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Abstract

This doctoral thesis addresses one major difficulty in formal proof: removing obstruc-

tions to intuition which hamper the proof endeavour. We investigate this in the context

of formally verifying geometric algorithms using the theorem prover Isabelle, by first

proving the Graham’s Scan algorithm for finding convex hulls, then using the chal-

lenges we encountered as motivations for the design of a general, modular framework

for combining mathematical tools.

We introduce our integration framework — the Prover’s Palette, describing in de-

tail the guiding principles from software engineering and the key differentiator of our

approach — emphasising the role of the user. Two integrations are described, using

the framework to extend Eclipse Proof General so that the computer algebra systems

QEPCAD and Maple are directly available in an Isabelle proof context, capable of run-

ning either fully automated or with user customisation. The versatility of the approach

is illustrated by showing a variety of ways that these tools can be used to streamline the

theorem proving process, enriching the user’s intuition rather than disrupting it. The

usefulness of our approach is then demonstrated through the formal verification of an

algorithm for computing Delaunay triangulations in the Prover’s Palette.
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Chapter 1

Maths through the Looking Glass

Intuition is a fundamental aspect of human knowledge, but its fit and proper role has

long been contentious. On the isles of Ancient Greece, intuitive Platonic ideals did

battle with Aristotelian knowledge acquisition, and the argument raged in the abstract,

through Descartes and Hobbes, to Kant and countless other philosophers. Meanwhile,

farms made food, science made discoveries, and mathematicians made new theories.

The real world was largely unaffected — at least until the 19th Century, when real

analysis and non-Euclidean geometries gave birth to “monsters” which defied intuition.

These monsters in turn bred a new emphasis on rigour, in mathematics initially, but the

impact of the logical frameworks so borne has since left no discipline untouched, and

the Boolean digital world is ineluctable. At the pinnacle of this formal, deductive

methodology stands software capable of verifying any proof possible in logic; but this

software stands unremarked outside a small community, and the place for intuition is

still uncertain.

In this chapter we will establish two humble claims: that intuition is powerful, and

that intuition is fallible; and we will look through these looking glasses to examine the

interplay between intuition and the logic of mathematics.

1.1 All Triangles are Isosceles

Let us begin by considering two proofs, where the juxtaposition will provide some

illustration of how intuition and logic inform our thought processes.

1



Chapter 1. Maths through the Looking Glass 2

THEOREM. For any triangle ABC in Euclidean
space, either AB = AC, AB = BC, or AC = BC. In
other words, the triangle is isosceles.

PROOF. Begin by drawing the bisector of ∠BAC,
and the bisector of BC through midpoint D.
If these two lines are parallel or identical (not
shown) then the angle bisector must meet BC at
a 90◦ angle. Call this intersection D′. Trian-
gles AD′B and AD′C are congruent because the
side AD′ is in common, ∠BAD′ = ∠CAD′ (angle
bisector), and ∠AD′B = ∠AD′C (right angles).
Thus AB = AC.
Otherwise call the intersection of the two bisec-
tors O, and drop perpendiculars from O to E and
F on rays AC and AB respectively.
Triangles AOF and AOE are congruent since
the side AO is common, ∠OAF = ∠OAE, and
∠OFA = ∠OEA. Hence AF = AE and OF =
OE. Triangles OBD and OCD are congruent,
using common side OD, ∠BDO = ∠CDO (right
angles), and BD =CD (midpoint), so OB = OC.
Lastly, triangles OFB and OEC are congruent,
because OF = OE, OB = OC, and ∠OFB =
∠OEC (right angles), implying FB = EC.
For O inside triangle ABC (above left) this gives:

AB = AF +FB = AE +EC = AC
And for O outside the triangle (above right):

AB = AF−BF = AE−CE = AC
In both cases, ABC is isosceles.

THEOREM. For three points x,y,z ∈ Q with
p-adic distance function d, it must be the case
that either d(x,y) = d(x,z), d(x,y) = d(y,z), or
d(x,z) = d(y,z).

PRELIMINARIES. p-adic numbers are a way of
extending the rationals Q by focussing on powers
of a prime p.
For non-zero x in Q, the p-adic valuation vp(x)
is defined as the integer n such that pn · a

b = x
where a and b are in Z and p does not divide
a or b. It is easily shown that vp(xy) = vp(x)+
vp(y) and that vp(−x) = vp(x), and it is not hard
to prove that vp(x+ y)≥min

(
vp(x),vp(y)

)
.

The p-adic absolute value for x ∈ Q is then de-
fined as |x|p = p−vp(x) with |0|p = 0 by conven-
tion. This yields a p-adic distance metric in
the same manner as the usual distance function,
namely d(x,y) = |x− y|p.

PROOF. Without loss of generality we can take
d(x,y) to be the largest distance, that is:

d(x,y)≥max(d(x,z),d(y,z))
If any two points are identical, the theorem is
trivially true. Otherwise, the p-adic valuation is
defined for all differences, and by manipulating
the p-adic valuation additive inequality, we can
write:

vp(x− y) = vp
(
(x− z)+(z− y)

)
≥min

(
vp(x− z),vp(z− y)

)
= min

(
vp(x− z),vp(y− z)

)
Raising p to the power of both sides gives:

pvp(x−y) ≥ pmin
(

vp(x−z),vp(y−z)
)

p−vp(x−y) ≤ p−min
(

vp(x−z),vp(y−z)
)

= max
(

p−vp(x−z), p−vp(y−z)
)

d(x,y) ≤max
(
d(x,z),d(y,z)

)
As we began by choosing d(x,y) to be the largest
of the three distances, we now have d(x,y) =
max

(
d(x,z),d(y,z)

)
.

FIGURE 1.1: Two Proofs of the Assertion that All Triangles Are Isosceles. The left-hand proof is
flawed but hard to correct. The other is correct but hard to understand. The Euclidean proof at left is
based on one by Rouse Ball [12]. The p-adic proof at right is by us after a comment by Gouvêa [68].
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Figure 1.1 shows two “proofs” of the statement that “all triangles are isosceles”.

The result is intuitively absurd, and so we have an immediate suspicion: particularly

in Euclidean space, we expect the reader’s intuition to be so powerful that the proof

will be rejected from the very start — and rightly so. However, examining this proof to

find the error is often quite difficult1: each step seems logically correct, and yet since

we know the conclusion is false, we have been led astray somewhere by relying on

intuition without realising it. This demonstrates well that intuition is fallible.

Turning now to the p-adic proof: few people have the domain experience to make

any substantial use of intuition here. The reader with a working knowledge of analysis

may symbolically confirm the validity of each step, and the ultimate benefit of logic

and rigour is well illustrated, when this reader finishes by confirming the validity of

the statement. Without relying on intuition the reader is not misled, for in p-adic space

it is true that all triangles are isosceles. However, without intuition, the concepts are

unfamiliar or abstract, the steps take more effort to follow, and worst of all the result

may seem quite meaningless.

The following sections will delve more deeply into the ways that intuition is pow-

erful, and then the ways that is is fallible. Subsequently we take a look at how logic

has developed to keep intuition in check. We conclude with a discussion of the nature

of proof: what is the goal, and where do logic and intuition fit in achieving it.

1.2 Intuition is Powerful

We begin with a paean to intuition, the mysterious and powerful force which drives

our discovery of new insights going forward, which underpins our understanding of

the world around us, and which plays such an important part in sharing that knowledge

with others. We will examine these three areas — discovery, understanding, and com-

munication — with special regard for its relevance to mathematics and proof, but let us

first give a definition. There is surprising consensus among dictionaries on this point;

Oxford’s is particularly pleasing: “the ability to understand something immediately,

without the need for conscious reasoning” [139].

1We presented this proof to an audience of 20 postgraduate students of computer science (many of
whom had studied mathematics at undergraduate level), and none could identify the flaw after three
minutes, after which they were put out of their misery. The present reader is not given that luxury here
but will find good exposition in “The Lewis Carroll Picture Book” [32], to which the inspiration for the
chapter title is due. There is also an interesting analysis of this fallacy by Mumma [128].
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1.2.1 Discovery: Spontaneous Intuitions

You enter the first room of the mansion and it’s completely dark. You
stumble around bumping into the furniture but gradually you learn where
each piece of furniture is. Finally, after six months or so, you find the
light switch, you turn it on, and suddenly it’s all illuminated. You can see
exactly where you were. Then you move into the next room . . . [135]

Interviewed on Nova, Andrew Wiles gave the metaphor above to illustrate his experi-

ence researching mathematics. The sudden illumination of the room is analogous to

the “Eureka!” moment familiar to us all, a “sudden spontaneousness” [72] when deep

understanding occurs immediately. Conscious reasoning is bypassed, and precisely

how the moment occurs is hard to predict, but the feeling and impact are tremendous:

these are new insights behind new discoveries. These are “God’s thoughts”, in Ein-

stein’s words, when his idea of relativity was triggered by a streetcar and a clock tower

in Bern, and he described it as “a storm broke loose in my mind” [136].

Much has been written about the process surrounding these insights, from the idea

of “restructuring” in Gestalt theory where “the whole is other than the sum of the

parts” [103] to Edison’s more prosaic formula of “1-percent inspiration and 99-percent

perspiration”. In mathematical cognition, much of the research stems from lectures

by Poincaré [144], including Hadamard’s influential four-phase model for mathemat-

ical invention [72] — preparation, incubation, illumination, and verification. Pólya

includes the tip to have a “bright idea” in his guide How to Solve It [146], although his

advice on how to go about this is a single word: “patience”. It remains a mystery how,

but there is widespread agreement that, firstly, these grand intuitions do happen, and

secondly, they are fostered by familiarity with a subject.

1.2.2 Understanding: Quotidian Intuition

The consensus that discoveries often rely on domain familiarity, brings us to a second

area where intuition plays a major role: in our understanding. Far more frequently

than the spontaneous flashes of insight, our intuition helps us make sense of everyday

situations, in mathematics, in science, and in the world around us. Logical thought

proceeds from it, and is used to evaluate intuitions and thoughts, but the components of

our understanding arrive non-logically, as everyday intuitions. One’s intuition develops

through experiences, drawing on the cultural and scientific heritage, and rendering

once-complex thoughts simple. As Isaac Newton put it, “if I have seen a little further

than others, it is because I have stood on the shoulders of giants”.
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With a good intuition in a domain, we can quickly evaluate the plausibility of an

idea, whether it is the latest political proposal or the proposition that all triangles are

isosceles. This gives the familiarity which permits the first class, grand spontaneous

intuitions, but more frequently it allows us to make sense of what we read and to

develop new intuitions.

A good illustration of this in mathematics is given by Feferman [53]. Our famil-

iarity with the plane gives us intuition for Euclidean geometry; these geometric and

physical intuitions can carry us into the study of analysis in higher dimensional spaces,

and from there on into functional analysis . He enumerates many more such examples,

from topology to set theory, all with the aim of highlighting how the cultivation of

intuition “is essential for motivation of notions and results and to guide one’s concep-

tions via tacit or explicit analogies in the transfer from familiar grounds to unfamiliar

terrain.”

1.2.3 Communication

The final area we will look at where intuition plays a vital role is in communicating

ideas. Analogies contribute immensely to our understanding, and when one wants to

teach or develop another’s intuition, an effective technique is to appeal to the intuition

they already possess.

Take for example the proof we presented earlier, in Figure 1.1, which showed that

all triangles are isosceles in p-adic spaces. It is interesting that most people, even those

with a passing familiarity with the p-adics, find this proof unintuitive. However, if the

presentation were to include the proof of a particular p-adic space, then some people

may find the general result a little easier to grasp. For example, if we consider the set

of triangles whose sides are all integer powers of 2, then one can convince oneself that

these must all be isosceles. In doing so one is developing the intuition which makes

this proof more palatable.

Strikingly, the intuitions used to help people develop the right thought patterns need

not be correct. Primary schools everywhere display flat world maps, though children

are usually familiar with the globe but not with projective geometry and Mercator. So

powerful is intuition, we routinely accept that “the ends justify the means”, routinely

leaning on flawed and inaccurate uses of intuition, in order to develop one’s intuition

in a new domain.
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An important objective of a mathematical proof is to explain a result, to impart the

understanding and develop a learner’s intuition. Diagrams, for example, are often used

to present a result; not only can they cultivate a reader’s intuition, but they can ground

a proof, making it accessible. As Avigad notes, “some arguments can be nearly unin-

telligible until one has drawn a good diagram” [9]: the pictorial proof of Pythagoras’

Theorem is one good example, rendering the sum of squares familiar long before one

has learned about trigonometry.

1.3 Intuition is Fallible

Having established the importance of intuition for understanding, discovering, and

communicating, let us now begin the assassination of its character and make the case

for logic as a remedy: intuition is a deceptive and unreliable fellow. Diagrams are one

example of how he can so cavalierly give us false confidence: it is the diagram for the

Euclidean isosceles “proof” in Figure 1.1 which makes the flaw so hard to spot, and

in fact this example was cited by Klein for precisely this point [100]. To take another

geometric example, reminiscent of the flat world maps in Section 1.2.3, recall the once-

common belief that the Earth was flat. Our day-to-day activities are indeed flat; it was

ancient Greek philosophers — some say Pythagoras himself — who stood watching

ships disappear over the horizon who first raised questions about this intuition, and it

was much, much later that the idea took currency in the West. Or, once one accepts

the roundness of celestial bodies, take the problem of rolling out a ball of yarn along

the Earth’s equator and the Sun’s circumference. If we now move out one foot from

each surface and encircle them again, which ball do we need to add the most yarn

to? For most people, the intuitive answer is, wrongly, the Sun: the linear relationship

between circumference and radius means we add the same to each, 2π feet. Finally,

let us visit another example of Lewis Carroll’s [32]: imagine that a bag contains one

counter, known to be either white or black; an additional white counter is then put in,

the bag shaken, and a counter removed, which proves to be white; what is the chance

that the remaining counter is also white? Most people’s intuition tells them that the

answer is, again wrongly, 1/2, when the laws of probability prove the answer is 2/3.

It may be argued that these problems only fool people unfamiliar with the domain.

Experience in an area gives better intuition: people know about the globe “all around

the world” (and use that very phrase without confusion or contradiction); and within

mathematics, neither of the other two problems would be regarded as surprising. This
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does not, however, imply that experts are immune from the fallible nature of intuition.

Even in mathematics, numerous are the proofs and theories that have been believed for

years with unrecognised gaps or flaws.

1.3.1 Veridical Monsters

Quine distinguishes two types of paradox which occur in mathematics [152]: falsidical

paradoxes where an argument seems to follow logically but the result is clearly false,

such as the Euclidean isosceles proof given earlier; and veridical paradoxes where a

true result appears intuitively false, such as the yarn example and the counter exam-

ple2. The former are easily spotted, by definition, but the latter pose a much greater

challenge.

In the 19th Century, mathematicians started to encounter such pathological veridi-

cal paradoxes that intuition — and even common sense — were utterly confounded,

and mathematics faced a “crisis” [73]. Möbius’s strip teased people’s minds, and

Klein’s bottle made people infinitely drunk. Weierstrass demonstrated a function ev-

erywhere continuous but nowhere differentiable; Peano exposed a curve which could

fill any bounded region to any arbitrary density; and Brouwer produced a map of three

countries such that at every boundary point all three countries touched. As Poincaré

recounts:

Logic sometimes breeds monsters. For half a century there has been
springing up a host of weird functions, which seem to strive to have as
little resemblance as possible to honest functions that are of some use. No
more continuity, or else continuity but no derivatives, etc...3[144]

The parallel postulate leads us to one of the most influential veridical paradoxes.

Since its incarnation in Euclid’s Elements, most mathematicians were not only con-

vinced of its truth, but many also felt that it could be proven from Euclid’s other ax-

ioms. The endeavour to prove the existence of parallel lines lasted for almost two

thousand years, only ending with the serious exploration of “non-Euclidean” geome-

tries, by Gauss, Bolyai and Lobachevsky. Here, the familiar axiom admitting parallel

2Quine calls out a third category of paradoxes, antinomy, or self-contradictory statements, but any
sound mathematical system by its nature avoids these.

3As his use of the word “honest" suggests, Poincaré did not attribute quite so much significance to
these monsters as others did. The quote continues by mocking the crisis in mathematics attributed to
an over-reliance on intuition: “Formerly, when a new function was invented, it was in view of some
practical end. Today they are invented on purpose to show our ancestors’ reasonings at fault, and
we shall never get anything more out of them.” However non-Euclidean geometries, discussed in the
following section, are a rather more “honest” and practical domain, where intuition is exceptionally
difficult.
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lines is changed, and the result is not only logically consistent, it more accurately re-

sembles our universe — at the fringes, as relativity is to Newton’s physics — even if it

is far less intuitive.

1.3.2 Logic and Hilbert’s Program

Staying with Euclid, around 300 BC, we have one of the progenitors of the logical

method: for most of modern history, his work has been regarded as the paragon of

careful mathematical reasoning, but he makes a host of unjustified assumptions [128].

It is these omissions, where our intuition gave us false confidence and led to the “mon-

strous” confusion in the 19th Century; resolving this crisis, around non-Euclidean ge-

ometries in particular, demanded a logical method far stronger than had been thereto-

fore employed.

One such endeavour, commencing in 1872, was the Erlangen program of Klein,

Lie, and others, seeking a unifying group theoretical approach to geometry, based on

infinitesimal rotations and translations of rigid bodies and appealing to our understand-

ing of motion and space. But however attractive it seems, this intuitive appeal is a

shaky foundation; in 1902, Hilbert pointed out conceptual confusion at its core [86],

and promoted the formalist, axiomatic approach of Pasch, himself, and others.

The central tenet here, owing to Pasch, is that deduction should be independent

from the meanings of the non-logical terms involved. No longer would imprecise or

implicit definitions be allowed, and no longer would it be permitted to rely on intuition

in the course of a proof. In 1882, he demonstrated this in a rigorous axiomatisation of

projective geometry [140] now labelled as the “birthplace of modern axiomatics” [49].

Hilbert continued this effort in his seminal Grundlagen der Geometrie [85] of 1899.

This supplied a set of axioms for Euclidean geometry which left nothing to chance or

intuition: points, lines and planes were taken to be three undefined primitives and the

relationships between them were characterised solely by the axioms. These axioms,

for the first time, insisted on making explicit even the most obvious claims, such as

that the geometry is not empty: “for every two points there exists one and only one

line which contains them”, and “there are at least three points not on the same line”.

And following the publication of the Grundlagen and the attack on the Erlangen pro-

gram, Hilbert’s research ambitions grew: he wanted not only a solid and complete

logical foundation for geometry, but for all of mathematics. This began what was
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called metamathematics, and has since become known as Hilbert’s Program, aiming to

show that:

• mathematics follows from a suitable chosen finite system of axioms; and
• some such system of axioms is provably consistent.

1.3.3 Modern Logic and Incompleteness

At roughly the same time as the axiomatic method was being developed, the field of

logic was also advancing. Boole, Pierce, and later Peano made significant progress,

but the maturity of the field really came to bear with the publication of Frege’s epic

Begriffschrift in 1879 [59]. For the first time, a formal system was given in a definitive

form and one could speak precisely about complex proofs and axiomatic systems in an

unambiguous way. He later proceeded to give an axiomatisation of Cantor’s set theory,

intended as a solid foundation for mathematics. However, even with the use of logic,

mistakes crept in. Zermelo, and Russell independently, discovered a paradox in Frege’s

work: he had permitted the existence of the set of all sets. This was repaired and refined

in the axiomatic system of Zermelo-Fraenkel (ZF), the most common underpinning of

mathematics today, but it reveals how major flaws can be overlooked by even the most

scrupulous community of mathematicians and logicians.

The emphasis on rigour and logic led to the creation of metalogic — a means by

which the properties of a logical system could be studied. As a consequence, another

groundbreaking result was uncovered: Gödel’s incompleteness theorem [65]. This

states that under the assumption of the consistency of classical mathematics, there exist

true propositions which are unprovable in the formal system of classical mathematics.

In short, it is impossible to establish a set of axioms encompassing all of mathematics.

With this result, “Gödel showed . . . that the Hilbert Program was doomed” [37], and

he revolutionised the world of mathematics, logic and philosophy. For nearly all math-

ematicians, his findings flew in the face of intuition. For many, it was demoralising,

opening a crisis on the scale of that introduced by the monsters of the previous century.

It was “a constant drain on the enthusiasm and determination with which I pursued my

research work”, according to Weyl [181]. But for others, it magnified the importance

of the logical approach, stressing how vigilant they must be in light of new monsters

whose existence had just been proven: an infinity of theorems which could never be

proven.
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1.4 The Nature of Proof

Hilbert’s program and logic have given an incredibly powerful mechanism to guard

against intuition’s fallibility; but few would be so foolish as to believe intuition is ren-

dered superfluous. Logic did not tell Hilbert, nor Euclid, how to choose their axioms,

and a primary reason the axioms chosen by Euclid and of Hilbert remain in currency

today is their intuitive appeal. As Gödel puts it, the axioms of a system should possess

a feeling of familiarity such that they “force themselves upon us”. This sense of their

obvious correctness signals the fact that our belief in them has been generated by an

intuition of mathematical reality. As Poincaré puts it:

Thus logic and intuition have each their necessary role. Each is indispens-
able. Logic, which alone can give certainty, is the instrument of demon-
stration; intuition is the instrument of invention.

What engenders this intuition that forces an assumption upon us? Beauty, neatness,

utility, elegance — these words have all been put forward as reasons to believe in

something. Consider the Riemann Hypothesis (RH), a conjecture about the distribution

of zeros in the Riemann zeta function. Despite its unproven status, it has been assumed

in many proofs, and a major body of mathematics now relies upon it. It implies, among

other things, that primes are distributed as regularly as possible, a result so profound

the Riemann Hypothesis is now widely believed to be true. Not all mathematicians are

so confident — Littlewood stated outright that he believes it to be false [107] — but the

grand status of RH is reflected in its inclusion in both the Clay Mathematics Institute

“Millennium Prize Problems”, and Hilbert’s list of 23 unsolved problems.

Furthermore, at a 2004 Royal Society meeting devoted to the nature of proof [161],

there was overwhelming consensus that the value of a proof lies in its capacity for

generating new mathematics, and further reinforcing known results. Both Gauss and

Atiyah are famous for proving the same result in multiple different ways, with each

proof giving different insights. Atiyah remarks that “any good theorem should have

several proofs, the more the better” [153]. It was also noted at that meeting that “logical

gaps” could be excused, if they were the scaffolding to support sufficiently interesting

results: in contrast to the full axiomatic proof sought by Pasch and Hilbert, the ideal

held aloft at this meeting is that of a proof which is succinct, beautiful, insightful and

inspiring.

Another undecided problem which has had tremendous impact, and also from

Hilbert’s list, is the Continuum Hypothesis (CH). However, while it is generally ex-
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pected that future mathematicians will resolve RH, the case of CH is closed, for the

moment, with a verdict of “not proven”. In 1940, Gödel showed that it is consistent

with the standard set theory axioms (ZF), but in 1963 Cohen showed that it is in-

dependent of those axioms. Gödel’s incompleteness theorem proved that there were

undecidable statements in mathematics, and here, as if to mock the generations of

mathematicians who had toiled on it, was an illustration of undeniable magnitude.

If mathematics is conceived as a perfect, logical edifice being pieced together from

axioms, Gödel’s result removed a small padstone supporting it. It was generally be-

lieved that his undecidable assertions lay at the fringes of mathematics, and there re-

mained an intuitive faith in the edifice itself. Cohen’s result shattered that faith. A

mathematician never had any guarantee that she would discover the next proof, but she

had worked secure in the belief that there was at least a proof to be found. This security

was now gone. The axiomatic method cannot build mathematics. Until it is firmly put

in place, any girder might prove undecidable; the very nature of proof is called into

question. That question, as posed and answered by Kline, is:

What then is mathematics if it is not a unique, rigorous, logical structure?

It is a series of great intuitions carefully sifted and organised by the logic
men are willing and able to apply at any time [102].

The only answer is that, while logic plays an important role in the sifting and sorting,

it is not fundamentally what mathematics is about. There is a deeper, bigger, messier

truth being sought. Weyl puts it more succinctly:

My work always tried to unite the truth with the beautiful, but when I had
to choose one or the other, I usually chose the beautiful [150].

And so we come back, not to a logical, rigorous housing block, but to Wiles’s mansion.

And though we know from Gödel and Cohen that there may not be a light switch, we

are drawn in by our love of beauty, and our curiosity. We are guided in that dark by

intuition, and when we must we retrace our steps by logic, but we explore in hope that

we find that switch, that next big intuitive leap, by which everything is illuminated.



Chapter 2

Maths through the Liquid Crystal

By the middle of the 20th Century, most mathematicians believed that the crisis sur-

rounding the nature of proof had been settled: although there are undecidable asser-

tions, even important ones, for the realist this detracts neither from the intuitive and

logical value of the mathematics which is discoverable. Within the past thirty years,

however, the power of the computer has opened fresh debates about what constitutes

proof. Controversy centres around the role these machines can and should play in

constructing the mansion of mathematics, reaching a climax with claims that the Four

Colour Theorem [2] and, quite recently, Kepler’s conjecture [75], have been proven

with the aid of a computer.

In this chapter, we will begin by surveying two distinct branches of computer sci-

ence developed to assist with mathematics: symbolic computation and automated rea-

soning. The former has led to computer algebra systems, and the latter to theorem

proving systems. While both of these families of tools can be viewed as software which

helps with formal symbolic manipulations, there is relatively little common ground be-

tween them. For the most part, they attract disparate communities and have achieved

different ends. Several notable achievements for each will be described, along with

an exposition of some of the most significant systems, their strengths and their weak-

nesses. We will then return to the contentious topic of computer-assisted proofs, pon-

dering the question if it strays far away from any human comprehension, what value is

there to mathematics through the liquid crystal?

12
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2.1 Computer Algebra Systems

Computer algebra systems (CAS) were borne out of a desire to automate tedious and

sometimes difficult algebraic manipulation tasks, which are ubiquitous in many scien-

tific and engineering tasks. Due to the appeal of such a tool, it is not surprising that the

first systems in the 1960s evolved out of two different sources; experimental physics

and artificial intelligence1. The physicist and Nobel Prize laureate Martinus Veltman

was a pioneer in the field. In 1963 he developed Schoonschip2, one of the first com-

puter algebra systems capable of performing symbolic manipulation [177]. This was

soon followed by MATHLAB ("mathematical laboratory")3, written in Lisp by Carl

Engelman [50]. This system was motivated by the observation that computers were

being used, at that time, for numerical computations, but were not present “during

the most creative phases of the scientist’s labor”. Engelman wanted to build a sys-

tem that would “provide the scientist with computational aid of a much more intimate

and liberating nature”. MATHLAB was capable of numeric computation as well as a

wide spectrum of symbolic computation, such as differentiation, integration, Laplace

transforms and multiplication of matrices, to name but a few. Engelman produced a

paper describing not only MATHLAB, but also laying out the criteria he believed were

essential for a successful CAS. He did not lay out the range of mathematical opera-

tions which should be available, but instead wanted to capture the spirit and feel these

systems should possess. He wrote:

1. It should be capable of ordinary numerical computation. This implies the ability
to perform arithmetic, to compute functions or to look up their values in tables,
and to draw graphs.

2. It should be capable of a wide spectrum of symbolic computations.
3. The user commands should be simple. MATHLAB is intended for a physicist,

not a programmer. The commands should be no more complicated than the
user’s thoughts. If he wishes to enter an equation into the computer, he should
need only to type the equation in a notation like that of ordinary mathematics.
If he should then wish to differentiate that equation with respect to x, he should
have to give a command no more complicated than "differentiate (x)".

4. It must be expandable by the expert. The language, functions, and subroutines
of the laboratory must be such that it will grow as an organism. If today we write
programs for symbolic differentiation, we should expect, tomorrow, to employ
them in programs for power series expansions. The opportunity to expand the

1The fields of computer algebra and artificial intelligence are now regarded as largely separate.
2Dutch for “clean ship”.
3MATHLAB should not be confused with MATLAB ("matrix laboratory") which is a system for

numerical computation built at the University of New Mexico 15 years later.
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programs should be open to anyone who masters a well-defined and common
computer language.

5. It should be extensible by the user. While the ability of the physicist to augment
the existing programs will no doubt be severely limited compared to that of the
programming expert, he should be provided tools for doing certain simple things
for himself, such as changing notational conventions or teaching the machine the
derivatives of his favorite functions.

6. The computer, as viewed by the user, must be intimate and immediate. [. . . ]
Above all, the response time to the user’s requests must be short.

2.1.1 The Roots of Computer Algebra Systems

The creation of CASs was preceded by some notable work in symbolic mathemat-

ics and computation. Worthy of mention is the software of Laning and Zierler from

1954 [106]. It was written for the MIT Whirlwind, and although its primary use was

for numerical computation, it was one of the first systems operating algebraic compil-

ers. This enabled it to accept mathematical formulae in algebraic notation; a user with

no machine language experience could now write simple symbolic maths expressions

and pass them to the system.

At around the same time, a system called FORTRAN was being developed at IBM.

This was also investigating the problem of compiling algebraic notation. Some sources

have claimed it was inspired by the work of Laning and Zierler, but the main devel-

oper Backus [11] has stated this to be a misconception, saying that “We were already

considering algebraic input considerably more sophisticated than that of Laning and

Zierler’s system when we first heard of their pioneering work”.

Another fundamental development in the adaptation of computers to symbolic

computation took place in 1958. Inspired by Church’s lambda calculus, McCarthy

developed a language called LISP (for LISt Processor) [116], with the aim to provide

a practical mathematical notation for computer programs. Steve Russel was the first to

implement this language on an IBM 704, and it soon became the language of choice

for most early computer algebra systems.

One of the first mathematical problems encoded in LISP was by Maling [111]. He

wrote a program to perform symbolic differentiation and it was regarded as an early

demonstration of the ability of LISP to handle advanced mathematical computation.

Maling’s work did suffer from a few weaknesses however; one being the restriction

of the input/output to well formed LISP expressions. Another weakness was its pro-

cedures for simplifying expressions; whilst differentiation has exact rules — and so is
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easily encoded — the simplification of mathematical expressions is less well under-

stood.

As well as differentiation, computer scientists also wrote programs for other areas

of mathematics. The doctoral thesis of Slagle, under the supervision of Minsky, was

one such endeavour [170]. He produced a program to tackle indefinite integration,

using heuristics rather than an algorithm per say. His system contained a small table

of integrals and when posed with a problem, it tried to reduce it to one of several

found in that table, employing the same bag of tricks possessed by a good first year

undergraduate.

This collection of research and development—focused on programs performing

particular symbolic processes such as simplification, differentiation or integration—

paved the way for integrated software tools which aimed to combine many powerful

algorithms and make them easily accessible to a target audience.

2.1.2 State of the Art

At the time, MATHLAB enjoyed immense popularity, in part due to a mature collection

of algorithms it could call upon, but also, we feel, in large measure due to Engelman’s

design principles listed earlier. There were several other endeavours contemporary to

MATHLAB, but they did not share either its success or its focus on end-users.

The following two decades saw a flowering of numerous computer algebra systems

which emulated MATHLAB’s ambition, including muMATH, Reduce, Derive (based

on muMATH), and Macsyma. Reduce and Maxima (a copyleft version of Macsyma)

are actively maintained and used today. The current market leaders are mainly com-

mercial: Maple, Mathematica, and MATLAB are commonly used by research mathe-

maticians, scientists, and engineers.

The most popular CASs have vast and varied functionalities. Many have exten-

sive support for numeric computations, to arbitrary precision, in addition to symbolic

computations. Some of the most common mathematical operations available are:

• Simplifying algebraic expressions to the smallest possible expression or some
standard form
• Factoring polynomials
• Solving systems of algebraic equations and inequalities
• Expanding products and powers
• Evaluating the limit of a function
• Differentiating algebraic equations (full and partial)
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• Integrating algebraic equations (definite and indefinite)
• Computing matrix operations
• Rewriting trigonometric functions as exponentials

Typically, these operations can be carried out over various numeric domains. The

reals, rationals, complex numbers, interval arithmetic, and algebraic number fields are

commonly supported. Importantly, solutions can be obtained as exact values such as
√

5 or
√

2 ≤ x < 5 or 4π rather than the usual decimal values given by numeric meth-

ods of successive approximation. Many CASs also provide a high level programming

language, which permits a user to extend the available mathematical operations by

implementing the algorithm themselves.

Additionally, CASs often include the facility to plot graphs and parametric plots of

functions in 2 or 3 dimensions, allowing the user to interactively explore or animate

them if desired. This facility can be invaluable for refining or guiding one’s intuition

about a particular problem and has the potential to assist with the formation of new

conjectures.

The user interfaces of today’s popular CASs are fairly advanced. Not only do they

produce plots and animations, but they also permit the immediate editing of mathemat-

ical expressions and provide a useful “document mode” for mathematicians to typeset

their work — this can include special purpose style sheets, control of headers and foot-

ers, bracket matching, auto execution regions, command completion templates, syntax

checking and auto-initialization regions.

2.1.3 Contributions and Noteworthy Results

Computer algebra systems have been a major success in many aspects of mathemat-

ics: they have been widely taught to students, used to perform routine calculations in

proofs, assist with authoring of theories and — what Engelman envisaged — used for

exploratoration and experimentation.

It is hard to measure quantitatively the extent to which CASs have been used by

mathematicians in the exploration of theories and problems, as often it is only the

polished end-product which is published in a journal, with the details of the journey

omitted. However, it is clear that systems for symbolic computation and computer

algebra have played significant roles in many of the biggest results in mathematics

during the last fifty years.
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Fermat’s last theorem is perhaps the most famous modern achievement. Although

Wiles does not rely on any computed results in his proof, a host of computer experi-

ments preceeding his result gave renewed confidence in the truth of the theorem. For

example, Brillhart et al. showed that given a, b, c, n if n - abc, then the theorem holds

for prime powers n < 3 · 109 [23]; Wagstaff proved that Fermat’s Last Theorem is

generally true for all primes n < 125,000 [178]; while Buhler et al. raised this lower

bound to four million [27]. This type of experimentation, made possible with comput-

ers and made easy with computer algebra systems, is rife in other areas, from finding

the zeroes of the Riemann zeta function to discovering Mersenne primes.

Beyond mere experimentation, the development of intuition for elliptic curve groups

— crucial to Wiles’s proof — is enormously facilitated by CASs. Figure 2.1 shows a

screenshot of a dynamic visualisation in Mathematica where these groups can be inter-

actively explored4. While we are not claiming that Fermat’s Last Theorem would not

have been proven without these tools, it is indisputable that a paper-and-pencil explo-

ration that might have taken days can now be performed in minutes. Furthermore, by

making it so easy to explore such problems, these tools make the domain more acces-

sible to a wider audience, increasing the pool of people who can work in an area and

accelerating the rate at which they contribute to further development.

In addition to facilitating the exploration of these groups, computer algebra systems

played a vital role in another recent mathematical milestone. The “enormous theorem”

— the recently-completed classification of finite simple groups — has made heavy

use of results from computer algebra systems [5]. Here, CASs were used to prove

the existence and/or the uniqueness of some sporadic groups, automating what would

otherwise be a labourious and painstaking task. However, in an attempt to make the

proof completely human-generated, these computer parts are steadily being eliminated.

Our final example is the only one of the Millenium Prize Problems to have yet been

solved: Poincaré’s Conjecture, proposed in 1903, states that every simply-connected

3-manifold without a boundary is homeomorphic to a 3-sphere. The proof is due to

Perelman, completed in 2003, and while it does not rely on computers, CAS-generated

visualisations of Ricci flows were an important step along the way [142].

4This demonstration is freely available on the web from http://demonstrations.wolfram.com/
AdditionOfPointsOnAnEllipticCurveOverTheReals/
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FIGURE 2.1: Exploring Elliptic Curve Groups: a screenshot of a dymanic
visualisation from Mathematica.

2.2 Theorem Proving Systems

The 1950s and 1960s also saw the development of another type of mathematical as-

sistant, namely theorem provers. These tools emerged from research into automated

reasoning and unlike CASs — which were invented to help humans rapidly explore and

solve mathematical problems — theorem provers were built to automatically discover

formal proofs of theorems. As input, theorem provers take logical formulae which ex-

press the definitions, axioms and conjectures of a theory. A mechanical search is then

carried out, looking for derivations which justify the conjectures from the axioms and

the rules of the encoded logic. Theoretical mathematics is clearly one application, but

these tools can, and are, employed in many other disciplines which can benefit from

provably correct results. The verification and synthesis of both hardware and software

are prime examples, as these domains are perfect for mechanisation due to the fact they

can be given correct axiomatisations.

Undoubtedly, the development of logic and the formalisation of mathematics, as

mentioned in Section 1.3.2, was a precursor to the creation of these tools, and the idea
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of reducing reasoning to mechanical calculation, in a manner similar to arithmetic, can

trace its origins back to Hobbes in the 17th Century [88]:

Reason [. . . ] is nothing but reckoning. For as Arithmeticians teach to
adde and subtract in numbers [. . . ] The Logicians teach the same in con-
sequences of words [. . . ] And as Arithmetique, unpractised men must,
and Professors themselves may often erre, and cast up false; so also in any
other subject of Reasoning the ablest, most attentive, and most practised
men, may deceive themselves, and inferre false conclusions.

Creating tools which produce formally correct proofs was motivation enough for

many of the developers. However, there were some who had another driving force

behind creating these tools. For this community, the main goal was to explore the

“higher” faculties of human reasoning through experimenting with computer programs

which attempted to emulate how humans discover mathematical proofs. In fact, this

was the impetus for the the first theorem proving system, the Logic Theory Machine. It

was invented by artificial intelligence pioneers Newell, Simon and Shaw in 1955 [62].

Five basic axioms of propositional logic, given in chapter one of Russell and White-

head’s Principia Mathematica, were supplied to their system, together with three rules

of inference: substitution, replacement and detachment. Proofs of theorems from the

Principia were then searched for. If no immediate one-step proof could be found, a set

of subgoals were generated and proofs of these were looked for, and so on iteratively.

Newell and Simon realized that the search tree would grow exponentially and that they

needed to "trim" some branches, using "rules of thumb" to determine which pathways

were unlikely to lead to a solution. They called these ad-hoc rules "heuristics", using a

term introduced in George Polya’s book How to Solve It [146]. The Logic Theory Ma-

chine proved 38 of the 52 theorems it was presented with and even found some proofs

which were more elegant than the written versions from the Principia. The system set

the stage for nearly all approaches since.

The Geometry Machine [63], developed by Gelernter in 1959 at the IBM Research

Center in New York, was the Logic Theory Machine’s immediate successor. Similarly,

it relied on notions of Euclidean deductive geometry. A backward chaining strategy

was adopted and the use of semantic guidance was employed by using a diagram to

restrict the search of a proof. Branches in the search space that were false in the

diagram were not further explored since they could not lead to a proof. The Geometry

Machine was an early AI success and the basic ideas have been generalised to the

algebraic method of semantic resolution and appear to a greater or lesser extent, in

many other systems. In particular, Goldstein’s Basic Theorem Prover is essentially an
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extension of the Geometry Machine. Gilmore, Nevins and Elcock also did more work

using the same approach, with additions such as forward chaining. It is interesting to

note that model-checking provers based on diagrams do not seem to have moved on

significantly from the Geometry Machine.

The endeavour to emulate human reasoning inside a theorem prover was com-

mendable, but it faced many challenges. One of the biggest challenges developers had

to contend with, was the fact that only vague and anecdotal information was available

on how mathematicians work. In contrast to these AI approaches, many believed that

in designing a machine it was better to replace heuristic methods with algorithmic ones

and indeed, the community who favoured the pure logic techniques and decision pro-

cedures achieved much more impressive results in the early days. Wos, one of the most

successful practitioners of AR, attributes the success of his research group in no small

measure to the fact that they adopted a machine oriented approach and Wang himself

remarked that his simple, systematic program for the AE calculus5 was dramatically

more effective than Newell and Simon’s. Prawitz was another researcher interested

in mechanical theorem proving which played to a computer’s strength. His work was

inspired by results in logic, namely Gentzen’s cut-free sequent calculus. Other no-

table researchers working on the machine-oriented algorithms were Davis, Putnam,

Logemann and Loveland who produced the DPLL algorithm; a complete algorithm

for deciding the satisfiability of propositional logic formulae in conjunctive normal

form. Even after 50 years, this algorithm still forms the basis for most of the current

satisfiability solvers (SAT solvers), as well as for many theorem provers which deal

with fragments of first-order logic [163].

Today, there is still a preponderance of research on the machine-oriented side, but

there have been notable results based on human-oriented approaches too. Some of

the most successful contemporary tools commonly have an integration of these ap-

proaches. We will decribe these in Section 2.2.2.

2.2.1 Reality Check

In the early days, ambitions for theorem proving systems were high, with Simon fa-

mously predicting in 1958 that within 10 years an important mathematical theorem

would be proved by a computer. This optimism stemmed from successes of early pro-

5The AE Calculus is a decidable fragment of first order logic which contains all the formulae which
can be put into prenex normal form so that the initial string of quantifiers is either empty, single, or if
multiple, consists of a sequence of universals followed by a sequence of existentials.
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grams such as the Logic Theorist and the Geometry Machine, and although it was

recognised that these systems only dealt with microworlds which contained few ob-

jects, it was generally thought that scaling up to larger problems was simply a matter

of faster hardware and larger memories. In practical terms, they had expected the

anecdotally exponential increases in computing power (the so-called Moore’s law) to

allow them to conquer sophisticated theorems; they had not appreciated that for many

mathematical problems (e.g. in domains such as Presburger arithmetic), the computa-

tional complexity is super-exponential6. The failure of these systems to produce the

promised ground-breaking mathematical results is one of the causes attributed to the

AI winter.

With the benefit of hindsight, the early optimism seems naive, particularly in view

of major results in theoretical logic which were discovered in the decades just prior. In

addition to Gödel’s incompleteness theorem (see Section 1.3.3), related results were

achieved in computation theory. The Church-Turing hypothesis implies that there is

no algorithm for deciding if a statement is true in arithmetic or any other sufficiently

complex formal system, and Tarski’s undefinability theorem shows that there is no

mathematical formula capable of determining such truth [163]. It is important to rec-

ognize, however, that while these results limit what can be done in mathematics —

whether by a human or a computer — they do not imply anything about the complex-

ity of those problems which are solvable. In fact, other results in theoretical logic

supported the belief that a computer could mechanically reason about interesting and

complex mathematics; some important classes of problems had already been shown

to be decidable, such as Presburger arithmetic and the first order theory of real closed

fields, and it was accepted that the vast majority of conventional mathematics could be

described by a finite set of schemas, such as ZF, where there is at least a semi-decision

procedure that can in principle verify any logical consequence of those axioms. What

the early researchers failed to grasp, however, was that these results also imply nothing

about complexity. The fact that a program can find a solution in principle does not

mean that the program contains any of the mechanisms needed to find it in practice. It

was only after years of research into theorem proving that it was recognized just how

enormous the gap between decidability in theory as opposed to in practice was; even

gigabytes of memory and quadrillions of compute cycles is often insufficient.

Clearly, cutting down the search space is key to a successful tool, and whilst early

researchers recognised this, such as Newell and Simon with their heuristics, the dif-

6The theory of NP-completeness had not yet been developed.
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ficulty of automating this effectively is now better appreciated; the search space for

decidable theories can lead to a combinatorial explosion and undeciable theories (such

as Peano arithmetic) have the added difficulty of needing effective heuristics, which

can be hard — even impossible — to discover. Whilst fully automated provers are still

actively researched, another type of theorem prover has emerged in recent years. Inter-

active (or semi-automated) theorem provers have been developed to work with human

guidance. At the very least these tools attempt to verify a proof found by a human

by checking the correctness of the argument and guarding against typical human er-

rors such as implicit assumptions and forgotten special cases. The grander aim is that

these tools should help the proof process substantially by automating certain parts and

providing advice to the user to aid the proof discovery. Interactive theorem proving

alleviates the problems of semi-decidability and large search spaces to some extent,

because the human can use their intuition as to how the proof should proceed and also

has the option to cancel any query and try another approach if the query is taking too

much time.

The concept of a human and a machine cooperating with one another goes back to

the SAM (Semi-Automated Mathematics) system from 1966 [163]. It was a notable

success, being used to construct a proof of a hitherto unproven conjecture in lattice

theory. Not long after the SAM project, the three first-generation interactive theorem

provers, as they came to be known, emerged: Automath, Mizar, and LCF. Many of the

most successful interactive theorem provers around today are based heavily on at least

one of these efforts [6], as we shall see in the next section.

2.2.2 State of the Art

The most popular interactive theorem provers today are HOL [30], HOL Light [82],

Isabelle [134], Coq [42], Mizar [162], PVS [171] and ACL2 [98]. These systems

vary on several fronts, which we shall briefly look at in this section: their underlying

logical frameworks and implementation strategies, their modes of interaction, and their

automation.7

7The reader wanting a more detailed understanding of these and others is referred to the survey by
Wiedijk [184], which includes a comparative commentary on how these systems prove the irrationality
of
√

2.
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2.2.2.1 Logical Frameworks

Theorem provers have an underlying logic which specifies the language in which as-

sertions are to be expressed and the admissible rules of inference. Zermelo-Fraenkel

set theory (ZF) (Section 1.3.3), a common foundational framework for mathematics, is

one option. Mizar, mentioned previously, builds on a variant of ZF known as Tarski-

Grothendieck set theory.

Other options are possible, however, and have proven very popular in practice.

Several descendants of LCF — including HOL, HOL Light, and Isabelle/HOL — use

a formulation of higher-order logic (HOL) in Church’s simple type theory [35], in

which every term is assigned a type. Even within these three, Isabelle’s foundations

are quite distinct: the inference rules are theorems in a metalogic, which means the

system can be made generic, i.e. to work for a family of object logics, including ZF

and first-order logic (FOL) in addition to HOL. The ability to express assertions in

higher order logic is advantageous as it permits more natural mathematical statements

to be made due to the fact predicates and functions can be quantified.

Some other descendants of the LCF approach, such as Coq, have taken a radically

different foundation based upon dependently typed constructive logic. Here, the type

system is capable of carrying more information; for instance, the tl function giving

the tail of a list could have a type which maps from a list of length n (for arbitrary

n > 0) to a list of length n− 1. In contrast, in the Isabelle definition the type of this

function is list ⇒ list, and a lemma is introduced to provide the fact that the length

of the list reduces by one. This different approach makes some concepts easier to work

with in proofs, as more work is done in defining the types, but it comes at a cost in the

complexity of the type system.

When it comes to formalising much of mathematics, however, the differences be-

tween the logical foundations are negligible. The two popular systems Isabelle and

Coq both have libraries for a wide range of common mathematics, even though the

former is simply typed and the latter dependently typed. However the choice of foun-

dation does impact the proof process, making a big difference in the way things are

expressed and how and when assertions are proved.

