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Abstract 

The role of elasticity and disorder and their interplay in plastic deformation processes is inves-
tigated on different length scales. Random disorder, in the form of impurities, fluctuations of 
defect densities and spatial heterogeneities, is responsible for a wealth of phenomena including 
surface roughening, non-linear dynamic response, stick-slip behaviour and temporal intermit-
tency, which are observed in a wide variety of physical systems. A theoretical description of 
these phenomena is provided by theories of pinning and depinning transitions. In this work, 
these aspects are investigated in the context of plastic deformation of random media, such as 
real crystals with disordered microstructures or disordered elastic continua. Under the effect 
of an external force, these systems exhibit a complex behaviour arising form the competition 
between elasticity and disorder. Disorder tends to perturb the system, which reacts by oppos-
ing elastic restoring forces. This complex small scale dynamics determines the macroscopic 
behaviour of irreversibly deforming materials. These aspects are studied on different length 
scales. 

The problem of the depinning transition occurring in dislocation assemblies is first investi-
gated. Dislocations are microstructure defects mediating plastic deformation. Under the effect 
of external forces, they are driven through disordered landscapes and rearrange into complex 
assemblies. A theory of pinning and collective behaviour of linear and planar dislocation ar-
rays is formulated. Non-local elastic properties arise naturally form long-range dislocation 
interactions and influence dramatically statics and dynamics of these systems in the presence 
of disorder. Comparison with numerical results and experimental data confirms the validity of 
this approach. 

An application to vortex lattices in Type II superconductors is then considered. Dislocation 
assemblies such as low angle grain boundaries are often observed in these systems, determining 
the emergence of a polycrystalline phase. A theory of vortex polycrystals is proposed, in the 
conceptual framework of grain boundary pinning. Several aspects, including grain growth, 
transport properties, hysteretic behaviour and vortex lattice melting are investigated. Results 
are found in agreement with numerical simulations and experimental observations. 

On larger length scales, a theory of plastic flow in the presence of random stress fluctuations 
is discussed. The problem proves to be described by a continuum mean-field pinning model, 
where disorder is produced by randomness in dislocation densities. Such a description provides 
a theoretical framework to understand the origin of the critical behaviour often observed in 
plastically deforming crystals in the form of self-affine surface roughening and intermittent 
avalanche motion. 

The problem of interface failure is finally investigated and its applications to landslides and slab 
avalanches are discussed. It is shown that randomness can decrease the strength of a snow or 
clay slope by inducing crack nucleation, or increase it by promoting crack pinning. Failure is 
proven to be the result of this complex interplay. 
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Introduction 

The balance between elasticity and disorder is responsible for equilibrium properties and dy-

namic response in a profuse abundance of physical systems exhibiting irreversible deformation. 

A typical approach to the subject of deformation consists in looking at the problem in terms of 

transport, either of defects or of the deforming medium itself. 

Natural phenomena often involve collective transport, which is often characterised by large-

scale critical behaviour, as in slab avalanches, landslides or earthquakes. On smaller length 

scales, collective transport is encountered in familiar contexts such as fracture, slip-stick events 

or glide in the presence of friction in general. 

In fact, non-equilibrium dynamics can be observed also at microscopic scales. Even when 

we see "ordinary" and smooth behaviour of materials during deformation, at the micron scale 

the system undergoes abrupt changes, defects proliferate randomly and rearrange according to 

complicated patterns. The system deforms in an intermittent manner: what appears as a regular 

process on the large scales of common observation, is characterised by apparently irregular 

bursts and intricate spatiotemporal signatures on microscopic scales. 

Ordering processes such as recrystallisation, i.e. the restoration of crystalline structure over a 

lattice, can be described in terms of critical behaviour too. Defects are expected to slide both 

cooperatively and individually through a series of metastable states, always being subject to 

instabilities induced by their own mutual interactions. 

Even properties of electric and electronic devices are influenced by critical transport in the mi-

croscopic domain. Although the transport of conduction electrons is a slow, close-to-equilibrium 

process, stability and performance of superconductor based devices are undermined by the crit-

ical response of the material. In particular, the remarkable class of Type II superconducting 

crystals and alloys shows an intriguing critical behaviour in the presence of an applied mag-

netic field, as interacting current vortices and topological defects determine the macroscopic 

efficiency of the system as well as its phase stability. 

Of course, such an abundance of physical examples, including geological events as well as 

atomistic scale phenomena within its range, may be confusing at first. One may wonder what 
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earthquakes and crystals have in common, and in which sense criticality observed in the former 

is "the same" as the one encountered in the latter, if a closer.look is taken 

What characterises all the systems that we have briefly introduced, as well as many more, is the 

role of randomness in irreversible deformation. Geological faulting occurs on randomly disor-

dered substrates. Rupture is governed by random forces exerted by defects. Topological defects 

in deforming crystals are subject to stress fields generated within their random arrangements. 

Vortices get pinned by random heterogeneities in the underlying superconductor. As the reader 

may notice, microstructural randomness, i.e. disorder, plays a key role. It does not simply 

perturb the response of the system to an external load. It induces a novel class of phenomena, 

including intermittency, avalanches, spatial heterogeneity and roughening. 

Such phenomena are explained by the theory of collective transport in random media. Accord-

ing to the related theoretical approach, the system perceives the presence of disorder, induced 

by spatial heterogeneities and randomly distributed defects, and deforms according to linear 

elastic behaviour. An infinitely stiff medium would not allow deformation. Elastic behaviour, 

instead, allows disorder to perturb the medium in order to reduce energy. In the absence of ex-

ternal loads the system is pinned in a stable configuration. Introducing a driving force, critical 

phenomena such as avalanches appear, as the system is driven through a sequence of metastable 

states. For strong enough loads, beyond a critical point, the system depins, i.e. fails or breaks, 

generating large scale flow events - the example of an earthquake might be instructive in this 

case. 

In other words, the behaviour of a random medium is governed by three competing effects: (1) 

disorder tends to corrugate the medium, as deformation allows it to explore lower energy areas 

randomly disposed in the underlying substrate; (ii) elastic forces counteract deformation in 

order to minimise elastic energy; (iii) the external force acts on the medium inducing, depending 

on its intensity, deformation, creep motion or depinning. 

The generality of such a description allows the so called pinning theories to account for the 

behaviour of a huge variety of diverse phenomena, including earthquake onset, fracture and 

vortex dynamics, as well as motion of magnetic domain walls or solid-liquid contact lines. 

In this thesis we summarise the work which we have done on this field over the past years. 

We investigate several properties of diverse physical systems and explain their irreversible, or 



plastic, behaviour in terms of the interaction between elasticity and disorder 

An elastic description of deforming bodies is appropriate in the case of small deformations. 

This description holds, for instance, when deformation is induced by immobile defects and 

spatial heterogeneities embedded in the medium (quenched disorder). Determining elastic 

properties may not be, however, a trivial task. The elastic description of deforming strings 

and interfaces - the so called local elasticity approach - is a powerful tool in several cases. 

Nevertheless, the elastic response in certain systems is given by long-range interactions, which 

result in a stiffening of the medium under examination. Such systems fall in the class of non-

local elasticity. One can in principle assess the type of elasticity by calculating the elastic 

response to a perturbation. This may not always be easy as several complications may arise, for 

instance, from anisotropy, but is in general essential as the interaction with disorder depends on 

the elastic nature of the medium. These aspects are investigated in this work. 

In the first place, we consider the problem of dislocation dynamics within a disordered land-

scape. Dislocations are responsible for plastic deformation of crystalline materials. Due to their 

long-range interactions, they tend to glide cooperatively, forming in general large assemblies 

which move through the material according to complicated spatiotemporal patterns. The pin-

ning of an isolated dislocation has been studied in the past, but it does not necessarily account 

for the real nature of the problem, given the collective nature of dislocation behaviour. De-

veloping an analytical theory of the depinning transition of a generic ensemble of interacting 

dislocations is of course a formidable task. Linear assemblies, however, such as pileups and 

low-angle grain boundaries (LAUB) are often encountered experimentally during relaxation 

processes and provide a nice exemplification for the problem of the interplay between elasticity 

and disorder. 

We develop an elastic theory for such arrangements and conclude that their response to defor -

mations falls into the category of non-local elasticity. Pileups and grain boundaries are thus 

stiffer than dislocation lines and this affects dramatically their behaviour in the presence of 

quenched disorder. The problem of depinning is then studied in the light of these results. At 

stresses close to the depinning threshold, the dynamics exhibit critical behaviour. Referring 

to previous renornialisation group results, we gain a complete quantitative picture of the de-

pinning transition. In the elastic approximation, pileups and low angle grain boundaries are 

equivalent to a standard interface depinning problem with long-range elasticity. In two dimen- 
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sions, the problem can be mapped on a contact line or a planar crack, while in three dimensions, 

the system mimics dynamics of magnetic domain walls. 

Next, we examine applications of grain boundary depinning to vortex lattices in Type II super-

conductors. Experimental observations often show that these systems exhibit polycrystalline 

ordering under specific conditions. Grain boundaries break topological order into domains of 

different orientations. In spite of the wealth of observations, no previous theory accounts for 

the emergence of a vortex polycrystal. However, a polycrystalline arrangement is expected to 

dramatically modify transport properties in the underlying superconductor. The critical, current, 

below which vortices are pinned and the material conducts without resistance, is expected to 

change in the presence of a vortex polycrystal. At the same time, the emergence of amorphous 

and liquid phases in vortex matter is preceded by a metastable polycrystalline arrangement. 

In order to investigate properties of vortex polycrystals, we re-derive non-local elasticity in the 

case of vortex lattice grain boundaries and re-formulate an appropriate pinning theory. We ex-

plain the formation of a polycrystal in terms of competition between elastic forces and disorder 

and accordingly investigate several aspects of the polycrystalline state including the dynamics 

of grain growth. The validity of our model is assessed by comparing results with experiments. 

Transport properties are discussed in the light of a numerical implementation of the model. The 

system shows enhanced critical current and hysteretic behaviour. The technological relevance 

of a higher critical current is evident, since vortex motion determines resistance and dissipation 

of the superconductor. A vortex polycrystal is more effectively pinned and ensures absence of 

resistance at higher induced currents. Finally, the role of grain boundaries in the melting of 

vortex lattices is examined through phenomenological arguments. 

Then our attention turns to larger length scales, where the discrete nature of microstructure 

defects is averaged over large volumes and plastically deforming materials are described by 

continuum models in terms of plastic flow. Even on these scales, where the discrete nature of 

the underlying defected lattice is supposed to homogenise, the system exhibits heterogeneous 

features. As stated above, plastic flow proceeds through abrupt bursts, or "avalanches", with 

scale-free size distributions, while surfaces show self-affine morphology. These findings are 

currently interpreted as signals of the vicinity of a phase transition. In other words, crystals 

under deformation are envisaged as close to a critical point (yielding transition). 

El 



In this context, we propose a simple theoretical model, accounting for heterogeneities intro-

duced by fluctuations in dislocation densities, which are supposed to be reminiscent of complex 

dislocation dynamics on smaller scales. The system proves to be adequately described within 

the theory of collective transport in random media, as the ensemble behaves like an elastic 

manifold driven through a disordered landscape. Numerical implementations performed by our 

co-workers confirm theoretical predictions. The model explains the experimental observation 

of avalanches as well as the roughening of surfaces according to scale-free patterns, confirming 

the hypothesis of critical behaviour and corroborating the conceptual framework of a yielding 

transition. 

Finally, we examine the problem of slope failure, an irreversible deformation phenomenon 

which typically occurs on macroscopic length scales. In this regime, deforming bodies have 

no memory of processes occurring at the micron scale and are suitably described by elastic 

continua and related discrete approximations. Failure is governed by interface crack nucleation 

and propagation and disorder at the interface is expected to influence the failure mode. 

We focus on the onset of slope failure, which commonly occurs in nature every time a landslide 

or a slab avalanche take place. We examine elastic properties of a snow or clay slope on 

a rigid bedrock and demonstrate that failure is governed, by pinning of propagating interface 

cracks. Crack fronts exhibit non-local elasticity, like contact lines or linear dislocation arrays. 

In the presence of disorder they exhibit critical behaviour and roughen according to scale-free 

patterns. Numerical simulations performed by our co-workers confirm this picture, allowing us 

to assess the validity of our description. 
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Chapter 1 
Random media in plastic deformation 

This introductory chapter is meant to outline the different theoretical frameworks underlying 

the present work. Its aim is in particular to emphasise connections between theoretical ap-

proaches which describe apparently different physical systems within the common background 

of elasticity in the presence of disorder and related depinning theories. 

1.1 General aspects of plasticity in the presence of disorder. 

That of plastic deformation is a very general problem, responsible for a rich phenomenology 

occurring in diverse physical systems. One of the main aspects of plastic behaviour is its 

multiscale nature, which makes the formulation of a "definitive" theory a formidable task. 

1.1_1 Basic length scales 

The behaviour of a deforming crystal is the result of the interplay of processes occurring on 

length scales extending from the atomistic scale to the macroscopic sizes encountered in ex-

periments. Such process are in general interdependent. As a consequence, the knowledge of 

microscopic foundations of plastic phenomena is essential for understanding their nature. 

Length scales occurring in plastic deformation can be classified as follows [1]: 

. The atomistic scale, where the problem comprises motion of individual atoms and their 

mutual interactions. Plasticity at this scale is explained ih terms of dislocation core struc-

tures, dislocation mobility and short range interactions. 

• The microscopic scale, where dislocations are "quanta" of plastic deformation. From the 

viewpoint of elasticity theory they appear as singularities in a disordered continuum and 

interact by long range fields, gliding according to collective patterns. Although assem-

bled in extended arrays, they retain their discrete nature, their average spacing being the 

7 



8 	 CHAPTER 1. RANDOM MEDIA IN PLASTIC DEFORMATION 

appropriate measure of this length scale. A rich phenomenology is observed, including 

relaxation of dislocation arrangements, depinning of linear arrays, grain boundary glide 

and early stages of recrystallisation and grain growth. The typical approach to these 

problems is thus to investigate dynamics of both isolated and interacting dislocations. 

The mesoscopic scale, where plasticity is mediated by spatial distributions of disloca-

tions described by continuous densities and correlation functions. Internal stress fields 

come from the statistical summation of stress fields of large numbers of dislocations. 

Dislocationmotion can be described in terms of smooth flow or, as recently discovered, 

intermittent avalanches. Continuum models are typically adopted to investigate plasticity 

on this scale. 

The macroscopic scale, where heterogeneities and incoherent fluctuations are averaged 

over domains which constitute volume elements of the examined specimen. Plastic be-

haviour is described by deterministic constitutive laws. 

1.1.2 Disorder on different length scales 

The nature of disorder varies according to the examined length scale. On the atomistic/microscopic 

scale, disorder acting on dislocations has two main sources: 

• Point defects - Solute atoms and particle inclusions constitute point-like crystal defects, 

often referred to as sources of quenched disorder. They determine pinning providing low 

energy areas for dislocations which are thus encouraged to roughen in spite of the elastic 

"cost" of deformation. They exert short-range forces. However, their individual nature 

is relevant only in the low density limit (strong pinning). For a dense distribution of de-

fects, instead, short-range forces are statistically superimposed and generate a collective 

pinning field. 

• Other dislocations - Immobile "forest" dislocations can be responsible for pinning of 

mobile dislocations. Unlike point defects, dislocations exert long-range stresses. The 

superposition of dislocation stress fields results in a fluctuating microscopic pinning field. 

Turning to mesoscopic length scales, disorder is given by randomness in the dislocation ar-

rangement. Spatial heterogeneities in dislocation densities produce fluctuations in the internal 

stress field of the same nature as the ones observed on microscopic scales. 
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Finally, in the case of macroscopic continua disorder is usually provided by spatial hetero-

geneities, density fluctuations and surface roughness (in the case of tribology problems). 

How disorder affects equilibrium of these systems is explained in terms of pinning. An in-

finitely stiff medium is not affected by disorder. An elastically deformable medium, instead, 

is perturbed by disorder, which allows the deforming medium to explore lower energy areas. 

Deformation determines an increase in elastic energy, which is counteracted by the energy gain 

associated with disorder. In the absence of external forces, the balance between these two ef-

fects results in a stable configuration, which corresponds to a minimum in the total energy. 

The elastic medium is therefore collectively pinned by the disorder. If an external force is in-

troduced, this configuration is no longer stable and the medium moves through a sequence of 

metastable states, giving rise to avalanche phenomena. If the applied force exceeds a critical 

value, no more metastable states exist: the medium depins and starts moving collectively. 

A complex theory lies beyond the qualitative idea of a depinning transition that we have pro-

posed so far. In fact, the theory of pinning, depinning transitions and transport phenomena in 

random elastic media transcends the context of plasticity and has found several applications 

over the past years in a wide variety of physical systems. 

Pinning theories explain dynamics of complex systems in terms of the competition between 

elastic properties of the deforming medium and effects of the underlying disorder. This kind of 

approach can be extended to the case of plasticity and this is in fact one of the guidelines of the 

present work. To this end, the following section is devoted to a short summary of the current 

knowledge regarding pinning. 

1.2 Pinning theories - an overview 

Pinning theories have proven to be successful in describing several phenomena involving elastic 

media pushed through disorder. Considerable efforts have been made in order to understand 

how quenched impul-ities influence equilibrium and transport of, for instance, charge density 

waves [2-5], flux lines in Type II superconductors [6—I1], dislocation lines [12-14], domain 

walls in ferromagnets [15, 161, contact lines [17,18], crack fronts [19,20] and invasion fronts 

[21,22]. 

A rigorous treatment of pinning theories can be found in the vast literature concerning this topic 



10 	 CHAPTER 1. RANDOM MEDIA IN PLASTIC DEFORMATION 

(see e.g. [5, 23-29]) and predictions have been confirmed by numerical simulations [26, 30-37]. 

Here we show the basic aspects of the problem and the main results as they turn out useful in 

the next chapters. 

1.2.1 Formulation 

Let us consider a d-dimensional manifold (e.g. a line, an interface) moving transversally 

through a d + 1-dimensional medium. The d-dimensional vector r gives the coordinates par-

allel to the average orientation of the manifold, while 11 indicates the transversal coordinate. 

The configuration at a time t is given by n(r, t), which is assumed to be single valued in order 

to avoid overhangs. The motion of our manifold obeys overdamped dynamics (i.e. viscosity 

overpowers inertia) and the equation of motion in the presence of an external force F€  acting 

on the elastic manifold is given by 

t) = FeXt + f F(r - r')[u(r', t) - u(r, t)]dd? + SF(r, u)  

where i is a mobility coefficient, F(r - r') is the kernel characterising the elastic response of 

the manifold and JF(r, h) accounts for the random disorder that "pins" the manifold. 

The behaviour of the system depends on three main factors: 

• The dimension d. Equation 1.1 describes a non-equilibrium phenomenon. In the fol-

lowing it will become clear that depinning is a non-equilibrium phase transition. As 

for equilibrium phase transitions, the dimension plays a key role in determining critical 

behaviour. 

• The elastic kernel F. In its Fourier representation it assumes the form F(k) oc Ikia. If 

a = 2, local elasticity (short range) description holds, while a = 1 signals non-local (long 

range) elastic response of the manifold to deformations. The case of a = 0 corresponds 

to infinite range and is encountered in the mean-field description of the problem. 

• The random force field SF(r, h). Pinning forces are assumed time-independent. This 

means that we deal with quenched disorder. Statistical properties of SF(r, h) are given 

by 
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u - u' \ 

	

(SF(r,u)) = 0, (SF(r,u)SF(r',n')) = q 	/ 
S(r - r')f 	 (1.2) 

The random force field has zero average and short range correlations. The function 

f characterises correlations along the transversal direction and decays faster that alge-

braically. Correlation lengths of disorder along the longitudinal and transverse directions 

are given by 611 and j respectively. 

1.2.2 Critical behaviour and scaling relations 

Random elastic media in the presence of an external force are slowly driven non-equilibrium 

systems. They exhibit critical behaviour in the vicinity of the depinning transition. The external 

force is thus the control parameter, while the average velocity, which decays as the depinning 

threshold is reached from above, is the order parameter [38]. Correlation lengths diverge close 

to the critical point and small scale details become irrelevant. The evidence of critical be-

haviour, as well as of a non-equilibrium depinning transition, was first found within several 

numerical [39-46] and experimental [47-50] investigations. 

When the applied force FPt is small, the manifold is pinned in one of the many possible states 

in which 8u = 0 at all points. However, if Ft is larger than a threshold value F, the manifold 

is depinned and moves with a constant average velocity v. While approaching the critical force 

from above, velocity exhibits a power law decay 

V 	(Fext - 	 (1.3) 

where 0 is called velocity exponent. While approaching the threshold from below, instead, the 

manifold moves in the form of intermittent bursts, each time jumping to the next metastable 

state. These avalanche-like phenomena have scale-free distribution in size. 

The manifold exhibits self-affine morphology and its correlations satisfy the dynamic scaling 

form 

It-t'I 

	

([n(r,t) - u(r,t')j2) = ft - r' 121g ( 
	

) 	 (1.4) 
Ir—r'Ij 
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as a function of the roughness exponent ( and the dynamical exponent z, through the scaling 

function g which goes to a constant as its argument approaches zero. Scale-free behaviour is 

cut off at a correlation length which critically diverges as 

	

(F - Fc)" 
	

(1.5) 

where ii is the correlation length exponent. The probability of having an avalanche of size s 

(swept area/volume) is 

	

As) = sf8 (s/so) 
	

(1.6) 

where ft decays faster that algebraically at infinity and the cut-off so  is the size of an avalanche 

of characteristic extension e along the transverse direction i.e., after Equations 1.4 and 1.5, 

So  - lFt - FI''@(). 

