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ABSTRACT

Acute pancreatitis is an acute inflammatory process of the pancreas, with variable
involvement of other local and remote organs. There are similarities in terms of clinical
presentations and manifestations between acute pancreatitis and sepsis. Recent theories
from sepsis studies suggested that there is a pro-inflammatory response at the beginning
and a subsequent anti-inflammatory response at a later stage of the disease. It has been
proposed that it is the uncontrolled pro-inflammatory response which leads to multi-
organ dysfunction; whereas the later anti-inflammatory response contributes to an
immuno-compromised state, and therefore increases the likelihood for nosocomial
infection. The main aim of this project is therefore to characterise the dynamics of the
pro- and anti-inflammatory responses during an episode of severe acute pancreatitis,
using both lung and peripheral blood as the surrogate markers for remote organ and

systemic immune responses respectively during the disease process.

Arginine- and caerulein- induced acute pancreatitis rodent models were used to
investigate the immune responses. Although there was a trend of more severe acute
pancreatitis in the arginine model than the caerulein model, there was no statistical

difference in the histological scorings of both acute pancreatitis models.
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The present studies therefore suggest that:

There was a trend of increased alveolar macrophage phagocytic capacity halfway
through the disease process. However, the alveolar macrophage phagocytosis was only
significantly elevated when the rodents had completely recovered from the episode of

severe acute pancreatitis;

The overall phagocytic capacities of both monocytes and granulocytes were significantly
dampened halfway through the disease process. Granulocytes contributed to the majority
of this dampening effect. At the same studied time-point, further analysis on the survival
of granulocytes revealed a reduction of apoptosis/necrosis of granulocytes. These
observations would therefore suggest a malfunction of bacterial clearance by
granulocytes, despite their increased survival. The reason for this malfunction is
uncertain. In a similar manner to the alveolar macrophages. monocyte phagocytosis was
significantly upregulated in rodents with pancreatitis towards the resolution of the acute

pancreatitis episode.

Using lipopolysaccharides (LPS) to simulate septic events at different stages of acute
pancreatitis in this rodent model, there was a net reduction in granulocyte and monocyte
apoptosis halfway through the disease process, but not at any other time-points during an
episode of severe acute pancreatitis. This phenomenon suggested that sepsis exerts its

most profound effects on leukocyte survival halfway through the recovery from acute



pancreatitis, and that this coincided with the reduction in the ability to perform bacterial

clearance.

In addition, the immune response in the liver, as another remote organ target, during
acute pancreatitis was investigated. It was discovered that HO-1 (an anti-oxidant and
heat shock protein) was induced within the liver parenchyma at the beginning of the
disease process. Its reduction throughout the acute inflammatory process was associated

with an increase in oxidation within the liver parenchyma.

The results are discussed in the light of current knowledge on the pathophysiology of

acute pancreatitis.
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acute pancreatitis. This graph illustrates a significant suppression of
granulocyte phagocytosis at day 7 in both pancreatitis groups versus the
control. ** denote statistical significance between caerulein and arginine

versus control groups respetivelyi..oiiuunnsinunavsimisemiswanaasissasasmse T
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Figure 5-4. This graph illustrates the monocyte phagocytosis throughout an episode of
acute pancreatitis. There were significant increases in monocyte phagocytosis
on day | and 10 in the arginine model versus the control; whereas monocyte
phagocytosis was significantly increased only at day14 in the caerulein model.
* denote statistical significance between caerulein and arginine versus

CONLrol Sronps PESPECIVEIY. i cwammimsrmmissssisrons ks s s SRR vrossis 143

Figure 6-1(a) illustrates the forward/side scatter distribution of the overall blood
leukocyte of YOPRO/7-AAD assay after lysing the red blood cells.
Granulocytes were gated as red, lymphocytes as blue and monocytes as
purple. (b) is the 7-AAD/YOPRO histogram distribution of the combination
of granulocytes, monocytes and lymphocytes. The bottom left-hand quadrant
represents viable cells; the bottom right-hand quadrant represents apoptotic
cells, and the top right-hand corner represents necrotic cells. (¢) is the 7-
AAD/YOPRO histogram distribution of granulocytes (red gate) , and (d) is the
histogram distribution of lympocytes (blue gate). ..........cccoevveiniiiiiiiiniiicniciiiinnnn 153

Figure 6-2 illustrates similar diagrams as in Figure 6-1, but the Annexin V/PI assay was
used. (a) represents the forward/side scatter of leukocyte distribution using
Annexin V/PIl assay after lysing the red blood cells. (b) is the PI/ Annexin V
histogram distribution of the combination of granulocytes, monocytes and
lymphocytes. (c) is the PI/ Annexin V histogram distribution of granulocytes

(red gate), and (d) is the histogram distribution of lympocytes (blue gate)................ 154

Figure 6-3. These graphs illustrate the relative overall leukocyte necrosis or apoptosis of
all three treatment groups measured against various time-points using either
YOPRO/7-AAd assay or Annexin V/ PI assay. (® denotes statistically
significant difference between the arginine and control groups at that
particular time-point; whereas * represents statistical significance between the

cacrulein and control BrouPs.)i s 162

Figure 6-4. These graphs illustrate the relative granulocyte necrosis or apoptosis of all

three treatment groups at various time-points measured by either YOPRO/7-
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AAd assay or Annexin V/ Pl assay. (* denotes statistically significant
difference between the arginine and control groups at that particular time-
point; whereas * represents statistical significance between the caerulein and
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Figure 6-5 illustrates the lymphocyte necrosis or apoptosis of all three treatment groups
measured against various time-points using either YOPRO/7-AAd assay or
Annexin V/ Pl assay. (" denotes statistically significant difference between the
arginine and control groups at that particular time-point; whereas * represents

statistical significance between the caerulein and control groups.).......ccooevvviviieennenn. 166

Figure 6-6 illustrates total leukocyte necrosis and apoptosis after 18 hours of in vitro
whole blood culture at 370C with and without LPS stimulation at different
time-points of severe acute pancreatitis. Annexin V/PI assay was used in both
LPS culture conditions. (a) & (b) represent total leukocyte necrosis and
apoptosis without the co-culture of LPS; whereas (c) & (d) represent leukocyte
necrosis and apoptosis after 18 hours of co-culture with LPS. (* denotes
statistically significant difference in arginine group versus the control group at
a particular time-point, where * represents that of the caerulein group versus

the CONLIOl GIOUP.) ..ovviriciiiiiiieiirieit ettt r s ne s aenesiesanes | OO

Figure 6-7 illustrates granulocyte necrosis and apoptosis after 18 hours of in vitro whole
blood culture at 370C with and without LPS stimulation at different time-
points of acute pancreatitis. Annexin V/PI assay was used in both with or
without LPS culture conditions. (a) & (b) represent granulocyte necrosis and
apoptosis without the co-culture of LPS; whereas (¢) & (d) represent
granulocyte necrosis and apoptosis after 18 hours of co-culture with LPS. (*
denotes statistically significant difference in arginine group versus the control
group at a particular time-point, where * represents that of the caerulein group

versus/the COnITol GTOUD.) .. umerremsmrssaasimsismassmasssmantrasssmnsessnnsns sasesbassnssarassnensinpsiussssnnssss LW

Figure 6-8 illustrates lymphocyte necrosis and apoptosis after 18 hours of in vitro whole

blood culture at 370Cwith and without LPS stimulation throughout an episode
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of acute pancreatitis. Annexin V/PI assay was used in both culture conditions.
(a) & (b) represent lymphocyte necrosis and apoptosis without the co-culture
of LPS: whereas (¢) & (d) represent lymphocyte necrosis and apoptosis after
18 hours of co-culture with LPS. (* denotes statistically significant difference

in arginine group versus the control group at a particular time-point, where *

represents that of the caerulein group versus the control group.) ...,

Figure 7-1 illustrates the mean and standard error of the secretion of TNFu by alveolar
macrophages in correspondence to various concentrations of LPS after 3 and
18 hours of culture at 37°C (n=3). After 3 and 18 hours of culture, there was

significant elevation of TNFa at LPS concentrations above 0.1pg/ml, when
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Figure 7-2 illustrates the mean and standard error of the secretion of TNFa by peripheral
blood in correspondence to various concentrations of LPS after 18 hours of

culture at 37°C (n=3). After 18 hours of culture, there was significant elevation

of TNFa at all LPS concentrations, when compared to Opg/ml of LPS..................

Figure 7-3 illustrates I1L-6 (a) & (b) and IL-10 (¢) & (d) cytokine secretion in peripheral
blood of acute pancreatitis models (arginine & caerulein) and control at days 3
and 7. (a) & (c) represent whole blood culture without LPS stimulation,

whereas (b) & (d) represent whole blood culture with LPS co-culture. N=6 per
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Figure 8-1 illustrates the western blotting using anti-HO1 antibody of arginine, caerulein
and control groups. The top band is the band corresponding to HOI
immunoblotting, whereas the lower band is Actin immunoblotting. The
relative value for the amount of HO1 for a corresponding time-point is derived
from the division of the band density measured by QuantityOne analysis

software between HOI and Actin level. Specimen "A4" was used as the

reference specimen for semi-quantitative PUrPOSe........ccocuvvririiniesiesisieinnceinannas
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Figure 8-2 illustrates the relative value of HO-1 expression in the liver during an episode
of acute pancreatitis. N=6 per group per time-point. (* & * denote statistical

significance of the relative expression of HO-1 in the liver of the arginine and

caerulein groups respectively in reference to the control group.) ......cccocovvvrivernnnne.

Figure 8-3 illustrates the relative value of Trolox equivalent antioxidant capacity of the
liver during acute pancreatitis. N=6 per group per time-point. (No statistical
significance was found between the two pancreatitis groups as compared to
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Figure 8-4 represents the lipid peroxidation in the liver during an episode of acute
pancreatitis. N=6 per group per time-point. (* denotes statistical significance

(p<0.05) of the concentration of MDA measured in the liver of the arginine

group as .compared 1o the COMIal GrOUP.) .cuuimissvininissrmsissnmsmsarissssissamsissmaos

Figure 8-5 illustrates the glutathione peroxidase activity in the liver during an episode of
acute pancreatitis. N=6 per group per time-point. (* denotes statistical

significance (p<0.05) of the glutathione peroxidase activity measured within

the livers of the arginine group as compared to the control group.) ...

Figure 8-6 (a-d) illustrate the immunohistochemistry of the HO-1 expression in the liver
of the control and arginine pancreatitis group at | day after induction of acute
pancreatitis. (a) & (b) represent the negative control and HO-1 staining of the
liver of the control group respectively (x20); whereas (c) & (d) represent the
negative control and HO-1 staining of the liver of the arginine pancreatitis
group respectively (x20). All pictures were taken at the same microscopic
setting. There is more DAB staining in the liver of the arginine group as
compared to the control. Most of this staining was highlighted along the

distribution of the Kupffer cells («). However, DAB staining was more

markedly in the pancreatitis group (d) than the control group (b).......ccccociiiiciiiinins
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1 INTRODUCTION

1.1 DEFINITION OF ACUTE PANCREATITIS

Acute pancreatitis is defined as an acute inflammatory process of the pancreas, with
variable involvement of other regional tissues or remote organ systems. Various
classifications for the severity of acute pancreatitis have been proposed. Some of these
classifications were based on pancreatic morphology, which was not practical clinically
due to the limited availability of tissue samples for diagnosis. Because of the practicality
and diversity of the classification of acute pancreatitis, the first clinically based
classification was established after the international symposium in Atlanta, USA in

1992. This classification was further revisited and revised in 1998.

Severe form of the disease is defined as acute pancreatitis with the association of organ
failure and/or local complications such as necrosis, abscess or pseudocyst formation (1).
This definition is not perfect because it categorizes both local and systemic
complications as severe forms of the disease process. Based on clinical observations, not
every patient suffering from pancreatic necrosis or the formation of a pseudocyst will
have multiple organ failure, which is a major contributor to the mortality. Nevertheless,
this is still the best available published and accepted definition for acute pancreatitis in

use with international consent.



The majority of patients suffer from a mild form of the disease. However, a proportion
of acute pancreatitis patients progresses to the severe form of the illness, and may
require intensive-care support. The mode of managing this disease is mainly supportive
management of its complications. Few direct therapeutic measures have been found to
be successful in altering outcomes (2). Despite the recent advancement of supportive
therapeutic management in the intensive care unit, acute pancreatitis still carries a
significant mortality of approximately 10-17% in its severe form (3, 4). It is therefore
vital to identify patients with the potential to develop severe acute pancreatitis, which

will determine outcomes of the disease.



1.2 DEMOGRAPHICS OF ACUTE PANCREATITIS

The incidence rate of acute pancreatitis varies from country to country (3-5) (Table 1-1).
In a study based on the Scottish Mortality Record, the incidence of acute pancreatitis in
Scotland increased from 25.8 to 41.8 per 100,000 between 1985 and 1995 (3). A study in
the Netherlands using their nationwide automated database (National Information
System on Hospital care) recorded an increase of 3.5 per 100,000 over the same 10-year
period (6). In England, Goldacre et al and Tinto et al both revealed a rise in the general
trend of the incidence of acute pancreatitis (7-9). Goldacre et al noted that the largest
increase in incidence during the period of study was among young women (11% per
annum) (9). Although there are variations in terms of the absolute figure of the incidence
in Western countries, the overall trend is an increase in the incidence of acute

pancreatitis over the last two decades (3, 6-8, 10, 11).

Epidemiological studies also revealed gender differences in the incidence of the disease
(3, 6-8, 10-13). These studies revealed more frequent prevalence of acute pancreatitis in
males compared to the female group. However, an epidemiological study from Denmark
revealed a considerable rise in the incidence of female acute pancreatitis after 1997 (11).
Although women had not surpassed men in terms of the absolute incidence rate, this
trend of increase in acute pancreatitis among females was also reported in England over

the last decade (9).



The cause of acute pancreatitis in men tends to be alcohol-related, whilst gallstones
predominate in women as a precipitating factor (9). In addition, the age when acute
pancreatitis occurs in men is younger than in women. Roberts et al recently investigated
the relationship between acute pancreatitis and socio-economic factors in England (9).
They discovered an increase in binge-drinking alcohol consumption among women of a
younger age group (<35 years old), which they postulated as possibly the main cause for

the surge of acute pancreatitis in women.
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1.3 AETIOLOGY OF ACUTE PANCREATITIS

Numerous causes are known to trigger an episode of acute pancreatitis (Table 1.2).
Alcohol and gallstones are the most common causes of acute pancreatitis (approximately
70-80%) (4, 12, 13). When Gullo et al reviewed the aetiology of acute pancreatitis of
five European countries (Germany, Hungary, France, Greece and lItaly), there was
marked variation in the predominant cause of acute pancreatitis between gallstones and
alcohol. For instance, alcohol accounted for only 6% of cases of acute pancreatitis in
Greece, whereas it contributed 60.7% in Hungary. In France, only 24.6% of acute
pancreatitis was caused by cholelithiasis, as compared to 71.4% in Greece (4). In the
United Kingdom, gallstone disease is the most common cause for acute pancreatitis,

representing 40—-60% of the total incidence (14-16).



Table 1-2 Causes of acute pancreatitis

Common causes

Uncommon Causes

Gallstones Trauma/iatrogenic:
ERCP
Sphincterotomy
Biliary manometry
Alcohol Pancreatic duct obstruction:

Neoplasia

Drugs:
Azathioprine
Steroid

Metabolic:
Hypercalcaemia
Hyperlipidaemia
Hypothermia

Infections:
Mumps
Coxsackie B
HIV

Autoimmune:
Polyarteritis nodosa
Systemic lupus erythematosus

Vascular:
Ischaemia
Cardiopulmonary bypass

Congenital:
Hereditary pancreatitis
Cystic fibrosis

Idiopathic




1.4 PATHOPHYSIOLOGY OF ACUTE PANCREATITIS

The pancreas has both exocrine and endocrine functions. The endocrine function is
contributed by the islet cells of the pancreas, and is not believed to play a significant role
in the pathophysiology of acute pancreatitis (17). The endocrine function of the pancreas
will therefore not be discussed in this thesis. The function of the exocrine pancreas
consists of the synthesis and secretion of digestive enzymes (proteases) to catalyse the
food contents in the intestine. Many of these enzymes are synthesized by pancreatic
acinar cells as pro-enzymes (zymogens), which are inactive within the cells. The

activation of these zymogens requires cleavage of their pro-peptide.

Trypsinogen is one of the many zymogens synthesized in the acinar cells of the
pancreas. Reaching the small intestine, trypsinogen will be cleaved by enterokinase at
the intestinal brush-border to become trypsin. Trypsin is the most important of all
pancreatic proteases, because once activated it is capable of catalysing further zymogens
into their active forms. This cascade mechanism ensures that zymogens are in their
inactive form during synthesis, transport and storage within the acinar cell. However,
because of the complexity of the whole process, there are potential pitfalls in the early
activation of trypsinogen to trypsin within the pancreatic acinar cells, leading to auto-
digestion of the pancreas. This phenomenon of auto-digestion contributes to one of the

theories for the early events in acute pancreatitis.



The pathophysiology of acute pancreatitis is complex and not fully understood. In broad
terms, the whole acute pancreatitis process can be divided into three phases — the
initiation, propagation, and resolution phases. Most research and studies to date have
investigated the first two phases of acute pancreatitis. These three phases will be

discussed in more detail in this chapter.

1.4.1 INITIATION PHASE OF ACUTE PANCREATITIS

This initiation phase of acute pancreatitis consists of the triggering mechanism for the
pancreatic inflammatory process and the immediate cellular and molecular cascading
effects after the initial trigger. The initiation process of acute pancreatitis is not as well
studied in human subjects as compared to the propagation phase of the disease, which is
discussed in section 1.1.1. One of the main reasons is that tissue sampling from the
retroperitoneal pancreas is not required to establish the clinical diagnosis of acute
pancreatitis and to initiate clinical management. By the time a patient presents to
hospital, the disease has already progressed beyond the initiation phase, making the
study of this initial mechanism difficult. The understanding of the initiation phase of
acute pancreatitis is therefore mostly derived from studies on experimental animal

models of acute pancreatitis or via tissue culture techniques.
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1.4.1.1 Triggers of acute pancreatitis

Since alcohol and gallstone diseases are the most common aetiologies of acute
pancreatitis in clinical practice, most studies focused on the pathogenic mechanisms of
these two disease processes. These studies have provided valuable knowledge regarding

how these two aetiologies trigger the inflammatory process of the pancreas.

Another group that has provided invaluable insights into the intracellular mechanisms
during the triggering process of the disease is patients with hereditary acute pancreatitis.
Using genetic knockout models based on the knowledge from hereditary acute
pancreatitis has further extended the understanding of the initiation process. This will be

discussed further in section 1.4.1.2.

Alcohol-induced acute pancreatitis

Alcohol ingestion by itself does not always induce acute pancreatitis. Using a continuous
intra-gastric infusion model of ethanol for several weeks, only ethanol-induced liver
injury was demonstrated among the rodents, but no acute pancreatitis was induced
during the process (18). This observation also correlates with patients in clinical practice:
some alcohol-abused patients develop acute pancreatitis, whereas others do not. When
Pandol et al exposed rodents to long-term continuous ethanol ingestion, they
demonstrated an increased susceptibility of acute pancreatitis with a smaller dose of

cholecystokinin octapeptide (19). /n vivo and in vitro experimental models have also

11



suggested increased vulnerability for insult in pancreatic acinar cells after exposure to
ethanol (20). These results confirmed that ethanol sensitizes the pancreas, and therefore

increases its susceptibility to acute pancreatitis (21, 22).

The majority of alcohol consumed is oxidized in the liver by alcohol dehydrogenase to
acetaldehyde, which is then converted to acetate via acetaldehyde dehydrogenase. The
other, alternative metabolic pathway for the metabolism of alcohol is the non-oxidative
route using fatty acid ethyl ester synthase, with fatty acid ethanol esters (FAEEs) as the
end metabolites. Gukovskaya et al suggested that the long-term exposure of ethanol
activates different transcription factors (NF-kB and Activator Protein-1), depending on
the domination of either oxidative or non-oxidative pathway within the pancreas (23).
Because of a significantly smaller oxidative capability for alcohol within the pancreas as
compared with the liver, most of the ethanol is metabolized through this non-oxidative
pathway within the pancreas (24). It is generally believed that the formation of FAEEs
within the pancreatic acinar cells increases cytosolic calcium concentration, leading to
mitochondrial injury and subsequent acinar cell damage (23-30). This will play a role in

ethanol toxicity in the pancreas.

Pandol et al further confirmed a significant alteration of the pancreatic gene expression
after long-term exposure of ethanol (31). Pandol et al discovered a significant

upregulation of the mRNA of Activating transcription factor 3, HSP 27 and 70 (heat

12



shock proteins), and meso-trypsinogen, and downregulation of the mRNA of
pancreatitis-associated proteins (PAPs), folate carrier, and metallothionein. Among all
these mRNA upregulations within the pancreas, the authors advocated that the
upregulation of meso-trypsinogen, a minor form of trypsinogen, is potentially significant
because of the rapid hydrolysis ability causing irreversible degradation of serine
peptidase inhibitor, Kazal type 1 (SPINK1), which is a major endogenous trypsin
inhibitor. Recent studies have shown that an overexpression of SPINKI1 in transgenic
animals is able to protect against the development of severe acute pancreatitis (32).
SPINK1 mutations are also linked with chronic pancreatitis (33). Therefore, ethanol-
induced high levels of mesotrypsin could reduce the levels of functional SPINK1 and

thereby exacerbate the acinar cell damage during acute pancreatitis.

Apart from the increase of FAEEs with ethanol consumption in animal models, ethanol
has also been shown to increase the activation of NF-kB within the acinar cells through
protein kinase C (34). Activation of NF-xB, a transcription factor, contributes to an
important effect on the pro-inflammatory immune function through the regulation of
interleukin (IL)-6, MCP1 and ICAM (35-37), and blocking some signalling pathways of
apoptosis via reduction of caspase expression (38). Expression and activity of cathepsin
B were also found to be upregulated after ethanol exposure (see section 1.4.1.2) (38).
The combination of these effects from alcohol leads to pancreatic cell injury, more so in

the form of necrosis than apoptosis.
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Due to these multiple plausible effects of alcohol on the pancreas, it is now believed that
alcohol consumption itself is not enough to induce acute pancreatitis; rather it
hypersensitizes the pancreas for the susceptibility to insults. Most of these studies were
performed using rodent pancreatitis models; it is therefore uncertain whether this theory

is transferrable to humans.
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Figure 1-1 illustrates the metabolic pathways and effects of the consumption of ethanol in the pancreas

Biliary pancreatitis

The exact mechanism of how gallstone disease triggers acute pancreatitis remains
debatable. Opie proposed over a century ago that a gallstone at the ampulla of Vater
causes reflux of bile to the pancreas through the common channel between the common

bile duct and pancreatic duct, leading to acute pancreatitis (39). This “double channel”
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theory formed the basis of the belief in gallstone pancreatitis for a long time, and was
supported by the reproducible acute pancreatitis rodent models using direct injection of
bile salts into the pancreatic duct (40). However, this theory was challenged when
necrotizing pancreatitis was induced in an opossum model by separate ligation of the
pancreatic duct and common bile duct (41). In another pancreatitis model using
combined duct ligation and replacement of bile-pancreatic juice via the duodenum to
reduce the neurohormonal pancreatic stimulation, there was histological evidence of
reduction of pancreatic inflammatory changes (42-46). This led to another theory that it
is the combination of ductal obstruction with the activation of trypsin and then
subsequent hyperstimulation of the pancreas via a neurohormonal pathway which
exacerbates the severity of acute pancreatitis (47). It is unclear which of these theories is
best suited to explain the human clinical scenario. Nevertheless, both models achieved

acute inflammation to pancreatic acinar cells, causing acute pancreatitis.

1.4.1.2 Early cellular events of acute pancreatitis

Irrespective of the aetiologies causing acute pancreatitis, there is a consensus that a final
“common” pathway of changes exists within the pancreatic acinar cells during the
disease process (48). After the initial triggers of acute pancreatitis, as discussed in
section 1.4.1.1, multiple events occur within the acinar cells prior to the cascading
inflammatory response, leading to the propagation phase of acute pancreatitis. In broad
terms, these are mainly intracellular calcium signalling, co-localization of enzyme and

the activation of NF-kB. All these signalling pathways have a common endpoint, which
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is to activate the zymogen, causing autodigestion within the acinar cells. It is also during

the propagation phase of the disease, where clinical symptoms and signs manifestate.

Calcium signalling in pancreatic acinar cells

Calcium is an important intracellular messenger within the pancreatic acinar cells. The
cytosolic calcium concentration [Ca®] is lower than the extracellular compartment. This
concentration gradient is maintained by the active-transport process through magnesium-
dependent calcium-ATPase at the plasma membrane, which pumps Ca®" out of the
cytosol (49). Endoplasmic reticulum, which is situated close to the nuclear envelope, is

responsible for the intracellular storage of calcium.

During the normal physiological response to pancreatic secretagogues, such as
acetylcholine and cholecystokinin (CCK), the secretagogues attaches to the receptor of
the acinar cell surface. This molecule-receptor interaction will couple to the G-protein
leading to the intracellular signalling by second messengers (50). One of these second
messengers is inositol 1,4,5-triphosphate (IP3), derived from the cleavage of membrane
bound phosphatidylinositol 4,5-bisphosphate by phospholipase C-f. The interaction of
the IP3 and its receptors causes the release of Ca*' from endoplasmic reticulum to the
cytosol, with the reduction of Ca®' re-uptake at the same time (51, 52). The combination

of these two mechanisms increases the calcium concentration within pancreatic acinar



cells. The location of Ca®'-releasing channel at the endoplasmic reticulum is closely

associated with the zymogen granules at the secretory pole of the acinar cell (53).

During a physiological response to the secretagogues described above, Ca®" is released
repeatedly, in a cyclical manner. Because of the close association of the Ca2+~releasing
channel and the secretory pole of the acinar cell, this oscillatory release is associated
with the secretion of zymogen granules into the lumen (53, 54). There is also a
prolongation of this oscillatory cycle as well as an elevation of the intracellular baseline
Ca®' level demonstrated in the CCK hyperstimulatory pancreatitis model (55). The
combined effect leads to mitochondrial dysfunction, disruption of cytoskeleton and gene
expression (56, 57). This dysregulation of Ca*' control and the continuous mitochondrial
depolarization will ultimately lead to apoptosis and the subsequent secondary acinar cell

necrosis (58).

Cytosolic calcium was also found to be required during the activation process of the
zymogens after the co-localization, which will be discussed in the next section (59). In
fact, cytosolic calcium concentration was elevated during the early phase of acute
pancreatitis, leading to disturbances of mitochondrial membrane depolarization and
subsequent production of ATP. This is similar to the calcium dysregulation described
above. To provide further experimental evidence that calcium regulation within the

acinar cell was vital to the zymogen activation, the addition of calcium chelator to



pancreatic acinar cells in vitro prevented zymogen activation (55, 60, 61). However, it is
important to highlight that the increase of cytoplasmic calcium concentration by itself
does not lead to the activation of zymogens: Rather, calcium signalling plays a vital role

as a co-factor in the activation of zymogens.

Enzyme co-localization

Because of the exocrine function of the pancreas, namely its production and storage of
all these precursors of digestive enzymes (zymogens), it is logical to hypothesize that the
premature activation of these zymogens within the acinar cell is responsible for the
initiation of acute pancreatitis. Due to the fact that the activation of other zymogens
relies on the presence of trypsin, the activation of trypsinogen to trypsin was suggested
to be the prime suspect for the trigger of acinar cell injuries. There is evidence that intra-
acinar activation of zymogens is actually a key event in the pathophysiology of acute
pancreatitis, and that the activation of the zymogens is always within the acinar cell to

trigger acute pancreatitis (62-66).

One of the theories regarding the activation of trypsinogen is the “co-localization”
theory, which is based on the hypothesis that zymogens co-localize with lysosomal
enzymes for their activation. Using subcellular fractionation and immunolocalization
techniques of a caerulein-induced model, cathepsin B — one of the lysosomal hydrolases

within the lysosomal vacuoles — was detected to be in close association with zymogen
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granules (63, 67). This phenomenon was detected prior to the morphological and
biochemical evidence of acinar cell injury during acute pancreatitis (63). This co-
localization process has therefore been advocated as one of the key elements in the
activation of the zymogens, and not simply an event subsequent to the pathological

process of acute pancreatitis.

During the activation process of trypsinogen to the formation of trypsin, trypsinogen
activation peptide (TAP) is formed as a by-product. In addition to the lysosomo-
zymogen co-localization process mentioned above, TAP was found to co-exist with
cathepsin B within the same subcellular compartment (63, 68, 69). This suggested that
not only did zymogen granules and lysosomal vacuoles co-localize during acute
pancreatitis, trypsinogen was activated during the process too. To provide further
evidence that cathepsin B was required for the activation of trypsinogen, Acker et al
demonstrated that trypsin was activated within acinar cell and the severity of acute
pancreatitis was reduced when cathepsin B activity was inhibited prior to the induction
of acute pancreatitis (70). A similar phenomenon also occurred when acute pancreatitis
was induced in cathepsin B knockout mice (71). The findings that pancreas-derived
digestive zymogens become co-localized with lysosomal hydrolysis in acinar cell
cytoplasmic vacuoles, and that lysosomal hydrolases, such as cathepsin B, activate

trypsinogen formed the basis of the “Co-localisation Hypothesis™.



Nuclear Factor kB

Once the intra-acinar zymogens have been activated and subsequently led to
mitochondrial injury through the above process, NF-kB plays an important role in

further cascading the inflammatory process.

NF-xB is a transcriptional factor, which normally locates within the cytoplasm. In its
inactive state, it is accompanied by IkB to form a stable complex. IkB is an inhibitor and
its prime function is to mask the nucleus localization sequence of NF-kB. The formation
of this complex prevents the translocation of NF-kB to the nucleus to act as a
transcription factor. To allow transcription of DNA by NF-kB, the inhibitory protein
needs to be removed from the complex by either dissociation or degradation. Whether it
is the dissociation process or the degradation process that unmasks the nuclei
localization sequence of NF-kB depends on the type of acinar-cell stress response. For
cytokines, growth factors, mitogens and hormonal response, IxkB becomes
phosphorylated by IkB kinase to allow degradation of IkB; whereas for the stress
response, such as hypoxia, reactive oxygen species or other physical insult to the acinar
cell, IkB is phosphorylated by an unknown kinase to allow dissociation of the inhibitory
protein. With the disappearance of [kB from the complex. translocation of NFxB to the

nucleus would then be feasible to allow gene transcription.
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The activation of NF-xB was discovered within the acinar cells of several rodent acute
pancreatitis models during the early phase of disease (35, 72, 73). In caerulein acute
pancreatitis, the activation of NF-kB has been demonstrated to follow a biphasic pattern
— the first activation occurs 30 minutes post-induction, and the second activation occurs
after 3 hours post-induction and lasted for up to 6 hours (35). The activation of NF-kB
upregulates protein production involved in various inflammatory processes. In
taurocholate biopancreatic ductal injection model, NF-kB is found to be translocated to
the nuclei and subsequently upregulates P-selectin, ICAM-1 and adhesion molecules in
acinar and endothelial cells. The upregulation of these proteins increases the adherence
of neutrophils to the injured site, and the migration of neutrophils through endothelial
cell lining. The responses of neutrophils will be discussed in detail later in section

1.4.3.1.