Whilst contemporary theorem provers have different logical frameworks, they all

share one critical design principle: the logical framework is always described in a small

kernel at the heart of the prover. Everything constructed within the prover boils down to

the minimal set of axioms and logical inference rules within this kernel. As this core is
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easily inspected, and many reviewers have satisfied themselves of its correctness, every

proof which is validated by the kernel inherits a high degree of confidence. It may be

the case that the prover has impenetrable and perhaps erroneous implementations for

the user interface and procedures such as search control, but these will not jeopardise

the correctness of the proofs, as they must pass through the trusted kernel. For a

good account of how to believe a machine checked proof, see the book chapter by

Pollack [145].

2.2.2.2 Interaction

In addition to having an assertion language, which allows users to state definitions and

lemmas, interactive theorem provers also require a proof language. This specifies how

to represent a mathematical argument inside the system and provides the user with the

means to communicate which rules and techniques should be applied to the current

goals. Most contemporary provers support a procedural style of interaction, where a

completed proof is merely input “code" giving the list of instructions which tell the

proof assistant how to act on the evolving proof states; if one wants to understand the

proof they need to replay it within the system. There are a few exceptions, however.

Mizar, and more recently an extension to Isabelle called Isar, support a declarative

proof language, which makes intermediate goals explicit. These languages have the

benefit that when a proof is complete it can stand alone from the theorem prover. For

some situations this is necessary. However, for many people, proof exploration and

efficiency take priority, and the procedural mode of interaction seems better suited

for these ends. Whether supporting procedural or declarative proofs, an orthogonal

consideration is the ability of the language — and the system — to allow a hierarchical

proof representation where intermediate subgoals or steps can be expressed even when

there is not a formal logical chain leading to them. This is a central tenet in an area of

theorem proving called proof planning [28].

Communication with interactive theorem provers is achieved through user inter-

faces (UI), which today come in a wide variety. Proof assistants typically have a com-

mand line mode, but many have a more advanced graphical UI too. Some of the

graphical UIs support extended characters for mathematical syntax, and allow users

to turn on and off the type information attached to the variables. Many also provide

point-and-click buttons for commands such as processing or halting proof commands.

It is common that a different team of developers will build the UI environment, and

it usually sits separately from the prover. A notable UI success has been the generic,
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emacs based Proof General [7], which provides a powerful and configurable front-end

for proof assistants. It has been used with Isabelle and Coq for many years and can be

easily customized to work with any theorem prover.

2.2.2.3 Automation

The touch points where the user interacts with the theorem prover vary enormously

depending on the amount of automation for a given domain. Early interactive provers

required extravagant low level details of proofs to be spelled out by the user. Semi-

automatic systems attempt to engage the user at a higher level. For the classes of

decidable theories, it is typical to have decision procedures encoded. Common exam-

ples are procedures for linear arithmetic, tautology checking, SAT solving and model

elimination. For undecidable problems, many proof assistants attempt to encode search

procedures, which can be heuristically driven and rely on domain specific knowledge.

Because theorem provers permit new theories to be developed, an important aspect

of their interactivity is the extent to which users can extend the automation. This can be

done through various techniques, including programmatic tactics or pattern matching

rewrite rules.

Another way to increase the automation of a proof assistant is to enable it to call

out to external tools, such as other provers or computer algebra systems. In particular,

the integration with contemporary automated provers has been popular, as after fifty

years of development automated theorem provers have reached a fairly mature state.

Some of the most advanced automated systems today are Vampire [154], SPASS [179]

and E [166], all of which have been linked to Isabelle in recent years [20]. There have

been two techniques for integrating tools, namely the oracle approach and the proof

reconstruction method. The latter is usually adopted when a proof certificate can be

returned from the external tool, enabling the proof to be reconstructed in the theorem

prover. This gives the highest level of confidence in the results. Unfortunately, this

is not always possible. In these situations, the oracle mode is adopted — where the

result is taken on trust. In these cases the validity of the result is only as good as

the correctness of the external tool and the translations between the systems. A more

detailed description of tool integration techniques and past implementations will be

given in Section 6.3.
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2.2.3 Motivations and Previous Contributions

One motivation for building theorem provers is to find mathematical proofs automati-

cally. However, as the previous section described, it’s often not feasible for a computer

to automatically generate a proof in full. There are a number of other related, more

modest objectives which motivate researchers. These motivations along with some

noteworthy results are summarised below.

Automatic Proof Discovery of Open Conjectures

One of the most famous results produced by an automatic theorem prover was achieved

in 1996 by McCune of the Argonne National Laboratory. He used the EQP system to

find a proof of the longstanding Robbins Conjecture which states that every Robbins

Algebra is boolean [117]. The result was reported worldwide and was heralded as a

great success as the conjecture had resisted human proof for over 60 years.

Obtaining Rigour

Interactive theorem provers have the potential to construct fully formal proofs of se-

rious mathematical results, all with a high degree of correctness. Notable theorems

which have thus far been proven are Gödel’s Incompleteness Theorem (Shankar [168],

1986, in the Boyer-Moore theorem prover), the Four Colour Theorem (Gonthier [66],

2004, in Coq), the Prime Number Theorem (Avigad [10], 2005, in Isabelle), Dirchlet’s

Theorem on primes in arithmetic progression (Harrison [80], 2009, in HOL Light),

and the Jordan Curve Theorem (Hales [76], 2005, in HOL Light). Despite these theo-

rems having previously published human proofs (with the exception of the Four Colour

Theorem), their formalisation gave the benefit of a more rigorous argument which had

the potential to unearth any ambiguous definitions or erroneous proof steps which may

have previously gone unnoticed.

Indeed, Fleuriot’s formalisation of Newton’s Principia brought to light an error

in Newton’s reasoning [56]. Using Isabelle, he showed that Newton had made the

mistake of cancelling an infinitesimal quantity on either side of an equation, an error

that Newton himself had elsewhere explicitly avoided but had unwittingly made on this

occasion. The proof was easily repaired by Fleuriot and for this reason some may say

the discovery was not significant. However, what is remarkable is that three centuries

of analysis on one of the world’s oldest and well-known mathematics books had failed

to uncover this mistake.
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Even the staunch formalist Hilbert was not immune. In prior work, we formalised

much of Hilbert’s Grundlagen, and found that many of his proofs had missing steps

[119]. Although the lacunae would normally be unremarkable — as the missing steps

are trivial to fill in for one familiar with the domain — they are noteworthy consid-

ering Hilbert’s ambition. As described in Section 1.3.2, he intended that no intuition

should be needed in verifying his proofs. To fill in the gaps we found, intuition was

certainly required. For one particular case, Hilbert’s theorem three, five proof steps

were missing from his written proof, three of which were non-trivial for us to find.

This highlights that fully formal proofs are extraordinarily difficult for a human, even

a mathematician as brilliant and rigour-obsessed as Hilbert. Theorem provers help

keep our mathematical arguments as rigorous as can be.

Validate a Proof Generated by an Ad-hoc Computer Program

In Section 2.4 we will describe two mathematical proofs which turned out to be highly

controversial: Appel and Haken’s proof of the Four Colour Theorem [2] and Hales’s

proof of the Kepler conjecture [75]. These proofs were heavily critised as they were

derived from ad-hoc computer programs which could not be easily inspected. To obtain

assurances about these programs, theorem provers could be employed to verify that the

software is correct.

Include a Wider Audience

Some mathematicians receive thousands of letters from amateur/hobbyist mathemati-

cians, who claim to have discovered a proof to important open conjectures in the field.

Ramanujan was one lucky enough to be noticed, but in most cases, such correspon-

dence is ignored by the establishment. Theorem provers permit amateur mathemati-

cians to explore mathematics and have their findings taken more seriously by the math-

ematical community.

The tools have enormous potential to be used in collaborative projects too, where a

formalised theory can be held on-line whilst in development. Anyone interested in the

theory can view the up-to-date file and contribute if they are able to progress the work.

This is in keeping with the ethos of the 2009 Polymath Project [147] which was insti-

gated by Gowers and Nielsen. Inspired by open-source enterprises such as Linux and

Wikipedia, they decided to use blogs and a wiki to mediate a fully open collaboration

with other mathematicians. The aim of the project was to find an elementary proof of
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a special case of the density Hales-Jewett theorem, and the collaboration achieved far

more than Gowers expected. An article in Nature described the project as “showcas-

ing what may turn out to be a powerful force in scientific discovery, the collaboration

of many minds through the Internet”. In the future, theorem provers could play an

important role in these types of projects.

Verify Algorithms, Software and Hardware

The three cornerstones to computer science — algorithms, software and hardware —

are all areas where proof is not a tradition. However, they are all areas where boundary

cases can easily be omitted. Making a mistake in any aspect of their development

can be catastrophic, costing time and money in industrial applications or even loss of

life when they are employed in mission critical situations. Theorem provers have had

success in formally verifying many developments in this field, from systems security

to compilers. Intel and NASA even have their own teams dedicated to investigating

the formal correctness of many of their projects. As an example, at Intel Harrison

famously used HOL-Light to prove the correctness of floating point arithmetic [81].

ACL2 has also had success in this discipline, being used to prove the correctness of the

floating point division operations of the AMD K5 microprocessor in the wake of the

Pentium FDIV bug.

Perform Huge Proofs

There are many important theorems which may only ever be proved by analysing a

gigantic number of possible cases. The Four Colour Theorem and Kepler’s conjecture

may turn out to be of this class. If so, computerised proof may be the only way to

reason about these problems. Theorem provers in particular can — and are being used

to — provide reassurances that these proofs are correct.

2.3 Contrasting TPs and CASs

Theorem provers and computer algebra systems have, for the most part, been adopted

by very different communities. While CASs have become mainstream tools in mathe-

matics (and various other disciplines such as physics and engineering), interest in TPs

has been much less extensive, with their target community mainly being confined to

logicians and computer scientists interested in formal correctness proofs. The popular-
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ity of CASs can be attributed to their ease of use and expediency at solving problems

automatically, making them attractive for quickly exploring problem domains. This

contrasts greatly with TPs, which require a user to be highly skilled. Even for one well

aquainted with TPs, interacting with them can be a time consuming task. This acts as

a barrier to their wider adoption.

Despite TPs not being as easy to use as CASs, they do have two clear advantages

— they provide clear sematics and logical rigour. The following sections will describe

these aspects in further detail.

2.3.1 Usability

CASs are normally easier to use than TPs for several reasons: they commonly have a

polished UI, a language which comes close to the structure of ordinary mathematical

language, the functionality to easily undo and redo changes made and a development

environment which does not crash when a long running proces is cancelled.

The UI is an important consideration if a tool is to be usable and CASs typically

have a frontend which is like an IDE for software development or a word processor,

providing the user with context sensitive help. Whilst some TPs have graphical UIs

they have not reached such a mature state.

Providing the functionality for the user to write mathematical statements as they

typically would be written is hugely appealing. CASs such as Maple have embraced

this mode of interaction, in keeping with Engelman’s early vision that a CAS should

have simple commands. As an example, consider expressing a definite integral. In

Maple we can use the familiar notation:∫ b

a
xn−1 dx

By contrast, in TPs it is often non-trivial to express high level mathematics. The same

integration problem in Isabelle has to be stated as:

Integral {a..b} (%x. x powr ((n::real) - 1))

Note that Isabelle’s built in libraries currently only permit definite integration to be

expressed. This is due to the complexities of formalising the intuitive concept of plus

C (where C is a constant), which is required for correctly reasoning about indefinite

integration.

Despite the mathematical language of a TP not being as easy to write as that of

a CAS, there is one benefit of such a cumbersome logical language — it permits the
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expression of far more sophisticated mathematical concepts such as epsilon-delta def-

initions of continuity.

Many users of mathematical assistants also place a premium on efficient automa-

tion. CASs are faster and better than TPs at solving many problems automatically.

This is because CASs implement decision procedures in a low level computer lan-

guage (close to machine code), whereas formal tools tend to use tactics which have

to be interpreted and tracked in the kernel. This makes TPs much slower. There are

however, some problems which CASs fail to solve. For these problems, a more config-

urable implementation might succeed. This is an area where interactive TPs have the

advantage as the user is able to guide the system to find a solution.

2.3.2 Clear Semantics

Frequently, there are expressions in mathematics which can be ambiguous. Math-

ematicians have conventions which allow them to know how expressions should be

interpreted and how to supply just enough content to make it clear for their intended

readers. For example, when reasoning about integration, a mathematician will know if

the Riemann, Lebesgue or Gauge integral is being referred to — or if it matters. With

polynomial expressions, such as x3 + 7x+ 5, the mathematician will be aware which

field the variable x belongs to (the reals, complexes, or something else).

In contrast, computer algebra systems cannot deduce this context information.

They make certain default assumptions and implementation decisions which a user

is expected to acquaint themselves with. Unfortunately, the underlying semantics of

some expressions are unclear (or unexpected) in many of these systems. One potential

confusion in CASs can be which branch of various complex functions such as square

root, logarithm and power is considered. Knowing which field the CAS has assumed

to be working in can also be a source of confusion. For example, if Maple is told to

assume that x2 < 1 and then asked whether |x|< 1, it says false — it is including com-

plex numbers. Without any context, however, one might assume the question is being

asked over the reals; and such a minor error risks invalidating an entire computation.

Theorem provers take a very different approach, where a precisely defined logical

basis must be established and made explicit. Other mathematical concepts and theo-

ries tend to be constructed as conservative extensions of this. For any statement, it is

mandatory to specify the theories that are being built upon, so the TP can always un-

ambiguously determine the semantics of any expression. As an example Isabelle has
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a small set of axioms for logic and set theory, and all its other concepts are derived or

defined from this set. All its theories, from lists and natural numbers to vectors and in-

tegration, declare at the outset which parent theories are imported, and this determines

what expressions can be written and how they will be interpreted.

2.3.3 Logical Rigour

Even when a CAS can be relied upon to give a result that admits a precise mathematical

interpretation, the user can not rely on the answers always being correct. It is well

known that CASs are notoriously unsound, particularly when singularities and other

irregularities at the boundaries of domains have to be taken into account.

Integration is one typical domain where the user has to be careful. Many modern

computer algebra systems use an implementation of the Risch-Norman algorithm [156]

as the basis of their integration routines. Due to its programmatic intricacy, some

systems rely on a large number of recognised solutions (a lookup table), with a small

number of methods for converting a presented problem to one of these forms. Where

the Risch algorithm is used, the systems are insensitive to boundary conditions and

occasionally return false statements. For example, evaluating the previous integration

in Maple gives: ∫
xn−1 dx =

xn

n
Despite the problem being easy to express in the system, it has given a wrong result;

there should be the addition of an arbitrary constant appearing in the solution (although

Maple warns us of this omission in the user manual). More seriously however, this

result is true so long as n 6= 0; a correct answer must include the special case:∫
x−1 dx = ln x+C

A system would fail if it relied on that general solution and instantiated it whenever

n = 0. While many people will recognise the problem in this case, there are other areas

where similar convenient sloppiness is applied. And if the tools are relied upon in

real-world domains, an error such as this could be severe — in structural engineering

or space flight.

By contrast, TPs have the ability to reason with due consideration to boundary

conditions. They take considerable care that all alleged theorems are deduced in a

rigorous way, and all conditions made explicit. Indeed, as mentioned previously, many

construct a complete proof using a very simple kernel of primitive inference rules.
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Although nothing is ever completely certain, a theorem in such a system is very likely

to be correct. TPs inherit Hilbert’s mantle, valuing soundness above all, whereas CASs

continue the pragmatism of the Erlangen school, more interested in results than they

are afraid of the monsters of Section 1.3.1.

2.4 The Changing Nature of Proof

The preceeding sections have focussed on the two types of tools for computerised

mathematics; computer algebra systems and theorem provers. However, these systems

do not completely encapsulate the computer’s role in aiding mathematics. Two of the

most notable — and controversial — proofs of the digital era have come from ad-hoc

computer programs. The long standing Four Colour Theorem was the first to be proved

using a computer in this way. The theorem was first conjectured in 1852 by Guthrie,

and it stated that any planar map can be coloured with at most four colours in a way

that no two regions with the same colour share a border. For over a century many

famous mathematicians — including De Morgan, Peirce, Hamilton, Cayley, Birkhoff,

and Lebesgue — worked in vain to prove the conjecture. It was not until 1976 that

Appel and Haken announced that they had resolved the problem [2]. Their work was

ground breaking as they had used a computer to carry out a gigantic case analysis which

could not be carried out by hand. Despite this, however, the majority of mathematicians

were critical of the proof; the ostensible objection was that the computer program

which Appel and Haken wrote (in IBM 370 assembly language) was difficult to verify

and therefore potentially erroneous. A simpler computer proof was later produced by

Robertson, Sanders, Seymour and Thomas [158], but it was not humanly verifiable

either, thus receiving the same criticisms.

Controversy over computer generated proofs recently flared again with the an-

nouncement by Hales that he had finally proven the long standing Kepler’s conjec-

ture [77]. This conjecure was first posited in 1611 by Kepler, who believed the most

efficient way to pack spheres in a box is the way grocers usually pack oranges — in

a face-centred cubic lattice arrangement whereby each layer of oranges is shifted so

that an orange touches four oranges in the layer below. It resisted efforts of proof for

centuries and as a result Hilbert made it one of his 23 most difficult and fundamental

questions in mathematics. In 1998, Hales claimed he had a solution to the conjecture

which used a clever trick to simplify the problem; rather than reason about an infinite

number of spheres in a infinite space, Hales reduced the problem to be one about a
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finite, but very large, number of mathematical objects. He then used the computer to

prove bounds about these objects (around 100,000 cases had to be considered). Despite

Hales’ conviction that the proof was correct, it took 7 years for it to be accepted by the

Annals of Mathematics, the field’s most prestigious journal. Even then it was accom-

panied by an unusual disclaimer stating that the computer programs accompanying the

paper have not undergone peer review. This was not for want of trying, however. Many

man years were spent attempting to understand the computer-assisted parts of the proof

but the reviewers had to eventually conclude that it was just too impenetrable8.

Dissatisfied with his proof being published with a disclaimer, Hales responded

in 2003 by instigating an ambitious, collaborative project, called Flyspeck [57], with

the aim of demonstrating Kepler’s conjecture formally using contemporary theorem

provers. The proof will thus be constructed out of transparent logical steps instead

of obscure computer code, giving it a high level of correctness. As of this writing,

ten years later, the project is ongoing but very near completion. Hales at one point

estimated that 20 person-years of work would be required, and given the widespread

and enthusiastic response to his proposal, and involvement of many researchers, this

estimate seems not far off. To date HOL Light, Coq, and Isabelle have been used to

prove many of the fundamental results the proof will rely upon, including the Jordan

curve theorem and many properties relating to tame planar graphs.

Interestingly, the endeavour to prove the Four Colour Theorem has also followed

this route, with Appel-Haken’s original proof verified in Coq in 2004 by Gonthier [66].

The response to these Herculean efforts in mathematical circles, however, has been

mostly in the range of disinterest to disdain. One critic commented, “a good math-

ematical proof is like a poem — this is a telephone directory!” [55], in response to

the Appel-Haken proof, a sentiment even more applicable to proofs in TPs. The topic

became a focus of discussion at the Royal Society meeting referred to in Section 1.4.

Cohen stated a view that the essence of mathematics is to generate new insights and

new techniques, and commented that these are absent from mechanised proofs. Atiyah

went further, declaring that “the aim of mathematics is to explain as much as possible

in simple terms”, and predicting that as long as computers are what they are now, a

human-made proof will always be superior to a computer-assisted one [161].

The changing nature of proof brings us back to one of the points made in Chapter 1,

that intuition is crucial to the understanding of mathematics, from an initial discovery

through to its final presentation. We have seen in this chapter that CASs aid this im-

8It is interesting to note that the board of reviewers did not have any computer scientists.
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mensely, by accelerating solutions to many kinds of problem solving and facilitating

exploration and insight into certain domains. But from Aristotle and Pythagoras to

Hilbert and even Thurston, few, if any, mathematicians have denied the importance

of logical justification. Surely we have not met the last of Poincaré’s monsters! TPs

provide the most extensive logical reasoning capabilities the world has ever known,

and the resulting proofs, however lengthy and obscure to humans, are the pinnacle of

rigour. Yet these systems remain relatively neglected among mathematicians, unlike

their CAS cousins, and even the most active area of TP activity — verifying software

and hardware — engages a mere fraction of those who could conceivably benefit. This

chapter has explored some of the stated reasons for this, boiling down to their difficulty

of use, caused in large part by the very length and obscurity of the proofs. If this ob-

stacle could be overcome, and the role of intuition and beauty celebrated in the formal

proof process, the potential to transform mathematical and even scientific knowledge

stands in waiting.



Interlude

Having introduced the spectrum of rigour in the context of mathematical proof, let us

pause for reflection and an overview of what is to proceed in the core of this thesis.

As Chapter 2 described, the digital era has engendered some of the most con-

tentious mathematical proofs ever. It has made possible the rigour desired for so long,

but the resulting proofs, and the tools that produce them, have found a largely apathetic

audience amongst mathematicians. Our research begins by exploring this contradic-

tion, asking what would be necessary to increase the appeal of TP systems to a wider

community.

To answer this, we embarked on a case study to afford us greater insight into the

strengths of these tools — interactive theorem provers in particular — and the weak-

nesses which render them so unappealing. We start in Chapter 3 by introducing our

case study and the tools and formal theories we use, specifically the interactive TP

Isabelle and its formulation of Hoare logic. Our case study looks at formally verifying

the Graham’s Scan algorithm for finding convex hulls; the algorithm and our proof

are presented in Chapter 4. In Chapter 5 we collect observations on the use of TPs,

noting two major difficulties, that they can require an inordinate amount of time on

trivialities, and that they can get in the way of a user’s all-important intuition. Despite

these barriers, however, we observe how the collective understanding of a theorem or

algorithm can ultimately be improved by a rigourous mechanical proof.

In Chapter 6 we turn our attention to looking at ways in which the proof process

could be made easier, giving a survey of several tools and techniques which could

potentially improve the user’s experience; these range from extending Isabelle’s sim-

plifier and classical reasoner to examining techniques from the field of mechanical

geometry theorem proving, such as the Area Method and Cylindrical Algebraic De-

composition. The benefits afforded by combining CASs and TPs are then discussed

and the ways in which these tools have been combined in the past described. The

chapter concludes by introducing the emerging paradigm of Proof Engineering, which
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looks at how to engineer theorem provers to best suit the users.

In Chapter 7 we hypothesise that the formal proof process is improved by giving

the user a suite of tightly integrated tools within a single development environment

where the translations happen seamlessly and support for both novices and experts is

provided. Despite these ideas being common in the literature on usability and stan-

dard fare in modern software engineering tools, they are often neglected in interactive

theorem proving. The field of Proof Engineering offers the closest efforts, and al-

though this field has not addressed CAS integrations, the Eclipse Proof General tool –

which is built on that foundation – seemed a logical starting point for integrating tools.

This chapter presents our architecture and its implementation in a system we call the

Prover’s Palette.

The first concrete integration we undertook in the Prover’s Palette connects Isabelle

with the computer algebra system QEPCAD. This pairing was chosen because QEP-

CAD performs well with many of the types of problems Isabelle struggled with in our

case study, specifically those involving non-linear real arithmetic. Our integration is

described in Chapter 8 and has resulted in a useful, out-of-the-box system. The chapter

also shows some interesting ways in which this integration can be used.

This integration demonstrates that our hypothesised approach was possible, but it

does not show that it is useful beyond QEPCAD. To show that the Prover’s Palette is

generalisable and extensible, we embarked on a second integration, this time between

Isabelle and Maple. This integration is described in Chapter 9. We show that we are

able to re-use a lot of code from the Prover’s Palette framework, even lifting some code

from the QEPCAD integration to be part of the core.

The final test we explore is whether the Prover’s Palette is useful in the heat of com-

plex proofs. This is investigated by verifying an algorithm which computes Delaunay

triangulations. Chapter 10 shows a number of different ways in which the Prover’s

Palette was useful in this proof. This includes helping to formulate essential invariants

of the algorithm, giving us early indication when certain goals were impossible, and

providing us with counterexamples to help repair flawed lemmas.

This thesis concludes in Chapter 11 with a description of how our work has con-

tributed to the field of mechanical theorem proving. The wider context of our research

is presented, and some exciting future directions are described.



Chapter 3

Isabelle Preliminaries for Geometric

and Algorithmic Verification

The initial goal of our research was to gain a better appreciation of what would be

necessary to increase the appeal of mechanised mathematics to a wider community.

We embarked on a case study to afford us greater insight into the strengths of these

tools — interactive theorem provers in particular — and the weaknesses which render

them so unappealing. The Graham’s Scan algorithm [69] for finding convex hulls is

the particular problem we chose to investigate; the case study itself commences in the

next chapter, with a description of the algorithm and a presentation of our verification.

First, in this chapter, let us explain the reasons for choosing this particular case study

and introduce the tools and formal theories we will use.

3.1 Why Verify Graham’s Scan?

Our motivation for choosing the Graham’s Scan algorithm is that at its core it requires

a large amount of geometric analysis. As discussed in Chapter 1, problems in geometry

appeal to intuition in a particularly strong way, with all the attendant benefits and risks.

As discussed in Chapter 2, supporting intuition within rigourous TP environments is a

particularly important challenge. Furthermore, this algorithm brings in many subtleties

about degenerate cases and complex dependencies that stretch the ability for humans

to reason reliably, thus playing to the strengths of TPs.

The wider area of algorithmic verification, of course, holds the promise of immense

benefits for industry and society, due to the increasing reliance on software in many

areas of life. Within computational geometry alone, where convex hulls are one of
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the fundamental objects, applications are found in domains ranging from mechanical

engineering and space exploration to statistics and medicine. Often, the correctness

of a computer program is demonstrated by showing it passes a suite of unit tests. The

justification for correctness may include a pen-and-paper explanation or even a hu-

man proof of why the algorithm works, but these proofs are rarely subjected to the

same level of scrutiny as mathematical results, and frequently degenerate cases will

be overlooked. A mechanised TP approach to reasoning about geometric algorithms

would achieve the twin goals of boosting confidence in them and identifying gaps

which could be fixed and tested. As algorithms in computational geometry are being

considered for use in safety-critical situations such as air traffic control, this is a highly

desirable result which is beginning to attract widespread interest.

It could be argued that this case study will be of more interest to computer sci-

entists than mathematicians: a large amount of the proof will require manipulating

computer-science specific data structures and reasoning about algorithmic constructs

such as loops. However, it is not only the case that convex hulls play a central role

in pure mathematics, but algorithms themselves are a legitimate and increasingly pop-

ular object of mathematical study. Formally verifying geometric algorithms requires

constructing a great deal of rigorous mathematics, not only in the formal statements of

mathematical constructs — no different to the majority of traditional mathematics —

but also in the mechanisation of fully formal proofs.

There is an additional reason we feel this study is particularly interesting and timely

for the mathematical community. There has been a trend in recent years for ad hoc

computer programs to be written to aid the construction of large proofs, such as the

Four Colour Theorem and Kepler’s Conjecture mentioned in Chapter 2. Interestingly,

Hales’s’ original proof of the Kepler conjecture itself relied on many algorithms in-

cluding some closely related to those used in computational geometry. Although he

chose to combat the skepticism to his proof by proving the conjecture case-by-case

inside a TP, he could have adopted the different approach of verifying the algorithms

themselves. The feasibility of this alternative approach will be understood better by

our case study.

3.2 Isabelle

Our case study will be carried out in the theorem prover Isabelle. As mentioned in

Section 2.2.2, Isabelle is one of the leading contemporary interactive theorem provers,
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with a good breadth of theories and a mature suite of end-user tools. This section will

give a more in-depth description of Isabelle, with the following sections presenting

formal theories which are relevant to our verification of geometric algorithms.

3.2.1 Isabelle/HOL

Isabelle is a generic proof assistant, providing a language for users to define their

own mathematical formulas, and then prove these using a standard logical calculus

— or, in some cases defining entirely new logics. Isabelle’s built-in logic, the meta-

logic, is intended only for the formalisation of other logics, known as the object-logics,

with soundness enforced by type-checking in the underlying programming language

(ML). As noted in Section 2.2.2.1, there are a number of object-level logics in Isabelle,

including first-order logic (FOL), Zermelo-Fraenkel set theory (ZF), and higher-order

logic (HOL), used to express particular mathematical theories.

The Isabelle/HOL [134] implementation, which will be used in our case study,

uses the latter of these, and is heavily influenced by HOL theorem prover [67]. Higher

order logic provides a framework capable of quantifying over sets and functions, nec-

essary for reasoning about algorithms and other sophisticated mathematical concepts.

Furthermore, this logic is strongly typed, ensuring that only type correct terms are

permitted, thus simplifying the statement of definitions and theorems.

An important aspect of theorem proving in Isabelle/HOL is the so-called HOL

methodology, advocating the use of definitions rather than postulates in formal proofs.

This ensures that theories are developed only as conservative extensions of existing

ones, thereby ensuring consistency. However caution is still required as a wrong defi-

nition can easily lead to the wrong properties.

One of the significant benefits of using Isabelle/HOL is that it provides an exten-

sive library of mature formalised theories covering many areas of mathematics. These

include elementary number theory, analysis, algebra, and set theory. As shall be seen

in future sections, Isabelle/HOL’s theory of lists and its development of Floyd-Hoare

logic greatly assist our verification of Graham’s Scan.

3.2.2 Proof Construction

Proof construction is the process of formally deriving new rules, called theorems or

lemmas, from existing rules or definitions. In Isabelle/HOL this is typically done using

tactics, which are commands that allow the user to apply rules selectively or invoke
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Isabelle’s automatic functions1. Tactics permit the user to reason about proof goals

in a mechanically verifiable way. The simplest tactics use higher order resolution to

apply known rules and definitions to a proof goal; these applications can proceed in

either a forward or backward direction.

Backward proofs are preferred when one wants to start with a goal and refine it to

progressively simpler subgoals until all become an instance of some axiom or previ-

ously proved theorem.

Forward proofs are usually used to generate new assumptions. To achieve this the

antecedents or assumptions of a rule can be resolved with other rules. This process can

continue until either the conclusion is the instance of some assumption or the goal is

an instance of a theorem.

Isabelle itself is based on the LCF approach (Section 2.2.2), and it provides strong

guarantees of correctness based on a small kernel. The wide range of inference rules

and tactics available ultimately decompose down to a sequence of a elementary rules,

represented internally as ML functions converting from one expression of a theorem

to another (thm→ thm). The kernel runs this sequence, and a theorem is verified if the

kernel is ultimately able to convert it to true. Only a small number of elementary rules

are available, and both the kernel and the rules have been closely inspected by a wide

audience over several decades: this gives a high degree of confidence in any result so

verified. The rules and tactics can be extended, and any verified result (of type thm)

can be referenced subsequently, making the system itself very powerful.

As mentioned in Chapter 2, Isabelle also has two styles of writing proofs, proce-

dural and declarative. In Isabelle’s procedural style of proof, simple commands are of

the form apply (tactic), as shown in Figure 3.1; this style makes it explicit what

the TP is doing at every step, but it is often necessary to run the proof in the system to

see what is happening. In contrast, a more declarative style of proof can be achieved

by using the Isabelle/Isar syntax [133], an extension of Isabelle which was influenced

by the Mizar system [162], and attempts to mimic the the style used in common math-

ematical practice. These proofs can stand alone from the system and be comparatively

comprehensible, although they can be more effort to compose and, still being formal,

tend to fall some way short of the elegance often desired in proof exposition. The

declarative style is shown in Figure 3.2.

1Isabelle’s built-in automation will be described in the following section
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3.2.3 Automation

Isabelle has a number of sophisticated tactics and tools beyond mere rule application,

capable of performing automation and simplifying proofs considerably. The simplifier

is a key component which enables this automation: in its most basic form, simplifica-

tion in Isabelle means repeated application of equations from left to right, substituting

one value for another. This is also known as term rewriting, with the equations referred

to as rewrite rules. This nomenclature underscores the important point that terms do

not necessarily become simpler in the process!

Isabelle’s simplifier supports unconditional rewritings as well as conditional rewrit-

ings, where a pre-condition has to be met before the substitution can be applied. It can

also make use of contextual information, and permits new rules to be added to the

rewrite set either permanently or temporarily. As a result, the standard simplification

tactic simp is one of the single most powerful automation tools in Isabelle. By annotat-

ing proved lemmas with the token [simp], the standard simplifier will use that lemma

as a rule. This allows a newly developed theory to have expressions easily reduced

to a canonical form, and, in some cases, entire decision procedures can be encoded,

proving some goals automatically.

In addition to the simplifier, Isabelle has other automation components which are

frequently used:

• Classical Reasoner: Isabelle has a reasoner which automatically performs cer-
tain long chains of reasoning steps in natural deduction style. Several automatic
tactics (proof commands) are provided, including force and auto, which at-
tempt to prove all subgoals using search and backtracking.
• Arithmetic Decision Procedures: Many arithmetic expressions are simplified

using built-in procedures that go beyond mere rewrite rules. Linear real arith-
metic and Presburger arithmetic problems are handled particularly well, and
quite recently, the proof method sos (sum of squares) has been introduced for
nonlinear real arithmetic.
• Algebraic Decision Procedures: The Gröbner bases decision procedure is pro-

vided for users to solve simultaneous polynomial equations.
• External Provers: In addition to its built-in automation, Isabelle has been in-

tegrated with external solvers (SMT, SDP) through extensions, and now comes
tightly integrated with fully automated first-order provers (E, SPASS, Vampire)
through Sledgehammer [20],
• Automatic Refutation: Isabelle provides several tools which automatically search

for counter-examples and if detected warn the user that the current goal is un-
provable. Nitpick [21] searches for a counter model using external SAT solvers,
and Quickcheck [17] evaluates formula on random values for free variables using
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theory Group1
imports Main
begin

typedecl pt
typedecl line

consts onLine :: "[pt, line] ⇒ bool"

definition ptsOfLine :: "line ⇒ pt set"
where "ptsOfLine a ≡ {X. onLine X a}"

axioms
AxiomI12: "A 6=B =⇒ ∃! l. onLine A l ∧ onLine B l"

theorem one: "b 6=a =⇒
∃ A. ptsOfLine a ∩ ptsOfLine b = {A} ∨

ptsOfLine a ∩ ptsOfLine b = {}"
apply auto
apply (simp add: ptsOfLine_def)
apply (drule_tac x=x in spec)
apply auto
apply (rule ccontr)
apply (drule AxiomI12)
apply auto
done

end

FIGURE 3.1: An excerpt from the mechanisation of Hilbert’s Grundlagen
showing Isabelle’s syntax for types, definitions, theorems, and proofs.

a code generator. For arithmetic goals, the Isabelle’s built-in decision procedure
arith is capable of finding counterexamples.

3.2.4 Example Theory in Isabelle

This section is intended to give the interested reader a flavour of how formalisations

are built up and presented in Isabelle using theory files. We will review one example

in depth, taking an excerpt from our formalisation [119] of Hilbert’s Grundlagen [85]

shown in Figure 3.1.

To begin with, it is necessary to name a new theory and state what previous Isabelle

developments it will build upon. The first line in Figure 3.1 achieves this by stating:

theory Group1
imports Main

This tells us that theory Group1 relies on the existing theory Main, which is the union

of all the basic predefined Isabelle theories like sets and lists. Thus Main is the parent

theory of Group1. This is followed by the declaration of two new types:
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typedecl pt
typedecl line

Note that the types are not defined, so nothing is known about them except that they are

nonempty, allowing functions and predicates to take the parameters pt (standing for

point) and line. This is in keeping with Hilbert’s intention that points and lines should

be primitive notions with their properties only defined through the axioms. Hilbert also

introduced some primitive relations linking these types. One of which was the concept

of a point lying on a line. In Isabelle this is formalised using the command:

consts onLine :: "[pt, line] ⇒ bool"

In contrast to many functional programming languages, Isabelle insists on explicit dec-

larations of all predicates (keyword consts). The predicate onLine takes two argu-

ments, one of type pt and one of type line. It represents the notion of a particular

point lying on a line. Declarations and definitions of functions can be merged by using

definition...where. Below the predicate ptsOfLine is declared and defined using

this construct:

definition ptsOfLine :: "line ⇒ pt set"
where "ptsOfLine a ≡ {X. onLine X a}"

This predicate takes a specific line and represents the set of points that lie on the line.

Although Isabelle/HOL strongly encourages new theories to be conservative exten-

sions of existing theories (thus ensuring consisteny), it does permit the use of axioms.

This can be useful for some projects, such as formalising and exploring new axiomatic

systems such as Hilbert’s. The first two axioms of Hilbert’s Grundlagen are combined

and formalized below:

axioms
AxiomI12: "A 6=B =⇒ ∃! l. onLine A l ∧ onLine B l"

Due to the fact Isabelle can infer types, it is not necessary to state the types of each

variable explicitly. As the predicate onLine takes a pt and a line it can be inferred

that the variables A and B must be of type pt and the variable l must be of type line.

From this it can be deduced that AxiomI12 formally states that if two points are distinct

(i.e. not equal) then there exists a unique (∃!) line l on which both points lie.

The example proof which is presented is that of Hilbert’s first theorem. The the-

orem states that any two distinct lines either have one point or no point in common.

theorem one: "b 6=a =⇒
∃ A. ptsOfLine a ∩ ptsOfLine b = {A} ∨

ptsOfLine a ∩ ptsOfLine b = {}"
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The first line establishes a new conjecture to be proven and gives it the name one by

which it can be referred to later on. The main goal is to show that the intersection of

the set of points on line a with the set of points on line b is either a singleton set or

the empty set. The proof of this theorem in Figure 3.1 follows a procedural style. As

can be seen, this proof is difficult to understand. It requires a user to process it back in

Isabelle for a full understanding and knowledge of the intermediate subgoals.

As an aside, it is worth noting that theorem one only has one assumption. If there

had been multiple premises, say n, then the theorem could have been written using the

following Isabelle-HOL notation:

[| γ1 ; ... ; γn |] =⇒ γ

This is equivalent to γ1 ∧ . . .∧ γn⇒ γ. The Isabelle notation will be used throughout

this thesis when representing lemmas and theorems formalised in that system.

Another consideration is that as an alternative, the proof could have been con-

structed using Isar [133], an extension of Isabelle which allows more structured, read-

able proofs to be written (see Figure 3.2). This style of proof allows the naming of

assumptions and the proof state to be made explicit, making it easier for a reader to

follow. Despite this, however, we found that Isar did not facilitate easy proof explo-

ration. For this reason, all the case studies contained in this thesis have been carried

out in the procedural style2.

Finally, to close a theory file so that it can be inherited as a parent theory, the

keyword end has to be written. This completes our example.

Now that we have presented how theory files are constructed and proofs written in

Isabelle, let us turn our attention to verifying algorithms within Isabelle. This can be

achieved using Isabelle’s development of Floyd-Hoare logic, which will be described

in the following section.

3.3 Floyd-Hoare Logic

Floyd-Hoare logic provides a framework for reasoning mathematically about impera-

tive computer programs in a sound, rigorous and transparent way. It was developed by

Hoare in 1969, after being influenced by the work of Floyd [87], and was first fully

mechanised by Gordon [67] in the theorem prover HOL using an embedding of an

2It is hoped that one day Isabelle will provide the functionality to automatically convert a procedural
proof into a declarative proof. Recent work by Whiteside et al. gives hope to this dream [182].



Chapter 3. Isabelle Preliminaries for Geometric and Algorithmic Verification 45

theorem one_Declarative:
assumes ab_distinct: "b 6=a"
shows "(∃ A. (ptsOfLine a) ∩ (ptsOfLine b) = {A}) ∨

(ptsOfLine a) ∩ (ptsOfLine b) = {}"

proof (rule ccontr)
assume notConclusion:

"¬((∃A. ptsOfLine a ∩ ptsOfLine b = {A}) ∨
ptsOfLine a ∩ ptsOfLine b = {})"

from notConclusion obtain A where
"(∀A. ptsOfLine a ∩ ptsOfLine b 6= {A}) ∧
A ∈ ptsOfLine a ∧
A ∈ ptsOfLine b"

by auto

from this and ptsOfLine_def have
non_intersection: "∀A. {X. onLine X a} ∩

{X. onLine X b} 6= {A}" and
A_on_a_and_b: "onLine A a ∧ onLine A b"

by
from non_intersection and A_on_a_and_b
obtain B where

B_on_a_and_b: "onLine B a ∧ onLine B b" and
B_not_A:" B 6=A"

by auto

from this and AxiomI12 have
unique_line_A_B: "∃!l. onLine B l ∧ onLine A l"
by

from unique_line_A_B and ab_distinct and
B_on_a_and_b and A_on_a_and_b

show "False"
by auto

qed

FIGURE 3.2: Declarative proof of Theorem one in Isar

annotated while language. More recently, the logic has been mechanised in Isabelle

[131]. It is this formalisation we will take advantage of while verifying the Graham’s

Scan algorithm.

Hoare introduced a notation, called a partial correctness specification, for specify-

ing what a program does. It is written as a Hoare triple:

{P} C {Q}

where P and Q are pre- and post-conditions on the programming variables used in the

program C. The statement {P} C {Q} is true if and only if:

Whenever C is executed in a state satisfying P,
if the execution of C terminates,
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then
the state in which C terminates satisfies Q.

As it is not necessary for the execution of C to terminate when started in a state

satisfying P, the specification {P} C {Q} is only partially correct. A total correctness

specification, [P] C [Q], is a stronger kind of specification, true if and only if:

Whenever C is executed in a state satisfying P,
then

the execution of C terminates, and
the state in which C terminates satisfies Q.

Total correctness is what ultimately needs to be proved when verifying a program.

Informally:

total correctness = termination + partial correctness

Floyd-Hoare logic provides the axioms and rules of inference needed to prove a

program specification correct. Figure 3.3 lists rules for common programming con-

structs3. We will look at two in particular. Firstly, the composition rule: this allows

one to prove the correctness of specification for a sequence of statements by splitting

them up into smaller statements, identifying mid-conditions (intermediate assertions),

and proving the correctness of specifications for the smaller statements. For example,

given a program of two statements, S ; T , with a pre-condition P true before S and

post-condition R to be shown true after T , we can show correctness if we can identify

a Q such that {P} S {Q} and {Q} T {R}.
The challenge, typically, is in identifying the mid-condition; this becomes particu-

larly hard when working with loops. The second rule we will look at is the while-rule:

{R∧S} C {R}
{R} while S do C {R∧¬S}

In words, if an assertion R is preserved by a program C whenever S holds initially, then

R will be preserved by iteratively running C for as long as S is true. We say that R is an

invariant of C, and S is the loop test. The loop test is explicit in the program, but the

loop invariant must usually be found as part of the formal proof, and this — as we will

see several times in this thesis — is where the difficulty lies.

Note that this form of the while-rule is not sufficient to show that the loop ter-

minates. In Hoare’s approach, termination — and thus total correctness — is demon-

strated with the inclusion of a non-negative integer that decreases on each iteration of
3A full explanation of these rules is beyond the scope of this work. The reader is referred to Hoare’s

original exposition [87].
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Rule Name Definition

Assignment axiom {Q[E/V ]} V := E {Q}

Composition rule
{P} S {Q} , {Q} T {R}

{P} S ; T {R}

Conditional rule
{P∧B} S {Q} , {P∧¬B} T {Q}
{P} if B then S else T {Q}

Consequence rule
P′→ P , {P} S {Q} , Q→ Q′

{P′} S {Q′}

While rule
{R∧S} C {R}

{R} while S do C {R∧¬S}

FIGURE 3.3: Common rules of Floyd-Hoare logic

C: this is called the variant. In the expanded while-rule, the variant is denoted by E

and its initial value by an auxiliary variable n. An extra hypothesis R∧S→ 0≤ E ∈ Z
ensures the variant is non-negative, and as shown earlier, the curly braces are substi-

tuted by square brackets to indicate total correctness:

[R∧S∧ (E = n ∈ Z)] C [R∧ (n > E ∈ Z)] , R∧S→ 0≤ E ∈ Z
[R] while S do C [R∧¬S]

In Isabelle, we will be using Nieto and Nipkow’s formal development of Hoare

logic [131], which permits all the programming constructs just mentioned. As an ex-

ample, the notation for a program containing a while loop is as follows:

theorem
VARS (Vd)
{ P }

Vi
WHILE S
INV { R }
DO

C
OD

{ Q }

Vd are the variable declarations and Vi the variable initial assignments, and, as before,

C is the program, P the pre-conditions, R the loop invariant, S the loop test, and Q the

post-conditions. To demonstrate the partial correctness of the theorem, it is necessary

(and sufficient) to prove that the invariant R satisfies the following conditions: R holds

initially; when taken with the negation of the test S, R establishes the post-conditions
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Q; and that if R is true at the start of the program C, R will be true after C (in respect

of variables which may have changed in C), i.e:

1. P→ R
2. R∧S→C preserves R
3. R∧¬S→ Q

These conditions translate to a set of purely mathematical statements called veri-

fication conditions (VCs) which, in the case of Isabelle, are generated automatically

by the applying Nieto and Nipkow’s VC generation tactic vcg. The correctness of this

tactic has also been formally proved.

3.4 An Isabelle Theory of Lists

As shall be seen in the following chapter, the Graham’s Scan algorithm uses a stack

data structure. Rather than formalise this data structure ourselves, we chose to use

Isabelle’s theory of lists. Not only was this data type defined for us, it provided all

the operations needed to support a stack and also had the advantage of being a mature

theory with many list properties proved.

Lists, in Isabelle, are defined for a generic type (’a), as follows:

datatype ’a list = Nil ("[]")
| Cons ’a "’a list" (infixr "#" 65)

This introduces two constructors — Nil which is the empty list and Cons which is

the list concatenation operator that adds an element to the front of a list. Note that

Isabelle gives alternative syntax for each of these operators; Nil can be written as []

and Cons can be written as #. The annotation infixr beside the # symbol means that

the operator associates to the right. Isabelle also defines several useful functions for

acting upon lists. Of particular interest to our formalisation of Graham’s Scan were the

following recursively defined functions:

hd L: returns the first element of L (i.e. hd [1,2,3] = 1)
tl L: returns the list without the first element (i.e. tl [1,2,3] = [2,3])
last L: returns the final element of L (i.e. last [1,2,3] = 3)
butlast L: returns L without the last element (i.e. butlast [1,2,3] = [1,2])
L1 @ L2: returns a list which is the result of adding the elements of L1 to the
front of list L2.
distinct L: ensures all the elements of L are different
length L: returns the number of elements in L

take n L: returns the first n elements of L (where n is a natural number)
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nth L n: returns the element of L which is in the nth position

In our formalisations which follow, we have adopted Isabelle’s alternative syntax for

nth L n — we shall write the more familiar term L!n to represent the element at the

nth position of L. It should also be noted that the first element of L is denoted as L!0 and

the last as L!(length L - 1). The function returns an arbitrary value if n>(length

L - 1).

