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Abstract
Discovering a word’s part of speech is an essential step in acquiring the grammar of

a language. In this thesis we examine a variety of computational Bayesian models

that use linguistic input available to children, in the form of transcribed child directed

speech, to learn part of speech categories. Part of speech categories are characterised

by contextual (distributional/syntactic) and word-internal (morphological) similarity.

In this thesis, we assume language learners will be aware of these types of cues, and

investigate exactly how they can make use of them.

Firstly, we enrich the context of a standard model (the Bayesian Hidden Markov

Model) by adding sentence type to the wider distributional context. We show that chil-

dren are exposed to a much more diverse set of sentence types than evident in standard

corpora used for NLP tasks, and previous work suggests that they are aware of the dif-

ferences between sentence type as signalled by prosody and pragmatics. Sentence type

affects local context distributions, and as such can be informative when relying on local

context for categorisation. Adding sentence types to the model improves performance,

depending on how it is integrated into our models. We discuss how to incorporate

novel features into the model structure we use in a flexible manner, and present a sec-

ond model type that learns to use sentence type as a distinguishing cue only when it is

informative.

Secondly, we add a model of morphological segmentation to the part of speech cat-

egorisation model, in order to model joint learning of syntactic categories and morphol-

ogy. These two tasks are closely linked: categorising words into syntactic categories

is aided by morphological information, and finding morphological patterns in words is

aided by knowing the syntactic categories of those words. In our joint model, we find

improved performance vis-a-vis single-task baselines, but the nature of the improve-

ment depends on the morphological typology of the language being modelled. This

is the first token-based joint model of unsupervised morphology and part of speech

category learning of which we are aware.
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I was fortunate to spend some time in Zürich working with Massimiliano Ciaramita

at Google. Thank you also to Katja Filippova and Keith Hall for being excellent lunch

companions and friends.

To everyone in Edinburgh who provided enthusiasm and distractions, my thanks.

Abby Levenberg, Tamsin Maxwell, Gregor Stewart, Sujai Kumar, and Seymour

Knowles-Barley were excellent company from one post-graduate degree to the next

(when will it end?). In Buccleuch Place I met the amazing Alexandra Birch, Moreno

Coco, and Vera Demberg. Finally, if the Informatics Forum is to be judged by its abil-

ity to bring together researchers, it is a great success, though I suspect table tennis

skill was not quite what the architects and designers were trying to optimise. Never-

theless: Teju Deoskar, Desmond Elliot, Diego Frassinelli, Eva Hasler, Kate Ho, Tom

Kwiatkowski, Mike Lewis, Oier Lopez de Lacalle, Dave Matthews, Silvia Pareti, Sasa
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Chapter 1

Introduction

In order to understand and speak the language they hear around them, human infants

have to infer a complex system of linguistic representations from a noisy, incomplete

sample. Over a relatively short span of time, children learn to process acoustic cues, re-

late these to communicative intention, and learn to communicate their own intentions.

They must infer the structure of the utterances they hear, and learn to structure their

own productions accordingly.

In this thesis we present computational models that aim to infer one aspect of the

structure necessary for linguistic competence, namely the categorisation of words into

syntactic categories such as noun or verb from data similar to that available to children.

These models do so on the basis of broader understandings of the input and internal

structure available to children than those used in previous models, and we show that

these extensions are beneficial.

The acquisition of syntax is one of the fundamental questions of cognitive science

research, with a number of methodological approaches. Collecting naturalistic data

from children undergoing the language learning process provides evidence about the

input they hear as well as the developmental progression of their own productions. Ex-

perimental studies elicit clues about the mental representations and processes used by

children at different stages of development. Finally, computational modelling provides

a way of testing the hypotheses about language development that are suggested by the

empirical and experimental data. The high-level goal of this thesis is to demonstrate the

necessity of modelling language acquisition using complex models that acknowledge

the multifaceted and parallel nature of the acquisition process.

Computational models cannot tell us what a human learner is doing. They do, how-

ever, allow us to investigate the input and internal representations that are required to

1



Chapter 1. Introduction 2

replicate human behaviour. They can make predictions about the nature and amount of

input necessary to learn certain aspects of language. They can also make predictions

about the relative timecourse of learning: if successful learning of one task is condi-

tional on structure learned by a second task, then this indicates sequential learning;

conversely, successful parallel learning can benefit from bootstrapped representations

emerging in both tasks at once.

Constructing a computational model requires making a number of decisions about

the structure of the input, specifically, which features of the input are assumed to be

relevant for the task at hand. One core hypothesis of this thesis is that models of ac-

quisition can benefit from attending to features of the input that current models have

ignored. In particular, we show that features from language components outwith syn-

tax, such as prosody and pragmatics, can provide cues for syntax acquisition.

A second core hypothesis is that computational models can benefit from integrat-

ing information from multiple tasks into a complex learning process involving multiple

goals. Human learning often involves the acquisition of multiple components of a task

(or multiple tasks) in parallel, rather than sequentially, and a realistic computational

model should take this into account. Furthermore, there is often a productive interac-

tion between closely related tasks, which a joint model can exploit.

These hypotheses are general to computational modelling of cognition. We apply

them to the specific task of lexical syntactic category learning, a relatively well-studied

problem in both the fields of language acquisition modelling as well as natural lan-

guage processing. Our approach is not focussed on engineering state of the art systems.

Instead, we are interested in the implications of model structure in terms of acquisi-

tion: Which changes have positive effects, and why? What does this tell us about the

structure of the input, and possible constraints on the part of the learner?

1.1 Our Approach

In this thesis, we take as our starting point a Bayesian model of unsupervised part of

speech tagging. This model performs syntactic category induction, that is to say, it

assigns words to clusters that are assumed to correspond to lexical syntactic categories

(parts of speech), and it does so without access to any information about the correct

categories (it is unsupervised). Learning about syntactic categories is a key step in

the process of learning syntax, since they enable generalisations over words, greatly

simplifying the representations required in subsequent levels of syntactic analysis.



Chapter 1. Introduction 3

The clusters learned by the model are a secondary result of the principal task of part

of speech tagging: assigning each token in the input to a category label corresponding

to parts of speech. This is in contrast to the bulk of work in modelling the acquisition

of syntactic categories, which focusses on assigning word types to clusters, based on

the complete set of all occurrences of a type. Our tagging model labels a single token

at a time, and thus can naturally handle syntactic category ambiguity. It also has an

explicit representation of word order, or rather, the order of syntactic categories, and is

thus capable of making inferences over an utterance as a whole, rather than only over

individual words.

The basic model we use, the Bayesian Hidden Markov Model (BHMM, Goldwater

and Griffiths (2007)), is well-known. It models the underlying structure of a sentence

as a sequence of part of speech labels, and as such, is a particularly simplified view

of syntax, disregarding the hierarchical structure inherent to language. However, this

simplification seems appropriate for the first stages of acquisition, when learners en-

counter short sentences with simple syntax. Most computational models of hierarchical

syntax acquisition or grammar induction assume that syntactic categories are available

and induce a grammar over syntactic categories rather than lexical items (e.g., Per-

fors (2008); Klein and Manning (2004)). The prerequisite task of finding the syntactic

categories is left to simpler models, such as the BHMM.

The Bayesian nature of the BHMM, which we describe in detail in Chapter 2,

makes it straightforward to extend in a mathematically sound fashion. Our general

methodology is to compare the performance of the extended models with additional

structure to simpler models to examine whether the additional complexity has come

at a cost or whether it has added value by improving model performance. This thesis

presents a number of such extensions, which we now briefly summarise.

1.1.1 Adding New Sources of Information: Sentence Type

In Chapter 3 we add information to the model by adding a new observed variable:

sentence type. This variable designates a sentence as being e.g., a question, declarative,

or imperative. Sentence type has a regular and clearly observable effect on word order

in many languages, and thus could be a useful cue in a model that relies on local

contexts, that is, the order of the immediate surrounding words.

However, adding an observed variable to a Bayesian network implies adding an

additional conditional variable to the conditional distributions embodied in the model.
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If the variable is uninformative, additional conditionality simply fractures the model

without serving any useful purpose: performance will go down. This would correspond

to a learner paying attention to the wrong cue, i.e. hypothesising a causal link that

is actually uninformative. Indeed, we see that in some cases, depending on how we

alter the model structure, performance does in fact decrease. However, in other cases,

namely when the sentence type variable is conditioning the word order distributions,

we see improved performance, indicating that the additional variable carries relevant

information for the part of speech tagging task.

In Chapter 4 we attempt to ameliorate the fracturing effect of adding conditional

variables by adding flexibility to the model structure: the new model includes transition

groups, additional latent variables that specify whether or not a particular distribution

should be conditioned on the sentence type observation. This flexibility captures the

learner’s ability to select which cues to pay attention to, and to disregard uninformative

cues.

1.1.2 Joint Learning: Morphology and Syntactic Categories

In Chapter 5 we add a morphological component to the BHMM, in order to examine

the interaction between morphological segmentation and syntactic categorisation based

on local surrounding context. These two tasks are closely linked in the development

of syntax, occurring at approximately the same stage of language development. Both

local context, in the sense of word order, and morphology serve as signals for syntactic

categories and syntactic roles. As in previous chapters, we evaluate this model on ty-

pologically distinct languages. We find differing patterns of results, with morphology

improving the tagging task more clearly in the language with greater morphological

richness (Spanish) and local context improving morphological segmentation in the lan-

guage with stricter word order (English). These results demonstrate the flexibility of

our model, and argue for a general need for realistic models of category and morphol-

ogy acquisition to take both tasks into account jointly, in order to be applicable across

languages.

1.2 Contributions

This thesis investigates the nature of the information available to language learners.

The learners in this thesis are computational models, but we strive to ensure that the
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information given to the models is compatible and consistent with information avail-

able to human learners.

This methodology allows us to test hypotheses about the utility of novel cues in a

model of acquisition that includes sources of linguistic and non-linguistic information.

Specifically, we demonstrate that representing the novel cue sentence type explicitly

provides additional information beyond the limited local contexts used in previous

models. We posit that sentence type is inferred on the basis of non-syntactic infor-

mation such as prosody and communicative intent, cues that are available before the

acquisition of syntax.

Our success in this task is an example of how a computational model can raise

hypotheses about human learning: our models link prosody and word order represen-

tations in an explicit way that has, to our knowledge, never been examined in human

learners. Our results show that this link is beneficial for the model, and thus indicate

an avenue for future experimental research with human learners.

The joint model of morphology and syntactic category acquisition demonstrates the

value of models of parallel learning of multiple tasks. Such models can not only better

recreate the process of language acquisition of a single learner, who does not wait to

perfect one aspect of language before beginning to learn the next, but we find that

they are necessary in order to reflect language diversity. Different language typologies

result in varying availability and informativeness of certain cues, such as word order

or suffixing patterns, for the morphology and syntactic category acquisition tasks. A

joint model is able to accommodate linguistic diversity better than single task models,

confirming our hypothesis regarding the necessity of complex models of learning.

Much previous work in modelling language acquisition has acknowledged the need

for complex models of full learning, but few models have gone beyond finding results

for a single task. This work demonstrates both the tractability of joint learning as well

as the potential benefits, in terms of modelling performance, thereof.



Chapter 2

Background

In this chapter we present the general framework used in this thesis, Bayesian mod-

elling. We begin with a description of Bayesian models in the context of computa-

tional models of cognition, and discuss what kinds of hypotheses they can investigate.

We then examine syntactic category acquisition, both in human learners and models

thereof. In the second half of this chapter we give a brief introduction to Bayesian

models, with a focus on the Bayesian Hidden Markov Model, a model used through-

out this thesis. We conclude with a description of evaluation methods used to assess

the clusterings generated by our and other models of syntactic category acquisition.

2.1 Computational Models of Cognition

Computational models of cognition aim to describe cognition at a high level of ab-

straction (Marr, 1982): the goal is to “reverse engineer” cognitive abilities and cogni-

tive processes in order to gain understanding about the requirements and constraints of

these processes. Even without making claims about the mechanistic nature of cognitive

processes, computational models can be informative about the nature of the environ-

ment and cognitive representations that enable and facilitate cognitive abilities, as well

as providing a deeper understanding of the nature of the cognitive process being inves-

tigated.

Rational models of cognition (Anderson, 1990; Griffiths et al., 2007) work at an

additional level of abstraction, by aiming to demonstrate optimal behaviour (in a given

context), on the assumption that human beings behave optimally within their environ-

ment.

... we can look in detail at what is outside the human head and try to de-

6



Chapter 2. Background 7

termine what would be optimal behaviour given the structure of the en-
vironment and the goals of the human. The claim is that we can predict
behaviour of humans by assuming that they will do what is optimal. (An-
derson, 1990)

The assumption of optimality is merely a working assumption until there is clear evi-

dence, for a given task, to the contrary. However, it offers a clear goal for models: to

match optimal behaviour, and also requires a precise definition of what that entails.

Within the rational-computational modelling framework, the specification of the

cognitive task is thus of primary importance. The researcher must define the ‘envi-

ronment’, the ‘goals of the human’, and ‘what is optimal’. None of these is straight-

forward: which aspects of the environment are relevant to the task? How does one

precisely specify the goals? How will we know when they have been met? What does

behaving optimally mean, in which context, under which constraints and pressures? In

the process of specifying a model that can behave optimally, important questions about

representations and causal interactions between components also arise: What kind of

representations are sufficiently descriptive and powerful? Adequately parsimonious?

Which components of the model interact, and in which ways? Being able to specify

possible answers, or even to rule out certain answers, to these questions gives us a

better idea of the problem we are trying to solve, a useful endeavour in itself.

In the experiments presented in this thesis, which involve rational computational

models, we focus on the following issues:

Environment: Which elements of the input environment are relevant and helpful for

the task at hand?

Representation: What form must the model-internal representations take to be able

to solve the task?

Structure: How do the different components of the input and within the model inter-

act?

Evaluation: How does the model output compare with what we expect, and how do

we justify and quantify our expectations?

An important characteristic of humans’ interaction with their environment is the

continuous lack of complete knowledge. All observations are noisy, prone to distortion

in the world and also through error-prone perception mechanisms. Other aspects of

the environment are extremely hard to observe, due to physical or time scale or other
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factors. A consequence of these distortions is that humans are constantly engaged in

reasoning of one form or another. Moreover, they engage in inference, both temporally,

by making predictions about the future, and conceptually, by seeking causal under-

standing of their environment. In order to model this behaviour, we require a theory of

reasoning and inference under uncertainty. Bayesian probability theory is such a the-

ory, and one that has been fruitful in the field of cognitive modelling (e.g., Tenenbaum

et al. (2006); Kemp et al. (2010); Perfors et al. (2011); Griffiths et al. (2007)).

Probability theory gives a representation of uncertainty as well as a system for ma-

nipulating sets of uncertain observations. Bayesian probability theory adds a method

of performing induction in the form of belief updates. Observations are integrated with

prior knowledge (hypotheses), resulting in updated hypotheses that can then be used

for prediction, or re-updated with new observations. This process of updating beliefs

based on observations is fundamentally what learning from experience entails. Addi-

tionally, using generative models gives us an intuitive way of including both production

and comprehension aspects of domain (i.e. language) understanding.

The models in this thesis are not process models: they do not make claims about

the mechanisms of learning or strong claims about the timecourse of learning. Process

models are an important element of cognitive modelling, but they also require making

additional assumptions about the nature of the learning process. We feel it is important

to tackle the computational-level questions, described above, first. Then, armed with

answers (or at least a better idea about the nature of possible answers), we can attempt

a more mechanistic, process-oriented, model.

Computational models interact productively with experimental and behavioural re-

search and aim to replicate behavioural results, while offering deeper insight into the

necessary operations than may be accessible through human introspection or exper-

iments. Developmental research with pre-verbal or quasi-verbal humans is perhaps

particularly limited in this regard, given the difference between comprehension and

production abilities at this stage. In the other direction, computational models may

offer productive leads for behavioural research, by determining possible factors or in-

teractions that have not yet been taken into account in experimental studies.

2.1.1 Rational Models of Language

Rational models of language are in an interesting position: remember, rational mod-

els have the goal of determining the optimal solution given a particular environment.
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In most cases (e.g., vision) the environment is pre-determined and reasonably stable.

Compared to the physics of optics, humans have a limited effect on their visual envi-

ronment. Language, however, is an entirely human product. As a successful commu-

nication system, it must, by definition, be learnable. The field of language evolution

(Brighton et al., 2005) aims to understand language as the result of cultural evolution.

(Note that this requires a notion of language as a system inferred from noisy input —

as the result of iterated (Bayesian) learning (Kirby et al., 2007) – rather than a nativist

perspective, where the primary pressure on language change would be the result of

biological evolution.)

This view of language, i.e., as a system that has been adapted to be transmissable

and learnable, raises the question of which characteristics of language arise as a con-

sequence of this adaptation. One clear candidate is systematicity, which arises directly

from the need for language to be generalisable and productive: without, for example, a

systematic morphology, neologisms would be impossible to understand. This system-

aticity is precisely what our models capture.

Rational models thus have a dual purpose in the context of language acquisition:

we are both interested in how language is acquired by an (ideal) learner, as well as

the characteristics of language that make it able to be learned. In the first case, the

models we propose are claims about the necessary representation of the learner; in

the second case, the models are hypotheses about useful cues for learning in the input

environment.

2.2 Computational Models of Language Acquisition

One of the most complex cognitive systems is that of natural language. Every child

learns language effortlessly (barring disability or extreme deprivation of environment),

and yet a century of linguistic research has not achieved consensus on even a gen-

eral characterisation of linguistic structure (Chomsky, 1957; Langacker, 1987; Croft,

2001).

One of the least controversial aspects of syntax is that languages require an ab-

straction of words into categories. Children do not learn an explicit class of ‘nouns’

or ‘prepositions’, but they must learn that words within a syntactic category are (at

least to some extent (Croft, 2001)) exchangeable — they can fill the same syntactic

roles. In Chomsky’s famous sentence, “Colourless green ideas sleep furiously”, the

verb sleep could be replaced by other intransitive verbs (“Colourless green ideas argue
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furiously”); the noun can be replaced by another nouns (“Colourless green patriarchies

sleep furiously”), and likewise for the adjectives and adverb. These sentences may not

make much semantic sense, but they are grammatically correct.

A key aspect of syntactic similarity is the distributional similarity between words,

i.e., words that appear in the same surface contexts (similar distributions) tend to be-

long to the same syntactic categories. Children are aware of distributional similarity

(Saffran et al., 1996) and use it to infer category membership (Gómez and Gerken,

1999; Gómez and Lakusta, 2004; Gerken et al., 2005), and computational models of

syntactic category induction rely almost entirely on distributional cues. In the remain-

der of this section we first discuss the acquisition of syntactic categories by humans,

and thereafter describe the models that have been previously proposed for this task.

2.2.1 Acquiring Syntactic Categories

The task of language acquisition is composed of many subtasks that are performed over

the course of many years, both concurrently and in sequence, building on previously

acquired skills. This series of learning tasks begins with learning gross phonetic regu-

larities of the mother tongue while still in the womb (Mehler et al., 1988; Mampe et al.,

2009) and continues for nearly a decade, although the vast bulk of learning happens

before the age of four.

In this thesis we are primarily concerned with early morpho-syntactic acquisition,

in particular, the categorisation of words into parts of speech, based on their appearance

in certain contexts and also based on the appearance of (morphological) patterns within

the words themselves.

This process occurs mainly in the second and third years of life (Valian, 1986;

Bernal et al., 2010; Tomasello and Olguin, 1993; Olguin and Tomasello, 1993; Booth

and Waxman, 2003). The acquisition of syntactic categories is inextricably linked to

other processes such as the acquisition of word meaning (Macnamara, 1978; Scott

and Fisher, 2009), word order (Matthews et al., 2007), phonology (Kelly, 1992), and

morphology (Akhtar and Tomasello, 1997).

Language learning happens within a rich environment of grounded physical and

visual interaction with the world and social interaction with other humans. Separating

the effects of all these different factors within an experimental setting can be very

difficult.

The distributional hypothesis (Maratsos and Chalkley, 1980) posits that children
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use distributional information, by tracking surface co-occurrence of words, to boot-

strap the acquisition of syntactic categories. Artificial language learning experiments

(Gómez and Gerken, 1999; Gómez and Lakusta, 2004; Gervain et al., 2008; Onnis

et al., 2008; Thothathiri et al., 2011) confirm that infants and children do perform

inference about the structure of language streams that are devoid of non-linguistic se-

mantic and contextual cues, based on statistical co-occurrence alone. While real-world

language learning is undoubtedly richer and more powerful than learning based on

purely distributional information, distributional information plays a vital part in lan-

guage learning, and it is worth investigating and interrogating.

In this thesis we are primarily interested in demonstrating the informativeness of

the data with regard to learning from distributional information. Distributional infor-

mation is often used to refer only to local word-external syntactic contexts, but we use

it more broadly, to apply to (roughly) all information contained within the utterance

string (which corresponds to all the information we can glean from the database of

child-directed speech we use as input for our models). It thus includes word-internal

distributions of morphology as well as higher-level non-local syntactic contexts. How-

ever, it excludes semantic information about the meaning of the components and whole

of the utterance, and also vital relevant information about the current (environmen-

tal/scene) context as well as possible pragmatic considerations. How to add these

types of information robustly, at a large scale, to computational models is still an open

question, although smaller scale experiments and approximations have been attempted

(Kwiatkowski et al., 2012; Frank et al., 2009; Alishahi and Chrupala, 2012).

2.2.2 Computational Models of Syntactic Category Induction

Computational models of lexical syntactic category learning or induction appear both

in the field of cognitive modelling as well as in natural language processing, where it

is termed unsupervised part of speech tagging. Cognitive models generally attempt to

be realistic by using learner-accessible input data (child directed speech) whereas NLP

models focus on performance on larger sets of less realistic data (such as newswire).

Furthermore, cognitive models tend to focus on category induction, i.e. clustering word

types into groups that correspond to word classes, especially the basic word classes

such as nouns and verbs, whereas part of speech tagging is a token labelling task, with

performance measured using the entire data set (all tokens).

A central question is what kind of context statistics are sufficient for accurate cate-
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gory induction. Early work in category induction categorised word types using context

vectors, where each word type is represented by a vector of counts of the local con-

text in which it appeared; standard clustering techniques can then be applied to these

vectors (Schütze, 1995; Redington et al., 1993, 1998; Mintz et al., 2002; Schütze and

Walsh, 2008). An alternative representation is the frame, the joint occurrence of two

words on either side of the target word (e.g., the is) (Mintz, 2003, 2006; Chemla

et al., 2009; St Clair et al., 2010). Frames enable high accuracy clusterings but suf-

fer from low coverage: only a small percentage of word types appear within frequent

frames (Monaghan and Christiansen, 2004). Another method of increasing coverage is

to use surrounding (inferred) categories as additional context, rather than words alone

(Cartwright and Brent, 1997). All these methods operate over word types: they cat-

egorise words on the basis of the sum of all their appearances within the input data.

This makes it for the most part impossible for these models to separate homographs or

syntactically ambiguous words, which nevertheless appear frequently in natural lan-

guage (although see Clark (2000) for one solution to this problem). This leads to both

an unrealistic representation of words, and also adds noise to the models, when, for

example, ‘give me a ’ and ‘don’t the dog’ both appear as contexts for the word kiss,

but not hand or annoy. It is also somewhat unclear how these models could operate

in an incremental fashion, given their need for a large amount of data in order to have

sufficient contexts for clustering.

Along with using the surrounding words as context, word-internal patterns are often

helpful, if they successfully capture morphology (Brent, 1993; Onnis and Christiansen,

2005; Clark, 2003a; Monaghan et al., 2005, 2007). (See Chapter 5 for a more detailed

exposition of the interaction between morphology and tagging.)

A few incremental models of category acquisition have been proposed (Parisien

et al., 2008; Chrupala and Alishahi, 2010). These add word (tokens) to clusters as

they appear in the data, without using complete statistics, unlike the above models.

These models require an extra consolidation or merging step, and tend to create a large

number of clusters.

For unsupervised POS tagging, in which each token is assigned a part of speech

tag, the classic model used is the Hidden Markov Model (Brown et al., 1992; Saul and

Pereira, 1997; Och, 1999; Banko and Moore, 2004; Merialdo, 1994; Christodoulopou-

los et al., 2010) and more recently its Bayesian variant (Goldwater and Griffiths, 2007;

Johnson, 2007; Gao and Johnson, 2008; Gael et al., 2009; Graca et al., 2011; Blunsom

and Cohn, 2011; Hasan and Ng, 2009; Moon et al., 2009; Teichert and Daumé III,
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2009). The Bayesian HMM will be described in full detail in Section 2.3.3, since we

use it extensively.

These models can naturally incorporate syntactic ambiguity, since different tokens

of the same word type can be assigned to different categories. In fact, a weakness of the

HMM structure is that it has no overt way of constraining the level of tag-ambiguity

(the number of tags that a word type can be assigned to) (Clark, 2003a).

HMMs use the previous tags as context, but note that since they model the full

sequence of tags, the actual dependencies between all words (even non-neighbours)

are stronger than in models that treat words+context as independent draws (such as the

clustering models described above; see also (Toutanova and Johnson, 2007; Chrupala

and Alishahi, 2010; Christodoulopoulos et al., 2011)). Along with local context, word-

internal features have often found to be helpful (Dasgupta and Ng, 2007b; Abend et al.,

2010; Christodoulopoulos et al., 2011; Haghighi and Klein, 2006; Blunsom and Cohn,

2011; Toutanova et al., 2003; Hasan and Ng, 2009).

Adding a constraint limiting each word type to a single tag (effectively turning the

task into clustering as above) increases performance by decreasing spurious ambiguity,

but also limits the linguistic realism of the model (Christodoulopoulos et al., 2010;

Blunsom and Cohn, 2011; Lee et al., 2010).

2.3 Bayesian Foundations, or how the HMM became

Bayesian: A Tutorial

In the rest of this chapter we go into some detail about the workings of Bayesian models

in general and the Bayesian HMM in particular. This is intended to give background to

the methods used in this thesis; for a more general introduction to Bayesian modelling

see e.g. MacKay (2003); Bishop (2006). We first give a brief overview of Bayesian

methodology, then describe the (non-Bayesian) HMM and subsequently the Bayesian

version of the HMM, which appears repeatedly in this thesis. Finally, we discuss how

inference is performed in these models, in the form of MCMC sampling and how it is

implemented for the BHMM.

