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Abstract 
The wisi gene of fission yeast encodes a Mitogen-Activated Protein 
Kinase Kinase (MAPKK). These enzymes are part of architecturally- and 
functionally- conserved signal transduction modules, which have been 
found in all eukaryotes studied. Several such pathways exist in a single 
cell type and each responds to a different signal, which activates a 
MAPKKK. This kinase phosphorylates and activates a MAPKK, such as 
Wisi, which in turn phosphorylates and activates a MAPK. Activated 
MAPKs phosphorylate transcription factors and other proteins. The 
MAPKKKs upstream of Wisi are Wini and Wis4; the MAPK downstream 
is Styl. 

wisi is not an essential gene, but if deleted (wisTh) it causes defects in 
cell-cycle and mating and gives rise to sensitivity to stresses such as high 
temperature and high osmolarity. The wisi MAPK pathway regulates 
genes such as stell, fbpl, cttl, gpdl, pyp.2 and tpsl and acts 
antagonistically to the cAMP pathway. This thesis consists of work on the 
wisi pathway: the analysis of some of the upstream components and the 
isolation and characterisation of genes that lie downstream of wisi. 

The mcs4, wini and wis4 genes had already been shown to lie upstream 
of wisi. Strains were constructed with different combinations of 
mutations in these genes. fbpl transcription was assayed in these strains. 
An additive effect was seen in wini wis4 double mutants, suggesting that 
wini and wis4 act in parallel. 

To identify functionally-related genes downstream of wisi, the stress 
sensitivity of wislA cells was exploited. A screen for extragenic 
suppressing mutations was carried out. Several hundred heat resistant 
mutants were isolated. Some also suppressed the salt sensitivity and/or 
cell length defect of wis1i. Twelve such sow (for suppressor of wislA) 
mutants, each containing a single suppressing mutation, were analysed 
further. They fell into two linkage groups: sowl (nine strains) and sow2 
(three strains). 

When the sow mutations were crossed into a wisi + background, both 
sowl and sow2 were able to grow at temperatures above the usual range 
for S. pombe. In addition, sowl strains divide at a shorter length than 
wild type, indicating a mitotic advance, and sow2 cells have a slightly 
aberrant morphology. 

To determine whether the sow mutations corresponded to any known 
genes, crosses were carried out between the sow mutants and mutants in 
the following genes: wisi pathway genes (styl, atfi, ppal, ppa2 and ppel), 
cAMP pathway genes (cyrl, pkal), cell cycle regulation genes (cdc2, 
cdc25, weel, cdc13), a heat shock protein (hsp90) gene (swol) and a gene 
required for maintenance of the mitotic cell êycle (pati). No linkage to 
sowl or sow2 was observed, so a mechanism for the genetic interaction 
between the sow mutants and wisi remains unknown. 
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Furthermore, in most cases, no striking genetic interaction was seen in 
the double mutants. However, a genetic interaction was seen with TS 
alleles of cdc13, weel and cdc27: the introduction of a sowl or sow2 
mutation partially rescues the mutant phenotype, which suggests that 
the sow genes may have a role in regulating internal osmolarity. This is 
interesting as the osmotic stabiliser, sorbitol, suppresses the temperature 
sensitivity of a wislA strain, conceivably in the same way as a sow 
mutation. 



Chapter 1: Introduction 

All living organisms are made up of cells. Whether the organism is a 

yeast, consisting of a single cell or a human being with many millions of 

millions of cells, new cells needed for growth and the replacement of old 

cells arise from existing cells dividing to produce two new cells. 

Cells in the laboratory are well fed, sheltered from unpleasant changes in 

environmental conditions; and encouraged to live it up a little. The wild is 

drastically less forgiving: hazards are encountered frequently and 

suddenly and cells have had to evolve stress response mechanisms for 

tolerating myriad dangers so that they can survive even under harsh 

conditions. 

These two processes, stress response and cell cycle control, are crucially 

important for ensuring continued survival. What is more, the processes 

interact. One gene that has a crucial involvement in this cross-talk is 

wisi and its investigation is the subject of this thesis. 

1.1: The Cell Division Cycle. 

1.1.1: The importance of regulating the Cell Cycle. 

Cell division is a complex process. At the end of each cycle a single cell 

must divide to give rise to two cells that can themselves divide and so on. 

To achieve this, the parental cell must contain enough components to 

make two viable daughter cells. The cytoplasm and its contents 

(mitochondria, ribosomes and so on) can be split roughly between the 

daughter cells, but each daughter must inherit exactly one copy of the 

genome in a single intact nucleus. 

It is the role of a process known as the nuclear division cycle to ensure 

this exact duplication of the genetic material and its equal segregation to 

two daughter nuclei. This process would not be an ubiquitous part of 

cellular biology if cells had not evolved a careful regulation mechanism. 

The cell must make sure that it has sufficient resources to complete 

division before it embarks on the process. To ensure this, the nuclear 



division cycle is tightly linked to cell growth (ie accumulation of 

cytoplasm). If this were not the case, cells would gradually increase or 

decrease in size with each successive division which would inevitably lead 

to death. 

In metazoans, the situation is complicated further by the need for cells to 

coordinate growth and division with that of their neighbours (a process 

which is cerntral to development). In these organisms, loss of tight cell 

cycle control, leading to inappropriate cell division gives rise to tumours 

as well as developmental abnormalities, and is thus a major cause of 

disease in humans. In single-celled organisms, aberrations in cell cycle 

control also lead to inappropriate division, and a state that is 

conceptually similar to cancer. However, as they are easier to study, 

unicellular eukaryotes such as the yeasts offer an excellent experimental 

system for studying the control of the cell cycle. 

1.1.2: The eukarvotic cell cycle. 

In all eukaryotes, the cell division cycle runs in parallel to the nuclear 

division cycle. The cell division cycle involves the continuous 

accumulation of cytoplasm and cell division itself, but the nuclear division 

cycle (or cell cycle) is regarded as the more important of the two. In 

eukaryotes, the cell cycle is divided into separate phases, with 

checkpoints that regulate the transitions between them. Once cells 

embark on a new cell cycle, they are committed to completing it. 

The beginning of the cell cycle is taken to be a point called Start in yeasts 

and the restriction point in higher animal cells (see Figure 1.1). This 

takes place in a phase called Gi (for Gap phase). Straight after passing 

Start, cells enter S phase (DNA Synthesis) during which they duplicate 

their DNA. 
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Figure 1.1: The eukaryotic cell cycle. 
If the size and nutritional conditions are satisfied, cells may pass Start (or the restriction point 
in higher cells) and enter S phase (DNA Synthesis); cells lacking sufficient nutrients 
temporarily exit the cell cycle and pass into GO (stationary phase). After S phase, cells 
remain in G2 until they satisfy the conditions of the G2-M checkpoint, when they enter M 
phase (mitosis). Certain types of cells can enter stationary phase from G2. After M phase, 
the daughter cells return to Gi, and the cycle begins again. 

Following S phase, there is a second gap phase, called G2, and cells enter 

M phase (mitosis). During mitosis, the chromosomes condense, the 

nuclear membrane breaks down (except in yeasts and some other 

organisms) and the sister chromatids separate and two new nuclei form 

around them. What follows is cell division itself (cytokinesis), when the 

cytoplasm divides to form two daughter cells. 

In order to enter S or M phase, the cell must be large enough. This size 

checkpoint is the method cells use to gauge whether they have enough 

resources to complete the process. Thus at each of these two points (the 

G1-S (Start) and G2-M transitions) cell cycle is linked to cell growth. This 

also ensures that cells maintain a constant size at division. 

In eukaryotes, cells which are not actively dividing enter a quiescent 

state (GO), from which they may later re-enter the cell cycle. In yeasts, 

this phase is called stationary phase and it is a distinct, highly stress-

resistant part of the cell cycle (discussed further in Section 7.1) In the 

absence of an appropriate mating partner, yeast cells enter stationary 

phase if they do not have sufficient nutrients to pass Start. However, if a 
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partner is present, then the sexual development pathway is entered at 

this point. The end product of this is spores, another stress-resistant 

developmental stage. 

1.1.3: Studying the cell cycle in yeasts 

Yeasts are ideal for genetic studies as they are eukaryotes with small 

genomes, have haploid stages in their life cycles and quick replication 

times. The two yeasts used extensively are the budding yeast, 

Saccharomyces cerevisiae, and fission yeast, Schizosaccharomyces pombe 

(see Figure 1.2). 
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Figure 1.2: The life cycle of the fission yeast, Schizosaccharomyces 
pombe. 
Schizosaccharomyces pombe cells normally proliferate mitotically as haploids in one of two 
mating types, h and h (true wild type cells (00) switch mating type). Under nutrient 
limitation cells enter stationary phase unless a mating partner of the opposite mating type is 
present. In this case reciprocal emission and receipt of pheromone induces cell cycle arrest 
just before Start and conjugation, which gives rise to a diploid zygote. If nutrients are made 
available at this point, the diploid can proliferate mitotically, but under continued starvation, 
meiosis takes place immediately, giving rise to an ascus containing four haploid spores. 
These hatch and re-enter the haploid mitotic cell cycle once nutrients become available. 

The two yeasts are distantly related, and probably as close to each other 

as they are to higher eukaryotes (reviewed in Sipiczki, 1995). The cell 

cycle in both organisms is regulated by external environment (nutrition 

and stress) and cell-cell interactions (mating), so the yeasts are choice 

organisms for studying how these signals affect the cell cycle. 

Furthermore, given the universal nature of cell cycle regulation, 

observations from studies in yeasts may act as a guide to more complex 

systems, such as humans. 
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A key contribution to understanding cell cycle in fission yeast came from 

a screen for temperature sensitive cell division cycle (cdc) mutants (Nurse 

et al., 1976). 

Fission yeast cells grow solely by tip extension. Therefore, because cdc 

mutants fail to divide but continue to grow, cdc strains that are 

maintained at the restrictive temperature become very long without septa 

(the cdc phenotype). In addition to this, any acceleration or retardation in 

the timing of cell division (ie entry into M phase) is visible as a shortening 

or a lengthening, respectively, of the size at which the cells divide 

(Mitchison, 1957; Mitchison, 1990; Nurse and Thuriaux, 1980). These 

properties make S. pombe particularly useful for studying cell cycle 

control at the G2-M transition, and is the reason why the organism was 

used to study this important aspect of biology in the first place. 

1.1.4: Regulation of the cell cycle. 

The proteins that are responsible for cell cycle regulation are highly 

conserved in all eukaryotes: entry into M phase is regulated by a complex 

consisting of two proteins, Cdc2 and cyclin (Lohka et al., 1988). The 

abundance of cyclin varies during the cell cycle (Evans et al., 1983) and as 

cyclin binding activates Cdc2, the activity of Cdc2 also oscillates during 

the cell cycle (Gerhart et al., 1984). Cdc2 is also referred to as a cyclin-

dependent kinase (cdk), because it must bind cyclin to be active. 

Not only is there a Cdc2 homologue in all eukaryotes, but its sequence is 

highly conserved, with roughly 65% identity. The various cyclin subunits 

and many other components of the machinery that regulates the cell cycle 

are also conserved. This is not surprising, given the importance of the 

process. 

1.1.5: Regulation of Cdc2 in fission yeast. 

In the fission yeast, Cdc2 regulates both the G1-S and G2-M transitions. 

There is also a single M-phase cyclin, Cdc13 (Moreno et al., 1989). 

Like many proteins, Cdc2 is regulated by phosphorylation. There are two 

key residues. Phosphorylation on tyrosine 15 (Y15) is inhibitory and 

phosphorylation on threonine 167 (T167) is necessary for activation (see 



Figure 1.3). In addition, T14 phosphorylation has been reported in S. 

pombe, but plays no clear biological role (Carr et al., 1989; MacNeill and 

Nurse, 1993) 
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Figure 1.3: regulation of Cdc2/Cdcl3 at G2-M. 
A CdcI3 cyclin and a Cdc2 cdk subunit form a complex which is phosphorylated on T167 by 
CAK and on Yl 5 by Weel and MI. Dephosphorylation of Yl 5 by Cdc25 and Pyp3 
activates this cdk/cyclin and brings about entry into mitosis. Type 2A phosphatases may help 
regulate this step by activating Weel and inactivating Cdc25 by dephosphorylating these 
proteins. 

Inactive 



Regulation of the phosphorylation on tyrosine-15 (Y15) is best 

understood. This residue is phosphorylated by Weel and Miki kinases 

from the end of S phase. Completely unphosphorylated Y15 (for example 

in a weel miki double mutant) leads to immediate entry into mitosis 

(mitotic catastrophe) (Lundgren et al., 1991). The activities of Weel and 

Miki kinases are balanced by at least two phosphatases: Cdc25 (Russell 

and Nurse, 1986) and Pyp3 (Millar et al., 1992), and perhaps Sptl 

(Mondesert et al., 1994). Of these proteins, at least Cdc25 and Weel are 

known to be regulated by phosphorylation. This phosphorylation could be 

reversed by the Type 2A phosphatases, Ppal and Ppa2, which are mitotic 

inhibitors (Kinoshita et al., 1993). 

The kinase that phosphorylates Weel is Nimi kinase (Coleman et al., 

1993). Interestingly, nimi is allelic to cdrl which had previously been 

isolated in cells deficient in altering cell cycle regulation in response to a 

change in nutritional conditions (Young and Fantes, 1987), so it appears 

conceivable that nutritional signals are fed into the cell cycle mechanism 

through the Weel pathway (Fantes et al., 1991). 

The role and regulation of phosphorylation on T167 is becoming clearer. 

An enzyme called Cdc2-Activating Kinase (CAK) phosphorylates this 

residue. This CAK is encoded by crk1/mop1/mcs6 (Buck et al., 1995; 

Damagnez et al., 1995) and the cyclin subunit by mcs2 (Molz and Beach, 

1993). Both are members of the basal TFIID transcription complex, as 

well as cell cycle regulators, which may explain why they are essential, 

and why the loss of function phenotype is not cdc. 

In a manner that parallels that of Cdc2/Cdc13 activation, CAK 

(Mcs6fMcs2) is itself subject to activational phosphorylation on a 

conserved threonine (T176) (Fisher and Morgan, 1994), which, in fission 

yeast, may be mediated by the Cskl protein kinase (Molz and Beach, 

1993). 

1.1.6: Regulation of Cdc2 in other systems 

In higher animal cells, the mechanism of cdk/cyclin regulation is 

analogous to that of the fission yeast, but in contrast to the single cdk of 

the unicellular eukaryote (Cdc2), there are at least seven cdks in human 

cells (Cdc2 corresponds to cdkl). In addition, there are families of 



different cyclins that can assemble with the cdks in higher systems, 

whereas only four have been found in fission yeast so far. 

Experiments in Xenopus addressing the regulation of cdkl have shown 

that it is not phosphorylated unless complexed with cyclin (Meijer et al., 

1991; Solomon et al., 1990). Yet, once it has formed a complex with a 

cyclin, it becomes an efficient substrate for phosphorylation. 

Furthermore, Type 2A phosphatases appear to play a role in cell cycle 

control in this organism (Clarke et al., 1993; Felix et al., 1990; Lee et al., 

1991), as does CAR (cdk7) which binds a cyclin H homologue (Fesquet et 

al., 1993; Solomon, 1994) and phosphorylates TiGi on cdkl (the 

equivalent of T167 on S. pombe Cdc2). CAK/cyclin H is, like cdkl/cyclin, 

itself subject to activational phosphorylation on a conserved threonine 

(T176) (Fisher and Morgan, 1994), 

At the end of mitosis, deactivation of Xenopus cdk/cyclin involves 

dephosphorylation on TiGi in cdkl as well as cyclin degradation (Lorca et 

al., 1992). The degradation of cyclin is mediated by Anaphase-promoting 

complex (A.PC) and involves the ubiquitin-mediated proteolysis pathway. 

The destruction of the cyclin in the cdk-cyclin complex is necessary for 

exit from the end of mitosis (telophase) and the return to interphase, 

presumably as it allows access to T161 by phosphatases, thus completing 

inactivation of the cdk. 

1.1.7: Other regulators of the G2-M transition. 

In addition to the core Cdc2/Cdc13 cdk/cyclin B and its direct regulators, 

many other proteins playing roles in the process have been identified. 

These proteins have several different functions: checkpoint function (DNA 

replication checkpoint: Cdcl, Cdc27; DNA damage/repair checkpoint: 

Radi, Rad3, Rad9, Rad17, Rad26 and Husi); phosphatases (Tyrosine 

phosphatases Pypl and Pyp2; Serine/Threonine phosphatases Type 2A: 

Ppal, Ppa2, Ppel, Type 1: Dis2, Sds2l and perhaps Type 2C: Ptcl, Ptc2, 

Ptc3) and a pathway consisting of stress response genes with a cell cycle 

role (the Wisi/Styl pathway). The Wisi pathway is the subject of Section 

1.3.3. 

Protein serine/threonine phosphatases of Type 1, Type 2A and Type 2C 

have been found to exert a role in the G2-M transition in fission yeast. As 
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discussed earlier, Type 2A phosphatases (PP-2A) have also been 

implicated in cell cycle control in Xenopus (see for example Clarke et al., 

1993). In fission yeast, the PP-2A phosphatases are encoded by ppal, 

ppa2 and ppel (Kinoshita et al., 1990; Shimanuki et al., 1993). Double 

mutants including ppa2i& are lethal, but other combinations are viable 

showing that these genes encode redundant functions. Appa2A strain 

divides at reduced cell length, indicating mitotic advance. This advance 

may be mediated by Cdc25 (as is the case in Xenopus). ppeTh cells divide 

at a reduced cell length showing that Ppel plays a role in mitosis 

(Shimanuki et al., 1993). 

Type 1 phosphatases (PP-1) are encoded by the sds2l and dis2 genes. 

bwsl (dis2) was isolated as a multi-copy suppressor of the weel bypass 

(suppression) of cdc25 cell cycle block, showing that Bwsl/Dis2 plays a 

role in mitotic control (Booher and Beach, 1989). The type 2C 

phosphatase gene ptc3 is the only PP-2C that leads to reduced cell length 

when mutated. Furthermore ptc3 suppresses a swol-26 mutation 

(Shiozaki and Russell, 1995b). 

The tyrosine phosphatases also play a role in mitotic timing (Millar et al., 

1992), by counteracting the Wisi pathway. This will be discussed in 

Section 1.3.3. Pyp3 has been shown to dephosphorylate Cdc2 on Y15 

(Millar et al., 1992). 

1.2: Signal transduction pathways. 

One way that individual cells ensure that they divide only when they are 

ready is by including checkpoints in the cell cycle. However, even single-

celled organisms must communicate with their neighbours. In a 

metazoan, precisely and predictably coordinating the cell cycles of the 

myriad cells that make up the organism (ie the process of development) is 

crucial. Any serious deviation will almost always be detrimental, unless 

of course it produces a new species. 