The theory of lists also includes many useful lemmas. As an illustrative example let

us focus on one which is used frequently in our proofs. The following theorem states

that a list contains all distinct elements when any two elements in different positions

are not equal:

distinct_conv_nth: distinct xs =
∀i < length xs. ∀j < length xs. i 6= j → xs!i 6= xs!j

Its proof, which will not be covered here, goes by induction, as do most of the proofs

concerning lists in Isabelle.

3.5 A Formal Theory of Planar Geometry

Verifying the correctness of Graham’s Scan algorithm first requires the construction

of a formal development of the relevant geometric concepts. In addition to many

geometric algorithms, this involves reasoning about the relative position of vertices.

This observation is made by Knuth in Axioms and Hulls [104], and his formalisation

strongly influenced the mechanised foundation of our work. We shall look at this in

the following section.

3.5.1 Knuth’s Counter-Clockwise System

Knuth defines a counter-clockwise system using the notion of left turn, where the or-

dered triple notation pqr means that the point r lies to the left of the directed line from

p to q (see Figure 3.4).

Knuth’s counter-clockwise (CC) system is then described as one which satisfies five

axioms that capture the minimal properties of the orientation predicate:

Axiom 1 (cyclic symmetry): pqr → qrp

Axiom 2 (antisymmetry): pqr → ¬prq

Axiom 3 (nondegeneracy): pqr ∨ prq

Axiom 4 (interiority): tqr ∧ ptr ∧ pqt → pqr

Axiom 5 (transitivity): tsp ∧ tsq ∧ tsr ∧ t pq ∧ tqr → t pr
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FIGURE 3.4: Point r lies to the left of the directed line from p to q.

Knuth observed that an alternate version of Axiom 5 made many proofs more succinct.

He stated it as:

Axiom 5′ (dual transitivity): st p ∧ stq ∧ str ∧ t pq ∧ tqr → t pr

The property of dual transitivity can be proven in this CC system from five applications

of Axiom 5. As Axioms 4, 5 and 5′ are difficult to visualize, their diagrammatic

representations are shown in Figure 3.5.

FIGURE 3.5: Knuth’s Axioms 4, 5 and 5′; in each case the solid coloured
angle marks the left turn which is implied by the left turns at the lightly-
shaded angles

3.5.2 Our Signed Area Mechanisation in Isabelle

One drawback of Knuth’s CC system for our purposes is that it disallows collinear

points. This leads to many elegant results in his framework, but for real-world appli-

cations the restriction is not practical. Furthermore real-world systems are frequently

based upon coordinate systems and the use of more familiar and accepted axioms is

strongly preferred. Conservatively extending the usual Isabelle definition of the real
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numbers, by defining points as a new type, gives us a theory of geometry which has

well-understood definitions and no additional axioms4.

Our Isabelle theory of planar geometry begins, as one might expect, with the defi-

nition of the type point as a pair of real numbers:

typedef point = "{p::(real*real). True}"

In Isabelle, this command produces three constants behind the scenes:

point :: real*real
Rep_point :: point ⇒ real*real
Abs_point :: real*real ⇒ point

Abs_point and Rep_point are the derived coercion functions that enable one to move

from the newly defined point type to its underlying representation and back. Thus

Rep_point, for instance, enables reasoning about points to be converted into reasoning

about coordinates and hence polynomials.

As our verification relies upon reasoning about the relative positions of points, we

must formalise this notion. We use the concept of the signed area of a triangle, with

the usual convention that positive area corresponds to an anti-clockwise ordering on

the points. In our theory this is formalised by expanding the outer product of the edges

expressed as vectors:

definition signedArea :: "[point, point, point] ⇒ real"
where "signedArea a b c ≡ (1/2) *

((xCoord b - xCoord a)*(yCoord c - yCoord a)
- (yCoord b - yCoord a)*(xCoord c - xCoord a) ) "

The predicates xCoord and yCoord are formally defined as:

definition xCoord :: "point ⇒ real"
where "xCoord P ≡ fst(Rep_point P)"

definition yCoord :: "point ⇒ real"
where "yCoord P ≡ snd(Rep_point P)"

whose fst and snd are the projection functions for pairs. Using these definitions it is

straightforward to express the orientation of points: we say that three points a, b and c

make a left turn if the signed area is positive.

definition leftTurn :: "[point, point, point] ⇒ bool"
where "leftTurn a b c ≡ 0 < signedArea a b c"

As previously described, our theory deviates from many geometric mechanisations

by including so-called degenerate cases where the points may be collinear. This is

equivalent to the triangle defined by those points having area zero:
4We opted against basing our work on our earlier mechanisation of Hilbert’s theory of geometry for

the same reason. The coordinate system approach yielded further practical benefits of being able to use
more of Isabelle’s automation and thus better evaluate its strengths and weaknesses.
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definition collinear :: "[point, point, point] ⇒ bool"
where "collinear a b c ≡ signedArea a b c = 0"

A consequence of permitting collinearity is that an ordering of points along a line can

be established. We achieve this by defining the concept of betweenness. For collinear

points a, b and c, we represent and define b lying between a and c as follows:

definition isBetween :: "[ point, point, point] ⇒ bool"
("_ isBetween _ _ " [60, 60, 60] 60)

where "b isBetween a c ≡
a6=c ∧ collinear a b c ∧
(∀d. signedArea a c d 6= 0 −→

0 < signedArea a b d / signedArea a c d ∧
signedArea a b d / signedArea a c d < 1 )"

Finally, some of our theorems benefit from having the notation of scalar multipli-

cation available, *s, defined as follows:

definition scalMult :: "[real, point] ⇒ point"
(infixl "*s" 65)

where "a *s P ≡ (λ(p1,p2).
Abs_point (a*p1,a*p2)) (Rep_point P)"

3.5.3 A Selection of Useful Properties

Our Isabelle theory of planar geometry contains several mechanically proved lemmas

concerning the properties of the predicates signedArea, collinear, leftTurn and

isBetween. These included several trivial facts regarding degenerate cases, such as:

areaDoublePoint: signedArea a a b = 0

twoPointsColl: collinear a b b

notBetweenSelf: ¬ a isBetween a b

Some of the key properties involving the combination of leftTurn and isBetween

include:
newLeftTurn: A isBetween C D ∧ leftTurn A B C

=⇒ leftTurn B C D

leftTurnsImplyBetween: leftTurn A B C ∧ leftTurn A C D ∧
collinear B C D

=⇒ C isBetween B D

conflictingLeftTurnBetween: leftTurn A B C ∧ A isBetween B C

=⇒ False

conflictingLeftTurns: leftTurn A B C ∧ leftTurn A C B

=⇒ False

Finally, two well-known results about the signed area of triangles were proven and

were very useful when it came to formalising more complicated theorems, including

some of Knuth’s axioms in the next section:
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hausner: signedArea P A B + signedArea P B C +

signedArea P C A = signedArea A B C

cramersRule: signedArea P Q R 6= 0 =⇒ T =

(signedArea T Q R / signedArea P Q R) *s P +

(signedArea P T R / signedArea P Q R) *s Q +

(signedArea P Q T / signedArea P Q R) *s R

3.5.4 Proving Knuth’s Axioms

In our theory, four of Knuth’s axioms remain true and have been proven from first

principles in Isabelle. The only one which required alteration was Knuth’s Axiom 3.

It had to have the obvious modification, which allowed points to lie in a straight line.

Knuth’s axioms were formalised in Isabelle as:
cyclicSymmetry: leftTurn b c a = leftTurn a b c

antiSymmetry: leftTurn a b c =⇒ ¬leftTurn a b c

threeConfigurations: leftTurn a b c ∨ leftTurn a c b

∨ collinear a b c

interiority: leftTurn t q r ∧ leftTurn p t r

∧ leftTurn p q t =⇒ leftTurn p q r

transitivity: leftTurn t s p ∧ leftTurn t s q

∧ leftTurn t s r ∧ leftTurn t p q

∧ leftTurn t q r =⇒ leftTurn t p r

The first three lemmas, cyclicSymmetry, antiSymmetry and threeConfigurations,

were all trivial to prove and required just the expansion of definitions and Isabelle’s

automatic tactics. The fourth lemma, interiority, was a little trickier. It could

have been proven by manipulating messy algebraic expressions but an easier and

more intuitive proof was found using the lemma hausner (from Section 3.5.3). The

lemma transitivity was much harder to prove than the others. It required reason-

ing about several different configurations of points and using cramersRule (also from

Section 3.5.3). We also proved Knuth’s Axiom 5′, represented in Isabelle as:

dualTransitivity: leftTurn t s p ∧ leftTurn s t p

∧ leftTurn s t q ∧ leftTurn s t r

∧ leftTurn t p q =⇒ leftTurn t p r

Although the proof of this lemma could have followed a similar argument to that

of transitivity, we chose to follow the synthetic proof sketched by Knuth. The

impetus behind this was that synthetic proofs are generally preferred by mathemati-

cians as they avoid algebraic manipulations and instead appeal to intuition. Knuth

commented that dualTransitivity followed from just five judicious applications of

transitivity. However, the admission of collinear points in our theory dramatically
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increased the number of case splits required: the synthetic proof did go through, but

we ended up with an additional 13 configurations of points which had to be reasoned

about formally.

With the concepts of points and their relative positions formalised, and many useful

properties relating to them now proven, we are ready to build upon this foundation and

verify the Graham’s Scan algorithm in Isabelle. This shall be presented in the next

chapter.



Chapter 4

Case Study: Proving Graham’s Scan

Our case study will focus on verifying the Graham’s Scan algorithm for computing

convex hulls, one of the most ubiquitous structures in computational geometry. In this

chapter we will first describe what a convex hull is and show how we formally define it

in the theorem prover Isabelle. The Graham’s Scan algorithm will then be introduced

along with its formal translation using Isabelle’s Hoare logic. To conclude we will

present our verification of the algorithm, detailing the loop invariant we discovered

and the verification conditions which ultimately needed proved to demonstrate partial

correctness of the algorithm. The decreasing measure which proved termination and

ultimately total correctness will also be described.

4.1 What is a Convex Hull?

Intuitively, one can imagine a set of two-dimensional points as nails sticking upwards

from a board. The convex hull of this set of points can then be pictured as the shape

produced when a rubber band is stretched around the nails and let go so that its length

is minimised (see Figure 4.1).

This analogy makes the concept of a convex hull easy to grasp. However, it is

not particularly easy to translate into a formal description. The book Computational

Geometry in C gives eight different definitions; it is natural to be drawn to the simplest

definition, but this is not always the best one for a formal development. Take for

example the following definition, which begins with the concept of convexity:

An object is convex if, for every pair of points within the object, every
point on the straight line segment that joins them is also within the ob-
ject. The convex hull of a set of points Q is then the smallest convex set
containing Q.

55
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FIGURE 4.1: The diagram on the left shows the stretching of a rubber band
around a point set, or nails sticking upwards from a board. At right, this
band is shown contracted, tightening around these nails and yielding the
convex hull of the corresponding point set.

Despite the simplicity of this definition, the requirement to check containment of all

points on all line segments becomes prohibitively difficult in certain contexts. An

alternative definition which suits our purposes well is the following:

The convex hull of a set of points Q can be defined as the smallest con-
vex polygon C, such that every point in Q either lies inside C or on the
boundary of C.

Recall that in Chapter 3 we introduced Knuth’s counter-clockwise (CC) system of

points. Knuth explains that within this CC system, the above definition of a convex

hull can be interpreted as:

The convex hull of a set of points Q is the set of all points t ∈Q and s ∈Q
such that travelling from t to s to p makes a left turn for all p ∈ Q distinct
from s and t.

In this definition the points t and s are known as the vertices of the convex hull of Q.

Clearly this definition only holds when we are traversing the vertices in a counter-

clockwise direction — an observation which is important to capture in the formal

translation. If collinearity is permitted, then it is also important to modify Knuth’s

definition slightly to allow for this — specifically points are allowed to lie between

consecutive vertices. This will be seen in the following section.

4.1.1 Convex Hulls in Isabelle

Our Isabelle translation of a convex hull is captured using an infix predicate called

isConvexHull. This takes as first argument a list of points C and checks to see that

this is the convex hull of the second list Q:
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definition isConvexHull :: "[point list, point list] ⇒ bool"
("_ isConvexHull _" [60, 60] 60)

where "C isConvexHull Q ≡ distinct C ∧ set C ⊆ set Q ∧
(∀n < length Q. ∀i < length C - 1.

( leftTurn C!(i+1) C!i Q!n ∨
Q!n mem [C!(i+1), C!i] ∨
Q!n isBetween C!(i+1) C!i ) ∧

( leftTurn (hd C) (last C) Q!n ∨
Q!n mem [hd C, last C] ∨
Q!n isBetween (hd C) (last C) ) )"

The predicate isConvexHull ensures that every point in C is distinct and belongs to

the original point set Q. We then check every point Q!n in Q against each edge in C (all

adjacent points C!(i+1) and C!i, as well as hd C and last C), requiring that one of

three possible configurations is adhered to. Either:

• Q!n lies to the left of that edge; or
• Q!n is an endpoint of that edge; or
• Q!n lies on the interior of that edge

Note that we are defining this convex hull such that the vertices in C are ordered clock-

wise. The reason for this will be apparent when the workings of the Graham’s Scan

algorithm are described.

4.1.2 Computing Convex Hulls

Now that we have defined the convex hull, let us turn our attention to the problem of

computing the hull for a given point set. The first paper to contain ideas which would

later be adopted into convex hull algorithms was by Bass and Schubert in 1967 [15].

Since then there has been a rich variety of research on the topic, and today there exists

an abundance of algorithms.

Several different methods have been found for tackling the problem in two dimen-

sions. These can be categorised based on the order in which they examine the point

set. Some of the common methods are:

• Incremental: the points are ordered from left to right
• Rotational sweep: the points are ordered using the polar angle they form with

some chosen reference vertex
• Divide-and-conquer: the points are split into two subsets — one containing the

rightmost points and one containing the leftmost points — and the convex hulls
of the subsets are recursively computed and then combined

The Graham’s Scan algorithm is based on the rotational sweep method. As shall be

seen in Section 4.2, the algorithm first finds the rightmost lowest point then orders
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the remaining points by increasing polar angle around this. Before proceeding with a

more detailed presentation of the algorithm, we will first introduce how the concept of

rotational ordering is formally captured in Isabelle.

4.1.3 Rotational Ordering in Isabelle

In Isabelle, the notion of points being ordered rotationally is represented using polar

angles. Instead of using trigonometric functions to define the polar angles, we have

opted for an approach which utilises the properties of signed areas. This gives an

equivalent ordering and, as shall be seen later, a more intuitive proof of the Graham’s

Scan algorithm. The formal definition of rotational ordering is:

definition ordered :: "point list ⇒ bool"
where "ordered Q ≡ Q!0 = lowestPt Q ∧

(∀n < length Q. ∀m.
0 < m ∧ m < n −→ before Q!0 Q!m Q!n )"

where the predicates lowestPt and before are defined as:

constdefs lowestPt :: "point list ⇒ point"
"lowestPt Q ≡ hd (sort Q)"

constdefs before :: "[point, point, point] ⇒ bool"
"before a b c ≡ (b isBetween a c) ∨ (leftTurn a b c)"

and the ordering on point is defined for the List theory’s sort as:

instantiation point :: "ord"
begin
definition point_le_def:

"u ≤ v ≡ ((yCoord u < yCoord v) ∨
(yCoord u = yCoord v ∧ xCoord v ≤ xCoord u))"

definition point_less_def:
"x < (y::point) ≡ x ≤ y ∧ x 6= y"

instance ..
end

As can be seen, the ordering on the type point used here respects the yCoord real

ordering primarily, and the xCoord predicate secondarily. The definition of lowestPt

is simply the first point in that ordering. Then, for a reference point a (which in our

case will always be Q!0) we say that b comes before c if either b lies between a and

c, or c lies to the left of the directed line from a to b. This allows us to define our

rotational ordering ordered for a set Q, as illustrated in Figure 4.2.

We have formally proven many properties of the ordered predicate in Isabelle.

One such property was the following:

orderedAndCollThenMiddleIsBetween:
[| ordered Q; collinear Q!k Q!l Q!m;

k<l; l<m; m<length Q |] =⇒ Q!l isBetween Q!k Q!m
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FIGURE 4.2: This figure shows how points are rotationally ordered around
the lowest point Q!0. We say the point Q!m comes before the point Q!n
in the rotational ordering if either Q!n lies to the left of the directed line
from Q!0 to Q!m or Q!m lies between Q!0 and Q!n.

This lemma states that if the point set Q is ordered and three points in it are collinear,

say Q!k, Q!l and Q!m, then we can deduce that Q!l lies between Q!k and Q!m if it

comes after Q!k but before Q!m in the ordered list Q.

Another important lemma pertaining to the ordered predicate is:

orderPropWithFirst_RecentLeftTurnImpliesEarlierLeftTurn:
[| ordered Q; leftTurn Q!0 Q!j Q!k;

0<i; i<j; k<length Q |] =⇒ leftTurn Q!0 Q!i Q!k

This lemma says that if the first point in the ordered list, Q!0, makes a left turn with

some other two points Q!j and Q!k (with j<k by definition of ordered), then for all

points Q!i before Q!j (0<i<j), Q!0 will also make a left turn with Q!i and Q!k. This

is shown pictorially in Figure 4.3.

FIGURE 4.3: This illustrates that if the point Q!k lies to the left of the di-
rected line segment from Q!0 to Q!j then for any point Q!i which comes
before Q!j in the rotational ordering of the point set Q, we can deduce that
Q!k lies to the left of the directed line segment from Q!0 to Q!i.
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4.1.4 A Rotational Ordering Proof

To give a flavour of the proof process we will give a detailed exposition of the cases

which had to be reasoned about in Isabelle to demonstrate the correctness of the lemma

orderPropWithFirst_RecentLeftTurnImpliesEarlierLeftTurn.

From the definition of ordered and the fact that i<k it can be shown that

leftTurn Q!0 Q!i Q!k ∨ Q!i isBetween Q!0 Q!k (1)

If the first disjunct holds then the goal is true by assumption. It remains to show

that the theorem holds when the second disjunct is the conclusion. Our intuition tells

us that Q!i cannot lie between Q!0 and Q!k, so there must be a contradiction in the

assumptions.

Again, by the definition of ordered and the fact that i<j it can be shown that

leftTurn Q!0 Q!i Q!j ∨ Q!i isBetween Q!0 Q!j (2)

If the first disjunct holds then from this and the fact Q!i isBetween Q!0 Q!k it can

be shown that leftTurn Q!0 Q!k Q!j (using the lemma newLeftTurn from Sec-

tion 3.5.3). But since we already had the fact leftTurn Q!0 Q!j Q!k from our origi-

nal assumptions we have a obtained a contradiction.

If the second disjunct from (2) holds then we can easily show that

collinear Q!i Q!0 Q!j (3)

Likewise, from the fact that Q!i isBetween Q!0 Q!k it can be shown that

collinear Q!i Q!0 Q!k (4)

From (3) and (4) it can be deduced that

collinear Q!0 Q!j Q!k (5)

However, this fact cannot hold as it contradicts with the original assumption that

leftTurn Q!0 Q!j Q!k, completing the proof.

4.2 The Graham’s Scan Algorithm

Now that we have established a way to formally represent a rotational ordering on a

planar point set, we can return to looking at how the Graham’s Scan algorithm works.

The first publication in the field of computational geometry is commonly attributed

to Graham for his paper describing an algorithm for finding the convex hull of a set

of two dimensional points [69]. Graham developed the algorithm in response to a

problem at Bell Labs which required the hull of 10,000 points to be computed. There
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was an algorithm already implemented, but its running time of O(n2) was found to be

too slow. The Graham’s Scan algorithm reduced the running time down to O(n · log n).

The algorithm solves the problem by maintaining a stack C of candidate points.

Each point of the input set Q is pushed once onto the stack, and the points that are not

vertices of the convex hull are eventually popped. The precise version of the Graham’s

Scan algorithm we verify is that given by O’Rourke in Computational Geometry in C

[138], with the pseudocode included here in Figure 4.4.

GRAHAM’S SCAN ALGORITHM

Inputs: Points in Q such that Q0 is the rightmost lowest point and
subsequent points are sorted in increasing angular distance from
the ray rooted at Q0 and pointing along the positive x-axis, with
points nearer Q0 ordered first in the case of ties, n = len Q

Variables: Stack C=[Qn−1,Q0], Integer i = 1

while i < n do
if Qi is strictly left of edge C0C1

then Push(C,Qi) and set i ← i + 1
else Pop(C)

FIGURE 4.4: Pseudocode for Graham’s Scan Algorithm.

As the pseudocode reveals, the input points Q0,Q1, . . . ,Qn−1 are supplied ordered

by increasing polar angle (anti-clockwise) around Q0, which is the rightmost lowest

point. The hull C is initialised with the first and last points in the input, Qn−1 and Q0,

giving a reference edge with which the algorithms starts. The points Q1,..,Qn−1 are

then processed in their sorted order and the hull grown incrementally around the set.

As the algorithm recurses through Q it tests whether each point Qi makes a left turn

with respect to the two most recently added points in C. If so, Qi is pushed onto the

stack C and the next point, Qi+1, is examined. If a right turn is made or the triple is

collinear, then the most recently added point in C is popped and the algorithm again

tests whether Qi makes a left turn with the two top points in the reduced hull C. When

the algorithm terminates, the stack C contains precisely the vertices of the convex hull

of Q. This process is illustrated with an example in Figure 4.5.

The observant reader will have noticed that the point Qn−1 ends up twice on the

stack C, so a final pop is required. Another important observation is that the algorithm

fails if there are less than three non-collinear points in the input set Q. It is necessary

to make this pre-condition explicit when formalising the algorithm using Hoare logic.

Section 4.3 will highlight this.
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(A) The algorithm starts with all points ro-
tationally ordered around the lowest right-
most (Q0). The stack C is initialised as
[Q6,Q0] (solid line), and the first edge
being considered is Q0Q1 (dashed line).
Here, this makes a left turn with Q6Q0 and
so Q1 is added to the stack.

(B) On the next iteration Q2 is added to the
stack, giving C = [Q6,Q0,Q1,Q2]. Let us
now consider Q3: this makes a right turn
with the two points at the top of the stack,
and so Q2 is popped from the stack.

(C) We now have C = [Q6,Q0,Q1], and
we are still considering Q3. Now this
point makes a left turn with the two points
at the top of the stack, and so Q3 is
added to the stack. On the following it-
eration, Q4 is considered with respect to
Q1Q3, giving a left turn and stack C =
[Q6,Q0,Q1,Q3,Q4].

(D) We now look at Q5 with respect to
Q3Q4; this yields a right turn, so Q4 is
popped. Q5 is then considered with respect
to Q1Q3, and as these are collinear, there
is still no left turn and Q3 is popped. Q5 is
then considered with Q0Q1, finally yield-
ing a left turn, and Q5 is added. Lastly
Q1Q5Q6 makes a left turn, and the algo-
rithm terminates with the convex hull of
Q0Q1Q5Q6.

FIGURE 4.5: Illustration of Graham’s Scan Algorithm

4.3 Formal Statement of Graham’s Scan

Armed with the necessary Isabelle theories of lists and geometry (described in Chap-

ter 3), we can present an Isabelle theorem for the correctness of the Graham’s Scan

algorithm. This is done using Isabelle’s Hoare logic (see Section 3.3), which requires

us to annotate the algorithm with the correct pre-conditions, loop invariant, and post-

conditions. Finding the correct invariant was one of the most challenging tasks, and

we will describe this further in the next chapter; here we will present the completed

theorem, shown in Figure 4.6, highlight the key components of the theorem statement,
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and then proceed to explain its proof.

theorem GrahamsScan: "

VARS (Q::point list) (C::point list) (i::nat)

{ ordered Q ∧ distinct Q ∧ ¬ allCollinear Q }

i := 1;
C := [hd Q, last Q];
WHILE i < length Q
INV { invariant_GS Q C i }
DO

IF leftTurn (C!1) (C!0) (Q!i)
THEN

C := (Q!i) # C;
i := i+1

ELSE
C:= tl C

FI
OD

{ (butlast C) isConvexHull Q }"

FIGURE 4.6: Formalisation of Graham’s Scan Algorithm in Isabelle using
the Hoare logic representation

Figure 4.6 shows how Graham’s Scan is formalised in Isabelle’s Hoare logic. It

can be seen that it closely resembles that of the pseudo-code of Figure 4.4. Note how

the pre-conditions of Graham’s Scan guarantee that the input conforms to the contract

of the algorithm; from Figure 4.6 it can be seen that the first pre-condition states that

the input point set Q has been correctly ordered (such as by a pre-processing step) and

the next two pre-conditions exclude degenerate cases, requiring the input to consist of

distinct points not all lying on the same line. The post-condition of the algorithm is, of

course, fundamental to the correctness of the proof, stating that the list butlast C is a

convex hull of the input points Q. (The butlast is necessary because in this form, the

algorithm places last Q as the first element and the last element of C; removing one

of the duplicate vertices in this way gives the same resulting vertex set which would

have been produced by popping the final point when the loop terminates.)
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definition invariant_GS ::
"[point list, point list, nat] ⇒ bool"

where "invariant_GS Q C i ≡
i ≤ length Q ∧ (I1)
1 ≤ i ∧ (I2)
(i = length Q −→ last Q = C!0) ∧ (I3)
¬allCollinear Q ∧ (I4)
distinct Q ∧ (I5)
ordered Q ∧ (I6)
(∃L. C = L @ [Q!0, last Q]) ∧ (I7)
distinct (butlast C) ∧ (I8)
set (butlast C) ⊆ set (take i Q) ∧ (I9)
(∀j k l. l<(length C - 1) ∧ k<l ∧ j<k −→
leftTurn C!l C!k C!j ) ∧ (I10)

(∃n≤i. Q!n = C!0 ∧
(butlast C) isConvexHull (take (n+1) Q) ∧
(∀j<i. j>n −→ ¬leftTurn Q!n Q!j Q!i) )" (I11)

FIGURE 4.7: The loop invariant for Graham’s Scan formalised in Isabelle.

The loop invariant for Graham’s Scan is shown in Figure 4.7. We chose to represent

it in Isabelle as a new definition which takes three arguments: the input point set Q,

the set of hull vertices C and the loop counter i. Constructing this loop invariant was a

manual task which required insight into the proof and countless iterations of refinement

before the 11 components (which would permit the proof to succeed) were formulated.

The discovery of the loop invariant started from the knowledge that in any Hoare logic

proof, the post-condition must follow from the loop invariant and negated loop test.

In this example, the key component of the loop invariant which is used to prove the

post-condition holds on termination of the loop is (I11). This states that, as the loop

iterates through the elements of Q, C will be a convex hull of all points in Q up to Q!n,

where Q!n is the vertex at the the head of C. The component (I11) also contains the

fact that all points, Q!j, which have been popped while examining the new point Q!i,

must lie inside the final hull, or in other words the point Q!i cannot lie to the left of

the directed line from Q!n to Q!j. The essence of the proof starts to take shape with

this observation, but, as the remaining components of the loop invariant testify, there

is a large amount of scaffolding which must be declared and carried through the proof

to support the essential logic. The need for this scaffolding should become clear as we

explore the proof and the myriad of subtle case splits which arise.
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4.4 Proving Graham’s Scan in Isabelle

In this exposition, to improve readability we will use mathematics notation inter-

changeably with the formalised Isabelle definitions:

A ≡ A

len Q ≡ length Q

Qi ≡ Q!i (the ith element of list Q, zero-indexed)

We will also introduce symbols for some of our most frequently used Isabelle expres-

sions:

	 ABC ≡ leftTurn A B C

	... ABC ≡ leftTurn A B C ∨ collinear A B C

... ABC ≡ collinear A B C

B GAC ≡ B isBetween A C

Since we will often refer to directed edges we will also introduce the notation:
−→
AB ≡ the directed edge from point A to point B

Recall from Section 3.3 that demonstrating partial correctness entails proving three

verification conditions (VCs) per loop. Thus Graham’s Scan, with its single loop,

yields a total of three VCs which the following subsections will explore. Selected

details of some — particularly the first and third VCs — are given to familiarise the

reader with the mechanical proof process and the extent of Isabelle’s automation. For

VC2, we focus on the crux of this proof and omit minor subgoals that might distract

from proof comprehension. The formal proof includes all cases.

4.4.1 Verification Condition 1

The first of the three verification conditions is:

Preconditions→ Loop Invariant (initial)

Once Isabelle performs simplification, this reduces to VerificationCondition1 as

shown in Figure 4.8. One can see that Isabelle has automatically discharged many of

the invariant components which have to be proved (specifically (I2), (I4), (I5), (I6),

(I8) and (I10)) and simplified many of the others (since i = 1 and C is known).

The remaining subgoals all become straightforward once we note that (A3) implies

3≤ len Q. Key details of their proofs are as follows:
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lemma VerificationCondition1:

"[| ordered Q ; (A1)
distinct Q ; (A2)
¬ allCollinear Q (A3)

|] =⇒
1 ≤ length Q ∧ (C1)
(1 = length Q −→ last Q = hd Q) ∧ (C2)
hd Q = Q!0 ∧ (C3)
hd Q ∈ set (take 1 Q) ∧ (C4)
(∃n≤1. Q!n = hd Q ∧

[hd Q] isConvexHull (take (n+1) Q))" (C5)

FIGURE 4.8: Verification Condition 1

• (C1) corresponds to component (I1) of the invariant. It follows from the fact
1 < 3 and is proven easily using Isabelle’s arith tactic due to the fact it is a
linear arithmetic statement.
• (C2) corresponds to component (I3) of the invariant. Our proof used the fact

that the left-hand side of the implicand is false, making the goal trivially true.
(It would not be hard to show this conclusion in the general case, but it was
unnecessary and more work in this case.)
• (C3) corresponds to component (I7) of the invariant. Isabelle automatically de-

duces this once we introduce the fact that Q is not empty. (We discovered later
that this could have been automatically discharged by Isabelle, had we replaced
hd Q by Q!0 and hence had obtained C=[Q!0, last Q].)
• (C4) corresponds to component (I9) of the invariant. Again, Isabelle automati-

cally deduces this once we introduce the fact that Q is not empty.
• (C5) corresponds to component (I11) of the invariant. By instantiating n to be 0,

this follows from the definition of convex hull.

This concludes the proof that the loop invariant holds on initialisation of the loop.

4.4.2 Verification Condition 3

The core of the proof of partial correctness involves showing that the loop invariant is

preserved (VC2). Before showing this, however, let us present the proof of the third

VC, as this is more straightforward. VC3 claims that the loop invariant implies the

postconditions on termination:

Loop Invariant ∧ ¬ Loop Test→ Postconditions

When expanded and simplified by Isabelle, we have the lemma shown in Figure 4.9.

By combining (A1) and (A12) we can deduce:
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lemma VerificationCondition3:

"[| i ≤ length Q ; (A1)
1 ≤ i ; (A2)
(i = length Q −→ last Q = C!0) ; (A3)
¬ allCollinear Q ; (A4)
distinct Q ; (A5)
ordered Q ; (A6)
(∃L. C = L @ [Q!0, last Q]) ; (A7)
distinct (butlast C) ; (A8)
set (butlast C) ⊆ set (take i Q) ; (A9)
(∀j k l. l<length C - 1 ∧ j<k ∧ k<l −→

leftTurn C!j C!l C!k ) ; (A10)
(∃n≤i. Q!n = C!0 ∧

(butlast C) isConvexHull (take (n+1) Q) ∧
(∀j<i. n<j −→

leftTurn Q!i Q!j Q!n ∨
collinear Q!i Q!n Q!j) ) ; (A11)

¬ i < length Q (A12)
|] =⇒

(butlast C) isConvexHull Q " (C1)

FIGURE 4.9: Verification Condition 3

i = length Q (A13)

Instantiating the n whose existence is asserted by (A11), and combining this with

(A13), yields:

n ≤ length Q (A14)

Q!n = C!0 (A15)

(butlast C) isConvexHull (take (n+1) Q) (A16)

(∀j<i. n<j −→
leftTurn Q!(length Q) Q!j Q!n ∨
collinear Q!(length Q) Q!n Q!j) ) (A17)

We have to explicitly introduce the impossible case n= len Q in the course of the proof

in order for Isabelle to automatically discard it. Once this is done, (A14) becomes:

n < length Q (A18)

Next we combine (A3) and (A15) to get:

Q!n = last Q (A19)

which together with the fact that all points in Q are distinct (A5), and n < len Q (A18),

implies that:

n = length Q - 1 (A20)
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(A16) then simplifies to show (C1):

(butlast C) isConvexHull Q (A21)

This completes the proof.

4.4.3 Verification Condition 2: Left Turn Case

VC2 deals with the behaviour of the algorithm as it recurses through the loop. It shows

that the invariant is preserved when entering and leaving the loop:

Loop Invariant ∧ Loop Test→ Loop Invariant (subsequent iteration)

In the Graham’s Scan algorithm, recall that the loop recurses through the points of

Q, using i as the counter. It also constructs a set C which, when the loop terminates,

will be the convex hull of Q. After running Isabelle’s VCG tool and performing basic

simplification, we have two lemmas to prove. The first lemma deals with the case

where Qi makes a left turn with respect to the last edge constructed, i.e. the two points

at the head of C, while the second deals with the case where Qi does not make a left

turn with this edge.

This section will cover the “left turn” case whose VC is shown in in Figure 4.10,

and Section 4.4.4 will cover the “non left turn” case, with its VC shown in Figure 4.19.

The crux of these lemmas is to show that as i indexes through the points of Q,

a set is being constructed in C containing the vertices of the convex hull of a subset

of the points examined so far, i.e. C will contain a subset of Q0, . . . ,Qn. Most of

the assumptions in these two lemmas are scaffolding to support the main claim, that

after every iteration, C is the convex hull of Q0 . . .Qn. Let us first discharge many of

scaffolding conclusions whose proofs are simple:

• (C1) is proved by assuming i+1 = length Q. We then have to show last Q =

Q!(length Q-1), as Q is not empty. This is not automatically proved in Isabelle,
but is simple once one finds the appropriate theorem contained in Isabelle’s li-
braries. In this instance the theorem last_conv_nth discharges this.
• (C2) can be shown automatically once we perform quantifier elimination on the

existential in (A7) to give us an L. Isabelle will then infer that the existential in
the conclusion must be Q!i # L.
• (C3) requires first showing that Q!i /∈ set (take i Q). Since (A9) tells us set
(butlast C) ⊆ set (take i Q), it follows that Q!i /∈ set (butlast C).
• (C4) is a direct restatement of a lemma contained in Isabelle’s library; the proof

is immediate once in_set_conv_nth is found and applied.
• (C5) follows from transitivity of set (butlast C) ⊆ set (take i Q) (A9)

and set (take i Q) ⊆ set (take (i+1) Q) (from Isabelle’s library).
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lemma VerificationCondition2_LeftTurnCase:

"[| i ≤ length Q ; (A1)
1 ≤ i ; (A2)
(i = length Q −→ last Q = C!0) ; (A3)
¬allCollinear Q ; (A4)
distinct Q ; (A5)
ordered Q ; (A6)
(∃L. C = L @ [Q!0, last Q]) ; (A7)
distinct (butlast C) ; (A8)
set (butlast C) ⊆ set (take i Q) ; (A9)
(∀j k l. l<length C - 1 ∧ j<k ∧ k<l −→
leftTurn C!j C!l C!k ) ; (A10)
(∃n≤i. Q!n = C!0 ∧
(butlast C) isConvexHull (take (n+1) Q) ∧
(∀j<i. n<j −→

leftTurn Q!i Q!j Q!n ∨
collinear Q!i Q!n Q!j )) ; (A11)

i < length Q ; (A12)
leftTurn Q!i C!1 C!0 (A13)

|] =⇒
(Suc i = length Q −→ last Q = Q!i) ∧ (C1)
(∃L. Q!i # C = L @ [Q!0, last Q]) ∧ (C2)
Q!i /∈ set (butlast C) ∧ (C3)
Q!i ∈ set (take (i+1) Q) ∧ (C4)
set (butlast C) ⊆ set (take (i+1) Q) ∧ (C5)
(∀j k l. l<length C ∧ j<k ∧ k<l −→
leftTurn (Q!i#C)!j (Q!i#C)!l (Q!i#C)!k ) ∧ (C6)
(∃n≤i+1. Q!n = Q!i ∧
(Q!i # butlast C) isConvexHull (take (n+1) Q) ∧
(∀j<i+1. n<j −→

leftTurn Q!n Q!i+1 Q!j ∨
collinear Q!n Q!j Q!(i+1) )) " (C7)

FIGURE 4.10: Verification Condition 2: The Left Turn Case

We now come to (C6) and (C7), the more interesting subgoals that have to be proven.

4.4.3.1 Proving (C6)

Here we are showing that loop invariant component (I10) is preserved when the new

point being examined, Qi, makes a left turn with respect to the edge
−−→
C1C0 and has

been added to the vertex list C. We have to prove that taking any three vertices, in

descending order from their position in C, will make a left turn. In other words we are

showing that the points in C are ordered clockwise. Logically speaking, we have to
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show that, for 0≤ j < k < l < len C:

	 (Qi # C) j (Qi # C)l (Qi # C)k

When C contains three or fewer points, this statement follows trivially from the

assumptions.

When C has more than three points, we first consider the case when j > 0. This

simplifies to showing 	C j−1 Cl−1 Ck−1 (for the same j, k, l above), which is implied

by (A10). It is unsurprising that this case is so straightforward because we are not yet

saying anything about the new point Qi.

The remaining case, j = 0, states that the clockwise ordering of C is preserved with

the addition of the new point Qi at the head of C. The new point must lie to the left of

all pairings of points in C taken in descending order of their position in C:

	 Qi Cl−1 Ck−1

Here, let us split the proof into three cases: one where Q0 is considered; one where

C0 is considered; and finally the general case where we are checking two intermediate

points in the vertex list C.

In the first case, where we are examining Q0, we must have l = len C− 1. It has

to be proved that 	 Qi Q0 Ck−1. The ordering on Q (A6) tells us 	 Q0 Ck−1 Qi or
... Q0 Ck−1 Qi. However, from the fact that 	 Qi C1 C0 (A13), the collinear case cannot

be true and we are left with the desired result.

FIGURE 4.11: The second case, where we are considering the point
Ck−1 =C0 = Qn. We have to show that Qi Qa Qn is a left turn.

In the second case, where we are considering C0, we must have k = 1. If l = 2 the

goal is 	 Qi C1 C0, which matches assumption (A13) and the proof is complete. For
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2 < l < len C−1 let us introduce an n and m such that Ck−1 =C0 = Qn and C1 = Qm;

and note that by the ordering on Q we know m < n < i. Let us also introduce an a such

that 0 < a < m and Qa =Cl−1 (see Figure 4.11). The goal then reduces to 	 Qi Qa Qn.

We now have five distinct points (Q0, Qa, Qm, Qn and Qi) with enough information

to apply the lemma transitivity to yield 	 Qi Qa Qn. This completes the proof of

the second case.

FIGURE 4.12: The general case, when we are considering two intermedi-
ate points Cl−1 = Qa and Ck−1 = Qb. We have to show that QiQaQb is a
left turn.

In the general case, we are considering two intermediate points, i.e. coming after

Q0 and before Qn in the ordering of Q. Let us call these Qa and Qb with 0 < a < b < n

(and Qa,Qb ∈C), as shown in Figure 4.12. We need to show that 	 Qi Qa Qb.

We first show the following five left turns hold:

	 Q0 Qa Qb (follows from (A10))
	 Q0 Qa Qn (follows from (A10))
	 Qa Qb Qn (follows from (A10))
	 Q0 Qa Qi (follows from earlier proof when we considered l = len C−1)
	 Qa Qn Qi (follows from earlier proof when we considered k = 1)

We can then apply the lemma dualTransitivity with instantiations t = Qa, p = Qb,

r = Qi, q = Qn, and s = Q0, to complete the proof of the general case.

4.4.3.2 Proving (C7)

(C7) is the most significant component of VC2 (left turn case). After quantifier elimi-

nation and instantiating the bound variable as i, (C7) reduces in Isabelle to:
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i≤i+1 ∧
Q!i = Q!i ∧
(Q!i # butlast C) isConvexHull (take (i+1) Q) ∧
(∀j<i+1. i<j −→

leftTurn Q!i Q!i+1 Q!j ∨
collinear Q!i Q!j Q!i+1 )

Nearly all of these are trivial and automatically proved by Isabelle. After applying

auto, we are left needing to show only that our assumptions (A1) through (A13) imply:

(Q!i # butlast C) isConvexHull (take (i+1) Q)

So, we have to show that if Qi lies to the left of
−−→
C1C0 (A13), then when Qi is added to

the list of candidate vertices, the resulting list is the convex hull of all points encoun-

tered in the sweep so far (through Qi). Note that (A11) included the statement that C

is the convex hull of all points that had been encountered in the sweep up to C0 (which

is equal to some Qn, where n≤ i). Essentially we have to show that this property will

be invariant when we update C to contain Qi.

To prove this in Isabelle, we expand the definition of isConvexHull, yielding the

following facts to prove:

Q!i /∈ set (butlast C) (C8)

Q!i ∈ set (take (i+1) Q) (C9)

set (butlast C) ⊆ set (take (i+1) Q) (C10)

(∀a. a < length Q ∧ a<i+1 −→
(∀k < length C-1.

( leftTurn Q!a (butlast C)!k (Q!i # (butlast C))!k ∨
(butlast C)!x = Q!a ∨
(Q!i # (butlast C))!k = Q!a ∨
Q!a isBetween (butlast C)!k (Q!i # (butlast C))!k ) ∧

( leftTurn Q!0 Q!a Q!i ∨
Q!i = Q!a ∨
Q!0 = Q!a ∨
Q!a isBetween Q!0 Q!i ) ) ) (C11)

We now note that (C8), (C9) and (C10) are identical to (C3), (C4) and (C5) respec-

tively, and in our mechanisation we re-used their proofs. This leaves us with just

(C11), the meat of the argument, left to prove. We need to show that for every directed

edge in the new hull — i.e. travelling from (butlast C)!k to (Q!i # (butlast

C))!k for all k < (length C-1)1 — all points Qa (0≤ a≤ i) either lie to the left of

that directed edge or are on the edge.

We split the proof into three cases:

• the first considers Qa = Qi as a special case;

1This edge is equivalent to the edge
−−−−→
CkCk+1, for all k < len C−1. We will use this abbreviated form

in the remainder of the proof.



Chapter 4. Case Study: Proving Graham’s Scan 73

• the second case considers all the points Qa where 0≤ a≤ n (these are the points
which lie on or in the previous hull and where C0 = Qn by (A11));
• and the third case considers all points Qa which may have been popped since Qn

was added to C, where n < a < i.

Case 1: The Point Qi

For the case where Qa = Qi, we first check this point lies to the left or on the two

newly constructed edges, namely
−−−→
QnQi and

−−−→
QiQ0. The proof is trivial here as Qi is an

endpoint of each edge.

We then ensure Qi lies to the left or on the edges which belonged to the previous

convex hull. This means showing that ∀k < len C− 2. 	 Qi Ck+1 Ck. This fact is de-

duced by following a similar argument to that of the proof for (C6) — the proof which

showed the preservation of loop invariant (I10) when the left turn case holds. Recall

that here we proved ∀ j k l.0 ≤ j < k < l < len C. 	 (Qi#C) j (Qi#C)l (Qi#C)k holds

under our assumptions. From this it can be shown that ∀k < len C− 2. 	 QiCk+1Ck

completing the proof.

Case 2: Points on or in the Previous Hull

In this case, we have to ensure that all the points which lie inside or on the boundary

of the previous hull (i.e. all points from Q0 up to Qn, in the shaded region of the figures

here) lie on or to the left of every edge in the newly constructed hull.

FIGURE 4.13: Case 2, previous hull edges

From assumption (A11) it is easy to show

that this is true for all edges contained in

the previously constructed hull (highlighted

in Figure 4.13).

We also need to show that the points on or

inside the previous hull lie on or to the left of

the edge just added,
−−−→
QnQi (highlighted in Fig-

ure 4.14) and to the new closing edge,
−−−→
QiQ0

(highlighted in Figure 4.15).

Let us first look at
−−−→
QnQi: we need to show

that Qa is on or to the left of this edge for all

a satisfying 0 ≤ a ≤ n. For point Q0 (when

a = 0), we know this is true by the same argument used to prove (C6) in the previous

section.



Chapter 4. Case Study: Proving Graham’s Scan 74

Next, consider the point Qn (when a = n): this case is trivial as Qn is a an endpoint

of the edge
−−−→
QnQi.

FIGURE 4.14: Case 2, new added edge

It remains to consider points Qa for 0 <

a < n. From the ordering property of Q we

can infer that either 	Q0QaQn or Qa G Q0 Qn.

If Qa lies between Q0 and Qn then it can be

shown using one of the newLeftTurn lemmas

that 	 QnQiQa (i.e. that Qa lies to the left of
−−−→
QnQi).

If the left turn case holds instead (i.e.
	 Q0QaQn) then we first consider when Qa =

C1. Here we have to show 	C1QnQi, which is

a fact already known from assumption (A13).

For Qa 6=C1 we first show that there is a k < n such that C1 = Qk. Then the following

five left turns can be deduced:

	 QkQnQi (from A13)
	 QkQnQ0 (from A10)
	 QkQnQa (from A11)
	 QnQiQ0 (from same argument as C6)
	 QnQ0Qa (from A11)

Note that in the third left turn fact we also have a between case to consider, Qa G QkQn,

leading easily to the fact 	 QaQnQi. With these left turns established, the lemma

dualTransitivity (see Section 3.5.4) can be applied with the instantiations q = Q0,

t = Qn, p = Qi, r = Qa and s = C1. This gives us 	 QnQiQa, completing the proof of

case 2 for
−−−→
QnQi.

FIGURE 4.15: Case 2, new closing edge

Now let us look at
−−−→
QiQ0. For a = 0

here, the proof is trivial as this is an end-

point. It remains to show 	 QiQ0Qa for all

other points Qa where 0 < a ≤ n. We can

deduce 	 Q0QnQi using a slight variation of

the proof of (C6), giving us the case a = n,

and for the other points, this fact along with

the lemma orderedPropWithFirstRecent

LeftTurnImpliesEarlierLeftTurn (shown

in Section 4.1.3), yields 	 Q0QaQi.
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This completes the proof that all points Q0, . . . ,Qn lie on or to the left of all the

edges in the newly constructed hull.

Case 3: Points Popped After Visiting Qn and Before Pushing Qi

FIGURE 4.16: Case 3, new added edge

In this case we are checking that all

popped points Qa, where n < a < i, lie to

the left of or on the edges for the newly con-

structed hull.