Because NF-xB has such a profound effect on the immune function, especially on the
pro-inflammatory response, it was uncertain whether the activation or inhibition of NF-
kB is beneficial to patients with severe acute pancreatitis. The general consensus from
different animal studies suggested that reduction of the severity of acute pancreatitis was
associated with the inhibition of NF-kB (74-77). However, Steinle et al had
demonstrated that in vivo inhibition of NF-kB by PDTC was associated with adverse
outcome in caerulein-induced acute pancreatitis (78). Most of these studies used anti-
oxidants that inhibit the signalling pathway of cyclo-oxygenase 2 (COX-2). The main

problem was therefore the specificity in targeting the inhibition of NF-kB alone in these
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studies. To address the specific role of NF-kB in acute pancreatitis, Altavilla et al
induced acute pancreatitis in NF-kB knockout mice, and compared the cytokine
expression and oxidative responses with the wild-type mice (74). They demonstrated a
significant reduction in pancreatic NF-kB DNA-binding activity, tumour necrosis factor
(TNF)-a expression and oxidative stress within the knockout group as compared to the

wild-type controls.

Over the last few years, the role of NF-kB in acute pancreatitis has been intensely
investigated in rodent models. There is more evidence pointing towards a beneficial
effect with blockade of NF-xkB in experimental models, via a reduction of pro-
inflammatory responses during acute pancreatitis. However, its role in human

pancreatitis is yet to be determined.
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Figure 1-2 summaries the cell signalling process of NFkB by external stimuli, such as cytokine and

reactive oxygen species, to induce chemoattractant effect on neutrophils

1.4.2 PROPAGATION PHASE OF ACUTE PANCREATITIS

Once individual acinar cell injury is triggered, an acute inflammatory response can
evolve causing local pancreatic acute inflammation, which can subsequently initiate
further remote organ damage. This injury mechanism signifies an important part of the
whole disease process: the propagation phase of acute pancreatitis. It is during this phase
that the clinical manifestation of the disease occurs. Both local pancreatic inflammatory
involvement and distant multi-organ dysfunction can co-exist during this phase of acute

pancreatitis. It is the latter that normally dictates poor clinical outcomes (5, 79).
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1.4.2.1 SIRS/sepsis and acute pancreatitis

Systemic inflammatory response syndrome (SIRS) is usually part of the clinical
presentation of acute pancreatitis. SIRS was a term derived at the American College of
Chest Physicians and Society of Critical Care Medicine (ACCP/SCCM) consensus
conference in 1992 (80, 81). The aim of this terminology is to provide a clear and well-

defined definition of sepsis, which was loosely applied before the consensus.

SIRS can be triggered by various sources (see Figure 1-3). Clinically, a patient is
suffering from SIRS when two or more of the following conditions are fulfilled:
temperature >38°C or <36°C; heart rate >90 beats/min; respiratory rate >20 breaths/min
or PaCO, <4.3kPa; white cell counts >12.,000 cellslmm{ <4000 cells/mm’ (80). Sepsis
is defined as SIRS with an identifiable focus of infection caused by bacteria, virus,
fungus or parasite; whereas severe SIRS/sepsis is defined as organ dysfunction,
hypoperfusion or hypotension in addition to SIRS/sepsis. When hypotension (systolic
blood pressure <90mmHg or reduction of >40mmHg from baseline) occurs despite
adequate fluid resuscitation during SIRS or sepsis, the terminology of “SIRS shock™ or

septic shock is used.
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Figure 1-3 The concept of SIRS as a common response to many initiating factors. The

interrelationship between SIRS, sepsis and infection is shown here. [Diagram reproduced from

J Pharmacol Sci 101, 189 — 198 (2006)]. Permission obtained from Professor Hattori

Early epidemiologic studies demonstrated that infection with systemic SIRS was the
common pathway for the development of acute respiratory distress syndrome (ARDS)
and eventual multiple organ failure. It is now believed that an initial traumatic insult
creates severe SIRS independent of infection (one-hit model). Alternatively, a less
severe traumatic insult can create an inflammatory environment (i.e., primes the host)
such that a later, otherwise innocuous, secondary inflammatory insult precipitates severe
SIRS (second hit) (82). This biphasic mode of inflammatory response was also observed
in severe acute pancreatitis in clinical practice (3, 83). About 50% of mortality occurs
within the first week of severe attack. These early deaths were found to be due to multi-
organ dysfunctions (MODs), whereas the later deaths were commonly secondary to

infective necrotic pancreatic tissues and/or other nosocomial infection (84).
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Initial research in severe acute pancreatitis suggested that it was the excessive pro-
inflammatory response which initiated and sustained multiple organ failure at the early
phase (85). Recently there has been growing evidence that an anti-inflammatory state
exists during the disease process (86). Clinical studies revealed that the level of serum
IL-10, an anti-inflammatory cytokine, correlates well with the severity of acute
pancreatitis (87-89). Some authors have therefore proposed that it is an imbalance
between the pro- and anti-inflammatory state during acute pancreatitis that determines
outcome (90). This theory correlates well with the clinical scenario where the net pro-
inflammatory response at the early stage of the disease contributes to multiple organ
failure (first hit); and the subsequent overwhelmed anti-inflammatory response leads to

nosocomial infection (second hit) in severe acute pancreatitis.

1.4.2.2 Role of acinar cells in leukocyte attraction
To understand the disease progression from acinar cell injuries to SIRS response, it is
essential to look into the events beyond the activation of trypsinogen within the acinar

cells, and discuss the links between the acinar cell injuries and SIRS.

Gukovskaya et al demonstrated that NF-xB was activated within acinar cells during the
early event of acute pancreatitis (37). They further established that acinar cells express
TNF-a, providing the first evidence that non-leukocyte can produce pro-inflammatory

cytokines within the pancreas. This evidence of pro-inflammatory cytokine production
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by the pancreatic acinar cells provided an important piece of jigsaw regarding how the
subsequent inflammatory process can propagate within and beyond the pancreas. TNF-a
secreted by the acinar cells recruits inflammatory cells by upregulating selectins, ICAM-
1 and VCAM-1 (91). The upregulation of these proteins is vital in the recruitment of
inflammatory cells to the pancreas. The recruitment of leukocytes involves: 1)
leukocyte-rolling by selectins; 2) firm adhesion of leukocytes to endothelium by ICAM-
1 and VCAM-1; and then 3) subsequent diapedesis. It is generally believed that it is the
activation of leukocytes that subsequently leads to the chain-reaction of inflammatory

responses.

ICAM-1 and VCAM-1 are both cellular adhesion molecules, which are upregulated
during an inflammatory process (92, 93). These molecules interact with the surface
receptors, such as CDI11/CDI18, to allow and enhance the adhesion of activated
leukocytes e.g. neutrophils. The upregulation of ICAM-1 of acinar cells has been shown
to increase the adherence of neutrophils to the inflamed pancreas. This phenomenon was
demonstrated in both in vivo and in vitro experimental acute pancreatitis models (36).
Zaninovic et al has shown that this increased neutrophil adherence to the pancreas is
neutralized when ICAM-1 antibody was applied in both acinar cell culture and
experimental rodent pancreatitis model (36). When acute pancreatitis was induced in
ICAM-1 knockout mice, a milder degree of acute pancreatitis and associated lung injury
were observed within the knockout group as compared to the wild type (94). A similar

protective effect was also noted when neutrophils were depleted prior to the induction of
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acute pancreatitis. However, there was no extra protective effect in combined ICAM-1
knockout and neutrophil-depletion. These findings suggested that ICAM-1 exerts its pro-
inflammatory acute pancreatic response possibly via the involvement of neutrophil
migration and activation. In clinical observation, the plasma level of ICAM-1 was also
found to be elevated in patients with severe acute pancreatitis compared to those with a

mild form of the disease (95).

Interestingly, Ramudo et al demonstrated that not only was TNF-a secreted by acinar
cell, an anti-inflammatory cytokine, IL-10, was also secreted by acinar cells during acute
pancreatitis in a bile-duct ligated model (96). However, how this anti-inflammatory
response has any further influence on the subsequent acute inflammatory process is

uncertain.
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Figure 1-4 summaries the potential role of acinar cells in leukocyte attraction during acute inflammatory

processcs
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1.4.2.3 Granulocyte and monocyte infiltration

Neutrophil involvement is a key element in the acute inflammatory process. Its
accumulation within the pancreas is a common feature during the early phase of acute
pancreatitis (97). It has been shown in animal models that neutrophils appear within the
pancreas as early as 3 hours from the induction of the disease. The production of free
oxygen radicals, myeloperoxidase and other proteases by the activated neutrophils leads
to increased toxicity and subsequently pancreatic tissue damage (98). When neutrophils
were depleted by anti-neutrophil serum injection prior to induction of acute pancreatitis,
there was a significant reduction in the neutrophil infiltration as well as severity of
disease as shown by its histological scoring and biochemical analysis (99, 100). A
similar protective effect was demonstrated when oxygen-radical scavenger superoxide
dismutase or anti-ICAM antibody was given to rodents prior to the induction of acute
pancreatitis (101, 102). Not only did Poch et al notice a reduction in oxidative stress,
they also demonstrated a reduction of neutrophil infiltration to the pancreas during the
disease process (101). These studies highlighted the important role of neutrophils and
their generation of free radicals in the contribution of pancreatic injuries during the

disease process.

The infiltration of monocytes/macrophages follows along with the influx of neutrophils
to the pancreas during acute pancreatitis (103). This infiltration of

monocytes/macrophages has been strongly linked to the increase of pro-inflammatory
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cytokine secretion within an inflamed pancreatic tissue, especially IL-1, [L-6 and TNF-a
(104). These pro-inflammatory cytokines contribute significantly to the “primary” hit of

the SIRS response, which was discussed in section 1.4.2.1.

1.4.2.4 Pro-inflammatory mediators

Tumour Necrosis Factor Alpha (TNF-a)

The excessive production of TNF-a has been classically viewed as the trigger for the
excessive inflammatory response at the beginning of SIRS/sepsis and severe acute
pancreatitis. Once the injury of the acinar cells is triggered by the early intracellular
events, TNF-a is secreted by acinar cells (37). These in turn attract the accumulation and
activation of neutrophils and monocytes from the circulation to the inflammatory areas.
The locally secreted TNF-a further signals monocytes/macrophages, which activate
transcriptional factor NF«B, to upregulate the production of TNF-a, IL-1 and IL-6 (see
Figure 1-2). Within a short period, there is a sudden surge of pro-inflammatory
cytokines locally. In fact, TNF-a has been detected within the pancreas and serum in less
than an hour after the induction of acute pancreatitis in an animal model (104). This
surge of TNF-a has been suggested to play a role in the development of the clinical
manifestation of shock during severe SIRS, possibly via the synthesis of nitric oxide as
the vasodilator (105). The other function of TNF-a is to enhance the expression of
adhesional molecules on cell surfaces. The two adhesional molecules are intercellular

adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1).

30



These in turn increase integrin adhesiveness and promote extravasation of leukocytes to
remote organs, which can then do damage to remote organs. (This will be discussed

further in Section 1.4.3.3.)

Interleukin-6

IL-6 is another pro-inflammatory cytokine, which can be produced by almost all
inflammatory  cell  types  following an  appropriate  stimulus  (106).
Monocytes/macrophages contribute a significant amount to IL-6 production during acute
pancreatitis (107). This again is likely due to the activation of transcriptional factor
NF«kB. There is evidence suggesting that serum IL-6 correlates to the haemodynamic
instability in experimental acute pancreatitis (108). Because serum IL-6 level
demonstrates a close correlation with the severity of acute pancreatitis in humans, it has
been suggested that the measurement of IL-6 is an accurate biochemical marker to
predict the likelihood for patients to develop severe acute pancreatitis within 24 hours of
the onset of disease (109, 110). The production of IL-6 triggers the synthesis of acute
phase proteins by the liver, such as C-reactive protein (CRP) and fibrinogens. The
measurement of CRP has been validated as an invaluable tool to establish the severity of

acute pancreatitis 48 hours after hospital admission in clinical practice (111).

Despite the above evidence, the exact role of 1L-6 in severe SIRS/sepsis remains

unknown. The first line of evidence suggesting that IL-6 is involved in the pathogenesis

31



of the severity of acute pancreatitis was revealed by Suzuki et al, when IL-6 transgenic
mice were used (112). They showed that over-expression of IL-6 was associated with an
increased susceptibility to severe acute pancreatitis, whereas a protective effect was

noted with the administration of monoclonal anti-I1L6 antibody (112, 113).

Chemokines

Chemokines are a family of small (8 — 10kD) secreted cytokines that function as a
chemoattractant, and are involved in leukocyte trafficking, recruiting and recirculation.
They can be constitutionally expressed or induced. The secreted groups are homeostatic
chemokines and are involved with basal leukocyte trafficking and the organization of
lymphoid tissue. Examples included Stromal cell-derived factor (SDF)-1 and
macrophage-derived chemokine (MDC). The other more common group are the induced
chemokines, which are upregulated in response to various inflammatory stimuli,
including all the inflammatory mediators discussed in this section. They can be further
subcategorised into two major groups based on the orientation of the first two cysteine
residues — C-C chemokines and C-x-C chemokines. C-C chemokines are believed to act
mainly on the monocytes, whereas the C-x-C chemokines are believed to act on the

neutrophils.

Interleukin-8 (IL-8) is a type of C-x-C chemokine and is a potent neutrophil

chemoattractant (114, 115). The level of [L.-8 had been shown to be associated with the
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severity of acute pancreatitis. An increased level coincided with an upregulated plasma
neutrophil elastase concentration (116). When anti-IL8 antibody was infused 30
minutes prior induction of acute pancreatitis, the severity of lung injury was reduced
(117). A similar pulmonary protective effect was also identified when the gene of MIP-
lo/ RANTES receptor, CCR1, was knocked out in a mouse caerulein model (118). Little
protection against local pancreatic damage was revealed in this study. The plasma level
of IL8 has also been shown to be closely related to the response of IL-6 and the clinical
severity of acute pancreatitis in a human study (119). There is clearly a role for
chemokines in the pathogenesis of acute pancreatitis. This is probably more so in the
association with the pancreatitis-associated lung injury. which is discussed in section

1.4.3.

Other mediators

Apart from those mediators described above, platelet activating factor (PAF) was
another non-cytokine mediator which has been extensively investigated. PAF is a lipid
mediator that binds to the surface receptors of platelets, leukocytes and enothelial cells.
It has been recognized as an important inflammatory mediator for SIRS/sepsis since its
discovery in the 1970s (120). Its association with acute pancreatitis was revealed in
studies using animal pancreatitis models (121-123). Initial research in these animal
pancreatitis models suggested a histological improvement in pancreatic inflammation

and an overall reduction of systemic inflammation after the inhibition of PAF (124-126).
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A clinical trial was carried out in the hope that the antagonizing of PAF would provide
clinical improvement and an overall survival benefit in human acute pancreatitis.
However, the initial success of lexipafant (PAF antagonist) in animal models of acute
pancreatitis and the Phase II clinical trial (127, 128) could not be reproduced in the
Phase [II human trial (129). This phase III trial has two treatment arms — the lexipafant
and the placebo groups. The study hypothesized that lexipafant could have dampened
the development of multi-organ dysfunctions in severe acute pancreatitis. However, this
primary hypothesis was invalidated due to the unexpected high number of patients with
sepsis at the entry of the study (Lexipanfant vs. Placebo group: 13/138 vs. 14/148;
p=0.02). Although there was a significant reduction in interleukin-8 among the patients
of the lexipafant group, lexipafant did not alter the development of new organ failure

throughout the study.

These were disappointing findings. Nevertheless, it highlighted the complex
physiological response of acute pancreatitis in human beings. PAF therefore represents
one of the many responsible mediators during the whole inflammatory response. It is
almost certain that other important, but yet unknown, mediators are contributing to this

complicated scenario when PAF is antagonized during acute pancreatitis.
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1.4.2.5 Anti-inflammatory response

Due to the belief of an excessive pro-inflammatory response during SIRS/ sepsis before
the 90s, two double-blinded human trials using monoclonal antibodies targeted directly
against the pro-inflammatory mediators were studied in the context of sepsis (130, 131).
No successful improvement in mortality was reported in any of these attempts. In terms
of severe acute pancreatitis, it was generally believed that the mortality in acute
pancreatitis was due to the excessive pro-inflammatory response before the 1990s. The
role of “compensatory anti-inflammatory response syndrome” (CARS) was then
suggested by Bone et al in the mid-to-late 1990s, when more investigation was
attempted to study the dynamic balance between pro- and anti- inflammatory responses

in SIRS and acute pancreatitis (132).

Many anti-inflammatory mediators, such as IL-4, -10, -11, -13, complement 5a (C5a),
transforming growth factor (TGF)-p, colony-stimulating factor (CSF), surface receptors
to TNF, and IL-1 receptor antagonist have been studied widely. Of these, IL-10 and C5a
are the most commonly investigated anti-inflammatory mediators in acute pancreatitis.

Because of this, only IL-10 and C5a are discussed in the following sections.

Interleukin-10

IL-10 is produced and released by both monocytes and T-helper cells. It was originally

known as cytokine synthesis inhibiting factor (CSIF). It primarily acts as an anti-
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inflammatory agent, which modulates the expression of pro-inflammatory cytokines
(133). The production of IL-10 stimulates the production of IL-1 receptor antagonist and
the release of soluble TNF receptor. The combined effects neutralize the pro-
inflammatory effects of IL-1, TNF-a, IL-8 and MCP-1 (134). Using a bile-pancreatic
duct ligated pancreatitis model, Ramudo et al discovered the failure of [L-10 production
in injured acinar cells at 3 hours post-induction as compared to the control group. When
the acinar cells were treated with N-acetylecysteine to reduce oxidative damage during
pancreatic inflammation, acinar cells were shown to regain the ability for IL-10
production (96). Similarly, when IL-10 was measured within 24 hours after the onset of
acute pancreatitis in human studies, the serum level was found to be significantly higher
in the mild acute pancreatitis group in comparison to the severe group (86). The
production of an anti-inflammatory response at an early onset of acute pancreatitis might

therefore correlate with outcome.

In addition to local anti-inflammatory effect, IL-10 has been shown to inhibit the
production of pro-inflammatory mediators by alveolar macrophages in patients with
ARDS (135). A clinical study using broncho-alveolar lavage fluid from patients with
ARDS also demonstrated a reduction of IL-10 level (136). These studies confirmed the

role of IL-10 in the local and remote anti-inflammatory response during severe SIRS.
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Complement 5a (C5a)

CS5a is part of the complement system, which is an innate immune system
‘complementing’ the ability of antibodies and phagocytes to tackle pathogens. C5a is a
cleaved fragment of complement factor C5, and is also a powerful anaphylatoxin. It is an
effective chemoattractant for leukocytes, especially neutrophils. It is therefore believed
to play a role of pro-inflammatory mediator. Studies of severe sepsis using a caecal-
ligation and puncture (CLP) model revealed a significant increase in survival of the
treatment group after blockade of either C5a or the C5a receptor (137, 138). However, a
similar response was not observed in acute pancreatitis. The severity of acute
pancreatitis was greater in mice lacking the C5a receptor genes than the wild type (139).
In addition, pancreatitis-associated lung injury was significantly worse among the
knockout group. Apart from the traditional concept that C5a has a pro-inflammatory
effect, Bhatia et al suggested that C5a could potentially exert on both anti-inflammatory
response as well as pro-inflammatory response during acute pancreatitis. Further
research has also led to the discoveries that C5a responses differ in various cell types
under different circumstances. For instance, [L-6 mRNA expression was significantly
suppressed after the exposure to CSa in the HUVEC cell line (140); C5a suppresses
lipopolysaccharide-induced TNF-a production in neutrophils, whereas an increase in
TNF-u production was found to have a synergistic effect in monocytes or macrophages
(141, 142). The final verdict for C5a in relation to its “pro-* and “anti-** inflammatory

responses during acute pancreatitis is still unclear.
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1.4.3 REMOTE ORGAN INJURY AND IMMUNE RESPONSE

Once intracellular processes within the acinar cells are triggered leading to acute
pancreatitis, the inflammatory changes will manifest clinically as systemic inflammatory
response syndrome (SIRS), as described above, with or without the involvement of other
remote organs. Among all remote organ injuries, acute pulmonary injury is the most
frequent and potentially the most serious complication of severe acute pancreatitis (143).
The lungs have been indicated as the primary organ system responsible for the mortality
in acute pancreatitis, and a potential surrogate marker for remote organ injuries during
acute pancreatitis (144). It is therefore important to discuss remote organ insults during
acute pancreatitis in the context of acute lung injury (ALI) or acute respiratory distress

syndrome (ARDS).

The degree of pulmonary complications of acute pancreatitis varies from hypoxaemia,
pleural effusion and atelectasis to severe pulmonary insults in the form of ALI or ARDS.
ARDS can occur in 15-20% of patients who are diagnosed with acute pancreatitis (145).
When pulmonary infiltrates and severe hypoxaemia occur with severe acute pancreatitis,

it has been shown that mortality rate can reach above 50% (146).

1.4.3.1 Pathophysiology of ALI or ARDS in acute pancreatitis
The exact mechanism leading to ARDS in acute pancreatitis is not well understood.

Studies have suggested that the development of ARDS is multi-factorial, with the
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involvement of multiple mediators, some of which were discussed in sections 1.4.2.4
and 1.4.2.5 above. The factors that have been suggested in leading to ALI are pancreatic
enzymes, infiltration and interaction between leukocyte, pneumocytes and alveolar

macrophages and inflammatory mediators.

Alveolar—capillary membrane

In clinical practice, pulmonary oedema is identified on plain chest film in approximately
10% of acute pancreatitis patients. Within hours to days, progressive hypoxaemia
develops in one-third of patients with pulmonary oedema (147). De Troyer et al, looking
at the pulmonary diffusing capacity for carbon monoxide, discovered a significant
reduction in the acute pancreatitis group (78% of the predicted value) (148). When lung
vascular permeability was studied in acute pancreatitis within 48 hours after hospital
admission, the mortality group had a significant increase in vascular permeability
compared with the survival group (149). These findings correlate well with the
histopathological findings of intra-alveolar oedema, distal airway contraction,
endothelial cellular damage, and leukocyte sequestration within the lung parenchyma
during experimental acute pancreatitis (150). These data suggested that inflammation at
the alveolar-capillary level plays a role in the development of ALI during acute
pancreatitis. However, the key question remains regarding how does inflammation from
the pancreas lead to an acute inflammatory response in the lung at the alveolar-capillary

level?
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Neutrophil infiltration into pulmonary tissue, its activation and effect

Protein signalling or cell-to-cell interaction is a logical theory to explain the propagation
of inflammation to a remote organ. One of the key factors in cell-to-cell interaction is
the involvement of neutrophils during acute pancreatitis, both locally and remotely.
Using an intra-ductal taurocholate pancreatitis model with and without portocaval
shunting, Closa et al demonstrated that there was an increased production of TNF-a, NO
and MIP-2 (chemokine) by alveolar macrophages using ex vivo culture in the non-
shunting group, suggesting an activation of alveolar macrophages (151). Supernatants of
these macrophages exhibited a chemotactic activity for neutrophils when instilled into
the lungs of untreated animals. All these effects were abolished when portocaval
shunting was carried out before induction of pancreatitis. Not only did Closa et al
confirm that the activation of alveolar macrophages played an important role in the
neutrophil’s chemotactic attraction to the lung alveoli, they also suggested that the liver
played a vital role in the activation of the alveolar macrophages. This role of liver in
acute pancreatitis will be discussed further in section 1.5. Apart from TNF-a mentioned
above, macrophage inflammatory protein-2 (MIP-2) and interleukin-8 (IL-8), another
chemokine, have been shown to be upregulated within the lung parenchyma during
surgical trauma or in patients with ARDS (152, 153). All these cytokines and
chemokines act as potent chemoattractants between neutrophils and alveoli, causing the

microscopic changes of leukocyte sequestration.
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The other important immuno-modulator which has been shown to enhance the
recruitment of neutrophils in the lung is ICAM-1 (CD54). Because of the augmentation
of the pro-inflammatory response during acute pancreatitis, large amounts of
inflammatory mediators were released into the systemic circulation, and subsequently
distributed within the lung parenchyma. Frossard et al have shown that ICAM-1 was
significantly upregulated within the lung parenchyma during acute pancreatitis (94). As
mentioned in section 1.4.2.2 regarding the relationship of the upregulation of ICAM-1
and neutrophil recruitment among pancreatic acinar cells, significant reduction in lung
injury and the severity of acute pancreatitis was observed when either neutrophils were
depleted or ICAM-1 knockout mice were used for the induction of acute pancreatitis
(94, 154). However, the combined effect of both neutrophil depletion and ICAM-1
deficiency did not have synergistic effect in the degree of local or remote organ
inflammation during acute pancreatitis. This suggests that other mechanisms apart from

neutrophil infiltration play a role in the severity of the disease process.

ICAM-1 (CD54) expression on the surface of endothelial lining interacts with
macrophage-1 antigen (MAC-1) on the neutrophil surface. MAC-1 is a complement
receptor consisting of 2 integrins, CD11b and CD18. This forms an important first step
in the sequential events involving leukocyte migration during acute inflammation. A
similar upregulation of MAC-1 on neutrophils was illustrated in in vivo experiment by
incubating normal neutrophils with serum or ascitic fluid from acute pancreatic rodents.

With the activation of neutrophil-ligand interaction with ICAM-1, conformational
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changes of the actin cytoskeleton of neutrophils further enhanced the entrapment of
neutrophils within the alveolar-endothelial capillary bed leading to pulmonary

congestion (155), which is an early histological sign of lung injury.

As TNF-a is one of the first cytokines upregulated during acute pancreatitis (section
1.4.2.4), this circulating cytokine stimulates alveolar macrophages to produce more pro-
inflammatory cytokines, as described earlier, via a p38 mitogen-activated protein
(MAP)-kinase activated pathway (156). The production of local TNF-o. will increase the
phosphorylation of IkB to allow translocation of transcriptional factor NF«B to nuclei
for binding to the promoter gene of ICAM-1. This positive feedback loop will augment
the production of ICAM-1, and enhance further recruitment and entrapment of

neutrophils to this remote site.

With the accumulation of activated neutrophils through the mechanisms discussed
above, a perfect environment for the release of reactive oxygen species (ROS) and
proteolytic enzymes, such as elastase, is provided. The release of the ROS damages the
underlying lung parenchymal tissue. Not only does the release of ROS and enzymes
cause damage to the pulmonary tissue, large amounts of blood coagulation-promoting
substances are released by pulmonary epithelial and endothelial cells (157). All these
responses promote an increase in pulmonary vascular resistance and permeability as well

as pulmonary oedema, and finally cause full-blown symptoms and signs of ALI (158).
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1.4.3.2 Role of alveolar macrophages in bacterial clearance in SIRS / Acute
Pancreatitis
Being a resident macrophage, the alveolar macrophage is situated at the air—tissue
interface within the alveoli. The alveolar macrophage strategically behaves very
differently from other resident macrophages in that it encounters the micro-organisms
directly from the outside world and functions as an important first-line innate immune
defence mechanism against these micro-organisms. As a macrophage, one of the key
features for this defence mechanism is its phagocytic capacity. Apart from phagocytosis,
the alveolar macrophage also plays a vital part in immuno-regulatory functions upon
appropriate stimulation. It exerts these functions mainly by the secretion of biologically
active products, such as the cytokines, interleukins and complements described earlier.
Its functions as an immuno-modulator have been extensively investigated in various

models of lung disease (159).

Most of the evidence regarding the immune function of alveolar macrophages came
from those studies of severe sepsis using a rodent model, namely caecal ligation and
puncture (CLP). In an earlier study of bacterial clearance by alveolar macrophages in
severe pneumonia, Broug-Holub et al discovered that alveolar macrophage phagocytosis
was defective in Klebsiella pneumonia (160). Similar reduction of alveolar macrophage
phagocytic capacity was demonstrated in studies using the CLP sepsis model (161, 162).
Steinhauser et al further proposed that it was the anti-inflammatory cytokine, IL-10,
which was responsible for the reduction of bacterial clearance by the alveolar

macrophages (161). They induced Pseudomonas pneumonia 24 hours post-induction of
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sepsis using the CLP sepsis model. To test their hypothesis, an anti-IL-10 serum was
administered via the intra-tracheal route to the CLP group prior to the induction of
Pseudomonas pneumonia. They discovered that the bacterial clearance ability was partly
reversed after IL-10 was neutralized. These findings were corroborated by Reddy et al
using the same sepsis model (163). Not only did Reddy et al suggest that [L-10 played a
part in the defect of bacterial clearance by alveolar macrophages, they also revealed a
significant reduction of pro-inflammatory cytokine secretion by the alveolar
macrophages during sepsis in ex vivo experiments (163). Based on this ex vivo finding,
the group hypothesized that pro-inflammatory cytokine secretion by alveolar
macrophages was impaired in vivo during sepsis. However, a recent in vivo study by
Traeger et al, using a similar sepsis model, suggested a different result (162): there was
no significant difference in cytokine concentration within the lung parenchyma with or
without depletion of alveolar macrophages during sepsis. This experiment concluded
that the cytokine production within the lung parenchyma is independent of the presence
of alveolar macrophages. This is therefore a direct contradiction to the ex vivo findings
of Reddy et al. Given the influx of leukocytes in the lung parenchyma during sepsis, it is
logical to extrapolate that the overall net production of pro-inflammatory cytokines by
the overall leukocyte infiltration might have balanced-out the reduction of cytokine
production by the alveolar macrophages alone (164). Unfortunately, Traeger et al did not
specifically measure the cytokine secretion by the infiltrating leukocytes in their studies.
Using a haemorrhagic transgenic mouse model, deficient in macrophage colony-
stimulating factor-1, Lomas-Neira et al supported the fact that the net pro-inflammatory

cytokine production was independent of the presence of alveolar macrophages (165).
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Although no difference in terms of pro-inflammatory cytokine production was
demonstrated with or without alveolar macrophage depletion, Traeger et al highlighted
the role of alveolar macrophages for bacterial clearance within the lung parenchyma
(162). They demonstrated a higher bacterial load within the lung parenchyma in the
group where alveolar macrophages were depleted prior to the induction of sepsis. The
total numbers of alveolar macrophages are therefore important to the eradication of
inhaled pathogens. Another research group has also identified a significant increase in
the apoptosis of alveolar macrophage during sepsis (166). The combination of the
reduction of pro-inflammatory cytokines within the lung parenchyma and the reduction
of alveolar macrophages through apoptosis might further explain the deficiency of its

total bacterial clearance during SIRS.