In order to interact with their surroundings and their neighbours, cells 

have evolved signal transduction pathways. The role of these pathways is 

to carry information from outside the cell to the nucleus, where that 

information affects cellular decisions. Most signalling pathways consist of 

transmembrane receptor proteins whose extracellular portion reacts to 
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external signals and causes the activation of a signal transduction module 

via intermediary adaptor proteins. 

For example, the pathway which transfers mitogenic signals to the 

nucleus is well understood, and consists of a Mitogen-Activated Protein 

Kinase (MAPK) cascade. This signal transduction module transmits 

signals into the nucleus, where proteins and transcription factors 

required for mitosis are regulated. 

1.2.1: The classical Mitogen-Activated Protein Kinase (MAPK) 
signal transduction cascade. 

The MAPK cascade is a highly-conserved signal transduction unit, with a 

core made up of three proteins. Furthest downstream lies a MAPK, a 

proline-directed protein kinase whose targets include kinases and 

transcription factors (see Figure 1.4). The MAPK is activated by a MAPK 

kinase (MAPKK), which in turn is activated by MAPKK kinase 

(MAPKKK). 
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Figure 1.4: A schematic diagram of the metazoan MAPK pathway. 
MAPK is activated by the MAPKK MEK (Mitogen-Activated and Extracellular Signal 
Regulated Protein Kinase Kinase), which is activated by Raf and the MAPKKK, MEKK. Raf is 
activated through a receptor tyrosine kinase binding growth factor and thus activating Ras, 
as, well as via G-protein-linked receptors; MEKK1 is activated via a G-protein-linked receptor 
with seven membrane-spanning regions. 

MAPKS are unusual in that they require phosphorylation on two 

conserved residues (a tyrosine and a threonine) for activation (Anderson 

et al., 1990). Both these activating phosphorylations are provided by 

MAPKK. In addition, evidence from Xenopus suggests that the N-

terminal Nuclear Export Signal (NES) on MAPKK causes it to be 

excluded from the nucleus (Fukuda et al., 1996). Prior to activation, the 

MAPK is bound to the MAPKK and is hence restricted to the cytoplasm 

(Fukuda et al., 1997). On activation it is released and enters the nucleus 

(Fukuda et al., 1997; Lenormand et al., 1993). 

MAPKKs are activated by phosphorylation on serine and threonine by 

MAPKKK. MAPKKKs are activated by various types of activated GTP-

bound G-proteins. These are released from receptor complexes on binding 
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the appropriate ligand. Receptor tyrosine kinases (RTKs) are activated by 

the binding of such ligands as growth factor. RTKs are associated with 

small monomeric G-proteins like Ras, which are activated as a result of 

ligand binding. Trimeric G-proteins are associated with receptors whose 

amino acid chain crosses the plasma membrane seven times (Seven 

Trans-membrane Motif Receptors (STMR) or serpentine receptors). One 

of the G-proteins in the heterotrimer is activated and released when the 

receptor is activated. 

A potential extra level of control could involve the negative feedback loop 

which appears to exist between MAPK and MAPKK: MAPKs can 

phosphorylate MAPKKs in both yeasts (Errede et al., 1993) and higher 

eukaryotes (Gonzalez et al., 1991). In the budding yeast pheromone 

pathway, this down-regulates them (Zhou et al., 1993) although the 

biological significance of this loop has not been determined. 

1.2.2: Cross-talk and amplification by MAPK pathway. 

The trio of MAPKKK / MAPKK / MAPK is a conserved element in signal 

transduction. The presence of three elements allows regulation by and 

signal integration with other pathways at several different levels in the 

pathway. Although there is evidence of cross-talk in higher cells (for 

areview, see Cooper, 1994) and perhaps in fission yeast (Yanagida, M.; 

pers. comm.), the only evidence of this in budding yeast, to date, is the 

observation that the pheromone pathway MAPKKK, Stell, can 

phosphorylate the Hogi pathway MAPKK, Pbs2 (Posas and Saito, 1997). 

Furthermore, the presence of three kinases could in theory allow a small 

input signal to be amplified, thus producing a large effect. In the S. 

cerevisiae MAPK pathway, a scaffold protein Ste5 tethers a single 

molecule of each of the three kinases together, which prevents 

amplification of this sort (Faux and Scott, 1996), but which does not 

preclude the possibility that activated MAPKK can activate more than 

one molecule of MAPK. 

1.2.3: Conservation of MAPKs 

MAPK pathways have been found in all eukaryotes investigated and are 

highly conserved, both at the level of overall architecture and functional 
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homology between equivalent proteins in different organisms. This is 

demonstrated by the fact that the yeast MAPKKKs Stell (Rhodes et al., 

1990) (Saccharomyces) and Byr2 (Wang et al., 1991) 

(Schizosaccharomyces) are functional homologues (Neiman et al., 1993; 

Styrkarsdottir et al., 1992). More impressively, the fission yeast mutation 

spkl (a MAPK) can be complemented by MAPKs from budding yeast, 

Xenopus and mammals (Neiman et al., 1993). 

The conserved threonine and tyrosine residues that are phosphorylated in 

MAPK to activate it are separated by a single amino acid residue, making 

a TXY motif. The middle residue in this motif correlates with the class 

the protein belongs to: TEY in the mitogenic MAPKs (ERK1, ERK2, 

ERK5, Fus3, Kssl and Spkl); TGY for the osmotic tolerance MAPKs (p38, 

RK, Hogl, Styl); TPY for the stress-activated protein kinases (SAPKs) 

and c-Jun N-terminal Kinases (JNKs) and TNY for the budding yeast 

spore formation MAPK, Smkl. ERK3' is unusual in that it has an SEG 

motif. Furthermore, the TXY motifs found in plant MAPKs do not follow 

this correlation (reviewed in Hirt, 1997). 

1.2.4: The Diversity of MAPK proteins and pathways. 

The "classical" MAPK pathway is the mitogenic pathway, which is 

involved in proliferation and differentiation in higher eukaryotes and 

pheromone response in the yeasts. MAPK pathways that are involved in 

transducing other signals have been discovered. This is perhaps best 

demonstrated in budding yeast, for which the complete sequence of the 

genome exists. In this organism there appear to be a total of five 

pathways (reviewed in Hunter and Plowman, 1997). They are involved in 

pheromone response, high osmolarity tolerance, cell wall integrity, 

pseudohyphal development and spore formation. 

1.2.5: The mating pheromone response MAPK pathways in yeasts. 

In yeasts, the mating pheromone response pathway (the equivalent to the 

"classical" mitogenic mammalian pathway) lies downstream of a 

serpentine receptor. The activation of the MAPK cascade by pheromone 

binding the receptor is analogous to the mammalian system discussed 

above. This pathway is extremely well understood in budding yeast and 

fairly well in fission yeast (see Figure 1.5). 
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Figure 1.5: The mating pathways of yeasts. 
Binding of pheromone to a serpentine transmembrane receptor activates a Ga subunit in 
fission yeast or G 1  subunits in budding yeast. These in turn activate a MAPK cascade which 
activates transcription factors and other proteins, leading to the initiation of mating. 

In budding yeast the MAPK trio consists of the MAPKK Ste 11, the 

MAPKK Ste7 and two MAPKs, Fus3 and Kssl (for review, see Kurjan, 

1993). The MAPK cascade activates the transcription factor Ste12 (Elion 

et al., 1993). Ste12 is responsible for the transcription of FAR1 and 

various genes required for mating. Farl causes cell cycle arrest by 

inhibiting the activity of cdks Cdc28-Clnl and Cdc28-C1n2 (Peter and 

Herskowitz, 1994). 
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The fission yeast Byr2/Byrl/Spkl cascade is analogous to the budding 

yeast Stell/Ste7/Fus3-Kssl pathway (reviewed in Erréde and Levin, 

1993), as shown in Figure 1.5. 

1.2.6: The mammalian MAPK pathway. 

The yeast mating MAPK pathways are activated by a single receptor and 

are essentially linear. In contrast, MAPK pathways of metazoans are 

activated by more than one mechanism in each cell, in a cell-type 

dependent manner. For example, vertebrate MEK1 (MAPKK) can be 

activated via Raf, the MAPKKK, MEKK1, (Langecarter et al., 1993) and 

mos (Shibuya and Ruderman, 1993) (see Figure 1.6). Raf is principally 

activated by receptor tyrosine kinases (RTKs), whereas MEKK1 is 

activated by serpentine receptors coupled to heterotrimeric G-proteins. 

mos may be regulated by cdkl (the equivalent of fission yeast Cdc2) (Van 

Renterghem et al., 1993), and thus be under cell cycle control. So, three 

different pathways converge at this point and their signals are integrated 

into the MAPK cascade. 
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Figure 1.6: The "classical" metazoan MAPK pathway. 
The Raf/MEKK/MEK/MAPK cascade is activated by growth factor, cytokine/lymphokine and 
serpentine trimeric G-protein-linked receptors. In addition, mos can activate the pathway, 
integrating cell cycle signals. Activated MAPK activates nuclear kinase Rsk and several 
transcription factors, leading to proliferation and differentiation. Abbreviations in this figure: 
EGF Epidermal Growth Factor; PDGF Platelet-derived Growth Factor; IGF Insulin-Like 
Growth Factor-2; PKC Protein Kinase-C; Grb2 Growth Factor Receptor-bound protein-2; sos 
son of sevenless; GAP GTPase activating protein; CAK cdk-activating kinase; Rsk 
Ribosomal S6 subunit Kinase; SRF Serum Response Factor; ATF-2 Activating Transcription 
Factor-2; MEK (MAPK (Mitogen-Activated Protein Kinase) and ERK (Extracellular Signal 
Regulated Protein Kinase) Kinase); MEKK (MEK kinase). 

A vast range of different RTKs is capable of activating Raf, including 

cytokine-, lymphokine- and growth factor-type receptors. Ligand binding 

to an RTK causes dimerisation of the receptor, which leads to activating 

tyrosine phosphorylations. This promotes the binding of adaptor proteins 



containing SH2-domains (which bind phospho-tyrosine) and SH3 

domains. The SH3 domains facilitate the binding of other proteins which 

regulate Ras, a small monomeric G-protein which is active when bound to 

GTP. This is encouraged by the activated regulators. Active Ras-GTP 

binds to Raf and activates it, a step that is inhibited by cyclic AMP 

dependent protein kinase (cA-PR or protein kinase A) (Hafner et al., 

1994). 

Activated MAPK activates transcription factors such as MEF2C (Han et 

al., 1997), serum response factor (SRF), which is made up of Elk-1 and 

ATF-2. SRF initiates transcription from genes such as Elk-1 itself (Hill 

and Treisman, 1995) and fos that are downstream of a serum response 

element (SRE). fos together with Jun make up the AP-1 protein which 

regulates many genes involved in proliferation and differentiation. 

MAPK also activates ribosomal S6 kinase II (Rsk), which phosphorylates 

a component of the 40S ribosomal subunit (Sturgill et al., 1988). This 

leads to increased protein synthesis during mitogenesis and meiotic 

maturation. 

1.3: Stress-Activated MAPK pathways. 

In addition to the "classical" mitogen-activated MAPKs discussed so far, 

there is a different type of MAPK pathway that is activated by 

environmental stresses, the stress-activated MAPK pathway. This type of 

MAPK pathway has been found in yeasts as well as higher eukaryotes. 

The simplest example is the budding yeast Hogi pathway. 

1.3.1: The budding yeast Hogi Pathway. 

The Saccharomyces cerevisiae Hogi MAPK pathway responds only to 

osmostress (Brewster et al., 1993). Its architecture is analogous to that of 

the "classical" MAPK pathways. It consists of two 1VIAPKIKKs Ssk2 and 

Ssk22, 1VIAPKK Pbs2 and MAPK Hogi (Brewster et al., 1993; Brewster 

and Gustin, 1994; Maeda et al., 1995) (see Figure 1.7). However, the 

upstream regulation is unusual. In the only known example of its kind, a 

transmembrane protein, Shol allows activation of the MAPKK Pbs2 by 

MAPKKK Steli (Maeda et al., 1995; Posas and Saito, 1997). 
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Figure 1.7: The Hogi and Wisi pathways. 
The Saccharomyces cerevisiae Hogi pathway responds to salt stress. Activation is via 
bacterial two-component systems (SlnlIYpdl/Sskl) or Shol mediating activation by Stel I 
(Stel 1 normally acts in the mating response pathway). In Schizosaccharomyces pombe, 
different stresses activate the Wisl pathway in different ways. Salt stress acts through Win 1; 
heat shock through Pypi. The pathway is responsible for transcription of many genes under 
the transcriptional regulation of AM. 

1.3.2: A bacterial two-component system activates the Hogi 
pathway. 

These systems are ubiquitous in bacteria and control chemotaxis, 

sporulation, osmoregulation, transformation efficiency, virulence, heavy 
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metal tolerance and response to changes in nutrient availability 

(reviewed in Burg et al., 1996; Egger et al., 1997; Silver and Phung, 

1996). They have now been found in eukaryotes such as Saccharomyces 

cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana (Mizoguchi 

et al., 1994), Neurospora crassa (Alex et al., 1996), Plasmodium 

falciparum (Doerig et al., 1996) and Dictyostelium discoidum (Gaskins et 

al., 1996), but have not so far been reported in higher animal systems. 

Normally, the two components involved are a Sensor Kinase protein 

(made up of input and transmitter domains) and a Response Regulator 

protein (consisting of receiver and output domains) (reviewed in Appleby 

et al., 1996) and see Figure 1.8. The input domain is extracellular and 

responds to a signal which activates (or inhibits) the cytosolic kinase 

transmitter domain, which leads to transfer of a phosphate group to the 

receiver domain of the response regulator, thus activating (or repressing) 

the output domain. This usually involves regulation of transcription. 
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Figure 1.8: Schematic diagram of bacterial two-component 
system. 
The two components are a Sensor Kinase (SK) and a Response Regulator (RR), These two 
components are repeated. Extracellular signals are sensed by the membrane-spanning SKI. 
This leads to a sequence of phosphate transfers to RRI, then SK2 and then RR2, which 
elicits the appropriate response, usually transcriptional activation. The four domains in the 
phospho-relay (SKi, RR1, SK2 and RR2) may be part of a single polypeptide or may be on 
two, three or four separate polypeptides. 

The budding yeast Hogi pathway contains two sequential two-component 

systems. Sini represents a complete two-component system itself: this 

protein contains both Sensor Kinase and a Response Regulator in a single 

polypeptide (Ota and Varshavsky, 1993). Sini transfers a phosphate to 

Ypdl, which is the sensor kinase (Posas et al., 1996) of the next phospho-

relay. Ypdl transfers its phosphate to the aspartate of Sskl (Posas et al., 

1996). 

Phosphorylated Sskl inhibits the activation of the MAPKKKS Ssk2 and 

Ssk22. Sini is inactivated by high osmolarity (Ota and Varshavsky, 



1993), which causes the dephosphorylation of Sskl and therefore renders 

the MAPKIKKs active, most likely by interfering with their inhibitory N-

terminus (Maeda et al., 1995). Activation of the pathway is also reversed 

by the tyrosine phosphatases, Ptp2 and Ptp3 (Jacoby et al., 1997). 

The Hogi pathway activates transcription of a variety of genes such as 

HSP12 (Varela et al., 1995), CTT1 (Schuller et al., 1994) and GPD1 

(Hirayama et al., 1995) Gpdl is required for glycerol synthesis and yeasts 

accumulate glycerol to resist high osmolarity (see Section 1.4). 

1.3.3: The Wisi pathway. 

The closest homologue to Pbs2 is the fission yeast protein Wisi (Warbrick 

and Fantes, 1991). The wisi gene was isolated during a screen for genes 

which act at the G2-M transition. It encodes a MAPKK which acts as a 

dose-dependent initiator of mitosis (Warbrick and Fantes, 1991). 

The wisi gene is not essential, but loss of function leads to many 

phenotypes. In addition to a cell cycle defect, wis 1/i cells exhibit 

sensitivity to environmental stress (heat, osmotic and oxidative stress), 

sensitivity to starvation (stationary phase), defects in conjugation and 

sporulation as well as defects in transcription (Degols et al., 1996; Kato et 

al., 1996; Millar et al., 1995; Shiozaki and Russell, 1995a; Stettler et al., 

1996). 

The Wisi MAPK pathway consists of two MAPKKKs, Wis4 (also known 

as Wiki and Waki (Shieh et al., 1997; Shiozaki et al., 1997a)) and Wini, 

which lie upstream of Wisi (Samejima, I., pers. comm. and Samejima et 

al., 1997), which activates the MAPK Styl (Degols et al., 1996; Kato et al., 

1996; Millar et al., 1995; Shiozaki and Russell, 1995a) (see Figure 1.7). 

The protein tyrosine phosphatases Pypl and Pyp2 oppose the activation 

of Styl by Wisi (Millar et al., 1995). 

There is a bacterial two-component sensor upstream of the Wis 1 pathway. 

The mcs4 gene encodes a response regulator (Cottarel, 1997; Shieh et al., 

1997; Shiozaki et al., 1997a), equivalent to Sskl. The two genes maki and 

mak2 encode homologues of Slnl sensor kinase (Millar, 1997) that lie 

upstream of Mcs4. No fission yeast homologue of Ypdl has yet been 

found, but the available data strongly predicts that one will exist. 
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The MAPK Styl activates two CREB/ATF transcription factors, 

Atfl(Gad7) (Shiozaki and Russell, 1996; Wilkinson et al., 1996), and Pcrl 

(Watanabe and Yamamoto, 1996). Both transcription factors are 

homologues of human ATF-2. 

Downstream of fission yeast Atfi lie several genes that are required for 

different cellular functions, including stress response. The following genes 

are transcriptionally regulated by the Wisi pathway: cttl (Schuller et al., 

1994; Wilkinson et al., 1996), tpsl (Degols et al., 1996), gtil (Caspari, 

1997), gpdl and pyp.2 (Degols et al., 1996; Wilkinson et al., 1996), stell 

(Kanoh et al., 1996; Takeda et al., 1995) and fbpl(Stettler et al., 1996). 

There is strong evidence for a bifurcation in the Wisl pathway 

downstream of Styl. atflA cells are partially heat sensitive (personal 

observation), but show no cell cycle defect (Kanoh et al., 1996). stylA and 

wislA cells on the other hand are profoundly heat sensitive and show a 

cell cycle defect (Millar et al., 1995; Shiozaki and Russell, 1995a). This 

strongly suggests that the cell length defect seen in wislA and stylA 

strains occurs via an Atfi-independent mechanism and furthermore, part 

of the temperature sensitivity phenotype must arise via a pathway that 

does not involve Atfi. 

