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Abstract 

The thesis is composed of two parts that are related by the theme of genetic markers. The 

first part involves the application of genetic markers to investigate the mating system, 

population genetic structure, and evolutionary relationship of the three Chinese larch taxa: 

Larix gmelinii, L. olgensis and L. principis-rupprechtii. The second part of the thesis 

explores the development of populations genetic theory that is relevant to plant populations 

and follows the behaviour of uniparentally as well as biparentally inherited markers. 

Seventeen populations of the Larix taxa listed above were analysed using eight polymorphic 

allozyme markers. Results indicated that mating system was variable among taxa and 

among natural populations within taxa. Outcrossing rates were tm = 0.986 ± 0.081 for one 

population of L.ginelinii, tm  =0.684±0.107 -4.203 ± 0.371 for six populations of L. olgensis, 

and tm  = 0.792 ± 0.169 -, 0.930 ± 0.149 for two populations of L. principis-rupprechtu. 

Population differentiation of each taxa was very small, showing that less than 2% of total 

genetic variation occurred among populations. Spatial distribution of genetic variation of L. 

g,nelinii was random, but a weak pattern of isolation by distance was detected in L. 

olgensis. 

The genetic relationship among the three taxa elucidated by allozyme markers indicated that 

the genetic distances were very low between them. Nei's arithmetic genetic distance was 

about 0.01 between taxa and 0.002 among populations within taxa. L. gmelinii was more 
closely related to L. olgensis than to L. principis-rupprechtii. Analyses of PCR-RFLP and 

sequencing of three non-coding regions of cpDNA from genes trnL(UGU) to tm F(GAA) 

showed no differences at all between the three taxa. Thus it may be concluded that 

divergence among the three taxa has occurred within recent history. Based on morphological 

traits and the results obtained by allozyme and cpDNA sequence markers, it is reasonable to 
consider L. olgensis and L. principis-rupprechtii to be two varieties of L. gmelinii rather 
than two separate Larix species. 

In the second part of this thesis, theories of plant population genetic structure were 

developed to incorporate biparentally, paternally, and maternally inherited genes into a 

variety of models. Population differentiation for each of the three plant genomes was 

Iv 



formulated in the island, stepping stone and isolation by distance models of population 

structure. The results showed that maternally inherited organelle genes maintain larger 

differentiation than paternally inherited organelle genes, which in turn maintain larger 

differentiation than biparentally inherited nuclear genes. In the stepping-stone model, 

differences in genetic correlation with distance among the differently inherited genomes 

were conditional on the values of long and short distance migration for pollen and seeds. 

The relative contribution to migration of seed and pollen flow can be estimated in terms of 

gene frequency data or DNA sequence data. This can be carried out using Wright's F -

statistics, Nei's genetic distance, and the number of segregating nucleotide sites. 

When genes located on haploid genomes are under selection in a dine, results show that 

reparametrization may render previous dine theory suitable for plant organelle genes. One 

important results is that both the ratio of pollen to seed flow, and the ratio of fitnesses 

between paternally and maternally inherited genes play a critical role in determining dine 

displacement of these two types of genetic markers. 

Integration of the theoretical results with practical work suggests that investigation of 

population structure in the L. gmelinii complex using maternally inherited markers (mtDNA 

markers) in addition to the nuclear markers already scored, is likely to yield the most 

interesting results concerning their biology, ecology and history. 
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CHAPTER 1 

Introduction to the Larix gmelinii complex in China 



1.1. Introduction 

A genetic marker is usually defmed as any allele used as an experimental probe to mark a 

nucleus, chromosome or gene (Riger, et al., 1991). Here, the meaning of genetic marker is 

broadened to include any trait or character controlled by genes, or any DNA sequence itself 

used for the same purpose. This is because the allele itself may be difficult to identify in 

practical work. 

Genetic markers are key tools used for addressing many problems in population genetics 

and ecology for a number of reasons. The first is that genetic markers behave according to 

simple rules of segregation every generation. Changes from one generation to next 

generation can therefore be simply modelled. 

The second reason for the usefulness is that genetic markers can provide a record of 

historical events because they may alter through mutation and selection. These events may 

change the state of genetic markers and their frequencies in the population. The influence of 

these events may differ for different genetic markers. For example, mutation rate may be 

different among regions of DNA sequence, such as between coding and non-coding regions 

in some species (Gielly and Taberlet, 1994). Larger mutation rates are expected to occur in 

non-coding regions of the genome. 

The third attribute of genetic markers that may prove useful is that they can display different 

modes of inheritance. They may be associated with biparentally inherited nuclear genomes, 

paternally inherited chioroplast genomes in conifers, and maternally inherited chloroplast 

and mitochondrial genomes in angiosperms (see review by Mogensen, 1996). Comparison 

between the behaviours of these controlling markers may provide information about the 

biology and ecology of the species concerned. 

The fourth important characteristic of genetic markers is that they differ in their degree of 

resolution of genetic difference. DNA sequence data provides the ultimate in resolution of 

genetic differences between individuals. 

These properties enable genetic markers, especially molecular genetic markers, to be 

powerful and flexible tools for measuring genetic variation within and between species. 
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Analysis of such variation can yield information on biology, ecology and history (Avise, 

1994). Using relevant theory on the behaviour of such markers, many important historical 

events can be inferred. The following are some examples where molecular genetic markers 

have been applied in population genetics. 

Use of codominant genetic marker, such as allozyme, provides a convenient way to score the 

mating system of natural populations of plants, especially conifers (Mitton, 1983, 1992). 

With the help of the mixed mating model (Ritland and Jain, 1981), or the neighbourhood 

model (Adams, 1992), outcrossing rate can be estimated. 

An important event related to population structure is migration. Estimates of the number of 

migrants can be made using selectively neutral marker under several theoretical models 

(Slatkin and Barton, 1989). For example, then average number of migrants can be indirectly 

estimated by (1 I F - 1)14 according to Wright's island model (1951), or by the private 

allele method (Barton and Slatkin, 1986). Estimates of interpopulation gene flow are now 

available in many studies, for example in fourteen gymnosperm and seven angiosperm forest 

species (Govindaraju, 1989). 

The use of biparentally and maternally inherited genetic markers for inferring the history 

regarding post-glacial migration have been reported in recent years. For example, Jøhnk and 

legismund (1997) used the variation of allozyme and chloroplast DNA markers to infer 

post-glacial migration routes of Quercu.s robur and Q. petraea in Denmark. The underlying 

theory for this inference is that different vectors of migration are used by biparentally and 

maternally inherited genes. For biparentally inherited genes, migration can be mediated by 

either seed flow or pollen flow, while only seed flow contributes to the migration of 

maternal genes. The expected consequences for selectively neutral markers is then that 

population differentiation is larger for biparental genes than that for maternal genes (Ennos, 

1994; Petit, et al, 1993b). Using this theory and the relationship between allele frequency 

and geographical distance, the migration routes can be inferred. 

Taxonomic problems have been extensively studied using a variety of genetic markers, from 

morphological traits to allozyme to DNA sequence markers (Quicke, 1996). The underlying 

theoretical foundation for taxonomic studies is that taxa are assumed to be initially derived 

from a common ancestor. They diverged at different times due to the influences of mutation, 
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selection, recombination, etc.. A key hypothesis for the use of genetic marker for this 

purpose is that these events have been preserved and can be detected in genetic markers. 

Thus, the evolutionary relationship between taxa can be inferred using genetic similarity or 

distance, which is obtained by investigating variation of genetic markers. Several theories 

have been developed for estimating such genetic distances, including Nei' s genetic distance 

(Nei, 1972) using frequency data, and Jukes and Cantor's one-parameter model (Jukes and 

Cantor, 1969) and Kimura's two-parameter model using DNA sequence data (Kimura, 

1980). The absolute divergence time between taxa studied can be inferred under the 

molecular clock hypothesis. 

Two clear characteristics can be seen from the above examples. On the one hand, variation 

of genetic markers provides much information regarding genetic phenomena, evolutionary 

processes, and influences of external factors, such as ecological factors. On the other hand, 

this information can only be inferred with the support of relevant theories. Theory provides 

us with a foundation for using the variation of genetic markers to infer important events 

involved within and between species. 

The first objective of this thesis is thus to use genetic markers to answer important basic 

questions about an economically important taxa of Larix in China, i.e. to survey genetic 

variation in natural populations of native Chinese Larix taxa so as to provide background 

information for further genetic improvement. These are applications of mostly biparentally 

inherited nuclear markers, for which theory has already been developed. In addition, 

chloroplast DNA marker are used to elucidate the evolutionary relationship among the three 

Chinese Larix taxa. 

In recent years, many more genetic markers have been developed, such as PCR (polymerase 

chain reaction; Mullis, et al., 1986;Williams, et al., 1990) based genetic markers on each of 

the three plant genomes. Organelle markers with different properties are now available 

(Taberlet, et al.,1991; Demesure, et al., 1995). Use of these markers to survey plant 

population genetic structure may greatly broaden our knowledge of population genetics, 

especially the role of seed and pollen flow in gene migration. 

Insight into the role that seed and pollen flow play in plant population genetic structure can 

only be gained through the application of relevant theory. However, analysis of population 
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genetic structure for plants has suffered neglect in terms of theory. Most theories have been 

developed for animal populations and are not necessarily appropriate for plants. 

Therefore, the second part of the thesis explores population genetic theories suitable for 

plant species. We are especifically interested in hermaphrodite plant species, and the focus 

is on the impacts of seed and pollen flow on population genetic structure of the three plant 

genomes possessing different modes of inheritance in a variety of situations. These theories 

will be essential to allow genetic markers to be used to infer the role of seed and pollen flow 

in plants. This part will begin in Chapter 5. 

Before embarking on the first part of the thesis (the application of genetic markers to Larix 

species) the situation with respect to larch species in general will be introduced. We will 

focus upon existing taxonomic studies and also those of population structure within three 

main Chinese larch taxa. In order to understand the position of Chinese larch on a world-

wide scale, the distribution of Larix is considered. Then, the three Chinese larch taxa are 

reviewed separately, with particular emphasis on their native distribution in China and 

ecological requirements. The work that has already been done on population genetic 

structure and taxonomy of the species, using different genetic markers, will be then 

reviewed, emphasising the gaps that exist in our knowledge. Finally, the objectives of this 

study of Chinese Larix are outlined. 

1. 2 Geographical distribution of Larix 

1.2.1. Distribution 

Larix Miller is one of largest genera in the family Pinaceae and occurs in the temperate and 

cold temperate regions of the northern hemisphere. It is an economically important conifer 

species and is used for timber and in paper making. Larch species grow faster at an earlier 

stage in their development than do other members of the Pinaceae (Yang, 1995). Therefore, 

larch plantations are becoming increasingly commonplace and studies concerning 

population genetic improvement in the species are being emphasised. 

Larix differs from all other genera in the family Pinaceae in that the species within it are 

deciduous, and needles are born on dwarf shoots (Ostenfeld and Larsen, 1930). Following 

the description made by Ostenfeld and Larson (1930), Larix can be divided into two 



Fig.1.1 Distribution of Larix species, cited from Tang et al. (1995). The species and 
varieties indicated are: 

L. decidua 
L. gnelinii 
L. gmelinii var.japonica 
L. gmelinii var. olgensis 
L. principis-rupprechtii 
L. grIthiana 
L. kaempferi 
L. laricina 
L. occidentalis 
L. potaninii 
L. sibirica 
L. mastersiana 
L. lyallii 



subgenera, containing ten species and three varieties. One subgenus, Sect. 
Multiseriales, is 

characterised by species Possessing bracts on the cone that are-longer than the cone scales. It 
includes five species: Himalayan larch 

(L. grffithjan [Lindley & Gordon] Carrière) masters larch (L. masters ianct Rehder & Wilson), Chinese larch 
(L. potanjnj Batalin) western larch (L. occidentalis Nuttall), and Alpine larch (L. lyaliji Parlatore) The other subgenus, Sect. Larix, 

is characterised by individuals Possessing bracts that are shorter 
than the cone scales. It 

includes five species and three additional varieties: Japanese larch 
(L. kaempferj [Lambert] Sargent), Dahurian larch (L gme/jnij Turczaninow) Siberian larch (L. sibirjca Ledebous), European larch (L. decidua Miller), tamarack (L. larjcjna [DuRoi]K Koch) Polish larch (L. decidua var. POlOnica[Raciborski] Ostenfeld & Syrach Larsen), Kurile larch (L. gmelinij var. olgensis 

[Mayr] Ostenfeld & Syrach Larsen) and Prince Rupprecht larch (L. gmelinjj var. princloisruppechljj [Mayr]Ostenf & Syrach L.). 

The geographic distribution of Larix 
species is illustrated by Fig. 1.1. Species in Sect. 

Multiseriales 
are restricted to small disjunct areas, mostly located in mountainous regions. 

L. grf/Ithjana, 
for example, occurs within the Himalayas at a height of from 1800m to 

2900m above sea level, while L. potaninji and L. mastersiana are situated within the 
regions between the Da Xue Shan and the Ming Shan Mountains (Zhang, 

et al. 1992). L. occidental is 
occurs in Western Canada, the most north-easterly part of the state of 

Washington extreme west of Montana, and the northern parts of Idaho (Ostenfeld and 
Larsen, 1930). L. lyaliji 

occurs in two separate regions: one towards the east of the United 
States in the Rockies, and the another to the west in the Cascade Mountains 

Species in Sect. Larix 
occupy larger geographic regions than do those in Sect. 

Multiseriales (Fig. 1.1). One exception, L. kaempferj, 
occuss naturally in the interior of Hondo, Japan. L. gmelinjj 

is a very common tree throughout the entire forest-clad regions of Eastern Siberia, 
especially in the north, where it alone forms the tree line (Fig. 1.1). 

L. gmelinij var. olgensis 
is mainly located in the Chang Bai Shan Mountains in China (Zhang, 

et a! 1992). L. gmelini var. princlpisruPprechtji 
is situated in the mountains of Sanxi and Hebei province in China, 

while L. sibirjca 
occurs in western Siberica and north-eastern Russia (Fig.1.1). The 

distribution of L. sib inca 
extends from Lake Baikal in the east to the White Sea, and 

terminates in the west near to Lake Onega. The northern edge of its range reaches Jenisej, 
and the Altai Mountains in the south. L. decidua occurs most commoniy in the region 
stretching from Dauphine and Provence northwards 
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and eastwards through the Alps to a point 40-50 km south-west of Vienna, then it extends 

southwards to latitute 46° N in the north-west former Yugoslavia and the north-east corner 

of Italy. L. decidua var polonica occurs mainly in Poland. 

According to Ostenfeld and Larsen (1930), four species and two varieties of Larix, are 

located in China (Fig.l.1). These taxa, particularly L. gmelinii, L. gmelinii var. olgensis and 

L. gmelinii var. principis-rupprechtii, play an important role in timber production in China 

(Yang, 1995) and are widely used for mine shaft supports, sleeper supports, wire poles, 

building, bridge link, trailer frame and furniture (Zheng, 1983). 

1.2.2. Three Chinese larch taxa and their ecological requirements 

In this section, a brief introduction to three particular larch taxa, namely L. gmelinii, L. 

olgensis and L. principis-rupprechtii, will be given. All of these taxa are of considerable 

importance to Chinese forestry and provenance trials that are at least 10 years old have been 

planted for all of them (Yang, et al., 1991; Ma, 1992). 

1.2.2.1 Larix gmelinii 

Chinese L. gmelinii covers part of the southern extension of its entire species range. Only a 

small part of its entire distribution, however, is in China (Fig. 1. 1), and it mainly occurs in 

the Greater Xingan Mountains, generally in areas below 1200m above sea level. A small 

part of its distribution occurs in the Lesser Xingan Mountains 

L.gmelinii grows in the cold temperate zone in China and is a cold tolerant species. In the 

Greater Xingan Mountains, the annual growth period for L.gmelinii is short, from 100 to 120 

days, since for more than seven to eight months of the year, the temperature is below 0°C 

and the minimum temperature is -51°C. Annual precipitation is 300-'-600mm and the soil 

has a permanent frost layer lm beneath the surface. Even under these conditions, L. 

gmelinii still flourishes (Yang, 1995). 

L. gmelinii readily hybridises with other larch species in areas where they overlap. For 

example, L. amurensis B. Kolesn is the hybrid formed between L. gmelinii and L. olgensis, 

8 



while L. ochotensis B. Kolesen is the hybrid formed between L. gmelinii and L. gmelinii var. 

japonica (Yang, 1995). 

1.2.2.2 Larix olgensis 

The distribution of L. g,nelinii var. olgensis in China is centered in the Chang Bei Shan 

Mountains. The southern end of its distribution extends into northern Korea, while it 

continues northwards up to 450  20'N and westward to 125°E, in the Kuan Dian county. It 

grows between 500m and 1800m above sea level. 

In contrast to L. gmelinii, L. olgensis grows in the wet temperate zone where the annual 

average temperature is 2.0-6.4 °C and temperatures reach -13 - 21°C in January, while in 

July they are as high as 18 24 °C. The annual precipitation in this zone is 540 - 1200 mm. 

L. olgensis is both cold tolerant and light sensitive and has no strong requirement for 

particular soil conditions. Therefore, it can grow in poor soil or wet land (Yang, 1995). 

L. olgensis undergoes natural hybridisation with L. gmelinii and L. principis-rupprechtii. 

For example, L. lubarsikii Suk is the hybrid between L. olgensis and L. principis-rupprechtii 

(Yang, 1995). 

1.2.2.3 Larix principis-rupprechtii 

L. principis-rupprechtii, historically, occurred in large areas of northern China within the 

range from 36°30' to 43°30'N and from 111° to 120°E (Ma, 1992). The eastern range 

almost extends to that of L. olgensis, while the northern range may overlap with L. gmelinii. 

Probably due to over logging and some characteristics of the species, for example its light 

sensitive character, its distribution is mainly now limited to the mountains, including the Tai 

Yue Shan, Guan Di Shan, Guan Qian Shan, Wu Ta Shan and Han Shan Mountains. There 

are also some remnant populations occuring in other mountains, giving a fragmented 

appearance in the distribution of the species (Ma and Tao, 1992; Wang, 1995). 

According to Ma and Wang (1992), ecological requirement for L. principis-rupprechtii 

differ from those of L. gmelinii and L. olgensis in that it requires warmer climate conditions. 
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In its distribution region, the period in which the temperature is higher than 0°C is from 
April to October (Ma and Wang, 1992). 

In summary, while the geographical distribution of 
L. gmeljnjj and L. olgensis overlap in places, they are both isolated from 

L. princlpis..rupprechtjj 
The ecological requirements are 

not the same between them. However, all three taxa can freely interbreed and produce 
hybrids. 

1.3 Taxonomic problems 

1.3.1. Taxonomy 

The characters used in plant taxonomy are turning from traditional morphological and 

anatomical features to the use of protein and DNA markers (Quicke, 1996). Traditional 

taxonomic studies have used morphological characters and anatonjcJ structure such as 

leaves, stems, perianth bracts fruit, etc. (Heywood, 1967; Jones and Luchsinger, 1979). For 

example, floral characteristics have been widely used for classification purpose in the 

angiosperms (Jones and Luchsinger, 1979). The results so formed are not reliable and may 

even be flawed due to strong modification of morphological traits caused by environmental 

factors. Currently, molecular markers, especially DNA sequence data, are being used for 

Plant systematics or phylogeny, rendering the results more accurate. Such sequence data are 

not subject to environmental modification and hence providing reliable results from which 

to infer the historical events involved in the phylogeny (Avise, 1994; Quicke, 1996). 

Classification of Larix 
species is fraught with confusion because different authors employ 

different morphological traits in their taxonomy. Ostenfeld and Larsen (1930) classified 
Larix 

species into 10 species and 3 varieties according to their cone traits. They considered 
L. olgensis and L. princzpis.rupprechtjj 

to be two varieties of L. gm elinjj However, according to Zhang et a! 
(1992), there are ten species and five varieties 

of Larix in China. Chinese scientists consider L. olgensis and L. princzjsrupprechtjj to be different species 
(Zheng, 1983), though the number of taxa in China is still open to question (Zheng, 1983; 
Zhang, et al., 

1992). A key based on morphological characters is given in Appendix I. 

As indicated by the key, the three larch taxa, 
L. gmelinjj, L. olgensis and L. princi,js rupprechtjj, 

can be distinguished based on morphological and cone characters (Fig. 1.2). 
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Fig. 1.2. Morphological characters of the three Chinese larch taxa ( after Zheng, et al. 1983): 
L. gmelinii, L. olgensis and L. principis-rupprechtii. 

Cone-beared shoot: 	 1, 8, 15. 
Cone: 	 2, 3, 9, 10, 16. 
Cone-scales and bract-scales: 	4, 5, 11, 12, 17, 18. 
Seed: 	 6, 7, 13, 14, 19, 20. 

41  
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L. olgensis Henry 
	

L. gmelinii Rupr. 	 L. principis-rupprech lii Nlayr 
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For example, the cone of L. gmelinii varies from cup form to ellipse, and its length is 

1.5-2.0 (2.5) cm, with average number of cone-scales being 20, seldom 30. These 

characters can be used to distinguish it from L. principis-rupprechtii whose cone shape 

varies from reniform to widely reniform and the length is 2.0 2.7 cm, with cone-scales 

average more than 30, seldom less than 30. Both taxa are characterised by smooth and 

shining cone-scales, which can be used to distinguish L. olgensis which exhibits pilose cone-

scales (Appendix I). 

According to Zhang et al (1992), there is one variety of L. princzpis-rupprechtii, i.e. L. 

principis-rupprechtii var. wulingshanensis and three varieties of L. olgensis, i.e. L. olgensis 

var. changpaiensis, L. olgensis var. heilingensis and L. olgensis var. koreana. These 

varieties can be distinguished by certain morphological traits. For example, according to 

cone length, L. olgensis var. koreana (1.43.0cm) can be distinguished from L. olgensis var. 

changpaiensis (>3.0cm; see Appendix I). 

These taxonomic treatments are summarised in Figurel.3. There are three varieties of L. 

olgensis and one variety of L. principis-rupprechtii, which were not mentioned in Ostenfeld 

and Larsen (1930). These varieties were not named at all in 1983 (Zheng, 1983). At the 

present time, nomination of these varieties is still arguable in China, which could indicate 

the unreliability of using morphological traits in taxonomy. 

1.3.2. Genetic relationship of the three taxa 

A number of studies, using a range of different techniques, have been conducted to assess 

the classification and genetic relationship of Larix species. Although the delimitation of L. 

gmelinii, L. olgensis and L. principis-rupprechtii can be made using morphological 

characters, such as cone traits, the genetic relationships among the three species, still remain 

unclear. According to Ostenfeld and Larsen (1930), L. olgensis and L. principis-rupprechtii 

are considered to be varieties of L. gmelinii. Thus these three taxa are members of the same 

species and therefore very closely related. 
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Family Subfamily 	Genus 	Species 	Variety 

Abietoideae 
Sect. Larix 

L.gmelinii 

Pinaceae4 L 

Larix Mi1ler 

var. changpaiensis 

L.o lgensis var.heilingensis 

var. koreana 

L.principis - rupprechtii{var.wulingshanensis 

and other species 
Sect. Multiseriales 

Pseudolarix Gord 

Cedrus Trew 
Pinoideae 

Fig. 1.3. The position of L. gmelinii complex in the family Pinaceae. Varieties of L. olgensis 
and L. principis-rupprechtii are classified based on work by Zhang et al. (1992) using 
morphological traits. 

According to Ma (1992), who based his conclusions on results obtained by former Soviet 

Union scientists, L. gtnelinii is a larch species that was present in the northeast region of 

Siberia overlapping with the distribution of L. sibirica during the Pleistocence. The current 

distribution of L. ginelinii is a result of its invasion into the distribution of L. sibirica, a 

process which has not stopped since the Pleistocene. The western and southern extension of 

L. gmelinii is parallel to the expansion of severe climate conditions and the area where soil 

is permanently frozen. L. principis-rupprechtii is not a relic species, but was formed more 

recently in the warmer climate during the southwards extension of L. gmelinii. The recent 

formation of L. olgensis was brought about by the southern migration of L. gmelinii that 

penetrated into the species range of L. sibirica. The isolated part of L.gmelinii so formed 

within the distribution of L. sibirica underwent speciation to form L. olgensis after the 

rising of the Chang Bei Shan Mountains (Ma, 1992). 
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Thou (1962) studied the evolution of Chinese larch species by investigating woody structure 

characters. He inferred that, in the Sect. Larix, L. sibirica and L. ginelinii were relatively 
young species. However, he did not believe that L. olgensis occurred in China, because the 
woody anatomy structure of L. olgensis is quite similar to L. gmelinii rather than those of L. 

olgensis from pre-Soviet Union scientists (Ma, 1992). Thus, it may be seen that a great deal 

of confusion exists over the classification of the L. olgensis and L.gmelinii and that they are 
clearly closely related. 

Zhang et al. (1985) studied evolutionary relationships among five Larix species: L. gmelinii, 

L. olgensis, L. sibirica, L. kaempferi, and L. principis-ruppechtii, using chromosomes 

characters. They found that chromosome structure for three of the species (L. gmelinii, 

L.olgensis and L. kaempferi ) was 2n = 2x = 24 = 12m(4sc) + 10cm + 2st; while L. 

principis-rupprechtii and L.sibirica were shown to be 2n = 2x = 24 = 12cm (4sc) + 12sm. 

According to Stebbin's karyotype classification, which was devised to classify different 

types of symmetry according to the combinations between the ratio of largest to smallest 

chromosome and the proportion of chromosomes with arm ration smaller than 2.0 (Stebbin, 

1958), all of them are type 2B (2:1-j 4:1 vs. 1-.'50%). Exceptions are L. principis-rupprechtii 

and L. sibirica that are type 2A (<2:1 vs. 1-50%). It can be inferred from Stebbin's 

classification that type 2B exhibits more asymmetry in chromosomes than type 2A. It is 

commonly accepted that karyotype evolution is a consequence of chromosomal structural 

changes (inversions, translocations, centric fusion, etc.), hence resulting in progressive 

reduction of the basic chromosome number and an increased asymmetry (Stebbin, 1958; 

John and Lewis, 1968). Therefore, Zhang et al. (1985) inferred that the evolutionary trend of 
the species was from L. sibirica to L. principis-ruppechtii and then to the other larch 

species. This means that Chinese L. gmelinii and L. olgensis may have evolved from L. 

principis-rupprechtii. 

Using DNA markers to elucidate relationship between the three Chinese species may 

provide additional insight into the evolution of Larix. Indeed, Tang et a! (1995) investigated 

evolutionary relationships between nine species and three varieties of larch using RFLP 

analysis of chloroplast DNA (cpDNA), which has been commonly used as a markers for 

reconstrcting plant phylogenies in more recent years (reviewed by Rieseberg and Soltis, 

1991; Clegg and Zurawski, 1992; see Chapter 4). Using six restriction enzymes (BamHI, 

Bcffl, Dra I, Hind ifi and Kpn I) and eleven non-overlapping probes, Tang et al. found low 
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nucleotide divergence among taxa and divided them into three groups: The first group was 

comprised of just one species, L. gqffithiana; while the second included L. sibirica, L. 

laricina and L. occidentalis; and the third group consisted of L. gnelinii, L. potaninii, L. 

kaempferi, and L. decidua. This means that the three Chinese larch species are quite closely 

related. Since the mutation rate (point mutation) in cpDNA is very small (Wolfe et al, 1987) 

and the molecule is predominantly uniparently inherited without recombination (Szmidt, 

1991; Harris and Ingram, 1991), the close genetic relationship between the three Chinese 

larch species was demonstrated. 

Using random amplified polymorphic DNA (RAPD) markers, Shiraishi et al. (1995) studied 

evolutionary relationship between five larch species: L. kaempfei, L. gmelinii, L. gmelinii 

var. japonica, L. olgensis and L. decidua. Their results indicated that L. gmelinii and L. 

olgensis were sister taxa, hereby providing evidence in support of a close relationship 

between L. gmelinii and L. olgensis. Unfortunately, they did not include L. principis-

rupprechtii in their study. 

In summary, the relationship between these three Chinese larch species is still very much 

confused. For example, Chinese scientists believe that L. olgensis and L. principis-

rupprechtii are separate species, while others believe them to be varieties of L. g,nelinii 

(Ostenfeld and Larsen, 1930). Moreover, three varieties of L. olgensis and one variety of L. 

principis-rupprechtii are considered to exist (Fig.! .2), resulting in still more complicated 

evolutionary relationship between the taxa. Clearly, there is a need to resolve the 

evolutionary relationship between these three taxa. 

1.4. Mating system and population structure 

Knowledge of population structure is very important for assisting in decision making for 

tree improvement and genetic conservation programmes (Hamrick, 1994). An understanding 

of natural population genetic structure may also provide background information that is 

important for future genetic improvement of a species. 

The genus Larix contains a number of important timber species. Correspondingly, there 

have been extensive studies of breeding systems and genetics in the genus (Martinsson, 

1995a; Schmidt and McDonald, 1995). However, the mating systems and population genetic 
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structure for the three Chinese larch species have not yet been studied using molecular 

markers. Undoubtedly, the results of such a study may influence our understanding of 

genetic structure of natural populations and future tree improvement in China. In this 

section, the achievements in studies of population genetic structure in selected larch species 

will be discussed, and then compared with information obtained for the three Chinese larch 
species. 

1.4.1. Achievements outside China 

1.4.1.1 Mating system 

Mating system influences the mode of transmission of genes from one generation to the next 

(Brown, 1990), and thus determines the distribution of genotypes within populations. It also 

influences the degree of population differentiation. Its importance in population genetics has 

long been appreciated (Wright, 1931, 1969). Generally speaking, outcrossing promotes gene 

flow, and brings genotype distribution toward Hardy-Weinberg equilibrium. Selfmg reduces 

gene flow, and leads to reduction of the proportion of heterozygous in a population. Thus, 

knowledge of the mating system of a species may also allow greater understanding of 

strategies for maintaining genetic diversity, and assist in the formulation of optimal 

strategies for hybridisation and tree genetic improvement, especially for those using wind-

pollinated seeds for reforestation. For example, inbreeding depression may result in 

reduction in survival and growth of seedling progeny of some conifers (Sorensen and Miles, 
1974, 1982). 

Historically, research on the plant mating systems falls into three distinct periods: survey 

period before 1960, exact model analysis, and use of allozyme markers from 1970 (Brown, 

1990). Currently, allozyme markers are still widely used to score plant mating system 

because allozyme polymorphism is common and readily detectable (see Chapter 2), even if 

DNA markers have been employed for this purpose more recently (Gitzendanner, et al., 

1996). 

According to Brown's classification (Brown, 1990), plant species conveniently fall into five 

classes of mating systems: predominant selfing (outcrossing rate, t<0.10), predominant 
outcrossing (t > 0.95), mixed selfmg and outcrossing, apomictic, and haploid selfing 

(Brown, 1990). Many conifers fall into the mixed mating category (Mitton, 1992). Examples 
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from the family Pinaceae are given in Table 1.1. The mixed mating system means that some 

proportion of seed (s) is produced by selfing, and the complementary proportion (t=( 1-s)) is 

produced by outcrossing. 

Table 1.1. Outcrossing rate of some conifer species in the family Pinaceae detected by 
allozyme markers 

Species & References 	Outcrossing rate 	 Mating system 
(t or tm  )t 	(Pure selfmg, outcrossing,or mixed) 

Balsam fir (Abies balsamea) 	0.78- 0.99, mean 0.89 	mixed 
Neale & Adams, 1985a 

White spruce (Picea glauca) 	0.75-0.99, mean 0.90 	mixed 
King, et al, 1984 

Jack pine (Pinus banksiana) 	0.88 ±0.047 	 mixed 
Cheliak, et al, 1985 

Logepole pine 	 1.03±0.04 	 mixed 
(Pinus contorta ssp. latfolia) 

Epperson & Allard, 1984 

Jeffrey pine( Pinu.sjeffreyi) 	0.881-0.971 	 mixed 
Fumier & Adams, 1986 

Ponderosa pine (Pinu.s ponderosa) 	0.81±0.054 (low density) 	mixed 
Farris & Mitton, 1984 	0.96±0.046 (high density) 

Douglas fir 	 0.90( t.) 	 mixed 
(Pseudotsuga menziesii) 

Shaw & Allard, 1982 
Neale & Adam, 1985b 	0.94-1.00(ç) 

Tamarack (Larix laricina) 	 0.316-0.897 (t8 ) 	 mixed 
Knowles, et al, 1987 	0.729 (low density) (tm) 

0.908 (high density) (tm ) 

European larch 	 0.64-1.0 (ti ) 	 mixed 
(Larix decidua) 	 0.852 ±0.007 (tm) 
Gomory & Paule, 1992 

t : ts  : outcrossing rate estimated by single locus; tm:  outcrossing rate estimated by 
multilocus methods. 
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Outcrossing rates can be variable from species to species. For example, the multilocus 

outcrossing rate is 0.89 in balsam fir (Abies balsamea; Neale and Adams, 1985) and 1.03 in 

the lodgepole pine (Pinus contorta ssp. latfolia;  Epperson and Allard, 1984). Many factors, 

such as population density and age structure, can influence the mating systems between 

different populations of a species (see review by Mitton, 1992). For example the outcrossing 

rate of ponderosa pine (Pinzs jeffreyi; Fumier and Mitton, 1986) was estimated to be 

0.81±0.054 in low density population and 0.96±0.046 in high density population. Thus, the 

mating system of a species usually varies in space and time (see review by Mitton, 1992). 

Two species of Larix, L. laricina (Knowles, 1987) and L. decidua (Gomory and Paule, 

1992;Fumier and Paule, 1992), have been investigated with regard to their mating systems. 

The mean multilocus outcrossing rate over five allozyme markers was found to be 0.729 in 

five natural populations of L. laricina in Ontario (Knowles, et al, 1987), which is lower 

than estimates that have been reported for most other conifers. L. decidua has also been 

shown to exhibit significant levels of selfing in a seed orchard that was designed for 

maximum outcrossing (Gömöry and Paule, 1992). The multilocus outcrossing rate of 

L.decidua is 0.852 (Gömory and Paule, 1992). In an old stand of Polish larch (L. decidua 

var. polonica), Lewandowski et al. (1991) revealed that the multilocus outcrossing rate was 

tm  = 0.943 ± 0.055, while single locus estimates varied from 0.80 to 1.13. Results from 

these two larch species would suggest that outcrossing rates in the genus are quite variable 

and some population may exhibit significant levels of selfing, implying that, possibly, a 

different mating system exists between larch and other conifers possessing predominant 

outcrossing. 

1.4.1.2 Population structure 

Extensive studies have been carried out on population (provenance) structure and 

geographical variation in many larch species around the world (Schmidt and McDonald, 

1995; Martinsson, 1995a). The importance of these studies can be reflected from the two 

international cooperative provenance trials of European larch species, the first in 1944 and 

the second in 1958-1959; and one international provenance trial of Japanese larch (L. 

kaempferi ) in 1956. Since the 1960s provenance trials of different Larix species have been 

carried out in many countries (reviewed by Yang, 1995). Martinsson (1995b) recently 

proposed that another international research project should be initiated: Systematics and 
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differentiation in the genus Larix in Eurasia. One objective in the proposed project involves 

phytogeographical analysis and the analysis of the genetic structure and polymorphism 

within and between populations, ecotypes and species of the genus Larix in Russia and 

Europ (Martinsson , 1995b). These activities indicate the importance of genetic improvement 

in Larix at the population level. 

However, most of these studies have focused on genetic structure for quantitative trait 

structure, especially field growth performance and improvement (provenance trials), and this 

is appropriate for selection of the best provenance suitable for growth in a particular 

location. 

Another important aspect regarding tree improvement is to investigate population structure 

using selectively neutral markers such as allozymes, which may provide more information 

not about adaptive variation, but about the history of populations and the extent of gene flow 

among them (Crawford, 1983). It has been found using allozyme markers, that most 

outcrossing plant species maintain a large proportion of genetic variation within populations 

and a small proportion of total genetic variation among populations (Hamrick, et al., 1991). 

For example, in a recent review, Hamrick et al. (1991) observed that only 9.5% of total 

genetic variation occurred between populations of selected 426 woody plant taxa, with 9.9% 

in temperate woody species (231 taxa) and 13.5% in tropical woody species (124 taxa). The 

reason for this is that in woody plant taxa gene flow among population tends to be extensive. 

At equilibrium between drift and migration, very little genetic differentiation is found 

among populations. 

Some Larix species exhibit a similar distribution of genetic variation in natural populations. 

For example, Liu and Knowles (199 1) used allozymes to investigate genetic structure of 44 

populations of L. laricina from northern Ontario, and found that approximately 2% of the 

total genetic variation was evident among populations. Using four methods of cluster 

analysis, based on genetic distance, and a discriminant function analysis of genotypic 

structure of the populations, they revealed that the variations patterns were not related to 

geographic location, although ,  one of the clustering procedures did show a weak east-west 

pattern. They, therefore, concluded that the distribution of the variation provided little 

evidence in support of the two routes proposed for post glacial reinvasion that meet west of 

Lake Superior (Liu and Knowles, 1991). 

19 



Ying and Morgenstern (199 1) found similar results for eight natural populations of L. 

laricina in New Brunswick. The F5, estimated using 13 polymorphic allozyme loci 

indicated that 3.8% of total genetic variation resided between populations. A correlation 

between Nei's genetic distance and altitude was found to be stronger than that between Nei's 

distance and linear geographic distance, implying marked non-random patterns for the 

genetic variation between populations relative to their altitude. 

Cheliak et al. (1988) used 19 allozyme loci to investigate 36 populations of L. laricina that 

represented the natural range of the species in North America. They found that each was in 

Hardy-Weinberg equilibrium, and about 5% of total genetic variation occurred between 

populations.Using discriminant analysis of genotypic structure of the populations 

investigated, they observed a general east versus west pattern in the natural range, with 

populations in the Great Lakes basin being further differentiated. They concluded that the 

present-day population distribution, population density and reinvasion routes after the last 

glaciation could account for these observed patterns of genetic variation. 

Only one report is available regarding population genetic structure in the three Chinese 

species considered in this study, using allozyme markers. Potenko and Razumov (1996) 

investigated six stands of L. gmelinii in two areas of the Russian Far East, with altitudes 

ranging from 100 to 1000m, and found that 96% of genetic variation occurred within 

stands, which is similar to that in L. laricina (Cheliak, etal., 1988). 

1.4.2. Achievements inside China 

Extensive studies have been carried out in China on each of the three Larix species 

considered in this study, due to the important role that they play in timber production. 

Genetic studies in each of the three taxa have also been utilised, for selecting seed sources 

for provenances trials, hybrids, seed orchard and vegetative propagation. The following are 

some results related to population structure, mainly based on Yang et al. (1990a, b) and Ma 

(1992). It should be noted again that these results indicated patterns of adaptive variation 

that are different from patterns of neutral variation due to different mechanisms involving in 

their formation (see review by Barton and Turelli, 1989). 
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1.4.2.1 Larix gmelinii 

Studies concerning provenance selection in L. gmelinii began in 1980 (Yang, et al., 

1990a,b). Sixteen seed sources were planted in 13 separate locations, and traits such as 

growth, phenology and resistance to disease, were utilised to evaluate the performance of 

these seed sources and their geographical variation. 

One interesting result from the Chinese provenance trials is that the patterns of geographical 

variation were more marked with a change in longitude than latitude with regard to the 

growth traits (Yang, et al, 1 990a,b). In this way, the entire species range in China can be 

grouped into three seed zones: (I) north part of the Great Xingan Mountains; (II) central and 

southern parts of the Great Xingan Mountains; (III) Lesser Xingan Mountains (Fig 1.4). 

Li et al. (1991) used an allozyme marker, peroxide (PER), to investigate geographical 

variation of 14 provenances. They found that there were significant difference between 

provenances in terms of total band number. According to the coefficients of variation 

(CV%) of the number of bands, they classified the 14 provenances into four seed zones that 

are not consistent with seed zones obtained according to field growth performance. 

However, it should be noted here that the method they used did not involve analysis in terms 

of locus and allele frequency, but only comparison of total number of bands between 

populations. It is, therefore, difficult to extract more information from the study regarding 

population structure, such as the distribution of genetic variation between and within 

populations. 

1.4.2.2 Larix olgensis 

The first Chinese provenances trials for L. olgensis began in 1980 (Yang, et a!, 1991). 

Results show significant geographical variation in terms of growth traits, e.g. height. Based 

on these results, Yang et al. ( 199 1) concluded that: ® The basic pattern of variation in terms 

of growth traits was more marked with a change in altitude than in latitude. () The 

Xiaobeihu provenance, growing at a lower elevation and lower equivalent latitude, was a 

good source of material in terms of rapid growth, good stability and timber quality. (1) The 

compounded effect of precipitation and temperature was an important factor in influencing 

current genetic variation. ® Growth traits including height and diameter were the most 
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Fig. 1.4. Seed zones of L. gmelinii ( I  ). North part of the Great Xingan Mountain; (II) 
Central and southern parts of the Great Xingan Mountain; (III) Lesser Xingan Mountains. 
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important characters in provenance deliminatjon © Better field performance with respect to 

growth traits can be obtained by transferring seeds from low equivalent latitude to the 
northern region for afforestation.  

L. olgensis 
provenances could be divided into four seed zones based on these trials (Fig. 

1.5), 
W1iic1 would indicate a significant difference between zones, but no such difference 

between provenances within each zone. 

Population structure within L. olgensis has not yet been investigated using selectivel y  
neutral markers. Therefore, the distribution of genetic variation within and among 
Populations is not known for selectively neutral markers. 

1.4.2.3 L. princzpisrupprechtjj 

Provenance trials for L. princlpis..rupprechtjj 
have been established for at least ten years 

(Ma, 1992). Results from the trials show that significant difference were observed among 

provenances in terms of growth traits, with the exception of Fengning, Hebei Province and 
in Lusj, 

Henan Province. The interaction between provenance and site (provenance x site) is 

also significant Ma and Tao (1992) concluded that the island distribution of the remnants of 
L. princlvisrupprechtjj 

populations may be the main cause for such differentiation in the 
species. 

Based on the results of these provenance trials, the species range of 
L. princlpisrupprechtij 

can be divided into three zones: northern, central and southern (Fig. 1.6). No obvious 

geographical correlation was found for the patterns of growth traits compounded with 

latitude and longitude. The correlation coefficients between growth traits and latitude or 
longitude are not significant (Ma and Tao, 1992). 

In summa, the extensive provenance trials that have been planted for each of the three 
Larix 

species have provided a lot of useful information that will guide future genetic 
activities in the genus. However, more basic background information such as the mating 

system and genetic variation of natural populations for selectively neutral markers, is still 

not available, which is likely to be quite different from those revealed by provenance 
experiments 
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Fig. 1.5. Seed zones of L. olgensis: (I) Beidaoshan Mountain; (II) Xiaobeihu; (ifi) Beihe and 
(IV) Hanyun. 
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1.5. Objectives of this study 

This study uses molecular markers to address three important problems concerning future 

genetic improvement of Larix. The first concerns the mating system of this species, the 

second' is taxomy of the three species, and the third is related to population structure. 

Addressing the first issue is important in tree improvement to determine the possible 

occurrence of inbreeding and loss of fitness in wild collected seed. The second question 

must be resolved to improve our understanding of the genetic relationship between three 

Chinese larch taxa and therefore to elucidate past events that have occurred in their history. 

In addition to resolving taxonomic problem within the genus, the third issue, i.e. population 

genetic structure, may help us to determine the distribution of genetic variation within and 

between populations of the three species. The expected results may tell us more about the 

history of the species and its population delineation of evolutionary units, and, also help us 

with decision making regarding how to best improve and conserve these species. 

Thus, the aim of the first part of the thesis is to develop allozyme and DNA markers that 

may provide information to increase our understanding of genetic diversity in Larix. Studies 

are concerned with: 

Population genetic structure within the three taxa, the L. gmelinii complex. The 

distribution of genetic variation will be investigated using allozyme markers. Spatial 

patterns of these structure are tested using an isolation by distance model (see Chapter 2). 

• Mating system of natural populations in each of the three taxa. Outcrossing rates 

will be estimated using single- and multi-locus models and allozyme markers (see Chapter 

3). 

• Taxonomy of the three taxa Both allozyme and DNA markers will be employed 

to elucidate evolutionary relationship among the three taxa and their populations (see 

Chapter 2 and 4). 
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CHAPTER 2 

Use of Allozymes to Assess Population Structure and 
Evolutionary Relationships within 

the L. gmelinii Complex 
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2.1. Introduction 

The distribution of genetic markers can yield useful information that is of practical value to 

foresters or others who are managing and utilising Larix in northern China. First, it can be 

used to tell us the levels of gene diversity or polymorphism that indicates whether 

populations have been through a bottleneck or whether they retain genetic variation, and 

hence tell us the potential adaptability of populations studied to variable environments. For 

example, effects of bottleneck or founder events may reduce gene diversity. Measurement of 

such diversity can be carried out in terms of percentage of polymorphic loci, such as 

P(99%), the percentage of loci whose common allele frequency is less than 0.99, or in terms 

of He, the gene diversity. The levels of gene diversity or polymorphism within natural 

populations of the three Chinese larch taxa have not been reported, and this forms part of 

this chapter. 

Second, the arrangement of genetic diversity at single loci may tell us about the distribution 

of genotypes within the populations investigated. Are these alleles randomly associated or 

not? Measurement of these deviations from Hardy-Weinberg equilibrium can indicate the 

extent of inbreeding. Two kinds of reasons may be responsible for the inbreeding, matings 

between related individuals including selfmg, and population subdivision (Wright, 1943). 

The former in this case can be measured by Wright's inbreeding coefficient, P 

Third, arrangement of genetic diversity at different loci may tell us whether alleles at 

different loci are randomly associated or not. Measurement of this relationship can be 

performed using a linkage disequilibrium test. Very tight linkage disequilibrium may be 

related to inbreeding or to small population size. 

Fourth, the arrangement of genetic diversity within and among populations provides 

guidance for many aspects of genetic activities, such as genetic conservation. Measurement 

of population differentiation can be obtained via Wright's F,, . Several factors may 

influence the distribution of genetic variation within and between populations, such as drift, 

migration and selection. The usefulness of this analysis of population differentiation for 

selectively neutral markers is that it can be used to estimate the average number of migrants 

between populations within each of the three Larix taxa. The relationship between genetic 

difference and geographic distance can also be inferred. 
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Fifth, genetic distance between populations within and among the three Chinese Larix taxa, 

can also be addressed using genetic markers. Larger genetic distance should exist between 

taxa than within taxa. This information may also be used to reconstruct phylogenies of the 

three Larix taxa. Thus, are the three Larix taxa genetically distinct, and more different than 

populations within taxa? What is the absolute value of genetic distance? Does it correspond 

to differences at species or subspecies level ? The use of genetic markers can answer these 

questions to some extent. Information of this type is important for tree genetic improvement 

of the three Larix taxa in China. 

It can be seen from the above that many important questions, which have not been addressed 

in the three Larix taxa, can be investigated using genetic markers. Thus, choice of the most 

appropriate genetic marker is critical in the present study. However, many factors may 

influence this decision including the aim of a study, the genetic properties of markers and 

the economic cost involved. For historic and technical reasons, the markers chosen for 

genetic studies range from morphological and physiological traits, to chromosome 

karyotypes, allozymes and, most fundamentally, to the level of DNA variation (Mallet, 

1996). 

As far back as 1966, Hubby and Lewontin (1966) pointed out the following criteria that an 

ideal molecular technique must satisfy. These requirements still hold today: D Allelic 

expression should be distinguishable in individuals; © The effect of each allelic substitution 

should be locus-specific and distinguishable from substitutions at other loci; ® All base 

substitutions should be detectable;® Loci should be sampled at random, irrespective of their 

function or likely level of polymorphism. 

These criteria are met to different extents by using different genetic markers, from 

morphological to DNA markers. Volumes of books concerning the use of allozymes in plant 

genetics and breeding are available (Tanksley and Orton, 1983). Basing on the following 

reviews on the work that has been done mostly in recent years, allozyme markers were 

chosen for the present study. In the following the principle of allozyme analysis is briefly 

introduced. Comments on the allozyme marker are then given, and the aims of present study 

are finally presented. 
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2.1.1. Use of allozyme marker in this study 

2.1.1.1 Principle 

Allozyme marker variation is detected at the level of the protein that is obtained from 

translation of mRNA, which in turn is transcribed from DNA. If mutation occurs, including 

substitution and deletion or addition causing the change of at least one amino acid in a 

polypeptide coded by genes, it may result in a change in the net electrostatic charge on the 

polypeptide. This change will in turn change the net charge on the enzyme or other protein 

of which such a polypeptide is a constituent. Usually an enzyme is in a state of three 

dimensional (Tertiary) structure, and consists of several polypeptides that are made up from 

one or more structural, genes. Thus the electrophoretic difference in enzyme proteins will 

segregate as single mendelian genes (Hubby and Lewontin, 1966). If a large number of 

enzymes and samples of individuals are surveyed, the electrophoretic mobility of some 

enzymes may be different in individuals, and thus can be used as marker to investigate 

genetic variation. 

2.1.1.2 Advantage and disadvantage of allozyme analysis 

Traditionally, studies have utilised morphological traits and secondary compounds such as 

flavonids and terpenoids whose variation is controlled by several or many genes. One 

important characteristic of all these traits is possible phenotypic plasticity induced by 

changes in environmental factors, such as temperature and precipitation. Thus, the primary 

difficulty of using these data is to screen an appropriate marker that provides an accurate 

prediction of genotype from phenotype (Crawford, 1983). 

Compared with morphological traits and secondary compounds, enzyme electrophoresis 

provides data that has many advantages, as described below (Brown and Weir, 1983; 

Crawford, 1983; Adams, 1983; Mitton, 1983): D Allozyme expression is usually 

codominant and exhibits additive effects. © Enzyme specificity allows interpretation of 

banding patterns as alleles at different loci and the comparability of loci in different 

populations or species. ®Each allelic difference is detected as a mobility difference and is 

independent of its functional role. ® A large numbers of different loci can be assayed 

conveniently on one individual, using small amounts of material with minimal preparation 
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and expense. ®Allozymes are especially useful for studying conifers due to the haploid 

megagametophyte and diploid embryo which result in ease of detection of heterozygotes 

and, hence, to investigation of mating systems. 

However, several disadvantages associated with allozymes may restrict their application in 

studies of plant genetics (Brown and Weir, 1983): (1) It can be difficult to decipher the 

genetic basis of the observed protein banding pattern. ® The information that allozymes 

supply regarding levels of variation detected is underestimated. This is because only one 

quarter of base substitutions result in amino acid replacements that alter the net charge on 

the protein detectable by routine electrophoresis. 0 Substitution in non-coding region of 

DNA cannot be detected using allozymes. This may limit their potential as fingerprints for 

distinguishing individuals. 

Although there are many disadvantages, allozyme markers have been extensively used in 

plant population structure (Mitton, 1983; Schaal, et al., 1991), in tree breeding (Adams, 

1983; Mitton, 1983), for example, the identification of parents and clones, and plant 

systematics (Crawford, 1983). Thus, in the following, studies using allozymes markers in 

plant population structure, mating system, and phylogenies are briefly commented upon. 

2.1.1.3 Use of allozymes in studies of plant population structure 

As was emphasised in Chapter 1, distribution of genetic variation within and among 

populations is an important indicator in practice for developing strategies made for genetic 

conservation (Ennos, 1996). Allozyme markers have been extensively employed in studies 

for this purpose in more recent years. For example, a review by Hamrick and Godt (1989) 

has summarised that population genetic structure of about 468 plant species were 

investigated by allozyme markers, showing that 11.3% of genetic variation occurred 

between populations. Use of allozyme marker to quantitatively estimate the population 

structure was emphasised by Hamrick et al. (1991). Hamrick and Godt (1996) concluded 

that" Generalisation from the plant allozyme literature can be used to predict the levels and 

distribution of genetic diversity in unstudied species, but the accuracy of such prediction is 

low...". The use of allozyme marker to investigate population structure of previously 

unstudied species is still reported today. 
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Populations of Larix species have also been investigated using allozyme markers. For 

example, about 5% of total genetic variation was detected to occur between populations in 

L. laricina (Cheliak et al ,l988), which is less than that found in L. occidental is where 8.6% 

of genetic variation was due to that between populations (Fins and Seeb, 1986). An even 

smaller genetic differentiation (2%) was found between natural populations of L. laricina 

from northern Ontario (Liu and Knowles, 1991), and in this study, no significant correlation 

was found between genetic variation and geographic locations, implying existence of a 

random spatial pattern. 

One important point that influences the choice of allozyme marker in this study is that 

comparable level of population structure assessed by allozyme and by DNA markers can be 

obtained in some cases studies described below. It is likely that the capability for 

fingerprinting individuals may increase from allozyme data to DNA sequence data. This is 

because many introns and silent point mutation may occur in DNA sequence and 

degeneration occurs for protein synthesis from gene to transcription to translation. We do 

not know how many point mutations or how large other kinds of mutation, such as 

insertion/deletion, need to be to lead to presence of a new allozyme allele detectable on a 

gel. But it is conservative to accept that accumulation of at least one mutation may cause a 

new allozyme allele (band(s)) to appear. 