First we check these points (again shown

in the shaded region) against the edge
−−−→
QnQi

(Figure 4.16). From the last conjunct of

(A11) we know that either 	 QiQaQn or
... QiQnQa. If the first disjunct holds we have

satisfied the condition that Qa lies to the left

of
−−−→
QnQi. If the collinear case holds we must

show that Qa lies on the edge
−−−→
QnQi. Thus it

must be shown that Qa lies between Qn and Qi. This follows from the ordering property

of Q (lemma orderedAndCollThenMiddleIsBetween shown in Section 4.1.3).

FIGURE 4.17: Case 3, new closing edge

We now check Qa against the edge
−−−→
QiQ0

(Figure 4.17), looking to show 	 Q0QaQi ∨
Qa GQ0Qi. Again, this follows directly from

the fact that Q is ordered.

Now let us look at Qa with respect to

edges which belonged to the previous hull

(Figure 4.18). We start by deducing the fol-

lowing five left turn facts2:

	 QnQiQ0 (follows from (A10))
	 QnQiCk+1 (follows from (A10))
	 QnQ0Ck+1 (follows from (A10))
	QnQaQ0 (follows from ordering of Q)
	 QnQiQa (follows from (A11))

We can then apply the lemma transitivity with the instantiations s = Qi, t = C0,

p = Qa, q = Q0, r =Ck+1 to get the fact:

	Ck+1QnQa

2For brevity here we have omitted collinear cases. These are included in the formal proof.
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FIGURE 4.18: Case 3, previous hull edges

Using this left turn fact with the following

four left turns:

	 Q0Ck+1Ck (follows from (A10)
	 Q0Ck+1Qn (follows from (A10))
	Ck+1CkQn (follows from (A10))
	Q0Ck+1Qa (follows from ordering of Q)

allows us to apply dualTransitivity, with

the instantiations t = Ck+1, q = Qn, p = Ck,

r = Qa and s = Q0, to obtain the desired fact:

	Ck+1CkQa

This completes the proof that all popped

points lie to the left or on the edges of the

newly constructed hull.

Special Cases

Cases 1 through 3 have shown the general proof of VC2 (left turn case), which has

assumed at least 5 vertices in the previous hull C. Of course, it is also necessary to

show that the verification condition holds for the special cases involving fewer points,

and while the proof is not trivial, it is not particularly insightful and so has been omitted

here.

4.4.4 Verification Condition 2: Non-Left Turn Case

For the case where Qi does not lie to the left of the directed line segment
−−→
C1C0 then C0

is popped from the list of vertices C. In Isabelle notation, C is updated to be tl C, and

we must show that all the loop invariant components remain true with respect to this

new instantiation. The lemma to prove is shown in Figure 4.19.

We will only present the proof for (C5) as this is the crux of the lemma. (The proofs

of the other subgoals are largely similar to those in the left turn case of the previous

section.)

4.4.4.1 Proving (C5)

This goal is saying that the loop invariant component (I11) is preserved after we pop

the head of C when a non-left turn is encountered. The proof involves demonstrating:

• the updated list of candidate vertices, butlast (tl C), is a convex hull for all
points in Q up to C1; and
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lemma VerificationCondition2_NotLeftTurnCase:

"[| i ≤ length Q ; (A1)
1 ≤ i ; (A2)
(i = length Q −→ last Q = C!0) ; (A3)
¬allCollinear Q ; (A4)
distinct Q ; (A5)
ordered Q ; (A6)
(∃L. C = L @ [Q!0, last Q]) ; (A7)
distinct (butlast C) ; (A8)
set (butlast C) ⊆ set (take i Q) ; (A9)
(∀j k l. l<length C - 1 ∧ j<k ∧ k<l −→
leftTurn C!j C!l C!k ) ; (A10)
(∃n≤i. Q!n = C!0 ∧
(butlast C) isConvexHull (take (n+1) Q) ∧
(∀j<i. n<j −→ leftTurn Q!i Q!j Q!n ∨

collinear Q!i Q!n Q!j )) ; (A11)
i < length Q ; (A12)
¬leftTurn Q!i C!1 C!0 (A13)

|] =⇒

(∃L. tl C = L @ [Q!0, last Q]) ∧ (C1)
distinct (butlast (tl C)) ∧ (C2)
set (butlast (tl C)) ⊆ set (take i Q) ∧ (C3)
(∀j k l. l<length C-2 ∧ j<k ∧ k<l −→

leftTurn (tl C)!j (tl C)!l (tl C)!k ) ∧ (C4)
(∃n≤i. Q!n = (tl C)!0 ∧
(butlast (tl C)) isConvexHull (take (n+1) Q) ∧
(∀j<i. n<j −→ leftTurn Q!i Q!j Q!n ∨

collinear Q!i Q!n Q!j ) ) " (C5)

FIGURE 4.19: Verification Condition 2 Non-Left Turn Case

• all points Q j appearing after C1 and before Qi in the ordered list Q, lie either on
or to the left of

−−→
C1Qi.

We begin by taking an n and m such that Qn = C0 and Qm = C1; it can be shown

that m < n < i (and that C has at least 3 points). (C5) can be rewritten as:

(butlast (tl C)) isConvexHull (take (m+1) Q) (C6)
∀j. m<j<i → ¬leftTurn Q!m Q!j Q!i (C7)

The proof for these goals will be shown in the following sections.



Chapter 4. Case Study: Proving Graham’s Scan 78

4.4.4.2 Proving (C6)

To prove (C6) in Isabelle, we first expand the definition of isConvexHull yielding:

distinct (butlast (tl C)) (C8)
set (butlast (tl C)) ⊆ (take (m+1) Q) (C9)
(∀a < m+1. ∀k < length (tl C) - 1.

( leftTurn Q!a (butlast (tl C))!k+1 (butlast (tl C))!k ∨
(butlast (tl C))!k+1 = Q!a ∨
(butlast (tl C))!k = Q!a ∨
Q!a isBetween (butlast (tl C))!k+1 (butlast (tl C))!k ) ∧

( leftTurn Q!0 Q!a Q!m ∨
Q!m = Q!a ∨
Q!0 = Q!a ∨
Q!a isBetween Q!0 Q!m ) ) (C10)

FIGURE 4.20: Previous hull edges

The first property, (C8), is proved simi-

larly to (C2) and the second property, (C9), is

proved by contradiction. The final fact (C10)

is the more interesting one to prove. It is say-

ing that every point Qa (where 0 ≤ a ≤ m)

either lies on or to the left of each edge of the

updated convex hull; the edge
−−−→
QmQ0 together

with the edges which travel from butlast

(tl C)!(k+1) to butlast (tl C)!k (for 0

< k < length (tl C) - 1).

FIGURE 4.21: Closing edge

We first show that all the points in Q up

to Qm (shown in the shaded region of Fig-

ures 4.20 and 4.21) lie on or to the left of

the edges which belonged to the previous hull

(the edges highlighted in Figure 4.20). We

can prove this using (A11), the assumption

which describes the convex hull of the pre-

vious loop iteration.

The final case is where we consider the

edge which closes the hull,
−−−→
QmQ0 (see Fig-

ure 4.21). The points Qa = Qm and Qa = Q0

are on the edge, and so (C10) holds, and the

remaining points Qa, 0< a<m, the rotational

ordering gives us the desired property. This

concludes the proof of (C6).
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To complete the proof of (C5) we must also demonstrate (C7). This will be shown

in the following section.

4.4.4.3 Proving (C7)

(C7) says that all popped points Q j (m < j < i) do not make a left turn with respect to
−−−→
QiQm. Let us first discharge some boundary cases:

• Whenever j = n the goal reduces to (A13).
• When C contains exactly 3 points, it must be the case that Qm = Q0. Our goal

reduces to showing ¬	 Q0Q jQi for all j satisfying 0 < j < i.
For 0 < j < n, we know from (A11) that [Q!n, Q!0] isConvexHull (take

(n+1)) Q. Thus Q j lies between Q0 and Qn, giving the desired non-left turn.
If j > n, we proceed with a proof by contradiction, first assuming 	Q0Q jQi. By
orderPropWithFirst_RecentLeftTurnImpliesEarlierLeftTurn (see Section
4.1.3), we get 	 Q0QnQi. But (A13) tells us ¬	 Q0QnQi, giving the contradic-
tion.

FIGURE 4.22: (C7) states that Q j must lie in
the shaded region or on the dotted edge

Having shown (C7) for the special cases,

it remains to demonstrate it in the presence of

the following assumptions:

j 6= n

len C > 3

Recall we are showing that ¬	 QmQ jQi for

m < j < i, or equivalently, 	... QmQiQ j. This is

shown in Figure 4.22, where we are proving

that Q j lies either inside the shaded region or

on the dotted boundary edges QmQi or QiQ0.

The proof proceeds by contradiction. We

assume 	 QmQ jQi. Under this assumption,

the shaded region where Q j lies is now to the right of
−−−→
QmQi, as shown in Figure 4.23.

We will show that this cannot be the case.

From the rotational ordering of Q we can derive 	Q0QmQ j and 	Q0QmQi
3. Using

dualTransitivity with instantiations s = Q0, t = Qm, p = Q j, q = Qi and r = Qn,

we can derive 	 QmQ jQn.

If j < n, the convex hull fact from assumption (A11) tells us that 	... QmQnQ j, and

we have the contradiction.
3Again for convenience the collinear cases are omitted.



Chapter 4. Case Study: Proving Graham’s Scan 80

FIGURE 4.23: Contradiction of (C7)

Otherwise, where j > n, we use the

“popped vertex” fact from (A11) to yield the

fact that

	 QnQiQ j∨ ... QnQ jQi

From the rotational ordering, we infer that

	 Q0QnQ j∨Qn GQ0Q j

These pairs of disjuncts give us four putative

configurations:

• 	 QnQiQ j ∧ 	 Q0QnQ j: the lemma
dualTransitivity with the instantia-
tions s = Qm, t = Q j, p = Q0, q = Qn
and r = Qi implies 	 Q jQ0Qi which
contradicts the ordering property of Q.
• ... QnQ jQi∧	 Q0QnQ j: the collinear triplet is constrained by the ordering prop-

erty of Q such that Q j GQnQi; however this implies 	 QiQ jQm which contradicts
the assumption 	 QmQ jQi.
• 	 QnQiQ j ∧Qn GQ0Q j: it can be shown that 	 QiQ jQ0; however this contradicts

the ordering property of Q.
• ... QnQ jQi ∧Qn GQ0Q j: from the ordering property of Q, it can be shown that

Q j GQnQi, which combined with the fact 	Q0QmQi reveals that 	Q jQmQi; how-
ever this contradicts 	 QmQ jQi from earlier in the proof.

This completes the proof of (C7) and hence (C5).

4.4.5 Total Correctness

So far we have concentrated on partial correctness, that is showing that if the algorithm

returns an answer, that answer must be correct. It remains to show termination, that

the algorithm does return an answer, i.e. that it does not run forever. As shown in

Section 3.3:

total correctness = partial correctness + termination

Termination is typically shown by providing an invariant or measure which can be

shown to be:

• always decreasing
• always positive
• always integral
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It is easy to see that an algorithm with such a measure must terminate. Finding an

appropriate measure, however, can require some ingenuity.

For the Graham’s Scan algorithm, there are essentially two cases to consider. Either

a new vertex is added to the convex hull stack C (left-turn case), or a vertex is popped

from the stack C (non-left-turn case). In the former case, we increment by 1 both len C

and i (the index of the point being looked at). In the latter case len C decreases by 1

and i remains unchanged.

By taking the linear combination of 2i− len C we get a measure which always in-

creases. As i is always less than or equal to len Q, and C is non-empty, 2 · len Q−(2i−
len C) is a decreasing integer measure which is always positive, giving us termination.

The bound can be tightened slightly, and in our formalised proof we used:

2 · len Q−2i+ len C−2

To show termination in Isabelle, this measure must be supplied as part of the Hoare

logic expression, and the verification conditions that must be subsequently proved in-

clude showing the positive decreasing nature of the measure. The proof itself is te-

dious, involving substantial arithmetic inequality manipulation, but is not elucidating

beyond the above summary.

With termination demonstrated, a proof of total correctness for the Graham’s Scan

algorithm has been achieved.

4.5 Conclusion

The reader will undoubtedly have noticed that the formal proof is lengthy and in places

difficult to follow, but we wanted to give a good sense of the intricacies required. As we

will examine in the next chapter, the difficulties of reading the proof pale in comparison

to the arduous task of creating such proofs!



Chapter 5

Observations on the Verification of
Graham’s Scan

The reader cannot have failed to make one overwhelming observation on the proof of

Graham’s Scan, even if he skipped much of the preceding chapter: the formal proof

is big. On top of this, many of the one-line steps are the result of a lot of time spent

searching Isabelle’s library for the right lemma and entering the right instantiations.

There is no perfect measurement for the difficulty of a formal proof, but by way of

indicative quantitative measures — where the order of magnitude is significant even if

the mantissa is not — we note that:

• 170 lemmas were formally proven (lemmas are usually introduced where a fact
is needed multiple times)
• 5000 lines and 130,000 characters are contained in the theory files (of which

about 3% are comments and extra whitespace)
• 6 months elapsed time was spent on the formal proof (one person, part-time,

starting with reasonable Isabelle skills)

The difficulties associated with constructing our formal proof are detailed in the fol-

lowing section: we focus on the factors which contributed to the considerable time

spent proving, and observe that productivity is substantially hampered by one’s intu-

ition being obscured in the process.

Despite the difficulties, it is exciting that such a formal proof is possible with cur-

rent technologies. The value of this endeavour is emphasised when we compare our

work with two published written proofs for the correctness of the Graham’s Scan algo-

rithm and find notable flaws in both. These flaws are described in depth in Section 5.2

and re-iterate the point we made in Chapter 1 that intuition is fallible. In the latter

part of that section we draw comparisons between our mechanisation and a proof of

Graham’s Scan carried out in Coq. Thus, this chapter sets out two of the fundamental

82
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motivations for our research: formal proof is difficult, and formal proof is useful.

5.1 Formal Proof is Difficult

Some of the challenges in creating our proof were necessary ones, even enjoyable

in cases where we were tackling rich mathematical questions: Which definitions and

representations are the most natural to work with? What are the essential components

of the loop invariant which give us our post-condition? What decreasing measure gives

us termination? What is the essential argument of the proof?

However much of the time (and size) of our mechanical verification was consumed

by more mundane activities, making the task overall a painful and difficult undertaking.

On top of this, the formal proof process is rendered more difficult by our intuition being

obscured along the way. We categorise the root causes of these problems in the next

two sections, not merely for cathartic reasons, but because many of these activities

seem fundamentally unnecessary, and in the subsequent chapters of this thesis we will

turn our attention to alleviating these impediments.

5.1.1 Black Holes of Time

Proving Minute Details

Formal proof by its nature needs to be exhaustive, but wading through enormous

amounts of low level detail causes exhaustion well beyond what seems needed1. Much

of this is minute detail that would be left out in a written proof. As an example,

consider massaging (tl (butlast C))!0 to the equivalent form C!1 when C contains

two or more points. To introduce this equivalence in the proof one can insert it as a new

subgoal (copying and pasting the terms involved), and then prove it later by applying a

more generalised lemma from the library. Alternatively, for any equivalence we wish

to use more than once, we could choose to make it into a lemma. In both cases, a

considerable amount of time and work is needed to accomplish the obvious, and the

frequency with which this is necessary is daunting.

Searching the Isabelle Library

Formalisations in Isabelle often rely on other theories; this is almost inevitable

when developing conservative extensions, as usually recommended to ensure consis-

tency. Constructing such a formalisation unsurprisingly requires familiarity with, and

1This can sometimes be a warning that you are working at the wrong level of abstraction.
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references to, definitions and lemmas from parent theories. We found navigating these

extremely tedious: even if one knows the parent theories well, it is nearly impossible

to remember all the lemma names.

Our signed area geometry formalisation builds on Isabelle’s theory of the reals,

and our Graham’s Scan mechanisation builds on these two libraries as well as Hoare

logic, lists, and sets. This is a large corpus of proof and, because there are often many

minute details which have to be addressed (as noted in the previous point) there are

a staggeringly large number of lemmas in these libraries. The nature of interactive

proof means that a great many of our proof steps required finding the relevant lemma

or definition to apply.

Having so many lemmas to navigate and so many places where a lemma had to

be applied meant that a large amount of our time was spent searching libraries for the

single exact lemma required. We estimate that this library lookup problem accounted

for approximately 30% of our time, and this is not an isolated problem: in personal

correspondence with Hales, he estimates that 50% of his time has been spent looking

up HOL Light’s library while working on his ambitious Flyspeck Project [57].

Entering the Correct Instantiations

In addition to manually finding an applicable lemma for a given goal state, one has

the added burden — in many cases — of mapping a large number of variables from the

lemma to the goal. As an example, consider how the lemma transitivity (shown

in Section 3.5.4) would be applied to a goal state, or how you select among lemmas

with multiple variants, such as one containing collinear A B C, another containing

collinear A C B, and another containing collinear B C A. A great deal of care

and time is required to select the right variant and to match the instantiations of vari-

ables in a lemma with those in our subgoal. This was frequently compounded by

subgoals in our proof which contained several very similar assumptions, where one

misaligned variable or wrongly selected variant would still match: the mistake might

not be noticed until several steps or subgoals later.

The declarative Isar language, as mentioned Chapter 3, can help resolve this sit-

uation by allowing the user to specify the result of applying a lemma instead of the

instantiations. However specifying the correct result raises similar difficulties, and in

our experiments, producing Isar scripts involved substantially more work than the pro-

cedural approach. We found it simplest to use the procedural approach (where we must

attend carefully to the variable mappings) first, to generate the resulting proof states,
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and then to cut-and-paste that output to write the Isar as needed. For exploration,

the procedural approach is clearly preferable, yet toggling between the two modes is

awkward.

Refactoring

Another drain on our time was refactoring our theories, that is making changes to

the structure or names. There are many reasons why these changes are desirable, from

readability (to help our intuition) to necessity (correcting something that was wrong),

but making these changes is not straightforward. Some of the specific refactorings we

performed were:

• renaming lemmas
• generalising functions
• extracting lemmas
• changing our loop invariant
• changing our definitions

Updating the loop invariant and definitions, in our experience, are things which can

happen numerous times as the proof evolves and the user realises that components

therein need to be added or changed. Any of these refactorings require the user to

manually locate all areas of the proof impacted — often in other files — and ensure

they are updated. Isabelle has no support for making these changes or highlighting

impacted areas; in fact each such change requires all affected files to be completely

reprocessed in Isabelle, taking up to several minutes. Gonthier has also commented

on this difficulty in the current technology, stating that in his proof of the Four Colour

Theorem he spent several months refactoring his theories [66].

Resolving Isabelle Version Incompatibilities

Our initial formalisation built upon a theory of the reals, as we noted earlier. Soon

after our proof was complete, a new version of Isabelle was released, where the theory

of reals had been re-organised to make use of axiomatic type classes and to enable more

abstraction and proof re-use. An unfortunate consequence for us was that many of our

proofs broke. Lemmas and definitions which our proof had referenced were changed

or removed altogether. In addition, simp and auto now performed differently. Some

steps now completely failed, others which had previously discharged a subgoal now

only partially simplified it, and yet others now went further or in a different direction,

meaning our subsequent steps failed. Because it is difficult to see what these tactics

are doing under the hood, repairing these steps is a time-consuming affair.
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Subsequent Isabelle releases have not been quite as radical, but they have nearly al-

ways required at least some patching to our proofs. Besides losing time, these version

incompatibility problems impede the ability to share libraries with others, as all collab-

orators must be synchronized to the same Isabelle version. We discuss one workaround

to this problem in Section 10.2, and note that our theory files from the Graham’s Scan

proof have since been made compatible with Isabelle2012.

5.1.2 Intuition is Obscured

While constructing our formal theories, one of the biggest difficulties we found was

that our intuition felt handicapped, as compared to how intuition usually helps when

doing normal mathematics. The additional cognitive load of doing formal proof sig-

nificantly impaired our productivity. The contributing factors are discussed below.

Opaque Presentation

It will have been clear to the reader in Chapter 4 that formal proof is verbose. Every

fact must be explicit, and the set of assumptions can quickly grow large and hard to

read. We frequently found ourselves spending many minutes trying to figure out the

subset of assumptions relevant to a particular proof step, often using pencil and paper

to sketch a more convenient representation. The presentation in formal proof is far less

intuitive than in traditional mathematics.

This is compounded by the fact that once we had picked out the key elements in

the subgoal at a given proof step, we would then apply a tactic and change the subgoal.

Even with Isabelle’s powerful support for mathematical symbols, we would then have

many more minutes’ work to again pick out the relevant portions and relate them to

the mental model of the proof we had in our head.

In paper-based mathematics the variables and facts don’t move around the page;

we can write a note next to a fact and it stays there. The procedural style of proof

in Isabelle permits us to place comments in the proof source, but none of these notes

appear in the subgoal window showing the state of the proof. We cannot highlight an

important fact, in pink say, or label a term as “popped points”, and have that annotation

kept in the subgoal on the subsequent step. Combine this seemingly-small difference

with dozens of propositions and hundreds of terms in our proof state, many of which

are quite similar, and the reader will have a sense of the cognitive gap between what

our perception is trying to absorb and what our intuition is reasoning about.
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As with the problem of supplying the instantiations (Section 5.1.1), Isar partially

addresses this problem. It allows one to attach a label to individual terms or propo-

sitions and to use this label as a reference where it is needed subsequently in a proof

step. However these labels do not appear in the proof state window, and considering

the other difficulties of using Isar for exploration mentioned previously, the drawbacks

so far outweigh the advantages.

Distracting Minutiae

We noted previously that formal proof can involve an extreme amount of reasoning

about minute detail. Each lemma application might introduce several new subgoals,

mostly small, but often needing attention and time nevertheless. What can be skipped

in normal mathematics, or conflated into a single argument with a magic four letter

acronym, must be laboriously spelled out in formal proof: there is no magic “WLOG”

tactic for Isabelle.2

Consequently, our concentration on the essence of the proof is repeatedly inter-

rupted by each of these minor subgoals and case splits, and due to the opaque pre-

sentation, each such interruption can cost several minutes. Even a relatively straight-

forward proof — say, a one-sentence hand-written proof of two “interesting” lemma

applications — can easily have dozens of such details needing formal justification. By

the time all the details of the first lemma are resolved, our intuition has long since

forgotten what the second interesting lemma application was.

Expensive Mistakes

Many of our proof attempts started down a track which, after more or less time,

we ultimately discovered was flawed. These false paths happen when doing normal

mathematics, of course, but in formal proof we found they occurred with much more

frequency, and that many of the flaws were ones our intuition would have spotted

immediately had it not been diminished. This becomes a vicious cycle, as our intuition

is further diminished by following the faulty track, abandoning it, and then restoring

our state to a good one after our intuition has become attuned to that faulty track.3

2There has been recent work done in the system HOL Light implementing a “WLOG tactic” for
specific common situations [81], which we will discuss in Section 6.3.3.

3There have been several additions to Isabelle over the years to attempt to rectify this problem some-
what. These are described in Section 6.1.
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5.2 Formal Proof is Useful

Without doubt, a formal verification produces results in which we can have more confi-

dence, for the reasons we previously mentioned at the end of Section 2.2.2.1. Another

area where formal proof can be useful, surprisingly, is in improving one’s intuition

about the domain. When deep within a formal proof, as we have said, one frequently

finds her intuition obscured, but after successfully manoeuvring through the foggy

landscape, one emerges with a deeper understanding of intricacies involved in a proof

and in particular a better appreciation of degenerate cases.

In our case, when we first read a variety of written proofs for the correctness of

convex hull algorithms, we believed the arguments were sufficient, as presumably have

editors and readers through the years. Looking back on the proofs after having com-

pleted our case study, however, we noticed multiple mistakes, some significant, in the

proofs presented in two widely used textbooks. The fact that it is possible for mistakes

to pass undetected for many years, in two canonical works on computational geometry

and algorithms, clearly demonstrates the usefulness of formal proof.

5.2.1 Flaws Found in Canonical Proofs of Graham’s Scan

O’Rourke’s Proof

The textbook Computational Geometry in C [138], by Joseph O’Rourke, is one

of the leading textbooks in the field, and was a useful source in this research for

understanding Graham’s Scan and existing correctness proofs. When we reviewed

O’Rourke’s proof sketch after our case study, we were surprised by ambiguities and

even flaws which now jumped out at us.

One of these flaws is minor; in Section 3.5.3 of the book (pg. 83), a point pn is

referred to but only p0, . . . , pn−1 are defined. It is not hard to determine that pn−1 is

intended, once one is familiar with the algorithm; but for novice readers unfamiliar

with the algorithm, such a mistake is potentially confusing.

The second error is more concerning, as it is the crux of the justification he gives

for correctness:

The points are now processed in their sorted order, and the hull grown
incrementally around the set. At any step, the hull will be correct for the
points examined so far, but of course points encountered later will cause
earlier decisions to be reevaluated.
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GRAHAM’S SCAN ALGORITHM (O’ROURKE’S ALTERNATE VERSION)

Find the interior point X; label it Q0
Sort all other points angularly about Q0; label Q1,. . .,Qn−1.
Stack C = (Q1,Q2) = (Qt−1,Qt); t indexes top.
i→ 3
while i < n do
if Qi is strictly left of (Qt−1,Qt)
then Push(C,i) and increment i.
else Pop(C).

FIGURE 5.1: Pseudocode for the alternate version of Graham’s Scan given
in O’Rourke’s book on pg. 82. Here we order points around an interior
point instead of the lowest, rightmost point in Q. Note that O’Rourke’s
book refers to p where we have used Q and S where we have used C. We
are sticking to our variable names for consistency with Chapter 4.

Firstly, let us examine what is meant by “the hull will be correct for the points examined

so far”. This is ambiguous: does it mean that the hull at any step is the intersection of

the points examined and the final (correct) convex hull, or that the hull is the convex

hull of the points examined so far? Both interpretations would yield the desired goal

on termination; but a proof is of limited value if the reader cannot be clear what is

meant. Ambiguities such as this are of course never permitted in formal proof.

Moreover, both interpretations are flawed! If we take the former interpretation,

that the hull-so-far is the subset of the points examined which are on the final hull, it is

easy to find a counter-example. If a point is ever popped, the final hull does not contain

the popped point, but of course the hull-so-far contained that point prior to popping it,

and during every previous iteration since the point was pushed. This interpretation is

clearly incorrect.

If instead we take the invariant to be that the hull-so-far is the convex hull of the

points examined so far, it can still be violated. With respect to the algorithm we de-

scribe in Figure 4.4, it is violated whenever a point has just been popped, as was the

case for the former interpretation — although this interpretation could be repaired, for

this algorithm, if it were amended to say “after a point is pushed”. O’Rourke how-

ever uses this justification for an alternate version of the algorithm which assumes an

interior point exists; it uses this point as the origin for the rotational sweep, and does

not count it as part of the hull. The pseudocode for this alternate version is shown in

Figure 5.1. With respect to this algorithm, the suggested invariant can be violated even

after a point is pushed onto the hull. We also note that O’Rourke does not mention

how an interior point is chosen or indeed how the alternative algorithm should behave
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if there is no interior point in the original set.

FIGURE 5.2: O’Rourke’s alternate version of Graham’s Scan al-
gorithm with the interior point X = (2,1) used as the reference
for the rotational sweep. The remaining points, in rotational order, are
[(7,4),(6,5),(3,3),(0,5),(−2,3),(−2,2),(−5,1),(0,0),(−3,−2),(3,−2)].

Figure 5.2 illustrates both violations4. In the second iteration of the loop we ex-

amine point d and find that c needs to be popped. The hull-so-far then becomes [a,b],

which fails to be a hull containing some of the points considered so far, viz. c and d.

On the third iteration of the loop, when d is pushed onto the list of candidate vertices

and the hull-so-far becomes [a,b,d], we still do not have the correct hull: it does not

contain the point c previously examined.

This shows how seductively misleading invariants can be. O’Rourke’s claim that

the hull is correct is trivially true for the first two points, and for the first three points,

and we assume it is true on termination; so a reader following one’s intuition may be-

lieve that the preservation of correctness of the hull-so-far is the reason the proof is

correct. Because this “invariant” can be false, however, its preservation is not guaran-

teed, and it cannot be regarded as the reason the algorithm is correct. It is little more

than a flavour for why the algorithm works, and in fact it is not clear to us what the

invariant should be for the algorithm referenced by O’Rourke.

O’Rourke’s flawed justification for the correctness of the algorithm highlights how

easy it is to overlook or be ambiguous about details of the crucial facts involved in a

geometric proof. Producing a fully mechanised proof can be laborious, but does mean

4Nor did we have to look far for this: the diagram is taken directly from the textbook [138], p. 81.
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the user cannot fall in to these types of errors. Not only is the proof more rigorous, but

the user ends up having a better appreciation of the workings of the algorithm.

Cormen, Leiserson and Rivest’s Proof

In the textbook Introduction to Algorithms, Cormen, Leiserson and Rivest also

give a written proof for the correctness of Graham’s Scan [41]. It is one of the simplest

and most elegant proofs we have read, based around preservation merely of a convex

polygon instead of a convex hull. But despite the obvious care and cleverness that

went in to the proof, we observed two flaws once we had completed our formal proof

exercise in Isabelle.

Before we discuss these errors, it is worth noting that the version of Graham’s Scan

used by Cormen et al. has several differences to the one we presented in Chapter 4.

The pre-processing step orders points around the leftmost lowest point rather than the

right-most lowest point. It then discards any point lying between the reference vertex

Q0 and another point in Q. The initialisation of the hull C and the loop counter i are

also different: C is initialised to [Q2,Q1,Q0], and i starts at 3. Figure 5.3 shows the

pseudocode of this alternate version of the algorithm.

GRAHAM’S SCAN ALGORITHM (CORMEN’S VERSION)

Find leftmost lowest point; label it Q0
Sort all other points by increasing polar angle around Q0,

(if more than one point has the same angle, remove all but
the one that is furthest from Q0)

label Q1,. . .,Qm
top[C] ← 0
PUSH(Q0, C)
PUSH(Q1, C)
PUSH(Q2, C)
for i ← 3 to m

do while the angle formed by points NEXT-TO-TOP(C),
TOP(C), and Qi makes a non-left-turn

do POP(C)
PUSH(C, Qi)

return C

FIGURE 5.3: The Pseudocode for the Graham’s Scan Algorithm shown in
the textbook Introduction to Algorithms. For ease of comparison we have
adjusted the variable names and layout to be consistent with that used in
Chapter 4.

Cormen et al. claim that:

Graham’s Scan maintains the invariant that the points on stack C always
form the vertices of a convex polygon in counterclockwise order.
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They justify the claim as follows:

The claim holds immediately after the third vertex has been added, since
points Q0, Q1 and Q2 form a convex polygon. Now we examine how stack
C changes during the course of this algorithm. Points are either popped or
pushed. In the former case, we rely on the simple geometric property: if a
vertex is removed from a convex polygon, the resulting polygon is convex.
Thus, popping a point from C preserves the invariant.

The authors then address the case when points are pushed. A separate argument estab-

lishes the claim that “each point popped from the stack is not a vertex of the convex

hull”, and the implication of these two simultaneous claims is that the resulting list

must be the convex hull, according to the authors.

The two flaws in their proof which we observed are:

• The two claims are sufficient to conclude that the resulting list is a convex hull
if a convex hull exists. The proof assumes both existence and uniqueness. Al-
though this is not hard to demonstrate, at the very least reliance on uniqueness
should be mentioned in the proof, particularly as the authors use the definition
“the convex hull of a set Q of points is the smallest convex polygon for which
each point in Q is either on the boundary of C or in its interior” (emphasis added,
as uniqueness makes the word smallest redundant).
• The invariant that C is always a convex polygon is falsified if Q2 is popped due to

some Q j satisfying ∀k.1 < k < j→¬	Q1QkQ j (where j > 2). This leaves a hull
containing just two points, as shown in Figure 5.4, rather than a polygon. This
can be repaired by adding the words “or C is equal to [Q0,Q1]” to the proposed
invariant.

FIGURE 5.4: The proposed invariant is incorrect in this case, when Q2 is
popped because Q3 lies to the right of directed segment Q1Q2.

5.2.2 Related Mechanised Proofs

Having made the case for the importance of formal proof in the realm of convex hulls,

let us turn our attention to the contribution of our mechanisation in relation to other
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formal proofs of algorithms in the area.

The first such proof was published in 2001, by Pichardie and Bertot [143] using the

theorem prover Coq. Like us, they were inspired by the work of Knuth [104], but we

differ in choice of algorithms: Pichardie and Bertot look at an incremental algorithm

and a package wrapping algorithm for finding the convex hull. As Graham’s Scan

algorithm is the algorithm commonly used in computational geometry5, our proof of it

is a useful and novel addition.

More recently, Brun, Dufourd and Magaud [25] present a formal proof of an exe-

cutable program specification. They also chose the incremental algorithm, rather than

the more efficient Graham’s Scan, but what is exciting in their development is that an

executable program can be generated automatically from the exact syntactic functional

description for which they have constructed a formal proof.

A novel contribution of our work is to handle the case where points are collinear.

Pichardie and Bertot, like Knuth, disallow collinear points, as do Brun Dufourd and

Magaud. This allows their proofs to focus only on the more interesting cases, as we

did in certain sections of our written exposition in Chapter 4; but without treating the

special cases, the proof is of limited value to someone looking for confidence in the

algorithm. (It’s not much good having a guarantee that a bridge will stand up so long

no three rivets are aligned!)

Pichardie and Bertot do make two partial attempts at treating the collinear case. In

one attempt they propose perturbing the points to achieve the desired non-collinearity;

as they comment, however, this leads to difficulties reconciling the case where a per-

turbed point becomes part of the convex hull.

Their other attempt proposes a mechanism for incorporating collinear points, much

like our own, with the minor but significant difference that their formalism takes be-

tweenness as a fundamental concept, expressed epqrd for q lying inside the segment

pr. Collinearity is derived from this notion, as:

... pqr ≡ epqrd ∨ eqrpd ∨ erpqd

It is our view that this is likely to complicate proofs, and that may be why only partial

results for that line of research are reported.

We also note crucial errors in the statement of Pichardie and Bertot’s axioms,

∀pqr. epqre ⇒ p̂qr, where p̂qr is their notation for our 	 pqr. By context it is clear

that epqre should be epqrd; but the resulting lemma would be inconsistent. With some

5One reason why Graham’s Scan algorithm is often preferred is that it is generally more efficient,
O(n logn) time as opposed to O(n2) worst-case for the incremental algorithm.
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thought it becomes apparent that the statement should read ∀pqr. epqrd ⇒ ¬p̂qr.

However the fact that obvious errors like this occur in other people’s formal proof state-

ments, emphasises the points in Section 5.1.2 of intuition being obscured and mistakes

being made, in other people’s work as well as in our own experience. We also note our

own preference for conservative extensions to existing theories, instead of declaring

fresh axioms as Pichardie and Bertot do, in part because mistakes introduced through

erroneous axioms can be very tricky to spot.

One thing our work and theirs have in common is that the special cases can account

for a huge amount of effort required for formal proof: formal proof is difficult. But

without formal proof done carefully, as we have repeatedly seen, mistakes are easily

made and overlooked. All too often the flaws lie in the edge cases that are so tempting

to omit, as in the proofs of O’Rourke and Cormen et al., and so we conclude: formal

proof is useful.

5.3 Conclusion

It is clear that formally proving geometric algorithms in a theorem prover like Isabelle

adds confidence in their correctness, and consequently we believe it should become

an important stage in the development process of such algorithms. And it is not just

algorithms which so benefit; recall from the discussions of Chapter 1, intuition can

lead us astray in any domain, even mathematics. Despite the difficulty of constructing

these proofs, we believe that by building libraries of useful theories and, crucially, by

improving the tools, this task will get easier. The next chapter surveys related work

which can help bring us closer to this ambition.



Chapter 6

Improving the User’s Experience

In the previous chapter we showed how ambiguous statements and flaws in reasoning

can be made easily in written expositions. Formal definitions eradicate ambiguities

and mechanical proof constructions are far less likely to contain errors in the reason-

ing steps. The added guarantee of correctness which a formal development brings is

without doubt beneficial. However, many mathematicians and software developers are

currently reluctant to adopt this approach, for many of the reasons we outlined in Sec-

tion 5.1. We believe that by improving the current theorem proving technology the

user base would be dramatically increased.

This chapter will outline ways we believe the formal proof experience can be en-

hanced, with particular attention to mechanical geometry theorem proving. The pos-

sible improvements we consider include extending Isabelle’s simp set for geometric

problems, using automated geometry techniques available in other tools, and borrow-

ing user-interface best practices from software engineering.

6.1 Automation in Isabelle

In Section 3.2.3 we described the automatic tactics and tools Isabelle provides, from

the classical reasoner and simplifer, to Sledgehammer [20, 141], QuickCheck [17] and

Nitpick [21]. In some situations, these will automatically provide a proof or indicate

whether a statement is false. They may even find a counterexample. This powerful

automation can go well beyond what one’s intuition would notice and is one of the

contributing factors to Isabelle’s success. There is more that can be done here, how-

ever. For many of our goals, and for mistaken statements we have tried, these built-in

automation solvers could not reason about our problem domain, or were thwarted by

95
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the complexity — nonlinear real arithmetic and higher-order logical constructs in par-

ticular1.

One notable addition to Isabelle, which addresses this somewhat, is the proof

method sos (sum of squares), which was mentioned in Section 3.2.3. This was in-

troduced in 2009, which was unfortunately after we had completed our mechanisation

of Graham’s Scan. It may have helped in some cases to discharge some of the arith-

metic goals or to inform us earlier if we had formalised the loop invariant incorrectly,

but in work we have done since this time, we have found sos to be of only limited

assistance.

In particular, in experiments we have run with the lemma transitivity from

Section 3.5.4, sos did not complete after 12 hours. Even with a simplified version

of the lemma involving only 4 points (8 variables) and maximum total degree 2, it

was not able to complete within that time bound. The lemma involves many variables,

several inequalities, and terms which are nonlinear combinations of multiple variables;

these are all likely to be factors which contribute to sos being highly inefficient. These

conditions of course correspond to more difficult lemmas we encountered in our proof,

all of which were tedious to prove and where we would most like assistance. However,

the availability of sos for many simpler problems is a big step in the right direction.

Solving our geometric lemmas by converting them into algebra is not the only way,

of course. A more synthetic approach could be adopted instead. This would have the

benefit of producing a more insightful and intuitive proof. The automation afforded

by Isabelle’s simplifier lends itself to this task. We discuss our work and experiments

with this approach in Isabelle next.

6.1.1 Extending Isabelle’s Simplifier and Classical Reasoner

Isabelle makes it easy for a user to encode some types of automation by enabling them

to extend its simplifier and classical reasoner on demand. The rules which we found

useful to add to the corpus used by simp and auto are presented next.

Simplification Rules

To a human mathematician the statement that three points are collinear is natural,

without attention to the order of those points. However, in Isabelle the terms collinear

a b c and collinear b a c are symbolically evaluated and interpreted differently.

1Sledgehammer has improved considerably since we completed our Graham’s Scan proof and now
offers more assistance. This is discussed further in Section 10.2.
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One of the most tedious parts of our earliest proofs was dealing with this very issue;

in order for a lemma to be applied or a goal to be discharged it was often necessary

to compare and adjust the ordering of points manually. Thus, for our theory of planar

geometry, the first and most obvious automation was the establishment of rewrite rules

to express the geometric terms in a canonical form.

Developers can annotate proved lemmas, e.g. with the token “[simp]”, to indicate

that the standard simplifier should attempt to use that lemma as a rule. This allows

expressions to be reduced to canonical forms in many cases; in some cases entire

decision procedures can be encoded and goals proven automatically.

The following set of simplification rules allow our geometric predicates to be writ-

ten in a canonical form automatically, removing much tedium (and in some cases prov-

ing goals automatically):

signedAreaRotate [simp]: signedArea b c a = signedArea a b c

signedAreaRotate2 [simp]: signedArea b a c = signedArea a c b

collRotate [simp]: collinear c a b = collinear a b c

collSwap [simp]: collinear a c b = collinear a b c

swapBetween [simp]: a isBetween c b = a isBetween b c

leftTurnRotate [simp]: leftTurn b c a = leftTurn a b c

leftTurnRotate2 [simp]: leftTurn b a c = leftTurn a c b

Each rule is expressed as an equality, with the convention that the simplifier replaces

the left-hand side of the equality with the right-hand side of the equality whenever

possible. The rules above are known as permutative rewrite rules as each side of the

equation is the same up to renaming of variables. It is worth noting that such rules

can be problematic because once they apply, they can create infinite loops. However,

Isabelle’s simplifier is aware of this danger and treats permutative rules by means of

a special strategy, called ordered rewriting: a permutative rewrite rule is only applied

if the term becomes smaller with respect to a fixed lexicographical ordering on terms.

Recognising this special status automatically is a very useful feature of Isabelle.

In addition to the above rules, we added several other proved rules to Isabelle’s

simplifier, not for the purpose of reducing to a canonical form, but in order to supply

trivial facts automatically where needed:



Chapter 6. Improving the User’s Experience 98

areaDoublePoint [simp]: signedArea a a b = 0

areaDoublePoint2 [simp]: signedArea a b b = 0

twoPointsColl [simp]: collinear a b b

twoPointsColl2 [simp]: collinear a a b

notBetweenSelf [simp]: ¬ a isBetween a b

notLeftTurn [simp]: (¬ leftTurn a c b) =

(leftTurn a b c ∨ collinear a b c)

Despite these simp rules discharging many of our subgoals automatically, there ex-

ists a large collection of trivial subgoals that require manual proof. One such example

is showing collinearity when we know a betweenness relation holds, i.e

isBetweenImpliesCollinear: a isBetween b c =⇒ collinear a b c

isBetweenImpliesCollinear2: b isBetween a c =⇒ collinear a b c

Of course, these facts are trivially proven by expanding the definition of isBetween

but it is cumbersome for the user to always perform this step. Applying a general tactic

is preferential, so we first tried adding these rules to Isabelle’s simp set, assuming they

would work as conditional rewrites. However, these rules together can cause Isabelle

to enter an endless loop. While it is unsurprising that looping can occur, an unexpected

difficulty in using Isabelle was in trying to understand why looping occurs in certain

situations; even after inspecting the trace output the reasons for looping are rarely clear.

This emphasises that care must be taken when extending the simplifier. The Isabelle

manual advises that users should include only canonical simplifications, i.e., only rules

which are universally desirable, and while this is sensible in practice, it means that

much useful control knowledge cannot be expressed as simplification rules.

There is however another means of easily automating the “conditional rewrites” in

Isabelle: extending the classical reasoner rather than the simplifier. With this approach,

we are able to automate the inferencing just described.

Conditional Rewrite Rules

In Isabelle, classical reasoning is different from simplification. While the latter

is deterministic, classical reasoning uses search and backtracking in order to prove a

goal outright using a natural deduction style of reasoning [134]. We can add rules to

Isabelle’s classical reasoner by marking them as introduction, elimination, or destruc-

tion rules. This gives a powerful automation framework alongside the default simpli-

fier. Regretfully the Isabelle tutorial is somewhat vague on their use — distinguishing

between them as follows: “Introduction rules allow us to infer new information . . .
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Elimination rules allow us to deduce consequences.” Isabelle further distinguishes

between two types of elimination rules: where information may be lost by a rule’s ap-

plication, it should be marked as a destruction rule. We have found that the following

rules are useful introduction rules for our problems:

notCollThenDiffPoints [intro]:
¬collinear a b c =⇒ a6=b ∧ a 6=c ∧ b 6=c

isBetweenImpliesCollinear [intro]:
a isBetween b c =⇒ collinear a b c

isBetweenImpliesCollinear2 [intro]:
b isBetween a c =⇒ collinear a b c

isBetweenImpliesCollinear3 [intro]:
c isBetween a b =⇒ collinear a b c

isBetweenPointsDistinct [intro]:
a isBetween b c =⇒ a6=b ∧ a 6=c ∧ b 6=c

leftTurnDiffPoints [intro]:
leftTurn a b c =⇒ a 6=b ∧ a6=c ∧ b 6=c

onePointIsBetween [intro]:
collinear a b c =⇒

a=b ∨ a=c ∨ b=c ∨
a isBetween b c ∨ b isBetween a c ∨ c isBetween a b

Another type of automation we wanted to implement was the identification of con-

tradicting assumptions and subsequent discharge of these subgoals. This is a common

problem in geometry theorem proving as case splits are often needed to identify the

positioning of points relative to each other. This method of proving will generally in-

troduce some cases which cannot exist. It is up to the human user to identify these

cases and discharge them. This is not an easy task when there is an enormous list of

assumptions; manually discovering which assumptions contradict and then finding the

correct lemma to apply is difficult, not to mention mundane. To automatically find cer-

tain contradictions, we added the following destruction rules to the classical reasoner:

areaContra [dest]:
[| signedArea a c b < 0; signedArea a b c < 0 |] =⇒ False

areaContra2 [dest]:
[| 0 < signedArea a c b; 0 < signedArea a b c |] =⇒ False

notBetweenSamePoint [dest]:
a isBetween b b =⇒ False

notBetween [dest]:
[| a isBetween b c; b isBetween a c |] =⇒ False

notBetween2 [dest]:
[| a isBetween b c; c isBetween a b |] =⇒ False

notBetween3 [dest]:
[| b isBetween a c; c isBetween a b |] =⇒ False

conflictingLeftTurns [dest]:
[| leftTurn a b c; leftTurn a c b |] =⇒ False

conflictingLeftTurns2 [dest]:
[| leftTurn a b c; a isBetween b c |] =⇒ False

conflictingLeftTurns3 [dest]:
[| leftTurn a b c; collinear a b c |] =⇒ False
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Limitations of Adding Automatic Rules

The rules listed above for simplification, introduction and elimination remove a

large amount of the low-level manipulation that was otherwise necessary when work-

ing in our theory.

Despite this automation being easy to implement in Isabelle, there is a specific

limitation we wish to point out: the behaviour of the simplifier is rather opaque. Cur-

rently it provides a resulting proof state (or failure notification), and it can supply

an extremely verbose trace of its activity. It does not provide a concise statement of

which substitutions led to the resulting proof state. And—in the all-too-frequent situ-

ation where the simplification set includes potentially looping rules—it is very hard to

determine which simplification rules are causing non-termination.

6.1.2 Tactics and GUI Support

If a user wants to add more sophisticated automation they can create their own tactics.

However, this is not an easy task, for it requires one to be familiar with the underlying

ML code for Isabelle. This codebase is large and fairly complicated, and it is not

nearly as well documented as the more user-friendly end-user mode. The developers

of Isabelle have recognised this drawback to the tool and in the last few years have

written The Isabelle Cookbook [176], a tutorial on how to programme Isabelle at the

ML-level. This has helped somewhat but it is still a non-trivial task to write your own

tactics. In addition, once tactics have been written, the task of maintaining them so

that they work with new releases of Isabelle can be painful.

