:e2port RPAREN

linktypec ::= IDENT:elname COLON IDENT:idl LPAREN IDENT:elport RPAREN COMMA
IDENT:e2name LPAREN IDENT:e2port RPAREN

linktyped ::= IDENT:einame COLON IDENT:idl LPAREN IDENT:eiport RPAREN COMMA
IDENT:e2name COLON IDENT:id2 LPAREN IDENT:e2port RPAREN

link 	::= INTL LPAREN lmnkspec RPAREN

passive_item ::= SET LPAREN IDENT:il COMMA IDENT:i2 RPAREN

cpassive_item ::= SET LPAREN IDENT:ii COMMA IDENT:i2 RPAREN

entity_list ::= entity—list entity I
entity;

288

passive_list ::= passive_list passive—item
passive—item

cpassive_list ::= cpassive_list cpassive_item
cpassive_item

passive 	PASSIVE LPAREN passive_list RPAREN I
PASSIVE LPAREN RPAREN

cpassive 	PASSIVE LPAREN cpassive_list RPAREN I
PASSIVE LPAREN RPAREN

detdesc 	::= DETDESC LPAREN STRING:s2
RPAREN

detdesc list 	: := detdesc list detdesc I
detdesc

descdef 	::= DESC LPAREN STRING:s RPAREN

DESC LPAREN STRING:s RPAREN
detdesc list

entity 	::= ENT LPAREN
NAME LPAREN
IDENT i
RPAREN

descdef
mess_types
input_list
output list
edl
passive
RPAREN

mess—types ::= MTYPES LPAREN
mtype_list
RPAREN

mtype list ::= mtype_list mtype
mtype

cmess types 	MTYPES LPAREN
cmtype_list
RPAREN

cmtype list 	cmtype_list cmtype
cmtype

II check for duplicate message type names

mtype 	 MESSTYPE LPAREN
IDENT:i

289

LPAREN
messrange RPAREN
RPAREN

cmtype 	::= MESSTYPE LPAREN
IDENT: i
LPAREN
messrange RPAREN
RPAREN

messrange 	::= messrange COMMA rangenode I
rangenode

rangenode 	::= IDENT:i

II input/output lists may have O->many ports.
II

input list ::= INPUT LPAREN RPAREN
INPUT LPAREN
iport_li-St
RPAREN

output_list :: OUTPUT LPAREN RPAREN
OUTPUT LPAREN
oport list
RPAREN

iport list :: iport_liSt iport
iport

oport_list ::= oport_list oport I
oport

iport 	::= PORT LPAREN IDENT:i COMMA IDENT:ii RPAREN

oport 	 PORT LPAREN IDENT:i COMMA IDENT:ii RPAREN

B.6 MEDL Description of the DASH Node Model

Library file for DASHNODE model
II

LIB dashnode "Small Processing Node Library"

ENT {
NANE{P-CACHE}

290

MTYPES {
MESSTYPE{MEMACCESS(get-addreSS, return-address)

INPUT{
PORT (IN, MEMACCESS
PORT (REPLY, MEMACCESS

OUTPUT
PORT {ANSWER, MEMACCESS)
PORT { REFER, MEMACCESS

EDL

ENT
NAME (C PU
MTYPES{

MESSTYPE{MEMACCESS (get-address, return-contents}

INPUT{
PORT { IN, MEMACCESS

OUTPUT
PORT(OUT,MEMACCESS}

EDL

ENT
NANE{S-CACHE}
MTYPES {

MESSTYPE{MEMACCESS (get-address, return-address)}

INPUT(
PORT{IN,MEMACCESS)
PORT (REPLY, MEMACCESS)

OUTPUT
PORT {ANSWER, MEMACCESS}
PORT { REFER, MEMACCESS

EDL{

ENT
NAME { MEMORY)
MTYPES {

MESSTYPE{MEMACCESS{get-address, return-address))

INPUT
PORT{ IN, MEMACCESS}

OUTPUT
PORT {OUT, MEMACCESS)

EDL

CENT{
NAME { COMPCACHE}
MTYPES {

MESSTYPE{MEMACCESS{get-address, return-address})

291

CONTAINS (P-CACHE, S-CACHE}
INTLINKAGE

INTL (P-CACHE{REFER},S-CACHE{IN}}
INTL {S-CACHE{OUT} , P-CACHE{REPLY}

EDL

CENT{
NAME { COMPCACHE-3
MTYPES {

MESSTYPE{MEMACCESS{get-address, return-address}

CONTAINS (P-CACHE, S-CACHE, COMPCACHE}
INTLINKAGE

INTL {P-CACHE{REFER}, S-CACHE{IN}}
INTL {S-CACHE{OUT} ,P-CACHE {REPLY}

EDL

B.7 Typical MEDL Console Log

LibTool V1.2 (c)1998 HASE Group.

Scanning Input Library NEW-processor-memory.hlib
Parsing Library.
Generating HLIB Objects...
Library NEW-processor-memory. hub OK.

Building Port Oefs. for CEntity <testmodell>
Building Port Defs. for CEntity <testmodel2>
Building Port Defs. for CEntity <testmodel3>
Building Port Defs. for Csntity <testmodel4>

Building Interface Definitions...
Generating Interface for Atomic Entity din tdprocessor.
Generating Interface for Atomic Entity din-memory.
Generating Interface for Atomic Entity cache_prociface.
Generating Interface for Atomic Entity abs_cache.
Generating Interface for Atomic Entity fa_cache.
Generating Interface for Atomic Entity fa_cache_rec.
Generating Interface for Composite Entity testmodell.
Generating Interface for Composite Entity testmodel2.
Generating Interface for Composite Entity testmodel3.
Generating Interface for Composite Entity testmodel4.
Finished Building Interface Definitions.

Checking Global Message Type Consistency
Testing din_td_processor for message type consistency
Testing din_td_processor for message type consistency
Testing din-memory for message type consistency
Testing din memory for message type consistency
Testing cache prociface for message type consistency
Testing cache prociface for message type consistency
Testing cache_prociface for message type consistency
Testing cache_prociface for message type consistency
Testing abs_cache for message type consistency
Testing abs_cache for message type consistency
Testing fa_cache for message type consistency
Testing facache for message type consistency
Testing fa_cache_rec for message type consistency

292

Testing fa cache rec for message type consistency
Testing tetmodeT1 for message type consistency
Testing testmodell for message type consistency
Testing testmodell for message type consistency
Testing testmodell for message type consistency
Testing testmode12 for message type consistency
Testing testmode12 for message type consistency
Testing testmode12 for message type consistency
Testing testmode12 for message type consistency
Testing testmode13 for message type consistency
Testing testmode13 for message type consistency
Testing testmode14 for message type consistency
Testing testmode14 for message type consistency
Testing testmodel4 for message type consistency
Testing testmodel4 for message type consistency
Finished Checking Global Message Type Consistency

Checking Atomic Entites Port->Message Type Bindings
Testing din_td_processor for port->message definition inconsistency.
Testing din—memory for port->message definition inconsistency.
Testing cache_procif ace for port->message definition inconsistency.
Testing abs_cache for port->message definition inconsistency.
Testing f a_cache for port->message definition inconsistency.
Testing fa_cache_rec for port->message definition inconsistency.
Finished Checking Atomic Entites Port->Message Type Bindings

Checking Free Port Count for Composite Entitites
Finished Checking Free Port Count for Composite Entitites
Checking Secondary Data Bindings
Finished Checking Secondary Data Bindings
Checking Passive Data Items
Finished Checking Passive Data Items
Creatino Passive Data Mask EDL

B.8 MEDL Test Library Details

Key entities are accompanied by a diagrammatic representation of the component's

port configuration and the MEDL description.

293

Component
Name
A

Description

This atomic component acts as a message source. One thousand
messages are transmitted from the sole output port (out) with a
pause of one simulation time unit between transmissions 46 .

ENT{
NAME (a)
MTYPES {MESSTYPE { PACKET {message a, message b}
INPUT{)
OUTPUT{PORT{OUT, PACKET}
EDL{

B This atomic component acts as a message-forwarding unit. It has two
ports (in, out). Messages received on the in port are held for one
simulation time unit and then retransmitted on the out port.

ENT{
NAME { b
MTYPES { MESSTYPE { PACKET {message a, message b}}
INPtJT{PORT{IN, PACKET}}
OUTPUT{PORT{OUT, PACKET}
EDL{

C The atomic component 'C' acts as a message sink. It simply receives
events on its only port (in).

L1C

ENT
NAME { c
MTYPES { MESSTYPE { PACKET {message a, message b}}
INPUT{PORT{IN, PACKET)
OUT PUT
EDL{

BB Composite component BB contains two instances of component type
B. The output of one instance is linked to the input of the other
instance. Transmitted packets leave the component two simulation

46 A simulation time unit is an abstract unit of time. Usually the modeller specifies how a
simulation time unit maps on to some real measure of time.

294

time units after arriving (i.e. double the delay of a B component).

CENT{
NAME { bb
MTYPES (MESSTYPE { PACKET {message a, message b
CONTAINS {b:B1,b: B2}
INTLINKAGE

INTL 	{b:Bl{OUT},b:32{IN}}

EDL(

The use of the b: bi and b b2 notation allows reference to multiple
instances of component of the same type.

BBB This composite component is similar to BB however it includes three
linked instances of component B.

1313132 Component BBB2 consists of two instances of composite component
BBB linked together.

BBx2 Component BBx2 consists of two instances of component BB (itself
a composite component) linked together.