Results of several studies provide evidence in support of this point. For example, Spooner et 

al. (1996) used different molecular markers, for measuring relationships among the wild 

relatives of Solanum section Etuberosum, and showed that the capability for detecting 

interspecific sampling variance is different. A gradation exists from allozyme (low) to 

RAPD to RFLP (nuclear DNA) (high), and the contrasting capability for detecting 

intraspecific variation, grades from RFLPs (low) to RAPDs (high). Similar results were 

found in two aspen species, trembling aspen (Populus tremuloides) and bigtooth aspen (P. 

grandidentata) (Liu and Further, 1993). Using nuclear DNA RFLP and RAPDs and 

allozyme markers, Liu and Fumier (1993) found that the changes for the polymorphism 

were from RAPD (100%), to allozyme (77%), to RFLP (71%) in populations of trembling 

aspen, and from RAPD (88%), to RFLP(65%), to allozyme (29%) in populations of bigtooth 

aspen. This case indicates that RFLP and allozymes revealed comparable patterns of genetic 

variation in populations of trembling aspen not bigtooth aspen. 

32 



Several studies have indicated that allozymes and RAPDs both detect comparable levels of 

genetic variation within and among populations. For example, Szmidt et al.(1996) 

investigated two populations of Pinus sylvestris (L.) from northern Sweden using 20 

allozyme and 22 RAPD loci, and found that, when complete genotype information was 

obtained, RAPD analysis provided genetic information similar to that revealed by analysis 

of allozyme variation. Similarly, in Buchloe dactyloides, a plant species that is widely 

distributed throughout the Great Plains of North America, Peakall etal. (1995) surveyed two 

diploid populations in both Mexico and Gulf Texas regions, using twelve allozyme loci and 

98 RAPD polymorphic bands. Their results indicated that RAPD bands revealed greater 

variation among regions (54% of total variance) than allozymes (45.2%), but less variation 

among individuals within populations (31.9% for RAPD vs. 45.2% for allozymes); the 

proportion of genetic variance among populations within regions was similar (9.7% for 

RAPDs vs. 9.6% for allozymes). 

As we know, variation detected by RAPD marker probably reflects the genetic variation of 

whole plant genomes for an array of given primers because the regions amplified by these 

primers are based on the whole genomes information. Variation detected by allozyme 

markers in contrast reflects the genetic variation of protein coding regions of whole genome 

with respect to an array of given enzymes. Theoretically, RAPD markers may be more 

powerful for detecting variation than allozyme because potential variation is reduced from 

DNA sequence to protein data. However, levels of population structure assessed by RAPD 

and allozyme markers are expected to be comparable since population structure parameters 

depend upon the distribution of variation, not its absolute value. 

2.1.1.4 Use of allozymes to study plant phylogeny 

The use of allozymes for reconstructing phylogenies and making ystematic inferences was 

reviewed by Crawford (1983). Crawford (1983) pointed out that allozyme makers could 

provide a reasonably precise and quantitative measure of genetic divergence between 

populations, subspecies and species. One important conclusion from Crawford's review is 

that the majority of studies demonstrated high genetic identity between conspecific 

populations and between subspecies. The genetic identity ranged from 0.87 to 1.00 for 

conspecific populations (Table 1 of Crawford, 1983) and from 0.75 to 0.99 for subspecies 

(Table 2 of Crawford, 1983). 
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For example, Zanetto et al. (1994) used allozymes markers to elucidate the interspecific 

differentiation of two white oaks, Quercus robur L. and Q. petraea (Matt.) Liebi. They 

surveyed 14 populations of these two species, using ten polymorphic allozyme loci in Q. 

petraea and nine in Q. robur. Variation among populations within species was low for both 

species, 2.4% for Q. robur and 3.2% for Q. petraea. Differentiation between species was 

low, 3.3%, which was equivalent to that between populations. Comparison of local 

interspecific genetic distances indicated no clear geographic pattern of inter-specific 

differentiation among seven different regions. 

Similar to the analyses of Crawford (1983), two possible explanations for these quite close 

relationships between conspecific populations or between subspecies elucidated by allozyme 

markers are: (i) The subdivision between populations or the divergence between subspecies 

occurred recently, and thus changes have not occurred at allozyme loci due to the time 

factor. (ii) Possible hybridisation between subspecies prevents divergence. The extensive 

gene flow between conspecific populations or between subspecies may significantly reduce 

the genetic divergence between them. 

If the above conclusion obtained by using allozyme markers is quite general to conspecific 

populations or to subspecies diverged within a short period of time, these results may be 

extended to other similar case studies. Thus it is expected that a similar situation may occur 

for the three larch taxa in this study because the time of divergence leading to their 

formation is not known but was shown to be quite close to each other in terms of Nei's 

genetic distance (Tang, et al., 1995). 

Plant phylogeny elucidated by allozyme markers are often, but not always concordant with 

those obtained by morphological characters because allozyme markers are usually selective 

neutral. For example, Vickey (1990) used 11 loci with 30 alleles to investigate 2000 plants 

belonging to 85 populations of the Mimulus glabr at u.s complex (Scrophulariaceae). He 

found that allozyme results were consistent with a tentative phylogeny of the complex 

developed from cytological and biogeographic data, showing clear differences between 

almost all 17 of the races. The groups delimited by allozymes correspond remarkably well 

with the geographic races. However, in a separate study of the genus Wolf/Ia, Crawford and 

Landolt (1995) used 14 allozyme loci to score a total of 133 clones representing 10 of the 11 

recognised species. The genetic identities among most pairs of species were zero, with non- 
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zero values ranging from 0.14 to 0.40. Crawford and Landolt concluded that enzyme 

electrophoresis provided limited resolution of species relationships in the genus Woiffla 

because of lack of shared alleles between the majority of species pairs in this genus. 

Similar arguments can be extended to the comparison of plant phylogeny elucidated by 

allozymes and DNA markers. It is still difficult to make a clear judgement on this 

comparison. Mummenhoff et al. (1995) used RFLP analysis of cpDNA to examine the 

phylogeny among Lepidium taxa which is usually classified into sections; Lepia, 

Lepiocardamon and Cardamon. By using 15 restriction endonucleases, filter hybridisation 

experiments, and comparative mapping procedures, a total of 119 variable restriction sites 

were detected. Of these, 56 were phylogenetically informative and were used in cladistic 

analysis. The resulting phylogenetic tree agrees with results derived from morphology, 

allozyme electrophoresis and the analysis of glucosinolates. In a separate study, Sharma et 

al. (1995) used RAPD markers to distinguish between six different Lens taxa representing 

cultivated lentil and its wild relatives; Twenty-four arbitrary sequence 10 primers were 

identified, which generated a total of 88 polymorphic bands in 54 accessions. The total 

variation was partitioned into variation within and among Lens taxa. The relationships 

among the six taxa elucidated by RAPD markers corresponded well with previous isozyme 

and RFLP studies. These two cases also indicate that use of allozymes to elucidate plant 

phylogeny is consistent with that elucidated by DNA markers. However, a case study for the 

discordance for the phylogeny elucidated by DNA markers and allozymes has not been 

found. 

It is very important to understand the relationship between phylogeny construction and the 

type of marker employed. Since the markers used for this purpose underly quite variable 

evolutionary mechanisms such as mutation, selection, recombination, inheritance mode etc., 

the phylogeny structure inferred by these different markers are likely to be different. 

However, the true phylogeny that we infer using different markers is only one. Which 

marker is best to infer phylogeny is still arguable due to influence of many factors involved 

in the markers used. Although allozyme markers mainly reflect variation of protein coding 

regions of DNA, it is after'aIl at level of protein not the variation at DNA sequence level. 

However, if a sufficient number of allozyme markers are used, it is likely that the phylogeny 

elucidated by allozymes may approach the same one elucidated by coding regions for the 

same genomes, but may not approach the one elucidated by non-coding regions. 
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In summary, allozymes are still a useful marker even to date and widely employed in 

studying population structure and phylogeny. 

2.1.2. Aims of present study 

The aims of this chapter are to use allozymes: (i) to investigate the distribution of genetic 

variation within and between natural populations of the three larch taxa; (ii) to explore the 

possibility of elucidating evolutionary relationships among the three larch taxa.. 

2.2. Materials 

Open pollinated seeds were collected from natural populations of the three larch taxa: eight 

in L. gmelinii, six in L. olgensis and two in L. principis-rupprechtii. In addition, one 

population of L. olgensis was sampled from a seed orchard in Liaoning Province. Samples 

of L. gmelinii and L. olgensis cover most of their distribution in China, but the two 

populations of L. principis-rupprechtii represent only the North seed zone (Fig. 1.5 in 

Chapter 1). Locations of the sampled populations are shown in Fig.2. 1. 

Table 2.1 lists the geographic location and sample size of these populations studied. Some of 

the sampled populations were collected as mixtures of half-sibs, and others as separate half-

sib families. Mixed samples shown in Table 2.1 for L. ginelinii were those used for 

provenance trials, provided by Prof. Ban-li Pan, Forestry Academy of Heirongjiang, China. 

The number of half-sib families are not clear. 

2.3. Methodology 

2.3.1 Seed preparation and enzyme extraction 

Mature seeds were surface-sterilised using H 202  for about 20 minutes, and then allowed to 

germinate for three or four days prior to analysis. The seed coat was then excised, and the 

macrogametophyte tissue and embryo were isolated. Both of these tissues were then 

separately homogenised by hand grinding on ice in 25 i.tl  and 30 .tl of seed extraction buffer 

(0.013M Tris; 0.0043M citric acid; 0.50 mg/nil NADP; 0.50 mg/ml NAD; 0.18mg/nil 
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Fig.2. 1. Natural distribution of the three Larix taxa in this study and locations of populations sampled for allozyme analysis. 
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ascorbic acid; 0.34 mg/ml EDTA; 0.10 mg/ml bovine serum albumin; 0.15% (v/v)

mercaptoethanol; pH7.5; see Cheliak and Pitel, 1984), respectively. 

2.3.2 Buffer systems and starch gel preparation 

Buffer systems Two different buffer systems were used: system I and U. For system I, the 

starch gel buffer was composed of 12.1mg/mi tris-base-HC1 (pH 8.5), while the electrode 

buffer contained: 2 mg/ml NaOH, 18.5 mg/ml boric acid pH 8.0. For system II (Chelik and 

Pitel, 1984), the starch gel buffer contained 2.62 mg/ml histidine-HC1, 0.13 mg/ml EDTA 

pH7.0, and the electrode buffer 15.1375 mg/ml Tris p117.0. 

Table 3.1. Location and sample size of the 17 Larix populations investigated using 
allozyme analysis 

Species/Population 	Latitude(N) 	Longitude(E) 	Half-sibs 	Seeds Seeds/half-sib 

L. gmelinii 

Huzhong 51 056' 123 042' mixed 90 

Tahe 52030' 124045' mixed 90 

Xilinjie 53 020' 1220 10' mixed 90 

Hanjiayuan 520 15' 125 045' mixed 90 

Uyilin 48030' 129026' mixed 90 

Kalunshan 49058' 127030' mixed 54 

Zhongyaozhan 500451 125 007' mixed 56 

Jiagedaqi 500241 124007' 21 126 6 

L. principis-rupprechtii 

Fengning 410121 116032' 20 121 >6 

Hunyuari 39032' 113 041' 9 75 >6 

L. olgensis 

Beidaoshan 44000' 131 007' 20 120 6 

Beihe 42025' 128 008' 29 174 6 

Xiaobeihu 44001' 128050' 33 198 6 

Dahailin 44028' 129048' 25 288 > 6 

Dongfanghong 42039' 128 006' 20 139 > 6 

Changbei 41 026' 1280 11' 21 209 >6 

Seed orchard 41 054' 124006' mixed 188 
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Starch gel preparation 27.5 g of hydrolysed starch was mixed with 250 ml of the required 

starch gel buffer (11% w/v) in a side-arm flask and heated. The solution was evacuated, then 

poured into a plastic mould, and immediately covered with a plastic plate, avoiding air 

bubbles. The gel was allowed to cool for 30 minutes, then covered with cling-film and left 

overnight at room temperature, prior to analysis. 

2.3.3 Electrophoresis 

Electrophoresis was conducted according to Cheliak and Pitel (1984). Filter paper wicks 

about 3.0 mm in width were soaked in enzyme homogenate and placed in a slit cut through 

the gel approximately 2.5 cm from its cathodal end. Homogenate from both 

macrogametophyte and embryo tissue were loaded into the same gel next to each other, so 

that heterozygous individuals could be scored easily. Bromocresol green (C 21 H14Br4O5S, 

pH5.4) was used as a tracker dye and loaded into three wells: two on both ends and one in 

the middle of the gel. 

The gel was run at 30 mA for 30 min and then at 60 mA for about 4 hours, until the buffer 

front marked by the tracker dye had migrated a sufficient distance, 2-3 cm to the frontier 

edge. The gel was sliced and stained with different enzyme recipes, after Cheliak and Pitel 

(1984; see Appendix II). 

2.3.4 Scoring of gels 

The common allele at each locus was designated as allele 1. The migration distance of the 

common allele within each locus was measured and compared to the total migration distance 

of the tracker dye (Cheliak and Pitel, 1984a), to measure the R f  value. Any variants (alleles) 

observed at a particular locus were then measured relative to its common allele, to obtain the 

R. of each allele. This was obtained using the following: 

R = migration distance of variant (mm) 
migration distance of standard(mm) 

2.4. Data Analysis 

Data analyses involved in this study are: (i) genetic diversity within populations; (ii) single- 
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and multi-locus structure within populations; (iii) genetic structure among populations; (iv) 

genetic distances within and between larch taxa. 

Allele frequencies within each population were calculated for each locus. Average observed 

(Ho) and expected (He) heterozygosity (under Hardy-Weinberg equilibrium) within each 

population were calculated using Fstat (version 1.2) package (Goudet, 1995). 

Test of Hardy-Weinberg equilibrium within each population was conducted for each locus. 

The null hypothesis HO  is that there is random combination of gametes. Fisher's exact test 

using contingency tables was used. Haldane 'S (1954) exact probability (P-value) was used to 

calculate the probability of the occurrence of the observed sample under the null hypothesis 

(also see Weir, 1991, p78-79). Two alternative effective hypotheses were assumed to 

calculate the probability of excess or deficiency. The test introduced by Rousset and 

Raymond (1995) was employed. For the hypothesis of heterozygote deficiency, the P-value 

is the sum of probabilities of samples in which heterozygotes are less than that observed. For 

the hypothesis of heterozygote excess, the P-value is the sum of probabilities of samples in 

which heterozygotes are greater than that observed. In fact, they are two one-tailed tests. 

Allele polymorphism was measured as the fraction of polymorphic loci in which the 

commonest allele frequency was less than 99%, denoted by P(99%), i.e. the ratio of the 

number of loci whose common allele frequency was smaller than 0.99, to the total number 

of loci analysed. The mean number of alleles per locus within each population was 

calculated. 

Linkage disequilibrium between any pair of loci within each population or over populations 

was tested using the software package Genepop (version 2.0; Raymond and Rousset, 1995). 

Fisher's exact test (P-value) was conducted using contingency tables. 

Population genetic structure was analysed using the Fstat package (version 1.2; Goudet, 

1995). Wright's F-statistics within each of the three larch taxa were calculated for each 

locus according to the method used by Weir and Cockerham (1984). The significance of 

population differentiation was carried out for each locus and over loci using Fisher's 

probability test (P-value). However, the variance of each F-statistic was estimated by jack-

knife methods over loci. 
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The spatial pattern for population genetic structure was tested for evidence of isolation by 

distance using the method introduced by Slatkin (1993). Using simulation under a variety of 

models, Slatkin (1993) proved that an approximate log-log linear relationship existed 

between the number of migrants (Nm) and geographic distance (D), i.e. Log(Nm)=a+bLog 

(D), where a and b are regression parameters. If the b value is smaller than zero, the number 

of migrants will decrease with geographic distance, and vice versa. The number of migrants 

(Nm) can be estimated according to Wright's formula, i.e. Nm = (1 / F, - 1)/ 4. The 

spatial heterogeneity in terms of Fst was also tested using Mantel's test (Mantel, 1967), 

which uses a permutation procedure to produce the distribution of the test statistics, Z, and 

then calculate the exact probability (P-value) for the observed sample under the null 

hypothesis (also see Pigliucci and Barbujani, 1993). Estimate of migrants from data on 

private alleles was tested using Genepop (version 2.0; Raymond and Rousset, 1995). 

Number of migrants (Nm) was also estimated using the method introduced by Barton and 

Slatkin (1986). 

Phylogeny reconstruction among the three larch taxa was carried out with Biosys-1 

(Swofford and Selander, 1981) according to Nei's genetic distance (Nei, 1972), using the 

unweighted pair-group method with arithmetic averaging (UPGMA). 

2.5. Results 

2.5.1 Primary screening of polymorphic markers 

Eleven enzyme systems were screened for useful markers in each of the three larch taxa. 

These enzymes were aspartate aminotransferase (AAT; E.C.2.6. 1.1); Glucose-6-phosphate 

dehydro-genase (G6PD; E.C. 1.1.1.49); Glutamate dehydrogenase (GDH; E.C. 1.4.1.3); 

Isocitrate dehydrogenase (IDH;E.C. 1.1.1.42); Leucine amino-peptidase (LAP; E.C.3 .4.11.1), 

malate dehydrogenase (MDH; E.C. 1.1.1.37); 6-phosphogluconate dehydrogenase (6PGD; 

E.C. 1.1.1.44); phosphoglucose isomerase (PGI; E.C. 5.3.1.9); phosphoglucomutase (PGM; 

E.C.2.7.5.1); shikimic acid dehydrogenase (SDH; E.C.1.1.1.25) and superoxide dismutase 

(SOD; E.C.1.15.1.1.). Among these 11 enzyme systems scored, six were found to be 

polymorphic in at least one of populations studied; while others were monomorphic or 

difficult to resolve. The six polymorphic enzyme systems were PGI, MDH, 6PGD, AAT, 

PGM and SDH. These six polymorphic enzymes resolved a total of eight loci.. 
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2.5.2 Interpretation of banding pattern 

Phosphoglucose isomerase (PGI) 

One zone of PGI activity was clearly observed, which is the same as that in L. laricina 

(Cheliak and Pitel, 1985). It expressed a total of three different bands (phenotype) in haploid 

tissue. If the diploid tissue was heterozygous for this enzyme system, then three bands were 

apparent (Fig. 2.2a). Thus, this was interpreted as representing one locus with three alleles, 

i.e. alleles Pgi', Pgi2  and Pgi3 . 

6-Phosphogluconate dehydrogenase (6PGD) 

Two zones of 6PGD activity were observed, which is the same as L. laricina (Cheliak and 

Pitel, 1985). 6PGD-I (Fig.2.2a) exhibited monomorphic, but 6PGD-ll exhibited one locus 

with two different band variants in haploid tissue, i.e. alleles 6Pgd and 6Pgd2 . If the diploid 

tissue was heterozygous, three clear bands were apparent (Fig. 2.2a). 

Malate dehydrogenase (MDII) 

Four zones of MDH activity were observed (Fig.2.2b) which is the same as in L. laricina 

(Cheliak and Pitel, 1985) and L decidua (Lewandowski and Meinartowicz, 1988). M1DH-I 

exhibited two alleles in haploid tissue, i.e. Md/i-I1  and MA-1 2, and heterozygous individuals 

possessed three bands in diploid tissue. MDH-ll and -ffl were monomorphic. MDH-IV 

exhibited two bands in haploid tissue, representing two alleles. However, the bands are too 

weak to be scored in diploid tissue, and were not used for analysis. Therefore, for MDII, 

only MDH-I was used for analysis (Fig. 2.2b). 

Aspartate aminotransferase (AAT) 

Three zones of AAT activity were evident (Fig.2.2b), which is the same as in L. laricina 

(Cheliak and Pitel, 1985). They are AAT-I, AAT-11 and AAT-III (Fig.2.2b). Both AAT-I and 

AAT-11 locus exhibited two alleles in haploid tissue, and heterozygous individual possessed 

three bands in diploid tissue. Since the remaining three bands always occurred together and 

were able to be clearly scored only in haploid tissue, thus these three bands were treated as 
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one locus with four alleles, i.e. alleles Aat-III' , Aat-III 2  Aat-III 3  and Aat-IIt (Fig. 2.2b). 

However, alleles of AAT-ffl locus were too weak to be scored in diploid tissue. Therefore, 

for the AAT-111 locus, only haploid data were used for analysis. 

Phosphoglucomutase (PGM) 

One zone of PGM activity was observed, which is the same as in L. laricina (Cheliak and 

Pitel, 1985). Four alleles in haploid tissue were observed, i.e. alleles Pgm', Pgm2, Pgm3  and 

Pgm4, and heterozygous individuals possessed two bands (Fig.2.2c). 

Shi/dmate dehydrogenase (SDH) 

One zone of SDH activity was evident (Fig. 2.2c), which is the same as in L. decidua 

(Lewandoeski and Mejnartowicz, 1990) and in Japanese and European larch (Ennos and 

Tang, 1995). Four alleles in haploid tissue were observed, i.e. alleles Sdh 1 , Sdh2, Sd/i 3  and 

Sd/i4, and heterozygous individuals possessed two bands in diploid tissue (Fig. 2.2c). 

2.5.3 Allele frequency and polymorphism 

The allele frequencies at all loci were calculated for all populations investigated, and were 

shown to be variable among populations (Table 2.2). 

PGI expressed two alleles in all populations of L.gmelinii, but three alleles could be found in 

populations Xiaobeihu, Dongfanghong and Changbei of L. olgensis, and populations 

Fengning and Hunyuan of L. principis-rupprechtii (Table 2.2). The frequency of the most 

common allele (Pgi') was greater than 0.9 in all populations of L. gmelinii and L. olgensis, 

but was less than 0.8 in the two populations of L. principis-rupprechtii, i.e. Fengning and 

Hunyuan,. 

MDH-I exhibited a similar structure to PGI in all populations investigated. The frequency of 

the most common allele (Mdh-P) was greater than 0.9, but that of Mdh-12  allele was more 

variable, ranging from 0.00 to 0.039. Three populations of L. gmelinii, i.e. Tahe, Kalunshan 

and Zhongyaozhan, were fixed for Md/i-I', but this was not the case in any populations of 

L.olgensis and L. principis-rupprechtii (Table 2.2). 

43 



PGI 
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11 12 	22 	6PGD-11 

Fig. 2.2a. Zymogrammes representing isozyme banding pattern (PGI and 6PGD) within the 
three Chinese Larix taxa. 
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Fig. 2.2b Zymogrammes representing isozyme banding pattern (MDH and AAT) within the 
three Chinese Larix taxa. 
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Fig. 2.2c Zymogrammes representing isozyme banding pattern (PGM and SDH) within the 
three Chinese Larix taxa. 
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6PGD was fixed for allele 6Pgd' in all the populations investigated except L. ginelinii in 

Xilinjie and Kalunshan. The two populations of L. principis-rupprechtii were fixed for 

allele 6Pgd' as well. However, all populations of L. olgensis except Dahailin were 

polymorphic at this locus (Table 2.2). 

AAT also exhibited difference in the populations investigated. For the AAT-I locus, 

populations Jiagedaqi, Hanjiayuan and Uyilin, were fixed for allele Aat-I', but the 

remaining populations of L. ginelinii were polymorphic. The two populations of L. 

principis-rupprechtii were slightly different from each other. Population Fengning 

exhibited nearly complete fixation for allele Aat-I', with frequency being 0.996. Population 

Hunyuan , however , exhibited Aat-I' at a frequency of 0.920 and A at-I2  at 0.080. Most 

populations of L. olgensis were fixed, or nearly fixed, for allele Aat-I', except for 

populations Beidaoshan and Changbei in which frequencies of Aat-I'were 0.975 and 0.971, 

respectively (Table 2.2). 

For AAT-R, all populations investigated were polymorphic except for population Tahe in L. 

gmelinii that was monomorphic for Aat-II' . AAT-E[[ exhibited differences among the three 

larch taxa. For example, most populations of L. gmelinii exhibited two alleles at this locus 

with the exception of populations Tahe and Uyilin that has three alleles. All populations of 

L. olgensis and L. principis-rupprechtii , however, were fixed for A at-Ill' (Table 2.2). 

PGM was highly polymorphic in all populations of each of the three larch species. The 

frequencies of the most common allele Pgin', ranged from 0.627 to 0.778 in populations of 

L. gmelinii, from 0.711 to 0.867 in populations of L. olgensis, and from 0.717 to 0.719 in the 

two populations of L.principis-rupprechtiii (Table 2.2). 

SDH was expressed differently in the three larch taxa. In L. gmelinii, for example, four 

alleles were detected and high levels of polymorphism were found in each population. 

Frequencies of the most common allele Sdh' ranged from 0.873 to 0.928. In L. principis-

rupprechtii, however, both populations investigated were monomorphic for allele Sd/i'. In L. 

olgensis, SDH was polymorphic and variable among populations. Frequency of the common 

allele SDH-1 ranged from 0.830 in Dahailin to 1.00 in Changbei (Table 2.2). 

The levels of polymorphism of resolved loci in all studied populations of the three species 
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have been estimated and are summarised in Table 2.3. It can be seen that the number of 

alleles per locus was comparable between populations within each species, ranging from 

2.00 to 2.37 in populations of L. g,nelinii, from 1.87 to 2.00 in two populations of L. 

principis-rupprechtii, and from 1.87 to 2.28 in populations of L. olgensis. The differences 

between taxa were not the same. The average number of alleles per locus was 2.20 in L. 

gmelinii, larger than 2.11 in L. olgensis, larger than 1.93 in L. principis-rupprechtii (Table 

2.3). 

The percentage of polymorphic loci, P(99%) value, revealed a similar relationship between 

species as did the average number of alleles per locus, L. gmelinii exhibited the largest 

percentage of polymorphic loci, with P(99%) value being 68%, while L. principis-

rupprechtii exhibited the lowest polymorphism, with P(99%) value being 49%, and that for 

L. olgensis was 66% 

The level of observed heterozygotes over loci in L. gmelinii ranged from 0.075 (Hanjiayuan) 

to 0.126 (Kalunshan), with a mean of 0.097, while in L. olgensis, values ranged from 0.067 

(Xiaobeihu) to 0. l41(seed orchard), with a mean of 0.090. The two populations of L. 

principis- rupprechtii showed slightly higher observed heterozygotes than those in the other 

two species, 0.103 in Fengning and 0.104 in Hunyuan, with a mean of 0.103. In most 

populations expected heterozygote frequencies were slightly larger than those of observed 

heterozygotes with the exceptions of populations such as in Kalunshan, 0.126 (Ho) vs 0.115 

(He), and in the seed orchard (0.141 vs 0.135). Mean of observed and expected heterozygotes 

of L. gmeliniii 0.097 (Ho)and 0.100 (He), was comparable to that of L. olgensis, 0.090 (Ho) 

and 0.097 (He), but both were slightly smaller than that of L. principis-rupprechtii , 0.103 

(Ho) and 0.126 (He). 
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Table 2.2. Allele frequencies estimated in each population investigated (' ------' means that data were not obtained for various technical reasons) 

L. gmelinii 

Allele Jiagedaqi 	Huzhong 	Tahe 	Xilinjie 	Hanjiayuan 	Uyilin 	Kalunshan 	Zhongyaozhan 

Pgi -1 0.996 0.983 0.994 0.944 0.978 0.950 0.907 0.964 
-2 0.004 0.017 0.006 0.056 0.022 0.050 0.093 0.036 

Mdh-J -1 0.996 0.961 1.000 0.983 0.994 0.989 1.000 1.000 
-2 0.004 0.039 0.000 0.017 0.006 0.011 0.000 0.000 

6Pgd -1 1.000 1.000 1.000 0.994 1.000 1.000 0.991 1.000 
-2 0.000 0.000 0.000 0.006 0.000 0.000 0.009 0.000 

Aal-I -1 1.000 0.983 0.972 0.978 1.000 1.000 0.991 0.973 
-2 0.000 0.017 0.028 0.022 0.000 0.000 0.009 0.027 

Aat-II -1 0.952 0.972 1.000 0.972 0.972 0.980 0.981 0.964 
-2 0.048 0.028 0.000 0.028 0.028 0.020 0.019 0.036 

Aat-III -1 0.746 0.856 0.811 0.867 0.867 0.900 0.889 0.821 
-2 0.254 0.133 0.156 0.133 0.133 0.080 0.111 0.179 
-3 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 
-4 0.000 0.000 0.033 0.000 0.000 0.000 0.000 0.000 

Pgm -1 0.627 0.739 0.639 0.728 0.778 0.761 0.759 0.696 
-2 0.151 0.106 0.206 0.100 0.094 0.067 0.111 0.071 
-3 0.044 0.078 0.067 0.117 0.078 0.078 0.074 0.036 
-4 0.179 0.078 0.089 0.056 0.050 0.094 0.056 0.196 

Sdh -1 0.873 0.889 0.878 0.900 0.928 0.917 0.852 0.893 
-2 0.119 0.094 0.083 0.089 0.072 0.083 0.111 0.098 
-3 0.008 0.017 0.028 0.011 0.000 0.000 0.028 0.009 
-4 0.000 0.000 0.011 0.000 0.000 0.000 0.009 0.000 
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Table 2.2 ( Continued) 

L principis-rupprechtii 

Allele Fengning Hunyuan 

Pgi -1 0.760 0.715 
-2 0.236 0.215 
-3 0.004 0.069 

Mdh-I -1 0.967 0.993 
-2 0.033 0.007 

6Pgd -1 1.000 1.000 
-2 0.000 0.000 

Aat-I -1 0.996 0.920 
-2 0.004 0.080 

Aat-II -1 0.996 0.973 
-2 0.004 0.027 

Aat-III -1 1.000 1.000 

Pgm -1 0.719 0.717 
-2 0.004 0.022 
-3 0.050 0.109 
-4 0.227 0.152 

Sd/i -1 1.000 1.000 
-2 0.000 0.000 
-3 0.000 0.000 
-4 0.000 0.000 

L. olgensis 

Beidaoshan Beihe Xiaobeihu Dahailin Dongfanghong Changbei Seed Orchard 

0.979 0.937 0.937 0.910 0.929 0.947 0.953 
0.021 0.063 0.058 0.090 0.046 0.032 0.047 
0.000 0.000 0.005 0.000 0.025 0.021 0.000 
0.967 0.980 0.997 0.976 0.971 0.931 0.914 
0.033 0.020 0.003 0.024 0.029 0.069 0.086 

0.975 0.974 0.997 1.000 0.971 0.960 0.930 
0.025 0.026 0.003 0.000 0.029 0.040 0.070 
0.975 0.991 1.000 1.000 0.996 0.971 0.992 
0.025 0.009 0.000 0.000 0.004 0.029 0.008 

0.962 0.960 0.934 0.913 0.983 0.939 0.977 
0.038 0.040 0.066 0.087 0.017 0.061 0.023 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.867 0.862 0.838 0.840 0.842 0.838 0.711 
0.046 0.023 0.051 0.049 0.025 0.053 0.031 
0.025 0.032 0.051 0.056 0.004 0.011 0.055 
0.063 0.083 0.061 0.056 0.129 0.098 0.203 
0.996 0.994 0.978 0.830 1.000 
0.004 0.006 0.022 0.066 0.000 
0.000 0.000 0.000 0.101 0.000 
0.000 0.000 0.000 0.003 0.000 
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Table 2.3 Measures of genetic variability in 17 populations of Larix * 

Species 	Population 	A 	P(99%) 	Ho 	He 

L. gmelinii 
Jiagedaqi 	2.12 
Huzhong 2.25 
Tahe 2.25 
Xilinjie 2.37 
Hanjiayuan 2.00 
Uyilin 2.12 
Kalunshan 2.37 
Thongyaozhan 2.12 

Mean 	 2.20 

L. principis-rupprechtii 
Fengning 
Hunyuan 

Mean 

L. olgensis 

50 0.106 0.102 
87 0.100 0.102 
50 0.081 0.094 
87 0.096 0.108 
62 0.075 0.078 
75 0.085 0.089 
62 0.126 0.115 
75 0.104 0.107 

68 0.097 0.100 

1.87 37 0.103 0.117 
2.00 62 0.104 0.134 

1.93 49 0.103 0.126 

Mean 

Beidaoshan 2.12 75 0.072 0.071 
Beihe 2.12 62 0.076 0.076 
Xiaobeihu 2.12 50 0.067 0.077 
Dahailin 1.87 62 0.101 0.125 
Dongfanghong 2.28 71 0.091 0.090 
Changbei 2.12 75 0.083 0.105 
Seed orchard 2.14 71 0.141 0.135 

2.11 66 0.090 0.097 

*: A: average number of alleles per locus: P(99%), percentage of polymorphic loci where 
the frequency of the most common allele is <0.99.; Ho and He, observed and expected 
heterozygote, respectively. 

2.5.4 Hardy-Weinberg equilibrium 

Results of the tests of Hardy-Weinberg equilibrium within each population of the three larch 

taxa are summarised in Table 2.4. Inbreeding coefficient (F 1 ) and the probabilities (P-value) 

for occurrences of three types of departure from Hardy-Weinberg equilibrium (general, 

deficiency and excess) are listed in Table 2.4. 
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In L. gmelinii, AAT-11 was found not to be in Hardy-Weinberg equilibrium in populations 

Jiagedaqi, Huzhong and Uyilin, while PGM and SDH were not in Hardy-Weinberg 

equilibrium in populations Xilinjie and Tahe respectively. All other populations tested were 

in Hardy-Weinberg equilibrium. 

In L. principis-rupprechtii, PGI was not in Hardy-Weinberg equilibrium in population 

Hunyuan. In L. olgensis, the following populations did not show Hardy-Weinberg 

equilibrium in different enzymes: Xiaobeihu in PGI, AAT-11 and PGM; Changbei in IvIDH, 

AAT-11 and PGM; Beidaoshan and Seed orchard in AAT-II; Dahailin in GOT-11, PGM and 

SDH. 

The main reason for this departure from Hardy-Weinberg equilibrium in most of these cases 

was due to a deficit of heterozygotes, rather than to excess of heterozygotes (Table 2.4), 

with the exceptions of populations Jagedaqi for AAT-11, Tahe for SDH and Changbei for 

PGM. By chance some values will differ from Hardy-Weinberg equilibrium when so many 

tests are carried out. 

2.5.5 Linkage disequilibrium 

The null hypothesis that any pair of loci are independent of each other is accepted from the 

tests of linkage disequilibrium in each population of each of the three species. For 

simplicity, the results of Fisher's global tests for each pair of loci over all populations in 

each of the three larch taxa are summarised in Table 2.5. It can be concluded that these 

seven loci are independent of each other. 
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Table 2.4. Test of Hardy-Weinberg equilibrium for all loci. Type-I error probabilities were listed for rejecting null hypothesis for all possible 
reasons(General) or for only heterozygote deficit (Deficit) or excess (Excess). Bold characters indicate significant values (P<0.05). Symbol '-' stands 
for monomorphic loci in this sample of embryos. 

L. gmelinii 
Jiagedaqi Huzhong Tahe Xilinjie Hanjiayuan Uyilin Kalunshan Zhongyaozhan 

PGI Fis - - 	0.011 - - 0.053 - 	0.017 - 	0.043 0.093 - 0.028 General 1 1 1 1 1 1 Deficit 1 1 1 1 1 1 Excess 0.983 0.768 0.966 0.900 0.633 0.946 
MDH-1 Fis - - 	0.035 - - 	0.011 - - 	0.006 - - General i 1 1 Deficit 1 1 1 Excess 0.886 0.983 0.994 
6PGD Fis - - - - - - - - 

General 
Deficit 
Excess 

AAT-J Fis - - 	0.011 - 0.023 -0.017 - - - -0.019 General i 1 1 
Deficit 1 1 1 

1 

Excess 0.983 0.944 0.966 
1 
0.973 AAT-II Fis 0.129 0.796 - 0.388 - 0.023 1 - 0.010 0.488 General 0.022 0.000 0.055 1 0.010 1 0.053 Deficit 0.240 0.000 0.055 1 0.010 1 0.053 Excess 0.978 1 0.999 0.944 0.989 0.991 0.946 PGM Fis -0.063 - 	0.000 0.075 0.229 0.005 0.036 - 0.141 - 	0.131 General 0.131 0.297 0.512 0.003 0.319 0.499 0.885 0.877 Deficit 0.731 0.350 0.135 0.000 0.424 0.206 0.982 0.924 Excess 0.269 0.649 0.864 0.999 0.575 0.801 0.086 0.117 SDH Fis 0.010 - 	0.102 0.203 0.029 0.094 - 	0.079 - 	0.054 0.268 General 0.760 1 0.041 0.610 0.376 1 0.222 0.102 Deficit 0.545 1 0.079 0.521 0.376 1 0.728 0.071 Excess 0.690 0.305 0.921 0.799 0.941 0.762 0.449 0.990 
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Table 2.4. (Continued) 

L.principis-rupprechtii 
	

L. olgensis 

Fengning Hunyuan 	Beidaoshan Beihe 	Xiaobeihu 	Dahailin Dongfanghong Changbei Seed orchard 

PGI 

MDH-I 

6PGD 

AAT-I 

AAT-III 

PGM 

SDH 

Fis 
General 
Deficit 
Excess 
Fis 
General 
Deficit 
Excess 
Fis 
General 
Deficit 
Excess 
Fis 
General 
Deficit 
Excess 
Fis 
General 
Deficit 
Excess 
Fis 
General 
Deficit 
Excess 
Fis 
General 
Deficit 
Excess 

	

0.124 	0.373 

	

0.060 	0.000 

	

0.095 	0.010 

	

0.925 	0.989 
- 0.030 - 

0.887 

- 	0.282 
0.059 
0.059 
0.996 

- 	-0.021 

0.959 
0.098 -0.056 
0.269 	0.854 
0.294 	0.836 
0.714 	0.200  

	

- 0.017 	0.129 

	

1 	0.135 

	

1 	0.135 

	

0.958 	0.979 
- 0.030 - 0.018 

	

1 	1 

	

1 	1 

	

0.886 	0.940 
- 0.021 - 0.021 

	

1 	1 

	

1 	1 

- 0.021 - 0.006 

	

1 	1 

	

1 	1 

	

0.938 	0.991 
0.426 - 0.039 

	

0.006 	1 

	

0.006 	1 

	

1 	0.761 
- 0.097 - 0.038 

	

1 	0.337 

	

1 	0.288 

	

0.092 	0.722 

	

- 	- 0.003 

0.997 

0.025 - 0.096 
0.003 	0.605 
0.002 	1 
0.998 	0.289 
- 	- 0.021 

0.928 

0.938 	0.899 

0.508 	0.433 
0.000 	0.000 
0.000 	0.000 
1 	1 
0.057 	0.273 
0.042 	0.000 
0.012 	0.000 
0.987 	1 

- 0.018 	0.161 
1 	0.021 
1 	0.007 
0.956 	0.992  

0.009 - 0.039 
0.456 	1 
0.456 	1 
0.716 	0.675 

	

- 0.026 	0.746 
1 	0.000 
1 	0.000 
0.914 	1 

- 0.026 - 0.039 
1 	1 
1 	1 
0.914 	0.761 
- 	- 0.027 

0.860 

	

- 0.013 	0.215 
1 	0.022 
1 	0.022 
0.975 	0.997 

	

- 0.029 	0.102 
0.157 	0.047 
0.059 	0.057 
0.948 	0.944  

- 0.039 

0.884 
- 0.086 

0.625 
- 0.068 

0.739 

0.663 
0.023 
0.023 

- 0.105 
0.801 
0.913 
0.126 
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Table 2.5 Fisher's global tests for linkage disequilibrium of any pair of loci within the three 
larch taxa. The probabilities of exact tests ( P-value) are listed. 

Locus pair - L. gmelinii L. olgensis L. principis-rupprechtii 

PGI MDH-1 0.9918 0.7810 0.5065 
POT 6PGD 1.0000 0.3434 Not possible * 
MIDH-I 6PGD 1.0000 0.9999 Not possible 
PGI AAT-I 0.9706 0.4487 0.4775 
MDH-I AAT-I 1.0000 0.8616 0.4176 
6PGD AAT-I 1.0000 0.9996 Not possible 
PGI AAT-111 0.0786 0.8043 0.4574 
MDH-I AAT-ll 1.0000 0.8353 1.0000 
6PGD AAT-ll 1.0000 0.9987 Not possible 
AAT-I AAT-ll 1.0000 0.1399 0.5265 
PGI PGM 0.6287 0.2422 0.2884 
MDH-I PGM 0.2386 0.9945 Not possible 
6PGD PGM 0.3613 0.5196 	. 0.3637 
AAT-I PGM 0.1968 0.9330 1.0000 
AAT-III PGM 0.3191 0.1994 Not possible 
POT SDH 0.7042 0.9747 Not possible 
IvIDH-I SDH 0.9947 1.0000 Not possible 
6PGD SDH 1.0000 1.0000 Not possible 
AAT-I SDH 0.9964 1.0000 Not possible 
AAT-II SDH 0.8369 0.6147 Not possible 
PGM SDH 0.2091 0.7704 Not possible 

The impossibility of calculating the P-value is due to the existence of one monomorphic 
locus in the pair of loci tested. 

23.6 Population differentiation 

Unbiased estimates of F for each of the three taxa are summarised in Table 2.6. F 

estimates for single loci were variable in L. gmelinii, ranging from -0.002 (SDH) to 0.022 

(PGI). Population differentiation was significant for the single loci PGI, MDH-I, AAT-I and 

PGM, but not for 6PGD, AAT-II and SDH. Estimates of F, for AAT-III, which was 

polymorphic only in L. gmelinii, using haploid data, was also not significant (0.013 ± 

0.016). 

Population differentiation of L. principis-rupprechtii was significant for single loci AAT-I 

(P = 0.079**) and AAT-ll (Fs, = 0.015 **), but not for PGI, MDH-I and PGM. In L. 

olgensis, population differentiation was significant for all single loci, with P ranging from 

0.005 to 0.164. 
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Table 2.6 Estimates of F-statistics for 7 polymorphic loci overall populations of the three larch taxa. -: monomorphic locus; * : P<5%;** : P<1% 

Locus FIT  

L. gmelinii 

F FIs FIT 

L. principis-rupprechtii 

F 	F FIT 

L. olgensis 

F- F15  

PGI -0.029±0.011 0.022±0.013** -0.053±0.015 0.223 0.001 0.222 0.008±0.035 0.005±0.005** 0.003±0.038 

MDH-1 -0.010±0.004 0.015±0.011 -0.025±0.014 -0.016 0.009 -0.026 0.287±0.253 0.019±0.01 1** 0.273±0.256 

6PGD -0.002±0.001 0.000±0.003 -0.002±0.002 - - - 
- 	 0.025±0.009 0.015±0.011** -0.040±0.022 

AAT-1 -0.013±0.006 0.005±0.006** -0.018±0.003 0.316 0.079 0.257 - 	 0.011±0.006 0.012±0.005** -0.023±0.006 

AAT-11 0.303±0.137 0.001±0.007 0.303±0.139 -0.002 0.015 -0.018 0.338±0.089 0.006±0.0051* 0.334±0.090 

PGM 0.026±0.038 0.016±0.016* 1  0.010±0.041 0.045 0.005 0.041 0.049±0.044 0.008±0.0081* 0.042±0.047 

SDH 0.043±0.044 -0.002±0.002 0.045±0.045 - - 
- 0.382±0.186 0.164±0.0761* 0.239±0.123 

Over loci 0.033±0.028 0.012±0.007* 1  0.021±0.034 0.132 0.009*1 0.124 0.102±0.057 0.019±0.013* 1  0.084±0.053 

Wo 



Multilocus Fç  estimates showed a significant departure from zero, although they were very 

small, less than 2%; indicating that most of the total genetic variation was maintained within 

populations in each of the three larch taxa. 

A comparison of population differentiation between taxa indicated that L. olgensis presents 

larger F (=0.019) than that of L. gnelinii (F = 0.0 12), which in turn is larger than that 

of L. principis-rupprechtii (F =0.009). It should be noted that only two populations that 

were sampled from the northern seed zone of L. principis-rupprechtii have been included in 

the analysis. 

2.5.7 Isolation by distance 

In order to detect the relationship between the log(Nm) and the Log(D), i.e. Log(Nm) = 

a+bLog (D), the number of migrants (Nm), calculated from unbiased Fn.  's (Weir and 

Cockerham, 1984), were employed to regress to corresponding geographic distances. 

Estimates of the a and b constants are summarised in Table 2.7. 

The log-log linear correlations were not significant for either single- or multi-locus estimates 

in L. gmelinii, even through population differentiation was shown to be significant (Table 

2.7). For most of the estimates, b is larger than zero; implying no existence of a pattern of 

isolation by distance in L. gmelinii (Fig.2.3a). 

In L. olgensis, however, for most of the estimates, b is negative, and the linear correlations 

between Log(Nm) and Log(Distance) were shown to be significant in the single loci 6PGD 

(r = - 0.605), PGM (r = - 0.604), and in the multilocus analysis as well (r = - 0.637). The 

deterministic coefficients (r2 ) were still small, less than 40%, therefore it may be 

concluded that a weak pattern of isolation by distance exists between natural populations of 

L. olgensis (Fig.2.3b). 

The above result was further proven using Mantel's exact test of heterogeneity in space 

(Mantel, 1967). The probability for the observed sample to take place under the null 

hypothesis, i.e. the hypothesis that the Fst values between populations are independent of 

geographic distances, is P= 0.792 in L. ginelinii and P0.033 (<5%) in L. olgensis; showing 

significant relationship in L. olgensis but not in L. g,nelinii. 
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Table 2.7 Estimates of parameters, a and b in Log(Nm)=a+bLog(Distance) and the correlation coefficient, r, 
between Log(Nm) and Log(Distance) **: P<l% 

L. ginelinii 	 L. olgensis 

Locus 	a 	 b 	 r 	 a 	 b 	 r 

PGI 1.496 -0.625 -0.249 1.796 -0.605 -0.511 
MDI-I-I 1.537 0.023 0.011 1.219 -0.585 -0.494 
6PGD 1.908 0.430 0.136 1.681 -1.347 0.605** 
AAT-I 1.394 -0.033 -0.020 1.309 0.262 0.154 
AAT-ll 1.375 0.419 0.135 1.625 -0.276 -0.204 
PGM 1.026 0.404 0.243 2.169 -1.385 0.604** 
SDH 1.560 0.503 0.297 - - - 

Over Loci 1.443 0.027 0.013 1.843 -0.950 0.637** 
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Fig.2.3 Log 10 (Nin) plotted against Log 10 (Distance) for (a) L. gmelinii and (b) L. 
olgensis. A significant pattern of isolation by distance was detected in L. olgensis, but not in 
L. gnelinii. 
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Since only two populations of L. principis-rupprechtii were analysed, detection of the 

isolation by distance was not conducted. 

2.5.8 Genetic relationship among three taxa 

Two types of Nei's genetic distances between any pair of populations investigated were 

calculated and summarised in Table 2.8. If the mutation rates vary with different loci, Nei's 

distance using geometric mean is used. If the mutation rates are assumed to be the same 

between loci, distance using arithemetric mean over loci is used, which is slightly larger 

than the former. It can be seen from Table2.8 that the genetic distances between populations, 

or between Larix taxa, are very small. 

According to the distance using arithmetric mean, distances within each taxa are 

0.00256±0.00183 for L. gmelinii, 0.0020 for L. principis-rupprechtii, and 0.00216±0.00164 

for L. olgensis. However, distances between taxa are slightly larger than those within, 

0.01435 ± 0.00449 between L. gmelinii and L. principis-rupprechtii, 0.00752 ±0.00406 

between L. gmelinii and L. olgensis, 0.00886 ± 0.00133 between L. olgensis and L. 

principis-rupprechtii. 

According to the distance using geometric mean, distances within each taxa are 

0.0027±0.00197 for L. g,nelinii, 0.0020 for L. principis-rupprechtii, and 0.00162±0.00134 

for L. olgensis. However, distances between taxa are slightly larger than those within, 

0.0109 ± 0.00352 between L. gmelinii and L. principis-rupprechtii, 0.00547 ±0.00338 

between L. gmelinii and L. olgensis, 0.00697 ± 0.00094 between L. olgensis and L. 

principis-rupprechtii. 

A UPGMA dendrogram showing relationships between fifteen populations of the three 

larch taxa was devised using eight loci and Nei's genetic distance (arithmetric mean; Fig 

2.4). Two populations, the Seed orchard and Dongfanghong, were not included in the 

analysis due to a lack of SDH data. 

The three larch taxa could be grouped into three distinct clusters using these eight allozyme 

markers, even though the distance between them is quite small. It is important to note that 

L. gmelinii appears more closely related to L. olgensis than L. principis-rupprechtii. 



Table 2.8 Nei' s genetic distance among all 17 populations investigated. Top diagonal distances are calculated using geometric mean over loci. Bottom diagonal 
distances are calculated using arithmetic mean over loci (Nei, 1972). 

L. gmelinii 	 L. principis-rupprechtii 
	

L. olgen.sis 

Jiagedaqi 	Huzilong 	Tahe 	Xilinjie 	Hanjiayuan Uyilin 	Kahanshan 	ThongYaozhan 	 Fengning 	Hunyuan 	 Beidaoshan Beihe 	Xiaobethu 	Dahailin Doagfaaghong 	Changbei Seed orchard 

Jiagedaqi 0.0045 0.0033 0.0058 0.0058 0.0068 0.0063 0.0020 0.0170 0.0175 0.0127 0.0129 0.0122 0.0131 
Huzhong 0.0041 0.0022 0.0004 0.0003 0.0007 0.0007 0.0024 0.0111 0.0094 0.0031 0.0035 0.0029 0.0035 
Tahe 0.0025 0.0021 0.0028 0.0030 0.0042 0.0030 0.0044 0.0163 0.0143 0.0079 0.0088 0.0076 0.0084 
Xdinjie 0.0052 0.0005 0.0026 0.0004 0.0008 0.0005 0.0035 0.0107 0.0080 0.0036 0.0037 0.0029 0.0035 
Hanjiayuan 0.0053 0.0004 0.0030 0.0005 0.0006 0.0008 0.0033 0.0114 0.0094 0.0025 0.0028 0.0022 0.0033 
tJyilin 0.0067 0.0008 0.0040 0.0007 0.0006 0.0008 0.0027 0.0076 0.0065 0.0017 0.0016 0.0013 0.0023 
Kalunshan 0.0069 0.0014 0.0038 0.0008 0.0013 0.0010 0.0036 0.0093 0.0074 0.0034 0.0033 0.0026 0.0025 
Thongyaozban 0.0020 0.0019 0.0030 0.0025 0.0025 0.0024 0.0033 0.0088 0.0097 0.0064 0.0060 0.0062 0.0071 
Fengning 0.0220 0.0137 0.0187 0.0117 0.0131 0.0090 0.0104 0.0126 0.0020 0.0088 0.0064 0.0076 0.0082 
Hunyuan 0.0245 0.0145 0.0193 0.0115 0.0135 0.0099 0.0107 0.0146 0.0020 0.0076 0.0057 0.0061 0.0067 
Beidaoshan 0.0160 0.0050 0.0109 0.0052 0.0040 0.0032 0.0055 0.0085 0.0100 0.0103 0.0002 0.0004 0.0020 
Beihe 0.0163 0.0055 0.0117 0.0052 0.0043 0.0029 0.0050 0.0083 0.0072 0.0078 0.0004 0.0003 0.0017 
Xiaobeihu 0.0149 0.0047 0.0103 0.0042 0.0035 0.0023 0.0040 0.0077 0.0079 0.0079 0.0007 0.0004 0.0013 
Dahadin 0.0167 0.0059 0.0120 0.0056 0.0055 0.0039 0.0038 0.0095 0.0104 0.0108 0.0037 0.0031 0.0023 
Dongfangbong 0.0161 0.0053 0.0118 0.0056 0.0049 0.0027 0.0041 0.0076 0.0072 0.0086 0.0009 0.0004 0.0012 0.0018 
Changbei 0.0166 0.0059 0.0120 0.0062 0.0052 0.0039 0.0066 0.0089 0.0087 0.0094 0.0004 0.0006 0.0012 0.0043 
Seedorehard 0.0149 0.0063 0.0115 0.0069 0.0073 0.0043 0.0067 0.0076 0.0074 0.0105 0.0041 0.0037 0.0047 0.0053 

0.0124 0.0121 0.0115 
0.0037 0.0034 0.0053 
0.0094 0.0081 0.0105 
0.0047 0.0042 0.0064 
0.0037 0.0032 0.0064 
0.0017 0.0021 0.0034 
0.0034 0.0039 0.0060 
0.0051 0.0059 0.0047 
0.0067 0.0077 0.0054 
0.0068 0.0069 0.0070 
0.0007 0.0003 0.0037 
0.0004 0.0005 0.0031 
0.0011 0.0008 0.0042 
0.0016 0.0023 0.0045 

0.0006 0.0020 
0.0007 0.0025 
0.0026 0.0029 

*: The distances between the marked population and other populations were calculated using 7 loci excluding SDH. 
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Fig. 2.4 A UPGMA dendrogram calculated according to Nei's (1972) genetic distance 
measure using Biosys 1.0 (Swofford and Selander, 1981). Only those populations for which 
data from all eight polymorphic loci are available are included. 
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•2.6 Discussion 

2.6.1 Allozyme markers 

Six enzymes with a total of eight polymorphic loci were expressed in at least one 

population of the three larch taxa in this study. These loci were independent of one another 

according to linkage disequilibrium tests, implying that they maybe located on different 

chromosomes, or linked, but no linkage disequilibrium were observed. However, four pairs 

of genes have already been found to be significantly linked in Larix laricina: AAT and 

SOD, SOD and ACO, 6PGD and PGI, and AAT and PGI (Cheliak and Pitel, 1984b). 