In this overview, we concern ourselves only with directed graphical models, also

known as Bayesian networks; these represent causal structure in the form of condi-

tional distributions. Our models are also generative models: we learn a full probability

distribution over both observed and latent variables.
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The high-level structure of such a model is usually suggested by the problem to

be solved or the situation we wish to model. The input data constitute the observed

variables and latent variables correspond to factors affecting the observed variables,

meaning the observed variables will be conditioned on the latent variables in some

way. In the Bayesian formulation, there is no technical distinction between parameters

and latent variables; they are treated in the same manner. However, we find it useful

to distinguish between (continuous) parameters and (discrete in our models, though

this is not necessarily the case) latent variables. The distinction is based on our human

understanding of the model: the latent variables are the hidden factors that we are

aiming to discover, while parameters govern the distributions of interest.

The joint probability distribution over all observed, fixed, and latent variables and

parameters defines the model structure. Given a set of observations generated by the

model, the task of finding appropriate parameters (and latent variables; we shall group

them together for now) is called inference.

Here the Bayesian methodology departs from frequentist statistics. Frequentists

assume fixed ‘true’ parameter values that are to be estimated by a single point estimate,

and thus aim to find the best set of parameters Θ, given some data D , for instance by

maximising data likelihood: Θ̂ML = argmaxΘL(Θ;D).

Bayesians infer a density estimate over all possible parameter values, to capture

inherent uncertainty about the values of parameters. Uncertainty will diminish with

increased observations, as each observation results in an update of the density estimate.

This allows for better prediction of new observations or latent variables, as it does

not require assuming any more knowledge about the true parameter values than is

available from the data. The data likelihood is simply the probability distribution of the

data given the parameters: L(Θ;D) = P(D|Θ). The goal is to estimate the posterior

distribution P(Θ|D), since we know D but not Θ. Using Bayes’ Rule, we find:

P(Θ|D) =
P(D|Θ)P(Θ)

P(D)
=

P(D|Θ)P(Θ)R
Θ

P(D|Θ)dΘ
(2.1)

There are two important things to note here: firstly, the fact that we now require a prior

probability over the parameters, P(Θ), and secondly, the integral in the denominator

foreshadowing difficulties for inference. In Section 2.3.3 we investigate how using

certain forms of priors can help simplify the posterior, and in Section 2.3.4 we discuss

how inference can be performed via numerical sampling methods.

Having found a distribution over parameters given the data seen so far, we use this

posterior distribution to make predictions about future events. As mentioned before,
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yi−2 yi−1 yi yi+1

xi−2 xi−1 xi xi+1

Figure 2.1: First order Hidden Markov Model

this involves integrating over the full distribution of all parameter values:

P(x|D) =
Z

Θ

P(x|Θ)P(Θ|D)dΘ (2.2)

In the following two sections, we first describe a classic non-Bayesian model, the

Hidden Markov Model, and then recreate it as a Bayesian model. There is discussion of

the basic structure and inference methods associated with these models. For more sub-

statial tutorials and descriptions of the HMM, see Ghahramani (2001); Welch (2003);

Bishop (2006); Manning and Schütze (1999).

2.3.1 Hidden Markov Model

The Hidden Markov Model is a sequence model: it models a particular sequence of

observations X , rather than simply a set of observations. The observations take the

form of a vector xxx, with observation xi at position i. If we rearrange xxx, so that the

observation at xi is changed, the resulting inferred model will be different. (Compare

to mixture or Latent Dirichlet Allocation models, where the order of X does not matter,

and rearrangements of X will lead to the same inferred model.) The positions i are often

called timesteps (and the time metaphor is pervasive in descriptions of HMMs), but the

HMM is applicable to any kind of sequence, whether temporal or physical or other.

Secondly, the Hidden Markov Model, as its name implies, includes latent (hidden)

variables. More precisely, as the graphical model in Figure 2.1 shows, each observation

xi is generated from a latent variable yi at the same timestep. The HMM can thus

be thought of as a sequence of mixture model draws, linked together by transitions

between mixture model components.

Finally, the HMM is called a Markov model because it exhibits the Markov prop-

erty: only a restricted, truncated, history is used to predict subsequent states. Instead

of taking into account the full sequence of previously seen states to predict the next

state, only a fixed number of previous states are used (one previous state in a first order
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HMM, two in a second order HMM, etc.). So, by definition, in a first order HMM,

p(yi+1|yi,yi−1,yi−2, ...,y2,y1,y0) = p(yi+1|yi), (2.3)

that is to say, all recent histories are considered to be the same, regardless of the full

history chain. This is clearly evident from examination of the graphical model: yi+1 is

d-separated from yi−1 by yi, which indicates that they are conditionally independent

given yi.

2.3.2 Model Structure

An HMM is defined using two probability distributions, the emission distribution and

the transition distribution.

2.3.2.1 Emission Distribution

The emission distribution p(x|y) defines the probability of an observed output x given

hidden state y. The output vocabulary X , i.e. the set of possible emissions, is set in

advance, as is Y , the set of possible states. We can describe the emission distribution as

a row-wise stochastic matrix E of size |Y |× |X |. For example, if we have three states

and two possible outcomes, a possible E is:

E =


0.3 0.7

0.1 0.9

0.0 1.0

 (2.4)

where e1,0 = 0.1, the probability of seeing outcome 0 from state 1. Note that as a

stochastic matrix, all ei j ≥ 0 and ∑ j ei j = 1 for all ei. Apart from these constraints, E

is free to vary; generally it is inferred on the basis of observations xxx, as we shall see

shortly. In this example (and throughout this thesis) the observations xxx are discrete;

other variants of the HMM may emit real values (e.g. draws from a normal distribu-

tion).

2.3.2.2 Transition Distribution

The transition distribution describes the probability of moving from one hidden state

to the next, and can also be described using a stochastic matrix T . For a first order

HMM T will have dimension |Y |× |Y |; a second order HMM will be a tensor of size
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|Y |× |Y |× |Y |. For example, in a first order HMM with three states, T might be:

T =


0.3 0.3 0.4

0.7 0.2 0.1

0.4 0.1 0.5

 (2.5)

where t1,1, the probability of remaining in state 1 for two timesteps (i.e. starting in state

1 at timestep i and transitioning to state 1 at timestep i+1) is 0.2.

The joint probability of a (first order) HMM for a string of length N is thus:

P(xxx,yyy|T,E) =
N

∏
i=0

Tyi−1yiEyixi (2.6)

where we add a dummy start state at the beginning (at i =−1) to initialise the transition

sequence. (This means that T will have an extra ‘first state’ row; other descriptions of

HMMs store this distribution, often called π, separately.)

2.3.2.3 Parameter Estimation for HMM: EM

In an unsupervised setting, we have observations xxx and wish to estimate yyy, the values

of the hidden states, as well as parameters E and T . The parameters can be found using

the classic Baum-Welch algorithm (Baum et al., 1970; Welch, 2003). This is an ear-

lier, HMM-specific variant of the more general Expectation Maximisation algorithm

(Dempster et al., 1977). Once the parameters are set, they can then be used to find the

most probable sequence of yyy given observations xxx, using the Viterbi algorithm (Viterbi,

1967; Forney, 1973).

The EM algorithm iterates between an Expectation step, in which a maximum like-

lihood expectation for the current log-likelihood, given current parameter values, is

found, and the Maximisation step, where the parameters are updated so as to maximise

the expected log-likelihood. The expectation step requires finding the marginal pos-

teriors of the hidden states, which is done by using the forward-backward algorithm,

an HMM-specific variant of the more general message-passing algorithm. More de-

tailed descriptions of EM, the Baum-Welch variant, and full expositions of the forward-

backward algorithm can be found in e.g. Manning and Schütze (1999); Bishop (2006).

EM is only guaranteed to find a local optimum of the log-likelihood. Additionally,

as a maximum likelihood method, EM finds only a single point estimate of the param-

eters (E and T ). This means that, especially for small or sparse datasets, the estimate

can be quite brittle; e.g. if an observation is never seen, it will have zero probability

(unless some kind of smoothing is added).
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Goldwater and Griffiths (2007) and Johnson (2007) find that EM-estimated HMMs,

optimised to find a maximum likelihood solution, performed poorly on the task of

unsupervised part of speech tagging. This was due to the found distribution of words

to tags being much more uniform than the empirical distribution, which is severely

skewed, with a few large tag clusters and several small and even tiny ones (e.g. not,

to).

2.3.3 Bayesian HMM

As explained earlier, in a general Bayesian model we are interested in finding the

posterior of the parameters given the observations X . If we separate out the (discrete)

latent variables Y from Θ in Equation 2.1, the posterior distribution becomes:

P(X |Θ,Y )P(Y |Θ)P(Θ)
P(X )

=
P(X |Θ,Y )P(Y |Θ)P(Θ)R

Θ ∑Y P(X |Θ,Y )dΘ
(2.7)

In both cases, this requires determining a prior over the parameters (more precisely,

a prior for each parameter). In the HMM, the principal distributions (transitions and

emissions, which we now denote with τ and ω, respectively, to emphasize that they are

random variables) are multinomials; it turns out that if we pick Dirichlet distribution

priors for these, calculation of the posterior becomes easier. We now describe why.

2.3.3.1 Multinomial Distributions

A multinomial distribution describes the probability of a set of draws from a discrete

set of K values. When K = 2, it is equivalent to the Binomial distribution. A multi-

nomial is parameterised as Mult(〈θ1,θ2, ...θk〉); each θk represents the probability of

seeing a draw from bin k. Since θθθ is a probability distribution, ∑k θk = 1 and all θk ≥ 0.

The probability mass function of n draws, of which nk are from bin k, from a distribu-

tion of the above form, is:

P(X1 = n1,X2 = n2, · · · ,Xk = nk|θθθ) =
n!

∏k nk! ∏
k

θ
nk
k (2.8)

When only a single value is drawn, the multinomial is equivalent to the categori-

cal distribution. (This is the same distinction that is made between the binomial and

Bernoulli distribution.)
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2.3.3.2 Dirichlet Distribution

In order to put a prior over the parameters θθθ in the multinomial, we need a prior distri-

bution from which we can draw the θθθ probability distribution required by the multino-

mial. The Dirichlet distribution is precisely such a distribution: it is a distribution over

probability distributions, written Dirichlet(ααα) = Dirichlet(〈α1,α2, ...αk〉). Draws from

this distribution are likewise discrete probability distributions of size K, summing to 1.

The probability density function of a Dirichlet distribution θθθ takes the following

form:

P(θθθ|ααα) =
Γ(∑k αk)
∏k Γ(αk)

∏
k

θ
αk−1
k (2.9)

where Γ(x) is the Gamma function. When x is an integer, Γ(x) = (x− 1)!; note the

similarity to the multinomial above.

In most cases, we use a symmetric Dirichlet in which all k αs are set to the same

value, in which case we simply write α. A non-symmetric Dirichlet would encode

prior knowledge about which components are more or less probable. If we do not have

such prior knowledge, using a symmetric Dirichlet prior is more appropriate.

The ααα or α parameter is called the concentration parameter; it controls how peaked

the (most probable) distributions drawn from the Dirichlet are. Smaller values of α

generate more peaked (sparser) distributions. Examining Eq. 2.9, we can see that α

functions as a kind of smoothing: exponentiating θ by α−1 will result in higher values

when 0 < α < 1 and lower values for α > 1. Setting α = 1 results in a uniform prior

over all distributions.

By adding a Dirichlet prior over the multinomials in the BHMM, we can encode

desirability of sparsity. In the part of speech tagging task, we want hidden states to

emit only some of the possible outputs with high probability, and similarly most tran-

sitions between hidden states should be very unlikely. For example, if a given hidden

state represents the set of adjectives, it should emit only a small fraction of the full

vocabulary with high probability, and give very small probability to all non-adjectives

(nouns, verbs, function word, etc.). Likewise, within the transition distribution, this

hidden state should assign a high probability to a following noun or perhaps adjective,

but a low probability to most other parts of speech, since e.g, ADJ VERB or ADJ DET

are rare sequences within the data.



Chapter 2. Background 20

yi−2 yi−1 yi yi+1

xi−2 xi−1 xi xi+1

α

β

Figure 2.2: First order Bayesian Hidden Markov Model

2.3.3.3 Dirichlet-Multinomial Conjugacy

In order to find the posterior probability we are interested in, we must multiply the prior

and the likelihood together. This multiplication is made considerably easier by using

conjugate priors: these are families of probability distributions which, when multiplied

together (prior times likelihood), result in a posterior probability distribution of the

same form as the prior. In our case, we have multinomial likelihood distributions; the

Dirichlet distribution is the conjugate prior of the multinomial, so the posterior will

also have the form of a Dirichlet:

P(θθθ|X ,α) ∝ P(X |θθθ)P(θθθ|α) (2.10)

∝ ∏
k

θ
nk
k ∏

k
θ

αk−1
k (2.11)

∝ ∏
k

θ
nk+αk−1
k (2.12)

∝ Dirichlet(〈n1 +α1, . . . ,nk +αk〉). (2.13)

This form also demonstrates why the Dirichlet parameters (α, called hyperparameters

to distinguish them from the parameters of the multinomial likelihood) are sometimes

called pseudocounts; they have a similar effect as add-n smoothing.

2.3.3.4 Bayesian HMM

Returning to the BHMM: we add a Dirichlet prior over each of the multinomial dis-

tributions, the transitions τ and emissions ω. These Dirichlets are governed by the hy-

perparameters α and β, respectively. Aside from the priors, the remainder of the model
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is the same as the HMM: at each timestep, the transition parameters τ(yi−1) (a multi-

nomial distribution) are used to draw a new hidden state yi based on the previous one

yi−1. Each observation xi is drawn from the emission distribution (also a multinomial)

indexed by the current hidden state ω(yi). This results in the following model (see also

Fig. 2.2):

τ(y) ∼ Dirichlet(α) (2.14)

ω(y) ∼ Dirichlet(β) (2.15)

yi|yi−1 = y′ ∼Mult(τ(y)) (2.16)

xi|yi = y∼Mult(ω(y)) (2.17)

Once we have determined the form of the priors and likelihood in the BHMM, we

can write down the full joint probability for a first order BHMM (compare to 2.6):

p(xxx,yyy,τ,ω|α,β) = p(ω|β)p(τ|α)
N

∏
i=0

τ(yi−1,yi)ω(yi,xi) (2.18)

However, within this model we are principally interested in the values of the latent

variables yyy, rather than the parameters. Thus we integrate over all possible values of

the parameters, leading to a marginal joint probability over xxx and yyy.

p(xxx,yyy|α,β) =
Z

τ

Z
ω

p(xxx|yyy,ω)p(yyy|τ)p(ω|β)p(τ|α)dωdτ (2.19)

=
Z

τ

Z
ω

Y

∏
y∈Y

X

∏
x∈X

ω
nyx
(yx)

Y

∏
y,y′∈Y

τ
nyy′

(yy′)
Γ(β)

Γ(Y β)

Y

∏
y∈Y

X

∏
x∈X

ω
β−1
(yx)

Γ(α)
Γ(Y α)

Y

∏
y,y′∈Y

τ
α−1
(yy′)dωdτ

(2.20)

=
Γ(α)

Γ(Y α)
Γ(β)

Γ(Y β)

Z
ω

Y

∏
y∈Y

X

∏
x∈X

ω
nyx+β−1
(yx) dω

Z
τ

Y

∏
y,y′∈Y

τ
nyy′+α−1
(yy′) dτ (2.21)

=
Γ(α)

Γ(Y α)
Γ(β)

Γ(Y β)
∏xy Γ(nyx +β)

Γ(∑y∈Y (ny +β))
∏yy′ Γ(nyy′+α)
Γ(∑y∈Y (ny +α))

(2.22)

In the third line, in order to get rid of the integrals, we make use of the fact that the

parameters must be proper probability distributions and sum to 1. Within the integrals

we have (posterior) Dirichlets, and so the following holds, using the definition of the

Dirichlet (Eq. 2.9): Z
θ
∏

k
θ

α−1
k dθ =

KΓα

Γ(α)
(2.23)

Note that the sufficient statistics in the marginal joint distribution are the counts of

the occurrences of tag-word pairs and bigrams (trigrams in a second order HMM), as
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well as the hyperparameters. Importantly, the counts alone are sufficient; the order in

which they occurred is irrelevant. This characteristic means the model is exchangeable,

which will be important later on for sampling.

2.3.4 Inference in Bayesian Models: Sampling

In this section we discuss how to do sampling-based inference within a Bayesian

model. We introduce Markov Chain Monte Carlo (MCMC) and Gibbs sampling, and

then show how the latter can be used in the BHMM to find values for the hidden states

yyy.

Exact inference in (reasonably complex) Bayesian models is intractable. To see

why, recall that the posterior includes the marginal likelihood of the data, which takes

the form of a hefty integration in the denominator. If we have discrete latent variables,

such as yyy in the BHMM, the marginal also includes a sum over all configurations of

those variables.

Here, we focus on random sampling methods, which produce a chain of random

samples from the posterior. There are also deterministic approximation methods, such

as Variational Bayes and Expectation Propagation, which we do not cover: see Beal

(2003); Bishop (2006); Minka (2001) for introductions. For more detailed expositions

of sampling methods, see Neal (1993); MacKay (2003); Bishop (2006); Besag (2004);

Andrieu et al. (2003).

Sampling methods side-step the problem of integration by simply drawing a large

number of samples from P̃ = P(D|Θ)P(Θ), i.e., the unnormalised posterior. It is thus

important that the samples are, firstly, indeed from the correct distribution, and sec-

ondly, that they are independent. Only so will they provide an accurate representation

of the full distribution.

Producing samples from P̃ is not straightforward, since it requires knowing about

the nature of P̃, precisely what we are trying to discover. MCMC methods use an ini-

tial number of ‘burn-in’ samples to transition to the correct distribution. Non-MCMC

sampling methods, such as rejection sampling, do not require burn-in; instead they use

a proposal distribution that is approximate to P̃ and then check whether to accept the

proposed sample. However, in high dimensional state spaces (e.g., yyy in the BHMM)

too many proposals will be rejected, making these methods intractable.
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2.3.4.1 Markov Chain Monte Carlo (MCMC) Sampling

The name Monte Carlo implies random sampling of a quantity (in our case, P̃). MCMC

sampling methods produce a sequence — a Markov chain — of samples, each of which

depends on the previous one, i.e. sample zi will be drawn conditionally on zi−1. The

probability of transitioning to the next sample is given by the transition matrix T , which

must be defined such that the sequence of samples will eventually converge on the true

distribution P̃.

There are two theoretical requirements for an appropriate Markov chain for finding

P̃:

Invariance: Once the Markov chain has reached the target distribution P̃, it must re-

main there. (This is also known as a Markov chain with a stationary transition

distribution.) By definition, once this is the case: P̃(z) = ∑z T (z′,z)P̃(z′), i.e. af-

ter any transition from a state in the invariant distribution, the next state will also

be from the invariant distribution.

Ergodicity: The Markov chain must eventually converge to P̃, as time goes to infinity.

(Also known as: the Markov chain must have P̃, the invariant distribution, as

its equilibrium distribution.) The simplest way to satisfy this requirement is to

ensure that T is non-zero everywhere, including at self-transitions (i.e. that we

draw the same sample twice in a row). This means that eventually, as the result

of random draws, the sampler will transition into a state that is in P̃, and because

of invariance, the sampler will then remain there. (Note that there is no good

guarantee or estimate of how long it will take the sampler to converge to P̃.)

2.3.4.2 Gibbs Sampling

We now describe one form of MCMC sampling, Gibbs sampling (Geman and Geman,

1984), and show that it meets the theoretical requirements above. Gibbs sampling is

extremely straightforward and effective for high dimensional problems. Given a multi-

dimensional X , the sampler iterates through all components of X , x1...xn, and updates

the value of each component using the current value of all the other components, based

on the predictive posterior probability p(xi|X \i). The notation X \i means ‘all x except

xi’; in practice, e.g. in a multinomial distribution, this means that at each sampling step,

we decrement the counts for the current values of the variables at xi, sample xi based

on the decremented counts, and then add new counts for the resampled xi. We continue

to iterate over X until convergence.
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Gibbs sampling fills the ergodicity requirement if we ensure p(xi|X \i) > 0 for all

xi. Invariance can be shown by noting that, once we are sampling from P̃, at every step

the marginal probability P(X \i) remains constant, and the new xi is drawn from the

correct (invariant) distribution. The ensuing joint P(xi,X \i) is also invariant: once the

invariant distribution has been reached, all subsequent samples will also be from the

invariant distribution.

Due to the strong conditional dependence between samples, care must be taken to

obtain independent samples, at intervals of i sufficiently far apart.

Gibbs sampling is significantly simplified when the distribution to be sampled from

is exchangeable, i.e., the sufficient statistics necessary for sampling do not depend on

the ordering of the observations. This means that we can treat each component xi as

the last one in the sequence. In Section 2.3.3.4 we noted that the Dirichlet-multinomial

posteriors in the BHMM are exchangeable; we now show that this leads to a simple

form for the Gibbs sampler for the BHMM.

2.3.5 Gibbs Sampling for BHMM

Gibbs sampling for the BHMM is straightforward: we simply iterate over the sequence

of hidden states yyy and update each yi in turn, conditioned on the current values of all

other yyy\i.

The parameters τ and ω may be resampled explicitly by drawing from

p(τ(t)|xxx,yyy,τ(\t)) and analogously for ω. We can also take advantage of the Dirichlet-

multinomial conjugacy to collapse (integrate out) τ and ω, following Eq. 2.22.

We show how to derive the closed form for a simple Dirichlet-multinomial with

observed draws X from Mult(θ) and a prior Dirichlet(ααα) and then use this form in the

full BHMM Gibbs sampling equation. (Because the posterior Dirichlet is not symmet-

ric, we use the non-symmetric αk notation here rather than a symmetric α; of course
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these equations also hold for symmetric Dirichlet(α).)

p(xi = x|X \i;ααα) =
Z

θ

p(x|θ)p(θ|X \i,ααα)dθ (2.24)

=
Z

θ

θ
x Γ(∑k nk +αk)
∏k Γ(nk +αk)

∏
k

θ
nxk+αk−1dθ (2.25)

=
Γ(∑k nk +αk)
∏k Γ(nk +αk)

Z
θ

θ
nx+αx ∏

k 6=x
θ

nk+αk−1dθ (2.26)

=
Γ(∑k nk +αk)
∏k Γ(nk +αk)

Γ(nx +αx +1)∏k 6=x Γ(nk +αk)
Γ(1+∑k(nk +αk))

(2.27)

=
(nx +αx)Γ(∑k nk +αk)Γ(nx +αx)∏k 6=x Γ(nk +αk)

∑k(nk +αk)Γ(∑k nk +αk)∏k Γ(nk +αk)
(2.28)

=
nx +αx

∑k nk +αk
(2.29)

In Eq. 2.27 we use the Dirichlet normalisation constant to replace the integral over θ

(as before in Eq. 2.22, using Eq. 2.23). In Eq. 2.28 we make use of the Γ(x+1) = xΓ(x)

identity and rearrange factors to make it clear that they all cancel out, leaving us with

a tidy, extremely simple form for the predictive probability. When using a symmetric

α, the predictive probability is p(xi = x|X \i;α) = nx+α

n+Kα
.

Within the BHMM, the predictive posterior for the last yi given all Y 0..i−1 is the

product of the posteriors for the emission and transition distributions:

p(yi = y|xi = x,yi−1 = y′,yyy0···yi−1;α,β) =
ny′y +α

ny′+Xα
×

nyx +β

ny +Y β
. (2.30)

However, the predictive probability above only holds for the last yn. When doing Gibbs

sampling, we will be predicting a yi anywhere in yyy. This results in a dependence not

only between yi−1 and yi, but also between the values of yi and yi+1, even yi+2 in

a trigram model. In a trigram model, yi is included in three trigrams: (yi−2,yi−1,yi),

(yi−1,yi,yi+1) and (yi,yi+1,yi+2). Each of these trigrams must be included in the sam-

pling probability. If any of these trigrams are the same additional counts must be added

to the later trigram probabilities. The full Gibbs sampling probability for a trigram
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BHMM thus becomes a bit complex:

p(yi = y|xi = x,yyy\i,τ,ω,α,β) (2.31)

∝
nxy +β

ny +Xα
×

nyyi−1yi−2 +α

nyi−1yi−2 +Y α
(2.32)

×
nyi+1yyi−1 +[yi+1 = y = yi−1 = yi−2]+α

nyyi−1 +[yi = yi−1 = yi−2]+Y α
(2.33)

×
nyi+2yi+1y +[yi+2 = yi−1 = y = yi+1]+ [yi+2 = y = yi−2∧ yi+1 = yi−1]+α

nyi+1y +[yi+1 = y = yi−1]+ [yi+1 = y∧ yi−1 = yi−2]+Y α

(2.34)

where [ ] are Iverson brackets that equal 1 if the condition within them is true, and Y is

the number of states in the BHMM.

2.3.6 Using Sampling as Search

After convergence, MCMC samplers such as the Gibbs sampler produce samples from

the unnormalised posterior distribution P̃. These samples can be used to calculate var-

ious statistics and distributions of interest, such as means and marginal distributions.

For example, samples from a normal distribution will have an expected mean that ap-

proximates the distribution mean with increasing precision as the number of samples

increases.

However, the marginal distribution of a sampled multinomial will be flat if the

sampler has converged. This is due to the non-identifiability problem, also known as

the label-switching problem, namely that the categories in the multinomial are a priori

indistinguishable given a symmetric prior. Any relabelling of categories will have the

same posterior probability under the model. A converged sampler will sample from all

k! relabellings, each corresponding to a symmetric mode of P̃ evenly, resulting in a

uniform, uninformative, posterior.

Some remedies to this problem have been proposed (Celeux et al., 2000; Stephens,

2000; Jasra et al., 2005), which essentially attempt to enforce a consistent labelling

over many samples, either with regards to a loss function or a priori ordering of some

parameter. These proposals, however, have only been evaluated on simple models (a

single small multinomial), and it is doubtful whether they would scale to models in-

volving many large, tightly coupled, multinomials, such as the BHMM.