BBx2

BB:bbl 	 BB:bb2

LII B:bl LIIj-fIB:b2_LI1-LI1 B:bl LI1-LI1 B:b2 LI1

CENT{
NAME {bbx2}
MTYPES { MESSTYPE { PACKET { mes sage_a , mes sage_b }
CONTAINS{bb:bbl,bb:bb2}
INTLINKAGE

INTL 	{bb:bbl{OUT},bb:bb2{IN}}

EDL{ }

BBx2X3 This composite component is built from three BBx2 components.
ModelA This component is closed (i.e. it has no free ports and is a complete

model). It consists of an A (source) component connected to three
linked BBx2 components (message forwarding entities) which is in
turn linked to a C (sink) component.

CENT
NAME {modela}
DESC{"Component Model A'}
MTYPES { MESSTYPE { PACKET {message a, message_b }}
CONTAINS{a,bbx2:bbxl,bbx2:bbx2,bbx2:bbx3,C}
INTLINKAGE

INTL 	{a{OUT},bbx2:bbxl{IN}}
INTL 	{bbx2:bbxl{OUT},bbx2:bbx2{IN}}

295

INTL {bbx2:bbx2{0iJT},bbx2:bbX3{IN}}
INTL {bbx2:bbx3{OUT},c{IN}}

EDL{

B.9 Output from Textual Description Pane in LibTool's Interface

Viewer

Structure : ATOMIC

Message Types:
<memaccess>
<memresult>

Input Ports:
<REQIN : memaccess>

Output Ports:
<RESULTOUT : memresult>

Entity Description

BEHAVIOURAL SUMMARY.
This entity represents a dinerolli trace complient address space (223 bytes)
to which memory requests from a memaccess link are presented.

The entity simply models read and write cycle delays and is not
concerned with keeping memory content state information.

The memory's only output port (bound to a link of type memresult) responds to
read requests by returning a 'return address' message, or to a write by a simple
acknowledgement packet.

PARAMETERS
din _action _type
simple_memory_read_delay
simple_memory_write_delay
access—count
read count
write—count
read_percent
write_percent

records last action taken.
read cycle delay
write cycle delay
total number of memory accesses
number of reads
number of writes
percentage of total accesses (reads)
percentage of total accesses (writes)

SECONDARY DATA BINDINGS:
The memaccess and memresult secondary data bindings are passive in this entity.

296

Appendix C

RS232/v24 MEDL Library

C.1 Complete MEDL Description

LIB demo "rs232"

ENT
NANE{abstractcaller}
DESC{"Composite (abstract) caller encompassing PC and MODEM"}
MTYPES

MESSTYPE{connection{setup,setup_ack,data,data_ack,clear,Clear_ack}}

INPUT
PORT { FROM PSTN, connection)

OUTPUT
PORT {TO PSTN, connection)

EDL
EDLCODE(PARAMLIB,"ENUM (tcomms phase , [SETUP: , DATA: , CLEAR:
EDLCODE{PARANLIB,"ENUM (t_ initiate _call, [YES: , NO:));")
EDLCODE{PARAMS,"RENUM (tcomms phase , comms phase , 2);"}
EDLCODE{PARAMS, "RENUM (tinitiatecall, initiate—call, 1);")

ENT {
NAME {pc)
DESC{" (abstract) PC entity")
MTYPES

MESSTYPE{rs232{number,dtron,dSr_on,ri_On,rtS_on,cd_On,CtS_Ofl,tXd,rts_off,rXd_On,
cdoff, ctsoff,dtroff,dsroff)}

INPUT{
PORT{FROM MODEM, rs232}

OUTPUT
PORT {TO MODEM, rs232}

EDL
EDLCODE{PARANLIB,"ENUM (tcomms phase , [SETUP: , DATA: , CLEAR:
EDLCODE(PARAMS,"RENUM (tcomins phase , comms phase , 2);")
EDLCODE{PARAMLIB,"ENUM (tinitiate call, [YES: ,
EDLCODE{PARANS, "RENUM (tinitiatecall, initiate —call, 1);")

ENT
NAME { pcdetail

QTJ

DESC{" (detailed) PC entity with individual signal ports")
MTYPES {

MESSTYPE(rs232wire{On, off}}
MESSTYPE{rs232datawire{datatrans, remotenumber) }

INPUT{
PORT{RXD, rs232datawire}
PORT{CTS, rs232wire}
PORT{DSR, rs232wire}
PORT {CD, rs232wire}
PORT{RI, rs232wire}

OUTPUT
PORT {TXD, rs232datawire}
PORT{RTS, rs232wire}
PORT{DTR, rs232wire}

EDL
EDLCODE{PARAMLIB,"ENUM (tcomms phase , [SETUP: , DATA: , CLEAR:
EDLCODE{PARA11S,"RENUM (tcoinmsphase , comms phase , 2);"}
EDLCODE(PARANLIB,"ENUM (tinitiate call, [YES: , NO:]);")
EDLCODE(PARAMS, 'RENUM C t initiate call, initiate _call, 1);")
EDLCODE{PARANLIB,"ENUM (trs232led, [ON:greenled , OFF:redled]);")
EDLCODE{PARANS,"RENUM (trs232led, rxd led, l);"}
EDLCODE{PARAMS,"RENUM (trs232led, cts led, 1);")
EDLCODE{PARANS,"RENUM (trs232led, dsr led, l);"}
EDLCODE{PARAMS,"RENUM (trs232led, cdled, l);"}
EDLCODE{PARA4S,"RENUM (trs232led, txd led, 1);")
EDLCODE{PARAMS,"RENUM (trs232led, rts led, l);"}
EDLCODE{PARAMS,"RENUM (trs232led, dtr_led, 1);")
EDLCODE{PARAMS,'RENUM (t_rs232led, riled, 1);")

ENT {
NAME {modemdetail}
DESC{" (detailed) MODEM entity with individual signal ports")
MTYPES {

MESSTYPE{connection{setup,setUP_aCk,data,data_aCk,clear,cleat_ack}}
MESSTYPE{rs232wire{On, off}}
MESSTYPE{rs232dataWire{datatranS, rernotenuxnber}

INPUT
PORT { FROM PSTN, connection)
PORT {TXD, rs232datawire}
PORT {RTS, rs232wire}
PORT{DTR, rs232wire}

OUTPUT
PORT {TO PSTN, connection}
PORT{RXD, rs232datawire}
PORT{CTS, rs232wire}
PORT{DSR, rs232wire}
PORT {CD, rs232wire}
PORT {RI, rs232wire}

EDL
EDLCODE{PARAMLIB,"ENUM (t_rs232led, [ON:greenled , OFF:redled]);"}
EDLCODE{PARAMS,"RENUM (trs232led, rxd led, l);"}
EDLCODE{PARAMS,"RENUM (t_rs232led, cts led, 1);")
EDLCODE{PARAMS,'RENUM (trs232led, dsr led, 1);")
EDLCODE(PARAMS,"RENUM (trs232led, cdled, 1);")
EDLCODE(PARAMS,"RENUM (trs232led, txd led, 1);")
EDLCODE{PARANS,"RENUM (t_rs232led, rts_led, 1);")
EDLCODE{PARAMS,'RENUM C trs232led, dtr led, l);"}
EDLCODE(PARAMS,"RENUM C trs232led, riled, 1);")

298

ENT
NAME (modem)
DESC{" (abstract) MODEM entity"}
MTYPES

MESSTYPE{connection{ setup, setup ack, data, data_ack, clear, clear ack}

MESSTYPE{rs232{nujnber,dtrOrl,dsrOfl,ri_Ofl,rtS_On,cd_Ofl,cts_Ofl,tXd,rtS_Off,rXd_On,
cdoff, cts_off, dtr off, dsr_off}

INPUT{
PORT{FROMPSTN, connection)
PORT{FROMPC, rs232}

OUTPUT
PORT {TO PSTN, connection}
PORT{TOPC, rs232}

EDL

ENT
NAME {pstn}
DESC{" (abstract) Representation of switched network")
MTYPES

MESSTYPE{connection{ setup, setup_ack, data, data_ack, clear, clear ack}

INPUT
PORT { FROM CALLERA, connection)
PORT { FROM CALLERB, connection)

OUT PUT{
PORT{TOCALLERA, connection}
PORT { TO CALLERB, connection)

EDL

CENT(
NAME{caller}
DESC{" (medium detail) PC and MODEM composite entity"}
MTYPES {

MESSTYPE{connection{setup, setup ack, data, data ack,.clear, clear_ack}

MESSTYPE{rs232(number,dtrOn,dsron,riOfl,rtson,Cd_Ofl,CtS_Ofl,tXd,rtS_Off,rXd_Ofl,
cdoff, cts off, dtr_off, dsr_off}

CONTAINS {pc, modem}
INTLINKAGE

INTL {pc{TO MODEM} ,modem{ FROM PC}
INTL {modem{TOPC),pc{FROMMODEM}}

EDL
EDLCODE{PARAMLIB,"ENUM (tcomms phase , [SETUP: , DATA: , CLEAR:
EDLCODE{PARAMLIB,"ENUM (tinitiate call, [YES: , NO:]);"}
EDLCODE{PARAMS,"RENUM (tcomms_phase , comos phase , 2);"}
EDLCODE(PARP4S,"RENUM (tinitiate call, initiatecall, U;"}

CENT{
NANE{callerdetail}
DESC{"(detailed) PC and MODEM composite entity"}
MTYPES {

MESSTYPE{connection{ setup, setup ack, data, data ack, clear, clear ack}
MESSTYPE{rs232wire{on, off})

299

MESSTYPE{rs232datawire{datatraflS, remotenumber}

CONTAINS {pcdetail, moderndetail
INTLINKAGE

INTL {pcdetail{TXD},modemdetail{TXD}}
INTL {pcdetail{RTS},modemdetail{RTS}}

INTL {pcdetail{DTR},mOdemdetail{DTR}}
INTL {pcdetail{RI} ,modemdetail{RI}
INTL {pcdetail{CD} ,modemdetail{CD}}

INTL {modemdetail{RXD},pCdetail{RXD}}
INTL {modemdetail{CTS} ,pcdetail{CTS}}
INTL {modemdetail{DSR} ,pcdetail{DSR}}