Allele frequencies were quite variable among populations and species (Table 2.2), with PGI, 

MDH-I, AAT-I, AAT-II .  and PGM being polymorphic in all species. 6PGD was 

monomorphic in L. princzpis-rupprechtii, with low levels of polymorphism in L. gmelinii, 

but it was highly polymorphic in L. olgensis. AAT-III was polymorphic in L. ginelinii, but 

monomorphic in the other two species. SDH, however, was polymorphic in both L. gmelinii 

and L. olgensis, but not in the L. principis-rupprechtii. These differences may be used for 

distinguishing the three species, but this will be difficult in practice since a species-specific 

marker was not found and hence large number of seeds would be required for analysis. 

2.6.2 Population structure and genetic conservation 

One common phenomenon in woody species is that most genetic variation occurs within 

populations and only a small proportion between populations in plant species (Hamrick, 

1994). Similar results have been found in this study of the three Larix taxa, and most genetic 

variation is maintained within populations. However, population differentiation, less than 

2%, is smaller than that found in some other conifers. For example, 5% of total genetic 

variation was found between populations of L. laricina (Cheliak, et al., 1988). A comparable 

level of population differentiation to the three larch taxa in this study, was found in natural 

populations of L. laricina from northern Ontario (Liu and Knowles, 1991), about 2% of total 

genetic variation occurring between populations, and from New Brunswick (Ying and 

Morgenstern, 1991), about 3.8% of total genetic variation occurring between populations. 

One possible explanation for the low level of population differentiation is the high amount 

of gene flow that prevents large population differentiation caused by genetic drift. The 
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postulated mean number of migrants, Nm, is 20.58 in L. ginelinii, 12.9 in L. olgensis, and 

27.5 in L. principis-rupprechtii according to Nm = (1/Fst-1)/4 obtained in the island model 

(Wright, 1951). These values are much greater than 1.0 and, hence, lead to a low level of 

population differentiation (<< 20%). Furthermore, no private allele was detected in 

populations of L. gmelinii; indicating that migration takes place extensively (Barton and 

Slaktin, 1986). However, private alleles Sdh 3  and Sdh4  were found in Dahailin of L. 

olgensis, with mean number of migrants (Nm) being 0.87 (<1) estimated using the formula 

introduced by Barton and Slaktin (1986). This indirectly indicates that migration in L. 

olgensis was not as extensive as that in L. gmelinii, resulting in a relatively higher level of 

population differentiation compared with L.gmelinii. 

Environmental factors, such as climate, are also important in influencing current population 

structure revealed in this study. Although the markers used are considered to be selectively 

neutral, the indirect effect through 'hitch-hiking', caused by linkage between selectively 

unneutral and neutral genes, may influence population structure in terms of selectively 

neutral markers. This effect is difficult to test in this study. However, the following analysis 

for the limited distribution of the three larch taxa may likely indicate that this effect is small, 

or is comparable among populations. L. principis-rupprechti is restricted mainly to semi-arid 

areas in south temperate zone, while L. olgensis grows in wet areas in mid temperature zone 

where the climate is influenced by the Japanese sea. L. gmelinii mainly occurs in the north 

temperature zone where the climate is influenced by the continental climate from north of 

the region (Fig. 2.1). Therefore, if there are effects of the hitch-hiking, these effects are 

likely to be among the three taxa rather than within these three larch taxa. The result will be 

that current population genetic structure among populations within taxa assessed by 

allozymes in this study is dominated by migration and genetic drift. 

Although there is significant population differentiation in L. gmelinii, it is lacking in 

geographic pattern, implying random distribution of genetic variation in space. However, 

this is not the case in populations of L. olgensis where there is weak geographical pattern of 

the genetic distribution, implying non-random distribution caused by isolation by distance. 

The possible reason for this weak pattern may be due to mountains barriers which block 

extensive gene flow. 

Results of provenance trials conducted by Ma et al. (1992) showed that no significant 
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relationship was observed between growth traits and geographical latitudes in L. gmelinii 

and L. principis-rupprechtii, even though there were significant differences among 

provenances. However, a weak relationship was found between growth traits and 

geographical latitudes in L. olgensis, showing that the performance of the populations from 

the northern region of the distribution of L. olgensis, such as Xiaobeihu, grew better than 

those from the southern region (Ma, et al, 1992; Yang, et al, 1991). Their results are similar 

to those obtained in this study, i.e. existence of weak pattern between genetic differentiation 

and geographic distance in L. olgensis but not in other two larch taxa. This concordance is 

likely to be the result of an accumulation of mutations at allozyme loci and morphological 

divergence through time. 

However, distribution of genetic variation between and within populations may be quite 

different for growth traits and allozyme markers. For instance, in the 22 population of white 

spruce (Fumier, et al. 1991), the height growth exhibits strong difference among 

populations, with 48.0% and 54.1% (broad sense heritability) of total genetic variation at 

age 9 and 19. However, using 6 polymorphic allozyme markers, only 3.8% of total genetic 

variation are due to between populations (Further, et al., 1991). A similar case to white 

spruce takes place in two larch taxa of this study. Results of provenance trials of L. gmelinii 

indicated that more than 70% of total genetic variation (broad sense heritability) occurred 

among provenances in terms of height growth at age of 8 years (Yang, et a!, 1990a). More 

than 65% of total variation occurred among provenances of L. olgensis in terms of height 

growth at age of 10 years old (Yang et al, 1991). Distribution of genetic variation among 

provenances of L. principis-rupprechtii was not reported. The results obtained using 

allozymes indicated that less than 2% of variation occurs among populations in the three 

larch taxa (Chapter 2), indicating disconcordance between growth traits and some allozyme 

markers, in terms of distribution of genetic variation within and between populations. 

Hamrick et al. (1991) pointed out that the distribution of genetic variation within and 

between populations provides the prerequired information for establishment of effective and 

efficient conservation practices. The current distribution of genetic variation in the three 

larch taxa indicates that the conservation of the three taxa should focus oh within 

populations rather than between, because few samples of populations can be used to 

represent the entire distribution of the larch taxa without losing much genetic variation, 

which was also proposed for L. laricina by Ying and Morgenstern (1991). However, such 
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conclusion clearly hold only for conservation of selectively neutral variation, such as the 

allozyme variation measured here. 

2.6.3 Genetic relationship among three taxa 

Larix olgensis and L. principis-rupprechtii are considered by Ostenfeld and Larsen (1930) 

to be two varieties of L. g,nelinii, and by Wang (1992), Zheng (1983) and others as two 

species in their own right. Results obtained by Zhang et a! (1985), using chromosomes 
characters, and by Tang et a! (1995), using cpDNA RFLP markers, imply a close genetic 

relationship among the three larch taxa. Zhang (1985) further inferred that the evolutionary 

trend among the three larch taxa was from L. principis-rupprechtii to L. olgensis and L. 

gmelinii. Elucidation of evolutionary relationships among the three larch taxa may greatly 

contribute to our knowledge of the classification of the Chinese Larix taxa. 

Generally, the dendrogram derived in this study using allozyme markers is in support of the 

results obtained by Tang et al. (1995), i.e. a close genetic relationship among the three taxa. 

The Nei's genetic distance, observed by allozyme markers, is very small and ranges from 

0.005 to 0.015 (Fig.2.4 ). The important new result is that L. gmelinii is more closely related 

to L. olgensis than to L. principis-rupprechtii. This is consistence with results obtained by 

Zhang (1985) who found that both L. gmelinii and L. olgensis have Stebbin's type 2B 
chromosomes but L. principis-rupprechtii has not. As was mentioned in the introduction of 

this chapter, Crawford (1983) analysed that two possible explanations were likely 

responsible for this: One is that divergence between populations or between subspecies 

occurred within recent history, and hence accumulation of mutations was not large enough 

to produce a distant relationship. The second is that a high amount of gene flow has 

occurred among them. These reasons could be useful for explaining the results obtained in 

this study. 

The morphological traits used to distinguish the three larch taxa (Appendix I) are not 

reliable, due to the phenotypic plasticity caused by interaction between environmental 

factors and genotypes. Hence, the capability is limited for using morphological traits to 

elucidate evolution history. However, use of selectively neutral markers, such as allozymes, 

can resolve this problem to some extent, since environmental modification is avoided if 

effects of the hitch-hiking effect and recombination are ignored. Thus population genetic 

diversity and polymorphism are controlled by migration, drift, and mutation. 



If the time scale is so short that the effect of mutation is small enough to be ignored, the 

genetic variation in source populations is maintained at a higher level than that in their 

derived populations established via colonisation. This is because of founder effects and 

bottlenecks that may be involved in the colonising process, resulting in loss of genetic 

variation. Thus, mean number of alleles per loci or the percentage of polymorphism may 

decline because of stochastic migration that may result in loss of rare allele with larger 

probability than common allele in the process of colonisation. Tajima (1990) showed in 

theory that marginal population maintained lower DNA polymorphism than central 

populations if the migration rate in the marginal populations is lower than that of the central 

populations, indicating that low rate of migration may reduce genetic variation in recipient 

population. Thus the above analysis may provide a clue to infer the formation of 

populations. However, it should be remembered that the above inference will hold under the 

influences of migration and drift only. 

Therefore, under this hypothesis, a more detailed insight into the evolutionary history of 

Chinese larch taxa may be inferred from integrating the results of the mean number of 

alleles per locus, the fraction of polymorphic loci and the geographic distribution of the 

three taxa. The allozyme markers used in this study have been shown to be in linkage 

equilibrium, and are considered to be selectively neutral. Thus, if the divergence among the 

three taxa occurred within recent history, the effect of mutation can be ignored. Only 

migration and drift dominate the genetic variation of these allozymes markers. LePage and 

Basinger (1995) argued that three distinct patterns of displacement were in support of 

current distribution of larches. One of these patterns of displacement, thought by LePage 

and Basinger (1990), is from " northeastern Russia along the eastern coast of Asia and into 

central China " Assume that the three larch taxa are the sample species intially. 

Experiments have shown that the mean number of alleles per locus varies from 2.20 to 2.11 

and 1.93, and percentage polymorphism from 68%, to 66% and 49%, for L. gmelinii, L. 

olgensis and L. principis-rupprechtii, respectively; supporting the direction of evolution 

trend from L. ginelinii to L. olgensis and L. principis-rupprechtii. It is more likely that L. 

principis-rupprechtii is mainly influenced by L. olgensis via migration and colonisation 

rather than by L. gmelinii; due to shorter geographical distance to L. olgensis than to L. 

gmelinii (Fig.2. 1). This results in further reduction in mean number of alleles per locus from 

2.11 to 1.93 due to effects of bottleneck and founder effects involving in the process of 

colonisation. 
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A critical assumption for the above inference is that the divergence of the three larch taxa 

occurred within recent history so that influence of mutation is ignored. Moreover, the above 

inference contrasts with the evolutionary trend proposed by Zhang et al. (1985) who stated 

that evolutionary direction is from L. principis-rupprechtii to L. olgensis and L. ginelinii. 

Therefore, these points highlight the need to further elucidate the evolutionary relationship 

between the three Chinese larch taxa using DNA markers (see Chapter 4). 

2.7 Summary 

The genetic variation within seventeen populations, eight in L. gmelinii, seven in L. olgensis 

and two in L. principis-rupprechtii, representing three Chinese larch taxa was quantified and 

studied using eight polymorphic allozyme loci. Seven allozyme loci were found to be free 

from association in each taxa. Most of populations were found to be in Hardy-Weinberg 

equilibrium for these allozymes, with the exceptions of a few populations of L. olgensis and 

L. ginelinii due to heterozygosity deficiency, probably caused by self-fertilisation (see next 

Chapter). 

Less then 2% of total allozyme variation occurred between populations investigated in each 

of the three taxa. Analyses of spatial patterns indicated that the distribution of the allozyme 

variation did not correlate with geographic pattern in L. gmelinii, but a weak correlation was 

found in L. olgensis. This may have been caused by isolation by distance, resulting in that a 

higher level of population differentiation being present in L. ginelinii, compared with L. 

gmelinii. 

The values of Nei's genetic distances within each larch taxa were very small, about 0.002, 

while distances between taxa were larger than within, about 0.01, five times the distance 

within taxa. A dendrogram was reconstructed to elucidate evolutionary relationship between 

the three larch taxa, using these eight polymorphic enzyme loci and this indicated that L. 

gmelinii was more closely related to L. olgensis than to L. principis-rupprechtii. 
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CHAPTER 3 

Use of Allozymes to Investigate the Mating System of 
Taxa within the L. gmelinii Complex 
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3.1. Introduction 

3.1.1 Significance of mating system 

Measurement of the mating system provides critical information relevant for many aspects 

of forest tree genetic improvement programmes, such as genetic conservation and predicting 

genetic gain. It describes how plants transmit their genetic material from the current 

generation to the next generation. 

Knowledge of mating systems may help us to infer the genotypic composition of the 

population. For example, if a plant species possesses predominant selfing, the proportion of 

heterozygotes will quickly decline. Populations of the species will become genetically 

homozygous, and differentiation among populations will be large. On the other hand, if a 

plant species possesses predominant outcrossing, the genotypic composition within 

populations will tend to Hardy-Weinberg equilibrium. Low vigour of selfed seeds in an 

outcrossing population is expected due to inbreeding depression. Mating systems also 

influence the extent of linkage disequilibrium within a population and hence multilocus 

genotypic structure. Inbreeding populations are characterised by high levels of linkage 

disequilibrium, while in outcrossing populations linkage disequilibrium is only expected 

between tightly linked loci (Epperson and Allard, 1984). 

Knowledge of the mating system may help us to judge the quality of seeds from a seed 

orchard. For example, a pattern of predominant outcrossing may indicate a higher proportion 

of good seeds as long as pollen contamination is controlled. Predominant outcrossing also 

predicts the quality of open-pollinated seeds from natural stands for tree breeding. This is 

because inbreeding depression is avoided when selfing rates are low. 

Mating system provides information required for establishing seed orchard or other stands 

for producing seeds for plantation. Strict isolation control is required for predominant 

outcrossing species so as to obtain good quality of seeds. Serious pollen contamination in 

some established seed orchards has been reported. For example, Adams et al. (1997) 

investigated a mature Douglas-fir seed orchard in western Oregon. Pollen contamination rate 

from the natural stand was estimated as 0.255 ±0.096 in 1980, 0.519±0.276 in 1985, 

0.389±0.237 in 1987 and 1989, and 0.259 ±0.193 in 1990. Shaw and Allard (1982) scored 
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the mating system of eight natural populations and one seed orchard of Douglas-fir, and 

showed that outcrossing rate was about 0.90 for natural stands and a seed orchard. The high 

proportion of outcrossing means that there is a large potential for pollen contamination. 

Mating system can also be used for predicting population structure to some extent. For any 

mother tree, the pollen pool which it samples consists of three parts (Fig. 3.1). It may be 

derived from itself or genetic relatives (S); from genetic unrelated neighbouring individuals 

(N) within populations; and from other populations via pollen flow (M). The proportion for 

outcrossing is composed of parts of M and N. However, only the proportion M can be used 

for predicting population structure. Predominant outcrossing species possess a larger 

proportion of M+N than selfmg plant species (Fig.3.1). There is therefore a higher 

probability of receiving migrated pollen and this will result in a smaller degree of population 

differentiation. 

M 
	 M 	S 

	
M 

0 QO 'I, 
(a) 	 (b) 	 (c) 

Fig.3.1. A pie chart representing the relationship between migration rate (M) and mating 
system. (a) and (b) are predominant outcrossing species with different migration rates. (c) is 
a predominantly selfing species. 

In summary, quantification of mating systems may provide important information for plant 

breeding programme. 

3.1.2 Scoring of mating system 

Traditionally, mating systems were scored using polymorphic morphological marker genes. 

Shaw et al. (198 1) pointed out that as early as 1916, Jones used the progeny of homozygous 

dwarf tomato to estimate the outcrossing rate using progenies where any outcrossing was 
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with pollen of normal plants. At this time the scoring of mating systems was confined to 

experimental populations. 

This method was then developed by Fyfe and Bailey (1951) who proposed a statistical 

method for estimating outcrossing rate t and p, the frequency of dominant alleles in the 

population investigated. However, the method introduced by them is based on an 

assumption of equilibrium between selfing and outcrossing. Outcrossing rate can be 

estimated as 1 - j/i + f where  f is Wright's inbreeding coefficient, by the fitting 

observed proportions of genotypes descended from a known maternal genotype. A similar 

method was developed by Nei and Syakudo (1958). Shaw et al. (198 1) pointed out that these 

studies extended the "... use of the method from experimental populations to natural or other 

populations in which allelic frequencies are unknown." However, one limitation is that 

maternal genotypes must be known to make use of these methods. 

Two components must be required in estimating outcrossing rate: allele frequency in pollen 

pool and maternal genotypes. Use of codominant marker genes has widened the scoring of 

mating system to many different species. A single locus mixed model, wherein a proportion 

of zygotes are derived from selfing and the remaining zygotes are derived from outcrossing, 

was presented by Brown and Allard (1970) and Clegg et al. (1978) for estimating mating 

system. The genotype of the maternal parent can be inferred using a maximum likelihood 

method (Clegg, et al, 1978; Ritland, 1983). According to Shaw et al. (1981), a series of 

assumptions are involved in the single locus mixed mating model:(i) allele frequencies in 

pollen pool are distributed uniformly over the population of maternal plants; (ii) the 

probability of outcrossing is independent of maternal genotype; (iii) selection does not 

intervene in the time between pollination and the time that seeds or seedlings are sampled. 

Violations of these assumptions have been extensively reviewed by Mitton (1992). 

Deviation from these assumptions cause biases in the estimates of outcrossing rates. For 

example, heterogeneity of gene frequency between subpopulations may severely bias 

downward estimation of outcrossing rate (Ennos and Clegg, 1982). As a consequence, more 

accurate multilocus estimates of outcrossing rate have been developed. 

The use of multiple loci can obviously increase the potential for scoring outcrossed 

individuals (Shaw et al., 1981). This is because if one locus does not detect a outcross with 

certainty, then another locus might detect it. Moreover, Shaw et al. (198 1) pointed out that 
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multilocus estimates have lower variances than the mean of all single locus estimates. 

Several multilocus mixed models have been developed (Brown, et al., 1978; Shaw, et al., 

1981; Ritland and Jam, 1981). The model introduced by Brown eta! (1978) is only suitable 

for predominantly inbred species. This is because their multilocus model makes use of only 

multilocus homozygous genotypes using a maximum likelihood method. 

Shaw et al. (1981) showed that a multilocus outcrossing rate can be estimated by 

n / N(1 - a) where n is the number of discernible outcrossed progeny in a sample of size 

N, and a is the probability that an outcross will not be discerned. The expected a depends 

on maternal genotypic frequencies, allele frequencies in the pollen pool and the number of 

loci used. A larger number of loci may reduce the a value. The a can be estimated after 

single locus analysis to estimate maternal genotypic frequencies and allele frequencies in the 

pollen pool, using the model introduced by Clegg et al. (1978). Thus, in order to use the 

model introduced by Shaw et al. (198 1) to estimate multilocus outcrossing rate, a two step 

procedure is used. First, a single locus analysis is conduced using the method of Clegg et al. 

(1978), and then a multilocus analysis is performed. This method is simple, but does not 

make efficient use of multilocus data to estimate outcrossing rate. 

The deficiencies of the method proposed by Shaw et al. (198 1) were overcome by Ritland 

and Jam (1981). Ritland and Jain (198 1) proposed a model that can simultaneously employ 

multilocus data. However, the basic procedure is similar. First, maternal genotypic 

frequencies (if the maternal genotypes are not available) are inferred. Then, the estimates of 

the maternal genotypic frequencies are used for further estimating outcrossing rates. The 

second step is performed by an iteration equation so as to obtain maximum multilocus log 

likelihood (Ritland and Jain, 1981; Ritland, 1983). To date, this model has been widely 

used in many plant species. 

Additional information about inbreeding other than selfmg can be inferred by comparing 

estimates of single locus and multilocus outcrossing rate. Single locus estimates of 

outcrossing are expected to be biased downward by any biparental inbreeding in addition to 

selfing. Since multilocus analysis possesses higher resolution for detecting hybridised 

individuals than single locus analysis (Shaw, et al., 1981), it is expected that mean single 

locus estimate will be lower than that estimated using multiple loci when mating among 

relatives occurs. 
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3.1.3 Use of allozymes to study plant mating system 

Despite the fact that many PCR based markers have recently been developed, allozyme 

markers remain some of the best for estimating plant mating system. This is because of their 

codominant inheritance and cheap technical cost. They have been widely employed to score 

mating system, especially in conifers that contain haploid megagametophyte and diploid 

embryos (Adams, 1983; Mitton, 1992). In Larix, for example, the mating system has been 

scored using allozyme markers in two larch species. Natural populations of L. laricina 

(Knowles, et a!, 1987) and seed orchard of L. decidua (Gomöry and Panic, 1992) have been 

investigated. Both studies showed a lower outcrossing rate in Larix than for other reported 

conifers, such as logepole pine (Pinus contorta ssp. latfolia; Epperson and Allard, 1984) 

and Jeffrey pine ( Pinusjeffreyi; Furmer and Adams, 1986). 

Studies using DNA markers to score plant mating system have already been conducted. For 

example, Dow and Ashely (1996) explored the use of microsatellite markers to analyse seed 

dispersal and parentage of 62 adult bur oak, Quercus macrocarpa, and 100 saplings in a 

stand established in northern Illinois, USA. Their study demonstrated the utility of 

microsatellite analysis for studying mating systems. Since RFLP markers are also 

codominant, this marker can be used for scoring mating systems. For example, Milgroom et 

al. (1993) used six unlinked RFLP loci to examine the outcrossing rate in a natural 

population of chestnut blight fungus, Cryphonectria (Endothia) parasitica. They found that 

the multilocus estimate of the outcrossing rate was 0.74, including a mixed mating system 

for this fungus. 

Few studies have compared DNA based and allozyme based estimates of outcrossing rates. 

However, one study on a forest pathogen, Cronartium ribicola (Gitzendanner et al., 1996), 

indicate that comparable estimates of mating system parameters were obtained using these 

different markers. Both RFLP and allozymes indicated that genotype frequencies were in 

Hardy-Weinberg equilibrium and that the rust shows random mating (Gitzendanner et 

al., 1996). 

These data confirm the legitimacy of using allozyme markers for mating system estimates, 

and they will be used in this study of the three larch taxa. 
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3.1.4 Aims of the chapter 

It can be seen from the above that the mating system provides important information in 

practice. However, mating system has not been scored in the three larch taxa. The central 

questions asked are: What type of mating system do the three larch taxa belong to? Do the 

three taxa differ in outcrossing rate? Is there variation within taxa? If there is a deviation 

from random mating, how does this occur? 

According to the results obtained in other conifers, most of which possess a mixed type of 

mating system, one expectation is that there will be little difference between the three 

Chinese larch taxa and other conifers because they are wind-pollinated conifers. 

Thus, the aims of this chapter are: (i) to measure and compare mating systems of the three 

larch taxa among populations and taxa; (ii) to compare the results with those of other studies 

on conifers; and (iii) to estimate amount of true selfing and extent of biparental inbreeding 

within populations. 

3.2. Materials 

Open pollinated seeds were collected by family from natural populations of the three larch 

taxa. One population was available in L. gmelinii, six in L. olgensis and two in L. principis-

rupprechtii. Locations sampled and the number of half-sib families involved are listed in 

Table 3.1. The number of half-sib families scored ranged from 9 to 33 (mean 22). At least 

six seeds were available from each half sib family, enabling maternal genotypes to be 

inferred with reasonable certainty. 

3.3. Methodology 

3.3.1 Seed preparation and enzyme extraction 

Preparation of material and enzyme extraction were the same as in Chapter 2. 

3.3.2 Buffer systems and starch gel preparation 

Buffer systems and starch gel preparation were the same as in Chapter 2 

75 



Table 3. 1. Location and sample size of the 9 Larix populations investigated for mating 
system using allozyme analysis 

Species Population 	Latitude(N) 	Longitude(E) Half-sibs Seeds 	SeedsfHalfsibs 

L. gmelinii 

Jiagedaqi 	50024' 	124 007' 	21 	126 	6 

L. principis-rupprechtii 

Fengning 41 0 12' 1160 32 20 121 >6 

Hunyuan 39032' 113 041' 9 75 >6 

L. olgensis 

Beidaoshan 440 00I 131 007' 20 120 6 

Beihe 42025' 128 008' 29 174 6 

Xiaobeihu 44001' 128 0 50' 33 198 6 

Dahailin 44028' 129048' 25 288 > 6 

Dongfanghong 42 039' 128 006' 20 139 >6 

Changbei 410261 128 0 11' 21 209 >6 

3.3.3 Electrophoresis 

Conduct of electrophoresis was the same as in Chapter 2. 

3.3.4 Scoring of gels 

Scoring of gels was the same as in Chapter 2. 

3.4 Data Analysis 

Putative genotypes for each embryo and gametophyte were recored for each family to build 

up family genotype data within each population. Data from the gametophyte scored was 

used to infer the maternal genotype of each halfsib family. Using these data, quantitative 

analysis of the mating system within each larch taxa was analysed based on Ritland's mixed 

model (Ritland, 1983). Ritland's MLT programme (Ritland, 1990) was employed to 

calculate both single locus outcrossing rate (ta)  and multilocus (tm ) using maximum 
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likelihood methods. Standard errors of these estimates were calculated by conducting 200 

bootstraps between families (half-sibs). 

3.5. Results 

3.5.1 Primary screening of polymorphic markers 

The screening of polymorphic markers provided a total of six polymorphic enzyme systems, 

i.e. PGI, MDH, 6PGD, AAT, PGM and SDH. Detailed banding patterns and genetic 

explanation were shown in Fig.2.2 in Chapter 2. 

3.5.2 Mating system 

The mating system was analysed in each of the three taxa and results are summarised in 

Table 3.2. 

L. gmelinii 

Only one populations was available. Three polymorphic loci were used for estimating 

outcrossing rates, i.e. AAT-H, PGM, and SDH. Nearly complete outcrossing was 

demonstrated in a L. gmelinii population Jiagedaqi because both the estimated single locus 

(mean t, =0.977) and multilocus outcrossing rates (tm  0.986 ) were close to 1.00. The 

difference between tm  and t5  is not significant (Table 3.2). 

L. principis-rupprechtii 

Three polymorphic loci (PGI, AAT-I and PGM) and one locus (AAT-H) showing a small 

amount of polymorphism were used for analysis of mating system in population Hunyuan. 

The single locus outcrossing rate of PGI was t = 0.470, which is significantly smaller than 

1.0. The mean single locus value was t, = 0.730, which is significantly smaller than 1.0, 

while the multilocus outcrosssing rate was not significantly less than 1.0. The difference 

between t and tm  was very small and not significantly different from zero, indicating that 
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selfing was responsible for the low outcrossing rate rather than inbreeding (Shaw, et al., 

1981). 

Two polymorphic loci (P01 and PGM) and one slightly polymorphic locus (IvIDH-I) were 

used for analysis of mating system of population Fengning (Table 3.2). Both single locus 

outcrossing rates and multilocus outcrossing rate were not significantly different from 1.0, 

indicating that random mating occurred in this population. The difference between t and 

tm  was not significantly different from zero, indicating that selfing was responsible for the 

low outcrossing rate rather than inbreeding. 

In L. principis-rupprechtii, different outcrossing rates were found but these were not 

significantly different in the two populations due to large errors. Thus, based on multilocus 

estimates, it can concluded that the mating systems in these two populations Hunyuan and 

Fengning were predominately outcrossing. 

L. olgensis 

Polymorphic loci with variable degrees of diversity were used for analysis in six populations 

of L. olgensis (Table 3.2). Both mean single locus and multilocus outcrossing rates were 

significantly smaller than 1.00 in Xiaobeihu, Daihailin and Changbei. Moreover, differences 

between tm  and t was very small in both Xiaobeihu and Changbei, indicating the 

presence of significant levels of selfmg rather than inbreeding in these populations. 

However, this was not the case in population Daihailin, wherein t was significant smaller 

than tm•  This suggests the existence of inbreeding in addition to selfmg (Shaw, et al., 

1981). 

Other populations of L. olgensis, including Beidaoshan, Beihe and Dongfanghong, were 

shown to be completely outcrossing both for mean single locus and multilocus estimates, 

with tm  ranging from 0.847 ± 0.427 to 1.203 ± 0.371. 

Outcrossing rates in L. olgensis were variable between populations, but difference was not 

significant due to large errors, using the Student t test 
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It may be concluded that the three larch taxa generally exhibit predominant outcrossing. 

However, outcrossing rates are variable between populations and allozyme markers, with 

some populations expressing significant levels of selfing. Biparental inbreeding was 

implicated in only one population. In general variation in outcrossing rate within taxa is as 

large or larger than variation in outcrossing rate between taxa. 

3.6 Discussion 

The three larch taxa generally exhibit predominantly outcrossing, with some differences 

existing between populations within taxa. In conifers, abortion of selfed individuals 

(embryos) is responsible for ensuring a high rate of outcrossed seeds (Sorensen, 1982). 

Nearly complete outcrossing was detected in populations Jiagedaqi of L. gmelinii, in 

Dongfanghong, Beidaoshan, and Beihe of L. olgensis, in Fengning and Hunyuan of L. 

principis-rupprechtii. However, outcrossing rates were low in Xiaobeihu, Dahailin, and 

Changbei of L. olgensis, with multi-locus outcrossing rates ranging from 0.684 to 0.705. 

These results are similar to results already reported in studies of other conifers (Table 3.3), 

exhibiting mixed types of mating system. In Larix, lower outcrossing rates with significant 

selfing were observed as well. For example, in some natural populations of L. laricina, 

multilocus estimates were tm  = 0.729 0.908 (Knowles, et al, 1987) and in a seed orchard 

of L. decidua Mill., tm = 0.852 ± 0.07, (Gomory and Paule, 1992). These results are 

comparable with results found in some populations of L. olgensis. 

The variable outcrossing rates among populations may be due to a variety of causes (Mitton, 

1992). The presence of more than one embryo in a single ovule (polyembryony) in Larix and 

other conifers was reported (Sorensen, 1982). Many factors, such as a variety of seasons and 

low pollen production, contribute to low availability of outcross pollen. Rate of outcrossing 

is expected to increase with stand density. In low density stands, the probability for allele 

composition in the pollen pool of each mother tree to be diluted by pollen of neighbours is 

smaller than that in high density stands, thus leading to lower outcrossing rate. One typical 

example is ponderosa pine at a forest-grassland ecotone in eastern Colorado (Farris and 

Mitton, 1984). Average of outcrossing rate was estimated to be 0.96 in a stand with normal 

density, using allozymes (Mitton, et al., 1981), while a low rate of outcrossing was 

observed, 0.80, in a low density stand. 
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Table 3.2 Estimates of single-locus (t a ) and multilocus (tm ) outcrossing rate for populations of the three larch species ( standard errors in 

parentheses). The symbol '-' in the table stands for the locus being monomorphic. *: P<5%;**:p<l% 

L. gmelinii 

Jiagedaqi 

L.principis-rupprechtii 

Fengning 	Hunyuan Beidaoshan Beihe 

PGI - 0.680(0.341) 0.470(0.191)** - 0.715(0.512) 

MDH-I - 1.999(0.586) - 1.999(0.066) - 

6PGD - - - 
- 1.999(0.479) 

AAT-I - 
- 0.745(0.425) 1.999(0.334) 1.999(0.761) 

AAT-H 0.733(0.570) - 1.999(0.497) 
- 1.999(0.382) 

PGM 1.029(0.111) 0.940(0.154) 1.057(0.217) 1.158(0.380) 0.950(0.549) 

SDH 	0.972(0.135) 

t 0.977(0.077) 0.873(0.097) 0.733(0.127)* 0.847(0.427) 0.971(0.358) 

tm  0.986(0.081) 0.930(0.149) 0.792(0.169) 0.847(0.427) 1.203(0.371) 

- tm  -0.009(0.028) -0.056(0.092) -0.059(0.082) 0.000(0.031) -0.231(0.357) 

L. olgensis 

Xiaobeihu Dahailin Dongfanghong Changbei 

0.856(0.518) 1.999(0.000) 1.999(0.002) 1.999(0.233) 

- 1.999(0.690) 1.999(0.584) 0.196(0.129)** 

- 

- 1.999(0.625) 1.999(0.006) 

0.602(0.120)** 0.362(0.191)** - 0.728(0.104)** 

0.954(0.076) 0.667(0.302) 

- 

0.841(0.257) 0.913(0.051) 

0.601(0.140)** - 

0.720(0.066)** 0.655(0.101)** 0.987(0.367) 0.704(0.116)* 

0.704(0.070)** 0.684(0.107)** 0.996(0.368) 0.705(0.116)* 

0.016(0.020) _0.029(0.016)** -0.008(0.047) 0.000(0.025) 
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Table 3.3 Outcrossing rate of some conifer species in the family Pinaceae detected by 
allozyme markers 

Species & References 	Outcrossing rate 	 Mating system 
( t or tm  )t 	(Pure selfmg, outcrossing,or mixed) 

Balsam fir (Abies balsamea) 0.78- 0.99, mean 0.89 mixed 
Neale & Adams, 1985 

White spruce (Picea glauca) 0.75-0.99, mean 0.90 mixed 
King, et al, 1984 

Jack pine (Pintis banksiana) 0.88 ±0.047 mixed 
Cheliak, et al, 1985 

Logepole pine 1.03±0.04 mixed 
(Pinus contorta ssp. latfolia) 

Epperson & Allard, 1984 
Jeffrey pine( Pinusjeffieyi) 0.881-0.971 mixed 

Fumier & Adams, 1986 
Ponderosa pine (Pinusponderosa) 0.8 1±0.054(10w density) mixed 

Farris & Mitton, 1984 0.96±0.046(high density) 
Douglas fir 0.90 mixed 
(Pseudotsuga menziesii) 

Shaw&Allard, 1982 
Tamarack (Larix laricina) 0.316-0.897( t, mixed 

Knowles, et al, 1987 0.729 (low density)(tm) 

0.908 (normal density)( tm ) 
European larch 0.64-1.0 (ta ) mixed 

(Larix decidua) 0.852 ±0.007 (tm ) 
Gomory & Paule, 1992 

L. gmelinii 	 0.986±0.077 (tm ) 	 mixed 

(This study) 
L. principis-rupprechtii 	 0.792-0.930 (tm ) 	 mixed 
(This study) 
L.olgensis 	 0•6841•203(tm ) 	 mixed 
(This study) 

t 	t, 	outcrossing rate estimated by single locus; tm:  outcrossing rate estimated by 

multilocus methods. 
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Larix is a wind-pollinated conifer. The wind conditions at the time of pollen release will 

influence dispersal distance of pollen grains, which in turn may influence pollen pool 

composition of a mother tree and hence rate of outcrossing. Wind reduction may lead to low 

outcrossing rates. 

Variation of environmental factors may also contribute to variation of the outcrossing rate 

between populations. In addition to the effect of genotype, the floral phenology is usually 

associated with environmental factors, such as the accumulation of temperature. The 

difference in the timing of pollen release and female receptivity may influence the success 

of fertilisation. For example, Erickson and Adams (1989, 1990) found large clone to clone 

variation in the timing of pollen release and female receptivity in a seed orchard of Douglas-

fir. 

There are many other reasons for this population to population variation in outcrossing rate. 

However, this study suffers from lack of data on these important factors, which limit further 

analysis. This information is required in the future study of mating system. 

Population Dahailin of L. olgensis might present different characters to other populations of 

L. olgensis because biparental inbreeding in addition to selfmg is apparently occuring. One 

possible explanation is that family clumping may contribute to inbreeding in this population 

(Ennos and Clegg, 1982). Thus, it is necessary to use other information, such as field 

morphological traits, to confirm this hypothesis. 

It is a common phenomenon that the single locus outcrossing rate is quite variable between 

different loci within populations and species (Brown and Allard, 1970). This is also the 

case in the present study (Table 3.2). Genetic markers with low degree of polymorphism 

lead to inexact estimates of outcrossing rate due to larger standard errors (Table 3.2). 

However, this shortcoming is avoided using multilocus outcrossing estimates. This is 

because multilocus analysis provides higher resolution for detecting hybridised individuals 

than single locus analysis (Shaw, et al., 1981). Moreover, multilocus analysis is also more 

robust to model violations than single locus analysis (Shaw, et al., 1981; Ritland and Jam, 

1981). Thus, multilocus estimates of outcrossing rate are more reliable. 
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Several implications can be obtained from the above results. First, the variable mean single 

locus outcrossing rates between populations of L. olgensis, or between populations of L. 

principis-rupprechtii, indicate that population genetic composition is different, detected by 

single locus analysis. 

Second, where selfmg causes inbreeding depression and leads to a lack of heterozygotes in 

populations. This may be associated with a lower proportion of full seed and a lower 

germination rate (Gomory and Paule, 1992). A high level of inbreeding or selfing in some 

particular populations, such as Dahailin of L. olgensis and Hunyuan of L. principis-

rupprechtii, indicates that attention should be paid when seeds are collected from natural 

populations or even from seed orchard for afforestation. The different extents of outcrossing 

rates between populations of L. olgensis implies that this attention is necessary when using 

open-pollinated seeds for afforestation, or using seeds produced by a seed orchard. 

Third, the general predominant outcrossing of the three Larix taxa may indicate that gene 

flow may be extensive between populations if there is no obvious barrier. There is no 

evidence to show that taxa are very different from one another with respect to breeding 

system. Thus, strict isolation control is necessary when seed orchard or seed stands are 

established. 

Finally, the finding that the mating system is predominantly outcrossing in the three larch 

taxa means that field progeny tests which assume that families are composed of outcrossed 

sibs, will give reasonable estimates of genetic parameters of quantitative traits, such as 

heritability. 
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3.7 Summary 

Mating systems of the three Chinese Larix taxa were scored using allozyme markers. 

Population Jiagedaqi of L. gmelinii exhibited nearly total outcrossing (t,, =  0.986 ± 0.081). 

Two populations of L. principis-rupprechtii, Fengning and Hunyuan, shared no significant 

difference from random outcrossing (tm  =0.847± 0.427 0.792 ± 0.169). However, mating 

system was variable among populations of L. olgensis. Two populations of L. olgensis, 

Xiaobeihu and Changbei, exhibited significant levels of selfmg (tm  0.705). One 

population, Dahailin, exhibited inbreeding in addition to selfmg, with tm  being 0.684 

±0.107. However, the other three populations of L. olgensis, Beihe, Beidaoshan and 

Dongfanghong, exhibited predominantly outerossing, tm = 0.847 ± 0.427 -1.203 ± 0.371. 

These results are comparable to those found in other conifers including L. laricina and L. 

decidua. 
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CHAPTER 4 

Use of chloroplast DNA to infer 
genetic relationships between the three Larix taxa 
L. gmelinii, L. olgensis and L. principis-rupprechtii 
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4.1 Introduction 

The presence of DNA in chloroplasts (cpDNA) in Chiamydomonas moewusii was first 

demonstrated by Ris and Plaut (1962), using electron microscopic and cytochemical 

methods. Many studies have since been carried out concerning its structure and genetics 

(Downie and Palmer, 1992; Clegg and Zurawski, 1992). The circular DNA molecule 

contains coding regions for some specific ribosomal and transfer RNA genes, and many of 

the protein-coding genes necessary for the function of photosynthetic apparatus, such as 

psbC, psbD-H and atpA genes (Grierson, et al., 1988; Ohyama, et al., 1986). Many of the 

characteristics of the molecule, described below, reveal its suitability for use in studies of 

plant evolution, either in macroevolution or microevolution. 

In this introduction a brief description will be first given of the structure and genetics of 

the chioroplast genome, and the features that influence the choice of this marker for 

elucidation of genetic relationships of the three larch taxa in this study. The aim, of the 

present study is then presented. 

4.1.1 Use of cpDNA in studies of plant evolution 

4.1.1.1 Sequence organisation 

Chloroplast DNA is a double-stranded circular molecule, ranging in size from 120 to 217 

kbp (Downie and Palmer, 1992). It usually contains two duplicate regions in reverse 

orientation, the inverted repeat (IR), which are separated by large single-copy (LSC) and 

small single-copy (SSC) regions (Fig. 4.1). To date, the cpDNA of four species, Nicotiana 

tabacum, Oryza sativa, Marchantia polymorpha, and Pinus thunbergii (Sugiura, 1993 

submitted to Genbank databases), has been completely sequenced and the genes mapped, 

providing a reference for other studies. For example, the three non-coding regions in black 

pine cpDNA from trnF(GAA) to trnT(UGU) are located within SSC (Fig.4. 1; Fig 4.2) 

rather than within LSC, as is the case in Nicotiana tabacum. Moreover, the JR length in 

Pinus thunbergii, 495bp, is considerably shorter than in Nicotiana tabacum, 25.3 kbp, and 

0. sativa, 20.8kbp. 
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LSC 

f 	Black pine 

cpDNA 

lRb 	 119, 707bp 	 IRa 

trnF 

trnL 

trnl 	 ssc 

Fig.4. 1. Structure of the chioroplast DNA molecule of black pine (Pinus thunbergii), drawn 
according to its complete sequence submitted by Sugiura( 1993) to Genbank databases (http: 
//www2. ncbi. nim. nih.gov/cgi-bin/genbank):  IR-  Invert repeat (495bp); LSC= large single 
copy region (65696bp); SSC = small single copy region (5401 lbp); and the three genes, 
trnF, trnL and trnT located in the SSC region, which will be investigated in the present 
study. 

trn T (UGU) 	trn L (IJAA)5' exon 	trn L (UAA) 3 'exon 	tm F(GAA) 

-- 
3 ' 	 5' 

a—> 	 C —> 	 e—> 

d 

Primers: 

5'-CATTACAAATGCGATGCTCT-3' 
5'-TCTACCGATTTCGCCATATC-3' 

C: 5'-CGAAATCGGTAGACGCTACG-3' 
5'-GGGGATAGAGGGACTTGAAC-3' 
5'-GGTTCAAGTCCCTCTATCCC-3' 

P 5'-ATTTGAACTGGTGACACGAG-3' 

Fig. 4.2 Positions, directions and sequences of three pairs of universal primers. The three 
fragments (ab, cd and ef) are of similar size in some species, about 500bp (Taberlet et al., 
1991). 
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In some conifers, such as some species in the family Pinaceae: i.e. Douglas fir (Pseudotsuga 

menziesii (Mirb.) Franco), radiata pine (Pinus radiata D.Don; Strauss, et al., 1988), and 
Larix laricina (Raubeson and Jansen, 1992), the large (20-25kbp) inverted repeat is missing. 

Many other species in other families also lack the invert repeat, e.g. Taxaceae, Taxodiaceae, 

Podocarpaceae, Cupressaceae and Araucariaceae (Raubeson and Jansen, 1992). However, 

later sequencing has shown that in the case of black pine a short invert repeat is present 

(Genbank database; Sugiura,1993 ). Because the inverted repeat is very short, and does not 

contain the coding region of 23S ribosomal RNA gene in which there are two highly 

conserved recognition sites for the restriction endonucleases KpnI, located 800 base pairs 

(bp) apart, the strategy used by Raubeson and Jansen (1992) cannot be used for detecting 

the existence of inverted repeats. Thus, there is some risk in saying that there is no inverted 

repeat in Larix and other conifers. 

4.1.1.2 Features of cpDNA suitable for analysis of macroevolution 

Macroevolution here means the evolution at the level of species or at a higher level. Many 

features of the cpDNA molecule are considered to make it a valuable tool in phylogenetic 

and taxonomic analyses at the species level (Clegg and Zurawski, 1991; Palmer, et al. 1988). 

Based on the reviews by Gillies (1994; Ph.D. thesis) and Clegg and Zurawski (1991), these 
features are the following. 

D A low mutation rate, which indicates that little intraspecific variation might be expected. 

Mutation in cpDNA is of two types, nucleotide substitutions (point mutation) and rearrange-

ments. In the case of substitution, the mutation rate for structural genes is, on average, 

fivefold slower than for plant nuclear genes (Wolfe, et al., 1987). Rearrangements, including 

inversions, insertions or deletions of genes and introns, and loss of one copy of the IR occur 

rarely in land plants. The processes that influence the formation of these rearrangements is 

not clear. Downie and Palmer (1991) argued that the occurrence of rearrangement may 

involve some major alteration of JR (its loss and expansion). Downie and Palmer (199 1) also 

pointed out that once cpDNA rearrangements are found, these mutations should be 

considered to be more powerful characters than individual nucleotide substitutions and have 

the potential to resolve with confidence a particular branching point in a phylogeny. This 

can be easily understood because the rare event of the rearrangement may indicate its 

important role in phylogeny reconstruction. Thus the conservative nature of cpDNA in terms 
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of point mutation and rearrangements implies that it is a powerful indicator for 

macroevolution, and it has already been recommended for phylogeny reconstruction in 

plants, such as in some conifer species (Szmidt, 199 l;Wang and Szrnidt,1993). 

© The predominantly uniparental inheritance of the molecule presents a clear record of 

historical events. The chioroplast genome is usually maternally inherited in angiosperms 

(Morgensen, 1996), but in most conifer species, such as Larix (Szmidt, 1990; Szmidt, et al., 

1987), it is paternally transmitted (Mogensen, 1996). Uniparent inheritance results in the 

absence of recombination during meiosis. Thus the effect of recombination on phylogeny is 

omitted. 

© The large amount of DNA present in the chioroplast makes its evaluation relatively easy. 

A large number of copies of the molecule, between 20 and 200, in each mature chloroplast 

facilitates its extraction, detection and analysis (Clegg and Zurawski, 1991). 

® As is stated before, the publication of the complete sequence of cpDNA from four 

species, provides a good opportunity for designing universal primers. For example, a set of 

universal cpDNA primers have been designed by Taberlet et al.(1991) and Dumolin-

Lapegue et al.( 1997). Use of these primers may facilitate phylogeny construction using 

DNA sequence data from some specific regions of the molecule. 

It can be seen that these features, especially the slow rate of evolution and uniparental 

inheritance, make cpDNA a valuable tool in phylogeny studies at the species level. For 

example, the rbcL gene, which encodes the large subunit of ribulose-1,5-bisphosphate 

carboxylase / oxygenase (RUBISCO), has been widely sequenced from numerous plant taxa, 

such as the phylogeny construction in some monocots and dicots plant species (Wolfe, et 

al. 1989; see review by Clegg and Zurawki, 1991, and Clegg, 1993) and also in three closely 

related genera Hordeum, Triticum and Aegilops (Gielly and Taberlet, 1994). 

These features outlined above also suggest that cpDNA markers may be useful tools to 

elucidate the genetic relationship among the three taxa of Chinese larch species, because we 

do not know when the divergence among the three taxa occur. If there is a difference 

detected among them, the divergence probably occurred a long time ago because the 

mutation rate is so low in cpDNA, judged from other plant species (Clegg and Zurawki, 
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1991). If there is no difference in terms of cpDNA sequence data, divergence among these 

three larch taxa may have occurred recently. Since the point mutation rate may be smaller 

compared with those of nuclear DNA (Wolfe, et al., 1987), use of cpDNA sequence data 

will provide inferences for a longer time scale than use of nuclear DNA sequence data. 

However, we should also consider other features of cpDNA markers in choosing appropriate 

regions for elucidating the genetic relationship among the three Chinese larch taxa. These 

features are described below, and may help us to decide which specific regions of cpDNA 

are likely to be useful to detect the divergence among the three Chinese larch taxa. 

4.1.1.3 Use of cpDNA in microevolution 

The other feature of cpDNA is the variation within species, the intraspecific variation. 

Intraspecific variation in cpDNA has recently been found to be greater than was originally 

thought. After reviewing many studies using cpDNA in plant biosystematics, Harris and 

Ingram (1991) concluded that far from being rare, intraspecific cpDNA variation is relative 

common. Therefore, cpDNA markers have also been extensively employed to survey 

population genetic structure. 

For example, Mason-Gamer et ai(1995) investigated variation within and between 

populations of Coreopis grandflora (Asteraceae), using RFLP analysis of cpDNA. They 

detected sufficient cpDNA variation for analysis of intraspecific and inter-population 

genetic structure to provide evidence for gene flow occurring among populations. Similarly, 

Fumier and Stine (1995) found RFLP variation among populations of white spruce (Picea 

glauca) and estimated population differentiation to be F = 0.147. In four species of 

European oaks (Petit, et al., 1993a), highly significant genetic variation has been found 

using cpDNA (G5  = 0.895). While Powell et al. (1995) have explored the use of PCR- 

based SSR (simple sequence repeats) analysis of cpDNA (cpSSR) in population structure of 

Pinus leucodermis Ant.. They surveyed 305 individuals from seven populations of this 

species, and revealed the presence of four variants with intrapopulational diversities ranging 

from 0.000 to 0.629, while population differentiation based on cpSSR was estimated to be 

G 1  = 0.22, This diversity was not detected using RFLP analysis of cpDNA in the same 

populations, and Powell et al. (1995) anticipate that analysis of SSR loci within the 



chioroplast genome should provide a highly informative assay for examining the genetic 

structure of plant populations. 

It seems therefore that the sequence of cpDNA exhibits two distinct features. On the one 

hand it exhibits quite conservative feature due to very low mutation rate compared with 

other genomes; on the other hand, it also exhibits intraspecific variation in some species. 

These two properties may vary, depending upon the species studied, and its population 

history, and also upon the specific DNA sequence region analysed such as coding and non-

coding regions. These double properties tell us that great care should be taken when cpDNA 

markers are chosen to investigate the three larch taxa. The reasons are analysed below. 

Earlier workers have already investigated variation in larch species using cpDNA markers. 

Tang et al.( 1995), using.- -RFLP analysis, have already studied the genetic relationship 

between the three Chinese larch taxa, and found Nei's genetic distance to be zero between 

any pair of the three larch taxa. These results indicated that the divergence among the three 

taxa may have occurred recently. Based on these results, the assumption of low levels of 

intraspecific cpDNA variation for the three Chinese larch taxa is still used and will be 

tested in the present study. 

The method of RFLP analysis is to use restriction enzymes to digest the genome and hence 

produces a population of fragments with discrete size. Then variation between individuals is 

probed by hybridising these fragments in each individual with a series of given radio-

labelled fragments (Fig.43). The length variation detected by probes is caused by single 

base change and insertion! deletion. RFLP analysis is based upon shared restriction 

fragments or not. However, several points need to be made concerning RFLP analysis. 

First, hybridisation can occur if nucleotide sequence in fragments are not completely 

homologous to a given probe. For example, if the major part of a nucleotide sequence is 

homologous to a probe, this may still lead to successful DNA-DNA hybridisation. Thus the 

sequence difference between fragments with the same size on a gel that can hybridise with 

the same probe cannot be detected. 
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Second, the number of sites analysed by RFLP method is quite limited. For example, a 6bp 

recognition enzyme would be expected to cut once every 4096bp if all four kinds of bases 

are randomly arranged in a genome. 

Third, one problem for using RFLP to reconstruct phylogeny is that it is difficult to make a 

clear judgement on the difference between probability of a restriction site gain and a 

restriction site loss. How to assign different weights to RFLP character data needs to be 

explored. 

Fourth, use of restriction data for phylogenetic reconstruction depends on the method for 

scoring data. Bremer (1991) compared four different scoring methods for phylogeny 

reconstruction, yielding various results. Different hypotheses are involved in the scoring 

methods. For example, the fragment measurements are made directly on the autoradiograms 

from the different hybridisation. Fragments of the same size and position are scored as 

characters (present or absent) for phylogeny analysis. This method was called by Bremer 

(1990) the fragment occurrence analysis (FOA). Although the risk that two fragments of 

equal length come from different parts of the same genome can be ignored, the fragments 

used for phylogeny analysis are not evolutionarily independent. Thus, this introduces bias 

into the assessment of genetic relationships because the same length mutation may be scored 

on more than one occasion, and be given more weight than is appropriate. However, the 

above problem is avoided by the method of site occurrence analysis (SOA) in which only 

site mutation is scored rather length mutation as characters for phylogeny analysis (Bremer, 

1991). But, the length mutation is omitted using SOA for phylogeny analysis. Bremer (199 1) 

proposed that " the choice of method is dependent on a trade-off between accuracy and 

resource (time)." 

One other point is that hybridisation to probes will not detect small length difference in the 

DNA due to the resolving power of the method being low. Small changes in fragment length 

cannot be detected. 

Finally, RFLP analysis fails to tell us detailed information in terms of specific regions 

although it can provide general information regarding specific restriction enzyme such as 

mapping. In a word, RFLP analysis provides limited detection regarding site mutation and 

does not provide a full comparison of DNA sequences. 
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In published work, the divergence among twelve larch taxa was detected by RFLP analysis 

using the FOA scoring method and Nei's genetic distance (Tang, et al, 1995). Nei's genetic 

distances among the three Chinese larch taxa were estimated to be zero, providing only a 

preliminary insight into the evolutionary relationship among them. 

Therefore there is at least one advantage for studying sequence of some specific regions in 

cpDNA over the RFLP analysis in that it can give us a clear picture of the difference 

between the three taxa in terms of specific cpDNA regions. Furthermore, comparison of 

cpDNA sequences may directly avoid the drawbacks of RFLP analysis and may provide 

evidence in support of genetic relationship between the three larch taxa. 

a 	 b 	
\I/ 

2 	 a 	b 	c 

Probe 

1 	2 	 1 	2 

b 	 b 

C 

a 	a 

b 	 b 

Fig.4.3 Schematic presentation of restriction, electrophoresis and Southern hybridisation. 
Top: Two individuals 1, 2. Arrows show cutting sites. Letters a, b and c indicate the 
fragment size. The homologous region to the probe is shown. Botton left: Fragments are 
separated on agarose gel by electrophoresis. Bottom right: Radio-labelled bands after 
Southern hybridisation. 
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Neutral theory predicts that the non-coding regions of DNA are likely to exhibit higher point 

mutation rates than the coding region (Kimura, 1968), because mutation in this region does 

not lead to a change in biological function, while the coding region is usually more 

conservative because of natural selection. Analysis of. noncoding regions of cpDNA could 

be more informative in studies at lower taxonomic levels. Thus, markers for the non-coding 

region may reveal greater levels of variation than coding region markers, and therefore, may 

be more useful for elucidation of relationships between closely related species (Wolfe and 

Sharp, 1988; Gielly and Taberlet, 1994). 