With some of the basic similarities between SIRS/sepsis and severe acute pancreatitis, it
is not unreasonable to extrapolate the findings discussed above from sepsis to severe
acute pancreatitis, During this extrapolation of experimental findings, it is important to
bear in mind that the current understanding of the function of alveolar macrophages in
severe acute pancreatitis is limited and more investigations are needed to allow a full

exploration of the role of alveolar macrophages during the disease process.
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1.4.3.3 Role of peripheral blood phagocytes in SIRS / acute pancreatitis

The peripheral blood leukocyte plays an important role in bacterial clearance during
bacteraemia. As mentioned in section 1.4.2.1, the first-hit and second-hit theory was
recognized in observational clinical studies during severe SIRS/sepsis/acute pancreatitis
— early multiple organ dysfunction and late nosocomial infection. Both human and
animal studies demonstrated a decrease of peripheral blood neutrophil phagocytosis
during severe sepsis (167). This late nosocomial infection could therefore be secondary

to the deficiency of bacterial clearance during these acute events.

Holzer et al compared the phagocytic function of human peripheral blood neutrophils
and the intra-peritoneal neutrophils in patients with peritonitis and those after elective
abdominal surgery (168). They discovered a significant reduction of bacterial
phagocytosis by the peripheral blood neutrophils at day 3 in the septic group. Similar
findings were found by Simms et al using a swine CLP sepsis model (167). Simms et al
compared the neutrophil biological function of the CLP septic group with those of sham
laparotomy group. They discovered a significantly reduced neutrophil phagocytic
capacity in the treated group versus the untreated group. However, there was a
difference in approach between these two studies. The obvious difference was the
subject of interests: Simms et al were based on an animal model, whereas Holzer et al
measured the function in human subjects. Simms et al emphasized more on the

investigation of neutrophil phagocytic capacity after the source of sepsis had been

46



eradicated, whereas Holzer et al measured the phagocytic capacity when there was

ongoing sepsis.

Similar research was also studied in human acute pancreatitis by Liras et al (169), who
compared peripheral leukocyte phagocytosis in patients with mild or severe acute
pancreatitis. The study did not include any normal subjects as controls. A direct
comparison of the biochemical and physiological findings of patients with acute
pancreatitis and normal human subjects was therefore not feasible. Nevertheless, they
discovered a significant reduction of neutrophil and monocyte phagocytosis among the
severe acute pancreatitis (versus the mild pancreatic) group before day 3 from the onset
of the disease; the leukocyte phagocytosis ability was comparable in the two studied

groups by day 5.

Thus far, there is evidence from both human and animal studies that peripheral
leukocyte phagocytosis is compromised at the early stage of SIRS/sepsis/acute
pancreatitis. However, it is unknown regarding how leukocyte phagocytosis behaviour
would alter during the whole disease process. It is thus uncertain whether leukocyte

apoptosis would have any association with its corresponding phagocytosis behaviour.
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1.43.4 Opsonin receptor expression and leukocyte phagocytosis during acute
pancreatitis
Opsonization of pathogens by either complements or immunoglobulin facilitates
ingestion of bacteria by phagocytes. Interaction between these immuno-complexes with
phagocytes activates the circulating leukocytes, e.g. neutrophils. Surface opsonin
receptors, such as CD11b/CD18, CD32 and CD16, play vital roles in the recruitment and
activation of phagocytes. However, excessive activation of neutrophils or complements
leads to remote organ failures via the neutrophil-endothelial cell adhesion cascade

(170).

CDI11b, a complement receptor 3, is involved in iC3b binding, phagocytosis and reactive
oxygen production (171). Its neutrophil—epithelial binding ability provides a vital role in
neutrophil transmigration (172). Neutrophil expression of CDI1b is upregulated during
acute pancreatitis (173-175), and is associated with an increased influx of neutrophils
within the lung parenchyma during acute pancreatitis (176, 177). This activation of
CDI11b could therefore be one of the mechanisms resulting in remote lung injury, as

discussed in section 1.4.3.1.

To further illustrate that neutrophil activation is important to the severity of acute
pancreatitis, Hac et al demonstrated an attenuation of pancreatic inflammatory process

when CDI11b was selectively blocked by a monoclonal antibody (178, 179).
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Interestingly, CDI11b expression of peritoneal neutrophils was found to be
downregulated in the severe versus mild acute pancreatitis, despite an upregulation of its
expression in peripheral blood neutrophils among the severe group (180). Authors
further speculated that these “underactive™ peritoneal neutrophils around the inflamed
pancreas might contribute to local infectious complications, whereas the activation of
peripheral neutrophils via CD11b might contribute to remote organ injuries. The role of
CDI11b is certainly important but remains largely unclear. In addition to investigating
CD11b, Hatano et al also looked at the expression of CD32 and CDI16 in peripheral
blood neutrophils (180). Having previously been shown to play a role in activating
phagocytosis and bacterial clearance, CD16 and CD32, which are immunoglobulin G Fc
receptors I and I1I respectively, have been found to have a similar response as CD11b
during acute pancreatitis (181, 182). However, their upregulation response is less

marked than that of CD11b.

With the activation of peripheral leukocytes during acute pancreatitis, it is unclear
whether this activation has any positive impact on improving peripheral leukocyte
phagocytic capacity. Research on this topic is limited. However, most findings suggest a
defective leukocyte phagocytosis, despite an upregulation of opsonin surface receptors

during either sepsis or acute pancreatitis (168, 169).
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1.4.3.5 Peripheral leukocyte apoptosis/necrosis during SIRS / acute pancreatitis

Apoptosis, a programmed cell death, is an essential homeostatic process in which cells
are removed in a controlled manner to minimize damage to the surrounding
environment. This process is triggered via either an intrinsic or extrinsic pathway.
Detailed discussion of these pathways is beyond the scope of this chapter. Briefly, the
intrinsic pathway is activated by mitochondrial injury and is mediated by caspase 9
(183-185): whereas the extrinsic pathway is activated via surface receptors to inducing-
factors (e.g. TNF-a, Fas, etc.) and is mediated by caspase 8 (183-185). Both caspase 8
and 9 will ultimately activate caspase 3, by which the execution phase of apoptosis is

undertaken (i.e. a step at which there would be no return for the apoptotic process).

Throughout the last decade, there has been a substantial increase of research on
apoptosis. It is becoming clear that apoptosis plays vital roles in inflammatory processes.
Some of the roles of apoptosis in the inflammatory process are discussed in section
1.4.4. Lymphoid and, to a slightly lesser extent, myeloid immune cell types have been
the focus of apoptotic study during sepsis, mainly because their apoptotic processes are
easier to detect than non-lymphoid or non-immune tissues (186). Again, most of this
work was done utilising septic animal models, rather than specifically looking at acute
pancreatitis. Since the report by Nishikawa et al that pancreatitis-associated ascitic fluid
induces apoptosis in other cell types, there has been increasing interest in studying

acinar-cell apoptosis in relation to the severity of acute pancreatitis (187-189).
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Nearly all studies of peripheral blood leukocyte apoptosis during acute pancreatitis
revealed a delayed neutrophil or lymphocyte apoptosis during the disease process. As
neutrophil involvement has been shown to directly correspond to the severity of the
acute pancreatitis (99, 179, 190-194), the delay in leukocyte apoptosis has been

suggested to be the cause of the increased neutrophil involvement.

Lymphocyte apoptosis in SIRS / acute pancreatitis

The first evidence that lymphocytes played a role in acute pancreatitis was back in the
1980s, when T-cell lymphocytes were found in significantly reduced numbers during
acute pancreatitis (195, 196). There is increasing evidence suggesting that sepsis is
associated with a reduction in the total lymphocyte counts, possibly through apoptosis.
One of the important evidence came from Hotchkiss et al (197, 198), who discovered
that mortality increased significantly when sepsis secondary to caecal ligation and
perforation was induced in lymphocyte-deficient mice (198). At the same time, they also
demonstrated that the increase in survival is associated with a reduction of lymphocyte
apoptosis mediated either by over-expression of Bcl-2 (antiapoptotic mitochrondrial
protein) in transgenic model or by downstream caspase inhibition (197). The absolute
lymphocyte count was also found to be reduced in subjects with severe acute pancreatitis
as compared to those with mild disease or normal subjects in both humans and animal
models. Takeyama et al demonstrated that this reduction was due to lymphocyte

apoptosis (199). Another, similar study by Salomone et al also suggested that there is
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lymphocyte apoptosis throughout acute pancreatitis. However, lymphocyte apoptosis
was significantly dampened among the severe group versus the mild/control groups
(200). This is in contradiction to the results obtained by Takeyama et al and similar

studies in sepsis models.

Lymphocyte apoptosis is not only confined to peripheral blood during sepsis. Splenic
lymphocyte apoptosis was identified in septic mice, which was shown to be associated
with mortality (201, 202). A similar phenomenon of splenic lymphocyte apoptosis did
not occur in a rodent pancreatitis model (203). However, functional alterations of
splenocytes were demonstrated by the same research group (204). Ueda et al
demonstrated a significant reduction of cytokine secretion (IL-2, interferon-y, and 1L.-10)
by splenocytes in severe acute pancreatitis. They further speculated that this alteration of
splenocyte function could contribute to the subsequent septic complications of acute

pancreatitis.

Interferon-y (IFN-y) is a cytokine that is critical for innate and adaptive immunity
against viral and intracellular bacterial infections and for tumour control. IFN-y is
predominatedly produced by CD4 and CD8 cytotoxic T-helper cells. The importance of
this cytokine in the immune response is secondary to its immunostimulatory and
immunomodulatory effects. IFN-y exerts these effects through its potent macrophage

activation, and the induction of T-helper type 1 (Th1) response. Using a CLP sepsis
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model, Hotchkiss et al adoptively transfer either apoptotic (irradiated) or necrotic (freeze
thaw) splenocyte to C57BL6/J mice. They demonstrated a survival benefit when there
was a transfer of necrotic splenocyte versus apoptotic splenocyte. This benefit was
reversed when IFN-y was blocked in a transgenic model or by anti-IFN-y antibody
(205). This suggested that the survival benefit could be due to the effect of IFN-y.
Identifying this role of IFN-y is particularly interesting because of its potential role as a

therapeutic target.

Overall, there is a plausible role of lymphocyte apoptosis in association with a more
severe form of acute pancreatitis. Similarities of lymphocyte apoptosis have also been
demonstrated between SIRS/sepsis and acute pancreatitis. Despite the demonstration of
a trend that there is a survival benefit to those with acute pancreatitis to be gained by
reversing lymphocyte apoptosis, research regarding how lymphocyte apoptosis might

alter outcome remains scarce.

Neutrophil apoptosis in SIRS / acute pancreatitis

Neutrophils possess potent oxidative and proteolytic potential, which is usually the first
line of defence against invading pathogens. With it contributing significantly to remote
organ dysfunctions (section 1.4.3.3), it is crucial to understand the mechanisms through
which neutrophil activation can be reduced to alter its damaging effect, but to retain its
beneficial quality.
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In contrast to the biochemical response of lymphoid cells, spontaneous neutrophil
apoptosis was delayed during SIRS/sepsis (206, 207). Fialkow et al proposed using the
delay of neutrophil apoptosis as a biological marker for the severity of the sepsis (208).
The exact mechanism of neutrophil apoptosis in sepsis is complex and not completely
understood. It was thought to be due to the interaction of various pro-inflammatory
mediators such as TNF-o, IFN-y, granulocyte colony-stimulating factor (G-CSF),
granulocyte-macrophage colony-stimulating factor (GM-CSF) and 1L-2 (209-213). In
normal circumstances, these mediators were known to induce apoptosis instead of
delaying the process (214). Interestingly, when GM-CSF and IL.-10 were antagonized by
their corresponding monoclonal antibodies, the initial delay of neutrophil apoptosis
secondary to SIRS response was restored (215, 216). Cox et al, using peripheral blood
neutrophils with broncho-epithelial cell-derived conditioned media, also demonstrated
similar findings (211). Fanning et al further discovered that neutralization of GM-CSF
and IL-10 in plasma of patients with SIRS was associated with a reduction of reactive
oxygen species production (216). To complicate matters, van den Berg et al
demonstrated that this delay in neutrophil apoptosis by TNF-a is concentration-
dependent (217). They discovered that neutrophils underwent apoptosis when TNF-a

concentration was high enough to produce a respiratory burst.

A similar finding of delaying neutrophil apoptosis has also been noted within 24 hours

from the onset of acute pancreatitis (218, 219). O'Neill et al revealed a resistance in FAS
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antibody-induced neutrophil apoptosis during the disease process (218). A decrease of
pro-caspase 3 within the cytoplasm during acute pancreatitis was also reported,
suggesting a possible increased conversion of pro-caspase 3 to activated-caspase 3.
Since the activation of caspase 3 represents an inevitable process for apoptosis, the
increased conversion of pro-caspase 3 should lead to an increase of neutrophil apoptosis.
This logical extrapolation contradicts the findings of reduction in neutrophil apoptosis in
the study. Unfortunately, the authors did not quantify the activated caspase 3 within the
neutrophil cytoplasm in their study. Further studies would therefore be required to

determine the significance of reduced pro-caspase 3 in apoptosis-resistant neutrophils.

More recently, Chen et al discovered that melatonin, a potent anti-inflammatory agent,
could reduce the activation of neutrophils via CDI18, as well as partially restore the
characteristic of spontaneous neutrophil apoptosis during both moderate and severe
acute pancreatitis (219). Although there was some restoration of spontaneous neutrophil
apoptosis, melatonin did not reverse the delay of neutrophil apoptosis in the pancreatic
groups to the level of normal controls. Whatever the mechanism may be that melatonin
exerts on neutrophils, melatonin would not be solely responsible for the delay of

neutrophil apoptosis during acute pancreatitis.

All investigations of neutrophil apoptosis focused on the early stage of acute

pancreatitis. Limited knowledge is available in the literature regarding the dynamic
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mechanism of neutrophil apoptosis subsequent to the initial pancreatic insults. The
understanding of how neutrophils behave in the middle or late stages of the disease

process could provide useful information regarding how acute pancreatitis resolves.
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1.4.4 RESOLUTION PHASE OF ACUTE PANCREATITIS

Acute pancreatitis is an acute inflammatory process. Resolution of acute pancreatitis is
an important phase of the disease. As mentioned in previous sections, most of the
therapeutic intents and investigations of acute pancreatitis had been aiming at
counteracting the acute response during the initiation and propagation phase of the
disease (sections 1.4.1 and 1.1.1). In comparison, there has been little investigation in

this resolution phase of the disease process.

Over the last decades, significant progress has been made in the understanding of how
acute inflammation resolves. One of the key factors for this evolution is through the
increasing knowledge of apoptosis, which has been touched on in section 1.4.3.5. There
is now evidence of pancreatic acinar-cell apoptosis during acute pancreatitis. Further
studies looking at the severity of acute pancreatitis have suggested that the severe form
of the disease process is associated with necrosis, whereas the mild form is associated
with apoptotic cell death (220, 221). With these observations, there have been some
changes in the research direction of acute pancreatitis to investigate the apoptosis of the
acinar cells during the inflammatory process. However, the investigation of

leukocyte/phagocyte apoptosis during acute pancreatitis remains limited.

Phagocytes, such as neutrophils, monocytes and macrophages, have been shown to be

heavily involved during acute inflammation. One of their main roles is to eliminate
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intruders and cell debris. However, the by-product of all their involvements is excessive
pro-inflammatory response, as explained in previous sections. To safely remove all these
“professional™ phagocytes once they have served their purpose of eliminating intruders,
researchers have identified a tight regulatory process between neutrophils, monocytes
and macrophages towards the end of an acute inflammation in order to exert a “brake”
on the inflammatory process. In broad terms, this “braking™ process involves a) limiting
the recruitment of neutrophils; b) further signalling to dampen the activation of
neutrophils; ¢) a neutrophil self-elimination process through apoptosis; and finally d) the
clearance of neutrophil apoptotic bodies through macrophage phagocytosis to restore
haemostasis. These processes are complex. It is therefore beyond the scope of this thesis
to discuss all the stages involved in the resolution of acute inflammation. Neutrophil

apoptosis in acute pancreatitis / sepsis has also been discussed in section 1.4.3.5.

1.4.4.1 Macrophage restoration of homeostasis

Once a neutrophil undergoes apoptosis, it will express “eat me” signals at the cell
surface to allow phagocyte recognition. One of these cell surface signals is
phosphatidylserine, which is one of the best-studied markers of apoptosis (222). In
addition to the clearance of microbial intruders, macrophages play a vital role in the
uptake of apoptotic neutrophils. Macrophages will in turn secrete mediators to suppress
local inflammatory responses. Macrophage phagocytosis of apoptotic neutrophils has

been shown to increase the production of anti-inflammatory mediators, such as TGF-f,
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but inhibit the production of pro-inflammatory cytokines (such as TNF-a, IL-1p, GM-

CSF etc.) (223, 224).

Although the clearance of apoptotic neutrophils by macrophages allows a localized
suppression of the pro-inflammatory response and therefore protects the surrounding
healthy tissues, these secreted anti-inflammatory mediators can potentially dampen the
anti-microbial mechanisms. Recent studies by Medeiros et al demonstrated an
impairment of alveolar macrophage bacterial phagocytosis after instillation of apoptotic
cells into the lung parenchyma (225). This phenomenon suggests that the timing of the
initiation of the repair process can potentially dictate the likelihood of bacterial infection

during resolution of acute inflammation, and therefore the outcome.

In summary, the recruitment and clearance of neutrophils plays a central role in both
triggering and resolution of acute inflammation in general. The interactions among
phagocytes and the subsequent phagocytosis of apoptotic cells by phagocytes creating an
anti-inflammatory condition are crucial for the success of the resolution of acute
inflammation. It is therefore important to understand the timing of the phagocytosis of
apoptotic bodies that will allow a successful resolution of acute inflammation, but not to
create an anti-inflammatory environment for microbial infection. Further, it is important
to demonstrate that the above phagocytic response also occurs during an episode of

acute pancreatitis.
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1.5 THE LIVER AND ACUTE PANCREATITIS
1.5.1 ROLE OF THE LIVER DURING ACUTE PANCREATITIS

When it comes to dealing with the remote organ dysfunction during severe acute
pancreatitis, most investigators focus on the acute pulmonary response as the surrogate
marker. Given the hepatic Kupffer cells host the major source of inflammatory cytokines
in the liver (226, 227), and that all the blood supply from the gastrointestinal tract passes
through the hepato-portal system before returning to the systemic circulation, it would
be logical to postulate the theory that the liver functions as a source organ to augment
the pro-inflammatory response, and therefore contribute to the remote organ dysfunction

during an episode of acute pancreatitis (151, 228-230).

This theory was supported by Closa et al when they demonstrated a reduction in lung
injury within a hepato-cava shunting group compared to a control group in an intra-
ductal sodium taurocholate infusion pancreatitis model (151). This role of the liver in
remote organ injury was further illustrated when Kupffer cell function was blocked by
gadolinium chloride during acute pancreatitis (230, 231). When Gloor et al sampled
serum from the portal and hepatic veins and the systemic circulation; they discovered a
significant elevation of serum concentration of pro-inflammatory cytokines in the
hepatic vein as well as the systemic circulation in the acute pancreatitis group after
gadolinium chloride treatment. These findings suggested that the liver has a role in

altering the pro-inflammatory response during acute pancreatitis.
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To further establish whether the Kupffer cell was the only prime suspect in provoking
the pro-inflammatory response during acute pancreatitis, Pastor et al hypothesized that
the combination of neutrophil depletion and blockade of Kupffer cell activity would
reduce the remote organ injury (100). They compared the local and remote organ
inflammatory responses between the neutrophil-depleted group, the Kupffer cell
inactivation/gadolinium group, and the combined neutrophil-depleted/gadolinium group.
Although there was reduction of systemic IL-6 and IL-10 in the gadolinium group, lung
permeability and cytokine concentration were not significantly reduced compared with
the neutrophil-depleted group. They confirmed that activated neutrophils aggravate
organ injury in acute pancreatitis, whereas it was less obvious after the inactivation of

Kupffer cells.

1.5.2 HAEMOXYGENASE-1 AND ACUTE PANCREATITIS

In addition to inflammatory cytokine production, oxidative molecules, such as reactive
oxygen species (ROS), are produced by inflammatory cells during acute pancreatitis.
They react with the adjacent structures or cells causing damage at various levels. There
is evidence that ROS play a role in various inflammatory disease processes, including
acute pancreatitis (76, 232). The majority of these studies have investigated the
oxidative stress response within 24 hours from the induction of acute pancreatitis. The

nature of the oxidative stress response during later phases remains largely unknown.
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In order to counterbalance the oxidative damage from ROS, anti-oxidants are produced
and consumed by the surrounding tissues. Haemoxygenase (HO) is one of the most
highly conserved molecules across all forms of life. It is an anti-oxidant as well as one of
the heat shock proteins, HSP-32. There are three different isoforms of haemoxygenase.
HO-1 is an inducible isoform, whereas HO-2 is constitutively synthesized; and HO-3 is

only recently discovered.

The main role of HO is to degrade haem proteins. Apart from playing important
physiological functions such as oxygen transport, mitochondrial respiration and
signalling transduction (233), haem also exerts cytotoxic activity via the formation of
ROS and lipid peroxidation (234-236). HO degrades haem to form an equal molar
quantity of carbon monoxide (CO), iron and biliverdin, which is subsequently reduced to

bilirubin via biliverdin reductase.

HO-1 is located within the cytoplasm, and is inducible by more diverse stimuli than any
other enzyme described to date (237). Most of the inducers for the upregulation of HO-1
lead to oxidative stress. Among all three isoforms, HO-1 has been the most
characterized. Its role as an anti-oxidant during the inflammatory process has been
extensively studied. Its function to exert a cytoprotective effect is undisputable,

especially in solid organ transplantation (238-241) and cardiovascular research (242). In
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the ischaemic/reperfusion pancreatitis model, there was significant reduction of
microcirculation within the pancreas compared with the control group. By the use of
cobalt protoporphyrin to induce HO-1 prior to induction of ischaemia/reperfusion, the
functional capillary density of the pancreas was found to be comparable to the control;
whereas this protective effect was diminished when tin protoporphyrin, an HO-I
inhibitor, was used in conjunction with cobalt protoporphyrin (243). This suggested that
there is a protective role of HO-1 within the pancreas parenchyma during acute

pancreatitis.

However, the role of this molecule during acute pancreatitis has not been extensively
studied. Given that HO-1 has been demonstrated to play a significant role in cellular
protection against metabolic insults, it is therefore not unreasonable to investigate the
role of this molecule in acute pancreatitis (244-246). Although there is a close link
between the function of the liver and severe acute pancreatitis, the role of HO-I
regulation and its association with ROS production in the liver during the disease

process are unclear.
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2 AIMS AND HYPOTHESES

Most studies of acute pancreatitis to date have focused on the initial systemic and remote
inflammatory responses. Little is known about what happens during the resolution phase
of the disease. To study this resolution phase of acute pancreatitis, the first aim was to
establish a robust rodent pancreatitis model, which could provide adequate severity to
study the severe state of the disease, but not too severe as to cause mortality, so that the

resolution of acute pancreatitis could also be investigated.

Recent theories from sepsis studies suggested that there is a pro-inflammatory response
at the beginning and a subsequent anti-inflammatory response at a later stage. It has been
proposed that it is the uncontrolled pro-inflammatory response which leads to multi-
organ dysfunction; whereas the later anti-inflammatory response contributes to an
immuno-compromised state, and therefore increases the likelihood for nosocomial
infection. Although there are similarities between severe acute pancreatitis and sepsis in

[

observational studies, it is not clear regarding the balance of the “pro-* and “anti-*
inflammatory responses during severe acute pancreatitis. One of the aims was therefore

to investigate how these pro- and anti-inflammatory responses alter throughout an

episode of acute pancreatitis.

As the lung is an end-organ frequently involved during severe acute pancreatitis, the

investigation of the alveolar macrophages and lung immune response is therefore a
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logical and reasonable surrogate marker for the remote organ inflammatory response
throughout the disease process. The bacterial engulfment by phagocytes, cytokine
production and inflammatory cell apoptosis or necrosis were used to investigate the
dynamics of the pro- and anti-inflammatory responses throughout an episode of acute

pancreatitis.

Provided that there is a pro-inflammatory response at the early stage and anti-

inflammatory response at the later stage, it was therefore hypothesized that:

e Peripheral leukocytes survive longer and increase efficiency in bacterial engulfment
at the early stage of the disease secondary to a pro-inflammatory state; and
peripheral leukocytes undergo increased apoptosis/necrosis, and have a reduction in
bacterial clearance secondary to an anti-inflammatory state at the later stage of acute

pancreatitis;

e There is active alveolar macrophage phagocytosis at the early stage of acute
pancreatitis, whereas phagocytosis is dampened at the later stage of the disease

Process;

e Given that the above hypotheses are correct, lung and systemic immune function
correspond in a similar manner to each other during the whole episode of acute

pancreatitis.
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3 RODENT EXPERIMENTAL ACUTE PANCREATITIS
MODELS

3.1 INTRODUCTION

The complexity of the biological systems underpinning the immune system, along with
the heterogeneity of patients with acute pancreatitis, makes the elucidation of the
pathophysiological mechanisms difficult. It is also difficult to fully investigate the
pathophysiological process of acute pancreatitis in human subjects. Research using an
appropriate rodent model is essential to further enhance the knowledge of the

pathogenetic mechanisms in acute pancreatitis.

Two models of inducing acute pancreatitis, secretagogue- induced and arginine- induced
acute pancreatitis, were used in this thesis. The characteritistic of the two models were

briefly outlined in the following sections below.

o Secretagogue-induced acute pancreatitis model

Physiological concentrations of secretagogue trigger normal secretion from the pancreas.
Using excessive exogenous secretagogue, the theory was that secretagogue stimulates
high levels of digestive enzymes, resulting in acute pancreatitis. Caerulein is the most
commonly used cholecystokinin analogue to induce acute pancreatitis. Not only did

studies reveal comparable histological findings between caerulein-induced acute
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pancreatitis in rodents and humans (247), acute pancreatitis was also shown to be
induced effectively by caerulein in many animals including mice, rats, rabbits (123, 248)
and dogs (249). The most common way for caerulein to be used as an induction agent is
via serial intra-peritoneal injections. This relatively rapid, mildly invasive method with
its high repeatability and applicability makes caerulein one of the most frequently used

acute pancreatitis models in rodents.

Acute pancreatitis-associated lung injury in both mice and rats has frequently been
reported to occur in the caerulein model (174, 250-254). This model is therefore a good

model to use in the study of acute pancreatitis-associated lung injury.

o Arginine-induced acute pancreatitis model

The arginine-induced acute pancreatitis model was first introduced at the beginning of
the 1990s. It has not been widely used in pancreatitis research compared to the caerulein
model, and therefore arginine-induced acute pancreatitis is not as well characterized as
caerulein-induced acute pancreatitis. The arginine-induced model is a relatively less
invasive acute pancreatitis model compared to other models described in the literature
thus far. It relies on a single intra-peritoneal injection of arginine to induce acute
necrotizing pancreatitis. Intra-peritoneal injection of arginine has been shown to induce

acute necrotizing pancreatitis in rats (255-262), rabbits (263) and mice (264). The exact
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mechanism by which arginine induces acute pancreatitis remains unknown. Kishino et al

proposed that arginine inhibited protein synthesis leading to acute pancreatitis (265).

In addition to its minimally invasive induction property, the severity of acute pancreatitis
induced depends roughly on the dose of arginine injection and time of exposure. A mild
degree of acute pancreatitis can be induced by a low-dose arginine injection (approx.
250mg/100g) (266), whereas necrotizing acute pancreatitis can be induced with a single
high-dose arginine injection (400-500mg/100g) (255, 267). For the severe acute
pancreatitis group, pulmonary injury had been reported to occur in this model (102, 259,

268).

Although both local and systemic changes similar to those in human acute pancreatitis
are seen in this model, the clinical relevance of arginine-induced acute pancreatitis is not
clear. Because of these uncertainties, this model was not chosen as the sole model to

investigate the immune response in acute pancreatitis.
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3.2 ETHICAL DECLARATION

This animal work covering the induction of acute pancreatitis has been reviewed by a
local ethical committee and granted a Project Licence by Home Office United Kingdom
(PPL 60/3228). The author of this thesis has completed the Personal Licensing Course
for Animal Handling with the award of a Personal Licence Certificate (PIL 60/9568) to
perform the experiments below. The maximum licensed dose for arginine intra-
peritoneal injection is 500mg/100g for each individual rodent; whereas that for the

caerulein injection is six consecutive hourly injections of 50ug/kg of caerulein.

3.3 PREPARATION OF L-ARGININE AND CAERULEIN

L-arginine (A5006, Sigma-Aldrich) was dissolved in 0.9% sterile normal saline to a
final 20% concentration and was buffered to pH 7.35 using 5N hydrochloric acid. The
solution was sterilized by 0.22ul syringe filter (Corning, UK) prior to injection. The L-
arginine solution was freshly prepared immediately prior to the induction of acute

pancreatitis.

Img caerulein (C9026, Sigma-Aldrich, UK) was dissolved in 200ml 0.9% sterile saline
to a final concentration of Spg/ml. The solution was filtered for sterilization as above.

5ml aliquots of the mixture were stored at —20°C until use.
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3.4 STRAINS OF RODENTS

Wild-type rodents have mostly been used for the induction of acute pancreatitis in
previously published literature (65, 269-272). In order to minimize the variation of
immune responses secondary to wild-type genetic components, isogenic strains of
rodents were chosen for the study. Provided that there is a successful development of
both arginine- and caerulein- induced acute pancreatitis models in our research centre,
mouse model will facilitate further development or investigation with the use of
transgenic models. Both mice and rats rodents were therefore used simultaneously at the

beginning of this dose ranging experiment.

For the rat model, the commercially available Fischer strain (Harlan, UK) was chosen
for the induction of acute pancreatitis by both of the inducing agents. For the mouse
model, Balb/C and C57 strains (BRF, Edinburgh Animal Welfare Unit, Edinburgh) were

used throughout the dose-ranging experiments.