EDL
EDLCODE(PARANLIB,"ENUM (tcomms phase , [SETUP: , DATA: , CLEAR:]);"}
EDLCODE(PARANLIB,"ENUM (tinitiate call, (YES: ,
EDLCODE{PARANS,"RENUM (tcomms_phase , cornms phase , 2);"}
EDLCODE{PARAI4S,'RENUM (tinitiatecall, initiate call, 1);"}

CENT
NAME {modell}
DESC{"Modell: 2 abstract callers and a data network'}
MTYPES {

MESSTYPE{connection{ setup, setup_ack, data, data_ack, clear, clear ack}

CONTAINS {abstractcaller : callera, abstractcaller: callerb, pstn}
INTLINKAGE{

INTL {abstractcaller:callera{TO_PSTN},pstfl{FROM_CALLERA}}
INTL {abstractcaller:callerb{TOPSTN},pstfl{FROM_CALLERB}}
INTL {pstn{TOCALLERA} , abstractcaller: callera{ FROM PSTN}
INTL {pstn{TOCALLERB} , abstractcaller: callerb{FROM_PSTN}}

EDL

CENT{
NAME {model2
DESC{"Model2: 2 pcs , 2 modems and a data network"}
MTYPES {

MESSTYPE{connection { setup, setup_ack, data, data ack, clear, clear ack}

ME5STYPE{rs232{nurnber,dtrOn,dsrOfl,ri_On,rts_On,Cd_Ofl,Cts_On,tXd,rts_Off,rXd_On,
cdoff, cts off, dtr off, dsr_off}}

CONTAINS{pc :pca, pc:pcb,modem:modema,modem:mOdeTflb, pstn}
INTLINKAGE

INTL {pc :pca{TO MODEM} , modem:modema{FROM_PC}
INTL {pc :pcb{TO MODEM} , modem:modemb{FROM_PC}

INTL {modern:modema{TOPSTN} , pstn{FROM CALLERA}
INTL {modem:modemb{TO__PSTN} , pstn{ FROM CALLERB}
INTL {pstn{TOCALLERA} ,modem:modema{FROMPSTN}}
INTL {pstn{TOCALLERB} ,modem:modemb{ FROM PSTN}
INTL {modem:modema{TO PC} , pc:pca{FROM_MODEM}
INTL {modem:modemb{TO_PC} , pc :pcb{FROMMODEM}

EDL

CENT
NAME {model3
DESC{"Model3: 2 Detailed pcs, two detailed modems and a data network")
MTYPES {

MESSTYPE{connection{setup,setupack,data,dataack,Clear,Clear_ack}}
MESSTYPE{rs232wire{on, off})

300

MESSTYPE{rs232datawire{datatraflS, remotenurnber}}

CONTAINS{pcdetail :pca,pcdetail :pcb,modemdetail :modeina,modemdetail :modemb,pstn}
INTLINKAGE {

INTL {pcdetail :pca{TXD} ,modemdetail :modema{TXD}}
INTL {pcdetail :pca{RTS} ,modemdetail :modema{RTS}}
INTL {pcdetail :pca{DTR} ,modemdetail :modema{DTR}}
INTL {pcdetail :pca{RI},modemdetail :modema{RI}}
INTL {pcdetail :pca{CD} ,modemdetail :modema{CD}}

INTL {modemdetail:modema{RXD},pCdetail:pca{RXD}}
INTL {modemdetail:modema{CTS}, pcdetail :pca{CTS}}
INTL {modemdetail :modema{DSR} , pcdetail :pca{DSR}}

INTL {modemdetail:modema{TOPSTN}, pstn{FROMCALLERA}}
INTL {pstn{TO_CALLERA} ,modemdetail :modema{FROM_PSTN}

INTL {pcdetail:pcb{TXD},modemdetail:mOdeltlb{TXD}}
INTL {pcdetail:pcb{RTS},modemdetail:mOdemb{RTS}}
INTL {pcdetail :pcb{DTR} ,modemdetail :modemb{DTR}}
INTL {pcdetail:pcb{RI},modemdetail:mOdemb{RI}}

INTL {modemdetail:modeinb{RXD},pCdetailPCb{RXD}}
INTL {modemdetail:modemb{CTS},pcdetail:pCb{CTS}}
INTL {modemdetail:rnodern]D{DSR},pCdetail:pCb{DSR}}
INTL {modemdetail:mOdemb{CD},pCdetailpCb{CD}}

INTL {rnodemdetail :modernb{TO PSTN} , pstn{FROM_CALLERB}}
INTL {pstn{TOCALLERB},mOdeflldetail :modenth{FROMPSTN}}

EDL {

CENT
NAME {model4}
DESC{"Model4: 2 abstract caller entities and a data network"}
MTYPES {

MESSTYPE{connection{ setup, setup_ack, data, data_ack, clear, clear ack}

MESSTYPE{rs232{number,dtrorl,dSr_Ofl,ri_Ofl,rtS_Orl,cd_Ofl,ctS_Ofl,tXd,rts_Off,rXd_On,
cdoff, cts_off, dtr off, dsroff}}

CONTAINS {caller : callera, caller: callerb, pstn}
INTLINKAGE{

INTL {caller:callera{TO_PSTN} , pstn{ FROM CALLERA)
INTL {caller:callerb{TO_PSTN} , pstn{FROMCALLERB}}
INTL {pstn{TOCALLERA}, caller:callera{FROM_PSTN}}
INTL {pstn{TOCALLERB}, caller:callerb{FROMPSTN}}

EDL{

CENT{
NAME {model5}
DESC{'Model5: 2 detailed callers and a data network"}
MTYPES {

MESSTYPE{connection{setup,setUp_ack,data,data_ack,clear,clear_ack}}
MESSTYPE{rs232wire{On, off})
MESSTYPE{rs232datawire{datatrafls, remotenuxnber}

CONTAINS{callerdetail : callera, callerdetail : callerb, pstn}
INTLINKAGE{

INTL {callerdetail:callera{TOPSTN},pstfl{FROM_CALLERA}}
INTL {callerdetail:callerb{TOPSTN},pstfl{FROM_CALLERB}}
INTL {pstn{TOCALLERA},callerdetail:callera{FROMPSTN}}
INTL {pstn{TOCALLERB} , callerdetail :callerb{FROM_PSTN}}

EDL {

301

CENT{
NAME {model6}
DESC{"Model6: 1 abstract callers, 1 detailed caller and a data network"}
MTYPES {

MESSTYPE{connection{setup,setup_ack,data,data_ack,Clear,clear_ack}}

MESSTYPE{rs232wire (on, off}}
MESSTYPE{rs232datawire{datatrafls, remotenunther}

r4ESSTYPE{rs232{nunlber,dtron,dsr_on,ri_Ofl,rts_Ofl,cd_On,ctS_Ofl,tXd,rts_Off,rXd_Ofl,
cdoff, cts_off, dtr_off, dsr_off}}

CONTAINS {callerdetail, caller, pstn}
INTLINKAGE{

INTL {callerdetail{TOPSTN} ,pstn{FROMCALLERA}}
INTL {caller{TOPSTN} ,pstn{FROMCALLERB}}
INTL {pstn{TOCALLERA} , callerdetail{FROM_PSTN}}
INTL {pstn{TOCALLERB} , caller{FROM_PSTN}

EDL {

302

C.2 Model Structure Diagrams for R5232/v24 Experiment Models

C.2.1 Model 1

TOPSTN FROM CALLERA
(connection) (connection)

abstractcaller(a)

EFZ FROM_PSTh TO_CALLERA
(connection) (connection) o

pstn
TO_PSTh FROM_CALLERB CD

(connection) (connection)

abstractcaller(b)

-U
FROM_PSTN 	 TO_CALLERB

(connection) 	 (connection)

Output ft 	input

fIX]

C.2.2 Model 2

TO—MODEM FROM—PC 	 TO_PSTN FROM_CAI.LERA

(r1232) (r232) 	 (connection) (connection)

pc(a) modem(a)

FROM_MODEM TO—PC 	 FROM_PSTN TOCALLERA

(rs232) rs232) 	 (Connection) (connection)

TO_MODEM FROM PC 	 TO_PSTN FROM_CALLERB

(rs232) (r8232) 	 (connection) (connection)

pc(b) modem(b)

-a
FROM—MODEM TO_PC 	 FROM_PSTN TO_CALLERB

I (connection) (connection)

output input

0
pstn

CD

304

C.2.3 Model 3

TO_PSTN
(connection)

pc(a) modem(a) FROM

IXO IXO
(r232datawre) P 	(,232dataw,re)

RXD
(,232datar 	4 (rs232da4awre)

(rS232e (rs232wire)

CTS CTS
(m232wre 	4 (r232w1e)

(t8232w1le) 	4 (rs22wre)

CD CD
m232 	 4 s232we)

DTR DTR
(r232re) (rs2324re)

RI RI
- 	(rs232rne) (15232w1re) 	4 rn_GRA

(connection)

FROM PSTN
TOPSTN (connection)
(connection)

IXO TXD FROM CAI.LERB

________________________ (rn22daIanrn) _ - 	(rs232dataWre) (coflfleCtOn)

Rxo RXO
(rs232datanne) 	4 32da wire)

(m23 -
CTS CTS

(rs232wtre) 	4 (3m)

DSR DSR
(rs232nere) 	4 (rS232wue)

CO CD
(is232wlre) 	4 (rs232wire)

RI
(rs232rere) 	4

(rs232wire)

pc(b) modem(b) TcCALRB)

FROM_PSTN
(connection)

• output 	 input

pstn
0.
0-
CD:
()

305

0.