For example, one non-coding region in the trn L intron (tRNA' (UAA)-intron) of cpDNA 

has already been employed in analysis of population structure in Silene alba, a dioecious 

angiosperm (McCauley, 1994). Using PCR-RFLP analysis, McCauley (1994) found the 

variation in the trnL intron and estimated that Wright's F s, to be 0.67 over a 25 x 25 km 

portion of the species range. In a separate study, the trnL intron was used for population 

structure in Quercus robur and Q. petraea in Demark (Jøhnk and Siegismund, 1997), 

showing significant population differentiation among the seventeen Danish population of Q. 
robour (G5  = 0.6). In reconstructing phylogenies of the three closely related genera 

Hordeum, Triticum and Aegilops, which cannot be resolved by rbcL gene but by trnL 

markers, Gielly and Taberlet (1994) argued that these three non-coding regions seem to be 

well suited for infering plant phylogenies between closely related taxa since (i) double-

stranded cpDNA can be easily be amplified for a wide taxonomic range of plant species, and 

(ii) the size of these noncoding regions is small enough to allow us to get the whole 

sequence by using only the amplification primers. 

Based on the above considerations, use of the non-coding regions of cpDNA is an 

appropriate experimental method for elucidating the genetic relationship among the three 

larch taxa. On the one hand, it provides a larger opportunity to find variation between them. 

On the other hand, it will probably provide an estimation of divergence over a long time 

scale because of a lower point mutation rate in cpDNA compared with the nuclear genome. 

4.1.2. Aim of the present study 

It is likely that the difference between the three Larix taxa may be evident in many traits 

such as in branch, seedling and cone traits (Appendix. I) due to environmental modification. 

94 



The three taxa can also be distinguished using some allozymes (nuclear markers; Chapter 3), 

showing quite close relationship between them. However, results already obtained using 

RFLP analysis of cpDNA, show that there is no difference between the three taxa (Tang, et 

al., 1995). These results motivate further study to elucidate the divergence of the three 

Chinese larch taxa by using cpDNA sequence data, particularly from the non-coding regions 

of the molecule. 

The objective of this part of the study is to elucidate the genetic relationship among the three 

Chinese larch taxa using cpDNA markers. Three specific non-coding regions of cpDNA, 

from trn T (UGU) to tm F(GAA) (Taberlet, et al., 1991), will be first investigated using 

PCR-RFLP analysis, and be further sequenced so as to find the genetic relationship between 

the three larch taxa. Since complete sequence of cpDNA of black pine, which is also from 

family Pinaceae, is available, black pine cpDNA is used as a reference for comparison with 

larch. The evolutionary relationship between larch and black pine are not studied here, but 

the extent of divergence between them at the cpDNA sequence level can be ascertained. 

The practical significance of this analysis is twofold. First, the results may provide 

information concerning historical events related to the formation of the three taxa

'

and 

maybe be used for providing evidence on current population genetic structure. Second, the 

genetic relationship may provide useful information on how large the divergence is between 

taxa and hence on how to take advantage of these divergences. For example, if the genetic 

relation among them are quite close, there is little advantage in hybridisation of taxa. 

However, if there are large difference in genetic composition, heterosis is possible between 

the taxa. 

4.2 Materials and Methods 

4.2.1 Materials 

Fresh buds were collected from L. gmelinii and L. principis-rupprechtii in the Royal Botanic 

Garden (RBG), Edinburgh, for DNA extraction. Needles were obtained from L. olgensis 

seedlings, germinated for about three months and then used for DNA extraction (Table 

4.1). Two individuals were analysed from each of the three taxa. 
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Table 4.1 Sample size and locations of the three Chinese larch species 

Species 	 Samples 	 Location 

L. ginelinii 	 2 	 19795307, and 54.0089, China adj. 

E.U.S.S.R., RBG, Edinburgh. 

L. olgensis 	 2 	 Changbei Shan Mountain, China 

(1994) 

L. principis-rupprechtii 	2 	 19731138 and 19793328, 

RBG, Edinburgh. 

4.2.2 DNA extraction 

The method used in this study for extracting DNA is given in Appendix ifi. 1. 

4.2.3 PCR-RFLP analysis 

4.2.3.1 PCR principle 

The polymerase chain reaction (PCR) is based upon cycling between three different steps a 

number of times. In the first step, genomic DNA is denatured by heating (Fig.4.5), resulting 

in production of single stranded DNA. A pair of primers for amplification of the specific 

region of interest is then annealed to the DNA, in the presence of buffer, enzyme and free 

nucleotides, at a reduced temperature. Then a new strand of DNA is synthesised between the 

primers by Taq DNA polymerase I, resulting in a double increase in concentration of the 

required DNA fragments. Many cycles of the same procedure (25-40) are repeated, resulting 

in an exponential increase in the concentration of the required fragment of DNA. In the 

initial cycle copies are made of the target sequence and, thereafter, copies are made from 

these copies. An agarose gel, 1.0 -P2.0%, was run to examine the PCR products. 

4.2.3.2 Setting up the PCR reaction 

See Appendix ffl.2. 
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Fig 4.4 The basic Polymerase Chain Reaction (PCR) process for amplifying up specific 
regions of DNA flanked by primers. 
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4.2.3.3 Chloroplast DNA primers 

Three pairs of universal chioroplast DNA primers for the amplification of three non-coding 

regions of cpDNA were used in this study (Fig.4.2; Taberlet, eta!, 1991). 

4.2.3.4 Digestion with restriction endonuclease 

Restriction enzymes with 4bp recognition sites were employed to digest the amplified 

products, to detect differences between the three taxa. Eight four-base-cutter restriction 

enzymes were employed (see Appendix ffl.3). The recipes used for the digestion are listed in 

Appendix 1113. 

4.2.3.5 Preparation of agarose gel and electrophoresis 

See Appendix 111.4. 

4.3. DNA sequencing 

The DNA sequencing method used in this study is the chain-termination method developed 

by Sanger et al. (1977). The DNA to be sequenced acts as a template for the enzymatic 

synthesis of new DNA, starting at a defined primer binding site. A mixture of both deoxy-

and dideoxynucleotides is used in the reaction. There is a finite probability that a 

dideoxynucleotide (ddNTP) will be incorporated in place of the usual deoxynucleotide at 

each nucleotide position in the growing chain. Once a ddNTP is incorporated into the 

growing chain, elongation is terminated, resulting in lots of fragments of varying length. The 

nucleotide sequence can, therefore, be determined by running four separate reactions; each 

of which contains a single dideoxynucleotide (ddATP, ddCTP, ddGTP, ddTTP). The 

resulting fragments of varying length are then separated on a polyacrylaniide gel, and the 

sequence is determined by correlating the order of the bands on the gel with the 

dideoxynucleotide used to generate each band. An alternate approach to that used in this 

study, is to attach a different nucleotide-specific label to each dideoxynucleotide. The 

reaction can then be run in one tube instead of four and analysed on a single gel lane. For 

detail, see QIAGEN sequencing guide (QIAGEN,1995). 
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The automated sequencing (fluorescent) method was employed in the present study. This 

method, unlike manual sequencing methods that generally use a radioactive label and 

visualise the banding pattern by autoradiography (QIAGEN, 1995; Sambrook, et al., 1989), 

uses a scanning laser to detect DNA fragments labeled with fluorescent dyes. The total 

sequencing procedure is composed of four steps: (i) purification of PCR products; (ii) cycle 

sequencing; (iii) purification of extension products, and (iv) electrophoresis, followed by 

data collection. See Apppendix ffl.5. 

4.4 Results 

4.4.1. PCR-RFLP 

4.4.1.1 PCR amplification 

Figure 4.5 shows the three fragments amplified using the three pairs of universal cpDNA 

primers a and b, c and d, and e and f (Fig. 4.2) with the three Chinese larch taxa. Results 

show that there is no detectable variation in band size for the three non-coding regions of 

cpDNA between the three Chinese larch taxa (Fig.4.5). 

The sizes of the amplified bands were estimated according to non-linear regression of length 

on distance for the standard fragments (1 kbp ladder marker), using a least-squares method 

(Weir, 1990). The approximate sizes of amplified fragments for the three larch species were: 

475bp between trnT(UGU) and trnL(UAA), amplified by primer pairs a and b; 546 bp 

between trnL(UAA) 5' exon and trnL(UAA) 3' exon, amplified by primer pairs c and d; and 

469 bp between trnL (UAA) 3' exon and tm F(GAA), amplified by primer pairs e and f. 

The total length between tmnT and tmnF was about 1490bp, which is similar to that of black 

pine cpDNA whose sequence was obtained from GenBank, and to other species such as 

Pinus nigra and Robiniapseudacacia (Taberlet, et al.,199l). 

4.4.1.2 RFLP analysis 

Eight 4bp cutter restriction endonucleases were used to digest the three larch taxa 

(Appendix 111.3). Enzymes were chosen based on the pine cpDNA sequence information 

already obtained from the Genbank database. Digestion patterns indicated that there were no 

differences in the three non-coding regions between the three Chinese larch taxa. For 



example, figures 4.6(a), (b) and (c) show some of the patterns produced by the different 

restriction enzymes. The bands sizes estimated from the gels are summarised in Table 4.2. 

However, three restriction site differences were found in these regions that differentiated 

Larix cpDNA from that of black pine. One of these mutations was that found in the region 

between /rnT and trnL(5'), which lacks a cutting site for Tru 9 I in pine, while a cutting site 

was evident in larch. A second mutation was detected in the region between tm L(5') and 

tmnL(3'), which possessed a Rsa I cutting site in pine but not in larch. The third mutation was 

present in the fragment amplified between tmnL (3' ) and trnF ; there was a Tru 91 cut site in 

pine but not in larch. 

Table 4.2 Fragment length estimated according to its migration distance on the gel after 
digestion for each of the three Chinese larch taxa. 

Fragments 	trnT--trnL(5')(ab band) trnL(5')-tmnL (3')(cd band) tmnL (3')- trnF(ef band) 

Size 	 475bp 	 546bp 	 469bp 

AluI 460bp 382,130bp 407bp 

Cfo I 364bp undigested undigested 

Hsp92 II undigested 421bp,146bp 3 lObp 

MboI 235,167bp 278bp not resolved 

MspI undigested 434,130bp 425bp 

R.sa I undigested undigested* 366bp 

TaqI 249,200bp 218, 98bp 210bp 

Tru9I 363,185bp* 357bp undigested* 

*: indicates that the fragment could / could not be digested by the enzyme in pine cpDNA, 
but could not/ could be digested by the same enzymes in larch cpDNA. 
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Fig. 4.5. PCR products obtained using three pairs of universal cpDNA primers for the three 
larch taxa in this study. Photographs (a), illustrates band amplification obtained by primer 
pair a and b, the region between trnT and trnL(5'); photograph (b) illustrates band 
amplification obtained by primer pair c and d, the region between tm L(5') and trnL(3'); 
photograph (c) illustrates band amplification obtained by primer pair e and f, the region 
between trnL (3') and trnF. In each figure, lanes 1 and 2 are L. gmelinii, 3 and 4 are L. 
olgensis, and 5 and 6 are L. principis-rupprechtii. The lane marked 'M 'is 1kb ladder 
marker. 

(C) 
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Fig. 4.6a. PCR products amplified by universal primers a and b; the region between trnT and 
trnL(5'), restricted by endonuclease Cfo I. Lanes 1 and 2 are L. gmelinii ; 3 and 4 are L. 
olgensis: 5 and 6 are L. principis-rupprechtii. Lanes 7-11 are other larch species which are 
not focused upon in this study. Lane CK, containing original PCR products and no 
restriction enzyme, is used for control. The 364bp band estimated according to its migration 
distance was resolved after digestion, but the expected presence of the small band (about 
11 lbp) was not detected. The bottom band is thought not to be restriction products but 
primer artfacts which can be inferred from the presence of the same band in control lane. 
The lane marked 'M' is 1kb ladder marker. 

cf c I 
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Fig. 4.6h. PCR products amplified by universal primers c and d: the region between tm L(5') 
and tmnL(3'). digested by eight restriction endonuclease in L. olgensis. Lanes 1 to 7 represent 
the digestion by restriction endonuclease Alit I. Cfo 1. Msp I. Mbo I. Hsp 9211, Rsa I. Tcxq I 
and Tru 91. respectively. The lane marked 'CK' represents uncut PCR products for control. 
The lane marked 'M 'is I kb ladder marker. Results of the remaining larch taxa in this study 
are the same as L. olgelisis. 
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Fig. 4.6c. PCR products amplified by universal primers e and f: the region between trnL 
(3') and trnF. digested by eight restriction endonuclease in L. olgensis. Lanes 1 to 7 
represent the digestion by restriction enzymes Alu I. Cfo I, Msp I, Mbo I, Hsp 9211, Rsa 1, 
Taq I and Tru 91, respectively. The lane marked 'CK' represents uncut PCR products for 
control. The lane marked 'M' is 1kb ladder marker. Results of the remaining larch taxa are 
the same as L. olgensis. 
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The objective of the digestion analysis is roughly to try to find variation among the three 

larch taxa, caused by point mutation. No difference in length scored by restriction implies 

that the three larch taxa are quite related in terms of these three non-coding regions. 

However, only a small proportion of sites is investigated using this method. Thus, 

comparison of full sequences of these three non-coding regions is clearly required in order 

to find variation. 

4.4.2 Sequencing 

In order to further investigate any differences between the three Chinese larch taxa, a 

sequencing analysis was carried out on each amplified fragment. One individual from each 

species was used for sequencing. Three fragments were sequenced separately and the results 

combined, to form a single sequence for the region trnT(exon) to trn F (exon). The DNA 

sequence was determined according to the corresponding strongest signal at each base 

position, showing that the sequencing error is less than 10% and hence the results are 

reliable. 

Table 4.3 Base compositions for the three regions of cpDNA not including primers, and the 
total length including primers in Larix, as compared with black pine cpDNA (Pinus 
thunbergii). 

Frequency of four bases 
Region 	 Species Length(bp) A 	C 	G 	T 

Intergenic spacer (ef) 

tmnL intron (cd) 

Intergenic spacer(ab) 

Total region(af) 

Larch 415 0.340 0.164 0.183 0.313 

Black pine 420 0.348 0.159 0.181 0.312 

Larch 517 0.284 0.222 0.174 0.320 

Black pine 528 0.287 0.212 0.164 0.336 

Larch 440 0.275 0.218 0.157 0.350 

Black pine 448 0.270 0.239 0.156 0.335 

Larch 1452 0.297 0.202 0.167 0.324 

Black pine 1477 0.298 0.205 0.173 0.324 
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No differences were observed between the three larch taxa within the three regions of 

cpDNA that were sequenced (Fig. 4.7). The base composition of these three non-coding 

regions of cpDNA was also compared with the same regions of black pine (Table 4.3), 

showing a similar sequence in both taxa and with more than 60% of A+T content. The total 

length of the three fragments was 1452bp, which is smaller than that estimated from the gel 

1490bp (Table 4.2). 

A sequence alignment analysis conducted between larch and black pine cpDNA using the 

Gene Jockey package (Fig. 4.7), indicated many differences between these two taxa, 

including both base substitution (92bp) and insertion/deletion events. In addition, the total 

length of the region (a!) was shorter in Larix than that detected in black pine (Table 4.3). 

In the ab band, there were two cutting sites for the tru 91 in larch cpDNA but not in that of 

pine (Fig. 4.7). One is located at the 1063th base position; where 'TTAA' in larch has 

become 'TTAT' in black pine by mutation (transversions). Another cutting site is at the 

1343th base position; where 'TTAA' in larch has become 'GTAA' in black pine by mutation 

(transversions). Comparison of sequence also reveals the difference between larch and pine 

cpDNA for the digestion by Taq I in the 1027th and 1028th base, and the 1445th base 

(Fig.4.7). 

In the region between trn L (5') and tmnL (3'), amplified by primer pair c and d, the reason 

for the Rsa I not digesting larch cpDNA but digesting black pine is due to the substitution of 

base G by T, at the 633th base position (Fig. 4.7). Although both larch and black pine 

cpDNA can be digested by either Mbo I or Hsp 9211, there are differences between them. 

For the Mbo I, the 764th base position is different: the base is G for larch and T for pine. 

For the Hsp 9211, the 53 ith base position is different: the base is C for larch and T for pine. 

Comparison of sequence of the region amplified by primer pair e and f indicated that the 

reason that the tru9l could not digest larch but could digest pine is due to mutation occurring 

at two sites. One is at the 93rd site where T is substituted by G in larch (transversions). The 

second is at the 273rd base where TTAA is missing in larch cpDNA. Furthermore, there are 

also differences in the digestion patterns obtained by Mbo I and AluI due to base substitution 

(Fig.4.7). The Mbo I cannot digest at the 258th base position in larch but can in pine, due to 
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Primer f AluI MspI 

1 	ATTrGAACTGGTGACACGAGGATTTTCAGTCCTCTGCTCTACCAACTIGAGCTATCCCGGC 
 • • • • • • • • • • • • •G. • • • • • • • • • • • • • • • • • • • • • • • • • • . • . • • . • • • . . • • • . • • • • 

Mho I 
* 

	

61 	TCTrCCCTGTGGATCATCCTGGTACAAGGTTTGAACTrGTGTCAACTAAAAATAAGGAAA 
Tru9I 

• • • • • • • • • • • • • • . • • • • • • s.C. • • • •Ts • • • • • • • • • • • • • • • • • • -G.A.T. 

zthI 	 Tag I,Mbo I 

	

121 	AAAAGGATITrrCCTACTITrTAGAAATCTrrATTATI1 CACT 
• • •G.T. • • • • •A. S 5•5 . 	S 	Ss S e S 	S 	S 	S S 	• • • • • • • T. • • • • • 

Alb  I * 

	

181 	
TATGATAAAAAATTGACTGCGATCGAATAATITCCAAAMATATCATCTATGTGGATCAT 

o I 

• • • •.. • • •-.G. • • • • •A. •T. • • • • • • •. •A. • • • • • •C.A. • •.... •A. . . • . 

Mo1 	 MM  * 	 * 	* 

	

241 	ATATCACAAAATGATTTTATCATATGATCAACT -------- GATCAACCCAAC'ppri'CAT 
Mbo I 	Alu I Tru 91 

•ssS•sse•s•SC5A.sG.ss........SG.. TA'IrAACA.......T.....Gc.... 

Hsp 9211 	 Hsp 9211 

301 
• • • • • • • •. •A. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •A. s--s... • S.C.. 

TaqI 	 TaqI 	 MboI 

	

361 	GGTAAAAGAATICGAGAAGTGAGAATGGATTCGAACTAACGGAATTGGAGAAAATAGATCA 
• • • • • • • • • • • • • • •A.T. • • • • • • • • • • • • • •C. •T. • • • • • • • • • • .G. • • • • • • 

Primer d 

421 
•C. S S S • • s 5 SS 5• 5 5• S S 5 SS S S S S S S •5 S S S • S S S S S S S S S S S SS S S S S S S S S 

* 
481 

Hsp 9211 

S • S 5• S •S S S • S S • SS S SSS S •S 5 SS 5S 5 S S S • S S S5 5 .T. •. • S S S S .T. • •. • • . • • 

	

541 	GACTCTATCTTATCCTCGTCCCCA CCACTCTATCTA 
• 5 555 5 SS S • 	S 	S 5• • • •T. • • • . • • • • •A.A. • .A. •T.A.TC. . . • . 
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Tru9I 	 TaqI 
* 

	

601 	GAGTAGATAAGTTCATAATTGGATTACTTAATGTAAAATCATrACTTCAACTCGAATCTG 
Rsa I 

.C. • • • • •G. • • . . . . . . . . . . S S • 

	

661 	 - 
• • • •T. • •T. • • • • • • • • • • • • ----- .G. • • • • • • • • • • .C. • • • • • • •CT 

* 

	

721 	- - -GTTATATAACATI'CC- - - -CACTCGAGGTGTAAATAGAGCGTrCTATTACAG 
Mho I 

GAT. • • • • • • • • • • •CT.TCTC. .T. • .T. • • • • • • • • • • • • •T. • • • • • • • • •C. • • . 

Alu I 

	

781 	TA---------  TTGGACCAAATGAGATTCATTCGTTAGAATAGCTTCCATTGAGTCTCTG 
• •ACTACAGTA. • • • • • • . • • • . • • . . . ...  . • • • • . . . • • . . • • . • . . • • ...  . ..... 

Hsp 92IIMsp I 

841 
. • • . . . • . . . • . . . • • . • •T. • • • • • • • • • • • • - . • • • • • •T. • • • • • • • • • • • • • • • • • 

901 
• • • • • • • • • • • • • • • • •A. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Primer b 

	

961 	GTCCATACCAAGGCTCAATrCGATCAGTCCGTAGCGTCTACc CATAC 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •A. • •C. • ....  • • • • 

	

fribo I 	Io I 	Tru 91 * 
1021 

Taq I 
* 

• • . .C. •GA. • • • .A. • . . • • • . • • • . • . • • . • • • • . • • • • •T. • . • •A.C. • • • • • .A. 

	

1081 	 ------ 
• • • . • . ...  ••.••• . . • • • . • • • • • • .G. .G. • • • . • . . • •C. . • • . • • • • • .CCTACT 

Tag I 

	

1141 	- 
CC... • • • • • •C. •T. • • • • • • • • • • . • • • • . • . . • . . . . . • • . . • • • . . . • . • . • . . . 

Tag I 

1201 
• • • .A.C. • • • .GA. 	• 	• • • • • • • • • • • • • • • • • • • • • • • •. .G. • ....  •• 
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Mbo I,Taq I 

1261 	AAACGATCGATATCAATTGACCCTTACTTCCCTTTTCTTTCCCTTGAAGGAATCTACATT  
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •T.C. . • • . . • • . . . . . . •A. • . • • • • • • 

Tn.9I 	 Cfo I 

1321 	CAGACGATGTTCCGTTGTAATTTTAATCTGGATTGCGTCATTGAATCTGATTCGCGCTAT 
* 

• •A. sA. • • • • • • •.. s... •CG. • • • • . . •. . • . . . . . • . . . . . . . . . . , • • . • . • , , • 

WIOMW 

1381 	AATTGTrAGGATTCCAAAAGAATCTATAGATCTCACGCCAATGAAATGAGGAGTTATATT 
• •C• • • • • • • • • • • • • •G. • • • • • • •G• • • • • • • •C. • • • • • • • • • •G. • • • .G. • • • 

Alu I 	Primer a * 
1441 	CCATrGAGCCTGCTrAGCTCAGAGGTrAGAGCATCGCATrrGTAATG 

Taq I 

S S s.C.... • • • • • • • • • • • • • • • • • • • • • • • • • • • • •C• • • • • • • . 

Fig.4.7 DNA sequences for the three noncoding regions of Tm L(UGU) to Trn F (GAA) for 
each of the three larch taxa (Top), and their alignment with their corresponding regions of 
black pine cpDNA (bottom). The three pairs of universal cpDNA primers, together with the 
cutting sites for the eight restriction enzymes used in the study are indicated. The * symbol 
means that the labelled enzyme can cut the larch at that site(s) but not that of pine, or vice 
versa. The -1+ symbols in any DNA sequence stand for deletion/insertion of a base. The. 
symbol represents the same base in pine cpDNA appearing at that position in the larch 
cpDNA. 
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the mutation from T in larch to G in pine. The AluI cannot digest at the 271st base position 

in larch, but can in pine, due to the mutation from A in larch to G in pine. 

Sequencing also revealed that the nucleotide sequences in primers a, b and f, the 

conservative region (Taberlet, et al., 1991), exhibit base substitutions between the three 

larch species and pine. The difference between black pine and Chinese larch taxa in terms of 

the three non-coding regions of cpDNA sequence was summarised in Table 4.4. 

If the mutation rates by transitions and by transversions are assumed to be equal to each 

other, Juke and Cantor's (1969) one-parameter model can be used to calculate the genetic 

distance, K, i.e., 

	

K=--ln(
~

3 "I 	 (4. 1a) 
4 	q-1) 

2 1ut 	 (4.1b) 

where q is the proportion of the bases that are same between two sequences, jt is mutation 

rate, and t is the divergence time. Using the sequence not including bases due to insertion 

and deletion, there are 92 bases different between Chinese larch and black pine within the 

three non-coding regions. Thus, q is estimated to be 1-92/1442 = 0.9362, and the genetic 

distance is K= 0.06667 according to equation (4.1a). This distance is much larger than that 

found between larxh taxa using RFLP analysis (Tang, et al., 1995), where the maximum 

genetic distance is 0.0096. 

In summary, no variation was observed between the three Chinese larch taxa in terms of the 

sequence of the three non-coding regions trnT(exon) to trn F (exon), amplified by three 

universal cpDNA primers. These results are also consistent with those obtained by PCR-

RFLP analysis. Many differences between larch and pine cpDNA were observed in terms of 

sequence, including substitution and insertion/deletion. 
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Table 4.4. Difference between black pine and Chinese larch taxa in terms of cpDNA 
sequence within the three non-coding regions. Black pine was used as a reference for 
comparison. The numbers of base difference for larch in this study are sumarised below. 

Region 	 Insertion(bp) 	Deletion(bp) 	Substitution (bp) 

Primer 

f 	 1 

d 	 0 

b 	 2 

a 	 1 

Fragment 

ef 	 4 	 9 	 31 

cd 	 6 	 18 	 25 

ab 	0 	 8 	 32 

4.5 Discussion 

The aim of this study was to use cpDNA markers to elucidate the evolutionary relationships 

between the three Chinese Larix taxa, defined as the L. gmelinii complex (Chapter 1). Two 

methods were used to resolve differences between the three taxa of three non-coding regions 

of the cpDNA molecule: PCR-RFLP and straightforward sequencing analysis. No variation 

was observed between the three taxa, which provides evidence, in part, to support the idea 

that L. olgensis and L. principis-rupprechtii are considered to be two varieties of L. gmelinii 

(Ostenfeld and Larsen, 1930), but to refute the opposite view that L. olgensis and L. 

principis-rupprechtii are two different species (Zheng, etal., 1983; Wang, et al., 1995) 

The experimental results are also consistent with those obtained by Tang et al. (1995), who 

showed that the Nei's genetic distances were zero between the three Chinese larch taxa 

according to the RFLP analysis. More specific information is obtained in this study, namely 

that there is no difference observed between them in terms of nucleotide sequence of the 

three non-coding region between trnT (UGU) and trnF(GAA) of cpDNA. The same 

sequence in the three non-coding regions indicates that divergence between the three larch 
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taxa might have occurred recently. Thus, the quite close genetic relationship among the taxa 

is further proved and can be judged strongly by this study. 

The mutation rate of non-coding regions of cpDNA is greater than that in coding regions, 

thus non-coding regions are usually used to elucidate genetic variation at lower taxonomic 

level such as at the generic level (Gielly and Taberlet, 1994). Furthermore, the point 

mutation rate in cpDNA is lower than that in the nuclear genôme (Wolfe, et al, 1987). Thus, 

use of non-coding regions of cpDNA as a genetic marker might help to elucidate the length 

of time since the taxa diverged. Wolfe and Sharp (1988) argued that the average rates of 

synonymous substitution for cpDNA protein coding genes vary approximately from 0.2 to 

1 .0x 0 substitutions per site per year. If the mutation rate in the non-coding regions is not 

smaller than, or at least larger than, that of synonymous substitution, the time for the 

presence of the same sequence in the three Chinese Larix taxa can be estimated as the 

following. If there is one base substitution between any pair of the three larch taxa, the q in 

equation (4.1a) is 1451/1452= 0.9993 112, and the genetic distance is 0.000689 according to 

equation (4.1a). The diverged time is much less than half a million years, which is roughly 

inferred according to equation (4. lb) under the hypothesis of a molecular clock that may be 

violated among plant families and orders (Clegg, et al., 1994), i.e. 

t = K/2 1u 

= 0.000689 / 2x 1 .Ox 10 

= 0.3445x 106  years. 

The diverged time inferred from the above calculation seems appropriate. When analysing 

fossil records of Larix, LePage and Basinger (1995) argued that " The general absence of 

long-braced in the fossil record may reflect their adaptation to alpine habitats, where chance 

of entry into the fossil record is remote. The distribution of the living larches that the short-

bracted species commonly occupy habitats at lower altitudes, where chance of preservation 

is greater." The three larch taxa in this study are short-bracted, while other larch species in 

Asia, L.kaempferi, L. grfJIthian, L. potaninii and L. ma.stersiana, are long-bracted. LePage 

and Basinger (1991) postulated that the long-bracted species diverged from the short-

bracted species early in their evolution. Lepage and Basinger (1995) argued that past and 

present distribution of the short-bracted larches provide good evidence that larches used the 
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Beringian Route at least as the Oligocene (25 to 36 million years ago). The Beringian Route 

is believed to have been an effective floral and faunal conduit between North America and 

Asia from Albian time (about 100 million years ago, LePage and Basinger, 1995). From 

these analyses, they also inferred that the distribution pattern of the living long-bracted 

larches in Asia indicated that displacement occurred across the Benngian Corridor prior to 

the time when the European climate became cooler in the Miocene (about 5 to 25 million 

years ago) and Pliocene (2 to 5 million years ago), during which the North Atlantic land 

routes had been destroyed by sea-floor spreading and were no longer available. According to 

these analyses, the time for the displacement of long-bracted larches from high altitudes to 

low altitudes probably occurred 25 million years ago. Lepage and Basinger (1995) inferred 

that the current distribution pattern was probably established by the late Tertiary. Thus 

divergence of the short-bracted larches probably lagged far behind divergence between the 

long-bracted larch species. Similar inference may infer that the southward displacement of 

L. gmelinii might lag far behind the long-bracted species L. potaninii, L. gr4fJIthiana and L. 

masters iana. This may indicate that establishment of the current populations and taxa in 

China probably occurred in the late Tertiary. 

After analysing the results obtained by other researchers, LePage and Basinger (1995) stated 

that" ....... In fact, taxa such as Larix, Picea, and Pseudolarix do not appear in Europe until 

the Miocene and Pliocene.", which is between 3 and 25 million years ago. If a comparable 

time scale occurred for the southward extension of L. gmlinii into China, this time is much 

smaller than that required for occurrence of a mutation in cpDNA. 

The quite close genetic relationship, elucidated by both sequence analysis of cpDNA and 

allozyme markers (Chapter 3), could reflect the short history for the formation of the three 

taxa. As we know that larches are well adapted to the regions with poor soils, cold climate, 

short growing season, etc.. These properties enable larches to become pioneer species. One 

likely hypothesis is that first L. ginelmnii migrated to northeast China. Thus pioneer 

populations were gradually established. Compared with the original population (L. gmelinii), 

the genetic polymorphism in these newly established populations was reduced because of 

the occurrence of genetic drift. However, large migration occurred later from the southern 

population of L. gmelmnii to the northeast population, the former populations of L. olgensis, 

may reduced the difference between source and recipient populations. When the Changbei 
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Mountains were gradually formed, these newly established populations gradually become 

the current L. olgensis due to evolution in isolation (Fig. 4.8). 

Formation of the L. principis-rupprechtii could have occurred by two routes. One is from 

populations of L. olgensis, and the other is from straightforward populations of L. gmelinii. 

Because of the warm climate which blocked further southward extension, the newly 

established populations underwent speciation into L. principis-rupprechrii, and retreated 

north and to higher elevation in the mountains when climate warming occurred. The 

backward colonisation became difficult due to late clear logging for farm land (Fig.4.8). 

Formation of the current distribution of the three larch taxa probably occurred in late 

Tertiary according to the inference of LePage and Basinger (1995). 

North China 

Southward extension 

Changbei Mountain Southward exte 	

Speciati 	

formation

t Cha 

(L. oIgensi 

ortheasin ,/ 

4' Speciation 

tncCentre ruPPrectiiuthwest extension  
Warm climate 
(block extension) 

Fig.4.8 A hypothensis for the formation of the three Chinese latch taxa in this study. 

Another event that may help to explain why there are no differences between the three larch 

taxa in terms of cpDNA sequence, is hybridisation. Hybridisation among these larches can 
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be carried out in nature. For example, Larix lubarsikii Suk is the natural hybrid between L. 

olgensis and L. principis-rupprechtii (Yang, 1995). Larch is a wind-pollinated conifer 

species. Transmission of the cpDNA can be mediated by pollen flow because of its paternal 

inheritance mode (Szmidt, 1990). Thus extensive hybridisation or pollen flow among the 

three larch taxa may homogenise the difference in cpDNA composition. In analysing 

phylogenetic consequences of cytoplasmic gene flow in plant, Rieseberg and Soltis (1991) 

also pointed out that "... reticulation is perhaps the most likely to lead to faulty phylogenetic 

conclusions in plants due to their high potential for interspecific gene flow......... " . From the 

dominant outcrossing and very small population genetic structure obtained using allozymes 

(Chapter 2), it can be inferred that migration via pollen flow may be extensive in these three 

larch taxa. Thus, the reticulation is likely to be an important factor leading to the current 

homogeneity in cpDNA composition. 

The very close genetic relationship among these three larch taxa could in part explain a very 

similar performance for the man-made hybrids among these three larch taxa. Few reports are 

given on the existence of obvious heterosis between any pairs of the three taxa except one 

report (Yang, et al., 1985). Yang et al.( 1985) reported that hybrid of L. principis-rupprechtii 

x L. olgensis exhibited an increase of 7% over L. principis-rupprechtii in terms of seedling 

growth. However, heterosis was also displayed in hybrids of each of the three taxa with 

Japanese larch (L. kaempferi) with respect to growth performance (Wang, et al. 1989; Yang, 
et al. 1985). There is no great potential for utilising hybrids between any pair of the three 

larch taxa in practical forestry. 

Formation of a species is a dynamic process in nature. It is important to distinguish the 

concepts between species and subspecies or variety. According to the biological definition 

of species (Riger, et al., 1991, p458), a species refers to "groups of actually or potentially 

interbreeding natural populations which are reproductively isolated from other such groups." 

Thus, a species is "the largest and most inclusive reproductive communities of sexual and 

cross-fertilisation individuals that share in a common gene pool." However, subspecies 

refers to "an aggregate of (local) breeding populations of a given species that occupy a 

geographic subdivision of the species range." (Riger, et al., 1991, p465). " A subspecies 

usually differs from other similar breeding groups of the same species both taxonomically 

and with respect to certain gene pool characteristics (such as the frequency or prevalence of 

certain genes)". Appling these concepts to the three larch taxa in this study, it would be 
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reasonable to define L. olgensis and L. principis-rupprechtii as two varieties of L. gnelinii 

rather than as two separate species. The reasons are as follow: 

First, all these three larch taxa can interbreed. Reproductive isolation is not formed. Thus 

all these three larch taxa can be treated as one species. Second, these three larch taxa occupy 

different geographic regions. They can be distinguished in terms of morphological traits 

(Appendix I) that may reflect the adaptive differences due to varying effect of environmental 

factors. There were shown to be a small genetic distances between the three taxa (0.01; see 

Chapter 3) in terms of allozyme markers that are not affected by natural selection. 

Moreover, there are no differences between the three taxa in terms of sequences of the three 

non-coding regions of cpDNA. These facts provide good evidences in support of points of 

Ostenfeld and Larsen (1930) who proposed that L. olgensis and L. principis-rupprechtii 

were two varieties of L. gmelinii. 

A situation similar to the present study was reported by Shiraishi et al. (1996), who recently 

classifed larch trees occurring at Mt. Manokami, Japan. They studied the genetic 

relationship between the larch trees occurring at Mt. Manokami, which was previously 

defined as Japanese larch (L. kaempferi), and three other larch taxa: L. g,nelinii var. 

japonica, L. kaempferi and L. gmelinii var. olgensis. They found that there were no 

differences between Mt. Manokami larch and L. kaempferi, but there were differences 

between the Mt. Manokami larch and two other larch taxa (L. g,nelinii var. japonica, L. 

gmelinii var. olgensis) in terms of sequence of the rbcL gene. However, they also found 

genetic differentiation between the Mt Manokami larch and L. kaempferi regarding nuclear 

genome composition. Based on these results and the morphological characters, Shiraishi et 

al. (1996) proposed that the Mt. Manokami larch should be classified as a variety of L. 

kaempferi, rather than a new species. 

In order to further elucidate the evolutionary relationship between the three taxa, it may be 

necessary to get more information by investigating variation of the mtDNA genome, which 

is maternally inherited (DeVerno, et al., 1993), since cpDNA (paternally inherited) and 

allozymes (biparentally inherited) have already been investigated. The migration for 

maternal genes is mediated by seed flow only. Use of maternal genetic markers to 

investigate the differentiation between the three Chinese Larix taxa may provide additional 

information to confirm current results. However, mtDNA variation is mainly by large 
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rearrangements. Such types of variation are not useful for building phylogenies (Palmer, 

1992). 

4.6 Summary 

In summary, the genetic relationships between the three Chinese larch taxa (L. gmelinii, L. 

olgensis and L. principis-rupprechtii ) were studied by analysing three non-coding regions 

of the chioroplast genome, from tm T(UGU) to tm F(GAA), using universal primers PCR-

RFLP and DNA sequencing. Results show that there is no difference in the DNA sequences 

between all three taxa. Combining the results obtained in this chapter with those obtained 

using allozyme markers, which show very small genetic distance between the three taxa, it 

may be inferred that the three taxa have diverged relatively recently. It is more reasonable to 

consider L. olgensis and L. principis to be two varieties of L. g,nelinii, as was proposed by 

Ostenfeld and Larsen (1930), rather than two different species. Further study is required to 

investigate variation of the mitochondrial genome so as to provide additional information to 

elucidate phylogenetic relationships between the three taxa. 
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CHAPTER 5 

Understanding the Genetic Structure of Populations 
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5.1. Introduction 

The living world comprises a variety of species that are themselves composed of many 

populations, aggregates of individuals coexisting in space and time. Individuals within 

population show varying levels of genetic variation that is exchanged and reassorted as a 

consequences of sexual reproduction, genetic interchange among individuals. The extent and 

pattern of variation in any situation depends on factors such as the breeding system of the 

species and gene flow between populations, and is modified by processes of genetic drift 

and natural selection. Thus, beneath the numerical dynamics of populations, there exists the 

dynamic behaviour of genetic variation. Understanding such behaviour of genetic variation 

is the objective of population genetics. With an understanding of the behaviour of genetic 

variation comes the possibility of managing this variation for particular objectives. An 

understanding of population genetics therefore underlies such applied subjects as selective 

breeding and is essential for the management of genetic resources in conservation. 

Factors involved in modifying the dynamics of genetic variation are quite diverse, including 

mutation, breeding system, genetic drift, gene flow and natural selection. Mutation is the 

source of all variation. The breeding system assorts this variation and determines the within 

population genetic structure (Wright, 1951). Genetic drift leads to irregular (random) 

fluctuations of gene frequency, to loss of variability, and to differentiation of isolated 

populations. This may lead to uniformity within sub-populations and increased 

homozygosity of the whole population (Falconer, 1989). Gene flow, however, may 

homogenise gene frequencies among different populations. Natural selection modifies gene 

frequency in relation to environment both within and between populations. 

Among these factors, mutation, gene flow and natural selection tend to change gene 

frequency in a manner predictable both in amount and direction. They can cause systematic 

change in gene frequency (Wright, 1969). The effect of genetic drift , however, is 

predictable in amount but not in direction. It causes random change of gene frequency. 

Usually, these factors may act together in a population. Thus population genetics is 

essentially an understanding of the interplay between each of these factors. 

Population genetics must take place within a population framework, within a particular 

spatial array of populations or individuals, not in the abstract. In order to model the real 
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world, we need to understand how the processes governing genetic change interact within a 

variety of spatial population types representing as far as possible the range of situations in 

the real world. No one model will describe all situations. A variety of population model 

frameworks therefore have been devised to study the dynamics of genetic structure. These 

include the island, stepping stone and isolation by distance models that are described below. 

In addition to a framework we need a common language with which to describe and 

compare the behaviour of genetic variation. At its simplest we can describe changes in gene 

frequency, single locus genetic structure, and multilocus genetic structure within 

populations. Several ways of describing variation in structure over space are available 

(Wright, 1969), quantifying differentiation between populations (F ) measured in terms of 

inbreeding coefficients. 

With the processes, the framework and the common language in place, we can begin to 

describe the behaviour of genetic variation. The second part of this thesis will be devoted 

to doing this, with particular emphasis on plant populations and the behaviour of organelle 

genomes. I will begin by describing the range of models of population structure used as 

frameworks for developing population genetic theory. 

5.2. Theoretical considerations 

5.2.1 Island model and its variants 

5.2.1.1 The island model 

The island model is an important classical model designed to simulate the real world. It is 

perhaps the simplest way of representing a real population that is subdivided. It plays an 

important role in generating ideas for models of population structure. The theoretical results 

from this model are still widely employed in practical work. The original idea of the island 

model was introduced by Wright in an historic paper "Evolution in Mendelian Populations" 

(Wright, 193 1) and then was developed further (Wright, 1943, 1951). 

The basic ideal for the model is that a population is subdivided into infinite number of local 

populations each with equal size (N). These local populations are discretely distributed in 

space. Each local population receives a small proportion of migrants (m) from the whole 
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population. It should be pointed out here that migrants are diploid individuals (nuclear loci). 

Both migration rate and migrant gene frequency are constant at any generation (Fig. 5.1). 

Because of the finite size in each local population, genetic drift effects may lead to 

differentiation among local populations. However, constant migration ensures that this does 

not lead to fixation in each population. Thus eventually, migration and drift reach a balance. 

The whole population structure is then maintained in a steady state. The distribution of gene 

frequencies among populations reach a steady state. 

Migrant pool 

Infinite local populations 

Fig. 5.1 Schematic representation of the island model. The dots below stand for an infinite 
number of local populations. The fine dots above stand for the migrant pool that comes from 
small contributions of migrants from all of the local population. The straight line arrow 
stands for long distance immigration or emigration between local population and migrant 
pool. 

Using this model as a base, Wright (195 1) introduced F- statistics, which offer a convenient 

way to summarise population structure, a common language for population genetics. Here, 

using the same notation as Wright's , let the F and P be the inbreeding coefficients in 

whole and local population, respectively. F,, is the inbreeding coefficient of any two 

gametes sampled from different local populations, and hence it can be used to measure local 

population differentiation at equilibrium. The first feature is that the inbreeding can be 
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partitioned into components, those within and between populations, and are related by 

1 - 	= (1 - F )(l - F). The second result is the relationship between the F and 

number of migrants (Nm). That is F = (1 + 4Nm)'. These two well known formulae lay 

down strong theoretical foundation in the analysis of population structure. 

There are several assumptions involved in the ideal island model. These imply some 

distance between the model and the real world. These assumptions are: (D infinite number of 

sub-populations; © constant population size (N), no extinction and recolonisation; 

constant migration rate from the entire population; ® constant migrant gene frequency; ® 

two alleles of a locus, the simplest case; © random mating; © selective neutral genes; ® 

diploid nuclear genes; © discrete generations. 

5.2.1.2 Constraints and relaxation 

Each of these assumptions has been relaxed in more recent models so as to approach more 

nearly the real world. For example, the assumption ® is unrealistic because the actual 

number of local populations should be finite. Condition Q has been released in finite island 

models (Nei 1975; Takahata, 1983; Takahata and Nei, 1984). In this case, the relationship 
between F and the number of migrants and the number of subpopulations is obtained. 

Other assumptions are also relaxed to different extents in a range of other more realistic 

models (Table 5.1). 

Many genetic characteristics have been theoretically investigated for the island model 

structure, for example, the number or effective number of alleles maintained in the finite 

island model (Maruyama, 1970), and the effective population size (Nei and Takahata, 1993). 

One of the important applications in practice for the island model is that it provides a simple 

way to indirectly estimate gene flow (Nm) among local populations (Slatkin and Barton, 
1989) 

5.2.1.3 Limitation to plant population 

One important shortcoming of the ideal model is that it does not describe adequately the 

behaviour of plant species. The ideal model assumes that migrants are all diploid 

122 



Table 5. 1. More recent models relaxing some assumptions of Wright's island model 

Assumption 	 Relaxed case 	 Reference 

D Infinite number of sub-populations Finite number Nei,1975; Takahata, 1983 

Takahata and Nei, 1984 
© Constant population size Extinction/recolonization Maruyama and Kimura, 1980 
© Constant migration rate Stochastic migration Nagylaki, 1979; 
® Constant migrant gene frequency Stochastic migration Nagylaki, 1979; 
® Two allele a locus Multilocus Takahata, 1983; 
© Random mating Partial selfmg  
© Selectively neutral gene Selected gene Wright, 1978; Nagylaki, 1979; 
® Diploid nuclear gene Haploid organelle gene Birky, et a!, 1988; 

Petit, et a!, 1993; Ennos, 1994; 
® Discrete generation Overlapping generation 
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individuals. However, in plants migration can be mediated either by seed flow (diploid) or 

by pollen flow (haploid). These two types of gene flow occur within the same generation, 

but are separate biological processes. Gene flow by the vector of pollen is successful only 

when migrant pollen grains fuse with ovules in the recipient population. This is quite 

different from the gene flow by the vector of seed flow. 

Furthermore, the three plant genomes (chloroplast, mitochondrial and nuclear DNA) exhibit 

different inheritance. In some conifers, for example, chloroplast DNA exhibits paternal 

inheritance, mitochondrial DNA exhibits maternally inheritance (Mogensen, 1996), while 

the nuclear genome is bi-parentally inherited. For genes with biparental or paternal 

inheritance, migration occurs by both seed and pollen flow; For maternal genes, migration 
occurs only by the vector of seed flow. Thus, this results in asymmetric migration rates for 

the three different plant genomes (Petit, et al., 1993b; Ennos, 1994). Therefore, the 

extension of the island model to plants is of particular interest in both theory and practice. 

To date, different methods have been employed in the extension of the island model to plant 

populations. Petit and others (1993) addressed the finite island model using a method similar 

to that introduced by Birky and others (1989), which is quite different from those used by 

Wright (1951). Wright (1951, 1969) obtained the F-statistics using path analysis or variance 

of gene frequency. Petit and others (1993) obtained the a version of Wright's I in the 

case of one locus with multiple alleles, by analysing the components of gene diversity. 

Ennos (1994) addressed infinite island models by analysing the composition of the 

migration in plant populations. He found an important relationship between the ratio of 

pollen to seed flow and F-statistics with different inheritance modes. In plant population, for 

example, the population differentiation for uniparent genomes (maternal genes) is 

F,, = (1 + 2Nm) 1  where m = m (seed migration rate) that occurs by the vector of seeds 

only. 

Thus, based on this analysis, there is a requirement to build models that describe the 

uniparentally inherited markers and the diploid nuclear markers. 
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5.2.1.4 Variants of the Island model 

Suppose that we divide the entire local populations into two parts, one is a local population 

and the rest together are seen as another population. Then the island model is changed into 

as mainland-island or continental-island model (Hanski, 1994). Sometimes this structure 

consists of one mainland and several island populations surrounded the mainland 

population. As mentioned before, this kind of structure can be found in natural plant 

populations. Thus, the mainland-island model is actually a variation of Wright's island 

model (Wright, 1951). The obvious characteristic for the mainland-island model is the vast 

difference in size between populations. The mainland population exhibits stability and no 

extinction, but the island population exhibits extinction with high probability. Therefore, the 

relationship between them is like a source-sink if migration from island population to 

mainland is small enough to be ignored (Gaggiotti and Smouse, 1996). If there is no 

extinction for the island population, then stochastic migration may cause dynamic structure 

between mainland and island. Therefore, the mainland-island model may help us to find 

some interesting results related to genetic conservation. 

Another variant of the island model is metapopulation structure that is introduced by Levin 

(1970). Most individuals in each local population are born and die. Systems of such local 

populations joined by dispersing individuals then make a metapopulation (Hanski and 

Gilpin, 1991; Hanski, 1994; Gilpin, 1991; Hansson, 1991). This kind of population structure 

is used for studies on extinction and recolonization established from some other local 

populations. Study of the influence of extinction/recolonization on genetic structure has 

begun only in recent years (Wade and McCauley, 1988; Whitelock, 1992; Rannala and 

Hartigan, 1995), and there will be great potential for these models in the future, especially 

for plant populations. 

5.2.2. Stepping-stone model 

The stepping stone model was introduced by Kimura (Kimura, 1953) and a theoretical 

foundation was then established (Kimura and Weiss, 1964; Weiss and Kimura, 1965). It 

presents a Situation where a whole population is subdivided into infinite number of local 

populations. Random mating occurs in each local population. Exchange of individuals 
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between local populations is allowed to occur between adjacent ones and from the entire 

population (long range dispersal; Fig. 5.2). 

When there is no migration from the adjacent populations, the stepping-stone model 

becomes the island model. Thus, the island model (Wright, 1951) is a specific case of the 

stepping stone model. The advantage of the stepping stone model over the island model is 

that it considers migration from neighbourhoods and thus presents a more realistic case. 

It seems an obvious biological phenomenon that individuals living close to each other look 

more similar than individuals living apart in space. This idea can be described in terms of 

the change of gene correlation with distance. It is for this reason that the genetic correlation 

is employed to describe population structure in addition to the variance of gene frequency. 

In the stepping stone model, it can be shown that the decrease of genetic correlation with 

distance can be approximated exponentially (Kimura and Weiss, 1964) and also depends 

very much upon the number of dimensions. This qualitative results is important in helping 

us to understand natural populations. Treating gene frequency as a continuous variable, 

Malécot (1948, 1969) obtained similar qualitative results. It should be noted that the three 

dimensional case is not appropriate for plant populations. 

In practice, the change of the genetic correlation with distance is difficult to measure. This is 

because we cannot obtain the true expected value, E(p), of gene frequencies in space and 

time. However, estimation of E(p) can be approximated by an average of all gene 

frequencies in all populations investigated. The important thing here is that the value at this 

time refers to that at a particular time and position in space, and is not the theoretical 

expected value. Using this value, we can estimate how the gene frequency correlation 

changes with distance. 

The stepping stone model is now widely used in population structure modelling, especially 

in theoretical studies. Some genetic properties have also been investigated, including 

extension of classical conditions. For example, the classical infinite number of 

subpopulations is modified to study a finite stepping stone model (Maruyama, 1970). 

Maruyama and Kimura (1980) showed that effective size of the whole population (species) 

is much reduced and that population differentiation is prevented if local extinction and 

recolonization occur frequently. It is shown that, if migration is frequent, then finite island 
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and stepping stone models exhibit a rather similar extent of genetic variability within and 

between subpopulations (Nagylaki, 1983; Crow and Aoki, 1984). 

As in the island model, many genetic properties need to be studied in the future, such as 

effects of linkage and recombination and the effects of stochastic migration. An important 

extension of the model is to plant populations. This has not been available to date, because 

migration in animal population is different from plants where it can be mediated by either 

seed flow or pollen flow. Furthermore, there is asymmetric migration for three plant 

Migrant pool 

Long distance dispersal(mO) 

\/ 

ml 	 ml 

(a). One dimensional space 

Miarant 000l 

(b). Two dimensional space 

Fig.5.2. Stepping-stone model: (a). One dimension case. (b). Two dimension case. In both 
cases, the 'ml' stands for migration from neighbourhoods. The 'mO' stands for migration 
from long distance dispersal. The migrant pool comes from small contributions of migrants 
from all of the local population. 
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genomes with different inheritance modes (Petit, et al, 1993b; Ennos, 1994). Thus, a study 

of these characteristics of these genomes in a stepping stone model is clearly required. 

5.2.3. Isolation by distance model and its related models 

A contrast to the cases that the island and stepping stone models address is the situation 

where a single population is continuously distributed in space, but interbreeding is restricted 

to individuals within a restricted area due to short distance gene dispersal. Groups of 

individuals a large distance apart may then be differentiated merely due to limited dispersal 

of genes. This phenomenon is described in a model of isolation by distance (Wright, 1940, 

1943). The model emphasises the importance of spatial distance in isolation and the 

development of population differentiation. Thus, it presents a framework for understanding 

the genetic structure of natural population that have a continuous distribution in space. 

An important parameter in this model is the neighbourhood size (Nb), defined as the 

number of individuals within an area from which the parents of central individuals may be 

treated as if drawn at random (Wright, 1943). A key assumption in the model is that the 

neighbourhood size at generation t in the past is tNb  for area continuity and -..JiN  for 

linear continuity (1943, 1946; Fig. 5.3). Mathematical proof of this assumption is still not 

available to date. However, this assumption simplifies the model to describing continuously 

distributed populations and also provides a simple means for calculating inbreeding at any 

ancestral generation. 

As with the island model, if there is long distance migration from the whole population to 

each neighbourhood at any ancestral generation t, there will be a balance between migration 

and drift. Thus differentiation among neighbourhoods can reach a steady state. The 

distribution of gene frequency also arrive at steady state. Measures of population 

differentiation in this case can be obtained by F = (P - ]) / (1 - F ) ( Wright, 1943, 

1969). 
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Fig. 5.3. A diagram showing the change of neighbourhood size (Nb) with generation t in the 
past in two dimension space. Neighbourhood size is linearly increased with generation in the 
past. The circles represent the size of neighbourhoods. The dots in the block stand for 
individuals uniformly distributing in space. 