If we were to create our own tactics to provide better automation for geometric

reasoning within Isabelle, then re-implementing some of the successful techniques

used in the field of mechanical Geometry Theorem Proving (GTP) could hold promise.

We review some of these techniques in the following section.

6.2 Mechanical Geometry Theorem Proving

Two main approaches for mechanical GTP have evolved over the past few decades:

coordinate free methods and algebraic techniques. In what follows we shall look at

some of the major achievements made in each.
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6.2.1 Synthetic and Coordinate Free Techniques

The coordinate free techniques focus on synthetic proofs, attempting to automate the

traditional proving methods. Gelernter’s Geometry Machine, which we mentioned in

Section 2.2, was a pioneer of the coordinate free approaches. Following this, many

researchers built geometric reasoners based on a purely synthetic approach. These

include Nevis [130], Elcock [48], Greeno et al. [70] and Coelho and Pereira [38].

Systems following this technique have the desirable property that they produce human

readable proofs, where a geometric interpretation can be attached to the arguments.

Unfortunately, the approaches in practice tend to be extremely limited in the types of

problems they can handle.

One leading technique which addresses this problem somewhat is the Area Method

of Chou, Gao and Zhang [33]. This technique uses triples of points equated to the the

signed area of the triangle they define, and expresses common geometric properties

including collinearity, parallelism, and congruence as algebraic statements about these

triples. For example, to express that point d is the midpoint of segment bc, we could

write:

signedArea d b c = 0 ∧ ∀a. signedArea a b c = 2 · signedArea a b d

Once a geometric question is expressed in terms of signed areas, its truth can be evalu-

ated by reducing the algebra. The Area Method has motivated further techniques, such

as the Clifford Algebraic Reduction Method [89] and the Full Angle Method [34], and

has been used to prove a range of sophisticated theorems, including the well-known

results of Ceva, Menelaus, Gauss, Pappus, and Thales. It has also been used by Fleu-

riot in his work to mechanise Newton’s Principia in Isabelle [56], though he used the

axioms interactively and not as the basis for an automatic decision procedure.

In keeping with the purely synthetic approaches, the Area Method and related tech-

niques tend to produce human-readable proofs where the terms correspond to under-

standable geometric entities. However, these approaches are sometimes labelled as

quasi-synthetic as even though intuitive interpretations are possible for each entity in-

dividually, the proofs can involve manipulating algebra.

Apart from the original implementation by the authors who proposed the Area

Method, there have been three others: one implementation within the Theorema tool

[160], one within the generic proof assistant Coq [129], and one within the dynamic

geometry tool GCLC [92]. The authors of these implementations recently joined forces

to write a paper describing the algorithmic and implementation details which were
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omitted in the original presentations [91]. Their paper also gives a variant of Chou, Gao

and Zhang’s axiomatic system, which is proved sound using the Coq proof assistant.

This is a desirable result as the axioms of the original Area Method were never claimed

to be minimal or complete, and in fact almost looked like an ad-hoc group of properties

that had been discovered to be useful in many cases and hence asserted as primitives.

The alternative axiom system is more likely to be rigorous.

As our proof of Graham’s Scan reasoned so much about signed areas, we wondered

if incorporating the Area Method into Isabelle would automate much of the reasoning

we found tedious or difficult. After discussions with Narboux (who had formalised

the method in Coq), we came to the conclusion that the method would not perform

particularly well when there are many expressions involving betweenness, and would

therefore not suit our purposes. Although we chose not to use this method for our

work, we did borrow the concept of signed area to represent the notion of a left turn

because it is commonly used in computational geometry too.

It is also worth noting that there are variants of the basic method which could

reason better about inequalities. However, Janičić et al. state that, “these techniques

are applicable only in special cases and not in a uniform way” [91]. Thus, it is not clear

how they would perform with our theories. Interestingly, some work which has looked

at extending the Area Method to better handle inequalities has used the Cylindrical

Algebraic Decomposition (CAD) algorithm [39], one of the most powerful techniques

for manipulating algebra. We will cover CAD and other algebraic techniques in the

next section.

6.2.2 Algebraic Techniques

Following the spirit of Descartes, one obvious translation is to recast the geometric

problems as algebraic statements about the coordinates of the points involved 2. Prov-

ing the geometry can then be achieved by simply leaning on one of the many algebraic

theorem proving techniques. Although this approach generates proofs which are dif-

ficult to relate to geometric intuition, the techniques can perform efficiently for many

complicated problems.

Wu’s Method [188], developed in 1977,3 led to a resurgence of activity in geometry

theorem proving. Wu’s Method expresses geometric problems as a set of multivariate

2This is in keeping with how we proved many of our geometric lemmas from Section 3.5.
3It used to be the case that Chinese work rarely appeared in Western journals. Due to this, Wu’s

work did not become widely known until the next decade, when students of his emigrated.
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polynomial equations, which it then solves using Ritt’s concept of a characteristic set

[157]. The technique performs well in many domains, but it does not perform well

with inequalities which are essential to our theorems, expressing concepts such as

betweenness and left turns.

Soon after, a similar technique was developed applying Buchbergers’s theory of

Gröbner Bases to solve geometric problems automatically by reducing them to Carte-

sian algebraic statements [95, 105]. Theoretically, this technique requires an alge-

braically closed field — such as the complex numbers — but in practice it can be used

for reasoning about real geometry, with some caveats. Inequalities (such as x≥ c) are

expressed as equations involving an additional variable (x = c+a2): this increases the

complexity of the problem statement, possibly causing solutions to take exponentially

longer before they are found, and typically returning solutions which cannot easily be

reduced from C to R. For our purposes, the Gröbner Basis, like Wu’s Method, is of

limited benefit.

Decades before Wu’s Method and the Gröbner Basis technique, Tarski outlined a

theoretical decision procedure for statements over real closed fields including, for ex-

ample, multivariate polynomial inequalities. Tarski’s original quantifier elimination

algorithm is difficult to understand and staggeringly inefficient both in theory and in

practice, but since that time, a number of advances have led to the development of

practical algorithms [167, 96]. The first such decision procedure to be implemented

on a computer is the Cylindrical Algebraic Decomposition (CAD) method introduced

by Collins [39]. The algorithm has since been refined and optimized [40], and imple-

mented in the tool QEPCAD [151, 24] — quantifier elimination by partial cylindrical

algebraic decomposition — which is today commonly regarded as one of the most

powerful algebra solvers available.

More general-purpose computer algebra systems, such as Maple, Mathematica and

MATLAB, now tend to have implementations of CAD and Gröbner basis, and have

also been used for geometric theorem proving [52, 105]. In our experiments, how-

ever, QEPCAD performed significantly faster and was the only one capable of solving

several of the geometric problems we came across in our proof of Graham’s Scan. It

is worth noting, however, that some CASs provide additional capabilities, including

plotting and animation, which can also be useful in reasoning about geometry.
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6.3 Combining Logic and Symbolic Computations

We believe it would be beneficial to combine the power of the algebraic approaches

with the transparency and precise semantics of the coordinate free methods. In other

words, being able to combine symbolic CAS with logic theorem provers is an attractive

direction. This goal is certainly not new: the design of environments to combine sev-

eral heterogeneous systems has been widely studied over the past decade and there is

even a conference (Calculemus) dedicated for research in this specific area. We do not

attempt to survey the breadth of concepts and implementations here, but will instead

focus on related work combining TPs and CASs.

Calmet et al. distinguish three main approaches to how logical and symbolic com-

putations can be combined [29]:

1. Extending a CAS to enable deduction. Notable examples of this approach are
the Theorema project [26] and Analytica [36], both providing theorem-proving
capabilities inside Mathematica.

2. Implementing a CAS inside a theorem prover. One example of this approach
has been described in Section 3.2.3 where Gröbner bases is implemented inside
Isabelle. There are numerous others, including a quantifier elimination proce-
dure within HOL Light [118], a prototype CAS environment on top of HOL
Light to ensure precise semantics [94], and Cayley algebra in Coq [61].

3. Combining existing TPs and CASs. Instances of this approach are illustrated
in the integrations of Isabelle with Maple [13], HOL with Maple [83], Maple
with PVS and QEPCAD [78], and the tool MetiTarski which combines Metis
with QEPCAD [1].

The first two ways have the advantage that the issues of communication and com-

mon knowledge representations do not need to be addressed. However, these ap-

proaches often require a substantial amount of work. Re-implementing existing sys-

tems or decision procedures can be an enormous undertaking considering that, in some

cases, these systems have evolved and been tuned over decades. We will focus on the

third approach to combining logic and symbolic computations. This is due to the fact

that for the complexity of the problems we are solving it would be challenging to re-

produce the functionality and efficiency desired from existing tools within others. We

will specifically look at how TPs can be integrated with external CASs, focussing on

communication between systems (Section 6.3.1) and how the results from a CAS can

be used in a formal proof (Section 6.3.2).
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6.3.1 TPs Calling CASs

As mentioned in Section 2.2, TPs can be categorised as either fully automated or in-

teractive4. We can also use these categories to describe how a TP invokes an external

CAS.

Typically a CAS will be automatically called if it is integrated into a fully auto-

mated theorem proving (ATP) environment: the TP will check for certain patterns and

if these are encountered the problem will be sent to a suitable CAS. The CAS will then

perform some function, such as simplifying a polynomial or solving an equation, and

send the result back to the TP to use. The first-order theorem prover Otter is one ex-

ample of a proof system which calls out to external algorithms [117]. MetiTarski [1],

mentioned previously, is another example, automatically solving inequalities involving

real-valued functions such as sin, ln and exp by using QEPCAD to compare Taylor

series expansions from within Metis.

Many of the projects which have combined CASs with interactive theorem provers

have used a different approach for invoking the external tools: rather than the prover

automatically choosing when to use a CAS, the user decides which problems look

applicable for an external tool and they invoke it. This is usually done by writing a

command in the proof script to tell the prover to communicate with the CAS. The

HOL-Maple integration of Harrison and Théry [83] requires the user to invoke Maple

by writing commands like:
# call_CAS "(((FACT 5)EXP2)-1)MOD(3EXP2)" ’SIMPLIFY’;;
# call_CAS "(x*x)+(7*x)+12" ’FACTORIZE’;;

As an alternative, it is possible that interactive TPs could run external tools au-

tomatically, similar to how ATPs do: background procedures could lurk, looking for

patterns in the proof goal, and when triggered, send the problem to an external tool,

only reporting back to the user if useful information has been gleaned. The information

reported back could be a simplified formula which would make the remaining proof

easier, or a counterexample which alerts the user that their subgoal is not provable.

Running tools automatically and in parallel to the prover can be incredibly useful and

is the approach which Isabelle’s QuickCheck [17] and Nitpick [21] have adopted.

Of course, it would be possible for an interactive TP to offer both an interactive and

automatic mode to invoke a CAS. This is in keeping with how Isabelle’s Sledgehammer

works [20]: it either runs automatically in the background or the user can turn this off

4Some authors include semi-automated as an additional category. We do not as most modern “inter-
active provers” are technically semi-automated, as they provide a significant amount of automation.
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and only invoke it when desired. Ballarin’s integration of Isabelle and Maple [13] also

provides this dual approach, providing some specific commands the user can write to

call certain functions in Maple and also allowing Isabelle’s simp tactic to call Maple

automatically.

6.3.2 Trusting an External Tool

Whenever a theorem prover is integrated with an external system, the issue of trust

must be considered. One obvious mode of integration is to take the result from a CAS

and use it within a proof inside the TP: in many areas, this is acceptable, just as one be-

lieves a calculator even though correctness of the hardware has not been verified. How-

ever this can impact confidence in the resulting proof, especially in situations where

absolute guarantees of correctness are needed (e.g. when verifying safety-critical sys-

tems). As mentioned in Section 2.2.2.1, theorem provers typically have a simple kernel

of primitive inference rules which are well-studied and believed to be sound. CASs,

on the other hand, do not have this inspectable core and can return imprecise solu-

tions [83]. In addition, different systems being integrated will typically use different

representations, and the two-way translation introduces additional unreliability.

Despite these issues, the sheer practicality of using CASs has motivated several

integrations which assume the CASs soundness. As Ballarin & Paulson note:

Computer algebra systems also contain implementation errors. Depending
on how rigorous one wants to be, one can reject any result of a computer
algebra system without formal verification in the prover. Considering the
amount of work ... we decide to live with possible bugs [14].

Their integration of Isabelle with the CAS Sumit uses Isabelle’s oracle mechanism to

introduce new assumptions, based on equivalences shown in Sumit and taken on faith

[14]. MetiTarski takes a similar pragmatic approach, trusting QEPCAD’s comparison

of polynomial equations [1]. In general, one knows which areas of a CAS are reli-

able, but surprising bugs are occasionally found. In our experiments with QEPCAD,

we encountered one where the solution space was pruned too aggressively and equa-

tions were being reported as irreducible. The maintainers fixed this very quickly once

we reported it, releasing v1.42, demonstrating how committed they are to the tool’s

correctness, but as we have shown in Sections 1.3 and 5.2.1, it is not hard to make

mistakes when formal proof is not used.

For some types of problems — and especially in safety-critical domains — the

increased confidence given by a mechanically verified proof is essential. Taking the
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result of a CAS on faith is not an option. However, there are still several ways in which

external tools can be useful to theorem provers without compromising soundness:

• sanity check a line of reasoning;
• guide a user’s understanding; and
• guide a prover’s automated proof construction.

Isabelle’s QuickCheck and Nitpick are examples of the first of these, where un-

trusted systems (or code) may be used to find counter-examples to alert the user if it

looks like their proof is going in the wrong direction. Examples of the second cat-

egory include integrations which produce candidate proof plans [99], or visual dia-

grams [185] aimed at the user, to assist them in constructing or understanding a fully

formal proof. Sledgehammer is an example of the third, as it calls out to first order

ATPs then reconstructs their proofs inside Isabelle.

The integration of HOL with Maple [83] is another instance of the third category.

The authors make the nice observation that it is often easier to search for a solution in

a CAS and then check it in a theorem prover; this is put into practice by using Maple

to generate factorizations which are then proven internally in the theorem prover HOL.

Motivated by some of this previous work, we raised the possibility of extending

QEPCAD so that it could return a witness for existentially quantified formulae. Brown,

the maintainer of QEPCAD, was happy to implement this straightforward addition to

the tool, allowing it now to be used in a variety of trusted ways: as a counter-examples

generator (to sanity check), as a tool for producing examples (to guide a user), or as a

tool for providing instantiations (to guide formal proof).

6.3.3 Without Loss of Generality

After some experiments with manually translating geometric lemmas and sending

them to QEPCAD, we concluded that it would be a useful CAS to integrate with Is-

abelle. It would offer some automation which Isabelle lacks — that of reasoning about

nonlinear arithmetic. That said, however, we also noted limitations with the tool. Some

of the queries we sent to it exceeded reasonable time- and/or space-complexity: either

it ran out of memory or hadn’t terminated after 12 hours. One of the problems which

caused it trouble was:

segExtensionStillIntersects:
X isBetween A B ∧ straightEdgesIntersect e {X,B} −→

straightEdgesIntersect e {A, B}



Chapter 6. Improving the User’s Experience 108

where straightEdgesIntersect is defined as:

definition straightEdgesIntersect :: "[edge, edge] => bool"
where "straightEdgesIntersect ea eb ≡

∃a1 a2 b1 b2. ea={a1,a2} ∧ eb={b1,b2} ∧
( ( {a1,a2} = {b1,b2} ) ∨
( (b1 isBetween a1 a2) ∨ (b2 isBetween a1 a2) ∨

(a1 isBetween b1 b2) ∨ (a2 isBetween b1 b2) )
∨ ( leftTurn a1 a2 b1 ∧ leftTurn a2 a1 b2 ∧

leftTurn b1 b2 a2 ∧ leftTurn b2 b1 a1 ) )"

With geometric intuition, it is easy to convince oneself that this lemma is translation

invariant: it is true if and only if the problem is slid in the plane such that one point

is the origin. If we perform this translation on the intersecting edge problem and send

the revised one (in 8 variables, instead of 10) to QEPCAD, then it yields a result in 4

seconds!

This problem is not unique, and translation invariance is a common property used

to justify proving geometric theorems where “without loss of generality” (WLOG)

one point is the origin. Unfortunately Isabelle does not have a WLOG tactic. A re-

cent development within HOL Light, however, has seen the introduction of a WLOG

tactic [81]. This tactic reasons about many situations in mathematical written proofs

where the WLOG is commonly found, including geometry. We have since extended

our Isabelle theory of geometry to simplify the reduction whereby one point is taken

as the origin:

origin ≡ Abs_point ( 0,0 )

negative a ≡ Abs_point ( -(xCoord a),-(yCoord a) )

translatedBy a ∆ ≡ Abs_point (
(xCoord a + xCoord ∆), (yCoord a + yCoord ∆) )

We prove that the origin is equivalent to a point negated by itself:

originTranslated: origin = translatedBy a (negative a)

And then subsequently prove:

signedAreaTranslates: signedArea a b c = signedArea
(translatedBy a ∆) (translatedBy b ∆) (translatedBy c ∆)

leftTurnTranslates: leftTurn a b c = leftTurn
(translatedBy a ∆) (translatedBy b ∆) (translatedBy c ∆)

isBetweenTranslates: a isBetween b c =
(translatedBy a ∆) isBetween

(translatedBy b ∆) (translatedBy c ∆)

With these lemmas it becomes straightforward to show that propositions in our theory

of planar geometry which involve a point (x,y), are equivalent to the same proposition
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translated by (−x,−y); simplification rules then yield the proposition with one of the

points being the origin.

Armed with this synthetic approach to formally translating a planar geometric

problem into one with fewer variables, one can prove that sending a translated query

to QEPCAD is sound. The algebraic solver QEPCAD can then be used to solve the

problem more efficiently.

6.4 Proof Engineering

Recognising that no automation is a cure-all, let us look at a very different way of

alleviating some of the difficulties set out in Section 5.1, based on the observation

that software engineers routinely face many similar challenges to those of the users

of TPs. Almost anyone who writes source code, in almost any language, is familiar

with dealing with large libraries, remembering unfamiliar names, aligning variables

with parameters very precisely, and maintaining code over time — just like those of

us doing interactive proof. In the software engineering world, highly sophisticated

tools and techniques have been developed and combined in integrated development

environments (IDEs) to help with these challenges. Compared with the IDEs used by

the modern software engineer, the tools for constructing formal proofs are generally

very poor. Some researchers have been advocating that to rectify this, TP environments

should borrow the ideas from IDEs. Since this idea was proposed more than two

decades ago [108, 173], there have started to be some notable successes:

• Proof General builds upon the emacs interface for several theorem provers [7].
• CtCoq provides a UI for Coq based on the generic environment Centaur [18].
• PR — used for verification of reusable software components — uses IDE tech-

niques to enable the reuse of abstract proofs and specifications [31].

However, much of this work has not kept pace with advances in IDE technology.

Things have dramatically improved for the software engineer: emacs, for example,

offers barely any of the graphical interaction features common in modern development

environments. In addition, the importance of making UIs for TPs benefit from the new

IDE technology is now becoming widely acknowledged. The blossoming field of proof

engineering, like software engineering before it, studies how the engineering process

can be improved by designing tools in ways that best suit both the domain (theorem

proving) and the users (humans).
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6.4.1 Modern IDEs

Modern IDEs can aid the software engineer in developing, deploying and managing

software across its lifecycle. Commonly, they provide the functionality for:

• syntax highlighting,
• project building,
• refactoring components which help improve design by making large-scale struc-

tural changes easy,
• visually representing hierarchies, dependencies, and other relationships,
• automatic documentation lookup,
• completion of identifiers,
• integration with version control and build systems,
• context-aware search which finds related definitions, and
• content assistance through mechanisms which insert declarations and instantia-

tions, and which can sometimes provide quick fixes to common problems.

It is easy to see how many of these can address the difficulties we noted in Section

5.1. If these functionalities were available when using an interactive TP, the burden

currently placed on the user — when constructing or attempting to understand a formal

proof — would be greatly reduced. By using modern IDE environments as the GUI

for theorem proving, many of these capabilities can be directly applicable [127].

6.4.2 Proof General Kit

Inspired by the proof engineering approach, the developers of the emacs Proof General

UI, noted above, decided to embark on an ambitious project to modernise and replace

their tool in 2004. The updated framework is called Proof General Kit (PG Kit) [8],

and aims to provide a flexible environment for managing formal proofs across their

lifecycle: creation, maintenance and exploitation. The modern IDE Eclipse [46] is

used as its foundation.

Eclipse is one of the most popular IDEs in use today, and a natural choice for

several reasons. It is entirely open source, originally developed by IBM as a Java

development environment, but it has since been extended by thousands of developers

to provide an extremely rich set of IDE functionality for a wide range of languages.

It exposes a customisable plugin architecture for working with an extensive spectrum

of systems and projects, allowing a user easily to extend the framework by writing

appropriate plugins for their domain.
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Eclipse Proof General works as a plugin to Eclipse. It has so far been developed to

communicate with the theorem prover Isabelle, and provides many of the IDE facilities

people expect, including multi-file hierarchy, go-to-definition, show usages, hover-

help, and auto-completion. See Chapter 7 for more details on this infrastructure.

6.4.3 jEdit Isabelle

Isabelle/jEdit is a younger project also aiming to improve the UI of the theorem prover

Isabelle [180], building on jEdit [93]. Although jEdit is essentially a text editor and not

an out-the-box IDE, it does provide a rich plugin eco-system, where a user can com-

bine and configure plugins to make jEdit behave like an IDE. jEdit has gained some

popularity as an IDE type tool as it is faster and lighter weight than many of the full-

fledged IDEs such as Eclipse. However, jEdit is not as mature as Eclipse and as a result

it lacks refactoring capabilities (and doesn’t have access to the rich abstract syntax tree

model in Eclipse). That said, however, Isabelle/jEdit does currently build a theory

file dependency tree and offer go-to-definition capabilities. The big contribution of

Isabelle/jEdit is that it provides a framework based on document-oriented prover inter-

action, where the PG command line mode of interaction is replaced with a continuous

update model which allows the user to write their theory files without waiting for com-

mands to process or locked regions to unprocess. Although the document-oriented

model is a good idea, the actual implementation is still a work in progress, and we be-

lieve that despite it being usable, it needs significant refining before it becomes useful.

In 2012, jEdit/Isabelle became the official UI for Isabelle, despite it still being in the

development stage.

As a system, jEdit/Isabelle shares some of the same goals as the PG Kit project,

but is more tactical in ambition and limited in scope. One of the aims of PG Kit is to to

provide development environments for a whole class of interactive provers: Aspinall et

al believe that the reason why the facilities of the IDEs took so long to be provided for

TPs was due to the fragmentation of the community across so many different systems,

diluting the efforts available. By investing in shared tools as much as possible — leav-

ing only the underlying logical proof engines as separate, distinct implementations —

the TP community can progress much more swiftly [8]. PG Kit also has the ambition

to be a vehicle for research into the foundations of such an environments, with an ex-

plicit goal of advancing proof engineering. We feel that jEdit/Isabelle, by being more

tactical in just being an editor for Isabelle, and by selecting a decidedly less popular
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IDE framework, will not maximize the long-term benefit that proof engineering has

the potential to bring. 5

6.4.4 Library Lookup

Let us look in depth at how proof engineering can help with one of the most time-

consuming of the tedious and disruptive tasks we noted in Chapter 5: the “library

lookup” problem. Recall from Section 5.1.1 that Hales estimates that 50% of his time

on the Flyspeck project is spent finding lemmas and using them appropriately. Our

own experience is similar, with the knock-on effect of disrupting the flow of our proof;

we would frequently be tracking several terms in a goal when we found it necessary

to find a particular lemma in order to see the order of terms therein for matching. A

context switch from an involved formal proof to the voluminous output from grep

{.,*,*.*}/*.thy can easily shatter a hard-won understanding of the proof state.

One of the simplest ways a modern IDE helps is the “Go to Definition” feature,

part of standard Eclipse and implemented for Isabelle in both Eclipse PG and jEdit. By

control-clicking on a lemma, one is taken straight to where the lemma is defined. If we

have a question about the order of terms, we can resolve that and be back in our proof

(with one more keystroke) in less than a second. If our question regarding a lemma is

more involved, we can read the comments and documentation in the containing theory

file and search for other examples of where the lemma is used, all without leaving our

environment. (We can even arrange the widgets so that our proof state remains visible

the entire time.)

With “Hover Help” it is even easier: by placing the cursor over a lemma used in our

proof, in Eclipse PG, the definition appears in a pop-up box, refreshing our memory

about our own proof or helping us understand someone else’s proof. “Autocomplete”

is another standard IDE feature, where a keystroke (e.g. ctrl-space) will show us poten-

tially applicable completions given the first few characters of a term. Where we knew

the start of a lemma but were unsure about its entire name, or whether it used under-

scores or camel-case, this simple UI trick saves a surprising amount of time. This can

also be used to disambiguate between lemmas, as its definition can appear as switch

between completion proposals. This is useful where there are several lemmas with

similar names, such as when describing slightly different cases. On the implemen-

5Since embarking on our research the PG Kit project is no longer actively maintained, but we hope
it will be reignited one day for the advantages mentioned.
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tation side, this functionality comes for free in the Eclipse IDE framework once the

available lemmas are supplied by the Eclipse PG extension.

UI Plugins and FeaSch

Another advantage of using a modern IDE is that further UI extensions can be

developed and contributed in the form of plugins. One such plugin which brings a

powerful new approach to the library lookup problem is FeaSch [84]. Taking ideas

from cognitive science, FeaSch is a theory and a system available for Isabelle and

Eclipse ProofGeneral. Features — a type of tag in FeaSch capable of taking predicate-

style arguments — can be defined as part of theories and then detected at runtime where

those theories are used. These features are then used as the basis for automatically

proposing lemmas to apply, presented in the Eclipse PG IDE alongside the proof. It

can complete the instantiations automatically, saving time and distraction, and apply

rules automatically, if enabled, when the feature cues are strong enough.

One domain where FeaSch has been successfully applied is integration: it can

perform evaluation of integrals fully automatically, or, in semi-automated mode, it

proposes familiar techniques (such as integrationByParts or uSubstition, corre-

sponding to lemmas internally in Isabelle) based on the presence of predefined fea-

tures. The feature detection process identifies arguments from the proof state which

are used to instantiate the variables within the chosen techniques, allowing the user to

guide the proof at a familiar level without being distracted by the minutiae of low-level

steps or precise instantiations. By focusing on usability in this way, FeaSch is a good

demonstration of how powerful the proof engineering approach can be.

6.5 Summary

To summarise, this chapter has described some of possible solutions for tackling many

of the difficulties we described in Chapter 5. These have ranged from extending Is-

abelle’s simplifier and classical reasoner, to writing tactics and integrating with exter-

nal tools. We have also presented the emerging field of proof engineering which could

help with many of the difficulties at the UI level. The table in Figure 6.1 summarises

the difficulties and prospective solutions.

We can see from the table that many approaches have been tried, but nevertheless

there is a long way to go. We also observe that there is some fragmentation, with some

automation restricted to some systems, user interfaces, and/or domains. In particular,

the automation available for Isabelle not geared towards non-linear arithmetic and geo-
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Difficulties Using Isabelle Existing Solutions and Prospective Ideas

Proving Minute Details automatic tactics and techniques (simp, auto,
blast, arith, sos), Nitpick, Quickcheck, and
Sledgehammer; integration with CAS; all however
have limited applicability at present

Library Look-up IDE navigation; FeaSch

Entering Correct Instantiations Isabelle tactics, FeaSch

Refactoring very little available (can learn from software
engineering and build on IDE support)

Version Incompatibilities very little available (can learn a lot from software
engineering methodologies)

Intuition Obscured by Opaque
Presentation

Isar; can learn from IDE support for
expanding/contracting sections

Distracting Minutiae Isar, FeaSch; automation for proving minute details
(listed above)

Expensive Mistakes caused by
Obscured Intuition

Nitpick and QuickCheck providing
counterexamples; limited applicability however

FIGURE 6.1: Approaches to improving the formal proof experience

metric problem solving, apart from sos which is too slow for many practical problems.

If mathematicians and software developers are to embrace formal mechanised proof,

we must make the developer of the proof much more productive. A lot can be learned

from what IDEs have done for software engineering, in large part made possible by de-

signing the IDE to support multiple languages. A cohesive, multi-prover system seems

the most promising avenue for this work, with one of the biggest gaps being the ability

to import the power of computer algebra systems. In the next chapter we look at how

this could be done within a proof engineering architecture.



Chapter 7

The Prover’s Palette

We believe that one major boon to developing a formal proof in today’s proof assis-

tants is to have seamless access to the power of a multitude of tools. Whilst there have

been significant advances in combining provers with external tools, as described in

Section 6.3, we believe the increased complexity of current proof developments places

new demands and challenges on tool integrations. We propose that the proof engineer-

ing model, which learns lessons from software engineering, can yield a richer and more

powerful framework for integrating systems. The key differentiator of our approach is

that it is centered around the user, giving them control and visibility of many facets of

the task at hand.

In this chapter we describe the design principles which we hypothesize can steer

a good multi-system framework for interactive theorem proving. We then present the

Prover’s Palette, an architecture for such a framework, looking both at the GUI ele-

ments and the underlying implementation.

7.1 System Design

We begin with the premise that an integration’s primary goal is to accelerate the proof

development process. To date, this has been achieved primarily by integrations which

can automatically simplify expressions and discharge subgoals [126, 175]. With more

complicated verification tasks — and with more mathematicians using provers — we

believe that the process of formal proof can also benefit from tool integrations which

are able to enhance a user’s understanding of a problem. To achieve this, it is important

that integrations support multiple modes of interaction: the framework should support

automatically configuring settings appropriate to a specific problem but also emphasise

usability by enabling users to explore a problem domain easily, all while maintaining

115
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consistency between systems. We believe that a semi-interactive integration frame-

work now has a vital role to play.

The design principles which govern a systems integration of this nature are pre-

sented next, followed by a description of what we believe the user’s experience should

look like.

7.1.1 Principles

We have taken the following short list of design principles as the overriding aims in

designing this semi-interactive systems integration:

• Automatic. The use of an individual tool should be simple and tightly inte-
grated with the proof being developed: this means the tool is presented through
GUI components in the same development environment, with communication
between the components fully automated, and commonly used capabilities avail-
able with at most a single click. A novice user can then benefit from a variety of
mathematical tools, even if he is not familiar with them.
• Interactive. As much as possible, the full functionality of a tool should not

be denied to the power user. Exploration of the problem should be facilitated,
such as through suggestions for massaging the input to be more amenable to the
external tool, GUI widgets allowing operating parameters to be adjusted, and
finally the ability to edit the instructions sent to any tool (which can be essential
for some problems, as even the best fully automated integrations cannot always
tune the parameters appropriately).
• Inspectable. Where multiple tools are involved in the validation of a proof, the

commands should be explicit and repeatable. Integrations should give careful
consideration to how the output of a tool might be used, offering multiple modes
in some cases, and where the output is being trusted, the full commands required
to reproduce the result should be supplied.
• Modular and extensible. In light of the myriad systems presented in Chapter 2,

any long-term viable systems integration must be designed so that new tools can
be incorporated with as much ease as possible. Code should lend itself to use as
a framework, where modules of functionality — whether for parsing, massaging
input, or different modes of using output — can be reused.

We have been heavily influenced by two well-known sets of design principles.

Schneiderman [169], looking at usability of software, says that a user interface should:

(1) Strive for consistency
(2) Cater to universal usability
(3) Offer informative feedback
(4) Design dialogs to yield closure
(5) Prevent errors
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(6) Permit easy reversal of actions
(7) Support internal locus of control
(8) Reduce short-term memory load

Engelman [50], designing a computerised mathematical system, advocates the follow-

ing properties (abbreviated from Section 2.1):

(1) Capable of ordinary numerical computation
(2) Support a wide spectrum of symbolic computations
(3) Simple to use for a novice
(4) Customisable by an expert
(5) Extensible
(6) Responsive

7.1.2 The User’s Experience

Let us illustrate how we envision a user’s experience with an integrated prover-tool

development environment, in a way consistent with these design principles. We begin

with the observation that proof IDEs tend to have at least two widgets (window re-

gions, or “Views” in Eclipse terminology) already — an editor where the proof script

is written, and an output pane where the proof state is shown — and sometimes other

widgets for other functionality, such as a proof outline, assistance, or search. As such,

we believe a View widget is a natural way to integrate an external tool inside a modern

IDE in an interactive way.

Figure 7.1 illustrates how such an external tool widget could work. Like a proof

state output pane, this widget is updated when the proof subgoal changes. If the widget

is open (shown by the “Widget” arrow), a Start tab can show the current subgoal and

tool options available. Alternatively, a user could run in automatic mode (shown by

the “Pop-Up” arrow) where the tool widget is hidden, running in the background, and

it reveals itself when the tool is able to find a useful result, showing the Finish tab.

The various user flows through the wizard are shown by the other arrows in Figure 7.1,

and will be discussed below. If a result is produced by the external tool, the widget

presents the user with the choice to apply it back in the proof script.

In interactive (“Widget”) mode, the Start tab is the entry point, displaying the

current problem in the prover’s language for consistency with the proof environment.

If the problem is cleanly applicable to the tool, a button similar to Google’s I’m feeling
lucky! gives a one-click mechanism to send the command to the external tool and bring

up the Finish tab (discussed below). If a problem cannot be automatically sent, the
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Pop$Up

Fully*InteractiveOne$Click

Widget

Apply*in*Proof*Script

FIGURE 7.1: Sketch of tabs and user flow through them

framework will propose ways of massaging it to make it more amenable to the external

tool, such as converting to prenex normal form (PNF) or expanding the predicates

which are unknown to the external tool.

For richer interactivity, the user can click Next on the Start tab to advance, wizard-

style, to one or more Config tabs where advanced integration options are available for

manual adjustment. Much of the functionality here will necessarily be tool-specific,

but we note there are some options which can apply to many tools, such as selecting

specific parts of the proof state to work with, specifying the quantification and binding

of variables, and specifying a command to run.

From the Config tab the user could Finish immediately, or proceed to a Preview
tab displaying the I/O with the external tool. Here, the user could edit the problem

or commands as sent to the tool, and click Finish to go to the results tab; or, in an

extremely interactive mode, they could click Go, watch the output, change the input,

and run again — repeating, with a very short round-trip time, until they have finished

experimenting.

Finally, on the Finish tab — available from most of the other tabs in interactive

usage and appearing automatically in “Pop-Up” mode — the result of the external
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tool’s computation is displayed. This might state that a proposition is true, simplify

an expression, or find a witness; options for how to use a result are available, and an

Insert button provides a way to insert and run commands in the proof script. In other

cases, the tool might indicate that a proposition is incorrect, alerting the user to halt the

proof attempt, or it might provide other insight into the proof state; for these cases, no

proof script commands would be shown and the Insert button would be disabled.

7.2 System Architecture

Having described our initial vision for a user-centric tool integration, let us now present

the framework we have developed along these lines. We call this framework “The

Prover’s Palette”, and we will outline its architecture and key parts of its implemen-

tation. The code for the tool is available online at https://github.com/limeikle/

provers-palette.

As we have noted, the main idea behind our approach is to unify multiple tools in

a cohesive, extensible UI. To this end, we expect each new tool to come as a plug-

in to the IDE. The core Prover’s Palette framework is a code library which facilitates

development of these tool plug-ins, reducing the effort required to integrate with a new

tool, and ensuring a consistent experience across tools so integrated. We have sketched

an idealised user experience in the previous section; let us now turn our attention to

the re-usable primary components which the framework should supply to support tool

plug-ins, listed below and shown graphically in Figure 7.2.

Prover's Palette (Tool #1)
ControllerProver

Model

Proof 
Script

(Editor UI)

External 
ToolTranslation

Application

Prover's Palette (Tool #2)

External 
Tool

Application

Translation

View
(Tabs UI)

View
(Tabs UI)

Broker

Script
Access

FIGURE 7.2: The Prover’s Palette Architecture
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GUI: Much of the process flow for a user configuring and using a tool through
the GUI follows a common pattern, as we have sketched. The framework should
supply abstract superclasses for the graphical View definition (the widget where
a tool sits inside the IDE), for the individual tabs which comprise the View, and
for many of the GUI elements which populate the tabs (e.g. the Next and Back
buttons). This is discussed further in Section 7.2.1.

Controller: The Start tab must be updated when the proof state changes, and
the Finish tab must be able to effect changes to the proof state. Therefore at
the heart of the framework must be an element which can notify a tool plug-in
of proof changes, modify a proof script at the request of the tool plug-in, and
prompt the prover to process changes to the proof script. Let us call this element
the “controller” or “broker”, and record its primary responsibility to broadcast
and orchestrate changes to the “model” (the proof script, in our case) among
one or more “Views”, in accordance with the common model-view-controller
paradigm. This will be presented in Section 7.2.2.

Translation: As different tools and provers typically use different representa-
tions, the translation between them is an important aspect of the framework; the
core cannot do all the tool-specific translation, of course, but it can do a lot to
make the tool-specific obligations small and reliable. We describe this in Sec-
tion 7.2.3.

Application: We have previously noted that there can be many different ways
one might wish to use results from external tools: this is a key reason for wanting
to design our framework in a user-centric way. The final major architectural
concern is the encapsulation of patterns for applying results from a tool back
into the proof context. This will be discussed in Section 7.2.4.

The following sub-sections describe the important implementation decisions we faced

in building the Prover’s Palette, split up according to these four areas. Readers may

wish to skip these sub-sections if they are not interested in the underlying implemen-

tation details; it is presented here in part for completeness and as a guide for people

wishing to implement their own tool integrations using our framework.

7.2.1 The GUI

We have noted that the GUI is presented as a “View” widget: specifically it is an org.

eclipse.swt.View in the Eclipse Standard Widget Tooklit (SWT) [47]. This is a re-

sizable, dockable, minimisable component which can contain other graphical widgets.

For the Prover’s Palette, the View contains the tabs we have sketched, described in

the following sub-sections, and a toolbar which exposes overarching functionality, de-
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scribed in the final sub-section below (Section 7.2.1.5). We describe the reasons for

the choice of Eclipse and Java in Section 7.2.2.

Before describing the tabs, let us reiterate that the core Prover’s Palette framework

supplies template implementations for each tab, as abstract classes. This is a standard

way to maximize the capacity for code reuse and minimize the effort required to on-

board new external tools, and one which contributes to a consistent experience across

different tool implementations. Individual tool plug-ins need not use all the tabs here,

and they may introduce new tabs, but we believe the set introduced here provides a

good starting point.

The framework supplies the abstract class ProversPaletteViewPartAbstract as

an entry point where tool plug-ins define the View, populating the tabs and perform-

ing tool-specific initialisation. The tabs themselves are rooted in the framework class

ProversPaletteTabCompositeAbstract, which supplies behaviour common across

nearly all tabs in the Prover’s Palette:

• Creating the tab within the View
• Next and Back buttons, and their associated methods and behaviour, for “wiz-

ard” style use
• A Finish button on all tabs except the final tab, which encourages a design

whereby the user can skip all the interactive steps and run in automatic mode,
where applicable (note that the tool-specific subclasses are responsible for sup-
plying the enablement logic)
• Listener support to tell when any fields on a tab have changed (either program-

matically or manually), thus indicating when subsequent tabs require updating
• Accessing the proof context, including translators to and from the prover’s nota-

tion (Section 7.2.3)

This class is the parent of the tab classes presented below, and it is recommended that

this also be used as the superclass for any new tabs introduced for a tool which do not

fit any of the more specific tab classes provided. As the tab-specific classes discussed

below are still abstract — with tool plug-ins providing the concrete subclasses — we

show a mock-up of the tab (from Figure 7.1) for an indication of how it may look.

7.2.1.1 The Start Tab

The Start tab (Figure 7.3) displays the problem from the proof script and the actions

which are valid on that problem: the Finish button will typically be enabled if the

problem can be sent in its entirety without any changes (as determined by calls to the

translation module); the Next button is enabled if there is a problem; and various pre-
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FIGURE 7.3: The Start Tab

processing actions may be exposed if the tool plug-in indicates that a problem would

benefit from pre-processing.

The core framework provides the abstract class StartTabComposite supplying

this behaviour common in this tab. Most significantly, it provides a public method

updateWithProblem which can be invoked (by the broker, discussed in Section 7.2.2)

to display the current problem whenever the proof state changes. The Next and Finish
buttons are inherited from the parent class (ProversPaletteTabCompositeAbstract),

with the expectation that concrete tool-specific subclass will supply the logic for whether

Finish is applicable, that is where there is an obvious automated way to send the prob-

lem to the tool in a single click. For common pre-processing activities, such as con-

verting the current problem to PNF or expanding predicates (which will be described

in Section 7.2.4.1), the buttons and hooks to trigger this in the prover are also sup-

plied here. Finally, in cases where there might be multiple input sources (provers), a

dropdown proverChoice is supplied here allowing different input sources to be wired

up.

7.2.1.2 Configuration Tabs

Due to the breadth of tools which we would like to support in the Prover’s Palette,

the Config tab shown in Figure 7.4 is a placeholder for what will typically be one or
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FIGURE 7.4: A Sample Config Tab

more highly tool-specific tabs where its interactive capabilities are exposed. Although

a casual user might initially skip these, an important design goal is to ensure that expert

users have access to many of the advanced features of a tool, even if they cannot be

automated; our own experience with several such tools indicates strongly that being

able to adjust the configuration is essential for exploration, and powerful in general.

The content of these tabs will vary dramatically from tool to tool, and tool plug-

ins may often subclass ProversPaletteTabCompositeAbstract directly. We have,

however, identified two types of configuration tab for which we can see general appli-

cability, and these are provided as part of the core Prover’s Palette framework.

The Import tab disects the current proof subgoal into its assumptions and conclu-

sion, and allows the user to easily inspect which parts are compatible with an exter-

nal tool (based on tool-specific logic provided in the translator). This tab lets a user

select or deselect components of the subgoal to include in the problem sent to the ex-

ternal tool. This behaviour is defined in the class ImportTabComposite, along with

code for extracting the variables from a problem, showing which variables are used

in the selected parts, and editing variable quantifications and types. (In addition, the

Back/Next/Finish buttons are inherited from the parent class; as this is the case for all

tabs, we will cease mentioning them.)

The Problem tab swaps semantics from the prover, used in the Start and Import
tabs, to that of the external tool; it presents the problem statement which will form the
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basis of input to the tool, based on components selected in the Import tab, but now

translated to the language of the tool. It allows editing of the problem in case the user

knows better than the automation or simply wants to play with the tool, and supplies

conveniences for tool-specific subclasses to add further configuration, such as selecting

a mode to run the tool or adjusting variable bindings and constraints. Its behaviour is

supplied in the class ProblemTabComposite.

7.2.1.3 Preview Tab

FIGURE 7.5: The Preview Tab

The Preview tab (Figure 7.5), implemented in the class PreviewTabComposite,

tracks the execution of the external tool. It displays a textbox for the input which is

sent to the external tool, often a script and by default editable, and it displays a textbox

for the output coming back from the tool (read-only, but supporting cut-and-paste),

so that during interactive usage an advanced user can follow its activity (and e.g. note

intermediate warnings which may be displayed). The tab includes a Go button to start a

process, and a Cancel button, and the class provides logic for monitoring processes and

enabling these buttons appropriately. This tab excludes the Next button, as typically

Finish is the only logical next step, and includes auto-advance behaviour to switch to

the final tab when the external process completes.

The class defines the method
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protected abstract boolean go(boolean forceInterrupt)

as the hook where tool-specific subclasses cause the external tool to act on the input

problem. As this method is abstract (and since the core framework cannot know how

to run a tool!) each plug-in must supply this method. We expect that implementa-

tions will commonly take the input from the corresponding textbox in this tab, which

in turn will typically be updated using the field-change listener mechanism (provided

by ProversPaletteTabCompositeAbstract, mentioned above), but in some situa-

tions, for instance where a tool is not script-based, the go() method may have other

behaviour, or of course the Preview tab could be replaced altogether.

7.2.1.4 The Finish Tab

FIGURE 7.6: The Finish Tab

All the tabs mentioned so far include a Finish button, which results in the external

tool being activated for a problem, and once a result is found the Finish tab is shown.

This tab shows the input problem, in the tools language, and an equivalent output form,

as in the mockup shown in Figure 7.6. The FinishTabComposite class contains stub

methods where tool-specific subclasses can compute options for applying that result

to present to the user: for example as a trusted oracle, as a subgoal, or as a witness

(see Section 7.2.4.2 for more details). The abstract class supplied by the framework

includes the input-and-output equivalence textboxes, buttons for these common ap-
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plication modes, and default prover command templates to effect the corresponding

behaviours.

This class also defines a textbox where the prover command can be previewed and

edited. If the user is happy with a command, they can select the Insert button which

will be to cause the command to be inserted in the proof script and processed. Both this

button and this default behaviour are supplied by this class — meaning a tool-specific

subclass may not need to do very much at all for this tab!

The Finish tab also provides a Comment check box, which if selected will add a

comment to the proof script detailing the exact command sent to the external tool. This

makes it clear in the script how a result was achieved and allows the result to be repro-

duced subsequently without needing the Prover’s Palette. Again, this functionality is

provided by the abstract framework class for this tab.

7.2.1.5 The Toolbar

In addition to the tabs, the core Prover’s Palette framework provides a toolbar to control

common useful automatic behaviour of a tool plug-in in a consistent manner. This

toolbar by default presents four actions:

• Run Automatically: if the current subgoal is amenable to the external tool it is
translated and sent off automatically, running unobtrusively in the background
• Show when Applicable: if the current subgoal is amenable to the external tool

then the tool’s View pops up, showing the Start tab and alerting the user (the
problem is only sent off if the user clicks Finish)
• Show on Success: if the external tool has been selected to run automatically in

the background and it finds a result, then the tool’s View pops up, showing the
result in the Finish tab and allowing the user to decide if the result should be
used in the proof
• Run after Insert: if the external tool finds a result it will automatically use

this in the proof script (where the command inserted will be dependent on the
specific system)

These actions are defined in the class ProversPaletteViewPartAbstract, men-

tioned previously in this section, in variables of the form action*. These actions ex-

ploit the framework’s ability to run external tools concurrently with the prover. They

are provided by the abstract class, so again, unless a plug-in needs to extend or replace

this useful set of functionality, there is no need for tool-specific code. We believe these

automation techniques, performing some computation in the background, will prove a

useful pattern for making interactive theorem provers easier to use.
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7.2.2 Controller

Recall that the controller layer must provide the mechanism by which tools in the

Prover’s Palette framework can:

(1) register for proof state change notifications
(2) apply changes to the proof script
(3) process the modified proof script in the prover

In Section 6.3 we reviewed several ways that TPs can interact with external systems.