Critical exponents are not completely independent. A relation between exponents is obtained 

by simple scaling arguments from the expressions above or by more rigorous arguments (see 

e.g. [23]),  in the form 

(1.7) 

while, for the avalanche statistics, one obtains [51] 

d+ 1/v 	
(1.8) 

As in the case of equilibrium phase transitions [38],  the scaling exponents are universal. This 

means that they do not depend on the small-scale nature of the systems which they describe, but 

only on the parameters ci and a of the model. The critical behaviour of systems with the same 

values of ci and a (i.e. within the same universality class) is described by the same exponents. 

Scaling relations provide connections between critical exponents. However, determining the 

numerical values of these exponents is a complex task, as it will become clear in the following. 



1.2. PINNING THEORIES - AN OVERVIEW 	 13 

1.2.3 Renormalisation group, critical dimension and mean-field behaviour 

A field theoretical solution of the dynamic problem in Equation 1.1 is obtained using the MSR 

formalism (see Reference [52]): various response and col -relation functions for the field u(r, t), 

as well as related critical exponents, can be generated from the functional (partition function) 

Z 
= f Vu(r, t)Vü(r, t)e 8 , 	 ( 1.9) 

where S is the action obtained form Equation 1.1. The main problem is thus to "calculate" Z. 

This is possible performing a saddle point expansion of the problem around the Gaussian ap- 

proximation of e 9 , which proves to be equivalent to mean-field behaviour. A critical dimension 

= 2ã arises at this point. The Gaussian approximation holds for d > d, when corrections 

become irrelevant at large length and time scales and depinning exponents take their mean-field 

values. At d = d the action has an infinite number of marginal terms. However, given the di-

vergence of correlation lengths, the system shows scale-free behaviour and small-scale details 

can be ignored. The related procedure is called renormalisation group (RU) transformation and 

is carried out integrating over large momenta and frequencies - corresponding to the small 

scale spatiotemporal behaviour which one wants to "remove". Once the result at the critical 

dimension is known, functional renormalisation in € = - d provides results for d < d. 

In the present work, we are not interested in further technical details, which can be found in the 

literature (see e.g. [23] and references therein). Results for critical exponents, which will be 

extremely useful in the following, are compiled in Table 1.1. 

As confirmed by numerical simulations (see References in Table 1.1) mean-field behaviour 

is encountered above the critical dimension, while for d .c d critical exponents are highly 

nontrivial. Interestingly, the roughness exponent is zero in the mean-field description. This 

means that above the critical dimension the manifold is left smooth by disorder and does not 

exhibit macroscopic fluctuations. Roughness is, however, supposed to grow logarithmically at 

d = d, anticipating the self-affine morphology which characterises systems below the critical 

dimension. 
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d a I FRG 0(E) FRO C(s 2 ) simulation 

roughness 1 2 1.00 1.43 1.25 ± 0.05 [26] 
2 2 0.66 0.86 0.75 + 0.02 [26] 
3 2 0.33 0.38 0.34 + 0.01 [26] 
T T 0.33 0.47 0.34 ± 0.02 [33] 
-- 0 

correlation length 1 2 0.75 0.98 1.00 ± 0.05 [53] 
2 2 0.67 0.77 0.77 ± 0.04 [54] 

3 2 0.58 0.61 
T T 1.33 1.58 1.52 ± 0.02 [33] 

2/d  

velocity 1 2 0.67 0.31 0.25 ± 0.03 [26] 
2 2 0.78 0.62 0.64 ± 0.02 [26] 
3 2 0.89 0.85 0.84 ± 0.01 [26] 

T 0.78 0.59 0.68 ± 0.06 [33] 
1 

Table 1.1: Critical exponents for interface depinning as a function of the parameters d and a; 
renormalisation group results (ERG, expansion in e = d - d) after [29];  mean-field 
results after [16].  Courtesy of M. Zaiser. 

1.2.4 Depinning threshold 

Existence and uniqueness of the depinning threshold depend on the nature of the elastic kernel F 

in equation 1.1. As discussed above, an infinitely stiff medium (F -* oc) never gets pinned. For 

manifolds of finite elastic stiffness (F < Dc), instead, pinning is encountered and the uniqueness 

of the depinning threshold is ensured if the elastic kernel F is positively definite, according to 

Middleton's no passing-theorem (see Reference [ 55] for details). 

Weak pinning 

In order to get a qualitative picture of the depinning problem, we present a simple argument, 

which has been widely used over the past decades, even before a full understanding of the 

depinning problem was achieved. This argument has been proposed by Larkin for flux lines 

in Type II superconductors [56], Labusch for dislocation lines [12, 13], Imry and Ma for the 

random field Ising model [57],  and Fukuyama and Lee for charge density waves (CDW) [2]. 

As previously stated, pinning is determined by the competition between random forces which 

induce deformation and the elastic term which tries to keep the manifold straight. In the case 
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of dense pin distribution (weak disorder) pinning forces result in a random pinning field. Let us 

consider a portion of the manifold of size L. The random field exerts on it a force of the order 

of which tries to deform the manifold over a transversal distance CL,  while 

the elastic force responds opposing a term which which scales like e±F0L where F0 plays 

the role of a line/suface tension. When the two terms balance each other, a critical length can 

be defined as 

2ã-d 

Foe± 

= (e 2 (6F2 ) 1 / 2 ) 

Below the critical dimension, disorder always overcomes the elastic term on large scales and the 

system roughens, as predicted by the FRG approach. The reason why the qualitative approach 

described above agrees to this extent with results of the formal renormalisation treatment is still 

not completely understood. 

The manifold is depinned when the external force applied on a segment of length L exceeds 

the pinning forces on this segment. At depinning, the applied force equates the pinning force, 

with L = L, and the critical force can be derived accordingly as 

(1.11) 
'e± 	.1 

Strong pinning 

Although widely used, the method illustrated above relies on the assumption of weak pinning, 

i.e. diffuse pinning centres. This allows the treatment of disorder in terms of a pinning field 

which is a statistical summation of many individual localised force fields. This approach, how-

ever, does not account for disorder produced by diluted distributions of pinning centres. Under 

such conditions, each obstacle pins the manifold individually and a pinning field cannot be de-

fined. Such problem, often referred to as strong pinning problem, has been studied by Friedel 

in the context of dislocation pinning [58].  In this case the manifold is one-dimensional (d = 1 

- a dislocation line in a three-dimensional crystal) and shows local elasticity properties Vi = 2 

- up to negligible logarithmic corrections). Here we report the original formulation, which 

however will be generalised in the following chapter. 
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Let us consider the behaviour of a dislocation segment as it depins from a pair of individual 

obstacles. The length of the segment is L, and it forms a bulge of width u. If the dislocation 

segment overcomes one of the pins it will travel by an amount which is, again, of the order of 

u and, hence, sweep an area of the order of Lu. Now we can estimate the depinning threshold 

by requiring that during this process the freed dislocation segment encounters, on average, 

precisely one new obstacle. In other words, precisely at the point of depinning the dislocation 

starts to move through a sequence of statistically equivalent configurations. For a dislocation 

this leads to the condition Lu 1/(cjj. Land u can be related by equating the work done by 

the external force Ft  in bulging out the dislocation to the concomitant elastic energy increase, 

F0u2/L = FtnL, where F0 is a constant line tension. Finally, the depinning force can be 

obtained by comparing the external force FeXt  with the typical pinning force fo.  Solving these 

three equations, one obtains the Friedel length 

Lf 	(Fo /cej fo )'I2 	 (1.12) 

and the depinning force 

(c1fg/Fü)" 2 . 	 (1.13) 

1.3 Disorder and dislocation dynamics 

Dislocations are the linear defects which mediate plastic deformation on microscopic scales. 

Each dislocation is characterised by a direction unit vector e and a Burgers vector b, which 

acts as a topological charge, determining the intensity of the long-range stress field produced 

by the dislocation. Dislocations interact by their anisotropic stress fields or according to the 

well known Peach-Koehler formula 

f = at x e. 	 (1.14) 

Dislocation dynamics is influenced b mutual interactions as well as by disorder. Mutual in- 

teractions result in intriguing spatiotemporal patterns which are due to the collective nature 

of dislocation behaviour and give rise to self-induced internal constraints and exotic jammed 
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configurations [59]. Disorder, on the other hand, determines pinning of dislocation structures. 

Quenched disorder in real crystals is given by random distributions of solute atoms, which 

produce local lattice distortions. Stress fields associated with such distortions act on dislocation 

lines, inhibiting their mobility. During deformation, dislocations move along their glide plane 

(identified by the vectors e and b) unless solute obstacles hinder this motion. Dislocation 

pinning hence opposes deformation, explaining what is known as solid solution hardening 160-

62] that is, the increase of the yield stress value when solute atoms are present in a crystal. 

The analysis of the depinning transition in dislocation theory has often been made in the line-

tension approximation [63-67] where dislocations are considered as flexible strings with local 

elasticity (d = 1, a = 2 in the current notations). This analogy is not fully accurate. The 

bending of a dislocation produces long-range stress and strain fields [68,69] and therefore the 

energy of a dislocation line segment depends on the overall configuration of the dislocation 

line. This results in a logarithmic wavevector dependence of the effective line tension [701. 

This wavevector dependence does not affect the main features of the depinning transition [141, 

although numerical simulations indicate a slight change in the roughness exponent which is not 

completely understood [14,34]. 

The knowledge of depinning properties of isolated dislocations, however, does not necessarily 

lead to the solution of the more realistic case of pinned dislocation assemblies. Long range 

interactions are expected to modify the behaviour of ensembles of dislocations, resulting in a 

different critical response. The cooperative nature of dislocation arrangements thus requires an 

appropriate theoretical approach. 

Unfortunately, developing an analytical theory of the depinning transition of interacting dislo-

cation lines and/or loops of generic orientations and Burgers vectors in a random solute distri-

bution may be a formidable task. 

However, relatively simple dislocation structures are sometimes observed experimentally (see 

Fig. 1.1) and provide a nice illustration of the effect of interactions on the depinning transition. 

Dislocations are often arranged into one-dimensional arrays, such as regularly spaced pileups 

and low angle grain boundaries (LAGB). An early analysis of the depinning of a dislocation 

pileup was presented in Ref. [711,  considering explicitly the emission of dislocations from a 

source. 
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Figure 1.1: Transmission electron micrograph taken trout a Cu-14.4at%Al single crystal de-
formed at room temperature: the image shows large regularly spaced dislocation 
pile-ups. Courtesy off. Plessing and H. Neuhauser [72]. 

Pileups are formed by parallel dislocations disposed on a common glide plane. Burgers vectors 

are oriented along the glide plane and in the presence of disorder dislocations are supposed to 

deform along the same direction'. In spite of the local elasticity properties of isolated disloca-

tions, a pileup may respond in a different way because of long-range dislocation interactions, 

resulting in different dynamical properties. 

Low angle grain boundaries (LAGB) as well as pileups are linear dislocation assemblies. How-

ever, LAGB deform in the perpendicular direction due to a different orientation of Burgers 

vectors. A surface tension approximation has been adopted in the past to describe pinning 

of grain boundaries [73,741 and its impact on grain growth [75].  In the following we shall 

demonstrate that this is not always appropriate. 

Chapter 2 is devoted to the analysis of these aspects, through the formulation of a depinning 

theory for linear dislocation assemblies [76]. 

1.4 Disorder and dislocations in vortex lattices 

Vortex lattices are observed in Type II superconductors in the presence of an external magnetic 

held. The field penetrates into the material in the form discrete flux lines (vortices) which 

rearrange into a quasi two-dimensional triangular lattice. Several analogies can be found in 

comparison with crystal lattices, including the existence of lattice dislocations. Although length 

Motion along the perpendicular direction, known as climb, can be neglected for our purposes. 
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scales might not seem the same at first, since the typical lattice spacing is usually three or four 

orders of magnitude larger than the one observed in crystals, the problem of dislocations in 

vortex lattices can be treated by the same methods exploited for plasticity of metals and crystals 

in general. 

Grain boundaries are often observed in vortex lattices, leading to a polycrystalline structure. In 

spite of the wealth of experiments confirming this aspect, current theories still do not provide 

an exhaustive explanation for the loss of crystalline order. The emergence of a grain struc-

ture, however, is supposed to influence transport properties of the superconducting state. The 

technological relevance of this aspect has been discussed in the Introduction. 

Moreover, it is now accepted that the proliferation of dislocations is responsible for equilib-

rium phase transitions in the vortex lattice. Under the effect of thermal fluctuations, vortex 

lattices "melt" into liquid phases, while the increase of the applied magnetic field leads to the 

onset of amorphous phases. Dislocations are expected to drive this processes, but a definitive 

theory of dislocation-mediated phase transitions in flux line lattices is still not achieved. Nu-

merical simulations, however, show that phase transitions towards disorder-dominated states 

are often anticipated by multi-domain arrangements which resemble the polycrystalline struc-

ture expected at the onset of melting in thin crystals. Grain boundary densities are supposed to 

grow, breaking the topological order. 

These aspects are examined in detail in Chapter 3, where we investigate the role of grain bound-

ary pinning in vortex lattices and formulate a theory of vortex polycrystals [77,78]. 

1.5 Avalanches in plastic deformation 

So far we have considered the problem of irreversible deformation on a microscopic scale. 

Dislocations act as discrete deformation units and the study of their collective dynamics pro-

vides the most straightforward approach to the investigation of plastic phenomena. As stated 

above, however, the general problem of random interacting dislocation arrays in a disordered 

environment is currently regarded as almost insolvable from an analytic point of view. 

Unfortunately several phenomena, including the well known yielding of crystals under the ef-

fect of strong enough loads cannot be easily explained in terms of the dynamics of simple and. 

regular dislocation assemblies. The situation is much more complicated as dislocations of dif- 
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ferent types and directions of motion have to be considered. Such a situation could still be 

explained in terms of a transition between a stationary and a moving state of the dislocation en-

semble, but the microscopic approach does not prove adequate in solving the problem because 

of the several complications arising from the many degrees of freedom involved. 

On the other hand, looking at the system on a mesoscopic scale allows a more complete picture 

of the problem, avoiding to restrain perspectives to small scale details. Continuum models 

provide a powerful tool of investigation as they focus on the evolution of large scale quantities 

such as the shear strain 'y and the dislocation density p. Plastic deformation thus resembles 

fluid dynamics and proceeds in the so called plastic flow. 

The appeal of continuum models is usually promoted by the naive assumption that macroscopic 

regularity of plastic deformation, as commonly experienced, reflects a smooth dynamics on 

smaller length scales - a laminar flow. However, this viewpoint has recently been questioned 

by several experimental observations. 

Plastic flow on both microscopic and mesoscopic scales proceeds in a strongly heterogeneous 

and intermittent manner. Spatio-temporal localisation of deformation is obvious at the dislo-

cation scale. However, slip localisation phenomena extend over a wide range of mesoscopic 

scales and may involve the collective dynamics of very large numbers of defects. This is well 

known from the observation of the traces left by moving dislocations on the surface of deformed 

crystals, known as slip lines and slip bands. 

Plastic flow is temporally intermittent and characterised by "deformation bursts" [79, 801 

These events exhibit a scale-free size distribution (see Figure 1.2), as the probability density 

to observe events with energy release E decreases according to the prediction for mean-field 

depinning p(E) cc E 15  (see Chapter 4 for details on avalanche statistics in the mean-field 

regime). 

In the light of theories of pinning in random media, plastically deforming crystals seem to 

behave like disordered systems driven close to criticality. The dislocation system in a plastically 

deforming crystal acts as if always close to a depinning-like transition (yielding transition [8 11). 

Spatial heterogeneities have been investigated in the past, studying three-dimensional pattern- 

ing of slip on macroscopic scales [82].  The slip burst pattern proved to be fractal. The investi- 

gation of surface profiles in deforming metals [83] has shown that samples develop self-affine 
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Figure 1.2: Distribution of energy releases in acoustic emission during creep deformation of 
ice single crystals; temperature T = 263 K, resolved shear stresses on the basal 
plane as indicated in the inset. After Miguel et al. [79]. 

roughness (see Figure 1.3), which is a signature of long-range correlations in the plastic strain 

pattern. 

Over several orders of magnitude, the self-afline behaviour can be quantitatively characterized 

by a single Hurst exponent H as the average height difference (y(x) - y(x + L)I) between 

two points on a profile increases as a function of their separation L like L" with H 0.8 (see 

Figure 1.4). 

In order to investigate connections between criticality and plastically deforming crystals, in 

Chapter 4 we formulate a continuum model accounting for spatial heterogeneities and inter-

mittent behaviour [84]. We show that mean-field results are suggested by pinning theories and 

confirmed by the numerical implementation of our model, in good agreement with experimental 

observations. 

1.6 Elastic media on a disordered substrate 

Plastic deformation on macroscopic length scales is encountered in several phenomena includ-

ing friction, fracture, failure and crack propagation. The description of these systems usually 

does not account for microscopic structures and is instead achieved in terms of elastic continua 

or simple bead-spring models. 

Sliding elastic bodies driven on a disordered substrate have been often envisaged as examples 
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of the depinning problem. The original approach was proposed to explain dynamics along an 

earthquake fault [85] and in spite of its simplicity showed complex response and scaling be-

haviour (see e.g. [86, 87]). Stick-slip motion belongs to the same category. Slip events exhibit 

scale-free distribution [88], suggesting a possible description in terms of critical scaling. A 

theoretical approach to critical scaling has been proposed, for instance, for earthquake fault 

dynamics [89]. The equivalence between dynamics of a manifold pushed through a random 

medium and an elastic medium driven on a disordered substrate has been proven both analyti-

cally and numerically [36,37]. 

However, several natural phenomena such as the initiation landslides and snow avalanches need 

to be explained in terms of fracture and crack propagation. In Chapter 5 we propose the study 

of a related problem [90].  Slope failure is governed by crack nucleation and propagation. Ran-

domness is expected to weaken slope stability by facilitating crack nucleation. However we 

show that weak randomness in the presence of a crack may change the mode of failure, en-

hancing slope stability. This behaviour is explained in terms of the competition between crack 

elasticity and disorder and the problem is shown to be analogous to that of pileup depinning 

discussed above. 



Chapter 2 
Depinning of dislocation assemblies 

As pointed out in the previous chapter, the behaviour of isolated dislocations within a disordered 

landscape has been widely investigated in the past [14,63-67]. Pinning of gliding dislocation 

lines offers a robust explanation of solid solution hardening [60-62] when solute atoms are 

present in a crystal. The presence of solute atoms changes the local properties of the host 

material, resulting in a pinning force on nearby dislocations [61,62]. At the same tithe, pinning 

can also be provided by particle inclusions or by dislocations in other slip systems [60]. 

While the behaviour of an isolated dislocation pushed through a random distribution of obsta-

cles is at present quite well understood, the results do not necessarily carry over to the more 

realistic case of collective dislocation motion. Dislocations interact via long range stresses 

and rearrange according to a collective behaviour, which may lead to intriguing jamming and 

avalanche-like phenomena even in the absence of immobile obstacles [59]. 

Developing an analytic approach for the solution of the depinning problem of a random distribu-

tion of dislocations is at present considered a hard task. It is not infrequent, however, to observe 

simple and regular dislocation arrangements in deforming metals (see Figure 1.1). Similar ar -

rangements, such as pileups and low angle grain boundaries, have already been introduced in 

Chapter 1. 

In the following, we investigate the depinning transition occurring in such one dimensional 

dislocation assemblies, interacting with a disordered stress landscape provided by solute atoms, 

or by other immobile dislocations present in non-active slip systems. 

We address the problem by first computing the stress and elastic energy associated with a small 

deformation of the dislocation arrangement. Local elasticity approximations prove to be inad-

equate for dislocation arrays since long-range inter-dislocation interactions make pileups and 

low angle grain boundaries much stiffer than isolated dislocations. The determined elastic en-

ergy is then used to estimate the depinning stress within the framework of statistical pinning 

theories, using collective pinning theory and Friedel statistics for the weak and strong pinning 

limits, respectively. 

25 



26 	 CHAPTER 2. DEPENNING OF DISLOCATION ASSEMBLIES 

Then we focus on the dynamics of dislocation arrays. At stresses close to the depinning thresh-

old, the dynamics exhibits critical behaviour which can be characterised in terms of scaling 

exponents. Using previous renormalisation group results, we gain a complete quantitative pic-

ture of the depinning transition, classifying our systems into the general framework of random 

manifold models. In the elastic approximation, pileups and low angle grain boundaries are 

equivalent to a standard interface depinning problem with long-range elasticity. In systems 

of rigid dislocations the problem is two dimensional, pileups and grain boundaries are one-

dimensional arrays (d = 1) and the model can be mapped to a contact line or to a planar 

crack, which have been extensively studied in the literature. In three dimensions (d = 2 for the 

deforming manifold), the self-stress is similar to the dipolar force in magnetic domain walls 

and leads to logarithmically rough deformations. In more technical terms, d = 2 is the upper 

critical dimension for the transition, which is well described, up to logarithmic corrections, by 

mean-field exponents. 

Results of numerical simulations confirm the validity of the elastic calculations and introduce 

some interesting dynamical effects. The pileup displays a zero temperature power law creep 

relaxation which can be interpreted in terms of scaling relations. Below threshold, the power 

law relaxation terminates into a pinned configuration, while above threshold there is a crossover 

to linear creep or average constant velocity sliding. As a fingerprint for this class of systems, 

the motion of the pileup takes place in the form of avalanches whose distribution again can be 

characterised by scaling exponents. 