One important factor influencing differentiation of local neighbourhoods is the systems of 

mating that affects the inbreeding coefficient (Wright, 1921,1946) and hence affects 

population differentiation (Wright, 1943). Influences of several systems of mating were 

addressed by Wright (1946). One important assumption is that the system of mating is 

homogeneous in all neighbourhoods. However, the actual mating system maybe exhibits 

diversity in space because of influence of many factors, say the age structure. 

Instead of addressing the case of uniform density throughout population, the isolation by 

distance model may be modified so that it is suitable for analysing patterns of randomly 

distributed clusters. Each cluster has a small amount of exchange with those that are closest 

(Wright, 1969, p320-23, 1978, p59-61). The previous isolation by distance model is thus 

shifted to patchily distributed populations (Clusters Model). This is similar to the stepping 

stone model but uses a completely different approach (Wright 1969, p320-323; 1978). 

Several problems are involved in the isolation by distance model that need to be solved in 

the future. 0) Assumptions for the random dispersal of offsprings and the generation of 

population at next generation will lead to a clumping in space due to there being a lack of 

local regulation of population density (Malécot, 1969; Felsenstein, 1975b). This violates 

assumption of uniform distribution in space. © Neighbourhood size at any generation t 

needs to be proved in both mathematics and biology. When applied in plant populations, 
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calculation of the ancestral neighbourhood size becomes very complicated if we consider 

dispersal of both seed and pollen flow. Furthermore, if partial selfmg together with seed and 

pollen flow is considered, calculation of the neighbourhood size at any generation in the past 

will be unmanageable. © The inbreeding coefficients are obtained under the hypothesis of 

linear, complete and equal effects of gametes on zygotes using path analysis (Wright, 1921, 

p118; 1968; Li, 1976, p290). This means that the path coefficients are obtained under 

assumption of equal effects from zygotic value to egg and to sperm, or from egg or sperm to 

zygote. If a dominance effect is considered between genes in egg and sperm, for example, 

we cannot get the key relationship in this model, i.e. b, b2  = (1 + F) /2 where b 1  and b2  

are the path coefficients from zygote to the two gametes, and the F' is the correlation 
coefficient between uniting gametes. 

However, the isolation by distance model is still widely used in populations of continuous 

distribution. The concept of neighbourhood size, presents us with a means of understanding 

natural populations with continuous distribution in space. For example, this idea has been 

employed to calculate the probability of coalescent time of a sample drawn from 

continuously distributed populations (Barton and Wilson, 1995). 

It is easy to understand that there is a positive relationship between differentiation and 

geographical distance, or a negative relationship between differentiation and number of 

migrants (Slatkin, 1987). However, the analytic expression to describe these is difficult to 

obtain. Several other methods/models used to detect isolation by distance have been 

presented in recently years (Sokal, 1978a, b, 1979; Slatkin and Maddison, 1990). One of 

them correlates genetic data and geographical neighbourhoods - the spatial autocorrelation 

analysis. It can be used for detecting spatial pattern and thus the probability of isolation by 

distance and for estimating the patch size (Sokal, 1978a, b). However, it is not a genetic 

model but a purely statistical model. The analysis does not explain how the specific pattern 

is generated. However, Barbuj ani (1987) showed that the autocorrelation coefficient of 

gene frequencies at a given distance (Moran's I) is a direct function of the kinship at that 

distance (f), and an inverse function of the standardised gene frequency variance (F), i.e. 

I = I F, . This relationship, to some extent, presents us with a genetic underpining for the 

spatial autocorrelation coefficients. 
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Using computer simulation under diversity models of population structure (discretely 

distributed populations), Slatkin and Maddison (1990) found the linear relationship between 

effective migrants (MNm) and geographical distance (ci), i.e. Log( M) = a + bLog(d) 

where a and b are constant. This method can also be used to detect isolation by distance. If b 

is significantly less than 0, this means that the effect of isolation by distance is significant, 

otherwise the isolation is not obvious. 

As in the island and stepping stone model, an important extension of the model to three 

plant genomes with different inheritance models has not been studied. 

5.2.4. Cline: a specific population genetic structure 

The three models described to date represent general models of population genetic structure 

built upon theoretical assumptions. Another way of studying population genetic structure is 

to measure patterns of genetic structure in the field and to build models to account for the 

observation. A commonly observed genetic structure in nature is that of the dine in which 

the gene frequency is a function of the geographical situation of populations studied. One 

typical characteristic is the gradient of change in gene frequency with geographical distance 

(Fig. 5.4). This is an old topic, but still is an important area of evolutionary interest 

particularly in relation to allopatric speciation. Clines can exist in the hybrid zone (Young, 

1996) or in other situations (Millar, 1983). 

The three classical models mentioned above are not able to explain the formation of dines. 

Understanding this natural phenomenon is also an important subject in theory. Study on this 

topic goes back to Fisher's pioneer work (1937). He studied the wave of advance of 

advantageous genes. Using dispersal behaviour together with the selection effect, Fisher 

(1937) found the relationship among the velocity of wave advance, the selective advantage, 

and the standard deviation of dispersal. That is v = aJi where the v is the velocity, 

the a is the standard deviation of scattering and the m is the selective advantage. The 

"length" of the wave is proportional to -Jk  —1m where the k is diffusion coefficient. This 

value Vk —1m has more recently been defined as the characteristic length within which there 

is no change in gene frequency (Slatkin, 1973). 
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Fig. 5.4. A typical dine shows the change of gene frequency with geographical distance. 
The numbers labelled along geographical distance can also stand for positions at which 
different populations locate. 

Since then, there have been extensive studies on this topic (Haldane, 1948; Fisher, 1950; 
Slatkin and Maruyama, 1975; Nagylaki, 1975, 1976, 1978a, b; Felsenstein, 1975a; Barton, 

1979, 1983; Barton and Hewitt, 1989). Among most of these studies, the diffusion model is 

employed to describe the basic process though this is an approximation. Knowledge of dine 

formation is mainly based on the compound effect of dispersal and selection. 

The genetic mechanism underlying a dine may be complicated. In nature, if a dine has 

existed for many generations, there must be some balance system maintaining it, otherwise 

the dine will eventually disappear. An important genetic mechanism is the balance of 

selection-migration-drift. If there is a pure drift process, or drift-migration process, a dine 

cannot exist. If there is selection but it is too weak, or if migration is too strong, a dine still 

cannot exist. Therefore, the intensity of natural selection that changes geographically is a 

very important factor in deciding the existence of a dine. Several conditions have been 

investigated in different dines (Nagylaki, 1975). 
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Two parameters are important in shaping a dine. If there is no drift or the drift effect is 

small enough to be ignored in a dine, the characteristic length decides the width of a dine 

under a given selection system. The larger the characteristic length, the wider the dine. If 

drift cannot be ignored in a dine, Nagylaki (1978a) obtained another important 

dimensionless parameter, /1, governing the relative strength of selection and random drift. 

That is j3 = 2pa2  / c where the p is population density in space, the a 2  is dispersal 

variance and the c is characteristic length in a deterministic chine. ,8 is the ratio of the 

natural distance for migration and selection (2 PO-2)  to that for the deterministic chine (c). 

Selection is strong (weak) compared to random drift if fi>> 1 (/1 << 1). 

Like a barrier to gene flow, the dine prevents or delays complete exchange of genes 

between adjacent populations. A chine can move forward or backward and exhibits 

dynamics (Barton and Hewitt, 1989). The genetic structure within a dine may provide much 

information related to population history. 

Many theoretical problems need to be considered in the future study of dines. An important 

one is the extension of current chine theories to plant species which may exhibit a complex 

history of colonisation influenced by seed and pollen flow. Furthermore, genes with 

different inheritance mode may exhibit different dines even in the same swarm. Analysis of 

these aspects of chine formation in plants may help us to understand the population history in 

some depth. 

We can conclude that all models mentioned above present us a framework of how to think 

of different types of natural population structure and how to understand them. The obvious 

problems with them is that those results cannot be simply applied in plant populations. 

Furthermore, the behaviour of organelle genes with uniparental modes of inheritance have 

not been considered. The second part of this thesis addresses this area. 
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5.3. Testing our understanding 

Population genetic theory can be used to develop models of population genetic structure that 

makes testable predictions. They also allow us to interpret observed population genetic 

structure in terms of underlying biological process and infer parameters such as gene flow 

among populations. However, in order to test population genetic theory, and to make 

biological inferences, we need to be able to measure population genetic structure in real 

population. For these purposes, we need to use naturally occurring genetic markers within 

taxa. 

The markers are chosen including morphological traits, physiological (or biochemical) 

variants, karyotypic variants, allozymes and differences in DNA sequence. They have been 

applied in studies on population genetic structure to different extents (Avise, 1994; Mallet, 

1996). 

In recent years, with the introduction of PCR (Polymerase Chain Reaction; Mullis et al, 

1986), many different techniques related to PCR have been developed, such as RAPD 

(Random Amplified Polymorphic DNA) and SSRs (Simple Sequence Repeats) (Rafaiski and 

Tingey, 1993). With the development of a variety of primers (Strand, et al, 1997; Dumolin-
Lapegue, et al, 1997; White, 1996; Morgante and Olivieri, 1993; Hadrys, et al., 1992), many 

different markers will appear. This may help us to investigate the genetic structure of 

population at a fundamental level. Here we do not attempt to review these methods further, 

but note that the potential for practical measurement of population genetic structure is ever 

increasing. 

5.4. Extension of the classical theories 

5.4.1. Significance in population genetics 

As is emphasised before, all models mentioned above present us with several ways to look at 

population genetic structure. However, few of them addresses genetic structure of the plant 

population( Wright, 1969; Petit, et al, 1993; Ennos, 1994 ). At first sight, it is surprising that 

few theories are involved in this important area of plant species. The probable reason is that 

plant population genetics always lags behind animal population genetics and the usual 
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situation is the application of animal population genetic theories in plants. However, some 

important problems in plant species cannot be solved using those theories suitable for 

animal populations. A number of obvious differences between plant and animal population 

genetic structure are: 

® Vectors of gene flow in plant species are different from those in animals. In most plant 

species, gene migration can be seen to occur in two stages, seed and pollen flow. These two 

forms of gene flow occur in the same generation. Pollen flow first, leading to seed 

formation and subsequently seed flow takes place. Thus, gene flow for plant species can be 

mediated by either seed migration or pollen flow. The extent of seed and pollen flow is quite 

variable in space and time, and also among species and populations. 

For example, in natural populations of one conifer species Abies amabilis on Vancouver 

island, British Columbia, levels of inbreeding were very variable, ranging from zero to 27%. 

Allele frequency in the pollen pool is variable from population to population (Davidson and 

El-Kassaby, 1997). In this situation pollen mediated gene flow is far from constant. 

The classical models only consider migration of diploid individuals, and hence can be 

applied to model seed flow in plants, but not haploid migrants travelling via pollen. 

® The migration rate contained in the formulae of traditional population structure 

models cannot be substituted linearly by seed and pollen flow if rates of seed and pollen 

flow are not too small. This is an important reason and can be easily understood. Pollen 

behaves differently from seed. The migration of pollen grains is carried out by mating with 

ovules. It is affected by the mating system. If migration rates are not too small, say from its 

neighbouring populations, interaction between pollen and seed flow may act on population 

structure. This interaction is rather like 'epstasis' effect among different loci. If the mating 

system departs dramatically from random mating, these effects may become marked. 

However, if both migration rates are small under random mating, an approximation by linear 

substitution is appropriate (Ennos, 1994). If there are multilocus interactions, the joint 

effect of seed flow and pollen flow on them may be larger than when only diploid 

individuals are migrating. 
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Population genetic structures for three plant genomes are different. Three plant 

genomes (nuclear DNA, cpDNA and mtDNA) exhibit different inheritance modes 

(see review by Mogensen, 1996). For example, for most conifers like in loblolly pine 

(Neale, et al., 1989a,b) and Larix (Azmidt, et al., 1987; DeVemo, et al., 1993), nuclear 

DNA , cpDNA and mtDNA exhibit biparental, paternal and maternal inheritance, 

respectively. The different inheritance modes influence their migration mechanism. For the 

paternal and bi-parental genomes, migration occurs by vector of both seed and pollen flow. 

However, for the maternal genome, only seed flow contributes to the migration. 

As is mentioned before, theoretical results show that the bi-parentally inherited genome 

exhibits the lowest population differentiation and that maternally inherited genome has the 

largest differentiation among the three genomes (Petit, et a!, 1993; Ennos, 1994). Using 

information for nuclear-organelle genomes differentiation can provide estimation of seed 

and pollen flow (Ennos, 1994; McCauley, 1995). This cannot be obtained from models 
suitable for animal populations. 

® Differences in population structure among three plant genomes can provide important 

information on estimation of seed and pollen flow, colonisation history, etc.. Cytonuclear 

relationship may present insight into population structure. Pollen and seed migration can 

influence cytonuclear structure (Asmussen and Schnabel, 1991). Asmussen and others 

(1989) investigated the effects of nonrandom mating and continued immigration of the 

parental species on the cytonuclear dynamics in a hybrid zone. They find that permanent 

cytonuclear disequilibria can be generated by continued migration in the hybrid zone. The 

joint nuclear-cytoplasmic frequency data can provide particularly sensitive estimates of gene 

flow into a hybrid zone. 

In metapopulations with frequent turnover of local population, population genetic structure 

can be influenced by the founder effect together with seed and pollen effects. The 

consequence of genetic structure for the three genomes may be different (McCauley, 1995). 

Thus this difference is related to the colonisation history. If we separately consider three 

plant genomes and assume random mating between pollen and ovule, then the differences in 

population differentiation among them may provide some information of colonisation 

history. For example, the post-glacial history of the oak species, Quercu.s petraea (Matt.) 

Liebl. were extensively surveyed using biparental and maternal inheritence markers 
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throughout the natural range (Le Corre, et al, 1997a,b) and within Denmark (Jøhnk and 

Siegismund, 1997). Both results indicate that population differentiation is larger for 

maternal inheritance markers (cpDNA markers) than for biparental inheritence markers 

(allozyme and RAPD markers). 

The cytonuclear population differentiation may probably provide the possibility to estimate 

pollen and seed flow. Furthermore, the differences in population differentiation among three 

genomes provide the possibility to use them to estimate the ratio of pollen to seed flow, 

which is an important index only in plant seed management. 

Based on these considerations, it may be concluded that there is a pressing need to build 

theory suitable for describing plant population structure. 

5.4.2. Purposes of this study 

As can be seen, insights into the genetic structure of plant population are important. 

Understanding how seed and pollen flow affect population structure will help us to describe 

accurately the plant world, the different types of spatial structure, and the diverse behaviour 

of three plant genomes with different inheritance modes. The results are of direct relevance 

to the interpretation of genetic structure measured in nature and should influence activities 

such as genetic improvement and conservation. 

The primary purposes of the second part of the thesis are therefore to develop such 

understanding, with a focus on the impacts of seed and pollen flow on different types of 

plant population structure for each of three genomes. Generally, these impacts include 

influences on differentiation of populations that are continuously or discretely distribute in 

space, on coalescent times, and on dine displacements between haploid organelle genes. 

I will therefore study the areas listed below, which may help us to understand the 

relationships between the pollen and seed flow and the different types of genetic structure of 

plant populations. The major purposes are to formulate general solutions in theory to these 

questions. The choice of these topics allows us to study the influence of different types of 

plant population structures, the behaviour of different markers, and the behaviour of 

different types of genetic data (gene frequency or DNA sequence data). 
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Specific areas addressed 

Using gene frequency data 

• Extension of three classical population structure models (island model, stepping 

stone model, and the isolation by distance model) to plant species. The objective is to find 

the analytical relationship between seed/pollen flow and population differentiation (Chapter 

6 and 7). 

• Estimation of the ratio of pollen to seed flow. The objective is to look for the 

possibility of estimating the ratio of pollen to seed flow using different genetic methods 

(Chapter 7). 

• The structure of dines for haploid organelle plant genomes. The objective is to 

find how seed and pollen flow influence dine width and displacement for haploid organelle 

genes located on paternally and maternally inherited genomes (Chapter 9). 

Using DNA sequence data 

• Relationship between gene genealogy and geography. The objective is to find how 

the seed and pollen migration rates influence mean coalescent times for a sample randomly 

drawn from a population that is subdivided into many local populations, and how to use the 

number of segregating nucleotide sites to estimate the ratio of pollen to seed flow (Chapter 

8). 
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CHAPTER 6 

Extension to Plant Populations 

of the Island and Stepping-stone Models 
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6.1 Introduction 

A variety of models have been formulated to analyse the development of population genetic 

structure under a balance between drift and migration. To date they have concentrated on the 

problem of differentiation for nuclear genes and are appropriate for the situation in animals 

where diploid individuals migrate between populations. The island model comprises many 

discrete populations with a certain proportion of migrants interchanging between them 

irrespective of their spatial proximity (Wright, 1931,1969). At the other extreme isolation by 

distance (Wright, 1943,1969) describes a large population which has a continuous 

distribution over a wide area, but in which mating is restricted to a "neighbourhood" of 

limited scale and migration occurs among neighbourhoods. The stepping stone model 

(Kimura and Weiss, 1964), deals with an intermediate situation in which a certain proportion 

of migration occurs strictly between neighbouring populations, while the remainder takes 

place by long distance migration, with migrants being drawn randomly from a migrant pool. 

The applicability of these models to natural populations will of course depend on the 

population structure and reproductive ecology of the species concerned. 

While these models are appropriate for investigating differentiation for nuclear markers in 

animal populations they are inadequate for fully describing genetic differentiation under 

drift/migration in plant populations. For these situations models are needed which explicitly 

incorporate seed and pollen flow as agents of migration. In addition the models must address 

the cases of differentiation for the uniparentally inherited (both maternal and paternal) 

chloroplast and mitochondrial markers that can now be detected in natural plant populations 

through the application of molecular techniques (Dong and Wanger, 1993,1994; Neale, et al., 

1986, 1989, 1991; Powell, etal., 1995). 

Recently the classical island models dealing with population differentiation for nuclear genes 

have been extended to consider differentiation for uniparentally inherited organelle genes in 

animal and plant populations (Takahata and Palumbi, 1985; Birky, et al., 1989; Petit, et al., 

1993). Petit et al. (1993) showed that the effects of gene flow on G 51  at equilibrium depends 

on the relative rates of pollen and seed migration, as well as the mode of inheritance of genes 

(McCauley, 1995). A further insight in this area was given by Ennos (1994) who used an 

island model to show that a comparison of Fst  values for markers with different modes of 

inheritance could provide an estimate of the relative rate of pollen flow to seed pollen flow 
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among populations. These results can be applied in practical work (Furniers and Stine, 

1995;McCauley, et al., 1996; Strauss, et al., 1993;Wheer and Guries, 1982). 

The purpose of this chapter is to provide further theory required for understanding and 

interpreting population genetic structure of nuclear, chloroplast and mitochondrial genes in 

plant populations under drift/migration equilibrium. I extend traditional island and stepping 

stone models firstly to incorporate seed and pollen flow as agents of migration, and secondly 

to contrast population differentiation for biparentally, maternally and paternally inherited 

markers. Differentiation for markers with contrasting patterns of inheritance is then 

investigated under the island and stepping stone models of population structure. 

6.2 Island model 

The rate of gene migration in the classical expression for F, derived by Wright (1969) for 

an island model, has a general meaning. It is relevant to situations where there is simple 

migration of diploid individuals between populations before mating takes place. When 

dealing with hermaphrodite plants it is necessary to model gene migration as a two step 

process, which occurs both by migration of haploid pollen before fertilisation, and also by 

migration of diploid seeds after fertilisation. 

Drift/migration balance can be reached either by seed flow, or by pollen flow, or by both 

forms of gene migration combined. In the following we will re-derive a formula for Fç  

under drift/migration balance which applies to hermaphrodite plants following the method 

used by Wright (1969). We also investigate whether complex expressions for F derived 

for each genome can be reduced to Wright's general formula by substitution of appropriate 

values for effective population size and migration rate specific to the different genomes. 

6.2.1 Assumptions 

The model deals with an hermaphrodite population of plants showing random mating. 

Paternally and maternally inherited genes are assumed to be haploid, while biparentally 

inherited genes are considered to be diploid. Two neutral alleles per gene are present in each 

case. The mutation rate for each gene is assumed to be much smaller than migration rate and 
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is therefore not considered. There is no linkage among the genes differing in mode of 

inheritance. We consider initially that all the populations have already become established 

and contain the same effective number of adult plants, N. The effective number of paternal 
and maternal genes is considered to be N since they are effectively haploid. This 
assumption can be relaxed if they are not the same by letting N = N1 , the effective female 

donors for maternal genes, and N = Nm  the effective male donors for paternal genes. 

Figure 6.1 illustrates the processes that occur from generation to generation which influence 

rates of gene migration and genetic drift among hermaphrodite plant populations. The gene 

frequencies in migrating pollen grains or seeds are equal to the mean gene frequency over all 

populations in that generation. The male gametes including those from migrated pollen 

grains are assumed to combine randomly with female gametes (ovules) during the formation 

of seeds. The gene frequency in ovules before mating with pollen grains is assumed to be the 

same as that in the preceding generation. 

Adult (t) 

Pollen fl 

Randorr 
mating 

Seed formation 

ult (f+]) 

Seed 
flow 

Fig.6. I The basic processes of pollen flow and seed flow occurring among populations 
within the life cycle of an hermaphrodite plant population. 
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6.2.2 Biparentally inherited diploid genes 

The following derivation is based on the method used by Wright (1969, p292). Suppose that 

there are infinite number of populations. At generation t (t ~! 1), let p7 , be the gene 

frequency in adults in population i. Each population contains the same number of adults, N. 

After pollen flow, the gene frequency in male gametes (pollen) of population i at generation 

t+1, pt+1 , is 

pt't+l =m+(l—m)p11 ,PP 
	

(6.1) 

where mp  is the rate of pollen flow and is the mean gene frequency over all populations. 

It can be inferred that the gene frequency in seeds formed by random combination between 

pollen and ovules at generation t+1, p1 , is the arithmetic average of the gene frequencies 

in male and female gametes, i.e. 

pt+J = (p+1 +p) 

= ![mp+(2 —m)p] 	 (6.2) 

Similarly, after seedflow the gene frequency in seeds of population i, p,', I , is 

Pi'4+1 = mp + 0 - m 3  )i'1+1 	 (6.3) 

where in, is the rate of seed flow. The variance of gene frequencies over infinite number of 

	

populations in seeds after seedflow, 0- 2 	is P; ,  

I 	 fl 

a2  = lim±V(pilt+i _)2 	 (6.4a) 
n 

E4(p1'+1 	)2] 	
(6.4b) 
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= f(p+i - )2ço(pI )dp, 	 (6.4c) 
0 

where E stands for an operator for taking expectation with respect to gene frequency 

distribution among populations. (p',,1) is the probability density of gene frequency at 

generation t+l. n is the number of populations. Equation (6.4a) is the expression of the 

variance of gene frequencies in the case of an island model. The method for the use of 

equation (6.4b) to approximate (6.4a) can be found in I'imura and Weiss (1964, pp562-563), 

and also in Nagylaki (1979, p168) in derivation of his equation(22), although they did not 

indicate this approximation clearly. 

The variance of gene frequencies among populations after seed flow can be obtained via 
(6.2) and (6.3), i.e. 

a2  =(l_m) 2 (1__m ) 2 a 2  
pI*l 	 2 

(6.5) 

It can be seen from equation (6.5) that the variance of gene frequencies among populations 

is reduced due to different contributions of seed flow (1 - m 8 ) and pollen flow (1 - m) 

However, after randomly sampling N seeds in each population, the variance of gene 

frequencies among populations will increase because of genetic drift. Thus the gene 

frequency in adults, p,,,,which can be regard as the same as that in a corresponding 

sample of seeds for selectively neutral genes, is, 

= P[f+I + 8 
P#+i 
	 (6.6) 

where 	is the change due to sampling. Similarly, we can obtain the variance of gene 

frequencies among populations in adults, i.e. 

= 0 ;  +1im---2.(p1', 1 	+lim8p; 	(6.7) 
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The second item on the left-hand side of equation (6.7) is equal to zero because of the 

independence between (p1 - i) and 6. The third item on the left-hand side of 

equation (6.7) is 

lim - -  t E 	[E8 	P )I 	 (6.8a) 
i=1 

E[ 	

U - 	)1 
= 	

(6.8b) 
2N  

= 	(1— p;+1 )(I )dp 1 	 (6.8c) 
2N 0 

_1 
-  

2N 	
) - 	 (6.8d) 

-  

where E8  stands for an operator for taking expectation with respect to S distribution within 

population. Use of equation(6.8) to approach the variance of 6's over infinite number of 

populations can also be found in Kimura and Weiss (1964, p  563) and Nagylaki (1979, 
p168). 

Therefore, the total variance of gene frequencies among populations after random sampling, 

can be obtained by putting equation (6.8d) into equation (6.7), i.e. 

1 a2  = 2 	
_ 

	 2  
	 (6.9)P,.

a 	[( 	)c
P+ ] 2V 

 

Substituting equation (6.5) into equation (6.9), we obtain 

a2 =J(1.ms)2(2_mp)2( 	1 	2  

	

— ---)cr + 	 (6.10) "' 	 l 

According to equation (6.10), the variance of gene frequencies among populations at steady 

state can be obtained by letting U2.  = o, = a2  i.e. 
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2N- 4 !(1 m5 
)2  (2—m P  )2 (2N —1) 	

(6.11) 

Using Wight's notation (Wright, 1969, p 295  & p299), according to equation (6.11) we can 

obtain FSf(b)  (= a2/(1 - )), the population differentiation for biparentally inherited 

diploid genes, i.e. 

t(b) = 	1 	 (6.12a) 
2N - —(1 - m)2 

1  

(2 - m) 2 (2N— 1) 

I.] 
I 	

(6.12b) 
1+4N(m8  

if migration rates of seed and pollen flow are small. In order to obtain a comparable 

expression between genes differing in mode of inheritance, denote the effective number of 

genes by N = 2N, which is total effective number of genes in each population in adults. 

Denote the effective migration rate by ñi = m + m /2 , which is due to diploid seed flow 

and haploid pollen flow. Thus a simpler expression of equation (6.12b) can be obtained, i.e. 

1 
= (6.12c) 

1+2Nni 

6 .2.3 Paternally inherited haploid genes 

By the same method as in the case of biparentally inherited diploid genes, the 	at 

steady state for paternally inherited genes can be obtained, 

= ________________ 1  
N—(1—m 3 ) 2  (1—m) 2  (N— 1) 	

(6.13a) 

1 

l+2N(m +m) 
	 (6.13b) 
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if m and m p  are small. It is necessary to note that in deriving equation (6.13a) the gene 

frequency in seed after random combination between male and female gametes, p, 1 , 
is 

equal to that after pollen flow, p 1 . This is different from the case of biparentally inherited 

genes (equation (6.2)). Similarly, let N = N (haploid) be the effective number of genes. 

Let ñi = m5  + rnp be the effective migration rate. This is because both seed and pollen flow 

contribute to migration of paternally inherited haploid genes. Using these equalities 

P 1(p)  can be written in the same form as equation (6.12c). 

6.2.4 Maternally inherited haploid genes 

Similarly for maternally inherited haploid genes, we can obtain 

1 
t(m) 

= N—(l—ms)--1) 	
(6.14a) 

1 

1+2Nm 	
(6.14b) 

if m is small. It is necessary to note that in deriving equation (6.14a) pollen flow and 

random mating are not considered because only seed flow contributes to migration of 

maternally inherited haploid genes. Let N = N be the effective number of haploid genes 

and ñi = ms  be effective migration rate. Then has the same form as equation 

(6.12c). The above results show that the complex expressions for I., derived for each 

genome can be reduced to Wright's general formula by substitution of appropriate values for 

effective population size and migration rate specific to the different genomes 

6.3 Stepping stone model 

In this section we incorporate seed and pollen flow into the stepping stone model using 

similar considerations and mathematical methods to those of Kimura and Weiss 

(1964),Weiss and Kimura (1965). 
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6.3.1 Assumptions 

The basic assumptions are similar to those in the classical stepping stone model (Kimura 

and Weiss, 1964; Weiss and Kimura, 1965). An infinite array of populations lie on a 

Cartesian grid. Only one- and two-dimensions are in turn considered. Both forms of 

migration have two components: that between populations one step apart (m 1  for pollen 

and rn, 1  for seeds), and long distance migration (rn for pollen and rnSC(, for seeds ) that 

draws pollen and seed from all populations. For the one step migration, half of this comes 

from each side. The number of seeds produced in each population is assumed to be large 

enough for sampling effects of pollen and ovules before seed formation to be ignored. 

6.3.2 One dimensional case 

6.3.2.1 Biparentally inherited diploid genes 

Using the same notation as Weiss and Kimura (1965), let p(i) be the gene frequency in 

population i and p(i + k) be the gene frequency in the population k steps away from 

population i. Initially we assume that all populations comprise adult plants. When reaching 

reproductive stage, they produce pollen. Let p p(i) be the gene frequency in pollen grains 

after pollen flow, which can be written by the following equation according to the stepping 

stone model (Kimura and Weiss ,1964), 

p  (j) = (1—m1 MP. (6.15) 

where m A,,l stands for the rate of pollen migration per generation one step away from the 

donor population, rn stands for the rate of long distance pollen dispersal per generation. 

Here the long- and short-distance pollen migrations are assumed to occur at each generation. 

For simplicity in mathematics the same shift operator S used by Weiss and Kimura (1965) is 

also employed to express equation (6.15), i.e. 

)5 p (i) = L(i) 
	

(6.16) 
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where p (j)=pP(j)_15, p(i)=p(i)-p and L =(1—m 1  —m)-m 1 (S' +S). 

The shift operator S is defined by the properties: Sp(i) = p(i + 1), S 1 p(i) = p(i - 1) 

(Weiss and Kimura, 1965, p132). 

As in the case of the island model, after random combination between pollen and ovules the 

gene frequency in seeds so formed, p'(1) , is 

P, (i) = [pP(j) + p(i)] 
	

(6.17) 

which is the arithmetic average of the gene frequencies in male and female gametes. 

Substituting equation (6.15) into equation (6.17), then we obtain 

S(j) 
= L(i) 	 (6.18) 

where L5  = (2— mp  - m,,) + m(S' + S) 

Similarly, after seed flow and then sampling the gene frequency in adults at the next 

generation, p'(i) , which is assumed to be the same as in seeds after seed flow, can also be 

expressed by 

p '(i) = (1— m51 - m)p3(i) +m1 [PS  (i —1) + pS(j + 1)] + M,.P + (i) 	(6.19) 

where rn, 1  stands for the rate of seed migration per generation one step away from the donor 

population, rn5,0  stands for the rate of long distance seed migration per generation, and 

the 4 (i) for the change of gene frequency due to sampling, with mean E[4 (i)] = 0 and 

variance V[ 5 (i)] p'(i)[l - pS(j)] / 2N. Again, the long- and short-distance seed 

migrations are assumed to occur at each generation. Putting equation (6.17) into equation 

(6.19), we can obtain 
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= Lji(i) + 8 (i) 	 (6.20) 

where 	L = fl 1 (S +S) 	 (6.21) 

in which 	2fl0 =1—a 0 -2fl 1 -2/32  

ao  

1 
fl1 = — [m1( 2— m1 — m)+m 1 (1—m 1  —m)] 

fl2 =-1--m 1 m,, 1  

It can be seen from equation (6.21) that the gene frequency in adults at the next generation is 

ultimately affected by populations up to two steps away due to the two processes of gene 

flow (pollen and seed flow), even though only one step migration is considered for each 

process. This is because these two processes of gene flow are connected via the stage of 

random mating. Obviously, the situation is different from animal populations where only the 

two neighbouring populations exchange genes with the studied population if only one step 

migration is considered (Weiss and Kimura, 1965). 

Since the L in equation (21) satisfies the relationship, 

E[L(k)1(0)] = L2p(k) 	(k # 0) 
	

(6.22) 

where p(k) is the unnormalized correlation function (Weiss and Kimura, 1965, p113), we 

can directly obtain the solution of the correlation of gene frequencies between populations k 

steps apart at steady state, r(k), by substituting 

H(cosO) 
= 2 

	cos j9 
	

(6.23) 

into the equation (3.10) of Weiss and Kimura (1965, p134). The equation (6.23) was 

developed by Weiss and Kimura (1965, p134) to obtain the exact solution of r(k). 
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According to Weiss and Kimura (1965), the general solution to the r(k)can be obtained, 

i.e. 

A 1 (k)+ A 2 (k) 
r(k) 

= A 1  (0) + A 2  (0) 	
(6.24) 

2,r 

where 	A 1  (k) 
=I 

 

j_cos k9 
 dO 	 (6.25a) 47r 0 1—H(cos0) 

A2(k)=-1 
2,r 

--J_coskO 
dO. 

47r 0 1+H(cos0) 
(6.25b) 

The equation (6.24) provides an exact solution for r(k). However, ignoring the very small 

part 62 1 we can obtain 

1 	ao l a 2 o  
2a0  (a 0  + 4fl1) [ 	2fl 1 	4fl2  i 	fl1 	

(6.26a) A, (k) 	 1+ 

_______ 	 —2fl1)2 1 2—a 0  _2fl 1 J A 2 (k) = _________________ F
~2 

21J(2—a 0 )(2—a 0  —4/i1) 4, 82 	 2,81 

(6.26b) 

Justification of equation (6.26) can be easily obtained by comparison of equation (6.26) with 
the equation (4.4) of Weiss and Kimura(1965). 

If the rates of short-distance migration are much larger than those of long-distance migration 
for both seed and pollen flow, i.e. m31  >> M.,. , MP , >> m,,, according to discussion of 

Weiss and Kimura (1965, p136) we can see that A 1  (k) is much greater than A 2 (k). 

Therefore, the r(k) can be approximated by 

r(k) A 1  (k)/A 1  (0) 	 (6.27a) 

= e 	 (6.27b) 
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The equation (6.27b) is equivalent to the equation (1.13) developed by Kimura and Weiss 

(1964) for animal populations. 

Now, consider population differentiation. The same notations as Weiss and Kimura (1965) 

are used. Let p(0) be the variance of gene frequencies among populations. Using the 

method similar to Weiss and Kimura (1965), according to equation (6.18) we can obtain the 

variance of gene frequencies in seeds among infinite number of populations after pollen flow 

and random mating, p'(0), i.e. 

p$ (0) = Lr(0)p(0) 
	

(6.28) 

Similarly, according to equation (6.20) we can obtain the variance of gene frequencies 

among populations in adults at the next generation, p'(0), i.e. 

	

p'(0) = L2r(0)p(0) +
I 
 [ 	- - PS  (0)] (6.29) 

2N 

Putting equation (6.28) into equation (6.29) and letting p'(0) = p(0), the general solution 

of the ' 'V(b) (= p(0)/(l—))at steady state can be obtained, i.e. 

't(b) = 	
1 	

(6.30) 
1 + 2N[(1 - L2)r(0) - — '--(1— L)r(0)] 

2N 

If m 51  = rn1,, 1  = 0 but m s. # 0 and m,,,, # 0, according to equation(6.25) we can obtain 

{(1 - L2 )r(0)] t  = 1 + 	1 	1  1  
2ñi 	2(2—ñ) 2ñI 	

---(1_L)r(0)=_Lñ (2—ñL,) . 0. 
2N 

Thus the equation (6.30) reduces to equation (6.12b) in the infinite island model. 

If the rates of short-distance migration are much larger than those of long-distance 

migration, i.e. rn, 1  >> rn,0,,, m p1  >> m i,,,,,, and the fl2 is very small, according to the 

equation (3.11) and the discussions from equation (4.3) to equation (4.6) in Weiss and 
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Kimura (1965, p134) we can obtain {(1—L 2 )r(0)}'=A 1 (0)+A2 (0)A 1 (0)= 

1  
Ignore the small part of the 

1
(1

- 
 L )r(0), which is introduced by 

21a0 (a0 +4fl1 ) 	 2N  

pollen flow. Then the equation (6.30) becomes 

1 
t(b) 	

1+4Na0 (a 0  +4,81 )
(6.31a)  

1 

	

l+2NJ2n1ñ 	
(6.31b) 

where ñi = m 1  +m 1  /2,ñi 	 /2, and N =2N. The equation(6.31b) is 

equivalent to the equation (1.12) of Kimura and Weiss (1964) for animal populations. 

6.3.2.2 Paternally inherited haploid genes 

In order to avoid repeating procedures similar to those used for biparentally inherited genes, 

the main results are listed below. After pollen flow, the gene frequency in pollen of 

population i , pP  (i), is 

= Lji3(i) 
	

(6.32) 

where P °(i) = pP(j) -, (i) = p(i) -, and the L is the same as that in equation 

(6.16). The gene frequency in resident seeds formed by random combination between pollen 

and ovules is the same as in male parents (pollen), i.e. pS (i) = p p  ( i). After seed flow the 

gene frequency in adults at the next generation is 

	

p'(i) = Lp(i)+ 4 '  0) 	 (6.33) 

where 	L = /31 (S +S) 

in which 	2fl 0 =l—a 0 -2,8 1 -2fl 2  

a0  =(l—m5jm,,, MI.  
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fl = --- m 1 (1—m 1  —m,,)+--m 1 (1—m 1  —m 3 ) 

1 and 	162 = - m 1 m 1  

The 4 5 (i)is the change of gene frequency by sampling, with mean E[ 3 (i)] = Oand 

variance V[4, (i)] S  (i)[1 - pS (i)] / N. The correlation of gene frequencies between 

populations k steps apart at steady-state can be obtained by substituting the a 0  and fl, in 

equation (6.33) into equation (6.27). However, at steady state is different from the 

case of biparentally inherited genes because of paternally inherited haploid genes, and is 

shown to be 

1 P j(p)  = ______________________________________ (6.34) 
1 + N[(1 - L2)r(0) - N (l - L,,)r(0)] 

 

If 1n —in,, =0, but rn #Oand rn,,,,, # 0, then P t(p)  is the same as that in the island 

model (equation (6.13)). If 	rn, 1  >> rn,and rn,, 1  >> m,, and let ñ = rn,1  +m,,1 , 

= m,,, + in-P. , FV = N , then P g(p)  has the same form as equation (6.3 ib). 

6.3.2.3 Maternally inherited haploid genes 

The case of maternally inherited genes is exactly the same as the case of paternally 

inherited haploid genes except that no pollen flow occurs. The correlation of gene 

frequencies between populations k steps apart, r(k) , and the population differentiation, 

"st(m) can be immediately obtained by rn,, 1  = rn,,,, = 0 in corresponding equations of 

paternally inherited haploid genes. For simplicity, these results obtained above are 

summarised in Table 6.1. 
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Table 6.1 Comparison of genetic differentiation F5t and genetic correlation r(k) for three 
genomes with different modes of inheritance in an island and a one dimensional stepping 
stone model. Parameters N and in represent effective number of genes and effective rate 
of migration in each case. 

Model 	 Biparental 	Paternal 	 Maternal 

Infinite island model 

i 	 I=2N 	 N=N 	 N=N 
= 1+2 Nin 	 in = 	+ m /2 	in = m + m 	 = m 

One-dimensional stepping stone model 

(1) If m, , = MP  I = 0, 	# 0, m# 0, 1 's are the same as in island model 

© If m 5  >> mpo, and m p1  >> MPIO 

9=2N 	 N=N 	 N=N 

=
=m +m 1  /2 	= ,n 1  +m 1 	=m 

M. = m + 	/ 2 ñi = m + 	 =s. 

-[k 	
N=2N 	 N=N 	 N=N 

r(k) = e m 	
= 	+ m 1  / 2 	= m 1  + m 1 	 = m 1  

	

= 	+ mpoo  /2 ñ = m + mp.M. = 
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6.3.3 Two dimensional case 

6.3.3.1 Biparentally inherited diploid genes 

As in the case of the one-dimensional stepping-stone model, the gene frequency in pollen 

after pollen flow in the population located at position (i, i), p"  (i, i), can be written by 

P(j,j) = Lp(i,i) 	 (6.35) 

where 5P(0=pP(j)_p, 

L =(1—m 1  mp1y  _m)+mpi (S 1  +S1  )S 	 ~ S2 ), 

in which m P IX  and m 1  stand for the rate of pollen migration per generation, and the 

S1  and S2  stand for shift operators along the x and y axes (S1 PO'  j) = p(i + l, j), 

S 2p(i,j) = p(i,j + 1)), respectively. 

After random combination between male (pollen) and female (ovules) gametes, the gene 

frequency in seeds so formed, p3  (i, i), is the arithmetic average of the gene frequencies in 

male and female gametes. Then we can show 

1 3 (ii) = L 5 j5(i,i) 
	

(6.36a) 

where 

Ls 2 = --(2 — m 1  —m 1  _m,,)+!mpi (S' +S)S 	
2) 	(6.36b) 

After seedflow, the gene frequency in adults at the next generation is 

'(i,i) = L(i,i) 
	

(6.37) 

where 

L = 	fl(S + S)(S' + S)+fl02 S(S 2  + S)+fl20 (S 2  + )S2° 	(6.38) 
i=O j=0 
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in which 	2)600  = 1—a0  —2/3 —2fl -4fl —2,802 - 2,820 

a 0  
2 

1 
,601  = 

4 
[m$1v( 2  —m 1  mp1y  —m,,)+ m 1 (1— MAX — m 1  —m 3 )} 

flio =
S 1 (2 — m 1  mpiy 	 — m 1  —m)] 4 

1 
Al = -j(msix mpiy  +m31 m 1 ) 

1 
'820 = 8 m 1 m 1  

1 
and 	fl = —m ly mpiy  8s 

It can be shown that the equation (6.22) still holds for the L in equation (6.38) (see 

Appendix IV). The equation (3.11) of Weiss and Kimura (1965) still holds under this case. 

Therefore, the correlation of gene frequencies between populations which are k1  steps apart 

in the X direction and k2  steps apart in the Y direction, r(k1 , k2 ), can be obtained by 

substituting 

H(cosO 1  cos82 ) = 
i I 

 2,8ij  cosiO, cosj82 +2,820  cos281 +2,802 cos20 2  (6.39) 
i=0 j=0 

into the equation (3.11) of Weiss and Kimura (1965). The analytic expression for the 

solution to r(k 1  , k2 ) is not attempted due to the difficulties of calculation. 

The general solution for 	at steady state has the same form as equation (6.30), and can 

be obtained by substituting the L in equation (6.38) and the L in equation (6.36b) into 

equation (6.30), and replacing r(0) in equation (6.30) with r(0,0). Ignoring the small part of 

the 
1

—(1 - L)r(0,0) and using the equation (3.11) of Weiss and Kimura(1965, p134), we 
2N 	S 

can show that FS , (b)  can be approximated by 
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-1 

't(b) 
{ 	12 ff2f5 	d91 d02  
1+42r 

- H2  (cos 0 cos 02)) } 
	

(6.40) 

where N = 2N. An analytic expression for equation (6.40) is not calculated further. 

6.3.3.2 Paternally inherited haploid genes 

After pollen flow the P "(i,i) has the same form as equation (6.35). The L is also the 

same as that in equation (6.35). After seed flow and sampling the L in the gene frequency in 

adults at next generation, p'(i,i) , is the same as that in equation (6.38) except that 

a0  =(1—m)m +m30 , (6.41a) 

fl01= -- [m81(2— m1 —m1 — m,)+m 1 (l—m 31  — m 1  —m)] (6.41b) 

fl10 = [m(2 - m1 - mp1y  - m) + m 1 (1 - m 1  - m 1  - m)] (6.41c) 

= (m81 m, 1 , + (6.41 d) 

fl20 = 
1 

MSIXMP IX (6.41e) 

1302 = 
1 

MsIyMply (6.410 

The change of gene frequency by sampling, 4, (i), is the same as that in equation(6.33), 

with mean E[ 5  (i)] = 0 and variance V[4 (i)] pS  (i)[1 - pS (i)] / N. The r(k1  , k2 ) can 

be calculated using equation (3.11) of Weiss and Kimura(1965). 't(p) at steady state has 

the same form as equation(6.34) and can be approximated by the same formula as equation 

(6.40) except substituting a 0  and fl's in equation (6.41) and N = N(haploid) into them. 
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6.3.3.3 Maternally inherited haploid genes 

Because only seed flow contributes to migration, following similar procedure as in the case 

	

of biparentally or paternally inherited genes, we can obtain a0 = Ms. ,  /30 =1 
	

and 

/8 10  =msl, Compared with paternally inherited genes, the r(k1  , k) and Fst(m)  can be 

obtained by putting m 1 x = mp1y  = MPM  = 0 into the corresponding equations. 

6.4 Some properties of r(k) 

The objective of this section is to find how the correlation of gene frequencies between 

populations k steps apart, r(k), varies with seed flow and pollen flow in a one-dimensional 

stepping-stone model. It can be seen from equation (6.27) that r(k) decreases 

monotonically with the ratio of long- to short-distance migration (a 0  /,6 10  ). Thus, the 

ratio of a 0  I/310 plays a more important role than either of them separately in determining 

the correlation of gene frequencies. Generally an increase in the rate of the long distance 

migration (a 0 ) may reduce the correlation (r(k)), while an increase in migration from 

neighbouring populations may strengthen the genetic correlation. Therefore completely 

different effects on r(k) are carried out by long- and short- distance migration. 

Denote the correlation of gene frequencies between populations k steps apart by 

r, (k), rp  (k) and rm  (k) for biparentally, paternally and maternally inherited genes, 

respectively. We can roughly obtain 

r(k)=e 	 (6.44) 

according to equation (6.27) for each of the three genomes. If m,, /m 1  > m /m , the 

correlation of gene frequencies for maternally inherited haploid genes is smaller than that 

for biparentally inherited diploid genes, which in turn is smaller than that for paternally 
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inherited haploid genes, i.e. rm (k)<rb (k) <r(k). However, if m 1 /rn 1  <rn,,/rn,,, 

then r. (k)> > r,,(k). In order to confirm these inferences about the properties of 

r(k) outlined above, I directly calculated the genetic correlation according to the equation 

(3.10) of Weiss and Kimura (1965). Let rnp1 = 10_2, rn,1  = 10, mAr,00 = iO, and 

rn,00 = 10_6 ,  i.e. m Ar,I /m, 1  > mp00/rn,rx, . The results indicate that 

r(k) > i',(k) > r (k) (Fig.6.2a). Letting 	rn,,1 = 102, rn,1  = 10 3 , m,,,, = iO, and 

rn,00  = 10, i.e. m 1  /m, 1  <rn,/rn,00  , the results indicate that rm (k)> rb (k)> r(k) 

(Fig.6.2b). These are consistent with the inferences above. The correlation for biparentally 

inherited diploid genes, however, is very close to that for paternally inherited haploid genes. 

In order to find the separate effects of pollen flow and seed flow on 	we hold pollen 

flow and change seed flow, or fix seed flow and change pollen flow. Figure 6.3a shows that 

an increase in one-step seed flow (rn,1  ) may increase the genetic correlation for each of the 

three inherited types of genes. Similarly, figure 6.3b shows that an increase in one-step 

pollen flow (rn 1  ) can increase the r(k) for paternally and biparentally inherited genes, but 

has no effect on maternally inherited genes. 

Under the condition rn,,1  /m, 1  > m, /rnsc.D , we can show that the correlation of gene 

frequencies changes faster with both seed migration (rn,1 ) and distance for maternally 

inherited haploid genes than for biparentally inherited diploid genes, which in turn is faster 

than for paternally inherited haploid genes. However, the change of the correlation of gene 

frequencies with pollen migration is faster for paternally inherited haploid genes than for 

biparentally inherited diploid genes. 

A further important result is that for biparentally inherited diploid genes, the correlation of 

gene frequencies between populations changes faster with seed flow than with pollen flow. 

Therefore seed flow can potentially have much more influence than pollen now in 

determining population structure of biparentally inherited genes. However, the correlation 

of gene frequencies between populations is affected to the same extent by seed and pollen 

flow for paternally inherited genes. 
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6.5 Estimation of the ratio of pollen flow to seed flow 

For answering many practical questions about gene flow in 'plant populations it may be 

important both to estimate the ratio of pollen to seed flow between neighbouring 

populations and to estimate the same ratio for long-distance gene dispersal. The ratio from 

long-distance dispersal can be estimated with the help of the island model (Wright,1969; 

Ennos, 1994). 

In the case of one dimensional stepping-stone model, let A = [In rb (k)]', B = [In r(k)]2  

and C = [in rm  (k)] 2 . If the correlations of gene frequencies between populations can be 

obtained for both biparentally inherited gene such as nuclear DNA markers and for 

paternally inherited genes such as cpDNA markers in some conifers (Dong and Wanger, 

1994; Neale, et al,,1986,1991), then the ratio of short range pollen to seed flow can be 

approximated by 

M PI 	 A(1+m/m, 3 ) 

—1 	 (6.45) 
,n1 	 mp. 

Where the correlations of gene frequencies between populations can be obtained for both 

biparentally and maternally inherited genes, the ratio of short range pollen to seed flow can 

be approximated by 

,n 1 	A 
	 (6.46) 

If the correlations for both paternally and maternally inherited genes are measured, the ratio 

of pollen to seed flow between neighbouring populations can be approximated by 

.- 
in31 	B 	m3  

(6.47) 

If the long range migration can be ignored, the ratio of pollen to seed flow from short range 

migration can be estimated from equations (6.45), (6.46) and (6.47). However, it seems 
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Fig. 6.2 Comparison of the genetic correlation with distance between populations r(k) for 
biparentally, paternally and maternally inherited genes at migration/drift equilibrium. Levels 
of short distance pollen migration, short distance seed migration, long distance pollen 
migration and long distance seed migration are: (a) m1 = 10 -1 , rn, 1  = 10, rn Poo = 

and m =lO;(b) rn,,1  =lO_2,  m 51  =iO, rn,,,,, =10 5 ,and rn,,,, =iO. 
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Fig. 6.3 Effects of short distance seed flow (a) and short distance pollen flow (b) on genetic 
correlation with distance r(1 0) for biparentally, paternally and maternally inherited genes at 

migration/drift equilibrium. Fixed values for short and long distance pollen and seed 
migration are: (a) mp1 = 10_2, m PW = iO, and = 10; (b)m3 = 10_2 ,  

MPM = i0, and rn3 ,, = 10 

(a) 

(b) 
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impossible to calculate correlation of gene frequencies between populations because the true 

expected gene frequency (j5 = E(p)) is difficult to estimate in practice. Therefore, in this 

sense it is impossible to use the correlation of gene frequencies between populations to 

estimate the ratio of pollen flow. 

6.6 Discussion 

The aim of this chapter is to extend the existing island and stepping-stone models to plants 

in terms of gene frequency. Gene flow within and among plant populations is fundamentally 

different from gene flow in most animal populations in that the haploid generation (pollen 

in higher plants) is well adapted to, and may comprise the major means of gene dispersal. In 

order to understand fully the development of population structure in plants, dispersal via 

both seed and pollen needs to be incorporated explicitly into population genetic models. It is 

surprising that despite its importance, there have been relatively few attempts to take plant 

dispersal biology into account in developing population genetic models. (Wright, 1969; 

Crawford, 1984; Petit, etal., 1993; Ennos, 1994; McCauley, 1995). 

Studies of plant population genetic structure which take into account both pollen and seed 

flow have thus far concentrated on the island model (Petit, et al., 1993; Ennos, 1994). Using 

or G, for measuring population differentiation, they show that the level of population 

differentiation at mutation/drift equilibrium decreases from maternally to paternally to 

biparentally inherited markers. Here we rederive this result for the island model from a 

consideration of variance in gene frequency among populations. We also show that the 

result is true under a stepping stone model of population structure. 

In addition to quantifying levels of population differentiation at drift/migration equilibrium 

the stepping stone model can be used in theory to predict the spatial genetic structure of 

populations in terms of genetic correlations with distance. An important result to emerge is 

that the extent of genetic correlation for genomes with contrasting modes of inheritance is 

dependent upon the relative ratio of pollen to seed migration rates for short and long 

distance gene dispersal. Indeed the ordering of the size of genetic correlations for different 

genomes may be reversed with a change in the relative importance of pollen and seed in 

bringing about short and long distance gene flow. 
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Recent interest in this area has been stimulated by the application of molecular techniques in 

plant population biology, allowing the estimation of genetic structure for genes with 

different modes of inheritance (biparental, maternal and paternal). With an understanding of 

the influence of pollen and seed flow on genetic structure, estimates of the relative amounts 

of pollen and seed flow among populations can be inferred from comparison of Ft  values 

for maternally and biparentally inherited markers (Ennos, 1994). However, consideration of 

the stepping stone model outlined here suggests that if data on genetic correlation with 

distance r(k) can be collected, as well as data on Ft  for genes with contrasting modes of 

inheritance, it is still difficult to estimate the relative importance of pollen and seed in both 

long and short distance gene dispersal among plant populations. 

It should be remembered however that there are considerable theoretical and practical 

difficulties in applying models such as those outlined above to real populations for the 

purpose of estimating levels of pollen and seed flow. The first of these is that the 

assumptions of the models may not be met. In particular populations may not be at 

migration/drift equilibrium (McCauley, et al., 1995) and founding events may contribute 
substantially to observed population structure. 