Even if we were able to infer clean marginal posteriors over the tags in our dataset,

it is unclear how to evaluate these distributions. Our gold tagged data give us only a
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single ‘right answer’ against which to compare our model. (We note that this does not

necessarily imply that humans have a representation of syntactic categories that does

not include distributional information, as in our model. Indeed, grammaticality and

category prototypicality effects imply precisely such a cognitive representation. In this

case, gold tags can be understood as a ‘sample’ of human judgements.)

The standard solution to this dilemma is to use a single sample for evaluation

(Goldwater and Griffiths, 2007; Johnson, 2007; Liang et al., 2010; Perfors et al., 2011).

The maximum a posterior (MAP) solution (i.e., the sample with the highest posterior

probability), or rather, the closest approximation found by the sampler, is taken as a

point estimate of the full distribution. In this case, the sampling procedure becomes

an optimisation procedure: the aim is to find the closest approximation to the MAP

solution, rather than producing representative samples of P̃.

To this end, we use simulated annealing, a technique to manipulate the shape of P̃

during sampling by lowering an exponentiating temperature parameter T , i.e. setting

p(x) = p(x)1/T . At the start, T is set to a large value, with the effect of flattening

the distributions in order to explore the search space, and is gradually decreased to

1. Finally, in the last iterations the temperature is lowered still further, pushing the

sampler to a local optimum (a MAP estimate).

It may be worthwhile to reiterate that despite the fact that we are only using a single

sample of the hidden variables yyy from P̃, rather than using the full distribution, we are

nevertheless still integrating over all the parameters (θ and φ in the BHMM), and thus

representing our uncertainty over possible parameter values; in this sense we remain

Bayesian.

2.3.7 Other Inference/Sampling Methods for BHMMs

The Gibbs sampler described above is extremely straightforward. However, due to

extensive sequential coupling in the structure of the model, it can be slow to ‘mix’,

remaining in a small sub-portion of the full sampling space for long periods, resulting

in slow convergence.

Other types of Gibbs samplers have been proposed, in particular for the part of

speech tagging task, which try to deal with this problem by resampling multiple token

points at once:

Block samplers resample a whole sentence at once, using the Forward-Backward al-

gorithm to find a good resampling of a whole sequence of tags, rather than just
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a pointwise resample. Gao and Johnson (2008) did not find any consistent im-

provement over pointwise collapsed Gibbs, described above, when using a block

sampler for POS tagging.

Type samplers resample all instances of a given ‘type’ of hidden state, i.e. states with

the same contexts, at once. Liang et al. (2010) found very moderate improve-

ments in the case of HMMs for POS tagging.

1 Tag/Word Type samplers add a restriction, pertinent to unsupervised part of speech

tagging, that limits each word type to a single tag. A number of recent unsuper-

vised POS tagging systems have added this restriction to their models, some in

the inference section (Blunsom and Cohn, 2011), others within the model struc-

ture (Lee et al., 2011b; Christodoulopoulos et al., 2011). In these models, all

tokens of a word type are resampled at once, and constrained to be equal (same

hidden state value). This often improves accuracy at the expense of model real-

ism, by ignoring tag ambiguity.

Finally, Variational Bayes (VB) for BHMM is also straightforward (MacKay, 1997;

Johnson, 2007). The resulting optimisation updates iteratively optimise the current es-

timations of the latent variables yyy and of the parameters, resulting in an algorithm

closely resembling EM. For larger problems, VB is significantly easier to parallelise

within e.g. a MapReduce framework. In contrast, parallel variants of MCMC samplers

are much less straightforward due to its sequential, highly-coupled, nature. However,

VB requires making an independence assumption between the parameters and latent

variable values that sampling methods do not require.

In our experiments, we use the collapsed Gibbs sampler described above, eschew-

ing the more complex samplers, since they have not proven to be sufficiently more

effective.

2.4 Evaluating Clusters

In this section we describe an number of methods for evaluating the tags found by

the BHMM (or other unsupervised part of speech tagger) against the gold tags. The

sequence of tags induced by the BHMM can be thought of as a clustering of tokens

into part of speech categories; likewise a type-based system induces a clustering over

word types into part of speech categories.
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The key difficulty in evaluating these induced clusters, of either types or tokens,

is that the clusters have no labels: we do not know which (if any) gold part of speech

tag each cluster is supposed to correspond to. If labels were given, evaluating accuracy

(i.e., percentage of items with correct labels) would be straightforward, but without

labels, the task becomes much more ambiguous. There are a number of commonly used

measures which we now describe briefly. In this thesis we primarily report V-measure,

since it has been found to be more robustly comparable across different settings than

the other measures (Christodoulopoulos et al., 2010).

2.4.1 Matched Accuracy

The simplest cluster evaluation metric, Matched Accuracy, builds on the idea of la-

belled accuracy. Each induced cluster is matched to the gold categories using a many

to one mapping strategy, in which each cluster receives the label of the gold category

of the majority of its members. Multiple clusters may be labelled with the same gold

category, if the gold category is split over two or more clusters. The labels are then

used to calculate accuracy, as the percentage of words that have been mapped to the

correct gold category.

Matched accuracy is widely used for the evaluation of unsupervised part of speech

tagging systems. If the number of clusters is greater than the number of gold cate-

gories, matched accuracy does not penalise the model in any way; this evaluation met-

ric is thus problematic when evaluating multiple systems or clusterings with varying

numbers of clusters, since the clustering with the most clusters will have a significant

advantage. An alternative mapping is one to one, in which each gold category may only

be mapped to once by a model cluster. If there are more clusters than gold categories,

the unmapped words are considered wrong. This removes the incentive to create too

many clusters, but restricts the usefulness of this mapping.

Moreover, both of these mappings suffer from the “problem of matching” (Meila,

2007): matched accuracy only evaluates whether or not the items in the cluster match

the gold label. The non-matching items within a cluster might all be from a single

second gold category, or they might be from many different categories. Intuitively, the

former clustering should be evaluated as better, but matched accuracy is the same for

both clusterings.
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2.4.2 Variation of Information

Variation of Information (VI) (Meila, 2007) is a clustering evaluation measure that

avoids the matching problem. It measures the amount of information lost and gained

when moving between two clusterings C and K using conditional entropy, where K

denotes the found clustering and C as the gold categories (since this measure is sym-

metric, the distinction is arbitrary). More precisely:

V I(C,K) = H(C)+H(K)−2I(C,K) (2.35)

= H(C|K)+H(K|C) (2.36)

A lower score implies closer clusterings, since each clustering has less unique infor-

mation not shared with the other. Two identical clusterings have a VI of zero. However,

VI’s upper bound is dependent on the maximum number of clusters in C or K, making

it again difficult to compare clustering results with different numbers of clusters. VI

is closely related to other information-theoretic measures for clustering evaluation,

including informativeness (Redington et al., 1998) and conditional entropy (Clark,

2003a).

2.4.3 Pairwise Precision and Recall

Pairwise Precision and Recall are widely used in the cognitive literature on category

acquisition (e.g., Redington et al. (1998); Mintz (2003)), and are sometimes referred

to as accuracy and completeness. To compute them, consider all possible word pairs.

If the words in a pair are correctly grouped together by the model (i.e., they are in

same gold-standard category), a true positive (tp) is recorded; if they are not in the

same gold-standard category, a false positive (fp) is recorded. If the two words are not

grouped together by the model, but are in the same gold-standard category, then a false

negative (fn) is recorded. Pairwise precision and recall is then defined as:

PP =
tp

tp+ fp
PR =

tp
tp+ fn

(2.37)

Pairwise precision and recall suffers from a bias towards large clusters: words in

larger clusters are members of more pairs, and hence get counted more often than

words in smaller clusters. In the context of syntactic category induction, particularly

when evaluating on types, this rewards models that do well on the broad productive

categories (nouns, verbs), and does not penalise models as heavily for misclustering

the smaller function word categories.
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2.4.4 V-Measure

Finally, V-measure (VM; Rosenberg and Hirschberg (2007)) is our primary measure for

evaluating clusterings. VM uses the conditional entropy of clusters and categories to

evaluate clusterings, similar to VI. Like pairwise precision and recall, it has the useful

characteristic of being analogous to the precision and recall measures commonly used

in NLP. Homogeneity, the precision analogue, is defined as

V H = 1− H(C|K)
H(C)

.

VH is highest when the distribution of categories within each cluster is highly skewed

towards a small number of categories, such that the conditional entropy is low. Com-

pleteness (recall) is defined symmetrically to VH as:

VC = 1− H(K|C)
H(K)

.

VC measures the conditional entropy of the clusters within each gold standard cate-

gory, and is highest if each category maps to a single cluster so that each model cluster

completely contains a category. The V-measure VM is simply the harmonic mean of

VH and VC, analogous to traditional F-score, and as such, ranges from zero to one.

Unlike MA and VI, VM is invariant with regards to both the number of items in the

dataset and to the number of clusters used, and consequently it is best suited for com-

paring results across different corpora and models.

2.5 Conclusion

The Bayesian methods described in this chapter will provide the foundation for the

models presented in the following chapters. These methods have been shown to be

useful for modelling cognitive behaviours in other domains as well as language, giving

us a general framework for proposing and evaluating rational models of cognition.
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Adding sentence-type labels to
syntactic category acquistion models

The distributional hypothesis (Maratsos and Chalkley, 1980), which states that chil-

dren can hypothesise syntactic categories on the basis of co-occurrence statistics in

the input, has motivated previous models of syntactic category acquisition. These have

demonstrated that distributional contexts, defined using only the closest surrounding

items, can be sufficient as a starting point to learning reasonable syntactic categories.

However, non-local syntactic effects can influence local contexts. In this chapter,

we add a form of non-local, sentence-level context to models using only local context,

to investigate whether the added context improves performance. Specifically, we add

sentence type as a known feature to the local context, i.e., whether the local context

is within a question, declarative sentence, short fragment, etc. Sentence type often af-

fects sentence structure and word order, and thereby can change the nature of local

contexts. Taking sentence type into account may thus lead to clustering on the basis of

more informative context distributions. An improvement in performance would indi-

cate that this new information is useful to language learners, but it could also decrease

performance if it is too noisy or does not correlate with syntactic category sequences.

Our enhanced models assume that children are aware of different sentence types

and can make use of them at the stage of learning syntactic categories. A great deal

of evidence from language development supports this assumption. Sentence types are

strongly signalled by prosody in most languages (Hirst and Cristo, 1998). Prosody is,

along with phonology, the first step in language learning; areas in the brains of three

month olds are already sensitive to the prosody of the surrounding language (Homae

et al., 2006) and experiments with newborn infants have demonstrated their ability to

32
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distinguish their native language using prosody alone (Mehler et al., 1988). Two month

olds use prosody to remember heard utterances (Mandel et al., 1994). Significantly,

Mandel et al. (1996) showed that natural sentence level prosody aided memory of

word order in two month old infants, which is essential for remembering and using

distributional information.

Infants are aided in language learning by the fact that intonation (pitch) contours of

child and infant directed speech (CDS) are especially well differentiated between sen-

tence types, more than in adult directed speech (Stern et al., 1982; Fernald, 1989). It

is specifically the pitch contours of CDS that infants prefer over adult directed speech

(Fernald and Kuhl, 1987) — the same contours that signal sentence type. CDS tends

to be more interactive (as measured by the proportion of questions) than adult directed

speech (Newport et al., 1977; Fernald and Mazzie, 1991), resulting in a greater vari-

ety of frequent sentential prosody patterns and potentially making sentential prosody

a more salient feature at the beginning of language learning (Stern et al., 1983). Vi-

sual cues, particularly the speaker’s facial expression, can also be used to distinguish

between questions and statements (Srinivasan and Massaro, 2003).

Infants’ awareness of sentence types can be demonstrated by their sensitivity to

the pragmatic function signaled by sentence type. For example, mothers will stop ask-

ing questions if infants do not react appropriately, as when the mother is interacting

with time-delayed video feed of the infant (Murray and Trevarthen, 1986). Since CDS

is characterised by a high proportion of questions, this demonstrates that in normal

caretaker-child interactions infants as young as three months are ‘holding up’ their

side of the conversation in some basic sense. Infants produce appropriate intonational

melodies to communicate their own intentions at the one word stage, before they de-

velop productive syntax (Snow and Balog, 2002; Balog and Brentari, 2008; Galligan,

1987).

Based on these experimental results, we conclude that children who are at the point

of learning syntax — at two to three years of age — are well equipped to use sentential

prosody as part of their armory of potentially relevant input features. The experiments

in this chapter investigate whether it would be advantageous for them to do so, given a

classic computational model of syntactic category learning. To this end we annotate a

corpus of child directed speech with sentence types, and extend the model to enable it

to use these features.

We are not aware of previous work investigating the usefulness of sentence type

information for syntactic category acquisition models. However, sentence types (iden-
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tified by prosody) have been used to improve the performance of speech recognition

systems. For example, Taylor et al. (1998) classified utterances into dialogue acts based

on intonation. Using a specialised language model for each dialogue act enabled a sig-

nificant decrease in word error rate for ‘initiating’ (non-response) dialogue acts.

In this chapter, we first examine the corpus data motivating our use of sentence

types in syntactic category learning, and describe how we label sentence types. We then

experiment with three different ways of incorporating sentence type into a token-based

tagging model, the Bayesian Hidden Markov Model (BHMM). Our results demonstrate

that sentence type is a beneficial feature for representing word order (or more precisely,

syntactic category order).

3.1 Data

One of the first detailed investigations of CDS (Newport et al., 1977) found that it dif-

fers from adult directed speech in a number of key ways; for example, child directed ut-

terances are significantly shorter and more intelligible than adult directed speech, with

fewer false starts and corrections. This emphasizes the need to use realistic (i.e., CDS)

corpora when modelling acquisition: the linguistic environment in which children ac-

quire language is unlike the standard corpora used in computational linguistics.

More immediately relevant to our current work is the fact that CDS is far more

heterogeneous in terms of sentence type than either adult written or spoken language.

Whereas adult directed speech is largely made up of declarative utterances, CDS in-

cludes many more questions and imperative statements (Newport et al., 1977; Fernald

and Mazzie, 1991). Indeed, one of the arguments for the utility of CDS (Gleitman

et al., 1984) is that it is the range and the complexity of input that enables a learner

to delimit the linguistic space, that is, to successfully separate grammatical sentences

from non-grammatical. If a learner was given an overly constrained language to begin

with, she could construct wrong hypotheses that would not admit the more complex

adult language she would be faced with later on.

The data we we use come from CHILDES (MacWhinney, 2000), a collection of

corpora shared by language development researchers. We use the Eve corpus (Brown,

1973) and the Manchester corpus (Theakston et al., 2001). The Eve corpus is a longitu-

dinal study of a single US American child from the age of 1;6 to 2;3 years, whereas the

Manchester corpus follows a cohort of 12 British children from the ages of 2 to 3. We

remove all utterances with any unintelligible words or words tagged as quote (about
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5% of all utterances and between 2 and 3% of CDS utterances). Corpus statistics are

presented in Table 3.1. The Manchester corpus is over twenty times as large as the Eve

corpus; by training and evaluating our models on both corpora we can investigate the

effects of data set size.

Sentence types are not annotated in these corpora, so we use simple heuristics to

label the sentences with their sentence type. The Cambridge Grammar of the English

Language (Huddleston and Pullum, 2002) identifies the following five clause types:

Declarative I have eaten the plums in the icebox.

Closed Interrogative/yes/no questions Were you saving them for breakfast?

Open Interrogative/wh-questions Why were they so cold?

Exclamatory What a sweet fruit!

Imperative Please forgive me!

We use these clause types as a starting point. (To stress that we are labelling a full

utterance/sentence, we will use the term sentence type rather than clause type.) We

do not use the exclamatory sentence type due to its scarcity in the corpus; it is also

difficult to identify automatically. Additionally, we add a short utterance category to

distinguish probable fragments (verb-less clauses). The resulting sentence types with

their identifying characteristics are:

Open Interrogative/wh-questions (W): Utterances ending with a question mark and

beginning (in the first two words) with a wh-word (one of who, what, where,

when, why, how, which).

Closed Interrogative/yes/no questions (Q): Utterances ending with a question mark

but not beginning with a wh-word. This includes tag questions and echo ques-

tions with declarative (unmarked) word order.

Imperative (I): Utterances with an imperative-mood verb in the first two words1.

Short (S): One- or two-word non-question utterances, typically interjections and frag-

ments.
1Since the corpus we use, CHILDES, does not annotate the imperative mood in English, we use all

utterances with a ‘base’ verb in the first two words without a pronoun or noun preceding it (e.g. well go
and get your telephone).
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Eve Manchester

All CDS only All CDS only

Utterances 25295 14450 582375 318349

Mean Length 4.68 5.38 4.66 4.31

Word Tokens 118372 77766 2713672 1371936

Word Types 2235 1995 11739 11030

Table 3.1: Summary of all and child-directed speech (CDS) in Eve and Manchester

corpora.

Sentence Type Eve Manchester

wh-Questions 2273 (4.03) 33461 (4.72)

Other Questions 2577 (4.41) 74327 (5.80)

Declaratives 6181 (5.79) 99318 (5.83)

Short Utterances 2752 (1.27) 95518 (1.28)

Imperatives 665 (5.30) 15725 (5.17)

Table 3.2: Number of child-directed utterances by sentence type. Average utterance

length is in parentheses.

Declarative (D): All remaining utterances.

It would be preferable to use audio cues to categorise utterances, especially with

regard to the difference between declaratives, closed interrogatives, and imperatives

(since short utterances are easily identified by their length, and wh-words are a reli-

able cue for open interrogatives). Unfortunately the speech data is not available for

our corpora, so we must approximate the audio cues available to children with the

above orthographic (punctuation) and lexical-syntactic (wh-word and verb identifica-

tion) cues. Note that the CHILDES annotation guidelines state that all utterances with

question-characteristic intonation must be transcribed with a question mark, even if the

utterance is syntactically declarative (You ate the plums?). In any case, even prosody

data would not include all the cues available to the child such as visual cues, facial

expressions, and so on.

Table 3.2 gives the number of each type of utterance in each corpus. Notably, while

declaratives are the largest category, they make up only about a third of total utterances,
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while questions make up a further third of all utterances. (In contrast, questions make

up only 3% of the Wall Street Journal corpus of news text (Marcus et al., 1999) and

7% of the Switchboard corpus of adult conversations (Godfrey et al., 1992).)

These sentence-labelling heuristics are rather coarse and prone to noise. Arguably,

this is in line with the noisy input that children receive, presumably leading to errors

on their part as well. Any model must be equally robust against noise and miscategori-

sation. We hand-checked a subset of the Eve (section 10, the dev section) to verify our

sentence type heuristics. Of 497 utterances, only 10 (2%) were misclassified2.

3.2 Models

Having motivated the salience of sentence type via intonation in the previous section,

we now examine how to add sentence type as an observed variable to a simple part

of speech induction model, the Bayesian Hidden Markov Model (BHMM) (Goldwater

and Griffiths, 2007). The BHMM was introduced in Chapter 2. We now reiterate the

model briefly in order to make the subsequent extensions, which include sentence type,

more clear.

The BHMM is defined by two principal probability distributions: the transition

distribution, which gives the probability of transitioning to a tag given the surrounding

context (tags), and the emission distribution, which gives the probability of a partic-

ular word given its tag. The transition distributions τ generate the sequence of tags

ttt, and thus can represent a low-level, local syntax concerned with word order (but not

movement or long distance dependencies). The Markov independence assumption lim-

its the size of the context that is used for conditioning the transitions. In this chapter we

present both bigram and trigram (first and second-order) models, which respectively

use the one or two previous tags as context.

The emission distributions ω define the set of words W that are likely to appear

as a given part of speech, i.e., the categorisation of the words into categories. Each of

these distributions takes the form of a multinomial, over which we place a Dirichlet

prior distribution, parameterised by the hyperparameters α (transition distributions)

and β (emission distributions), resulting in the following generative model for a trigram

BHMM:
2The misclassified sentences were: 8 imperatives classified as declaratives (mostly sentences of the

form Eve please listen); one declarative sentence that is clearly a question in context but was not an-
notated with a question mark; one declarative sentence that was mistagged as an imperative due to a
annotation error (people tagged as a verb).
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τ(t ′,t ′′)|α ∼ Dirichlet(α) (3.1)

ω(t)|β ∼ Dirichlet(β) (3.2)

ti|ti−1 = t ′, ti−2 = t ′′,τ(t ′,t ′′) ∼ Mult(τ(t ′,t ′′)) (3.3)

wi|ti = t,ω(t) ∼ Mult(ω(t)) (3.4)

As we showed in Section 2.3.3, using Dirichlet priors allows the multinomial pa-

rameters τ and ω to be integrated out, leading to the following conditional posterior

distributions:

P(ti|t\i,α) =
nti−2,ti−1,ti +α

nti−2,ti−1 +T α
(3.5)

P(wi|ti, t\i,w\i,β) =
nti,wi +β

nti +Wtiβ
(3.6)

where nti,wi is shorthand for nt=ti,w=wi , the number of occurrences of the tag word pair

(t,w) in w\i, and likewise for nti−2,ti−1,ti . The set t\i = t1 . . . ti−1 designates all tags but

ti, and likewise w\i = w1 . . .wi−1, all words but wi. T is the size of the tagset and Wt is

the number of word types emitted by the tag t.

3.2.1 BHMM with Sentence Types

The BHMM depends solely on local information — the previous tags — for tagging.

However global information, such as sentence type, can play a role in syntax at the

tag sequence level, by requiring shifts in word order. For this reason, adding sentence

type to a part of speech tagger is likely to add helpful information, by enriching the

impoverished local context representation.

In order to incorporate sentence type information into the BHMM, we add an ob-

served variable to each time-step in the model with the value set to the current sen-

tence type3. Given that the BHMM consists of two principal distributions, there are

two straightforward ways that sentence type could be incorporated into the BHMM:

either by influencing the transition probabilities or the emission probabilities. The for-

mer would reflect the effect of sentence type on word order, whereas the latter would

investigate whether sentence type affects the set of words categorised as a single part

of speech. We discuss both, as well as their combination.
3Arguably sentence type only needs to be included in the model once per sentence, rather than at

each time-step, since sentence type never changes within a sentence. However, since sentence type is an
observed variable, replicating it has no effect, and it makes the notation clearer.



Chapter 3. Adding sentence-type labels to syntactic category acquistion models 39

ti−2 ti−1 ti
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Figure 3.1: Graphical model representation of the BHMM-T, which includes sentence

type as an observed variable on tag transitions (but not emissions).

3.2.1.1 BHMM-T

In the first case, transitions are conditioned not only on previous context, as in the

BHMM, but also on the context’s sentence type. This leads different sentence types

to assign different probabilities to the same sequence of tags, so that, for example,

PRONOUN will be more likely to be followed by a VERB in declaratives than in imper-

atives. (Note however that the estimated tag clusters will not necessarily correspond

to gold tags.) By separating out the transitions, the model will have more flexibility to

accommodate word order changes between sentence types.

Formally, the observed sentence type si−1 is added as a conditioning variable when

choosing ti, i.e., we replace line 3.3 from the BHMM definition with the following:

ti|si−1 = s, ti−1 = t ′, ti−2 = t ′′,τ(s,t ′,t ′′) ∼ Mult(τ(s,t ′,t ′′)) (3.7)

We refer to this model, illustrated graphically in Figure 3.1, as the BHMM-T (for

transitions).

The BHMM-T has a larger number of parameters than the BHMM, which has

T o+1 + TV parameters (where T is the number of tags, o is the model order, and V

is the size of the vocabulary), whereas the BHMM-T has ST o+1 + TV (S being the

number of sentence types)4.

4Since probability distributions are constrained to sum to one, the last parameter in each distribution
is not a free variable, and so the true number of necessary emission parameters is T (V −1) (and likewise
for transition parameters), but we omit this technicality in favor of clarity.
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3.2.1.2 BHMM-E

Analogously, we can add sentence type as a conditioning variable in the emission dis-

tribution by replacing line 3.4 from the BHMM with

wi|si = s, ti = t,ω(s,t) ∼ Mult(ω(s,t)) (3.8)

This model, the BHMM-E (for emissions), results in models in which each sentence

type has a separate distribution of probable words for each tag, but the transitions

between those tags are shared between all sentence types, as in the BHMM. This does

not correspond well to the word-order effect that sentence type has in many languages,

but may capture vocabulary differences between sentence types, if these exist.

The model size is T o+1 + STV , which in practice is significantly larger than the

BHMM-T model, given V � T > S and model orders of one and two (bigram and

trigram models).

3.2.1.3 BHMM-ET

The combination of the two, BHMM-T plus BHMM-E, is also possible. In the BHMM-

ET, sentence type conditions both transition and emission probabilities. Each sentence

type now has a separate set of transition and emission distributions (both transitions

and emissions are conditionally independent given sentence type). Without any shared

information, tags are not in any sense equivalent between sentence types, so this model

is equivalent to training a separate BHMM on each type of sentence, albeit with shared

hyperparameters.

These three models have an extra conditioning variable, sentence type, which has

the effect of splitting the counts for transitions, emissions, or both. The split distribu-

tions will therefore be estimated using less data, which could degrade performance if

sentence type is not a useful predictor of tag sequences or tag-word pairings. This will

be especially vital to the performance of the BHMM-ET, without any shared informa-

tion at all. If the separate models in the BHMM-ET match the BHMM’s performance,

this would indicate that sentence type is as reliable an indicator of tagging information

as a large amount of additional data from other sentence types. However, it is cogni-

tively implausible for there to be no sharing of information at all between sentence

types: this model serves principally as a measure of sentence type informativeness.

Our prediction is that sentence type is more likely to be useful as a condition-

ing variable for transition probabilities (BHMM-T) than for emission probabilities
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(BHMM-E). For example, the auxiliary inversion in questions is likely to increase

the probability of the AUX→ PRONOUN transition, compared to declaratives. Knowing

that the sentence is a question may also affect emission probabilities, e.g. it might in-

crease the probability the word you given a PRONOUN and decrease the probability of I;

one would certainly expect wh-words to have much higher probability in wh-questions

than in declaratives. However, many other variables also affect the particular words

used in a sentence (principally, the current semantic and pragmatic context). We ex-

pect that sentence type plays a relatively small role compared to these other factors.