2.1 Elasticity 

Developing a theory for collective dislocation depinning requires the basic knowledge of the 

elastic properties of the dislocation assembly in the first place. In this section, we determine 

the elastic response of two particular dislocation assemblies: a regularly spaced pileup and 

a low angle grain boundary of edge dislocation lines. The two structures are quite similar 

geometrically; both are one-dimensional arrays of N dislocation lines with the same Burgers 

vector b and average line direction e (for edge dislocations e I b), but they differ in the relative 

orientation of the Burgers vector and the array direction d. In particular, in a pileup a set of 

edge dislocations [91] lies in the same slip plane (defined by the dislocation line direction e 

and the Burgers vector) so that d 11 b (see Fig. 2.1 for a particular example with e = e and 

e 11 b 11 es ), whereas in the LAGB the edge dislocations are stacked in the perpendicular plane 
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such that b ± d (see Fig. 2.2 for a particular geometry). We neglect climb, i.e. the motion 

of a dislocation perpendicular to its slip plane; hence deformations of the structure can occur 

solely in the direction of b both for the pileup and for the LAGB. In this section we derive 

the shear stress and the elastic energy associated with small deformations of these dislocation 

assemblies. This is needed in order to derive the yield stress from statistical pinning theories. 

For completeness, we consider the problem both in two and in three dimensions. 

Figure 2.1: A regularly spaced dislocation pileup with Burgers vector along the y axis. The 
ideal configuration is plotted with straight dashed lines, whereas the solid lines 
represent their possible glide deformations within the slip plane yz. 

2.1.1 Two dimensions (d = 1) 

A two-dimensional model is obtained if we treat the dislocations as rigid lines. In this case, 

deformations of the dislocation arrangement result only from variations in the position of the 

dislocations within the one-dimensional (d = 1) arrays they form. We consider the case of a 

LAGB and then directly extend the result to the pileup. In fact, in linear approximation the 

elastic energy turns out to be the same in both cases. 

Here and throughout this work, we consider an ideal LAGB as an infinite set of equally spaced 

edge dislocations lying on the yz plane (without loss of generality we consider the plane x = 0) 

with Burgers vector pointing along the positive x axis, b = be (see Fig. 2.2). In the rigid 

dislocation approximation, each dislocation is described by the coordinates (x, y,), where 

= nD, D is the dislocation spacing in the LAGB, and x is a small displacement out of the 

x = 0 plane. The shear stress at the point (x, y) due to a dislocation at (x, y,) is given by 

[58,91] 
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Gb 	(x - x)[(x - x)2 - (y - 
a(x, 	

- -  2(1 - Vp) 	[(x - r)2  + (y - yn)I 212 	 (2.1) 

where G is the shear modulus and vp is the Poisson ratio. The glide component of the total 

force per unit length on another dislocation m in the LAGB can be readily obtained from the 

Peach-Koehler expression f = (a . b) x e [58,91] 

fx (X m ,ym) =bay (xm,ym). 	 (2.2) 

For small deformations IX. - r << Dim - we have 

2 	+00 
Gb  Xm - Xm  

	

fx(Xm,Ym) = 
	

(2.3) 
 
Th00 

(Ym - Yn 

which can be used to obtain the elastic energy 

+00 	 Gb2 	
+00 +00 

 (xm - xn)2 f fx(XmYm)dXm 	 with rn 5lé n.8(1 	
) 	 (m—n)2D2 m=-00 	 371=—Co fl-00 

(2.4) 

It is instructive to express the elastic energy in Fourier space, where one can easily identify the 

energy cost of the different modes. For an infinitely long LAGB N —* 00, we can write the 

dislocation displacements as 

Xm = I 	emx(k), 
Jnz 2ir 

(2.5) 

where because of the periodic dislocation arrangement the integral is restricted to the first Bril-

bum zone (BZ) of the reciprocal space (—ir/D < k c ir/D). Using 

	

2 	cos (-yd) - 2 	
7

1 7 i 	
72 	

(2.6) 

	

T2 W 	d2 
d=1 	 d=1 

we obtain 
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WE 

E= 	
Gb2 dk 

- Dk 2 ) 	 (2.7) 
8ff(1 - vp)D 2  IBZ 2ff 

From this expression, one can see that the elastic interaction kernel (27]kI - DO) is not 

quadratic in the wavevector, as it would be the case for a local elastic line with a constant 

tension or stiffness, but grows roughly as IkJ for long wavelength deformations. This is a con-

sequence of long range interactions between dislocations in the LAUB which render a much 

stiffer structure. In the following sections we will explore the consequences of this result in 

view of the collective pinning of such dislocation structures, something that has been disre-

garded in previous studies of dislocation depinning. 

VA 

Figure 2.2: A regularly spaced low angle grain boundary where the dislocations Burgers vec-
tor is parallel to the x axis. The ideal configuration is plotted with straight dashed 
lines in the plane yz, whereas the solid lines represent their possible glide defor -
mations within the slip plane xz. 

The elastic energy associated with perturbations of a regularly spaced dislocation pileup can 

be obtained in an analogous manner. According to the geometric conditions assumed here, 

all Burgers vectors are now oriented along the positive y axis, and since the dislocations are 

all in the same slip plane we can now write x = = 0. Proceeding as before, the total 

Peach-Koehler force on dislocation in along the new glide direction is given by 
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1 
fy(O,Yrn) = 	

Gb2 	
(2.8) 

fl
=_

00 
2(1—vp) 	YmYn 

Note that the Peach-Koehler forces are now repulsive, however the stability of the system is 

ensured in the case of an infinite pileup where the dislocations located at the extremes (at ±oo) 

have fixed positions, or for a finite pileup with periodic boundary conditions. Thus one can also 

compute the elastic energy cost of small displacements 8jjm  of the dislocations in the pileup 

with respect to their stable positions. Up to first order in 8Ym,  we obtain a restoring elastic 

force - 

Gb2 	8Ym - 5Yn  fy(0,Syrn) = 
	

(2.9) 
(ym - 

equivalent to the one obtained for the case of the LAGB. The corresponding elastic energy cost 

is given by Eq. 2.7 with x(k) replaced by by(k) 

Hence, long wavelength distortions of low angle grain boundaries and equally spaced pileups 

of straight dislocation lines with translational invariance along the dislocation axis have the 

same nonlocal elastic properties, with eigenvalues that grow linearly with the modulus of the 

wavevector considered. 

2.1.2 Three dimensions (ci = 2) 

Here we consider the more general and realistic case of deformable dislocation lines, forming 

a planar dislocation array, which behaves as a two-dimensional manifold (ci = 2) in a three-

dimensional space. As before, we consider first the case of a LAGB with Burgers vectors 

oriented along the x axis, in which each dislocation is now described by a set of coordinates 

(xm(z),ym,z). Again, yn  = nD, but now the displacement x . (z) of the infinitesimal dislo-

cation segment under consideration depends on its position z along the dislocation line (see 

Fig. 2.2). The elastic stress field due to a general dislocation line or loop can be obtained, for 

instance, by considering the line as being composed of elementary segments of infinitesimal 

length [91]. Depending on the relative orientation of the Burgers vector and the local tangent 

vector e(z), each segment can either have edge (e(z) I b) or screw character (e(z) 11 b), or 

it can be a combination of both. A first approximation of a general dislocation line can be its 



2.1. ELASTICITY 	 31 

representation in terms of a succession of only edge and screw segments. The mathematical 

form of the elastic stress fields generated by these two types of elementary segments is simple 

and renders the problem amenable to analytic treatment. The shear stress created at the point 

(x, y, z) by an edge dislocation segment .of Burgers vector b = be and length Az' located at 

(x', y', z') is given by [91] 

Gb 	x — x' 	(y—y') 2 1 
axy (x,y,z) 	 [i 	

Rg 	j Az 	
(2.10) 

47r(1—up) R 

where 

= (x - x') 2  + (y - 	+ (z - z') 2 , 	 (2.11) 

and the shear stress field due to a screw segment of length Ax' is [91] 

axy(x,y,z) 	
Gbz — z'

= 	 Ax. 	 (2.12) 
47r R3  

Equations (2.10) and (2.12) allow us to calculate the glide component of the total Peach-Koehler 

force f = ( a . b) x e on an edge or a screw segmeht. The glide force on an edge segment at 

(X. (z), 1/rn,  z) has two contributions 1EE  and f 5" arising from its respective interactions with 

other edge or screw segments, 

Gb2 	xm(z) - x(z') 
fr(xin(z),yrn,z) = 4(1—up) R(z,z') 

	

[13 
 (YrnYn)2] Az' Az ' 	 (2.13) 
R(z,z') 

Gb2  z - z' fSE(x rn (z ) yrnz ) = 	
R,,,(z,z') 	Oz' 

	

Note that up to first order in the small displacements (xm(z) - x(z') 	0), the relative distance 

among segments can be written as R(z, z') = ( 1/rn - y,) 2  + (z - z') 2 . On the other hand, 

from the general expression for the Peach-Koehler Force written above, it is straightforward 

to verify that there are no glide forces acting upon any screw segment on the dislocation line. 
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After summing up all non-vanishing contributions, we can obtain the elastic energy as for the 

two-dimensional case (see Eq.(2.4)). The elastic energy can be expressed as the sum E = 

EEE + ESE of the interaction energies between edge-edge and edge-screw segments. These 

are given by 

EEE =  Gb2 	
Effdzdz' [i 

_- (Yin - Yn) 2 l [x(z) - 

m,n 	 R nn (z, z') j 	MnR3 (z, z') 	
(2.14) 

32ir(1 - up) 
' 

ESE = xm(z)Dz'xn(z ' ). 	(2.15) I fdzdz' 
ZZ' 

16ir L_d 	 R n (z,z') 
in fl 

As we did for the rigid line case, we can also express this elastic energy in Fourier space in 

order to diagonalise the interaction matrix and to obtain the wavevector dependence of the in-

teraction kernel between the different deformation modes. The detailed calculation is rather 

lengthy, so we merely indicate the procedure followed and the final results obtained. We 

evaluate separately the energy contribution due to the self-interaction between the constituent 

segments of each individual dislocation line, i.e. ii = in, which we denote by E0, and the 

energy contributions due to the interaction of dislocation segments lying on different lines, 

i.e. n in, which we refer to as E1 . Proceeding this way, we find that the total energy is 

E = E 5 + EoE + EfE  + Ef S  We express the dislocation displacements in terms of their 

Fourier modes, 

 dq 
x(z) = I 2ir f 2ir 

-ikDm-iz x(k, q) 	 (2.16) 

and evaluate the self-interaction contributions for long wavelength deformations qa << 1 where 

a is a short-distance cutoff introduced to preclude the interaction of a line segment with itself. 

The result can be written as 
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EOEE
- 	 Gb2 I dk I'dq 1 

- 16K(1—vp)JBz2J 	b [2&E_ 
+lnaIq!)q2+ 

a 4 1 
- 	 q  j x(k, q)x(—k, —q) 	 (2.17) 

Gb2 ' dk 'dql 
ESE 

 = 8irJBz2RJ 	
[2(—yE—lnaqJ)q2+ 

+ 	q4] x(k, q)x(—k, —q) 	 (2.18) 

where 7E is the Euler constant. We find a quadratic wavevector dependence typical of a local 

interaction kernel but modified by logarithmic corrections. This a well-known result for isolated 

dislocation lines, as well as for similar singularities such as vortex lines in high temperature 

superconductors [8]. 

The energy contributions due to interactions between segments of different dislocation lines 

(n m) in the LAGB can be expressed as 

	

EfE = 	Gb2 	f dk dql I 16(1 - up) fEZ I 	L 
(7E + In 

2ir 	k2 	D2 

+ — 
D (k 2  + q2)1/2 + 
	((3)k2q2] x(k,q)x(—k, —q) 	(2.19) 7~2

EE 	Gb2 	dk f 	
(2.20) 

	

= 	zI 
dq  
7 

1 [2E+l)q2+ 

+ 
2ir 	q2 	D2  
D (k 2  + q2)'12 

+ 	((3)q4] x(k,q)x(—k, —q), 	 (2.21) 
27r2 

where ((x) is the Riemann zeta function. Naturally, the interaction kernel between the defor-

mation modes for the three dimensional grain boundary case depends explicitly on both the y 

and z components of the wavevector in an intricate manner. Nevertheless, as in the two di-

mensional case, for long wavelength deformations the leading term of the interaction kernel is 

essentially linear in the wavevector, which manifests the non-locality of the interactions. 

Finally, we consider the case of a pileup lying on the x = 0 plane. Again, we assume small per- 

	

turbations of the dislocations from their equilibrium positions, Ym - 	 (yin + Sym(z)) 
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(y, + 6y7 (z')), where the displacements now depend on the z coordinate of the infinitesi-

mal line segment considered. Expanding up to first order in (Sym(z) - Syn (z')), we evaluate 

the resulting Peach-Koehler glide forces and the corresponding elastic energy. As in the two-

dimensional case, the result is equivalent to the one computed for the LAGB, provided that we 

replace x(z) by 5y(z) in Eqs. (2.17) and (2.21). Thus also in this case we find wavevector 

dependent interaction kernels whose leading terms (for long wavelength deformations) grow 

either quadratically in the wavevector (with logarithmic corrections) for self-interactions of the 

same dislocation line, or linearly in the case of interactions between different lines. Thus we 

may conclude that this particular form of the elastic kernels is characteristic of the long range 

interactions between different dislocations. As we will see in the following, these long-range 

elastic properties have significant consequences for the analysis of the depinning transition of 

dislocation assemblies. 

2.2 The effect of disorder: depinning transition 

Distortions in a pileup or a LAGB are a result of collective interactions of such dislocation 

assemblies with various types of impurities such as solute atoms, precipitates or other immo-

bile defects, while, as previously noted, only interactions between individual dislocations and 

impurities have been computed and are reported in the literature. 

In the following, we consider quenched disorder created by a random distribution of immobile 

impurities with concentration c which interact with dislocations via a force 4(r) = fog(r/e), 

where 4 is the pinning strength, is the interaction range and 2' is the distance between 

the impurity and the dislocation. The detailed shape g(x) of the individual pinning force is 

inessential for most purposes, provided it is of short-range nature. 

The dynmics of the dislocation arrays in a random environment is given by 

lDu I' 
= j ddxF(x - x')(u(x') - u(x)) + brext + 77 (x, u), 	 (2.22) 

P at 

where p is a mobility coefficient, Text  is the applied stress, rj(x, u) describes the effect of the 

pinning centres and the elastic interaction kernel F, computed in the previous section, scales as 

kI in Fourier space. 
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Our next step will be to discuss how the main theoretical approaches to the depinning transition 

can be applied to the problem under examination. We will consider the problem of low angle 

grain boundary pinning, since for pileups the same results are expected to hold. 

2.2.1 Weak pinning - Collective pinning theory 

Collective pinning theory describes the behaviour of the LAGB in the limit of weak disorder. 

Defects are dense and pinning is due to the fluctuations of the superposed random forces. As 

discussed in Chapter 1, the key concept is the introduction of a characteristic length L, above 

which pinning becomes energetically advantageous (and thus effective) and consequently the 

LAGB is distorted. The collective pinning length can be evaluated by simply balancing the 

elastic energy cost and the pinning energy gain associated with a small displacement of a region 

of linear size L. On scales below L, the dislocations remain essentially undeformed and, hence, 

the fluctuations in potential energy follow Poissonian statistics. The effective concentration of 

the pinning defects along the LAUB is given by 

Ceff = { 

	

(2 dimensions) 

c 
Ceff = { 

	

( 3 dimensions). 	 (2.23) 

The first expression refers to pinning by columnar defects of areal concentration ë in 2D, and 

the second to pinning by localised defects of volume concentration a in 3D. In 2D, the charac-

teristic energy of a section of a LAGB of size L displaced by an amount of the order of u can 

be written as 

- 

E = _____ - Joev/eeff 1 	 (2.24) 

Here both E and jo  are defined as quantities per unit length. Note the scale-independence 

of the nonlocal expression of the elastic energy Gb2 u2 /D 2  in contrast to what would be this 

energy in the local approximation Gb2 u2 /DL. Essentially the same expression holds for the 

pileup. Balancing elastic and pinning contributions and imposing that the displacement is of 



36 	 CHAPTER 2. DEPINNING OF DISLOCATION ASSEMBLIES 

the order of the pinning range u 	, one readily Obtains L = (G2 b4 ep )/(D4fae ff). The 

LAGB is depinned when the work done by the external stress in moving a segment of length L 

over the distance , exceeds the characteristic pinning energy E(L) of this segment. Equating 

E(L) = 'rbLe/D, for the case above the result is given by rb = (efffo21J3)/(Gb2) 

A similar calculation in 3D is more subtle, since the elastic and the pinning energies scale 

with the same power of L and thus cancel in the simple dimensional approach discussed above. 

As we will discuss in the next section, this reflects the fact that in the three dimensional case, 

the planar dislocation arrays reach the upper critical dimension d = 2 for the transition (see 

Chapter 1). To obtain L in this case, one should perform a perturbation expansion in the 

disorder, as discussed in Ref. [6] in the context of the flux line lattice. One essentially computes 

the typical displacement ii for a system of size I rl = L, which for a LAGB is given by 

P d 2  k P 
(Iu(r) - u(0)12) = j (2 

	J (27r), 
—2  (1 - coskr) 

g(k)g(k') F(k)F(k') 	 (2.25) 

where Q(k) is the Green function associated to the elastic kernel determined in the previ-

ous section, and F(1c) is the pinning force density. In the spirit of collective pinning theory 

(F(k)F(k')) = W6(2) (k + k') with W = /cff The explicit calculation leads to the 

characteristic displacement 

D 2  
u(L) fov 	

1 / 2 	 (2.26) 

This expression can then be inverted, imposing 'a - , to obtain 

L = Dexp 1k " Gb2 2] 
(2.27) 

[ceff foD2) 1!  
The depinning stress can then be obtained as in 2D and is given by 'ro b = (Gb2e)/(DL). 

Again these results generalise directly to the pileup case. It is however important to note that 

they refer to the continuum limit, when one can neglect the discrete nature of the dislocation 
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system. To be consistent with this assumption one should have L, >> D. 

2.2.2 Strong pinning - Friedel statistics 

Collective pinning is due to a statistical superposition of the forces created by many obstacles. 

In the limit of strong and/or diluted pinning centres, however, the characteristic bulge of width 

and extension L as envisaged in the previous section may not interact with enough pinning 

centres for this viewpoint to be valid. Simple estimates for the boundaries of the collective 

pinning regime are given by the inequalities Le ~! 1/ eff and LeP ? 11Ceff for the 2D and 

3D cases discussed above, respectively. 

In the regime of strong pinning, dislocations are pinned by individual obstacles. The spacing of 

obstacles along the dislocation and the depinning stress can be obtained by the argument which 

was, in the context of single dislocations, developed by Friedel [58]. Details have been given 

in Chapter 1. 

As a dislocation segment of length L depins from a pair of strong obstacles, it travels by an 

amount of the order of u, sweeping an area of the order of Lu. During this process it stumbles 

upon, on average, precisely one new obstacle. In the present case the external force per unit 

length (see Chapter 1) is given in terms of the applied shear stress as rextb. For a dislocation 

this leads to the condition Lu 11(c 2). The Friedel length reads Lf (I'o/c4fo)" 2  and 

the depinning stress rb 	(cf/F0 ) 1 I2 . 

This argument can be generalised in a straightforward manner to the case of dislocation arrays 

Let us first consider the depinning of a two dimensional LAGB as discussed above in the weak 

pinning limit: in this case, the Friedel condition reads Lu 1/ãeff, the elastic energy per unit 

length of a bulge of width u and extension L is Gb2u2 /D 2  which must equal the work per unit 

length 1extbLu/D, and the force balance (again per unit length) is T bLID = Jo. Combining 

these relations we find that the Friedel length and the depinning stress are 

GO 	CefffgD3 

D 2 fO 	Gb3 	
(2 dimensions). 	 (2.28) 

In 3D the Friedel condition is L 2 1/Ceff, the energy balance reads Gb2 u2  LID  2  = 'rextbL 2u/D, 

and the force balance is rbL2/D = fo. This yields 

7- 
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Gb2 	 CefffoD L1 	
D2 Cefffo 	G2b5 	

(3 dimensions). 	 (2.29) 

Table 2.1 presents a compilation of results for the weak and strong pinning cases in two and 

three dimensions. For comparison We have also included results obtained under the assump-

tion that the elastic behaviour of the grain boundary can, in local elasticity approximation, be 

described by a scale-independent surface energy I'o r.' Gb2/D. 

2.3 Dynamics and critical scaling 

A brief introduction to non-equilibrium transitions and in particular to the depinning transition 

has been given in the previous chapter. As previously stated, our system can be straightfor-

wardly mapped to a more general depinning problem and its critical behaviour can be described 

by scaling laws and critical exponents. 

The control parameter is the applied stress, so that scaling laws depend on the distance Text - 

from the critical point. In particular, as the system approaches the transition the correlation 

length diverges as 6 -. 	- 	Similarly, one can define a characteristic correlation 

time t, related to the correlation length as t 	ez. The average dislocation velocity reaches a 

steady value, scaling as v '-.' 	- mY, above the transition, and vanishes below. Before the 

steady-state the average velocity decays as a power law C", for times t < t. Furthermore the 

Orowan relation, which relates the rate of plastic deformation j' to the density p and average 

velocity v of moving dislocations in a crystal, implies that similar scaling laws should hold for 

the strain rate. '5' bpv. 