3.5 SPECIMEN HARVESTING

All animals were euthanized by intra-peritoneal injection of an overdose of
phenobarbitone. Midline sternotomy and laparotomy was performed to gain access to
the heart and abdominal organs. A 23G needle (BD Medical, UK) on a 10-ml Syringe
(for rats) / 2-ml syringe (for mice) was used for cardiac puncture to exsanguinate the

rodents. The whole blood was immediately transferred to a lithium (Li)-heparin blood
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container and centrifuged for 10 minutes at 1,500rpm to separate the plasma and blood

cells. Plasma was frozen at =70°C until analysis.

The tail of the pancreas was identified at the hilum of the spleen. The whole pancreas
was dissected free at the superior and inferior border towards the duodenum. The
pancreas was transected longitudinally into two halves. One half of the pancreas was
fixed in 4% formaldehyde for 24 hours prior to paraffin processing, and the other half

was snap-frozen in liquid nitrogen, and was then stored at —70°C till analysis.

The thyroid gland was dissected in the midline to expose the trachea. The trachea was
mobilized from the oesophagus. A small transverse incision was made at the anterior
trachea. A 14G (Brown) cannula was inserted via the opening and was secured by 4/0
silk suture. 4% formaldehyde was instilled to the lung until all areas of the lung were
fully expanded. The trachea was ligated. The lungs were dissected free from the
mediastum and surrounding tissues and immersed in 4% formaldehyde for a minimum

of 24 hours prior to paraffin processing.

3.6 TISSUE PROCESSING AND PREPARATION
Pancreas and lung tissues were embedded in paraffin wax. Tissues were dehydrated by

sequential dehydration with 30%, 50%. 70%. 80%, 90%, and 100% ethanol for 2 hours
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each. The tissues were cleared in xylene for 2 hours. The blocks were then immersed in
xylene/paraffin solution at approximately 56-58°C for 2 hours before the final
immersion in paraffin. Tissues were embedded in paraffin blocks and sectioned at 4pm

for light microscopy.

Haemotoxylin and eosin (H&E) staining of tissues

Tissue sections (4um) were mounted on histological slides (BDH; Cat. No.
406/0286/00). Sections were deparaffinized in xylene, and sequentially rehydrated in
100%, 95%, 80% and deionised H,O for 3 minutes each. Each slide was immersed in
haematoxylin for 5 minutes, before being immersed in tap water for another 5 minutes.
Each slide was then dipped in 1% acid-alcohol for a few times, prior to being rinsed in
tap water and deionised H>O for | minute each. Eosin was then used to stain the
cytoplasm for another 30 seconds. A dehydration process followed eosin staining with
80%, 95%, 100% ethanol and then xylene (2 x 5 minutes) before sections were mounted

in DPX mounting agent (BDH Poole, Dorset).

Plasma amylase analysis

Plasma was thawed from —70°C and analysed by automated biochemical analyser
(Roche/Hitachi 912). This method relies on the hydrolysis of 2-choloro-p-nitrophenyl-a-

D-maltotrioside (CNPG3) by a-amylase to 2-chloro-4-nitrophenol, which is monitored
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spectrophotometrically at 405nm. The other hydrolysis products include 2-chloro-4-
nitrophenyl-a-D-maltoside (CNPG2), maltotriose and glucose. The rate of formation of

2-chloro-4-nitrophenol is proportional to the a-amylase activity within the plasma.

The principle procedure for the analyzer is as below. Briefly, Iml of a-amylase reagent
(Synermed, UK) was pipetted into the appropriate number of cuvettes for samples and
for one blank. The cuvettes were transferred to a spectrophotometer and were
equilibrated to 37 + 1°C. 25ul of plasma and control sample were pipetted into the
cuvettes and were mixed; whereas 25ul of normal saline was pipetted into the blank
cuvette. Absorbance at 405nm was recorded for each of the blank, plasma and control
samples after 60 seconds and then again after 120 seconds. The differences in the
absorbance values between 60 and 120 seconds were calculated to obtain the AA/nm
value for each of the blank. control and samples. a-Amylase activity/concentration was

then calculated.

3.7 DOSE-RANGING EXPERIMENTS FOR ARGININE AND CAERULEIN
ACUTE PANCREATITIS MODELS

For dose-ranging experiments, an arbitrary time-point of 48 hours post-injection was
chosen, because most inflammatory changes of the pancreas would have occurred by

that time point (255). Intra-peritoneal injection with 0.9% normal saline was used as
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control. The total amount of normal saline used for injection in the céntro! group was the
same volume as the corresponding dose used in the treated groups based on the body
weight of the rodent. To maintain a stable temperature throughout, all cages were placed
on top of thermal blankets with thermostatic control. Subcutaneous injection of
buprenorphine and normal saline were used for analgesic control and fluid replacement,
whenever required. A total of 6 rodents were used per dose-ranging experiment — 2 for

each treated group (Arginine or Caerulein) and 2 for each control group.

3.7.1 L-ARGININE INDUCED ACUTE PANCREATITIS - DOSE-RANGING
EXPERIMENTS

3.7.1.1 125mg/100g of buffered L-arginine

125mg/100g of buffered L-arginine was injected via the intra-peritoneal route to both

mice and rats. No deterioration of clinical signs was observed in either treated or control

rodents at this dose for 48 hours following injection. There was no microscopic evidence

suggesting any pancreatic injury at this arginine dose for either mice or rats at 48 hours

following induction.

o Remarks

During the initial experiment, 20% non-buffered L-arginine solution was used for intra-
peritoneal injection. Signs of back hunching, piloerection, increased corneal secretion,

reduced interaction and peripheral shutdown developed within 4 hours post-injection.
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All control and treated groups were euthanized according to Schedule 1 protocol.
Pancreas, small intestines with mesenteries, lung, spleen and liver were all retrieved and
fixed in 10% formaldehyde for histopathological diagnosis. The histopathology report
revealed necrotic small bowel around the injection site, with no other inflammatory
changes in other organs, including the pancreas. The cause of this adverse clinical
response was secondary to chemical peritonitis and bowel necrosis. All L-arginine
solutions were therefore buffered to pH 7.35-7.45 prior to injection after this initial

experiment.

3.7.1.2 300mg/100g of buffered L-arginine

Buffered L-arginine at a dose of 300mg/100g was used on rats for this set of
experiments. All L-arginine treated rodents were clinically unwell for a few hours
immediately post-injection. They revealed signs of back hunching, piloerection,
peripheral shutdown, and reduction in interaction during handling. All rodents survived
up until the 48 hours time-point. At this arginine dose, there were histological changes in
the rat pancreas, which were suggestive of severe acute pancreatitis. When compared to
the normal pancreas, there was increased monocyte infiltration 48 hours after induction,
oedema causing separation between pancreatic lobules, and necrosis of acinar cells

(Figure 3-1). Mice were not used at this dose range.
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3.7.1.3 400mg/100g of L-arginine intra-peritoneal injection
To establish the maximum dose of buffered L-arginine to induce the maximum severity
of acute pancreatitis, but without leading to mortality, the dose of 400mg/100g of L-

arginine was used in both rats and mice.

Treated rats deteriorated rapidly after injection and showed clinical signs as described in
section 3.7.1.2. Instead of recovering from the initial insult as in the experiment
described in section 3.7.1.2, there was one death within 24 hours from the initial
injection. The planned experimental time-point at 48 hours was therefore abandoned.

Schedule 1 procedure was performed on all treated rats and controls at 36 hours.

Macroscopic fat necrosis was noted within the peritoneal cavity, associated with
retroperitoneal haemorrhage surrounding the pancreas. There was extensive acinar cell
necrosis in pancreas histology, suggestive of severe acute pancreatitis. Alveolar
congestion was also noted in pulmonary histology sections from the rat model. This
suggested a possibility of an early acute lung injury. In contrast to the rat model, only a
very mild degree of pancreatic inflammation was evident on examining mouse

pancreatic histology. (See Figure 3-2.)
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3.7.1.4 350mg/100g rat of L-arginine for intra-peritoneal injection

To allow fine adjustment of the maximum dose of L-arginine, 350mg/100g of L-arginine
was used for the induction of the rat model. All treated rats were severely distressed
thirty-six hours post-injection. The clinical severity was above the severity that was
allowed within the project licence. All rats were euthanized by terminal anaesthesia at
36 hours. Pancreas H&E sections demonstrated acute inflammatory changes with acinar
cell necrosis. No evidence of acute lung injury was seen in lung H&E sections. (See

Figure 3-3.)

3.7.1.5 500mg/100g of L-arginine intra-peritoneal injection for the mouse acute
pancreatitis model
500mg/100g of buffered 20% L-arginine dose was used on two different strains of mice
— Balb/C and C57. Because of the unsuccessful induction of acute pancreatitis in mice
using the previous arginine dose, this experiment was repeated on two separate
occasions. The first experiment suggested acute inflammatory changes within the
pancreas in the Balb/C strain. However, the repeated experiment on the Balb/C strain did
not reveal the same degree of acute inflammation in the pancreas. No acute
inflammatory changes within the pancreas were identified in the C57 strain on either

occasion. (See Figure 3-4.)
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Figure 3-2 (a) illustrates the H&E staining (x20 magnification) of
pancreas tissue 36 hours post 400mg/100g L-arginine ip injection.
There was evidence of acinar cell necrosis. Pulmonary congestion was
witnessed in the lung H&E section (b). Compared to the rat arginine
model at 400mg/100g, there were significantly less acinar cell injuries

in the mouse model (Balb/C) as illustrated in (c).
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Figure 3-4. (a) & (b) illustrate the H&E (x 20 magnifications)
stained pancreas sections of Balb/C strain 48h after arginine
injection with a dose of 500mg/100g. Pancreatic acinar cellular

injuries were minimal on repeated experiments (c).
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3.7.2 CAERULEIN-INDUCED ACUTE PANCREATITIS

3.7.2.1 50pg/kg x3 consecutive intra-peritoneal caerulein injections

Three consecutive hourly intra-peritoneal injections were performed in this set of
preliminary experiments. As with the previous protocol, 2 rodents (either rats or mice) were
used for each treatment group, and all groups of rodents were euthanized at 48 hours
following the initial caerulein injection. The same strains of rodents were used as in the L-

arginine induction experiments.

Rodents demonstrated signs of distress after the initial two intra-peritoneal injections of
caerulein. The signs were similar to those described in section 3.7.1.2. All of the treated
rodents recovered rapidly by the last injection. None of the rodents demonstrated any

histological evidence of acute inflammation of the pancreas at this caerulein dose.

3.7.2.2 S0pg/kg x6 hourly caerulein intra-peritoneal injections

50pg/kg of caerulein was injected intra-peritoneally for six consecutive hours, and was
tested in both the rats and the mouse models. Apart from the dose variation, all other
experimental conditions were the same as previously described. There was microscopic
evidence of inflammatory leukocyte infiltration and loss of acinar cells within the rat

pancreas 48 hours post-injection (Figure 3-5).
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Although there was acute pancreatic inflammation in the Balb/C mouse model at this dose,
the degree of acute inflammation was mild when compared to the rat pancreatitis model

(Figure 3-5). These inflammatory changes did not occur in the C57 mouse model.
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3.7.3 RESOLUTION OF ACUTE PANCREATITIS MODEL

According to Tani et al, the arginine model of acute pancreatitis resolves by day 14
following induction (255). For the purpose of our study, it was essential to ensure that
acute pancreatitis of both the arginine and caerulein pancreatitis models could

completely resolve within a set time-point.

Using the dose of 300mg/100g L-arginine and 50ug/kg x6 hourly caerulein injections,
acute pancreatitis was induced as before. Due to difficulties in establishing the mouse
acute pancreatitis within the licensed dose, only Fischer rats were used for the induction
of acute pancreatitis. All treated rodents were euthanized at day 14. Resolution of acute

pancreatitis was determined and confirmed, based on histology (Figure 3-7).

3.7.4 STATISTICAL ANALYSIS

For both dose- ranging experiment and the full experimental time-points study, all three
treatment groups (arginine, caerulein and control) were analysed by non-parametric
Kruskal- Wallis ANOVA at each time point. P-value <0.05 is considered as statistically
significance. SigmaPlot v11 (SyStat, USA) was used as the statistical package to

perform the statistical analysis.
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3.7.5 RESULTS OF DOSE-RANGING EXPERIMENT

3.7.5.1 Amylase result of dose-ranging experiment

During the dose-ranging experiment, only the plasma amylase level of the arginine and
caerulein pancreatitis models at day 2 was analysed. The plasma amylase of the
caerulein group at day 14 was not analysed because the result on day 2 for the caerulein
group was not significantly elevated compared with the control (Figure 3-6). There was
significant elevation of plasma amylase in the arginine group versus control on day 2
(H(2)=8.19, p=0.005). However, no statistical significance was achieved for the

caerulein group versus the control at the same time-point.

Amylase level 2 and 14 days post induction of acute pancreatitis

T | Arginine giroa_p—
N=2 per group

® Caerulein group

O Control group

Amylase (U/l)

2 Days 14

Figure 3-6 demonstrates the amylase results of both arginine (300mg/100g) and
caerulein (50pg/kg x6 doses) induced acute pancreatitis at day 2 and day 14 as compared
to the control during the dose-ranging experiments. Only the amylase result of the

arginine group but not the caerulein group at day 14 is illustrated in this ligure.

87



88

Figure 3-7 These pictures are H&E staining of the pancreas
harvested on day 14 following the induction of acute
pancreatitis. (a) illustrates H&E staining of the control (x20
magnification); whereas (b) & (c) are H&E staining of the
pancreatic section of arginine (x20 magnification) and caerulein
(x40 magnification) models at day 14 from the initial injections

respectively.



3.7.6 IMMUNOHISTOCHEMISTRY OF PANCREAS DURING ACUTE PANCREATITIS

To further characterize the pattern of leukocyte infiltration and acinar cell injuries,
immunohistochemical staining was performed on rat pancreas sections of acute
pancreatitis models at 48 hours. Antibodies against cytokeratin-8, ED1 (MCA341PE,
Serotec, UK), and cleaved caspase-3 (Catalogue No. 9661, Cell Signalling, UK) were
used to stain for pancreatic acinar cells, monocyte/macrophages, and apoptotic cells,

respectively.

Single immunostaining of pancreas section

4um thickness of pancreas paraffin sections were exposed to an anti-CK8, anti-EDI, and
anti-activated caspase-3, after paraffin removal, antigen retrieval and inhibiting
endogenous peroxidase with 3% hydrogen peroxide. All primary antibodies were
incubated for 1 hour at room temperature. The endogenous pancreas biotin was blocked
with Avidin/Biotin kit (VectorLab, SP-2001). The sections were incubated with
biotinylated secondary antibodies and streptavidin—biotin—horseradish peroxidase (HRP)
complex (Dako, UK) for 30 minutes each. Phosphate-bufered saline (PBS) was used to
wash the antibodies for 5 minutes in between steps. 3,3-diaminobenzidine (DAB) was
then added for visualization. The sections were counterstained with haematoxylin.
Hyperimmune mouse or rabbit serum was substituted for primary antibody as a negative

control.
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Table 3-1 Primary antibodies used

Antigen
Primary antibody Source  Isotype retrieval Dilution
method
ED-1 (MCA341PE, Serotec, UK) Mouse 1gGl MW 1:300
CK-8 (in-house antibody) Mouse [gGl MW neat
Cleaved caspase-3 Rabbit IeG MW 1:300
(Cat No. 9661, cell signalling)
Secondary antibody Source  Isotype
Anti-mouse- biotinylated Rabbit Polyclonal 1:100
(Dako, UK)
Anti-rabbit biotinylated Goat  Polyclonal 1:100
(Dako, UK)

NOTE: Abbreviation: MW, microwave irradiation for 3x 5 minutes in Vector Retrieval

agents.
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Dual-immunostaining of pancreas section

Dual-immunostaining of ED-1 and cleaved caspase-3, CK-8 and cleaved caspase-3 were
performed as previously described (273). Antigen—Antibody reactions were visualized
by alkaline phosphatase technique (APAAP), mouse DAKO REAL detection system for
either CK-8 or ED-1 (K5000, Dako, UK) and 3, 3’-diaminobenzidine for anti-cleaved

Caspase-3 (Dako, UK).

3.7.6.1 Results of immunostaining

Reduction of the acinar cells during acute pancreatitis

By 48 hours after the induction of acute pancreatitis, there was a significant reduction of
the number of CK8-positive staining cells when compared to control rodents. This
suggested a reduction in the total number of acinar cells in the acute pancreatitis model.
When dual staining of CK8 and cleaved Caspase-3 was performed, there was co-staining
of both antigens within the same cell, signifying that acinar cells underwent apoptosis

during the disease process. (See Figure 3-8.)
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Figure 3-8 (a), (c) & (e) are the negative controls of (b), (d) & () respectively. (¢), (d). (¢) & (f) are from the same
pancreatic rodent. (a) & (b) are pancreas sections of the control group (x20 magnification):; whereas (¢) & (d) are pancreas
sections at 48 hours after the induction of arginine acute pancreatitis. (b) & (d) were stained with anti-CK8 alone. There
was significant reduction of acinar cells during acute pancreatitis. (¢) & (f) are sections (x20 magnification) stained with
negative control and both anti-CK8 (red) & anti-cleaved caspase-3 (brown) antibodies. There is co-localization of both

immunostainings [arrows at ()], suggesting acinar cell apoptosis during acute pancreatitis.



Increased macrophage infiltration during acute pancreatitis

Whilst there was significant reduction in acinar cells, there was an increase in the
infiltration of leukocytes by 48 hours during acute pancreatitis. The majority of this
leukocyte infiltration was contributed by macrophage infiltration as evidenced by ED1-
positive staining and the mononuclear morphology of the cells. When dual staining of
EDI and cleaved caspase-3 was performed, there was positive staining of both antigens.
Limited co-localization of both antigens was detected within the same cells. However,
due to the close similarities between the brown and red colours, and the fact that both
antigens located within the same intracellular compartment, it was difficult to
differentiate them based on chromogenic colour discrimination by light microscopy.

(See Figure 3-9)
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Figure 3-9 (a) & (c) are negative controls of (b) & (d) respectively. (b) Illustrates immunostaining of ED1 (x20
magnification) using fast red as the substrate. (d) illustrates the dual immunostaining of ED1 (fast red) and cleaved
Caspase-3 (DAB). Because of the close similarity of colours between the substrate fast red and DAB, it is difficult to

differentiate the type of immuno-positive cells. Blue arrow in (d) suggests a cleaved caspase-3 positive cell, whereas the

red arrows suggest ED-1- positive cells.
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3.7.7 SUMMARY OF DOSE-RANGING EXPERIMENTS

A consistent degree of severe acute pancreatic inflammation was induced in Fischer rats
using both L-arginine and caerulein at the 48 hours time-point. Although there was acute
inflammatory changes within the pancreatic parenchyma of Balb/C mice, the degree of
pancreatic inflammation was inconsistent and too mild for the purposes of the study
following both arginine and caerulein induction methods. No acute inflammatory
changes have been witnessed within the pancreas using C57 mice. Based on these

findings, further work on the mouse acute pancreatitis model was abandoned.

An L-arginine dose of 350mg/100g or 400mg/100g induced acute pancreatitis in Fischer
rats with severity above that regulated by the Project Licence. These doses resulted in
subsequent mortality of the Fischer rats. Study of the resolution of acute pancreatitis was
therefore not feasible using doses above 300mg/100g L-arginine. A 300mg/100g L-
arginine dose was therefore selected as the dose for the induction in the L-arginine rat
pancreatitis model for this thesis. For the caerulein model, 50pg/kg of caerulein with 6
hourly intra-peritoneal injections was chosen to be the most appropriate dose. At this
dosage, there was evidence that acute pancreatitis did resolve after 14 days from the
initial induction in the models. These models allowed further characterization of the
immune response during the resolution phase of acute pancreatitis as described in

section 3.8.
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3.8 EXPERIMENTAL TIME-POINTS TO STUDY RESOLUTION OF ACUTE
PANCREATITIS

To study various immune responses throughout the whole episode of acute pancreatitis,
days 1, 3, 7, 10 and 14 were selected as the experimental time-points. Three treatment
groups were used at each time-point, namely control, arginine and caerulein groups as

shown in Figure 3-10.

1 Induction of acute pancreatitis l = Euthanisation of animal

| ! ! ! '

0h 24h 72h Day 7 Day 10 Day 14

Figure 3-10. Experimental timeline: This figure illustrates the time-point for euthanization and tissue harvesting

after the induction of severe acute pancreatitis by both arginine and caerulein in Fischer rats.

For each time-point above, lung, liver, pancreas and blood were harvested from each
rodent as before. To characterize the severity of acute pancreatitis at each time-point,
plasma amylase was measured at the early time-points and pancreas H&E sections were
scored by an independent pathologist. A histological score of the severity of pancreatic
injury was the summative score based on the degree of oedema [0(mild) to 3(severe)],
pancreatic necrosis [0(mild) to 4(severe)] and leukocyte infiltration [0(mild) to

3(severe)]. The maximum histological score was 10.
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3.8.1 POWER CALCULATION FOR THE TOTAL NUMBER OF RODENTS

It was difficult to determine at the outset the exact number of animal subjects that were
required. To estimate the total number of animals needed in order to achieve statistical
power, the Mead Resources Equation was the most appropriate in this setting (274). The
Meads Resources Equation states that E=N — B — T, where E is the error degree of
freedom (df) and should be between 10 and 20; N is the total df, B is the blocks df, and
T is the treatments df. To achieve an adequate statistical power using a block
experimental design (i.e. 10<E<20), 3 separate blocks of experiments and 3 treatment
groups with 2 samples per group were used. This is illustrated in Figure 3-11 below.
This provided a total N per time-point = (3x3x2) — 1 =17, B=3-1=2,and T =3-1 =2.
The error degree of freedom of E is 13. Based on the Mead Resources Equation above,
this suggested an adequate estimated statistical power for the study. With 5 time-points

in total, the total number of rats required is therefore 90.

MNumber = Block = Treatment
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"?""_._,“" ‘—a— 2 Rats

Figure 3-11 Schematic approach
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3.9 RESULTS

3.9.1 AMYLASE RESULTS ON DAYS 1 AND 3 DURING THE ACUTE PANCREATITIS
RESOLUTION MODEL

During the resolution model of acute pancreatitis, plasma amylase on days 1 and 3 was
analysed as described above. 6 rodents per treatment group were analysed. There was
significant increase of plasma amylase on day 1 in both acute pancreatitis groups versus
the control (H(2)=13.05, p=0.001) (Figure 3-12). However, there was no statistical
difference of amylase results on day 3 between the pancreatitis groups and the control
(H(2)=3.01, p=0.22). Plasma amylase was therefore not evaluated at other time points

beyond day 3.
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N= 6 per group

B Arginine

@ECaerulein
aControl

Day

Figure 3-12 Plasma amylase results on days 1 & 3 of severe acute pancreatitis model. Symbols * &

illustrate significant elevation of plasma amylase as comparing to control using Kruskal-Wallis One Way

Analysis of Variance on Ranks statistical analysis.

Plasma amylase results on day 1 & 3 of severe acute pancreatitis.

Arginine Caerulein Control
Day Mean S.E. Mean S.E. Mean S.E. p-value
1 4848.33 1452.54 2522.17 170.89 1860.17 62.88 0.001
3 1930.17 62.78 1771.83 58.22 1798.17 58.34 0.22

Table 3-2 illustrates the amylase level (IU) of all three treatment groups at day 1 and 3
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3.9.2 HISTOLOGY AND HISTOLOGICAL SCORING OF ACUTE PANCREATITIS

Diagrams below illustrated the H&E staining of pancreatic sections of all 3 treatment
groups at different experimental time-points (Figure 3-13 & Figure 3-14). Figure 3-13
illustrates the histological changes within the pancreas of the arginine model. There were
increasing gaps between the acinar cells and between the lobules of the pancreas. The
lobular architecture of the pancreas was distorted. The normal pancreatic architecture
was destroyed further at days 3 and 7, and was replaced by atrophic acinar cells and
inflammatory leukocytes. The pancreas started to regenerate from day 7 onwards after
the initial induction. Similar histological changes were observed in the pancreas of the
caerulein model (Figure 3-14). By day 10, the loss of acinar lobules was more evident
within the arginine group as compared to the caerulein group, suggesting a lesser degree
of pancreatic inflammation or faster acinar cell regeneration in the caerulein model. This
was further quantified by the histological scoring of the H&E pancreatic sections (Figure

3-15).
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Figure 3-13 (a-e) illustrates the H&E staining of pancreatic sections (x20 magnifications) of the arginine model at days 1, 3,

7. 10 and 14, with the control pictured at the bottom right hand corner (f).
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Figure 3-14 (a-e) illustrates the H&E staining of the pancreatic sections (x20 magnifications) of the caerulein acute

pancreatitis model at days 1, 3, 7, 10 & 14. (f) is the control.
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The combined histological scorings for all 3 treatment groups are illustrated in Figure
3-15. Significant increase in histological score was observed on day 1 in both arginine-
and caerulein-induced acute pancreatitis as compared to the control group [H(2)=34.68,
p<0.001]. The degree of acute pancreatic inflammation peaked on day 1 for the caerulein
model, and subsided gradually with time, whereas the severity of acute pancreatitis
peaked on day 3 for the arginine model. Histological scoring for the arginine model was
consistently higher than the caerulein model until day 10, by which time-point the scores
were comparable for either group. There was no statistical difference between the
histology scores of the arginine group and the caerulein group in any of the experimental
time-points. Both arginine and caerulein groups were significantly higher than the
controls until day 10, when there were no differences compared to the controls beyond

that time point.
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Figure 3-15. This graph represents the combined histological scoring of the 3 treatment

groups (arginine and caerulein pancreatitis groups, and control group).

Histology Score of Pancreas (n=6 per group) |
Arginine Caerulein Control
Day | Median score | Median score | Median score
1 6 6 1
3 8 5 0
7 6 2 0
10 2 2 0
14 2 1 0

Table 3-3 Histology score of all three treatment groups of acute pancreatitis
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3.10 D1SCUSSION

Based on the dose-ranging experiments described in section 3.7.5, it was discovered that
L-arginine solution required buffering to pH 7.4-7.5 prior to initial injections of the
rodents. Disregarding the dose of L-arginine, non-buffered L-arginine solution will lead
to mortality secondary to chemical peritonitis rather than acute pancreatitis. The dose of
L-arginine injection is proportional to the severity of acute pancreatitis. Mortalities or
significant morbidities occurred with doses above 300mg/100g of L-arginine. The study
of the resolution of acute pancreatitis would therefore not be possible above that dose. It
was decided therefore that 300mg/100g L-arginine was to be the dose for all the
subsequent experiments in the arginine model. Six consecutive intra-peritoneal
injections of caerulein dose 50pg/mg achieved a desirable level of severity of acute

pancreatitis. Acute pancreatitis induced by both methods resolved by day 14.

Using immunohistochemical staining, we identified that the majority of the infiltrating
leukocytes were, in fact, monocyte-derived macrophages (see Figure 3-9), whereas the
loss of pancreas architecture was due to the disappearance of pancreatic acinar cells (see
Figure 3-8). These findings were similar to the findings by Meyerholz et al who
investigated the morphological changes of the pancreas from 1| hour to 48 hours post-
induction using a duct-ligated pancreatitis model (275). They also attempted to qualify
and quantify the apoptotic changes within the pancreas during the disease process.
Surprisingly, there was an increase in apoptosis among the sham pancreatic group at 48

hours versus that at 0 hour. They did not detect any significant changes in apoptosis
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within the pancreas during acute pancreatitis. This finding was unexpected since most
studies suggested that acinar cell apoptosis is associated with a milder form of acute
pancreatitis, whereas necrosis is more frequently observed in a more severe form of the

disease (113, 276-278).

All these studies quantified the degree of apoptosis with single immunostaining of a
pancreatic section or immunoblotting of homogenized pancreatic tissue. Using dual-
immunostaining in our study provided information regarding what cell type underwent
apoptosis. As demonstrated in Figure 3-8, there is evidence suggesting that the acinar
cell undergoes apoptosis during acute pancreatitis. This could explain the reduction of
acinar cells seen in Figure 3-13 and Figure 3-14 at the early stage of the disease. Our
immunohistochemistry results also suggested apoptosis in monocyte-derived
macrophages. However, this result has to be interpreted with caution. An uptake of
apoptotic cells by surrounding macrophages will allow a positive dual-staining of both

activated cleaved caspase-3 for the apoptotic bodies and ED-1 for macrophages.

Cleaved caspase-3 is localized within the cytoplasm, which is also where cytokeratin-8
and ED-1 antigens locate. In addition, cleaved caspase-3 is much less abundant than the
other antigens within the cytoplasm. This caused potential overlapping of colours
between the two types of chromogen: new Fuchsin and DAB. Among all the

methodologies that are available for apoptotic staining, the TUNNEL assay is one of the
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most frequently used (279). The assay relies on the presence of nicks in the DNA, which
can be identified by terminal deoxynucleotidyl transferase, an enzyme that will catalyze
the addition of dUTPs that are secondarily labelled with a marker. However, this method
allows cross-staining of necrotic cells and, therefore, is not entirely specific to apoptosis

(280).

Serum or plasma amylase measurement is a biochemical method used for the detection
of pancreatic inflammation in both clinical and laboratory settings. However, it had been
demonstrated in animal models and humans that the amylase level does not correlate
well with the severity of acute pancreatitis (281). Although there was no significant
increase in amylase in the caerulein-treated versus the control groups at 48 hours during
the dose-ranging experiment, there was a significant elevation of its level at 24 hours
from the induction in the 14-day time-point experiment (section 3.9.1). The elevation of
plasma amylase illustrated an initial pancreatic injury. However, severity is best

determined by histological findings.

The histological scoring system used in this study is similar to the one previously as
described by Schmidt et al (282). Schmidt et al scored pancreatic inflammation based on
the degree of oedema, inflammation, cellular necrosis and haemorrhage. Each category
was assigned a score from 0 to 3 depending on the severity, 3 being the most severe in

each category. In our models, there was no evidence of a haemorrhagic event
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surrounding the pancreas in either model. This category was subsequently removed in
our modified scoring system. Because of the variation of the degree of necrosis, an extra
scoring point of 4 was assigned if there was a diffuse cellular necrosis within the
pancreatic parenchyma at the studied time-point. As noted in Figure 3-15, there were
differences in terms of the trend of histological scorings between the arginine and the
caerulein pancreatic models. Histological severity peaked between days 1 and 3 for the
arginine pancreatitis model, whereas it peaked at day | for the caerulein pancreatitis
model. These findings of histological severity are similar to that suggested by Hegyi et
al in the arginine model (283). Although there was a trend suggesting that arginine-
induced acute pancreatitis manifested in a more severe manner than did the caerulein-
induced group, no statistical differences were achieved in the histological scorings

between the two treated groups using ANOVA.