The ordering of tags within an utterance, on the other hand, is primarily constrained

by sentence type, especially in the short and grammatically simple utterances found in

child-directed speech.

3.3 English experiments: Procedure

3.3.1 Corpora

We use the Eve and Manchester corpora from CHILDES, described in Section 3.1, for

our experiments. From both corpora we remove all utterances spoken by a child; the

remaining utterances are nearly exclusively CDS. Although our model is fully unsuper-

vised, files from the chronological middle of each corpus are set aside for development

and testing evaluation5. The BHMM is inferred using either (train+dev) or (train+test).

In the Eve corpus, we set use file 10 for development, 11 for testing; in Manchester: file

16 from each child for development, file 17 for testing. When evaluating initial exper-

iments using the development data (dev+train), we evaluate only on the dev portion.

Final evaluations using the test portion are evaluated on the full train+test set. Note

that although all models have the training portion (approximately 80% of the entire

data set) available as unlabelled data, we only evaluate the training portion in the final

test evaluation6.

Both corpora have been tagged using the relatively rich CHILDES tagset, which we

5Unsupervised models do not suffer from overfitting in the same way as supervised models, so often
models are trained and results reported on the entire set of input data. However, since different model
structures and parameterisations may be explored during development, this methodology still leaves
open the possibility that the final model structure may be better suited to the particular corpus being
used than to others. To avoid this issue, we use separate test and development sets.

6The term ‘training data’ may be a misnomer: the unsupervised models have no labelled training data
available. We used the name to designate the largest chunk of the data, given the usual training/dev/test
split design common to (supervised) NLP. Because the data is unlabelled, we can ‘test’, i.e. evaluate,
the ‘training’ data.
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collapse to a smaller set of thirteen tags: adjectives, adverbs, auxiliaries, conjunctions,

determiners, infinitival-to, nouns, negation, participles, prepositions, pronouns, verbs

and other (communicators, interjections, fillers and the like). wh-words are tagged

as adverbs (why, where, when and how), pronouns (who and what), or determiners

(which).

Each sentence is labelled with its sentence type using the heuristics described ear-

lier. Dummy inter-sentence markers are added, so transitions to the beginning of, as

well as from the end of, a sentence will be from the fixed inter-sentence hidden state.

The inter-sentence markers are assigned a separate dummy sentence type.

In our experiments, we experiment with coarser sentence type categorisations as

well as the full five types. This enables us to discover which sentence types are most

informative for the tagging task. Specifically, we try:

QD in which all questions (wh- and other) are collapsed to one question category and

all other utterances are collapsed to declaratives.

WQD in which the question categories are separated but the non-questions are in a

single category.

SWQD as above, but with short (declarative) utterances distinguished from other non-

question utterances.

ISWQD in which all five sentence types are separated: imperatives, short utterances,

wh-questions, other questions, and declaratives.

3.3.2 Inference and evaluation procedure

We use the Gibbs sampler described in Section 2.3.5 for BHMM inference, adjusting

the tracked counts (the sufficient statistics) as necessary for the BHMM variants. The

trigram Gibbs sampling equations for each of the models are thus:

PBHMM(t|t\i,w,α,βt) ∝
nt,wi +βt

nt +V βt
×

nti−2,ti−1,t +α

nti−2,ti−1 +T α
(3.9)

PBHMM−T (t|t\i,w,s,α,βt) ∝
nt,wi +βt

nt +V βt
×

nti−2,ti,si−1,ti +α

nsi−1,ti−2,ti−1 +T α
(3.10)

PBHMM−E(t|t\i,w,s,α,βt) ∝
nsi,t,wi, +βt

nsi,t +V βt
×

nti−2,ti−1,t +α

nti−2,ti−1 +T α
(3.11)

PBHMM−ET (t|t\i,w,s,α,βt) ∝
nsi,t,wi, +βti
nsi,t +V βt

×
nti−2,ti−1,si−1,t +α

nsi−1,ti−2,ti−1 +T α
(3.12)
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Transition factors for trigrams (ti−1, t, ti+1) and (t, ti+1, ti+2) are not shown but must be

included (see Equation 2.34; bigrams have analogous factors).

The hyperparameters over emission distributions, β, is estimated separately for

each distribution (i.e., each tag has a separate βt), whereas α is constrained to be the

same for all transition distributions. The hyperparameters α and β are re-estimated ev-

ery ten iterations using a Metropolis-Hastings step, following Goldwater and Griffiths

(2007).

Simulated annealing is used to encourage the sampler to explore during the first

phase of the sampler and thereafter ‘exploit’ a high-likelihood area of the search space.

During the last few iterations, the temperature is lowered still further, resulting in a final

sample that is a fair approximation of the nearest local maximum. This final sample is

used for evaluation purposes (see Section 2.3.6).

We set the number of hidden states, corresponding to tag clusters, to the number of

gold tags in the corpus (i.e., 13).

We run the Gibbs sampler for 10000 iterations, with hyperparameter resampling

and simulated annealing. (On the Manchester corpus, due to its size, we only manage

5000 iterations.) Since Gibbs sampling is a stochastic algorithm, we run all models ten

times and report average values for all evaluation measures as well as confidence in-

tervals at the 95% level. Significance is measured using the non-parametric Wilcoxon

signed-rank test. The principal evaluation measure we use is VM, described in Sec-

tion 2.4.

3.4 Results and Discussion

We now present results for the three BHMM variants discussed in the previous section:

the BHMM-ET, a model in which both transitions and emission distributions are sepa-

rated by sentence type; the BHMM-E, a model in which only emission distributions are

separated by sentence type and transitions are shared; and the converse, the BHMM-T,

in which transitions are separated and emission distributions are shared. We find that

these models perform in very different ways, demonstrating the effect of sentence type

on word order rather than word usage.
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Figure 3.2: Performance of bigram and trigram BHMM and variants by sentence type

on the Eve corpus, evaluated on test+train portion: Mean VM and 95% Confidence

Intervals (N = 10). Values that differ significantly from baseline (BHMM) are marked

with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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3.4.1 BHMM-ET: sentence-type-specific sub-models

By including a sentence type indicator in both the transition and emission distributions,

the BHMM-ET separates both transition and emission probabilities by sentence type,

effectively creating separate sub-models for each sentence type. The resulting tags are

thus not equivalent between sentence types, i.e., the tag TAG-9 used in a declarative

sentence is not the ‘same’ TAG-9 as used in questions, since they have distinct transi-

tion and emission distributions. Consequently, when evaluating the tagged output each

sentence type must be evaluated separately, to avoid conflating incompatible cluster-

ings.

Baseline BHMM and BHMM-ET results for the Eve corpus, split by sentence type,

are in Figure 3.2 (test+train datasets). This figure shows results for all four models; at

present we only examine the first two. We will return to this figure in the discussion of

the BHMM-E and BHMM-T models shortly. We see that in this relatively small corpus,

as expected, splitting the sentence types results in decreased performance as compared

to the baseline BHMM, in which all counts are shared. Only the declaratives, the most

frequent sentence type, provide enough information on their own to match and exceed

baseline performance. (Bigram wh-questions also perform equally to the baseline, but

with much higher variance over ten runs.)

Figure 3.3 shows results for the much larger Manchester corpus. The BHMM-ET

models here perform much closer to the baseline, due to the larger amount of data

available to each sentence type sub-model. Each of the sentence types contain enough

information to learn approximately equivalent taggers using either only single sentence

type data or the full data set. Wh-questions suffer a slight but significant performance

drop compared to the baseline, as do other questions in the trigram models; however

performance is still similar.

The real exceptions are the short utterances models, which suffer from the lack

of sufficiently informative contexts. Since all short utterances are one or two words

long, there is a limited amount of context to identify clusters. While the vast majority

of single word utterances are interjections assigned to the OTH tag, and these are for

the most part clustered together, fragments of longer utterances are almost impossible

to tag correctly without the informative distributional contexts from longer sentences.

Lacking this information, there is no basis for assigning a different set of tags to now

then than just salami. This effect is also evident in the short utterances in the Manch-

ester corpus, despite the fact that the number of short utterance words is much larger:
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Figure 3.3: Performance of bigram and trigram BHMM and variants by sentence type

on the Manchester corpus, evaluated on test+train portion: Mean VM and 95% Confi-

dence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are

marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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the required context is still missing.

3.4.2 BHMM-E: sentence-type-specific emissions

We now turn to the BHMM-E, in which emission probability distributions are

sentence-type-specific, but transition probabilities are shared between all sentence

types. In this model a given sequence of tags is equally likely among all sentence

types, but those tags can correspond to different words in different sentence types.

Returning to Figures 3.2 (Eve corpus) and Figures 3.3 (Manchester corpus), we see

that for almost every sentence type, the BHMM-E performs drastically worse than both

the BHMM-ET and the baseline BHMM. The negative effect of the split emissions is

most striking on the Manchester corpus, where small dataset size cannot be a problem.

Whereas with the BHMM-ET we might posit that, given enough data, sentence-type-

specific models would learn an equivalent model to the shared baseline model (apart

from the short utterance distinction), here we see that adding the sentence type feature

to only the emissions is actively harmful.

3.4.3 BHMM-T: sentence-type-specific transitions

Lastly, we evaluate the BHMM-T, which shares emission probabilities among sentence

types and uses sentence-type-specific transition probabilities. This describes a model in

which all sentence types use the same set of tags, but those tags can appear in different

orders in different sentence type. Since this situation corresponds best to the behavior

of sentence type in English and many other languages — word order changes according

to sentence type, but word usage does not — we expect the BHMM-T to perform the

best of all the sentence type BHMM models, and to improve over the baseline BHMM.

In the bigram models in both corpora we see the BHMM-T improve upon the base-

line BHMM in all sentence types apart from short utterances. Dataset size makes a

larger difference for trigram models: the Manchester-trained models outperform the

baseline consistently, whereas the Eve-trained trigram models only match the baseline,

apart from declaratives, the most frequent sentence type, which significantly improve

over the baseline. On the other hand, the least frequent sentence type, imperatives, is

the only sentence type to underperform the baseline in the Manchester setting.

Trigram models must estimate significantly more parameters than bigram models;

adding sentence type increases the number of parameters still further. Where BHMM-

T matches and exceeds baseline performance, adding sentence type is creating split
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transition distributions that are more or equally accurate to the fully shared distribution,

despite being estimated on far less data. This demonstrates the potential effectiveness

of sentence type information for transitions.

Not all sentence types seem to be useful: bigram models perform poorly on short

utterances, due to the limited context. The shared transitions in the baseline BHMM

contains necessary information for accurate tagging of short utterances, whereas the

BHMM-T transitions do not. Rare sentence types such as imperatives are difficult to

learn, particularly for trigam models. These differences indicate that it may be advan-

tageous to only distinguish certain sentence types.

Figure 3.4 (Eve) and Figure 3.5 (Manchester) show the results of BHMM-T models

trained on data sets using a variety of less fine-grained sentence types, as described

earlier. The shared emission distributions in the BHMM-T allow us to evaluate the

corpus as a whole, using a single clustering for all sentence types. We also show results

obtained using other evaluation metrics in Table 3.3 and Table 3.4.

Examining the sentence type variants, on the Eve datasets we see bigram models do

best with data annotated with three sentence types (WQD), although all sentence type

splits improve over the baseline. Trigrams benefit most from a simpler two-way ques-

tion/other (QD) distinction. On the Manchester corpus, bigram models also perform

best with the WQD split, but again nearly all bigram BHMM-T models improve signif-

icantly over the baseline, regardless of sentence type distinctions. Trigram BHMM-T

are less consistently better than the baseline, but also do not perform worse. The best

performance is achieved when using the full set of sentence types (ISWQD).

The other evaluation metrics in Table 3.3 and Table 3.4 generally agree with VM

as to the best model, especially in the trigram models, despite the small relatively

differences between the models’ results. This gives us additional confirmation as to the

effect of the different model structures on the found clusterings.

When trained on the Eve corpus, the trigram BHMM-T does not have sufficient

data to accurately infer categories when the transitions are split between too many sen-

tence types, and performs best with only two sentence types. On the other hand, when

more data is available, the trigram BHMM-T is able to estimate good parameters for

all five sentence types: the models trained on the Manchester corpus with all sentence

types outperform all the others. The improvement over the baseline and other mod-

els is slight, however, indicating that sentence type is providing minimal additional

information in this case.

However, it is important to note that even in cases where sentence type does not
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Figure 3.4: BHMM-T performance on the Eve corpus: Mean VM and 95% Confidence

Intervals (N = 10). Values that differ significantly from baseline (BHMM) are marked

with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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seem to add additional information in the transition distribution, it never decreases

performance (as it did when added to the emission distribution). This indicates that at

worst, sentence type carries the same information (but no more) as the context history

already available in the BHMM. However, in some scenarios, as when evaluated on the

Eve development corpus, the bigram model with the best set of sentence type labels

(WQD) performs as well as the trigram model without sentence types. In this case,

sentence-type-specific bigram transitions are as informative as transitions with twice

as much local context information, leading to a model with fewer parameters but equal

performance.

In summary, based on experiments using English corpora we have found that

separate emission distributions between sentence type are harmful (BHMM-ET and

BHMM-E), whereas separate transitions for sentence types may be helpful. This is in

line with our predictions, based on the fact that in English sentence types primarily

affect word order.

Cognitively, separate emission distributions would be hard to justify, since they re-

sult in non-corresponding syntactic categories between sentence types. In these mod-

els, each sentence type has a separate set of syntactic categories, which means that

e.g. cat and mouse must be clustered together separately for each sentence type. Such

models, in which categories are replicated multiple times and differ between sentence

types, clearly do not make efficient use of limited input data.

Unlike the words making up syntactic categories, word order does change between

sentence types in many languages, and taking this into account by learning separate

word orders for each sentence type seems to be an effective strategy. Here we found

that the choice of sentence type categories matters, and is dependent on the amount of

input data available: with larger amounts of data, finer sentence type categories can be

used.

3.5 Crosslinguistic Experiments with BHMM-T

In the previous section we found that sentence type information improved syntactic

categorisation in English. In this section, we evaluate the BHMM’s performance on

two languages other than English, and investigate whether sentence type information

is useful across languages.

Nearly all human languages distinguish between closed yes/no-questions and

declaratives in intonation. Closed questions are most commonly marked by rising into-
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Sentence Type Spanish (Ornat) Cantonese (LWL)

Total 8759 (4.29) 12544 (4.16)

wh-Questions 1507 (3.72) 2287 (4.80)

Other Questions 2427 (4.40) 3568 (4.34)

Declaratives 4825 (4.41) 6689 (3.85)

Table 3.5: Number of child-directed utterances by sentence type in the Spanish and

Cantonese training sets. Average utterance length is in parentheses.

nation (Hirst and Cristo, 1998). Wh-questions do not always have a distinct intonation

type, but they are signalled by the presence of members of the small class of wh-words.

We use tagged corpora for Spanish and Cantonese from the CHILDES collection:

the Ornat corpus (Ornat, 1994) and the Lee Wong Leung (LWL) corpus (Lee et al.,

1994) respectively. We describe each corpus in turn below. Table 3.5 lists their relative

sizes.

3.5.1 Spanish

The Ornat corpus is a longitudinal study of a single child between the ages of one and

a half and nearly four years, consisting of 17 files. Files 08 and 09 are used for testing

and development. We collapse the Spanish tagset used in the Ornat corpus in a similar

fashion to the English corpora. There are 11 tags in the final set: adjectives, adverbs,

conjuncts, determiners, nouns, prepositions, pronouns, relative pronouns, auxiliaries,

verbs, and other.

Spanish wh-questions are formed by fronting the wh-word (but without the aux-

iliary verbs added in English); yes/no-questions involve raising the main verb (again

without the auxiliary inversion in English). Spanish word order in declaratives is gen-

erally freer than English word order. Verb- and object-fronting is more common, and

pronouns may be dropped (since verbs are marked for gender and number). Note that

verb-fronted declaratives will have the same structure as closed questions. This sug-

gests that there will be fewer reliable differences between transition distributions in the

various sentence types.
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3.5.2 Cantonese

The LWL corpus consists of transcripts from a set of eight children followed over the

course of a year, totalling 128 files. The ages of the children are not matched, but

they range between one and three years old. Our training set consists of the first 500

utterances of all training files, in order to create a data set of similar size as the other

corpora used. Files from children aged two years and five months are used as the test

set; files from two years and six months make up the development set.

The tagset used in the LWL, which we use directly, is larger than the collapsed

English tagset. It consists of 20 tags: adjective, adverb, aspectual marker, auxiliary or

modal verb, classifier, communicator, connective, determiners, genitive marker, prepo-

sition or locative, noun, negation, pronouns, quantifiers, sentence final particle, verbs,

wh-words, foreign word, and other. We remove all sentences that are encoded as being

entirely in English but leave single foreign, mainly English, words (generally nouns)

in a Cantonese context.

Cantonese follows the same basic SVO word order as English, but with a much

higher frequency of topic-raising. Questions are not marked by different word order.

Instead, particles are inserted to signal questioning. These particles can signal either

a yes/no-question or a wh-question; in the case of wh-questions they replace the item

being questioned (e.g., playing-you what?), without wh-raising as in English or Span-

ish. Strictly speaking the only syntactic change in transitions would thus be an increase

in transitions to and from the wh-particles in questions. However, there may be other

systematic differences between questions and declaratives.

3.5.3 Results

We trained BHMM and BHMM-T models in the same manner as with the English

corpora (10 runs each, 10000 iterations, with simulated annealling and hyperparameter

estimation).

Due to inconsistent annotation and lack of familiarity with the languages, we used

only three sentence types: open/wh-questions, other questions, and declaratives. Punc-

tuation was used to distinguish between questions and declaratives. wh-questions were

identified by using a list of wh-words for Spanish; the Cantonese corpus included a

wh-word tag.

In English, the BHMM-T was able to improve performance by taking into account

the distinct word orders characteristic of the different sentence types. Spanish does
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Figure 3.6: BHMM-T performance on the Spanish (Ornat) corpus: Mean VM and 95%

Confidence Intervals (N = 10). Values that differ significantly from baseline (BHMM)

are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 3.7: BHMM-T performance on the Cantonese (LWL) corpus: Mean VM and

95% Confidence Intervals (N = 10). Values that differ significantly from baseline

(BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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not show the same improvement (Figure 3.6). The estimated BHMM-T models do

not differ significantly from the baseline BHMM; however they have much higher

variance. This indicates that the BHMM-T is harder to estimate, presumably because

the separate transitions merely introduce more parameters without offering the same

benefits as in English. Given that sentence type does not affect word order in the same

way in Spanish as in English, this is an unsurprising result.

In Cantonese, we see a significant improvement for the bigram BHMM-T (Fig-

ure 3.7). This is despite the fact that Cantonese has relatively little word order marking

of questions; the BHMM-T was able to make use of the extra information. The tag-

ging of wh-questions improves most in the BHMM-T in bigram Cantonese models,

but declaratives and other questions also improve slightly. Trigram BHMM-T models

do not outperform the baseline; as in the larger English models, sentence type does not

add significant new information to the trigram context history.

As in English, none of the Spanish or Cantonese BHMM-T models perform sig-

nificantly worse than the BHMM baseline. Even when sentence type is not an entirely

reliable signal of word order, the separately estimated transitions still match the per-

formance of shared transitions.

3.6 Distributional Clustering With Sentence Types

The BHMM tagging model used in the previous experiments is a token-based tagger,

which means that it tags individual occurrences of words. Many of the most successful

unsupervised taggers are type-based (Christodoulopoulos et al., 2010): they find a sin-

gle tag for all occurrences of a word. They rely on the fact that few words are evenly

syntactically ambiguous, so even for ambiguous tags, correctly finding the most fre-

quent tag is sufficient for good performance. Token-based models such as the BHMM

allow words to have multiple tags, but often result in more ambiguity than is actually

present in language, leading to noisy clusters.

In this section we add sentence type information to a type-based tagging model,

to investigate whether additional context information helps a system that uses the sum

of local contexts to tag a word. One of the earliest and simplest type-based models

for syntactic category acquisition is presented in Redington et al. (1998) (henceforth

RCF). They use a standard agglomerative clustering algorithm to cluster words based

on their context vectors. The context vectors consist of counts of word co-occurrence

within a small window (two words on either side). The distance between the context
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vectors, as measured by Spearman’s rank correlation, determines their similarity. More

similar items are clustered together at lower points in the resulting dendrogram.

In order to increase the robustness (and tractability) of the algorithm, RCF only

cluster the 1000 most frequent words. Likewise, only a small number (150) of very

frequent words are used as ‘context words’, i.e. words whose co-occurence with target

words are counted. Co-occurrence with all other words is ignored.

A further parameter, ‘similarity limit’, is needed to transform the dendrogram pro-

duced by the agglomerative clustering algorithm into flat clusters. Clusters are formed

by cutting the tree at nodes with children with similarity lower than the limit, which

RCF set to 0.2. Using similarity to define clusters in this way means that the number of

clusters found by the model cannot be predicted. Additionally, RCF ignore all clusters

with fewer than 10 words. This pruning step results in large, relatively clean clusters.

A context vector is an amalgamation of all contexts of all occurrences of a word,

and thus is arguably more robust to context variations due to sentence type. However,

conflating contexts from all sentence types may still have an negative effect on cluster-

ing. For example, a word’s appearance before the context word is would be evidence

that the word in question is a noun, if it is appears in a declarative; in a wh-question,

the word is more likely to be a wh-word, tagged either as a pronoun or adverb.

Our approach to adding sentence types to the context vectors is straightforward: we

annotate each context word with sentence type, resulting in context words is-W, is-D,

and so on. This effectively multiplies the length of the context vector by the number

of sentence types. Data sparsity thus becomes a problem once again, since with more

context word types, there are fewer examples of each.

3.6.1 Experiments

We run the model described above in two settings, one with the longer context vectors

with sentence types, and using the original context vectors without sentence types. We

test the model using both 50 and 150 context words. In all other respects we use RCF’s

settings, except that we also test the full set of clusters without removing small clusters.

Evaluation is done over types, not tokens, using the same reduced tagset as before

(which is quite similar to the tagset used by RCF). For words with multiple tags (173

of 1000 target words), we use the most frequent tag as the gold standard, following

RCF.

For these experiments we evaluate using VM as before, and also include pairwise



Chapter 3. Adding sentence-type labels to syntactic category acquistion models 60

Model C W VM VH VC PF PP PR

1000 target words, 150 context words, clusters of size ≥ 10

Without s-types 18 642 38.1 52.3 30.0 32.7 72.3 21.1

With s-types 16 763 25.4 30.5 21.7 35.9 48.8 28.4

1000 target words, 150 context words, all clusters

Without s-types 135 1000 32.7 58.9 22.6 15.8 71.9 08.9

With s-types 87 1000 25.0 38.2 18.6 25.2 48.8 17.0

1000 target words, 50 context words, clusters of size ≥ 10

Without s-types 16 755 33.2 43.9 26.7 32.4 61.9 21.9

With s-types 11 784 27.1 30.9 24.1 41.7 58.0 32.6

1000 target words, 50 context words, all clusters

Without s-types 85 1000 29.9 48.1 21.7 21.4 61.6 12.9

With s-types 67 1000 26.2 37.6 20.2 30.6 57.9 20.8

Table 3.8: Performance of hierarchical clustering models with and without word fea-

tures separated by sentence-type. C is the number of clusters and W is the number of

words in the final clustering. The best result for each setting as measured by V-measure

(VM, composed of VH and VC) and Pairwise F-score (PF, composed of PP and PR) is

in bold.

precision and recall as an evaluation method, since RCF use it. Pairwise precision

and recall, due to the pairwise nature, over-emphasises larger clusters; conversely, as

pointed out by Vlachos et al. (2009), higher VM scores are more easily achieved by

models with a larger number of smaller clusters.

The results, in Table 3.8, demonstrate the difficulty of evaluating and comparing

unlabeled clusterings, particularly clusterings with different numbers of clusters. Each

setting creates a different dendrogram, resulting in different numbers of clusters and

even different numbers of clustered words, when words in clusters of size < 10 are

removed.

Pairwise F-score is consistently higher for clusterings using sentence type infor-

mation, but it is unclear how much this is due simply to the fact that these clusters are

larger. VM scores are higher for the models without sentence type, but again, these

models cluster fewer words into a larger number of clusters, resulting in small clusters.

It is perhaps counterintuitive that extending the context vectors, by adding sentence
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type to each context word, would result in fewer clusters at the same similarity level. In

effect, the clustered words have higher similarity when clustered using the sparser vec-

tors than the denser vectors without sentence types. This indicates that distinguishing

between context words in different sentence types is capturing a meaningful distinc-

tion, and not merely adding noise (which would result in lower similarity, given the

larger context vector).

Unsuprisingly, the larger clusters are less homogenous, simply by virtue of includ-

ing more words: both VH and pairwise precision decrease in all settings. Pairwise

recall is higher for models with sentence types, but the analogous V-completeness is

not, leading to the suspicion that this increase is caused to a large extent by the larger

clusters. These measures are also low, due to the mismatch between the number of

found clusters and the much smaller number number of gold categories.

Including the smallest clusters decreases V-completeness much less than pairwise

recall, demonstrating VM’s greater robustness to cluster size and number. Neither pre-

cision measure increases, indicating that the smaller clusters remain noisy. Interest-

ingly, performance on the models with sentence type declines less drastically when

all clusters are evaluated, again indicating that sentence type is adding a degree of

robustness.

On a methodological level, this type-based model demonstrates the importance of

developing models that are not dependent on somewhat arbitrary parameters (here:

similarity cutoff and cluster size cutoff). This model does avoid a parameter setting

the number of clusters, necessary in the BHMM, but this results in clusterings that are

difficult to compare over a variety of settings, making it hard to draw conclusions from

experiments involving model structure.