The reader may notice the close relationship between quantities involved in this kind of theo-

retical approach and typical observables in plastically deformed crystals. It is thus tempting to 

explore the connection between the dynamical behaviour of dislocation systems and the creep 

laws observed experimentally, i.e. the crossover between primary (power law) to secondary 

(linear) creep. 

Scaling exponents also characterise the morphology of the dislocation arrangement, which ex- 

hibits roughening close to the depinning transition. The roughness can be quantified measuring 

the average displacement correlations C(x - x') = ((n(x) - n(x')) 2 ). At the transition in the 

steady-state, we expect a self-affmne scaling C(x) n.j  x 2 , where (is the roughness exponent 
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(see Chapter 1). 

What most strongly characterises our system is the long-range nature of the elastic response in 

the presence of a deformation. The effective elastic energy of the pileup and LAGB scales as 

qj in Fourier space, as in the problems of contact line [92] and planar crack depinning [93]. 

We can thus directly apply to our case the results obtained for a contact line with long-range 

elastic energy [23, 27]. 

The renormalisation group analysis predicts that d = 2 is the manifold critical dimension, 

above which fluctuations are suppressed. Thus for d > d there is no roughening (i.e. C = 0) 

and the other exponents can be computed in the mean-field approximation, yielding fi z = 

ii = 1. These results are valid in the physically interesting dimension d = 2 apart from 

additional logarithmic corrections. For d < 2, one-loop renormalisation group expansions in 

€ = 2 - d performed [27] to compute the exponents at first order in € lead to 

(=e/3=1/3, 	 (2.30) 

= 3/2 	 (2.31) 

/3 = 1 - 2€/9 + Q(€2) 7/9 and 	 (2.32) 

z = 1 - 2c/9 + 0(c 2 ) 7/9 	 (2.33) 

for € = 1. It also worth noting that, using the scaling relation O, = /31(vz) [16],  one obtains 

= 2/3. The relevance of this result will be shown in the following. 

2.4 Numerical data and experimental evidence 

Several kinds of tests can be performed in order to assess the validity of our theoretical ap-

proach. In this section we review both numerical and experimental results which provide a 

robust confirmation for our results and corroborate our predictions. The cases of one- and two-

dimensional dislocation pileups will be considered separately. Even though low angle grain 

boundaries will not be taken into account in the following, it is understood that results holding 

for pileups also extend to them. The concept of grain boundary depinning is closely related to 

the problem of grain growth and will be extensively analysed in the next chapter, in the context 
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of vortex matter physics. 

2.4.1 One-dimensional pileup 

We test our theory for a two dimensional pileup in the light of numerical results and experimen-

tal observations. Simulations have been performed by our collaborators for such dislocation as-

semblies pushed through a random distribution of point obstacles. Even though the analytical 

treatment assumed equally spaced dislocation pileups, that constraint could be dropped in the 

case of numerical simulation, allowing us to seek for an even more general confirmation of our 

theory. For simplicity we consider periodic boundary conditions, so that in absence of disorder 

the equilibrium configuration is an equally spaced pileup. To test the dependence on the sys-

tem size, we change the dislocation number N and the system size L keeping the dislocation 

spacing D = L/N constant. 
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Figure 2.3: The decay of the average pileup velocities as afunction of the applied stress Text = 

a. Units of time, space and forces are chosen so that Gb2  = 1, u = 1, b = 1, 
fo = 1 and , = 1. When the external shear stress exceeds a critical value 
a 0.675 the velocity reaches a steady value and decays to zero otherwise. 

Fig. 2.3 displays the time decay of the average pileup velocity for different values of the applied 

stress. For large stress values, iext > m, the initial power law decay is followed by a plateau, 

while the velocity decays to zero otherwise. This allows the identification of the depinning 

point Tc. The finite size analysis shown in Fig. 2.4, indicates that for Text = rc  the power 
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Figure 2.4: The decay of the velocity at Text > r 	0.675 for different values of N. In 
particular; N = 64,128, 256,512 dislocations with a spacing D = 16 and average 
pinning centre spacing d L/N = 2 were considered. As N increases the 
power law scaling region extends. The line has a slope of O = 0.65. 

law extends further as the system size is increased. The exponent of the power law scaling 

Cv 	0.65 is in good agreement with the theoretical expectation [59]. 

Moreover, in order to characterise the growth of correlations at the critical point, one can com- 

pute the displacement correlation function C(i - j, t) = (((n(t) - at different 

times t for Text = Tc (see Fig. 2.5). The curves can be collapsed using the scaling forms in-

troduced in Chapter 1 with ( = 0.35 and z = 0.9 (see the inset of Fig. 2.5) [76].  To confirm 

this result one can consider the evolution of the power spectrum P(k, t) = f dxC(x) exp(ikx) 

(see Fig. 2.6). These curves can also be collapsed according to scaling relations with the same 

exponent values as the correlation function. In summary, all the exponents determined from the 

simulations are in good agreement with the renormalisation group predictions. 

Furthermore, experiments confirm the validity of the elastic theory for two-dimensional pileups. 

The value of O., = 2/3, predicted by the renormalisation group approach and confirmed by 

simulations, coincides with the exponent of the so-called Andrade creep law, observed in the 

creep deformation of several materials [58,59]. 
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Figure 2.5: The growth of the correlation function at the depinning transition at different times. 
The data collapse in the inset allows an estimate of the roughness exponent ( = 
0.35 and the dynamic exponent z = 0.9. 

2.4.2 Two-dimensional pileup. 

In the case of flexible dislocation lines, we expect the depinning transition of a planar disloca-

tion array to be governed by mean-field exponents. A detailed discussion of this case can be 

found in the literature (see e.g. [16]). The mean-field exponents are 

13 = z = v = 1 
	

(2.34) 

Here we provide a possible experimental check in the context of planar dislocation arrange-

ments. Direct experimental observation of the dynamics of planar dislocation arrays may be 

possible in certain alloys exhibiting so-called planar slip where dislocations form huge pile-ups 

(see Figure 1.1). The motion of these planar dislocation groups goes along with the formation 

of large slip steps along the traces where the slip plane of the pileup intersects the surface of the 

metal specimen. For a moving pileup consisting of roughly equally spaced dislocations, the slip 

step growth rate is proportional to the dislocation velocity. Since often only a small number of 

slip steps are growing at a time [94], one may attempt to relate the observed time dependence 

of slip step growth to the velocity relaxation of a single pileup. 
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Figure 2.6: The power spectrum of the pileup at the depinning transition. The data collapse is 
consistent with the scaling of the correlation function. 

Figure 2.7 shows experimental data with rates of slip step growth as a function of the time after 

growth has started [62]. The double-logarithmic plot indicates relaxation of the growth rate (the 

dislocation velocity) according to v oc t — ov with a characteristic exponent 6 = 1±0.1 over six 

decades. On the other hand, for the depinning transition of a planar dislocation array in 3D we 

expect according to the scaling relation O 01(vz) the value 0,, = 1. The apparent length of 

the scaling regime indicates that driving of the dislocation arrays occurs at stresses very close 

to the critical one. This is in line with the general observation that dislocation arrangements in 

slowly deforming crystals (where "slow" covers the entire range of strain rates used in typical 

experiments, [8 11) are in a close-to-critical state [79,81]. 

2.5 Discussion 

In the last part of the present chapter we have focused on the dynamics of the pileups, noting that 

elastic properties of low-angle grain boundaries would lead to similar results. In fact in certain 

situations, our results may have some implications for grain growth limited by grain boundary 

pinning [73,74]. Numerical studies of the problem often rely on local elasticity approximation 

(see Reference [75]).  If such an assumption was questioned, results would change dramatically 

as discussed in section 2.2.2. For that reason, it is necessary to point out in which systems local 
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Figure 2.7: Growth rate of slip steps on the surface of Cu-30at% Zn deformed at room temper-
ature as a function of the time passed after growth has started; after Ref. [62]. The 
line is a power law with exponent O, = 1. 

elasticity can still be considered a reasonably good approximation in the first place. 

When grain boundary mobility is governed by glide of the GB dislocations, our formulation of 

the grain boundary depinning problem provides a correct description. Local elasticity proves 

inadequate and long range dislocation interactions must be taken into account. The problem of 

grain growth in this regime will be addressed in the next chapter, as vortex polycrystals provide 

a nice example. Nonetheless, in the general case where grain boundary motion is controlled by 

diffusional rearrangements (glide-climb of the grain boundary dislocations) long-range stresses 

need not occur and local elasticity approximations may retain their validity. 

As already pointed out, dynamics of simple dislocation arrays of the kind examined in this 

chapter provides a nice example of depinning in plastically deforming systems. However; the 

situation is much more complicated in the general case, when dislocations of different types and 

directions of motion have to be considered. Under the effect of an external stress, dislocations 

still move through a series of metastable states, principally due to self induced constraints aris-

ing from mutual long-range interactions, until the whole dislocation systems reaches a thresh-

old, the yielding transition [59,81]. The system can still be described in terms of dislocation 

pinning. However, given the complexity of the problem, an analytic treatment from the point 

of view of dislocations dynamics remains a hard task, while a continuum approach on larger 
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length scales seems more adequate, as close to criticality, deforming crystals exhibit a scale-free 

behaviour over several orders of magnitude in length. 

These aspects are examined in further detail in Chapter 4, where we present a theory of plastic 

flow in the presence of random fluctuations, accounting for the dynamic behaviour of general 

dislocation systems and the critical features related to the yielding transition. 



Chapter 3 
Plasticity of vortex lattices 

Plastic properties of vortex lattices in Type II superconductors have recently been an active 

subject area, as the discovery of high temperature superconducting alloys has broadened the 

phenomenology of flux lines arrays and led to the introduction of novel concepts, such as field 

cooling, vortex lattice melting or vortex glass. A concise, and inevitably incomplete, intro-

duction to vortex physics will be given in the following, emphasising analogies with plasticity 

theories and stressing how collective properties of dislocations systems are supposed to deter-

mine the phenomenology of vortex matter. 

Our study in this field has covered several aspects and phenomena. The starting point is the 

recurrent observation of polycrystalline order in vortex lattices. Although the role of isolated 

dislocations in vortex phase diagrams has been extensively studied in the past decades, the evi-

dence of dislocation arrays in the form of grain boundaries leads to a wider class of phenomena 

which require a suitable theoretical treatment. 

In the following, we introduce grain boundaries in flux line lattices as linear arrays of disloca-

tions and analyse their elastic properties and behaviour in the presence of disorder. This allows 

us to provide an exhaustive description of the polycrystalline state. We first study the growth of 

a vortex polycrystal in terms of the competition between elastic properties of grain boundaries 

and disorder. Then we consider the roughening of dislocation walls, along with its effects on 

depinning transition, creep motion and critical current hysteresis. Finally, we describe the role 

of polycrystalline ordering in topological order loss at high temperatures and introduce possible 

implications for a melting theory. 

3.1 Vortex lattices - a brief introduction 

Magnetic fields play an essential role in the behaviour of Superconducting materials. Beyond 

the well known diamagnetic regime obtained for low magnetic inductions (Meissner effect), 

the superconductive state is either broken (Type I superconductors) or characterised by a mixed 

47 
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phase (Type II superconductors). The scientific breakthrough that came along with the discov-

ery of high temperature superconductors (MISC or high F  materials) has significantly moved 

the attention of the scientific community towards the latter class, as most high T materials 

behave in a magnetic field as Type II superconductors 

As first discussed by Abrikosov for conventional Type II superconductors [97], in the mixed 

phase magnetic flux is quantised and carried by vortex lines which are arranged in the form of 

a triangular lattice. As in conventional matter, strong enough fluctuations destroy long range 

order: when temperature is raised the vortex lattice melts into a vortex liquid [98-100]. 

Fluctuations are also provided by defects that are intrinsically present in these materials. Vortex 

density grows linearly with the applied magnetic induction. The theory shows that effects of 

disorder are stronger for high fields [8] and lead to complex glassy phases [9, 101-105]. 

3.1.1 Experimental evidences and theoretical background 

In comparison to conventional Type II superconductors, high temperature superconducting al-

loys present an intriguing phase diagram, as the broadening of phase space - in terms of tem-

perature T and field B - gives rise to a rich variety of stable phases and metastable states which 

couple in peculiar ways with the underlying anisotropic crystal lattices [8,95,96]. This leads 

to a much more complicated scenario for the mixed phase, where magnetic flux penetration is 

incomplete. While several experimental methods have been used to investigate vortex matter, 

a direct image of the geometrical and topological properties of the vortices can be obtained by 

the Bitter decoration technique [1.06]. Its application to conventional Type II superconductors 

provided the first direct proof of the vortex lattice [1.07] predicted by Abrikosov [97]. 

At the same time, the observed lattice contains topological defects, such as dislocations and 

grain boundaries. The latter are the signature of a vortex polycrystal with crystalline domains 

of different orientations [106, 108].  Vortex polycrystals have been observed (see Figure 3.1) 

infield-cooling experiments, in various superconducting materials such as NbMo [106, 1.08], 

NbSe2 [109-112], BSCCO [113] and YBCO [114]. More details about experimental proce-

dures will be given below. 

The grain size is typically found togrow with applied magnetic field [108, 1.09]. Moreover, two- 

sided decoration experiments show that the grain boundaries thread the sample from top to bot- 

tom [109, 1 10]ç i.e., one observes a columnar grain structure, as clearly depicted in Figure 3.2. 
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Figure 3.1: Real space STM image of a vortex pot ycrystal, as observed in a BSCCO sample, 
in the presence of a 27 G external field. Grain boundaries are highlighted. The 
typical vortex spacing is a 0.95prn JAfter Dai et al., Reference [11311. 
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Despite the abundance of experimental observations, there is no detailed theory accounting for 

the formation of vortex polycrystals. 

The interaction between vortex matter and disorder represents a general theoretical problem 

which still remains unsolved. While early theoretical considerations seemed to imply that even 

a small amount of disorder would lead to the loss of long-range order [56] and to the formation 

of an amorphous vortex glass phase [104], it is now accepted that at low disorder vortices ar-

range into a topologically ordered phase: the Bragg glass [9, 10]. The existence of this phase, 

characterised by long distance ordering, slow relaxation, and other glassy features, has been 

experimentally confirmed [1151. At high enough disorder, the Bragg glass phase is unstable 

against dislocation proliferation and the possibility of a transition into an amorphous vortex 

glass is now commonly accepted. [116-118]. The precise nature of this transition and, more 

generally, the mechanism underlying vortex lattice thermal melting are still uncertain. Typ-

ical melting theories are based on phenomenological criteria with disorder [119], or involve 

dislocation proliferation mechanisms [120]. 

3.1.2 Dislocations in vortex matter 

Properties and behaviour of isolated dislocations in the vortex lattice have been thoroughly in-

vestigated in the past [70, 121-1231, but the role of grain boundaries has been often overlooked, 

although they are often encounterd in numerical simulations [124-128]. For instance, the vortex 

plastic flow in the Corbino disk geometry is characterised by radial grain boundaries sliding in 

the tangential direction [124]. In addition, recent numerical simulations indicate the presence of 

an intermediate polycrystalline stage before the melting transition [125-128]. This behaviour 

was observed using different numerical methods in two dimensions [125] and in presence of 

columnar disorder 1126-1281. This suggests that, in some conditions, grain boundaries may 

play a role in the melting process, as in the theory of grain boundary induced melting of two 

dimensional crystals [129]. 

3.2 Elasticity of grain boundaries 

Properties of grain boundaries in vortex matter determine their response to fluctuations induced 

by disorder, external stresses or temperature. As in the previous chapter, a grain boundary can 

be considered as a linear array of dislocations, whose dynamics is ruled by internal stresses. 
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Figure 3.2: Two sided imaging of a vortex lattice. Real space configurations are reported, 
corresponding to two parallel surfaces of the sample. Polycristalline structure is 
unchanged from bottom to top of the sample, up to a rigid rotation. This observa-
tion, along with several other, confirms the existence of columnar grain structures 
and characterises the system as quasi two-dimensional. [After Marchevsky et al., 
Reference [1101.] 
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While ideally a grain boundary minimises its energy by remaining flat, the action of exter-

nal perturbations leads to deformations that can be described by the theory of elasticity. We 

compute the self-interaction of a deformed grain boundary extending the results obtained for 

isotropic elasticity (see Chapter 2 to the case of the highly anisotropic vortex lattice. 

3.2.1 Analytical approach 

A simplified but rather effective description of the vortex lattice is provided by its representation 

as an elastic crystal of flux lines. On large enough length scales, the elastic energy of the vortex 

lattice can be expressed in terms of the vortex displacement field u as follows 

N = fd3r [c55(Vu) 2  + (cii - 	 + c44(82 u) 2 ] 	 (3.1) 

where c11, c44, c66 are the local elastic moduli, and the magnetic induction B is parallel to the 

z direction. Within this representation, we shall introduce an ideal low angle grain boundary 

as an infinite periodic array of straight dislocations in the vortex lattice oriented along the z 

axis, spatially arranged along the y axis with an array spacing equal to D, and with Burgers 

vectors b pointing along the x direction (i.e. edge dislocations [91.]).  The wandering of the i-th 

dislocation line can be schematised through the vector R(z) = (X + X(z),iD), assuming 

that all displacements take place within glide planes, i.e. the xz plane, so that X + X(z) plays 

the role of the displacement field of the grain boundary as well. ' X i  is a constant term and deals 

with rigid displacements of the dislocation lines. Its contribution to the elastic Hamiltonian is 

known since it is the same derived for straight dislocations in isotropic lattices (see Chapter 2). 

In the following this contribution will be referred to as 7 -to. Xi (z) has zero average along the z 

direction. 

Defining i-1 = (x, y), the vector u can be decomposed as u(r) = ur(rj , z) + 	ur(rj - 

R(z), z), where u?(r± - R(z), z) is the singular solution of the two-dimensional problem 

for each value of z 

{ c65V2 u + (c11  - c56)v( 17 ufl = 0 	
(3.2) 

5 du' =b 	Vi,z 
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while u"(rj , z) is the regular part of the solution due to the interplane couplings along z. 

Minimizing Eq.(3.1) with respect to u and imposing the first expression of Eqs. (3.2) we find 

the differential equation 

c6672uV + (Cu - c66)7(7 . Ufl + 	= —c443 E u, 	(3.3) 

where the field u on the right-hand side term of the equation is known from elasticity theory 

as the displacement field generated by a point edge dislocation at R(z). Performing a first 

order expansion in the displacement X + X(z), the derivative removes any dependence on the 

constant part X, and we can rewrite Eq.(3.3) in Fourier space as follows 

c6eq2ur + (c11  - e)q(q• ur) + c44kur =C44 q2 A, 	 (3.4) 

where q = (kr, ku), q2  = + k, and 

A = 	
( k[r —(1— r) cos 2Ø] 

nz) 
k[r+(1—r)cos2] ,/ 

with  = e65/c11, cos çb= k1 /k and sin 4= kr/k. 

A can be decomposed into its longitudinal and transverse components AL = q(q . A)/q 2  and 

AT = A - AL. The Hamiltonian (3.1) thus becomes 

d2q I dkz  k M(q, , k2) y(mm X m (kz )Xm(kz) (3.6) 
mm 	(27r)2 	

--  

where we have neglected constant terms and defined 

M(q, 0 , k)= 
	COS 2  2 	c11r2 sin  20 1 

	

- [c€oq2 + c44k + cq2  + c44kj 	
(3.7) 
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Defining X(k) = 	
dQq  

fBZ 27r 
eymD X(Q, k r), where the integral is restricted to the first 

Brillouin zone (BZ), we get 

2 
C44 D2 

b2 	I dQ f 
2  i 	

E(Q + C, k2 ) X(Q, k)X(—Q, —kr) 	(3.8) 
az 	2 

Ct, 

where we have introduced the interaction kernel 

+00 

E(Q+C,k)= k2f  M(k 1 ,Q+G,k4dk 	 (3.9) 

with 
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x
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_____________ 	 a' 	 (3.10) = 
(k + k) 2 (k 2  + k2  + k2 + 4r2 (k + k)2 (k + + c z) 

	

X 	a' 	066 Zi 

Solving the integral in Eq.(3.9) leads to 

I dQ  f X(Q, 
2D 2  C44 	BZ2 	2ir 

2 	____ 

_4kk2+fk_2 (5_ 	 (3.11) 
1 

[(2k+k2) 
k 	

\/isk2 	
' cii 	\C66 	C11) 	

j 066 2 

with k=Q+G, 	>> 1 and 
144 

C66 	 Cii 

Moreover, keeping the leading term of the righthand side in Eq.(3.11) we get 

7rb2 	[dQ I' dk2  

C 	
2ir I 	( 2c — k' 	). (3.12) 

2D2 
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It is a common procedure to rescale the y coordinate by a factor 	S [8], in order to get an 
2 v C66 

isotropic reference frame. The elastic Hamiltonian thus becomes 

/' d 2  k 
H=K 

2D2 	(27r)2 IkX(k)X(—k), 	 (3.13) 

being k = (1c, k) and K = 

In this limit, the same result is obtained as predicted by the isotropic theory (see Chapter 1). 

The nonlocal character of the elastic kernel (cc k) implies that long range interactions between 

dislocations stiffen the grain boundary, and that, once more, a surface tension approximation is 

not suitable for a correct description of its elastic properties. 

3.3 Interaction between grain boundaries and disorder 

As in the case examined in Chapter 2, vortex grain boundaries are much stiffer than isolated 

dislocations, possessing a non-local long-range surface tension. In the presence of disorder, 

they are expected to roughen less than isolated dislocations. 