(Dl
pstn

C.2.4 Model 4

	

TO_MODEM 	 FROM PC 	 TOPSTN 	 FROM CALLERA

	

(rn232) 	 (rs232) 	 (connection) 	 (Connection)

a—,
pc(a) 	caller(a) 	modem(a)

FROM—MODEM TO—PC, FROM_PSTN TO_CALLERA

(0232) (o232) (connection) (connection)

TO_MODEM FROM—PC TO_PSTN FROM_CALLERB

(0232) (0232) (connection) (connection)

pc(b) caller(b) 	modem(b)
a--,

FROM—MODEM TO—PC FROM_PSTN TO_CALLERS

(rn232) (rs232) (connection) (connection)

a Output input free
port

306

C.2.5 Model 5

	

TXO 	 TxD

	

(rs232dtB) 	 r232datae)

RXD - 	RXD
(ri232dawe) 4 	 (rs232d.e) FROM CAU.ERA

RTS RTS (coinen)
(R232*ue) —+ 	(r232e)

CTS CTS
(rs232wue) 4 	 (r232-

O$R OSR
(rQ32w.o) 4 	 (rs232ww

co CD -
DTR 0Th

R11 RI
(s232wire) 4 	 (r232-re)

pc(b) callerdetail(a) 	modem(b)
pstn

FROM_PSTN TO_CALLERA CD
(connection) (connecon) Cn

TOPSTN FROM CALLER8
(connection) (conne,on)

callerdetail(b)

FROM_PSTN TOCALLERB
(connection) (connection) • output input free

port

KIIA

3 	(is- >X

S 	(A-SB

0 	A- >D d.)
9

	
A- >S

10 	(A- >D
LI. 	(B->X

13 	(A->B dtrk)
14 	(B->X

17 	(A->b clear)

U 	(B->X • (A->B

1

4

10
11
it
12
14
15
16
17
U

Ti"

0 	(A-sB
4

	
(A

-
 >B •nt.,p_k)

O 	IA->X

7 	(A-sE data)
S 	(A-)-B dt_nIn3 	(A-OX 	data)
9 	(A-OX

U 	(A->B

14 	(A->B

17 	(A->B 	in.r)

19 	(A->B 	1nr) 	(>3clear)

1

4

10
11
13
12
14
15
10
17
19

Tine

C.3 Corn mTrace Protocol Figures

C.3.1 Mode14 with two communicating caller entities

InterfaceCo*unications Analysis.
Left: layout_iaodel4. cailera_inst
Right: layout_ao4a14 - pstn_inzt

Interface Communications Analysis -

Left: 1ayout_ode34 pstn_lnst
Right: layout_model4. ca11er_inst

1

4

10
U
10
13
14
15
16
1?

Tine

308

C.3.2 ModeI4 communicating parties based on PC and MODEM entities

Interface Communications Analysis.
Left: 	1yt_mode14.ea1iera_inStpC_1rSt
Right: iayout_aodel4. call.ra_ist.od._inSt

• ____________ 0 (A- 5 dtc)

$ (A-73 cdi)

• 0 __________ 3 (A-s-S
(A-)-B cd_off)

>_
(A)5 rt,_) 	(3-)-X data)

(A->B ted)(B->X
14

16
17 17 - (A s-B rt - if) 	(B s-X 0 	 - c S 	r)
i_s 13 (,%- >B ct_off)

19 (A->B cd_off)
50 (7->3 ftc_off)
51 (js- d_eff) ,c

Interface Communications Analysis
Left: 1ayout_modei4.cai1era_iflttmaea_iflSt
Right: iayout_model4 - p sin_inst

II 	Ii
1 1. (A-s-X

04:

7 (A-)-B ctp)
S (B- >X sct.sp)

S (A- >B ctp_th) 	(A-A 	cd_ce)

(A-s-B d..t) 	(A->X 	rod_ce)
g 	- 	o S (A-s-B t_oc1c) 	(A-s-X 	cd-off)
10 10 (A- >B data)
11 -. 	1.1 (B->X dots)
it ' 	U (A->X ct_ce)
13 __________ 13 >B data_ck)
IE _ 	14 >X d4t_ock)
is
16
17 . 17 (A- >S ciror)
1$ - 1$ (A-)-X ct,oif)

01 19 (B->X c1cr) 	(A->B 	c1ex) 	(A->X 	cd_off)
to

04:
ii. (A->X thr off)

Tier

Interface Communications Analysis.
Left: 1ayout_model4. pstcinst
Right: iayout_model4 call.rb_inst modem_inst

1 (B-)-X

7 (A- >B srt,p((B->X 	ri_ce)

k 4 (A
-
 >B - ,rtp_ck)

04:
 (A- >X srtup_.th(

6 6 (B-s-I ctc_ce)

k 7 (A- >B
$ I (A- >X dt) 	(A->B

I (B->X cts_off) 	(A->X 	dat4_.ck(

1_1_ 3_i (h- >B data) 	(B-)-X 	cd_ce)
it

° Bs-I 	ndce) II ::

>B

- : ::::::
10 1$ >X ct,_off)
19 19 (A->B c1—) 	(A-A 	ciror) 	(B-s-X 	cd_oit)
to

Si. (B->X 4cr_off)

309

IA->b
I 	(A-s-B

S 	(A-s-B
4

	

(A- >B
ri_es)
rt,_Ca) 	(A->X

7 	(A-s-B ted) 	(A->X 	Set..)
8 	(A->B ms-off) 	(A-OX -

S 	(A-s-B r,_oif)

U 	(A-OS 	eden)

14 	(A-S-B 	rod en)

17 	(A—B 	etc_off) 	(A-OX 	eSter)
1$ 	(A->B 	etc_off)
19 	(A-s-B 	ed_off)
50 	(A-OS 	dtr_off)
Si. 	(A- >B 	dcr_oif)

1

4

i-s
U
it
13
14
is
10
17
is
19
00

Ti..

Interface Couiications Analysis.
Left: layout oe14. ca11er8_ist.mode_isst
Right: J.ayout_aodel4. cal.L.rb_iust.pc_inst

0

i-s
U
13
13
14
15
10
1?
i-s
19
20

Ti—

I—,

S

S

a
C?

Cs
B
I-
I—
S
•1

p a

C?

B
C?

I

Sn
C?

310

Appendix D - The Memory Hierarchy MEDL Library

D.1 MEDL Library Description

1* Library for DASHNODE_like demo *1

LIB demo "Small Processing Node Library"

1* din td processor /

ENT{
NANE{dintdprocessor}

DESC{"A Dineroill Trace File Complient Processor")

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{"\tThis simple entity reads a Dineroill complient trace file (din

format) \n"}
DETDESC{"\tand issues requests on a memory access port (of type memaccess).\n\n"}
DETDESC{"\tThe processor entity")
DETDESC{"\tmOdels a cycle delay through the tdprocessor_delay parameter.\n"}
DETDESC{"\tAfter holding for the cycle delay and issuing a memory request\n"}
DETDESC{'\tthe processor waits for a result on the MEMRESULTIN port.\n\n"}
DETDESC{"\tRather than use a standard HASE array to hold the input trace\n"}
DETDESC{"\tthe dinero data is read in at run time from a file. This is done\n"}
DETDESC{"\tin order to overcome the large amount of preallocated memory that

would\n"
DETDESC{"\totherwise be needed for a large trace input\n\n"}

DETDESC{"\tPARAMETERS\n "}
DETDESC{"\ttraces 	 : indicates the number of trace lines to be

read. \n"
DETDESC{\ttd_processor_delaY : delay parameter for a processor cycle.\n"}
DETDESC{"\tcurrent_lifle 	 : Counter for the current trace file line being

read. \n\n"}

DETDESC{"\tSECONDARY DATA BINDINGS: \n"}
DETDESC{"\tThe din_td_processor entity issues memresult requests including\n"}
DETDESC{"\ta detailed specification of a memory address (in this case of\n"}
DETDESC{"\ttype nemaddress_din\n\n"}

DETDESC("\tln the case of a write the value to write is arbitary (from an mt
counter) \n\n"

DETDESC('\tln terms of input related secondary bindings the trace driven
processor\n")

DETDESC{"\tsets passive the byte—value data item.\n\n"}

NTYPES
MESSTYPE{memaccess (read_address, write address)
MESSTYPE{memresult{return address, ack write})

311

INPUT
PORT {MEMRESULTIN, memresult}

OUTPUT
PORT (MEMREQOUT, memaccess

EDL
7* Enumeration of input trace lookup tables */
EDLCODE{PARA1LIB, "ENUM 	(t_input_trace 	, 	(wordfreq:, 	queens:, 	matmult:,

fragtest:)) ;

/* Define the trace line structure (address,r/w) *7

EDLCODE{PARANLIB,"STRUCT C t_trace_line , [RINT (label,0), RSTRING (address,
\"NOP\")]) ;")

7* Enumeration of din issue types *7

EDLCODE{PARAMLIB, "ENUM 	 (t_din_issue_type
(read:,write:,fetch:,UflkfloWn:,cacheflUsh)),"}

/* Enumeration of input trace lookup tables */
EDLCODE{PARAMLIB,'ENUM (t—traces—to—run , (tarb:, t25k:, tl000k:, t3700k:,

t2800k:, t4000k:));"}

7* Parameter indicating the (default) number of trace lines to be read */
EDLCODE{PARANS,"RINT (traces , 250);"}

7* Define the delay parameter for a processor cycle */
EDLCODE{PAPAMS,"RINT (tdprocessor_delay , 5);"}

7* Counter for the current trace file line being read -- defined here for use
as an on screen parameter /

EDLCODE{PARAMS,RINT C current—line ,

/ trace input to use I

EDLCODE{PARANS,"RENUM (t_input_trace , input_trace , 0);")

/ no of traces paran *1
EDLCODE{PARAMS,"RENUM (ttraces to run , traces_to_run , 0);")

/* Counter for the current trace file line being read -- defined here for use
as an on screen parameter *1