Based on histological scoring shown in Figure 3-15, there is evidence that these two
models achieved consistent severity of acute pancreatitis, which subsequently resolved
by day 14. All rodents in either model survived throughout the induction of acute
pancreatitis. These models would therefore be suitable for further investigation for the
lung and systemic immunological responses during the resolution phase of acute

pancreatitis.
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4 ALVEOLAR MACROPHAGE PHAGOCYTOSIS
DURING ACUTE PANCREATITIS

4.1 INTRODUCTION

The primary objective of the work described in this chapter was to develop an
appropriate technique to investigate the phagocytosis of alveolar macrophages at each
time-point (see Figure 3-10) during severe acute pancreatitis. This chapter details the

development of an assay for phagocytosis in alveolar macrophages.

Two main macrophage phagocytosis techniques have been described in the literature.
They are mainly divided into microscopic (light and fluorescent) (284, 285) and flow
cytometric (286, 287) techniques. Because multiple live assays were required at each
experimental time-point, a fast and reliable quantitative technique for alveolar

macrophage phagocytosis was essential for this study.

4.2 ALVEOLAR MACROPHAGE HARVESTING

Alveolar macrophages (AMs) were harvested by broncho-alveolar lavage (BAL) as
previously described (102, 266, 288, 289). Briefly, midline sternotomy was performed
with the exposure of the trachea after terminal anaesthesia. A 14G cannula was inserted
via the trachea, through which normal saline (Baxter Healthcare, UK) was instilled until

the lung was fully expanded without leakage (approximately 5-7ml). A minimum of
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100ml of normal saline from the lung of each rat was collected after BAL. All BAL fluid
was centrifuged at 1,500rpm for 10 minutes. Only the first aliquot of BAL fluid
supernatant was collected separately. and stored at —70°C for cytokine analysis. The
pellet of harvested cells from the BAL was washed twice with phosphate-buffered saline
(PBS). Harvested cells were reconstituted with culture medium (RPMI 1640, 21875-034,

Gibco Invitrogen, UK), streptomycin/penicillin to a concentration of 1 x 10° cells/ml.

4.3 CONFIRMATION OF ALVEOLAR MACROPHAGES
250ul (2.5 x 10° cells) of the above cellular suspension was added to each well of an 8-
well chambered slide (177402, Lab-Tek, UK). The suspension was cultured at 37°C with

5% humidified CO> for 2 hours to allow all cells to adhere to the bottom of the well.

Adhered cells were washed twice with PBS. The PBS was gently pipetted out of each
well, which was then allowed to air-dry for 20 minutes. 100% methanol at —20°C was
added for 10 minutes to each well to fix adhered cells. Methanol was removed from each
well, which was washed with PBS for 3x S minutes. Adhered cells were permeabilized
by adding 0.1% Triton X-100 for 20 minutes. After washing with PBS, 5% rabbit serum
(X0902, Dako, UK) was added to each well for 30 minutes as blocking agent. Each well
was exposed to 1:300 ED1 mouse anti-rat monoclonal antibody (MCA341PE, Serotec,
UK) for 1 hour. No primary antibody was added for the control well. Each well was

washed with PBS in between additions of antibodies. The slides were incubated
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sequentially with a biotinylated rabbit anti-mouse polyclonal antibody (Dako, UK),
streptavidin—biotin—horseradish peroxidase (HRP) complex (Dako, UK) and 3.3-
diaminobenzidine (DAB) for the visualization of staining. Finally, the chamber slide was

counterstained with haematoxylin (Figure 4-1).
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Figure 4-1 illustrates immunohistochemistry of alveolar macrophage using anti-ED1 antibody. (a) is the negative control,

whereas (b) demonstrates positive staining of ED1 using DAB as the chromogen for visualization.

4.4 ALVEOLAR MACROPHAGE PHAGOCYTOSIS ASSAY

For the purpose of establishing the technical aspects of the assay, Sprague Dawley rats
were used instead of Fischer rats due to the fact that they were abundant in our in-house
Animal Unit. AMs were harvested as section 4.2. The assay was developed in two
phases. The first phase was to establish evidence of phagocytosis using light and
fluorescent microscopy; the subsequent stage was to set up the flow cytometric

phagocytosis technique for robust quantification.
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4.4.1 PHASE ONE: LIGHT MICROSCOPY

4.4.1.1 Phagocytosis using fluorescent beads

AMs were harvested and plated out in 8-well chamber slides as in section 4.3. In each
experiment, two chamber slides were used — one for the experimental conditions at 37°C
and the other slide as a negative control at 4°C. Cells were washed twice with PBS after
2 hours of incubation at 37°C. A mixture containing 100ul of Dulbecco’s Modified
Eagle Medium (DMEM) (11880-028, Gibco Invitrogen, UK) without phenol red and 1pl
of microspheres (Cat. No. 15702, Frostbite Yellow Green Carboxylate microspheres,
Polysciences) was added to each well. They were co-cultured at 37°C for 60 minutes.
S5ul of cytochalasin D (C8273, Sigma-Aldrich, UK) was added to the chamber slide of
the negative controls, which were then incubated at 4°C. Supernatant was removed from
each well after 1-hour incubation. Each well was then washed once with ice-cold PBS.
Slides were allowed to air-dry. AMs were fixed by —20°C methanol as above. The Dif-
Quik staining method was used to counterstain both nuclei and cytoplasm (I minute
each in both Dif-Quik Solutions 1 & 2) (290). The slides were air-dried overnight. Slides
were mounted in xylene on the following day. Fluorescent and light microscopy (Leica
fluorescent microscope DM IL) were used to capture experimental images. The
fluorescent and light microscopic images were superimposed on each other using Adobe

Photoshop software (Adobe Corporate Software).
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e Results

Figure 4-2 illustrates the internalization of the fluorescent beads by AMs in the

superimposed light and fluorescent microscopic picture. The fluorescent beads were

quenched by xylene solution during the mounting step at the end. (291, 292).

Figure 4-2 (a) is the negative control of the assay, at which the alveolar macrophages were incubated at 4°C for 60
minutes. (b) illustrates alveolar macrophage phagocytosis after 1 hour of incubation at 37°C with fluorescent microsphere
(Fluorescent green). Alveolar macrophages were counterstained by Diff-Quik solutions. Non-internalized fluorescent

beads were quenched after Xylene mounting (orange arrow).
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44.1.2 FITC-labelled E. coli (Molecular Probes) fluorescent microscopic

phagocytosis assay

Preparation of FITC-labelled E. coli

3x10® per mg of FITC-labelled Escherichia coli (E-13231, Molecular Probes,
Invitrogen, UK) were opsonised prior to use. FITC—E. coli was reconstituted and mixed
well with 500ul of PBS. 500l of PBS was used to reconstitute the opsonising agent (E-
2870, Molecular Probes, Invitrogen, UK). E. coli and opsonising agent were mixed at a
ratio of 1:1, and incubated together at 37°C for 1 hour. The mixed suspension was
washed 3 times with PBS. It was centrifuged at 800—-1500 x g for 15 minutes in between
washings. This reconstituted suspension was stored at 4°C with sodium azide to a final
concentration of 2mM. The suspension was washed 3 times with PBS as above

immediately prior to use.

AMs were prepared as per section 4.3. 10ul of FITC—E. coli (approx. 1 x 10° bacteria/ul)
was added to each 300ul DMEM culture medium. Bacteria were added to each well
containing adhered AMs. The bacteria in suspension were spun down at 250 x g for |
minute. The mixture was then incubated for 60-90 minutes (depending on the set of
experiment) at 37°C. The control experiment was performed under the same condition

above, but at 4°C. Microscopic pictures were taken in-between steps. 100ul of 0.8mg/ml
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crystal violet (Cat No.C6158, Sigma-Aldrich, UK) was used as the quenching solution at

the end of the incubation.

e Results

Figure 4-3 (a) illustrates the mixture of AMs and FITC-labeled E. coli after 90 minutes
of incubation at 37°C, before the addition of crystal violet. Figure 4-3 (b) illustrates the
exact same image as Figure 4-3 (a), but after the addition of crystal violet quenching
solution to the cultured slide. Both the adhered and non-phagocytosed FITC-labeled E.

coli lost their fluorescence after the addition of crystal violet.

b.

a.

Figure 4-3 (a) illustrates alveolar macrophage phagocytosis of FITC- labelled E.coli after incubation for 90 minutes before

addition of crystal violet for quenching. (b) was taken immediately after the addition of crystal violet.
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4.4.2 PHASE Two: PHAGOCYTOSIS ASSAY USING FLOW CYTOMETRY

4.42.1 Alveolar macrophage phagocytosis assay using Frostbite Yellow Green
fluorescent microspheres
The same culture conditions as in section 4.4.1.1 were applied to the flow cytometric
phagocytosis assay. 1ml of 1 x 10° AMs was plated into each well of a 12-well plate
(CLS3512, Corning Costar cell culture plate, Sigma). Two, 12-well plates were used —
one was for the control with incubation at 4°C. and the other was for the incubation at
37°C. AMs were allowed to adhere to the bottom of the well after incubation for 2 hours.
Non-adherent cells were washed away with PBS. 1nl of Frostbite microspheres were
added per 600ul of DMEM without the presence of phenol red or any other additives.
The plate was centrifuged for 1 minute at 250rpm. 20, 30 and 60 minutes incubation

time were used.

AMs were detached from the bottom of the plates by mechanical means. The suspension
of all detached cells was transferred to an LP3 5-ml tube (Falcon Flow cytometry tube)
and was fixed by the lysing solution from a Phagotest kit (Orpegen Pharma, Germany)
for 20 minutes at room temperature. Propidium iodide was added to each tube after
being washed twice with PBS. The suspension was analysed by Coulter Epics XL flow

cytometer (Beckman-Coulter, UK).
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4.42.2 Alveolar macrophage phagocytosis assay using FITC-labelled E. coli
(Molecular Probes)

Fluorescein (494/518)-labelled E. coli BioParticles (E-2861, Molecular Probes,

Invitrogen, UK) were used and prepared as section 4.4.1.2. The fluorescent microscopic

technique is generally regarded as the “gold standard™ in phagocytosis quantification. To

compare and validate the flow cytometric technique, both flow cytometric and

fluorescent microscopic phagocytosis assays were performed in parallel to each other.

Microscopic and flow cytometric experiments were performed in the same manner as
described in previous sections. An arbitrary ratio of 30:1 bacterium (3 x 107 E. coli) to
alveolar macrophage was used for each assay. E. coli were suspended in DMEM without
phenol red. 600ul of the bacteria/medium mixed suspension was added to each well of
the 12-well plate, whereas 150ul per well was used for the 8-well chamber slide. For
each set of experiments (both flow cytometric and fluorescent microscopic techniques) a
negative control was included as before with the addition of cytochalasin D at a final
concentration of 5pl, and incubated at 4°C. The bacteria were spun down to the bottom

of the well by centrifugation at 250rpm for 1 minute as above.

Determination of concentration of quenching agents

One of the most important elements in the phagocytosis assay is to ensure that the
quenching solution used allows adequate quenching of adhered particles, but is not
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strong enough to either penetrate or quench the internalized particles. While maintaining
the same culture conditions, various concentrations of trypan blue (Cat. No. T8154,
Sigma-Aldrich, UK) and crystal violet (Cat No. C6158, Sigma-Aldrich, UK) at 0.1%,
0.25%, 0.33%, 0.5%, 0.67% 1% and 2% were tested for flow cytometry analysis. These
experiments aimed to determine the optimal concentration for each of the quenching
compounds. A fixed incubation period of 90 minutes was used for the experiment to

determine the concentration of the quenching agent.

AMs were prepared as described above. They were harvested from each well by
mechanical means after 90 minutes of incubation at both 4°C and 37°C. The harvested
AMS/E. coli suspension was then split into 7 LP3 tubes. All LP3 tubes were immersed in
ice until analysis. 400ul of various concentrations of the selected quenching solutions
was added to each LP3 tube immediately prior to flow cytometric analysis. The
percentage of phagocytosis based on the flow cytometric technique was plotted against

concentration of the two selected quenching agents (Figure 4-5).

Determination of the optimal incubation period for AM phagocytosis

Having decided the optimal concentration of each potential quenching agent, the optimal
incubation period for both alveolar AMs and E. coli was then determined. Based on the
literature, the incubation period for in vitro or ex vivo phagocytosis assay of phagocytes

and bacteria ranged from 60 minutes to 180 minutes (286, 293, 294). 60, 90, and 120
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minutes were selected as the studied time-points. Assays incubated at 4°C were used as
controls (see previous section). Experiments were undertaken in duplicate each time and

were performed at least three times on separate occasions.

Apart from the variation of the incubation period, the experiments were performed as
stated in the previous section. Fluorescent microscopic experiments were performed in
parallel to the flow cytometry experiment under exactly the same culture conditions.
Immediately prior to flow cytometry analysis, 400ul of either trypan blue or crystal

violet at previously determined concentration was added to each sample.

To further determine whether there are any differences in delayed measurement of
phagocytosis after the addition of the two quenching agents, phagocytosis was measured

immediately and 30 minutes after the addition of either quenching agent.

Quantification and analysis

For the quantification of fluorescent microscopy, five random pictures at x20
magnification were taken from each well of the 8-well chamber slide. For each image,
the number of AMs and AMs containing phagocytosed bacteria in each picture were

counted separately within each field. A total minimum of 100 AMs was counted for each
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experiment. The percentage of AM phagocytosis = (the sum of AMs with phagocytosed

bacteria) / (total number of AMs of the 5 images) x 100%.

For the quantification of AM phagocytosis by the flow cytometric technique, AMs were
gated based on the forward/side scatter graph (see Figure 4-4). The percentage of AM
phagocytosis at a specific time-point was calculated by the Overton cumulative
histogram subtraction algorithm (295), using the corresponding assay cultured at 4°C as
a baseline comparison. All flow cytometry data were analysed by a flow cytometry

software (FCS Express V3, De Novo Software Ltd, USA).

The percentage of AM phagocytosis measured using trypan blue as the quenching agent
by flow cytometry was compared with that of crystal violet. The findings of flow
cytometry in either trypan blue or crystal violet groups were also compared with their
corresponding manual counting groups at each of the studied time-points. The student t-
test was used if the data fulfilled parametric distribution. Otherwise, Mann—Whitney
Rank Sum test was used. p<0.05 was considered as statistically significant. SigmaStat

v3.5 (Systat Software Inc., USA) was the chosen statistical analysis package.
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4.4.3 RESULTS OF ALVEOLAR MACROPHAGE FLOW CYTOMETRIC PHAGOCYTOSIS
ASSAY

4.4.3.1 Results of Frostbite microsphere phagocytosis assay (flow cytometry)

Figure 4-4 illustrates the results of the Frostbite microsphere flow cytometric
phagocytosis assay. Increasing the incubation time enhances the engulfment of the
microspheres by the AMs. Comparing with the corresponding controls, the percentage of
phagocytosis was 46% after 30 minutes culture versus 36% after 20 minutes culture.
However, a large amount of the AMs in the control group (black lines in Figure 4-4 ¢ &
d) recorded positive fluorescence. Given that there was no background fluorescence
after xylene mounting in Figure 4-2, the increased fluorescence of the control group was
therefore due to adhesion of the fluorescent microspheres to the surface of AMs rather
than internalization. The fluorescence of Frostbite microspheres was too bright for
quenching by either trypan blue or crystal violet solution. This assay using Frostbite
microspheres as the phagocytic target for the phagocytes was therefore not sensitive
enough to distinguish those adherent microspheres from phagocytosed microspheres for
accurate phagocytosis quantification by flow cytometry. Further use of the Frostbite

microsphere methodology was not suitable for the purpose.
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Figure 4-4 (a) demonstrates the histogram of the total alveolar macrophage/ E. coli
suspension after each experimental time-point. With the addition of lysing solution of the
Phagotest kit, the cell membrane was permeablized and allowed positive nuclei staining by
propodium iodide (PI). These cells are represented within gate M1. All subsequent analyses
based on gate M1 would therefore eliminate all non-nucleated cells and organisms. (b) is the
forward/side scatterogram of all cells within gate M1. The Red gate indicates alveolar
macrophages, whereas the blue gate indicates debris. (¢) & (d) are histograms of alveolar

macrophage phagocytosis based on the red gate in (b) after 20 and 30 minutes of incubation
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4.43.2 Results of experiments to determine the type of quenching solution and
alveolar macrophage—bacteria incubation period

As illustrated in Figure 4-5, 0.67mg/ml of trypan blue and 0.5mg/ml of crystal violet

achieved an adequate quenching ability on the flow cytometer, and did not lead to

complete quenching of the fluorescence. These concentrations were used throughout the

rest of the phagocytic experiments.
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Figure 4-5 This diagram illustrates the percentage of measured alveolar macrophage phagocytosis
immediately after the addition of either trypan blue or crystal violet at different concentrations. Solid and

dashed lines are the trendlines of trypan blue and crystal violet quenching.
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Table 4-1 illustrates the absolute percentage of alveolar macrophage phagocytosis as plotted in Figure 4-6

Time- TB (%) TB (delayed) % CV % CV (delayed) %

points

(mins) Mean S.E. Mean S.E. Mean S.E. Mean S.E.
60 34.90 0.44 32.25 0.44 23.78 1.74 18.04 0.94
90 40.52 4.69 38.80 3.58 30.82 5.19 25.90 4.24
120 44.30 2.29 39.37 2.48 3423 1.24 30.00 0.38

There were statistical differences in the percentage of AM phagocytosis detected by
flow cytometry between trypan blue and crystal violet groups at the 60-minute (p=0.002,
Mann-Whitney test) and the 120-minute (p=0.002, Mann-Whitney) time-points. With a
30-minute delayed measure, there was a general trend of an overall reduction in the
percentage of AM phagocytosis measured. There was a statistical difference between the
immediate and delayed AM phagocytosis measurement within the trypan blue groups at
the 60-minute time-point (p=0.03, Mann-Whitney test); whereas there were statistical
differences at both the 60-minute (p=0.009, Mann-Whitney test) and the 120-minute

(p=0.041, Mann-Whitney test) time-points of the crystal violet groups.

Flow cytometry versus manual counting at 60, 90 and 120 minutes time-points

Figure 4-7 illustrates the combined findings of AM phagocytosis percentage measured
by both flow cytometry and manual counting techniques. There was no statistical
difference in the percentage of AM phagocytosis using the manual counting technique
between the trypan blue and crystal violet groups at all studied time-points. When the
measured percentage of AM phagocytosis was compared between flow cytometric and
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manual counting techniques among either trypan blue or crystal violet groups, no

statistical differences was achieved at any of the studied time-points.
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Figure 4-7. This graph illustrates the percentage of alveolar macrophage phagocytosis

measured by flow cytometry as compared to manual counting at the 60. 90 and 120

minutes time-points using either trypan blue (TB) or crystal violet (CV) as the

quenching agent.

Table 4-2 illustrates the absolute percentage of alveolar macrophage phagocytosis as plotted in Figure 4-7.

Time- TB (flow) % TB (Manual) % CV (flow) % CV (Manual) %

points

(mins) Mean S.E. Mean S.E. Mean S.E. Mean S.E.
60 34.90 0.44 40.22 9.11 23.78 1.74 25.08 14.76
90 40.52 4.69 50.23 8.79 30.82 5.19 33.57 1.79
120 44.30 2.29 49.90 5.61 34.23 1.24 35.54 1.61
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4.44 SUMMARY FOR SECTION 4.4

Based on the findings of the above experiments, 0.67% of trypan blue was selected as
the quenching agent for the AM phagocytosis assay in the two acute pancreatitis models.
90 minutes of incubation was also chosen for the AM phagocytosis assay in the

subsequent pancreatitis model.
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4.5 ALVEOLAR MACROPHAGE PHAGOCYTOSIS THROUGHOUT SEVERE
ACUTE PANCREATITIS

Having established and validated the alveolar macrophage phagocytosis assay in
pervious sections, this section aims to discuss the methodologies and findings of AM

phagocytosis throughout the whole disease process of severe acute pancreatitis.

AMs were harvested and prepared as in section 4.2 above. As described in the previous
chapter, 6 rats per treatment group (arginine, caerulein and control) were used at each
experimental time-point. The experimental time-points were days 1, 3, 7 10 and 14. The
AM specimen from each rat was performed in duplicate, and with an internal control

cultured at 4°C.

AMs were allowed to adhere to the bottom of the well after 2 hours of incubation at
37°C. Each well was washed twice using ice-cold PBS, before the addition of 600ul of
DMEM/E. coli (30:1) mixture. The AM/E. coli mixture was spun down at 250rpm for |
minute at 4°C. The AM/E. coli suspension was then co-cultured for 90 minutes at either
37°C or 4°C (internal control group). All adhered cells were harvested by mechanical
means at the end of the incubation period. They were immediately transferred to pre-
marked 5-ml LP3 tubes and immersed under ice till analysis. 400ul of 0.67% trypan blue

was added to the each tube immediately prior to flow cytometric analysis.
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4.5.1 QUANTIFICATION AND ANALYSIS OF ALVEOLAR MACROPHAGE

PHAGOCYTOSIS
As stated in the previous chapter at section 3.8.1, there were 3 blocks of acute
pancreatitis induction experiments. For each block of acute pancreatitis induction
experiment, 2 control, 2 arginine-treated and 2 caerulein-treated rats were used. To
minimize the variation between the experimental conditions for different sets of
experiments, the relative percentage of AM phagocytosis was used for analysis: Relative
percentage = [the absolute percentage of the AM phagocytosis of an individual rodent of
either of 2 treatment groups (arginine & caerulein) for each set of experiments] /
[absolute percentage of AM phagocytosis of the corresponding control group]. The
relative AM phagocytic capacities of all three blocks of experiments were then
combined together. Only the relative phagocytosis activity was reported and analysed

for the final result.

Non-parametric Kruskal-Wallis One Way Analysis of Variance on Ranks was used for
the analysis of each time-point. SigmaStat (Systat, US) was used as the statistical

package.
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4,5.2 RESULTS FOR ALVEOLAR MACROPHAGE PHAGOCYTOSIS THROUGHOUT
ACUTE PANCREATITIS

Figure 4-8 demonstrates the changes of the relative AM phagocytosis of the two
treatment groups (arginine and caerulein groups) and the control group from day | to
day 14. Both arginine and caerulein pancreatic groups followed similar trends to each
other throughout the resolution of the disease, apart from day | when there was an
apparent increase in AM phagocytic capacity of the arginine group. Although there was
a trend of increase in AM phagocytosis by day 7, there was no statistical difference to
support an increase in AM phagocytic capacity during severe acute pancreatitis in our
models. There was significant upregulation of the AM phagocytic capacity at day 14 in
both arginine and caerulein treatment groups as comparing to the control group

[H(2)=6.14, p<0.05].
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Alveolar macrophage phagocytosis throughout severe acute
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Figure 4-8 This graph represents the changes of the relative alveolar macrophage phagocytosis of the two
induced acute pancreatitis groups (arginine and caerulein) and the control group throughout an episode of’
severe acute pancreatitis. The trend of alveolar macrophage phagocytosis of the arginine pancreatitis
eroup follows closely with the caerulein group. Alveolar macrophage phagocytosis of both pancreatitis
aroups was significantly increased at day 14. "~.*’ denotes statistical significant of arginine- and caerulein

groups versus control respectively.

Table 4-3 illustrates the relative value of alveolar macrophage phagocytosis of three treatment groups

during acute pancreatitis. *~* represents statistically significant value.

Relative value for AM phagocytosis
Arginine Caerulein Control p-value ’
Day Mean S.E. Mean S.E. Mean S.E.
1 1.14 0.16 1.04 0.03 1.00 0.04 0.82
3 1.05 0.16 1.04 0.10 1.00 0.04 0.94
7 1.38 0.35 1.38 0.28 1.00 0.01 0.39
10 1.03 0.05 1.02 0.06 1.00 0.04 0.91
14 1.16 0.08 1.16 0.06 1.00 0.04 0.046%

131



4.6 DISCUSSION

The experiments described in section 4.4 have demonstrated that flow cytometry is a
reliable and effective technique to measure phagocytosis as compared with fluorescent
microscopic manual counting, which is generally regarded as the “gold standard™. All

subsequent analysis of the phagocytosis assay was performed by flow cytometry.

The choice of the phagocytic particle for phagocytes is important for the quantification
of the phagocytosis assay. Not only did we have to ensure that the particles could be
internalized by the studied phagocytes, it was also important to be able to distinguish
and quantify the internalized particles by the phagocytes from the adherent particles.
Failing this principle will over-estimate the phagocytic capacity of the phagocyte of

interest, which is the alveolar macrophage (AM) in our case.

There is a general trend of increase in the percentage of phagocytosis with the increase
in the incubation period. However, for AMs, this increase seems to plateau after 90
minutes of incubation with E. coli. Different quenching agents produce different
“absolute” phagocytic capacity of a phagocyte. Our experiments, using either trypan
blue or crystal violet as the quenching agent for the AM phagocytosis assay, produced a
significant variation of results, when it was measured by flow cytometry. There were
also measureable differences in the manual counting results using either trypan blue or

crystal violet as the quenching agents. These experiments suggest that the measured
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values of phagocytosis capacity depend on the type of quenching agents. Provided that
the same quenching agent was used, flow cytometry should closely represent the results

of manual counting

Disregarding the “absolute value” of phagocytic capacity measured in either trypan blue
or crystal violet groups, there was an overall increase in the trend of phagocytosis with
the length of incubation time. Although there was no significant statistical differences
between the measured phagocytosis within either the trypan blue or crystal violet
groups, when there were delays between the timing of the addiction of quenching agent
and timing for analysis, there appeared to be a reduction of measured phagocytosis
within the crystal violet group during a delayed measurement. This could be explained
by the fact that trypan blue is excluded from cells with an intact cell membrane, whereas
crystal violet can penetrate through an intact cell membrane. Crystal violet will therefore
quench the internalized fluorescent particles. The staining of the AM cytoplasm with
crystal violet is witnessed immediately after the addition of the quenching solution.
Based on this observation, trypan blue is the more reliable quenching agent of the two
for phagocytosis assay, as crystal violet could potentially under-estimate the amount of
phagocytosed particles. Nevertheless, both agents have been widely used throughout the

literature as acceptable quenching agents for phagocytosis assay (291).
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4.6.1 ALVEOLAR MACROPHAGE PHAGOCYTOSIS DURING ACUTE PANCREATITIS

The patterns of AM phagocytosis between the two acute pancreatitis models were
similar throughout the episode of the disease. The only time-point that achieved
significant AM phagocytosis in both acute pancreatitis models versus the control was
day 14. There was a general trend of increasing AM phagocytosis by day 7 in both acute

pancreatitis models.

These findings differ from those of AM phagocytosis in a rodent septic model. Studies
using the caecal puncture and ligation sepsis model suggested a compromised bacterial
clearance by the AMs (161, 162), suggesting a status of immunosuppression during
sepsis. This immunosuppressive state was confirmed when the administration of anti-1L-
10 sera partially reversed the defective AM phagocytosis ability (163). The exact reason
for this discrepancy is uncertain. Although there are similarities of lung injury between
acute pancreatitis and severe sepsis, the pathophysiology of the AMs could be different
in acute pancreatitis. The other possible explanation is that the severity of the
inflammatory response of the sepsis models described in the literature was much more
severe than the response of the acute pancreatitis models used in this thesis. The
immunological response by the AMs could therefore be different. However, one of the
elements that need to be emphasized is that the studied time-points for the AM
phagocytosis in these sepsis models were all within 24 hours from the induction of
sepsis. This is different from the time-points that were studied in this thesis. Direct

comparison of the AM phagocytosis in these studies is therefore difficult.
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5 PERIPHERAL BLOOD PHAGOCYTOSIS DURING
SEVERE ACUTE PANCREATITIS

5.1 INTRODUCTION

As part of the innate defence mechanism, one of the properties of granulocytes and
monocytes in the bloodstream is the clearance of bacteria causing systemic infection.
There is evidence from human studies that leukocyte phagocytic function is impaired at
the early stage of acute pancreatitis (169). However, how phagocytosis changes towards

the recovery phase of severe acute pancreatitis function is unknown.

This chapter aims to investigate how peripheral blood phagocytosis alters throughout the
whole disease process, until the complete resolution of the disease. This can allow direct
comparison of systemic bacterial clearance with that of alveolar macrophages within the

lung parenchyma, which was described in Chapter 4.

5.2 PERIPHERAL BLOOD PHAGOTEST PHAGOCYTOSIS ASSAY

The Phagotest kit (Orpegen Pharma, Germany) was used for the peripheral blood
phagocytosis assay. The principle for Phagotest is the same as the phagocytosis assay
described in section 4.4.2.2. The kit contained: 2ml of stabilized and opsonised FITC-
labelled E. coli suspension (1 x 10° bacteria/ml); 10ml of quenching solution for

suppressing fluorescence of the bacteria attached to the outside of the cell; 20ml of
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DNA-staining solution for cytometric discrimination of bacteria during leukocyte
analysis; 20ml of lysing solution (10 x stock solution for storage, 1:10 dilution with
double-distilled water for lysing erythrocytes and simultaneous fixing of leukocytes);
one bottle of Instamed-Salts as a washing solution (reconstituted in 1000ml aqua bidest,

provides 1000ml ready-to-use washing solution).

Whole blood was collected in a heparinised blood tube as previously described. After
removing the plasma from the whole blood for biochemical analysis, a 100ul aliquot of
the remaining cellular suspension was transferred into a LP3 tube, which was then
incubated in an ice bath prior to the addition of opsonised E. coli bacteria. 10l of FITC-
labelled opsonised E. coli was then added to each LP3 tube containing the whole blood

sample on ice.

The treated LP3 blood/bacteria mixture was then incubated at 37°C for exactly 2 minutes
on a roller. All the treated LP3 tubes were immediately immersed back in ice following
the 37°C incubation. The rest of the process was performed at 4°C until the lysing step.
All solutions were prepared at 4°C throughout the experiment. 100ul of quenching
solution was added to all LP3 tubes, prior to the addition of 2ml of ice-cold washing
solution. All LP3 tubes were centrifuged at 1,500rpm for 5 minutes. This washing step
was repeated twice. Each sample was incubated for 20 minutes at room temperature with

2ml of pre-warmed (room temperature) lysing solution. The sample was washed, prior to
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the addition of 100ul of DNA-staining solution. All samples were analysed by flow

cytometery within 60 minutes.