3.7 Discussion

The BHMM-T models with sentence-type-specific transitions introduced in this chap-

ter demonstrate that sentence type can be an informative cue for word and tag or-

der, especially in models with limited amounts of local context. The amount of input

data available to the model and the number of model parameters affected which set

of sentence types performed best; further research is necessary to characterise these

interactions more precisely. However, we showed that at the very least sentence-type-

specific distributions never found worse syntactic clusters than shared distributions,

and in many cases found better clusters. Arbitrarily adding parameters — and thereby
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splitting distributions — in unsupervised models is unlikely to improve performance,

due to ensuing data sparsity, unless the parameters are genuinely useful (unlike su-

pervised models, in which unhelpful parameters will be ignored). This problem arose

when the sentence type parameter was added to the emission distribution. On the other

hand, adding this parameter to the transition distribution resulted in an larger number

of distributions estimated on smaller amounts of data, but these models were able to

recover or improve on the original performance. This demonstrates that the sentence

type parameter added useful additional information to the model in this setting.

These modelling results have shown that computationally there may be an advan-

tage to a representation of word/syntactic category order that includes sentence type

information. Experimental work has demonstrated infants’ awareness of adjacent con-

texts as cues for categorisation at 12 months (Gómez and Lakusta, 2004). At this stage,

they are also clearly aware of prosody, both in its function to signal dialogue pragmatics

as well as using it as a feature for storage of heard phrases (Mandel et al., 1996). How-

ever, it has yet to be shown that infants’ representation of early syntax (while learning

syntactic categories) allows for a link between prosody and word order, i.e., that infants

can make use of the fact that different prosodies may signal different word orders. An

artificial language learning experiment for learning categories, similar to Gómez and

Lakusta’s (2004) study, but in which transitions probabilities are manipulated along

with prosody cues, could provide evidence for infants’ ability (or otherwise) to link

word order and prosody. Crucially, infants would also have to be able to ignore prosody

when it is not informative, given that the link between word order and prosody is lan-

guage dependent and only informative in certain contexts.

This link between prosody and sentence structure is also relevant for sentence pro-

cessing in adults as well as children. The effect of prosody on sentence processing

has primarily been investigated in terms of how prosodic boundaries affect structural

disambiguation, and has found that children acquire this ability quite late. However,

sentential prosody may also signal an expectation for a certain word order or gram-

matical structure, which could reduce processing effort by boosting the probability of

sentences structures that comply with heard prosody. In a recent eye-tracking study,

Zhou et al. (2012) investigated the ability of adults and four-year-old children to use

prosody to distinguish between otherwise surface-identical Mandarin questions and

declarative sentences in an on-line fashion. They found that children performed at an

adult level, which is not the case for other types of structural disambiguation, such as

attachment, at this age. In other languages prosody is often redundant; sentence struc-
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ture can be inferred from words alone. However, this redundancy may facilitate online

processing and disambiguation. Demonstrating this experimentally would strengthen

the case for sentence type being a salient cue during prosody, as it is for memory

(Mandel et al., 1994).

This chapter has investigated the potential benefits of linking aspects of language

that are usually treated separately, such as prosody and syntax. In other work, models of

word learning have shown the importance of incorporating higher-level features such

as discourse structure (Frank et al., 2009), continuity of discourse, and non-linguistic

features such as joint attention (Tomasello and Farrar, 1986). The BHMM-T presents

initial evidence that similar higher-level, non-local features may be useful in syntax

acquisition as well.

3.8 Conclusion

We have investigated whether sentence type can be a useful cue for models of syntac-

tic category acquisition. The structure of the BHMM made it possible to distinguish

between adding sentence types to either the parameters governing the order of syntac-

tic categories in an utterance (transition distributions), or to the parameters describ-

ing the words making up the syntactic categories (emission distributions). We found

that, as expected, adding sentence type to emission distributions resulted in degraded

performance due to the decreased amount of data available to estimate each separate

sentence type emission distribution; additionally these models are awkward since they

create separate sets of clusters for each sentence type. This is contrary to syntactic cate-

gories as they are generally understood and leads to a representation with high levels of

redundancy. Hence we dismiss this model structure for syntactic category acquisition.

However, the model that included sentence type in the transition distribution

(BHMM-T) performed better, by capturing word order difference across sentence

types. The cross-linguistic results showed that even in languages in which word order

variation between sentence types is not as strong as in English were occasionally able

to benefit from the additional information. Where sentence type did not add additional

information, as in Spanish, the BHMM-T models again matched baseline performance.

We also investigated adding sentence type to a type-based model using agglomera-

tive clustering of context vectors. Results were inconclusive, with the variable number

of clusters found in the different settings having a greater effect than adding sentence

types. However, adding sentence types allowed the model to find larger clusters of
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roughly comparable quality, indicating that including sentence type in contexts did not

result in data sparsity issues, and may allow for more general, robust clusterings.

The BHMM-T is fairly brittle, without any sharing of knowledge of transitions

between sentence types. A more realistic model would interpolate between sentence-

type-specific transition distributions, where these are more informative, and general

distributions, where sentence type information is lacking, in order to be more robust

to issues of data sparsity. It would also make use of the fact that some transitions are

often shared between sentence types (i.e., nouns are often preceded by determiners in

both questions and declaratives). In this chapter, we have demonstrated that adding a

link between sentence type prosody and word order at minimum does not add noise,

and in many cases is a source of additional information. In the following chapter we

will investigate adding flexibility to the inclusion of sentence type in the model.



Chapter 4

BHMM with Transition Groups

In the previous chapter, we introduced sentence type as an observed variable within

the BHMM. We found that when transitions were conditioned on sentence type, the

models were able to reflect the fact that different sentence types are characterised by

differences in word order, and this led to improved part of speech tagging performance.

However, not all aspects of word order are affected by sentence type. Noun phrases,

for instance, have the same structure regardless of sentence type. In terms of transitions,

this structural consistency should be evident in similarly high probability of DET NOUN

trasitions, and low probability of DET VERB, for all sentence types. In the BHMM-T,

when all transitions are separated by sentence type, the probabilities for these transi-

tions must be estimated separately for each sentence type, leading to redundancy, and

potentially raising issues of data sparsity due to insufficient counts. The results of the

BHMM-T reflect this difficulty: in many cases increasing the number of sentence types

decreased performance despite the greater refinement of the categories.

A second problem with the BHMM-T is that it requires us to define the number

and kind of sentence types. The five sentence types we identifed were linguistically

motivated and, we argued, distinguishable by language learners. However, we found

differences in performance between different partitions of the sentence types. For in-

stance, what we called the WQD sentence types, in which wh-questions and other

questions are distinguished, but short and imperative utterances are grouped together

with declaratives, can also be thought of as a partitioning of five sentence types into

three groups: W, Q, and ISD. This partition resulted in better performance for bigram

models than the full five-way partition W,Q,I,S,D. However, perhaps a QW,DS,I, or

W,QD,IS partition would have performed even better: we did not investigate all possi-

blities. The number of possible partitions is given by the Bell number and grows large

65
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quickly. Testing the full set of possible partitions in an exhaustive search is prohibitive.

Moreover, not all tag transitions may benefit from the same sentence type distinc-

tions. For example, verbs may be sensitive to imperative mood and have a different

transition distribution in imperatives, but similar transitions in declaratives and ques-

tions; whereas the transition distribution governing wh-word adverbs (how,why) may

be more sensitive to the wh-question distinctions. In this case, verbs may benefit from

a sentence type partition of I,DQWS while adverbs would benefit from transitions par-

titioned as W,QDSI. These examples are hypothetical: the key points are that firstly,

it is difficult to intuit a priori which partitions are optimal, and secondly that these

partitions may not be the same for all transition distributions.

In this chapter, we add an additional set of latent variables to the BHMM-T, namely

transition groups, that add additional flexibility to the transition distributions. Broadly

speaking, where in the BHMM-T each transition distribution was split according to

sentence type, in the BHMM-TG — the BHMM with transition groups — transitions

can be shared or split by sentence type. Transitions between states are now conditioned

on the transition groups of the previous tags, not on the previous tags themselves; in this

way, tags that share transition groups will share transition distributions. For example,

imperatives and questions might have separate sentence-type-specific transitions from

a VERB state, since these transition distributions are likely to be very different in these

two sentence types, but could share transitions from a DET state, by being in the same

transition group, which would represent the fact that noun phrases are stable across

sentence types.

The structure of this chapter is as follows: in the following section, Section 4.1,

we formally describe the BHMM-TG. In Section 4.2 we present two samplers for

performing inference over the BHMM-TG, one which changes the transition groups a

single sentence type at a time, and one which resamples the full partition of all sentence

types. Experimental results follow in Section 4.3. We first confirm our hypothesis about

the utility of transition groups by fixing the tags to gold values, estimating only the

transition groups, and show that the inferred transition groups roughly match linguistic

intuition. We then infer both tags and transition groups, in a full model, and compare

the results to the models from the previous chapter. We find that the BHMM-TG does

not consistently outperform the BHMM-T; in the concluding discussion of this chapter

we discuss why, as well as present ideas for future work in this line.
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4.1 Model Definition

In the BHMM-T, sentence type is used as a conditioning term in the transition distri-

bution:

p(ti|ti−1 = t ′,si−1 = s) = τ(t ′,s). (4.1)

This improves performance by modelling the sentence type variation in word order, but

at the cost of fractioning the counts for transition distributions that do not vary between

sentence types.

In the BHMM-TG — the BHMM with transition groups — sentence type remains

an observed variable, as in the BHMM-T. We add inferred transition groups ggg, so

that sentence types can share transitions. Each tag (type) t has a set of transition

groups gggt , which represent a partitioning of the sentence types. For example, Tag9

might have three (active) transition groups: one group with both question types (Q

and W), one with declarative and short utterances (D and S), and one with impera-

tives (i.e., a QW,DS,I partitioning), while Tag2 might partition all sentence types into

a single transition group (i.e., ISWQD). A sentence type’s group for a particular tag is

denoted gt(s).

When calculating transition probabilities, we condition on the transition group of

the previous tag and sentence type, rather than using the previous tag directly:

p(ti|ti−1 = t ′,si−1 = s,ggg,τ) = τ(gt′(s)) (4.2)

In trigram models, we use the transition groups of the previous two tags:

p(ti|ti−1 = t ′, ti−2 = t ′′,si−1 = s,si−2 = s′,ggg,τ) = τ(gt′(s),gt′′(s′)) (4.3)

The emission distributions remain the same as in the BHMM, conditioned only on

the current tag (not on the transition group).

p(wi|ti = t,ω) = ω(t) (4.4)

The assignment of each sentence type to a transition group gt(s) = g is drawn from

a multinomial φ with a Dirichlet prior γ. The multinomial distribution ranges over G,

the number of transition groups available; this is usually set to be equal to S, the number

of sentence types. If two sentence types draw the same transition group, they are in the

same partition. The prior γ is set to encourage mildly sparseness (γ = 0.1), which in

this case results in multiple sentence types drawing the same transition group, and

other transition groups remaining empty.
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The full model description for a bigram BHMM-TG, depicted in Figure 4.1, is:

φ(t)|γ ∼ Dirichlet(γ)

τ(g)|α ∼ Dirichlet(α)

ω(t)|β ∼ Dirichlet(β)

gt(s)|t ∼ Mult(φ(t))

ti|gti−1(si−1) = g,τ ∼ Mult(τ(g))

wi|ti = t,ω ∼ Mult(ω(t))

The full joint posterior of a sequence of words www, tags ttt, groups ggg, integrating over

parameters τ, ω, and φ, for a bigram BHMM-TG model is:

P(www, ttt,ggg|sss,α,β,γ) = P(ggg|γ)P(ttt|ggg,sss,α)P(www|ttt,β) (4.5)

= ∏
t∈T

∏
g∈Gt

Γ(S + γ)
Γ(1+ γ)

Γ(1+Gγ)
Γ(mg + γ)

(4.6)

×∏
t∈T

∏
g∈Gt

∏
t ′∈T

Γ(ngt +α)
Γ(1+α)

Γ(1+T α)
Γ(ngt t ′+α)

(4.7)

×∏
t∈T

∏
w∈V

Γ(nt +β)
Γ(1+β)

Γ(1+V β)
Γ(ntw +β)

(4.8)

The first factor (line 4.6) are the transition groups, whose sufficient statistics mg are

the number of sentence types drawn from transition group g. In line 4.7 we have the

transitions from groups to tags, and line 4.8 is the posterior for the emissions from the

tags. Note that the sentence type observations almost disappear: once they are associ-

ated with a transition group at the top level, the transition group now contains all the

necessary information.

The BHMM-TG is a generalisation of the BHMM and the BHMM-T: when all

sentence types share the same transition group for all tags, we recover the BHMM.

Conversely, if all sentence types are in separate transition groups, we recover the

BHMM-T1.
1There is a small technical difference in the trigram model because the BHMM-TG takes si−2 into

account whereas BHMM-T does not; however, in practice, si−2 = si−1, when both are in the sentence,
or it is the boundary sentence type, which has its own special tag. In either case the BHMM-T and
BHMM-TG result in equivalent conditioning distributions.
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Figure 4.1: Graphical model representation of the bigram BHMM-TG. The values of

the previous tag ti−1 and sentence type si−1 (i.e., t and s, respectively) determine the

transition group gt(s), which in turn determines the transition distribution τ(g) from

which ti is drawn.

4.2 Inference

The BHMM-TG has two sets of latent variables that must be inferred: the part of speech

tags and the transition groups. The tags are inferred using the same Gibbs sampler as in

the BHMM (see Section 2.3.5), with adjustments for the transition groups. The predic-

tive probabilities for tags now involve transition probabilities that are conditioned on

the transition groups, as above in Eqs. 4.2 and 4.3. The transition group identities (and

thus the transition distributions) are stable during the tag sampling stage. The transi-

tion groups are initialised at random, and are resampled after every ten iterations of tag

sampling.

We implemented two different samplers for transition group sampling. The first is a

Metropolis-Hastings sampler and changes the transition group of a single sentence type

at a time. The second is a Gibbs sampler that samples from the space of all possible

partitions of the sentence types.
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4.2.1 Local Metropolis-Hastings Sampler

This sampler updates the transition group for a single sentence type at a time. In each

sampling iteration, the sampler iterates through the set of tags T . At each tag (type),

a sentence type s and a proposed new group g′t is chosen uniformly at random. (Be-

cause the proposal distribution is uniform, this is technically an independence chain

Metropolis-Hastings sampler.)

In order to decide whether to move s from its current group gt(s) = g to gt(s) = g′,

we draw from the acceptance probability distribution:

p(accept g′t(s)) = min{1,
π(g′t(s))
π(gt(s))

} (4.9)

We use Equation 4.5 to calculate π(g′t(s)), the posterior probability of the current model

with the addition of the new group assignment. π(gt(s)) is simply the current posterior

probability of the model without the change of groups.

4.2.2 Global Gibbs Partition Sampler

The local sampler makes small moves, changing only a single group at a time, and

hence might suffer from mixing problems. For example, if reaching the optimal par-

tition were to require two moves that both had low individual probabilities, the local

sampler would be unlikely to make both moves in succession.

For this reason, we implemented a second sampler that samples the full group

partition directly, using a Gibbs sampler over the set of possible partitions. However,

this sampler is only tractable for small numbers of transition groups, as the number of

possible partitions rapidly becomes very large. (The number of possible partitions of n

items is given by its Bell number: B2 = 2,B3 = 5,B4 = 15,B5 = 52.)

The global Gibbs partition sampler iterates over each tag in T . For each tag, we

generate all possible partitions gggt of the sentence types (e.g., WQD; W,DQ; WD,Q;

WQ,D; W,Q,D) into transition groups and calculate their probability given the current

tags:

P(gggt |ttt,S,γ,α) = ∏
g∈G

γ(mg)

Gγ(S) ∏
t∈T

∏
t∈T

α(ngt)

T α(ng)
(4.10)

where mg designates the number of draws from transition group g (i.e., the num-

ber of sentence types assigned to that transition group) and ng designates the num-

ber of token transitions from g. G is the number of transition groups per tag, S

is the number of sentence types, and T is the number of tag types. The notation



Chapter 4. BHMM with Transition Groups 71

x(n) = (x)(x+1)...(x+n−1) denotes the ascending factorial, used to calculate the

summation of the Dirichlet-multinomial predictive posterior probabilities. The first

factor calculates the posterior probabilities of the transition group multinomials, while

the second factor calculates the posterior probabilities of the current tag transitions

given the partition gggt .

4.3 BHMM-TG Experiments

4.3.1 Data

We use the same datasets as in Chapter 3, described in Section 3.3.1: the smaller Eve

dataset and larger Manchester dataset for English, and the Spanish Ornat corpus and

Cantonese LWL corpus to test on other languages. We follow the same train/dev/test

regime as described in Section 3.3.1 and report results on the test+training sections.

These datasets are annotated with five sentence types (see Section 3.1): Wh-

questions (W), Questions (Q), Declaratives (D), Imperatives (I), and Short utterances

(S). We test the same subsets of these sentence types as well:

QD All questions separatated from all other sentence types (catch-all ‘declaratives’).

WQD Distinct wh-questions, other questions, and ‘declaratives’

SWQD Short (2 words or less) utterances are separated from the other declaratives,

questions remain separate.

ISWQD Imperatives are also distinguished from other declaratives.

4.3.2 Baselines and Procedure

We want to evaluate the BHMM-TG against the BHMM and the BHMM-T model

from Chapter 3. In order to compare these models directly, we use the variations of the

BHMM-TG that are equivalent to the BHMM and the BHMM-T. For the BHMM, this

is the BHMM-TG model with only a single transition group per tag, so that all sentence

types share the same transition group. The BHMM-T is a special case of the BHMM-

TG in which each sentence type is assigned to a separate transition group and sharing

is disallowed. In both cases transition groups are set at the beginning of sampling and

thereafter not resampled.
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We run inference on models trained on the Eve, Ornat and LWL datasets for 10000

iterations, as before. The larger Manchester models are run for 8000 iterations. The α

and β hyperparameters are estimated using a Metropolis-Hastings sampler, while γ is

set to 0.1, as initial experiments showed that changing the value of this hyperparameter

has little effect. Each experimental condition is run ten times. We report average values

for all evaluation measures and confidence intervals at the 95% level.

4.3.3 True Tags

In this set of experiments, we fix the tags to the gold standard tags and perform infer-

ence only over the transition groups, to see what kind of patterns the transition groups

find. We cannot evaluate the transition groups quantitatively (since there is no gold

standard to evaluate against), but we can inspect them to see if they match our intu-

itions.

As an initial experiment, we tested transition groups with randomly assigned sen-

tence labels and gold tags. In this case, the trained models invariably shared all tran-

sition groups between all sentence types. This is to be expected, since there would be

no significant differences in transitions between meaningless sentence types. This is

a crucial advantage of the BHMM-TG: it has the flexibility to ignore uninformative

features, unlike BHMM-T, which would be faced with a fragmented dataset.

4.3.3.1 Small dataset experiments: Eve results

We noted in the BHMM-T results in Chapter 3 that performance on the relatively small

Eve dataset decreased with more sentence types. We surmised that this decrease in per-

formance was due to data sparsity when estimating sentence-type-specific transitions.

The BHMM-TG model can ameliorate the data sparsity problem by allowing the model

to group transitions from sentence types without enough support.

The grouping occurs on a tag-by-tag basis, depending on the transition behaviour of

each tag. We can hypothesise likely groupings based on the word order characteristics

of the tags:

1. Tags such infinitival-to (INF), determiners (DET), prepositions (PREP), and adjec-

tives (ADJ) should have their transition distributions shared among all sentence

types, since their distributional usage constraints are determined by local con-

text, not global context features like sentence type.
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2. Tags that change position in the course of word order shifts between declaratives

and questions — pronouns (PRO), verbs (V), auxiliaries (AUX) — should have

sentence-type-specific transition distributions.

We run a bigram model ten times, using the Eve development set annotated with

all five sentence types. The following table shows the transition group partition of

sentence types for each tag in each of the ten runs. When all ten runs have the same

partition, we omit the count, but if all ten runs did not converge on the same partition,

the number of runs resulting in that partition is noted in the subscript (e.g., AUX7 in

partition D,I,Q,S,W indicates that in seven of ten runs, the transition groups found for

the AUX tags were completely split between all sentence types).

1 D,I,Q,S,W ADV, OTH, PRO, V, AUX7,N2

2 DI,Q,S,W AUX3

3 DQ,I,S,W N8

4 D,IQ,S,W NEG5

5 D,I,QS,W CONJ3

6 D,IQW,S NEG5, DET

7 D,IQS,W CONJ7

8 DQ,IW,S PART

9 DIQ,S,W ADJ8

10 DQW,I,S PREP1

11 DIQW,S ADJ2, PREP9

12 DIQW INF

A large variety of partitions are found: twelve different partitions are used over all

runs for thirteen tags (nine partitions if only the most frequent partition for each tag is

counted). This indicates that, given stable, high-quality tags, the transition group model

is able to use the extra flexibility in representation to capture meaningful patterns in

the data.

Seven of thirteen tags converge to the same partition on all runs: ADV, OTH, INF,

PRO, DET, PART, and V. The others alternate between two partitions that are slight

variations: NEG is undecided whether to cluster wh-questions with other questions and

imperatives (partitions 4 and 6), nouns (N) usually cluster declaratives and other ques-

tions together (in partition 3) but occasionally separate them (partition 1), and so on.

Three of the partition alternations (AUX, CONJ, PREP) involve imperatives, the least fre-

quent sentence type.
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Note also that our posited collapsing of the five sentence types into three (DIS,W,Q)

does not appear at all. This supports the desire for flexibility in sentence type separa-

tions, since evidently our intuitions about likely sentence type groupings do not corre-

spond to the optimal partitions for the model.

Returning to our first hypothesis: tags such as adjectives (partitions 9 and 11),

prepositions (partitions 10 and 11), and infinitival to (partition 12) are indeed shared

between most sentence types. (INF does not appear in any short utterances in the

dataset.) Short utterances, unsurprisingly, are different from the longer sentence types

and are often separated out.

Likewise as hypothesised, these models infer completely split transition group par-

titions for pronouns, verbs, auxiliaries — the tags that are affected by word order vari-

ation between sentence types. Other tags that are split completely are adverbs and the

‘other’ category, both of which contain words that are less restricted in terms of word

order (e.g., right, just, here, yes, darling). They are also both diverse ‘catch-all’ cate-

gories, to some extent, with the words in the categories likely to differ between sen-

tence type, which may also influence the contexts in which they appear. For example,

adverbs in wh-questions are likely to be wh-words at the beginning of the utterance,

while adverbs in declaratives are more likely to be near the verb.

4.3.3.2 Larger dataset experiments: Manchester results

In the Manchester experiments with the bigram BHMM-T (Section 3.4.3) we found

that the most fine-grained sentence types (ISWQD) did not perform better than the

coarser three sentence type split (WQD), despite the larger amount of data to infer

sentence-type-specific transitions from,

We now explore whether this indicates that distinguishing the imperatives and short

utterance types is harmful in larger datasets. When given gold tags, does the bigram

BHMM-TG with five sentence types recreate the W,Q,D partition? And is W,Q,D op-

timal — or does the three sentence type BHMM-TG (i.e., a model trained on WQD

data) find other partitions?

We train both bi- and trigram BHMM-TG models with gold tags and two different

sentence type annotations: one with only three sentence types, WQD, and one with the

full set of five sentence types, ISWQD. In the WQD condition, where three different

sentence types are observed, and which corresponds to a W,Q,DIS partition of the full

five sentence types, we indeed find that the bigram models (both samplers) consistently

split all sentence types fully in all tags, recovering the BHMM-T. In the ISWQD con-
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dition, with five possible transition groups, we also find that the bigram models prefer

to split most tags completely. Only the INF tag transition (corresponding to infinitival

to) is shared between the imperatives and either the declaratives or non-wh questions

(i.e., either DI,S,W,Q or D,S,W,QI partitions).

The posterior probability of the nearly fully-split models found in the five sentence

type condition is higher than in the three sentence type condition in which some of

the sentence types are implicitly shared (since the D sentence type contains I and S

as well). The transition group component of the posterior is lower, due to the larger

number of clusters, but this is cancelled out by higher probability transitions. (Emission

probabilities are the same, since the tags are fixed to their true values.) In contrast, the

five sentence type Eve BHMM-TG models from the previous section, which share

some transition groups between sentence types, have higher posteriors than fully split

model run on gold tags.

Overall, the Manchester results demonstrate that, given sufficient data and gold

tags, there is little pressure to group transitions together: both samplers find fully split

solutions. When performing inference over the smaller Eve data set, sharing transitions

can be a better strategy.

These results have been achieved with gold tags. This significantly simplifies the

problem, both because the tags are of high quality, so transitions are not noisy, and

also because they are stable and do not change during inference. We now turn to ex-

periments involving inference over both tags and transition groups, to see if the same

patterns hold with inferred tags as well as gold tags.

4.3.4 Inferred Tags and Transition Groups

We now test the ability of the BHMM-TG to infer tags as well as sentence type parti-

tions. We evaluate the inferred tags using VM (see Section 2.4). If the transition groups

allow for a better, more flexible integration of sentence types into the BHMM structure

than this should be reflected in improved performance with regard to the BHMM and

the BHMM-T.

Furthermore, the flexibility of transition groups should make the model more ro-

bust to sentence type distinctions, since transition groups allow the model to recover

coarser distinctions. We thus expect to see either increasing or stable performance with

increasingly fine sets of sentence types.
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4.3.4.1 Eve results

Results for the Eve corpus are shown in Figure 4.2, comparing both samplers for the

BHMM-TG against the BHMM and the BHMM-T.

For the most part, the global partition sampler (BHMM-TG-P) finds better solu-

tions than the local sampler (BHMM-TG-L), although the results are comparable, de-

spite the samplers’ very different sampling strategies. This indicates that neither sam-

pler suffers from a severe mixing or convergence issue. In general, we find that in

both samplers the transition groups converge within the first few hundred iterations

and thereafter do not change significantly.

The BHMM-TG models are making use of transition groups: transitions are

grouped into a variety of different partitions. Due to the lack of cluster labels, it is

difficult to see what these partitions are capturing. The bigram models find the fully

split partition (maximum number of transition groups) more often than trigram models.

The fully split partition also occurs more often in models with fewer sentence types.