EDLCODE{PARAMS,"RENUM (t_din_issue_type , din_issue_type , 0);")

/* Default bus width (in words) between processor and external device (cache,

memory etc.) *7

EDLCODE{PARAMS,"RINT (default—bus—width , l);")

PASSIVE

/* din memory /

ENT {
NAME{dinnemory}
DESC("Diaerolll complient (Abstract) main memory "}

DETDESC('\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{'\tThis entity represents a dinerolil trace complient address space (223

tes)\n"}

312

DETDESC{"\tto which memory requests from a memaccess link are presented.\n\n"}
DETDESC{\tThe entity simply models read and write cycle delays and is not\n"}
DETDESC{"\tconcerned with keeping memory content state information.\n\n"}
DETDESC{"\tThe memory's only output port (bound to a link of type memresult)

responds to\n"
DETDESC{"\tread requests by returning a return address' message, or to a write

by a simple\n"
DETDESC{\tacknowledgement packet.\n\n"}

DETDESC{"\tPARANETERS\n"}
DETDESC { "\tdin_action_type
DETDESC{"\tsimple memory_read_delay
DETDESC { '\tsimple_memory_write_delay
DETDESC { "\tacces s_count
DETDESC { "\tread count
DETDESC{ "\twrite count
DETDESC { '\tread percent
DETDESC { '\twrite_percent

(writes)\n\fl'}

records last action taken.\n"}
read cycle delay\n"
write cycle delay\n"}
total number of memory accesses\n"
number of reads\n"
number of writes\n")
percentage of total accesses (reads)\n"}

percentage of total accesses

DETDESC { "\tSECONDARY DATA BINDINGS: \n"
DETDESC{'\tThe memaccess and memresult secondary data bindings are passive in

this entity.\n"}

MTYPES
NESSTYPE{memaccess { read address, write_address)
MESSTYPE{memresult{retUrfl address, ack write)

INPUT
PORT { REQIN, memaccess

OUTPUT
PORT { RESULTOUT, memresult

EDL
/ Enumeration of din issue types *1
EDLCODE{PARANLIB, "ENUN 	 (t_din_issue_type

(read: ,write:, fetch: ,unknown: , cacheflush:)) ;

/* Current access tpye -- defined here for use as an on screen parameter *1

EDLCODE{PARAMS,"RENUM (t_din_issue_type , din—access—type , 0);"}

/* models read delay */
EDLCODE{PARAMS,'RINT C memory_read_delay , 50);"}

/* models write delay *1
EDLCODE{PARANS,"RINT C memory_write_delay , 50);")

1* Pararnters concerned with collecting read/write statistics */
EDLCODE{PARANS,"RINT (access count , 0);"}
EDLCODE{PARANS,"RINT C read—count , 0);")
EDLCODE{PARANS,'RINT C write _count , 0);"}
EDLCODE{PARJNS,"RFLOAT C read_percent , 0.0 C;')
EDLCODE{PARPNS,"RFLOAT C write_percent , 0.0);"}

PASSIVE{

1* cache_prociface */

ENT {
NAME { cache proci face)
DESC{"Cache processor interface")

313

MTYPES
MESSTYPE{memaccess{read address, write_address)
MESSTYPE{memresult{return address, ackwrite}
MESSTYPE{lookupresult{SUcCeSS, refer,wb)
MESSTYPE{lookup{lu read, lu_write, cache update}

INPUT{
PORT{MEMRESULTIN, memresult}
PORT {MEMREQIN, memaccess}
PORT{FROMSTORE, lookupresult}

OUTPUT
PORT { RESULTOUT, memresult
PORT { REFER, memaccess
PORT {TOSTORE, lookup}

EDL
1* Enumeration of write policies *1

EDLCODE{PARANLIB,"ENUM (t_write_policy , (write —back:, write_through:));")

/ Bus width (in words) between processor and cache interface logic */
EDLCODE{PARAMS,"RINT (hier_high_bus_width , 1);")

1* Bus width (in words) between cache interface logic and cache—memory */
EDLCODE{PARAMS,"RINT (cache—bus—width , 4);")

/* Bus width (in words) between cache interface logic and next lower memory
hierarchy */

EDLCODE{PARAI1S,"RINT (hier low bus width , 4);"}

/* Current access tpye -- defined here for use as an on screen parameter *1

EDLCODE{PARANS,"RENUM (t_din_issue_type , din_access_type ,

/* Model cache access delay in following parameter *1

EDLCODE{PARAMS,'RINT (cache—access—delay ,

/* Model lower mem access delay in following parameter *1

EDLCODE{PARANS, "RINT 	(lower mem access delay , 	1);"}

/* Model higher mem access delay in following parameter *1

EDLCODE{PARAMS,"RINT (higher mem access delay , 	1);")

/* Current access type -- defined here for use as an on screen parameter *1

EDLCODE{PARAMS,"RENUM (twrite policy , 	write_policy , 	0);")

PASSIVE

/* abs_cache /

ENT
NANE { abs_cache
DESC{"Abstract cache using hitrate lookup table"}
MTYPES {

MESSTYPE{memaccess{readaddress,write_addreSS) }

MESSTYPE{memresult{ return address, ack_write)

INPUT
PORT {MEMRESULTIN, memresult
PORT {MEMREQIN, memaccess}

OUTPUT
PORT { RESULTOUT , memresult
PORT{REFER, memaccess

314

EDL {
1* Enumeration of cache sizes /

EDLCODE(PARAMLIB,"ENUM (t_ cache _size , (c2:, c4:, c8:, cl6:, c32:, c64:, c128:,
c256:, c5l2:, cl024:, c2048:, c4096:, c8192:, c16384:));"}

1* Enumeration of input trace lookup tables */
EDLCODE{PARAMLIB,"ENUM (tlookup_table , (luarb:, lu25k:, lul000k:, 1u3700k:,

1u2800k:, t4000k:));'}

/ Enumeration of input trace lookup tables */
EDLCODE{PARAMLIB,"ENUM 	(t_input_trace 	, 	(wordfreq:, 	queens:, 	matmult:,

fragtest:)) ;

1* Enumeration of write policies */
EDLCODE(PARANLIB,"ENUM (t write policy , (write back:, write through:));

/ Run control variable */
EDLCODE{PARAMS,"RINT (run , 1);")

/* Cache size in blocks (lines) */
EDLCODE{PARAS,'RENUM (tcache size , cache—size ,O);"}

1* Lookup up table to use *1

EDLCODE{PARAS,"RENUM (t_lookup_table , lookup table ,O);"}

1* Lookup up table to use /

EDLCODE(PARAMS,"RENUM (tinput trace , input_trace ,O);"}

/* Model cache access delay in following parameter *1
EDLCODE{PARANS, "RINT (cache_access_delay , 1); 11)

/* Model cache lookup delay in following parameter *1

EDLCODE{PARANS,'RINT (lookup delay , 5);"}

/* Model lower mem access delay in following parameter *1
EDLCODE(PARA4S,"RINT (lower mem access delay , 1);")

/* Model higher mem access delay in following parameter *1

EDLCODE{PARANS,"RINT (higher mem access delay ,

1* Bus width (in words) between cache interface logic and cache —memory *1

EDLCODE{PARANS,"RINT (cache—bus—width , 4); 11 }

/* Cache size in blocks (lines) *1
EDLCODE(PARANS,"RHINT (main_memory_size , FFFFFFFF);"}

/* Current access type -- defined here for use as an on screen parameter *1
EDLCODE{PARAMS,"RENUM (t_din_issue_type , din_access_type , O);"}

/* Current access type -- defined here for use as an on screen parameter *1
EDLCODE{PARANS,'RENUM (t_write_policy , write_policy ,

1* Hit / Miss Indicator for last access*/
EDLCODE(PARAMS,"RSTRING (hit—status , \"MISSV');")

/ Paramters concerned with collecting hit rate statistics /

EDLCODE{PARAMS,"RINT (access count , 0);"}
EDLCODE{PARANS,"RINT (hit—count , 0);"}
EDLCODE{PARAMS,"RFLOAT (hit_percent , 0.0);"}

PASSIVE
SET {memaccess , memaddress din)
SET {memresult , memaddress din)

/

* fa cache *

ENT
NAME { fa_cache
DESC{"Fully associative cache memory module"}
MTYPES {

MESSTYPE{lookupresult{SucceSS, refer,wb}}
MESSTYPE { lookup { luread, lu_write,cache_update }

INPUT
PORT(STOREIN, lookup)

OUTPUT
PORT{STOREOUT, lookupresult}

EDL{
1* FA-Cache line structure /

EDLCOD{PARAMLIB,"STRUCT (t_fa_ cache _line , [RINT (valid,O), RHINT (addrl,O),
RHINT (addr2,O),RHINT (addr3,O),RHINT (addr4,O), RINT (mod,O)fl;"}

/* Cache memory array (type definition) */
EDLCODE(PARANLIB, "ARRAY 	(tfacachemem_contents, 	VAR_cache_size,

tfa_cache_line) ;

1* Enumeration of write policies *1

EDLCODE{PARAMLIB,"ENUM (t write policy , (write —back:, write_through:));

/* Cache size in blocks (lines) */
EDLCODE(PARAMS,"RINT (VAR cache size , 16);

/* Cache memory array (contents) */
EDLCODE{PARAMS, "RARRAY (tfacachememcofltefltS, cache mem) ;

/* Model cache lookup delay in following parameter *1

EDLCODE{PARAMS,"RINT (lookup delay , 5);"}

/* Bus width (in words) between cache interface logic and cache—memory /

EDLCODE{PARAMS,"RINT (cache—bus—width , 4);"}

/* Cache size in blocks (lines) */
EDLCODE(PARM4S, "RH_INT (main_memory_size , FFFFFFFF) ;

/* Current access type -- defined here for use as an on screen parameter *1

EDLCODC{PARAMS,'RENUM (t_din_issue_type , din_access_type , 0);")