Based on this analysis and our survey of Proof Engineering, we identified the PG Kit

(introduced in Section 6.4.2) as the most suitable choice of foundation for the con-

troller layer. PG Kit provides a communications protocol and broker middleware for

managing proofs-in-progress and mediating between components, immediately giving

much of the needed functionality. Internally, PG Kit stores a model of the raw text of

active proof scripts and parse-trees for these scripts (where the parsing is done by the

prover, quasi-independently of applying proof steps, and used by PG Kit to determine

command boundaries and theorem boundaries). It also keeps a model of the active

proof state, again with a parse tree.

The fact that PG Kit is already embedded in a good IDE for Isabelle — Eclipse

PG — and has access to the broader Eclipse ecosystem with its software engineering

focus, made the choice of working with PG Kit in Eclipse a compelling conclusion.

This of course makes Java the natural choice for implementation, and again this is a

reasonable choice as Java is one of the most popular programming languages, with

excellent support for concurrency particularly helpful for our purposes.

Given these capabilities already in the PG Kit, there was very little left for us to add

to support our controller needs. To support (1) above, we created a lightweight eventing

mechanism in ProversPaletteProofGeneralListener, building on the listeners in

the PG Kit and some extensions in the FeaSch project [84]. This listener is registered

with the PG Kit SessionManager, the nexus of its eventing system, as part of the

initialisation done by the ProversPaletteViewPartAbstract mentioned above. To

support (2) and (3), our framework provides a utility class ProofGeneralScripting

Utils which simplifies the processes of modifying the proof script and invoking prover

processing, in a principled way. Thus the “Controller” box shown in Figure 7.2 is

almost entirely out-of-the-box PG Kit, with a small amount of wrapping provided by

us for convenience.
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7.2.3 Translation

The Listener registered with the controller layer has access to the prover’s state,

represented in Proof General Markup Language (PGML). The Prover’s Palette com-

plements this by providing a rich set of routines for generating parse trees from PGML

and for converting these parse trees between various systems. This section will cover

many of the details of the representations and the translations; while the techniques are

applicable to provers in general, we concentrate on Isabelle as that is the environment

we primarily use.

To understand how the prover’s state is represented in the PG Kit, consider the

following lemma:

commute: "a + b = c =⇒ b + a = c"

Within the Prover’s Palette, an external tool’s View will have a registered listener which

receives a callback containing the PGML for each new proof state. For the commute

example, the listener receives the following object:
<pgip

tag="Isabelle/Isar"
id="/laura/442/1349731868.378"
destid="PG-Eclipse"
class="pg"
refid="PG-Eclipse"
refseq="15" seq="32">

<normalresponse>
<pgml area="display">

proof (prove): step 0
goal (1 subgoal):
1. <atom kind="free">a</atom> +

<atom kind="free">b</atom> =
<atom kind="free">c</atom>
<sym name="Longrightarrow">

&lt;Longrightarrow&gt;</sym>
<atom kind="free">b</atom> +
<atom kind="free">a</atom> =
<atom kind="free">c</atom>

</pgml>
</normalresponse>

</pgip>

This is passed to a MathsProverTranslator (e.g. for integrating externals tools with

Isabelle, this is passed to the IsabelleTranslator) which creates a generic mathe-

matical representation, based on that used in FeaSch [84] (which in turn is based on

Isabelle notation). This generic representation defines a canonical set of mathematical

symbols which are built up in a tree hierarchy, and this is used as a common intermedi-

ate language in our translation. This makes it quick to on-board a new system into the
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framework, as the translation need only be done to and from this common representa-

tion, with the ability to translate to and from all other existing systems following with

no additional work. There are limitations with this approach, as with any approach to

translation, namely that where concepts in any two systems do not align neatly either a

specific system-to-system translation is required, or the common language must have

an opinion on which one takes priority. Our routines follow the former strategy, and

the canonical common language contains very little beyond near-universally recog-

nised mathematics. For the arithmetic and logical operators we use notation identical

to that of Isabelle’s.

Translation from the prover to the common language begins with MathsProver

Translator.preprocess which tidies input — converting any extended characters to

canonical representations1, switching to meta-level quantification, and related activ-

ities. The current proof state then passes through ProverTranslator.parse which

creates a parse tree based on grouping and operator precedence, yielding the common

representation. For the example above, this results in the following parse tree:
ImplicationGroup("==>")

OperatorGroup("=")
OperatorGroup("+")

Token("a")
Token("b")

Token("c")
OperatorGroup("=")

OperatorGroup("+")
Token("b")
Token("a")

Token("c")

This parse tree is then inspected to determine whether the problem is compatible

with the external tool, and the associated Start tab is updated as appropriate. Type

information can be included, although in some environments this requires additional

commands because typing is not currently a feature of PGML. (In the case of Isabelle,

the user can set the flag declare [[show_types]] which makes the typing informa-

tion explicit and available to PGML.)

When the user switches to the Problem tab in the View, the generic parse tree needs

to be converted to the notation of the external tool.2 This is done through the interface

method MathsSystemTranslator.fromCommon(genericParseTree) (where Maths

1ASCII (e.g. ==>) replaces unicode (e.g. =⇒) as the latter continues to have portability problems
and limited text file support.

2In fact, calls are made to generate the parse tree as early as the Start tab, to determine whether
pre-processing is required.
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SystemTranslator is actually a super-interface of MathsProverTranslator), which

traverses the goal, operators, and variables, ensuring that:

• symbols are translated to their appropriate representation in the tool,
• variables are renamed where necessary,
• brackets of the appropriate type are inserted where necessary, and
• variable quantifications and bindings are extracted if appropriate

When we come to use a result from the external tool in the theorem prover (i.e.

in the Finish tab) we need to be able to convert back from the tool’s language to the

prover’s representation. This is done by the chain of calls in MathsProverTranslator.

fromCommon(MathsSystemTranslator.toCommon(toolExpression)). Type infor-

mation can be preserved, transformed, or inserted, depending on the capabilities of

the two systems. For example, we may wish to transform the type information in the

case where a prover refers to a type nat and an external system works with Natural

numbers. We may wish to add type information to the results of an external tool if the

tool only ever reasons over the reals; here we may wish to attach the type real to all

variables passed back to the prover.

For more information on the translation, please consult the code and the unit tests.

7.2.4 Application

Let us now turn our attention to the reverse-path communication: how does activity

from the tool View affect the proof? Specifically, Views need to be able to update the

proof state by inserting commands into the proof script and instructing the prover to

process the new commands. This is achieved by calls to ProofGeneralScripting

Utils as described in Section 7.2.2. The Prover’s Palette includes common patterns

of communication between the external tool and the prover. These patterns can be

split into those which are done before the external tool is invoked, “manipulation”, and

those which are done by the prover in response to the output from the external tool,

“using results”. The following sub-sections describe these in more depth.

7.2.4.1 Manipulation

We noted earlier that MathsProverTranslator is a sub-interface of MathsSystem

Translator: this requires provers to implement a small number of additional methods

for manipulating proof goals in common situations, either making them more amenable

to use by a tool, or making the output from the tool more appropriate to the prover’s

context.
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The first major area where proof states may need to be manipulated is where they

contain predicate names which are foreign to the external tool. The translation rou-

tines in Prover’s Palette can detect these unknown predicates; to help the user’s pro-

ductivity where a prover can automatically expand these predicates, the MathsProver

Translator defines two methods. The first of these allows a prover integration to

advertise this capability:
boolean shouldSuggestExpandUnknownPredicates(

MathsExpression proverSubgoalText,
Set<MathsToken> unknownPredicates);

When this method returns “true” for a proof state, a button labelled Expand is enabled

in the Start tab. Clicking this button triggers a call to the second predicate-expansion

method:
String getCommandForExpandingPredicates(

Collection<String> unknownPredicates);

This method produces the commands which should be inserted into the proof script to

expand the definitions of the unknown predicates. In the case of Isabelle, this method

generates commands of the form:
"apply (simpl only: "+unknownToken+"_def)?"

In our experiments with CASs we realised that another barrier which can prevent

proof goals being accepted by external tools is the presence of quantifiers within for-

mulae: many tools require the goal to be in PNF, that is where all quantifiers are at the

start of the goal. The Prover’s Palette offers assistance in these situations by inspecting

the parse tree to detect if a goal is not in prenex normal form. The following methods

are provided by the framework:
boolean shouldSuggestConvertToPnf(

MathsExpression proverSubgoalText);

String getCommandForConvertingToPnf(String text);

The first method is used to prompt the user that the goal is not in PNF, enabling a

PNF button in the Start tab if the prover supports it. The second method produces the

appropriate prover command for converting the goal to the desired form; in the case of

Isabelle this is:

apply (atomize (full))?
apply (simp only: prenex_normal_form)

This ensures the representation is in the correct object logic (higher-order logic in our

case, with the atomize step only applied if the goal is in Isabelle’s meta logic format),
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and then uses a set of simp rules we have defined as prenex_normal_form3:

prenex_normal_form:
"((∃ x. P x) ∧ Q) = (∃ x. P x ∧ Q)"
"(P ∧ (∃ x. Q x)) = (∃ x. P ∧ Q x)"
"((∃ x. P x) ∨ Q) = (∃ x. P x ∨ Q)"
"(P ∨ (∃ x. Q x)) = (∃ x. P ∨ Q x)"
"(( ∀ x. P x) −→ Q) = (∃ x. P x −→ Q)"
"(P −→ (∃ x. Q x)) = (∃ x. P −→ Q x)"
"(( ∀ x. P x) ∧ Q) = (∀ x. P x ∧ Q)"
"(P ∧ (∀ x. Q x)) = (∀ x. P ∧ Q x)"
"(( ∀ x. P x) ∨ Q) = (∀ x. P x ∨ Q)"
"(P ∨ ( ∀ x. Q x)) = (∀ x. P ∨ Q x)"
"(( ∃ x. P x) −→ Q) = (∀ x. P x −→ Q)"
"(P −→ ( ∀ x. Q x)) = (∀ x. P −→ Q x)"
"(¬ (∀ x. P(x))) = (∃ x.¬P(x))"
"(¬(∃ x. P(x))) = (∀ x.¬P(x))"

by (iprover | blast)+

Finally we may wish to insert type information into the result produced by an

external tool, based on the domain the tool was reasoning about:
String annotateWithTypeInformation(String result,

VariableBinding[] variablesAndBindings);

This prevents many otherwise common type errors from entering into the translation

during use, as the prover will fail to be able to use a result if the types do not match,

even if type information from the prover was not available or not passed to the external

tool.

7.2.4.2 Using Results

There are several general ways a result from a tool might be used in a formal proof.

Many of these are not specific to a single system, so it is useful to define their behaviour

at the framework level.

An external tool might be used merely to explore a problem domain, in which case

the result is not used in the prover. In other situations, a user may want to use a re-

sult explicitly in the proof script: for these situations, the Prover’s Palette provides a

number of convenience methods which present the user with the various types of com-

mands. These commands are made appropriate to the context of the proof, respecting

the quantification of variables the choice of object or meta level representation, and are

expressed in the proof script syntax of the prover. The core Prover’s Palette framework

supplies GUI and proof-script-generation support for the following application modes:
3Creating this simplification set to convert problems to PNF was a pragmatic heuristic here, and it

has worked well for the example problems we have encountered. However, Isabelle can apply these
rules in any order and this technique has the potential to blow-up. A “stratified” approach, imposing an
ordering on rule applications, would be a basis for a more reliable and efficient procedure.
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Oracle: used when the result is taken on trust
Subgoal: used when the result is to be proved formally
Instantiate: used when a witness is discovered

(for an existentially quantified variable)

The methods and buttons associated with these modes are supplied in the Finish

TabComposite. The behaviour associated with these modes can be re-used for any the-

orem prover, although the formulation of the specific commands is prover-dependent.

For example, whenever a Subgoal button is enabled and activated, the following com-

mand is sent to the Isabelle proof script for processing:
getProverCommentForCurrentResultIfEnabled() +

"apply (subgoal_tac \"" +
getProverFormOfCurrentResult()+"\" )"

The first line checks to see if the user wishes a comment to be added to the proof script,

containing the exact problem which was sent to the external tool (and thus allowing

the result to be reproduced if desired).

Similarly, if the user selects the Oracle button, the following command is inserted

into the Isabelle proof script:
getProverCommentForCurrentResultIfEnabled() +

"apply (trustedtool \"" +
getProverFormOfCurrentResult()+"\" )"

The trustedtool method has to be implemented in Isabelle. This is achieved by

adding the following code to the proof script:

oracle trustedtool_oracle ("string") =
{* fn thy ⇒ fn str ⇒

HOLogic.mk_Trueprop (Sign.read_term thy str); *}

method_setup trustedtool =
{* Method.simple_args Args.name

(fn n ⇒ fn ctxt ⇒ Method.SIMPLE_METHOD
(HEADGOAL

(Tactic.metacut_tac
(trustedtool_oracle

(ProofContext.theory_of ctxt) n))
handle Fail _ ⇒ no_tac)) *}

"trustedtool oracle"

In the case where the external tool has discovered a witness for an existentially

quantified variable the FinishTabComposite can suggest that the user instantiate these

variables back in the proof script. The Prover’s Palette provides convenience methods

for recursing through the parse tree in order to generate the relevant prover commands.

More illustrations of how these application modes are used in practice will be sup-

plied in subsequent chapters of this thesis.
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7.3 Conclusion

In this chapter we have introduced the Prover’s Palette, a system and architecture for

combining multiple mathematical software tools. By following a proof engineering

methodology, where plug-ins for external tools can sit alongside the prover IDE, the

Prover’s Palette provides a tightly integrated and cohesive proving environment where

integrations are centred around the user. Some of the main design principles high-

lighted in this chapter were that both novices and experts of a tool should be supported

and that the core framework should be modular and easily extensible. We facilitate

this last aim by providing Java superclasses for new tool integrations to extend: this

is presented with regards to the four components of the framework (GUI, controller,

translation and application) where common behaviour across tool plug-ins is likely.

As discussed, the Prover’s Palette is implemented in Java and built upon the PG

Kit which provides an Eclipse front-end to Isabelle. It should be noted, however, that

development of PG Kit has since stopped and it is no longer officially supported. De-

spite this, it was already mature enough for our purposes when we began implementing

the Prover’s Palette, and in our view it remains one of the most advanced tools of its

kind. It is encouraging to note that it is compatible with the current version of Isabelle

(2012), a testament to the solid software engineering principles that went in to the PG

Kit framework! Given the wealth of capabilities in Eclipse PG, we hold out hope —

and not unreasonably we feel — that investment into PG Kit may yet resume and make

it again the focal point of IDE development for Isabelle and other provers.

In the following chapters we will build upon the core Prover’s Palette framework

and illustrate the design principles of the system in action by presenting two concrete

integrations: the first combining Isabelle with QEPCAD, and the second making some

of Maple’s functionality available in the Prover’s Palette.
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QEPCAD in the Prover’s Palette

Recall from Section 6.2.2 that QEPCAD [151] is a powerful implementation of the

quantifier elimination decision procedure. In preliminary experiments we observed

that QEPCAD was capable of solving many of the problems that arose in our proofs,

particularly where Isabelle’s automation is weak. Because it complements Isabelle’s

strengths, we chose QEPCAD as the first system to integrate into the Prover’s Palette

framework.

There are many ways in which QEPCAD could offer the user help when developing

a formal proof. Some obvious modes of usage are:

• as a sanity check where the results simply guide the user; and
• as an oracle where the results are used in the proof, taken on trust.

As described in Section 6.3.2, in discussions with the developer of QEPCAD, we con-

cluded that witness-generation would be extremely useful; as he has now implemented

this, QEPCAD can now also be used for:

• finding a witness, which is then used to instantiate a bound variable;
• producing a counterexample for false conjectures; and
• simplifying algebra.

Additionally, we have found QEPCAD useful for:

• discovering the minimum set of assumptions required to make a conclusion hold
(or, in other words, to remove superfluous assumptions); and
• experimenting with sets of the assumptions to determine whether there are any

contradictory ones, thus making the conclusion true trivially.

In many domains, formal correctness requirements disallow reliance on tools such

as QEPCAD. Nevertheless, it can be seen from the above lists that there are many ways

QEPCAD’s results can be of assistance to the user without sacrificing formal correct-

ness, from simplifying the subgoal to finding witnesses and missing assumptions.

135
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In this chapter we will show how the Prover’s Palette framework enables each of

these usage modes. We will use real-world problems to illustrate some of the ways the

integration can be used, first looking at some which are fully automated and then show-

ing how designing for interactivity allows a much wider set of problems to be solved.

In both modes, we show how the integration can improve a user’s understanding of

their problem domain and how the automation provided by the integration reduces the

context switching which can be so obstructive to one’s intuition in theorem proving,

8.1 Automatic Insight

Let us begin with a look at the automation capabilities of the QEPCAD widget, where

the tool can be configured to run in the background and appear only if it is able to

produce a result, without any manual interaction.

8.1.1 Running QEPCAD

Figure 8.1 shows the Prover’s Palette in Eclipse Proof General. The top half of the

screenshot holds the Proof Script Editor, where the user writes the steps in the formal

proof; as lines are sent to the prover, the current proof state is shown in the Prover

Output View in the lower left; and, in the lower-right, is the Prover’s Palette QEPCAD

View.

Figure 8.1 also shows the dropdown toolbar menu of the QEPCAD View, where

the automation behaviour of the widget can be configured. The user can tell the widget

to Run after Insert, meaning that when a result from the tool is inserted in the script

it should also be sent to the theorem prover for processing. The user can also tell the

widget to Show when Applicable, where the widget will show itself when it detects

a problem QEPCAD may be able to solve. For more automation, Run Automatically
can be enabled to send any applicable problem to QEPCAD in the background, so that

the result is there waiting if the user wants to check. A user can further enable Show
on Success, where the QEPCAD widget will pop-up when a usable result is found by

QEPCAD. With these two options enabled, the user can minimise the QEPCAD widget

and work on her formal proof while the widget performs analysis unobtrusively in the

background and appears whenever it has an answer.
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FIGURE 8.1: The Prover’s Palette with Isabelle and QEPCAD

8.1.2 Using Results

To illustrate some of the ways the QEPCAD widget can assist with a formal Isabelle

proof using the automation we just described, let us consider the problem of whether

two lines intersect:

∃ x y. (x+ y = 10) ∧ (x− y = 4)

Once this is entered into the proof script and sent to the prover (in the usual Eclipse PG

manner), the resulting proof subgoal comes back to the PG broker, which dispatches

it to the Prover Output View where it is displayed. With the Prover’s Palette active,

the broker also passes the new proof state to the QEPCAD widget. This assesses if

the subgoal is amenable to QEPCAD, and, if it is, assuming the automatic modes of

the widget are enabled, the problem is sent off to QEPCAD to run concurrently in the

background. For this line-intersection problem, a result is found immediately and the

QEPCAD widget pops-up on the screen, as shown in Figure 8.2.

The Finish tab is displayed, as described as part of the core Prover’s Palette frame-

work (Chapter 7), showing the key information from the QEPCAD output. The result

is shown in QEPCAD’s notation, for clarity about the result, with options presented to



Chapter 8. QEPCAD in the Prover’s Palette 138

FIGURE 8.2: Using Results Found by QEPCAD

the user for how it can be applied to the proof. Here, all three of the application modes

from Section 7.2.4.2 are applicable — oracle, subgoal and instantiate.

The QEPCAD widget automatically selects the mode its heuristics judge best: in

this case, the Instantiate button is chosen as the default, as a witness has been found

which can make the statement true without introducing a dependency on either QEP-

CAD or the Prover’s Palette. The Isabelle commands associated with this option are

shown, and the user can simply click Insert in Proof Script to automatically insert

these commands into the proof script (and the commands will also automatically be

processed if the Run after Insert toolbar option is enabled). For this example, this is

sufficient to discharge the proof goal, fully formally, with just one click from the user.

There will of course be situations where witnesses are not or cannot be produced.

In these instances, one may be willing to use the results of an external tool without

formal proof (i.e. the external tool acts as a trusted oracle). This might be done for

pragmatic reasons, with a clear indication of what external results are being used so

that a reader can verify them to their own satisfaction (by hand or using their preferred

tools), and/or with the anticipation that fully automated, formally correct methods will

in time become available for proving these statements.
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Although it is not the best option for the line-intersection problem, Oracle mode

could have been selected. If that were the case, the widget would have generated the

appropriate Isabelle commands for the translated QEPCAD result to be trusted by that

prover:

apply (qepcad "(∃(x::real). ∃(y::real).
(((x + y) = 10) ∧ ((x - y) = 4))) = True")

apply blast

With these commands inserted into the proof script, the lemma is then “proved”. Note

that the qepcad oracle tactic is defined in Isabelle similarly to the trustedTool tactic

presented in Section 7.2.4.2.

One could instead select the Subgoal application option, which for this problem

generates the Isabelle command:

apply (subgoal_tac "(∃(x::real). ∃(y::real).
(((x + y) = 10) ∧ ((x - y) = 4))) = True")

This has no effect on our proof state here, but there are many situations where it can

be useful: when QEPCAD returns a simplified formula rather than True or when the

problem has been manually altered, inserting the result as a subgoal allows simplifica-

tion in a fully formal way. As this is primarily applicable during interactive usage, this

will be covered in more detail in the next section.

These three ways of using results are defined by the Prover’s Palette core frame-

work; but due to the variety of notations used in external systems, there are some tool-

specific aspects in how results apply in different situations and with different provers.

Translation will be discussed in greater detail in the next subsection, but let us briefly

note some of the specifics for the commands which are generated. First, we imag-

ine that the user has attempted to prove the line-intersection subgoal themselves in

Isabelle, by first eliminating the existential quantifiers — using the command apply

(rule exI)+. The current subgoal in Isabelle then becomes:

?x + ?y2 = 10 ∧ ?x - ?y2 = 4

The QEPCAD widget automatically detects that the variables ?x and ?y2 are implicitly

bound by existential quantifiers, it discovers the same witness as before, and it again

makes the suggestion that the user Instantiate the result. However, because different

commands are required for implicit and explicitly quantified variables, the integration

proposes a different command to be inserted into the proof script:

apply (rule_tac P = "7+3=10 ∧ 7-3=4" in TrueE, rule TrueI)
apply simp
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In addition to these three ways of applying a result to progress the proof (oracle,

instantiate and witness), the user is sometimes presented with a fourth option which

merely simplifies the proof state. QEPCAD may discover that certain assumptions are

not needed in a proof, and it will provide an option and prover commands to “thin”

(remove) those assumptions from the current goal. We will say more about this in

Section 8.3.2.

Finally, recognising the importance of recording the provenance of a result, the

widget offers to include an explanatory comment in the proof script. This contains all

the requisite details to re-run the computation in QEPCAD without any reliance of the

prover or the Prover’s Palette.

8.1.3 Translation

Let us now look at the different aspects of translation, from mapping mathematical

symbols between Isabelle and QEPCAD to inferring the bindings on variables and

offering automated pre-processing to massage a subgoal so it may be understood by

QEPCAD.

Mathematical Symbols and Logical Operators

Recall from Section 7.2.3 that the Prover’s Palette Java infrastructure provides a com-

mon representation of the current subgoal, i.e. the parse tree generated from the PGML

representation of the proof state. For a concrete tool integration, we must then describe

how to translate from this common representation to the language of the external tool,

in this case QEPCAD. The QepcadTranslator class describes this translation to and

from the common notation for the mathematical operators and logical symbols (which

in the Prover’s Palette at present is based on Isabelle). The code uses a bi-directional

map initialised as follows:
ISABELLE_QEPCAD_TRANSLATIONS.put("+", "+");
ISABELLE_QEPCAD_TRANSLATIONS.put("-", "-");
ISABELLE_QEPCAD_TRANSLATIONS.put("*", " ");
ISABELLE_QEPCAD_TRANSLATIONS.put("^", "^");

ISABELLE_QEPCAD_TRANSLATIONS.put("=", "=");
ISABELLE_QEPCAD_TRANSLATIONS.put("~=", "/=");
ISABELLE_QEPCAD_TRANSLATIONS.put("=/", "/=");

ISABELLE_QEPCAD_TRANSLATIONS.put(">", ">");
ISABELLE_QEPCAD_TRANSLATIONS.put("<", "<");
ISABELLE_QEPCAD_TRANSLATIONS.put("<=", "<=");
ISABELLE_QEPCAD_TRANSLATIONS.put(">=", ">=");
ISABELLE_QEPCAD_TRANSLATIONS.put("~", "~");
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ISABELLE_QEPCAD_TRANSLATIONS.put("&", "/\\");
ISABELLE_QEPCAD_TRANSLATIONS.put("|", "\\/");
ISABELLE_QEPCAD_TRANSLATIONS.put("/\\", "/\\");
ISABELLE_QEPCAD_TRANSLATIONS.put("\\/", "\\/");

ISABELLE_QEPCAD_TRANSLATIONS.put("-->", "==>");
ISABELLE_QEPCAD_TRANSLATIONS.put("<--", "<==");
ISABELLE_QEPCAD_TRANSLATIONS.put("<->", "<==>");

ISABELLE_QEPCAD_TRANSLATIONS.put("==>", "==>");
ISABELLE_QEPCAD_TRANSLATIONS.put("<==", "<==");

ISABELLE_QEPCAD_TRANSLATIONS.put("True", "TRUE");
ISABELLE_QEPCAD_TRANSLATIONS.put("False", "FALSE");

where the first argument is in the common (Isabelle-based) notation and the second

is in QEPCAD’s notation. As can be seen, many of their symbols are identical, but

including them in the map is an indication that the operator is supported.

The QepcadTranslator class also implements the translation of the correct brack-

eting; where Isabelle only uses parentheses around terms, QEPCAD has a slightly

more complex language, requiring square brackets around logical expressions and

parentheses around numeric expressions where needed to override operator prece-

dence.

Variables and Quantifiers

If the variable bindings are explicit in a subgoal, the Prover’s Palette simply needs

to translate between the Isabelle notation and QEPCAD’s: so ALL in Isabelle gets

translated to A in QEPCAD and EX in Isabelle gets translated to E in QEPCAD. The

translation is more cumbersome when the bindings of variables are implicit in the

subgoal. In this situation the Prover’s Palette translation has to decipher which binding

to infer:

• if the subgoal states ∧
x. then infer x is universally bound;

• if the subgoal states ?x then infer x is existentially bound; and
• if there is no information in the subgoal about a variable’s binding then assume

it is universally bound.

In addition, the Prover’s Palette massages any variable names which aren’t permit-

ted by QEPCAD. For example ?x is translated to just x. If there is already a variable

named x, the QepcadTranslator detects the clash and reverts the binding of x to “un-

known”, with the consequence that all components which contain x will default to

being deselected within the QEPCAD widget.
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Types

The Prover’s Palette stresses flexibility, ease-of-use, and safety. To this end, where

types other than “real” are present in a problem statement, the QEPCAD widget al-

lows the goal to be sent to QEPCAD but it includes the type information in resulting

commands inserted into a proof. Thus the widget does not prevent potentially useful

explorations, but it does prevent incorrect applications of a result in the proof script.

This is the same technique used by blast within Isabelle.

Similarly, if there is a clash where differently-scoped variables have the same name

(i.e. where the binding type is detected as “unknown” but a user interactively selects

one or more of those components), the resulting proof commands have the variables

scoped globally reflecting the computation as validated by QEPCAD. This prevents

name-clash confusion from applying a result incorrectly, because the prover will refuse

to unify the globally-scoped variable in the generated commands with multiple identi-

cally named variables in the proof state.

8.1.4 Generating QEPCAD Commands

A second, related phase of processing is that which generates the command script

which will be sent to QEPCAD. This is performed by the QepcadProblem class, taking

into account the components, variables, and bindings selected in the Problem tab. In

general, this is a straightforward process, as QEPCAD’s syntax is relatively simple:

variables are listed first with their bindings, followed by the problem in QEPCAD

notation, followed by configuration options. There are, however, some subtleties.

Selecting Applicable Parts

If all the components of a subgoal are compatible with QEPCAD, the situation is sim-

ple as the entire problem can be sent to QEPCAD. However, where one or more compo-

nents are not compatible, the QEPCAD widget deselects those components by default,

and the GUI allows the user to send the remainder of the subgoal to QEPCAD. For

example, if a subgoal was of the form:

a+b=10 ∧ a < b ∧ 1 < a ∧ coprime a b =⇒ a = 3

the widget would deselect the coprime component and just send off the remainder of

the goal to QEPCAD. This is in keeping with the Prover’s Palette philosophy that the

an external tool integration should be helpful but not overly restrictive. As noted above,

the result of this computation will be a valid statement, according to QEPCAD, and
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the application back in the proof — if permitted — will be as trustworthy as the usage

mode (oracle, subgoal, instantiate) and the tool permits. The result is not guaranteed to

be useful — as in the example where we removed the coprime fact, QEPCAD would

say false — but the result is guaranteed to be safe:

( a+b=10 ∧ a < b ∧ 1 < a −→ a = 3 ) = False

Variable Bindings

Where a variable occurs only in deselected terms in the Problem tab, it is removed

from the list of variables which are sent to QEPCAD. (QEPCAD will fail if a variable

in the variable list does not occur in the problem or if a variable in the problem is not in

the variable list.) However, if a variable occurs in both a selected term and a deselected

term, the widget will initialise it as a free variable: the reason for this is that the user’s

intention here will usually to use QEPCAD to reduce the problem in terms of such

variables, i.e. to eliminate all variables where all known information is included and

return a result containing only those variables for which there are additional constraints

not given to QEPCAD.

As before, the user can manually change these bindings to explore the problem.

The result may or may not be interesting to them, and it will usually not be applicable

to the proof state, but it will always be safe to attempt to apply it.

Pre-processing

In many cases where a subgoal is not wholly compatible with QEPCAD, it can be

transformed using the prover to become compatible. The two most common such

transformations are converting the subgoal to prenex normal form (PNF) and expand-

ing predicates which QEPCAD does not understand (e.g. defined in an Isabelle theory).

Whilst massaging a goal in this way is not difficult, it can be extremely tedious, and

this tedium limits the utility of the Prover’s Palette. This burden is lifted from the user

through simple automation which does the necessary pre-processing: two buttons —

PNF and Expand — are provided, enabled when appropriate, to generate, insert and

apply the commands to perform these transformations.1

1The proof commands used to perform the PNF conversion and the expansion of predicate definitions
are successful in most, but not all, cases. They will, of course, never cause an unsafe transformation, but
if they cannot completely convert the problem the user may, on occasion, have to manually massage the
proof state to be usable in QEPCAD. This can be done either in the prover or in the QEPCAD widget.
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To illustrate this, let us return to one of the lemmas introduced in Chapter 3, from

our Isabelle theory of Signed Area:

transitivity: leftTurn t s p ∧ leftTurn t s q

∧ leftTurn t s r ∧ leftTurn t p q

∧ leftTurn t q r =⇒ leftTurn t p r

Figure 8.3 shows this problem in the Isabelle proof script. All of the commands

processed after the lemma definition were inserted by the QEPCAD widget in order

to massage the problem into a form compatible with QEPCAD. Here, the Prover’s

Palette suggests to expand leftTurn, then signedArea and xCoord and yCoord; then

it detects we have to expand via a different mechanism for the cases necessary to

simplify Rep_point (the internal representation of a tuple being a point). When all

these expansions are completed we have a problem which is suitable for processing by

QEPCAD.

FIGURE 8.3: The Start Tab

8.2 Interactive Tabs

In addition, to be able to run QEPCAD fully automatically, one of the primary objec-

tives of the Prover’s Palette is to support interactive configuration of a tool and control
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over how it is used. Let us now turn our attention to the interactive tabs of QEPCAD

widget which support this.

8.2.1 Configuration

For the transitivity problem presented in Section 8.1.4, the QEPCAD widget does

not take the user to the Finish tab, but to the Preview tab, shown in Figure 8.4. This

tab shows the user the output from QEPCAD and alerts them to the fact that QEPCAD

encountered a problem, most likely running out of memory. This problem happens

because the SACLIB library, which QEPCAD uses, initialises itself with a fixed-size

heap of memory (2,000,000 cells in garbage-collection space) and fails if that is used

up.

FIGURE 8.4: The Preview Tab

This issue can be rectified by allocating a larger amount of memory when QEPCAD

is started. Our QEPCAD widget makes this possible in the Config tab, shown in

Figure 8.5. For our transitivity problem, after two (manual) iterations of increasing

this by a factor of 10, we find that with 200,000,000 cells, QEPCAD is able to solve it.

However, with this increased memory QEPCAD takes 1m 1.3s on a dual-core 2.0 GHz

machine. In the event that the user feels a computation is taking too long, they can
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always click the Cancel button in the Preview tab to interrupt QEPCAD. For this

problem, he could then choose to manually apply the translation invariance technique

from Section 6.3.3 to make one point the origin; the translated problem can then be

sent to QEPCAD, and this, on the same machine, takes a mere 0.86s.

FIGURE 8.5: The Config Tab

Other configuration settings offered by QEPCAD, such as projection type and alter-

nate packages, are also adjustable in the Config tab. For a description of these modes,

the reader is referred to the QEPCAD documentation [151].

8.2.2 Modifying the Problem

When a formula is sent to QEPCAD, one of three results can come back: True, False, or

a simplified formula. For the third case, the simplified formula is expressed in terms of

the free variables; this can be useful for reducing the number of variables in an Isabelle

problem, thereby easing the formal reasoning process. This feature can be accessed in

the Import tab, by overriding the default “solve” mode where all variables are quanti-

fied and altering the variable bindings table. It can also be triggered automatically in

some cases by deselecting individual proof components, as noted above.
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To illustrate this, using QEPCAD to simplify expressions, we will look at a colli-

sion problem described by Collins and Hong [40]. The problem is taken from robot

motion planning and queries whether two moving objects will ever collide. Consider a

moving circle (1) and a moving square (2), represented algebraically as:

(1) (x− t)2 + y2 ≤ 1

(2) −1 ≤ x − 17
16t ≤ 1 ∧ −9 ≤ y − 17

16t ≤ −7

We wish to know whether these objects will ever collide, i.e. whether:

∃ t x y. t ≥ 0 ∧ (1) ∧ (2)

In the default “solve” mode QEPCAD quickly confirms that this is True: there will be a

time when the circle and square collide. In Isabelle alone, this is a difficult proof. If the

user trusts the Isabelle/QEPCAD integration, of course, they can simply move on, but

even when the user requires a fully formal proof the integration can be of assistance.

QEPCAD can tell us that one possible solution is: t=96
17 , x=96

17 and y =−1. Instantiating

these variables in Isabelle completes the proof.

However we may prefer to simplify the algebra rather than use a witness or take the

result on trust. As Harrison et al. have pointed out, it is sometimes easier to prove that

the original problem is equivalent to a reduced formula and then prove this reduced

formula than to formally prove the original [83].

FIGURE 8.6: The Import Tab
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In the collision problem, the parametric query can be transformed into the implicit

representation of the problem by keeping the variables x and y free and only binding t.

This can be done in the Import tab, as shown in Figure 8.6.

QEPCAD returns the answer:

y+1≥ 0 ∧ y−1≤ 0 ∧ x− y−6≥ 0 ∧[
289x2−544yx−4896x+545y2 +4608y+20447≤ 0 ∨

289x2−544yx−3808x+545y2 +3584y+12255≤ 0 ∨

[17x−16y−112 > 0 ∧ 17x−16y−144 < 0]
]

Here, the Subgoal option is offered in addition to the Oracle option. If the Sub-

goal mode is selected, it introduces a new subgoal in the proof which asserts that the

original Isabelle subgoal is equivalent to the reduced form found by QEPCAD (with t

eliminated, in this example). In place of the original single subgoal, we now have two

simpler subgoals: the equivalence of the two formulas, and the existence of an x and y

satisfying the new form. Proving the equivalence may still be challenging, but in some

situations it is simpler than proving the original goal.

Here, of course, the witness is much easier to work with than the two subgoals, but

if we were exploring this problem or seeking to use the result in a different context,

the non-parametric form of the equation could be very useful. If any of the variables

are not existentially quantified, witnesses are not available, and a reduced intermediate

form such shown here may be the simplest way to achieve a fully formal proof.

Instead of using the Import tab to change the bounds, we could have instead gone

to the Problem tab (Figure 8.7). This tab describes the problem as it will be sent to

QEPCAD and allows the user to edit any aspect of it. For many types of exploration,

the interface on this tab is easier to work with as it represents the objects as sent to

QEPCAD rather than as imported from the prover. The Problem tab can also be used

as a graphical front-end to QEPCAD even in stand-alone mode, without any associated

theorem prover.

This concludes the exploration of the tabs — but only scratches the surface of the

ways the tool can be used. We will look at the other ways we have found the tool useful

in the coming section.
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FIGURE 8.7: The Problem Tab

8.3 Exploration and Discovery

As we identified in Chapter 5, one of the biggest problems encountered when devel-

oping a formal proof is the loss of intuition; ready access to powerful tools such as

QEPCAD can unblock this. In this section we will explore some of the ways we have

found this to be the case.

8.3.1 Counterexamples and Missing Assumptions

For complex proof developments, it is not uncommon to discover that the first attempt

at formally specifying a problem is incorrect. This is especially true when verifying

algorithms using Hoare logic. In this setting, as shown in Chapter 4, the user often has

to provide a loop invariant (i.e. facts which do not change on each iteration of the loop)

which is sufficient to ultimately deduce the correctness of the algorithm. Discovering a

correct loop invariant is a challenging task, often requiring several rounds of refinement

guided by failed proof attempts. The root cause for failure is frequently a missing

assumption, but the missing assumption can be hard to identify.

With Isabelle integrated with QEPCAD in the Prover’s Palette, discovering the

missing assumptions of invalid theorems is simplified. We show two techniques here:

a counter-example generator which identifies instances which may have been over-

looked, and an interactive exploration strategy which alters variable bindings to char-



Chapter 8. QEPCAD in the Prover’s Palette 150

acterise overlooked cases. This applies not just to loop invariants, but in numerous

situations where the complexity of a proof state may obscure the fact that it is incorrect

or incomplete. These techniques can also address some of the difficulties associated

with refactoring, painful in many situations but particularly so when refining loop in-

variants (Section 5.1.1): the techniques help not by improving refactoring support in

the IDE, but by reducing the amount of refactoring, as we can now get an early warning

of a wrong definition or invariant.

As described in Section 6.3.2, Isabelle includes a feature which can automatically

generate counter-examples for some problems. QEPCAD complements this capability

by using different methods to identify false subgoals. The counter-example feature is

applicable when a false conjecture contains only universally quantified variables. In

these situations, the user can click a button which automatically translates the negated

original conjecture into the equivalent existential form:

(¬ ∀ x1 ... xn. Ψ(x1,. . .,xn)) = (∃ x1 ... xn. ¬Ψ(x1,. . .,xn))

where Ψ(x1, ... ,xn) is a quantifier free formula. It then calls the witness function of

QEPCAD to obtain a counterexample to the original conjecture.

Let us demonstrate this feature through an illustrative example taken from our ver-

ification of Graham’s Scan:

leftTurn b e a ∧ leftTurn a b d ∧
leftTurn c a b ∧ leftTurn a d e =⇒

leftTurn a c e

By translating the point a to be the origin and then using the QEPCAD widget, we

can quickly see that this lemma is false. In contrast, our original encounter with this

problem — before the Prover’s Palette — was but one of many instances where hours

were lost because we had overlooked something small.

In this particular case, we know from the context that a subgoal like this is required,

but the exact form is not clear. The counter-example generator in the Prover’s Palette

tells us that the following instantiations will falsify the original lemma:

a = (0,0) b = (−1,−1) c = (−1,−3) d = (−1,−5
2
) e = (−1,−23

8
)
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By drawing this particular case (manually) we gain

an insight into why the conjecture is false. It is

clear that all the assumptions hold, but the conclu-

sion does not. Here, in the original context, it can

be seen that c should be constrained to lie inside

the dark grey region. One way which this con-

straint could be introduced would be to add an ad-

ditional assumption, ¬ 	 adc. In the context where

this problem arose, this is a valid assumption to in-

troduce and in fact one which leads ultimately to

the correct loop invariant.

Despite the counter-example generator’s capac-

ity here to give us an understanding why the con-

jecture is false, it is a method that is not always

applicable. Existential quantifiers may be present

in the conjecture or the number of variables and

assumptions may be so large that drawing the situ-

ation to gain insight is not practical.

Another way the Prover’s Palette can help to discover missing assumptions of a

false conjecture is by allowing the user to experiment with changing the bindings of

variables: setting certain variables free and leaving others bound can identify what is

missing. As shown previously, this can be achieved easily in the Import tab. There

is some art in selecting which variables should be free, but in the example just given,

we reason that as variables a and b occur the most, we translate a to be the origin and

prefer b kept bound. With the other variables set “free”, QEPCAD returns:

dycx - dxcy ≥ 0 ∨ dxey - dyex ≤ 0 ∨ eycx - excy > 0

The second and third disjuncts are unenlightening (a negated assumption and the con-

clusion), but the first disjunct is the hitherto missing condition to our Isabelle lemma.

QEPCAD has helped guide our intuition and, recalling that a was set to be the origin,

the lemma can be proven if we assume ¬ 	 adc. This is the same missing assumption

we discovered using the counter-example generator: the Prover’s Palette here would

have led us to the discovery of a missing component in the loop invariant.
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8.3.2 Unnecessary and Inconsistent Assumptions

We can also use the Prover’s Palette to discover unnecessary and inconsistent assump-

tions. Consider the following problem also taken from our verification of Graham’s

Scan:

leftTurn s t q ∧ leftTurn s t r ∧
leftTurn s t p ∧ leftTurn t r p ∧
leftTurn s r q ∧ leftTurn s p r ∧
leftTurn t p q ∧ ¬leftTurn p s q ∧
leftTurn t q r =⇒

leftTurn p q s

FIGURE 8.8: Thinning Assumptions

In this goal, there are superfluous assumptions obscuring the relevant facts needed

for the proof. This is a common difficulty with interactive proof, and one where the

Prover’s Palette can help: the Import tab provides a way for the user to easily find

a minimal set of assumptions which imply the conclusion. In this tab the user can

remove assumptions and test whether the resulting statement still holds. If it does, the

removed assumptions are not necessary. Following this basic strategy, we can discover

(within two minutes) that the Isabelle subgoal above can be simplified as:

leftTurn s t r ∧ leftTurn s r q ∧
leftTurn s p r ∧ leftTurn t p q ∧
leftTurn t q r =⇒

leftTurn p q s

Whenever QEPCAD returns True and assumptions were deselected, the widget

presents an option in the Finish tab to Thin the subgoal. Selecting this option causes
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the redundant assumptions to be removed from the prover goal. Again, no proof de-

pendency on QEPCAD is introduced.

In a similar way, using the Import tab to send only selected components of a

subgoal to QEPCAD can let us discover whether there are any contradictions within the

assumptions. In Isabelle, proving that assumptions are inconsistent is sometimes easier

than trying to prove that the conclusion holds. In the verification of Graham’s Scan,

we found this to be a common situation, and one where often we did not immediately

notice the obvious contradiction, especially where case splits were involved. As an

example, consider the problem:

leftTurn s t r ∧ leftTurn t p q ∧
leftTurn t q r ∧ leftTurn s r q ∧
leftTurn s p r ∧ leftTurn t s r =⇒

leftTurn p q s

Using a similar procedure to that used to find the minimum set of assumptions mak-

ing the conclusion true, we can easily interact with the QEPCAD widget to discover

whether a contradiction is present in the assumptions, and if so what is the minimal

such contradictory set. This is achieved by deselecting the conclusion in the Import
tab so that only the assumptions of the goal are sent to QEPCAD: if QEPCAD then

returns “False”, we know a contradiction is present. A simple, interactive search can

derive the minimal set of contradicting assumptions. For the above example we read-

ily find that the first and last assumptions contradict each other, and we can thin the

subgoal appropriately:

leftTurn s t r ∧ leftTurn t s r =⇒ False

This is obvious in hindsight, but given a proof state with several dozen assumptions,

many of which look very similar, and such a contradiction can be hard to spot. Our

simp rules for leftTurn were effective in handling some of these situations, but in

some cases they can cause problems, and a technique which points out the contra-

dictory assumptions — particularly one which applies generally and does not depend

on domain-specific simplification rules — can be useful to remove the cruft which

obscures a proof state’s essence.

8.4 Conclusion

In this chapter we have demonstrated a concrete implementation which integrates Is-

abelle with an external tool in the Prover’s Palette, namely QEPCAD. Through illus-
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trative examples we have shown how a user can easily interact with QEPCAD and be

assisted in a number of ways while constructing their mechanical proofs.

The design criteria of the Prover’s Palette also specified that it should be a mod-

ular and extensible system. The next chapter will look at whether that aim has been

addressed.



Chapter 9

Maple in the Prover’s Palette

One of the objectives of the Prover’s Palette framework, as mentioned in Section 7.1.1,

is that it should be able to incorporate new tools easily. In this chapter, we will assess

the extensibility of our system, looking at the consistency of user experience given and

the degree of re-use of code and functionality. This will be considered in respect of a

new tool added to the framework: the computer algebra system Maple.

Maple was chosen due to its popularity and the wide breadth of functionality it of-

fers. As QEPCAD already provided us with a powerful method for solving non-linear

algebra, we decided to focus on a complementary aspect in Maple: its plotting capabil-

ities. Although the results of plotting cannot be used directly in a proof, there are still

a number potential benefits to some proof endeavours. Plots can help a user heighten

their intuition about a problem domain, offer a sanity check about whether objects are

defined correctly, or indicate if a theorem in not provable. Following discussion of plot

support in the Prover’s Palette we will present one other mode of using Maple, “assume

and check”, and conclude with an evaluation of the extensibility of our framework.

9.1 Plotting in the Prover’s Palette

As described in Chapter 7, our implementation of the Prover’s Palette supplies abstract

superclasses which encapsulate common functionality, including defining the View and

tabs, tracking and translating the proof state, modifying the proof state where necessary

(e.g. expanding definitions, converting to PNF), and inserting results in various ways

(via an oracle, by instantiation, etc). The intention was that this will minimise the

additional code required to integrate a new tool such as Maple into the framework.

This integration will be explored through the collision problem posed by Collins

and Hong, described in the previous chapter. Recall that this problem queries whether a

155
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moving circle (1) and a moving square (2) will ever collide, specifically asking whether

∃ t x y. t ≥ 0 ∧ (1) ∧ (2):

(1) (x− t)2 + y2 ≤ 1

(2) −1 ≤ x − 17
16t ≤ 1 ∧ −9 ≤ y − 17

16t ≤ −7

As we mentioned previously, if we rely solely on a theorem prover, this can be a

difficult to analyse, but QEPCAD in the Prover’s Palette can provide significant as-

sistance, as we have seen in Section 8.2.2. Plotting in Maple using our system can

provide a different form of assistance. Using this example, we will highlight how the

Maple integration works and call out where parts of the framework were reused and

where new code was developed for this new integration.