This indicates that data scarcity is key to driving sharing of transition groups: both tri-

gram models and increasing numbers of sentence types result in more distributions to

estimate. This can be ameliorated if tags share transition groups, since they will then

have to estimate fewer transition distributions.

Trigram performance increases with the number of sentence types, whereas the bi-

gram models find the best performance with three sentence types, as with the BHMM-

T models. However, the bigram models all perform within statistical significance of

one another (and the BHMM-T baseline). They also all significantly outperform the

BHMM baseline.

The only models that clearly underperform the BHMM-T models are the trigram

models trained on data with only two sentence types (QD). This is due to the transition

groups opting to share transitions very often, in 87 of 130 cases (13 tags times 10

runs). The BHMM-TG and BHMM-T models converge to about the same posterior

log probability, with the BHMM-TG finding a slightly higher probability solution on

average. However, the transition component in BHMM-TG models is higher than in

the BHMM-T models, while the reverse is true for the emission component. Evidently

the emission component corresponds more closely to VM performance.

In summary, we do not find a consistent increase in tagging performance in the

BHMM-TG models over the BHMM-T models on the Eve datasets. There is also not

a consistent difference in performance between sentence type settings; in the trigram
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Figure 4.2: BHMM-TG performance on the Eve corpus: Mean VM and 95% Confi-

dence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are

marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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models, there is a clearer trend of increasing sentence types leading to better perfor-

mance overall, but this does not hold for bigram models.

4.3.4.2 Manchester results

In the BHMM-T results on the Manchester corpus (Section 3.4.3), we found a clear

example of how a larger number of sentence types could cause a decline in tagging

performance. As we described in Section 4.3.3.2, the bigram BHMM-T with three sen-

tence types (WQD) clearly outperformed the baseline BHMM, whereas the BHMM-T

with five sentence types only improved slightly over the baseline. The BHMM-TG

should be able to recover the better WQD distinction even when being given the full

set of sentence types, stemming the decline in performance.

However, examining the bigram results in Figure 4.3, we see that this does not oc-

cur: the BHMM-TG over five sentence types matches the (lower) performance of the

ISWQD BHMM-T almost exactly, rather than being able to match the WQD BHMM-

T’s performance. Indeed, the inferred transition groups are nearly all fully split, recov-

ering the BHMM-T, in both the WQD and ISWQD models. In the case of the WQD

sentence types, this leads to high VM performance, but not with further sentence type

splits.

The posterior probabilities of the ISWQD bigram BHMM-TG models are signifi-

cantly higher than those of the WQD models, a fact not reflected in VM performance.

As before, this is due to the ISWQD model having higher probability transitions, while

the emissions and transition group components of the posterior are of higher probabil-

ity in the WQD model.

The trigram models split less completely than the bigram models. In some cases, as

for the BHMM-TG local sampler with three or four sentence types (WQD and SWQD),

this improves performance. However, this is not consistent, and the partition sampler

does not find the same solution. In the case of the ISWQD results on BHMM-TG-L,

the sharing of sentence types (only half the possible partitions were fully split) results

in lower performance than the fully split BHMM-T model, but not significantly. We

were unable to run the partition sampler on the five-sentence type dataset due to its

prohibitive runtime. Both the BHMM-TG and BHMM-T trigram models do not show

much improvement over the BHMM: as in Chapter 3, this suggests that sentence type

is mainly useful in models with impoverished context or smaller amounts of data to

learn from.
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Figure 4.3: BHMM-TG performance on the Manchester corpus: Mean VM and 95%

Confidence Intervals (N = 10). Values that differ significantly from baseline (BHMM)

are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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Figure 4.4: BHMM-TG performance on the Spanish (Ornat) corpus: Mean VM and

95% Confidence Intervals (N = 10). Values that differ significantly from baseline

(BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

4.3.4.3 Other Languages

As before, we also test the BHMM-TG on non-English corpora. For these datasets

we only identify three sentence types, WQD, so we are principally interested in the

performance of the BHMM-TG with regards to the BHMM-T and BHMM baselines.

The results are shown in Figure 4.4 for Spanish and Figure 4.5 for Cantonese. These

figures show similar patterns: the bigram models perform similarly to the BHMM-T,

but do not significantly outperform this baseline, whereas the trigram models more

closely match the BHMM, resulting in underperformance with regards to the BHMM-

T models.

The high variation in the bigram Ornat BHMM-T models is due to a local optimum

found by a few models that entails moving some high-frequency verbs (es, está) into

a cluster that primarily contains prepositions. The BHMM-TG models avoid this local
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Figure 4.5: BHMM-TG performance on the Cantonese (LWL) corpus: Mean VM and

95% Confidence Intervals (N = 10). Values that differ significantly from baseline

(BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).
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optimum and converge to a more consistent solution.

These performance differences between bigram and trigram models are reflected in

the levels of sharing in the transition group partitions found: nearly half of the transition

group partitions found by the bigram Ornat models are fully split, whereas half of the

transition group partitions found in the trigram models have only a single group, with

all three sentence types sharing the same transition group. The same pattern is evident

in the LWL BHMM-TG transition group partitions.

4.4 Discussion

The BHMM-TG was formulated to add flexibility to the sentence type representation

in the BHMM-T. The model had two aims: firstly, to be more robust against the choice

of sentence types used in the model, and secondly, to allow different tags to flexibly

chose the optimal sentence type partitioning. We hoped these abilities would allow it to

find better tags than the BHMM-T and the BHMM-TG. Unfortunately, the BHMM-TG

did not show consistent improvement over the BHMM-T. In this section we consider

the possible reasons for this result and discuss potential solutions and future steps.

Are transition groups a bad idea? One possible explanation for the results we

found is that the transition group structure — the enabling of transition sharing —

does not reflect linguistic reality, and is thus misplaced in a model of language.

However, the results obtained with gold tags belie this explanation: here we saw

that the transition groups were used to distinguish transitions in some sentence type,

while clustering other transitions together. These BHMM-TG models found higher

probability solutions than either the BHMM or the BHMM-T, showing that with good

tags, the transition groups are beneficial.

On the other hand, the models with inferred tags had various degrees of tran-

sition group sharing, which corresponded closely to their performance on the VM

task: with more sharing, their performance likened the BHMM baseline, and with

less, the BHMM-T baseline. Empirically the BHMM-T seemed to be an upper bound

for BHMM-TG performance when doing joint inference over both tags and transition

groups, contrary to what we hypothesised.

Insufficiently strong prior over groups Increasing the amount of data, by using

the Manchester dataset, greatly decreased the amount of sharing of transition groups.
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Overall, given the BHMM-TG structure, splitting the transition groups led to higher

posterior probabilities, but lower emission posteriors and lower VM performance. This

indicates that the model is in a sense ‘overfitting’ to the sentence-type-specific transi-

tion distributions, by placing too much weight on modelling the transitions. A stronger

prior might counteract this tendency; unfortunately it is unclear how to add such a

stronger prior to the model. Given the ‘type-based’ nature of the transition group struc-

ture, these counts will always be small compared to the token counts in the transition

distributions.

Why not a hierarchical model? An alternative model structure would include tran-

sitions as a hierarchical distribution, with bottom-level sentence-type-specific transi-

tions, as in the BHMM-T, and a top-level general transition distribution across all

sentence types in a backoff distribution. Each tag and sentence type would have an

individual hyperparameter determining the amount of backoff to the general transition

distribution. In this case, if both question types had similar transitions for a particular

tag, whereas the declarative transitions were dissimilar, we would predict the question

types to have a high degree of backoff to the shared distribution, but the declarative

transitions would be based mainly on a sentence-type-specific transition with little

backoff. When using only three sentence types, all partitions can be represented in

the hierarchical model. However, with more than three sentence types, the hierarchical

model cannot model partitions in which two sets of sentence types share distributions,

such as e.g., WQ,SD.

Mismatch between posterior probability and VM tag performance On several

occasions we observed a mismatch between the model with the highest overall poste-

rior probability and the model with highest VM tagging performance. In each of these

cases, the model with the highest VM also had higher posterior emission probabilities,

which were countered by lower transition and transition group posteriors. This sug-

gests that focussing on the transition structure of the BHMM is less likely to lead to

improved tag performance, and accordingly, in the next chapter we refocus on extend-

ing the emission distribution of the BHMM.
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4.5 Conclusion

In this chapter we presented the BHMM with transition groups (BHMM-TG), which

is a generalisation over the BHMM and the BHMM-T from previous chapters. The

goal of this model structure was to enable flexible use of the sentence type cue. This

was effective when inferring only the transition groups with fixed tags. However, when

inferring both transition groups and tags we found that the BHMM-TG models did not

consistently outperform the BHMM-T model, in terms of finding better part of speech

tags, despite the added descriptive power.



Chapter 5

Joint learning of morphology and
syntactic categories

Children acquire morphology and word order roughly in parallel. In English, the

question as to which comes first seems to be child-dependent (Clark, 2003b). While

Brown’s (1973) stages of language development posit the acquisition of the first multi-

word combinations in Stage I, with morphology appearing only in Stage II, some

particularly salient morphemes may be acquired earlier (e.g., in Mervis and Johnson

(1991) a child in the one word stage used the plural morpheme reliably). The typol-

ogy of the language being learned influences the time-course of acquisition: learners

of morphologically rich languages become productive in morphology earlier (Xanthos

et al., 2011). Experiments testing sentence comprehension in children also demon-

strate cross-linguistic differences in the cues used to make sense of confusing or non-

canonical sentence structures: children learning Turkish, for example, rely on morpho-

logical affixes, regardless of word order (Slobin, 1982), whereas learners of Japanese

rely on the presence of grammatical particles as well as word order (Hakuta, 1982).

Faced with the task of enacting nonsense sentences, Italian learners disregard word

order in favour of more coherent semantics, while English learners do the opposite

(Bates et al., 1984).

This interaction between morphology and word order gives rise to the hypothe-

sis that a general model of syntactic category acquisition must take morphology into

account, in order to accommodate languages with rich morphology. Vice-versa, distri-

butional word order information must be included in an entirely from-scratch model of

morphology, in order to distinguish between syntactic categories (and the associated

morphological processes) in languages in which morphology alone is not sufficient to

85
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disambiguate categories.

In this chapter, we introduce a model that aims to operate on this level of typo-

logical generality, by integrating both morphology and word order. The BHMM from

earlier chapters relies solely on distributional context, i.e. word order (which really

specifies syntactic category order, rather than words per se), for syntactic categorisa-

tion. The transition distribution carries the information about the probability of a clus-

ter (hidden state) in a given context, whereas the emission distribution in the BHMM

is a simple multinomial, principally ensuring that tokens of the same word type will be

more likely to be members of the same cluster. This model is effective for languages

with strict word order, such as English, where, having seen a determiner such as the,

we can safely predict the next word to be a noun, or perhaps an adjective: nearly every

other syntactic category would result in an ungrammatical sentence, due to not obeying

word order constraints (e.g., the would, the terrify).

Many other languages, however, do not rely as heavily on word order alone to

signal syntactic category membership and other grammatical relations. Instead, mor-

phological processes such as affixation, which apply to the words themselves, serve

as signalling functions (e.g., in English the morpheme -ness marks the transforma-

tion of an adjective to a noun, such as kindness, weightlessness). When the syntactic

markers are attached to the word using bound morphemes, syntactic information is

retained even when words are rearranged. In isolating languages, the same syntactic

information is conveyed either using particles, which must stay in a certain proximal

relationship with the word they apply to, or via word order directly (e.g., subject is

before verb), thus requiring a more rigid word order.

By adding a morphological component to the BHMM, we hope to expand the cov-

erage of the BHMM to languages in which morphology is a richer cue than English.

Conversely, since the morphology model is also unsupervised, we hope that adding

surrounding context via the BHMM can improve the morphology model, by adding

cues to the applicable (syntactic category-appropriate) morphological processes. The

syntactic category of a word determines its morphological behaviour (to the extent

that the word is regular; it cannot use morphology from a different syntactic category).

Knowing which morphemes occur in a word is likely to aid syntactic categorisation:

words ending in -y are likely to be adjectives, but if a word ending in -y appears in a

non-adjectival context, we should not classify it as an adjective, and also not segment

the -y ending of that word as an adjectival suffix (e.g., in the shaggy dog story, shaggy

should be identified as an adjective and be segmented as shagg-y but story should not).
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We add a model of morphological segmentation (Goldwater et al., 2006) to the

emission distribution of the BHMM, so that each tag in the data sequence emits not

a word, but a stem and a suffix which combine to form the observed word. This is

a rather simple concatenative morphology but is suited to (and commonly used for)

English and Spanish, the two languages we study in this chapter. Of the two, Spanish

has a much richer morphology, and we find that leads to different behaviours with

regards to single-task baselines.

Additionally, the model uses a representation of the input that is in line with how

children hear and manipulate language: it is based on tokens, allowing ambiguous

words (e.g., he laughs vs. her laughs) to be treated correctly, as distinct forms. Sur-

prisingly few joint models have been proposed to take advantage of the interaction be-

tween morphology and syntactic categorisation, and these have included a word-type

constraint (Lee et al., 2011b; Can, 2012; Sirts and Alumäe, 2012): each wordform in

the corpus (i.e., laughs) is limited to a single part of speech and a single morphological

analysis. This leads to easier inference, but ignores the true nature of language, which

includes plenty of ambiguity, both in terms of words with multiple syntactic categories

and in terms of words with ambiguous morphology.

In the following sections, we first discuss previous models of unsupervised learning

of morphology and connections between models of morphology and parts of speech.

We then describe the morphological component of our model, and discuss how to

integrate it into the BHMM. Finally, we present experimental results on English and

Spanish, and discuss how their typological differences leads to different patterns of

learning within the model.

5.1 Related Work: Unsupervised Morphology

Learning morphology in an unsupervised fashion has been the focus of a considerable

amount of research (see Hammarström and Borin (2011) for a detailed overview). Mor-

phological structures and patterns vary considerably between languages, ranging from

affixation (e.g., -ed for English past tense) through apophony (e.g., ablaut in irregular

English verbs such as shine/shone) to transfixation (e.g., Arabic morphology).

For the most part, research in unsupervised morphology induction has focussed on

affixative morphology, and we continue in this line. From this perspective, learning a

morphology can be viewed as the task of segmenting words into reusable components,

i.e. discovering the set of morphemes, the lexicon, that are sufficient to generate the
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words in the language.

A trivial solution is to have a morpheme lexicon that consists simply of the set of all

word types; by definition this lexicon will cover the language. This is in fact the Max-

imum Likelihood solution (Goldwater, 2007). However, storing open, opens, opened,

close, closes, closed as individual words is intuitively less efficient than representing

these words as the combination of the stems (open,close) and suffixes (-NULL, -s, -ed,

-d). Additionally, from an acquisition perspective, this latter representation is able to

explain humans’ ability to extend morphology to new words, e.g. to generalise wugs

from wug; under the whole-word representation, each word would have to be learned

separately.

Minimal Description Length (MDL) and Bayes’ Rule provide two formalisations

of this notion of the desirability of parsimony within the lexicon, either in terms of

minimising a cost or maximising a probability. In the MDL framework, the total cost

of a posited lexicon is calculated as the sum of the length of the lexicon and the total

length of all pointers to the lexicon required to generate the language data. Length is

measured as ‘compressed length’, the number of bits necessary for an optimal encod-

ing of the lexicon in an information-theoretic sense. The most well-known morphology

induction system using MDL is Linguistica (Goldsmith, 2001, 2006). One weakness

of the MDL framework is that it only gives a method of assessing the cost of a pro-

posed lexicon; it lacks a methodology for generating new proposals. Linguistica and

other MDL-based models (Brent and Cartwright, 1996; de Marcken, 1996; Creutz and

Lagus, 2002) depend on heuristics in their search for a good lexicon.

MDL is equivalent to using MAP to evaluate a probabilistic Bayesian model (Wal-

lace and Freeman, 1987; MacKay, 2003); in this latter case, we are interested in the

most probable lexicon L given the seen language data D . We calculate the probability

of a lexicon using Bayes’ Rule, P(L |D) ∝ P(L)P(D|L): and see that, analogously

to MDL, we must take into account both the prior probability of the lexicon, P(L),

and the probability of the data generated by the lexicon P(D|L). (The Kraft-McMillan

theorem gives us the equivalency between MDL’s optimal code length and probability

distributions.) The Morfessor system (Creutz and Lagus, 2004, 2007) and the ParaMor

system (Monson et al., 2007, 2008) use MAP in a similar way as Linguistica uses

MDL, to evaluate a greedy search procedure.

More fully Bayesian models use more general inference techniques, such as sam-

pling, to explore the search space in a less constrained or ad hoc manner. Goldwa-

ter et al. (2006) investigate the effect of input type on morphology inference. Most
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morphology induction systems have used word lists as input data. This corresponds

to learning from types, rather than the token input heard by children, and assumes

that word frequency is irrelevant to morpheme learning. There is some evidence that

morpheme type frequency is attended to in acquisition (Bybee, 1995), and Goldwater

et al.’s (2006) results supported this type-based assumption as well: a model that took

token frequencies into account performed worse than a model which used only type

frequencies. However, this held only for data that consisted entirely of verbs. When

natural corpus data (child directed speech) was used as input (Goldwater, 2007), the

word type model performed poorly; instead, a model which dampened corpus frequen-

cies (but still made use of them) performed best. This model provides the morpholog-

ical component to the model presented in this chapter and will be described in more

detail in section 5.3.

Other Bayesian models of morphology learning, many of which also include

frequency-damping mechanisms, include Naradowsky and Goldwater (2009), which

is an extension of Goldwater et al. (2006), and Johnson (2008), which uses a non-

parametric probabilistic grammar formalism (adaptor grammars). In a closely related

task, Snyder and Barzilay (2008) and Naradowsky and Toutanova (2011) use Bayesian

models to perform morpheme alignment between languages.

The generative perspective, in which the goal is to learn a morpheme lexicon, is

only one way of viewing the task of morphology induction. The earliest work in mor-

phology learning, introduced by Zelig Harris (Harris, 1955, 1967), focussed on find-

ing the segmentation points between morphemes, without aiming to find coherent and

reusable morphemes. The key idea is that the boundary between morphemes is a place

of higher entropy or variation than within a morpheme. Others have used variants of

this method with different criteria for setting segmentation points (Déjean, 1998; Bor-

dag, 2006; Bernhard, 2006; Keshava and Pitler, 2006; Demberg, 2007; Dasgupta and

Ng, 2007a; Moon et al., 2009), often with a second step of filtering and clustering the

found morphemes. This work has principally used word lists as input, but many have

used token counts rather than type counts to measure variability.

An alternate formulation focusses on finding clusters of words that are morpho-

logically related, without insisting on a segmentation into morphemes. This allows

irregular and non-concatenative morphology to be captured, such as English strong

verbs (run/ran, sing/sang, drive/drove). While they usually make use of edit distance

or other measures of orthographic similarity, such as shared affixes (Neuvel and Fulop,

2002), these models incorporate other features as well, such as semantic relatedness
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(Schone and Jurafsky, 2000; Baroni et al., 2002), local (word) contexts (Schone and

Jurafsky, 2001), and frequency (Yarowsky and Wicentowski, 2000).

5.2 Related Work: Unsupervised Morphology with

Part of Speech Tagging

The clear interaction between morphology and parts of speech has motivated work

in one task to make use of features from the other. However, there has been very lit-

tle work up until quite recently on learning both simultaneously, in a joint model. In

this section, we review first models of part of speech tagging which make use of mor-

phological features, then models of morphology which use part of speech categories.

Finally we describe three joint models of morphology and POS tagging, and describe

how our approach diverges from these.

5.2.1 Morphology in Unsupervised Tagging

Many part of speech categories are marked by morphemes; in English this is mainly

evident at word endings, in the form of suffixes (especially in verbs). To take advan-

tage of this fact, many unsupervised POS induction models have incorporated features

representing the ending characters of words, e.g. Smith and Eisner (2005); Haghighi

and Klein (2006); Berg-Kirkpatrick et al. (2010); Lee et al. (2010).

A less suffix-specific method is to incorporate character-level information over the

whole word. Clark (2003a) uses a character HMM to generate each word; for infre-

quent words the addition of word-internal information is particularly helpful. Adding a

character language model to the emission distribution in a non-parametric HMM-based

tagging model (Blunsom and Cohn, 2011) leads to large gains in tagging performance

in morphologically rich languages (and smaller gains in English).

A small number of part-of-speech induction systems use morphological segmenta-

tions learned by a separate morphology model as features: Dasgupta and Ng (2007b)

use their own morphology model (Dasgupta and Ng, 2007a) together with context

features in a SVM model. Hasan and Ng (2009) add suffixes found by Keshava and

Pitler’s (2006) system to Goldwater and Griffiths’s (2007) tagger in a weakly super-

vised setting. Abend et al. (2010) use Morfessor (Creutz and Lagus, 2007) to bootstrap

a POS induction model from automatically found reliable seed words. In a more ortho-

dox unsupervised POS tagging setting, Christodoulopoulos et al. (2011) use Morfessor
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suffixes as features within a Bayesian mixture model.

There has been some work on joint morphology and dependency parsing, prin-

cipally for morphologically complex languages such as Arabic or Latin (Cohen and

Smith, 2007; Goldberg and Tsarfaty, 2008; Lee et al., 2011a). These models are su-

pervised and hence not directly relevant to the work presented here. However, they

demonstrate the need to incorporate morphology at higher levels of syntactic analysis,

especially in languages with richer morphology.

5.2.2 Syntactic Categories in Morphology Models

Surprisingly few morphology models have added part of speech information as input

features, perhaps because they often use word lists as input. Many models restrict the

input to a few parts of speech (e.g., Goldwater et al. (2006) uses only verbs).

Hu et al. (2005) add POS information from an external (trained, supervised) tag-

ger to Linguistica (Goldsmith, 2001). However, they evaluate only the savings on de-

scriptive length (in an MDL framework), and do not report whether this results in

improved segmentation. Can and Manandhar (2010) use categories induced by Clark’s

(2000) distributional method; it is unclear whether adding categories improves their

morphology model. Schone and Jurafsky (2001) use local contexts as a cue to clus-

ter morphologically related words together, on the assumption that words with similar

distributional characteristics will also share morphological characteristics.

Models of full morphological paradigm induction (Chan, 2006; Dreyer and Eisner,

2011), in which the set of alternations of a given stem are learned, assume known POS

tags in order to separate e.g., noun and verb occurrences of compress.

5.2.3 Fully Joint Models

Finally we examine three recent models which jointly learn morphological segmenta-

tions as well as syntactic categories.

Lee et al. (2011b) present a Bayesian model of morpheme segmentation that in-

corporates both a lexicon level, in which words are generated from latent syntactic

category-specific morpheme distributions, and a token level, in which words are repre-

sented by a HMM sequence of inferred tags and words. Each word type is assigned to

a single morphological segmentation and part of speech tag within the lexicon compo-

nent. The number of latent categories is set to be very small (5), suggesting that only

very coarse categories are learned (e.g. perhaps nouns, verb, adjective, ‘other’); more-
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over, they do not evaluate the inferred latent categories against gold part of speech tags.

Ablation results show that separating the morpheme generation into category-specific

distributions is far more helpful for morphological segmentation than modelling the lo-

cal syntactic category contexts using the HMM. This suggests that the limited number

of categories may be inadequate to model the token tags correctly.

Can (2012) attempts a full joint model, presenting both tagging and morphology

results; unfortunately, without ablation results of the single components it is not possi-

ble to discover whether joint learning results in improvement. The model description

is difficult to follow, but implies that during inference, all tokens of a word type are

assigned the same morphological analysis.

Sirts and Alumäe (2012) present a complete Bayesian model of both POS tag and

morphological segmentation. However, this model is type-based: each word form is

assigned a single segmentation and part of speech tag. This has been shown to improve

POS inference performance but violates the known ambiguities of natural language. In

this case, the type-based constraint is necessary to make inference tractable, since the

model includes multiple levels of non-parametric processes. This model also is able

to segment words into multiple (more than two) morphemes; it does not differentiate

between stems and affixes. They evaluate on both parts of speech and morphological

segmentation across a wide variety of languages, though not on the same datasets for

both tasks. Oracle experiments in Estonian, in which either the tags or the morpholog-

ical segmentation is set to the gold value, show that the joint model is able to improve

over the oracle on the other task, an impressive result.

The model presented in this chapter differs from these other models in that it is

consistently token-based; we allow word tokens to be assigned to different tags and

different morphological analyses. This is in line with the ambiguity occurring in nat-

ural language, but could hurt performance if ambiguity within the model is overly

rife. As we shall see next, the morphology component in the model includes statis-

tical processes which aim to add type-based behaviour without curtailing ambiguity

completely.

5.3 Morphology Model: Goldwater et al. (2006)

In this section we describe the morphological component of the full model, which

also includes a tagging component. The morphology model is due to Goldwater et al.

(2006) and further details can be found in Goldwater (2007). In the subsequent section
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this model is added to the BHMM as a tagging component.

The morphology model segments words into stems and (possibly null) suffixes. We

first describe the generative process for generating segmentations, then describe how a

non-parametric Pitman-Yor Process shapes the underlying generating distribution into

one that can reflect both learning from type and token statistics.

5.3.1 Generating analyses

We draw a morphological analysis for each word from the base distribution G. An

analysis l has a three components: a cluster label, a stem, and a suffix; the stem and the

suffix concatenate to form the word, and together are also called a segmentation of the

word. The cluster does not necessarily correspond to a part of speech tag. Within the

generative model, the cluster is responsible for generating the stem and suffix; words

in the same cluster will be likely to share stems and/or suffixes. As an example, the

word wugs may be assigned to cluster 3. The stem and the suffix would be drawn from

the stem and suffix distributions associated with cluster 3.

The probability of an analysis l, which consists of a cluster c, stem s, suffix f , tuple,

factors as follows:

G(l = (c,s, f )|w) = P(c)P(s|c)P( f |c)[w = s⊕ f ] (5.1)

where the last term is enclosed by Iverson brackets, which evaluate to one if the state-

ment within is true and zero otherwise (equivalent to an indicator function). This term

indicates whether the word w is the concatenation (denoted by ⊕) of the stem s and

suffix f and thus ensures that the analysis is compatible with the observed word.

Each component of the analysis is drawn from a multinomial with Dirichlet prior.