/* Current access type -- defined here for use as an on screen parameter *1

EDLCODE{PARANS,"RENUM (twrite policy , write_policy , 0);"}

/ Line Accessed Display */
EDLCODE{PARAMS,"RSTRING (line—contents

1* Hit / Miss Indicator for last access*/
EDLCODE{PARANS,"RSTRING (hit—status , \"MISS\");"}

/ Paramters concerned with collecting hit rate statistics *1

EDLCODE{PARANS,"RINT (access _count , 0);"}
EDLCODE{PARAMS,"RINT (hit—count , 0);"}
EDLCODE(PARAMS,"RFLOAT (hit_percent , 0.0);"}

/ run counter /

EDLCODE(PARAMS,"RINT (run

PASSIVE

316

* fa cache_rec *

ENT {
NANE{ facacherec}
DESC{"Fully associative cache memory module which records its results in a trace

file"}
MTYPES

MESSTYPE{lookupresult{success, refer, wb}}
MESSTYPE{lookup{lu read, luwrite, cache update}

INPUT
PORT{STOREIN, lookup}

OUTPUT
PORT { STOREOUT, lookupresult

EDL
1* FA-Cache line structure /

EDLCODE{PARAMLIB,"STRUCT (tfa cache line , (RINT (valid,O), RHINT (addrl,O),
RHINT (addr2,O),RHINT (addr3,O),RHINT (addr4,O), RINT (mod,O)]);"}

/* Cache memory array (type definition) */
EDLCODE{PARANLIB, "ARRAY 	 (tfacachememcontents, 	VAR—cache—size,

tf a_cache_line) ;

/* Enumeration of write policies *1

EDLCODE{PARANLIB,"ENUM (t write policy , (write back:, write_through:));

/* Cache size in blocks (lines) *1

EDLCODE{PARAMS,"RINT (VAR cache size , 16);

/* Cache memory array (contents) */
EDLCODE{PARAMS, "RARRAY (tfacachememcontents, cache mem) ;

/* Model cache lookup delay in following parameter *1

EDLCODE{PARAMS,"RINT (lookup delay , 5);"}

/ Bus width (in words) between cache interface logic and cache_memory */
EDLCODE{PARANS,"RINT (cache—bus—width , 4);"}

/* Cache size in blocks (lines) *1

EDLCODE{PARAMS,"R}{INT (main memory size , FFFFFFFF);"}

/* Current access type -- defined here for use as an on screen parameter *1

EDLCODE{PAPAMS,"RENUM (t_din_issue_type , din_access_type , O);"}

/* Current access type -- defined here for use as an on screen parameter *1

EDLCODE{PARAMS,'RENUM (t write policy , write_policy ,

/ Line Accessed Display */
EDLCODE{PARAMS,"RSTRING (line contents

/* Hit I Miss Indicator for last access*I
EDLCODE(PARAMS,"RSTRING (hit—status , \"MISS\");"}

1* Paramters concerned with collecting hit rate statistics *1

EDLCODE{PARAMS,"RINT (access count , 0);"}
EDLCODE{PARANS,'RINT (hit—count , 0);"}
EDLCODE{PARN4S,"RFLOAT (hit_percent , 0.0);"}

run counter *1

EDLCODE{PARANS,"RINT (run , 1);"}

0

PASSIVE

CENT{
NAME { testmodell
DESC{'test'}

MTYPES
MESSTYPE{memaccess{read address, write address}
ME55TYPE{memresult{ return address, ackwrite}
MESSTYPE{lookupresult{success, refer,wb}}
MESSTYPE{lookup{lu_read, luwrite, cache_update}

CONTAINS{dintd_processor, din memory, cacheprociface, facache}
INTLINKAGE {

INTL {dintdprocessor{MEMREQOUT} ,cache prociface{MEMREQIN}
INTL {cacheprociface{TOSTORE}, fa cache{STOREIN}
INTL {facache{STOREOUT} , cacheprociface{FROMSTORE}}
INTL {cacheprociface{REFER} ,din memory{REQIN}
INTL {dinmemory{RESULTOUT} , cache prociface{MEMRESULTIN}
INTL {cacheprociface{RESULTOUT} , din tdprocessor{MEMRESULTIN}

EDL{

PASSIVE

/ uses recording version of fa_Cache to generate cache activity trace *1

CENT{
NAME { testmodel2
DESC{"test"}

MTYPES {
NE5STYPE {memaccess { read address, write address}
MESSTYPE{memresult{return address, ack_write}
MESSTYPE{lookupresult{success, refer,wb}}
MESSTYPE{lookup{lu_read, luwrite, cache_update} }

CONTAINS {din tdprocessor, din memory, cache prociface, fa_cache_rec}
INTLINKAGE

INTL {dintdprocessor{MEMREQOUT} ,cache prociface{MEMREQIN}}
INTL {cacheprociface{TOSTORE}, fa cache rec{STOREIN}
INTL {fa cache rec{STOREOUT} , cache prociface{FROMSTORE}
INTL {cacheprociface{REFER} ,din memory{REQIN}
INTL {din memory{RESULTOUT} ,cache prociface{MEMRESULTIN}
INTL {cacheprociface{RESULTOUT} ,din tdprocessor{MEMRESULTIN}

EDL{

PASSIVE

CENT
NAME{testmodel3}
DESC{"dinero trace driven processor and memory with abstract cache.")

MTYPES
MES5TYPE{memaccess{read address, write address}
MESSTYPE{memresult{return address, ackwrite}

CONTAINS {din tdprocessor, dinmemory, abs_cache}
INTLINKAGE

INTL {dintdprocessor{MEMREQOUT} ,abs_cache {MEMREQIN}}
INTL {abscache{REFER} , din memory{REQIN}
INTL {dinmemory{RESULTOUT} ,abs_cache {MEMRESULTIN}
INTL {abs cache{RESULTOUT} , din tdprocessor{MEMRESULTIN}

318

EDL{

PASSIVE

1* composite cache */

CENT{
NANE{testmodel4}
DESC{" test "}

MTYPES
MESSTYPE(memaccess{read_address, write—address}
MESSTYPE{memresult{return_addresS, ackwrite} }

MESSTYPE{lookupresult{succesS, refer, wb}}
MESSTYPE{lookup{lu read, luwrite, cache_update}

CONTAINS {din td processor, din memory, cache prociface: ifacea, fa—cache: cachea, cache_pro
ciface : ifaceb, fa cache :cacheb}

INTLINKAGE {
INTL {dintdprocessor{MENREQOUT} , cache_prociface :ifacea{MEMREQIN})

INTL {cacheprociface :ifacea{TOSTORE}, fa_cache :cachea{STOREIN}
INTL {fa cache: cachea{STOREOUT} , cache prociface :ifacea{FROMSTORE}
INTL {cacheprociface: ifacea{REFER} , cache_prociface : ifaceb{MEMREQIN}
INTL {cache_prociface :ifaceb{TOSTORE}, facache:cacheb{STOREIN}
INTL {fa cache :cacheb{STOREOUT} , cache prociface :ifaceb{FROMSTORE}
INTL {cache_prociface :ifaceb{REFER} , din memory{REQIN}
INTL {dinmemory{RESULTOUT} , cache prociface :ifaceb{MEMRESULTIN}
INTL {cacheprociface : ifaceb{RESULTOUT} , cache_prociface :ifacea{MEMRESULTIN}
INTL {cacheprociface: ifacea{RESULTOUT}, din tdprocessor{MEMRESULTIN}}

EDL{

PASSIVE

DATAOINDINGS

DATAITEM{
DESC{"Represents a memory address in a 232 address space 8 hex diguts. (dinero

III cornplient"}
DATAPAIR{memaddress_din , baseHINT {8}

BINDINGS{
BIND{memaccess , memaddress_din}
BIND{memresult , memaddressdin}
BIND{lookup , memaddressdin}
BIND{lookupresult , memaddress_din}

319

D.2 Composite Cache Model Topology

composite cache

abstract or detailed cache.

abstract or detailed cache

C, Sr

g

5)

CL

D.3 The Adder Library

LID demo "Adder Library"

/* 8-bit adder driver *1

ENT
WANE { ADD8BITDRV

DESC{'8 Bit adder driver"}

DETDESC (" \tBEHAVIOURAL SUMMARY. \n"
DETDESC{"\tPARANETERS\rI "}
DETDESC { " \tSECONDARY DATA BINDINGS: \n"

MTYPES
MESSTYPE{adderreq{add}
MESSTYPE(adderres{reSult,OVerflOW})

INPUT{
PORT { RESULT, adderres

OUTPUT
PORT {OP1, adderreq}
PORT{0P2, adderreq}

EDL{ /* delay *7

EDLCODE{PARANS,"RINT (delay , 20);"}

/* overflow counter *1

EDLCODE{PARANS,"RINT (ofcount , 0);")

320

1* request counter /
EDLCODE{PARAMS,"RINT (req , O);'}

/* operand 1 initial value */
EDLCODE{PARANS,"RINT (opi , 1);

/* operand 2 initial value */
EDLCODE{PARAMS,"RINT (op2 , 1);")

/* operand 2 step modifier */
EDLCODE{PARANS,'RINT (step , 1);")

PASSIVE

/* 8-bit adder src /

ENT
NAME { ADDSRC8BIT

DESC{"8 Bit adder src"}

DETDESC{"\tBEHAVIOURAL SUMNARY.\n'}
DETDESC { "\tPARAMETERS\n "}
DETDESC { "\tSECONDARY DATA BINDINGS: \n"

MTYPES {
MESSTYPE{signal{low,high)}
MESSTYPE{adderreq{add} }
MESSTYPE{adderres{result,overflOW)}