However, the description of the interaction between elasticity and disorder that was formulated 

for grain boundaries in crystalline materials needs to be refined in the case of vortex lattices. 

The strong pinning approach (see Chapter 1) is substantially unchanged, because in the case 

of dilute pin densities, obstacles interact individually with dislocation lines. Further details are 

given in the following, in the context of grain growth. 

In the case of weak pinning, instead, random forces are mediated by the vortex lattice. Quenched 

disorder deforms the vortex lattice inducing random strain fields. The corresponding random 

stress fields act on vortex dislocations and dislocation arrays, determining their pinning. 

Following these guidelines, we investigate the problem of grain boundary roughening applying 

the random stress model introduced in Ref. [123] for vortex dislocations. Using scaling argu-

ments, we also derive the creep law for thermally activated motion and discuss disorder-arrested 

grain growth. 
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3.3.1 Random stresses 

Point defects such as vacancies or interstitials in the underlying crystalline structure of the 

superconducting material, and/or substitutional impurities, etc., act as pinning centres for the 

magnetic vortices. For weak pinning forces, disorder can be theoretically described by a ran-

dom pinning potential acting directly on flux lines. Fluctuations due to pinning in the vortex 

lattice and the occurrence of depinning under the effect of an applied current have been inten-

sively studied over the last decades (for a review see Reference [8]). 

Our aim is to extend those consideration to the case of dislocation assemblies and in partic-

ular grain boundaries . The disorder induced vortex lattice displacement field gives rise to 

elastic shear stresses, which, in turn, generate Peach-Koehler forces on the vortex lattice dis-

locations [91]. In other words, as the final consequence of these disorder-induced distortions 

of the vortex lattice, there is an effective pinning stress field at(r) acting as well on vortex 

dislocations (and therefore on grain boundaries). The effects of such a field on isolated disloca-

tions and random dislocation bundles have been already investigated in Reference [123]. In the 

following, we recall that derivation and provide its equivalent in the case of grain boundaries, 

adopting the same theoretical framework. 

On short length scales, where vortex displacements u(r) are smaller than the coherence length 

(the so called Larkin regime [61),  a perturbative calculation can be performed. As discussed 

in Ref. [120], for grain boundaries it is necessary to consider larger scales, & < it < a, where 

vortices are well described by a Random Manifold (RM) model [8,9] in which flux lines are 

subject to an uncorrelated pinning potential. In this case, the relative displacements correlation 

function is 

Bij (r - r') = [u(r) - u(r')][u1 (r) - u(r')] 

2 (lr-r'I 
Ra 

)2(RM 	
(3.14) 

Here R. is the crossover length, also known as positional correlation length, at which average 

vortex displacements are of the order of a. The roughness exponent can be estimated as (RM 

1/5. 

On scales larger than Ra, vortex displacements are of the order of a and the periodicity of the 

lattice comes into play [9].  Displacements are shown to grow logarithmically, with correlations 
'' 

of the form B(r - r') 	(.a2 
	e r—r'

-) in 	, and topological defects are absent. This quasi- 
7r 	Ra 
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ordered phase is knwon as the Bragg glass (BrG) [9]. 

As discussed above, vortex displacements act on vortex lattice dislocations through a fluctuating 

stress field [91]. Statistical properties of this stress field can be obtained from the correlator 

Bij  (r - r') applying linear elasticity theory. In particular, the stress correlator S(r - r') = 

will read 

r') = (K2/2) [a8'B(r - 

- r') + 2b8iB(r - r')] 
	

(3.15) 

Replacing previous expressions of B1(r - r') we easily obtain the stress fluctuations over a 

distance R 

K 2

{ 

(R/R a ) 2 M R < Ra  

1 	R>Ra  
(3.16) 

where the first case applies to the RM description, while the second corresponds to the BrG 

regime. The effect of this random stress on isolated dislocations was studied in Ref. [123] 

where several differences with respect to the case of vortex lines were pointed out. Here we 

consider the behaviour of grain boundaries, expecting substantial novel features arising from 

long range interactions between grain boundary dislocations. 

The Hamiltonian of a grain boundary in presence of disorder can be written as 

(3.17) 

with 7-i being the elastic term calculated above and %4,M  the pinning term given by 

Rpin = 	dzX(z) bc[X(z),iD,z]. 	 (3.18) 

Although there is no explicit expression for Rrin,  it is possible to derive its fluctuations over a 
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distance L as 

	

L 	L 

E=b2 , I dz I 

	

pini,i' Jo 	Jo 
dz' X(z)X' (z') a[X(z), iD, z]o[X' (z'), i'D, z']. 	(3.19) 

Taking the continuum limit of the sum and integrating for both the RM and the BrG regimes, 

the typical pinning energy when displacing a grain boundary segment of length L by an amount 

Xj" ' u will be thus given by 

2 
1 L \ (RM) 

(L2uB { 

	

(3.20) pin- D ) 

In _L_  (BrG) 

A dimensional estimate of the elastic energy cost of fluctuations of a grain boundary fraction 

of linear dimension L has the form 

= Kb2 2 	
(3.21) 

Since we are dealing with static properties of the system, we can impose equilibrium conditions 

balancing E and Epi, that is, equating the elastic cost of fluctuations and the energy gain due 

to the interaction with disorder. Defining the roughness exponent of a grain boundary (as  from 

UGB ". L 2(CB we get 

{ !  
5 	(RM1 

	

(as 	 (3.22) 

log'/' (BrG) 

The long-range stiffness of a grain boundary reduces the values of roughness exponents in 

comparison with the case of isolated dislocations [123]. 



3.3. INTERACTION BETWEEN GRAIN BOUNDARIES AND DISORDER 	 59 exponent I length scale J isolated dislocation I 2D bundle I grain boundary 
RM 15/13 5/13 1/5 
BrG 1 - log23  1/3 log"2  

PPI RM 17/11 

_ _ 
10/21 

_ _ 
7/4 

Apt BrG 1 
_ 
_2/5 

_ 
_1 

Table 3.1: Comparison between roughness and creep exponents calculated for isolated dislo-
cations, 2D dislocation bundles [123], and low angle grain boundaries, taking into 
account non-local effects proven in Section 3.2. 

3.3.2 IJepinning and creep 

So far we have not considered the effect of driving forces on the dislocation arrangement. 

Driving forces for grain boundary motion can be externally induced by a current flowing in the 

superconductor or internally generated by the ordering process during grain growth [138]. In 

the former case, shear strain is induced in the vortex lattice by current gradients due to boundary 

effects; in the latter case, ordering is driven by a reduction in elastic energy. In both cases, the 

presence of a driving shear stress Text gives rise to a Peach-Koehler force per unit length of the 

form Fdrive  = rex tb acting on each dislocation along the grain boundary fraction considered 

or, in other words, to a total driving force per unit length equal to Fdrjve  = Text bL/D. 

At low stress grain boundaries are pinned. One can estimate the depinning stress from conven-

tional scaling arguments. The energy associated to the driving force acting on a low-angle grain 

boundary segment of length L and displaced by an amount UGB  is given by 

bL 2  
Edrive (L) = 	fdZFrive(Z)UGB(YiZ) 

rD 
UGB. 	 (3.23) 

The depinning stress can be obtained comparing this driving term with the pinning energy 

reported in Eq. 3.20. The relevant scale to consider is due to the interplay between elasticity 

and disorder and results from the minimisation of Eej + Epin  for displacements of the order of 

a b, corresponding to the dislocation core. A similar approach is followed in the case 

of vortices [6],  which are pinned for displacements of the order of the size of the vortex 

core and, hence, the relevant scale for the interaction with impurities. In our case, we obtain 

the Larkin length as (b/D) 5R, which is typically smaller than Ra. The depinning stress 

is then identified as the stress necessary to depin a section of dimension L2: 
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Kb2 /(DL) = KD4 /(b3R). 	 (3.24) 

For low values of the stress (ext << i- ), the response of a grain boundary is mainly due to 

thermally activated motion in a disordered environment [8].  In this case, we expect a highly 

non-linear creep motion with an average velocity v exp[—C(rc/rext )" /T], where C is 

a constant, and t1 is the plastic creep exponent that quantifies the divergence of the energy 

barriers U(rext)
SIPI  separating metastable states. An estimation of the exponent pp, 

for a grain boundary can be obtained from a simple dimensional scaling argument, which is 

confirmed by a more rigorous renormalisation group analysis. The typical energy barrier for a 

grain boundary section of length L is of the order of U(L) 'S-'  L' 2 °, where we have used 

UGB LCGB .  In presence of an applied stress Text,  we can compute the typical grain boundary 

length L(rext) involved in thermally activated motion minimizing U(L) + Earjve (L). The 

result yields L(Text) ".' 
r '4& . Using this length, we obtain that the typical energy barrier 

depends on the stress as 

U(Text) 
")(-2(aa)/((as-1) 	 (3.25) 

implying that /2p/ = 2(GB/(2 - (GB). For the RM and BrG regimes the exponents are given 

by 

(RM) 
btpl 	

{ 	

. 	 (3.26) 
1 (BrO) 

Now these exponents are larger than their counterparts calculated for isolated dislocations. In 

other words, the formation of grain boundaries affects vortex dynamics lowering ordinary creep 

rates. In table 3.1, all previous results are summarised and compared to estimates for different 

dislocation arrays. 

3.3.3 Grain growth and thermal activation 

Experimental evidence of polycrystalline order in vortex lattices is provided by direct imaging 

of the lattice structure in Bitter decoration investigations (see Section 3.1.1 and Figure 3.2). A 

typical setup for decoration experiments consists in lowering the temperature after a magnetic 
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field has been applied to the sample at temperatures above the superconducting phase. During 

this procedure, known as field cooling, magnetic flux is already present in the sample as it is 

cooled into the mixed superconducting phase. It is thus reasonable to expect that vortices are 

originally disordered and that, due to their mutual interactions, undergo a local ordering pro-

cess. During this process, many dislocations annihilate, and most of the remaining dislocations 

arrange themselves into grain boundaries with various orientations. The growth of crystalline 

vortex grains is due to the motion of these separating boundaries. The resulting polycrys-

talline structure has been indeed observed experimentally by means of Bitter decorations of 

both high [113, 114] and low T [109-111] superconducting samples. The effect of quenched 

disorder is to pin the grain boundaries, hindering the growth process. Thus it is important to 

envisage the growth of vortex polycrystals as the result of the competition between elasticity 

and disorder. 

Grain growth is driven by a reduction in energy: for an average grain size R and straight grain 

boundaries, the characteristic energy stored per unit volume in the form of grain boundary 

dislocations is of the order of Fo/R, where F0 is the energy per unit area of a grain boundary. 

Hence, the energy gain achieved by increasing the grain size by dR is Fo/R 2 IR. Physically, 

the removal of grain boundary dislocations occurs through the motion of junction points in the 

grain boundary network. As junction points must drag the connecting boundary with them, 

which may be pinned by disorder, motion can only occur if the energy gain at least matches 

the dissipative work which has to be done against the pinning forces. The dissipative work per 

unit volume expended in moving all grain boundaries by dR is rb/(DR)dR, where r is the 

pinning force per unit area. Balancing against the energy gain yields the limit grain size 

DF0 
(3.27) 

br 

Determining the grain size is thus a matter of finding how the critical stress can be expressed 

in terms of general properties of disordered vortex matter. To proceed, we have to specify the 

nature of the "disorder". Several assumptions can be made. In the following we will articulate 

our discussion around the concept of pin density distinguishing, as usual, weak pinning and 

strong pinning regimes. 
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Weak pinning 

As discussed above, in this regime the grain boundary perceives a smooth distribution of 

stresses o, due to the elastic straining of the vortex lattice under the effect of quenched dis-

order [120, 123].  The critical stress, obtained by balancing elasticity and disorder, is given in 

Equation 3.24. Combining its expression with Eq. (3.27), using r0  Kb 2 /D, we obtain 

14 ' 	. 	 (3.28) 

The identification of 1? with R. was first proposed in Ref. [108], but was not confirmed by 

experiments (see Fig. 3.3 and Reference [108]).  We therefore propose to interpret the experi-

mental data under a strong pinning assumption. 

Strong pinning 

We are already familiar with this approach. In this regime, pinning centres are strong and lo-

calized and one can assume that the dislocations forming the grain boundary are pinned by 

individual obstacles. We consider here the case of columnar defects, oriented along the z axis. 

Although not general, this is a sensible assumption, as it holds in a wide variety oféxperimen-

tally observed vortex arrangements. Its quasi two-dimensional characterisation mimics vortex 

lattices typically observed in highly anisotropic superconductors, where vortices are split onto 

weakly coupled layers. This is the case, for instance, in the experiments of Ref. [1081 where 

grain boundary pinning is provided by screw dislocations in the superconducting crystal. Under 

these circumstances, the problem becomes effectively two dimensional and the grain boundary 

is a one-dimensional string exhibiting long-range elasticity. Hence we can directly apply the 

strong pinning theory of Friedel [581 and its extension to grain boundary depinning which we 

have proposed in Chapter 1. 

In the current notations, the elastic energy per unit length of the bulge of width u and extension 

L is 2c66b 2 v 2 /D 2 , and should balance the work per unit length text bLv/D done by the driving 

stress rt in bowing the boundary. this energy balance provides a relation between L and u. 

Furthermore, at depinning the total force hrextbt/D should be equal to the defect strength fo, 
where his the sample thickness. Combining the equations above we obtain the depinning stress 

= Dfo/(hL j), where the Friedel length Lj is given by Lf = 2c66b2 h/(f0pD 2 ). Inserting 
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Figure 3.3: The grain size of a vortex polycrystal experimentally obtained from Bitter decora-
tion of a NbMo sample as a function of the applied magnetic field (Ref [1081) is 
compared with the theoretical predictions. The calculation based on Friedel statis-
tics with non-local elasticity compares favorably with the data. For comparison we 
report as well the result obtained using Friedel theory with local elasticity and the 
earlier estimate from Ref. [108], formally equivalent to our weak pinning result. 

the expression for the critical stress in Eq. (3.27) together with the scale-independent surface 

tension F0 = 2c55b 2 /D, we obtain 

Rg 	c 5 b3 h2  
b 	D3fp 

(3.29) 

In order to use this result to fit the data in Ref. [108], we have to express it in terms of the 

reduced field B B/H2, where H 2  is the upper critical field of the superconductor. The 

field dependence is implicit in the parameters b and D, i.e. b V-' D r-,  a --- E_1/2, as well as in 

the shear modulus e66  B, and in the pinning strength fo.  The pinning force due to a screw 

dislocation was computed in Ref. [142] and is given by fo  cc E112(1 - B) 1n(es/ 2 . 7bo 13 ) 

E 1/2  1n(e5/2.7boE),  where bOA is the coherence length [143], and bo 5A is the 

Burgers vector of the screw dislocation [142]. The resulting expression predicts a linear field 

dependence of the grain size with logarithmic corrections. In Fig. 3.3 we can corroborate 

that the agreement of this prediction with magnetic decoration data from Ref. [108] is quite 

satisfactory, especially if compared to the estimate based on local elasticity assumptions. 
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Thermally activated motion 

In the discussion above we have neglected the effect of temperature. This is an acceptable 

assumption since in field cooling experiments temperature is rapidly lowered below the vortex 

melting point and the effects of perturbations due to pinning become predominant. Thermal 

fluctuations, nonetheless, could induce an activated motion of the grain boundaries, particularly 

in high T0  materials. This problem can be approached generalizing scaling theories of creep for 

vortices and dislocations [8, 123]. In the weak pinning regime, the relevant energy barrier that 

the grain boundaries have to surmount under an applied stress Text < m is given by U(rext) = 

Uo(rc/rext)", where Uo 	Kb 3 Ra  and b'pl = 1 (Table 3.1). In our case, the applied stress 

is the ordering stress, so that we have ,/,,t 	R/Ra. Using this expression in the energy 

barrier for thermally activated grain growth, it follows 

oR [ U0R1 
to 	

= exp HKBTj' 	
(3.30)dt 

where to is the appropriate characteristic time. The equation can readily be solved yielding, 

in the long time limit, a logarithmic growth R(t)/R, = kY/Ua log(t/to). This law holds for 

R > R. when the grain boundaries would be pinned at T = 0. In the initial growth stage 

R << Ra, we can neglect pinning forces and the dynamics is ruled by the ordering stress: 

R 	11R, yielding a power law growth R(t) 	A similar behaviour is encountered in a 

wide variety of physical systems exhibiting analogous ordering transitions. In particular, the 

Vt law is known to characterise domain growth phenomena in binary alloys [144]. 

Besides thermal activation, grain boundaries can move in response to an applied current [123]. 

Details on this aspect will be given in the following section. 

3.4 Effect of grain boundaries on the critical current 

The critical current is an important property of Type II superconductors, since it represents the 

current below which vortices are pinned and the material conducts without resistance. This 

technological aspect, however, only partly explains the role of critical current in the system 

under examination. Externally induced currents produce Lorenti-like driving forces in the flux 

line lattice. This system can be easily mapped into a general depinning model for a random 

elastic manifold, where the critical current acts as a depinning force. Such a problem has been 
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carefully pondered and analysed in the past and has led to a further broadening of the vortex 

phase diagram. An exhaustive review can be found in Ref.[8]. Our concern is to point out how 

the above scenario changes in the presence of a polycrystalline arrangement. 

In Section 3.2 we determined non-local elasticity properties of grain boundaries in vortex mat-

ter. This result, determines changes in roughness and creep exponents. It is then reasonable, in 

the light of results from Table 3. 1, to believe that in vortex polycrystals, properties of critical 

current could change significantly. One can actually expect the critical current to be higher in 

the presence of grain boundary networks. 

In order to assess the validity of that statement, numerical simulations have been run by our 

co-workers. In the following, we will briefly review their results, emphasising how they con-

firm predictions based on our theoretical model and match behaviours commonly observed in 

experiments. 

3.4.1 Overview of a numerical approach 

In the simulation of arrays of interacting vortices, a polycrystalline vortex structure is obtained 

by relaxing at zero temperature a random initial vortex arrangement. This process mimics a 

typical field cooling experiment in which the temperature is rapidly decreased from above T in 

presence of a field. The system moves rapidly towards lower energy configurations correspond-

ing to zero temperature and thermal effects can thus be disregarded. In this case magnetic flux 

is already present in the material in the form of initially disordered vortices. Once grain growth 

has stopped, the system has a polycrystalline structure and an external current can be simulated 

by simply applying a constant Lorenz force. The critical current is then defined as the current 

at which vortices start to move steadily. 

Simulations show that the critical current for a polycrystal is always larger than the one obtained 

for a perfect lattice. This reflects the fact that a polycrystalline assembly is more effectively 

pinned than a perfect lattice because it can accommodate better in the disordered landscape. 

In addition, we find that the corresponding I-V curve is hysteretic upon ramping up and down 

the current. This result can explain the difference in transport properties between field cooled 

and zero field cooled samples and the related hysteresis commonly measured experimentally 

[103,130-1351. 
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Figure 3.5: Pinned vortex structure for different values of/lie magnetic field: (a) N, = 1460, 
(b) N = 2064, (c) N., = 2919, (d) N = 4128, after a sudden field cooling 
from a disordered vortex slate in a simulation cell of linear size L = 36A. The 
colored five/seven-fold coordinated vortices (filled circles) indicate dislocations in 
the vortex lattice. The average grain size in the resulting polycrystalline structure 
seems to grow with the intensity of the average magnetic field inside the cell. 

disorder limiting the average grain size (see Fig. 3.4(d)). Moreover, the limit grain size Rg /a 

appears to increase with magnetic field B oc N. (see Fig. 3.5), in qualitative agreement with 

experimental results [108] and confirming the theoretical predictions reported in Section 3.3.3. 

3.4.3 Simulated critical current 

Once simulations have clarified the mechanism behind polycrystal formation, one can proceed 

introducing external forces into the system, in order to investigate the behaviour of the critical 

current J(B). An externally applied current may induce the annealing of metastable con-

figurations (see Figs. 3.4 and 3.5), resulting in initial transients of plastic flow, which might 

eventually cease once a new metastable configuration is found, provided that the current is be- 
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low the threshold value. As one can observe, for instance, in Fig. 3.6, a small current below 

the threshold value J(B) gives rise to non-trivial changes of the displacement field u 11  of the 

vortex lattice. This in turn, implies changes of the elastic shear stress distribution responsible 

for the Peach-Koehler forces acting on grain boundary dislocations that, as a consequence, may 

move and rearrange in response to the new force field. 
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Figure 3.6: Vortex trajectories between two pinned configurations obtained after the applica-
tion of a small driving current below the threshold value J(B). Small and hetero-
geneously distributed displacements of the vortex positions are observed in both 
the parallel and perpendicular direction to the applied force f'. The number of 
vortices in the simulation cell of linear size L = 36) is N L, = 2919. The number 
of pinning points N, = 4128. 

Results for the investigation of the dependence of the critical current on the magnetic field are 

summarized in Fig. 3.7. Along with the initially polycrystalline arrangement, the study has 

been also led for a grain boundary-free initial configuration. The qualitative and quantitative 

differences between the two curves represented in the figure are due to the presence of grain 

boundaries. The presence of these topological defects in the vortex configuration enhances the 

critical current needed to give rise to a steady regime of plastic flux flow, that in this case, 

appears to be controlled by grain boundary motion. 

Plastic deformation of crystalline materials is usually mediated by proliferation and motion of 

dislocations. Nonetheless, another possible mechanism for plastic flow is the glide motion of 

grain boundaries which, as in this case, can be the most relevant mechanism for small grain 
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sizes, as in the case of nanocrystals. 