1.3.4: The SAPK/JNK and p38(HOG1)IRK pathways are activated 
by environmental stress. 

In contrast to the single stress-activated MAPK pathway in yeasts, there 

are two overlapping pathways in higher eukaryotes (see Figure 1.9). One 

pathway consists of Stress-Activated Protein Kinases (SAPKs) (which are 

also known as c-Jun N-terminal Kinases (JNKs)) and the other contains 

38h10G1 (or MAPKAP kinase-2 Reactivating Kinase (RK)). 
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Figure 1.9: Mammalian stress-activated MAPK pathways. 
The two mammalian stress-activated pathways (SAPK/JNK and p38HOG1) are activated by 
a variety of stress stimuli and interact with the proliferative MAPK at several levels to 
generate a cellular response that depends on the balance of activation of the different 
pathways. The proliferative MAPK cascade and signals are grey; the SAPKIJNK cascade is 
boxed in grey, with black arrows for signals and the p38HOG1 cascade is shaded with 
signals as dotted lines. Abbreviations: PAK (p21-Activated Kinase); GCK (Germinal Centre 
Kinase); TF (Transcription Factor); MAPKAP-K2 (MAPK Activated Protein Kinase-2). 

The SAPK and p38HOG1 pathways share many stimuli, but have some 

cell-type specific differences. Both the SAPK and the p38HOG1 pathways 

are activated by heat shock, osmotic shock and UV (see Figure 1.9). In 

addition to these stimuli, the SAPK and p38HOG1 pathways have 

pathway-specific stimuli, for example, the vertebrate p38HOG1 pathway 

responds to ionising radiation and oxidative stress. 
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The ability of many upstream elements to activate both pathways may 

explain the overlap observed in activating stimuli. For example, the 

MAPKKK MTK1, (a homologue of the yeast stress-activated MAPKKKs 

(see Sections 1.3.2 and 1.3.3)), activates both the SAPK and the p38HOG1  

pathways in response to stress (Takekawa et al., 1997). 

One way in which the signals from upstream G-proteins are fed into the 

SAPK or p38HOG1  MAPK cascades is analogous to the mechanism seen 

in the yeast mating pheromone response pathways. The human small 

monomeric G-protein, Cdc42 activates p65M  (p21-activated kinase). 

PAK1 is a human homologue of budding yeast Ste20 and fission yeast 

Shkl (Marcus et al., 1995)). Ste20 carries signals from the upstream G-

proteins to the MAPKKK Stell in the budding yeast pheromone response 

pathway. 

Following activation of the MAPKKK member of the SAPK or p38HOG1  

pathway, the MAPKK and the MAPK are sequentially activated. Once 

activated, SAPK phosphorylates transcription factors, such as ATF-2, 

which is a member of the CREB sub family of bZIP proteins (Gupta et al., 

1995) and a homologue of the fission yeast Atfi (Kanoh et al., 1996; 

Takeda et al., 1995). 

Phosphorylation of ATF-2 leads to dimerisation with c-Jun (also activated 

by SAPK (Adler et al., 1992)) and hence transcriptional activation (Pombo 

et al., 1994). 

1.4: Stress Survival and the role of the Stress-Activated 
MAPK cascades. 

Cells must react to stress in order to survive. Linked to this, stress factors 

play a role in many detrimental processes in cell biology, many with 

important clinical ramifications, such as cell ageing, the eetiology of 

cancer and hypoxia (reviewed in Ames et al., 1993; Welch, 1993; Young 

and Elliott, 1989), and the survival of drought, salt and heat in plants, 

which are important considerations for agriculture (Boyer, 1982). 

Most studies on environmental stresses have been carried out in budding 

yeast, and from this it is apparent that this organism and perhaps others 

have evolved two lines of defence against stress: a constitutive system 
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and an inducible system. The constitutive system provides minimal 

protection, but will cope with most stresses in the immediate term. It is 

mediated by protein kinases and protectants such as trehalose and 

glycerol, present at basal levels. In addition, the constitutive system 

induces the inducible system, which allows adaptation to stress in the 

longer term. Induction involves synthesis of heat shock proteins, oxygen 

scavengers and other stress-resisting molecules, as well as changes in 

enzyme activities, membranes, the availability of intracellular water and 

an increase in the levels of stress protectants such as trehalose and 

glycerol (reviewed in Ruis and Schuller, 1995). 

In bateria, compounds called compatible solutes in bacteria, such as 

glycerol and trehalose, play a crucial role in stress resistance. Cells 

accumulate them in response to both osmotic (Aiba et al., 1995; Sunder et 

al., 1996) and heat stress. These compounds have been shown to stabilise 

proteins in vitro and in vivo. 

Heat and salt stress weakens hydrophobic bonds in proteins. This is 

counteracted by glycerol which reduces water availability, thus 

strengthening the hydrophobic bonds and stabilising proteins. Trehalose 

is implicated in resistance to heat stress in many systems (de-Araujo, 

1996; Strom and Kaasen, 1993). Trehalose is able to stabilise hydrogen-

bonds, thus protecting proteins from denaturation in vitro. 

When a form of stress induces the stress response, this leads to resistance 

to that particular stress as well as to other forms of stress. For example, 

exposure of budding yeast to mild heat shock (Craig and Gross, 1991; 

Lindquist and Craig, 1988; Mager and Varela, 1993) induces tolerance of 

heat, oxidative and salt shock. Conversely, osmo-stress leads to tolerance 

of at least heat and salt shock (Trollmo et al., 1988). Nutrient limitation 

leads to entry into stationary phase and associated heat tolerance (Plesset 

et al., 1987) and resistance to other stresses (reviewed in Werner-

Washburne et al., 1993). 

The above physiological observations are supported by molecular data. 

For example, the heat shock gene, CTT1, which is induced to deal with 

both oxidative and osmotic stress, must also be induced for cells to 

survive stationary phase (see Ruis and Schuller, 1995). These 
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observations provide overwhelming evidence for a common stress-survival 

mechanism. 

It is conceivable that Heat Shock Factor (HSF) may play a role in this, as 

it binds to Heat Shock Elements (HSEs) upstream of the promoters of 

genes in response to heat shock, thus regulating them. However, the fact 

that HSF is essential in yeasts (Gallo et al., 1993; Sorger and Pelham, 

1988; Wiederrecht et al., 1988), suggests it plays a role more in the 

constitutive minimal stress tolerance system and indeed HSF is only 

required for the transcription of a few heat shock genes. Furthermore, 

HSE does not mediate the heat-induced transcription of CTT1 (Wieser et 

al., 1991). This suggests the existence of an alternative control element. 

In budding yeast, it is the Stress Response Element (STRE) that 

regulates transcription of genes essential for surviving stress, such as 

CTT1 (Marchler et al., 1993; Wieser et al., 1991), which encodes catalase, 

trehalose phosphate phosphatase (TPS2) (Gounalaki and Thireos, 1994) 

and genes involved in glycogen metabolism. Transcription from an STRE 

is also activated by ethanol and the responses to ethanol and heat stress 

are similar (reviewed in Piper, 1993). 

Thus, a partial explanation for the cross-protection seen following stress 

conditions is that many of the genes required for stress protection are 

transcriptionally co-regulated via the STRE element, which is itself under 

control of the osmotic-stress-activated Hogi MAPK pathway (Schuller et 

al., 1994). 

1.5: The role of the cyclic-AMP Protein Kinase (cA-PK) 
in stress tolerance. 

Evidence that the cAMP pathway is linked to stress comes from the 

observation that S. cerevisiae strains deficient in cAMP production show 

reduced viability in stationary phase (Werner-Washburne et al., 1993). 

Furthermore, the induction of thermotolerance is sensitive to cAMP 

levels, and cAMP plays a role in the induction and activation of heat 

shock proteins (Piper, 1993). 

In addition to transcriptional regulation of the STRE by the Hogi 

pathway in budding yeast, an important role is played by the cA-PK 



pathway. In response to nutritional conditions, cyclic AMP (cAMP) is 

produced by the enzyme adenylate cyclase from ATP and activates the 

cyclic-AMP dependent protein kinase (cA-PK). This down-regulates 

transcription from STREs (Belazzi et al., 1991). 

It seems, at least in budding yeast, that the cAMP pathway plays a role, 

more as a volume control, up- or down-regulating transcription generally 

in response to nutrient availablility (reviewed in Piper, 1993), while the 

Hogi pathway actually transduces the signals generated by 

environmental stress (Brewster et al., 1993; Schuller et al., 1994). The 

same appears to be true for fission yeast (Stettler et al., 1996). 

1.6: Aims of this thesis. 

The processes of cell division and stress tolerance are essential to cell 

survival. Moreover, these two processes interact with eachother, yet the 

mechanism is unknown. The isolation of the fission yeast Wisi MAPKK, a 

protein which appears to play a role in both processes, was an important 

first step in characterising the interaction between cell cycle and stress 

response. 

This thesis describes studies on Wisi and the signal transduction 

pathway it lies in. These were undertaken in an attempt to reveal further 

information on the function of Wisi and its role in the connection between 

cell cycle and stress response. 

The first experimental section (see Chapter 3) describes the physiology 

and genetics of wislA mutants. The second part of this thesis (see 

Chapters 4 to 6) discusses the isolation and characterisation of mutants 

that suppress wislA phenotypes (the sow mutants). It was hoped that 

these mutants would lie in genes downstream of wisi, thus enabling the 

downstream architecture of the Wisi pathway and importantly, the 

mechanism that connects the Wisl pathway to cell cycle control, to be 

elucidated. 
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Chapter 2: Materials and Methods 

2.1: Schizosaccharomyces pombe methods. 

2.1.1: Yeast Strains used in this work. 

Strains were derived from 972 h and 975 h (Leupold, 1950) (see Table 

2.1). 

Table 2.1: Strains used in this thesis. 

strain 	 full genotype 

number 

ED812 h 

ED878 h 

5.7 	sow2-7 wis1::his1 hisl-102 ura4::fbp1-1acZ ade6-M216 h- 

5.11 	sow2-11 wis1::his1 hisi ura4::fbp1-1acZ ade6-M216 h- 

5.22 	sowl-22 wis1::his1 hisi ura4::fbp1-lacZ ade6-M216 h 

ED632 	winl-1 h 

ED683 	cdc2-1w leul-32 h 

ED716 cdc13-117h 

ED752 	mat2-102 ade6-M210 

ED815 	ppa1::ura4 leul-32 ura4-D18 h 

ED817 	ppa2::ura4 leul-32 ura4-D18 h 

ED900 	ura4::fbp1-1acZ h 

ED907 	cdc2-33 h 

ED932 	hisl-102 h 

ED933 	hisl-102 leul-32 h 

ED942 	wisl::LEU2 weel-50 leul-32 h 

ED952 	git2-1int::LEU2 leul-32 h 

ED957 git2-lint::LEU2 leul-32 ura4::fbp1-1acZ h 

ED961 wis1::his1 	hisi -1 02 ura4::fbp1-1acZ h 

ED975 wis1::his1 	hisl-102 h 

ED976 wis1::his1 	hisl-102 h- 

ED1006 weel-50 h 

ED1O1O wis1::his1 	hisl-102 leul-32 h 
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ED1011 wis1::his1 hisi -102 leul-32 h 

ED 1039 cdc2-3w h 

ED1052 patl-114 wisl::LEU2 leul-32 h 

ED1053 patl-114 wisl::LEU2 leul-32 h 

ED1O6O ppe1::ura4 leul ura4 [pPH101 (ppe1)]h 

ED 1063 git6-261 h 

ED1073 git6-261 leul-32 h 

ED1076 wis1::his1 hisl-102 ade6-M210 leul-32 mat2-102 

ED 1085 =ED961 

ED1090 leul-32 ura4-D18 h 

ED1118 cdc27-P11 h 

ED1119 cdc27-P11 h 

ED1126 weel-50 hisi -1 02 h 

ED1135 wis1::his1 his1102 ura4::fbpl-lacZ ade6-M216 h 

ED1147 =ED1076 

ED1151 styl-1 ura4-D18 leul-32 h 

ED1177 styl-1 ura4::fbpl-lacZ leul-32 h 

ED1185 cgs1::ura4 ura4::fbpl-lacZleul-32 h 

ED 1186 mcs4: :ura4 ura4 : :tbpl-lacZ ade6-M216 h 

ED1188 winl-1 ura4::fbpl-lacZ leul-32 h 

ED1207 winl-1 mcs4::ura4 ura4::fbpl-lacZ leul-32 h 

ED 1209 wis4: :ura4 ura4: :fbpl-lacZ h 

ED1211 winl-1 wis4::ura4 ura4-D18 leul-32 h 

ED 1225 mcs4: :ura4+  wis4:  :ura4+  ura4: :fbpl-lacZ h 

ED1234 winl-1 mcs4::ura4 wis4::ura4 ura4::fbpl-lacZ leul-32 h 

ED1256 wis1::his1 hisi? sty1::ura4 h 

ED 1274 patl-114 leul-32 h 

ED1275 patl-114 hisl-102 leul-32 ura4-294 h 

ED1278 atf1::ura4 leul-32 ura4-D18 h 

ED1281 atf1::ura4 ura4-D18 leul-32 h-  [pREP41-atfl+] 

ED1286 patl-114 wis1::his1 hisi -1 02 leul-32 h 

ED1287 patl-114 wis1::his1 hisl-102 leul-32 ura4-294 h 

ED1339 cdc25-22h 

ED 1340 swol-26 leul-32 ura4-D18 h 

ED1364 ppa1::ura4 ura4-D18 wisl::LEU2 leul-32 h 

ED1365 ppa1::ura4 ura4-D18 wisl::LEU2 leul-32 h 

ED1366 ppa2::ura4 ura4-D18 wisl::LEU2 leul-32 h- 
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ED1433 tps1::ura4 ura4-D18 ade6-M216 leul-32 h 

SF3 	sowl-T20 wis1::his1 hisl-102 h 

SP5 	sowl-T20 wis1::his1 hisl-102 leul-32 h 

SP19 	sow2-11 wis1::his1 hisi -1 02 h 

SP31 	sow2-11 wis1::his1 hisi -1 02 ura4::fbpl-lacZ h 

SP32 	sow2-11 wis1::his1 hisi -1 02 ura4::fbpl-lacZ h 

SP38 	sow2-7 wis1::his1 hisi -1 02 h 

SP39 	sow2-7 wis1::his1 hisl-102 ura4::fbpl-lacZ h 

SP55 	sowl-T20 wis1::his1 hisl-102 leul-32 ura4::fbpl-lacZ h 

SF60 	sowl-22 wis1::his1 hisi -102 ura4::fbpl-lacZ h 

SP64 	sowl-22 wis1::his1 hisl-102 h 

SF75 	sowl-22 wisi ::his1 hisi -102 patl-114 leul-32 ura4::fbpl- 

lacZh 

SP80 	sow2- 7 wisl : :hisl + hisl-102 patl-1 14 leul-32 ura4::fbpl-lacZ 

h 

SF93 	sow2-11 wis1::his1 hisl-102 patl-114 leul-32 ura4::fbpl- 

lacZ h? 

SF99 	sow2- 11 wisi : :hisl + hisi -102 pati -114 leul-32 ura4: :flpl- 

lacZ h? 

SF100 	sowl-22 wis1::his1 hisl-102 patl-114 leul-32 ura4::fbpl- 

lacZ h? 

SP133 	sowl-22 hisl-102 h 

SF148 	sow2-7 hisl -1 02 h 

SF165 	sow2-11 hisl-102 h 

SP232 	sow2-7 h 

SP237 	sowl-22 h 

SF239 	sow2-11 h 

T20 	sowl-T20 wis1::his1 hisi -1 02 ura4::fbpl-lacZ h 

T20.16 	sowl-T20 h 

T20.23 	sowl-T20 ura4::fbpl-lacZ h 
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2.1.2: Media and supplements used for yeast growth and matings. 

Nutritional Supplements 

Uracil, adenine, lysine, histidine and leucine were used to supplement 

ura, ade, lys, his and leu strains on minimal medium respectively. 50x 

(3.75 g/l) stock solutions were made for adenine and uracil; lOOx (7.5 g/l) 

stock solutions were made for the remaining supplements. Supplements 

were added to cooled media to a final concentration of 75pg/ml. Stock 

solutions were autoclaved and stored at room temperature. 

Osmotic and selective supplements 

To make medium containing sorbitol or KC1, the compound was added to 

hot medium, microwaved to ensure dissolution. All other chemicals were 

added to cooled media just before pouring. 

A stock solution of paraquat was made at 0. lg/ml in SDW and stored at 

-20°C. 

Normal handling of S. pombe, and media used were as described in (Alfa 

et al., 1993), with exceptions described below. 

YE 

Yeast extract medium is supplemented with adenine (75mg/I) and uracil 

(75mg/I). 

SPA Mating media 

SPA contains: lOg/I glucose; 1g/1 KH2PO4; 10mg/i biotin; 1mg/I calcium 

pantothenate; 10mg/I nicotinic acid; 10mg/I meso-inositol and 30g/l 

agarose. 

Phloxine B 

This dye stains dead cells in a colony. Thus it can be used to differentiate 

between diploid and haploid colonies (as diploids are slightly sicker than 

haploids) or to gauge the health of cells under deleterious conditions. A 

stock solution (x500) of lOmg/ml in ethanol was made and used at a final 

concentration of 20pg/ml in solid or liquid medium. 

33 



2.1.3: Propagation of yeast strains 

Strains were defrosted from -70°C onto YE (or appropriately 

supplemented MM for strains harbouring plasmids) and streaked 

straight to single colonies. Strains were stored at 5°C and replicated to 

fresh YE every week (for stationary phase sensitive strains) or every 

three-four weeks for hardier strains. This was repeated, three or four 

times, then fresh material was isolated from -70°C glycerol stocks. 

2.1.4: Procedure for mating yeast strains 

A very small amount (less than a toothpick end) of very freshly growing 

material of each of the h+  and h strains to be crossed was placed on 

mating medium and mixed with a toothpick with approximately 7j.tl 

SDW; allowed to dry briefly then incubated at 20°C or 25°C for strains 

which mate poorly, or 28°C for others. 

Tetrad dissection was performed after 1.5 to 3 days. 

2.1.4.1: Diploid selection 

Two strains were selected with at least one unique marker each, such 

that the diploid zygote formed would be prototrophic for these markers, 

but the individual haploid strains would be auxotrophic. The strains were 

mated on SPA as described above and after one, two and three days, a 

small amount of material was taken from the mating patch and streaked 

to single colonies at 28°C on MMPB supplemented appropriately to 

ensure only diploid strains can grow. 

Diploid colonies appear much darker pink on PB than haploid colonies. 