INPUT{
PORT {RES1IN, signal}
PORT {RES2IN, signal)
PORT {RES3IN, signal)
PORT {RES4IN, signal}
PORT {RES5IN, signal}
PORT {RES6IN, signal}
PORT {RES7IN, signal}
PORT {RES8IN, signal}
PORT {OFLOWIN, signal}
PORT {NUMBER1, adderreq}
PORT { NUMBER2, adderreq}

OUTPUT
PORT {A1OUT, signal}
PORT {A2OUT, signal}
PORT {A3OUT, signal)
PORT {A4OUT, signal)
PORT {A5OUT, signal)
PORT {A6OUT, signal)
PORT {A7OUT, signal)
PORT {A8OUT, signal)
PORT{B1OUT, signal)
PORT{B20UT, signal;
PORT {B3OUT, signal)
PORT {B4OUT, signal)
PORT {B5OUT, signal)
PORT{B60UT, signal)
PORT {B7OUT, signal;

321

PORT {B8OUT, signal}
PORT { FIXEDCARRYOUT, signal
PORT {RESULTOUT, adderres}

EDL
/* delay */
EDLCODE{PARANS,"RINT (delay , 20);"}

/* op1 *1

EDLCODE{PARANS,"RINT (opl , 0);")

/* op2 */

EDLCODE{PARAMS,"RINT (op2 , 0);

/* result */
EDLCODE{PARANS,"RINT (res , 0);"}

/* result bit status /

EDLCODE{PARAIS,"RINT (bi , 2);"}
EDLCODE{PARANS,"RINT (b2 , 2);'}
EDLCODE{PARANS,"RINT (b3 , 2);")
EDLCODE{PARAI'4S,"RINT (b4 , 2);")
EDLCODE{PARPNS,"RINT (b5 , 2);"}
EDLCODE{PARANS,"RINT (b6 , 2);"}
EDLCODE{PARAI'4S,"RINT (b7 , 2);"}
EDLCODE{PARAMS,"RINT (b8 , 2);"}
EDLCODE{PARANS,"RINT C bof , 2);"}

1* operandl bit status /

EDLCODE{PARAI4S,"RINT (olbl 	, 2);"}
EDLCODE(PARANS,"RINT C 	olb2 	, 2);")
EDLCODE{PARANS,"RINT (olb3 	, 2);")
EDLCODE{PARAMS,"RINT (olb4 	, 2);")
EDLCODE{PARANS,"RINT (olb5 	, 2);")
EDLCODE{PARANS,"RINT (olb6 , 	 2);"}
EDLCODE{PARAMS,"RINT (olb7 , 	 2);"}
EDLCODE{PARANS,"RINT (olb8 , 	 2);"}

1* operand2 bit status *1

EDLCODE{PARAMS,"RINT C o2bl , 2);"}
EDLCODE{PARANS,"RINT C o2b2 , 2);")
EDLCODE{PARAMS,"RINT (o2b3 , 2);"}
EDLCODE{PARAMS,"RINT (o2b4 , 2);"}
EDLCODE{PARAMS,"RINT (o2b5 , 2);"}
EDLCODE{PARAI4S,"RINT (o2b6 , 2);"}
EDLCODE{PARAI'4S,"RINT (o2b7 , 2);")
EDLCODE{PARANS,"RINT (o2b8 , 2);'}

PASSIVE

1* 1-bit adder src /

ENT
NANE { ADDSRC

DESC{"l bit adder test src"}

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{"\tPARANETERS\n "}
DETDESC{"\tSECONDARY DATA BINDINGS:\n"}

322

MTYPES {
MESSTYPE{signal{low,high}}

INPUT{

OUTPUT
PORT { AOUT, signal
PORT {BOUT, signal}
PORT { CARRYOUT, signal

EDL(
/* delay */
EDLCODE{PARANS,"RINT (delay , 20);"}

/* delay */
EDLCODE{PARANS,"RINT (sendsleft , 16);"}

PASSIVE

/* half adder src

ENT {
NANE{HADDSRC}

DESC{"half adder test src'}

DETDESC{'\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{"\tPARANETERS\fl "}
DETDESC{"\tSECONDARY DATA BINDINGS:\n"}

MTYPES
MESSTYPE{signal{low,high}}

INPUT

OUTPUT
PORT {AOUT, signal}
PORT {BOUT, signall

EDL
/* delay */
EDLCODE{PARAMS,"RINT (delay , lO);"}

/* delay *1
EDLCODE{PARANS,"RINT (sendsleft , 8);"}

PASSIVE

323

/* half adder sink */

ENT
NA11E{HADDSINK}

DESC{"half adder test sink"}

DETDESC{"\tBEHAVIOURAL SUMNARY.\n"}
DETDESC{"\tPARAMETERS\n "}
DETDESC{'\tSECONDARY DATA BINDINGS:\n"}

MT YPE S
MESSTYPE{signal{low,high}}

INPUT{
PORT{SUMIN, signal}
PORT { CARRYIN, signal

OUTPUT

EDL{
/* delay */
EDLCODE{PARAMS,"RINT (delay ,

/ sum on screen /

EDLCODE{PARANS,"RINT (sumos ,

1* carry on screen *1

EDLCODE{PARM4S,"RINT (carryos ,

PASSIVE

/* 1 BIT ADDER INTERFACE *1

ENT
NANE{ADDINTNORN}

DESC1 11 1 Bit Adder Inputs"}

DETDESC{'\tBEHAVIOURAL SUMMARY. \n"}
DETDESC{"\tPARANETERS\n "}
DETDESC{"\tSECONDARY DATA BINDINGS:\n"}

MTYPES
F4ESSTYPE{signal{low,high}}

INPUT
PORT {ADDINA, signal}
PORT {ADDINB, signal}
PORT {ADDINCARRY, signal

324

OUTPUT
PORT {ADDOUTA, signal)
PORT (ADDOUTB, signal)
PORT {ADDOUTCARRY, signal

EDL{
/* delay *1

EDLCODE{PARANS,"RINT (delay , l);"}

PASSIVE

1* ADDSIGSPLIT *7

ENT
NANE{ADDSIGSPLIT)

DESC{"A SIGNAL Splitter for the input to an add unit")

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{"\tPABANETERS\n "}
DETDESC { "\tSECONDARY DATA BINDINGS: \n"

MTY PS S
MESSTYPE{signal{low,high}}

INPUT
PORT{INA, signal}
PORT{INB, signal}

OUTPUT
PORT {OUT1A, signal)
PORT {OUT1B, signal}
PORT {OUT2A, signal)
PORT{OUT2B, signal}

EDL{
/* delay */
EDLCODE{PARANS,"RINT (delay ,

on screen state /

EDLCODE{PARAMS,"RINT (INASTATE , 2);"}

on screen state /

EDLCODE{PARANS,"RINT (INBSTATE , 2);")

PASSIVE

7* gateAND Gate /

ENT{

01*1

NANE{gateAND}

DESC{"An AND Gate"}

DETDESC{'\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{"\tPARAMETERS\n '}
DETDESC{"\tSECONDARY DATA BINDINGS:\n"}

MTYPES
MESSTYPE{signal{low, high}

INPUT
PORT{INA, signal}
PORT{INB, signal}

OUTPUT
PORT {AANDB, signal}

EDL
on screen state *1

EDLCODE{PARANS,"RINT (INASTATE , 2);"}

1* on screen state / 	-

EDLCODE{PARAMS,"RINT (INBSTATE

I on screen state /
EDLCODE{PARANS,'RINT (OUTPUTSTATE , 2);"}

1* output delays (ps) extracted from spice *1

EDLCODE{PARANS,"RINT (outputrisedelay , 533);"}
EDLCODE{PARAMS,"RINT (outputfalldelay , 923);'}

/ on screen gate delay *1

EDLCODE{PARANS,"RINT (LastGateDelay , -1);"}

PASSIVE

1* gateXOR Gate *1

ENT
NANE{gateXOR}

DESC{"An XOR Gate"}

DETDESC{'\tBEHAVIOURAL SUNMARY.\n"}
DETDESC{"\tPARANETERS\n "}
DETDESC{'\tSECONDARY DATA BINDINGS:\n'}

MTYPES{
MESSTYPE{ signal {low, high}

INPUT
PORT{INA, signal}
PORT{INB, signal}

326

OUTPUT{
PORT {AXORB, signal)

EDL{ / on screen state /
EDLCODE{PARANS,"RINT (INASTATE , 2);")

/ on screen state /
EDLCODE{PARANS,"RINT (INBSTATE , 2);")

/ on screen state *7

EDLCODE{PARAI4S,"RINT (OUTPUTSTATE , 2);")

1* output delays (ps) extracted from spice *7

EDLCODE(PARAMS,"RINT C outputrisedelay , 1539);")
EDLCODE(PARAS4S,"RINT C outputfalldelay , 664);")

1* on screen gate delay */
EDLCODE{PARANS,"RINT (LastGateDelay , -1);")

PASSIVE

/* OR Gate /

ENT
NAME (gateOR)

DESC{"An OR Gate"}

DETDESC{"\tBEHAVIOURAL SUMMARY.\n"}
DETDESC{"\tPARANETERS\n "}
DETDESC{"\tSECONDARY DATA BINDINGS:\n"}

MTYPES {
NESSTYPE{signal{low,high}}

INPUT
PORT{INA, signal}
PORT{INB, signal}

OUTPUT
PORT {AORB, signal}

EDL{ 	
on screen state /

EDLCODE{PARANS,"RINT (INASTATE , 2);")

/ on screen state */
EDLCODE(PARAMS,"RINT C INBSTATE , 2);")

/ on screen state *1
EDLCODE{PARAMS,"RINT (OUTPUTSTATE , 2);"}

1* output delays (ps) extracted from spice *7

EDLCODE{PARANS,"RINT (outputrisedelay , 672);")
EDLCODE{PARANS,"RINT C outputfalldelay , 539);")