5.2.1 FLOW CYTOMETRIC ANALYSIS

During data acquisition, bacteria were excluded by using fluorescence triggering in the
FL3 channel (see gate M1 in Figure 5-1a). Peripheral blood leukocytes were plotted
using forward/side scatter derived from the gate M1 (see Figure 5-1b). Granulocytes,
monocytes and lymphocytes were identified by their forward/side scatter distribution.
The percentage of phagocytosis of each individual cell type was calculated based on the
difference between the histogram of the corresponding cell type at 37°C and 4°C, using
the Overton subtraction method (295) (see Figure 5-1 ¢ & d for granulocytes and for

monocyte phagocytosis).
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Figure 5-1 (a) Afier the addition of the lysing solution and the DNA staining solution, gate M1 represents all
leukocytes with nuclei. (b) is the forward/side scatter based on gate M1. Granulocytes were gated in purple,
monocytes were gated in red, and lymphocytes in green. (¢) illustrates E. coli. phagocytosis by granulocytes
after 2 minutes of 37°C incubation. The black line is the control (incubation at 4°C), and the red line is the
treatment group at 37°C. (d) illustrates the monocyte phagocytosis [red coloured gate in (b)]. Blue line

represents the treatment group at 37°C versus the control (black line).
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5.3 PERIPHERAL LEUKOCYTE PHAGOCYTOSIS THROUGHOUT THE
RESOLUTION OF SEVERE ACUTE PANCREATITIS

The peripheral blood from each sample at each acute pancreatitis time-point above was
analysed for its phagoctyic ability. Duplicate experiments were performed for each
subject. An internal control, as in the alveolar macrophage (AM) phagocytosis
experiment in Chapter 4, was incubated in ice for the whole time. The methodologies of

the assay and the flow cytometric analysis were the same as in section 5.2.1.

5.3.1 QUANTIFICATION AND STATISTICAL ANALYSIS OF PERIPHERAL BLOOD
PHAGOCYTOSIS IN ACUTE PANCREATITIS
The percentages of overall leukocyte, granulocyte and monocyte phagocytosis were
calculated based on the difference between the measurement at 37°C and 4°C. To
eliminate the variation between blocks of experiments, a relative phagocytic value was
used similar to that described in section 4.5.1 for AMs. The relative blood leukocyte
phagocytosis of the acute pancreatitis groups was measured with reference to the control
group. The relative phagocytic values of all control subjects at all time-points were
combined together for statistical analysis below. Non-parametric Kruskall-Wallis One
Way Analysis of Variance on Ranks was the statistical test of choice. Dunn’s method
was used as the post-hoc test against the control. SigmaStat v3.1 (Systats Software,

USA) was used as the statistical package for data analysis.
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5.3.2 RESULTS OF PERIPHERAL BLOOD PHAGOCYTOSIS DURING ACUTE
PANCREATITIS

Figure 5-2, Figure 5-3 and Figure 5-4 illustrate the relative phagocytic capacity of total
leukocytes, monocytes and granulocytes of all 3 treatment groups (arginine, caerulein
and control). Peripheral blood leukocytes in both acute pancreatitis models demonstrated
similar phagocytic responses during severe acute pancreatitis, apart from day | post-
induction. There was a trend towards an increase in overall leukocyte phagocytic
capacity on day | in the arginine model when compared to the control. At day 7, there
was a significant decrease in caerulein leukocyte phagocytosis compared to control
[H(2)= 7.74, p=0.02]. This downward trend in phagocytosis slowly recovered in the
following 7 days of the disease process. By day 14, the overall leukocyte phagocytic
capacity of the caerulein acute pancreatitis model was above the control group [H(2)=

7.81, p=0.02].

When granulocyte and monocyte phaogcytosis were analysed separately, there was a
significant reduction in granulocyte phagocytosis in both acute pancreatitis models
versus control at day 7 [H(2)= 13.83, p<0.01]. Although similar statistical significance
was not achieved at day 7 for monocyte phagocytosis, there was a downward trend of
monocyte phagocytosis in both acute pancreatitis models. By day 10 in the arginine
group [H(2)= 6.56, p<0.04] and day 14 in the caerulein group [H(2)=11.12, p<0.01],

monocyte phagocytosis was found to be significantly upregulated.
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Leukocyte phagocytosis throughout acute pancreatitis
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Figure 5-2 This graph illustrates the overall leukocyte phagocytosis throughout an episode of acute
pancreatitis. On day 7, there was a significant reduction in the overall phagocytosis in the caerulein group
versus the control; whereas by day 14, there was significant increase in the overall leukocyte phagocytosis
in both arginine- and cacrulein-induced models compared with the control. * denote statistical significance

of caerulein versus control group.

Relative value of total leukocyte phagocytosis
Day Arginine Caerulein Control p-value
mean SE Mean SE Mean SE
1 1.51 0.32 0.89 0.08 1.00 0.02 0.03
3 1.32 0.15 1.15 0.12 1.00 0.02 0.03
7 0.89 0.11 0.81 0.06 1.00 0.02 0.02
10 1.12 0.05 1.12 0.04 1.00 0.02 0.02
14 1.18 0.09 1:15 0.06 1.00 0.02 0.02
Table 5-1 illustrates the relative value of total leukocyte phagocytosis of the three treatment groups of

acute pancreatitis at all the studied time-points. Although p-values at all studied time-points were <0.03,
the Dunn’s method of comparison between the two pancreatitis models and control only revealed

significant results at day 7 and day 14.
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Figure 5-3. This graph illustrates the granulocyte phagocytosis during an episode of acute pancreatitis.
This graph illustrates a significant suppression of granulocyte phagocytosis at day 7 in both pancreatitis
groups versus the control. *,* denote statistical significance between caerulein and arginine versus control

groups respectively.

Relative value of granulocyte phagocytosis
Day Arginine Caerulein Control p-value
Mean SE Mean SE Mean SE
1 0.98 0.12 0.82 0.09 1.00 0.01 0.05
3 1.00 0.06 0.87 0.08 1.00 0.01 0.30
7 0.86 0.08 0.86 0.04 1.00 0.01 0.001
10 0.96 0.04 0.91 0.06 1.00 0.01 0.22
14 0.99 0.11 1.01 0.12 1.00 0.01 0.39

Table 5-2 illustrates the relative value of granulocyte phagocytosis of the three treatment groups of acute

pancreatitis at all studied time-points
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Monocyte phagocytosis throughout acute pancreatitis
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Figure 5-4. This graph illustrates the monocyte phagocytosis throughout an episode of acute pancreatitis.
There were significant increases in monocyte phagocytosis on day 1 and 10 in the arginine model versus
the control; whereas monocyte phagocytosis was significantly increased only at dayl4 in the caerulein

model. ** denote statistical significance between caerulein and arginine versus control groups

respectively.

Relative value of monocyte phagocytosis
Day Arginine Caerulein Control p-value
Mean SE mean SE Mean SE
1 1.26 0.07 1.04 0.03 1.00 0.05 0.01
3 1.22 0.31 1.07 0.13 1.00 0.05 0.77
7 0.89 0.16 0.75 0.15 1.00 0.05 0.21
10 1.32 0.14 1.06 0.04 1.00 0.05 0.04
14 1.30 0.19 1.34 0.13 1.00 0.05 0.005

Table 5-3 illustrates the relative value of monocyte phagocytosis of each of the treatment group of acute

pancreatitis at all the studied time-points
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5.4 DISCUSSION

The findings of this section resemblance some elements of bacterial clearance during the
early onset of acute pancreatitis in humans. Liras et al demonstrated a reduction of
leukocyte phagocytosis in the severe versus mild forms of acute pancreatitis at the early
onset of the disease (169). Our rodent experiment has confirmed that there was a
reduction of bacterial clearance in peripheral blood leukocytes at the early stage of acute
pancreatitis. Based on the findings of the peripheral blood phagocytosis, day 7 appeared
to be a defining time-point of the immunological responses between an acute and

recovery phase of the disease process.

As illustrated above, leukocyte phagocytosis follows a similar pattern in both acute
pancreatitis models. The main difference between the two models is at the initial time-
point. The exact reason for this increase in leukocyte phagocytosis in the arginine model
on day 1 is unknown. Given that there was no significant difference in histological
scoring of the pancreas between the two models, the early difference could be explained
by the differences in the inducing agents. This argument is supported by Moffat et al
(296). Moffat et al studied Staphylococcus. auerus phagocytosis by human blood
neutrophils with various concentration of L-arginine as substrate in vifro. They
concluded that there was an increase in neutrophil phagocytosis with L-arginine

supplementation. However, this effect was dose dependent. They further suggested that
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the possible mechanism is via the nitric oxide synthase pathway. Although the blood
concentration of L-arginine in the arginine pancreatitis model was not determined in this
thesis, this theory provided a feasible explanation of the variation of immunological

response between the two models at the early stage of the disease.

By day 7 after induction, granulocytes of both models showed a significant reduction in
bacterial clearance. Although a similar trend was also observed in monocyte
phagocytosis, it did not achieve statistical significance in either model. Since most of the
bacterial clearance within the bloodstream is contributed by granulocytes and
monocytes, it is therefore likely that combination of the reduction in granulocyte and
monocyte phagocytosis resulted in a significant reduction for the overall phagocytosis in
the caerulein pancreatitis model, and the downward trend of leukocyte phagocytosis in
the arginine group. These findings could potentially explain the increased likelihood of
nosocomial infection during an episode of acute pancreatitis, which is observed in

clinical studies (3, 83).

Towards the complete recovery of severe acute pancreatitis after day 7, there was an
increase in the overall phagocytic capacity in both acute pancreatitis models versus the
control. Granulocyte phagocytosis almost reverted to normal after day 7. Given that
there was no significant increase in granulocyte phagocytic capacity in either

pancreatitis model at the recovery phase, the overall increase in the leukocyte
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phagocytosis in the recovery phase could only be explained by the gradual increase in

the monocyte phagocytic capacity.

Most studies of acute pancreatitis or sepsis have focused on the innate immunity during
the acute event (297, 298). Few studies have examined the immunological behaviour,
including phagocytosis, of the leukocyte during the recovery phase of the acute
pancreatitis. It is interesting to identify a deficiency in neutrophil phagocytosis
throughout an episode of acute pancreatitis, and most markedly, halfway through the
disease process. This deficiency in bacterial clearance could possibly explain the
increased likelihood of nosocomial infections at a later stage of the disease in clinical
observational studies. At the same time, an upregulation of monocyte phagocytosis was
also noted towards the recovery of acute pancreatitis. This response is similar to that of
the AMs towards the end of recovery. However, it is uncertain what the factors are
contributing to the upregulation of monocyte phagocytic capacity. In order to investigate
the response of neutrophil phagocytosis observed in this chapter, it is useful to correlate
these findings with the survival, apoptosis and necrosis of neutrophils at the same

experimental time-point, in Chapter 6.
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6 PERIPHERAL BLOOD LEUKOCYTE APOPTOSIS
AND NECROSIS DURING ACUTE PANCREATITIS

6.1 INTRODUCTION

Leukocyte apoptosis plays a vital role in the resolution of inflammation (299). O’Neil et
al and others have demonstrated that there is a role for neutrophil and lymphocyte
apoptosis at the beginning of acute pancreatitis (200, 218). However, it is unclear how

these inflammatory cells behave during the process of recovery in acute pancreatitis.

The objective of this chapter is to characterize the survival, apoptosis and necrosis of
leukocyte lineages (mainly granulocytes and lymphocytes) throughout the resolution of
acute pancreatitis. The relationship between the survival/death of leukocytes and the
event of sepsis was explored using an ex vivo whole blood culture model (section 6.2.3).
With these findings, it was hoped to establish a correlation between leukocyte survival

and the corresponding phagocytic capacity during acute pancreatitis.

6.2 PERIPHERAL BLOOD LEUKOCYTE APOPTOTIC ASSAYS

Whole blood was harvested from experimental rodents as described in the Chapter 5.2.
Red blood cells were lysed using Pharmlyse solution (Cat. No. 555899, BD Pharmingen,
UK). Briefly, Pharmlyse solution was diluted to the recommended concentration (x1)

using distilled water. 50pl of whole blood was added to each LP3 tube. 2ml of diluted
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Pharmlyse solution (at room temperature) was added to the LP3 tube. The mixture was
gently vortexed immediately after adding the lysing solution. The suspension, which was
protected from light, was left at room temperature for 15 minutes. It was then
centrifuged at 1,500rpm for 5 minutes. The supernatant was carefully aspirated without
disturbing the cell pellet. The cell pellet was then washed twice with phosphate-buffered

saline (PBS). The cells were used for subsequent apoptotic assays.

Each of the methods to detect and measure apoptosis has its advantages and limitations.
Because the cellular mechanisms that result in apoptosis are complex, most published
methods cannot by themselves detect apoptosis unambiguously. It was because of this
fact that both Annexin V and YOPRO dye were chosen as the apoptotic markers for

flow cytometry (279, 300).

Annexin V binds to phosphatidylserine, which flips from the inside of the cell
membrane to the outer surface of the cell membrane during apoptosis, whereas YOPRO-
| passes through the weakened plasma membrane during apoptosis, which allows

accurate and effective detection of apoptosis.

6.2.1 ANNEXIN V/PI APOPTOTIC ASSAY

Annexin V/PI (propodium iodide) kit (BMS306FICE, Bender Med System, UK) was

used for this study. After the leukocyte pellet had been washed twice with PBS, it was
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re-suspended in 195ul binding buffer (x1 concentration) (containing Ca?h). Sul of
Annexin V was added to the suspension. The whole suspension was then incubated for
15 minutes at room temperature in the dark. The suspension was washed once with PBS.
At the end of the assay, 190ul of binding buffer was added prior to analysis. The whole
suspension was left in ice till flow cytometry analysis. Each specimen was prepared and

analysed in duplicate.

6.2.2 YOPRO/7-AAD APOPTOTIC ASSAY

YOPRO from the Vybrant apoptosis assay kit #4 (V-13243, Invitrogen, UK) was used
for the assay. 7-Amino actinomycin D (7-AAD) has been shown to be a useful marker to
quantify apoptosis by itself (301). To increase the sensitivity and differentiation of
detecting apoptosis, 7-AAD was selected for use alongside YOPRO as one of the

apoptotic assays.

7-AAD (Img, A1310, Invitrogen, UK) was prepared by dissolving first in 50ul of
methanol and then diluted to Iml with PBS. The leukocyte pellet was resuspended in
Iml of RPMI culture medium with 10% fetal calf serum. 1pul of YOPRO and 20pl of 7-
AAD were added to the suspension. The suspension was incubated on ice in the dark for
30 minutes. The assay was then analysed immediately after the incubation. Each

specimen was prepared and analysed in duplicate.
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6.2.3 PERIPHERAL BLOOD LEUKOCYTE APOPTOSIS AFTER LIPOPOLYSACCHARIDE
STIMULATION
Experiments above aim to provide insights into how peripheral blood leukocytes survive
or die during an episode of severe acute pancreatitis. To simulate the impact of bacterial
infection on the survival of peripheral blood leukocytes during acute pancreatitis,
lipopolysaccharide (LLPS), a bacterial endotoxin which is a major constituent of the outer
membrane of Gram-negative bacteria, was used for in vifro experiments to mimic
bacteraemia/septicaemia at different time-points throughout an episode of acute

pancreatitis (302).

500ul of whole blood was resuspended in 4.5ml of RPMI culture medium with
penicillin/streptomycin and glutamine. The suspended blood was split into two sets: in
one set, 1.25ug of LPS (L7895, Sigma-Aldrich, UK) was added to one 2.5ml of diluted
whole blood, whereas no additive was added to the other set. Each set of whole blood

was cultured in duplicate in a 12-well plate at 37°C for 18 hours.

After 18 hours of incubation, specimens were transferred to labelled Eppendorff tubes,
and were centrifuged for 5 minutes at 2500rpm. Supernatants were removed and stored
at —70°C till analysis. 25ul of the remaining leukocyte pellet in each tube was transferred

to an LP3 tube. Again, duplicates were performed for each subject. The Annexin V/PI
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assay was used as the only apoptotic marker for this set of experiments. The assay was

performed in the same manner as in section 6.2.1.

6.2.4 FLOW CYTOMETRY GATE-SETTING, QUANTIFICATION AND STATISTICAL
ANALYSIS

All assays were analysed by Coulter Epics XL flow cytometer. The raw data was
analysed by FCS Express v3 (De Novo Software, Los Angeles, USA). The apoptosis of
lymphocytes, monocytes, granulocytes and total leukocytes was analysed. Subsets of
leukocytes were identified based on their forward/side scatter distribution (Figure 6-1 &
Figure 6-2). For each individual cell type, the FL3 gate (PI or 7-AAD) was plotted
against the FITC or FL1 gate (Annexin V or YOPRO). For the graph of FL3 against FL1
axes, three subpopulations could be discriminated: (1) annexin-V or YOPRO-FITC-
negative / Pl or 7-AAD-negative cells (this group represents viable cells); (2) annexin-V
or YOPRO-FITC-positive / Pl or 7-AAD-negative cells (this group represents apoptotic
cells); and (3) annexin-V or YOPRO-positive / Pl or 7-AAD-positive cells (this group

represents late apoptotic/necrotic cells).

The percentages of apoptosis and necrosis for each leukocyte subpopulation of different
treatment groups were recorded. As illustrated in chapters 4 and 1, the relative value of
apoptosis/necrosis to the control group was used for analysis in order to minimize the

variations between blocks of experiments. The measured absolute value for
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survival/death of leukocytes of each subject is equivalent to the average of the duplicate.
This relative value is derived from the division of the absolute value of the treated group

by that of the control group of the corresponding block of experiment.

Relative values of leukocyte subpopulations of all three sets of experiments were
analysed by non-parametric Kruskal-Wallis ANOVA. Dunn’s comparison method was
applied for in-between groups analysis against the control group. All statistical analysis

was performed using SigmaStat software (Systat Software Inc., USA).
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a) Forward/ Side Scatter of leukocyte distribution b) 7-AAD/ YOPRO of total leukocyte (overall)
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Figure 6-1(a) illustrates the forward/side scatter distribution of the overall blood leukocyte of YOPRO/7-AAD assay
after lysing the red blood cells. Granulocytes were gated as red, lymphocytes as blue and monocytes as purple. (b)
is the 7-AAD/YOPRO histogram distribution of the combination of granulocytes, monocytes and lymphocytes. The
bottom lefi-hand quadrant represents viable cells; the bottom right-hand quadrant represents apoptotic cells, and the
top right-hand corner represents necrotic cells. (¢) is the 7-AAD/YOPRO histogram distribution of granulocytes (red

gate) , and (d) is the histogram distribution of lympocytes (blue gate).
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a) Forward/Side scatter of Leukocyte distribution
of Annexin-V/Pl assay
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Figure 6-2 illustrates similar diagrams as in Figure 6-1, but the Annexin V/PI assay was used. (a) represents the
forward/side scatter of leukocyte distribution using Annexin V/PI assay afier lysing the red blood cells. (b) is the
PI/ Annexin V histogram distribution of the combination of granulocytes, monocytes and lymphocytes. (c) is the

PI/ Annexin V histogram distribution of granulocytes (red gate), and (d) is the histogram distribution of

lympocytes (blue gate).
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6.3 RESULTS

6.3.1 OVERALL LEUKOCYTE APOPTOSIS AND NECROSIS DURING ACUTE

PANCREATITIS

Figure 6-3 illustrates the quantification of apoptosis and necrosis of the overall
leukocytes during severe acute pancreatitis in all three treatment groups. There is no
statistical difference in leukocyte necrosis between the two pancreatitis groups (arginine
and caerulein) and the control group at any of the studied time-points, when the necrosis

was measured by both YOPRO/7-AAD and Annexin V/PI.

There was a close resemblance of the trend of leukocyte apoptosis in the caerulein group
when apoptosis was measured by either Annexin V/Pl or YOPRO/7-AAD methods.
There was significant reduction in leukocyte apoptosis of the caerulein group on day 3
[YOPRO assay: H(2)=9.05, p=0.01; Annexin V assay: H(2)= 7.30, p<0.03], and day 14

[YOPRO assay: H(2)=8.98, p=0.01] when compared with the control.

For the arginine pancreatic group, leukocyte apoptosis followed a similar trend when
measured by both the YOPRO/7-AAD and the Annexin-V/PI assay at all time-points,
except from day 1. The YOPRO assay detected a significant reduction of leukocyte
apoptosis in the arginine group on day 1 when compared with the control [H(2)=8.23,

p<0.02]; whereas the Annexin V assay revealed a significant increase in leukocyte
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apoptosis at the same time-point[H(2)=12.97,p<0.01]No statistical significance was

achieved for the rest of the time-points.

6.3.2 GRANULOCYTE APOPTOSIS AND NECROSIS DURING ACUTE PANCREATITIS

Figure 6-4 illustrates the graphs of granulocyte apoptosis and necrosis throughout acute
pancreatitis when measured by Annexin V/PI and YOPRO/7-AAD assays. The analyses
for the granulocyte apoptosis and necrosis are similar to those reported in section 6.3.1.
The analyses were based on the gated granulocytes (blue gate) population shown in
Figure 6-1 and Figure 6-2. Both Annexin V/Pl and YOPRO/7-AAD assays revealed
similar results for granulocyte necrosis and apoptosis, especially among the caerulein
pancreatitis group. Although there was a trend of increasing apoptosis and necrosis from
day 7 onwards, there was no statistical difference in granulocyte apoptosis and necrosis

between the arginine pancreatitis group and the control group at any studied time-point.

For the caerulein group, there was a significant reduction in granulocyte necrosis using
both the Annexin V/PI [H(2)=10.10, p<0.01] and the YOPRO/7-AAD [H(2)=8.79,
p<0.02] assays at day 3. Using YOPRO/7-AAD analysis, there was significant increase
in granulocyte necrosis at day 1 [H(2)=10.96, p<0.01] and a significant reduction of
granulocyte apoptosis at day 3 [H(2)=10.24, p<0.01] in the caerulein group versus the
control group. Although these changes did not achieve statistical significance when

analysed using the Annexin V assay, similar trends were also observed at those time-
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points. In addition, the pattern of granulocyte apoptosis and necrosis closely resemble

each other in both of the acute pancreatitis models at all studied time-points.

6.3.3 LYMPHOCYTE APOPTOSIS AND NECROSIS DURING ACUTE PANCREATITIS

The trends of lymphocyte necrosis and apoptosis measured by either Annexin V/PI or
YOPRO/7-AAD assays were different (see Figure 6-5). The only time-point that was
similar between the two assays was the measurement of lymphocyte necrosis in the
arginine model at day 3. Both assays revealed significant increase in lymphocyte
necrosis within the arginine group at day 3 when compared to the control group
[YOPRO assay: H(2)=11.11, p<0.001; Annexin V assay: H(2)=7.78, p=0.02]. Using the
Annexin V/PI assay, the degree of lymphocyte necrosis in the caerulein group was
significantly increased as compared to the control [H(2)=7.89, p<0.02] at day 10.
Although statistical significance was not achieved in either pancreatitis group at day 10
when the YOPRO/7-AAD assay was used, there was a trend in increase in lymphocyte

necrosis of the caerulein group.

The trend of lymphocyte apoptosis in both acute pancreatitis groups measured by the
YOPRO/7-AAD assay was again dissimilar to that of the annexinV/Pl assay.
Lymphocyte apoptosis measured by the Annexin V/PI assay was significantly increased
on day 1 in both acute pancreatitis models [H(2)=10.13, p<0.01]; whereas there was

significant reduction in the caerulein group using YOPRO/7-AAD assay [H(2)=7.45,
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p=0.02]. There was also a significant increase in lymphocyte apoptosis measured by
YOPRO/7-AAD in the caerulein group versus the control at day 10 [H(2)=11.52,
p<0.01]. No statistical significance was achieved at day 10 in either pancreatitis group

when lymphocyte apoptosis was measured by the Annexin V/PI assay.

6.3.4 OVERALL LEUKOCYTE APOPTOSIS AND NECROSIS WITH OR WITHOUT
LIPOPOLYSACCHARIDE STIMULATION

Figure 6-6 illustrates the total leukocyte necrosis and apoptosis after 18 hours of co-

culture with or without lipopolysaccharide (LPS) in our acute pancreatitis models.

Significant reduction of leukocyte necrosis was found in the caerulein model at day 3

without LPS stimulation [H(2)=9.06, p<0.02]. Although no statistical significance was

achieved, leukocyte necrosis of the caerulein model with LPS co-culture demonstrated a

similar trend to that without LPS stimulation.

The results for leukocyte apoptosis were different between the two models with and
without LPS co-culture. At day 14, there was significant reduction in leukocyte
apoptosis of the caerulein model without LPS [H(2)=11.36, p<0.01) co-culture
compared to the control. There was a trend of reduction in leukocyte apoptosis of the
caerulein model after LPS co-culture at the same time-point, but there was no statistical

significance.
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Although there was no significant reduction or increase in leukocyte apoptosis by day 7,
there was a trend of increased leukocyte apoptosis after 18 hours co-culture without LPS
stimulation in the arginine model, suggesting an increase in survival of the leukocytes.
When LPS was co-cultured with the whole blood of both pancreatitis models at the same

time point, this increasing trend of leukocyte apoptosis disappeared.

6.3.5 GRANULOCYTE APOPTOSIS AND NECROSIS WIiTH ORrR WITHOUT

LIPOPOLYSACCHARIDE STIMULATION DURING ACUTE PANCREATITIS
Figure 6-7 represents granulocyte necrosis and apoptosis in all three treatment groups
after 18 hours of culture with or without LPS stimulation. Granulocyte necrosis was
significantly reduced at day 3 in the caerulein group when compared to the control group
in experiments with [H(2)=7.42, p=0.02] or without [H(2)=6.05, p<0.05] LPS
stimulation. No significant differences of granulocyte necrosis between the two acute

pancreatic groups and the control group were identified at other time-points.

By day 7, there was a significant reduction of granulocyte apoptosis in the caerulein
group with LPS co-culture [H(2)=9.87, p<0.01]. Although no statistical significance in
granulocyte apoptosis of the arginine group was achieved at day 7, a similar trend to the
caerulein model suggested a reduction of granulocyte apoptosis after LPS stimulation.
At day 14, granulocyte apoptosis in the caerulein group in both co-culture assays was

again found to be significantly reduced, when compared to the control [with LPS:
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H(2)=6.67, p=0.04; without LPS: H(2)=6.57, p=0.04]. This pattern of granulocyte
survival/death is similar overall to that of the leukocyte experiment described in the
previous section. It is therefore reasonable to speculate that the majority of the overall
leukocyte apoptosis discussed in section 6.3.4 could have been mainly contributed by

the injuries of granulocytes during the acute pancreatitis.

6.3.6 LYMPHOCYTE APOPTOSIS AND NECROSIS WITH AND WITHOUT
LIPOPOLYSACCHARIDE
Figure 6-8 illustrates lymphocyte apoptosis and necrosis with and without LPS co-
culture throughout severe acute pancreatitis, as per the previous section. There were
significant reductions in lymphocyte necrosis at day 3 in the caerulein model versus the
control, both with [H(2)=9.15, p=0.01] and without [H(2)=12.01, p<0.01] LPS. At the
same time-point, significant reduction of lymphocyte necrosis of the arginine model was
also noted in the assay without LPS co-culture. At day 10, there was a significant
increase in lymphocyte necrosis in the arginine-induced pancreatitis group without the
addition of LPS [H(2)=12.48, p<0.01]. This increase in lymphocyte necrosis was

dampened by the addition of LPS.

No significant differences of lymphocyte apoptosis between the pancreatitis groups and
the control were noted at all time-points in the experiment with LPS co-culture. Without

LPS co-culture, there was a significant increase in lymphocyte apoptosis in the arginine
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group on day 1 [H(2)=8.90, p=0.01]; and there was a significant reduction in

lymphocyte apoptosis in the caerulein group on day 7 [H(2)=7.70, p=0.02].
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Figure 6-3. These graphs illustrate the relative overall leukocyte necrosis or apoptosis of all three treatment groups measured against various time-points using either
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Table 6-1 illustrates the relative values of total leukocyte apoptosis/ necrosis measured by either

YOPRO/7AAD or AnnexinV/PI of the 3 treatment groups of acute pancreatitis at the studied time-points

Leukocyte necrosis of the 3 treatment groups measured by YOPRO/7AAD (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 0.85 0.28 1.11 0.30 1.00 0.05 0.46
3 0.81 0.16 0.67 0.10 1.00 0.05 0.05
7 1.11 0.24 0.97 0.23 1.00 0.05 0.78
10 1.05 0.19 1.37 0.35 1.00 0.05 0.73
14 1.00 0.23 0.68 0.16 1.00 0.05 0.11

Leukocyte apoptosis of the 3 treatment groups measured by YOPRO/7AAD (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
| 0.80 0.08 0.85 0.06 1.00 0.02 0.02
3 0.88 0.10 0.77 0.13 1.00 0.02 0.01
7 1.05 0.19 0.88 0.18 1.00 0.02 0.31
10 0.88 0.12 1.00 0.12 1.00 0.02 0.84
14 0.90 0.04 0.77 0.08 1.00 0.02 0.01

Leukocyte necrosis of the 3 treatment groups as measured by AnnexinV/Pl (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E: Mean S.E.
1 0.92 0.17 0.83 0.05 1.00 0.05 0.08
3 1.22 0.34 0.74 0.09 1.00 0.05 0.12
7 1.08 0.07 1.09 0.12 1.00 0.05 0.22
10 1.03 0.15 1.13 0.20 1.00 0.05 0.25
14 0.93 0.18 0.95 0.26 1.00 0.05 0.75

Leukocyte apoptosis of the 3 treatment groups as measured by AnnexinV/PI (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E: Mean SE Mean S:E.
| 1.32 0.15 1.17 0.08 1.00 0.04 <0.01
3 0.99 0.18 0.70 0.07 1.00 0.04 0.04
7 1.06 0.15 0.79 0.06 1.00 0.04 0.50
10 0.93 0.09 0.85 0.10 1.00 0.04 0.95
14 0.76 0.04 0.77 0.08 1.00 0.04 0.29
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Table 6-2 illustrates the relative values of neutrophil apoptosis/ necrosis measured by either YOPRO/7TAAD

or AnnexinV/PI of the 3 treatment groups of acute pancreatitis at the studied time-points

Neutrophil Necrosis of the 3 treatment groups measured by YOPRO/7AAD (n=6 per group)
Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 0.71 0.19 1.72 0.19 1.00 0.08 <0.01
3 0.78 0.29 0.43 0.08 1.00 0.08 0.01
7 2.20 0.66 1.59 0.84 1.00 0.08 0.39
10 2.37 1.27 2.49 0.78 1.00 0.08 0.26
14 1.07 0.23 0.67 0.28 1.00 0.08 0.88
Neutrophils apoptosis of the 3 treatment groups measured by YOPRO/7AAD (n=6 per group)
Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 0.72 0.13 1.25 0.18 1.00 0.05 0.10
3 0.89 0.21 0.51 0.13 1.00 0.05 <0.01
7 1.44 0.34 1.36 0.52 1.00 0.05 0.48
10 0.97 0.19 1.47 0.36 1.00 0.05 0.71
14 1.02 0.11 0.69 0.07 1.00 0.05 0.05

Neutrophil Necrosis of the 3

treatment groups meas ured

by AnnexinV/PI (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 1.42 0.42 2.06 0.57 1.00 0.15 0.11
3 1.13 0.64 0.44 0.08 1.00 0.15 0.01
7 1.82 0.37 1.16 0.20 1.00 0.15 0.09
10 0.98 0.24 1.79 0.51 1.00 0.15 0.42
14 0.91 0.19 1.45 0.61 1.00 0.15 0.75
Neutrophil Apoptosis of the 3 treatment groups measured by AnnexinV/PI (n=6 per group)
Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 1.83 0.49 1.93 0.26 1.00 0.08 <0.01
3 0.87 0.30 0.69 0.13 1.00 0.08 0.11
7 1.64 0.29 1.29 0.16 1.00 0.08 <0.05
10 1.01 0.11 1.16 0.15 1.00 0.08 0.58
14 0.78 0.11 1.14 0.21 1.00 0.08 0.21
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Figure 6-5 illustrates the lymphocyte necrosis or apoptosis of all three treatment groups measured against various time-points using either YOPRO/7-AAd assay or Annexin

V/ Pl assay. (" denotes statistically significant difference between the arginine and control groups at that particular time-point; whereas * represents statistical significance

between the caerulein and control groups.)