This requires the number of possible stems, suffixes, and clusters to be specified in

advance. This is somewhat suboptimal; a more complex model would use nonpara-

metric processes (see for example Sirts and Alumäe (2012)), but inference in such

a model would also become very difficult and require approximations (Blunsom and

Cohn, 2011). We set the number of possible morpheme types (stems and suffixes) to

the number of possible morphemes (unique word-beginning or -ending substrings) in

the data, to minimize the amount of prior knowledge. The Dirichlet hyperpriors are

accordingly set to very small values to encourage sparseness (i.e. each cluster should

only use a small subset of all possible affixes).
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5.3.2 Assigning analyses to tokens

One could use the distribution G above to assign analyses to word tokens directly. How-

ever, it is unlikely to perform well, due to the independence assumptions underlying

the factorisation between stem and suffix. These are too strong: clearly not all stems

take all suffixes with equal probability, even if they are in the same cluster (for exam-

ple, people is much less likely to appear with a -s suffix than human, cf. also Yarowsky

and Wicentowski’s (2000) sing and singed example). Additionally, we know empiri-

cally that most words of the same type should receive the same morphological analysis.

Having to regenerate this analysis multiple times is undesirable.

To ameliorate these problems, a Pitman-Yor process (PYP) (Pitman and Yor, 1997)

is added over the base distribution. This stochastic process allows for the production

of power-law distributions like those found in natural language.

The Pitman-Yor process can be described using the Chinese Restaurant metaphor

(Ishwaran and James, 2003), in which customers are sequentially seated at a restaurant

with an infinite number of tables, each of which serves a single dish (but the same

dish may be served at multiple tables). The seating arrangement plus the dishes defines

a clustering of the customers, with each set of customers at a table belonging to the

cluster labelled by the dish at that table. (See (Jordan, 2005; Teh, 2006; Orbanz and

Teh, 2011) for introductions to the Pitman-Yor process and the closely related Dirichlet

Process.)

To extend this metaphor to the morphology model, we designate the word tokens

as customers being seated at tables in the restaurant. The morphological analyses take

the role of the dishes being served at the tables within the restaurant.

Token ‘customers’ are indexed by i; wi is the i’th word, assigned to table k, which

is ‘serving’ the analysis lk. We use indicator variables zi to track the table at which i is

seated, i.e. zi = k. More than one token can be assigned to the same table k, resulting

in these tokens sharing the same analysis lk (obviously these tokens have to be of the

same word type, in order to share a segmentation). Note that analyses lk and lk′ are

equivalent if they share the same cluster and segmentation.

When a word token customer enters the restaurant, it may either be seated at an

occupied table serving analysis lk, with probability proportionate to the number of

customers seated at that table, or it may be assigned to a new table, which is then given

an analysis drawn from the underlying base distribution G. Formally, the Pitman-Yor

process is parameterised as PYP(a,b,G), where 0≤ a < 1 and b >−a. Each token is
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assigned in sequence to a table zi = k. After i tokens have been seated, creating a set of

table assignments zzz, token i+1 is assigned a table k with probability:

P(zi+1 = k|zzz) =


nk−a
i+b if 1 <= k <= K, i.e. if k is already occupied

Ka+b
i+b if k > K, i.e. if k is a new table

(5.2)

where K is the total number of occupied tables before i + 1 is seated and nk is the

number of customers seated at table k.

As the above equation shows, a popular table (where nk is large) is more likely to

attract more customers, especially when a is small: this results in the ‘rich get richer’

dynamics characterising the PYP and DP. Conversely, when a is large (near 1) cus-

tomers are more likely to be seated at new tables, and increasingly so as K grows. A

large b also increases the likelihood of drawing a new analysis, but usually has less

effect than the a parameter. (Note that when a = 0, b is equivalent to α in a Dirichlet

process: PYP(0,b,G) = DP(b,G).)

Thus, depending on the parametrisation, adding a PYP to the morphology generat-

ing distribution G can achieve the effect of having most tokens of a word type reuse the

same analysis, instead of drawing a new analysis from the base distribution. This leads

to a ‘type’-based analysis, i.e., one in which the base distribution G is used to generate

analyses for only a minority of word tokens, which are then cached and reused by the

PYP. Clusters of tokens thus share the same analysis, in the same way that all tokens

share the same analysis in a word type-based lexicon. However, it is important to note

that the PYP may create more than one such analysis for a single word type.

Goldwater et al. (2006) applied this model to a corpus (not a word list) of verb

forms and found good performance at small and zero values of a (with b = 0). How-

ever, Goldwater (2007) found that when learning the morphology of a phonetically

transcribed child directed speech corpus, the smallest (zero) values of a and b per-

formed poorly: they lead to oversegmentation. For this reason in our experiments we

do not commit to a type-based morphology model (with a = b = 0, which is technically

undefined) and instead experiment with a range of hyperparameters.

5.4 Full Model: Morphology + Tagging

The morphology model on its own is only aware of word-internal patterns — com-

monly occurring suffixes and stems. However, the presence of morphological ambigu-

ity and syncretism (e.g. -s as plural noun or third person singular marker) means that
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these patterns are not always sufficient to distinguish between morphemes. By adding

local context and modelling the syntactic categories of words, we hope to separate

syncretic morphemes.

Separating words into categories has a second potential advantage: if the categories

are of high quality, meaningful patterns such as final -s should become more prominent

than noisy patterns. For example, pairs such as won/wont, run/runt, plan/plant suggest

a -t suffix, but if words are separated according to syntactic category these pairs do not

appear.

In order to incorporate local syntactic content into the morphology model, we com-

bine it with the BHMM used for tagging (see Section 2.3.3). Each syntactic category

is associated with a distinct morphology model, i.e. a separate PYP with a separate

underlying base distribution Gt , generating only the analyses of the words belonging

to that syntactic category. The tokens are generated in sequence, with the tag generated

conditioned on local history (as in the BHMM) and the word token then generated by

the tag-specific morpheme model.

In more detail, the generative process is thus: first a tag t is drawn based on the

transition distribution from the previous two tags (line 5.4 below). Then a morpho-

logical analysis is drawn from the PYP associated with that tag, in the same manner

as in the morphology model: each token is given a table assignment, zi = k, and that

table carries the analysis lk (line 5.5). The concatenation of the stem and suffix of the

analysis produces the observed word wi (line 5.6).

τ(t,t ′) ∼ Dirichlet(α) (5.3)

ti = t|ti−1 = t ′, ti−2 = t ′′,τ ∼ Mult(τ(t ′,t ′′)) (5.4)

zi = k|ti ∼ PYPt(a,b,Gt) (5.5)

wi = lk.stem⊕ lk.suffix (5.6)

The morphology model also generates a latent morphology cluster lk.cluster; we

generally set the number of clusters to 1, removing it as an informative variable from

the model. This results in a single stem and suffix distribution for each tag (i.e., within

each Gt).

The full joint posterior distribution of a sequence of words, tags, and morpheme
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label assignments is:

P(www,ttt,kkk,zzz|αt ,a,b,GGG) = P(ttt|α)P(www,kkk,zzz|ttt,a,b,GGG) (5.7)

=
N

∏
i=2

P(ti|ti−1, ti−2,α)P(zi|ti,kkk,a,b,GGG)P(wi|zi)
T

∏
t=1

Kt

∏
k=1

P(lk|Gt) (5.8)

=
T

∏
t,t ′,t ′′=1

Γ(ntt ′t ′′+α)
Γ(1+α)

Γ(1+T α)
Γ(ntt ′+T α)

(5.9)

×
T

∏
t=1

Γ(1+b)
Γ(nt +b)

Kt

∏
k=1

(ka+b)
Γ(nk−a)
Γ(1−a)

Gt(lk)
N

∏
i=2

P(wi|zi) (5.10)

Note that P(wi|zi = k) = 1 if wi = sk⊕ fk and 0 otherwise. The first factor in 5.9 is

the transition between tags; the remainder in 5.10 are the factors for the tag-specific

Pitman-Yor assignments zzz to tables kkk with labels lll (compare to Goldwater (2007),

Equation 4.3). Gt is calculated using Equation 5.11 below. We add two dummy tokens

at the start, end, and between sentences to pad the context history.

Note that all tag-specific morphology models share the same Pitman-Yor parame-

ters a and b. This is not strictly necessary, but keeping a and b constant between all tags

results in fewer hyperparameters to set or estimate. This constraint could be relaxed in

future work.

The posterior distribution of the tag-specific base distribution Gt is exactly the same

as in the original morphology model, only split between tags. It is a mixture of Dirichlet

multinomial posteriors representing the cluster c, stem s, and suffix f distributions,

with respective κ, σ, and φ hyperparameters (see Section 2.3.3):

Gt(l = (c,s, f )) =
mtc +κ

mt +Cκ
× mtcs +σ

mtc +Sσ
×

mtc f +φ

mtc +Fφ
(5.11)

where mt is the number of tables in the PYP associated with the tag t that share the

cluster/stem/suffix in question.

5.4.1 Notes on the Model

5.4.1.1 Non-Parametrics

Although the key component of the morphology model is non-parametric, other com-

ponents of the model (transitions, base distributions) use finite distributions which re-

quire specifying the size of e.g. the tagset or the number of possible stems in advance.

We leave extending the model to include more non-parametric components for fu-

ture work. For example, replacing e.g. the transition component with a infinite HMM
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(Gael et al., 2009) would allow us to avoid specifying a fixed number of tags. How-

ever, inference, which is already non-trivial in the standard iHMM (Gael et al., 2008),

would become significantly more complex when we add the PYP morphology emis-

sions. Blunsom and Cohn (2011) present an approximation for a significantly more

straightforward hierarchical PYP model with a fixed number of tags; these ideas could

potentially be used in future work to create a non-parametric version of this model.

5.4.1.2 Hierarchical PYPs and Shared Stems

We use separate PYPs for each tag without a common backoff PYP, i.e. not a hier-

archical model. This is justified by the tag-specificity of the suffix distribution: since

suffixes apply to only a single syntactic category, there is no reason to have a hierarchi-

cal model ‘top level’ with a shared suffix distribution. It is unclear what, for example,

having a -ly suffix common to all syntactic categories would achieve, other than cause

confusion.

The motivation behind split tag-specific stem distributions is less clear. Arguably,

derivational morphology implies that the same stem quick- should be used to gener-

ate the adverb quick-ly as well as the adjective quick. Preliminary experiments with a

single stem distribution shared between all tags did not yield good results. A hierarchi-

cal stem distribution, with both a general and tag-specific component, might perform

better; we leave this idea to future work.

5.4.1.3 Morphological Clusters as Tags

We make a distinction between the morphological clusters responsible for generating

stems and suffixes and the syntactic tags used in the transition distributions.

A different possible model structure would consider the clusters in the base dis-

tribution G to be syntactic categories, and try to add local context information into

the morphology model, rather than having a separate tagging component. However,

it becomes very difficult to integrate transitions (or other forms of context informa-

tion) into such a model. Essentially, the difficulty is in integrating token components

of the model (tag sequence, table assignment sequence) with the ‘type’ components

(word and morphological analyses derived from the table label, which may be shared

by many tokens seated at the same table). This may be avoided by stipulating that the

token components also follow type constraints (i.e. that each word type only have a

single possible tag), in the vein of Lee et al. (2011b) and Sirts and Alumäe (2012).
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However, we wish to retain an explicitly token-based model and thus do not try these

variants.

5.5 Inference

We use Gibbs sampling for inference over the three sets of discrete variables: tags ttt,

table assignments zzz, and labels/analyses lll. Note that two of these sets of variables,

tags and table assignments, are associated with the word tokens, whereas the labels

are associated with the set of tables (sat at by the tokens). The sampler has two stages:

Firstly the token variables — tags and table assignments — are resampled, based on the

current values of all other variables. Secondly, the labels on the tables are resampled.

5.5.1 Initialization

First, the tags are initialized uniformly at random from the set of possible tags using

the same initialization process as in the BHMM.

Secondly, for each token, a segmentation and a morphological cluster is chosen,

also uniformly at random. (We generally disallow segmentations with a null stem.) The

combination of these gives us an analysis (segmentation and cluster). If this analysis is

new within the tag’s morphological PYP, a new table is created for the token. If there

are existing tables with this analysis, the table assignment is sampled from amongst

the existing tables and a possible new table.

An alternate initialization procedure would be to initialize using the table assign-

ment sampling procedure: Given a tag, sample a table for each token, which then re-

ceives the label on that table. This method has the disadvantage that it will be prone

to assign most subsequent words to the same initial table, meaning that most tokens of

a word will be initialised with the same segmentation. This creates a local maximum

that is later difficult to mix out of.

5.5.2 Tags

As in the BHMM, tags are sampled using a collapsed Gibbs sampler (see Sec-

tion 2.3.5). Tags are sampled from the product of posteriors of the transition and

emission distributions. The transition distribution is a Dirichlet-multinomial, identi-

cal to the BHMM. However, the emission distribution is no longer a simple Dirichlet-

multinomial, since it is a tag-specific PYP. Instead, calculating the marginal probability
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of the word within the PYP involves summing over the probability of all the existing

tables in the given PYP that emit the correct word (summing over all segmentations

and clusterings), plus the probability of a new table being created, which also includes

the probability of the new analysis from Gt (which itself is a sum over the probability

of all possible segmentations and clusterings as labels).

More formally, tags are sampled from the following distribution:

p(ti = t|wi, ttt\i,kkk,α) = p(t|ti−1, ti−2,α)× p(wi|t,kkk) (5.12)

= p(t|ti−1, ti−2,α)× (p(knew|t,w)+ ∑
k s.t. lk=wi

p(k|t,w)) (5.13)

We omit for clarity the transition terms required to capture the overlap in contexts.

They are the same as in the BHMM (see Equation 2.34).

5.5.3 Table Assignments

Table assignments are sampled from the Pitman-Yor distribution over all tables with

labels compatible with wi, plus a possible new table. A new assignment zi is drawn

according to:

p(zi = k|ti = t,www,zzz\i,a,b) =


nk−a
nt+b if 1 <= k <= Kt

Kta+b
nt+b Gt(lk) if k > Kt

(5.14)

where nk is the number of words assigned to table k and Kt is the total number of tables

produced by the tag t’s PYP. (Both of these are sufficient statistics based on zzz\i, which

we omit from the equations in the interest of legibility.)

Gt(lk) is calculated by summing over the probability of all possible table labels for

a new table for word wi. If a new table is drawn (k > Kti) then we also sample a new

label using the table label sampling distribution (see Equation 5.15 below).

5.5.4 Table Labels

After all tags and table assignments have been sampled, the label on each table, repre-

senting the morphological analysis for the words seated at that table, is resampled. It

does not condition on token counts; rather, it is a mixture of three posterior Dirichlet-

multinomials that track the counts of the number of tables m produced by the generator.

Table labels are sampled as follows:

p(lk = (c,s, f )|l\k,κ,σ,φ) =
m\kt,c +κ

m\kt +Kκ

×
m\kt,c,s +σ

m\kt,c +Sσ

×
m\kt,c, f +σ

m\kt,c +Fφ

(5.15)
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where m refers to the number of tables, not tokens, that share a component (cluster,

stem, suffix) of the analysis lk (see Equation 5.11).

5.6 Evaluation

Our model infers both tags and morphological segmentations, and we evaluate its per-

formance on both. Tags are evaluated as in the BHMM, using VM; see Section 2.4

for a complete discussion on tag evaluation and VM in particular. Note that VM is an

evaluation measure for clusters; it is not specific to syntactic categories. In this chapter,

we will also use it for morphological evaluation.

Despite the fact that our model’s principal task in terms of morphological analysis

is setting the correct segmentation point, we do not evaluate the segmentation point

itself. The corpus we use, from the CHILDES corpora collection, includes morpholog-

ical annotations that do not allow a gold segmentation point to be determined. Each

word is annotated as a stem and a label encoding the affix type. For example, run-

ning is annotated as run-PROG. This scheme is agnostic about the segmentation point,

i.e., whether it should placed so as to have a consistent run stem (but a rare -ning suf-

fix), or whether to emphasise a consistent -ing gerund suffix. (See Goldsmith (2006)

for a general discussion on the difficulty of setting gold segmentation points.)

We thus evaluate the model output in terms of clusters: to what extent do the sets

of words that share a suffix proposed by the model correspond to the sets of words that

share a gold standard suffix? When evaluating, we also take into account the word’s

cluster or tag: we distinguish between the -s suffix in tag 4 and the -s suffix in tag 9.

In the best case, one might correspond to the plural suffix (gold -PL) and the other to

third person singular (-3S), so it is important to keep them distinct. On the other hand,

if the model has created multiple noun clusters, this will hurt suffix VM performance

as well as tag VM performance. We do not separate null suffixes between tags, to avoid

inserting too much tag evaluation into our morphological evaluation measure.

Note that the abstract gold suffixes will create clusters of words that the segmen-

tation model might be unable to cluster together, if an abstract suffix corresponds to a

set of surface suffixes that do not share strings. For example, both dolly and doggie are

annotated with the -DIM suffix (doll-DIM and dog-DIM), but these words cannot share

a suffix within our model. Ceiling suffix VM performance for the model is thus below

100.

We also investigated evaluating the clusters created by stems. However, in the lan-
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guages we ran experiments on (English and Spanish), most word tokens have a null

suffix. In this case, the stem clusters become trivial, as long as the model does not ex-

orbitantly oversegment. We did not see this behaviour — instead, stem VM measures

were near ceiling and hence uninformative, and we do not report them.

As an alternate method of evaluation we use EMMA (Evaluation Metric for Mor-

phological Analysis) (Spiegler and Monson, 2010). This metric has been designed for

the Morphochallenge competition (Kurimo et al., 2010), which evaluates word lists

rather than corpora data. EMMA uses an integer linear program to compute the opti-

mal mapping between gold standard morphemes and the morphemes proposed by the

model. Unlike the VM metric above, EMMA evaluates word types, instead of tokens.

It allows for multiple possible analyses for each word type but does not take their fre-

quency into account in the evaluation. It captures syncretism by separating clusters of

identical morphemes by the gold standard disambiguated morphemes, but also expects

allomorphs to be clustered together, which our model cannot do, since we cluster based

on surface strings. When evaluating using EMMA, we also add tag or cluster labels to

the stems and suffixes found by the models, as with suffix VM.

5.7 Data

For English, we use the Eve dataset from CHILDES (MacWhinney, 2000) (see Sec-

tion 3.1 for details). As before, we remove all child utterances, leaving only adult

utterances, which are almost uniformly CDS. These corpora have annotated POS tags;

as before we collapse the full set to a coarser set of 13 tags. The coarser tags gather

e.g. verbs together, rather than separating past and present tense verbs. Participles and

gerunds are in a separate category from verbs. This may not correspond with optimal

clustering in the morphology model, since many gerunds and verbs will share a com-

mon stem (eating, eats), leading to pressure to put them in the same tag (sharing the

same morphology model); on the other hand there will be counter-pressure to separate

them due to distinct transitions patterns for gerunds and verbs.

These corpora have also been annotated at the morphology level: each word is

annotated with its ‘base’ form plus a code representing the affix, as described earlier

(e.g., runs is annotated as run-3S, plums as plum-PL). We ignore irregular/non-affixing

forms annotated with & (e.g. was, annotated as be&PAST) and use only hyphen-

separated suffixes to evaluate. Where there are multiple suffixes concatenated together

(e.g.dog-DIM-PL) we treat this as a single suffix (-DIM-PL) for purposes of evaluation.
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The English corpus has 17 gold suffix types.

We also test on the Spanish Ornat CDS corpus from CHILDES (Ornat, 1994), first

presented in Section 3.5.1, that has been annotated with POS tags and morphological

analyses in the same way as the English corpora. The Spanish data has significantly

richer morphology, with 83 gold suffixes. Verb suffixes in particular also have multiple

surface suffixes (allomorphs) associated with each gold suffix, corresponding to the

different conjugations (e.g. -INF has -ar, -er, and -ir surface forms).

5.8 Baselines and Oracle Models

We test a variety of models to examine the effect of adding local context and mor-

phemic representations to the model.

MORPHTAG is the full model as described in Section 5.3.2.

MORPHCLUSTERS refers to the original morphology-only, single PYP model of

Goldwater et al. (2006), without the BHMM. This model separates words into clusters

based on morphological patterns but does not use local syntactic contexts. We set the

number of clusters to be equal to the number of tags, and we measure tag performance

using these cluster identities. (Note that these clusters were not intended originally to

represent syntactic parts of speech; we use this as a baseline to investigate the infor-

mativeness of morphology alone.)

MORPHTAGNOTRANS is the full morphology+tagging model but without tran-

sitions between tag tokens. Tag membership is estimated using word-internal patterns

only, as in the MORPHCLUSTERS. Comparing the performance of MORPHTAG against

both of these baseline models thus evaluates the effect of adding local syntactic con-

text to MORPHTAG. The MORPHTAGNOTRANS model also demonstrates the effect of

splitting the original MORPHCLUSTERS model into multiple independent PYPs. We

evaluate tagging performance using the tag tokens; the number of clusters available to

the morphological analyses is set to 1 (as it is in all the subsequent models), making

this variable uninformative.

MORPHTAGNOSEG is a model in which the only available suffix is the null suffix;

thus segmentations are trivial and only tags (and table assignments) are inferred. This

model is approximately equal to the BHMM but with the addition of a PYP within the

emission distribution. We also evaluate against tags found by the BHMM.

MORPHTAGTRUETAGS is the full model, including transitions between tag to-

kens, but all tags are fixed to their gold values. This gives us oracle results for the
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morphology+tagging model. (Due to the annotation scheme used in CHILDES, oracle

morphological segmentations are unavailable, so we were unable to test a model with

gold morphology and inferred tags.)

In all models and all experiments, the variable evaluated against the gold tag (usu-

ally the tag variable except in the MORPHCLUSTERS model) is set to have the same

number of possible values as the number of gold tags in the data. Except for the

MORPHCLUSTERS, all models have the number of morphological clusters set to 1;

in MORPHCLUSTERS the number of clusters is set to the number of gold tags.

5.9 English Experiments

Our English experiments are all conducted using the Eve corpus from CHILDES, de-

scribed earlier. We train all models using the same train/development/test split de-

scribed in Section 3.3.1. In this case, we use the development data to evaluate the best

values for the a and b hyperparameters in the Pitman-Yor process in the morphology

model. The best hyperparameter setting found for the development data is then tested

on test data.

The settings for a we tested are biased towards small values, since Goldwater

(2007) showed that values closer towards a = 1 tend to undersegment (or rather, tend

to place all probability mass on the null suffix). We test a = 0.00001,0.1,0.3,0.5 and

0.9 and b = 0,0.0001,0.01,0.1,1,10,30,100,300. The b hyperparameter generally has

less effect on model performance. Very large values will lead to more tables in the PYP,

similar to larger a values.

There are a number of other hyperparameters in the model which we set to fixed

values. The transition hyperparameter α in the BHMM is set to 0.1 in all models.

We set the hyperparameters within the morphology base distribution G to the follow-

ing values (see Equation 5.11: cluster hyperparameter κ = 0.5, stems hyperparameter

σ = 0.001, suffixes hyperparameter φ = 0.001. This encourages sparsity in the affix

distributions and a more uniform distribution over clusters. The number of possible

stems and suffixes is given by the dataset: in the train+dev set in Eve, the number of

possible stems (i.e. unique prefix strings) is 5351 and the number of possible suffixes

(unique suffix strings) is 3727. In the train+dev sets these are 5339 and 3708, respec-

tively.

Sampling is run for 5000 iterations. Inspection of the posterior log-likelihood in-

dicates that the models converge after about 1000 iterations. We run inference over
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Figure 5.1: Eve Development Hyperparameter Settings: Tag VM

For each setting of a, results for all settings of increasing values of b follow.

all models ten times and report the average performance. We use the non-parametric

Wilcoxon rank-sum test for significance testing and a significance level of ρ < 0.05.

5.9.1 Tags

Tagging results on the English development set evaluated using VM are shown in Fig-

ure 5.1 for a variety of a and b settings. We also show BHMM performance, which

does not vary with a and b since it does not include a PYP.

We see a dramatic difference in the quality of tag clusters found by models with lo-

cal context (MORPHTAG, MORPHTAGNOSEG, BHMM) and models clustering words

using only morphological information (MORPHCLUSTERS, MORPHTAGNOTRANS).

Both of these latter models lack local context in the form of transitions and result in bad

clusters. There is no significant difference between the clusters found by the original

morphology model, with a single PYP with multiple clusters, and the full model with-
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out transitions. (The random clusters baseline tag VM is 0.2: the morphology models

are learning clusters that are significantly better than random.)

Adding the PYP to the emission distribution allows the MORPHTAG and

MORPHTAGNOSEG models to improve over the BHMM. However, the morphological

analysis in MORPHTAG does not seem to help, since the baseline MORPHTAGNOSEG

model without (informative) segmentations performs about as well as the full model.

The difference is due to the Pitman-Yor process modelling the data statistics better than

the Dirichlet-multinomial used in the BHMM. For some hyperparameter settings —

at a = 0.1 and a = 0.3 — the full morphology model improves over the model without

segmentations, but only very slightly.

These results are consistent with the similar PYP-HMM model proposed for un-

supervised part of speech tagging by Blunsom and Cohn (2011). They use a character

level language model in the emission distribution to capture morphological cues (but

they do not include an explicit model of morphology). They find that including this

language model leads to only small gains in English (on a newswire corpus that has

a greater variety of morphological patterns than CDS), but much larger gains in other

languages with richer morphology, notably Arabic and Spanish.

In general, we see that tagging performance is fairly stable over most values of a

and b, except when a is set to very small values (and even then, a large b can compen-

sate in terms of smoothing; this is close to a DP, where a = 0). At small a settings, there

is increased pressure within the morphology model to put all tokens of a wordtype at

the same table; this will make it very difficult to resample a large number of tokens

from one tag to a better tag, since they will prefer to remain at a popular table even in

a suboptimal tag.