327

/* on screen gate delay */
EDLCODE{PARAMS,"RINT (LastGateDelay , -1);")

PASSIVE

CENT
NAME { halfadder
DESC{"A Half Adder")
MTYPES {

MESSTYPE{signal{1OW,high}}

CONTAINS { gateXOR,
gateAND,
ADDSIGSPLIT

INTLINKAGE {
INTL {ADDSIGSPLIT{OUT1A} , gateXOR{INA}}
INTL {ADDSIGSPLIT{OUT1B} , gateXOR{ INB}
INTL {ADDSIGSPLIT{OUT2A} , gateAND{INA}
INTL {ADDSIGSPLIT{OUT2B) ,gateAND{INB}}

EDL{
/ on screen state *1

EDLCODE{PARAMS,"RINT (INASTATE , 2);"}

/ on screen state /

EDLCODE{PARANS,"RINT (INBSTATE , 2);

1* on screen state *1

EDLCODE{PARANS,"RINT (SUMSTATE

on screen state *1

EDLCODE{PARAMS,"RINT (CARRYSTATE

xor output delays (ps) extracted from spice *1

EDLCODE(PARAMS,"RINT (xoroutputrisedelay , 1539);")
EDLCODE{PARANS,"RINT (xoroutputfalldelay , 664);")

/* and output delays (ps) extracted from spice *1

EDLCODE{PARANS,'RINT (andoutputrisedelay , 533);")
EDLCODE{PARAMS,"RINT (andoutputfalldelay , 923);")

PASSIVE

CENT
NAME{modelhalfadder)
DESC("A Half Adder")
MTY PS S

MESSTYPE{signal{low, high})

CONTAINS { half adder,
HADDSINK,
HADDSRC

INTLINKAGE {
INTL {HADDSRC{AOUT) , haifadder{INA})
INTL {HADDSRC{BOUT},halfadder{INB}}
INTL {halfadder{AXORB),HADDSINK{SUMIN})
INTL {halfadder{AANDB},HADDSINK{CARRYIN}}

328

EDL(

PASSIVE

II

CENT
NAME{fulladder}
DESC{"A Full 1-bit Adder"}
MTYPES

MESSTYPE{signal{low, high))

CONTAINS {halfadder : hal,
halfadder:ha2,
gateOR,
ADDINTNORM

INTLINKAGE
INTL {ADDINTNORM{ADDOUTCARRY) , halfadder:ha2{INA}}
INTL {ADDINTNORN{ADDOUTA} , halfadder:hal{INA}}
INTL (ADDINTNORM{ADDOUTB} , halfadder:hal{INB}

INTL {halfadder:hal{AXORB},haltadder:ha2{INB}}
INTL {halfadder : hal {AANDB} , gateOR{INA}
INTL {halfadder:ha2{AANDB},gateOR{INB})

EDL{ / on screen state *1
EDLCODE{PARANS,"RINT (INASTATE

/ on screen state *1

EDLCODE{PARANS,"RINT (INBSTATE , 2);")

/ on screen state /
EDLCODE{PARAMS,"RINT (INCARRYSTATE , 2);")

/ on screen state /
EDLCODE{PARANS,"RINT (OSUNSTATE , 2);"}

/ on screen state /
EDLCODE{PARAMS,"RINT (OCARRYSTATE , 2);")

/* processor cycle delay *1

EDLCODE{PARAMS,"RINT (delay , 2);")

PASSIVE

CENT{
NAME {modelfulladder}
DESC{"l Bit adder with driving source and sink")
MT YPE S

MESSTYPE{signal{low,high)}

CONTAINS{fulladder,
ADDSRC,
HADDSINK

INTLINKAGE{
INTL {ADDSRC{AOUT}, fulladder{ADDINA}
INTL {ADDSRC{BOUT} , fulladder{ADDINB)
INTL {ADDSRC{CARRYOUT}, fulladder{ADDINCARRY}
INTL {fulladder{AXORB},HADDSINK{SUMIN}}
INTL { fulladder{AORB} , HADDSINK{CARRYIN}

329

EDL

PASSIVE

CENT
NAME{ fulladder8bit}
DESC{"l Bit adder with driving source and sink"}
MTYPES {

MESSTYPE{signal{low, high}
MESSTYPE(adderreq{add}
NESSTYPE{adderres{result,OverflOw}}

CONTAINS
fulladder addl,
fulladder add2,
fulladder add3,
fulladder : add4,
fulladder : add5,
fulladder : add.6,
fuiladder : add7,
fulladder : add8,
ADDS RC 8 BIT

INTLINKAGE

/ Bit 1 */
INTL {ADDSRC8BIT{A1OUT}, fuiladder:addl{ADDINA}}
INTL {ADDSRC8BIT{B1OUT}, fulladder:addl{ADDINB}}
INTL {ADDSRC8BIT{FIXEDCARRYOUT}, fulladder:addl{ADDINCARRY}
INTL {fulladder:addl{AXORB},ADDSRC8BIT{RES1IN}}

/ Bit 2 */
INTL {fuiiadder:addl{AORB}, fulladder:add2{ADDINCARRY}}
INTL {ADDSRC8BIT{A20UT}, fulladder:add2{ADDINA}}
INTL {ADDSRC8BIT{B20UT}, fuiladder:add2{ADDINB}}
INTL {fulladder:add2{AXORB},ADDSRC8BIT{RES2IN}}

/* Bit 3 */
INTL {fulladder:add2{AORB}, fulladder:add3{ADDINCARRY}}
INTL {ADDSRC8BIT{A30UT}, fulladder:add3{ADDINA}}
INTL {ADDSRC8BIT{B300T}, fuliadder:add3{ADDINB}}
INTL (fulladder:add3{AXORB},ADDSRC8BIT{RES3IN}}

1* Bit 4 */
INTL {fuiiadder :add3{AORB}, fulladder:add4{ADDINCARRY}}
INTL {ADDSRC8BIT{A400T}, fuiladder:add4 (ADDINA}}
INTL {ADDSRC8BIT{B40UT}, fulladder:add4{ADDINB}}
INTL {fuiladder:add4{AXORB},ADDSRC8BIT{RES4IN}}

1* Bit 5 */
INTL {fulladder:add4{AORB), fulladder:add5{ADDINCARRY}}
INTL {ADDSRC8BIT{A50UT}, fulladder:add5{ADDINA}
INTL {ADDSRC8BIT{B50UT}, fuiladder:add5{ADDINB}}
INTL {fulladder:add5{AXORB} ,ADDSRC8BIT{RES5IN}}

/ Bit 6 */
INTL {fuiladder:add5{AORB}, fuliadder:add6{ADDINCARRY}}
INTL {ADDSRC8BIT{A60UT}, fulladder:add6{ADDINA}
INTL (ADDSRC8BIT{B60UT}, fulladder:add6{ADDINB}}
INTL {fuliadder:add6{AXORB},ADDSRC8BIT{RES6IN}}

1* Bit 7 */
INTL {fulladder:add6{AORB}, fulladder:add7{ADDINCARRY}}
INTL {ADDSRC8BIT{A70UT},fulladder:add7{ADDINA}}

330

INTL {ADDSRC8BIT{B70UT},fulladder:add7{ADDINB}}
INTL (fulladder:add7{AXORB},ADDSRC8BIT{RES7IN}}

1* Bit 8 */
INTL {fulladder:add7{AORB}, fulladder:add8{ADDINCARRY}}
INTL {ADDSRC8BIT{A80UT}, fulladder:add8{ADDINA}}
INTL {ADDSRC8BIT{B80UT}, fuiiadder:add8{ADDINB}}
INTL {fuiiadder:add8{AXORB},ADDSRC8BIT{RES8IN}}
INTL {fuiiadder:add8{AORB},ADDSRC8BIT{OFLOWIN}}

EDL{

PASSIVE

CENT
NAME {modeladder8bit}
DESC{"8 Bit adder with driving source-sink"}
MT Y P C S

MESSTYPE{signal{low,high}}
MESSTYPE{adderreq{add}
MESSTYPE{adderres{resuit,overflow}}

CONTAINS{fuliadder8bit,
ADD8 B I TDRV

INTLINKAGE
INTL (ADD8BITDRV{OP1}, fuliadder8bit{NUMBER1}}
INTL {ADD8BITDRV{0P21, fuiiadder8bit{NUMBER2}}
INTL {fuiladder8bit{RESULTOUT}, ADD8BITDRV{RESULT}

CDL)

PASSIVE

*1

DATABINDINGS

DATAITEM{
DESC{8 bit operand value"}
DATAPAIR{data8bit , baseRANGE {0,255}

DATAI TEM
DESC{"Instruction Set Type A"}
DATAPAIR{inssetA

baseINSTR
INENUM { "ENUM (tlSet, (LOADR, STOR, BNZ, ADD, HALT));"
INSTRUCTS

INSTRUCT { "STRUCT (tLoadStr , [RINT (Reg , 0
RINT (Address , 0) I) ;"

INSTRUCT { "STRUCT (tStorStr , [RINT (Address , 0
,RINT (Reg , 0)]) ; " }

INSTRUCT { "STRUCT (tBnzStr , [RINT (Address , 0

331

INSTRUCT { "STRUCT (tAddStr , (RINT (Regl , 0
,RINT (Reg2 , 0)]);" 	

INSTRUCT { "STRUCT (tHalt , (RINT (dummy , 0) I
);")

INSET { " INSTR (tinssetA , [(LOADR , RSTRUCT C t_LoadStr
LoadStr)), (STOR , RSTRUCT (t_StorStr , StorStr)), (BNZ , RSTRUCT (t_BnzStr
BnzStr)), (ADD , RSTRUCT C t_AddStr , AddStr C), C HALT , RSTRUCT C t_Halt

Halt C C I , tlSet

BINDINGS
BIND{adderreq , data8bit}
BIND{adderres , data8bit}

II

332