According to numerical results, grain boundaries are more efficiently pinned by disorder, as 

single grains are supposed to adjust better to the disordered landscape than a whole perfectly 

ordered lattice. In both cases, we observe the decrease of ,J, with an increasing magnetic field 

(i.e. density of vortices) until this reaches a plateau region. 

Experiments show that for even higher magnetic fields, the critical current exhibits a sudden 

increase. Close to the upper critical field 	= o/27r, the penetration depth A, and the 

coherence length 	are supposed to diverge, and the renormalisation of such parameters is 

expected to explain that sudden increase [125]. However, the system studied above is far below 

B2. as we are not concerned about the behaviour in the vicinity of that transition. 

0 	1000 	2000 	3000 	4000 	5000 

Figure 3.7: The critical current ,J as a function of the number of vortices N in the simula-
tion cell. The number of pinning points is N = 4128, the cell size L = 
The upper line shows the results obtained starling from initial field-cooled con-
figurations containing grain boundaries (GB), whereas the lower curve shows the 
numerical results obtained from petfrct crystalline initial configurations. Currents 
are measured in units of Gb2  c/0. 

3.4.4 Discussion: Hysteresis of the I-V characteristic 

Regarding experiments, our results match, at least on a qualitative basis, the behaviour exhibited 

0,01 

0.008 

0.006 

0.004 

0.002 

by vortex matter in critical current measurements at low magnetic fields. As stated above, 
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grain boundaries are commonly observed in field-cooled (FC) samples. On the other hand, 

ordered vortex crystals can be obtained in zero field cooling (ZFC) experiments, i.e. applying 

a magnetic field only after temperature has been lowered to the expected value [103, 130-

135]. The FC state is usually characterized by a higher critical current and has been proven 

to be metastable [131, 1331. These aspects result in a peculiar hysteretic behaviour commonly 

observed in critical current measurements [131, 133] and I - V characteristics [130, 132]. In 

our numerical analysis, the evaluation of critical currents in perfect vortex crystals (lower line 

in Fig. 3,7) fairly mimics the phenomenology of ZFC measurements, while results for the grain 

boundary model (upper line in Fig. 3.7) can be interpreted as a simulation of FC response. 

Hysteresis is in fact reproduced by our simulations when we start from the polycrystalline 

state. As shown in Fig. 3.8, when the current J is ramped up vortices start to move at a current 

Ji, with a velocity that then increases with the current. If the current is ramped down from 

the moving state, vortices get pinned at a lower value of the current J.2 corresponding to the 

critical current measured for a perfect crystal upon ramping up the field. Notice the similarity 

with the experimental results of Refs. [130,132]. Once more, we should underline that these 

results hold only for low values of the applied field. As the magnetic induction approaches its 

critical value, a sudden increase in measured critical currents is observed in both the ZFC and 

the FC experimental setup [131,133]. 

3.5 Grain boundary induced melting 

The stability of crystalline order in a vortex lattice beyond the well known Bragg Glass regime 

is still a matter of investigation. Experimental results suggest that all increase in temperature 

above a certain critical value Tm  determines the transition to a liquid phase [98-1001, while 

the effects of disorder associated with high magnetic fields are responsible for the emergence 

of a glassy phase [101-103]. A deep theoretical understanding of such transition phenomena, 

accounting for their microscopic origin, has not been achieved yet. Nonetheless it has been 

shown that for strong enough disorder the Bragg glass phase is unstable against dislocation for-

mation [116-118]. This suggests that the melting process could be ruled by topological defects 

(as discussed in Ref. [120]) in analogy with two dimensional theories of crystal melting. Here 

we discuss the possibility that, under the effects of fluctuations, dislocations unbind and rear-

range in grain boundaries giving rise to a polycrystalline structure [129]. In this framework, the 

vortex polycrystal can be seen as an intermediate stage in a process that ends in the amorphous 
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Figure 3.8: The steady state average velocity of the vortices as afunction of the applied current 
J. The current is ramped up (and down) in steps and is kept constant after each 
step until the system reaches a steady state. The arrows indicate the direction of 
the ramp. The number of vortices is N = 2064, the number of pinning points 
Np  = 4128, the cell size L = 36A,. Currents are measured in units of Gb 2 C/4'o. 

or liquid phases. 

Our purpose is to study the quasi-equilibrium properties of such polycrystalline stage, using 

the elastic properties of grain boundaries in a vortex lattice derived earlier in this chapter. The 

main goal of our analysis is to write the free energy density f of the system as a function of 

different lattice arrangements in configuration space. A minimum in free energy for a poly-

crystalline configuration in proximity of the melting line would corroborate the hypothesis of a 

grain boundary mediated transition. For our purposes, we parametrise the configuration space 

in terms of the linear grain boundary density n, meaning that a n - 0 configuration cor-

responds to an ordered (grain boundary free) vortex lattice. Our consideration focus on the 

thermally induced melting transition and the effects of impurities are neglected. 

We consider arrays of edge dislocations, parallel to the z axis and arranged in low angle grain 

boundaries. As in the case of grain growth, all Burgers vectors are in the xy plane, correspond-

ing to a columnar grain structure. Following the aforementioned ideas [129], we can introduce 

the linear concentration of grain boundaries it and in the low density limit we can expand the 

free energy functional (per unit volume) in powers of it as 
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f(n)=(70+7T)n+Fn2 —MFn3 . 	 (3.31) 

The different coefficients of the expansion are explained in the following. The linear term is 

due to the elastic energy of grain boundaries. The zero temperature contribution yo  is the elastic 

energy per unit surface of a flat or smooth grain boundary that, in the limit of low angle grain 

boundaries, is given by[91] 

2 exoD 

- 2rD 
In 	 (3.32) 

2irb 

where the Xo > 0 factor takes into account core interaction effects. The -Y T  term, on the other 

hand, accounts for thermal fluctuations. Using the elastic Hamiltonian in Equation (3.1), 

= f Qrt(k)X(k)X(—k) with 0(k) = elki and e = 7rb2K12D2 , the partition function of 

a thermally perturbed grain boundary over a surface S is 

2 
= f fi du 	 (K13 	 (3.33) 

and the corresponding free energy per unit surface is 

7T = - 	lnZ. 	 (3.34) 

The above term can be determined explicitly calculating the logarithm of the partition function 

as 

1 	e E 1  Da 
lnZ= 	ln 2512) 

Z 

1 	D 	1 	al 

	

+— arctan - + — arctan — I 	 (3.35) 
a 	 DJ 

where we have introduced a short wavelength cutoff 27r/a to delimit the integration domain 

along the z axis. 
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The F coefficient of the n2  term is proportional to the energy of a junction between two grain 

boundaries and details of its computation are given in Appendix A. 

The n3  term captures the case of the intermission of a third grain boundary in a junction, 

screening the effect introduced by the n2  contribution. When this is the case, one loses an 

energy equal to Fn  times the probability of such an event. In the low density limit, this 

probability is Mn, where M = 27r/D is roughly the interaction range of a grain boundary 

[129]. 

It is convenient to define e0 = InZIS, so that the free energy functional in Eq. (3.31) can be 

rewritten as 

f(n) = KBeO (Tm  - T)m+Fn2  - MFn3 , 	 (3.36) 

defining a melting temperature as Tm =As shown in Fig. 3.9, for values of T close to 
KB E)o 

Tm , f(n) shows a global minimum corresponding to a GB density 

1 i-i- VI + 3Kneo(Tm - T)M/F 
3M 	 1 (3.37) 

where R is the average grain size. As discussed above, this suggests the possibility of a poly-
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Figure 3.9: Free energy density as a function of grain boundary density close to thermal melt-
ing poinL 
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crystalline arrangement before the amorphous phase takes over. As soon as T reaches its melt-

ing value Tm, the global minimum density becomes Of the order of D', grains cannot be 

defined, and the system loses polycrystalline ordering in favor of a liquid-amorphous phase 

characterized by a typical dislocation spacing of order a. 

The considerations above allow us to draw a phase diagram for the vortex array at low applied 

magnetic fields (i.e. when effects of disorder can be neglected). The resulting plot is shown in 

Figure 3.10. The melting line is obtained plotting the above temperature T as a function of the 

magnetic induction. Here we use the expression for the local value of 056 reported in Ref. [141]. 

The curve shows reentrant behaviour expected for low fields, due to the exponential decay of 

the elastic shear modulus in the B/B -. 0 limit. The line delimiting lattice and polycrystal 

phases, instead, is obtained imposing that the free energy minimum shown in Fig. 3.9 is a global 

minimum. In the presence of disorder, we obviously expect modifications of this schematic 

phase diagram. Nevertheless, for weak enough disorder (i.e. weak magnetic fields) its main 

features should remain valid. 

0A 

Vortex lattice 

N 

0.05 
	 Vortex polycrystal 

Vortex liquid 

0  
0 0.002 	0.004 	0.006 	0.008 	0.01 

ciT 

Figure 3.10: Phase diagram of the vortex ensemble foKlow values of the reduced field BIB,,. 
The temperature is rescaled by the quantify a = K81(e5c) ,  where Co = 
(4)o) 2 /(47rA 3 ) 2  is an energy per unit length along the magnetic field direction, 
i.e. the typical energy for vortex interactions. The melting line is anticipated by 
the emergence of a polycrystalline ordering. 



Chapter '4 
Fluctuations in continuum crystal 

plasticity 

On mesoscopic length scales, fluctuations induced by the discrete nature of crystal lattice dis-

locations are averaged out above the scale of a reasonably "small", yet representative volume 

element. A crystal undergoing deformation is quantitatively described by continuous variables 

and evolves in terms of plastic flow. Experiments, however, show that plastic flow occurs in a 

spatially heterogeneous manner and exhibits a pronounced intermittent dynamics (see Chapter 

I and References therein). 

The observation of scale invariance in such phenomena suggests a possible approach in the 

framework of theories of driven elastic media. In this perspective, we propose a generic ana-

lytical continuum model which accounts for randomness in the local stress-strain relationships 

as well as for long-range internal stresses. We show that our system is appropriately described 

by an elastic manifold characterised by infinite-range elasticity and pushed through a random 

medium. Mean-field exponents are thus expected for the system, in agreement with experimen-

tal observations and numerical predictions. 

4.1 Heterogeneity and random stress fluctuations 

The rich phenomenology of heterogeneities in plastic flow suggests that the systems evolve 

within a disordered environment. On typical mesoscopic length scales, disorder is provided by 

randomness in the arrangements of microstructural defects, such as dislocations, that produce 

the plastic deformation (see Chapter 1). 

In order to provide an appropriate description of the problem we adopt concepts from the dy-

namics of random media by assuming that the deformation of a given volume element occurs 

through a random sequence of hardening and softening processes. In other words we define the 

local flow stress as a fluctuating function of the local strain and regard it as an effective pinning 

field. 

75 
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4.2 A continuum model 

For our purposes we assume that crystallographic slip occurs on a single slip system only. 

Dislocations flow into randomly arranged patterns. Randomness introduces fluctuations in the 

local flow stress which lead to shear strain fluctuations. These, in turn, give rise to long-range 

stress redistribution which can be expressed in terms of an elastic Green's function. At the same 

time, dislocation-dislocation correlations give rise to a local back stress which can be expressed 

in terms of a second-order gradient of strain. 

4.2.1 Basic structure 

For the single slip system under examination, the plastic distortion tensor is given by /3(r) = 

'y(r)n ® s where 'y is the shear strain on the slip system, and n and s are unit vectors pointing 

in the direction of the slip plane normal and the slip direction, respectively. In the following 

we assume without loss of generality that the slip direction corresponds to the x direction of 

a Cartesian coordinate system and the slip plane is the xz plane. The driving force for plastic 

flow is the shear stress a(r) = Y(r) acting in this slip system. For flow to occur, the stress 

acting in a volume element located at r must violate the inequality 

T (r) <ii(r,-y(r)). 	 (4.1) 

Here if is the local flow stress, which depends on internal state of the volume element under 

consideration. It is in general a function of the local strain 7(r) and may also depend explicitly 

on the space coordinate r. The stress r(r) = rext+rjnt(r) acting from outside on the considered 

volume element is a sum of external and long-range internal stresses. The external stress, which 

acts as an external driving force on the system, is assumed space independent over the region 

of interest. The space-dependent internal stress field rt(r) is a functional of the (in general 

spatially non-homogeneous) strain field 7(r); it vanishes for a homogeneous deformation state. 

If the inequality (4.1) is violated, the local strain 7(r) increases quasi-instantaneously until 

Eq. (4.1) is again satisfied. Impossibility to satisfy this equation implies ductile failure of the 

system. 
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4.2.2 Evaluation of long-range internal stresses 

We calculate the internal stresses in an infinite three-dimensional body with an arbitrary plastic 

distortion field /3(r). The external stress is assumed to be zero. (A non-zero external stress 

simply adds to the internal stresses.) We start out from the elastic equilibrium equation for the 

components oj of the stress tensor: 

—ajuji = 	 (4.2) 

fi  are the body forces and sums are performed over repeated indices. The above equation can 

be rewritten in terms of the components ui of the elastic displacement vector as 

-OC1k13ku1 = Ii, 	 (4.3) 

where Ckj are components of Hooke's tensor. The solution of Equation (4.3) has the form 

n(r) = f F(r - r')fk(r')d3 r' 	 (4.4) 

where the Fourier transform of the elastic Green's tensor lTk(r) is Pik(k) = 

We now first consider the particular problem of a plastically deformed inclusion where the 

plastic distortion has a constant value flP  over a certain volume V and is zero elsewhere. This 

inclusion problem is solved as follows: The volume V is first cut out of the surrounding matrix 

and deformed plastically in order to produce a stress-free strain /3'.  To re-insert it into the 

matrix, interface tractions are applied, such that the original shape is restored. According to 

Equation (4.2) these interface tractions are 

= CIJkj38Hv(r), 	 (4.5) 

where the function Hv(r) is equal to unity within V and zero elsewhere. The volume is then 

placed in its original position and relaxed. Elastic relaxation proceeds until the tractions pro- 

duced by the relaxation strain 	balance those given by Equation (4.5). The Fourier transform 
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of the corresponding displacement field is 

u(k) = iFjk(k)CkjTflfl/3?flflklHv(k) . 	 (4.6) 

The total elastic distortion is then the sum of the relaxation strain and the initial distortion 

—/3, 1 Hv(r) applied to "restore" the original shape before relaxation. The associated total stress 

feads a(r) = Ck1(i31 - 13Hv(r)) and its Fourier transform is 

a1(k) = Cijim (km k o in (k)Cmopq  ± sipsmq )OppqHv. 	(4.7) 

The angular average 

F 	- 2_ 
f ij

no [ko k q Fnp (k)Cpq im  + 61n8mo jdQ 	 (4.8) 
131711 - 4ir 

does not depend on the modulus k of the wavevector since F, scales like k 2 . The stress 

hence can be written as 

= 	+ F*(k/k)I3i,jIv(o), 	 (4.9) 

where the second term is simply defined by f * (k/k)  = Cjj no [ko kql'np (k)Cpqjm  + iölnSmoj - 

to  ijim 

The above procedure can be straightforwardly generalised for an arbitrary distribution of the 

plastic distortion )3P(r) by considering each volume element as a separate inclusion. Equation 

(4.9) becomes 

= [—F1 + 	 (4.10) 

and, in real space, 

= 	+ fF*(r - r') 71 (r')d3r'. 	 (4.11) ijim 
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The non-local kernel F(r - r') is the inverse Fourier transform of F*(k/k);  it scales like 

1/r 2  in two-dimensional space and like 1/r 3  in three dimensional space and has zero angular 

average. What has been done so far holds for strain fields that go to zero at infinite distances. 

If the asymptotic value of the plastic strain assumes a non-zero value 13P00,  we have to add the 

corresponding stress-free strain as follows: 

a1(k) = f9. inP, - ,3P (r)] + fF*(r - r')flim(r')d3r'. 	(4.12)Im  ilm Wj1 

For a plastic distortion field which has the average value ()3P),  the asymptotic value fll)no  is 

replaced by the average ()3P)  since the fluctuation contributions average out if integrated over 

the infinite contour. Hence, the internal stress can be envisaged as the sum of a mean-field 

contribution and a non-local term with a kernel of zero angular average. For the purpose of 

a depinning theory built with this type of non-local elastic interaction, one may note that in 

Fourier space the kernel scales like k" with a = 0, i.e., mean-field theory is expected to be 

valid in all dimensions. 

In the following consider the case where the plastic strain is determined by slip on a single slip 

system, 13P = y(r)ey  ®e, and the shear strain -y depends on the x and  coordinates only (such 

a quasi-two-dimensional model corresponds to a system of straight parallel edge dislocations). 

In this case, the internal shear stress Tint = 0-
'Y  in Fourier space becomes 

C 	k 2  k 
Tint (k) = - 	 (4.13) 

ir(1—vp) 	I 

and in real space 

= G 	
f (r' )  [ 	

1 	- 8(x -  __)__- 
	d2r' 

27r(1 - up) 	L(r - r') 2 	(r - r') 6 	j 
C 

+ 4(1 - up) 
	 . 	 (4.14) 

Here, C is the shear modulus and up the Poisson's ratio. From these expressions, two points 

may be noted: (i) The elastic kernel is not positively definite in real space. (ii) There exist 

certain space-dependent strain fluctuations (fluctuations with wavevectors in the x and y direc- 
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tions) which do not give rise to any long-range internal stresses. The implications of this will 

be discussed below. 

4.2.3 Dislocation-related stresses and internal-stress fluctuations 

We now consider the role of the flow stress r (r, -y), briefly recalling its physical origin. Plas-

tic flow consists, on microscopic scales, in the motion of lattice dislocation lines. In the ab-

sence of other defects, dislocations glide through a stress landscape produced by dislocations 

themselves. The flow stress of a "small" mesoscopic volume is the stress required to push 

dislocations through the stress landscape within the volume. 

The resulting flow stress rf = Sr + r can be envisaged as a sum of two contributions [for a 

more detailed discussion, see References [84, 145-1.47]]: 

(i) A fluctuating stress Sr(r, 2').  As stated above, spatial fluctuations are given by randomness 

in dislocation arrangements. At the same time, dislocation glide increases the local strain and 

modifies the fluctuating stresses within the surrounding mesoscopic volume element. In the 

absence of detailed information about the individual dislocation positions, we take this evolu-

tion of the stress "landscape" into account by introducing a dependence on the local strain 

Correlation properties of the fluctuation stress are given by 

0, 	 (4.15) 

(6r(r)2 ) = K 2 G2 52 p(r) 	 (4.16) 

(Sr(r, 7)6r(r + r 	+ ')) = (Sr(r)2)h(r'/r)g(7/7corr) . 	(4.17) 

K 2  = hi(e/b)/[87(1 - vp) 2] is a numerical constant of the order of unity which depends 

on the elastic properties of the crystal lattice, and logarithmically on the characteristic range 

11y of dislocation-dislocation correlations. Functions h(r'/e,-)  and g(7/7corr)  are 

dimensionless and characterised by short ranges, respectively & 	l/y'(see [145]) and 

7corr 	b/ ,/-p- (strain produced when all dislocation move by the average dislocation spacing, 
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see [84]). If i' is close enough to r, the stress correlator in Equation 4.17 is given essentially by 

(5r(r) 2), while for larger distances function h decays rapidly and random stress correlations 

drop to zero. 

(ii) A "back-stress" term, arising from dislocation correlations. Due to long range interactions, 

small groups of dislocations glide cooperatively, homogenising deformation over the slip plane. 

This can be seen as the effect of a 'pile-up stress' 7p(r) which can be approximated by a second-

order gradient of the strain according to 

r(r) 
= DC 

A_' 	
(d = 2), r(r) = DC ['Yxx + 'y2 	(d = 3) . 	(4.18) 

P 

Here, p is the total dislocation density and D a constant of the order of unity [see [146]]. In 

Eq. (4.18), d E [2,3] is the dimensionality of the model. The first expression (d = 2) refers to 

the special case where deformation is due to the motion of straight edge dislocations in a quasi 

twodimensional arrangement, such that the shear strain 'y does not depend on the z coordinate. 

4.2.4 Plastic flow and elastic manifold depinning 

In the light of the above results, one can rewrite Equation 4.1 in the form 

i-ext + Tint (r) + 
DC
—[-y  + y,] + &r(r,-y) C 0. 	 (4.19) 

The violation of that inequality corresponds to the onset of plastic flow. The asymptotic be-

haviour of this model for positive external stresses is captured by the equation of motion 

3t7(F) = Text + 	
DC 

t(r) + 	[7xx + 	] + Sr(r, ). 	(4.20) 

in the rate-independent limit B —* oo. 

The analogy with the general problem of depinning is rather straightforward. Formally, Equa-

tion (4.20) can be interpreted as describing the overdamped dynamics of an elastic manifold 

with coordinates ('y, r) which moves in the 7-direction through a random medium. In the 

two-dimensional case where 'y = -y (x, y) depends only on the •x and y coordinates (d = 2), 
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our model may be considered a continuum approximation of a quasi-two-dimensional system 

of straight parallel dislocations. If the strain depends on all three spatial coordinates, then the 

model mimics the large-scale behaviour of a system of three-dimensionally curved dislocations 

In more general terms, the model describes the motion of a d-dimensional elastic manifold 

through a disordered (d + 1)-dimensional medium which exerts a fluctuating pinning force 

Si- . Due to the infinite range of the interaction kernel governing the internal stress r(t) 

one expects the second-order gradient terms in Equations 4.19 and 4.20 to be irrelevant for the 

large-scale behaviour, as they scale as k 2 -y(k) in Fourier space. It is thus clear, in the light of 

depinning theories, that the model exhibits mean-field behaviour irrespective of the manifold 

dimension (see Chapter 1). 