The second major difficulty lies with obtaining estimates of Ft  and r(k) for the maternally 

and paternally inherited organelle genomes. Such genomes do not recombine and behave 

effectively as single genetic loci. As a consequence estimates of Ft  and r(k) are based on 

unreplicated sets of data. Errors in estimated values are unquantifiable and must be treated 

with considerable caution. 

Despite these practical difficulties with testing and applying models of population structure 

under drift/migration equilibrium, they are extremely useful in providing the theoretical 

foundation for interpreting the growing number of studies in which genetic structure for 

nuclear and organelle genomes in plants are contrasted. 
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6.7 Summary 

Gene flow occurs in two ways for hermaphrodite plants; seed flow and pollen flow. This 

produces asymmetrical migration for biparentally, paternally and maternally inherited genes, 

and may lead to different levels of population differentiation among them. In this chapter I 

incorporate seed flow and pollen flow into the classical island and stepping stone models of 

population structure. I evaluate their effects on population differentiation, and (in the 

stepping stone model) the correlation in gene frequency with distance for biparentally, 

paternally and maternally inherited genes. For both the island and stepping stone models 

differentiation for maternally inherited markers at migration/drift equilibrium is greater than 

for paternally inherited genes, which in turn is greater than that for biparentally inherited 

nuclear genes. In the stepping stone model the rate of decline of genetic correlation with 

distance is influenced by the relative values of long and short distance migration by seed and 

pollen. Differences in genetic correlation with distance among the differently inherited 

genes are conditional on the values of long and short distance migration for pollen and 

seeds. 
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CHAPTER 7 

Estimation of the Ratio of Pollen to Seed Flow 
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7.1 Introduction 

A variety of models can be used indirectly to estimate gene flow among populations of a 

species using data on genetic structure for selectively neutral markers (Barton, et al, 1986; 

Slatkin, et al, 1989; Slatkin 1989; Hudson, et a!, 1992). When applied in plant species, 

especially hermaphrodite plants, gene flow should distinguish both pollen and seed flow. 

As mentioned in Chapter 6, seed flow and pollen flow may lead to asymmetrical migration 

for the biparentally inherited (nuclear), and maternally inherited (chloroplast and 

mitochondrial) genes that occur in angiosperm species and the paternally inherited 

(chioroplast) genes that occur in conifer species (Neale, et a!, 1986, 1989, 1991). This 

produces different levels of population differentiation for the three variously inherited 

genomes. If the behaviour of genes with different modes of inheritance can be modelled, 

analysis of differences in genetic differentiation for these genes may allow estimation of the 

relative rates of pollen flow and seed flow (Ennos, 1994). 

It is certain that the ratio of pollen to seed flow is an important parameter in plant population 

genetics, and is also useful in practice. Knowledge of the ratio of pollen to seed flow in 

natural populations can aid decision-making in establishing plantations of particular 

function, for example a seed orchard (Zobel and Talbert, 1984). If the ratio is very high in 

natural populations, this suggests that control of pollen flow may have to be practiced so as 

to avoid contamination of foreign genes. 

Thus, the objective of this chapter focuses on methods for using a variety of population 

genetic statistics for estimating the ratio of pollen to seed flow in addition to those in 

Chapter 5. As a supplement to the extension of the classical model in Chapter 6, Wright's 

isolation by distance model is extended to plant populations. The first method for estimating 

the ratio employs data on F, measured in populations having a continuous distribution in 

space according to Wright's isolation by distance model (Wright 1943,1946). We then 

consider a simple model which describes the development of genetic distance between 

populations (Nei and Feldman, 1972), and relate Nei's distance to levels of seed and pollen 

flow. Finally, we briefly address the possible estimation of the ratio of pollen to seed flow 

from data on differences in DNA sequence between populations, and from gene 

phylogenies. 
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7.2 Wright's Isolation by Distance Model 

In the isolation by distance model (Wright, 1943, 1946), an important parameter is the 

neighbourhood size which is defined as an area from which the parents of central individuals 

may be treated as if drawn at random. The calculation of neighbourhood area is relatively 

complicated when both pollen and seed dispersal are considered. Crawford (1984a,b) 

presented a modified formula for calculating neighbourhood size for a plant population, 

which will be used here. For both pollen and seed the distribution of dispersal distances 

between parents and offspring is assumed to be normal with mean zero. We assume that the 

nuclear biparentally inherited genes are diploid, and the paternally and maternally inherited 

genes are haploid, and only consider selectively neutral genes. We will use the same 

method of path analysis as Wright (1968) to analyse the population structures of the three 

differently inherited genes. Some of these results were, in fact, presented by Wright 

(1943,1946). 

7.2.1 Biparentally inherited genes 

Let a and 	be the variance of the distances between male parents and offspring, and 

between female parents and offspring respectively. Also let U2 be the variance of seed 

dispersal, and 072 
 be the variance of the dispersal of pollen grains before seed formation. 

The number of individuals in the neighbourhood is N(b )  = 4r(' a, + U2  )d in area 

continuity according to Crawford (1984b) and 21(0 + U2 )7r d in linear continuity. Let 

N be the number of individuals in a neighbourhood after pollen dispersal and before seed 

formation which is equal to 2ro,d (area). The number of individuals after seeds formation 

and dispersal in the neighbourhood is N1  = 4od (area). Similarly the number of 

individuals after pollen flow and before seed is formed at ancestors of generation X is 

XN (area) or (linear), and for the individuals after seed dispersal is XN f  (area) or 
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-JkN1  (linear). The total number of individuals in the neighbourhood for both parents at 

ancestral generation X are 4/7( o + a 2 
) Xd  ( area) or 2j(--a +C2 

 ) ,rX d-(linear). 

7.2.1.1 Drift case 

Let F be the correlation between ovules and pollen grains that contribute to zygotes after 

pollen and seed dispersal. According to the same considerations as Wright (1943,1946), the 

F, in area continuity can be approximately written by 

F;. 	 (7.1) 
N(b)  

b2 -
1 +  F;,  

(7.2) 
2  

Therefore the recurrence equations at ancestor of generation X in area continuity is 

Fxs 	
1 

= 	b2  +(1— 	)1x+I)s 
XN (b)  

(7.3) 

For simplicity the calculation of F after infinite generations can be expressed by 

(7.4) 

1 
where t1 

- 
- 	and t 

= (X-1 )N (b)  - 1 
tx_I 

-k;;-,  

For linear continuity the recurrence equations can be obtained by substituting the X in (7.3) 

by Ii. We suppose that all populations are initially present as adults and produce pollen 

grains for dispersal, and the boundary condition is 0 after a large number of 

generations back (k). 
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7.2.1.2 Balance case 

Where there is a balance between drift and long range dispersal of seeds and pollen grains, 

i.e. drift / migration equilibrium, let m be the proportion of male parents (pollen grains) 

replaced by pollen migration when random mating with ovules, and in0, be the proportion of 

both parents replaced by seed migration. If both long range dispersal and reversible 

mutation are considered, then mp. or m,. are just substituted by m +u or m,. ±u. 

Consider random sampling of size N(b) , the proportion of male parents which makes a 

contribution to F is 1— mp., - while the proportion of female parents which 

contributes to F1  is 1 - 	Therefore , after seeds and pollen grains disperse, 

=(l—m _m s )(1_ms )[b2  +(1 1 )F] 
N(b) 	N(b)  

F28  =(l—m—m 5 )(l—m 8 )[ 
1

b 2 +(l— 	)F38 11 etc. 	(7.5) 
2N(b)  

At steady state, 

1 =t1(2—t) 	 (7.6) 

1 
where 	t 1 	 Mp.  

N ( b )  

tx  =(1—m8—m)(1—m8,) 
(X-1)N (b) 

 — ltx_I 
(b) 

In the cases where only the pollen grains or seeds disperse, F13  can be obtained by letting 

N - cx,m sco  = 0 and N —* ce,m = 0 respectively. 

7.2.2 Paternally inherited genes 

The number of individuals in the neighbourhood is N()  = 2n(o, + 
U2  )d (area) or 

+ cr,)ir d (linear) due to individuals being haploid after the dispersal of both seeds 
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and pollen grains. The number of individuals in the neighbourhood after the dispersal of 

pollen grains but before seed formation is N = 2w,d (area) or *Jad (linear), but the 

number of individuals in the neighbourhood after seeds dispersal is N1  = 21tad (area) or 

-fad (linear). Similarly the number of individuals in the neighbourhood at ancestor of 

generation X is 2rX(o + o )d (area) or J7zX(o + o )d (linear). 

7.2.2.1 Drift case 

Here define F as the correlation between adjacent individuals. 

FIs = 	t, 	 (7.7) 

where t1 
=I 

 and t = 
(X-1)N ()  1 

tx-I N() 	 XN ()  

7.2.2.2 Balance case 

At steady state( drift / migration equilibrium), 

'Isti 	 (7.8) 

1 	 (X—l)N () —1 where t1  = 	( 1— 	- m) and tx  = (1— 	- m) 	 tx_I. N() 	 XN ()  

For linear continuity the recurrence equations can be obtained by substituting -J'X in place 

ofXin (7.8). The boundary condition is F = 0 a large number of generations (k) back. 

In the case where only the pollen grains or seeds disperse, F13  can be found by letting 

N1  -* 	=0 and N - 	=0 respectively. 
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7.2.3 Maternally inherited genes 

Since both paternally and maternally inherited genes are considered to be haploid or 

uniparental, the number of individuals in the neighbourhood is N(  2rod (area). 

Wright (1943) also addressed this case. 
co 

= 	t, 	 (7.9) 

1  where 	and tx 	 tx_I. 1 = N(.) 	 XN m)  

7.2.3.1 Balance case 

At steady state ( drift / migration equilibrium), 

ao 

(7.10) 

where t 1  =(1—m5 )_
1 
 and t =(l_ms) 	N(m)  1 

N(m) 	 X 	
t 

I'T(m) 	
x_I. 

 

7.2.4 Comparison of population differentiation 

In order to compare population differentiation among three genomes, we use the same 

notation as Wright (1943, p124). Consider a total population of size N,  subdivided into H 

groups of intermediate size Ni  and these are subdivided into K random groups of size N,, . 

Next we will compare the levels of population differentiation relative to N, among the 

three genomes in the drift/migration balance case. 

7.2.4.1 Biparental vs paternal genes 

It can be seen that the neighbourhood size of biparentally inherited genes is greater than that 

of paternally inherited genes, i.e. N(b) > N() , and also t, ( i= 1, 2.....K) in the case of 
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paternal genes is greater than that in the case of biparental genes according to (7.6) and 

(7.8). Therefore after going back to the ancestral generation K, 	t of paternal genes is 

greater than that of biparental genes. It can be shown that the correlation of paternally 

inherited genes, FS(,  is greater than FIS(b )  for biparentally inherited genes, i.e., 

> 
- s(b) ' 

Similarly after going back to ancestral generation KH, it can be shown that the correlation 
of paternal genes, P (p)  is greater than of biparentally inherited genes. We can also 

prove that 

- 's(p) > Ft(b) - s(b) 

1— 	1— 's(b) 

i.e., 

> 	t(b) 	 (7.11) 

7.2.4.2 Paternal vs maternal genes 

As above, we can prove the relationship 

't(m) - 's(m) > 't(p) - s(p) 

1 - F;s(m) 	1 - s(p) 

i.e., 

t(m) > 't(p) 	 (7.12) 

In summary the population differentiation of maternal genes is greater than that of paternal 

genes, which in turn is greater than that of biparental genes as long as the dispersal of seeds 

and pollen grains take place. 
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7.2.5 Ratio of pollen to seed flow 

In this part we consider how to estimate the ratio of pollen to seed flow from long range 

dispersal. According to the Taylor expansion, Y  t in (7.6) can be written using a simple 

formula, 	t = 1—[1—(1—m 	 . Similarly expressions can also be 

obtained for (7.8) and (7.10). 

\ N 

Let 
A= 1— (1— F1S 1 	, B = 1— (1— FIS)N and C = 1— (1— FS)N for biparentally, 

paternally and maternally inherited genes respectively. Then the ratio of pollen to seed flow 

from long range distance can be approximated by 

A—B2 
or 

B—A 

C2 —A 	C—B 
or 

C(1—C) 	1—C 
(7.13) 

7.3 Nei's Genetic Distance 

In this part we will incorporate seed flow and pollen flow into Nei's genetic distance (Nei, 

1972) for three differently inherited genomes based on the assumptions of mutation / 

migration / drift equilibrium, as addressed by Nei and Feldman (1972) and Chakraborty and 

Nei (1974). Here we will use Nei and Feldman's model because of its simplicity and 

practicality. 

Suppose that a population splits into two incompletely isolated populations and thereafter 

gene migration occurs in every generation between the two populations with a constant rate 

of both pollen and seed flow. Let N 1  and N 2  be the sizes of populations 1 and 2 

respectively and assume that effective size is the same as the actual size. 

Let m 1  and thp, be rates of seed and pollen migration in population 1 respectively, and m 32  

and m p2  be the rates of seed and pollen flow in population 2. Using the same notation as 
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Chakraborty and Nei (1974), let J and J be the probabilities of identity of two 

randomly chosen genes from population 1 and 2 respectively at generation t. Let J be the 

probability of identity of two randomly chosen genes, one from each of the two populations. 

Each new mutation is different from the alleles pre-existing in any of the two populations. 

Only selectively neutral alleles are considered. Therefore the only way in which two genes 

can be the same "allele" is if they are identical by descent. 

7.3.1 Biparentally inherited genes 

Male parents for the biparental genes come from two sources: one comes from migration 

with frequency 1n 1  + rn 1 , denoted by B; the other is from within populations with 

frequency (I - 	- rn,, 1 ), denoted by A. Similarly, female parents come from two sources: 

?n 1  from migration, denoted by D, and (j - m 1 ) from the population itself, denoted by C. 

The probabilities of two randomly chosen genes from population 1 come from A and A, B 

and B, A and B, etc. are (l—m1 - m 1 ) 2 , ( rn 1  + m 1 ) 2 , ( l—m 1  - m 1 )(m, 1  + rn,, 1 ), etc. 

respectively. Following Malecot (1969), we can derive the recurrence equation for J, 

which is: 

(t+l) =(l_ub)2 {!(AA +CC+2AC)[ 	+(l— 1 )J(f)] 
II 

4 	 2N 

	

2N1 	
11 

+ !(2  AD +2AB +2CD+2 CB) Jg)  

+_ (BB +DD+2BD)[_ +(1— 	W22 1) 	(7.14a') 
4 	 2N2 	2N2  

where Ub  is the mutation rate for biparental genes. Substituting for A, B, C and D in (7.14a'), 

we can obtain (7.14a) 

1 	2[ 1 
+(1—  1  )J 11 J 

(t+l)  =(l—ub ) 2 {(l—m 81  ---m 
2 PI) 

 2N 1 	2N1 	
11 

1 
+2(l—m 1  -- 

2 
 m 1 )(rn 
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+ (m 	
1 	) 2 [ 1 

1  +—m 
2 	2N 2 	2N2 

) J22 (7.15a) 

Similarly, we can derive the recurrence equations for jg)  and J.  22 

j (2 t+1) =(1—ub ) 2  (( l—m1 	 _1 +(1 	
1 )J(t)] 

2N 1 	2N 1  

1 + (1—rn31  ---m 1 )(1—m 32  ----m2)+(m31 
1 

+— 
2 

m '  )(m32  +—m 2 )JJ 

1 	 1 	1 	1 
+(1—m 32  --m 2 )(m31  +—m 1 )[ 	+(1— 

2N2 ) 22 
	 (7.15b) 

r(t+l) = (l—u b ) 2  {(m52 +-m2)2[_ 1 	
(1 	)J(t)] 22 

2N 1 	2N 1  

1 	 1 
+2(1—rn32  --m 2 )(m32  +—m 2 )J 

1 	2 	1 
+(1— 

 1 )J(i)] - M.'2  - .rnp2) 2 N
2 	2 N2  

(7.15c) 

When rnp1  = m 2  = 0, the above equations reduces to those of Chakraborty and Nei (1974). 

Using matrix notations, formulas (7.1 5a), (7.1 5b) and (7.1 5c) may be written as 

where 

j(t+l) =(I 
 —  14b 

)2  T+( 1  —  lAb ) 2 MJ° 

j 	= (J(t) 1(t) T(t)) 
Ii 	h12  , "22 

(7.16) 
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(l—m 1 	(m1+ 
 1 
—m )2 

+ 2 	' 

2N 1 	 2N 2  

m,, 1  )(m 2  + m,,) (1 - m2 - m 2 )(m  + rn,,1 ) 
T= 	 + 

2N 1 	 2N2  

(1 - rn2 - 	 (rn52  + 

+ 
2N2 	 2N 1  

(l—n 1 --nz 1  

 1 
—11xn2 

1 
-2)  

M= 
I(1—) 

+-112)(1 - ) 
2P  

2(1—ii — fl,1Xn1 + — fl3,) 

,1X1—n2 	"3,2) 

+(n;,+-,1Xn12 -- '2) 

2(1-rnS2 	h9,2Xh1 r2 	'p2) 

01 +h,nfr,)2(1') 
2N 

1 	1 
(1-'2 	"32)("11 	h13,i) 

1 
2N 

(1-n 2  - 
1

hl3,2)(1--) 

Under steady state, the vector of equilibrium identity probabilities is given by letting 
j(t+I) = j(t) in (7.16), i.e. 

J = (1 u )2  {I —(1— Ub )2 M}-'T 
	

(7.17) 

Since Chakraborty and Nei (1974) have already discussed this equation in detail, we can 

use their results in later sections. 

7.3.2 Paternally inherited genes 

Here again suppose that the paternal gene is haploid. Its migration can also be mediated by 

both pollen flow and seed flow. Following similar consideration to those for biparental 

genes, the vector of equilibrium identity probabilities is 
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J = (I —u r  )2 {I —(1—un )2 M) - 'T 
	

(7.18) 

where up is the mutation rate of paternal genes, and 

((1—rn51  —m1)2 +(ms,  +m1)2 

N 1 	 N2  

T 	
—m5  —rn 1 )(rn52  +m2) + (i—rn52  —m 2 )(m51  +m 1 ) 

- 	 N 1 	 N2  

ms2  —rn2)2 + 

N 2 	 N 1  

(1—in51 _mi)2(1__) 

(1—M51 —rn1Xrn52  +M 2 ) 

M= 	1 

('2  

2(1—rn51  -rn 1 )(n 1  +m 1 ) 

(1—rn51 MpI 	—rn2) 

+(m51 +m1Xrn52  +m 2 ) 

2(1—ni52 -rn2Xin,2 +rn 2 )  

1 
(' +m 1 )2 (1-----_) 

(1—rn52  -rn2Xrn51 -(-m 1 ) 

(1 M,2_rn2)2(1___) 
N2 . 

7.3.3 Maternally inherited genes 

Consider that the maternally inherited genes are haploid. Only seed flow contributes to their 

migration. Under this case, the vector of equilibrium identity probabilities is 

J=(1Um ) 2 	(l m ) 2 M}T 
	

(7.19) 

where the urn  is mutation rate of maternal genes, and 
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(1—rn 1 ) 2  

N 1 	N 2  

T= (1—m1)m,2 +(l_m52)msi 

N 1 	N 2  

[(1_ms2)2 + 

N2 	N 1  

(1_rns1)2(1_ 1 ) 
NI  

M= M,2(l—M.J(l N 1  

2 	1 
M,2 (7) 

2(1 - m 1  )rn81  

(1 - m 1  )(1 - m 2 ) + m 1 m 2  

2(1 - m,,2 )M.,2 

2 (1-----) 

1 
(1—rn 2 )rn 1 (1-----) 

N 2  

(1_rnS2 ) 2 (1_) 

7.3.4 Ratio of pollen to seed flow 

Here consider a special case where u <<m ,rn 1 5 rn,2  ,m 2  <<1, which was addressed by 

Chakraborty and Nei (1974). Nei's distance for the three genomes are 

2 Ub 
Db 	 1 	1 	

(7.20a) 
m 1  +m,2  +—rn,,1  +—m 2  

2u 
D 	 p 	 (7.20b) 

+M, 2  +M PI  + rn,,2  

Dm 	
2u m 	 (7.20c) 

rn,1  +m,2  

where Db , I),, and Dm  stand for Nei' s distance of biparental, paternal and maternal genes 

respectively. 

Let in- , = rn,1  + rn,2  and iii.,, = rn,,1  + rnp2 . The ratio of pollen to seed flow is given by 

th,,2(a —l) 	Dbu P  
,wherea= 	 (7.21a) 

th, 	2—a 	 DPub 
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or 

MP  2(1—a) 
where a = DbUm 	

(7.21b) th3 	a 	 Dm Ub 

or 

	

1—a 
where a 

DpUm 	
(7.21c) = 

a 	 Dm  up 

7.4 Number of Nucleotide Differences 

The variation in DNA sequence within and between populations contains much information 

on population evolution. Every sequence may be unique, and all the information is contained 

in the genealogical relationship between sequences (Barton and Wilson, 1995). Differences 

at the DNA level can be measured by the number of segregating sites among DNA 

sequences sampled (Watterson, 1975) or by the average number of (pairwise) nucleotide 

differences between DNA sampled (Tajima, 1983). For simplicity, only the average number 

of (pairwise) nucleotide differences between DNA is considered. If only two DNA 

sequences are sampled from a population, the expectation of the average number of 

nucleotide differences is equal to the expected number of segregating sites (Tajima, 1989). 

Under a balance of migration / mutation / drift, the average number of pairwise nucleotide 

differences sampled within a population is independent of migration, but is related to 

migrations for pairwise DNA sampled between populations (Strobeck, 1987). This provide 

the foundation for estimating the ratio of pollen to seed flow. 

From above the migration rate for biparental genes can be obtained directly, i.e. in3  + m,,, 

while the migration rates for paternal and maternal genes are m3  + mp  and m5  

respectively. We use similar notation to Strobeck (1987). In the island model with finite 

number of subpopulations, n, let A = 
	- 1)14 

, B= 
(fl - l)U 

and c = (n - 1)Um  

- ii.b 	 ij.p - ii.p 	 4Y.M - ii.m 

where u represents mutation rate, 1E and 4ii stand for the expected number of nucleotide 

differences between two randomly chosen DNA sequences from the same subpopulation and 
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from two different subpopulations respectively. Subscripts b, p and m stand for biparentally, 

paternally and maternally inherited genes respectively. The ratio of pollen to seed flow can 

be obtained by 

m 	B—C , or  2(A—C) or 2(B—A) 	 (7.22) 
,  

C 	C 	2A—B 

	

j(n — i)u 	i(n — z)u 
In the circular stepping-stone model, 	let A = 	

b , B= ... 	.... 	and 
i.b 	0.b 	 i.p 	O.p 

i(n — i)u 
C = -. 	m 

, where 	(i = 1,2,...) stands for the expected number of nucleotide 

i.m 	O.m 

differences between two randomly chosen DNA sequences from two subpopulations which 

are i steps apart, and 	from the same subpopulation. Under the balance of mutation / 

migration / drift, the ratio of pollen to seed flow can be obtained according to Strobeck 

(1987), which has the same formula as (4.1) except for different A, B and C. 

7.5. Phylogenies 

Another method that also uses DNA sequence information for estimating of the ratio of 

pollen to seed flow is based on the phylogenies of gene. Slatkin et a! (1989, 1990) and 

Hudson et al. (1992) introduced a method for analyzing phylogenies of genes sampled from 

a geographically structured population. Using simulation, they showed that the minimum 

number of migration events (s) is a simple function of Nm based on phylogenies of alleles 

and genes under a variety of population structure models. This method depends on knowing 

the phylogeny of the nonrecombining segments of DNA that are sampled , but does not 

require complete sequences though it does assume that an accurate phylogeny can be 

inferred from the segments of DNA sampled (Slatkin, et a!, 1989). Although the analytical 

expression, s = J(Nm) has not been obtained to date, this nevertheless provides an 

additional potential method for estimating the ratio of pollen to seed flow among plant 

populations. 

Following similar considerations to those above, for the biparentally inherited genome 

(nuclear DNA), both seed and pollen contribute to the migration events. Thus the 

182 



relationship between S, the minimum number of migration events between pairs of 

populations sampled, and number of migrants may be written: 

Sb =f[N(m3 +!m)] 	 (7.23) 
2 

Similarly, the minimum number of migration events between pairs of populations sampled 

should be related to both seed and pollen flow for paternally inherited genes, and to seed 

flow only in maternal genes. Therefore, there may be the following relationships, 

= f[N(m +m)] 	 (7.24) 

and 

Sm  =f(Nm5 ) 	 (7.25) 

where s and Sm  stand for the minimum number of migration events consistent with 

phylogeny for paternal and maternal genomes, respectively. By combining (7.23), (7.24) 

and (7.25) , it will be possible to estimate the ratio of pollen to seed flow once any two of 

these three relationships are available. 

7.6 Ratio of movement in space 

Basing on field observation, Bateman (1947) presented a simple formula to describe the 

distribution of pollen density with distance for either insect- or wind-pollination plants. 

Similar relationship between pollen density and distance was observed by J.W. Wright 

(1952). However, this formula is difficult to be used to estimate ratio of pollen to seed flow 

at population level. Slatkin (1993) pointed out an approximate log-log linear relationship 

between number of migrants and geographical distance. This relationship was tested by 

simulation under a variety of models and can be detected using different genetic markers 

(see Chapter 2). If isolation by distance exists for each of the three genomes, then it may 

provide the chance to explore the relationship between the ratio of pollen to seed flow (Nm) 

and the geographical distance(d). 

For biparental genes, according to equation Log 10  (Nm) = a + bL og 10  (d), we can obtain 
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N(m + m p  /2) = lO d1" 	 (7.26) 

where a 1  and b 1  are constants. 

Similarly, we can obtain 

N(m +m)= 10" .db2 	 (7.27) 

for paternal genes, and 

Nm s  = 10a3 . db3 	 (7.28) 

for maternal genes. 

Since the constant b is negatively related to the number of migrants Nm, larger Nm may lead 
to lower b value. Thus, it can be inferred that the following relationship exists 

b3 <1b11 <Jb2J 
	

(7.29) 

This is due to Nm s  <N(m + mp  / 2) <N(m + m e ). Therefore, combining (7.26) with 

(7.27), we can obtain the relationship between the ratio of pollen to seed flow and 

geographical distance. That is 

_L=(2A.dB _i)' —1 	 (7.30) 
m 

where A = lO'2 and B = bi  - b2 . The B is greater than zero, i.e. B>O. 

Similarly, combining (7.26) and (7.28) we can obtain 

M s 

	 1) 
	

(7.31) 

where A = 10h_c3 and B = bi  - b3  (B<O). Combining (7.27) with (7.28), we can obtain 
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P = Ad —1 	 (7.32) 
M S  

where A = 10' 23  and B = b2  - b 3  (B<O). 

From (7.30), (7.31) and (7.32), it can be seen that the ratio of pollen to seed flow is reduced 

with geographical distance. One recent paper proves this qualitative relationship 

(McCauley, 1997). McCauley (1997) found that the ratio of pollen to seed movement was 

estimated as 6.4 at the largest spatial scale and 124.0 at the finest scale in Silene alba. 

According to McCauley's (1997) hypothesis (Fig.7.1a), three critical values of geographical 

distance are important in describing the ratio of pollen to seed flow in space. These are the 

minimum ( d) and maximum distance ( d 2 ) where the relative contribution of pollen and 

seed flow is equal, i.e. m p  I m3  = 1, and the distance at which the ratio is maximum ( d,,,) 

(Fig. 7. lb). The above equations (7.30), (7.31) and (7.32), may likely reflect the relationship 

between dm  and d2  (Fig.7. lb). Thus one critical value d2  can be obtained according to 

equations (7.30), (7.31) and (7.32), i.e. 

d2  = j3/4A 	(from (7.30)), 	 (7.33a) 

or 

d2 = [3-72A 	(from (7.3 1)), 	 (7.33b) 

or 

d2  =J21A 	(from (7.32)) 	 (7.33c) 

It should be remembered here that this method is based on the existence of isolation by 

distance for any pair of the three genomes. Thus the first necessity is to detect the existence 

of such isolation by distance before using this method. Estimates of the distances d1  and 

dm  can not be obtained using Slatkin's model. However, these two distances may occur 

within population rather than between populations. Thus, independent measurements are 

required. 
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dl 	dm 	 d2 

dl 	dm 	 d2 

Fig.7. 1 Hypothetical distance of dispersal distance of seeds and pollen illustrating how their 
relative contribution to total gene flow can vary with spatial scale ( cited from McCauley, 
1997; Fig.7.1a). Three critical values are indicated. 
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7.7. Discussion 

One of the aims of this chapter has been to develop theory for population structure of plant 

genes with different modes of inheritance under isolation by distance. In the island model 

and the stepping stone models where populations are discretely distributed, differentiation 

for maternally inherited genes 'st(m)  is greater than for paternally inherited genes 

which in turn is greater than for biparentally inherited genes FSf(b)  (Chapter 6). In this 

chapter we show that this relationship still holds in populations with a continuous 

distribution and limited dispersal of seeds and pollen. 

In the isolation by distance case it is possible to obtain analytical expressions for estimating 

this ratio under the hypothesis of a balance between migration and drift (formula (7.13)). In 

practice this formula will be very difficult to apply. In the first place it requires estimates of 

neighbourhood size for the three different genomes. These are difficult to measure in the 

field (Levin & Kerster, 1968, 1971, 1974; Schaal, 1975; Crawford, 1984; Gliddon & 

Saleem, 1985). The model also assumes a random mating population, reaching an infinite 

number of generations back to its ancestors. If there is any self fertilisation, then F will 

increase and the model assumptions will not be met. 

Within the isolation by distance model it is possible to take into account deviations from 

random mating caused by self fertilisation. Let r be the proportion of the pollination 

randomly coming from the neighbourhood and J-r be the proportion of self fertilisation. If 

there is no seed dispersal but pollen dispersal, the neighbourhood size at ancestors of 

generation X for the biparental genes is 41r((1 + (X - 1)r)cr /2 + o)d (area) or 

((1 + (X - 1)r)o / 2 + o )rd (linear) according to Wright (1946). 

Similarly the size of neighbourhood at ancestors of generation X for paternal genes is 

2r((1 + (X - 1)r)o, + o )d (area) or j((l + (X - 1)r)o + o )ird (linear). However, 

if both seed flow and pollen are considered, the calculation of neighbourhood size becomes 

very complicated. 
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Finally formula (7.13) will be difficult to apply in practice because the total number of 

individuals sampled in experimental work is always less than infinite. For this reason 

therefore F may be underestimated. Taking all these points into consideration it is much 

more difficult to estimate the ratio of pollen to seed flow in the isolation by distance case 

than in either the island or stepping stone models of population structure (Chapter 6). 

The second method explored in this paper for estimating the ratio of pollen to seed flow 

involved analysis of Nei's genetic distance. In order to apply the formulae (7.21 a-c) derived 

here we must assume neutrality of mutations (Tajima, 1989b) and must possess estimates of 

the mutation rates in the three different genomes. There is evidence from analysis of rates of 

sequence divergence over evolutionary time that mutation rates differ significantly among 

the three plant genomes, with mutation rates being higher for nuclear genes than for 

chloroplast genes which in turn are higher than for mitochondrial genes (Birky, 1988). If 

mutation rates of three genomes were equal, genetic distances among the different genomes 

would vary according to the relationship Dm  > D > D. Deviations from this predicted 

ordering of genetic distances could provide further evidence for large differences in the 

mutation rates of the three genomes. 

The use of DNA sequence data to estimate the ratio of pollen to seed flow suffers from the 

same limitation as Ne?s distance measure; we need to estimate mutation rate of the genes in 

the three genomes before the ratio of pollen to seed flow can be measured. 

Furthermore it may be also be necessary to test the neutral mutation hypothesis before the 

formulae derived above can be applied. For these reasons it may be more practical to utilise 

statistics which rely only on the detection of differences between alleles i.e. F statistics 

rather than those which require measurement of the extent of genetic differences between 

alleles when indirectly estimating the ratio of pollen to seed flow. Great care should be 

taken even with these methods since their usefulness may only be judged once their 

M . 

variances, Var(—"--), are available. Finally we must remember that the assumption of strict 

maternal and paternal inheritance of organelle genomes underlies the models developed 

above. Further experimental data are required to confirm the general validity of these 

assumptions. 

188 



7.8 Summary 

Gene flow occurs in two ways for hermaphrodite plants; seed flow and pollen flow. 

Dispersal of biparentally inherited (nuclear) and paternally inherited (conifer chioroplast) 

genes can be mediated by both seed and pollen, while for maternally inherited (angiosperm 

chioroplast and most mitochondrial) genes only seed flow contributes to dispersal. This 

produces asymmetrical migration for biparentally, paternally and maternally inherited genes 

and may lead to different levels of population differentiation among them. This chapter 

explores the effects of contrasting patterns of gene flow for different plant genes on their 

population structure under isolation by distance, on Nei's genetic distance measure, on 

divergence in nucleotide sequence between populations and on gene phylogenies. We 

discusses the possibilities of using data on population structure, genetic distance, sequence 

divergence and gene phylogenies as a basis for estimating the ratio of pollen to seed flow 

among subpopulations. One important general result from the isolation by distance model is 

that population differentiation for maternally inherited genes is greater than that for 

paternally inherited genes, which in turn is greater than that for biparentally inherited genes 

as long as the dispersal of seeds and pollen grains take place. This is consistent with results 

obtained previously for the island and stepping stone models in which populations are 

discretely distributed. If there is isolation by distance for any pair of the three genomes, it is 

possible to obtain the relationship between the ratio of pollen to seed movement with 

geographical distance. 
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CHAPTER 8 

Genealogies and Geography 
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8.1 Introduction 

With the development of modem molecular biology, use of DNA sequence data in 

population genetics will become popular in the future. In order to exploit this, theory that 

uses DNA sequence data to investigate plant population structure is clearly required. A new 

area of theoretical population genetics, the coalescent model, has been developed in recent 

years to facilitate this. One of the coalescent models applied in microevolution is gene 

genealogy, or the gene tree approach. 

The whole family tree structure, the genealogy or coalescent process, is an important way of 

describing the evolutionary process of a population. Unlike traditional population theory, 

which was developed in terms of inbreeding coefficients (Wright, 192 1) or probabilities of 

identities by descent (Maldcot, 1969), analysis of the genealogy focuses on the times at 

which two or more genes have a common ancestor in the past. The results of traditional and 

genealogical theories are equivalent since they describe the same phenomenon of biological 

evolution (Slatkin, 1991), i.e. the consequences of inheritance, mutation and genetic drift. 

However, different types of genetic data are required for these two methods. Traditional 

theory uses allele frequencies while the genealogy analysis uses DNA sequence data. 

The basic hypotheses that are usually employed in developing gene genealogy or phylogeny 

are: (i) Ideal Wright-Fisher model, which assumes that the number of offspring produced by 

each parent individual follows a Poisson distribution. Each individual of the previous 

generation has an equal probability of being the parent of any individual of the current 

generation. The population size is constant and generations are discrete (non-overlapping). 

For the details, see Ewens (1979). (ii) Constant neutral mutation process (Kimura, 1983), i.e. 

molecular clock hypothesis. (iii) Infinite-site model for the gene (Kimura, 1969), which 

means that any new mutation is assumed to be different from any pre-existing mutation. 

As an example, under the above hypotheses and without recombination and selection, 

consider a sample of 5 individual diploid nuclear genes from a population with effective 

population size, N. If the probability for coalescence of more than two genes at the same 

time in the past is ignored, the coalescent process may look like Fig. 8.1. First, coalescence 

of one pair of genes among the five individual genes occurred at generation t in the past. The 

probability that any pair of genes comes from the same ancestor at previous generation is 
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(5 
/ 2N. Thus, the distribution of the coalescent probability follows the geometric 

distribution, i.e. there is no coalescence for t-1 generations in the past until it occurs at 

generation t. The probability for the coalescence at generation t in the past is 

t1 

(2)

5 	1 	5 	1) • 	1 - 	I , which can be approximated by an exponential distribution 
2N 	2) 2N) 

with mean 2N 
(5) 

 (E(T5)). After the first coalescent of two genes with a mean number 

of generations E(T5) in the past, there are four distinct ancestors left. Similar consideration 

continues until coalescence of last two genes occurs. Theoretical results show that if there 

is a sample of n, the expected time of the whole genealogy is 4N(l - 1 / n) (Tajima, 1983). 

E(T2) 

 

 

 

12 	3 	4 	5 

 

Fig. 8.1 A hypothetical coalescent process of a sample of 5 individual genes. E(T,) 
(i=2,3,..5) stands for mean coalscent time of i distinct acestors. 
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A key important parameter in any of the coalescent analyses is the number of segregating 

sites (S) which can be observed from DNA sequence data (Tajima, 1993). Thus any 

complex evolutionary process will eventually be simplified into a formula for the number of 

segregating nucleotide sites. Since the molecular clock is assumed, the distribution of S is 

completely decided by the coalescent time (Hudson, 1992). 

Thus, several advantages are involved in the gene genealogy over other models, such as the 

diffusion model in population genetics (Harding, 1995). Harding (1995) pointed out that 

coalescent models were appropriate for studying a wide rang of demographic histories 

including subdivision, constancy, expansion and fluctuation. For example, subdivision may 

slow down the rate of coalescence and will stretch the tree further back into the past. 

With respect to the subject of population genetic structure, there have been extensive studies 

on this process (Watterson, 1984; Tavaré, 1984; Takahata and Nei, 1985) since the 

introduction of coalescence theory (Kingman, 1 982a,b). These studies focused at first on 

completely isolated populations. The coalescent process for samples randomly chosen from 

partially isolated populations was then addressed, such as two partially isolated populations 

(Takahata, 1988; Takahata and Slatkin, 1990) or several partially isolated populations 

(Takahata, 1991; Nei and Takahata, 1993), using either island or stepping stone model 

(Notohara, 1990; Slatkin, 1991). Slatkin (1991) obtained the relationship between 

probabilities of identity by descent and the distribution of coalescence times, indicating that 

the coalescent model and traditional population genetic model are equivalent because both 

describe biological phenomena involving inheritance over time. However, the populations 

addressed by these authors were discretely distributed in space (island model and stepping 

stone models). Barton and Wilson (1995) recently developed a method which can be used in 

populations with a continuous distribution. 

If the coalescent process is considered for a sample taken from partially isolated or 

continuously distributed populations of hermaphrodite plants, the situation becomes more 

complicated. This is because gene flow among plant populations can be mediated by seed 

flow, pollen flow, or both seed and pollen. Furthermore, there is asymmetric migration for 

the three differently inherited plant genomes (Petit, et al, 1993b; Ennos, 1994; and previous 

Chapters). Therefore a study of the influence of seed and pollen flow on the genealogy of 

the three plant genomes maybe provide an important insight into evolutionary process of 
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geographically structured or unstructured populations. Models of the coalescent process 

which incorporate both seed and pollen flow are clearly required. 

This chapter will thus extend these existing results on genealogy theory to plant populations. 

We will first consider a simple case, the genealogy of two partially isolated populations 

(Takahata, 1988; Takahata and Slatkin, 1990), and demonstrate how to incoporate 

seed/pollen flow into the coalescent process when the Markov chain method is used. Then a 

general case of L (L ~! 2) partially isolated populations is considered using Nei and 

Takahata's method (Nei and Takahata, 1993 
). After that the results of the coalescent 

process for continuously distributed populations (Barton and Wilson, 1995) is extended to 

plant species. Practical implications of these theoretical results are then discussed. 

8.2 General assumptions 

For the three genomes, paternally and maternally inherited organelle genomes (cpDNA and 

mtDNA respectively in most conifers) are assumed to be haploid. Bi-parentally inherited 

nuclear genomes (nDNA) are assumed to be diploid. Only selective neutral genes without 

recombination are considered. There are no linkage disequilibrium among the three 

genomes. These assumptions are the same as in Ennos (1994). 

The basic biological framework for investigating genealogy in discretely distributed 

population of plants linked by seed and pollen flow is outlined below. Our considerations 

begin with adults in each subpopulation at generation t. The se adults produce pollen grains 

and ovules. Pollen dispersal occurs among subpopulations. In each subpopulation, pollen 

grains including the migrant fraction, randomly fertilise ovules (randomly mating 

assumption). Seeds so formed disperse among subpopulations, the process of seed flow. 

Each subpopulation contains a small proportion of migrant seeds. After seed flow, a fixed 

number of seeds is sampled and these grow up to form adults at the next generation t+1. 

The same process continues from generation to generation. 
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8.3 Populations with discrete distributions 

In this section, we first demonstrate how to incoporate seed and pollen flow into the 

coalescent process and into the results presented by Takahata (1988) for two two partially 

isolated populations. Then, a general analytic expression for coalescent time suitable for 

any L ( ~! 2) partially isolated populations is addressed. 

8.3.1 Two partially isolated populations 

The objective of the following is to extend the results obtained by Takahata (1988) to plant 

genomes. Therefore, all the assumptions in that paper are valid in here. The results presented 

in Takahata (1988) are applicable to maternal genes in the present paper where the 

migration of maternal genes is mediated by seed flow only. Therefore, substituting the 

migration rate in Takahata (1988) by effective migration rates of seeds, mean and variance 

of coalescent times are available immediately. For example, if the sample size is n = 2, the 

probability density of coalescence time can be given by 

2M 
f(t) = -i- {exp[—(1 + 2M - A)t] - exp[—(1 + 2M + Aft]) 

where A = 11 + 4M 2  , M = 4 N , and t is meaured in units of 2N generations (Eq. (2 5)) 

of Takahata, 1988; or p332 of Takahata and Slatkin, 1990). In the following, we present the 

case of paternally and bi-parentally inherited genes. 

8.3.1.1 Paternally inherited haploid organelle genomes 

The migration can be mediated by both seed and pollen flow. Let m3  and mp be effective 

migration rates of seed and pollen per generation, respectively, between the two populations 

(X and Y). Suppose that the generations are discrete and counted backward from the time at 

which no  individuals (adults) are randomly sampled without replacement from these two 

subpopulations (T=0). The remainder of the assumptions are the same as in Takahata (1988). 

For a given generation T, there may be n subsets (1 :!~ n :!~ n0 ) in which any two individuals 

share a common ancestor. The configuration of n ancestral lineages T generations ago can be 
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described by an integerj in S = {0,1,2,...,n). Here j is the number of individuals drawn 

from population X at ancestral generation T. Because there are two episodes of migration 

(pollen and seed flow) within a generation, there are two transitions from state i ( i E S ) 

before migration to statej ( j S,  ) after migration via state 1(1 E S ) 

Following a similar derivation to that of Takahata (1988, p214), the transition probability 

matrix, M, can be obtained after pollen flow. 

M 11  =1— nmp  + 0(m / N) 

M 111  = (n - l)m + 0(m / N) 

M 111  = lm + 0(m / N) 	
(8.1) 

M 1, = 0(m / N) 

where 0(x) stands for the order of magnitude of x, and MP-Ii stands for the transition 

probability from state i before pollen migration to state 1 after pollen migration. It should 

be mentioned here that, in deriving equation (8. 1), the configuration after migration is 

determined by two probabilities which follow hypergeometric distributions (Takahata, 1988, 

p214). 

Similarly, after seed flow, the transition probability matrix from state 1 to state j 

(1, J S  ), M5 , can be obtained following similar considerations. Elements of the M s  can 

be obtained by replacing m with rn, in equation (8.1). 

It should also be noted here that a key assumption is made. This is that state 1 still belongs 

to one element of configuration of sets S. An alternative to this may be to assume that 

there is a temporary configuration, S, after pollen flow, which returns to S after seed 

flow. 

Combining the two migrations, the transition probability matrix , M, is the product of M 

and M 5 , i.e., 

M= M M5 	 (8.2) 
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Considering.m s <<1 and ignoring all items including products of mm or less than, the 

elements of matrix M can be obtained by replacing m with m 3  + m p  in equation (8.1). 

Therefore, Takahata's (1988) results still hold in plant populations for paternally inherited 

haploid organelle genes by using the above minor modification. 

8.3.1.2 Biparentally inherited diploid nuclear genomes 

When considering biparental genes (diploid) and using a Markov chain to model the 

coalescent process of a sample from a structured population, the calculation is slightly 

different from uniparentally inherited haploid organelle genomes. It is incorrect to consider 

half the number of haploid genes to be the number of the diploid individuals sampled in 

order to keep the number of genes analysed constant. Likewise it is incorrect to consider the 

total number of diploid genes to be double the number of haploid genes. The probabilities 

are different for sampling the same number of genes from adults and from gametes. For 

example, consider the probability for sampling no  genes that comprise a number nA  of 

allele A, and a number n,, of allele a from a population under Hardy-Weinberg equilibrium. 

The probability for a random sample from adults is P(n ,nAa  ' baa) = 

2 nA. q'- n!InAA  !flA a  !n! where the p and q are frequencies of allele A and a, 

respectively, and 2nAA  + nAa = n4  and 2aa  + nAa = hla  However, the probability for a 

random sample from gametes is P(nA ,na ) = (2n)!p"q'"/n !fla!  They are different 

patterns of distribution. The suggestion of Takahata and Slatkin (1990, p332) and Hudson 

(1992, p8) who consider the number of diploid individuals to be half the number of haploid 

genes, is a very approximate treatment for diploid genes. 

Under this case, we straightforwardly consider a sample of 2 no  individual genes from a 

pool of gametes, the mixed ovules and pollen pool. Thus, the coalescent analysis introduced 

by Takahata (1988) still holds except that double the sample size is used. Therefore, as for 

the analysis in the case of paternally inherited haploid genes, we can obtain the transition 

probability matrix, M, 
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M 1  = I — n( 
I 
 m +m) 

M 1+1  =(n—j)(m +m3) 	
(8.3) 

M111  = 	+m) 

M 1  = 0 

Therefore, by substituting m and N by m + 
I 
 mp and 2N, respectively, Takahata's (1988) 

results holds for biparentally inherited diploid genes in plant populations. However, the 

above sampling method is difficult to follow in practice because the extraction of DNA from 

pollen grains is difficult. 

Although the incorporation of seed and pollen flow into the coalescent process using the 

Markov chain method has been demonstrated above, it is very difficult to obtain a simple 

analytical expression suitable for practical use that makes use of data on DNA 

polymorphism of the three differently inherited plant genomes. In the following, a simple 

analytic expression for the coalescent process is obtained following the method used by Nei 

and Takahata (1993). 

8.3.2 L (L ~! 2) partially isolated populations 

For a population with constant effective size (Ne  individuals) per generation (Wright- 

Fisher's model), the mean coalescent time back for a sample of n individual genes, E(T), is 

E(T)=4Ne (11/fl) 	 (8.4) 

and its variance, V(7), 

V(T) = (4N)2[1/j(i —  )]2 	 (8.5) 
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which was shown by Tajima (1983). If constant mutation rate, u, is assumed, the total 

number of segregating sites, E(S), and its variance, V(S), can be obtained 

E(S) = 4N,ua 
	

(8.6) 

V(S) = E(S)[1 + E(S)b / a 2 ] 

	

(8.7) 

where a = 	1/i and b = 	1 / i 2  (Watterson, 1975; Hudson, 1992). The above formulae 

are standard results of coalescent theory. 

The effective population size of haploid genes is assumed to be half that of diploid genes. 

However, this assumption can be eliminated by letting N. and N1  be effective population 

size of maternally and paternally inherited genes. For simplicity, this assumption is used in 

the following analysis. Therefore, estimates of the above parameters for paternally and 

maternally inherited haploid organelle genes can be obtained by replacing Ne  with 

Ne  / 2 in equations from (8.4) to (8.7), respectively. 

Now we consider the case where the population is subdivided into L subpopulations. It can 

be seen from equations (8.4) to (8.7) that the coalescent analysis of a sample of n individuals 

randomly drawn from the population can be obtained by replacing the different effective 

population size in them. This is the method used by Nei and Takahata (1993). The key 

problem is to calculate the effective population size of the population that is divided into L 

subpopulations. Nei and Takahata (1993) pointed out that the effective population size of 

the whole population in this case was obtained by Wright (1943), i.e. 

N = LN 	
(8.8) 

1 — G 

where N is the effective subpopulation size. Equation (8.8) still holds for haploid genes 

(see Appendix V.1). 
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Thus, once the expression of the G,  for plant populations is obtained, the effective 

population size for each of the three plant geneomes can be calculated according to equation 

(8.8). Derivation of the G, t  for finite island model is given in Appendix V.2. Following 

considerations similar to those of Nei and Takaha (1993), the effective population size is 

Ne= LN[1 

 
+ 2N1iL2 j 	

(8.9) 

where 

mA,, + ?n, biparental genes 

= rn4, + m, paternal genes 

maternal genes 

- 52N 	biparental genes 

N 	paternal / maternal genes 

Therefore, the mean coalescent time and its variance, and the expected number of 

segregating sites and its variance for each of the three plant genomes can be immediately 

obtained by substituting the equation (8.9) into equations (8.4),(8.5), (8.6) and (8.7), 

respectively. For example, the mean coalescent time and the mean number of segregating 

sites are 

E(T)=2L[1+_ 
29
! 
 ' 	

(8.10) 
I 	L)] 	) 

and 	 E(S)=2PsaL[1+ ! 
2Ni  

.. 
(1_

?iI)21 	( 8.11) 
L j 

where 	is Pb for biparentally inherited nuclear genes, p4,,  for paternally inherited genes 

and JIm  for maternally inherited genes. 
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In particular, if only two genes are randomly sampled from the L subpopulations, then the a 

in equation (8.11) is equal to 1. According to equation (8.11), the expected number of 

segregating sites is 

E(S)= 2iL+- 4l_i) 	 (8.12) 
m 	L 

If the L is large enough that 1 
- 	

2 

1, then equation (8.12) is approximately the same 

as Strobeck (1987) for biparentally inherited nuclear genes in the finite island model. Thus 

the equation (8.11) provides a general case for sampling n (n >1) individual genes. 

8.4 Population with a continuous distribution 

The coalescent times described above are based on populations of discrete distribution. 

Barton and Wilson (1995) presented a method for calculating coalescent time in a 

continuously distributed population. Because of the difficulties in modelling populations 

that are continuously distributed, an ideal mathematical model to describe the biological 

situation is not available (Wright, 1943; Malécot, 1948, 1969; Felsenstein, 1975b). Both 

Wright's isolation by distance model (1943) and Malécot's model (Malécot 1969) cannot 

avoid clumping of population because there is lack of regulation of population density 

(Felsenstein, 1975b). However, the clumping can be avoided by considering the dispersal 

behaviour of offspring (Kawata, 1995). In this section, we first consider incorporation of 

seed and pollen dispersal into Barton and Wilson's model (1995). Then the coalescence 

process is re-analysed purely based on Wright's isolation by distance model (1943). 

A key parameter in calculating the coalescent times (Barton and Wilson 1995, E.q. (1 la), 

p54) is the neighbourhood size (N b ). When applied in plant population, the N b  's for the 

three plant genomes are not the same , i.e., 
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47r(2-a, + o )d, b - parental genes 

	

Nb = 2,r(a, + o- )d, paternal genes 	 (8.13) 

27rcrd, 	maternal genes 

which can be obtained by following Crawford's calculation (Crawford, 1984; Hu and Ennos, 

1997). Here the a 2 and o in (8.13) stand for the variance of the distances between 

parents and offspring in pollen and seeds in two dimensional space, respectively. Dispersals 

of both pollen and seed are assumed to follow the normal distribution with mean zero and 

variance of CT2 and 072 , respectively. The d is the effective population density. Suppose 

that there is random mating between pollen and ovules in any neighbourhood at each 

generation. Following Wright's idea, the neighbourhood size at ancestral generation t is the 

product of t and Nb  in two dimensional space, i.e. tNb . These are the same assumptions as 

Barton and Wilson (1995) used in deriving their equation (11a). Thus, putting these 

parameters into the formula obtained by Barton and Wilson (1995,p54), the probability of 

coalescent times of any pair of genes at any generation is immediately available. 

However, if we base the analysis on Wright's isolation by distance model (Wright, 1943), an 

alternative simple way to calculate the coalescent times can be obtained immediately. In the 

following we consider bi-parentally inherited nuclear genes. For the case of maternally and 

paternally inherited haploid genes, the following analyses require modification by replacing 

the half neighbourhood size of diploid nuclear genes ( 2Nb ) with that for haploid organelle 

genes, the Nb  in equation (8.13). Let f(t)be the probability of coalescence at generation t 

in the past. For a sample of n individual genes, according to Wright's isolation by distance 

model, the probability of n distinct ancestor at generation k in the past, g(k), is 

n-I 	 n)  

i=I 

	(n 
g(k) 	[1 2N k 	1_ 2 b k = (8.14) 
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If there is no occurrence of coalescence of any pair of the two genes in the past t-1 

generations but one common ancestor occurs at t generation in the past, the probability of 

coalescent time, f(t), can be obtained, i.e. 

f(t) = [1— g(t)]. [Jg(i) 
	

(8.15a) 

(ii) 	1 ft[i_(n9. 1 
(8.15b) 

2 2Nbt i=1 	2 2Nb iJ 

1  [1(
_')._LH 1 2) 2Nb t 	2 2Nb ''J 	

(8.15c) 

where 	= Y 11i. If the population size is fixed per generation (Wright-Fisher's model), 

(n) 1 	r(n 	1 1 
the equation (15a) reduces to f(t) = 	. —expl —I1 t I, which is the standard 

2 2Nb 	[ 2) 2Nb  j 

results for coalescent theory in a completely isolated population..Compared with Barton and 

Wilson's (1995) model, equation (8.15) cannot provide additional information regarding 

geographical positions for the sampled genes, but it is the extension of the original 

coalescent theory to a plant population that is continuously distributed in space. 