9.1.1 Consistent User Experience

Let us begin by showing how the Maple View sits in the Eclipse PG environment. Just

as with the QEPCAD widget, this View is part of an Eclipse plug-in which subscribes

to PG events, and when a new problem is processed by the prover, it becomes avail-

able in the Maple View. Figure 9.1 shows this View with the Collins-Hong collision

problem.

FIGURE 9.1: The Prover’s Palette with Isabelle and Maple
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At this stage, the View is nearly identical to that of the QEPCAD widget: there

are five of the same tabs, Start, Import, Problem, Preview and Finish (with only

the Config tab not used in this integration), and as before, the View can be minimised

so that it remains out-of-sight except when relevant. It can be restored manually or

configured to display automatically when it is applicable to a proof subgoal.

This consistency ensures that a user who has become familiar with one tool in the

Prover’s Palette system can apply that process to a new tool. The tabs, with View

behaviour, and the manner in which she can engage with the external tool do not need

to change dramatically, nor is any special knowledge of a new tool required.

From the developer’s perspective, additionally, we have so far not required much

new code at all. The framework’s abstract classes provide nearly all the functionality

just described, with the only development burden here the skeleton concrete classes

and the plug-in definition for the new tool.

9.1.2 Maple Running Automatically

Looking specifically at the Start tab, the abstract super class StartTabComposite

provided us with the following:

• PNF button and all behaviour (converting to prenex normal form)
• Expand button and all behaviour (expanding predicates and functions)
• Manual button and all behaviour (enables manual edit mode)
• Clear button and all behaviour (clears the widget, for new problems)
• Revert button and all behaviour (resetting the widget to the current proof state)
• Next button and some behaviour
• Finish button and some behaviour

Where Maple-specific code is required for this tab is in determining which of the but-

tons should be enabled, based on the predicates and functions recognised by Maple,

and in implementing the behaviour for some of the buttons (Next and Finish). For

the most part, however, this does not require code changes in the classes associated

with this tab: the behaviour of Next and Finish is defined by the invoked tabs, and en-

ablement is computed based on calls to the interface MathsSystemTranslator. The

knowledge of which proof components are valid in Maple is contained within the trans-

lation module implementing this interface. We will discuss this translation — the first

major area where development was required — in Section 9.1.4; for now let us assume

it is completed.
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FIGURE 9.2: The Maple animation of the circle and square collision

Conveniently for the user, the Maple widget not only looks like the tab in the QEP-

CAD widget, it has the same behaviour as well. For the collision problem, the Finish
button is initially disabled and the Expand button is enabled, because Maple does not

understand the predicates ParametricCircle and ParametricSquare. As before,

clicking the Expand button inserts the appropriate commands into the proof script and

directs Isabelle to process them; further manipulation, such as to remove division, can

be done if desired; and clicking the PNF button converts the subgoal to prenex normal

form. This brings us to the state shown in Figure 9.1, with the Finish button enabled

and ready to send the problem off for plotting.
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Upon clicking the Finish button, the Maple process is started and the commands

for producing a plot of the current problem are sent off. This brings us to the second

major area where development was required, generating the commands to be sent to

this new external tool. We will discuss this in the next section, but again assuming this

is working, Maple executes the command and the Prover’s Palette tracks the external

process. The Finish tab is displayed — but as there is very little to do this contains

little more than a comment (and the corresponding code is mainly a “no-op” subclass

of the core FinishTabComposite). The action comes from Maple, which generates

a new window for the collision problem, containing an interactive animation of the

circle and square moving over time. Figure 9.2 shows a still of this animation where

the circle and square are colliding (t=5.8333). The integration lets us easily bring this

up, without our having to be familiar with Maple or having to perform any manual

translation activities. Without disrupting our concentration in the theorem prover, we

have access to an animation which gives insight into the problem, confidence that we

have defined the equations correctly (as we see the circle and square), and security that

the problem is provable.

9.1.3 Tool Commands and the Preview Tab

As an alternative to selecting the Finish button in the Start tab, the user could choose

to go to the Preview tab. As before, this tab lets the user inspect the command which

will be sent to the tool; for Maple, and the collision problem just described, the script

generated is shown in Figure 9.3.

Script generation to support Maple, as mentioned in the previous section, required

more new development than any other single activity. As the command script is

intimately tied to the way Maple is being used on a problem (explicitly shown in

the Problem tab), the code for generating the script is in the corresponding class

ProblemTabModeImplicitPlot. Note that this is slightly different to how it is han-

dled in QEPCAD, where it is the responsibility of a dedicated class QepcadProblem

(Section 8.1.4); this is because in QEPCAD, the form of the tool script is largely the

same, whereas with Maple it varies widely based on the mode of problem solving se-

lected. Section 9.1.4 describes the available problem modes and the automation therein

— such as choosing the equations to be plotted and the variables to be used for each

axis. Once that is clear, the construction of the script is relatively straightforward, es-

sentially instantiating a template with the selected variables and equations. The script
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restart;
interface(ansi=false,prettyprint=0,errorbreak=0):;
with(RealDomain):
with(plots):;

# ranges:
PLOT_RANGE_x :=-10..10;
PLOT_RANGE_y :=-10..10;
PLOT_RANGE_t :=-10..10;

# modes: ’maplet’; ’default’ (text); ’x11’ (if enabled)
plotsetup(maplet):;

# internal code for simultaneous plot support
#(do not modify unless you know what you are doing)
x := PLOT_x;
y := PLOT_y;
t := PLOT_t;
interface(echo=0):; # must set echo off and wrap output
printf("BEGIN[Prover’s Palette Result]\n\n");
PLOT_eq1 := animate(implicitplot,

[ ((((x - t) ˆ 2) + (y ˆ 2)) = 1),
x=PLOT_RANGE_x, y=PLOT_RANGE_y ], t=PLOT_RANGE_t):;

PLOT_eq2 := animate(implicitplot,
[ ((- 16) = ((16 * x) - (17 * t))),
x=PLOT_RANGE_x, y=PLOT_RANGE_y ], t=PLOT_RANGE_t):;

PLOT_eq3 := animate(implicitplot,
[ (((16 * x) - (17 * t)) = 16),
x=PLOT_RANGE_x, y=PLOT_RANGE_y ], t=PLOT_RANGE_t):;

PLOT_eq4 := animate(implicitplot,
[ ((- 144) = ((16 * y) - (17 * t))),
x=PLOT_RANGE_x, y=PLOT_RANGE_y ], t=PLOT_RANGE_t):;

PLOT_eq5 := animate(implicitplot,
[ (((16 * y) - (17 * t)) = (- 112)),
x=PLOT_RANGE_x, y=PLOT_RANGE_y ], t=PLOT_RANGE_t):;

printf("\nplot should appear shortly;
\ncancel or kill maple to close\n\n");

display({PLOT_eq1,PLOT_eq2,PLOT_eq3,PLOT_eq4,PLOT_eq5});
printf("\nEND [Prover’s Palette Result] \n");

FIGURE 9.3: The Maple script produced to plot the collision problem

generation code can be found in the method updateGuiOnSelectionChange() in the

ProblemTabMode class.

The important functionality in the Preview tab, shown in Figure 9.4, is that allow-

ing the user:

• to inspect the actual script which will be sent to Maple;
• to change the plot range on variables (at the top of the script);
• to change the constant values assigned to variables which are not plotted (also at

the top of the script, but not shown in this example);
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FIGURE 9.4: The Preview Tab of the Maple widget

• to make further edits where desired, such as applying colours, labels, or even
adding additional equations (all for the advanced Maple user); and
• to cancel the Maple process (e.g. if it hangs running remotely with ssh -X)

This is analogous to the behaviour of the tab in the QEPCAD widget, and indeed

the code here re-uses much of the code from that implementation. The superclass

PreviewTabComposite defines the tab, and we have extended that re-using code —

here from the QEPCAD widget — to define the GUI text boxes within it, again with the

Maple Input box editable so that a user familiar with Maple may edit the script. The

GUI objects for the buttons (Go and Cancel, Back and Finish) were also generated by

re-using code from the QEPCAD widget, rather than the core framework, whereas their

behaviour (managing the external process) was mainly supplied by the core framework.

The behaviour for monitoring the output from the process and rendering it in the Maple
Output textbox was also supplied by the core framework.

One other small area of new code required is to define MapleProcess, extending

ProversPaletteAbstractExternalProcess to declare the process to invoke (maple)

and to describe how to analyse the output (trivial in the case of plotting). Thus, to

support the fully automated integration shown so far, the areas of new development

were precisely those areas unique to the tool Maple: besides housekeeping (creating

the skeleton classes and plug-in project, which the IDE does automatically) and wiring
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FIGURE 9.5: The Import tab of the Maple widget

(e.g. specifying that the process to call is maple), new code is almost entirely around

translation and the script generation. In fact, we were able to re-use even more GUI

items than we expected from the QEPCAD widget, as much of the Maple code for the

GUI shown so far was created by cut-and-paste: there is a strong case to refactor and

lift this code to be part of the Prover’s Palette core (abstract) framework.

This shows that we achieved a high degree of re-use, confirming our aim of mak-

ing the tool extensible and modular. Let us now drill down into the new developments,

translations and more advanced interactive usage and the corresponding scripts gener-

ated.

9.1.4 Translations and Interactive Usage

We will now proceed through the tabs in order to show what is supported interac-

tively. After the Start tab, we first encounter the Import tab (Figure 9.5). As with

the QEPCAD widget, this tab allows components — the conclusion and/or each of

the assumptions (though there are none in this case) — to be selected for inclusion.

The code for this tab (in ImportTabComposite in our maple widget Java package) is

largely similar to that of the QEPCAD variant, with one significant change: the “vari-

ables” composite where bound and free variables are exchanged is not applicable has

been removed. Again, the fact that we have re-used the design patterns and large por-

tions of code shows the extensibility of the system’s design, and it indicates where yet

more of the work from QEPCAD could be lifted and provided as part of the shared

Prover’s Palette core.
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Let us now turn our attention to the Problem tab, where the goals translated into

Maple’s syntax are displayed for the first time (Figure 9.6). Translation, in the class

MapleTranslator as previously mentioned, follows the same approach as taken for

QEPCAD: an internal goal state representation is constructed using the core frame-

work, and this new module translates to and from that representation. For plotting,

quantification is ignored; a variable defines the same curve whether it is existential or

universal. Arithmetic and logical operators are converted to Maple syntax, and nearly

all other functions are unsupported1, so the translation is relatively simple.

FIGURE 9.6: The Problem Tab of the Maple widget

The translated subgoal can be decomposed further to make it applicable for plot-

ting, breaking up conjuncts and converting inequalities to equalities2, as can be seen in

the Problem tab (the same screenshot, Figure 9.6).

The widget relies on the translation routines to identify which equations from the

current subgoal are suitable for plotting, and uses heuristics — based on the presence
1We have included support for sqrt, as it is part of the commonly-used Isabelle theories. Functions

from exponentiation, logarithms, and trigonometry are not translated, even though they are supported in
Maple, because they are used less frequently in Isabelle and can have greater variance in their definition.
The prospect of extending integrations to be aware of theory-specific semantics is discussed as potential
future work in Section 11.2.4.

2Maple does offer a package to plot inequalities, namely plots[inequal], but it only plots linear
inequalities, which are of limited use, and the resulting plots are little better than the more general plots
we display. For this reason we have not automated this functionality in the Maple widget.
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of an x, y, z or t in variable names — to determine which ones will be plotted along the

axes and which ones will be converted to constants. The user can override this, easily

moving variables between columns using drag-and-drop, in order to correct mistakes

in the heuristics or to explore different relationships.

Further heuristics are used to determine automatically, based on the variable as-

signments, which plot type and command is appropriate, choosing by default among

two supported types of Maple plots:

• ImplicitPlot for 2D plots (two variables plotted)
• ImplicitPlot3D for 3D plots (three variables plotted)

As hinted by the reference to t, the widget also supports Maple’s animate function to

display a visualization for one additional dimension, as shown earlier in Figure 9.2.

As an illustrative example, consider the collision problem again. The Maple in-

tegration defaults to a two-dimensional animation and automatically determines the

variables for each axis: x is plotted against the x-axis, y against the y-axis, and t rep-

resents time. The widget also deduces that five out of the six constituent equations

should be plotted. In this plot configuration, the equation t = 0 is uninteresting and is

deselected.

Once the selections are confirmed and the user proceeds to the Preview or Finish
tab, the script to Maple is generated. As previously described, this is based on tem-

plated lines of Maple commands: this template is parameterised based on the selected

plot type, equations, and variable-to-axis assignments. This construction is similar

in approach to what the QEPCAD widget does, but the details here are necessarily

different and the code in the Maple variant of this tab is largely new. Thus the two

most significant areas of new code are the translation, in MapleTranslator, and the

problem-type-specific behaviour in ProblemTabModeImplicitPlot.

9.2 Adding More of Maple’s Functionality

We were principally interested in Maple for plotting, but of course there is a wealth

of other functionality available in Maple. We have shown how the Prover’s Palette

supports extension to use a new external tool, but let us also assess how extensible the

Maple integration itself is. Can we support other ways of using Maple which could be

useful when constructing a formal proof?

To enable extensions to the Maple integration, we have left the ProblemTabComposite

subclass a thin shim, calling out to a Mode class to determine what GUI elements and
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behaviour should be in effect. Section 9.1.4 described the code in the class ProblemTab

ModeImplicitPlot, where nearly all the code relevant to that section is contained; the

Maple ProblemTabComposite simply contains enough to render a description textbox

(actually inherited from the superclass in the framework) and a Maple Mode box with

a drop-down where the user can choose the desired problem mode. The general Plot
mode described so far is the default, but this provides a hook for additional functional-

ity. Figure 9.7 shows this dropdown and the available problem modes.

9.2.1 Explicit Plots

Sticking with plots to begin with, there is a simpler plot mode in Maple sometimes

preferred by users: for two-dimensional plots, instead of using implicitplot, a user

can select Maple’s default function plot by choosing Plot as Function (Figure 9.7).

This brings up a simpler GUI and generates a simpler script which can invoke Maple’s

solve routine to convert an equation to a function in a single dependent variable.

This behaviour is defined in the class ProblemTabModePlot2d, similarly to the

implicit-plot mode class described, but with the following differences:

• different GUI components are displayed (fewer and simpler); and
• a different script is generated (again, smaller and simpler)

FIGURE 9.7: The Maple modes which are supported by the widget can be
selected from the dropdown menu in the Problem tab.
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This shows how the Maple integration can be extended to support additional func-

tionality, but admittedly this functionality — still plotting — is quite similar. We will

describe one further problem mode which is very different in nature, to demonstrate

that this extension mechanism generalises.

9.2.2 Assume and Check

Maple includes some logical reasoning functionality where a user can supply assump-

tions then ask whether a conclusion is valid. This, in theory, is neatly applicable to

theorem proving subgoals. In Isabelle, many subgoals are of the form:
[| assumption1 ; ... ; assumptionN|] ==> conclusion

In Maple, this can be queried using the template script:
assume(assumption1, ..., assumptionN);
is(conclusion);

Our integration exposes an Assume and Check mode in the Problem tab which,

for supported assumptions and conclusions, generates a script of the form above. Fig-

ure 9.8 shows such a script for a sample problem, together with the result in the Finish
tab.

FIGURE 9.8: The Assume and Check mode of the Maple widget

As with the QEPCAD widget, there are options to use the result in either Oracle or

Subgoal mode, and the widget can be configured so that it runs in the background and
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pops up if and when an answer is found. The majority of this behaviour was inherited

from the core framework’s FinishTabComposite, although a small amount of change

was needed from the trivial no-op subclass used for plotting to ensure that the assume-

and-check result could be applied to this problem mode. The most significant such

change was ensuring that the Maple script generated clearly identifiable markers in the

textual output — BEGIN[Prover’s Palette Result] as seen in Figure 9.3 — so that

the result could be extracted by the Prover’s Palette.

Unfortunately, although constructs of Maple’s assume-and-check command are

similar in theory to those in theorem proving, in practice it was not applicable be-

cause Maple’s capabilities in this direction are severely limited. In our experiments, it

could not handle real-world equations such as those we sent to QEPCAD, and in fact it

could not manage much more complexity than the toy problem shown in Figure 9.8.3

9.2.3 Related Work

Despite the limitations of Maple’s assume capabilities, that feature gives a good tem-

plate for other functionality which could be added, specifically based on the facets of

Maple which people find most useful. Although our method of systems integration is

dramatically different to what has been done previously, some of the non-interactive

integrations between Maple and theorem provers are useful to inform this selection:

• Harrison et al. [83] call Maple from HOL to simplify algebraic expressions and
find factorisations for polynomials
• Ballarin et al. [13] call Maple from Isabelle to extend the capabilities of the

simplifier and solve summation and induction problems

Having an interactive system could be particularly useful here, as one common chal-

lenge with such approaches is identifying which terms to simplify in the external tool.

A GUI tool which allows the user to select terms within a subgoal — at a finer gran-

ularity than simply the assumptions — could be added as a library module without

disrupting the design, and this strikes us as a good potential extension to the Prover’s

Palette.
3Due to the limited utility of this problem mode, and because Maple often operates over the complex

numbers which are often not loaded in Isabelle theories, we have not applied the same technique of
attaching the external tool types to the result script inserted in the proof. If it is possible to improve this
technique, this type information could easily be inserted as the functionality is in the Prover’s Palette
core.
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9.3 Conclusion

The aim of this phase of research was to investigate whether the approach and frame-

work of the Prover’s Palette is extensible and modular. This, we feel, has been demon-

strated:

• the amount of new code for the new tool, Maple, is relatively small: 3825 lines,
compared with 6374 for the core and the QEPCAD integration together4;
• most of this code is necessarily new, corresponding to specific semantics or ca-

pabilities of the new external tool; and
• a breadth of the functionality of the new tool is made available.

One indication that the design is successfully extensible is the emergence of new

capabilities which should be added to the core and used across tools, and one indication

that it is modular is a clear manner in which this can be done. We observed that sig-

nificant parts of the code implemented for the QEPCAD widget were applicable to the

Maple widget, implying that there is even more scope for generalisation than we had

first assumed, and it is clear where this should go (into the respective TabComposite

superclasses in the core). Furthermore, we noted a new feature, GUI support for select-

ing fine-grained terms from within the subgoal, which could be useful both for Maple

and QEPCAD, and again this can be cleanly added.

There were instances where the framework-supplied model was not a perfect fit, as

in the use of the Finish tab for plotting when there are no modifications applicable to

the proof script. It could be argued that the framework over-generalised in this case, but

equally it could be argued that the implementation simply took the easy option: it could

have omitted that tab or provided a more appropriate set of widgets. (Ideally we would

have liked the plot from Maple to be embedded within this tab, but the technology

behind such low-level window embedding is beyond the scope of this work!) The

framework does not require that tabs be used, so in conclusion even with this critical

observation, we feel we found a good balance between reusability and customisability.

Most importantly, many of the benefits of the Prover’s Palette called out in Chap-

ters 7 and 8 were found to apply to Maple: the integration allows for quick confirmation

of definitions and lemma statements as well as detailed exploration of a problem do-

main; the integration supports fully automated processing and interactive usage; and

4The core at present consists of 2864 lines, and the QEPCAD plugin 3510. However approximately
800 lines of code used in both QEPCAD and Maple (cut-and-pasted) have been identified which should
be removed from those projects and inserted into the core instead; this is not reflected in these line
counts. Furthermore it must be noted that there are three distinct areas of functionality supported by the
Maple integration.
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the integration can be extended naturally to onboard new tools and new functionality

of these tools. This supports our hypothesis that the user is most empowered when a

palette of tightly integrated yet customisable tools is conveniently at their disposal. A

successful integration framework — and on many levels the Prover’s Palette can be so

counted — is one which enables a deeper understanding of the proof, freeing the user

from the burden of tedious, mundane proof details, but without overly restricting what

is possible.



Chapter 10

Case Study: Verifying Delaunay
Triangulation

In Chapters 8 and 9, we showed several individual examples where the Prover’s Palette

system is helpful. Let us now look at whether this cohesively integrated suite of math-

ematical tools is actually useful during the heat of battle. In particular, this chapter will

consider if and how the availability of QEPCAD within the Prover’s Palette facilitates

the proof process when developing real-world theories in Isabelle. For this case study,

we have began developing a formal proof for the correctness of a planar Delaunay

triangulation algorithm.

10.1 Why Choose Delaunay Triangulation?

Delaunay triangulation is interesting because, like the convex hull, it is a cornerstone

of computational geometry. It is widely used in animation and geographical modelling,

and in a range of scientific enquiries, from astrophysics to weather prediction, where

discrete point samples are taken from a continuous domain. Furthermore, given a

Delaunay triangulation, it is easy to compute another important structure in the field:

the Voronoi diagram, which is the dual of the Delaunay triangulation and is useful for

solving the nearest-neighbour problem, with applications in biology, ecology, physics,

and logistics [138].

It was anticipated that the theories necessary for developing this formalised proof

would build upon much of the work done for the Graham’s Scan proof, and that it

would present many of the same issues described in Chapter 6. For this reason, we

expected it to be a good test case for determining whether the Prover’s Palette makes

the interactive, formal proof process more intuitively accessible and quicker for these

particularly challenging problems.

170
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Indeed, as we shall show, the Prover’s Palette is helpful throughout this process,

both initially as we extend and introduce the base concepts, and as we move on to

the time-consuming process of formulating the correct loop invariants and ultimately

proving the necessary verification conditions. As with the Graham’s Scan proof, dis-

covering the loop invariants has been a complex, iterative process, where more and

more minor details have to be incorporated as the proof progresses. Again, as the size

and complexity grows, the task becomes more tedious and the problems at hand be-

come slippery to the intuition: with the Prover’s Palette in our arsenal, however, we

found that we are able to quickly move past minor details and keep our intuition more

closely focussed on the larger issues.

In this chapter, we demonstrate the utility of the Prover’s Palette in each of the

three distinct phases we have followed in producing this proof so far. We begin by

reviewing and updating definitions and lemmas from Graham’s Scan which we know

we will need to bring in, such as signed area. The Delaunay triangulation is then

defined in the second section, informally and then formally in Isabelle. The formal

interpretation is accompanied by the necessary definitions, such as the notion of a

circumcircle, and some related lemmas. We then present the edge-flipping algorithm

for computing Delaunay triangulations and the candidate invariants we have began

exploring. Each section also gives concrete examples for how the Prover’s Palette has

significantly aided our investigation or simplified our task.

10.2 Extending and Updating Theories

Before we began work on the Delaunay triangulation, we embarked on a round of

house-keeping for our existing theories. It was clear that many of the same definitions

and lemmas we developed in Isabelle for Graham’s Scan would apply to this new

task, but there were compelling reasons to catch up on technical debt accumulated

along the way. For one thing, Isabelle had evolved significantly since we began with

Graham’s Scan, from version Isabelle2003 to Isabelle2012-1 and our theories needed

to be updated to remain compatible1. Secondly, we had built up new knowledge for

how the concepts could be used and felt it would be beneficial to extend the theories for

broader and simpler applicability. This conclusion was reinforced as we continued to

1Although we had done other work with intermediate versions, much of the theory had remained in
a constant version of Isabelle, Isabelle2005.
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use the Prover’s Palette and discovered that other variants of our geometric definitions

are more amenable to tools such as QEPCAD.

When we began the process of updating to the latest Isabelle, we had no idea how

substantial the effort to update our theories — SignedArea in particular — would

be. Whilst as early as Isabelle2007 we had discovered that our proofs were no longer

compatible, we did not realize how sweeping the changes to the underlying libraries

were. As noted in Section 5.1.1, one major change was a restructuring of the theory

Real, which was updated to use Isabelle’s axiomatic type classes. As a consequence,

many of the lemmas we had relied upon had moved, been renamed, or altered, to such

an extent that a large number of proofs no longer processed. In addition, there were

changes to the syntax which were relatively easy to fix and changes to underlying ML

calls which were harder to fix. Finally, the default simplification rules had changed —

drastically so in some of the version updates — and numerous places where simp and

auto had been used in our proofs also required attention.

To show the relevance of our system, however, it would be necessary to run with a

more up-to-date version2; and in any event it feels foolish to embark on a new project

with a software version several years out of date!

Some of our old lemmas could be automatically proven by our new simp sets, and

by updated simplification rules in Isabelle, but the vast majority were not. Updating

the myriad details of the remaining broken proofs — where the referenced libraries

have been completely overhauled — was not an appealing prospect. Consequently,

we concluded that it would suffice to use QEPCAD as an oracle within the Prover’s

Palette, trusted to “prove” the theorems. Additionally, we were pleased to discover that

Isabelle’s Sledgehammer had considerably improved since we had first experimented

with it, and it could now prove many of our signed area lemmas. For some of the

problems it could not solve we relied on QEPCAD, and found that a happy marriage

could be had between Sledgehammer and the Prover’s Palette.

Unfortunately, there were several lemmas which remained tricky to prove, they are

either not applicable to QEPCAD, or of too great a complexity to be solved quickly.

QEPCAD showed versatility for the types of problems we were encountering, but for

many of them, getting them into algebraic form was beyond the scope of the Prover’s

Palette automated assistance (merely expanding unknown predicates and converting to

PNF), and in some cases when expanded they contained a dozen or more free variables.

2We have confirmed the compatibility of the Prover’s Palette with Isabelle2012-1.
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Theorems about the isBetween concept were particularly tedious. Recall the original

definition:

definition isBetween :: "[ point, point, point] ⇒ bool"
("_ isBetween _ _ " [60, 60, 60] 60)

where "b isBetween a c ≡
a6=c ∧ collinear a b c ∧
(∀d. signedArea a c d 6= 0 −→

0 < signedArea a b d / signedArea a c d ∧
signedArea a b d / signedArea a c d < 1 )"

The advantage of this definition is that it contains an easy to grasp geometric interpre-

tation. However, expanding this definition results in two new quantified variables (one

new point). When we proceed to massage it into its equivalent algebraic form we get

a statement containing division — anathema to QEPCAD and numerous other CASs.

To reduce the amount of user interaction in this massaging process, we introduced a

lemma for replacing isBetween facts with a CAS-friendly algebraic representation3:

isBetweenAbsForQepcad: <xx,xy> isBetween <ax,ay> <bx,by> =
( ( (xx-ax)*(by-ay) = (bx-ax)*(xy-ay) ) ∧ (1)
( (ax < xx ∧ xx < bx) ∨ (ax > xx ∧ xx > bx) ) ∧ (2)
( (ay < xy ∧ xy < by) ∨ (ay > xy ∧ xy > by) ) ) (3)

This lemma says that if a point X = 〈xx,xy〉 isBetween points A = 〈ax,ay〉 and B =

〈bx,by〉, then we can represent this fact algebraically by saying the three points must

be collinear (1), the x-coordinate of X must lie between the x-coordinates of A and B

(2), and the y-coordinate of X must lie between the y-coordinates of A and B (3); this

is not the algebraic expansion of the original definition but a restatement which seeks

to get rid of the additional point. However, once we had massaged the isBetween fact

into algebraic form, QEPCAD informed us that this lemma was false! It also produced

a counterexample where A = 〈−1,−1〉, B = 〈−8,−1〉 and X = 〈−5,−1〉. A quick

illustration of this counterexample shows that our algebra had not taken into account

the case when all three points lie on a horizontal line, i.e. when their y-coordinates are

equal.

Similarly, we realised that we had also not included the case when the points are

collinear on a line which is vertical. To explore this, we specified some variables to

remain free when passed to QEPCAD, making use of the customisation afforded by

the Prover’s Palette, and were able to confirm that the restated problem reduced to the

vertical collinearity case. Thus handling these edge cases (when the inequality is not

strict) should be sufficient to make the lemma true. After correcting this oversight, we

3The reader will also note the switch to <x,y> notation for points. This was part of the housekeeping
and modernization.
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have the following algebraic equivalence, which this time QEPCAD is able to prove

for us:

isBetweenAbsForQepcad: <xx,xy> isBetween <ax,ay> <bx,by> =
( ( (xx-ax)*(by-ay) = (bx-ax)*(xy-ay) ) ∧
( (ax < xx ∧ xx < bx) ∨ (ax > xx ∧ xx > bx) ∨

(ax = xx ∧ xx = bx) ) ∧
( (ay < xy ∧ xy < by) ∨ (ay > xy ∧ xy > by) ∨

(ay = xy ∧ xy = by) ) ∧
( ¬ (ax = bx ∧ ay = by) ) )

This corrected lemma then made our process of proving many of the lemmas in the

SignedArea theory much easier.

10.3 Defining Delaunay Triangulation

With our theories all up-to-date, let us introduce the Delaunay Triangulation and its

underlying concepts, before presenting our formalisation in Isabelle. As with updating

our underlying theories, we will show how the Prover’s Palette can be helpful.

10.3.1 A Mathematical Definition

A triangulation of a set of points is a maximal set of non-intersecting line segments

between points in the set. In other words, a triangulation of planar point set Q is the

partitioning of the region bounded by the convex hull of Q into a set of disjoint triangles

whose vertices are all in Q; and where the points in Q are all collinear, no triangulation

is admitted.

A Delaunay triangulation is a special case where the triangulation is particularly

“nice”; that is, it avoids the more obtuse triangles and favours those with a maximum

smallest angle (near equilateral). Figure 10.1 shows a set of points (left) and two

different ways of triangulating it, one which is non-Delaunay (middle) and one which

is the Delaunay triangulation (right), unique in this case.

FIGURE 10.1: A point set with two triangulations, one non-Delaunay
(middle) and one Delaunay (right)
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FIGURE 10.2: The Delaunay crite-
rion is violated as there is a point
lying within the circumcircle of one
of the triangular faces.

Precisely speaking, a triangulation is Delaunay when

no point in the set being triangulated lies within the

circumcircle of any of the triangular faces. Figure 10.2

highlights one such violation.

This definition gives a way to construct a Delau-

nay triangulation, by trial-and-error. First, create any

general triangulation of the point set — simply by con-

necting the points with non-intersecting line segments

until it is complete. Next, consider each internal edge:

it will necessarily have two adjacent triangles, one on

each side. For each of these two triangles, take the cir-

cumcircle and check that it does not entirely contain the other triangle, or equivalently,

that the unshared vertex of the other triangle is not inside the circumcircle. If both ad-

jacent triangles satisfy this property, we say that the edge is locally Delaunay. Where

this is not the case, the edge must be the diagonal of a quadrilateral: here, we can flip

the shared edge and it will become locally Delaunay. This is illustrated in Figure 10.3.

FIGURE 10.3: This diagram shows detail of the Delaunay violation (cir-
cumcircle of ABC, leftmost) and the resolution after the edge flip (circum-
circles of ABD and ADC, rightmost)

The boundary case of the locally Delaunay test is when four points lie on the same

circle: in this case either of the diagonals of the quadrilateral can be used to form the

Delaunay triangulation. The Delaunay triangulation is therefore not guaranteed to be

unique4.

10.3.2 A Formal Definition in Isabelle

Let us now look at the formalisation of these concepts in Isabelle, building up from the

concepts of point and signed area, used in Chapter 3, to define graphs, triangulations,

4It can be shown that the Delaunay triangulation is unique if no four points are concyclic.
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and ultimately Delaunay triangulations. The computational geometry concept of a

planar straight-line graph (PSLG) is particularly useful. This is a specialisation of

graph theory where points (vertices) are situated in the plane with edges embedded as

straight lines. Planarity is interpreted in the usual way, requiring that no two edges

intersect (except when incident at endpoints). A triangulation is then any maximal

PSLG, that is a planar straight line graph where no more edges can be drawn without

violating planarity.

PSLGs and Triangulations

We will begin, for readability in the context of graph theory, by using Isabelle’s “type

synonym” mechanism so that we can refer to a point as a vertex:

type_synonym vertex = "point"

An edge can then be introduced as a new type defined as a set of two distinct vertices:

typedef edge = "{e::vertex set. ∃ a b. e = {a,b} ∧ a6=b}"

and we will take the usual interpretation of intersect, defined as follows:

definition straightEdgesIntersect :: "[edge, edge] ⇒ bool"
where "straightEdgesIntersect ea eb ≡

∃ a1 a2 b1 b2. a1 6= a2 ∧ b1 6= b2 ∧
ea = <a1,a2> ∧
eb = <b1,b2> ∧
( ea = eb ∨

b1 isBetween a1 a2 ∨
b2 isBetween a1 a2 ∨
a1 isBetween b1 b2 ∨
a2 isBetween b1 b2 ∨
( leftTurn a1 a2 b1 ∧

leftTurn a2 a1 b2 ∧
leftTurn b1 b2 a2 ∧
leftTurn b2 b1 a1 ) )"

The reader will note that we have re-used the isBetween and leftTurn predicates in

this formulation. Whilst other definitions are possible (in particular, the existence of a

point which lies on both edges simultaneously), this one avoids introducing new points

and lends itself to the simplification rules we introduced in Chapter 6 — in both cases

generally making it easier to work with. As with point, note that the introduction of

the type edge causes Isabelle to create coercion functions Abs_edge and Rep_edge5.

5For ease of use, we also introduced <x,y> as an abbreviation for Abs_vertex(x,y) and for
Abs_edge{x,y}; however in practice this had limited applicability due to parsing delays. We did
however, use this abbreviation in some places.
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The new type pslg can then be formalised as:

typedef pslg = "{pslg::(vertex set * edge set).
∃ (vs::vertex set) (es::edge set). pslg=(vs,es) ∧

(∀ e1::edge. e1 ∈ es −→ (edgeIsInVertexSet e1 vs) ∧
(∃ a b. e1 = <a,b> −→

(∀ v :: vertex. v ∈ vs −→
¬ v isBetween a b)) ∧

(∀ e2::edge. e2 ∈ es ∧ e1 6= e2 −→
¬(straightEdgesIntersect e1 e2)))}"

where edgeIsInVertexSet is defined as:

definition edgeIsInVertexSet :: "[edge, vertex set] ⇒ bool"
where "edgeIsInVertexSet e vs ≡ Rep_edge e ⊆ vs"

We are now ready to formalise the concept of a triangulation, simply as any maxi-

mal pslg:

definition isTriangulation :: "pslg ⇒ bool"
where "isTriangulation g ≡

∀ a ∈ verticesOf g. ∀ b ∈ verticesOf g.
a=b ∨
<a,b> ∈ edgeSetOf g ∨
(∃ e ∈ edgeSetOf g.

straightEdgesIntersect <a,b> e)"

The functions edgesOf and verticesOf return the set of edges or vertices of a given

graph respectively.

Circumcircles and the Delaunay Triangulation

As described earlier in this section, a triangulation of a graph is Delaunay if and only

if no vertex is contained within the circumcircle of any triangular face in the graph.

Equivalently, we can say a triangulation is Delaunay if and only if each internal edge

AB satisfies a condition we will refer to as being locally Delaunay, meaning that the

two triangles sharing that edge — call them ABC and ABD — each have circumcircles

which do not contain the entire quadrilateral ACBD.

We will begin our formalisation by first defining a predicate isMinimumTriInGraph

to tell us whether three given points form a triangular face contained in a graph:

definition isMinimumTriInGraph ::
"[point, point, point, pslg] ⇒ bool"

where "isMinimumTriInGraph a b c g ≡
¬(collinear a b c) ∧
<a,b>∈(edgeSetOf g) ∧
<a,c>∈(edgeSetOf g) ∧
<b,c>∈(edgeSetOf g) ∧
(∀x∈verticesOf g. x /∈{a,b,c} −→ x outsideTri a b c)"
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This refers to a predicate outsideTri with the obvious semantics, defined as be-

ing not insideTri and not onBoundaryTri, which in turn are defined in terms of

leftTurn and isBetween respectively. The formal definitions are omitted for brevity.

The final element of scaffolding we require is the concept of a point being inside,

outside, or on the boundary of the circumcircle of a triangle. Mathematically, for three

non-collinear points A = 〈ax,ay〉, B = 〈bx,by〉 and C = 〈cx,cy〉, the point D = 〈dx,dy〉
lies inside the circumcircle of triangle ABC if and only if the matrix determinant∣∣∣∣∣∣∣∣∣∣∣

ax ay a2
x +a2

y 1

bx by b2
x +b2

y 1

cx cy c2
x + c2

y 1

dx dy d2
x +d2

y 1

∣∣∣∣∣∣∣∣∣∣∣
has the same sign as the signed area of the triangle; D is outside the circumcircle if

the signs are opposite, and D is on the circumcircle if the determinant is zero. Thus

we define the predicate d inCircumcircle a b c as returning true if and only if

either leftTurn a b c and the determinant is positive or leftTurn a c b and

the determinant is less than zero. The definition of d outsideCircumcircle a b c

follows similarly but with the leftTurn conditions exchanged, and our definition of d

onCircumcircle a b c simply asserts that the determinant evaluates to zero.6

We can now define locallyDelaunay as:

definition locallyDelaunay :: "[point, point, pslg] ⇒ bool"
where "locallyDelaunay a b g ≡

isTriangulation g ∧
<a,b> ∈ edgeSetOf g ∧
(∀ c ∈ verticesOf g. ∀ d ∈ verticesOf g.

c 6=d ∧
isMinimumTriInGraph a b c g ∧
isMinimumTriInGraph a b d g ) −→

¬d inCircumcircle a b c"

Finally, we define a Delaunay triangulation as a graph which is a triangulation whose

every edge is locally Delaunay:

definition isDelaunayTriangulation :: "pslg ⇒ bool"
where "isDelaunayTriangulation g ≡

isTriangulation g ∧
(∀ a b. <a,b> ∈ edgeSetOf g −→

locallyDelaunay a b g)"

6The Isabelle formalisation is omitted due to its length. We further note a deviation from the termi-
nology of Knuth [104], Guibas and Stolfi [71], and Dufourd and Bertot [45], all of whom refer to this
as an InCircle. Our convention avoids any ambiguity with the common interpretation of “incircle”
as the inscribed circle (the circle inside the triangle tangent to all three sides).
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10.3.3 The Role of the Prover’s Palette

With our new formal definition of inCircumcircle we set about proving some straight-

forward lemmas. The reason was two fold: we wanted to make sure our definitions

behaved as expected and we thought many of the lemmas might be useful later in our

proof endeavour. The Prover’s Palette can be useful for performing a sanity check on

the truth of our lemmas and it actually identified mistakes in several, including the

lemma:

¬ d inCircumcircle a b c =⇒
d onCircumcircle a b c ∨ d outsideCircumcircle a b c

QEPCAD told us that this statement was false, and it also produced the counterex-

ample, a= (0,1), b= (−2,−1), c= (−5,−4) and d = (0,0). As shown in Figure 10.4,

when we manually draw these points we notice that a, b and c are collinear 7. Our

inCircumcircle and outsideCircumcircle definitions are both false in this case,

for when we unpack them we have neither leftTurn a b c nor leftTurn a c b.

This matches our intuition, that inside and outside are not applicable in the degenerate

case when the “circumcircle” is a line.

FIGURE 10.4: QEPCAD finds a counterexample for a circumcircle lemma
corresponding to the degenerate collinear case.

However, it is natural to say that a point d is on the “circumcircle” in the collinear

case when d is on the same line as a, b and c. Our definition of onCircumcircle

matches this, simply requiring that the determinant is zero. Armed with a better under-

standing of the situation, we are satisfied with how we have defined the concepts, and

it is merely necessary to amend the lemma:
7We used the GeoGebra environment to plot our counterexamples and found that a very useful tool:

more is said about this in Section 11.2.3.
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¬ collinear a b c ∧ ¬ d inCircumcircle a b c =⇒
d onCircumcircle a b c ∨ d outsideCircumcircle a b c

Had we wished to, we could have excluded the collinear case from onCircumcircle;

in this instance it makes no difference to our theory, but in other cases it might have,

and it is good that we were forced to consider it explicitly early on in our theory

development. Furthermore, by drawing this edge case to our attention, the Prover’s

Palette has been helpful in improving our intuition about the domain.

10.4 An Algorithm for Delaunay Triangulations

One algorithm for constructing a Delaunay triangulation has already been sketched,

in Section 10.3.1: start with an arbitrary triangulation of a point set, and then iterate

through the edges flipping those which are not locally Delaunay. This is a simple algo-

rithm, but as Dufourd and Bertot point out, “proving its formal correctness is already a

challenge” [45]8. For this reason, we believe it is a prime candidate for evaluating the

Prover’s Palette.

10.4.1 Defining the Algorithm

Before we present our formalisation of the algorithm in Isabelle, let us introduce two

elements of scaffolding that were required. The first of these gives us a way to iterate

through the edges: a graph is defined in terms of an unordered set of edges, E, where

the edge is represented as an unordered set of two distinct points; to more easily work

with this structure, we introduce an ordered list of edges, EL, in which the edges are

represented as a pair. We introduce the predicate tupleListMatchesEdgeSet EL E

to assert that the ordered structure EL has precisely the same elements as the original

unordered E.

The second element we introduced allows us to concisely formalize the edge-

flipping operation. The function replaceEdge <x,y> <a,b> G returns the graph G

with edge 〈a,b〉 replaced by 〈x,y〉 (with replaceEdgeInSet <x,y> <a,b> E defined

similarly for a set rather than a graph).

Equipped with these concepts, we can express the algorithm in Hoare logic and

assert its correctness in our main theorem. This is shown in Figure 10.5.

8Dufourd and Bertot’s research and related work is described further in Section 11.1.1.
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theorem DelaunayTriangulationAlgorithm: "

VARS (G::pslg) (V::point list) (E::edge set)
(EL::(point * point) list) (a::point) (b::point)
(i :: nat) (j :: nat)

{ distinct V ∧ isTriangulation G ∧ (pre)
Rep_pslg G = (set V, E) ∧
tupleListMatchesEdgeSet EL E }

WHILE (0 < length EL) (T1)
INV { (I1) }
DO

a := fst(EL!0); b := snd(EL!0); EL := tl EL;
IF locallyDelaunay a b G (T2)
THEN SKIP
ELSE

i := 0; j := 0;
WHILE (i < length V) (T3)
INV { (I2) }
DO

IF (isMinimumTriInGraph a b (V!i) G) (T4)
THEN

WHILE (j < length V) (T5)
INV { (I3) }
DO

IF (i 6=j ∧ isMinimumTriInGraph a b (V!j) G) (T6)
THEN

IF ((V!j) inCircumcircle a b (V!i)) (T7)
THEN

E := replaceEdgeInSet <V!i,V!j> <a,b> E;
G := replaceEdge <V!i,V!j> <a,b> G;
EL := remdups [(a,V!i),(a,V!j),(b,V!i),

(b,V!j)] @ EL
ELSE SKIP
FI

ELSE SKIP
FI;
j := j+1

OD
ELSE SKIP
FI;
i := i+1

OD
FI

OD

{ isDelaunayTriangulation G }" (post)

FIGURE 10.5: The Isabelle theorem which states the correctness of the al-
gorithm for computing a Delaunay Triangulation: loop tests and if tests are
labelled (T?) for reference and the loop invariants which are to be identified
are labelled (I?).
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The statement of correctness makes it explicit that the algorithm takes as input a

set of distinct vertices and a general triangulation of them. We can see that the post

condition asserts that the final graph G should be a Delaunay triangulation.

The reader will note that three loops are used for this algorithm. The outer loop

recurses through the edges in the list EL. We note that for each edge ab there must be at

most two minimum triangles which contain it. The next loop cycles through the points

in V searching for the Vi which makes a minimum triangle with ab. Then, in the third

(inner-most) loop we cycle through points in V again, this time looking to see if there is

a Vj distinct from Vi which makes another minimum triangle with ab. There will only

be a Vj if ab is an internal edge. If a Vi and Vj are found, we determine whether 〈a,b〉
is locally Delaunay, and if it is not the edge is flipped, or in other words replaceEdge

<V!i,V!j> <a,b> G. With this flipped edge it may be necessary to revisit the four

edges of the quadrilateral a Vi b V j, so these edges are added to EL.

The components of the loop invariants are referenced as (I1), (I2), and (I3) in Fig-

ure 10.5. Discovering what these components should be is one of the main tasks in

proving this theorem, and our work in this area will be presented next.

10.4.2 Proving the Algorithm

We now introduce some of the candidate loop invariants we have explored in proving

the correctness of this algorithm. We will not give a full proof, but rather aim to give

the reader enough understanding of the process — and of the specifics pertaining to the

Delaunay triangulation algorithm used here — to enable an appreciation of the utility

of the Prover’s Palette.

Compared with Graham’s Scan, the Delaunay algorithm in Figure 10.5 is not sig-

nificantly longer or more complicated to understand. However, the formal proof does

become more extensive: recall from Chapter 3 that each loop requires identifying an

invariant and showing two verification conditions (truth of the invariant when entering

the associated loop and preservation of the invariant at the end of each loop iteration).

With three loops in the Delaunay algorithm, there are three invariants to identify and

seven verification conditions to prove. The VCs are shown in Figure 10.69.

From our analysis of the Graham’s Scan proof in Chapter 5, we remarked that

formulating the correct loop invariant was a non-trivial task, requiring several iterations

before the necessary information to prove the truth of the VCs could be established.

9The VCs are presented for completeness and for the interested reader, but a full understanding of
them is not essential for appreciating the remainder of this chapter.
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VC1
Invariant at Loop 1 Start
(pre) =⇒ (I1)

VC2
Invariant at Loop 2 Start (or Loop 1 End if Loop 2 skipped)(
(I1)∧ (T1)

)
=⇒

(
(T2)→ (I1′)

)
∧
(
¬(T2)→ (I2)

)
VC3

Invariant at Loop 3 Start (or Loop 2 End if Loop 3 skipped)(
(I2)∧ (T3)

)
=⇒

(
(T4)→ (I3)

)
∧
(
¬(T4)→ (I2′)

)
VC4

Invariant at Loop 3 End(
(I3)∧ (T5)

)
=⇒

(
(T6)→

(
(T7)→ (I3′)

)
∧
(
¬(T7)→ (I3)

))
∧(

¬(T6)→ (I3)
)

VC5
Invariant at Loop 2 End (after Loop 3)(
(I3)∧¬(T5)

)
=⇒ (I2)

VC6
Invariant at Loop 1 End (after Loop 2)(
(I2)∧¬(T3)

)
=⇒ (I1)

VC7
Program End(
(I1)∧¬(T1)

)
=⇒ (post)

FIGURE 10.6: The set of verification conditions required to prove the cor-
rectness of the Delaunay Algorithm, where (I?′) is used to indicate invari-
ant (I?) evaluated with the new values associated with the updated variables
at the end of that loop.

This iterative process of repairing the invariant to prove one VC correct, could have

the consequence that other VCs would change, sometimes becoming unprovable. This

sensitive dependency between the VCs and the invariants, coupled with a large number

of minor-but-necessary facts being carried around, can make it extremely hard to focus

on the essence of a proof. It is against this backdrop that we found the Prover’s Palette

particularly useful.