The relevance of gradient terms is nonetheless unquestionable from the viewpoint of small-

scale morphology, as they break the symmetry existing in the elastic kernel between directions 

x and y, accounting for slip-line patterns commonly observed in experiments. 

4.3 Discussion 

In order to assess validity of our theory, numerical simulations of the continuum model de-

tailed above have been performed by our co-workers (see [841). A lattice automaton model 

has been implemented, taking into account the two-dimensional case. A generalisation to a 

three-dimensional approach in is not expected to make any significant difference due to the 

mean-field behaviour exhibited by the model (see Chapter 1). 

Numerical results confirm the validity of our model, allowing us to reproduce several experi-

mental observations and to corroborate the hypothesis of a critical behaviour in a slowly driven 

non-equilibrium state. 

4.3.1 Avalanche dynamics and critical behaviour 

In Figure 4.1 a stress-strain curve obtained numerically is reported. Simulated graphs ex-

hibit the typical staircase-like shape observed in experiments (see [148, 149]).  At low applied 

stresses the system becomes pinned in configurations where the fluctuating stress Sr is nega-

tive in most volume elements, thereby creating a non-zero average back stress. The increase 

of plastic strain with increasing stress occurs in discrete slip avalanches of varying size. These 
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Figure 4.1: Stress-strain curve as obtained from simulation of a system with 128 x 128 sites; 
dashed line: critical stress 're ; Insert: detail Of the same stress-strain graph. 

avalanches are visible as steps on the stress-strain curves. The intervals between the larger 

avalanches divide into avalanches of smaller size, and the characteristic avalanche size diverges 

as one approaches the yield stress. 

The average strain diverges as the stress approaches the yield stress r. A semi-logarithmic plot 

of vs. i- - rext reveals that this divergence is logarithmic in nature (Figure 4.2). The stress 

susceptibility x = &y/&Text of the plastic strain diverges according to 

X cc 	- Text) 9 , 6 	1, 	 (4.21) 

in line with the expectation for mean-field depinning [16]. 

Avalanche sizes obey scale free distributions, as in Figure 4.3. The distributions exhibit a 

power-law decay p(AE) cc with tc 1.4 which is truncated at a characteristic avalanche 

size AE, As the stress approaches the critical stress 're , this upper limit and hence the aver-

age avalanche size diverge. Distributions obtained at different applied stresses Text  can be 

collapsed into a single universal distribution if the energy releases are re-scaled by a factor 

(1 - Text/Tc) "  where v(d + () 2 (Figure 4.3, right). We therefore expect susceptibility 

to diverge like x cc  K - -) ( C)(2_tc). With it 	1.4, ( 	0 and v 	2/d we find 6 	1 in 

agreement with Equation (4.21). 
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obtained by re-scaling AE — AE(1 - r 0 t/r)2 ; full line: theoretical curve 
(Equation 4.22). 



4.3. DISCUSSION 	 85 

The exponents ,, 0, ( and v are in good agreement with the hypothesis of mean-field depinning, 

being the theoretical values 8 = 1, ( = 0, v = 2/d and K = 3/2 (see e.g. [16,24]). 

Above we have considered avalanche size distributions and energy release distributions as 

equivalent. This is reasonable, since the total energy release during an event is approximately 

equal to the product of the applied stress and the strain increment associated with the event (see 

Reference [1]) and thus proportional to the total slip distance or, equivalently, the avalanche 

size. Hence, the theoretically predicted energy release distribution for mean-field depinning is 

[ 
1 )' I 

P(AE) cr E'5exp L 	
E 

	
(4.22) 

which again compares well with the results of numerical simulations of our model (Figure 4.3 

and Reference [79]). 

4.3.2 Influence of hardening 

During deformation, the dislocation density often increases with increasing strain, leading to 

an increase of the stress required to sustain plastic flow (strain hardening). Hardening can be 

phenomenologically described by a strain dependent "back stress" which is subtracted from the 

locally acting stress (see e.g. [84]). In the simplest case of linear strain hardening, this stress is 

given by n, = —ê-y where e is the hardening coefficient. 

Our discussions so far, as well as the related simulations, have neglected the effects of harden-

ing. However, it is possible to introduce them in our model and implement them numerically. 

For a detailed discussion of the problem, the reader may refer to [84]. Here we point out that 

hardening does not modify the stepwise structure of stress-strain curves, although it suppresses 

the largest bursts, which in a non-hardening system are supposed to take place close to the crit-

ical stress. In other words, hardening tends to hinder the critical behaviour associated with the 

critical stress, yet leaving many of the scale-invariant properties (such as scale-free avalanche 

size distributions) basically unchanged. 
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Figure 4.4: Strain pattern obtained after simulation of a system of size 256 x 256 to an average 

strain of 20b/  (slip direction from left to right): parameters as in Figure 4.1: 
greyscale: local strain in units of b /i 

4.3.3 Slip pattern and surface morphology 

Interesting aspects also emerge from the analysis of surface profiles in simulated systems. The 

observed highly anisotropic strain patterns (see Figure 4.4) with strong correlation along the 

glide direction and weak coupling in the normal direction are reminiscent of the gradient terms 

in Equations 4.19 and 4.20. Random fluctuations are weakened along the glide direction by 

dislocation-dislocation correlations and the model reproduces the experimentally well-known 

slip anisotropy of deforming crystals. 

In more quantitative terms, the roughening of surface profiles can be statistically analysed. 

Deformation profiles can be calculated by simply integrating strain fluctuations at the surface 1  

P6' 
h(y) 

= J [^t (x = 0,y') - (7)]dy' . 	 (4.23) 
(1 

Simulated surfaces are self-affine and can be characterised by a strain-independent Hurst ex- 

ponent H 	0.7 (see Figure 4.5) whose numerical value is in satisfactory agreement with 

'Here we tacitly assume that surface effects can be neglected. Near a free surface elastic interactions are, in fact, 

modified by surface boundary conditions. In the present implementation, however, surface boundary conditions are 

not taken into account and surface effects can be safely disregarded. 
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experimental observations (see e.g. Figure 1.4) as well as its strain independence. 

4.14 Summary 

Our simple continuum model captures essential aspects of heterogeneities in plastically deform-

ing metals. By combining a fluctuating local stress-strain relationship with a strain-gradient 

dependent stress contribution and long-range stresses mediated by the elastic Green's function, 

the model accounts both for the observed spatial heterogeneities of plastic deformation (slip 

lines, self-affine surface roughness) and the emergence of "bursts" of plastic activity with a 

power-law size distribution. 

In general terms, our results indicate that fluctuation phenomena in plastic flow of crystalline 

solids can be envisaged as critical phenomena in driven non-equilibrium systems 2 . However, a 

crucial difference can be emphasised with respect to ordinary interface depinning problems. In 

a crystalline solid deforming in single slip, where deformation is restricted to simple shear oc- 

analogous effort has been made in relation with the plasticity of amorphous materials (see [150]). 
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curring along a single set of planes, the elastic kernel responsible for the long-range interaction 

is not positively definite. As a consequence, Middleton's no passing-theorem (see Chapter 1), 

ensuring the uniqueness of the depinning threshold, need not hold. Although numerical inves-

tigation of the model shows depinning-like behaviour, consequences of this observation remain 

to be investigated. 



Chapter 5 
Pinning of interface cracks in slope 

failure 

That of slope failure is a very general problem. The reasons of its interest include implica-

tions for glaciology, geology and material science in general. Failure is driven by nucleation 

and propagation of cracks along the interface between a weak layer (of snow or clay) and the 

underlying substrate. 

We investigate features of slab release introducing spatial heterogeneities (disorder) at the in-

terface with the underlying substrate (see Figure 5.1). Such heterogeneities determine spatial 

variations in the fracture toughness (a fluctuating pinning field). 

These variations affect slope stability and interface failure in two competing ways: (i) If the 

interface contains a pre-existing shear crack, randomness may lead to crack pinning and thereby 

enhance slope stability. The pinning of interface cracks is investigated, and the problem is 

shown to be equivalent to the pinning of a contact line; (ii) Randomness may facilitate crack 

nucleation and thereby decrease the slope strength. The competition between crack nucleation 

and propagation is investigated, and it is shown that increasing randomness leads to a cross-over 

from a failure mode that is controlled by crack propagation to a failure mode that is controlled 

by the profuse nucleation and coalescence of cracks. 

5.1 Slope failure - an overview 

Failure may occur either through the propagation of a pre-existing shear crack or by profuse 

nucleation of multiple flaws. In the former case, the problem is very similar to the problem of 

shear-band formation in a slope as studied in the work of Palmer and Rice [151]. The criterion 

for failure by shear band propagation, that was first obtained in that work, has been successfully 

applied to snow slab avalanches [152]. According to this criterion, for a given load due to the 

weight of the slope above the plane of shear, the slope starts to slide when the length of the 

shear band exceeds a critical, value. 
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In real systems, however, one expects significant variations in interface toughness due to the 

presence of small-scale heterogeneities. In snow slopes, even in an apparently homogeneous 

snowpack, large fluctuations in the local strength of snow layers have been reported [1.53]. In 

the absence of a pre-existing shear crack, such fluctuations facilitate failure by profuse damage 

nucleation as investigated in the context of snow slab avalanches by Zaiser [83] and Fyffe et 

al. [155]. 

In the present study we investigate how randomness affects the propagation of an interface 

crack and demonstrate that increasing randomness leads to a change in failure mode: at small 

randomness, failure occurs by crack propagation; in this regime, randomness increases slope 

stability by pinning the crack. If the randomness exceeds a critical value, failure occurs by pro-

fuse crack nucleation; in this regime, any further increase of interface heterogeneity deteriorates 

the stability of the slope 

From the viewpoint of elasticity theory, our system is described by an elastic continuum (the 

slab) bounded by a rigid substrate (see Figure 5.1). This problem has also been addressed in 

the past in the different conceptual framework of tribology, in order to explain friction between 

sliding bodies (see References [36, 37]). It was proven, by statistical considerations, that an 

elastic body deformed at the interface exhibits non-local elastic behaviour (bulk mediated elas-

ticity) in the short wavelength limit for deformations, under the assumption of large normal 

loads (see [37]). 

Here we address the problem from the point of view of fracture. During crack propagation (see 

Figure 5. 1), shear stresses act on the interface of the slab, causing its deformation. We solve the 

elastic problem explicitly, deriving the aforementioned crossover between local and non-local 

elasticity. We show that, in the long wavelength limit, the internal shear stresses acting on the 

interface are approximated by second order gradients of the shear displacement. 

In the presence of disorder, the displacement profile of a crack front at the propagation threshold 

proves to be self-affine. We demonstrate that a crack front exhibits non-local elastic behaviour 

and propose a crack front pinning theory in order to explain variations in failure modes. 
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5.2 Formulation of the model 

We consider a clay or snow slope of thickness h (see Figure 5.1). The interface with the 

bedrock is identified with the plane z = 0, the bedrock is considered of infinite stiffness, and the 

overlying cohesive material is treated as an isotropic linear elastic solid of shear modulus C and 

Poisson ratio VP. The slope is sliding and deforming in the x direction, and the corresponding 

displacement field in the z = 0 plane is denoted by u(x, y). The extension of the slope is 

assumed much larger than any other characteristic length in the system such that we may neglect 

boundary effects in the x and y directions. 

z 
44 

/h 

IR 

Figure 5.1: Schematic illustration of our model. A snow or clay slab of thickness h (trails-
parent) is in contact with a stiff bedrock (gray). Shear occurs on the z = 0 plane, 
where a inode-II crack of length 21 (orange) propagates (see text below). Spatial 
fluctuations of the fracture toughness determine roughening of the crack front in 
x = +1. 

The displacement field at the interface produces an internal shear stress distribution 'rt. Under 

the effect of a constant external stress the slope is stable if the displacement field u(x, y) 

fulfils the inequality 

Tint (U) + rj - rs(u, x, y) < 0 	 (5.1) 

Since the weight of the slope is the main source of the external stress acting on the slope itself, one has 
/gh sin 9, where fi is the density of the medium and d is the inclination of the slope. For our purposes, these 
quantities can be replaced by their average values, over the length and time scales characterising slab release. 
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Figure 5.2: Shear strength versus displacement across weak layei; at a given position (x, y). 
Areas marked as I and II must be equal, in order to satisfy the "energy conserva-
tion" condition described below in the text. 

where rs(u,  x, y) is the interface shear strength and, in general, depends on the displacement 

field t(x, y) and the position along the interface. We assume that the dependence on the shear 

displacement is characterised by a hardening-softening relationship, as shown schematically 

in Figure 5.2. The shear strength increases initially towards a peak value r,, and then drops 

towards an asymptotic value T, The spatial dependence of TS(u,  x, y), instead, accounts for 

random heterogeneities at the interface and will be discussed in detail below. 

Equation 5.1 is constitutive for our model. In order to get a clearer picture of shear band 

propagation, we need to evaluate the internal stress distribution rj (v,) as a function of the 

displacement field n(x,y). In previous works by Fyffe et al. [155] and Zaiser [83] this was 

done within the framework of a one-dimensional model by using a representation of the internal 

stress field in terms of interface dislocations. In two dimensions this is not feasible and instead 

we have to explicitly solve the elasticity problem. 

5.2.1 Elastic energy 

The elastic energy functional associated with a general displacement vector field w(r) in an 

isotropic material can be written as 
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KR(w) = fd3r 
R 

2'— 2vp 

i - 
2vp) (VW)2 +(V x W)2] 	 (5.2) 

and the associated equilibrium equation is 

V2w+
1

(Vw)=0. 	
(53) 

- 2vp 
__V 

 

Fluctuations can be introduced by perturbing the elastic medium at the interface It is conve-

nient to express perturbations in term of their harmonic components u(k, k u), in the form 

 
u(x, 	

d2 k 

= I c°' n(k, k) . 	 (5.4) 

Equation 5.3 can thus be solved in Fourier space, by imposing boundary conditions as w (x, y, 0) = 

ti(, y), w(x, y, 0) = 	y, 0) = 0 and allowing a free surface at z = h. The problem of 

an elastic body bounded by a plane has been solved by adopting several diverse methods. Here 

we follow the procedure due to Boussinesq (see [156] and reference therein). 

Let us first introduce the vector w0 which solves the harmonic problem Vw o (r) = 0. The 

expression for w0 can be easily obtained by simple integration of the differential problem, 

leading to 

( 1\  

P d2 k 

= I (2 	0  ) exp [i(kxx + ky) - (k + k)h/2z]  u(k, k u ). 	(5.5) 

0 

Under the assumption of large normal loads, the approximation w 	wo  is often made (see 

e.g. [37]).  However, that may not hold in general and does not apply to our case in particular 2 . 

By applying results for the theory of Potential [156] to our systems we find an expression for 

the exact solution w in the form 

2 1n fact, the solution we will adopt in the next sections is exactly the solution of the harmonic, problem. However, 
the reason for that approximation is to be found in the long wavelength assumption instead, as we will show soon. 
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k 2 	\ 1—flz 

= I d2k ( x (2)2 	_??Z(k2+k2)1/2 

J 
exp [i(kxx + ky) - (k 2  + k)h/2z]  u(k, k) (5.6) 

—irjzk j 

where ij = 1/(3 - tip). Comparing this result to the solution of the harmonic problem is 

quite instructive. One may notice two main aspects: (i) deformation along the normal direction 

grows linearly close to the interface until it is suppressed by an exponential decay; (ii) although 

there is no deformation in the y and z directions at the interface, those components are in 

general non-zero within the bulk. However, they act as higher-order corrections and can be 

disregarded in the Ikh! cC 1 limit, corresponding to the approximation of long wavelengths (or, 

equivalently, small thickness h of the slab). 

Once the assumption w w0 has been put in the right perspective, the elastic energy functional 

can be rewritten as 

fd
3r [a(81w) 2  + (Ow)2  + (O2x) 2 ] 	 (5.7) 

where a = ( 2 - 2vp)/(1 - 2vp). In order to express the above energy as a functional of the 

displacement at the interface, we replace w x  with the expression found for long wavelengths 

and, defining Dirac's delta function as 

(2) 2 6(k,k) = Jdxf dy exp[i(kx + ky)] 	 (5.8) 

we obtain 

G ' d2k r 	1 - e 2)u/2  1 
N(u) = I 	[ak 2+ + 2(k + k)'/2 j 

X 2hu(k, k)u(k, —k u) (5.9) 

In the limit of large thickness h of the slab, we recover the approximate result of non-local bulk 

elasticity [37]. In our case, however, we are interested in the opposite limit Ikhl << 1. Up to 
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the lowest order the functional reads 

fl(u)=Ghj (2 
d2k )2 [(1+a)k2+k2](kk)(kk) 	(5.10) 

and reverting to spatial coordinates we find the energy functional 

N(u) = Ghf dxfdy [(1 
	

) (Du)2 +(Ou)2] . 	(5.11) 

5.2.2 Shear stress 

To determine the internal shear stress rt(x, y) acting on the z = U interface, we note that the 

elastic energy must equal the work that has to be expended against the shear stress in order to 

create the displacement field u(x, y) from an initially displacement-free configuration: 

I r u(x,y) 	1 
7-1(u) 

= 
f dxf dy IJ 	r t du

j  
I . 	(5.12) 

[o  

Equating the expressions for 7-L(u) given in Equations 5.11 and 5.12 and taking on both sides 

the functional derivative with respect to u(x, y) finally yields 

Tint = it, 8u + liii8u 	 (5.13) 

where the gradient coefficients relate to mode-11 and mode-Ill crack propagation (see below) 

and are given by Ij = (1 +a)hG and l = 2hG. For pure mode-Ill loading (it is a function 

of they coordinate only), Equation5.13 reduces to an expression obtained by Fyffe et al. [155] 

and Zaiser [154J from a completely different line of reasoning. 

The constitutive law in Equation 5.1 becomes 

111 8u + 1111Ou + Text - 	<0, 	 (5.14) 

In the following, we consider rate-independent behaviour, i.e., once Equation 5.14 is vio- 
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lated at some location (x, y), the displacement field u(x, y) increases and re-arranges quasi-

instantaneously into a new stable configuration. If no stable configuration is found, u increases 

indefinitely and the slope fails. 

5.3 Shear band profile and crack pinning 

The profile of a shear band is obtained by solving Equation 5.14. Let us first neglect disorder, 

assuming that the shear strength -rs depends only on the displacement field 'a, and consider 

a mode-II crack along the interface. Such a crack is characterised by a displacement field 

u(x) which is homogenous in the y direction. In the absence of spatial heterogeneities, the 

displacement field is supposed to start from a value uo at x -* —cc, reach a maximum value 

ui at, let us assume, x = 0 and revert to the asymptotic value uo in the limit x -. +oo. 

5.3.1 Force acting on a crack 

In quantitative terms, the displacement field of a critical mode-11 crack satisfies 

	

IjOu + r63 - 'rs(u) = 0 . 	 (5.15) 

Equations of this type have been studied in the context of shear and slip bands in metals plas-

ticity [157, 158].  By analogy, they can be envisaged as describing the un-damped motion of a 

charged particle of mass I. Energy conservation therefore implies 

PU' 

	

/ {rext - rs(u)j du = 0, 	 (5.16) 
.1 n 

which means that the areas I and II highlighted in Figure 5.2 must be equal. Approximate 

solutions of Equation 5.15 can be found in this case applying the appropriate boundary condi-

tions. Assuming that the length 21 of the crack is large in comparison with that of the end region 

where the shear strength is larger than the asymptotic value r (see Figure 5.2), one obtains 

the displacement 

u(x)- (12 - x2)(rext - r) (5.17) 
- 

2-Irl  
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Scaled position 

Figure 5.3: A shear band of scaled length L = 10. Full line: displacement profile as a 
qualitative solution of Equation 5.15. Displacement crosses over to its asymptotic 
value. Dotted line: parabolic approximation. Dashed line: internal shear stress 
profile. The strength reaches a constant value (m in the text) over most of the 
crack length. See also-[90]. 

where we have required the solution to be symmetrical around the origin and imposed n0 = 0, 

without loss of generality. The parabolic solution is meaningful in the region between x = —1 

and x = I. Close to x = *1 the displacement smoothly crosses over to the asymptotic value 

no = 0 (see Figure 5.3). 

We can assume that ui is much larger than the the value n where the descending branch of 

crosses the value T€2,t in Figure 5.2. Hence, the equal-area condition in Equation 5.16 can 

be fulfilled only if Text - r << T - We define ii such that the area I in Figure 5.2 can 

be approximated by 

	

j Ts(n) 	rIdu = (Tm - 
	 (5.18) 

while the area II can be approximated by (Text - T)ui. Thus, using the expression for u8  at 

x = 0, the equal-area condition for a marginally stable crack becomes 

	

12(7-ext - 	- 
(Fm 	 roc )Ü. 	 (5.19) 

	

2Ijj 	- 
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This equation can be envisaged as a Griffith-like energy balance criterion. The term on the left-

hand side is the force per unit length F(rext, 21) acting on the crack of length 21, as a result of 

the external stress Text,  while the right-hand side is an interface toughness. The critical force F 

acting on the crack at failure is defined as the value of F(r€ ,21) which fulfills the condition 

in Equation 5.19. In terms of energies, the left-hand side in Equation 5.19 can be envisaged as 

the elastic energy density released as the crack advances by a unit amount, while the right-hand 

side is the work (density) which has to be done to reduce the interface strength as the the crack 

advances by a unit amount. Crack propagation occurs when the effective force overcomes the 

interface toughness by exceeding the critical value or, similarly, when the elastic energy release 

exceeds the work required to reduce the strength of the interface. 