Microscopic examination was used to confirm suspected ploidy, as diploid 

cells are longer and somewhat fatter than haploids. Diploid strains were 

propagated for a few days at 25°C, 28°C or 32°C and then abandoned. 

2.1.4.2: Random Spore analysis 

The enzyme used is from the gut of the snail Helix pomatia (supplied as 

Suc d'Helix pomatia, Industrie Biologique, France) A small amount of 

material from the cross was suspended in imi of x50 dilution of a stock 

solution of snail gut enzyme (The stock solution is a lOx dilution of the 
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concentration it is supplied at, and is stored at 5°C). The suspension was 

incubated at 37°C overnight, pelleted (30s. at 13,000 rpm), the 

supernatant removed and the pellet resuspended in lml fresh SDW, then 

diluted xlOO. 10g1 and 100 jtl aliquots were plated onto appropriate 

medium, spread, and the plates were incubated until colonies appeared. 

2.1.4.3: Tetrad analysis 

A Singer MSM tetrad dissector was used. Very thin YE plates were 

poured and dried thoroughly prior to dissection. The manufacturer's 

instructions were followed for the manipulation of asci. Spores were 

hatched overnight at 20°C before dissection and then incubated until 

colonies appeared. 

2.1.4.4: Iodine Staining of spores 

An even 2-3mm layer of solid iodine (Sigma 1-3380) was spread in the 

inverted lid of a petri dish; the plate with the crosses to be tested was 

inverted over this for 5 mins, then allowed to destain if necessary. Plates 

were viewed against a black background. Successful matings (ie those 

containing spores) stain dark brown or black. 

2.1.5: Schizosaccharomyces pombe physiology 

2.1.5.1: Microscopic examination of S. pombe on plates 

Cells on plates were examined with a microscope with a x20 objective and 

xlO eyepiece, under bright field illumination. 

2.1.5.2: Sampling cell number 

Cell number was counted on a Coulter counter. lOOjil of culture were 

added to 9.9m1 Isoton II (Coulter Electronics 8448011). The sample was 

sonicated continuously for lOs on power setting 1 with a large probe and 

then counted immediately. 

For rough estimations of cell number, the optical density at 595 nm 

(0D595) was measured on a Hitachi U-2000 spectrophotometer. An 

0D595 of 0.25 was taken to correspond to 5x106  cells/ml. 
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2.1.5.3: Plate assay of viability 

At each time point cell number in the culture was counted and a sample 

was serially-diluted with distilled water and plated onto duplicate YE 

plates and incubated until the appearance of colonies. The proportion of 

viable cells in the original culture was hence calculated. 

2.1.5.4: Exponentially-growing liquid cultures 

An over-night lOmi starter culture of the appropriate medium was 

inoculated with material (preferably from a single colony) on an agar 

plate. This culture was then diluted into a main culture so that when 

grown overnight, it would yield a culture of roughly 2-5x106  cells/mi. 

Mid-log phase was taken as 5x106  cells per ml, and entry into stationary 

phase above roughly 1.5x107  cells/mi. 

2.1.5.5: Measuring Cell length 

A imi sample of an exponentially-growing MM culture was centrifuged 

for lOs and approximately 950 j.il  of supernatant discarded. The loose 

pellet was resuspended in the remaining medium and then pipetted onto 

a slide and allowed to dry briefly before covering. 

Cell length at division was measured using phase microscopy with a xlOO 

objective and an eyepiece graticule. The length of cells that had formed a 

septum but had not yet begun cytokinesis were measured, as described in 

(Alfa et al., 1993). As far as possible, all measurements were made in the 

same focal plane to ensure repeatability. 

2.1.5.6: 13-galactosidase assay 

The methods are derived from (Miller, 1972). 

The presence or absence of the lacZ gene can be assayed on plates, but 

quantitative measurements of 13-galactosidase activity must be done in 

liquid culture. 

Plate 13-galactosidase assay 

Immediately prior to the assay, 13-mercaptoethanol was added to Z-buffer 

to a final concentration of 2.6% by volume. 
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Cells growing on a plate were transferred onto filter paper. To do this, 

two circles of filter paper (Whatman 1001 150) cut to size were placed on 

top of a velvet on a replicating block. The petri dish was inverted over the 

paper and even pressure applied until the whole of the paper had made 

contact with the surface of the agar. The plate was then removed and the 

filter paper with the cells adhered to it carefully peeled off the agar with 

tweezers. 

The filter and cells were frozen at -70°C for 15 minutes then allowed to 

thaw at 37°C for 15 minutes. lOmi Z-Buffer and 0.25 ml X-gal (40mg/mi) 

in DMSO were mixed and the filter paper was briefly immersed in this 

solution. The filter was incubated at 28°C until the appearance of a blue 

colour in patches that contain the lacZ gene (10 to 30 minutes). 

Liquid culture B-galactosidase assay 

Immediately prior to the assay, 13-mercaptoethanol was added to Z-buffer 

to a final concentration of 2.6% by volume. 

100p1 of cells (concentrated by centrifugation if necessary) were added to 

900p1 Z-buffer in an Eppendorf, 30gl chloroform and 20jil 0.1% sodium 

dodecyl sulphate (SDS) were added and the tube was vortexed vigorously 

for ten seconds and then pre-warmed in a water bath at 28°C for ten 

minutes. 

200j.tl ONPG solution were added, the tube was vortexed and incubated 

at 28°C for 10 to 60 minutes. The reaction was stopped by adding 250p.1 

Na2CO3 and vortexing briefly. The tube was then centrifuged at 13,000 

rpm for 10 minutes, and imi of supernatant pipetted into a 2m1 

disposable cuvette (Fisons CXA-100-030R). Optical density at 420 nm was 

measured on a Hitachi U-2000 spectrophotometer against a blank which 

was identical except that it contained no cells. 

X-gal solution 

5-bromo-4-chloro-3-indoyl-13-D-galactopyranoside (X-gal) (Biosynth AG) 

was dissolved in dimethyl sulphoxide (DMSO) at 40mg/mi and stored at 

-20°C. 

Z-buffer 
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Disodium hydrogen orthophosphate dihydrate (5.12g), sodium dihydrogen 

orthophosphate dihydrate (3.1g), potassium chloride (376mg), magnesium 

sulphate heptahydrate (125mg) were dissolved in deionised water and 

made up to 500m1 and autoclaved. 

ONPG 

A solution of 4mg/ml o-nitrophenyl 13-D-galactopyranoside (ONPG) 

(Sigma N 1127) was made up in water and stored at -20°C. 

2.1.5.7: DAPI staining of DNA 

Cells were fixed and their nuclei were stained as described by MacNeill 

(MacNeill and Fantes, 1993) 

2.1.5.8: Mutagenesis of fission yeast 

The protocol was adapted from the method described for budding yeast 

(Lawrence, 1991). A Stratalinker was used to provide LTV radiation with 

wavelength 254 gm, and cells were placed in an open glass petri dish. 

Stirring was effected by swirling the petri dish halfway through the 

irradiation until Mutagenesis V, when the culture was stirred very 

vigorously magnetically. After irradiation cells were kept in the dark for 

at least twenty-four hours to prevent photoreactivation. 

2.1.6: Manipulation of Schizosaceharomyces pombe DNA 

2.1.6.1: The plasmid used for transformation of S. pombe 

pON160 was obtained from Olaf Nielsen. It contains fission yeast arsi 

(autonomously replicating sequence) and ura4+ sequences. 

2.1.6.2: Electroporation of S. pombe 

This was performed as described by Prentice (Prentice, 1992). 

2.1.6.3: Lithium acetate transformation of S. pombe 

The strain to be transformed was grown in YE to 10  cells/mi. The cells 

were collected by centrifugation at 3,000 rpm for 10' at room temperature, 

washed twice with 10 ml TE (pH 8.0), resuspended in lOml TE (pH 8.0) 



containing 0.1 M lithium acetate, and left at room temperature for one 

hour. 

The cells were collected by centrifugation and resuspended at 

approximately 3.5x108  cells per ml in TE (pH 8.0) containing 0.1 M 

lithium acetate. 150.il aliquots of this suspension (roughly 5x107  cells) 

were mixed with 350 p1 50% PEG (mw 3350) and 0.1 to 1pg plasmid DNA 

and left for one hour at room temperature. 

The cells were then pelleted, resuspended in SDW and plated on selective 

media. 

2.1.6.4: Plasmid stability assay 

A lOml YE culture was inoculated with a very small amount of the 

plasmid-bearing strain using a sterile wire loop and then incubated 

overnight. The cell density of the culture was estimated and a sample of 

the culture was diluted and plated on YE to obtain plates with roughly 

100 colonies. 

Once colonies had formed, the plates were replicated to MM with and 

without the supplement synthesised by the product of the marker gene on 

the plasmid. Thus colonies that had lost the plasmid would not grow 

without the appropriate supplement and those that had retained it would 

grow without the supplement. 

The numbers of colonies with and without the plasmid were counted. If 

all colonies had retained the plasmid it was assumed to have integrated, 

and if some of the colonies had lost the plasmid it was assumed to be 

unintegrated. 

2.2: Bacterial procedures 

Escherichia coli bacteria were grown and manipulated as described by 

Sambrook (Sambrook et al., 1989). 

2.2.1: E. coli Plasmids 

Dr. Gancedo kindly sent the plasmid pMR821 at 2jig/pl which contained 

the tps1 open-reading frame (see Figure 3.7). 
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2.2.2: Bacterial Strains 

Electrocompetent XL1 Blue E. coli were kindly made by Michael Carr 

(according to Sambrook et al., 1989). 

Heat shock competent JM109 E. coli cells were obtained from Promega 

(High Efficiency Competent Cells #L2001) or kindly made by Hat Ahmed 

(according to Sambrook et al., 1989). 

2.3: Molecular Biology 

1.5m1 Eppendorf tubes were used wherever convenient. 

SDW refers to sterile (autoclaved) deionised water. 

2.3.1: Solutions and chemicals used 

Chemicals were analytical grade unless otherwise specified and obtained 

from Fisons, Sigma or BDH. 

3M sodium acetate (pH 4.6/5.2) 

1xTE, 50xTAE (Tris-acetate) and 50xTBE (Tris-borate) were made 

according to Sambrook et al. (1989). 

dNTPs a solution of 10mM of each dNTP (stored at -20°C) 

2.3.1.1: DNA solutions 

Isolated DNA was dissolved in TE or SDW and stored at -20°C. 

2.3.2: Agarose Gels 

0.8% agarose gels were made with TBE containing 0.5jig/ml ethidium 

bromide (from a 10mg/mi aqueous stock so1ution (Sigma E-1510)). TAE 

buffer was used occasionally. 

Loading Buffer was added to samples prior to loading. 
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2.3.3: Amplification of DNA 

Small-scale: Promega Wizard Plus minipreps (cat. no. A1330) were used 

according to manufacturer's instructions. 

Medium-scale: Promega Wizard Plus midipreps (cat. no. A7640) were 

used according to manufacturer's instructions. 

2.3.4: Gel purification of restriction digests. 

Gel purification was performed using a Qiagen Qiaquick gel extraction 

kit (cat. no. 28704) according to the manufacturer's instructions. 

2.3.5: Polymerase Chain Reaction 

Taq polymerase (Promega #M1861) was used as per the protocol given in 

Promega manual (see Beckler et al., 1996). 

2.3.5.1: PCR conditions. 

The protocol given in the Promega guide (Beckler et al., 1996) was 

followed exactly. A heated-lid thermal cycler was used with the following 

programme: 

95°C 1' 

35 cycles of (95°C 1'; 45°C 1'; 72°C 3') 

72°C 10' 

2.3.5.2: Primers for PCR amplification of S. pombe tps1 

The sequence of the 5' and 3' primers used were "AGC TGT CGA CAT 

GTC GGA TGC TCA TGA T" and "GAT CGC ATC CTC ACC GAC AAA 

GCT TTG G" respectively, with calculated Tms of 52°C and 54°C. They 

were diluted to lOOpmolIpJ and stored at -20°C. 

2.3.6: Restriction Digestion of DNA 

Digestion mixes were made according to instructions from the supplier of 

the enzyme, in a total volume of 20tl. The state of the reaction was 
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judged by agarose gel electrophoresis in the presence of ethidium bromide 

and visualised by UV transillumination. 

2.3.7: Ligation of DNA fragments. 

Ligations of PCR fragments into the pGEM-T Easy vector (Promega 

#A1360) were set up according to the manufacturer's instructions and 

allowed sixteen to twenty hours at 18°C to 20°C. The ligation mix was de-

salted with a Millipore 0.025!lm dialysis membrane (cat. no. VSWP 025 

00) before being transformed into E. coli cells. 

Ligations of fragments that had been cut from vectors were performed in 

a volume of 10j.d at 18°C with T4 DNA ligase (Promega #M1801) (as 

described in Beckler et al., 1996). 

2.3.8: Blue/White colour screening for ligations 

Carried out on LB+Amp plates containing 0. 1mM IPTG (B-D-isopropyl-

thiogalactopyranoside) and 40pg/ml X-Gal (5-bromo-4-chloro-3-indolyl-J3 - 

galactopyranoside) (as described in Beckler et al., 1996). 
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Chapter 3: 

Characterisation of Wisi and its pathway. 

3.1: Introduction 

In an attempt to add to the paltry amount known about Wisi when this 

project started, two different approaches were decided upon and this 

chapter deals with both: first, a detailed investigation into the stress 

sensitivity of a wisTh strain was undertaken in an attempt to understand 

the mechanism involved (see Section 3.2). Second, as Wisl is a MAPKK 

(Warbrick and Fantes, 1991), it would almost certainly lie in a signal 

transduction pathway. Attempts were therefore made to discover whether 

any known genes with promising phenotypes or genetic interactions could 

be placed in such a pathway (see Section 3.3). 

3.2: wislA stress sensitivity: a study. 

3.2.1: Ultra-violet sensitivity. 

Before this project was started, it was known that high salt, high 

temperature (Degols et al., 1996; Millar et al., 1995; Shiozaki and Russell, 

1995b; Stettler and Fantes, 1994) and stationary phase (Kato et al., 1996; 

Warbrick and Fantes, 1991) were lethal to wis1tt cells. I wondered 

whether they might also be sensitive to ultra-violet radiation. 

To examine this, liquid YE cultures of a wild type strain (ED812) and a 

wisTh strain (ED1135) were set up and grown to mid-log phase at 32°C. 

Cells were harvested and 102  to  106  were plated per petri dish. The 

plates were exposed to U. V. radiation at 254nm varying from zero to 

2000 JIm2  and then incubated in the dark at 32°C. The number of 

colonies that formed was counted and the results plotted on a graph (see 

Figure 3.1). 

43 



100 

10 

 

—s----  wild type (ED812) 

wis1(ED1135) 

.001 

.0001 
0 	200 400 600 800 1000 1200 1400 1600 1800 2000 

U.V. dose (J/m2) 

Figure 3.1: A wislA strain is hyper-sensitive to ultra-violet 
radiation. 
See text and Chapter 2 for experimental details. 

As can be seen from this graph, the wislA strain is much more sensitive 

to U.V. radiation than the wild type. 

3.2.2: Investigation of wislA heat sensitivity. 

3.2.2.1: Shift to 36°C. 

As discussed above, wislA strains are unable to proliferate to give rise to 

colonies at 36°C. Microscopic examination after two days at this 

temperature, reveals that the cells have become very long and branched 

(Stettler et al., 1996). This phenotype is reminiscent of cell division cycle 

(cdc) mutants under the same conditions. 

This suggests that one possible reason for the loss of viability seen at 

36°C is that under these conditions, wislA cells behave like cdc mutants 

at the restrictive temperature, ie cell growth continues yet division is 

blocked. 
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To investigate whether this was the case, cell number was counted in a 

wild type (ED812) and a wislA (ED976) culture following a shift to 36°C 

from 32°C in liquid MM medium. The results are shown in Figure 3.2. 

10 8  

-a)---- ED8l2 wild type 

ED976 wis1t 

10 6  

012345678910111213 

time (hrs) 

Figure 3.2: Cell number increase following shift 
Cell number was counted with a Coulter Counter following a shift from 32°C to 36°C at time 
= 0. 

Following a shift up, wild type cells continue to divide normally, until by 

thirteen hours, they have entered stationary phase. In contrast, wislA 

cell number plateaus some three hours after the shift, having increased 

by a factor of about two. Thus, each cell in the wislA culture divides about 

once, suggesting that cells initially in G2 complete the next M phase and 

then arrest in the cycle following that. 

This experiment shows that wislA cells stop dividing approximately one 

cell cycle after the shift. But to determine whether cell growth continues 

over the same time period, cell length was measured and is shown in 

Figure 3.3. 
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Figure 3.3: Cell length of wis1E cells after a shift to 36°C. 
The lengths of cells that had just completed septum formation were measured until two hours 
after the shift, thereafter, all cells that appeared to be still growing were measured. The error 
bars are the Standard Error of the mean. 

As the graph shows, wisliX cells continued to grow. Furthermore, in an 

independent experiment, which showed identical behaviour over the first 

five hours, the length of septated wis1L cells at 12.85 hours had further 

increased to (55±8) p.m (see below). 

The data presented in these two experiments are consistent with the 

failure of wis1L\ cells to proliferate at high temperature being due to a cdc 

arrest. For the first five or so hours a shift to restrictive temperature is 

reversible for many of the cdc mutants (Nurse et al., 1976). To see at 

what time after the shift wislA cells lost the ability to proliferate, cells 

were plated for viability. The data obtained are presented in Figure 3.4. 
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Figure 3.4: Cell viability for wisTh cells shifted to 36°C. 
See text and Chapter 2 for details. 

A three-fold decrease in viability was seen within an hour of shifting 

wis1L cells to the higher temperature. Viability remained steady for three 

hours and then decreased dramatically. Wild type cells remained fully 

viable throughout the experiment. 

The two-stage decrease in viability seen in Figure 3.4 suggests that at 

least two different effects are the cause: the first initial drop is likely due 

to the heat shock caused when wislA cells are suddenly exposed to 36°C. 

This appears to kill roughly two-thirds of the cells immediately. The 

remainder survive for a few hours and then begin to die. This later 

behaviour is similar to that of a typical cdc mutant (see Nurse et al., 

1976). 

These two stages of cell death mean that there will be two populations of 

cells: those that are killed instantly, and therefore do not have a chance to 

elongate; and those that survive the heat shock and continue to grow, but 

fail to divide. 

In case the use of distilled water as a dilutant was responsible for the loss 

of viability seen, this experiment was repeated using YE to dilute the 
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culture for viability plating assays (data not shown). Although this second 

treatment led to slightly higher survival of the wislA strain, there was no 

real difference between the two treatments. 

3.2.2.2: wisi weel mutants at 36°C. 