Table 6-3 illustrates the relative values of lymphocyte apoptosis/ necrosis measured by either YOPRO/7AAD or

AnnexinV/PI of the 3 treatment groups of acute pancreatitis at the studied time-points

Lymphocyte necrosis for the 3 treatment groups measured by YOPRO/7AAD (n=6 per group)

Arginine Caerulein Control ~ p-value
Day Mean SE. Mean S.E. Mean S.E.
1 1.34 0.34 1.03 0.32 1.00 0.05 0.33
3 1.44 0.15 0.69 0.13 1.00 0.05 <0.01
7 0.81 0.06 0.92 0.07 1.00 0.05 0.18
10 1.03 0.04 1.28 0.21 1.00 0.05 0.58
14 1:15 0.20 1.09 0.27 1.00 0.05 0.82

Lymphocyte apoptosis for the 3 treatment groups measured by YOPRO/7AAD (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
| 1.06 0.15 0.77 0.06 1.00 0.03 0.02
3 1.16 0.07 1.05 0.12 1.00 0.03 0.15
7, 0.92 0.06 0.89 0.07 1.00 0.03 0.17
10 1.00 0.10 1.45 0.13 1.00 0.03 <0.01
14 1.10 0.08 1.15 0.15 1.00 0.03 0.09

Lymphocytes necrosis for the 3 treatment groups measured by AnnexinV/PI (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 1.02 0.16 0.84 0.15 1.00 0.09 0.48
3 1.54 0.16 1.04 0.17 1.00 0.09 0.02
7y 1.02 0.07 1.14 0.16 1.00 0.09 0.65
10 1.48 0.23 1.43 0.15 1.00 0.09 0.02
14 1.11 0.36 0.69 0.17 1.00 0.09 0.31

Lymphocyte apoptosis for the 3 treatment groups measured by AnnexinV/PI (n=6 per group)

Arginine Caerulein Control p-value
Day Mean SE. Mean SE. Mean S:E.
| 1.45 0.18 1.33 0.13 1.00 0.04 0.01
3 1.41 0.19 1.10 0.08 1.00 0.04 0.08
7 1.05 0.07 1.08 0.08 1.00 0.04 0.56
10 1.05 0.09 0.95 0.06 1.00 0.04 0.68
14 0.97 0.07 0.89 0.10 1.00 0.04 0.52
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Figure 6-6 illustrates total leukocyte necrosis and apoptosis after 18 hours of in vitro whole blood culture at 370C with and without LPS stimulation at different time-points of
severe acute pancreatitis. Annexin V/PI assay was used in both LPS culture conditions. (a) & (b) represent total leukocyte necrosis and apoptosis without the co-culture of
LPS; whereas (c) & (d) represent leukocyte necrosis and apoptosis after 18 hours of co-culture with LPS, (" denotes statistically significant difference in arginine group versus

the control group at a particular time-point, where * represents that of the caerulein group versus the control group.)



Table 6-4 illustrates the relative values of total leukocyte apoptosis/ necrosis with or without LPS

stimulation of the 3 treatment groups of acute pancreatitis at the studied time-points

Leukocyte necrosis for the 3 treatment groups with no LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
| 0.78 0.29 0.86 0.16 1.00 0.05 0.44
3 0.79 0.15 0.51 0.13 1.00 0.05 0.01
7 1.17 0.24 0.82 0.16 1.00 0.05 0.34
10 1.29 0.11 1.15 0.28 1.00 0.05 0.12
14 1.15 0.13 0.84 0.06 1.00 0.05 0.14

Leukocyte apoptosis for the 3 treatment groups with no LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean SE. Mean SE. Mean S.E.
| 0.68 0.30 0.80 0.17 1.00 0.02 0.31
3 0.86 0.11 0.68 0.16 1.00 0.02 <0.05
7 1.41 0.16 0.81 0.10 1.00 0.02 0.01
10 1.23 0.24 1.16 0.37 1.00 0.02 0.50
14 0.82 0.07 0.68 0.05 1.00 0.02 <0.01

Leukocyte necrosis for the 3 treatment groups after 18 hrs LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S:E. Mean S.E. Mean S.E.
| 1.38 0.38 1.43 0.43 1.00 0.06 0.51
3 0.93 0.19 0.60 0.13 1.00 0.06 0.08
7 0.93 0.08 0.72 0.08 1.00 0.06 0.07
10 1.31 0.17 1.10 0.47 1.00 0.06 0.18
14 0.92 0.08 0.71 0.07 1.00 0.06 0.07

Leukocyte apoptosis for the 3 treatment groups after 18 hrs LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean SE. Mean S.E. Mean SE.
1 1.12 0.19 1.42 0.30 1.00 0.05 0.04
3 1.05 0.19 0.72 0.15 1.00 0.05 0.28
7 0.96 0.08 0.59 0.08 1.00 0.05 0.06
10 1.13 0.14 1.07 0.29 1.00 0.05 0.55
14 0.88 0.03 0.69 0.07 1.00 0.05 0.15

169



Granulocyte necrosis during acute pancreatitis after 18 hours
culture without LPS

25T
(n=6 per group) AR
o 2+— 4 == . ey ~—8— Caerulein
w. ==4 = Control
o185 —
=1}
=
2 1
=
=
Sos - ==
*
D — — — R — —_— —
0 2 4 6 8 10 12 14
Days
Granulocyte necrosis during acute pancreatitis after 18 hours
culture with LPS
F—————
(n=6 per group) ﬁ. == Arginine
25 — = = B Caerulein
a2 == = Control
8 27
g |
g 15 _
@
Z
B 11
@
e
o.m . —
0 . I
0 2 4 6 8 10 12 14
Days

d.

Granulocyte apoptosis during acute pancreatitis after 18 hours
culture without LPS
S . I ¥ —t—Arginine
sl Caerulein

(n=6 per group)

Relative apoptosis
T

0.
0 2 4 6 8 10 12 14
Days
Granulocyte apoptosis during acute pancreatitis after 18 hours
culture with LPS

251 —— e
(n=6 per group) e Arginine
o 5l - o s Caerulein
m =i = Control
]
Q151
L]
@
2 ;
3 1
4
05 1
D v
0 2 4 6 8 10 12 14

Days

Figure 6-7 illustrates granulocyte necrosis and apoptosis after 18 hours of in vitro whole blood culture at 370C with and without LPS stimulation at different time-

points of acute pancreatitis. Annexin V/PI assay was used in both with or without LPS culture conditions. (a) & (b) represent granulocyte necrosis and apoptosis

without the co-culture of LPS; whereas (c) & (d) represent granulocyte necrosis and apoptosis after 18 hours of co-culture with LPS. (* denotes statistically

significant difference in arginine group versus the control group at a particular time-point, where * represents that of the caerulein group versus the control group.)



Table 6-5 illustrates the relative values of neutrophil apoptosis/ necrosis with or without LPS stimulation of

the 3 treatment groups of acute pancreatitis at the studied time-points

Neutrophils necrosis for the 3 treatment groups with no LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 0.62 0.35 0.87 0.29 1.00 0.06 0.3
3 1.03 0.28 0.49 0.12 1.00 0.06 <0.05
7 .29 0.31 0.81 0.21 1.00 0.06 0.42
10 1.53 0.45 1.54 0.64 1.00 0.06 0.46
14 1.19 0.22 0.73 0.10 1.00 0.06 0.1

Neutrophils apoptosis for the 3 treatment groups with no LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 0.62 0.30 0.96 0.25 1.00 0.03 0.30
3 0.94 0.18 0.74 0.13 1.00 0.03 0.12
7 1.50 0.35 0.97 0.09 1.00 0.03 0.48
10 1.15 0.21 1.14 0.33 1.00 0.03 0.58
14 0.88 0.10 0.76 0.08 1.00 0.03 0.04

Neutrophils necrosis for the 3 treatment groups after 18hrs LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 1.32 0.41 1.86 0.74 1.00 0.08 0.16
3 1.06 0.31 0.55 0.13 1.00 0.08 0.02
7 0.79 0.14 0.61 0.08 1.00 0.08 0.73
10 1.39 0.26 1.85 1.05 1.00 0.08 0.15
14 0.94 0.14 0.59 0.06 1.00 0.08 0.40

Neutrophils apoptosis for the 3 treatment groups after 18hrs LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean SE. Mean 5.E: Mean S.E.
I 0.98 0.15 1.76 0.44 1.00 0.06 0.26
3 1.32 0.34 0.92 0.12 1.00 0.06 0.47
7 1.04 0.09 0.58 0.06 1.00 0.06 0.01
10 1.04 0.11 1.01 0.26 1.00 0.06 0.73
14 0.94 0.21 0.59 0.09 1.00 0.06 0.04

171



Lymphocytes necrosis during acute pancreatitis after 18 hours
culture without LPS

. (n=6 per group)

Relative necrosis

Lymphocyte necrosis during acute pancreatitis after 18 hours

culture with LPS
M 3 - - —_ - —
- (n=6 per group) === Arginine
18 i Caerulein
216 . o
g Ml
5147 =———— =
@
M 12 1
> ol
g '
Sos -
06
04
0 2 4 6 8 10 12 14

Lymphocytes apoptosis during acute pancreatitis after 18
hours culture without LPS

c,_ua| per group)

P

@
|
|

g Arginine
 wlle Caerulein
=== ™= Confrol

-
Y
f——=
|
‘>
|
|

Relative apoptosis
- (%]
Sl B
|

o
™

o
o
i
|
|
|
|
|
|
|

o
L]
-
-3
@
=)
~
=

Lymphocyte apoptosis during acute pancreatitis after 18 hours

culture with LPS
16 — ————— —_— s
(n=6 per group)  ==t==Arginine
0w — -
R ‘ i
D= T
o
.W 1 1+— e— — — e — —
M [
208+ = -
06 - = = —
0 2 4 8 8 10 12 14
Days

Figure 6-8 illustrates lymphocyte necrosis and apoptosis after 18 hours of in vitro whole blood culture at 370Cwith and without LPS stimulation throughout an

episode of acute pancreatitis. Annexin V/PI assay was used in both culture conditions. (a) & (b) represent lymphocyte necrosis and apoptosis without the co-

culture of LPS; whereas (c) & (d) represent lymphocyte necrosis and apoptosis after 18 hours of co-culture with LPS. (" denotes statistically significant difference

in arginine group versus the control group at a particular time-point, where * represents that of the caerulein group versus the control group.)



Table 6-6 illustrates the relative values of lymphocyte apoptosis/ necrosis with or without LPS stimulation

of the 3 treatment groups of acute pancreatitis at the studied time-points

Lymphocyte necrosis for the 3 treatment groups with no LPS stimulation (n=6 per group)
Arginine Caerulein Control p-value
Day Mean SiE. Mean S:E Mean SIE
I 1.27 0.23 1.01 0.12 1.00 0.04 0.44
3 0.73 0.08 0.59 0.13 1.00 0.04 <0.01
7 0.85 0.16 0.87 0.17 1.00 0.04 0.90
10 1.46 0.07 1.03 0.11 1.00 0.04 <0.01
14 1.25 0.21 1.11 0.06 1.00 0.04 0.13

Lymphocyte apoptosis for the 3 treatment groups wit

h no LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S.E. Mean S.E. Mean S.E.
1 1.23 0.09 0.91 0.08 1.00 0.02 0.01
3 0.99 0.21 0.96 0.32 1.00 0.02 1.00
7 1.06 0.08 0.83 0.05 1.00 0.02 0.02
10 1.20 0.21 0.95 0.16 1.00 0.02 0.41
14 0.95 0.07 0.91 0.07 1.00 0.02 0.47

Lymphocyte necrosis for the 3 treatment groups after

I8hrs LPS stimulation (n=6 per group)

Arginine Caerulein Control p-value
Day Mean S:E, Mean S.E. Mean S.E.
| 1.61 0.27 0.81 0.15 1.00 0.04 0.03
3 0.87 0.09 0.73 0.17 1.00 0.04 0.01
7 0.93 0.14 0.94 0.12 1.00 0.04 0.61
10 1.02 0.09 0.85 0.17 1.00 0.04 0.10
14 1.09 0.16 0.99 0.07 1.00 0.04 0.50

Lymphocyte apoptosis for the 3 treatment groups after

18hrs LPS stimulation

n=6 per group)

Arginine Caerulein Control p-value
Day Mean S:E. Mean S.E Mean S:E.
1 1.36 0.15 0.92 0.07 1.00 0.03 <0.05
3 1.03 0.18 0.93 0.27 1.00 0.03 0.87
7 0.86 0.08 0.88 0.11 1.00 0.03 0.10
10 1.14 0.14 1.05 0.16 1.00 0.03 0.48
14 1.10 0.06 1.01 0.10 1.00 0.03 0.37
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6.4 DISCUSSION
6.4.1 THE CHOICE OF APOPTOSIS ASSAYS

Each of the methods to detect and measure apoptosis has its advantages and limitations.
Because the cellular mechanisms that result in apoptosis are complex, most published
methods cannot by themselves detect apoptosis unambiguously. In measuring apoptosis,
two or more methods of quantifying apoptosis have therefore been advocated by most
studies. In general, apoptosis can be detected by using Caspase assays, TUNNEL and
DNA fragmentation assays, cell permeability assays, Annexin V assays, protein

cleavage assays, mitochondrial and ATP/ADP assays.

The applicability of any of these assays depends on the phase of apoptosis that is being
studied, and the underlying scientific question to be addressed. For instance, TUNNEL
and DNA fragmentation assays for apoptosis rely on the fact that DNA was cleaved into
multiples of 180 — 200 base pairs, which is considered as the hallmark of programmed
cell death, whereas necrotic cell death is accompanied by late and random DNA
fragmentation (303). This technique can apply on both flow cytometry as well as
immuohistochemistry. However, because it detects DNA fragmentation, it is not specific
for apoptosis, and can overestimate apoptosis when quantitative measurement is

important in an experiment.
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Caspases are cysteine proteases located within the cytoplasm, and play essential roles in
apoptosis, necrosis and inflammation. They are divided into initiator caspases (caspase
8, 10, 9& 2) and effector caspases (3, 7 & 6). To detect these caspases, permeabilisation
of the interested cell type would be required prior to the addition of anti-caspase primary
antibody. This technique is most suitable to fixated tissue section rather than flow
cytometry (280). Its use is therefore limited for the purpose of our described

experiments.

The Annexin V/ Pl and YOPRO/ 7-AAD assays were selected to characterize apoptosis
and necrosis of blood leukocytes in this study. The main reason was that both assays
have been well characterized as valid tools for measuring apoptosis (279, 300, 304). The
other advantage of using these assays as opposed to others mentioned above was the
simplicity in their experimental procedures. This latter criterion is essential because of
the number of live assays that were required to be conducted at each experimental time-

point.

Despite some similarities between the Annexin V and YOPRO assays, there are
differences in the final quantification of apoptosis and necrosis of blood leukocytes
during acute pancreatitis. The exact reason accounting for this difference is unclear. One
may speculate that the assays measure different stages of the apoptotic process.

Although both apoptosis methods have been suggested to measure early apoptosis (305),
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it has been suggested that YOPRO measures an earlier apoptotic stage, before the
appearance of the blebbing and the subsequent externalization of phosphatidylserine
(306). This could therefore account for the final net difference in the quantification of

apoptosis by either method.

The other possible explanation is experimental error secondary to the small measured
quantity in the percentage of apoptosis and necrosis. The gate setting in-between
experiments was aimed to be as robust as possible. However, there is still chance of
slight variation in gate settings between Annexin V and YOPRO assays. As seen in
Figure 6-1 and Figure 6-2, the percentages of apoptosis and necrosis measured in all
three groups (overall leukocytes, granulocytes and lymphocytes) were relatively small,
viz. <10%. Any small alteration in the gate setting (or any drifting of the quadrant)
would magnify the proportion of either apoptosis or necrosis, and therefore account for a
measurable difference between the two assays. It is exactly because of this the relative
values in reference to the corresponding control are used in order to minimize

quantification errors.

Despite these slight variations of measurement between Annexin V and YOPRO assays,
both methods provided a reasonable trend of apoptosis and necrosis in our pancreatitis

models.
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6.4.2 RESPONSES FROM ARGININE AND CAERULEIN PANCREATITIS MODEL

Although there are degrees of similarity in the trends of apoptosis or necrosis of arginine
and caerulein pancreatitis models, our observations suggest a more consistent response
in the caerulein model than the arginine model. This is reflected by the wider standard
errors of apoptosis and necrosis at each time-point of the arginine model. The exact
reason for this difference in the response of the inflammatory cells between the two
models is again unknown. As discussed in section 3.10, the literature shows that the
caerulein pancreatitis model has been extensively used to induce acute pancreatitis and
has been well characterized over many years, whereas the L-arginine model has only
become popular in acute pancreatitis research over the last 10-20 years since Tani et al
first described the model (255). It has been reported that the morphological, biochemical
and systemic changes of the L-arginine pancreatitis model are similar to those of acute
pancreatitis induced by other methods (307). However, given that L-arginine is closely
involved in the nitric oxide synthase pathway (308), which in turn is closely involved in
the immunological response during acute pancreatitis (309), it is not unreasonable to
believe that L-arginine itself might have a role in the immunomodulatory response to
inflammatory cells. However, the exact role that L-arginine plays in terms of nitric oxide
synthesis during acute pancreatitis is controversial. Some studies suggested a beneficial
role in nitric oxide synthesis (310), whereas some reported a detrimental role in causing
pancreatic injury (311). Some even suggested that the beneficial or harmful effect of
nitric oxide is determined by its concentration (308). Nevertheless, it is feasible that L-

arginine itself might have altered some of the immunological response of the leukocytes,
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at least at the very beginning of the disease process. It is for this reason that the

following discussion will focus mainly on the caerulein acute pancreatitis model.

6.4.3 LEUKOCYTE APOPTOSIS/NECROSIS DURING CAERULEIN-INDUCED ACUTE

PANCREATITIS

Despite an initial increase in granulocyte apoptosis in the caerulein pancreatitis model,
the combined net effect was a reduction in overall leukocyte apoptosis. After the initial
increase of granulocyte apoptosis, there was a net reduction in total leukocyte and
granulocyte apoptosis for the first 3 days post caerulein induction. Our findings
confirmed the findings of other studies that there is a delay of granulocyte apoptosis in
the early phase of severe acute pancreatitis (218, 219) and sepsis (215, 216). This net
effect of total leukocyte apoptosis was also witnessed after 18 hours of whole blood

culture.

Given that apoptosis is associated with the resolution of inflammation (312-318), this
should imply an increase in leukocyte apoptosis during the resolution of acute
pancreatitis. Surprisingly, the above findings revealed a consistent overall reduction of
the leukocyte and granulocyte apoptosis towards the end of the resolution of acute
pancreatitis. /n vitro whole blood culture after 18 hours of incubation at 37°C also
revealed similar results. Towards the recovery phase of severe acute pancreatitis, there

was an increase in lymphocyte apoptosis at day 10. Since there was an abundant of
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lymphocyte counts as compared to granulocytes and other leukocytes within the
peripheral blood. The net effect could have been an increase in peripheral blood
apoptosis during the resolution of the disease. However, this could only be a speculation.

The exact reason could not be fully addressed in this thesis.

6.4.3.1 Septic event during acute pancreatitis

To further investigate how nosocomial infection would interfere with the inflammatory
cells apoptosis during acute pancreatitis at different stages of the inflammatory process,
in vitro whole blood culture without LPS co-culture was compared to culture with LPS
stimulation. It has been shown that LPS delays neutrophil apoptosis (319), whereas
some extrinsic (e.g. FAS-ligand, TNFa-ligand) and intrinsic (e.g. mitochondria) stimuli
enhance neutrophil apoptosis. It is therefore the balance of all these stimuli that dictates
the net effect of leukocyte survival. In comparing the in vifro culture condition with and
without LPS stimulation, our results suggested that LPS stimulation did not alter the net
effect of leukocyte apoptosis during the early stage (before day 3) and late stage (after
day 10) of acute pancreatitis. Instead, LPS enhanced the leukocyte survival halfway (day
7) during the recovery process. This effect occurred in both arginine- and caerulein-

induced acute pancreatitis models.

Our results therefore suggest that bacterial infection causing sepsis could potentially

have an impact on leukocyte survival halfway through the recovery of acute pancreatitis,
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whereas its impact was insignificant at the beginning and the end of the disease. As
discussed in Chapter 5, this phenomenon could be partially explained by the malfunction

of leukocyte phagocytosis halfway through the disease process.
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7 PERIPHERAL BLOOD AND ALVEOLAR
MACROPHAGE CYTOKINE ASSAY

7.1 INTRODUCTION

To understand the immunological and functional responses of leukocytes and alveolar
macrophages described in previous chapters, it is important to understand how the pro-
and anti-inflammatory mediators alter during acute pancreatitis. This could potentially
provide an explanation to our findings of phagocytic capacity of phagocytes and their
corresponding apoptotic/survival response during the disease process, which was
described in previous chapters. This chapter aims to characterize cytokine concentration
and secretion of both peripheral blood and alveolar macrophages during an episode of

acute pancreatitis.

7.2 MATERIALS AND METHODS

7.2.1 DETERMINING EXPERIMENTAL CONDITIONS FOR CYTOKINE PRODUCTION

A series of experiments was carried out in order to determine the optimal duration of in
vitro culture and the concentration of lipopolysaccharide (LPS) for cytokine secretion

assays of both alveolar macrophages (AMs) and whole blood.
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Three Sprague-Dawley rats were used for both AM and peripheral blood experiments.
Sprague-Dawley rats were used because whole blood had been demonstrated to respond
adequately in this cytokine secretion assay (320). AMs were harvested and prepared as
described in Chapter 4. Concentrations of LPS at 0, 0.01, 0.1, 0.5, 1, 10pg/ml were
tested. The samples were cultured for 3 and 18 hours at 37°C with 5% CO,. Figure 7-1
illustrates the results for tumour necrosis factor oo (TNFa) secretion after culture of AMs

in the presence of LPS at the two studied time-points.

After 3 hours of co-culture of AMs with LPS, there was an increase in the TNFa
concentration, which peaked at 1ug/ml of LPS. There was significant elevation of TNFa
concentration at 0.1, 1, 5 and 10pg/ml LPS concentrations when compared with no LPS
stimulation, but this was not significant at 0.01pg/ml LPS [H(5)=23.98, p<0.01]. The
TNFa concentration was markedly elevated after 18 hours of co-culture with LPS. The
concentration of TNFo secretion peaked at Spg/ml of LPS. There was significant
elevations of TNFa concentration at 0.1, 1, 5 and 10pg/ml of LPS versus 0 and

0.01pg/ml [H(5)=30.05, p<0.01].

Following the above experiments, 5pug/ml of LPS concentration and 18 hours of
incubation period at 37°C were chosen to be the culture conditions for the AM cytokine

secretion assay. To accommodate with the experimental schedule of the AM cytokine
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assay, an incubation period of 18 hours was selected for the whole blood culture

cytokine secretion assay.

7.2.1.1 Whole blood culture cytokine secretion assay

Whole blood samples from the Sprague-Dawley rats were prepared as described above.
The concentrations of LPS used in the AM cytokine secretion assay above were used to
determine the optimal LPS concentration for whole blood culture. Figure 7-2 illustrates
the whole blood TNFa secretion after 18 hours for various LPS concentrations. Similar
to the AM TNFa secretion assay, there was a significant increase in TNFa secretion at

all LPS concentrations [H(5)=32.82, p<0.01] when compared to zero LPS concentration.

Since there was no significant difference in whole blood TNFa secretion between 0.5, 1,
5 and 10pg/ml of LPS, a LPS concentration of Spg/ml (the same dose as in the AM
cytokine secretion assay) was chosen to be the optimal dose for all the subsequent whole

blood cytokine secretion experiments.

183



Alveolar macrophage TNFa secretion after 3 & 18h culture

= with and without LPS stimlation

S 3500

g 3000 B3 hours n=3 per group

= @18 hours

& . 2500

s E

S ..g 2000

5 = 1500 —

= 1000

c

s 500 ——— - - —
0 0.01 0.1 1

LPS concentration (pg/ml)

Figure 7-1 illustrates the mean and standard error of the secretion of TNFa by alveolar macrophages in
correspondence to various concentrations of LPS after 3 and 18 hours of culture at 37°C (n=3). Afier 3 and
18 hours of culture, there was significant elevation of TNFa at LPS concentrations above 0.1pg/ml, when

compared to Opg/ml of LPS.
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Figure 7-2 illustrates the mean and standard error of the secretion of TNFu by peripheral blood in
correspondence to various concentrations of LPS after 18 hours of culture at 37°C (n=3). Afier 18 hours of
culture, there was significant elevation of TNFa at all LPS concentrations, when compared to Opg/ml of

LPS.
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7.2.2 PERIPHERAL BLOOD CYTOKINE SECRETION STUDY

Cytokine production was determined using an ex vivo whole blood culture technique.
The whole blood technique has previously been demonstrated to be reproducible and
accurate in the production of monocytic cytokines (321, 322). This assay was performed
in the same manner as previously described in section 6.2.3. The supernatants harvested

from the experiment were used for the cytokine analysis after LPS co-culture.

7.2.3 ALVEOLAR MACROPHAGE CYTOKINE SECRETION STUDY

Alveolar macrophages were prepared in the same manner as described in Chapter 4. At
each studied time-point, 2.5 x 10°/250ul of AMs [suspended in RPMI culture medium
(Life Technologies, Paisley, UK) supplemented with penicillin  50units/mlL,
streptomycin 50pg/mL and glutamine 2mmol/L] of each subject was added into each
well of a 48-well plate (Cat No. 3548, Corning Life sciences, UK). AMs were allowed to
adhere to the bottom of the well for 2 hours. AMs were washed twice with PBS. Paired
experiments were carried out for each assay with and without the addition of Spug/ml
LPS. Supernatant was harvested after 18 hours of incubation at 37°C with 5% CO,.

Aliquots of supernatant were stored at —70°C until analysis.

7.2.4 CYTOKINE MEASUREMENTS

Alveolar macrophage and plasma TNFa cytokine measurements were determined with

commercially available enzyme-linked immunosorbent assay (ELISA) kits (Cat. No.
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RTAQ00, R&D Systems Inc.. USA). The lower limit of detection was Spg/ml, and the
coefficients of variation were 2.1% to 5.1% (intra-assay precision) and 8.8% to 9.7%

(inter-assay precision) for the kits used.

Interleukin (IL)-6 and IL-10 cytokines were determined with commercially available rat
cytometric bead arrays (CBA; BD Biosciences, San Diego, CA, USA) and were
analysed on a FACSarray Bioanalyzer. This multiplex bead array assay had been
demonstrated to be a reliable quantitative method in comparison to ELISA (323, 324).
Standard curves were determined for IL-6 and IL-10 from a range of 9.9-10,000pg/ml
and 19.4-10,000pg/ml, respectively. The coefficient of variation for IL-6 was 4% to 9%
(intra-assay precision) and 4% to 8% (inter-assay precision); whereas that of 1L-10 was

6% to 7% (intra-assay precision) and 3% to 7% (inter-assay precision).

7.2.5 STATISTICAL ANALYSIS

Non-parametric Kruskal-Wallis One Way Analysis of Variance on Ranks was used as
the statistical test of choice. P<0.05 was considered as statistically significance.
Statistical analysis was carried out using the SigmaStat software package (Systat

Software Inc., USA).
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7.3 RESULTS

With reference to the “Declaration of major complications™ on page 3 of this thesis
regarding the contamination of the isogenic Fischer rats from the commercial source and
the breakdown of the —70°C freezer, only selective plasma samples of the cytokine
secretion experiments were analysed. The samples of AM cytokine secretion

experiments were not analysed in this thesis.