5.9.2 Morphology

Before turning to the evaluation measures, Figure 5.2 shows statistics about the suffixes

found by the models. Missing Suffixes are words that have a gold non-null suffix but are

assigned a null suffix by the model; Extra Suffixes are words that have a null gold suffix

but are assigned a non-null suffix by the model. Correct Null Suffixes are word with

gold null suffixes that have been correctly assigned a null suffix by the model. Finally,

Model Non-Null Suffixes shows how many words have been assigned a non-null suffix

by the model, whether or not these are correct. (There is no good way of deciding what

is a correct non-null suffix given the gold annotations.) Note that these are token, not
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Figure 5.2: Eve Development Hyperparameter Settings: Suffix Counts

The x-axis shows all combinations of settings of the a = 0.00001, 0.1, 0.3, 0.5, 0.9 and

b = 0,0.0001, 0.01, 0.1,1, 10, 30, 100, 300 hyperparameters.
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type, counts, from the development set only (remember the models are inferred using

train+development data).

These plots allow us to identify some general trends. At small a, words are more

likely to be reused from the cached tables, allowing the morphology generator Gt to

put probability mass on suffixes that appear infrequently in terms of token counts but

sufficiently often when using type counts. When a is larger, word tokens will be more

likely to be directly generated from Gt . This leads to the null suffix having very high

probability in the generator, since most word tokens do not share a suffix in English

(95% of words in the development set have a gold null suffix).

This effect is most clearly visible for MORPHCLUSTERS. MORPHCLUSTERS pro-

poses many (non-null) suffixes at small values of a, leading to oversegmentation; this

declines at larger a, leading to greater numbers of missing suffixes. Different values of

b seem no clear effect except when large b and large a lead to oversmoothing, which

results in fewer non-null suffixes being proposed. (To a large extent, the oversegmenta-

tion occurring in MORPHCLUSTERS is due to the model splitting is to reuse a popular

-s suffix — the sames suffix is used to generate crayon.s, say.s, a.s.)

Splitting the words into separate morphological processes dampens the over-

segmentation problem: all other models propose far fewer non-null suffixes than

MORPHCLUSTERS. The quality of the clusters has a clear effect on the number of

morphemes proposed. Oracle clustering, in MORPHTAGTRUETAGS, leads to fairly

consistent morphologies over all hyperparameter settings, apart from a slight decline

at a = 0.9.

However, when the tags are unstable (as when they are being inferred),

hyperparameters become more influential. The poor tag clustering found by

MORPHTAGNOTRANS also leads to poor morphological segmentation, with severe

undersegmentation, since within each cluster, there is not sufficient evidence for a

shared sufix other than the null sufix. The fact that MORPHCLUSTERS does not suffer

from this problem is due to the difference in inference: during table label resampling in

the other models (see Section 5.5.4), an analysis can change clusters but not tags, since

tags depend on token contexts. This means that MORPHCLUSTERS can more easily

cluster together words with a shared suffix, by resampling tags as well as suffixes at

this sampling step. (Its poor Tag VM scores suggests that it still clusters all other words

fairly randomly.)

The full MORPHTAG models also suffer from poor tag clusters at very small a

settings, leading to the same pattern of undersegmentation. However, at moderate a,
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Figure 5.3: Eve Development Hyperparameter Settings: Suffix VM

MORPHTAG proposes more and better non-null suffixes than MORPHTAGNOTRANS,

based on better word clusters found using local syntactic context information.

5.9.2.1 Suffix VM

We use Suffix VM to evaluate morphological segmentation performance, shown in Fig-

ure 5.3. Suffix VM varies more between hyperparameter settings than Tag VM, which

is to be expected, given that the hyperparameters principally affect the morphological

component of the model.

The MORPHTAGTRUETAGS models clearly outperform all other models, making

use of correct tag information to find better morphological segmentations. The mod-

els with less informative word clusters, i.e. those without context information in the

form of transition distributions, MORPHCLUSTERS and MORPHTAGNOTRANS, sig-

nificantly underperform the other models. MORPHTAGNOSEG has a zero score due

to the particularities of VM: by putting all words into the same morphological null-

suffix cluster, it earns a homogenity (VM’s precision analogue) score of zero, since
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Figure 5.4: Eve Development Hyperparameter Settings: EMMA

the entropy over gold classes within that cluster matches the entropy over gold classes

in general. The full MORPHTAG models clearly outperform the models without local

syntactic constraints, by approximately ten VM points on average.

These results partially validate our hypothesis that modelling the interaction be-

tween syntactic clusters based on local contexts and morphological cues would benefit

both tasks mutually. Given the tagging results, in English this interaction seems to

mainly benefit the morphology segmentation task rather than tagging.

We note that the variation in suffix VM over multiple runs is relatively high (the

standard deviation over ten runs is on the order of 5-10 points, whereas 0-2 points is

more common for tag VM). Examining the log posteriors over iterations indicates that

these models are each individually converging, suggesting that the variation is due to a

search space with multiple local maxima, resulting in different suffixes being found.

5.9.2.2 EMMA

Figure 5.4 shows results for all models using the EMMA evaluation measure.
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We first note the extremely small dynamic range: the MORPHTAGNOSEG base-

line already performs very near ceiling (100) for a baseline without any morphology.

This is due to the relative infrequency of words with non-null suffixes (roughly 15% of

word types in the development set have a non-null suffix). EMMA performs a one-

to-one matching of morpheme types in the gold and prediction lexicons when the

matching is unambiguous, and adds partial weights in ambiguous cases. In the case of

MORPHTAGNOSEG, the one-to-one matching will correctly match the unsegmented

words with all gold unsegmented words, which then leads to high baseline perfor-

mance. In the best case, when both a and b are small, this is at 88.

What causes the decrease in performance of MORPHTAGNOSEG at larger a and

b? Recall that we annotate suffixes with tag or cluster membership. At small a and

b, tagging performance for the models with transitions (MORPHTAGNOSEG and

MORPHTAG) is poor. This is due to poor mixing — new tables are unlikely to be

created, so all tokens get stuck at a same table, whether or not it is in an appropriate

tag restaurant. This also leads to little tag ambiguity: most, if not all, word tokens of a

word type are assigned to the same tag. When a and b become larger, tokens mix more,

and often there are tokens of a word type within multiple tags; usually the majority are

in one tag, with only a few outlier tokens. Since EMMA treats words in different tags

as different types, and does not take frequencies into account, a single token in a sec-

ond tag will mean that e.g. tea becomes ambiguous between tea-TAG9 and tea-TAG7,

and will cause a half point precision penalty score.

In aggregate, this tag ambiguity is the cause of the low scores for all models with

transition distributions (MORPHTAG and MORPHTAGNOSEG). The transition distri-

butions add pressure to put tokens in multiple tags, to accommodate the variation of

contexts. Models without context (or with stable tags, in MORPHTAGTRUETAGS) do

not suffer from this and consequently have extremely high performance (even when

not segmenting particularly well according to Suffix VM).

If we do not add tag membership annotations, the ambiguity is removed and

MORPHTAG scores are similar to MORPHCLUSTERS. But MORPHTAGNOSEG per-

forms just as well, simply by matching stems with very high precision. This leads us to

discount EMMA as a metric able to capture the characteristics of model performance

that we are interested in.

We note that the EMMA figures reported in Spiegler and Monson (2010) are sig-

nificantly lower; these were results from a variety of morphological induction sys-

tems trained on data from the MorphoChallenge competition. The word lists used are
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Tag VM (s.d.) Suffix VM (s.d.) EMMA (s.d.)

MORPHTAG 59.44 (2.07) 50.39 (7.95) 85.50 (0.50)

MORPHCLUSTERS 23.93 (1.37) 29.24 (11.47) 91.78 (0.33)

MORPHTAGNOTRANS 23.27 (1.67) 37.26 (5.80) 91.77 (0.32)

MORPHTAGNOSEG 59.53 (1.59) 0.00 (0.00) 84.31 (0.41)

MORPHTAGTRUETAGS 100.00 (0.00) 46.50 (6.50) 90.75 (0.04)

BHMM 56.08 (2.20) - -

Table 5.1: Eve Test Results

Tag VM (s.d.) Suffix VM (s.d.)

MORPHTAG 59.06 (1.93) 41.93 (10.04)

MORPHCLUSTERS 22.44 (1.04) 27.97 (11.89)

MORPHTAGNOTRANS 21.24 (1.49) 27.23 (3.96)

MORPHTAGNOSEG 59.43 (1.68) 0.00 (0.00)

MORPHTAGTRUETAGS 100.00 (0.00) 42.52 (5.20)

BHMM 56.17 (2.30) -

Table 5.2: Eve Train+Test Results

significantly more complex than CDS and contain far fewer null-suffixed words. In

that setting, EMMA may be a viable metric (and is convincingly better than the Mor-

phoChallenge metric), but it falls short when used on simpler data, like CDS tokens.

5.9.3 Test Results

To evaluate the test set, we chose the best hyperparameter settings from our develop-

ment evaluation, as measured by Suffix VM. We use Suffix VM because it has the

greatest dynamic range over the different hyperparameter settings. The best Suffix VM

performance on the development set was obtained using a hyperparameter setting of

a = 0.3 and b = 10.

Table 5.2 shows results on the combined train and test set using these settings.

(See Table 5.1 for results over the test set alone.) We were not able to run the EMMA

evaluation script over the full train and test set, due to out-of-memory errors.

In general, performance patterns follow those found on the development data. Tag
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VM performance with inferred morphology in the full MORPHTAG models is not

statistically significant from performance without morphology (MORPHTAGNOSEG);

there does not seem to be much of a gain in English to adding morphology to a part

of speech tagger, at least not with CDS data and this model structure. However, both

MORPHTAG and MORPHTAGNOSEG significantly outperform the BHMM baseline.

On Suffix VM, we find that the full MORPHTAG models match the performance

of MORPHTAGTRUETAGS. (The difference is statistically insignificant in both test

and train+test evaluations.) As in the results from the development set, MORPHTAG

outperforms the models without tags informed by local context by a large margin.

Test performance on EMMA is similar to dev performance, except in this

case MORPHCLUSTERS and MORPHTAGNOTRANS manage to outperform even

MORPHTAGTRUETAGS. MORPHTAG and MORPHTAGNOSEG are still heavily pe-

nalised for high levels of tag ambiguity.

5.10 Spanish Experiments

Experiments in Spanish are run on the Ornat corpus with the same train/dev/test split

as in Chapter 3. We experiment with hyperparameters values as in the English experi-

ments.

The Ornat corpus has fewer words than the Eve corpus (60084 vs. 89058 in

train+dev), but more word types (3044 vs. 1964). In the train+dev data, there are 8683

possible stems and 6617 possible suffixes; for train+test those figures are 8649 and

6598. Note that these numbers are nearly twice as large as for English, especially in

terms of word ending variability.

We experimented with the same values for the a hyperparameter as in the English

experiments and used fewer values of b: 0, 0.0001, 0.01, 0.1, 1, 10, 100.

5.10.1 Tags

Figure 5.5 shows Tag VM results on the development set for a variety of hyperparam-

eters. Unlike in English, there is a clear difference between tagging performance in the

MORPHTAG and MORPHTAGNOSEG models: adding morphology improves tagging

over the baseline without morphology. This difference is largest at moderate a values

(a = 0.1 and a = 0.5); at larger a values, when the morphology model proposes more

null suffixes, the difference disappears.
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Figure 5.5: Ornat Development Hyperparameter Settings: Tag VM
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As in English, including local contexts in the form of transition distributions is

essential for accurate clusters; both MORPHCLUSTERS and MORPHTAGNOTRANS

perform poorly. The more informative and frequent suffix patterns found in the Spanish

data seem to give MORPHCLUSTERS an advantage over MORPHTAGNOTRANS that

was not visible in English.

Interestingly, the BHMM baseline outperforms the MORPHTAGNOSEG model

with PYP, except at large a where they are nearly equivalent models. At this set-

ting, almost all words are generated from the base distribution’s stem Dirichlet-

multinomial, rather than from cached values. The difference between BHMM and

MORPHTAGNOSEG performance in English and Spanish is probably due to fixed hy-

perparameter settings (i.e, α,β,κ,σ,φ); we did not have time to test these settings ex-

tensively.

5.10.2 Morphology

Plots showing counts of the suffixes found by the models are shown in Figure 5.6.

There are far more words with gold non-null suffixes in this dataset, but neverthe-

less we see the same general patterns as in English: MORPHCLUSTERS proposes

more non-null suffixes than MORPHTAG, except at a = 0.9. Fewer of these suffixes

are incorrect: in Spanish, the patterns that MORPHCLUSTERS finds are more likely

to correspond to true suffixes rather than coincidental patterns. Also in this vein,

MORPHTAGTRUETAGS finds far more non-null suffixes than any other model, and

most of these suffixes are correct. As in English, correct tag information leads to more

reliable discovery of morphemes.

A note about the annotation of morphology in Spanish: The gold standard is con-

structed in such a way as to make many gold morpheme clusters impossible to find

through segmentation. Verbs with little suffixation (third person singular present) are

annotated as having a -3S&PRES suffix, even when the surface form is the same as the

stem (e.g. gusta is annotated as gusta-3S&PRES). Unless the model makes the question-

able, non-gold decision to represent the stem as gust-, this will lead to large numbers

of missing suffixes, which is indeed what Fig. 5.6 shows.

Another potential problem is that noun affixes (such as plural) are labelled with

gender (-PL&MASC, -PL&FEM). Gender is often signalled with -a or -o endings, but

if the model finds only the -s suffix common to all nouns, these will be somewhat

arbitrarily grouped between two gold categories.
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Figure 5.6: Ornat Development Hyperparameter Settings: Suffix Counts

The x-axis shows all combinations of settings of the a = 0.00001, 0.1, 0.3, 0.5, 0.9 and

b = 0,0.0001, 0.01, 0.1,1, 10, 100 hyperparameters.
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Figure 5.7: Ornat Development Hyperparameter Settings: Suffix VM

5.10.2.1 Suffix VM

Suffix VM performance is shown in Figure 5.7. Unlike English, there is no clear ad-

vantage for the MORPHTAG models over MORPHCLUSTERS. Despite the fact that

MORPHTAG finds better tag clusters, it slightly underperforms in comparison to

MORPHCLUSTERS. At small a, MORPHTAG suffers from poor tag clusters leading

to undersegmentation; at a = 0.9, MORPHCLUSTERS suffers from undersegmentation

due to an overly high probability of null-suffixes.

MORPHTAGTRUETAGS performance drops as a becomes large, due to fewer suf-

fixes being proposed, particularly in the verb category. As more tokens are generated

from the base distribution directly, more weight is placed on the null suffix and infre-

quent suffixes are missed.

The models without transitions, MORPHCLUSTERS and MORPHTAGNOTRANS

find more stable segmentations in Spanish than in English: Suffix VM performance

varies minimally with b, and is surprisingly stable over a large range of a. A nearly
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Figure 5.8: Ornat Development Hyperparameter Settings: EMMA

identical (incomplete) set of verb suffixes always found; the only other reliable suf-

fix found is -s, which appears in many different clusters. The suffixes proposed by

MORPHTAG are very similar. Evidently word-internal patterns are sufficient for iden-

tification of morphemes in Spanish.

5.10.2.2 EMMA

EMMA scores on Spanish, shown in Figure 5.8, are consistently significantly lower

than in English, reflecting the higher amounts of suffixation, as well as the diffi-

culty of capturing the annotation, discussed above. The MORPHTAGNOSEG base-

line still scores fairly highly for a supposedly non-competitive baseline. As in En-

glish, we see the models with the least amount of tag ambiguity score highest, with

MORPHCLUSTERS still clearly outperforming the other models without gold tags.
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Tag VM (s.d.) Suffix VM (s.d.) EMMA (s.d.)

MORPHTAG 46.71 (2.66) 36.96 (2.93) 68.56 (1.79)

MORPHCLUSTERS 22.77 (3.07) 41.16 (1.10) 72.93 (0.34)

MORPHTAGNOTRANS 20.12 (1.77) 30.54 (2.31) 69.90 (0.87)

MORPHTAGNOSEG 42.27 (3.72) 0.00 (0.00) 61.84 (0.40)

MORPHTRUETAGS 100.00 (0.00) 65.26 (0.25) 80.22 (0.37)

BHMM 43.10 (2.23) - -

Table 5.3: Ornat Test Results

Tag VM (s.d.) Suffix VM (s.d.)

MORPHTAG 43.35 (2.63) 34.43 (3.15)

MORPHCLUSTERS 20.27 (2.51) 36.92 (1.26)

MORPHTAGNOTRANS 16.80 (1.71) 25.52 (2.77)

MORPHTAGNOSEG 39.55 (3.71) 0.00 (0.00)

MORPHTRUETAGS 100.00 (0.00) 61.39 (0.27)

BHMM 40.76 (1.95) -

Table 5.4: Ornat Train+Test Results

5.10.3 Test Results

We found the best development Suffix VM scores with hyperparameter settings of

a = 0.1 and b = 0.1; we use these settings to evaluate the models on the test data.

On the test evaluation, we find that the MORPHTAG model outperforms both the

MORPHTAGNOSEG and the BHMM baseline models on the tagging task. These dif-

ferences are significant both on the test set alone and on the train+test set (at p < 0.05).

In terms of Suffix VM, MORPHTAG and MORPHCLUSTERS perform equally well

(they are not statistically significantly different on the full test+train set). The differ-

ence in performance between MORPHTAGTRUETAGS and the models with inferred

tags is much larger, and is in line with the much larger number of suffixes, particularly

for verbs, proposed by this model: in a language with many morphemes, having stable

and correct categories allows these morpheme patterns to become more visible.

However, the much higher quality tags in MORPHTAG are not sufficient to garner

any improvement in Suffix VM over MORPHCLUSTERS. The tagging improvement is
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mainly due to better clustering of function words such as determiners and conjunc-

tions, which do not contain morphology. The set of suffixes found by MORPHTAG

and MORPHCLUSTERS are quite similar and contain only the most frequent suffixes

(e.g. -s, -mos, -r, -n).

The EMMA results are also similar to the development set results, with

MORPHCLUSTERS outperforming all other models with inferred tags.

5.11 Conclusion

In this chapter, we have presented a model of joint syntactic category and morphology

induction. This model is token-based, and thus allows for syntactic and morphemic

ambiguity. We tested this model on two languages with different morphological char-

acteristics. On English, a language with relatively little morphology, especially in CDS,

we found that better categorisation of words yielded much better morphology in terms

of suffixes learned. For the most part, this was due to the models with context informa-

tion proposing fewer spurious suffixes, rather than more correct suffixes.

In Spanish, we saw less difference on the morphology task between models with

categories inferred solely from morphemic patterns and models that also used local

syntactic context for categorisation. The Spanish data included far more suffixes, and

the difficulty for the models was primarily in proposing sufficient suffixes (i.e., not

undersegmenting), rather than in proposing too few (oversegmenting).

However, in Spanish we saw an improvement in the tagging task when morphology

information was included. This suggests that English (where there was no improve-

ment when using morphology for tagging) and Spanish make different word-order and

morphology trade-offs. In English, local context provides much of the same informa-

tion (or more) as morphology in terms of determining the correct syntactic category,

but knowing a good estimate of the correct syntactic category is useful for determin-

ing a word’s morphology. In Spanish, a word’s morphology can much more easily

be determined simply by looking at frequent suffixes within a purely morphological

system. On the other hand, word order is freer, so taking into account morphological

information can add to local context in a productive way and improve tagging.
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Conclusion

In this thesis we have investigated the problem of unsupervised syntactic category

acquisition from a number of angles. We now conclude the thesis by summarising our

contributions to this problem, and indicate possible directions for future work.

6.1 Contributions

In Chapter 3, we extended a model of part of speech induction with a novel feature,

sentence type. Previous work on part of speech induction has relied exclusively on very

local contexts (a small number of surrounding words) to model distributional similar-

ity. We argued that this ignores many long-range syntactic processes that have effects

on local contexts, and proposed using sentence type as a feature signalling some of

these effects. We examined the range and frequency of sentence types in child directed

speech. Experimental results have demonstrated infants’ awareness of sentence type

signalled via prosody, further motivating the need to acknowledge the effects of sen-

tence types on local contexts in models of acquisition.

The model structure we used, the BHMM, allowed us to experiment with a number

of ways of adding sentence type to the model. We found that the model in which

sentence type conditioned on transitions, and could thus reflect differences in local

context, outperformed the BHMM without sentence type information.

The model proposed that included sentence types in transitions (BHMM-T) as-

sumed all transitions would differ between sentence types. In Chapter 4 we relaxed

this assumption by adding transition groups, allowing tags to share transition distri-

butions between sentence types. When tags were fixed to their gold values, transition

groups (in small corpora) were useful, and led to higher probability models than either

121
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fully shared or fully split variants. When inferring both tags and transition groups, this

model recreated the fully split model when given sufficient amounts of data, reinforc-

ing the usefulness of the sentence type cue for modelling transitions.

Having examined the effects of high-level syntactic features on syntactic categori-

sation, we then turned to word-internal morphological features in Chapter 5. Taking

advantage of the morphological attributes of a word has long been known to help syn-

tactic categorisation; likewise, morphological segmentation is facilitated by separating

words into syntactic categories. Our model learns both tasks jointly, and is the first to

do so without a type-constraint, enabling it to model natural language ambiguity in a

natural way. We found that the joint model either met or exceeded the performance

of single task models. Differences in patterns of performance between languages were

in accordance with typological variation, with morphology being a more helpful cue

for syntactic categorisation in languages with richer morphology and vice-versa. These

results reinforce the importance of joint learning for language-independent models, as

single task models will not be able to make use of the cues available from the other

task.

The models in this thesis explored, in turn, the effects of increased complexity and

realism in the transition and emission distributions of a BHMM-structured model for

unsupervised part of speech tagging. Our overall results indicate that, while there are

small but significant improvements to be had by a more informative transition dis-

tribution, such as transition distributions with sentence type information, larger im-

provements on tagging performance are obtainable with better emission distributions.

In English, changing the emission distribution from a multinomial to a non-parametric

distribution improved tagging performance and in Spanish we found even larger gains

when the emission distribution included a model of morphology.

6.2 Future Work

6.2.1 Combined Models

A next step would be to add the two successful models together, by adding sentence

type conditioned transitions from the BHMM-T to the joint morphology and tagging

model. This would be straightforward to do, and potentially the increase in descrip-

tiveness of the transitions might translate into better performance on the morphology

task, via the improved categories.
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6.2.2 Hyperparameter and Structure Estimation

The models in this thesis make a number of assumptions, such as hyperparameter set-

tings, that could be learned by more complex hierarchical models incorporating ‘over-

hypotheses’, i.e., hypotheses about the structure of likely hypotheses (Kemp et al.,

2007).

In many cases, this will take the form of hyperparameter estimation. In the

morphology-tagging model, we had a fixed hyperparameter (φ) governing the spar-

sity of suffixes in all tags. Learning the values of this hyperparameter would allow the

model to accommodate different levels of morphological productivity between syn-

tactic categories: function words, for example, typically have little morphology while

content words have more.

Estimating a hyperparameter requires setting a prior over possible values of that

hyperparameter. This prior could incorporate typological information about a particu-

lar language, such as its morphological richness, or be set on the basis of indications

such as word ending variability. Alternatively, this prior could itself be learned, em-

bodying the hypothesis that children learn higher order typological constraints, such

as the relative informativeness of word order and morphology, as they learn the linguis-

tic items themselves (cf. the Competition Model of Bates and MacWhinney (1987)).

Linking the prior over suffixes, which governs morphological productivity, to the tran-

sition prior α in the BHMM would allow the model to incorporate intuitions about

an anti-correlation between word order and morphology (Fedzechkina et al., 2011;

Hengeveld et al., 2004; Moscoso del Prado, 2011).

Inferring the optimal values of the Pitman-Yor process parameters would be infor-

mative about the nature of the statistics involved in learning. The hyperparameters we

found to be best confirmed the need for models to take both type and token frequencies

into account.

Another kind of over-hypothesis involves learning structure (Kemp and Tenen-

baum, 2008). For example, such a model of morphology could infer not only the

morphemes of the language, but also discover the morphological structure of the lan-

guage, i.e., whether it was prefixing or suffixing, agglutinative, with multiple suffixes

per word, or isolating, with hardly any suffixes at all.
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6.2.3 Experimental Implications

In Chapter 3 the BHMM-T incorporated the assumption that language learners can

distinguish between sentence types and use this information to learn sentence-type-

specific word orders. We found that this model outperformed a model without these

assumptions, on some languages. Computational modelling thus demonstrated that an

ideal learner would make use of the sentence type cue; however, behavioural experi-

ments are required before making claims about whether human learners actually do so.

In Section 3.7 we outlined an artificial language learning experiment that could test the

assumptions made by the model on human learners.

A further strand of experimentation could investigate whether the model’s pattern

of results across languages (showing no improvement when incorporating sentence

type on Spanish, for example) matched crosslinguistic behavioural results.

6.2.4 Process Models

As discussed in Chapters 1 and 2, the models in this thesis are on Marr’s (1982) com-

putational level and aim demonstrate what can be learned from the available input,

using the representations and interactions posited by the model.

Modelling the learning process itself would require different inference methods,

since the Gibbs sampling methods used here depend on multiple passes over the data.

Depending on the complexity of the model, it may also require larger datasets, in line

with the thousands of utterances an infant hears every day (Cameron-Faulkner et al.,

2003).

A model of the process of acquisition would also strongly suggest a non-parametric

model of categorisation, that is, a model in which the number of categories is not fixed

in advance (unlike the BHMM, in which the number of states is a fixed parameter).

This is not an absolute requirement for a process model, but a model that gradually

converges to a set of categories, the size of which is not known in advance, is clearly

more desirable from the standpoint of cognitive plausibility.

A process model would also open up the possibility of evaluating the model’s learn-

ing process itself against the acquisition process as observed in children, rather than

against adult gold standard categories.

Models such as Parisien et al. (2008) and Chrupala and Alishahi (2010) are exam-

ples of incremental models of unbounded category acquisition that could be used as

starting points. The infinite HMM (Gael et al., 2009) would be the natural extension
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for the non-parametric versions of the BHMM variants presented here. However, the

question of how to do inference over this model in an online fashion is an open ques-

tion. Particle filters (Doucet and Johansen, 2011) are an applicable method, but ensur-

ing their viability and tractability continues to be difficult (Börschinger and Johnson,

2012).
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