A possible conclusion from these experiments is that wisi 1.. cells die at 

36°C from an irreversible cell cycle block. Strains containing the weel 

mutation divide at a reduced length relative to weel + strain and 

furthermore, wislA weel-50 double mutants are "wee" in length 

(Warbrick and Fantes, 1991), showing that a weel mutation is epistatic to 

wisi, at least as far as cell division is concerned. An interesting question 

is whether in a wislA background, the presence of the weel mutation is 

capable of suppressing stress sensitivity, as well as the cell length defect 

if the wislA mutant. 

The stress resistance of wislA weel double mutant strains was therefore 

examined. 

The weel wisi strain (ED942), together with wild type (ED812), wislA 

(ED976) and weel-50 (ED1006) control strains were grown on YE plates 

at 32°C and then streaked to single colonies at 36°C and on 1.2M KC1 YE. 

Under both sets of conditions, the wild type and weel-50 strains had 

formed colonies of cells; whereas neither the wislA, nor the weel wislA 

strains had formed any colonies. On microscopic inspection, the double 

mutant cells showed some variation in cell length, but the vast majority 

were short (or "semi-wee"). 

This experiment seemed to show that although the presence of the weel 

mutation was preventing most of the wislA cells from elongating, it was 

not preventing them from dying. 

To investigate the timing of the cell death seen on plates, a weel wislA 

culture was grown in liquid MM, with wild type, weel and wisA controls. 

Cell number following a shift to 36°C was followed and is graphed below 

in Figure 3.5. 
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Figure 3.5: Cell number increase for weel and wisi strains 
following a shift to 36°C. 
Strains were grown in MM at 32°C and shifted to 36°C at time=0. Cell number was counted 
with a Coulter Counter. 

Cell division in the weel wislA culture ceased roughly three hours after 

the shift up, which is similar to a wislA strain (see Figure 3.5 above). The 

weel-50 strain continued to divide, just like the wild type control. 

Thus the lack of Wee1 does not affect the timing or the extent of the 

heat sensitivity of a wislA strain. But, at 32°C, weel-50 strains have 

almost no Weel activity, and are therefore in a weel steady state. A more 

revealing experiment to address the issue of whether forcing cell division 

rescues the temperature sensitivity of a wislA strain would involve 

shifting weel-50 wislA cells up from 25°C (which is the permissive 

temperature for weel-50) to 36°C and following viability, cell length and 

number. 

3.2.3: DAPI staining at 37°C 

From these results, it was expected that other phenotypes would be 

apparent when wislA cells were incubated at high temperature. To 

examine the DNA under these conditions, wislA and wild type cells were 

stained with DAFT (which stains DNA blue under fluorescence) and 

examined microscopically at various times after a shift to 37°C. For the 
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first two hours after the shift, wislA nuclei remained indistinguishable 

from those of wild type cells. However, between this time and five hours, 

they became gradually more diffuse (data not shown). The disruption of 

the nucleus seen at later time points appears to go hand in hand with the 

second stage of loss of viability (see Section 3.2.2.1 and Figure 3.4). 

3.2.4: Investigation of osmoremediability of wislA 

wislA mutants display heat sensitivity. To investigate this, Sophie 

Stettler tried to rescue this phenotype by the addition of sorbitol, which is 

a known osmoprotectant. wislA cells were streaked onto YE 

supplemented with 1M sorbitol and incubated at 36°C. Surprisingly, the 

wislA cells formed colonies, showing that the heat sensitivity of wislA 

was indeed osmoremediable. 

Dr. Chales Hoffman suggested that the observation that a considerable 

proportion of temperature sensitive mutations are osmoremediable might 

throw some light on the mechanism that lies behind the 

osmoremediability of wislA. I decided to investigate the range of 

concentrations of sorbitol that would allow wislA strains to grow at 36°C. 

Freshly growing strains ED976 (wislA) and wild type ED812 (h) were 

streaked to single colonies at 36°C on YE supplemented with various 

concentrations of sorbitol from 0 to 1.2M. It was already known that 1.5M 

sorbitol was lethal, even at normal temperatures (Millar et al., 1995; 

Shiozaki and Russell, 1995a). After two days the plates were examined 

for colony formation and, for the wislA strain, cell morphology, as 

described in Table 3.1 and Figure 3.6. 

50 



Table 3.1: wislA can grow at 36°C on sorbitol-supplemented YE 

test OWMM  
wild type  wislA 

sorbitol growth growth cell morphology 
concentration 

(M) 
o + - very long, branched, 

swollen cells 
0.5 + (+) very long, swollen, sick 

cells 
0.8 + + elongated, but healthy 

and _dividing _normally 
0.9 + + elongated, but healthy 

and _dividing _normally 
1.0 + + elongated, but healthy 

and _dividing _normally 
1.2 + (+) very long, swollen, sick 

cells 
- indicates no colony formation; (4-)  indicates the formation of some micro-colonies; + means 
all cells formed normal colonies. 

-sorbitol 	+0.9 M sorbitol 

cdc27- 
P11 	wislA 

cdc2-1w Iswol-26 

cdcl 3- 
117 	cdc2-3w 

weel -50 kdc25-22 

Figure 3.6: The effect on growth at 35°C of adding sorbitol to the 
medium. 
Strains used: ED812 wild type; ED976 wis1E.; ED1340 swol-26; ED683 cdc2-1w; ED1119 
cdc27-P11; ED907 cdc2-33; ED1039 cdc2-3w; ED1338 cdc25-22; ED1006 weel-50; ED716 
cdcl 3-117. They were grown on YE + 0.9M sorbitol at 35°C. 



The addition of intermediate concentrations of sorbitol (0.8M to 1.OM) to 

the medium allows wislA strains to grow at 35°C, and furthermore, 

reduced the length they divide at. At concentrations outside this range, 

the typical wis1L. high temperature phenotype was seen. Clearly, in a 

wislA mutant, Wisl protein itself cannot be rescued by an 

osmoprotectant, but one or more of its targets could be. Osmolarity and 

high temperature both affect protein folding. One possible explanation for 

the effect seen is that the addition of sorbitol is capable of reversing the 

deleterious effects on protein structure of high temperature. Furthermore, 

both the lethality and the cell cycle defect are being rescued. 

Sorbitol is also capable of at least partially rescuing growth at 35°C of 

strains containing the following mutations: wee l-50, cdc27-P11 and 

cdc25-22. 

3.2.5: The role of trehalose-6-P svnthase in heat shock survival 

Over-expression of glycerol-3-phosphate dehydrogenase, encoded by the 

gpdl gene was shown to be sufficient to rescue the salt sensitivity of a 

wislA strain (Aiba et al., 1995). But, unlike sorbitol, this was incapable of 

rescuing the cell length defect and temperature sensitivity associated 

with lack of wis1. 

Given that over-expression of gpdl + is sufficient to suppress the salt 

sensitivity of a wislA strain, I wondered whether wislA temperature 

sensitivity could be suppressed in a similar manner. An obvious 

experiment to investigate this would be to over-express tpsl+, which 

encodes trehalose-6-phosphate synthase, as this enzyme is implicated in 

heat shock survival (Piper, 1993). 

The plasmid pMR821 (see Figure 3.7), which contains the tps1 open-

reading frame was amplified. 
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Figure 3.7: Scheme of plasmid design. 
Primers were designed to produce a Sall-BamH! PCR product containing the tps1open 
reading frame.fragment. This was ligated into a Promega pGEM-T easy vector, to make 
pSEP1, which was amplified and digested with Sal! and BamHl. The tpsltcontaining 
fragment was ligated into BamHlISall digested pREP-3X to make pSEP2. 
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A PCR approach was adopted to amplify the tps1 open-reading frame 

(ORF). Primers were designed to enable the amplified ORF to be ligated 

between the Sail and BamHI sites in the pREP-3X plasmid (see Figure 

3.7). 

A sample of the PCR was run on a gel and produced a single band at 

about 1400bp, which is consistent with the expected size of the ORF of 

1439 bp (see Figure 3.8). 

1 	2 

1.6kb 

1.0kb 

Figure 3.8: PCR to amplify the tps1 ORF. 
lane 1: 1 kb ladder; lane 2 PCR mix. The band in lane 2 at approximately 1.4kb corresponds 
to the size expected for the tps1 open reading frame. 

The PCR product was gel purified and transferred into pGEM-T EASY 

(supplied by Promega) in three different reactions, with the following 

molar ratios of insert to vector DNA: 4:1, 1:1 and 1:4. XL1 Blue E. coii 

were transformed with the ligation mix and plated onto LB Amp plates 

overnight at 37°C. Of the five colonies that grew in the 4:1 ratio 

transformation, a single one was white. This colony was picked into LB 

Amp medium and the plasmid DNA contained was isolated using a 

Qiagen MIDI prep kit. This plasmid was named pSEP1. 

Samples of this DNA were run on a gel after restriction digestion with 

BamHl and/or Sail, to give the gel shown in Figure 3.9. 



1234 

4 kb 
3 kb 

2 kb 
1.6 kb - 

iffelIMOM  

Figure 3.9: BamHI and Sail single and double digests on pSEP1. 
lanel: 1 k ladder; 2: BamHI single digest; 3: Sall single digest; 4: double digest. 

The 1.45kb fragment representing the tps1 ORF was gel purified from a 

BamHI/SaiI double digestion, and transferred into gel purified pREP-3X 

which had also been double digested with BamHI and Sail. 

This ligation was used to transform a JM109 strain and DNA was 

recovered from twenty-three of the resulting colonies by mini-prep. After 

Hindlil digestion the DNA was run on a gel. An extra band at 1.6kb from 

inclusion of the tps1 ORF insert appeared in samples 8, 17 and 27. 

To analyse these plasmids, DNA from sample number 8 was digested 

with BamHI/SaiI and Hindill and run on a gel with various controls (see 

Figure 3.10) 
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Figure 3.10 
lanel: 1 k ladder; 2: pREP-3X BamHl digest; 3: pREP-3X Hind/li digest; 4: pSEP2 
BamHI/SaII digest; 5: pSEP2 Hind//I digest; 6: tpsl ORF. 

This band pattern was consistent with the tps1 ORF having integrated 

into the pREP-3X vector. In this vector, transcription is under the control 

of the nmtl promoter and is repressed in the presence of thiamine. All 

three plasmids (8, 17 and 27) were used to transform wis1 and wislA S. 

pombe strains. Six resulting strains from each of the transformations 

were streaked (± thiamine) to single colonies on MM, on MM + 1.2 M KC1 

and on MM at 36°C. 

None of the wislA phenotypes was rescued in the transformants: they 

showed a cell length defect, and were salt and temperature sensitive. This 

suggests that over-expression of tpsl+ is not sufficient to rescue wislA 

temperature sensitivity, although sequencing of the tps1 ORF in 

plasmid pSEP2 would be required to confirm that the correct sequence 

has been PCR amplified and cloned. 

3.3: Investigating the architecture of the Wisi pathway. 

3.3.1: Are wini and styl allelic? 

The styl gene encodes the MAPK downstream of the MAPKK Wisi 

(Millar et al., 1995). One of the genes that was thought to be in the 

pathway is wini, which had not been cloned yet. The only allele of it was 

the mutation win1-1 , whose molecular nature was unknown. The cell 



length defect phenotype of win1-1, and its genetic interaction with wisi 

were consistent with it being a partial loss of function allele of styl. To 
investigate this, a styl-1 strain (JM 1144) was crossed to a winl-1 

strain (ED632). 

Five four-spored asci were obtained: the segregants were streaked onto 

YE KC1 plates. After two days, colony growth and cell morphology were 

examined. By examining control strains, which had been streaked under 

these conditions, it was clear that wild type cells were distinguishable 

from the two mutants, the former being short and able to form colonies, 

whereas styl-1 cells were unable to form colonies and died highly 

elongated. In contrast, winl-1 cells formed colonies, but the cells were 

long and slightly swollen. 

In one of the tetrads there were two wild type segregants; in three, there 

was one wild type segregant and in the fifth, there was none, indicating 

that the tetrads fall into NPD, TT and PD classes, respectively. This 

shows that styl-1 and winl-1 are different genes which are not closely 

linked. 

wini has since been cloned by Itaru Samejima and he has shown that it 

encodes a MAPKKK which activates Wisi (pers. comm.). 

3.3.2: Stress sensitivity, ftipl and the Wisi pathway. 

3.3.2.1: Growth at high temperature and on high salt. 

wisi and wis4 were cloned as genetic interactors with wini and were also 

shown to interact genetically with mcs4 (Warbrick and Fantes, 1992). In 

addition, the three mutants mcs4, wini and wis4 are elongated at 

division. Taken together, these data suggest that these three genes might 

lie somewhere in the Wisi pathway. 

Genetical experiments were undertaken in collaboration with Itaru 

Samejima on epistasis relationships between these putative Wisi 

pathway genes to try to understand how they might fit into the pathway. 

Single, double and triple mutants containing the genes mcs4, wis4 and 

wini were constructed. The resulting strains were tested for sensitivity to 

high temperature and high salt, as shown in Table 3.2. 
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Table 3.2: wisi pathway mutants under stress. 
Strain genotype growth on KC1 at 

32°C  
growth at 36°C 

ED900 wild type + + 
ED1186 mcs4 + (+) 
ED1209 wis4 + + 
ED1188 wini + + 
ED1207 mcs4winl - - 
ED1211 wis4winl  
ED 1225 wis4 mcs4 + (+) 
ED1234 wis4 wini mcs4 - - 
ED1151 styl - - 
ED1085 wisi - - 
Freshly-growing material was streaked to single colonies under the conditions shown. 
+ indicates that many single colonies of healthy cells formed; (+) that some single colonies 
formed and cells in them were slightly sick; - indicates that no colonies formed. 

The presence of a single wini, wis4 or mcs4 mutant does not make cells 

stress sensitive. The same is true of the wis4 mcs4 double mutant. 

However, the three multiple mutants that contained the winl-1 mutation 

(wini mcs4, wini wis4 and wini mcs4 wis4) were stress sensitive and 

were phenotypically identical to the wisi and styl controls. 

The observations that wini wis4 and wini mcs4 double mutants are 

stress sensitive are consistent with wini lying parallel to mcs4 and wis4 

in the wisi pathway. The stress-resistance shown by the wis4 

mcs4 double mutant suggests that these two genes lie in series. 

Consistent with this, over-expression of an activated allele of wis4+ can 

rescue the cell cycle defect of an mcs4 mutation (Warbrick and Fantes, 

1992), which places wis4 downstream of mcs4 (see Figure 3.11). 



I 	 V 
mcs4 

IF 
	

V 
wini 	wis4 

wis I 

Figure 3.11: Schematic model of Wisi pathway. 
Wis4 and Mcs4 lie upstream of Wisi in a separate branch of the pathway from Wini. 

The pkal and cyrl genes lie in the cA-PK pathway which acts 

antagonistically to the wisi pathway. Thus, it is surprising that both 

pkal and cyrl mutants should be salt sensitive. 

In addition to this study of stress sensitivity, Wisi activity was monitored 

by assaying fbpl induction in the strains shown in Table 3.2. 

3.3.2.2: fbpl induction following a shift to low glucose. 

The tbpl gene encodes fructose-1,6-bisphosphatase, which is required for 

gluconeogenesis. wisl+ is required for its transcription (Stettler et al., 

1996), which is also regulated by the cA-PK pathway (Hoffman and 

Winston, 1991). The level oftbpl transcription in mutants of interest can 

therefore be assayed (Hoffman and Winston, 1990) to determine whether 

the mutation defines a gene in the wisi pathway Furthermore, genetic 

epistasis relationships can be studied in multiple mutants (Stettler et al., 

1996). 

Single or multiple wisi pathway mutants were grown in liquid MM in the 

presence of glucose and then shifted to low glucose medium, and 

transcription from the fbpi promoter was monitored by assaying activity 

of B-galactosidase activity from the fbpl-lacZ construct included in these 

strains. The results are shown in Figure 3.12. 
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Figure 3.12: Induction of tbpl expression following shift to low 
glucose. 
Strains were grown in MM and shifted to MM low glucose (0.1%) at time = 0. 

The wild type strain (ED900) shows a rapid and strong induction of fbpl 

expression following the shift. Although all the mutants tested showed a 

reduced induction, patterns emerged and will be discussed in turn. 

In considering these observations, it is useful to remember that Wis4 acts 

downstream of Mcs4 and that Wini acts in parallel to these two proteins. 

The induction seen in the wini strain was approximately a quarter that 

of the wild type, but took place with the same timing. In contrast, the 

mcs4 and wis4 strains showed no response for four hours and then 

showed a large response roughly equal in size to the wild type. 

Unsurprisingly, the mcs4 wis4 double mutant showed identical behaviour 

to this. 

Interestingly, when the wini mutation was introduced into the mcs4, 

wis4 and mcs4 wis4 strains, a roughly four-fold reduction in the level of 
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induction was seen, but there was no change in its timing. This is similar 

to the effect seen when the wini mutation is introduced into a wild type 

strain. 

Both the styl and the wisi strains showed no induction at all, whereas 

the wini mcs4 wis4 triple mutant had shown some induction. This 

suggests that Win 1-1 protein has some residual activity, or that there 

may be another protein acting in parallel to Wini and Mcs4/Wis4. 

The pattern that emerges from consideration of the win 1, wis4 and mcs4 

mutants is consistent with the model presented above, namely that Wini 

acts in parallel to the other two proteins. Furthermore, mcs4+  and wis4+ 

seem to be responsible for a swift, if small-scale response to a shift in 

nutritional conditions, whilst winl+ appears to transduce the signal more 

slowly, even though the signal is larger. 

To determine whether these three genes lie upstream or downstream of 

wisi, wild type, alleles of wisi that encode activated and catalytically 

inactive versions of Wisi were over-expressed in these strains. 

3.3.3: Interactions between the Wisi and cA-PK pathways. 

Over-expression of wis1 is lethal in a wild type strain. This lethality will 

be abrogated in a mutant strain that no longer allows the signal resulting 

from the over-activation of the Wisi pathway. Thus if over-production of 

Wisi in a given mutant background is no longer lethal, then the mutation 

lies in a gene via which Wisi signals are normally transmitted. 

Using this approach, in conjunction with the observation that over-

expression of an activated allele of wisi was still lethal, the three genes, 

mcs4, wini and wis4 were placed upstream of wisi by Itaru Samejima. 

Additional strains were transformed as part of the work in this thesis: I 

chose two cA-PK pathway mutants, namely pkal and cgsl, to investigate 

how this pathway interacted with the wisi pathway. Table 3.3 presents 

the results obtained. 
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Table 3.3: over-expression of wisi + in cA-PK mutants. 
host 

strain 
vector alone wisl+ over-production 

cols. cells cols. cells 
wild 
type 

+ normal - lysis, swollen, fat, 
 short 

pkal + short, round - no division, some 
lysis, short, round 

cgsl + long - hetero-geneous, 
some lysis, fat 

The formation of colonies and appearance of cells are given for pkal and cgsl mutants 
transformed with a control vector and over-expressing wisl +. 