7.3.1 IL-6 CYTOKINE SECRETION ON DAYS3 AND 7

Figure 7-3 illustrates the results of whole blood IL-6 and IL-10 cytokine secretion assay
at days 3 and 7 after 18 hours of culture. There was significant elevation of cytokine
secretion after 18 hours of LPS stimulation for all treatment groups compared to that
without LPS co-culture. There were trends suggesting an increase in IL-6 and IL-10
secretion after LPS stimulation of the arginine-induced acute pancreatitis group at both
studied time-points versus the control. However, no statistical differences were achieved

between treatment groups and the control at those studied time-points.
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Day 3:

IL-6 secretion without LPS stimulation: H(2)=2.44, p=0.30
IL-6 secretion with LPS stimulation: H(2)=4.75, p=0.09
IL-10 secretion without LPS stimulation:  H(2)=3.88, p=0.14

IL-10 secretion with LPS stimulation: H(2)=2.46, p=0.29

Day 7:

IL-6 secretion without LPS stimulation: H(2)=0.21, p=0.90
[L-6 secretion with LPS stimulation: H(2)=3.23, p=0.20
IL-10 secretion without LPS stimulation: ~ H(2)=2.73, p=0.26

IL-10 secretion with LPS stimulation: H(2)=3.59, p=0.17
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Table 7-1 illustrates the IL- 6 concentration of whole blood culture with and without LPS stimulation at

day 3 and day 7

Absolute concentration for IL-6 (pg/ml) without LPS stimulation

Day Arginine Caerulein Control
Mean SE Mean SE Mean SE p-value
3 29.25 6.24 42.18 6.24 30.48 4.98 0.30
7 30.00 4.18 28.22 1.44 30.48 4.98 0.90
Absolute concentration for IL-6 (pg/ml) with LPS stimulation
Day Arginine Caerulein Control
Mean SE Mean SE Mean SE p-value
3 572.08 133.76 372.26 94.13 278.10 17.25 0.09
7 454.36 82.75 315.93 85.42 278.10 17.25 0.20

Table 7-2 illustrates IL-10 concentration of whole blood culture with and without LPS stimulation at day 3

and day 7

Absolute concentration for IL-10 (pg/ml) without LPS stimulation

Day Arginine Caerulein Control
Mean SE Mean SE Mean SE p-value
3 104.91 12.45 128.77 21.42 82.97 11.39 0.14
7 117.83 21.65 76.26 16.14 82.97 11.39 0.26
Absolute concentration for IL-10 (pg/ml) with LPS stimulation
Day Arginine Caerulein Control
Mean SE Mean SE Mean SE p-value
3 446.57 88.57 315.55 56.43 379.27 39.47 0.29
7 531.88 61.55 348.66 67.58 379.27 39.47 0.14
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Figure 7-3 illustrates IL-6 (a) & (b) and IL-10 (¢) & (d) cytokine secretion in peripheral blood of acute pancreatitis models (arginine & caerulein) and control at

days 3 and 7. (a) & (c) represent whole blood culture without LPS stimulation, whereas (b) & (d) represent whole blood culture with LPS co-culture. N=6 per

treatment group per time-point.
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8 HEAT SHOCK PROTEIN AND OXIDATIVE
RESPONSE IN THE LIVER DURING ACUTE
PANCREATITIS

8.1 INTRODUCTION

As discussed in sectionl.5, there is evidence that oxidative stress occurs in severe acute
pancreatitis, and the liver has been suggested to play a role in this during the disease
process. The aim of this chapter is to investigate the association between reactive
oxygen species (ROS) and haemoxygenase-1 (HO-1) in the liver during an episode of

acute pancreatitis.

8.2 MATERIALS AND METHODS

8.2.1 EXTRACTION OF HAEMEOXYGENASE-1 FROM LIVER

Livers from each treatment group (arginine, caerulein and control) were harvested at
each time-point as previously described. Approximately 40pg of liver tissue was
homogenized in tissue homogenizing buffer (THB), which was made up of 50mM Tris—
HCI at pH 7.4, 20mM NaCl, 10mM KCI, ImM EDTA, 1% sodium dodecyl sulphate
(SDS) (Sigma L3771), 0.1mM dithiothreitol (DTT) (Fluka Cat. No. 43816) and protease
inhibitor (Roche, UK). After homogenization, the suspension was centrifuged at 13,000

x g for 10 minutes at 4°C. The supernatant was stored at —70°C till further analysis.
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The concentration of total protein was measured by Lowry protein assay (BioRad
protein assay kit, Cat. No. 500 - 0121). Reagent A" was prepared by adding 20pul of
reagent S per ml of reagent A. 5ul of either protein standard or diluted liver homogenate
(1:10 with homogenized solution) of each sample was added to each well. Triplicate
measurement of each sample was performed. 25l of reagent A’ and 200ul of reagent B
were added to each well. The suspension was shaken for 15 minutes at room temperature
prior to microplate reading. The plate was analysed by a Biorad PR 2100 microplate

reader with an absorbance wavelength of 750nm.

8.2.2 WESTERN BLOTTING AND QUANTIFICATION FOR HAEMOXYGENASE-1 IN
THE LIVER
Western blot analysis of liver haemoxygenase-1 (HO-1) was performed on the cytosolic
fraction of the liver homogenate. Proteins were heated at 95°C for 5 minutes before
loading to the gel. 20ug of protein was loaded per lane. Samples underwent
electrophoresis on an 10% SDS-polyacrylamide gel according to the method of Laemmli
(325). The gels were transferred to a nitrocellulose membrane for | hour at 80mA. The
membrane was blocked in 5% non-fat dried milk for 1 hour and incubated with rabbit
anti-HO-1 (Stressgen Bioreagent Cat. No. SPA-895D, 1:5,000 dilution with 1%
BSA/TBS Tween) polyclonal antibody for an additional 1 to 2 hours at room
temperature. The membrane was washed three times of 5 minutes each with
TBS/Tween. The immunoreactive protein was visualized by enhanced

chemiluminescence, using horseradish peroxidase (HRP)-coupled anti-rabbit
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immunoglobulin at 1:2,500 dilution (Dako, Glostrup, Denmark). The band was
transferred onto film for 1-2 minutes. After probing the nitrocellulose with anti-HO-1
antibody, the antibody was washed away with TBS/Tween for 2 hours. The membrane
was re-probed again with mouse anti-B-actin antibody (Abcam Cat. No. ab6276 — 100)

to ensure equal loading of protein.

To allow semi-quantification, the intensities of the Western blot bands were quantified
by using QuantityOne software ver 4 (Biorad). A relative value of the HO-1 quantity in

the liver per subject was calculated in relation to the corresponding value of the B-actin.

8.2.3 LocAarizaTioN oOF HO-1 PROTEIN IN THE LIVER BY
IMMUNOHISTOCHEMISTRY
Paraffin-embedded sections of liver 4um thick were exposed to an anti-HO-1 rabbit
polyclonal antibody (as above), after inhibiting endogenous peroxidase with 3%
hydrogen peroxide. The endogenous liver biotin was blocked with the Avidin/Biotin kit
(VectorLab, SP-2001). The sections were incubated with a biotinylated anti-rabbit
mouse polyclonal antibody (Dako, UK), streptavidin—biotin—horseradish peroxidase
complex (Dako, UK) and 3,3-diaminobenzidine (DAB) for visualization of staining. The
sections were counterstained with haematoxylin. Normal mouse serum was substituted

for primary antibody as a negative control.
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8.2.4 MEASUREMENT OF LIPID PEROXIDATION IN THE LIVER

Liver tissue was homogenized with 1.55M potassium chloride/PBS. The homogenate
was centrifuged at 1,500 x g for 10 minutes at 4°C. The supernatant was removed.
Butylated hydroxy toluene (BHT) (Sigma-Aldrich, UK Cat. No. W218405) was added
to the supernatant to a final concentration of SmM to stop the lipid from undergoing
oxidation. Total protein concentration was measured by the Lowry method as described

above.

Malondialdehyde (MDA) was diluted with 3 volumes of the reagent (10.3mM N-methyl-
2-phenylindole, in acetonitrile) and 1 volume of 100% methanol (HPLC grade) prior to
use. MDA standards (10mM 1,1,3,3-tetramethoxypropane, in 20mM Tris—HCI, pH 7.4)
were prepared to final concentrations of 0 to 20mM. Liver total protein concentration
was diluted to Smg/ml with PBS. 50ul of total protein was mixed with 167.5ul of the
above reagent. The solution was gently vortexed before adding 37.5ul of 12N (37%)
HCI. The solution was mixed and incubated at 45°C for 60 minutes. Samples were
centrifuged at 15,000 x g for 10 minutes and absorbance of the supernatant was read at

590nm using a 96-well plate reader.
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8.2.5 MEASUREMENT OF GLUTATHIONE PEROXIDASE ACTIVITIES IN THE LIVER

Liver was homogenized as per the lipid peroxidation assay (section 8.2.4), but without
the addition of BHT. 500ug of total protein was used for each assay. Glutathione
peroxidase (GSH-Px) activity was determined at 22°C by using the Glutathione
Peroxidase Assay kit (Calbiochem, Cat. No. 354104), which is based on the coupled-
enzyme system described by Flohe et al (326). The final volume of the reaction mixture
was 240 pl. Briefly, it consisted of 75ul assay buffer (SOmM Tris—HCI, pH 7.6, SmM
EDTA), 75ul of NADPH reagent (containing 24pumol GSH, 4.8umol NADPH and >12U
glutathione reductase), and 15ul liver cytosol suspended in potassium phosphate buffer
(as prepared above). 75ul of fert-butyl hydroperoxide (0.007% aqueous solution) was
added prior to the measurement of the absorbance. The absorbance was read at 340nm
and 22°C for 4 minutes. The linearity of GSH-Px activity as a function of protein was
examined using cellular Glutathione Peroxidase (c-GPx) control derived from bovine
erythrocytes (supplied in 50mM Tris-HCI, pH 7.3, SmM EDTA, ImM ergothioneine,
ImM DTT, Img/ml bovine IgG) (data not shown). GSH-Px activity was expressed as

mU/ml.
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8.2.6 MEASUREMENT OF TROLOX EQUIVALENT ANTIOXIDANT CAPACITY
(TEAC) IN THE LIVER

Liver homogenate was prepared as in the glutathione peroxidase assay above. TEAC
was determined following an adapted method from a previously described assay, using a
96-well plate with the microplate assay filter at 750nm (327). Briefly, 2, 2’-azinobis 3-
ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation (ABTS-+) was produced
by reacting a 14-mM concentration of ABTS with an equal volume of 4.9mM of
potassium persulphate (final concentration = 7mM ABTS in 2.45mM potassium

persulphate).

The mixture was incubated in the dark at room temperature for 12—16 hours before use.
The ABTS+ solution was diluted with 5.5mM phosphate buffer saline (PBS; pH 7.4) to
an absorbance of 0.70 (£0.02) at 734nm (using a spectrophotometer) and equilibrated at
30°C. Total volume per assay was 252.5ul. An aliquot of 2.5ul of liver homogenate
(0.05mg of protein) or Trolox standard (6-hydroxy-2.5,7.8-tetramethychroman-2-
carboxylic acid) was added to 250ul of diluted ABTS:+ solution and the absorbance was
read at 30°C exactly 1 minute after the initial mix and measured every minute up to 6
minutes afterwards. The average readings from 1 to 6 minutes were taken from the final
absorbance readings. As reference to the blank, the percentage of inhibition for each
sample was calculated. A linear standard curve of TEAC against percentage of inhibition
was plotted based on the Trolox standards. TEAC for each sample was therefore

determined.
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8.2.7 STATISTICAL ANALYSIS

Non-parametric Kruskall-Wallis ANOVA was used as the statistical analysis between
arginine, caerulein and the control groups, with Dunn’s method used as the post-hoc test
when there was statistical significance. SigmaStat v3.1 (Systats Software, USA) was

used as the statistical package for data analysis.

8.3 RESULTS

8.3.1 HAEMEOXYGENASE-1 WITHIN THE LIVER DURING ACUTE PANCREATITIS

Figure 8-1 illustrates the western blot using anti-HO1 antibody for arginine, caerulein
and control groups of one of the three sets of experiment. HO-1 was significantly
induced in the liver from both arginine and caerulein acute pancreatic rodents on day |
[H(2)=25.17, p<0.001). The amount of induced HO-1 in the liver of the acute pancreatic
rodents decreased rapidly after day 1. There was no statistical difference for HO-1 in the
liver of the pancreatitis groups as compared to the control for the rest of the other

studied time-points. (See Figure 8-2.)
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Figure 8-1 illustrates the western blotting using anti-HO1 antibody of arginine, caerulein and control
groups. The top band is the band corresponding to HO1 immunoblotting, whereas the lower band is Actin
immunoblotting. The relative value for the amount of HO1 for a corresponding time-point is derived from
the division of the band density measured by QuantityOne analysis software between HO1 and Actin

level. Specimen "A4" was used as the reference specimen for semi-quantitative purpose.
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8.3.2 LOCALIZATION OF HO-1 PRODUCTION IN THE LIVER

As illustrated in Figure 8-6, HO-1 was mainly expressed along the same distribution as
Kupffer cells of the liver in both control and arginine pancreatic groups. Positive
staining was also demonstrated within hepatocytes. However, HO-1 appeared to be

expressed less within the hepatocytes than the Kupffer cells.

It is difficult to quantify the difference of HO-1 expression between the control and two
acute pancreatic groups using light microscopy. Semi-quantification by Western blotting
as described in section 8.3.1 offers a more objective measurement of HO1 expression

within the liver.

8.3.3 OXIDATIVE STRESS IN THE LIVER DURING ACUTE PANCREATITIS

In the arginine-induced acute pancreatitis, there was a significant increase in the MDA
concentration within the liver of the arginine pancreatitis group versus the control on day
3 [H(2)=9.07, p=0.01] and day 10 [H(2)=6.21, p<0.05] . This pattern was not observed

in the caerulein model. (See Figure 8-4.)

The increased MDA concentration in the liver on day 3 was accompanied by a
significant reduction of GSH-Px activity [H(2)=6.34, p=0.04], suggesting a reduction of

anti-oxidative ability. Although GSH-Px activity in the liver of the caerulein-induced
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acute pancreatitis animals followed a similar trend to the arginine group, this did not

achieve a statistical difference when compared to the control. (See Figure 8-5)

When measuring the total anti-oxidative capacity by the TEAC assay, neither of the two
acute pancreatitis groups demonstrated significant differences in the total anti-oxidative

capacity when compared to the control. (See Figure 8-3.)
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Figure 8-2 illustrates the relative value of HO-1 expression in the liver during an episode of acute
pancreatitis. N=6 per group per time-point. (" & * denote statistical significance of the relative expression

of HO-1 in the liver of the arginine and caerulein groups respectively in reference to the control group.)

Table 8-1 illustrates the relative value of HO-1 in all three treatment groups of acute pancreatitis at various

studied time-points

Relative value of HO-1 for all treatment groups of acute pancreatitis

Day Arginine Caerulein Control P-value
Mean SE Mean SE Mean SE
1 2.44 0.29 2.82 0.25 1.00 0.07 <0.01
3 1.47 0.35 0.99 0.17 1.00 0.07 0.52
0.86 0.10 0.80 0.15 1.00 0.07 0.37
10 0.94 0.15 0.97 0.26 1.00 0.07 0.76
14 0.81 0.07 1.15 0.18 1.00 0.07 0.25
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Figure 8-3 illustrates the relative value of Trolox equivalent antioxidant capacity of the liver during acute
pancreatitis. N=6 per group per time-point. (No statistical significance was found between the two

pancreatitis groups as compared to the control.)

Table 8-2 Relative values of TEAC of the liver of arginine, caerulein and control groups of acute

pancreatitis.
Relative values of TEAC of the three treatment groups
Day Arginine Caerulein Control P-value
Mean SE Mean SE Mean SE
1 1.00 0.06 1.00 0.07 1.00 0.02 0.99
3 0.94 0.03 1.00 0.06 1.00 0.02 0.45
7 1.03 0.06 0.99 0.07 1.00 0.02 0.63
10 1.00 0.06 0.98 0.06 1.00 0.02 0.93
14 1.02 0.09 1.02 0.06 1.00 0.02 0.85
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Figure 8-4 represents the lipid peroxidation in the liver during an episode of acute pancreatitis. N=6 per

group per time-point. (* denotes statistical significance (p<0.05) of the concentration of MDA measured in

the liver of the arginine group as compared to the control group.)

Table 8-3. The absolute value of MDA (uM) in the liver of the three treatment groups of acute pancreatitis

at all studied time-points

Absolute value MDA (uM) in the liver

Day Arginine Caerulein Control p-value
Mean S.E. Mean S.E. Mean S.E.
1 2.84 0.49 2.35 0.33 211 0.08 0.32
3 3.26 0.39 2.34 0.26 211 0.08 0.01
7 2.57 0.29 1.95 0.15 211 0.08 0.17
10 4.75 2.08 2.34 0.37 2:11 0.08 0.05
14 2.63 0.44 2.18 0.25 2.11 0.08 0.61
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Figure 8-5 illustrates the glutathione peroxidase activity in the liver during an episode of acute
pancreatitis. N=6 per group per time-point. (* denotes statistical significance (p<0.05) of the glutathione

peroxidase activity measured within the livers of the arginine group as compared to the control group.)

Table 8-4 The absolute value of GPx activity (mU/mg) in the liver of the three treatment groups of acute

pancreatitis at all studied time-points

GPx activity (mU/mg) in the liver

Day Arginine Caerulein Control p-value
Mean SE Mean SE Mean SE
1 408.40 16.08 403.17 16.72 430.72 15.73 0.56
3 331.58 40.72 385.42 33.72 430.72 15.73 0.04
7 394.00 35.12 415.52 17.62 430.72 15.73 0.76
10 422.12 13.31 449.13 30.97 430.72 15.73 0.97
14 428.90 17.59 425.47 29.66 430.72 15.73 0.99
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Figure 8-6 (a-d) illustrate the immunohistochemistry of the HO-1 expression in the liver of the control and
arginine pancreatitis group at 1 day after induction of acute pancreatitis. (a) & (b) represent the negative
control and HO-1 staining of the liver of the control group respectively (x20); whereas (¢) & (d) represent the
negative control and HO-1 staining of the liver of the arginine pancreatitis group respectively (x20). All
pictures were taken at the same microscopic setting. There is more DAB staining in the liver of the arginine
group as compared to the control. Most of this staining was highlighted along the distribution of the Kupffer
cells («—). However, DAB staining was more markedly in the pancreatitis group (d) than the control group

(b).
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8.4 DISCUSSION

HO-1 induction has been demonstrated with various inducers, ranging from chemical to
physical stimuli. Given that oxidative stress has been shown to occur during the early
phase of acute pancreatitis, it is logical to predict an upregulation of HO-1 in the liver
during acute pancreatitis in order to counteract the oxidative damage by ROS. However
the sharp fall of HO-1 expression in the liver 1 day after the induction of acute
pancreatitis was unexpected. This fall was demonstrated in both acute pancreatitis

models.

During the investigation of the oxidative stress status using the biochemical markers
within the liver of the arginine group, there was a significant increase in lipid
peroxidation, as well as a reduction in GSH-Px activity at day 3. These results suggested
an increase in oxidative stress within the liver during arginine-induced acute
pancreatitis. This increase of oxidative stress coincided with the downregulation of HO-
1 expression within the liver of arginine-induced acute pancreatitis. Allowing
speculation, the reduction of HO-1 expression might contribute to a reduction of anti-
oxidative power within the liver, which could therefore cause an upsurge of oxidative

stress in the liver during the initial acute inflammatory process.

Although a similar trend of oxidative stress was witnessed in the liver of caerulein-

induced acute pancreatitis, there was no significant difference between the caerulein and
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the control group. There are potentially two explanations for these differences. One
possibility is that arginine-induced and caerulein-induced models may produce a
different oxidative stress response within the liver. The other explanation could be due
to a different severity of acute pancreatitis being induced between the two models.
Although there was no statistical significance found in the histological scoring between
the two pancreatitis groups, Figure 3-15 demonstrated a milder trend of acute
pancreatitis following caerulein-induction as compared to arginine induction. It could
also be that a combination of the both explanations contributes to the differences in the

oxidative responses in both acute pancreatitis models.

Our finding that HO-1 is expressed mainly within the Kupffer cells is similar to the
results of studies from other research groups (328, 329). They have demonstrated that
over-expression of HO-1 in c¢-Jun terminal kinase-2 gene-deleted mice protected the
liver from sustaining ischaemic re-perfusion injuries. However, it is not clear whether
this over-expression of HO-1 in the Kupffer cells is associated with a reduction in
remote organ injury. Certainly, the protection of lung parenchyma injuries was not
significant when Kupffer cells were inactivated by gadolinium; whereas significant
reduction of lung parenchyma insult was observed when neutrophils were depleted
during acute pancreatitis (193). To address the question of whether HO-1 upregulation
within the liver during severe acute pancreatitis will influence the outcome of remote
organ injuries will require either an induction of acute pancreatitis in transgenic rodents

with deletion of the upstream regulatory proteins of HO-1 (e.g. c-Jun kinase deletion); or
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it will require a specific blockade of HO-1 production in the liver during severe acute
pancreatitis. Nevertheless, our preliminary results have demonstrated that there is an

increase in oxidative stress response in the liver with a downregulation of HO-1

expression during early severe acute pancreatitis.
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9 GENERAL DISCUSSION

9.1 CHOICE OF ACUTE PANCREATITIS MODELS:

There have been numerous descriptions regarding different types of induction
techniques for severe acute pancreatitis of rodents in the literatures. In broad terms, they
are divided into invasive and non-invasive modalities depending on the method of
induction of acute pancreatitis. The invasive method includes closed duodenal loop
ligation, antegrade pancreatic duct perfusion, bilopancreatic duct injection or
combination of these techniques (330-333). These induction methods for acute
pancreatitis are pathologically similar to the theory of the initiation of human acute
pancreatitis, based on the Opie theory. Although they are reliable and reproducible, these
methods require general anaesthesia or terminal anaesthesia to the animal with surgical

intervention to the gastrointestinal tract or pancreas.

For instance, the antegrade pancreatic duct perfusion or bilopancreatic duct injection
models will require the combination of cannulation of the pancreatic duct and continous
perfusion of the inducing agent at a constant rate. This procedure is therefore complex
and would not have been easily achievable technically and physically during the
experimental time-points. If any of these invasive model had been used, more rodents
would likely have had to have been euthanized. This is therefore against the three
principles of refinement, reduction and replacement for animal research set out by the

Home Office of the UK.
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The other type of induction methodology is classified as non-invasive, including gene
knockout, hormone-, alcohol-, diet-, and L-arginine- induced acute pancreatitis. Most
non-invasive induction methods have the advantage of being simplier to induce acute
pancreatitis, more cost effective, and larger scales of induction can be performed at the
same setting. Hormone-, diet- and L-arginine- induced acute pancreatitis are the most

commonly described methods in the literature (255, 334, 335).

The diet- induction method is the simplest of all. Severe acute pancreatitis is induced by
feeding choline-deficient diet containing ethionine (CDE diet). However, it is species
and gender specific, and has a variable onset of acute pancreatitis (336). Despite that,
other research groups have successfully minimized the mortality associated with the
model (337). This model produces high mortality, which occurs after 2 — 8 days. In
addition to acute pancreatitis, there are changes in the liver and central nervous system,
which could instigate multiple organ failure and therefore causes other than acute
pancreatitis could contribute to the mortality. With these considerations, it would not
have been the most suitable model to investigate the immuological responses outlined in
this thesis. Caerulein and L-arginine induction models were the models of choice for this

research project.
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Caerulein- induced acute pancreatitis is one of the most characterised acute pancreatitis
model (307). Its clinical properties after the induction of acute pancreatitis had been well
documented in the literature. It is relatively simple and inexpensive to perform.
Pulmonary injury in rats has also been reported with resemblance to the early stages of
ARDS in human. Specific changes to intracellular membane systems of the acinar cells
using the caerulein model has also been described as being similar to human acute
pancreatitis. It is certainly the model of choice to investigate the healing and
regeneration of injured pancreas during acute inflammation. However, its drawback is

the induction of a milder form of acute pancreatitis (338).

On the contrary, L-arginine induction allows high reproducibility and the ability to
achieve selective dose-dependent pancreatic acinar cell necrosis (339). By adjusting the
arginine dose, it is suitable for investigating both early and late phases of acute
pancreatitis. As stated in previous chapters, this model was relatively new and not as
well characterised as compared to the caerulein model. L-arginine is also a substract
within the NOS pathway and therefore could have immuno-modulatory properties. The
L-arginine model was therefore not used as the sole model for the purpose of this
project. This became more apparent in Chapter 6, when the immune response in relation
to apoptosis/necrosis was examined more closely in peripheral blood leukocytes. To
investigate whether L-arginine had a direct response on the immune function of
leukocytes in L-arginine-induced acute pancreatitis model was beyond the scope of this

thesis.
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9.2 SYSTEMIC AND REMOTE ORGAN IMMUNE RESPONSE THROUGHOUT
ACUTE PANCREATITIS

The immune response within whole blood was used to simulate the systemic immune
response, whereas the lung immune response was used as the surrogate marker for the
remote organ response. Phagocytosis, cytokine response and the quantification of
cellular apopotosis/necrosis were chosen as the tools to characterize the immune
response during the disease process. For the alveolar macrophage phagocytosis, there
was close resemblance between the two acute pancreatitis models throughout the disease
process. Although there was a tendency to increased alveolar macrophage phagocytosis
halfway through the recovery of acute pancreatitis, there was no difference between the
pancreatitis groups and the control groups until the disease had completely resolved.
There was a sudden surge of increased alveolar macrophage phagocytosis ability
towards the end of the disease. This finding contradicts our second hypothesis that AM
phagocytosis is dampened at the later stage of the disease process. Instead there had
been an enhancement of its phagocytosis capacity towards the complete resolution of
acute pancreatitis. The exact mechanism is unclear. One of the possible explanations is
that monocytes are activated via an alternative pathway as compared to the classical
pathway, and therefore exert an anti-inflammatory influence, which contributed to the
resolution of inflammation (340). At the same time, AMs could also be activated via this
alternative activation pathway (341), which has been suggested to enhance phagocytosis.
The other possibility is that the models themselves are not severe enough to replicate the

clinical scenario of patients with severe acute pancreatitis in the intensive care setting.
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This surge of alveolar macrophage phagocytic ability was also demonstrated in the
peripheral blood leukocyte phagocytosis. The increase of peripheral phagocytosis at the
end of acute pancreatitis was contributed mainly by the monocytes. These observations
suggested that the peripheral blood monocytes and tissue macrophages are been

activated towards the resolution of the acute inflammatory process.

As discussed in Chapter 1, there was an overall reduction in peripheral blood
phagocytosis during the early phase of acute pancreatitis. Our findings were comparable
with the findings in rodent models of sepsis (167, 168) and human severe acute
pancreatitis (169). What is interesting is the finding that peripheral blood phagocytosis
was significantly dampened halfway through the resolution of acute pancreatitis. Both
granulocyte and monocyte phagocytosis were suppressed at day 7. This overall
reduction was predominately contributed to by granulocytes. Not only was there
reduction in granulocyte phagocytosis earlier on in the disease process, granulocytes
were also shown to survive longer, with a reduction in their apoptosis and necrosis. This
imply that there is a suppression of neutrophil bacterial clearance ability during acute
pancreatitis, despite a lengthening of its survival. This again contradicts our initial
hypothesis of “lengthening leukocyte surivival and increase efficiency in bacterial
engulfment at the early stage of the disease secondary to a pro-inflammatory state’.
This thesis could not pinpoint the exact mechanisms that might have contributed to the

functional deficits in neutrophils. Other studies also demonstrated similar findings when
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they investigated the activation of neutrophils and their corresponding phagocytosis
capacity during acute pancreatitis (168, 169). Although there was a reduction of
leukocyte apoptosis/necrosis towards the resolution of acute pancreatitis, there was an
increase in the monocyte or granulocyte phagocytosis when the disease was resolved, as
compared to reduction in leukocyte phagocytosis at the early stage of disease. Different
cell signalling mechanisms are therefore likely to be involved at various stages of severe

acute pancreatitis.

Lipopolysaccharide (LPS) suppresses apoptosis (319). Interestingly, when LPS was used
to simulate a septic event during acute pancreatitis, the only time-point when LPS
exerted its net effect in suppressing granulocyte apoptosis was again at day 7. This
coincided with the reduction of granulocyte and monocyte phagocytic capacity. Given
the close involvement of neutrophils in the pathophysiology of severe acute pancreatitis,
it would not be unreasonable to speculate that a “second hit” infectious cause could
trigger a second wave of SIRS response in addition to the response attributable to the
initial insult. With the reduction in neutrophil bacterial phagocytosis during acute
pancreatitis, this might induce a positive feedback cycle for an augmentation of this

septic response, and lead to a detrimental outcome in patients.

One of the hypotheses of this thesis was that inflammatory cell apoptosis and

phagocytosis were associated with the production of the pro- and anti-inflammatory
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cytokines. Cytokine measurement in both peripheral blood and lung parenchyma at
different time-points during the disease process could provide a plausible explanation
regarding the corresponding phagocytic capacity and apoptotic rates. For instance, an
upregulation of anti-inflammatory cytokines could be associated with the reduction of
leukocyte phagocytic ability. Unfortunately, due to the technical complications as
declared at the outset of the thesis, this part of the studies was not carried out. Only very
limited samples at some time-points (described in chapter 7) were analysed. The
accuracy of those results requires careful interpretation. There were therefore gaps in

this research, which could not fully explain our observational findings in this thesis.

9.3 LIVER, HEMEOXYGENASE-1AND ACUTE PANCREATITIS

Most researchers used lung injury as the surrogate marker for remote organ dysfunction
in severe acute pancreatitis. Towards the end of this research project, it became apparent
to me that the liver had been overlooked, despite the fact that the blood supply from the
gastro-intestinal tract will always pass through the liver prior to entering the systemic
circulation and the lung. With HO-1 being a potent antioxidant and playing a critical role
in the anti-stress mechanism of inflammation, this thesis has confirmed its upregulation
within the liver during the early phase of the disease process. Also, it was demonstrated
that its upregulation was associated with an increase in antioxidative capacity using lipid

peroxidation and glutathione peroxidase assays.



Although it was not immediate apparent regarding the direct association between HO-1
and the SIRS or systemic inflammatory changes discussed in previous chapters, this
result can provide a platform of knowledge for further investigation in this area. One
way for future research is to examine the systemic and lung inflammatory response after
direct manipulation of HO-1 within the liver, which could be performed by either
chemical inhibition or using over-expression of HO-1 in c-Jun knockout mice (328,

329).
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9.4 SUMMARY AND FUTURE RESEARCH

This thesis has identified deficits in the ability of neutrophils as phagocytes during acute
pancreatitis, despite the lengthening of their survival time. This deficit was most marked
halfway through the recovery of the disease. This had no correlation with the phagocytic
capacity of the AMs throughout acute pancreatitis. Since neutrophils are actively
involved in the inflammatory process of acute pancreatitis, the increase in their survival

could augment further SIRS, and the subsequent septic responses.

Regarding future research, there are three areas that would merit further investigation.
First, the findings of this thesis in peripheral blood phagocytosis and leukocyte survival
need to be demonstrated in a human clinical study, in order to affirm the extrapolation of
these findings from rodent models to human. This is a difficult task by itself mainly
because of the variation of timing when a patient presentsd to hospital with severe acute
pancreatitis. Therefore, the exact time-point analysis could be difficult to achieve.
Secondly, given the close association of neutrophil involvement during acute
pancreatitis as well as its importance in the resolution of inflammation, it is undoubtly
important to characterize the functional behaviour of neutrophils throughout severe
acute pancreatitis locally and remotely. It is also vital to identify factors or signalling
molecules causing the reduction of neutrophil phagocytosis but yet increased its survival
during the recovery phase. Any of those factors affecting neutrophils can potentially be a

target with therapeutic intent for future research. The final aspect that is worth
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investigating is to further characterise the role of HO-1 in the liver during acute

pancreatitis, as discussed in section 9.3.
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