8.5 Implication and discussion 

The aims of this chapter are to extend to plant (hermaphrodite) populations the existing 

coalescent theories describing geographically structured or unstructured (continously 

distributed) populations, and to compare the difference among three plant genomes differing 

in modes of inheritance. Two obvious implications from the above results can be obtained. 

First, the above results provide the possibility of addressing a question of theoretical 

interest, that may not hold in some species (Kenneth, et al., 1987), i.e. how the mode of 

inheritance and seed/pollen flow influence the coalescent process if mutation rates are 

assumed to the same between different genomes. Since there are different extents of 

migration rate and population size (discrete distribution model), or neighbourhood sizes 

(continuous distribution model) among the three genomes, these genomes should differ in 
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mean coalescent time. Denote the mean coalescent times of biparentally, paternally and 

maternally inherited genes, by E( Tb ), E( T) and E ( 7) respectively. 

In the case of populations that are discretely distributed in space, according to the equation 

(8.10), it can be shown that E(7,,) > E(T) and E(I)> E(T). If the condition, i.e. 

2NLm s (+1)<(1_!), or roughly 2NLm <1(ifm >>m),  is satisfied, then 
M

P 	L 

we can obtain E(7)> E(Tb).  For example a specific case is modelled in which we let 

n=l0 ,L=16 and N=30, the migration rate of pollen is fixed at mp  = 0.0001 and the rates 

of seed flow are changed from 10 to 0.01. The E(Tm)  's are always larger than the 

E(Tb ) 's until 2NLm > 1 (Fig.8.2). Therefore, the value of 2NLm is important in 

affecting the relative evolutionary processes of bi-parental and maternal genes. Therefore, 

mean coalescent times is shortest for paternal genes among the three genomes, and, under 

particular conditions, mean coalescent time is longest for maternally inherited genes. 

In the case of a population that is continuously distributed in space, according to equation 

(8. 15c), the mean coalescent time for biparentally inherited diploid nuclear genes is 

' [,_(n.1H 
	 (8.16) 

2) 2 Nb t 	2) 2Nb 'H 

Expressions similar to equation (8.16) for the mean coalescent time of paternally and 

maternally inherited genes can be obtained. However, aithought the sum of the left-hand 

side of equation (8.16) is convergent, it is difficult to make a judgement on the relationship 

among the three plant genomes in terms of the mean coalescent times. This is also the case 

in Barton and Wilson's (1995) model. 
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Fig.8.2 Comparison of mean coalescent times of three differently inherited genes with seed 
migration rates from 1016 to 0.01. Other parameters are n = 10, L = 16, N = 30 and 
M P  = 0.0001. 

Second, the above results also provide the possibility of estimating the ratio of pollen to 

seed flow, which is an important indicator of the relative contribution to migration between 

seed and pollen flow. Consider the case where populations are discretely distributed in 

space. If the same number of selectively neutral genes or markers randomly drawn from L 

subpopulations are sequenced among the three plant genomes, it is possible to estimate the 

number of segregating sites (Tajima, 1993; Watterson, 1975). Denote the expected total 

number of segregating sites within subpopulations investigated by E(Sb ) (= 4Np b La), 

E(S) (= 2 Nu, La) and E(Sm ) (= 2N/I,,, La) for biparentally, paternally and maternally 

inherited genes, respectively. These parameters can be estimated using DNA sequence data 

(Tajima, 1993) and are denoted by S, S, and S, respectively. Therefore, the ratio of 

mutation rates between two different genomes can be estimated under certain assumption. 

For example, the ratio of mutation rates between biparentally and paternally inherited genes 
is 

i 4Np 6 La 	E(S6) 	
(8.17) 

Pp 2 2NpLa 2E(S) 2S 
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and its variance 

J 1 	1 	 (5)2 

4L(S) 

V(S)+ 4  V()] 	 (8.18) 

Equation (8.18) is obtained according to Kendall and Stuart's (1969, p232) formula and the 

independence hypothesis between different genomes. 

Similarly, 	let 	the estimates of the expected number of segregating sites among 

subpopulations be Sb,  5,, and Sm  for biparentally, paternally and maternally inherited 

genes. Using equation (8.11), we can obtain 

M 	g' b
)  —2, 	 (8.19a) 

Ms L 	b S—S) 

=m 5m1 or 
S,, Se 

 

— s; 
(8.19b) 

c' c 
1-'b 	L)m 	LI 

or 	
Sm 	

(8.19c) 
Sb  Sb   

If the numbers of sampled individual genes are different among the three plant genomes, it is 

still possible to estimate of the ratio of pollen to seed flow by modificating the above 

equation. This result extends those obtained by Hu and Ennos (1997) to n (n ~: 2) genes 

investigated. 

Using DNA sequence data to estimate gene flow has been reported before (Slatkin, et al, 

1989,1990; Hudson, et al, 1992). They showed that the minimum number of migration 

events (s) is a simple function of Nm based on phylogenies of alleles and gene trees by 

computer simulation. This relationship existing in a phylogeny of alleles investigated can be 

reflected in terms of number of segregating sites among populations, which is shown in 

equation (8.11). 

Among the variety of methods presented for estimating mean coalescent time in populations 

with discrete distributions, use of effective population size is the simplest for population 
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geneticists (Nei and Takahata, 1993; Takahata, 1991). However, it should be indicated that 

the Ne  depends on the assumption that the whole population keeps the same structure for a 

long evolutionary time. This can be seen from the derivation of Wright (1943, p132-133). 

The detailed discussion can be found in Nei and Takahata (1993, p243). 

In the method which uses the discrete- or continuous-time Markov chain for plants, an 

important assumption is that seed and pollen flow occurs together, or there is no new 

configuration of (S,, ). This may not hold in natural populations. For instance, there is the 

possiblity that for a given sample, coalescence will occur after pollen flow at generation t in 

the past but before seed flow. However, since both pollen and seed flow occur within the 

same generation, and if effective rates of pollen and seed dispersal are much smaller than 1, 

this treatment is reasonable and simple. 

When relating genealogies to geography, patterns of migration should also be considered 

besides number of migrants. In Wright's isolation by distance model, this can be reflected in 

the neighbourhood size in terms of variances of distance between parents and offspring in 

space. It is difficult to use the neighbourhood size to resolve two cases where both have the 

same variance of seed and pollen flow but different dispersal patterns, for example gaussian 

and exponential distributions. In island or stepping stone models, the results above can be 

used to represent constant migration rate per generation. Stochastic migration may increase 

the variance of estimated coalescent times. For example, stochastic migration may lead to 

increase in population differentiation, which in turn may cause increase in effective 

population size (N e  ) of the whole population, and thus lead to longer mean coalescent 

time. However, qualitative relationship between coalescent times and migration should still 

hold. 

Finally, we must remember that an important assumption for testing these results is that 

there exist selectively neutral genes or markers for each of the three genomes. Effects of 

migration, mutation and genetic drift are considered in the above analyses. Other effects, 

such as selection and recombination, are not considered. Thus, it is important to carry out a 

test for selective neutrality prior to using equation (8.19) to estimate the ratio of pollen to 

seed flow. A set of universal primers for amplification polymorphic non-coding regions of 

mtDNA and cpDNA in plants was reported recently (Taberlet, et al., 1991; Demesure, et a!, 

1995). These primers provide a convenient way to amplify non-coding regions of plant 
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organelle genomes and to obtain their DNA sequences by PCR (polymerase chain reaction) 

based methods. Use of selectively neutral markers of cpDNA to address population 

structure has been reported in plant species. For example, reports were given for the use of 

the non-coding regions of cpDNA to investigate plant population structure (McCauley, 

1994; Jøhnk and Siegismund, 1997) and to infer postglacial migration (Ferris, et al., 1995). 

These amplified non-coding regions may be selectively neutral. Thus, application of the 

theoretical results obtained in this chapter in practical work is possible in the foreseeable 

future. However, it is still remembered that the selectively neutral region are possibly linked 

to potentially selected loci. Thus, effects of hitchhiking and selection-sweeping deserve 

considerable attention when the above theoretical results are applied in practice. 

8.6 Summary 

This chapter extends to plants the existing theories on coalescence times for genotypes 

randomly chosen from geographically discrete or continuously distributed populations. 

Three plant genomes (nuclear DNA, chioroplast DNA and mitochondrial DNA), with 

different modes of inheritance are considered separately due to the differences in migration 

rate that they show. Results indicate that in the discrete model of populations, mean 

coalescent time is shortest for the paternally inherited genome (cpDNA in conifers) and, 

given certain conditions, is longest for the maternally inherited genonie (cpDNA in 

angiosperms and mtDNA in conifers and angiosperms). Estimation of the ratio of pollen to 

seed flow from a sample of n ( n ;~! 2) individual genes is presented in terms of the number of 

segregating sites between and within populations. These results are difficult to obtain in a 

model of a population that is continuously distributed in space. 
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CHAPTER 9 

Cline Theory for Haploid Organelle Plant Genomes 
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9.1 Introduction 

The genes studied in previous chapters (6-8) are assumed to be selectively neutral. The roles 

of seed and pollen flow under the influence of natural selection have not been considered so 

far. As is mentioned in Chapter 5, dines are one of the most important characteristics of 

population genetic structure, which are associated with the effects of natural selection. In 

this chapter, genes under selection are considered, and the specific population structure, a 

dine, will be investigated so as to find the role that seed and pollen flow play in dine 

formation for genes located on plant genomes. 

9.1.1 Definition 

A chine has been defined as a gradient (decrease or increase) within a continuous population 

in the frequencies of different genotypes ("genocline") or phenotypes ("phenocline") in 

different localities (Rieger, et al., 1991). However, the chine investigated in this chapter 

refers to the gradient change (increase or decrease ) of gene frequency, not phenotypes or 

genotypes, with geographical distance. 

9.1.2 Origin of dines 

The origin of chines are very complex. Clinal situations are often associated with speciation 

(summarized in Endler, 1977). According to the description given by Endler (1977, p13), a 

chine is a temporal phase in the process of speciation. Three types of speciation can generate 

this temporal phase: sympatric, parapatric and allopatric speciation (Fig.9.1). An ancestral 

species may either spread or not spread over a spatially heterogeneous area. If it does, 

spatial divergence will occur and may result in two situations. One is that populations 

remain in contact (continuous range), and the genetic differentiation proceeds in adjacent 

contacting areas (parapatry) and further leads to formation of shallow dines (gradation) and 

steep chines (conjunction). The other is that populations become separated (disjunct), and 

the genetic differentiation proceeds in isolation (allopatry). Populations differentiated to 

some extent may meet again (secondary contact) and hence produce a dine. If the ancestral 

species does not spread over a spatially heterogeneous area, no spatial divergence occurs, 

but sympatric genetic divergence may occur due to ecological (e.g. habitat selection) and 

temporal segregation. Thus, chines may form in the adjacent contacting areas between these 
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Parapatry Sympatry 

I 
Range expansion 

Allopatry 

Secondary contact 

diverged populations. The three paths for the formation of a dine are summarised in Fig. 

9.1. 

Ancestral Species 
No geographical 	 Spreads 

spread 

Formation of 
dine 

Fig.9. 1 Possible paths to dine, redrawn after Endler (1977). 

9.1.3 Modelling of dines 

Theoretical studies of dmal situation go back to Fisher's pioneering work (1937). He 

studied the wave of advance of advantageous genes. The results were then extended to 

continuous changes in selection intensity (Fisher,1950). Haldane (1948) indicated that 

where one phenotype is favoured in one area and another phenotype in a neighbouring area 

(discontinuous selective intensity), the character in question may be expected to show a 

dine in the neighbourhood of the boundary. Moreover, on certain assumptions, he 

demonstrated that the selection intensities in the dine could be calculated (Haldane, 1948). 

Since then, there have been extensive studies on many aspects of dines. These include the 

effects of geographical barriers (Slatkin, 1973), genetic drift (Felsenstein, 1975a; Slatkin and 

Maruyama, 1975; Nagylaki, 1978), conditions for existence of a dine (Nagylaki, 1975), 

variable migration (Nagylaki, 1976), dines for selective neutral genes affected by closely 

linked and weakly selected loci, i.e. the hitchhiking effects (Barton, 1979), and multilocus 

dines (Barton, 1983). In most of these studies, however, the basic process employed is 

approximated by a diffusion model, which is integrated with different factors, selection, 

genetic drift, linkage/recombination, etc.. 
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9.1.4 Previous practicaiwork 

Early studies of natural dines concentrated on changes in morphological and physiological 

traits. For example, Eucalyptus urnigera (Thomas and Barber, 1974) has glaucous, waxy 

leaves for resisting freezing above 1000m and bright green leaves below, displaying a 

narrow dine. 

With the application of molecular techniques to natural populations, many different markers 

such as allozyme and DNA markers have become available (Avise, 1994) and chines in such 

markers have been recorded (Millar 1983; Tsumura, et al., 1994). For example, Millar 

(1983) used one allozyme marker (GOT) to investigate a chine less than 3 km width, 

existing between two northern Califonia bishop pine populations differing in stomatal form, 

monoterpene composition and flowering times. She found that allele frequencies changed 

from 0.97 in north of the chine to 0.23 south of the dine. Miller further indicated that 

difference in allelic frequencies between mature trees and embryos are attributed to long 

distance pollen flow across the chine. 

In two hybrid zones of the pacific coast irises (Jridaceae), Young (1996) found, using 

cpDNA (chloroplast DNA) markers and morphological traits, that the cpDNA marker dine 

(maternally inherited markers) is displaced 1-2 km relative to the morphological dine in all 

three transects across the I. douglasianal/ I. innominata hybrid zone. One possible 

explanation for this chine displacement is due to asymmetric migration existing between 

cpDNA marker mediated by seed flow, and morphological traits mediated by either seed or 

pollen flow (Young, 1996). In a separate study, Brubaker et al. (1993) also found that 

nuclear introgression is more geographically wide spread and more frequently detected than 

cytoplasmic introgression in Gossypium barbadense and G. hirsutum species. Interpretation 

of these findings requires a exploration of chine theory which incorporates the three plant 

genomes. 

It is now time to re-examine the chine at the molecular level and to extend our understanding 

of its spatial population genetic structure. In plant species, three differently inherited types 

of markers are available; nuclear, chloroplast and mitochondrial (Ennos, 1994). A small 

proportion of these markers may be selectively important. These markers may be under 

different selection in different environments, and chine formation is likely. In order to model 
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such dines in plant populations it is necessary to recognise that there is asymmetric 

migration among the three plant genomes possessing different modes of inheritance (Ennos, 

1994; Petit, et a!, 1993; Mogensen, 1996, and references therein). Thus differences in dine 

characteristics are expected among markers on these plant genomes, and it is important to 

understand the effects in theory, and test the theory in practice. 

9.1.5 Application of previous models to plant dines 

Attempts to apply existing dine models reveal two shortcomings. They do not take into 

account seed and pollen flow as separate modes of gene flow. Neither do they consider the 

uniparentally inherited organelle genomes. Some of these deficiencies have been addressed 

in a recent paper by Nagylaki (1997). Nagylaki (1997) showed that reparametrization may 

render the previous dine theory suitable for diploid plant nuclear genes. However, 

uniparentally inherited organelle markers are not considered. The theoretical results 

obtained in previous chapters cannot be used to explain dine formation even if there is 

some relationship between them. Therefore, it is of practical significance to build the theory 

suitable for explaining haploid dine formation in plants. 

9.1.6 Aim of this chapter 

The objective of this study is to fill the gap between haploid and diploid dine theories of 

plant genomes, i.e. to explore the dine theory for haploid organelle genes and to study the 

impacts of seed flow and pollen flow on dine difference between paternally and maternally 

inherited haploid genes. 

We first consider a general case where population size is not large and the effect of genetic 

drift must be cnsidered. Then a simple case where the effect of genetic drift can be ignored 

is considered. Some numerical cases are then given to illustrate the influence of seed and 

pollen flow on dine width for genes located on paternally and maternally inherited 

genomes. 
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9.2. Model analysis with genetic drift 

9.2.1 Assumptions 

General assumptions are: 

(1) A single locus with two alleles (A 1 , A 2 ) is considered in turn for paternally and 

maternally inherited haploid organelle genes. 

© Interaction between any pair of the two genes on genomes differing in mode of 

inheritance is ignored. 

()A hermaphrodite plant population is distributed in an infinite chain of equally spaced 

colonies each with the same population size in adults in one dimensional space. 

® Migration is symmetrical between colonies, such that the migration between colony i and 

J 	(i:#j)is M Y  =rnj, ( iorj=O, ±1, ±2, ...). 

() The life cycling scheme for colony i follows figure 9.2 and occurs within a short time 

interval At. 

©The population distribution is assumed to be uniform after selection, thus the rn,3  also 

represents the probability of migration from colony j to i in the time At (Nagylaki, 1978a, 

p424). 

©Random mating between pollen and ovules is assumed in each colony. 

®Density-independent selection of the offspring takes place at each location independently 

after seed flow. 

If colony size is not very large, then genetic drift effects must be considered. Usually, it is 

complicated to incorporate drift into a dine. There are some studies that are not suitable for 

plant species (Nagylaki, 1978a; Slatkin and Maruyama, 1975; Felsenstein, 1975a). However, 

the approximation by diffusion model is still useful for plant species. Thus, in the following 

the method used by Nagylaki (1978a) is employed to address the plant case. The method 

used by Nagylaki (1 978a) is first to formulate a discrete model in time and space, and then 

to transform this into a diffusion model that is continuous in time and space. Since detailed 

derivations can be found in Nagylaki (1978a), we here merely outline the main steps at 

which seed and pollen flow are incorporated. 
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Pollen flow 	 Random mating 
Adult 	> Pollen 	 Pollen * 	> 	Pollen x Ovules 
N, p(i,t) 	oo, p,(i,t + At) 	00 , 	 + At) 

Seed flow 	Selection 
Seed 	 > 	Seed * 	> Adults 

.i(it + At) 	00, p;(i,t + At) 	oo, p*(i,t + At) 

Regulation 
Adults... 

N, p(i,t+At) 

Fig. 9.2 Basic cycle scheme for modelling dine existing in hermaphrodite plant species that 
is discretely distributed in one dimensional space. The effect of genetic drift is considered. 
The corresponding gene frequencies to each stage within time interval At in colony i are 
marked below. The subscripts S and P stand for seed and pollen. 
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9.2.2 Paternally inherited haploid organelle genes 

Let p(i, t) be the gene frequency of allele A 1  in colony i at time t. Suppose that the number 

of pollen grains produced by adults within time interval At is large enough that the 

frequency in pollen, p(i,t + At), is the same as in adults, i.e. 

p(i,t + At)) = p(i,t) 	 (9.1) 

After pollen flow, the gene frequency in pollen in colony i is 

(i, t + At) = 	(j,t + At) 	 (9.2) 
J 

where m p , is the migration rate of pollen from colonyj to i, and 	m py  = 1. 

After random mating between pollen and ovules and formation of seeds, the gene frequency 

in seeds, Ps (i, t + At), is the same as that after pollen flow due to haploid assumption, i.e. 

p5 (i,t + At) = p(i,t + At) 	 (9.3) 

Similarly, after seedflow, the gene frequency in seeds, p (i, t + At), is 

p;(i,t + At) = 	m,p5 (j,t + At) 	 (9.4) 
J 

where the ms.ij  is the migration rate of seed flow between colony i andj, and 	MSJj  = 1. 

Thus, putting equations (9.1) to (9.3) into (9.4), and ignoring the items involving the product 

of migration rates of seed and pollen, we can obtain 
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p (i, t + At) = - 	m,J  - 	 m p1j j p(i, t) + 	(m + mp  )p(J, t) + O(mm).ij 
j*i 	 j,ti 	 j#i 

(9.5') 

Let inij  = 	+ mpy  when .1 # i; m = m + m 1  —1 when J=i. In order to make 

be at reasonable level, we must assume that EMS.ii  or  YMP.ij  <<1. The distribution of 

	

ji 	 j*i 

new migration rate between colony j and i is also symmetric and inclusive, i.e. Mij = Mji 

and Y inij  = 1. The equation (9.5') can be rewritten by 

p(i,t + At) Y ñip(j,t) 	 (9.5) 

Now consider the effects of natural selection. Let 	1 + w pat  gpat (i)At and 

1— co pat  gpat (i)At be the fitnesses of genotypes A 1  and A 2  respectively. The subscript 

pat refers to paternally inherited markers. w pat is the selection coefficient, and. gpa,  (i) is a 

function that describes the spatial variation in selection coefficient. Then the change of gene 

frequency due to selection can be obtained, i.e. 

(i,t + At) = p (i,t + At) + 2c0 pat gpat (i)p (i, t + At)[1 - p (i,t + At)]At 

(9.6) 

After regulation (sampling), let p(i, t + At) be the gene frequency in adults, which can be 

expressed by 

p(i,t + At) = p*(it + At) + c(i) 	 (9.7) 

where the ç(i) is the change of gene frequency due to sampling, with expectations 

E[c(i)p* (i, t + At)] = 0 and E[ç(i)ç(j)p (i, t + At)] = 

p*(it + At) [1 - p(i,t + At)]8(i,j) I N in which 8(i,j) is the Kronecker delta. 

217 



Let P(i, t) be the expected gene frequency, that is P(i, t) = E[p(i, t)]. Let V(i, j; t) be the 

covariance of gene frequencies between colomes i andj. Setting 

p(i,t) = P(i,t) + .ir(i,t) 	 (9.8a) 

so that 

E[ir(i, t)] = 0 	 (9.8b) 

V(i,j; t) = E[ir(i, t)ir(j, t)] 	 (9.8c) 

In the next section, following Nagylaki (1 978a), the diffusion approximation is employed to 

model the above process. According to assumption ®, the 	is equivalent to the transition 

probability from state (colony here) j to i in a Markov process (Feller, 1971, p322). 

Assumption of the uniform distribution (©) indicates that only homogeneous migration is 

approximated by the diffusion model. Using assumptions () and ®, let x = is and y = je 

be positions of any two colonies, where the s is assumed to be the spacing between 

colonies. Conditions similar to equation (8) of Nagylaki (1978a) can be obtained. Let 

At –*Oand s-0, positing that, for any 0>0, 

urn -f-- 	
Ii-iT ~91e 

In,1 = 	0 	 (9.9a) 
At-*O At 

lim— 	(j–i)In = 0 	 (9.9b) 
At-+O At J. 

 Ii-:kO/6 

lim— 	(j – i) 2 In 	 (9.9c) At-+O At 	f-iI<G/e 

Equation (9.9a) states that any large displacement is impossible, the necessary and sufficient 

condition for continuity of the sampling function. Equation (9.9b) is the infinitesimal mean 

and equals zero according to assumption ®(symmetry), and equation (9.9c) is the 

infinitesimal variance. Equations (9.9a), (9.9b) and (9.9c) are equivalent to equations(4.2), 

(4.3) and (4.4) of Feller (1971, p333). 
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Equation (9.9) can be decomposed into two components due to seed and pollen flow. Since 

the seed and pollen flow between colony j and i is assumed to be symmetric, the equation 

(9.9b) becomes 

	

• 6- 	 6 

iii<o'e (j 
- 	= 1im[ 	

j-iI<O/e (J - 	
+ M) At—>OAt 	 At-+Ollm—L 

+ lim -6L  Ii-I<° (I - i)(-1) 

=0 	 (9.lOa) 

The equation (9.9c) becomes 

	

r 6 2 	 1 
lim -i If 11<9

1
s (i - m, = 1im[___ 	Ij-i<o/ (f - i) 2 (m + M 

A- 0  At 	
PJj 

	

I 	 At-->O   At 

6 2  
+ lim— 	j-i1<016 (j-i)2(-l) 

At-40 At 1=1  

=o +o 	 (9.1Ob) 

Using assumption of equation (9.9) and the results obtained by Feller (1971, p334-335), for 

any function it'(je), the transformation of ñ, ç'(je) satisfies the Kolmogorov 

backward equation, i.e. 

2  
= if(l6) 

+ 

° vat d 

 2 	
-'(ie)At + O(At) 	 (9.1 la) 

I 

Thus, as At -3 0, then 

rn, V(j6) = çi'(ie) + O(At) 
	

(9.1 lb) 
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which is the same as equation (10) of Nagylaki (1978a). Thus, following arguments similar 

to those of Nagylaki (1978a) and using equations (9.5), (9.6),(9.7), (9.8) and (9.1 lb), we 

can obtain the expected allele frequency after the time interval At, i.e. 

P(i,t + At) = E{E{p(i,t + At 
)p* 

 (i,t + At)]} 
	

(9.12a) 

= E[p*(i,t+At)] 	 (9.12b) 

=E {i 11 P(Jt) + a g(i)i,p(j,t)[1 - 	ii i P(Jt)]At} (9.12c) 

= 	ñ, E[p(j, t)] + w 	(i)E {p(i, t)[1 - p(i, t)]}At 	(9.12d) 

= 	1 P(j, t) + cv gpat  (i){P(i, t)[1 - P(i, t)] - V(i,i; t)}At 	(9.12e) 

where co' = 2cv,,.. Equation (9.12) is equivalent to equation (12) of Nagylaki (1978a). 

Derivation of equation (9.12d) requires the substitution of equation (9.1 lb) into equation 

(9.12c). 

Similar to the derivation of (13a) of Nagylaki (1978a), we can show 

,r(i, t + At) = p(i,t + At) - P(i, t + At) 
	

(9.13a) 

= 	Fn,p(j,t) + cv'g,(i)iñ,p(j,t)[1 - 	Iip(j,t)]At + ç(i) - P(i,t + At) 

(9.13b) 

=Y ñi, [P(j, t) + ir(j, t)J + co'g pat  (i)p(i, t)[1 - p(i,t)]At + ç(i) - P(i, t + At) 

(9.13c) 

= (j,t)+ ç(i)+ b1  (9.13d) 

where the b. = w'gpaf  (i){ir(i,t)[1 - 2P(i,t) - r(i,t)] + V(i,i;t)} . The equation (9.13d) is 

obtained by substituting (9.8a) and (9.1 lb) into (9.13c). The equation (9.13d) is the same as 

equation (13) of Nagylaki (1978a). 
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Similarly, during the transformation from a discrete to a continous model, random drift is 

assumed to accumulate in increment (Nagylaki, 1978a, equation (11)), thus 

E[c(i)p* (i, t + At)] = 0 
	

(9.14a) 

E[c(i)c(j)Jp*(i,t + At)] =p*(i,t + At)[1 - p*(j,f + 
At)]8(i,j)At / N 	(9.14b) 

Therefore, 

E[ç(i)ç(j)] = E{E[c(i)c(j)Jp* (i,t + At)]) 
	

(9.1 5a) 

= E{p* (i,t + At)[1 - p (i, t + At)]9(i,j)At I N) 	 (9. 15b) 

= {P(i,t)[1 - P(i,t)] - V(i,i,t)}5(i,j)At / N+ O(At 2 ) 	(9.15c) 

Derivation of (9.15c) from (9.15b) requires in turn application of equations (9.7), (9.6), 

(9.5), (9.1 lb) and (9.8). The equation (9.15c) is the same as the result of the last expectation 

of the equation (14) of Nagylaki (1978a). 

Therefore, from here all the following analysis can be connected to Nagylaki (1978a). Using 

considerations similar to those of Nagylaki (1978a), two important equations can be 

immediately obtained 

P(x,t) 	1 	2 c92P(x,t) 

	

= 
2 

Cr 	 +o'g(x)[h(P)— V(x,x;t)] 	 (9.16a) 
— 

£9V(x,y;t) = 1 _.2[o2V(XY 
+ 

t) ô2 v( Xy ;t)l 
w 

	

2 	 2 	J+'F(x,y,t)V(x,y;t) 
67 

+[h(P)— V(x,x;t)]p'ö(x —y) 
	

(9.16b) 

where the definition of the h(P) and the F(x,y,t) are the same as Nagylaki (1978a), 

i.e., h(P) = P(x,t)[1 - P(x, t)] and F(x,y,t) = gpat (x)[1 - 2P(x,t)] + 

g1 (y)[l - 2P(y, t)]. The p is population density (p = N / e) and the 8(x - y) is the 

Dirac delta function, and &2 = & 2 = a + a , and of = 	= 2W patPat 
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9.2.3 Maternally inherited haploid organelle genes 

Similarly, let in-ii  = m,1  for maternally inherited genes. We can also obtain differential 

equations by substituting &2 
= mat2 = 	' 	= mat = 2w matgpat(x) = gmat (x) 

into equation (9.16). 

9.2.4 Comparison 

If the covariance, V(i, j; t), is investigated in terms of the average position ((x + y) / 2) 

and separation ((x - y)/ 2) of two points, an important parameter 6 was obtained by 

Nagylaki (1978a). This parameter governs the relative strength of selection and random 

drift, which can be obtained immediately in plants after similar transformations to those of 

Nagylaki (1 978a). That is /3 = p 2  / c for paternally or maternally inherited organelle 

genes, where c is the characteristic length. 

The meaning of the parameter 8 is obvious. It is the ratio of two distances (Nagylaki, 

1978a). One is the natural distance for migration and random drift p2  for paternally or 

maternally inherited organelle genes. The other c is the characteristic length. According to 

Nagylaki's (1978a, p425) argument, selection is strong (weak) compared to random drift if 

1(13 << 1) 

If the g(), where is the transform of x ( = x / c), is set to be —a 2  when < 0 and 

to be 1 when > 0, which is the same as equation (25) of Nagylaki (1978a), using similar 

transformations to equation (19) of Nagylaki (1978a), the parameters become 

/3 pat =2 pa;  pat  Ja) pat 
	 (9.17a) 

/3 mat = 2Pmat JCO mat 
	 (9.17b) 
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CO 	
2 

From equation (9.17), it can shown that if mat < I + 	then 	~ fimat , otherwise 

	

2 	 pat 
W pat 	US  

pat < /3m  at.  Thus, the relative values between that ratio of pollen to seed dispersal and the 

ratio of slection coefficients between two types of genes are important in determining the 

relative strength of selection to random drift for paternally and maternally inherited genes. 

9.3 Model analysis without genetic drift 

9.3.1 Stationary dine 

If the colony size is large enough that the effect of genetic drift can be ignored, then we let 

P(i,t) = p(i,t), 2r(i,t) = 0 and V(i,j;t) = 0 according to equation (9.8). Thus, the 

equation (9.16b) will vanish, and equation (9.16a) becomes 

(x, 	1 	2 	2 p(x, t) 

	

t)  
=

2 	
+ 'g(x)p(x, t)[1 - p(x, t)] 	 (9.18) —o .  

 

Under balance of migration and selection, letting p(x, t) = p(x), we can obtain 

2 p(x) -  2a 
g(x)p(x) l 1 - p(x)] 	 (9.19) 

- 

where & 2 = 	2 
=a + o,, w' = 	= 20)pat g() = gpat (x) for paternallypat  

inherited organelle genes, and a 2 
= mat2 = 	' c' =co nat = 2 (O mat g(x) = gmat (x) 

for maternally inherited organelle genes. 

9.3.2 Characteristic length 

An important parameter in a dine is the characteristic length within which the gene 

frequency does not change (Slatkin, 1973). From analysis described above the characteristic 

lengths of the two genomes can be obtained immediately according to Slatkin (1973). Let 

1 pat  and be the characteristic lengths of paternally and maternally inherited genes 
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respectively within a dine. The characteristic length for haploid organelle genes can be 

obtained from equation (9.19). 

= fo.+cr, 
(9.20a) 

Pat 

	

pat 	 2C0 pat 

mat
(9.20b) 

	

CO.' . 	2co 

If the intensities of natural selection are equal between the two types of genes, i.e. 

pat = mat = a), it is easy to see that the characteristic length for paternally inherited 

organelle genes is equal to that of maternally inherited organelle genes if 0-2 = 0, but 

larger than that if o # 0 , i.e. 

1 >1 Pat 	mat (9.21) 

If the intensities of selection are not equal to one another, the above relationship (9.21) will 

	

not hold. However, if 	mat > 1 + 	then 'mat  >1 
2 	 pat  Here again, we can see that the 

CO pat 

relative values of the ratio of selection intensities between genes differing in inheritance 

mode and the ratio of pollen to seed flow play an important role in determining the 

characteristic dine lengths. 

9.3.3 Infinite dine 

Suppose that the function g(x) has a similar pattern for each of the two types of genes. 

Following Nagylaki (1976), let 

r 1 , 	x<0, 

	

g(x) 
= 	2 	

(9.22) 
x>0. 
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where a 2  is the ratio of selection intensities in the two parts of the habitat. Actually, this is 

a variation of Haldane's one step selection (1948). 

Let K = 4C0  pat / pat  , k = a pat2  K , and a = apat  for paternally inherited organelle 

genes, K = 4 CO m  a mat  , k = amat 2 K and a = a mat  for maternally inherited genes. 

The dine equation can be decomposed into three parts according to equation (9.19). 

d2p(x) - 
—Av(x)[1 —p(x)], 	x <0 	 (9.23a) 

dx 2  

d 2p(x) - 
kp(x)[1 - p(x)], 	x > 0 	 (9.23b) 

dx 2  

	

p(O-) = 	
dp(x) (0) = dp(x) (0+) 
	 (9.23c) 

dx 	dx 

Since there have been extensive studies on equations similar to (9.23) (see Nagylaki, 1975), 

the solution to equation (9.23) can be easily obtained. Let b be the boundary value at x = 0. 

Following the method used by Haldane (1948), we can obtain the iterative equation (9.24) 

for calculating the b value, and the dine equation (9.25). 

b= 3(1+a 2)  1— 2 b]} 	 (9.24) 

b 

= K- 2 
	 - u 2  r1  - 1] 2 

	

I 	f 	U]1 du, 	x <0, 

	

1

I 	p(x) 	
(9.25) 

ip(x) 	
2 

	

x = k 2 fu 1--ui du, 	 x>0 
b 	L 	3J 

It is difficult to obtain simple analytic expression from (9.25), but equation (9.25) provides a 

convenient way to carry out numerical calculation. 
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9.3.4 Impacts of seed and pollen dispersal 

In the following section three numerical examples are used to explain the impacts of seed 

and pollen flow on dine width and the differences between two types of genes. 

According to equations (9.24) and (9.25), gene frequencies in a dine can be calculated. Let 

CO= CO pat = CO mat = 1.0, a 2  = 1.0 and o = 	= 1.0. This means that the two types of 

genes are the same in selection intensity, and that the dispersal variances of pollen and seed 

are also the same. Under this case, the results are shown in Fig.9.3a. It can be seen that the 

dine is wider for paternally inherited genes than for maternal genes within a given gene 

frequency interval [0. 1, 0.9]. 

If pollen dispersal is much larger than seed dispersal, this will influence the relative dine 

width between the two types of genes. For example, let a = co pat = 	at = 1.0, a 2  = 1.0 

o. = 5.0 and o = 0.5 . The result (Fig. 9.3b) shows that the difference in dine width is 

larger than that in Fig. 9.3a. 

Alternatively, if seed dispersal is much larger than pollen dispersal, the dine widths of both 

types of genes will become wider. Let CO = CO pat = COmat  = 1.0, a 2  = 1.0, o, = 0.5 and 

as  = 5.0 . It can be seen that the difference between dine widths of these two types of 

genes is reduced, although the absolute values of dine widths of both types of genes 

increase (Fig.9.3c), compared with those in Fig. 9.3a. 

9.4 Discussion 

Cline theory for a single locus two alleles model has been developed for haploid organelle 

genes possessing different inheritance, modes. The results show that reparametrization may 

render previous dine theories applicable to plant haploid organelle genes. Both the ratio of 

pollen to seed dispersal, and the ratio of selection coefficients between paternally and 

maternally inherited genes, play a critical role in determining dine width and its difference 

between these two types of genes. 
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Fig. 9.3 Comparison of dine width between the three plant genomes within a given 
frequency interval [0. 1, 0.91 in the infinite dine. 

Parameters settings are a = Wpat 	= 	a 2  = 1.0 and o = 	= 1.0; 

Parameters settings are a2  = 1.0 , CO = 	= CO.", = 1.0, o = 5.0 and o = 0.5 

Parameters settings are a 2  = 1.0 , co = 	= mat = 1.0, o, = 0.5 and a = 5.0 
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Since different types of fitnesses function for genotypes are used by Nagylaki (1997) and by 

the present author, comparison between biparentally and uniparentally inherited genes are 

not carried out. However, the method for incorporating the effect of selection in a dine used 

in this chapter cannot be simply extended to diploid nuclear genes. This is because Hardy-

Weinberg equilibrium is required for this method when diploid genes are considered after 

pollen and seed flow, which is difficult to be satisfied. Knowledge of genotype frequencies 

after pollen and seed flow rather than merely gene frequencies is required. After the 

processes of seed and pollen flow, it will not be legitimate to assume that genotype 

frequencies can be obtained from gene frequencies by assuming Hardy-Weinberg 

equilibrium. This problem was avoided by Nagylaki (1997), using different type of fitness 

function. However, this problem does not affect the analysis of haploid organelle genes. 

Thus, the method used in this chapter presents a simpler way to address the effects of 

genetic drift and seed and pollen flow in a dine for haploid organelle genes. 

However, some results obtained by Nagylaki (1997) can be compared with those obtained 

in the present study. For example, if there are no effects of genetic drift and selfing, 

according to Nagylaki (1997, p425) the characteristic length for biparentally inherited 

nuclear genes, , can be given by 

1 
-/+ 2 	. 

nuc\1 	2A 
(9.26) 

where A = (U11  —U 22 ) / 2, in which U11  and U22  are the scaled fitnesses of genotypes 

A 1A, and A 2A 2  . Thus, comparing the equation (9.26) with equation (9.20), we can also 

conclude that both the ratio of pollen to seed dispersal, and the ratio of selection coefficients 

between biparentally and uniparentally inherited genes play a critical role in determining 

dine difference between them. 

There are several limitations inherent in the present study when it is used to understand dine 

theory of plant genomes. First, the three plant genomes are separately considered. The effect 

of linkage disequilibrium between nuclear genes and chioroplast or mitochondrial genes has 

not been considered either by Nagylaki (1997) or by the present author. In a dine formed 

after secondary contact, linkage disequlibrium is likely to be substantial. Theoretical studies 

have shown using a different model, that linkage disequilibrium among loci on different 
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genomes may exist in a hybrid zone (Assurnssen and Schnabel, 1991; Asmussen and Arnold, 

1991). Thus, further work is required to extend the present analyses to situation where 

linkage disequilibrium exists between genes for biparentally, paternally, and maternally 

inherited markers. 

Secondly, the influence of a barrier to gene flow is of specific interest in dines of plant 

genes. The barrier can be due to biological and non-biological factors. Biological factors 

generally include premating barriers, such as pollinator behavior and flowering times, post 

pollination barrier, such as self-incompatibility and incongruity, and post-fertilization, such 

as viability and survivorship (review by Arnold, 1997). Non-biological barriers are also 

variable, such as the different physical obstacles that block seed and pollen flow. These 

factors clearly influence migration and may lead to asymmetric migration of haploid genes, 

which may violate the assumption of symmetric migration between colonies. 

Third, if the assumption of homogenous haploid chioroplast and mitochondrial genes holds, 

one particular problem that the model suffers from is that the dine for one locus under 

strong selection will seriously influence dine for loci under weak selection on the same 

haploid genomes. The effect of linkage between loci on haploid genomes must be 

considered in the future work. Thus, current single locus model needs to extend to 

multilocus models as well. 

Finally, the chine modelled in this chapter is maintained by the compound action of 

dispersal, migration and genetic drift. The theoretical results obtained in this chapter may 

help us to look at the role that seed and pollen flow play in haploid gene chine. It is also 

important to understand that some dines can be maintained by selection alone. Dispersal-

independent models include those in which the hybrid is more fit than either parent 

phenotype within a restricted geographic area (Endler, 1977; see review by Harrison, 1992). 

Thus the influence of pollen and seed flow on chines cannot be inferred in these models. It is 

critically important to distingush different types of chine maintained in practice before 

elucidating the impact of seed and pollen flow on chine formation. 
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9.5 Summary 

Cline theory for haploid plant organelle genes is developed in this chapter, using a diffusion 

model. Results show that reparametrization may render previous dine theory suitable for 

plant organelle genes. This is the same conclusion drawn by Nagylaki (1997) for diploid 

plant nuclear genes. One additional important result is that both the ratio of pollen to seed 

flow and the ratio of selection coefficients between paternally and maternally inherited 

genes play a critical role in determining dine displacement of these two types of genes. 
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CHAPTER 10 

General Conclusion and Discussion 
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10.1. Introduction 

The thesis consists of two parts that are related via the theme of genetic markers. The first 

part is the application of genetic markers to study Chinese Larix. This is also part of the co-

operative project between UK and China," Early Establishment and Tree Improvement of 

Larix in China". The objective is to survey, genetic variation in natural populations of native 

Chinese larch species so as to provide background information for further genetic 

improvement. Based on current research progress achieved in population genetic 

improvement of larch species in China, the genetic structure of natural populations and the 

genetic relationship between three native larch taxa, L. g,nelinii, L. olgensis and L. principis-

rupprechtii, are studied using molecular markers. 

The second part is the development of the theory for using genetic markers to elucidate the 

impacts of seed and pollen flow on population genetic structure of hermaphrodite plant 

species, under a variety of models. Migration occurs in two ways for hermaphrodite plant, 

seed flow and pollen flow. This produces asymmetrical migration for biparentally, 

paternally and maternally inherited genes. Perhaps due to historical reasons, the particular 

role that seed and pollen flow play in influencing population genetic structure and in genetic 

improvement of plant species has been seldomly recognised in theory. However, theories 

developed to explain the genetic structure of animal populations cannot be simply applied to 

plant populations because the mechanism of migration is different from animal population. 

Moreover, application of molecular techniques provides us with many useful markers 

suitable for surveying population genetic structure where the impacts of pollen and seed 

flow are marked. Thus, the requirement of theory to address these impacts is critical. 

10.2. Application of molecular genetic marker to study genetic variation of the 

Larix gmelinii complex. 

Native larch species, especially three larch taxa L.gmelinii, L. olgensis and L. principis-

rupprechtii, are important forest tree species in China. At least 10 years of provenance trials 

have been carried out for each of the three taxa. Many important quantitative traits have 

been studying during the last "Seventh Five-Year Project", the " Eighth Five-Year Project" 

and current the "Ninth Five-Year Project". Seed zones have been delineated according to 

field growth performance. 
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However, genetic structure and mating system of natural populations have not been 

surveyed using molecular markers. This gap is filled up by the present thesis. The genetic 

variation within seventeen populations, eight in L. gmelinii, seven in L. olgensis and two in 

L. principis-rupprechtii, representing three Chinese larch taxa was quantified and studied 

using eight polymorphic allozyme loci: PGI, 6-PGD, M])H-I, AAT-I, AAT-II, AAT-RI, 

PGM and SDH. These allozyme loci were shown to be in linkage equilibrium in each taxa. 

Most populations were found to be in Hardy-Weinberg equilibrium for these allozymes, 

with the exception of a few populations of L. olgensis and L. gmelinii due to heterozygote 

deficiency. 

Mating systems of the three Chinese Larix taxa were scored using these allozyme markers. 

Population Jiagedaqi of L. gmelinii exhibited nearly total outcrossing (tm =  0.986 ± 0.081). 

Two populations of L. principis-rupprechtii, Fengning and Hunyuan, possessed significant 

outcrossing (t =0.847± 0.427 0.792 ± 0.169). However, mating system was variable 

between populations of L. olgensis. Two populations of L. olgensis, Xiaobeihu and 

Changbei, exhibited significant levels of selfmg (tm 	0.705). One population, Dahailin, 

exhibited biparental inbreeding in addition to selfing, with tm  being 0.684 ±0.107. However, 

the other three populations of L. olgensis, Beihe, Beidaoshan and Dongfanghong, exhibited 

predominantly outcrossing, tm  = 0.847 ± 0.427 	1.203 ± 0.371. These results are 

comparable to those for other reported conifers including L. laricina and L. decidua. It may 

be concluded that the three larch taxa possess predominantly outcrossing mating system, but 

in certain populations significant seif-fertilisation can occur. 

Less then 2% of total genetic variation occurred between populations investigated in each of 

the three taxa. Analyses of spatial patterns indicated that the distribution of genetic variation 

did not correlate with geographic pattern in L. gnelinii, but a weak correlation caused by 

isolation by distance was found in L. olgensis. As a result there is a higher level of 

population differentiation present in L. olgensis than in L. gmelinii. 

Nei's genetic distances within each larch taxa were very small, about 0.002, while distances 

between taxa were larger than within, about 0.01, five times the distance within taxa. A 

dendrogram was reconstructed to elucidate evolutionary relationship between the three larch 

taxa, using these eight polymorphic enzyme loci. The results indicate that L. g,nelinii is 
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more closely related to L. olgensis than to L. principis-rupprechtii. 

Relationships among the three larch species was further studied using PCR-RFLP analysis 

of three noncoding regions of cpDNA from Trn L (UGU) to Trn F (GAA), and showed that 

there were no detectable difference in restriction sites within their regions. This was further 

supported by sequence analysis of these three non-coding regions, indicating that there 

were no differences at all within these regions among the three larch taxa. 

Different levels of variation were surveyed to resolve the three taxa, using morphological 

traits, allozyme markers and the sequence of three noncoding regions of cpDNA. It is easy to 

use morphological traits such as cone size (Appendix I) to distinguish the three taxa. 

However, low genetic distances were detected among them using allozyme markers, and no 

difference was observed in terms of three noncoding sequence of cpDNA. Thus, it is 

reasonable to conclude that L. olgensis and L. principis-rupprechtii should be classified as 

two varieties of L. gmelinii rather than two separate species. This conclusion also suggests 

that it is also unnecessary to further define new varieties of L. olgensis and L. principis-

rupprechtii because variable morphological characters mainly reflect adaptive evolution 

within these taxa. 

One possible process involved in the formation of L. olgensis and L. principis-rupprechtii is 

that both of them were consequences of the southward colonisation of L. ginelinii. 

Formation of L. principis-rupprechtii is due to adaption to the warmer climate that 

ultimately blocked the southward clonisation of L. g,nelinii. However, one question emerged 

form this process is: Does L. principis-rupprechtii come from L. olgensis or from L. 

gmelinii, or both? According to the genetic relationship elucidated by allozyme markers 

(Chapter 3), L. principis-rupprechtii is more distant from L. gmelinii than is L. olgensis, 

implying that L. principis-rupprechtii likely comes from L. gmelinii via L. olgensis 

according to their geographical distributions (Chapter2). However, this issue cannot be 

judged strongly at the moment until more research has been carried out. 

The colonisation process is mediated by seed movement first and then by both seed and 

pollen movement in conifers. A low level of genetic structure among populations and the 

type of predominantly outcrossing mating system of the L. gnelinii complex may indicate 

more extensive pollen flow than seed flow. The bottleneck effect caused by the pioneer seed 
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colonisation could be swept away by later high levels of pollen flow, thus leading to a small 

difference in level of polymorphism from L. gmelinii to L. olgensis to L. principis-

rupprechti for nuclear markers. Therefore, use of maternally inherited markers may help to 

elucidate this history more clearly because migration of this marker is mediated by seed 

movement only. Any difference established during the early migration phase of L. gmelinii 

are not affected by subsequent pollen flow, and may be detectable in present day 

populations. 

The close genetic relationship among the three Chinese larch taxa may explain in part the 

limitation of using hybrids between taxa in practice, which has already been reflected by 

more recent experiments (Yang, et al., 1991). In a word, the findings obtained in this thesis 

contribute to a better understanding of the genetic variation of natural Chinese larch 

populations and their relationship with one another. 

10.3. Development of the theory for using genetic marker to infer plant 

population genetic structure 

In plants, migration by seed and pollen flow represents different biological process although 

both types of gene flow have the same consequence of homogenising genetic differences 

between populations. When allied with genetic markers possessing different modes of 

inheritance, asymmetrical migration is generated for biparentally, paternally and maternally 

inherited genes, with associated consequences for population genetic structure. 

If a population is distributed as an array of subpopulations (local population or colony) in 

space, its genetic structure can be modelled by the island or the stepping stone model. Under 

certain assumptions, it is shown that population differentiation is different among the three 

plant genomes. Differentiation is greater for maternally inherited genes than for paternally 

inherited genes, which in turn is greater than for biparentally inherited genes at equilibrium 

between migration and drift. If migration rates of seed and pollen flow are very small, a 

general formula for population differentiation in the island model, using Wright's F- 

statistics, can be expressed by 

F= 	- 
l+2Nñi 

(10.1) 
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for the three plant genomes. The N and ñi in (10.1) and in the following formulae stand 

for the same meaning for the three genomes: N = 2 Ne , ñ = ms  + m /2 for biparentally 

inherited nuclear genes; N N n  (effective population size of male), iI = ms  + m p  for 

paternally inherited organelle genes; N = N, ñ = ms  for maternally inherited organelle 

genes. For one locus with many alleles in the finite island model, population differentiation 

can be approximated by a general formula, 

=1+21_+)J 	 (10.2) 

where the L is number of subpopulations investigated. 

In the case of a one dimensional stepping-stone model, if rates of one-step migration for 

both seed and pollen flow are much larger than those of long distance migration, a general 

formula for population differentiation can be expressed by 

F= i 
l+2Njni 

(10.3) 

In addition, an important result in the stepping stone model is that the rate of decline of 

genetic correlation with distance is influenced by the relative values of long and short 

distance migration by seed and pollen, which can be expressed in a general formula: 

r(k)=exp— I2k 
in- 

(10.4) 

Differences among these three differently inherited genes in genetic correlation with 

distance are conditional on the values of long and short distance migration for pollen and 

seeds. 

If a population is continuously distributed in space, its genetic structure can be modelled by 
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Wright's isolation by distance model. In this case, results similar to those obtained in the 

island and stepping-stone models are shown for the relative levels of population 

differentiation among the three genomes possessing different inheritance modes. 

Different levels of population differentiation among the three genomes provide us with a 

theoretical foundation for estimating the ratio of pollen to seed flow, an important parameter 

in measuring relative contribution to the gene flow between seed and pollen. This possibility 

is explored in the three classical models using Wright's F-statistics, and in the Nei-Feldman 

(Nei and Feldman, 1972) two populations model using Neis genetic distance. 

DNA sequence data will be widely used to investigate population genetic structure in the 

future. Once the DNA sequence data for the three plant genomes (nuclear, chloroplast and 

mitochondria DNA) are available, estimation of the ratio of pollen to seed flow from a 

sample of n ( n > 2) individual genes can be inferred in terms of the number of segregating 

nucleotide sites between and within populations. This provides us with a very useful tool to 

infer the relative contribution to migration of seed and pollen flow in the future. Another 

result of theoretical interest is that if the mutation rates are the same among different 

genomes, in the discrete model of populations the mean coalescent time is the shortest for 

the paternally inherited genome (cpDNA in conifers) and, given certain conditions, is the 

longest for the maternally inherited genome (cpDNA in angiosperms and mtDNA in conifers 

and angiosperms. 

The mean coalescent time and number of segregation sites can be expressed by a general 

formula for a discretely distributed population for the three plant genomes, i.e. 

E(T) = 29L  + _! '
l - -- 2 

(1_ 	 (10.5) 
2Nñ 	L)j 

and 

E(S) = 2aL[I+ I  ( - 	
21 	

(10.6) 
2Nñ 	Li J 

However, these results are difficult to obtain in a model of a population that is continuously 

distributed in space. 
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The characteristic of asymmetric migration also provides a basis for exploring dine theory 

of the three plant genomes. In this case the effects of natural selection are considered. The 

dine theory for haploid plant organelle genes is developed in this thesis, using a diffusion 

model. Results show that reparametrization may render previous dine theory suitable for 

plant organelle genes. This is the same conclusion drawn by Nagylaki (1997) for diploid 

plant nuclear genes. One additional important results is that both the ratio of pollen to seed 

flow, and the ratio of selection coefficients between paternally and maternally inherited 

genes play a critical role in determining dine displacement of these two types of genetic 

markers. 

The above theoretical results may provide us with a framework to understand the genetic 

structure of plant populations, but they are obtained generally under conditions of no 

linkage disequlibrium between any pair of the three types of genes, © one locus with two 

alleles, and © half of the 6ffective population size of diploid genes for haploid genes. These 

are limitations of these findings. 

Effects of the mode of inheritance of genetic markers on population genetic structure have 

been emphasised either in animal or in plant populations in recent years (Ennos, 1994; 

Birky, et al, 1989; Petit, et al, 1993; Chesser and Baker, 1996). In plant species, it can be 

seen from the theoretical results in this thesis that these impacts are marked. The assumption 

of no linkage disequilibrium holds between biparentally inherited nuclear and uniparentally 

inherited organelle genes if the three plant genomes are separately investigated. However, 

Asmussen et al. (1991) showed that pollen flow may affect linkage equilibrium between 

cytoplasmic and nuclear genes in a hybrid zone. Thus, this effect must be considered in the 

future. 

The second condition needs to be relaxed so as to be valid for many loci if there are 

interactions among them. However, the effect of seed and pollen flow together with the 

impact of recombination rate on plant population genetic structure presents a new challenge 

in the future. 

The third condition is important in the models. Organelle genomes (paternally and 

maternally inherited) are assumed to be haploid. Thus the rate of pure drift is equal to half 

that of nuclear genes. This assumption may be violated in some realistic cases. However, it 
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can be solved simply by substituting the population size N by the effective male N. and 

female Nf  population sizes. 

For most of results obtained in the second part of the thesis, only selectively neutral genes 

are considered. Thus these results can be applied to practical work which uses neutral 

markers, such as some allozymes and non-coding regions of DNA sequence. However, an 

important genetic phenomena is the hitchhiking effect, the effect of linkage between 

selective genes and selectively neutral genes, which may lead to modification of the above 

theoretical results to different extents. 