5.3.2 The effect of disorder 

Disorder is introduced in this model by allowing the shear strength i -s to fluctuate, as a re-

sult of spatial heterogeneities at the interface. This is expected to perturb the solution for the 

displacement field derived above and to affect failure. 

In order to allow random variations in the interface toughness within our model, we consider 

the peak strength Tm in Figure 5.2 as a random function of space. Such strength fluctuations 

act as a pinning field perturbing the crack front, and the variance ,/5 determines the typical 

pinning force. 

The idea of crack front pinning is suggested by numerical results obtained by our co-workers 

in implementing the analytical model described above (see [90]).  These results are briefly 

summarised below. 

5.3.3 Critical stress and profile roughness 

Introducing randomness in the system affects the critical behaviour of the system. Average 

failure stresses of systems containing cracks of different width are plotted in Figure 5.4, as 

functions of the relative variance 

am= (r) - (Tm) 	 (5.20) 
(rm)2 
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Figure 5.4: Slope failure stress as afunction of peak strength variance. 

For a system without cracks, the failure stress decreases monotonically with increasing peak 

strength variance since the presence of weak sites facilitates crack nucleation. In the presence 

of a crack, this behaviour changes. For small degrees of randomness, the behaviour of the 

system is governed by the propagation of the existing crack. This leads to a failure stress 

which decreases with increasing crack width but tends to increase with increasing peak strength 

variance. 

This increase is attributed to crack front pinning. At large values of CM, we observe a crossover 

to a decreasing failure stress which is approximately the same as for an initially crack-free 

system. This crossover corresponds to a change in failure mode; failure in this regime occurs 

by profuse crack nucleation at particularly weak sites and by crack coalescence, rather than by 

propagation of the existing crack. 

In Tine with the observation of pinning behaviour, crack fronts assume an irregular shape as 

the stress approaches the critical stress for crack propagation. The crack profile becomes self-

affine. The roughness exponent froth the simulated crack profiles can be derived using the 

Wavelet transform method [159]. The numerical analysis performed on our simulated profiles 

leads to a roughness exponent ( = 0.28 [90]. - 
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Figure 5.5: Critical force acting on the crack at failure, normalised by the critical force in a 
homogeneous system. Symbols as in Figure 5.4. Full line: FIFO = 

5.3.4 Critical force for crack propagation 

In a system with increased randomness the crack is able to advance further before failure oc-

curs. Figure 5.5 shows that below o -  3 the critical force for crack propagation F increases 

significantly with increasing degree of randomness, corroborating the hypothesis of crack pin-

mug. 

The increase in strength follows a universal curve. Independent of the initial crack width, the 

critical force (normalised by the critical force for a homogenous system F0) increases like 

F/Fo °5M (full line). For wide cracks, the crack pinning outweighs the force increase 

due to the widening of the crack, and therefore the overall stability of the slope increases in 

this regime. At larger values of CM, the behaviour becomes non-universal as the critical force 

reaches a maximum and then apparently decreases. This apparent decrease is due to the fact that 

in this regime the initial crack gets so strongly pinned that ultimate failure occurs by nucleation 

and coalescence of cracks at other locations. 
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5.3.5 A pinning theory 

The rich phenomenology shown above corroborates the hypothesis of pinned behaviour of 

cracks. At the same time, self-affinity and universality suggest, once again, that criticality 

of our system can be explained in terms of non-equilibrium theories. The observed roughness 

exponent is close to the value C = 1/3 expected for instance for a solid-liquid contact line at 

the depinning threshold. 

A pinning theory for interface cracks can be formulated thanks to simple considerations. The 

behaviour of the crack front in the presence of disorder is governed by three competing effects: 

(i) disorder tends to corrugate the crack front, as areas of reduced strength allow the crack front 

to advance, thereby causing a decrease in total energy of the system (ii) this is counteracted by 

the elasticity of the system which tends to keep the crack front straight (iii) the external stress 

leads to an effective force acting on the crack front which tends to move it forward. 

The terms of the problem are the same as the ones encountered while studying, for instance, 

depinning of linear dislocation arrays (see Chapter 2). However, the physics of the problem 

under examination is different. The external force acting on the crack and driving depinning is 

the F(rex t, 21) term determined above. 

Crack Elasticity 

To assess the elastic response of the system, we assume that the crack front in x = I exhibits 

harmonic perturbations. The solution of the differential problem in Equation 5.14 has the form 

u(x, y) = u3 (x) + Au(x, y) (5.21) 

where n 3  (x) is the displacement field of a linear crack derived above and perturbations Au(x, y) 

must fulfill the boundary conditions 

u(l, y) = I~kyekvYc(ky) 
. 	 (5.22) 

2ir 

By integrating the differential problem, we find 



102 	 CHAPTER 5. PINNING OF INTERFACE CRACKS IN SLOPE FAILURE 

1dk 	[ 
u(x, y) = u5 (x) + / 	exp [ikv + 	k(1 - x)] c(k). 	(5.23) 

j 2ir 

However, here we are interested in the energy variations AE introduced by disorder. Hence, 

the u3  term can be ignored, as it gives no contribution to fluctuations. We calculate variations in 

the elastic energy replacing Au in EquationS. 12, i.e. defining E(Au) ?-1(Au), and obtain 

the expected result 

f \/iiiIiiI IkY Ic2 (kY )dkY , 	 (5.24) 

that is, non-local elasticity for a perturbed interface crack. 

Depinning and increase in the critical force 

The above result allows us to locate crack front pinning in the same universality class as, for 

instance, linear dislocation arrays (see Chapter 2) and contact lines [160]. 

Given the nature of the problem, an estimate of the critical force due to pinning can be given 

in terms of competition between elasticity and disorder, by exploiting the well known Larkin-

type argument introduced in Chapter 1. A similar problem has been addressed in the past (see 

Reference [93])  in terms of crack trapping by periodic arrays of obstacles in brittle solids. Here 

we consider the more general problem of a random distribution of pinning centres and apply its 

results to the shear crack model introduced above. 

The average pinning force fluctuation per unit length, perceived by a crack front segment of 

length L > , is 

4(L) = (r)u2 , 	 (5.25) 

where 	is the characteristic range of the fluctuating force. The elastic energy associated with 

bulging a crack front segment of length L over the distance , is of the order of 

(Text - r) 2 

21 	
(5.26) 
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where c approximately relates to the oscillation amplitude of the crack front by c e2 O,u3  Ix=1 

e 1('r61,t - r)/1jj and the approximation I - Jj -' 1111 is introduced. The associated elastic 

force acting on a segment of length L follows as 

	

F61 = e 12 (Test - 	
2 

	

21 	
(5.27) 

By equating elasticity and disorder at a length L = L 

f(L 6)L 6  = AE 
	

(5.28) 

we obtain the pinning length L 

2 L = 1, (Text - 	4e(Tm_— 	 (5.29) C 	
I2(r)u2 	 (7

Tm2)  

where we made the assumption that fluctuations are weak such that Equation 5.19 still holds. 

The depinning force AF, is obtained by replacing L 6  in fr,. In this model, the depinning force is 

not the critical force for crack propagation. It is, instead, the increase in critical force produced 

by disorder (see Figure 5.5). It is easy to see that 

	

AF, ocaL. 	 (5.30) 

This result is in remarkably good agreement with simulation results, as shown in Figure 5.5. 

5.4 A generalisation of the theoretical approach 

In the theoretical model presented at the beginning of the present chapter, several assumptions 

have been made in order to ensure solvability of the main elastic problem. Certainly, the hy-

pothesis of long wavelength deformations is reasonable since we are have to bear in mind that 

we are dealing with a macroscopic system and the length scales involved, as well as time scales, 

allow us to make such an assumption rather safely. 

A possible improvement consists in formulating a similar problem in a slightly different geom- 
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etry. So far we have considered gliding motion of an elastic slide (a slab) on a rigid substrate 

(the bedrock). However, we can consider the case of the formation of a weak layer within the 

elastic continuum, resulting in the glide motion of an elastic slab on another, with random fluc-

tuation at the interface. Deformations in this case would be given by the relative displacement 

of the two media at the contact surfaces. In other words, a further complication would arise 

from the necessity to know the elastic displacements of two media instead of one as before. 

The medium on the top, however, behaves as the single slab considered above, since one of the 

two surfaces is still free. 

Instead, trying to describe what happens to the underlying elastic medium may appear less 

straightforward, since neither of its surfaces is left free. In mathematical terms, one has to 

solve the elastic problem 5.3, imposing boundary conditions on both surfaces, as displacement 

at the contact surface with the bedrock is supposed to vanish. This is known in elasticity theory 

as the problem of a body bounded by two parallel planes and has been given attention in the 

past (for a review, see [1.56] and references therein). Solutions have been found in different 

forms. However they are given in the form of very general expansions, which may not be the 

best choice in our case, where we seek for Fourier components of deformation. 

We found a general solution of this problem using the method of the Fourier transform, basing 

our procedure on the early work of Tedone [161]. For the sake of completeness, we report our 

work on this topic in Appendix B, focusing on the method of integration, as results do not differ 

from the ones obtained for a body bounded by one plane. 



Conclusions 

We investigated properties and implications of the interplay between elasticity and disorder 

in various physical systems undergoing plastic deformation. Independent of the length scale 

considered, order is constantly perturbed by fluctuations arising from the atomistic nature of 

matter on small scales or spatial heterogeneities in macroscopic continua. The competition 

between elastic behaviour and disorder introduced by random fluctuations is expected to rule 

equilibrium properties and drive dynamic response of a wealth of deforming systems which are 

amenable to an elastic description. These aspects have been thoroughly investigated in the past 

in the conceptual framework of pinning theories. 

We performed a theoretical analysis of elastic properties in disordered materials on different 

length scales and proposed an interpretation of their behaviour in terms of pinning and collec-

tive transport in random media. Our aim was to emphasise how several aspects of statics and 

dynamics can be, sometimes easily, explained by balancing fluctuations which produce disorder 

and elastic forces which tend to restore order. - 

On microscopic scales, we investigated the dynamics of microstructure defects, such as dislo-

cations and dislocation arrays, which are responsible for plastic deformation of crystalline ma-

terials. Dislocation dynamics exhibits a complex behaviour due to both self-induced constraints 

and embedded quenched disorder. If subject to small fluctuations, dislocations assemblies such 

as pileups and low-angle grain boundaries behave like elastic manifolds. We showed that, tak-

ing into account the long nature of the interactions involved, elastic properties of pileups and 

grain boundaries are appropriately described within the framework of non-local elasticity and 

line/surface tension approximations prove inadequate. This affects their response induced by 

disorder and their critical behaviour when an external stress is applied. In order to assess this 

picture we investigated the properties of pinning and the dynamics at the depinning transition. 

Our results, confirmed by experiments and numerical simulations, allow to map our problem 

on that of a contact line or a magnetic domain wall and provide a microscopic description of a 

wealth of plastic phenomena involving dislocation dynamics including certain types of recrys-

tallisation. 

Next, we considered an application to grain boundary depinning in flux line (vortex) lattices 
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in Type II superconductors. Grain boundaries and grain structures are often observed in these 

systems. However no theory currently accounts for polycrystalline ordering. We derived the 

exact solution for the elastic problem of a grain boundary in a flux line lattice and formulated 

a theory of a vortex polycrystal in the presence of disorder. Grain growth is first examined and 

the derived average grain size is found in good agreement with experiments. Then the problem 

of transport in the underlying superconductor is addressed. Pinning of topological defects in 

the vortex lattice is expected to influence the response to an applied current. Currents act in 

the form of external Lorentz forces driving vortex motion. Below a critical current, the vortex 

lattice is pinned by disorder and conduction takes place without resistance. Above the critical 

current, instead, vortices start gliding in the transversal direction, causing dissipation. We found 

that in the presence of a polycrystalline arrangement, a higher critical current is expected, and 

the region characterised by zero-resistance is broader. The hysteretical behaviour commonly 

observed in experiments proves to be a natural consequence of grain boundary depinning. Fi-

nally, we analysed the role of grain boundaries in a phenomenological approach to vortex lattice 

melting. In agreement with various recent numerical results, we found that a polycrystalline 

arrangement is energetically advantageous at high temperatures, thus constituting an early stage 

of the transition to the liquid phase, which is observed at higher temperatures. 

On larger length scales, we formulated a continuum theory accounting for spatial hetero-

geneities and intermittent behaviour observed in deforming crystals in the form of self-affine 

roughening of surfaces and stick-slip avalanche phenomena. We mapped the system to a gen-

eral depinning problem, in which disorder is introduced by random fluctuations in dislocation 

densities. We proved that the pinning approach predicts mean-field behaviour, as the system 

can be envisaged as an elastic manifold slowly driven through a random medium above the 

critical dimension and constantly close to criticality. Depinni.ng  occurs at the onset of yielding, 

corroborating the picture of a non-equilibrium yielding transition, as recently suggested by ex-

perimental evidence of critical scale-free behaviour, observed in a wide variety of examples, 

from ice crystals to metals. Our expectations were confirmed by the numerical implementation 

of our model, performed by our co-workers. Avalanche size distribution was found consistent 

with the mean-field prediction and simulated surface profiles agreed quantitatively with the 

ones obtained experimentally. 

Finally, we investigated the possibility of a pinning theory in the general context of slope failure 

We considered the propagation of cracks under the effect of internal and external stresses. 
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We derived the internal shear stress by solving the elastic problem of a body bounded by a 

disordered plane and formulated a constitutive equation for the model. We found that if on one 

hand randomness facilitates the nucleation of cracks - hence decreasing the slope strength 

- on the other hand pre-existing cracks can get pinned by disorder, enhancing stability of 

the slope. Pinning of cracks is expected to occur at low degrees of randomness, while for 

highly random substrates diffuse crack nucleation overwhelms pinning effects. In order to get 

a quantitative picture of the problem, we formulated a depinning theory for crack fronts. Crack 

fronts show non-local elastic properties and the problem can be easily mapped to the pileup 

depinning approach recalled above, in good agreement with numerical implementations. 

In the light of the results which have been presented and discussed throughout this work, we 

conclude that several aspects of plasticity can be described in terms of the competition between 

elasticity and disorder. In spite of its undoubted conceptual simplicity, this kind of approach 

proves to be a powerful tool in studying complex systems. The ubiquity of randomness - 

in the various disguises which it assumes on different length scales - turns out essential in 

understanding the intriguing dynamics of plastically deforming media. 
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Appendix A 

Grain boundary junction energy 

The presence of a n 2  term in the free energy functional [3.31] was first suggested by Chui 

[1291, in order to take into account grain boundary crossing in the framework of a crystal melt-

ing theory. Such a crossing energy consisted of a thermal contribution due to coupling between 

fluctuations of dislocations of crossing grain boundaries. Nonetheless, Bitter decoration experi-

ments show that in vortex polycrystals, grain boundaries primarily rearrange forming junctions, 

instead of simply crossing. The formation of such junctions determines variations in the overall 

free energy of the system due to two different contributions, a zero temperature junction elastic 

energy and a thermal part related to fluctuations. In the following, we will address to these 

contributions respectively as F0 and Fy, being F = F o  + Fr 

A.1 Zero temperature energy 

We assume that because of the short range nature of a grain boundary stress field, grain bound-

ary interactions are screened for long distances and we show that forming a junction leads to a 

zero-temperature elastic energy gain F0 0. 

The idea is to focus on what happens when two grain boundaries come so close that they 

can form a junction. Let us consider a first grain boundary, e.g. directed along j with Burgers 

vectors b such that, b .1 = b, and a single dislocation, belonging to the other grain boundary, 

whose Burgers vector is b' . I = - U cos y, being the junction angle. 

Since grain boundary interactions are short-ranged, we expect misorientations effects to make 

no difference in the energy computation until dislocations come close to a distance that we will 

call 9. If, on a distance g, the interaction energy for = 0 is lower than for p $ 0, there in no 

reason for the system to make ajunction. Otherwise, if there is an energy gain, grain boundaries 

are likely to join. 

Ill 
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Considering the general expression for dislocation interactions 

K [ ear —r'I  

	

---liii 	bb' — 	 (A.1) 
2ir [ 	b 

where r and r' are the positions of interacting dislocations, the energy (per unit length) of our 

system (GB and rotated dislocation) is 
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where s is the distance between the rotated dislocation and the grain boundary. Moreover, after 

summing the series, 

[ 
Kb r 

(
/

-
eaD 	irs 

n- \ 
	irs 

- 	
irs1 

y = 	ln_sinh) - -cot -nj h 	cos. 	(A.3) 
- --  

Assuming that we have M dislocations within the range of s, the energy gain due to a junction 

will be 

F0 = 	- ME(0) <0 	 (A.4) 
M=1 

Since the stress field generated by a grain boundary is exponentially suppressed beyond a dis-

tance of the same order of the dislocation spacing, we can give a rough estimate of the sum 

taking M = 1 and s j  = D, i.e. 

—

Kb' 	 (eaD' 

	

F0 	----(1— cos )1n I 	 (A.5) 
2ir 	 '2irbj 

A.2 Thermal fluctuations 

The FT contribution, due to the coupling between fluctuations of dislocations belonging to 

different grain boundaries in a junction can also be estimated following Ref. [1.29]. After per-

forming the thermal average of the interaction potential (A. I), calculated on the cylinder of 

radius Irl < (2/v' )D/7r and taking the short range logarithmic part of V 

Fr =fdzfdrrVe, 	 (A.6) 
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being Al a normalisation constant. Evaluating the integral for T T. leads to 

FT 	
Kb 2 i'D 2 \ 	

(A.7) cosy In   
2ir 

where y is the average junction angle. In the estimate of the lattice-polycrystal crossover we 

have assumed 	as it is often observed in decoration experiments. 



Appendix B 

Body bounded by two planes 

We show a method of integration for the general elastic problem of a body bounded by two 

planes, given the displacements at the surfaces. 

B.! General properties 

Following the reasoning in Reference [161] the elastic problem 

V2w+ 
1 - 2vp 

1 V(Vw)=O 	 (13.1) 

for a continuum of thickness h within two planes is solved if the auxiliary harmonic fields 

and 0 that satisfy 

A+3G 
+00 	

A+G 
±00 

4,G>' O( - 	+ 2irG h >i: n(%2( + ) = 	 (B.2) 
71=—ac 

are found. Here A is the first Lame coefficient, C the shear modulus and w0 the solution of the 

harmonic problem \7w0 = 0 for the assigned boundary conditions. The solution in that case 

would read 

A+G 
±00 

UIX = w0 
+ 4irC 	

[(2mh + z)O 71  + (2nh + ii - 
71= -00 

A+G 
Wy = 
	+ 	 [( 2nh + z)5 	+ (2ith + h - z)3y ] 	(B.3) 

71 = 

A+G 
±00 

wz  = woz 
- 4irC 	

- ) + h5] 
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Equations B.3 give a great deal of insight into the physical nature of the problem. Each point 

within the medium "sees" its infinite reflections on the two planes. Up to constants, the solu- 

tions can be qualitatively envisaged as an infinite sum of solutions for the single plane problem. 

Once given the above solution, we only need to determine the auxiliary fields to replace in B.3. 

The rest of the Appendix is devoted to this task. 

Ri Calculating the fields 0 and q5 

Given the structure of the system, which recalls the simpler problem of the single plane, we can 

write the auxiliary fields in the forms [16 11 

o(r) 
d2 k 

f ?J(kX  k)e 
= (2 	

)2 e 

5(r) 
r d  

= I e 1t+k4)(kx , ky ) e_hh) 

(27r) 

0. 
d2k  

f k)e_Q(2Thh+Z) 
= (2)2e U 

' 

I 4 	k) e_Q( 2Thh_z) 
(2ir)26 

q5(r) 	
= 

f 

J /  (21r)2C 

P 

I i(kxx+kyy) JY(k, ky)e2Thh_  
= (2i-) 

(B.5) 

where we have expressed the dependence on the x and y coordinates in terms of the Fourier 

transforms I and 't" and the behaviour along z as a sum of exponentials. Here Q = 	+ 

In order to obtain the desired functions from Equation B.2 we need the explicit solution of the 

harmonic problem w 0 . For our system we choose appropriate boundary conditions in the form 

(B.4) 

w(x,y,h)=u(x,y),w(x,y,h)=w(x,y,h)=O 

w(x,y,U)=w(x,y,O)=w(x,y,O)=O 	 (13.6) 
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assuming that no displacement takes place at the interface with the bedrock. We obtain that the 

only nonzero component is 

=  f &k_e 1m+ky) 	
- 	1 

u(kx, k u ), 	 (B.7) 
(27r)2 	[6Qh - cQhuj 

which, once replaced in Equation B.2 allows to determine, after tedious calculations 

=- 1)M(e - e_Qh) + NQh(eQh  + e1  + 1)fl(kk) 	(B.8) M2( eQtl - e_Q") + (NQh) 2  
M( eQl - eQh)(cQh + e-Qh  + 1) + NQ/I 

= i(eQh - 1) 	
M2( eQh - e_Qh) + (NQh)2 	

u(k, k u ), 	(B.9) 

with M = (A + 3C)/(47rG) and N = (A + G)1(27rG). The problem is then solved. An 

explicit result can be found replacing these functions in B.4, inserting the resulting fields in B.3 

and differentiating accordingly. 

Here we meant to focus on the method we adopted to find a solution explicitly accounting for 

Fourier components of deformation on the xy plane. The result is briefly discussed in Chapter 5. 
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