Loss of either pkal or cgsl does not relieve the lethality of over-

expression of wisl+. In fact in apkal background it seems to be even 

more deleterious to the cells than in wild type: they die before the first 

division. This synthetic interaction suggests that the two pathways lie in 

parallel, rather than in series. Furthermore, the presence of a cgsl 

mutation reduces the amount of lysis seen and allows cells to grow 

further before dying, suggesting this gene acts antagonistically to wisi. 

This is understandable, as Pkal and a Cgsl act in opposite directions in 

the cA-PR pathway. 

These observations are consistent with others (eg Stettler et al., 1996), 

which suggest that the wisi and pkal pathways act in opposite 

directions. For example, the cell length of cgslA wislA double mutants is 

longer than that of the two single mutants. Consistent with this, I 

observed that while cgs1Lt and wislA strains are partially sterile, the 

double mutant is completely sterile. These data strongly imply that the 

two pathways must at least act in parallel at some point. 

3.4: Conclusions for Chapter 3. 

The purposes of the experiments in this chapter were twofold: first to try 

to understand the nature of the stress sensitivity of a wislA and second to 

throw light onto the architecture of the wisi pathway. 

In addition to heat, salt and starvation sensitivity, wislA cells are more 

susceptible to U.V. radiation than wild type, as found during this work 

and by two other groups (Degols and Russell, 1997; Kato et al., 1996). 
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But, wislj\ stress sensitivity is not limited to the environmental 

challenges discussed so far: the mutant also tolerates oxidative stress 

(Degols et al., 1996), gamma rays and bleomycin (Kato et al., 1996) much 

less well than wild type. 

Although wislti cells are known to die from a variety of stresses, little is 

known about how this comes about. It seems that, at least for heat stress, 

the cells die in two stages. The first, being instant, seems to be caused by 

the failure of the cells to tolerate the shock of sudden transfer to a high 

temperature. Indeed, wis1L cells are highly sensitive to heat shock at 

47°C (Stettler et al., 1996). 

The second wave of death, interestingly, involves both a cell cycle arrest 

after approximately one division, and cellular elongation, owing to 

continued growth. Furthermore, this arrest is reversible for several hours. 

This behaviour is highly similar to that of a typical cdc mutant (Nurse et 

al., 1976). This suggests that a component of the cell cycle machinery 

becomes inactive in a wislA strain at 36°C. This could be a protein that 

becomes temperature sensitive in the absence of Wisi function. 

Interestingly, the introduction of a weel mutation into a wislA strain 

rescues the cell cycle defect resulting from lack of functional Wis 1, but 

does not have any effect on the stress sensitivity of the strain, at least as 

judged by behaviour at high temperature. This suggests that Weel only 

plays a role in the cell cycle signalling of the wisi pathway. A further 

experiment examining the effect of a shift from Wee 1-50 permissive 

temperature (25°C) to the restrictive temperature for both weel and wisi 

strains (36°C) would be useful, as this would be able to answer the 

question of whether accelerating cell division can rescue the stress 

sensitivity. 

The experiments with weel and wisi mutants strongly suggest that the 

extreme stress sensitivity caused by lack of Wisi is not merely due to a 

cell cycle defect. Although there was no obvious defect in the DNA 

immediately following a shift to high temperature, the morphology of the 

nucleus became increasingly aberrant. Again, this hints at a general 

cellular breakdown, caused by a failure to adapt to prolonged stress 

conditions. 
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A clue to the nature of this breakdown may come from the observation 

that an osmoprotectant such as sorbitol is capable of reversing the heat 

sensitivity of a wislA strain. Perhaps stressed wislA cells die because of a 

failure to regulate internal osmolarity. This will have detrimental effects 

on cellular proteins and could thus lead to death. This ties in with the 

possibility discussed earlier that proteins in the cytoplasm become 

temperature sensitive without Wisl+,  and that at least one of these 

proteins is involved in cell cycle regulation. 

Restoring the cell's ability to synthesise glycerol by over-expressing gpd1 

is sufficient to rescue osmosensitivity, but not other phenotypes, which 

suggests that the model of osmoregulation mooted above is too simplistic, 

especially as trehalose is known to play an important role in heat 

tolerance in yeasts (Fernandez et al., 1995; Solapenna and Meyer-

Fernandes, 1994), yet over-expression of trehalose synthesis gene tpsl+ 

was not able to rescue wislA temperature sensitivity. 

The genetical analysis on the putative genes in the wisi pathway 

described in this chapter and elsewhere (Samejima et al., 1997) revealed 

that mcs4, wini and wis4 all lie upstream of wisi. Data from the stress 

sensitivity shown by wini mcs4 and wini wis4 mutants demonstrates 

that wini lies parallel to mcs4 and wis4. The results from the experiment 

on the induction oftbpl following a shift to low glucose show that Win1 

acts in a nutrient signalling pathway that responds more slowly to the 

shift to low glucose than does the pathway that comprises Mcs4 and 

Wis4. 

When these experiments were carried out nothing was known about what 

lay downstream of wisi. To learn more about the function of Wisi, it was 

important to discover which genes wisi interacted with. To do this a 

genetic search for interacting mutations was embarked upon and this is 

the subject of the next chapter. 
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Chapter 4: 

Isolation of extragenic suppressors of wislA 
and phenotypic characterisation. 

4.0: Introduction: Why look for mutants? 

As discussed in Chapter 3, wislA strains are sensitive to a variety of 

environmental stresses, such as high salt (1.2M KC1, 0.9M NaCl, 1.5 M 

sorbitol) and high temperature (36°C) (Millar et al., 1995; Shiozaki and 

Russell, 1995b; Stettler and Fantes, 1994). At the time this project was 

started, the molecular mechanisms accounting for these and other wis1z 

phenotypes were unknown; the only clue available was that Wisi had 

sequence homology to the Mitogen-Activated Protein Kinase Kinase 

(MAPKK) family of proteins (Warbrick and Fantes, 1991), suggesting a 

signalling role for the fission yeast protein. More intriguingly, its closest 

homologue was Pbs2, a budding yeast MAPKK which is involved in 

osmotolerance (Brewster et al., 1993). This suggested that Wisi might be 

involved in transmitting environmental stress signals to the nucleus, 

thus allowing the cell to adapt to inhospitable surroundings. 

A further interesting phenotype of wislA strains is the doubling of cell 

length at division on minimal medium (Warbrick and Fantes, 1991). This 

demonstrates that Wisi regulates cell division to some extent, but is 

clearly not essential for completing the cell cycle under normal 

conditions. On the other hand, the greatly elongated cells seen when 

wislA strains are stressed certainly resemble cdc cells, so it is 

conceivable that Wisi is essential for cell division under stressful 

conditions. 

This project is concerned with investigating the fission yeast cell cycle. It 

is therefore interesting that the wisi gene was isolated during a screen in 

such a manner that suggests it plays a role in cell cycle control. This 

further suggests that mutations that suppress the wislA cell cycle 

phenotype would be interesting, as they might define genes which 

integrate signals from a stress-activated MAPK pathway into the 
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machinery which controls cell division, one area of cellular signalling 

which was at the time (and still is) wholly perplexing. 

Given that the questions this project sought to answer were fairly open-

ended, a genetical approach seemed the most promising one to take. 

4.1: Exploiting wislA salt and heat sensitivity to select 
for suppressors. 

One potential approach to exploring what genes lie downstream of wisi 

would be to exploit the stress sensitivities of wislA strains in designing a 

screen for extragenic chromosomal mutations that are capable of 

suppressing the fragility of the original wislA strain. Furthermore, an 

open-ended genetical approach to uncovering downstream elements 

might reveal more about the wisi pathway than a more focused method. 

In addition to showing sensitivity to various stresses, wislA strains show 

two phenotypes that were interesting as far as this study is concerned: 

the cell-division length defect and the failure to induce tbpi expression in 

response to glucose starvation. Selecting for mutations which suppress or 

enhance the cell length defect would not be an efficient way to generate 

mutants, so this was not chosen as a primary screen, but rather as a 

secondary phenotype to screen for. 

Similarly, as Dr. Charles Hoffman had already performed extensive 

screens focusing on the regulation offlpl (Hoffman and Winston, 1990), 

it seemed pointless to risk repeating his work. Therefore, it was decided 

to use fbpi expression as a tool, rather than as a primary selection. To 

assist with this, Charles Hoffman kindly sent us a strain containing a 

strain containing the ura4::fbp1-1acZ reporter construct consisting of the 

lacZ gene under control of the fbpl promoter, allowing regulation of the 

tbpl promoter to be monitored by assaying 13-galactosidase activity. 

Thus, the wislA phenotypes that will be exploited in this work are 

temperature sensitivity (36°C) and salt sensitivity (1.2M KC1) as primary 

selections and doubling of cell length at division and inability to induce 

fbpl transcription following glucose starvation as secondary phenotypes. 

(see Figure 4.1) 
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Figure 4.1: schematic diagram of wisi pathway and downstream 
cellular processes. 
Wisi was known to encode a Mitogen-Activated Protein Kinase Kinase (MAPKK). This 
strongly suggested a role in signalling and the existence of a MAPK directly downstream. 
Deletion of wisi leads to pleiotropic phenotypic effects and these suggest that the protein 
plays a role in many processes: cell cycle, mating and heat, salt and nutritional stress 
survival. 

4.1.1: Rationale of mutagenesis and mutations expected 

To avoid generating backmutations, the screen selected for mutagenesis 

contained a deletion of the wisi gene. Thus the sorts of mutations that 

were expected were loss of function mutations in genes counteracting 

Wis 1 function, or gain of function mutations (activated alleles) in genes 

acting downstream (or in parallel). From sequence homology, Wisi 

appeared to lie in a MAP kinase cascade. This strongly suggested that 

there would be a MAP kinase directly downstream of Wisi. A likely 

target gene could be this MAPK. 

By considering the number and type of wislA phenotypes suppressed in 

each mutagenised strain, it was hoped that information could be gleaned 

about where in the pathway the affected gene lay. One such target gene 

would be the MAPK which was predicted to lie directly below Wis 1 in the 

MAPK cascade. Since the project was started, a MAP kinase has indeed 
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been found to lie directly downstream of Wis 1 and it is called Styl (Millar 

et al., 1995), Spcl (Shiozaki and Russell, 1995a), or Phhl (Kato et al., 

1996). An activating mutation in this gene would be predicted to suppress 

all wislL\ phenotypes, and this should be possible to produce, as it was 

expected that an activated allele of a MAP kinase could be generated by 

changing a single base (Nishida, E., pers. comm.) 

Mutations that only reverse the phenotype used in the initial selection of 

mutants might lie far downstream in a pathway that is responsible solely 

for tolerating that sort of stress and would tell us little about Wisi 

function, whereas suppressing mutations which are capable of 

suppressing several or maybe all phenotypes should map to genes which 

lie at the heart of the Wisi pathway and give important information on 

the cellular role of the pathway. 

4.1.2: Optimising conditions for mutagenising wislzX cells. 

Some pilot experiments were undertaken to establish mutagenesis 

conditions that could be scaled up. The two important points to take into 

account were cell plating density and conditions of selection. 

High densities of wislzX cells "protect" each other and will therefore grow 

(to some extent) under conditions that would normally be toxic (Sophie 

Stettler, pers. comm.). Therefore, an appropriate plating density had to 

be found, before mutagenesis could be undertaken. 

It was already known that 1.2M KC1 and growth at 36°C was toxic to 

wislA strains (Stettler, S., pers. comm.), but as mentioned above, it was 

not known what density of cells could be plated before the protection 

became a problem, nor what the frequency at which a wisTh strain 

acquires spontaneous suppressing mutations was. 

Liquid YE was inoculated with a wislz\ strain, ED961 (wis1::his1 hisi 

ura4::fbp1-1acZ h-), and a wild type strain, ED812 (h) at 32°C. Cells were 

harvested and plated to 106, iø, 3x107  and 108  cells per plate. Plates 

with these densities of cells were incubated at 34°C and 35.5°C; and at 

32°C with 1.1M KC1 and 1.2M KC1 added to the medium. Under all these 

conditions, wild type cells were able to grow and formed a confluent lawn. 



The "protection" mentioned above was visible for wis1L cells when plated 

at 107  per plate or more: a confluent lawn of cells was seen. This was also 

the case for selection at 34°C and 1.1 M KC1. From these plating 

experiments, it was concluded that good selection could be obtained at 

35.5°C or on 1.2M KC1. Under these conditions, almost all cells died at or 

before the micro-colony stage. Occasionally, one or two larger colonies 

were seen (under both salt and temperature selection) and these were 

assumed to contain spontaneous suppressing mutations. 

These colonies seemed to grow well under conditions that were toxic to 

wislA cells, so twenty-four such colonies were picked and kept. Their 

ability to grow was assumed to be due to a genetic change, rather than 

the protection mentioned above (see next section). From this, the 

spontaneous mutation frequency can be estimated to be of the order of 
10-6. 

4.1.2.1: Spontaneous suppressors. 

Twenty-four supposedly wis1zt colonies had grown at 35.5°C, a 

temperature at which normal wis1L cells are unable to proliferate. In 

order to investigate whether these colonies had grown because they 

harboured a spontaneous suppressing mutation, they were picked and 

restreaked to 35.5°C. Ten of them were able to form colonies well, and 

two were able to form a few colonies (weak suppression) (see Table 4.1; 

isolates 0-12 to 0-27). These isolates were numbered 0-12 to 0-27, ("zero-

twelve" to "zero-twenty-seven") the zero denoting the absence of any 

artificial mutagenesis, to contrast these strains with those generated 

later by U.V.-induced mutagenesis (see Section 4.1.3 onwards). 



Table 4.1: Summary of phenotypes of spontaneous suppressors. 
Selection aGrowth 

on KC1 
aGrowth flpl 
at 35.5°C inductionb  

fbpi 
inductionc 

cell 
lengthd 

Control strains 
wild n/a ++ 
type  

++ 3.6 ++ ++ 

wislA n/a - - 0.15 - - 
Spontaneous suppressor strains 

0-1 KC1 + ++ 0.22 - - 
0-2 KC1 + ++ 0.21 - - 
0-3 KC1 + + 0.26 - - 
0-4 KC1 + - 0.26 - - 
0-5 KC1 ++ + 0.13 - - 
0-6 KC1 + + 0.65  
0-7 KC1 (+) ++ 0.26 - - 
0-8 KC1 (+) - 0.25 - - 
0-9 KC1 (+) + 0.24 - - 

0-12 35.5°C - ++ 0.26 - - 
0-15 35.5°C - ++ 0.39 - - 
0-16 35.5°C - ++ 0.39 - - 
0-17 35.5°C - ++ 0.47 - - 
0-19 35.5°C - ++ 0.68  
0-20 35.5°C - ++ 0.90  
0-22 35.5°C - + 1.81 + - 
0-23 35.5°C - ++ 0.03 - - 
0-24 35.5°C - ++ 0.26 - - 
0-25 35.5°C - ++ 0.03 - - 
0-26 35.5°C - ++ 0.78  
0-27 35.5°C - + 0.31 - - 

asingle colony forming ability (see below for key) 
bin stationary phase (0D420 per 108cells) 
cprevious column summarised 
dsuppression of wisIA cell length defect on minimal plates 
n/a = not applicable; ++ = identical to wild type; + = significant growth/suppression, but less 
than wild type; (+) = some growth/suppression; - = no growth/suppression. 

As twelve interesting heat resistant mutants had been fortuitously 

recovered as a by-product of the investigation into plating densities, it 

was decided to see if any spontaneous salt-resistant mutants could be 

obtained using a similar approach. wislA cells were grown on YE 

overnight at 32°C and then spread over four 1.2M KC1 plates and 

incubated at 32°C. After eight days, thirteen colonies had grown and they 

were picked, regrown overnight and then streaked to single colonies on 

1.2M KC1 to check that the suppression was stably inherited. Nine of the 
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thirteen grew (to various degrees) when restreaked. (Table 4.1; isolates 0-

1 to 0-9) 

The best six salt resistant strains (0-1 to 0-6) together with the twelve 

temperature resistant strains were frozen as -70°C glycerol stocks. 

As described in Section 4.1.1, I was interested in generating and 

investigating mutations that could suppress as many wislA phenotypes 

as possible. Thus, the twenty-one spontaneous mutants that had so far 

been isolated were tested for suppression of various wislA phenotypes in 

addition to the one used to select them. In all, the following phenotypes 

were investigated: temperature sensitivity, salt sensitivity, cell length at 

division and induction offbpl in stationary phase (see Figure 4.2). The 

results from all four suppression assays are summarised in Table 4.1. 
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strain 

Figure 4.2: fi-galactosidase assays in stationary phase. 
Cells were grown overnight in 1 m cultures to >1 x 107  per ml and assayed for 1-
galactosidase activity. ED900 is wild type; ED961 wislA; 0-1 etc are spontaneous 
suppressor strains. 

Several of the mutants obtained (such as strains 0-4 and 0.12; Table 4.1) 

only suppressed the phenotype that was used in their selection. This 
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suggests that the mutation lies fairly far downstream of wisi, most likely 

in a part of the pathway that is solely responsible for tolerating salt 

stress (0-4) or heat stress (0-12). This kind of mutation is unfortunately 

not particularly interesting from the point of view of this project. 

Some of the spontaneous suppressors isolated, however, suppress several 

phenotypes (e.g. 0-6). This suggests they contain mutations that lie in 

genes further upstream, before the pathway bifurcates. In fact, when 

measured microscopically, the cell length of strain 0-6 is also suppressed 

(see Section 4.3). Mutations of this kind are particularly important for 

this project, as they may define genes responsible for integrating different 

types of stress signals and the cell division machinery. 

Of these mutants, the most interesting seemed to be 0-6, as the strain 

was capable of at least partially suppressing three of the four wis1z 

phenotypes examined. It is important to note that the cell length defect 

did not seem to be suppressed in the plate assay used. For this reason, 

more accurate cell length measurements were carried out (see Section 

4.3). No other strains were taken forwards at this stage as an 

investigation into the types of mutants that could be obtained from U.V. 

mutagenesis was underway. 

4.1.2.2: U.V. mutagenesis conditions 

Although a small-scale investigation into spontaneous suppressors of 

wislA had revealed some interesting strains, it seemed that a programme 

of induced mutagenesis would be productive for several reasons, the most 

important of which being that the frequency of mutation is greatly 

increased. 