10.4.3 Prover’s Palette: Identifying Missing Components in the
Loop Invariant

We will examine in depth one example of where the Prover’s Palette helped to focus our

intuition by revealing overlooked case splits in point configurations. This ultimately

helped us identify a missing component in the loop invariant I3, and as a consequence

this change filtered back through the proof indicating that I2 and I1 needed updating

also.

In proving VC4, we had to show that invariant (I3), possibly updated, remained

true at the end of every iteration of the third loop. Inside that loop, if Vj is in the

circumcircle of a b and Vi, then we flip the edge ab to become the edge ViVj, and we

must show that the invariant (I3) is true for the updated graph (the first conjunct in the

conclusion of VC4); and if Vj is not in the circumcircle, no changes are made to the

graph (the latter conjunct in VC4).
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The latter case is straightforward, but the former one is quite involved. One of the

lemmas we were faced with proving was that the new graph remains a triangulation; in

particular, that no more edges can be added to the new graph without intersecting the

edges in it. Since the new graph has removed the edge ab, the proof involves showing

that there must now exist some edge in the graph which intersects it. Our intuition tells

us that ab would intersect newly added ViVj, so we set forth to prove this. Along the

way we encountered case splits, one of which was to prove:

[[ ¬ straightEdgesIntersect <b,vj> <a,vi> ∧
¬ straightEdgesIntersect <a,vj> <b,vi> ∧
vi 6= vj ∧ ¬ collinear a b vi ∧ leftTurn a b vj

]] =⇒
straightEdgesIntersect <vi,vj> <a,b>"

As this lemma could be expressed in purely algebraic form it was a perfect candi-

date for QEPCAD to solve. Using the Prover’s Palette, we sent the lemma off10, fully

expecting QEPCAD to return the answer true and allowing us to progress with for-

mulating the main structure of the proof. Surprisingly it returned false. For a greater

appreciation of why this lemma didn’t hold, we asked QEPCAD to provide a coun-

terexample: it informed us that a violation could be found when a = (0,0), b = (1,0),

Vi = (−1,1/4) and Vj = (−3,−1). This can be seen in Figure 10.7.

FIGURE 10.7: QEPCAD identifies a counterexample to the proposition
that ViVj intersects ab.

By drawing out the counterexample QEPCAD provided, it was immediately appar-

ent to us what information was missing in the lemma. From the context of the proof we

knew that we were reasoning about the case where the edge ab was illegal and needed

flipping, thus Vj should be lying within the circumcircle of the triangle abVi. However,

Figure 10.8 clearly shows that the assumptions of our lemma are not restricting Vj to

this position. This was easily corrected by updating the lemma to include the assump-

10QEPCAD struggled to reason about this lemma until we manually performed geometric transfor-
mations on the points, translating a = (0,0) and b = (1,0).
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FIGURE 10.8: The counterexample QEPCAD finds can be eliminated by
bringing in the fact that Vj is known to lie inside the circumcircle of a b Vi.

tion vj inCircumcircle a b vi (fortunately a fact already present in the subgoal of

VC4 which uses this lemma).

However, sending the updated lemma to QEPCAD11 still returned the answer false.

The counterexample produced this time was a = (0,0), b = (1,0), Vi = (−3,−2) and

Vj = (−35/16,−3/2), shown in Figure 10.9.

FIGURE 10.9: QEPCAD identifies a further counterexample even when
the circumcircle constraint is in place.

We know by (T4) that isMinimumTriInGraph a b V!i G holds when we enter the

loop. If a, b and Vi make a minimum triangle, then it is not possible for Vj to lie in its

interior, and thus we have a contradiction, as shown in Figure 10.10. Unfortunately, we

cannot merely pull isMinimumTriInGraph a b V!i G into (I3), because this will in-

validate (I3′): in the case where ab is flipped, we no longer have the minimum triangle

11The updated lemma contained the fact V!j inCircumcircle a b V!i which meant we no
longer needed the explicit assumptions that leftTurn a b V!i and V!i 6=V!j.
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FIGURE 10.10: The counter-example QEPCAD provides tells us that we
need the further fact that Vj cannot lie inside the a b Vi.

abVi in G. One option we explored was to introduce an additional flag into the algo-

rithm so that the invariant could assert conditionally that the isMinimumTriInGraph

property holds before an edge flip, but this poses the additional non-trivial effort to

show that there is at most one j which could trigger an edge flip for any i.

A simpler possibility, revealed by our explorations in the Prover’s Palette QEPCAD

widget, is to claim the following as an invariant:

∀x∈verticesOf g. x /∈{a,b,V!i} −→ x outsideTri a b V!i

It is easy to show that this is implied by the isMinimumTriInGraph precondition, but

this weaker form is independent of G and so can safely be added to (I3). Returning

to the original lemma, some of our previous assumptions are now redundant, so we

remove them, and this time, using Prover’s Palette, we are able to have QEPCAD

confirm that the patched lemma is true:

[[ ¬ straightEdgesIntersect <b,vj> <a,vi> ∧
¬ straightEdgesIntersect <a,vj> <b,vi> ∧
vj inCircumcircle a b vi ∧
vj outsideTri a b vi

]] =⇒
straightEdgesIntersect <vi,vj> <a,b>"

10.5 Evaluation

At this stage we believed that we had collected sufficient examples to show that the

Prover’s Palette system does indeed provide a powerful way of integrating tools. We
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had a good understanding of how it improves the user experience of constructing me-

chanical verifications and of its limitations. For this reason we decided that — whilst

it would be a useful result in its own right — completing the proof of the Delaunay

algorithm would not shed more light on our evaluation exercise. Our future plans in-

clude completing this proof and we estimate that it will take no longer than a month

of work. A significant portion of the proof has been developed and the loop invariants

appear to be converging to a stable set.

We estimate that QEPCAD has been invoked 50 times to date during the proof con-

struction. As we described in this chapter, we found it extremely helpful in a number

of ways: to prove broken geometric proofs from the Graham’s Scan development; to

check definitions; to sanity check that we were trying to prove a valid theorem; and

sometimes in the situations where we were going down a wrong path we used it as a

guide providing us with invaluable counterexamples, which in turn helped us in for-

mulating the correct loop invariants. We believe that each of these ways address many

of the main unnecessary difficulties we previously encountered when undertaking a

large-scale formal proof. Recall that these difficulties were called out in Section 5.1.

Figure 10.11 recalls this list of impediments to productivity and shows how our new

approach to integrating systems is able to assist with each.

In Chapter 5 we called out two categories of difficulties with formal proof: those

which contributed to the “black holes of time” and those which obscured our intuition.

We found that the Prover’s Palette greatly alleviated the first category of difficulties by

reducing the time spent on reasoning about small details and time spent searching for

applicable lemmas in the library. Of course, our integrations only helped with these

issues in some areas; there is much more that can be done, and we will describe these

shortly. We note however that these improvements generally required using QEPCAD

in “oracle” mode, thus trusting its results and diminishing confidence in the resulting

proof.

For the second category of difficulties, where intuition is obscured during the for-

mal proof process, our approach is able to assist with all the noted difficulties without

introducing any proof dependency on the external systems. Frequently in our Delau-

nay case study, the Prover’s Palette was used as a guide, either to sanity check new

formulations or alert us to mis-steps along the way. Having explicit counterexamples

was particularly useful to penetrate the sometimes densely obfuscated expressions, and

being able to change bound- and free- variables and isolate expressions — using the

tools interactively — further enriched our understanding of proof goals. By eliminating
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Difficulties Using Isabelle How the Prover’s Palette Helps

Proving Minute Details oracle mode discharges many algebraic goals;
subgoal mode sometimes introduces simplifiable
goals

Library Look-up oracle mode reduces the need for looking up
lemmas; subgoal mode sometimes introduces
simplifiable goals

Entering Correct Instantiations QEPCAD provides witnesses; QEPCAD can
identify superfluous assumptions, facilitating
automatic instantiation

Refactoring sanity checks permit faster iteration, reducing need
for refactoring

Version Incompatibilities oracle mode gives assurances for proofs which
break across version changes

Intuition Obscured by Opaque
Presentation

QEPCAD can identify superfluous assumptions,
clarifying relevant lemmas

Distracting Minutiae QEPCAD allows skipping or deferring intricate
proofs

Expensive Mistakes caused by
Obscured Intuition

mistaken lemmas and definitions identified sooner
using QEPCAD

FIGURE 10.11: Summary of the ways the Prover’s Palette addresses the
obstructions to interactive formal proof listed in Figure 6.1

unnecessary assumptions, we could simplify many of the expressions more quickly;

however, we did not utilise this feature of the Prover’s Palette as much as may have

been useful as the interactive selecting/deselecting of assumptions was somewhat te-

dious. In all these ways, having tightly integrated access to external systems improved

our ability to concentrate our intuition on the essential proof argument, accelerating

development without compromising confidence.

Despite the improvements the Prover’s Palette brought to the proof process, there

are a number areas where the tool integrations could perform better. Dealing with

formulae involving division was frequently cumbersome, and adjusting definitions for

usability, due to the simplistic treatment of internal predicates (expanding their def-

initions), is both artificial and cumbersome. One of the most frustrating situations

was when QEPCAD could not produce an answer within reasonable time or space

bounds. In these situations, as with division, manual manipulation of the goal state is

needed to see whether the goal complexity can be reduced, again rendering the inte-

gration less smooth than we would like. Finally, there is the challenge of reconciling
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expanded definitions with the original statement, as human-readable semantics vanish

when predicate expressions are replaced by algebra and variable names are changed

in unintuitive ways. Some ideas for tackling these limitations will be reviewed in the

next chapter, when we look at potential future work in Section 11.2.

One of the areas we found most exciting is the automation possible around the time-

consuming task of formulating the correct loop invariants. Taking as an example the

“missing invariant component” from the Delaunay proof (described in Section 10.4.3),

we have shown how our QEPCAD integration can help determine what is logically

missing; however, a more subtle understanding of the flow of the proof is needed to

identify what facts from the environment can be pulled in to correct an incomplete loop

invariant. Addressing the limitations described in the previous paragraph may make

this easier, but already, with the Prover’s Palette we were able to take advantage of the

potential of tools to remove much of the tedium. More importantly, by relieving the

human of much of the cognitive burden and distraction, our system allowed us to focus

on the structure of the argument, seeing the big picture, and figuring out and expressing

the more interesting steps of the proof.
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Conclusions

Our thesis began by describing the role intuition plays in formulating a mathematical

proof; whilst one has to be mindful of its fallibility, it would be wrong to underestimate

its importance (Chapter 1). We then drew a comparison between current mathematical

software packages, observing that, in general, mathematicians have happily embraced

CASs for exploring problem spaces efficiently, but they have been hesitant to adopt

theorem provers, despite the guarantee that proofs constructed in them are formally

correct (Chapter 2). Our case study of the Graham’s Scan algorithm in the theorem

prover Isabelle (Chapter 4) highlighted that this disparity could be attributed to the fact

that theorem provers can inhibit intuition (Chapter 5). It was our belief that a happy

marriage could be achieved between the two types of systems, culminating in a more

powerful proving environment (Chapter 6). Hypothesising that it would be possible to

make CASs readily accessible within the same IDE as a theorem prover, we set about

creating the Prover’s Palette, a system inspired by the proof engineering paradigm

which enables integrations of mathematical tools within the same IDE (Chapter 7).

The concrete integration of Isabelle and QEPCAD within the Prover’s Palette was then

presented (Chapter 8). Furthermore, we demonstrated that the design of our system

was modular and extensible by showing how Maple’s plotting functionality could be

accessed whilst constructing a formal proof in Isabelle (Chapter 9). Finally, we re-

vealed how the Prover’s Palette could be of assistance during the course of complex

proofs, focussing on the formal verification of another fundamental algorithm from

computational geometry, Delaunay triangulation (Chapter 10).

This chapter aims to make clear the contributions of our research and put them

into context within the larger picture of mechanical theorem proving. Our belief that

intuition is paramount when constructing intricate formal proofs is re-iterated at the

end.

190
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11.1 Contributions of this Work

This thesis is the culmination of many years of research, and we are gratified to list the

main ways we feel it contributes to the field of mechanical theorem proving:

• formal proofs for algorithms in computational geometry;
• a new geometry library for Isabelle;
• a new planar graph library for Isabelle;
• identified inaccuracies in two written proofs for the Graham’s Scan algorithm;
• the conceptual idea of integrating mathematical systems in a user-centric way;
• the implementation of a framework following this approach in a popular IDE;
• an integration of QEPCAD with Isabelle in this framework;
• an integration of Maple with Isabelle in this framework;
• case studies highlighting the value of this approach and framework;
• support for the important emerging idea of proof engineering;
• suggesting improvements to QEPCAD (witnesses and bug-fixes, now available).

The following subsections elaborate on these points, highlighting the value they bring

in a wider context.

11.1.1 Proofs in Computational Geometry

A prominent standalone contribution of our efforts is the formalisation of key concepts

from computational geometry: we constructed the first formal proof of the Graham’s

Scan algorithm for computing convex hulls and made substantial progress towards a

formalisation of a Delaunay triangulation algorithm. Furthermore, our formal verifica-

tion of Graham’s Scan revealed flaws in the written arguments justifying the correct-

ness of the algorithm in two mainstream textbooks, thus highlighting the value of a

mechanised proof.

When we embarked on our research, there was only one article in the area of for-

malising geometric algorithms: Pichardie & Bertot had proven two algorithms for

finding planar convex hulls, but restricted their domain to non-collinear cases [143]

(as discussed in Section 5.2.2). Their work was encouraging and impressive, and it in-

spired us to aim for a mechanical proof which was not so constrained [120]. Whereas

Pichardie & Bertot adopted Knuth’s axiomatic approach, assuming that no three points

are collinear (and asserting only informally that this could be repaired either by new

axioms or by a perturbation argument), we opted to build upon a different foundation,

involving coordinate geometry in the real plane. This made our proof endeavour more
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difficult initially, but it provided a sound foundation with the benefits of addressing

collinear points and bringing extensive automation once the foundation was laid.

While we were in the midst of our second case study, proving the Delaunay al-

gorithm, Dufourd & Bertot announced a formal proof for the construction of such

triangulations [45]. Their work, based on intuitionistic type theory, takes a very math-

ematical view of the problem and their whole approach is quite remote from computer

science. They build on a theory of hypermaps, a powerful and useful concept but not

one typically used in software engineering, and they start with a mathematical equiva-

lence several steps removed from the code that a computer might execute. Their work

has an elegance which ours sorely lacks, but our work addresses a different problem: it

shows that existing tools can tackle mainstream algorithms in computational geometry,

it shows how this can be done, and it shows improvements to the process enabled by

our focus on tooling.

11.1.2 Theories in Isabelle

In the course of proving the geometric algorithms we have naturally built up a large

body of formalised mathematics in Isabelle. A theory of planar geometry has been

developed, expressed in terms of signed areas of triangles, and proving a wide range of

useful and common lemmas. Beyond this, we provide definitions and results pertain-

ing to circumcircles, graphs, convex hulls, triangulations and Delaunay triangulations.

These are necessary not only for our own work, but for any work in Isabelle addressing

mainstream computational geometry themes. The automation we have supplied in the

form of carefully selected additions to Isabelle’s simplifier is a further important aspect

of the theories we have developed.

11.1.3 The Prover’s Palette

The Prover’s Palette as an out-of-the-box ready-to-use system is another contribution

of our research, allowing Isabelle users to easily call upon the evaluation functionality

of QEPCAD and the graphing capabilities of Maple whilst working on their formal

proofs. This system, as we have shown, enables versatile tool integrations, where the

user can customise how the external tool is used and how the result is applied in the

theorem prover, without disruption to the user’s process. This approach — whereby

an external tool is effectively invisible except when useful, or when manual control is

desired — has been a major assistance to our efforts, and we are confident that it will
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be beneficial in the many other mathematical domains where QEPCAD and Maple can

be used.

The extensible, open-source design also makes it easy for other developers to sup-

ply integrations to additional systems. By lifting much of the functionality to abstract

framework classes, we have made it so that comparatively few additions are required to

onboard new external CASs or solvers, or other theorem provers. We have made it easy

to see where the additional code for new integrations would be needed. This will, we

hope, allow the Prover’s Palette to become a platform for others to share integrations

to yet more tools and new techniques.

Both the approach of the Prover’s Palette and the system itself have been vali-

dated by our case studies. The previous three chapters have given numerous concrete

instances where it has been useful. Specifically, the Prover’s Palette has been of assis-

tance in:

• discovering missing loop invariants;
• facilitating the exploration of our problem domains;
• proving algebraic statements;
• indicating if lemmas were unprovable (and in some occasions providing coun-

terexamples);
• helping to identify the minimum set of assumptions which entail a conclusion.

As a result, less time is spent proving minute and distracting details, looking up the

library and finding the right instantiations for lemma applications. Mistaken defini-

tions and incomplete assumptions are flagged much sooner. This was useful in many

situations we encountered, from the initial modelling of a theory through to the con-

struction of proofs therein; most helpfully for us, it kept us on track during the hunt for

loop invariants. This improvement to productivity is beneficial on its own, but it also

reduces the frequency that one’s intuition is disrupted. With intuition so improved,

and further improved by the exploration capabilities, one enjoys a more natural formal

proof process and a clearer understanding of the formalisation task: one is closer both

to the underlying mathematical truth and to its celebrated beauty.

11.1.4 Proof Engineering and User-Centric Provers

It is manifest that the many mathematical software packages, and the myriad ways they

are used, have evolved for good reasons. But the only way to make these accessible

in their variety and their fullness of functionality, within a theorem proving context, is

to design the integration from the outset for interactive use. It must be done in such a
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way that the user need not be an expert in each external tool, nor must he interrupt the

flow of his activity — with cumbersome translations and context switches — to use it.

There has been a large body of prior work integrating systems (Section 6.3), but none

fully address the problem of enabling full-featured, low-overhead interactive use.

Our biggest contribution, we feel, is the approach we have taken, showing how

this problem can be resolved. We were powerfully influenced by developments in

software engineering, and by the creative idea of proof engineering, as described in

Section 6.4. This doctrine introduces a markedly different emphasis to prior work

in theorem prover design, placing the user at the centre of the process and focussing

on the richness of the development environment where they operate. In doing this,

systems such as Eclipse Proof General opened an effective and promising new avenue

for theorem proving, down which we were tempted as we composed our framework

for integrating systems, with compelling results. The usability, utility, and acceleration

enabled by our approach make a strong case for this style of combining tools, keeping

the cognitive interruption low and letting the user focus his intuition on the essential

aspects of the proof. In achieving these benefits, we are indebted to the idea of proof

engineering, and it is rewarding to see them provide a ringing endorsement for this

burgeoning paradigm.

11.1.5 Reflections

Reflecting on our research methodology, we acknowledge that several lessons can be

learned from our experience. We share them here as we feel that they may be of interest

and help to others in the community.

Without doubt, we deliberated over constructing the formal proof of Graham’s Scan

for far too long. Early into the proof endeavour we recognised the difficulties we

were encountering and appreciated which improvements could and should be made to

the interaction process with Isabelle. However, instead of interrupting the proof and

turning our attention to enhancing the tool, we trudged onwards with the – at times

painful — verification. With hindsight, proving and improving should be given equal

importance and ideally the two should be interleaved.

Future proof developments will also benefit from writing more in depth comments

in the theory files. We learnt the hard way that complex proofs which involve many

case splits can be difficult to write about when one has not looked at the proof for a con-

siderable amount of time. This is particularly true when the proof has been constructed

using Isabelle’s procedural style.
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Another lesson has been extrapolated from comments several researchers have

made at conferences, enquiring as to why we integrated Maple and not Mathematica

into the Prover’s Palette. Our answer was simply that it was the software package we

had the most experience with, so it seemed like a natural choice. In retrospect it would

be wise to seek feedback early on from the community as to which mathematical tools

they use most frequently and use this to influence future integrations.

Finally, we would like to add that we wish we had been more vocal in promoting

the Eclipse Proof General project when it was in its infancy. By championing it, we

may have helped to bring more users and developers to the system and it may have

been actively supported today. We have learnt the importance of speaking out at con-

ferences, writing to mailing lists and being active in advocating the use of a system.

11.2 The Bigger Picture

Let us now turn our attention to where our research fits in to the wider picture of me-

chanical theorem proving, and in particular identify some of the most exciting avenues

of future research which we believe hold promise for the field.

11.2.1 Program Verification

Returning to the concrete proofs we have undertaken in computational geometry, one

obvious continuation is to expand the coverage of algorithms in this field, beginning

of course by completing our work on the Delaunay triangulation algorithm (as dis-

cussed in Section 10.3), and proceeding to look at Voronoi diagrams, more efficient

algorithms, and at some of the applications where they are used. Space exploration,

for example, is one domain where geometric reasoning is widespread and the strong

guarantee of formal correctness is highly valued. Crucial to the verification of such

algorithms would be the modelling of any advanced data-structures used in computa-

tional geometry, as well as more low level constructs such trees and pointers.

While correctness at the algorithmic level is required if we are to provide guaran-

tees for a live system, it is not sufficient. It would be necessary — and interesting —

to look at verifying program code for these algorithms (e.g. in C or Java) and imple-

mentations running on specific hardware (e.g. ARM or Intel). This is a very active

area of research, from the hardware level [79, 101] to specific programming contexts,

either using custom proof languages [189] or geared around well-known languages
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[110, 54, 16]. Logically connecting our algorithmic proofs to this chain would afford

an unprecedented level of confidence in the results.

Whether working with algorithms or executable code, the challenge of formulating

the right loop invariant remains when using Hoare logic. As we have described (Sec-

tion 5.1), this is often a taxing and time-consuming part of the process. In recent years

there has been lots of attempts at automation in this area, and an entire workshop on in-

variant generation (WING) has been devoted to this challenge [187]. Whilst we do not

think there is a general solution to this problem, there are instances where it is possible

to automatically discover the loop invariants; more interestingly, it might be possible

to make some of the automation in this area more amenable to human guidance to give

the best of both worlds.

11.2.2 Extending the Functionality of Existing Tool Integrations

Continuing our investigations as described above will give more insight into how the

Prover’s Palette tool integration could be made more useful, but already — through

our case studies, and through conferences, workshops and countless discussions — we

have identified a number of compelling enhancements. We will start, in this section,

with those potential improvements relating to the tools currently integrated within the

Prover’s Palette.

Supporting Division in QEPCAD

One of the most frustrating difficulties we encountered with the existing tool in-

tegrations is the inability of QEPCAD to reason about division (Section 10.2). At

present, any proof goal containing division must be manually rewritten in terms of

multiplication in order to be sent to QEPCAD. Isabelle’s field_simps help in sim-

ple situations, but usually require explicit non-degeneracy preconditions or case splits,

meaning that the user must enter a tedious sequence of simplifications and rule appli-

cations.

To help with this problem, we designed a simplification set for removing division

in Isabelle, shown in Figure 11.1. This set addresses many more of the formulae we

encountered. However, it is not complete, and it fails for some of our more intri-

cate statements involving division (such as most of those where sums of fractions are

present), so more work to devise a reliable procedure for removing division would be

a valuable undertaking.
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div_simp_eq_l: (a/b = (c::real)) =
((b 6=0 −→ a=c·b) ∧ (b=0 −→ c=0))
div_simp_eq_r: ((c::real) = a/b) =
((b6=0 −→ c·b=a) ∧ (b = 0 −→ c = 0))

div_simp_neq_l: (a/b 6= (c::real)) =
((b6=0 −→ a 6= c·b) ∧ (b=0 −→ c 6=0))

div_simp_neq_r: ((c::real) 6= a/b) =
((b6=0 −→ c·b 6= a) ∧ (b=0 −→ c 6=0))

div_simp_less_l: (a/b < (c::real)) =
((b>0 −→ a < c·b) ∧ (b<0 −→ a > c·b) ∧ (b=0 −→ 0<c))

div_simp_less_r: ((c::real) < a/b) =
((b>0 −→ c·b < a) ∧ (b<0 −→ c·b > a) ∧ (b=0 −→ c<0))

div_simp_gr_l: (a/b > (c::real)) =
((b>0 −→ a > c·b) ∧ (b<0 −→ a < c·b) ∧ (b=0 −→ 0>c))

div_simp_gr_r: ((c::real) > a/b) =
((b>0 −→ c·b > a) ∧ (b<0 −→ c·b < a) ∧ (b=0 −→ c>0))

FIGURE 11.1: A set of Isabelle simp rules for removing division

Supporting Transcendental Functions in QEPCAD

In addition to supporting formulae which involve division, there is ample scope

to increase the coverage of QEPCAD for other functions and domains. Statements

involving absolute value and rational powers could be made amenable to QEPCAD

with a small amount of automated pre-processing.

Furthermore, a technique for reasoning about transcendental functions (e.g. sin,

log, ex) in QEPCAD has recently been demonstrated by Akbarpour et al., replacing

occurrences of such functions with polynomial upper and lower bounds [1]. Com-

bining their “bounds” approach with our work could provide an extremely powerful

integration, resolving some of the speed and coverage issues with their system on its

own, as well as some crucial accuracy issues: in preliminary experiments using our

QEPCAD integration with their bounds, the Prover’s Palette has highlighted that some

of their reported bounds are in fact too weak. We presume that including more terms

in the Taylor expansion would correct this, and this could be an interesting future in-

vestigation.

Reducing the Search Space: Translation Invariance

One other area where our QEPCAD integration is limited, as we discovered, is the

frequency with which problems which are theoretically solvable could not be solved

within reasonable time/space bounds. There are some concrete improvements which

can be done to alleviate this. The first of these is to apply more techniques for reduc-
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ing the number of variables and hence reducing the complexity of problems sent to

QEPCAD. For geometric problems, there are some well known techniques which we

touched upon in Section 6.3. We introduced lemmas showing translation invariance

allowing us to fix one point as the origin, removing two variables from the problem

sent to QEPCAD and in several cases making the problem tractable. Our lemmas,

however, are not always easy to apply, and we do not begin to tackle other invariants

such as scaling and rotation which could provide a way to eliminate further variables.

A formal theory of geometric invariance has been developed [112] and it would be re-

warding to build on this, instead of our simple lemmas, so that we can simultaneously

extend and simplify this way of reducing problem complexity.

Reducing the Search Space: QEPCAD’s Special Quantifiers

Another concrete improvement would be to utilise QEPCAD’s special quantifiers,

F (“for infinitely many”) and G (“for all but finitely many”), as weakened alternatives

to E (“for at least one”, or “there exists”) and A (“for all”). This enables QEPCAD to

bypass a large amount of computation, “and that can make a huge difference!” [151].

Knowing when to use these special operators is more difficult. The interactive nature

of the Prover’s Palette allows a sophisticated user to manually select these when ap-

propriate, which is a good start, but we can go further. Using Isabelle’s classes of open

and closed sets, it could be possible to detect and formally prove the sufficiency of

a weaker quantifier (such as “for all but finitely many" in place of “for all”), and of

course to send the weakened form for proof in QEPCAD. A good concrete example is

given on the QEPCAD website [151], taking a problem which Hong et al. believed to

be intractable in QEPCAD. The example shows how it can be solved (in two seconds!)

using special quantifiers, justifying the use of these quantifiers with the following gen-

eralised argument: if the space of solutions can be shown to be closed (due to the

inequalities used, in the case of the problem he is discussing), then the complement

of this set, the counter-examples, is an open set; therefore, if there is one counter-

example, there must be an infinite number of counter-examples, or in other words the

original statement in terms of “for all” is equivalent to the statement quantified instead

by “for all but finitely many”. The QEPCAD site concludes:

The moral of the story is this: “for all but finitely many” can be decided
using CAD faster than “for all” (which makes sense, since finitely many
points can be ignored), so you should use it if you can.
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Such an approach could have widespread applicability, using the strength of the the-

orem prover to express topological arguments to guide the search space employed by

many algebraic decision procedures.1

Further Automation of QEPCAD

In addition to the increased breadth of coverage in QEPCAD, there are a number

of configuration options and modes of using the tool we would like to better support.

As mentioned in Section 8.2.1, it is sometimes necessary to increase the amount of

memory available to the tool; while this can be done manually by the user, it would

be a simple and useful extension to automate this process. The same is possible for

other configuration options also, such as the type of projection used and normalisation

assumptions, although these may require more sophisticated automation.

A second area which has been mentioned (Section 8.3.2) is that of finding a min-

imal set of assumptions needed for a statement to be true. We manually did this by

selecting various sets of assumptions interactively, to find which assumptions could

be thinned out (removed) to make the subgoal easier to comprehend (and in some

cases filtered out the conclusion, as we realised truth was due to a contradiction in

the assumptions), but as we described, this was somewhat cumbersome. Automating

this process — both the discovery of unnecessary components, and the removal of

these components — would be an effective way to use the computational power of

QEPCAD, in a fully formal way, to simplify the proof state, making it easier for our

intuition to grasp.

Expanding Coverage of Functionality in Maple

Finally let us briefly discuss the integration with Maple. This exercise was done pri-

marily to demonstrate modularity and extensibility in the Prover’s Palette, picking two

of the ways we were familiar with the tool — plotting equations and solving boolean

statements — and complementary to our use of QEPCAD. Maple, of course, has a

vast library of techniques and is routinely used in far more ways than we have catered

for in our GUI. One can manually enter any command, cutting-and-pasting relevant

proof terms from the automatic translation to Maple’s syntax, but a tighter integration

covering more of its functionality would have many benefits.

Simplifying and factorising are an obvious strength of Maple which could be added

1As another example, such a theory could potentially be used to formalise Pichardie & Bertot’s
suggestion [143] to use a perturbation argument to make their convex hull algorithm proof applicable to
points in general position, including collinearity.
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to the Prover’s Palette. As described in Section 9.2.3, other integrations have concen-

trated in this area. It would be attractive to build on this work, leveraging the highly

interactive nature of our approach, to make this capability available, easily and on a

fine-grained basis. A GUI module which facilitates the selection of sub-components

would be an important addition, not just here, but in many areas where we see that

being useful, from reducing algebra in QEPCAD to plotting equations.

Another simple extension which could be applicable to many cases, including Ak-

barpour et al.’s work already mentioned, would be to generate power-series expansions

of transcendental functions using Maple. Not only would this facilitate automatic com-

putation of candidate bounds to be sent to QEPCAD, it could also allow the user to

control the number of terms desired in the expansion from Maple, and thereby control

the precision of the estimate (trading off against the desire to keep the algebra simple

and possibly preventing errors such as the one we noted in their work).

These extensions would continue the trend of expanding the set of the functionality

exposed by the Prover’s Palette from Maple. This puts a much richer set of automation

at the proof author’s fingertips, accelerating the proof process and leaving it to the au-

thor’s discretion to judge both how the tool is used and how much the tool is trusted.

However rather than base what new functionality would be most useful on our own

limited experience, it would be helpful to investigate how mathematicians and com-

puter scientists use the tool at present, and, as described in the next section, to look

at related systems so that the Prover’s Palette can implement category extensions of

functionality across multiple tools.

11.2.3 Integrating More Systems

A natural direction to take our work would be to integrate more systems into the

Prover’s Palette. One of the most popular tools used by mathematicians is Mathemat-

ica [113], and so it would be a great addition to the suite of tools currently supported.

Indeed there are many other CASs which could be beneficial to integrate, even if some

of their functionalities have a lot of overlap with other tools which have been added.

Our approach in the Prover’s Palette architecture for using abstract classes to provide

common functionality and common GUI affordances could be extended to introduce

a library of widgets applicable to many of the CAS functionalities. The user could

then select their favourite external tool for a task such as factorising algebra; tools vary

in their support for different tasks, of course, so the user might make this selection
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based on how well tools perform particular tasks, or instead choose to let several run

automatically to make use of the fastest or best result possible.

We believe there is scope to incorporate many other categories of tools into the

Prover’s Palette, such as model checkers, discrete algebra and group theory systems

and statistics packages. We would like to investigate how mathematicians and other

users of these tools currently employ them.

GeoGebra [64] is another system we are eager to make available within the Prover’s

Palette. We found ourselves frequently using it over the course of our research to

graphically explore the counterexamples QEPCAD provided when we were attempting

to prove false conjectures, and in fact many of the diagrams we have included in this

thesis were produced using the tool. Currently, one has to interact with GeoGebra

separately and explicitly tell it what sort of object to draw and any constraints which it

should adhere to. It would be useful to have this process automated for some problems,

especially those where QEPCAD provides a counterexample which could be given

a geometric interpretation. This would be a non-trivial process as semantics would

need to be attached to the variables, e.g. allowing the Prover’s Palette to infer that

two variables make up the co-ordinates of a point, and that the abstract sequence of

characters inCircumcircle refers to a circle in GeoGebra. We will discuss this more

in Section 11.2.4.

Extending the Prover’s Palette to work with more theorem provers is also a future

goal. One natural extension would be to link more interactive theorem provers with

the PG Kit — an ambition of that project — then incorporate these into the Prover’s

Palette. Of course, this task would be made much easier if theorem provers were to

communicate in a standard form, such as OpenMath [137] or OMSCS [29]. Alterna-

tively, if the PGIP standard is extended to give richer structural details of proof states in

a standard form, then a PGIP-compatible prover would be straight-forward to integrate

with the tools supported in the Prover’s Palette. Prover-specific customisation would

only be needed for the optional (though useful) preprocessing and result application

steps.

Whilst supporting different interactive theorem provers each talking to multiple

mathematical tools is useful, a loftier goal would be to design the Prover’s Palette

to permit the communication between multiple interactive theorem provers and other

tools in unison. We note that the FlySpeck project ignited with many researchers car-

rying out their designated proof on their chosen theorem prover (be it Isabelle, Coq

or HOL-Light) with the goal to then integrate the parts of the proof into a coherent
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whole. This approach could be adopted in the Prover’s Palette — using the results

from individual theorem provers in one argument. However, we note that it may not

be very satisfactory to do this in general, especially if different foundational structures

have been used to define objects. Translating results from one prover to another is a

complex project, but would be an interesting direction to take the Prover’s Palette.

Of course, linking in more provers to the Palette does not need to involve exclu-

sively those of the interactive variety. Incorporating first-order, automated provers

would be tremendously beneficial. As mentioned in the Chapters 3 and 10, Isabelle’s

Sledgehammer tool already does a wonderful job at utilising such external provers but

it does not always succeed at finding a solution. In these cases it may be possible for

a user to guide an external, automated prover to find a solution (perhaps by selecting

fewer lemmas for it to use when searching for a proof). Experimenting with this idea

could yield some interesting results.

Once we begin to expand the suite of tools in the Prover’s Palette we will un-

doubtedly have to consider the complexity of the cooperations. A number of projects,

including KOMET [29], PROSPER [43], Logic Broker [3], and PG Kit, could assist

in such multi-system integrations: the Prover’s Palette could offer a “meta tool” wid-

get, recommending systems to use at crucial points in the proof development (and,

where possible, automatically opening the corresponding widget). This converges to

one of the core ideas of software engineering and proof engineering, that one should

be pragmatic about getting the job done, making use the best tool for the job, with

the community as a whole concentrating on tools working well together. The next

section will look more broadly at how proof engineering suggests exciting possible

continuations of this research.

11.2.4 More Proof Engineering

One area of future work raised in the previous section is that of customizing the

Prover’s Palette’s behaviour for specific theories, e.g. telling an external tool like Ge-

oGebra how to interpret inCircumcircle (previous section), or supporting translation

of transcendental functions to Maple (Section 9.1.4). To do this neatly requires new

machinery on top of the current architecture, for presently the obvious implementa-

tion would consist of a new Eclipse plug-in extending the Prover’s Palette. This is the

wrong place for theory-specific metadata to sit, as it limits the modularity and general

applicability of the tool. What is needed is a way to provide usage hints, for other

systems and potentially for human users, as a natural part of the theory itself.
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One technique for doing this has been pioneered in the FeaSch system [84]. FeaSch

provides a mechanism for encoding within a theory the control logic for detecting

relevant “features” (semantic tags), and the application logic for activating lemmas

associatively linked to these features. FeaSch is written atop Eclipse Proof General,

so one quick benefit is to use theory-specific features to suggest which tools are most

relevant. Leveraging a theory metadata mechanism such as this could also provide a

clean way for theories to extend the Prover’s Palette integrations. This would be very

powerful: any new theory could include domain-specific enrichments making external

tools more relevant.

Our hypothesis in Chapter 7 is that external tools can be integrated in ways relevant

to their context and accessible to the user. We have shown that this can be done and

that this can facilitate the user’s understanding of a proof, with the biggest benefit in

our view being when this engages the user — and her unique capability, intuition — in

the best possible way. Proof Engineering provides a good model for how this can be

done, based in large part on how it has been done elsewhere. Some of the areas where

we feel theorem provers could benefit the most from a proof engineering approach are

listed below.

Proof Term Metadata

In long proof goals, even with mathematical rendering it can be hard to identify re-

peated terms and learn the shape of the proof. By permitting metadata for visualization

to be attached to terms — for instance highlighting a fact such as P inCircumcircle

A B C in blue — it can be made much easier to recognise relationships between state-

ments, such as its presence in the assumption of one implication and in the conclusion

of a different implication. Propagating this from one proof step to another could take

this further, giving continuity to a user’s mental model of a proof by preserving colour

even as the components of a proof state might change. These colours could also be used

in the interactions with other systems, such as in a diagram of multiple circumcircles

produced by GeoGebra or Maple.

Multiple Proof States

The modern software developer takes “lightweight branching” for granted: a simple

git checkout branch2 can replace a large codebase within a fraction of a second,

and IDEs with their incremental build support can recompile and regenerate depen-

dencies with only slightly more overhead (and even that software engineers complain
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about). If anything, theorem provers should be leading the way in this capacity, given

the common practice in mathematical proof to “hill-climb”, that is to switch among a

set of active proof attempts or even definitional foundations, whilst hunting for a solu-

tion; proof planning provides one technique for managing this [155], while IsaPlanner

gives a pragmatic approach for Isabelle [44]. Instead, we relied on low-level version

control (git) to maintain alternate proof approaches, with the penalty of a punitive delay

when switching between proofs while the prover reprocessed the entire theory.

Refactoring

Refactoring code — that is, changing a name or arguments to a function — is one of

the core capabilities expected of IDEs. When viewed from a proof engineering angle,

it almost beggars belief that these capabilities are almost entirely absent in theorem

prover IDEs. 2 This is painful enough whenever we wish to rationalize lemma names,

and we do an old-fashioned “search-and-replace” then suffer the punitive delays just

mentioned, waiting for the proof to be reprocessed; but it is agonising when, time after

time, we are making small changes to a loop invariant as it evolves, then regenerating

the verification conditions, repairing those proofs, and then some hours later celebrat-

ing the small step forward in the proof which engendered the loop invariant change

(usually with some damage to the intuition and flow which gave us the insight to make

the change!). The Prover’s Palette lessens the frequency with which such changes

are needed, but it does not increase the “round-trip” time to assay the real effect of a

change. Addressing this seemingly small problem would pay big dividends!

Research into this area is however progressing and we are encouraged by Bourke

et al.’s Levity tool for Isabelle/HOL [22], which has began addressing some of the

refactoring issues when lemmas are relocated; the tool automatically moves lemmas

upward as far as possible in the theory dependency graph, increasing their potential

reuse. Despite the tool occasionally moving lemmas into unnatural locations, the work

is a step in the right direction. Recent work by Whiteside [183] is also encouraging.

In his PhD thesis he constructs a proof language framework called Hiscript, which

provides a minimal proof language, its formal semantics and a notion of statement

preservation. Proof refactoring is then defined using the Hiscript framework, with over

2There are some efforts in this direction, but we are unaware of any which leverage the powerful
libraries available (such as Eclipse’s JDT), and as a result the functionality which we have seen has
tended to be disappointing.
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thirty refactorings being formally specified and proven to preserve the semantics of the

framework.

Collaboration

Collaboration in general is another area where exciting things are happening in soft-

ware engineering, not just at the code level, but in the plethora of “Cloud IDEs” where

developers can work on a live, shared body of code simultaneously. In theorem prov-

ing this could be very useful, as lemmas could be assumed in one part of a proof even

while someone else is proving them; or, envisaging a “TPaaS” (theorem prover as a

service), a live communal prover could track the lemmas, definitions, and proofs built

by anybody, on other foundations, and inform a user when a proof is already completed

or suggest work which might be relevant. Proofs that are the most interesting could be

“liked”, inspiring the most useful prospective theories to be evolved by other people,

or by software tools, or both, perhaps using the Prover’s Palette approach 3.

Presentation

Presenting and communicating a result is as important as conceiving and developing

it, but in this respect formal theorem proving is particularly weak. Software code is

often judged for its elegance, and mathematicians’ proofs even more so. In contrast,

formal proofs still read like telephone directories (Section 2.4). The aim of creating a

proof meant for a human is very different to the aim of creating a proof meant for a

computer: they need not be incompatible, but so far, we feel they have been too closely

intertwined.

We have shown many ways that our approach, and proof engineering in general,

can improve the interleaved processes of modelling a theory and constructing proofs

within it, but we have done little to address the impenetrable presentation of complex

formal proofs. There have been attempts in this direction — supporting mathematical

notation, “readable” languages such as Isar, and LATEX-formatted PDF output — but

these fall far short of the standards expected for human consumption.

Software engineering has given us the WYSIWYG principle (“what you see is

what you get”), which transformed word processing, and the fourth-generation lan-

guages (visual programming). Is it time for a meta-language or visual paradigm on top

3We salute early efforts from in this direction undertaken in MathWeb [114], and lament their prema-
turity. The technology landscape has changed, with radical advances in availability of cloud resources,
web API’s, understanding of collaborative working, richer metadata, and — not least — faster internet
access to the human users. As a result, we’d like to see their ambition revived.
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of the prover’s syntax? Do we need a new, machine-centric file format where multiple

perspectives can be saved? We don’t know the answer, but we have noticed that when-

ever a development environment has become too unwieldy, from the tedium of writing

assembly code to the irreconcilable tensions of a format meant for both machines and

people, software has responded with innovations. LCF (Section 3.2.2) was an impor-

tant such innovation in mechanised theorem proving, but we are overdue for another:

proof engineering may lead us to the next evolution.

The Changing Nature of Theorem Proving

Some of these ideas challenge the fundamental approach of existing theorem provers,

requiring complex meta-models and new user interfaces, but this should not be surpris-

ing. The landscape of software has changed altogether in the few years since we began

this research, not due to the web so much as “Web 2.0”: witness distributed version

control (e.g. Github) and online multi-user office suites (e.g. Google Docs) supplanting

the traditional tools despite their over thirty years of development. Dramatic changes

in how people do mathematics are also occurring, from crowd-sourcing and rapidly

iterating proof ideas back and forth [147] to formalising proofs because they are too

complex to believe them otherwise [57]. Theorem proving systems may not be rec-

ognizable in ten years’ time; in fact, we hope that they are not, for there is such great

scope for evolution and innovation. It is now clear that proof engineering is a more

radical idea than it first appeared, but one whose time has come, as Lüth notes:

The overall challenge in user interfaces is to leverage the underlying tech-
nology to an extent which makes it easier to do proofs in a computer than
with pen and paper. Presently, this is not the case. Theorem provers tend
to get in the way more often than they are helpful, and even though that is
in part their duty as proof checkers, the preferable role model of a theorem
prover should be that of a helpful co-author gently pointing out errors and
suggesting improvements, rather than a stubborn civil servant refusing to
accept the blindingly obvious because of some formality [109].

However, the major shifts in emphasis and investment needed for such an endeavour

will demand a strong body of evidence as justification. We hope this research can help

make that case, illustrating just some of the ways that paradigm changes elsewhere can

be models for making formal theorem proving more intuitive and productive.
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11.3 The Future Will Not Be Automated

When I applied for university in 1997, I chose Artificial Intelligence amidst a heady

excitement with headlines championing Deep Blue’s victory over Kasparov [90], a

consummation of decades of research into computer chess:

a rare, pivotal watershed beyond all other triumphs: Orville Wright’s first
flight, NASA’s landing on the moon . . . [132]

In nearly every domain I encountered, computers had skills which people could not

rival. But the converse was also manifest: people have skills which computers cannot

touch, and even as technology advances apace this fact stays constant. The game Go

remains out of reach of our automation abilities, and technology for all we depend on

it, ultimately is a mere assistant to the humans who design it.

So it is in theorem proving. When I entered my studies 15 years ago, automated

techniques were routinely performing feats no human could match. This is even more

the case today, as evidenced by tools such as Sledgehammer and QEPCAD, and by

the scope and precision of theories captured in modern provers. But these skills are

merely a part of what is required for the verification tasks we have looked at. The

extensive fully formal proofs being produced today were never possible until the ad-

vent of modern computers, but equally their construction can only proceed with the

domain knowledge and intuition of the human operator directing it. In our case stud-

ies, months of such human direction is required, and other proofs have taken years of

such guidance [57].

This research has shown how, by study and development of theorem provers as en-

gineering tools rather than automation systems, the interaction between various soft-

ware systems and users can be made more efficient. Different computerized mathe-

matical tools have different strengths, and by integrating them in a way which involves

the human user, it is possible to make better use of each and, more importantly in our

view, the user’s intuition can be brought closer to the problem domain.

Given the necessity of that human interaction, and the unlikelihood of that neces-

sity going away, the proof engineering line of research seems very promising. We are

hopeful we have encouraged others to come this way, and we are sure that with their

skills and intuition — as different again to our own as the computer tools are differ-

ent to each other — that other researchers will further improve how these plethora of

systems can collaborate.

We are reminded of another, more recent, chess milestone, less celebrated than
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Deep Blue’s victory but a far stronger and better inspiration. In 2005, a “freestyle”

contest was held by playchess.com. This was not about man versus machine, but about

teams, and the results were fascinating:

Lured by the substantial prize money, several groups of strong grandmas-
ters working with several computers at the same time entered the compe-
tition. At first, the results seemed predictable. The teams of human plus
machine dominated even the strongest computers. The chess machine Hy-
dra, which is a chess-specific supercomputer like Deep Blue, was no match
for a strong human player using a relatively weak laptop. Human strategic
guidance combined with the tactical acuity of a computer was overwhelm-
ing.

The surprise came at the conclusion of the event. The winner was re-
vealed to be not a grandmaster with a state-of-the-art PC but a pair of ama-
teur American chess players using three computers at the same time. Their
skill at manipulating and “coaching” their computers to look very deeply
into positions effectively counteracted the superior chess understanding of
their grandmaster opponents and the greater computational power of other
participants. Weak human + machine + better process was superior to a
strong computer alone and, more remarkably, superior to a strong human
+ machine + inferior process [97].

Chess is a metaphor for so many other domains: brute-force can be defeated by

collaboration. The burgeoning field of proof engineering lets us bring this lesson to

theorem proving. For in the end, the greatest success depends not on automation but

on a system’s capacity to augment and ultimately be guided by that uniquely human

ingredient — intuition — in all its undiluted potency.
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