10.4 Future study 

Future study associated with the thesis is clear in both theory and practice. In theory it is 

necessary to release these constraints mentioned above, including the effects of linkage 

disequilibrium between biparentally inherited nuclear genes and uniparentally inherited 

organelle genes, the effects of recombination rate, and the effects of hitchhiking. This work 

may help us to investigate the role of pollen and seed flow in greater deepth. 

In practice, application of the results in the second part of the thesis is clearly required. Thus 

additional analysis, using maternally inherited markers (mtDNA markers), may provide 

evidence to clarify the genetic relationship between these three Chinese larch taxa. This 

work may also allow us to estimate the ratio of pollen to seed flow existing among natural 

populations of these three Chinese Larix taxa. 
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Appendix I. Comprehensive Check List for Larix Species and Their 
Varieties (Translated from CHINESE LARIX ed. by Zhang, S Yet al., 1992) 

1. Cones reniform, or longly reniform , or cup form, or ellipse; bracts-scales shorter than cone-scales, 
not exposed or slightly exposed for the basal bract-scales of cone; cone-scales smooth, shining, or 
pilose 

2. Cone-scales smooth, shining; 
3. Cone from cup form to ellipse, length 1.5--2.0 (2.5 ) cm; average number of cone-
scales is 20, seldom 30 

...........................................................................................L. gmelini 
3. Cone from reniform to widly reniform, length 2.0--2.7 cm, cone-scales average 
more than 30, seldom less than 30; 

4. Cone-scales number 20--30; one-year-old shoots light-yellow, stout 
....................................L. principis-ruppechtii var. wulingshaneneis 

4. Cone--scales number more than 30; one-year-old shoots colour from 
black-red-brown to brown-yellow 

................................................................L. principis-rupprechtii 
2. Cone-scales pilose; 

5. Edges of cone-scales not recurved,or slightly recurved, or emarginate; 
6. Cone-scales thinner, edges not recurved, or slightly recurved; 
ripe cones colour becomes thick,from red-brown to brown; cone length 
somewhat longer than , or near the same to its width; 

7. Cone-scales upsidedown reniform,or widly reniform, or near 
round; gland tumor and slightly pilosity found on under-side of 
leaves; 

8. Cone length 1.4--3.0 cm 
.........................................L. olgensis var. koreana 

8. Cone length above 3.0 cm 
......... ................................. L. olgensis var. changpaiensis 

7. Cone-scales pentagonal reniform; gland tumor and densely 
pilosity found on under side of leaves 

....................................L. olgensis var. heilingensis 
6. Cone-scales thicker, edges emarginate, or straight; ripe cones colour 
becomes thinner, lightly brow, or lightly yellow-brown; cone length 
longer than its width; 

9.Cone-scales roundly emarginate, triangularly reniform, densely 
light-purple pilosity found on under side; seeds wing not longer 
than cone-scale; one-year-old shoots light-yellow,stout 

.................................................................L. sibrica 
9. Cone-scales on the mid of cones, their edges emarginate 
and slightly recurved, reniform, or widly reniform; densely 
grey-brown pilosity found on under side of leaves; one-year-old 
shoots light-yellow, thin 

..............................................................L. decudua 
5. Edges of cone-scales obviously recurved 

............................................................L. kaempferi 
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Cones cylindrical, or reniformly cylindrical; bracts-scales longer than cone-scales, exposed 
........................................................................................... Sect 2. Multiseriales 

10. Bract-scales recurved; 
11. Cones big, length 5.0--i 1.0 cm 

.........................................................................................L. grfflthiana 
11. Cones small, length 2.5-4.0 cm 

................................................................................L. masters iana 
10. Bract-scales straight, or recurved,or slightly recurved; 

12. Cones small,length 4.0 cm or so; 
13. Cone-scales flatly round, near 90 degree against to fruit axle; one-
year-old shoots yellow, or light-brown 

....................................................................................L. chinensis 
13. Cone-scales round, small angle against to axle; one-year-old shoots red-
brown 

........................................................L.potaninii 
12. Cones big, length 5.0--11.0 cm 

............................L. potaninii var. macrocarpa 
14. Cone-scales thinner,purple, or red-brown; one-year-old 
shoots red-brown 

..........................................................L.speciosa 
14. Cone-scales thicker, grey-brown; one-year-old shoots 
yellow, or lightly yellow-brown 

L.himalaica 

261 



Appendix II. Recipes for the enzyme systems employed in this study 

Enzyme Recipest Electrophoresis Incubation conditions 

Aspartate aminotransferase 2mg pyridoxal-5'-phosphate 	 System I In the dark at 
(AAT, E.C.2.6.1.1) 50mg fast blue BB salt 37°C for 30 mm. 

25m1 substrate solution ( 5.30g L-aspartic acid 
+ 0.70g a-ketoglutaric acid; dissolved in 
1.0 1 of 0.2M Tris-HC1, pH 8.0) 

Malate dehydrogenase 12.5m1 0.2M Tris-HC1, pH 8.0 	 System H In the dark at 
(MDH; EC. 1.1.1.37) 12.5m1 0.5M DL-malic acid, pH 7.0 37°C for 45 mm. 

0.5m1 NAD 
0.5rnl NBT 
0.5m1 PMS 

6-phosphogluconate 5m1 0.2M Tris-HC1, pH 8.0 	 System II In the dark at 
dehydrogenase 10mg 6-phospogluconic acid 37°C for 45mm. 
(6PGD; E.C. 1.1.1.44) lml 1% M9C12  (w/v) 

imi NADP 
imi MTT 
0.5mm PMS 
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Phosphoglucose isomerase 5m1 0.2M Tris-HCI, pH8.0 	 System I In the dark at 37°C 
(PGI; E.C.5.3.1.9) 12.5mg fructose-6-phosphate, for 60mm. 

5units glucose-6-phosphate dehydrogenase 
0.5ml 1%MgC12  (w/v) 
0.5m1 NADP 
0.5m1 MTT 
0.5m1 PMS 

Phosphoglucomutase 25m1 0.2M Tris-HC1, pH 8.0 	 System II In the dark at 
(PGM; E.C.2.7.5.1) 150mg glucose- i-phosphate, 37°C for 60mm. 

25units glucose-6-phosphate dehydrogenase 
0.5m1 1%MgC12  (WA') 
0.5m1 NADP 
0.5m1 MTT 
0.5m1 PMS 

Shikimic acid dehydrogenase 50m1 0.2M Tris-HC1, pH8.0 	 System II In the dark at 
(SDH; E.C.l.i.l.25) 25mg shikiinic acid 37°C for 60mm 

1 .Oml 1 %MgC12  (w/v) 
0.5m1 NADP 
1.0m] NBT 
0.5m1 PMS 

t: stock solution: NAD (/3 -nicotinamide adenine dinucleotide), 10 mg/ml; NADP (/3 -nicotinamide adenine dinucleotide phosphate), 10 mg/ml; 
NBT ( nitro blue tetrazolium), 10 mg/ml; MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), 10 mg/ml; PMS (phenazmne methosulfate), 10 mg/ml. 
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Appendix III. DNA techniques 

Ill.! DNA extraction 

Total DNA was extracted from each species sample of buds or needles using a CTAB 

(cetyltrimethylammonium bromide) extraction method (Mosselar, et.al., 1992). One to two 

grammes of buds or needles were ground to a very fine powder in liquid nitrogen so that the 

cell walls were broken to release the cellular constituents. 5m1 of 2 x CTAB buffer (1 .4M 

NaCl, 100mM Tris base pH8.0, 20mM EDTA, 2% (v/v) Hexadecyltrimerthylammonium 

bromide) at 65°C was then added and mixed thoroughly so that the cell membranes were 

disrupted and the DNA was released into the extraction buffer. These tubes were transferred 

to a water bath at 65°C, and were incubated for 45-60 minutes, then allowed to cool to 

room temperature. An equal volume of chloroform: isoamyl alcohol (24:1) was then added 

and mixed thoroughly to a single phase so as to denature and separate the proteins from 

DNA. Tubes were spun at 3,200rpm in bench centrifuge for 10 minutes. The upper aqueous 

layer was transferred to a fresh tube and treated with chloroform:isoamyl alcohol a second 

time. The upper aqueous layer was transferred to a fresh tube and an equal volume of 

isopropanol (-20°C) was added. Tubes were left at -20°C overnight to precipitate, then spun 

at 3,200rpm for 10 minutes. The resulting pellet of DNA was resuspended in 2m1 TE buffer 

(10mM Tris-HC1 pH7.6 and 1mM EDTA). Then 2m1 of phenol:chloroform (1:1) was added 

and mixed for further separating proteins from DNA. After spinning at 3,200 rpm for 10 

minutes, the upper aqueous layer was transferred to a fresh tube. One-tenth volume of 3M 

sodium acetate and two volumes absolute ethanol were added and mixed well for removing 

CTAB. Tubes were placed at -20°C for one hour, and spun at 3,200rpm for 10 minutes. The 

pellet of DNA was air-dried. The pellet was resuspended in 400u1 of TE buffer plus RNAse 

(200 ug/mi) to digest RNA. DNA was then stored at -20°C for future use. 
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111.2 Setting up the PCR reaction 

The template for PCR amplification in this study consisted of 40ng of total genomic DNA. 

The PCR reaction mixture contained: 10mM Tris-HCI (pH 8.8), 1.5mM MgC12, 50mM KC1, 

0.1% Triton X-100, 100 ptM each of dTTP, dGTP, dCTP, CJATP, and 1 unit of DNA 

polymerase DyNAZyme TM  II or Promeag Taq. Amplification was carried out in a final 

volume of 501.tl using 1 cycle of 5 minutes at 94°C (denature), followed by 40 cycles of one 

minute at 94°C (denature), one minute 54°C (annealing), two and half minutes at 72 °C 

(extension). After that, a final ten minutes extension was performed at 72 °C. Then samples 

were held at 4°C. PCR products were visualised by UV transillumination after 

electrophoresis in agrose gel (1%-2%), stained wih ethidum bromide (0.5 ug/mi). 
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111.3 Restriction enzymes used in the experiments, their recognition sequence and recipes. 

Restriction endonuclease Recognition sequence* Reaction mixture Incubation 	Supplier 

Alu I 5'...AGCT ... 3' 6itl DNA, 0.30 enzyme (10 units /1d), 8.0111 H 20 37°C, overnight Promega 

20 buffer (10mM Tris-HC1 p117.5, 50mM NaCl, 

6mM M902, 1mM DTT, 0.1m EDTA, 0.5mg/mi BSA, 

50% v/v Glycerol) 

Cfo I 5'...GCGC ... 3' 6 1.11  DNA, 031.11 enzyme (lOunits/j.tl), 8.01.11 1120 37°C, overnight 	GeneScience 

2 1.11 buffer 
 ( 20mM Tris-HCI pH7.8, 10mM MgC12, 

1.0mM dithiothreitol, 0.1mM EDTA, 0.5mg/mi BSA, 

50% v/v Glycerol) 

Hsp 92 II 5'...CATG1 ... 3' 6pJDNA, 0.30 enzyme(lOunits/1.tl),8.Opi H 20 37°C, overnight Promega 

2 1.11  buffer (lOmMTris-HC1 pH7.4, 50mM NaCl, 

10mM MgCl2 , 0.1mM EDTA, 0.5mg/mi BSA, 

50% v/v Glycerol) 

Mbo I 5'....1GATC ... 3' 6pIDNA, 0.3111 enzyme (10units/111), 8.0111 H 20 37°C, overnight Promega 

21.11 buffer (10mM Tris-HC1 pH7.5, 50mM NaCl, 

10mM M9C12,lmMDrf, 0.1mM EDTA, 

0.5mg/mi BSA, 50% v/v Glycerol) 

*: The symbol '4 'marks the cut site for each 4bp sequence recognised by different enzymes. 
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ifi. 3 (Continued) 

Restriction endonuclease 

MspI 

Rsa I 

Taq I 

Tru 91 

Recognition sequence 

5'...C4CGG ... 3' 

5'...GflAC ... 3' 

5'...TCGA ... 3' 

5'...T1.TAA ... 3' 

Reaction mixture 

60 DNA, 0.3p1 enzyme (14 units40), 8.Opi H 20 

2tl buffer (10mM Tris-HC1 pH7.4, 50mM KC1, 

1 Om MgC12, 1mM dithiothreitol, 0. 1 m EDTA, 

200tg/ml BSA, 50%v/v Glycerol) 

60 DNA,0.3pi enzyme(12units/0),8.00 H20 

2p.l buffer (10mM Tris-HC1 p117.4, 

50mM NaCl, 10mM M902, 0.1mM EDTA, 

1mM DTT, 0.5mg/ml BSA, 50 0/ov/v Glycerol) 

6i.tl DNA, 0.3tl enzyme (12units/j.tl),8.0p1 H20 

2.d buffer (20mM Tris-HC1 pH7.4, 50mM KC1, 

lOm MgC12, 0.1mM EDTA, 1mM DTT, 

0.5mg1mi BSA, 50%v/v Glycerol) 

6j.tl DNA,0.3jd enzyme(l6units/j.i1),8.Op1 1120 

2tl buffer (10mM Tris-FIC1 pH7.4, 50mM NaCl, 

10mM M902,  0.1mM EDTA, 

1mM DTT, 0.5mg/mi BSA, 50%v/v Glycerol) 

Incubation 	Supplier 

37°C, overnight Gene Science 

37°C, overnight Promega 

65°C, overnight Gene Science 

37°C, overnight Promega 
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111.4 Preparation of agarose gel and electrophoresis 

When setting up a gel, the required amount of agarose was added to the correct amount of 

TAE buffer (0.04M Tris-acetate, 0.001M EDTA pH8.0), to produce 1.0 to 2% gel. The 

mixture was heated for 1-2 min at full power in microwave to dissolve the agarose. The gel 
1. 

mould was sealed with tape. Then agarose solution, when handed cool a little bit, was 

poured into the mould. A comb(s) was then put into the gel, and it was left to set for 30mm. 

Two sizes of agarose gels were used in this study: size 8 and 14 gels. For example, the 

required amounts of TAE buffer and agarose for 1% agarose gel are shown in the following 

table. 

Amount of the TAE buffer and agarose required for 1% gel 

Gel Size 	 TAE Buffer 	 Agarose 

14 	 lOOml 	 1.Og 

8 	 25m1 	 0.25g 

When electrophoresis was run, the required amounts of DNA sample, DNA ladder marker 

(0.2tg/j.tl), and gel loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF and 

40% (w/v) sucrose in water) were different depending upon gel size. The amount of these 

indigents used in this study is listed in the following table. The DNA samples were loaded 

into a gel and electrophoresis took place under the appropriate voltages and times shown in 

the following table (also see Sambrook, et al., 1989). Staining of the gel by ethidium 

bromide (0.5.tg/m1) was carried out after electrophoresis. 

268 



Electrophoresis set up in this study 

Gel size 	DNA Sample Ladder Loading Buffer Water 	Voltage/Time 

14 	16.0il 	 4.Opi 0.Otl 	90V/3hrs. 

3.0tl 	4.0t1 	13.Ojtl 

8 	 10.0.tl 	 2.0.tl O.Ojtl 	65V/45min 

2.0il 	3.0j.tl 	7.Ojil 

111.5 DNA sequencing 

The total sequencing procedure is composed of four steps: (i) purification of PCR products; 

(ii) cycle sequencing; (iii) purification of extension products, and (iv) electrophoresis, 

followed by data collection. 

(i) Purification of PCR products 

The QlAquick PCR purification kit protocol (QIAGEN, 1997) was employed to purify the 

amplified products. The method is simple and pure DNA products can be obtained easily 

for sequencing. Methodology is as follows: 200 ml of Buffer PB , provided by QlAquick for 

efficient recovery of DNA and removing contaminants, was added to the PCR reaction 

(about 40tl) and mixed. It was not necessary to remove the mineral oil layer. A QlAquick 

spin column was then placed in the provided 2-ml collection tube. Then sample was 

transferred to the QiAquick column and was spun at 13000rpm for 30 60 seconds to bind 

DNA to the column. The flow-through aqueous solution was discarded. The QlAquich 

column was retained in the same tube. 0.75m1 of Buffer PE, provided by QlAquick, was 

then added to the column and it was spun at 13000rpm for 30'-60 seconds, to wash the 

DNA. The flow-through liquid was discarded a second time. Then the QlAquick column 

was placed back in the same tube, spun for an additional Imin at 13,000rpm. Then the 

column was placed into a clean 1.5m1 microftige tube. 30il of elution buffer (10mM Tris-

HC1, pH7.5) was then added to the centre of the QlAquick column, left to stand for 1 mm, 
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then spun for 1 min at 13000rpm. PCR products purified was then stored at -20 °C for 

sequencing analysis. 

PCR cycle seguencinR 

A fluorescent dye terminator method was employed to sequence the PCR products. For each 

reaction, the following reagents were mixed in a labelled 0.6m1 thin-wall tube: 

Setting up of sequencing PCR 

Reagent 
	

Quantity 

Terminator ready reaction mix 	8 tl 
Template DNA 	 x ng 
Primer 	 5 pmol 
H20 	 yil 

Final reaction volume 	 20tl 

The amount of template DNA per reaction could be estimated according to the empirical 

formula: x(ng) = DNA Length (bp) x 0.08. For example, if the length of PCR product is 

500bp, then the required number of template DNA for cycle sequencing is 40ng. They is the 

volume of water required to bring the reaction to a final total 20 j.tl. 

After setting up the reaction, each sample was overlaid with 10 .tl light mineral oil and 

placed in the thermal cycler. 20-30 cycles were then carried out using the following 

temperature sequence: 96°C (denature), 30s, 45°C (annealing), 15s, and 60°C (extension), 

4mm. Samples were then held at 4°C. 

Purifvin2 extension products 

After the cycling sequencing reaction, the amount of the dye terminators in the PCR 

products were significantly reduced. Excess terminators were removed by the ethanol 

precipition method. The methodology is as follows: Each sample (20 .tl) was transferred to a 

1.5mi microcentriflige tube. 2.0 ttl of 3M sodium acetate pH4.6 and SOjtl 95% ethanol 
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(stored at -20°C) were added to each reaction and mixed well. They were then placed on ice 

for 15 minutes to precipitate DNA. Each sample was centrifuged at maximum speed (13,000 

rpm) for 15-30 minutes. The ethanol solution was carefully aspirated with a micropipetter 

as completely as possible. 250tl of 70% ethanol was added to each sample to rinse the 

DNA pellet, and brief centrifugation was required. The ethanol solution was then carefully 

aspirated again with a micropipetter and the pellet was dried at room temperature for 15 

minutes, then stored at -20 or 4°C before use. 

(iv) Electrophoresis and data collection 

Each DNA pellet was resuspended in 4t1 of loading dye, and samples were heated to 70°C 

for 2-5 minutes to denature the DNA. They were then placed on ice to prevent DNA 

renaturation, and immediately loaded into a gel, on a 377 DNA sequencer machine (ABI 

PRISWM). Base sequences were recorded according to the fluorescent signal and were 

analysed using the Gene Jockey H sequence processor. 
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Appendix IV. Proof of the validity of eqn(6.22) in two-dimensional stepping-

stone model of plant population genetic structure 

Supposing that L 1  and L 2  separately satisfy the eqn(6.22), then we will show that the 

L 1  + L2  also satify the eqn(6.22). 

E[(L 1  +L2 )(k).(L 1  +L2 )75(0)] 

= E{[L 1 (k) + L2 p(k)]. [L 1 j3(0) + 

= E[L1 (k) L 1  (0) + LJ3(k) L 2 j5(0) + L2 (k). L 1 j3(0) + L2 (k). L 2 j5(0)1 

= E[L1 j5(k)L 1 5(0)] + E[L1 j5(k)LJ5(0)] + E[L2 75(k)LJ5(0)] + E[L2 P(k)L 2 I5(0)] 

=Lp(k)+ L1 L 2 p(k)+ L2 L 1 p(k)+ Lp(k) 

=(L, +L2 ) 2 p(k) 

Thus, if L 1  = 	 + S)(S + S) 
1=0 j=0 

and L2 = fl02 S 1°  (S 2  + S22 ) + 1820  (S 2  + S )S20 , then we can show that they separately 

satisfy eqn(6.22). Thus, the eqn(6.22) also holds for L 1  + L2  (eqn(6.38)). 
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Appendix V. Effective population size and Gst calculation 

V.! Effective population size of subdivided population for haploid genes. 

Consider a locus with allele of haploid gene A and a, with frequencies q and l-q in a 

population. Define the average inbreeding coefficient of individuals, F, as the correlation 

between two haploid individuals randomly drawn from the population. The genetic 

compositions of any pair of genes randomly drawn from the population are the similar to 

those for diploid genes as shown by Wright (1943), i.e. 

Geneotype pair 	 Frequency 

AA 	 x=q2 (1—F)+qF 

Aa 	 Y t  = 2q(l - q)(l - F) 	(Al) 

aa 	 z=(1—q) 2 (l—F)+(l—q)F 

where the inbreeding, F, is caused by population subdivision, and was defined as I, by 

Wright (1951). 

Suppose that the population is subdivided into L subpopulations each with effective 

population size N. Allele frequencies are q' for A and 1- q' for a, including migrants (seed 

and pollen). Thus, the frequency of a hetero-genotype pair, Aa, in the whole population is 

y =2q'(1—q')/L 
	

(A2) 

Now, consider sampling variance. In each subpopulation, the sampling variance is 

q'(l - q') / N. The average sampling variance within subpopulations is 

, =q'(l—q')/LN 	 (A3) 
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The sampling variance for mean gene frequency of the whole population, i.e. the sampling 

variance of the q = 	q' / L, can be obtained as following. 

q—=>(q'—)IL 	 (A4) 

According to (A4), we can obtain 

a q  =a. IL 

= q'(1—q')/L2 N 	 (A5) 

Using (A2) and (Al) 

=y /2LN 

= q(1 - q)(1 - F) / LN 	 (A6) 

Therefore, according to (A6), variance effective population size for a haploid gene can be 

obtained, i.e. 

Ne  =LN/(1—F) 
	

(A7) 

which has the same form as for diploid genes. 
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V.2 Derivation of the GST  for three differently inherited genomes in the finite 

island model 

The GST  derived here refers to differentiation among subpopulations in adults. Consider a 

finite island model in which the entire population consists of L subpopulations, each with 

effective size N. Each subpopulation exchanges seeds and pollen grains at rates of m3  and 

mp  with equal likelihood of exchange with the remaining subpopulations, respectively. 

Using similar notation to Takahata (1983), let K be a fixed number of potential alleles at a 

locus and v/(K-1) be the mutation rate from one to any of the other K-i alleles. The total 

mutation rate is v. Let Xk  (i,t) be the frequency of the kth allele in adults in subpopulation i 

at generation t. 

Biparentally inherited diploid nuclear genes 

As mentioned before, the biological basis on which GST is  derived is that adults in each 

subpopulation produce pollen and pollen dispersal occurs. We assume that pollen grains 

randomly mate with ovules and produces seeds. After seed formation, there is seed flow 

among subpopulations. Then a sample of N seeds contributes to adults at the next 

generation. 

Suppose that the whole population comprises adults at generation t and the frequency of 

the kth allele in the ith subpopulation is Xk  (i, t). Denote by x,, k  (i, t + 1) the gene 

frequency in pollen grains in the ith subpopulation. The subscript p stands for gene 

frequency in pollen grains. After pollen flow, 

xPk(i,t + 1) = (1— mP)xk  (i,t) + 
mp 	

Xk(ilt), 	 (A8) 
j ,ti 

Denote by XSk  (i, t + 1) the gene frequency in seeds. After random mating between pollen 

and ovules, the gene frequency in seeds so formed is half of the sum of gene frequencies of 

male and female parents, i.e., 
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XS k 01  +1) = 1 [xk(i,t) + X p k (i,t + 1)] 
	

(A9) 

After seed flow , the gene frequency in seeds, XSk  (1, t + 1) becomes x k ('It + 1) , which is 

L 
x S k(i,t + 1) = (1— mS)xSk(i,t  + 1) + 

m 	
XS k(j,t + 1) 	(AlO) 

L—1 j#i 

Then assume that there are N individuals in adults which are sampled from these seeds in 

each subpopulation. Therefore, the gene frequency in adults at the next generation t+1 , is 

Xk(i,t+l) =X Sk (i,t+l)+S 
	

(All) 

where S is the change due to sampling (genetic drift), with mean E[8] = 0 and variance 

XS k(i,t + l)[l - xk(i,t +01 . Puffing equations (A8), (A9), (A 10) into (Al 1), and 
2N 

ignoring items involving in m,mp  , we can obtain 

1 
1 	 S  2 	

X,t)+5 (Al2) xk(i,t+l)=(lmS --- m )xk(i, t) + 	 k(j 
2 ° 	 L-1 j*i 

1 
Let &k(i) = xk (i,t+l) — x k (i,t), ñ = m +-m , 	= 	and cancel variable t in 

2 ° 	L — l 

the formulae , then the mean M[&k  (i)] is 

M[Sxk(i)I = - Lm *x(j) +M* Xk(J) 	 (A13) 

Considering mutation and letting v 
= V 

, then 
K—i 

M[Sxk(i)} = V * —( Lm * +Kv*)x k (i) + m * Xk(J) 	 (A14) 
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which is the same as equation (1) of Takahata (1983). When both 1n <<1 and 

m p  <<1 and assuming that random sampling of seeds takes place independently in each 

subpopulation, we can approximately obtain equation (2) of Takahata( 1983), i.e., 

V[äxk (i)&k ,  (J)] = 1  —x. (i)[8, Xk'(j)1'3ij 	 (A15) 
2N 

where 5 ij stands for the Kronecker delta function. Therefore, the results derived by use of 

the diffusion model (Takahata ,1983) can be directly applied in plant populations by minor 

modification. When K= oo , i.e. infinite alleles model ( Kimura and Crow, 1964) and under 

equilibrium among migration/drift/mutation, 

GST =  
1 

L L 
1+2N 	( 	m+v) 

L-1 L–1 

(A16) 

where N = 2N and ñ = m + - m 
S  2 

Paternally and maternally inherited haploid organelle genes 

Following similar consideration to those for hi-parental genes , we can obtain similar 

formulae to (A 16) except that ñi = m3  + m for paternal genes, in = ?n for maternal genes 

and N = N for both. If L =co , equation (A 16) is used for the infinite island model for the 

three genomes. 
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Gene flow occurs in two ways for hermaphrodite plants; seed flow and pollen flow. Dispersal 
of biparentally inherited (nuclear) and paternally inherited (conifer chioroplast) genes can be 
mediated by both seed and pollen, whereas for maternally inherited (angiosperm chloroplast 
and most mitochondrial) genes only seed flow contributes to dispersal. This produces asym-
metrical migration for biparentally, paternally and maternally inherited genes and may lead to 
different levels of population differentiation among them. This paper explores the effects of 
contrasting patterns of gene flow for different plant genes on their population structure under 
isolation by distance, on Nei's genetic distance measure, on divergence in nucleotide sequence 
between populations and on gene phylogenies. The possibilities are discussed of using data on 
population structure, genetic distance, sequence divergence and gene phylogenies as a basis for 
estimating the ratio of pollen to seed flow among subpopulations. One important general 
result from the isolation-by-distance model is that population differentiation for maternally 
inherited genes is greater than that for paternally inherited genes, which, in turn, is greater 
than that for biparentally inherited genes as long as the dispersal of seeds and pollen grains 
takes place. This is consistent with results obtained previously for the island and stepping-stone 
models in which populations are discretely distributed. 

Keywords: biparental gene, maternal gene, paternal gene, pollen flow, seed flow. 

Introduction 

A variety of models can be used indirectly to estimate gene flow among populations of a species using data on 
genetic structure for selectively neutral markers (Barton & Slatkin, 1986; Slatkin, 1989; Slatkin & Barton, 
1989; Hudson et al., 1992). When applied in plant species, especially hermaphrodite plants, gene flow should 
distinguish both pollen and seed flow. Seed flow and pollen flow may lead to asymmetrical migration for the 
biparentally inherited (nuclear), and maternally inherited (chioroplast and mitochondrial) genes, which occur 
in angiosperm species, and the paternally inherited (chloroplast) genes, which occur in conifer species (Neale 
& Sederoff, 1989; Neale et al., 1986, 1991). This produces different levels of population differentiation for the 
three variously inherited genomes. If the behaviour of genes with different modes of inheritance can be 
modelled, analysis of differences in genetic differentiation for these genes may allow estimation of the relative 
rates of pollen flow and seed flow (Ennos, 1994). 

Theory for differentiation of biparentally, paternally and maternally inherited markers has already been 
developed for the island and stepping-stone models of population structure (Petit et al., 1993; Ennos, 1994; Hu 
unpubl. data). In this paper we are again concerned with the population genetic consequences of having plant 
genomes with three different modes of inheritance, and focus on methods for using a variety of population 
genetic statistics for estimating the ratio of pollen to seed flow. The first employs data on F1 , measured in 
populations having a continuous distribution in space according to Wright's isolation-by-distance model 
(Wright, 1943, 1946). We then consider a simple model which describes the development of genetic distance 
between populations (Nei & Feldman, 1972), and relate Nei's distance to levels of seed and pollen flow. 
Finally, we briefly address the possible estimation of the ratio of pollen to seed flow from data on differences 
in DNA sequence between populations and from gene phylogenies. 

*CorrcspondcIce E-mail: rennost ed.ac.uk  
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Wright's isolation-by-distance model 

In the isolation-by-distance model (Wright, 1943, 1946), an important parameter is the neighbourhood size 
w ich is defined as an area from which the parents of central individuals may be treated as if drawn at 
random. The calculation of neighbourhood area is relatively complicated when both pollen and seed dispersal 
ar considered. Crawford (1984a,b) presented a modified formula for calculating neighbourhood size for a 
p1 nt population which will be used here. For both pollen and seed the distribution of dispersal distances 
b tween parents and offspring is assumed to be normal with mean zero. We assume that the nuclear 
bi arentally inherited genes are diploid, and the paternally and maternally inherited genes are haploid, and 
otily consider selectively neutral genes. We will use the same method of path analysis as Wright (1968) to 
analyse the population structures of the three differently inherited genes. Some of these results were, in fact, 
presented by Wright (1943, 1946, 1969). 

B parentally inherited genes 

et c and a be the variance of the distances between male parents and offspring, and between female 

p rents and offspring, respectively. Also let o be the variance of seed dispersal, and a be the variance of the 
d spersal of pollen grains before seed formation. The number of individuals in the neighbourhood is 

= 4m(ci+a)d in area continuity according to Crawford (1984a,b) and 2.j(a+a)m din linear continu-

i y, where d is the population density of breeding individuals. Let N be the number of individuals in a 

neighbourhood after pollen dispersal and before seed formation which is equal to 2itcr d (area). The number 

of individuals after seed formation and dispersal in the neighbourhood is N 1  = 47ra 2  d (area). Similarly, the 

P. umber of individuals after pollen flow and before seeds are formed at ancestors of generation X is XN (area) 

qr jX N (linear), and for the individuals after seed dispersal is XN 1  (area) or [X— N f  (linear). The total 

umbers of individuals in the neighbourhood for both parents at ancestral generation X are 4m(a+o) Xd 

(area) or 2/+c)itXd (linear). 

hrift  case Let F1 , be the correlation between ovules and pollen grains that contribute to zygotes after pollen 
nd seed dispersal. According to the same considerations as Wright (1943, 1946), the F1 ., in area continuity 

pproximates to: 

N(N) 	
(1) 

b2= 
1 +F 
	

(2) 

Therefore, the recurrence equations at ancestor of generation X in area continuity is: 

F55 = XN(h) + (i 
XN(b))  F

(x, . 	
(3) 

For simplicity the calculation of F1 , after infinite generations can be expressed by: 

F=t1/(2_ti) 	 (4) 

1 	(X— 1)N (h)  —1 
where ti = - and tx = 	 tx_I 

N (b) 	 XN ( h )  

For linear continuity the recurrence equations can be obtained by substituting the X in eqn (3) by \/. We 

suppose that all populations are initially present as adults and produce pollen grains for dispersal, and the 
boundary condition is Fk, = 0 after a large number of generations (k) back. 

© The Genetical Society of Great Britain, Heredity, 79, 541-552. 



SEED AND POLLEN FLOW 543 

Balance case Where there is a balance between drift and long-range dispersal of seeds and pollen grains, i.e. 
drift/migration equilibrium, let m, be the proportion of male parents (pollen grains) replaced by pollen 
migration when random mating with ovules, and mS.L be the proportion of both parents replaced by seed 
migration. If both long-range dispersal and reversible mutation are considered, then in . , or m,, are just 

substituted by ni +u or m-1. +u. Considering random sampling of size N(h), the proportion of male parents 

which makes a contribution to F1 , is I —m —m 7 , whereas the proportion of female parents which contributes 

to F, is 1 —rn,,-. Therefore, after seeds and pollen grains disperse, 

F, = (l—m,- _rns,-)(1_ms)[b2+(1_)Fss1,etc. 	 (5) 

At steady state, 

F1 , =Y t/(2 - ti), 	 (6) 

1 	 . 	(X-1)Nh—1 
where t1 = (1 —rn,-)(1 —rn- —rn,-) 	and tx  = (1 —rn., —in,-)(1 —rn-,) 

N(b) 	 XN ( I, )  

In the cases where only the pollen grains or seeds disperse, F1, can be obtained by letting 	ni,- = 0 and 

N—* x, m e ,- = 0, respectively. 

Paternally inherited genes 

The number of individuals in the neighbourhood is N 11 , 1  = 2it(ci+cr)d (area) or /(0-2+62)  7T d (linear) 
because of individuals being haploid after the dispersal of both seeds and pollen grains. The number of 
individuals in the neighbourhood after the dispersal of pollen grains but before seed formation is N = 27rcd 

(area) or Jmad (linear), but the number of individuals in the neighbourhood after seed dispersal is 
N f  = 27rad (area) or \/ aSd (linear). Similarly, the number of individuals in the neighbourhood at ancestor of 
generation X is 2mX(r 2  + a)d (area) or JirX(ci + a)d (linear). 

Drift case Here define F1 ., as the correlation between adjacent individuals. 

F, = 	t1, 
	 (7) 

1 	(X-1)N (p) 1 
where ti 	and tx  = 	 tx_I 

X7V()  

Balance case At steady state (drift/migration equilibrium), 
k—I 

F, = 

1 	 (X i)N (p) l 
where t1 = - (l —in —in,) and t.v = (1 —rn,- ui) 	

X(p) N))  

(Q) 

For linear continuity the recurrence equations can be obtained by substituting ,IX--  in place ofXin eqn (8). The 
boundary condition is Fk., = 0 a large number of generations (k) back. 

In the case where only the pollen grains or seeds disperse, F, can be found by letting N1 —*sc, ,n,- = 0 and 

N P __* -r-, nz. = 0. respectively. 
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Maternally inherited genes 

Because both paternally and maternally inherited genes are considered to be haploid or uniparental, the 
number of individuals in the neighbourhood is N (1)  = 27rad (area). Wright (1943) also addressed this case: 

F, =Y,  t,, 	 (9) 

I 	(X-1)N ( , ) -1 
where t1 = 	and t 

XAI(fl)  

Balance case At steady state (drift/migration equilibrium), 

F, =Y,  t,, 	 (10) 

1 	 (X_l)N (m) _1 
where t1 = (1 —m) 	and tx = (1 —m,-) 

N( m ) 	 XN (rn)  

Comparison of population differentiation 

In order to compare population differentiation among three genomes, we use the same notation as Wright 
(1943, p.  124). Consider a total population of size N,, subdivided into H groups of intermediate size Ni  and 
these are subdivided into K random groups of size N,,. Next we will compare the levels of population 
differentiation relative to Ni  among the three genomes in the drift/migration balance case. 

Biparental vs. paternal genes It can be seen that the neighbourhood size of biparentally inherited genes is 
greater than that of paternally inherited genes, i.e. N(b)>N(), and also t, (i = 1, 2, ..., K) in the case of paternal 
genes is greater than that in the case of biparental genes according to eqns (6) and (8). Therefore after going 
back to the ancestral generation K, t of paternal genes is greater than that of biparental genes. It can be 
shown that the correlation of paternally inherited genes, F I ,() , is greater than FI,(h) for biparentally inherited 
genes, i.e. FI ,()  > Fis (h). 

Similarly, after going back to ancestral generation, KH, it can be shown that the correlation of paternal 
genes, Fl, ()  is greater than F11( ,, )  of biparentally inherited genes. We can also prove that 

F1, - FI,() 	- F,(h) 

1 - 	1 - 
i.e., F,111  > (11) 

Paternal vs. maternal genes As above, we can prove the relationship 

F1, ( ni) - FIs'( m) Fu(P) - FR)) 
F,,( rn )  > F,,() . 	 ( 12) 

1 - 	1 - 

In summary, the population differentiation of maternal genes is greater than that of paternal genes, which, in 
turn, is greater than that of biparental genes as long as the dispersal of seeds and pollen grains takes place. 

Ratio of pollen to seed flow 

In. this section we consider how to estimate the ratio of pollen to seed flow from long-range dispersal. 
According to the Taylor expansion, ( t, in eqn (6) can be written using a simple formula, 

t1 = 1— [1 —(1 —m p7  —m,.)(1 —m,.1 )J''. 

Similarly, expressions can also be obtained for eqns (8) and (10). 
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Let 

A = I— 

 1 _F \ 
_i) ,B= l_(l_F i5 )Nht and C 1 —( 1 —F1)' ( 	Nh 

1 +F sJ 

for biparentally, paternally and maternally inherited genes, respectively. Then the ratio of pollen to seed flow 

from long-range distance can be approximated by 

m 	A—B 2 	C 2 —A 	C—B' 	 (13) 
- 	 or or — . 

mB—A' C(1—C)' 1—C 

Nei's genetic distance 
In this section we will incorporate seed flow and pollen flow into Nei's genetic distance measure (Nei, 1972) 
for three differently inherited genomes based on the assumptions of mutation/migration/drift equilibrium, as 
addressed by Nei & Feldman (1972) and Chakraborty & Nei (1974). Here we will use Nei and Feldman's 
model because of its simplicity and practicality. 

Suppose that a population splits into two incompletely isolated populations and thereafter gene migration 
occurs in every generation between the two populations with a constant rate of both pollen and seed flow. Let 

N i  and N 2  be the sizes of populations 1 and 2, respectively, and assume that effective size is the same as the 

actual size. Let m 1  and m pi  be the rates of seed and pollen migration in population 1, respectively, and M,2 and 

m 2  be the rates of seed and pollen flow in population 2. Using the same notation as Chakraborty & Nei 

(1974), let J and J be the probabilities of identity of two randomly chosen genes from populations 1 and 

2, respectively, at generation t. Let iJ be the probability of identity of two randomly chosen genes, one from 
each of the two populations. Each new mutation is different from the alleles pre-existing in any of the two 
populations. Only selectively neutral alleles are considered. Therefore, the only way in which two genes can be 
the same 'allele' is if they are identical by descent. 

B/parentally inherited genes 

Male parents for the biparental genes come from two sources: one comes from migration with frequency 

m, 1 +m 1 , denoted by B; the other is from within populations with frequency 1—m 1 —m1, denoted by A. 

Similarly, female parents come from two sources: m1 from migration, denoted by D, and 1 —m from the 

population itself, denoted by C. The probabilities of two randomly chosen genes from population 1 coming 

from A and A, B and B, A and B, etc. are (1 —m —m 1 ) 2, (m +m 1 ) 2, (1 —m1 — m 1 )(ni, +m 1 ), etc., respec-

tively. Following Malécot (1969), we can derive the recurrence equation for 
jt1), which is: 

J 1) = (1—u) 2 - 
 

 (AA+CC+2AC) 
r
_
2N

i 
I
+

7 
1__1) J(,t?] +'—(2,4D+2AB+2CD+2CB)J(,'~  

  2N 1    4 

ri  

— (BB +DD+2BD) 1 —+(1— 
L2N2 	2N2) 

(14a') 

where Uh 
is the mutation rate for biparental genes. Substituting for A, B, C and D in eqn (14a'), we can obtain 

eqn (14a): 

j(t+l) = (1—ub)2 Xi_msi_mi)2 [+(i_)J]+2 

+(ms+mp')

2E 1  

L 	2N2 2N2 	) ii - 	

(14a) I_
+(I_  1 _ J 

Similarly, we can derive the recurrence equations for J and J. 
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(1_u h ) 2 {(1_m s I — I Mpl)(M,2+'Mp2)[ '  +('— 1 
J( 

I  I  I 
 ) 

	

2 	 2 	2N, 	2N) 1 
+[(i_m s i _ m pi ) (i_m s2 _m2)+(msi +m p l)(m s2+mP2)]J 

+(1_m s2_m P2) (m s  +mPl) 	 (14b) 

u,) 2 	 -+( 	 )J' 1 j+2 (i 
i\ 	-' 

	

4±1) = 
(1_{(ms2+mP 	

2N 7  

+(i _ms2_m2)2[—+ (1 	 (14c) 

Vhen m1 = m p2  = 0, the above equations reduce to those of Chakraborty & Nei (1974). 
Using matrix notations, formulae (14a), (14b) and (14c) may be written as 

(1±)) = (1—ub)2T+(1—uh)2MJ 	
(15) 

here 

= (JS'? JS, J2), 

(1 —m 5 1 — 21 m0 
+ 

(m 5 1 + 11 m1) 

2N 	 2N2  

— 1  m P') (m 5  + 1 m p2) (1 m2 — 1  m) (m1 + 1  !fl p1) 

2N 	
+ 	

2N2 

(1 —m 5 7 — m)2 +(ms2_+ m)2 

2N2 	 2N 

(1—m 
_mpi)2(1_) 

(1—mI—mI)(m5:+'Pflp2) 

M= 	( 1 

\\ 2N  

(ms2+.mp2)2 (\') 

2(1 —m 5 1 — i m p,)   (m 5 1 + m1) 

(1—rn 51  — m1) (1 —m 52 	mp2) 

+(m 51 +m 1 ) (m 57+-m) 

2(1 — m , ,  — m p2) (M,—' + m p2) 

(m 2 	2N) 

(1 —m 5 — m) (m 5 1 + m1) 

(1_m s2 _m p2 ) 2  

Under steady state, the vector of equilibrium identity probabilities is given by letting j1 	
= j) in eqn (15), i.e. 

J = (1—uh) 2 {I—(1—uh) 2M}T. 
	 (16) 

As Chakraborty & Nei (1974) have already discussed this equation in detail, we can use their results in later 
sections. 
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Paternally inherited genes 

Here again suppose that the paternal gene is haploid. Its migration can also be mediated by both pollen flow 
and seed flow. Following similar considerations to those for biparental genes, the vector of equilibrium identity 
probabilities is 

J = (l—u) 2 {I—(1—u) 2MY'T, 
	 (17) 

where u,, is the mutation rate of paternal genes, and 

(1 -m5, -rn,)2 +(msI +rn,) 

N, 	 N2  

T 
= 

(
( I–MSj–M p 1)(M,2+M p2) 	–rn 52 –rn)(m 5 , +m,) 

	

N, 	 N2 

	

(1 - rn52 _m2) 	+rn2) 

N2 	 N 

(1_ms1_mpi)2(1_ 
1) 

(1 –rn 5 , -m e ,) (111 57 +M2) 

(1 
Ii-- 
\ N, 

(m52+mp2)2(1_ I )  

2(1–rn 5 , - rn,) (rn 5  +ni) 

(1–rn 51  –m l ) ( 1 –ni s2 

+(rn51 +rn) (m52+rn2) 

2(1 - m s2 - m p2) (M,-' + rn p2) 

(rn5, +rnpi)2(i 	
) 

(1 -M".- rn2) (rn5, +M,) 

( 1– 
1-) 

I — 
\ N 

(1–rn 57–rn2)2  (i_k) 

Maternally inherited genes 

Consider that the maternally inherited genes are haploid. Only seed flow contributes to their migration. Under 
this case, the vector of equilibrium identity probabilities is 

J = (1Um ) 2{I(1U m ) 2MY'T, 	 (18) 

where U rn  is the mutation rate of maternal genes, and 

(1_M")2 rn5,2 
+- 

N, 	N2  

(1 –rn5)rn52 +(1_–m52)m5, 
N, 	N2 

(1–rn 5 7) 	rn 5 2 2  
+- 

N2 	N 
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( ,_M")
2 (1- 

1 
 ) 	2(1  —m1)mi 	 m12 (

1 _ I) 

I m2(l —m1) (i 
_) 	

(1 —m1) (1 —m7) +m1m2 	(1 —m2)m (, l
i_I) 

m22 
	

2(1 —mS2)mS2 	 (1 —m2) 2  (i 

_) 

Rat 'o of pollen to seed flow 

He e consider a special case where u<<m, m1, m2, m 2 1, which was addressed by Chakraborty & Nei 

(1 74). Nei's distances for the three genomes are: 

2Uh (19a) 
Db 

m1 +mR2 + M1+ m2 

2u 	
and 	

(19b) 

m1 +m2+mi +m2 

2U m  (19c) 

Ms, +M,2 

ere Db, D and Dm 
 are Nei's distances for biparental, paternal and maternal genes, respectively. 

th = M,I +fl2 and th = m1 +m2. The ratio of pollen to seed flow is given by: 

2(a-1) 	 Dhu 	 (20a) 
where a - 

2—a 	 Dub 

)r 

2(1—a) 	 Dhufl 	 (20b) 
-= • —,wh ere a 
th, 	a 	 D m Uh 

jor 

th 1—a 	 DpUm 	 . 	 (20c) 
= -, where a = -. 

rn. 	a 	 D m Up 

Number of nucleotide differences 
The variation in DNA sequence within and between populations contains much information on population 
evolution. Every sequence may be unique, and all the information is contained in the genealogical relationship 

between sequences (Barton & Wilson, 1995). Differences at the DNA level can be measured by the number 
of segregating sites among DNA sequences sampled (Watterson, 1975) or by the average number of (pairwise) 
nucleotide differences between sampled DNA (Tajima, 1983). For simplicity, only the average number of 
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(pairwise) nucleotide differences between DNA is considered. If only two DNA sequences are sampled from 
a population, the expectation of the average number of nucleotide differences is equal to the expected number 
of segregating sites (Tajima, 1989a). Under a balance of migration/mutation/drift, the average number of 
pairwise nucleotide differences sampled within a population is independent of migration, but is related to 
migrations for pairwise DNA sampled between populations (Strobeck, 1987). This provides the foundation for 
estimating the ratio of pollen to seed flow. 

From above the migration rate for biparental genes can be obtained directly, i.e. 	whereas the 

migration rates for paternal and maternal genes are m+m and m 5 , respectively. We use similar notation to 

Strobeck (1987). In the island model with a finite number of subpopulations, n, let 

 and C= m, 

	

Cij.hii.b 	 ij.p 	ci.0 	 cij.m 	cu.m 

where u represents mutation rate, jj and j, stand for the expected number of nucleotide differences between 
two randomly chosen DNA sequences from the same subpopulation and from two different subpopulations, 

respectively. Subscripts b, p and m on 4 ij , u  and u stand for biparentally, paternally and maternally inherited 

genes, respectively. The ratio of pollen to seed flow can be obtained by: 

M P  B—C 	2(A—C) 	2(13 —A) 
or 	or 

-• 	 (21) 

M, C 	C 	2.4 —B 

In the circular stepping-stone model, let 

	

i(n—i)ub 	i(n—i)u 	 j(fl)U m  

A=------ 	,B= 	and C= 

	

c/b —  co.h 	 ci.m - 

where (i = 1, 2,...) stands for the expected number of nucleotide differences between two randomly chosen 
DNA sequences from two subpopulations which are i steps apart, and from the same subpopulation. Under 
the balance of mutation/migration/drift, the ratio of pollen to seed flow can be obtained according to Strobeck 

(1987), which has the same formula as (21) except for different values of A, B and C. 

Phylogenies 
Another method that also uses DNA sequence information for estimating the ratio of pollen to seed flow is 
based on the phylogenies of genes. Slatkin and coworkers (Slatkin & Barton, 1989; Slatkin & Maddison, 1990) 

and Hudson et al. (1992) introduced a method for analysing phylogenies of genes sampled from a geograph-
ically structured population. Using simulation, they showed that the minimum number of migration events (s) 

is a simple function of Nm based on phylogenies of alleles and genes under a variety of population structure 
models. This method depends on knowing the phylogeny of the nonrecombining segments of DNA that are 
sampled, but does not require complete sequences, although it does assume that an accurate phylogeny can be 
inferred from the segments of DNA sampled (Slatkin & Barton, 1989). Although the analytical expression, 

s =f(Nm) has not been obtained to date, this nevertheless provides an additional potential method for 
estimating the ratio of pollen to seed flow among plant populations. 

Following similar considerations to those above, for the biparentally inherited genome (nuclear DNA), both 
seed and pollen contribute to the migration events. Thus the relationship between Sb, the minimum number of 

migration events between pairs of populations sampled, and number of migrants may be written: 

sh=f[N(mS+mp)}. 	
(22) 

Similarly, the minimum number of migration events between pairs of populations sampled should be related 
to both seed and pollen flow for paternally inherited genes, and to seed flow only for maternal genes. 
Therefore, there may be the following relationships, 
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SP  =f[N(m+m)] 
	 (23) 

and 

m =f(Nm), 	
(24) 

where s, and S m 
 stand for the minimum number of migration events consistent with phylogeny for paternal and 

maternal genomes, respectively. By combining eqns (22), (23) and (24), it will be possible to estimate the ratio 
of pollen to seed flow once any two of these three relationships are available. 

Discussion 
One of the aims of this paper has been to develop theory for population structure of plant genes with different 
modes of inheritance under isolation-by-distance. In the island model and the stepping-stone models where 
'populations are discretely distributed, differentiation for maternally inherited genes FST( m ) is greater than for 

paternally inherited genes FST(P), which, in turn, is greater than for biparentally inherited genes FST(h) (Ennos, 

1994; Hu, unpubi. data). In this paper we show that this relationship still holds in populations with a 
continuous distribution and limited dispersal of seeds and pollen. 

Another aim of this paper has been to develop theory for indirectly estimating the ratio of pollen to seed 
flow among plant populations by a variety of methods. In the isolation-by-distance case it is possible to obtain 
analytical expressions for estimating this ratio under the hypothesis of a balance between migration and drift 
(formula (13)). In practice this formula will be very difficult to apply. In the first place it requires estimates of 
neighbourhood size for the three different genomes. These are difficult to measure in the field (Levin & 
Kerster, 1968, 1971, 1974; Schaal, 1975; Crawford, 1984a,b; Gliddon & Saleem, 1985). The model also assumes 
a random mating population, reaching an infinite number of generations back to its ancestors. If there is any 

self-fertilization, then F1 will increase and the model assumptions will not be met. 
Within the isolation-by-distance model it is possible to take into account deviations from random mating 

caused by self-fertilization. Let r be the proportion of the pollinations randomly coming from the neighbour-
hood and i—r be the proportion of self-fertilization. If there is no seed dispersal but pollen dispersal, the 
neighbourhood size at ancestors of generation X for the biparental genes is 47r((1 + (X— 1)r)aI2 +U Od  (area) 

or 2J((1+(X-1)r)a,/2+7)7td (linear) according to Wright (1946). Similarly, the size of neighbourhood at 

ancestors of generation X for paternal genes is 27T((1+(X-1)r)a+cT)d (area) or 
(linear). However, if both seed flow and pollen are considered, the calculation of neighbourhood size becomes 
very complicated. 

Finally, formula (13) will be difficult to apply in practice because the total number of individuals sampled 
in experimental work is always less than infinite. For this reason therefore F 1 , may be underestimated. Taking 
all these points into consideration it is much more difficult to estimate the ratio of pollen to seed flow in the 
isolation-by-distance case than in either the island or stepping-stone models of population structure (Ennos, 
1994; Hu, unpubl. data). 

The second method explored in this paper for estimating the ratio of pollen to seed flow involved analysis 
of Nei's genetic distance. In order to apply the formulae (20a—c) derived here we must assume neutrality of 
mutations (Tajima, 1989b) and must possess estimates of the mutation rates in the three different genomes. 
There is evidence from analysis of rates of sequence divergence over evolutionary time that mutation rates 
differ significantly among the three plant genomes, with mutation rates being higher for nuclear genes than for 
chioroplast genes, which, in turn, are higher than for mitochondrial genes (Birky, 1988). If mutation rates of 
the three genomes were equal, genetic distances among the different genomes would vary according to the 
relationship Dm >Dh>Dp. Deviations from this predicted ordering of genetic distances could provide further 
evidence for large differences in the mutation rates of the three genomes. 

The use of DNA sequence data to estimate the ratio of pollen to seed flow suffers from the same limitation 
as Nei's distance measure; we need to estimate mutation rate of the genes in the three genomes before the 
ratio of pollen to seed flow can be measured. Furthermore, it may be also be necessary to test the neutral 
mutation hypothesis before the formulae derived above can be applied. For these reasons it may be more 
practical to utilize statistics which rely only on the detection of differences between alleles, i.e. F-statistics 
rather than those which require measurement of the extent of genetic differences between alleles when 
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indirectly estimating the ratio of pollen to seed flow. Great care should be taken even with these methods 
because their usefulness may only be judged once their variances, Var (m 1,/m), are available. Finally, we must 

remember that the assumption of strict maternal and paternal inheritance of organelle genomeS underlies the 
models developed above. Further experimental data are required to confirm the general validity of these 

assumptions. 
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