U.V. was chosen initially from the range of mutagens available as it 

produces a greater range of mutations than EMS or MNNG. The latter 

give rise to little apart from transitions at G.Cs (Kohalmi and Kunz, 

1988), whereas U.V. produces transitions and transversions and single 

nucleotides deletions. This gives U.V.' the potential to generate a wide 

spectrum of mutations. Furthermore, it is safer to use, and the equipment 

required was readily available. 
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It can be seen from Table 4.1 that a variety of different types of mutation 

were obtained spontaneously, but so far, a crucial class was missing: the 

mutation that is capable of suppressing all wislA phenotypes. If it is 

possible to create such a mutation, it should be possible to isolate it, as 

well as others, by U.V.-induced mutagenesis. 

4.1.2.3: Calibrating kill curve for U.V. mutagenesis. 

From studies on the budding yeast, Saccharomyces cerevisiae, a kill rate 

of 50-90% is required to give rise to a large number of mutants in the 

surviving population; higher kill rates result in an increased frequency of 

strains with multiple mutations (p.  274 in Lawrence, 1991). These values 

were used as a guide to the kill rates to aim for in the fission yeast, 

Schizosaccharomyces pombe. 

Cells from a wild type strain (ED812) and a wislz\ strain (ED961) were 

grown at 28°C overnight in 20 ml YE liquid to mid-log phase. The 

cultures were diluted. 103,  104 and  105  cells of the wislA strain were 

spread on separate YE plates. A subset of these conditions was used for 

the wild type control strain. The plates were then exposed to a range of 

doses of U.V. irradiation in a Stratalinker (wavelength 254nm), wrapped 

in foil to keep the plates in the dark, thus preventing photo-reactivation 

(p. 278 in Lawrence, 1991) and incubated until colonies had formed. The 

number of colonies that grew up was counted. Data obtained are shown in 

Figure 4.3. 
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Figure 4.3: fraction of wislA cells surviving U.V. irradiation. 
Known numbers of exponentially-growing cells were plated onto YE and exposed to the 
doses of U.V. irradiation shown and then incubated until colonies formed. The proportion of 
cells that survived was calculated from the number of colonies that grew on each plate. 

A further point to take into account is the fact that cells in suspension 

scatter U.V. light as a function of the density of the culture (Lawrence, 

1991) so that cells deeper in the culture are exposed to less radiation than 

expected. From S. cerevisiae, as a rough, guide, conversion factors are: 

x1.5 for cultures of _7  cells m1' and xlO for cultures of 	cells m14  

(Lawrence, 1991). 

4.1.3: Mutagenesis I 

A kill rate of 75% was chosen to aim for as it lies approximately in the 

middle of the range of ideal kill rates, which goes from 50% to 90%. From 

Figure 4.2, this corresponds to about 130 J m 2  or about four seconds' 

irradiation. In a pilot experiment, wislA cells (strain ED961) were grown 

in YE liquid medium to mid-log phase (5x106  cells/ml) and mutagenised 

using 254nm U.V. at a dose of 130 Jm 2. The mutagenised cells were 

allowed to recover in the dark for 24 hours and then plated on YE 

supplemented with 1.2M KC1. Surprisingly, the kill rate was close to 0%, 

as opposed to the expected estimate of 75%. Twelve colonies grew on the 
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1.2M KC1 plates and were picked and restreaked to single colonies on 

KC1. None of them grew after restreaking, so the strains were abandoned. 

Two further mutagenesis experiments were carried out using similar 

conditions, but the kill rate was still close to 0% and no interesting 

mutants were recovered in either screen. 

From these initial experiments, it seemed that the low kill rate achieved 

went hand in hand with poor recovery of mutants, and those that had 

been recovered probably contained spontaneous mutations, rather than 

induced ones. 

4.1.4: Mutagenesis II 

wislz\ cells (strain ED961) at 107  ml-1  were exposed to 400, 600 and 800 

Jm 2  irradiation (and given a swirl halfway through the exposure to mix 

the cells), allowed to recover in the dark at 32°C for seven hours and then 

plated at 106  cells per plate (seven plates at 35.5°C; three on 1.2M KC1). 

Kill rate was 43% for the cells that had been irradiated with 800. Jm 2. 

This was surprisingly much less than predicted, but seemingly 

acceptable, as shown below. 

From the cells that were subjected to KC1 selection, 215 primary colonies 

were picked. When retested, 78 grew well (osmotic resistant, OsmR), nine 

grew poorly and. 51 did not grow at all. In the case of 35.5°C selection, 227 

high temperature resistant (TempR) isolates were picked and restreaked 

to 35.5°C. At this temperature, 24 of these strains grew well and one 

strain grew poorly. These data are summarised in Table 4.2. 

Table 4.2: summary of mutant colonies from Mutagenesis II (Mut 
II) 
Selection primary grow well grow partially no growth 

colonies when when when 
restreaked restreaked restreaked 

1.2MKC1 215 78 9 51 
35.5°C 1 	201 1 	24 1 	1 1 	176 

As can be seen from the Table above, rougly three times more OsmR 

isolates were recovered than TempR  isolates. Both the OsmR  and  TempR 
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suppressing strains were tested for suppression of other wis1t 

phenotypes (see Table 4.3). Several strains were isolated that were 

capable of suppressing other phenotypes in addition to the one that had 

been used in the primary selection (e.g., K44, K46, T16, T20). This had 

not been the case when the spontaneous mutants had been isolated, 

except for 0-6. Strain T20 was particularly interesting because it 

suppressed all the wis1L phenotypes it had been tested for so far. 

Table 4.3: Summary table of Mutagenesis II revertants that 
suppress at least two phenotypes. 
Isolate Selection Ma 35.5°Cb flp1 C lengthd 
wild 
type 

+ 

control  

+ + + 

wis1t - 
control  

- - - 

1(23 KC1 + - + - 
K37 KC1 + + - - 
K44 KC1 + + - + 
K46 KC1 + + + + 
K47 KC1 + + - - 
1(49 KC1 + + - - 
1(61 KC1 + + 
1(62 KC1 + + 
K74 KC1 + 
T3 35.5°C + + - - 
T5 35.5°C + + - - 
T6 35.5°C + + - - 
T9 35.5°C + + - - 
Til 35.5°C + + - - 
T16 35.5°C + + + - 
T17 35.5°C + + - - 
T18 35.5°C + + - - 
T19 35.5°C + + - - 
T20 35.5°C (+) + + + 
aabilfty to form colonies on YE + 1.2M KCI; + = form colonies well; (+) = form some colonies; 
- = form no colonies. 
bability to form colonies on YE at 35.5°C; same classification as for 1.2M KCI. 
Cability to induce fbpl in stationary phase; + = good induction of fbpl; (+) = some induction; 
- = no induction. 
dsuppression of cell length defect on minimal medium; + = —20% shorter than wisl4; (+) = 
—10% shorter; - = no shorter. 
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Another improvement over the spontaneous mutants (with the exception 

of 0-6) was that some of the Mut II mutants were capable of suppressing 

the wislA cell length defect. These are summarised in Table 4.4. 

Table 4.4: Summary of short Mut II mutants 
Selection 10% shortera than 

wislA 
-20% shortera than 

wislzX 
1.2M KC1 1, 13, 62, 67, 78 44,46 

35°C - 20 
ato estimate this, cells were grown overnight at 28°C on MM and length was examined 
microscopically, compared to wislA and wisl+  control strains. See Chapter 2 for details. 

Furthermore, the extent of suppression of wislA stress sensitivity 

afforded by induced suppressors was greater than for spontaneous 

suppressors. This is demonstrated in the following experiment. 

The proportion of cells able to form colonies under stress conditions was 

estimated by examining cells in streaks microscopically. Whilst no wislA  

cells form colonies under stressed conditions, the spontaneous mutants 

(eg 0-6) had been able to form colonies; but a background of dead cells 

surrounding the colonies that had formed was observed, which suggested 

that most cells were unable to grow. This dead background was reduced 

amongst the strains from Mutagenesis II: a greater proportion of the cells 

were able to form colonies. This suggests that the suppression of 

wislA phenotypes was stronger in these strains. 

The most promising mutants from Mutagenesis liwere frozen down: K23, 

K46, 1(61, K62, K74; T16 and T20. It now seemed that the experimental 

approach adopted was capable of producing mutants of the desired types. 

In contrast to the first few mutagenesis experiments, Mut II had both 

generated an interesting collection of mutants and a significant kill rate. 

This clearly demonstrated the importance of avoiding low mutation rates. 

It also seemed that that the relationship between U.V. dose and kill rate 

was a non-linear. So, to ensure that low mutation rates were avoided in 

the future, details of the experimental method being used were reviewed 

before further mutagenesis was undertaken. 
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4.1.5: Mutagenesis V 

From the literature, vigorous mixing of the cells during irradiation is 

important as this achieves even exposure to the U.V. and minimises the 

scattering effect of cells in the top of the culture (p.  278 in Lawrence, 

1991). It is clear from the above results that swirling the culture halfway 

through the time allotted is not sufficient to achieve even radiation of all 

cells. Thus, new mutagenesis experiments were planned in which the 

cells would be stirred vigorously during irradiation: the first was 

Mutagenesis V which would only use selection at 36°C selection. 

For Mutagenesis V, strain ED1135 was grown to mid-log phase and U.V.-

irradiated with 670 Jm 2  at 107  cells per ml with vigorous magnetic 

stirring of the culture. The cells were allowed to recover for eight hours at 

32°C then plated to 36°C. Encouragingly, the kill rate was 86%. 

The twenty-seven plates at 36°C yielded 123 suppressor strains, all of 

which grew when restreaked to 36°C. This was in stark contrast to 

previous mutagenesis experiments. Furthermore, the colony-forming 

ability of the mutants obtained was markedly improved: in streaks at 

36°C, nearly all the cells grew to form colonies, whereas in previous 

studies, less than half of the cells were able to form colonies. 

The Mutagensis V strains were next streaked to KC1 to investigate salt 

resistance and to MM to examine suppression of cell length (see Table 

4.5). 



Table 4.5: Summary of mutants obtained in Mutagenesis V that 
suppress at least two phenotypes. 

Isolate KCla 36°Cb lengthc 
5.7 ++ ++ (+) 
5.10 ++ ++ (+) 
5.11 + ++ - 
5.13 - ++ + 
5.15 ++ ++ + 
5.16 ++ ++ - 
5.17 ++ ++ - 
5.22 - ++ + 
5.31 + ++ - 
5.32 ++ ++ - 
5.33 - ++ (+) 
5.35 - ++ (+) 
5.36 + ++ - 
5.38 ++ ++ - 
5.39 - ++ (+) 
5.41 ++ ++ - 
5.47 ++ ++ - 
5.49 ++ ++ + 
5.51 + ++ - 
5.54 ++ ++ - 
5.56 ++ ++ - 
5.57 - ++ (+) 
5.60 + ++ - 
5.61 ++ ++ - 
5.63 ++ ++ - 
5.64 ++ ++ - 
5.67 - ++ (+) 
5.69 ++ ++ - 
5.71 ++ ++ - 
5.74 + ++ (+) 
5.76 ++ ++ - 
5.79 ++ ++ - 
5.81 ++ - 

97 
++

5. 
 

- ++ + 
5.102 - ++ + 
5.110 - ++ (+) 
5.112 - ++ (+) 
5.115 - ++ (+) 
5.123 + ++ - 

aability to form colonies on YE + 1.2M KCI; ++ = nearly all cells form colonies; + = most cells 
form colonies; (+) = some cells form colonies; - = no colonies. 
bability to form colonies on YE at 36°C; same classification as for 1.2M KCI 
csuppression of cell length defect on minimal medium; + = -20% shorter than wis1; (+) = 
-10% shorter; - = same legth. 
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A further mutagenesis, using only salt selection, gave a promising kill 

rate of 88%, but, even so, produced no interesting mutants. 

4.2: fbpl induction assays in suppressor strains. 

The fl,pl+  gene encodes fructose-1,6-bisphosphatase, which is involved in 

gluconeogenesis. The gene is subject to glucose repression, mediated via 

the cA-PK pathway (Hoffman and Winston, 1991). Furthermore, the Wisi 

pathway is required for its transcription (Stettler et al., 1996). An flpl-

lacZ reporter construct (Hoffman and Winston, 1990) had already been 

used to assay activity of the Wisi pathway (see Chapter 3). Using this 

method, Sophie Stettler had investigated fbpl induction following a shift 

to low glucose. It was clear this treatment gave a different response to 

that seen in stationary phase (Stettler et al., 1996). For this reason two of 

the strains that had given positive results in the tbpi assay in stationary 

phase (T20 and K46) were retested in an assay which involved shifting 

exponentially growing cells from high to low glucose and following 

induction oftbpl over four hours. 
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Figure 4.3: flpl induction following a shift to low glucose 
Exponentially-growing cultures were harvested by centrifugation from high (2%) glucose and 
resuspended in fresh pre-warmed low glucose (0.1%) medium. Strains T20 and K46 contain 
wislz\ and a suppressing mutation. See Chapter 2 for description of r-galactosidase assay. 
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Both the suppressor strains (T20 and K46) were able to induce strong 

expression of fbpl in stationary phase. However, when assayed under 

more defined conditions, by shifting cultures from high to low glucose, 

there was no evidence of any ability to express fbpi (see Figure 4.3). 

Sophie Stettler noticed that unsuppressed wislA strains showed some 

induction oftbpl in stationary phase, conditions under which the 

suppressed strains induce well (Stettler et al., 1996). This suggests that 

there may be (an) alternative mechanism(s) for inducing tbpl in 

stationary phase. 

4.3: Cell lengths 

In Section 4.1, cells were examined on MM plates to determine whether 

the cell length defect of wisl4 was suppressed. Minimal medium was 

chosen, as this exacerbates the wislA cell length defect and hence 

significant differences in cell length are easy to see. The local nutritional 

conditions cells are exposed to on plates vary widely. Cells at the centre of 

colonies are starved of nutrients and grow slower. This leads to a 

heterogeneous cell population and thus differences in cell length at 

division. It is, therefore, more rigorous to measure cell lengths 

microscopically in a homogeneous exponentially-growing culture. This is 

particularly important when working with wislA strains which are highly 

sensitive to nutritional conditions. 

The best spontaneous and Mut II strains were grown to mid-log phase in 

supplemented minimal medium at 28°C and cell lengths were measured 

microscopically (see Table 4.6). Strain 0-6 did not proliferate healthily the 

first time, so the culture had to be reinoculated. 



Table 4.6: Cell lengths of Mut II strains in minimal medium 
Strain - 	genotype length ± no. cells 

standard error measured 
(jtm)  

ED900 wis1 	ura4::fbp1-lacZ 15.6 ± 0.4 5 
ED1085 wis1::his1 	hisi -1 02 23.0 ± 0.4 20 

ura4::fbp1-1acZ h- 
0-6 0-6 as ED1085 + suppressing 18.0 ± 0.3 15 

mutation 
T20 as ED1085 + suppressing 17.0 ± 0.3 15 

mutation 
K46 as ED1085 + suppressing 20.5 ± 0.4 12 

mutation 
Strains were measured in exponential growth phase in minimal medium growing at 28°C. 
Only cells that had just formed a septum but had not yet started to pinch in were chosen for 
length measurement. 

T20 and 0-6 showed the greatest decrease in cell length compared to an 

unsuppressed wis1L strain. K46 also showed some suppression of the cell 

length defect. 

As a result of genetic analysis of the best mutants produced in the 

mutagenesis experiments (see Chapter 5), the strains shown in the table 

below were selected for in-depth analysis and backcrossed to 

unmutagenised wislA strains. This procedure is important, as it removes 

extraneous mutations and auxotrophic markers. Cells from these 

additional strains were grown in minimal medium at 32.5°C to mid-log 

phase and their lengths were measured microscopically (see Table 4.7). 



Table 4.7: Cell lengths of Mut V strains (and T20) in minimal 
medium 

Strain genotype length ± no. cells 
standard measured 
error (gm)  

ED812 wild type 15.1± 0.3 10 
ED812 wild type 14.5±0.2 16 
ED976 wis1::his1 	hisl-102 24.5±0.7 14 
derivative of T20 wis1::his1 	hisi -102 17.7±0.3 20 
(SP3) sow 1-T20  
derivative of 5.22 wis1::his1 	hisi -1 02 18.3±0.3 20 
(SP64) sow 1-5.22  
derivative of 5.7 wis1::his1 	hisl-102 19.3±0.3 20 
(SP38) sow2-5. 7  
derivative of 5.11 wis1::his1 	hisl-102 19.0±0.3 22 
(SP19) sow2 -5.11  
Measurements were made on cells growing exponentially in liquid minimal medium at 
32.5°C 

All four strains (5P3, SP64, SP38 and SP19) showed a reduction in cell 

length relative to an unsuppressed wislA strain. 

4.4: Selecting Mutants for further investigation 

Once Mutagenesis II had been performed, strains 0-6, K46 and T20 

seemed promising enough to warrant genetic analysis. These mutants 

comprised the first set of mutants to be analysed genetically. Suppressor 

strains from a later set (generated in Mutagenesis V) were, in turn, 

analysed genetically. These experiments are discussed in Chapter 5. 

4.5: Conclusions for Chapter 4. 

This project set out to obtain and characterise mutations which are able 

to suppress wis1/t phenotypes. From Section 4.4 above, it is clear that 

such mutants can be generated. Furthermore, it is possible to suppress 

more than one wislA phenotype in a single mutant strain (as can be seen 

from those mutants listed in Table 4.8) although fewer strains of this type 

were recovered than strains that can only suppress the phenotype they 

were selected for. 



Table 4.8: Summary tables of suppressors strains made 
Strain Muta- 

genesis 
Selection aGrowth 

on KC1 
aGrowth 
at 36°C 

Suppression 
of cell length 

defectb 

Suppression 
of length 
defectc 

0-6 sponta 
neous  

KC1 + + - + 

K46 Mut II KC1 + + + + 
T16 Mut II 35.5°C + + - N.D. 
T20 Mut II 35.5°C (+) + + + 
5.7 MutV 36°C  + (+) + 
5.10 MutV 36°C  + (+) N.D. 
5.11 MutV 36°C + + - + 
5.13 MutV 36°C - + + N.D. 
5.15 MutV 36°C  + + N.D. 
5.22 Mut V 36°C - + + + 
5.31 MutV 36°C + + - N.D. 
5.36 Mut V 36°C + + - N.D. 
5.49 MutV 36°C  + + N.D. 
5.51 MutV 36°C + + - N.D. 
5.60 MutV 36°C  + - N.D. 
5.74 Mut V 36°C + + (+) N.D. 
5.97 MutV 36°C - + + N.D. 
5.102 MutV 36°C 	I - + 	I + 	i N.D. 
5.123 MutV 1360C I 	+ I 	+ 	I N.D. 
a as judged by formation of single colonies 
b on plates 
c in liquid culture 
N.D. not determined 
+(+) indicates almost all cells form colonies; + = most cells form colonies; (+) = some cells 
form colonies and - = no colonies formed. 

For there to be so many phenotypes in a wis1L strain, many cellular 

processes must lie downstream of Wisi. This implies that downstream of 

Wisi, the pathway becomes increasingly branched. Thus, mutations that 

suppress several phenotypes presumably encode proteins that act sooner 

after Wisl in the pathway (and hence on more cellular processes) than 

those that suppress a single phenotype. This makes the former class more 

interesting to work on and is why members of this class was selected for 

further analysis. 

The hypothetical suppressor of all wislA phenotypes, such as an activated 

allele of styl, was not recovered. Nevertheless, two sets of seemingly 

promising mutants were isolated (see Table 4.8) and they, together with 



the mutations they harbour, will be analysed further. This is the subject 

of the next chapter. 

One final conclusion from these studies is that selection on 1.2M KC1 in 

general yielded mutants of poorer quality than selection at 36°C. This is 

perhaps because plating mutant strains straight onto medium containing 

1.2M KC1 is too harsh. Perhaps a better selection would be to arrange for 

the salt concentration (ie strength of selection) to increase gradually, as 

temperature does for plates in an incubator. 



Chapter 5: 

Genetic Characterisation of Suppressor 
Strains. 

5.1: Introduction. 

The previous chapter described the isolation and initial characterisation 

of a large number of suppressor strains. The first set of mutants to be 

isolated comprises the spontaneous mutant, 0-6 (see Section 4.1.2.1) and 

strains T20, K46 and T16, from mutagenesis II (see Section 4.1.4). This 

set, having been isolated first was already being analysed genetically by 

the time the second set was generated. The second set consists of mutants 

from mutagenesis V: 5.7, 5.10, 5.11, 5.13, 5.15, 5.22, 5.31, 5.36, 5.49, 5.51, 

5.60, 5.74, 5.97, 5.102, 5.123 (see Section 4.1.5). Table 4.8 summarises the 

wislzX phenotypes suppressed by these strains. 

Given that the nature of the suppressing mutations these strains 

contained was entirely unknown, I chose a genetic approach to analyse 

them in the first instance. First, strains were backcrossed to 

unmutagenised wislzl strains to determine the number of mutations that 

had been induced and to encourage the elimination of extraneous 

mutations. Next, the strains were crossed to eachother to determine how 

many different suppressing mutations had been isolated; then diploids 

were constructed to investigate whether the suppressors were dominant 

or recessive. 

The suppressor strains were then crossed to wisi + strains, to investigate 

the phenotype of the induced mutations in the absence of wisl4. The 

primary aim of these experiments was to analyse the mutations, but the 

important secondary objective was to design a cloning strategy. 



5.2: Genetic Analysis of 0-6, T20, K46 and T16 

5.2.1: Backcrosses to wislA strains 

5.2.1.1: Strain 0-6 contains two suppressors. 

In order to determine how many mutations were responsible for the 

suppression observed in strain 0-6, it was backcrossed to ED1010 (wislA). 

Having dissected just seven tetrads, and streaked the progeny to YEK 

and YE at 36°C, it was clear that at least two genes were segregating: the 

suppression of temperature and salt sensitivities segregated 

independently. 

Furthermore, when 0-6 was later crossed to a wisl+ strain, a third 

phenotype segregated: sick, round, short cells were seen. This could be 

due to an interaction between the suppressors already identified, or the 

presence of a third suppressor. As this strain contains at least two 

mutations, it was not analysed further. 

5.2.1.2: The suppression in strain K46 is too weak to be analysed. 

Similarly, strain K46 was backcrossed to ED1010, and eight tetrads 

dissected. The wislA phenotypes suppressed by this strain are salt 

sensitivity, heat sensitivity and cell length defect. As far as they could be 

classified, the suppressing mutations for the three phenotypes 

investigated appeared to be segregating separately. But, it was very hard 

to differentiate unambiguously between suppressed and unsuppressed 

segregants. Further evidence of the weakness of the suppression was 

seen when the strain was outcrossed into a wisl+ background (see 

Section 5.2.4). 

Furthermore, as it is unlikely that the strain could have acquired three 

independent mutations, all of which happen to suppress 

wislA phenotypes, I concluded from this experiment that it would not be 

profitable to investigate this strain any further. 

5.2.1.3: Strains T16 and T20 contain a single mutation. 

Five asci of the cross T16 x ED1010 were dissected and although the KC1 

resistance was too weak to score unambiguously, temperature resistance 



segregated 2:2, showing that a single gene is responsible for this 

phenotype. 

Strain T20 was backcrossed to ED1010 in two separate experiments, in 

which a total of thirteen asci were dissected. Suppression of cell length 

segregated faithfully with suppression of temperature sensitivity showing 

that these two phenotypes are probably due to the same mutation. 

Suppression of salt sensitivity, was hard to score, but as far as I could 

tell, it seemed likely that it was due to the same mutation that was 

responsible for suppression of temperature sensitivity and cell length. 

5.2.2: Analysis of linkage between the mutation in strains T16 and 
T20. 

Each of these two strains contained a single suppressing mutation that 

gave rise to slightly different phenotypes in a wis1L background. An 

interesting question was whether these two mutations lay in the same 

gene. To investigate this, appropriate derivatives from the two strains 

were crossed to eachother. 

A wislz\ h derivative of strain T20 (from the backcrosses in Section 

5.2.1) was crossed to strain T16 (h) by random spores. 32 colonies from 

amongst the segregants were picked and streaked to 36°C. 24 of these 

colonies grew at 36°C; eight did not. This 3:1 ratio is as expected for the 

segregation of two unlinked genes (see Figure 5.1 for scheme of 

intercross). 



A Strains contain two 
linked mutations 

wislzi sow-T16 	1/2 	wisl4 sow-T16 
x 

wisl4 sow-T20 	 1/2 wisl4 sow-T20 

all progeny 
suppressed 

B Strains contain two 
unlinked mutations 	 1/4 wislzi 	+ 	+ 	I unsuppressed 

wislzi + 	sow-T16 	1/4 wisl4 	+ 	sow-T167 	to 

wisltt sow-T20 	+ 	 1/4 wislzl sow-T20 	+ 	3 suppressed 

1/4 wislzt sow-T20 sowT16 

Figure 5.1: Scheme of intercross between T16 and T20. 
sow = suppressor of wis1E 

From this experiment and the previous one (see Section 5.2.1.3), the 

strains TiG and T20 each contain a single mutation in unlinked loci. To 

make it simpler to refer to these mutations, the genes they lie in were 

named sow (for suppressor QfisTh). The mutation in T20 will, for the 

time being, be referred to as sow-T20 and the mutation in T16 as 

sow-T16. 

5.2.3: Studying the sow mutations in heterozygous diploids. 

The dominance or recessivity of a sow mutation can be assessed 

experimentally by making a homozygous wislA diploid strain which 

contains one wild-type and one mutant allele of the gene of interest. 

Stable diploids can be made in S. pombe by mating an h strain with a 

strain carrying a mat2-102 mutation, which prevents the resulting 

diploid from progressing past conjugation and into meiosis. 

To make diploids that were heterozygous for a sow mutation, strains T16 

(wis1::his1 hisi ura4::flp1-1acZ sow-T16 h-  ) and T20 (wis1::his1 hisi 

ura4::fbp1-1acZ sow-T20 h-) were crossed to strain ED1076 (wis1::his1 



hisi ade6 leul mat2-102) and after one, two and four days, diploids were 

selected on MM supplemented with Phioxin B at 32°C. 

Once diploid colonies were large enough, they were streaked (with 

controls given in Table 5.1) to single colonies on YE plus various 

concentrations of KC1 and to YE at 34°C and at 36°C (see Table 5.1). 

Neither sow-T16- nor sow-T20- containing heterozygous diploids were 

able to suppress lethality at salt concentrations above 0.6M, yet single 

colonies formed well at 0.5M and 0.6M KC1, concentrations that are toxic 

for an unsuppressed wislA/wislA diploid strain. 

Table 5.1 heterozygous sow diploids. 

conditions 
wislA sow-T16 wislA sow-T20 wislA 

wislA 

W. t. 

W. t. wislA 	+ wislA 	+ 
0.3M KC1 N.D. N.D. + ++ 
O.4M KC1 N.D. N.D. (+) ++ 
0.5MKC1 + + - ++ 
0.6MKC1 + + - ++ 
0.7MKC1 - - - ++ 
0.8M KC1 N.D. - - ++ 
1.OM KC1 - - - ++ 
1.2M KC1 - - - ++ 

34°C N.D. ++ - ++ 
36°C N.D. + - ++ 

Various diploid strains were streaked onto media under the conditions shown. ++ means wild 
type behaviour (all cells formed colonies); + strong suppression (most cells form colonies); 
(+) some suppression; - unsuppressed wis1E phenotype (no colonies); N.D. = not 
determined. 

The sow-T20 heterozygous diploid was able to suppress, partially or 

better, the temperature sensitivity of a wislA/wislA diploid at both 34°C 

and 36°C. (Table 5.1). Furthermore, both sow-T16 and sow-T20 

heterozygous diploids are shorter than wislA/wislA diploids. 

These data show that the presence of a single copy of either of these sow 

mutations is enough to suppress wislA phenotypes. This suggests that 

the mutant alleles are dominant over the wild type versions. 

Given this, sow-T16 and sow-T20 could be fully or semi-dominant over 

the wild type alleles. To distinguish between these possibilties, 



homozygous wislA diploid strains were made that contained zero, one or 

two copies of each of these relevant sow mutations. 

As Table 5.2 shows, the diploids heterozygous for sow-T16 have, under 

appropriate conditions, a phenotype that lies between the two 

homozygotes. For example, at 36°C in a wisizVwisiA sow-T16/sow-T16 
diploid, two copies of the sow-T16 mutation suppress better than one 

(wislA/wislA sow-T161+) (see Table 5.2). The same can be seen for 0.8M 

KC1. 

Table 5.2: Diploids containing sow-T16 
genotype of diploid  

wislA sow—T16 wislA sow—T16 wislA ± W. t. 

conditions 
wislA sow—T16 wislA + wislA + W. t. 

0.7MKC1 + + - ++ 
0.8M KC1 + (+) - ++ 

36°C +(+) + - ++ 
Diploid strains were streaked under the conditions shown. ++ means wild type behaviour (all 
cells formed colonies); +(+) nearly wild type (almost all cells forming colonies); + strong 
suppression (most cells form colonies); (+) some suppression/colonies; - unsuppressed 
wislA phenotype (no colonies). 

Similarly, wisiiSlwisTh sow-T20/sow-T20 diploids grow better on 0.8M 

KC1 and at 36°C than wislA/wislA sow-T201+ diploids (see Table 5.3). 

Table 5.3: Diploids containing sow-T20. 
genotype of diploid  

wislA sow—T20 wislA sow—T20 wislA + W. t. 
conditions wislA ± W. t. wislA sow—T20 wislA 	+ 
0.7MKC1 + + - ++ 
0.8M KC1 + (+) - ++ 

36°C ++ + - ++ 
See Table 5.2 for experimental details and key. 

For both sow-T16 and sow-T20 two copies of the mutation suppress 

wislA better than a single copy. This suggests that either the mutations 

are semi-dominant or that the effects seen are due to gene dosage, in 

which case the mutations could be recessive. 

NO 



The dominance/recessivity of these two sow mutations has implications 

for the sort of gene they might lie in. Wisi is an activator in the pathway 

it lies in, so a sow mutation could suppress wislA if it was an activated 

allele of a gene encoding a protein which acts in the same direction as 

Wisi, ie downstream of (or in a parallel pathway to) Wisi. This sort of 

mutation should be at least partially dominant. An alternative type of 

mutation could be a loss of function mutation in a gene lying in a 

counteracting pathway. One would expect this type of mutation to 

recessive. See Section 5.4 for more discussion of these points. 

5.2.4: Outcrossing the sow mutations from the wislA background. 

The sow mutations were isolated in wislA strains and so far, they had 

only been studied in this background. The mutations exhibited 

interesting phenotypes in the absence of wisi, but would a sow mutation 

alone have a phenotype and, if so, what would it be like? What is more, if 

either sow-T16 or sow-T20 had a phenotype in a wisl+ background, it 

might hint at the wild type function of the genes. 

To generate sow wisl+ derivatives, T20 (wisl::hisl+ hisi ura4::fbp1-1acZ 

sow h-) was outcrossed to ED933 (wisl+ leul hisi h), as illustrated in 

Figure 5.2. Strain ED933 was chosen because it is his so that 
wisl::hisl+ segregants would be his+  and wisl+  strains would be his. 

The segregation of the ura and leu markers was as expected, verifying 

that meiosis had taken place normally in the cross. 

conjugation 

Suppressor strain, eg T20 - 
X 	 wislA sow 

ED933 (wild type)  

tetratype 

sporulation spores 
wislA sow 

wislA + 

+ sow 

Figure 5.2: scheme for outcrossing a sow mutation from wislA 
background to wisl+. 
A suppressor strain such as T20 is genotypically wislA sow. When crossed to a wild type 
(wisl+ sow+),  four different genotypes of spore are produced: wislA sow, wis1E., sow and 

WIA 



wild type. Phenotypically, the double mutant segregant will behave like the suppressor 
parent; the wislA single mutant like an unsuppressed wisliX strain; the wild type like the wild 
type parent. Only the phenotype of the sow segregant cannot be predicted. 

The segregants resulting from two of these crosses were analysed for 

their phenotypes on minimal medium (to gauge cell length) and on high 

salt and at high temperature, with wild type, suppressed and 

unsuppressed wislA strains acting as controls. The results for the four-

spored asci obtained are given in Table 5.4; six three-spored asci were 

also analysed and data from these is consistent with the results given 

below. 

Table 5.4: Tetrad analysis of T20 x ED933. 
spore cell length 	36°C 	KCI 

ED933 wt 	++W 	++W 
control 
wisL4 v. long 	- 	- 
control 

cross 1 tetrad type T20 control s. long 	++ L 	++ L 
13/1 98 TT A wt 	++ W 	++ W 

B s. long 	++L 	++L 
C v. long 	- 	- 
D short? 	++ S? 	++ W 

3/2 110 PD A s. long 	++ L 	++ L 
B wt 	++W 	++W 
C s. long 	++L 	++L? 
D wt 	++W 	++W 

126 TT A wt 	++W 	++W 
B v. long 	- 	-? 
C short 	++S 	++S 
D s. long 	 -? 

130 PD A wt 	++W 	++W 
B s. long 	++L 	++L 
C s. long 	++L 	++L 
D wt 	++W 	++W 

Four-spored asci from two independent crosses are shown. Strains were crossed on SPA at 
25°C. cell length = cell length at division; 36°C = single colony formation at 36°C; KCI = 
single colony formation on 1.2M KCI; U = tetratype; PD = parental ditype; NPD = non-
parental ditype. 
Cell lengths: wt = wild type cell length; v. long = twice as long as wild type; short = shorter 
than wild type; s. long = slightly longer than wild type; 
Colony formation at 36°C and on KCI: ++ W = many single colonies, cells wild type length; 
++ S = many single colonies formed, cells short; ++ L = many single colonies formed, cells 
slightly long; - = no single colonies formed, cells very long and branched. 



The segregants in tetrads 98 (13/1) and 126 (3/2) were interesting as each 

of the four spores clearly had a different phenotype. This allowed them to 

be classed as tetratypes (see Figure 5.2). This was most obvious for tetrad 

126 (see Table 5.4), in which segregant 126A produced cells that were 

indistinguishable from the wild type control under all conditions tested; 

126B was indistinguishable from a wislA control strain and 126D was 

identical to the T20 parent strain. However, a novel phenotype was seen 

in the cells that grew from segregant 126C. This colony contained cells 

which that grew like wild type, but which divided at a slightly shorter 

length (see Section 5.3.4.2). The cells were also somewhat more rounded 

than normal cells and had thicker cell walls and were therefore 

reminiscent of cells in stationary phase. 

All data so far suggested that tetrad 126 was tetratype. This implies that 

one of the wis1 segregants (126A and 126C) should be sow and the 

other should be sow. The unusual short cells seen in 126C made it likely 

that the sow mutation lay in this strain, rather than 126A. To confirm 

this, strain 126C was backcrossed to a normal wislA strain to see 

whether a suppressed wislA strain would segregate (see Figure 5.3). 

126A, which was not expected to contain a sow mutation, was also 

crossed to a wislA strain to act as a control. 
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backcross to 
wislA strain 

Strain contains 
sow mutation 

sow 

X 

wislzi sow  

sow mutation segregates: 

so in wislA progeny: 

Strain is sow 

X 

wisltt sow  

all wislA progeny 

are sow 

1/2 sow 	1/2 sow 
	

temperature 
temperature temperature sensitive 
sensitive 	resistant 

Figure 5.3: scheme of backcross of putative sow strains to a wislA 
strain. 
A strain containing a sow mutation will segregate sow wislA progeny when crossed to a 
wislA strain. These segregants will be phenotypically like a suppressed wislA strain and will 
therefore be expected to grow at 36°C. 

Strains 126A and 126C were backcrossed to strain ED1058 (wis1::his1 

hisi). After two days at 32°C, when colonies were just begining to appear, 

the plate was replicated to MM-his, to select for wis1::his1 (ie wisTh) 

segregants. Both this MM-his plate and the master YE plate were 

incubated further. Colonies that continued to grow on MM-his were 

examined microscopically to determine whether cell length was 

suppressed. 

For the backcross to strain 126A, all colonies that grew on MM-his (ie 

wis1::his1) were made up of cells as long as wislA cells. In the 126C 

cross, half of the hisi + colonies contained cells as long as wislA cells; the 

remainder were shorter than wislA cells. This is consistent with there 

being no suppressor gene in strain 126A and there being a single 

suppressor gene segregating in the 126C backcross. 
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wis1::his1 
(wislA his1) 

segregants  

wis1 	hisi 
segregants 

KC1E KC1S KC1R KC1S 

0 44 42 0 
21 16 50 0 

crossed 
126A 

To confirm this, approximately 80 separate colonies were picked from the 

YE master plates and streaked to 1.2M KC1 and patched to MM ± his., 

None of the wislA segregants from the 126A cross were able to suppress 

wislA osmosensitivity, whereas approximately half the wislA progeny 

segregating from the 126C backcross were able to grow on high salt and 

half were not (see Table 5.5). This is consistent with there being a single 

suppressing sow mutation in strain 126C and none in strain 126A. 

Table 5.5: segregation of salt sensitivity in backcrosses of 126A 
(putative sow) and 126C (putative sow). 

The fact that tetratype asci containing four viable spores could be 

dissected from the T20 outcross allows three important conclusions to be 

drawn: the sow-T20 mutation alone is not essential under any of the 

conditions tested and, second, it leads to a reduction in cell length at 

division in a wisl+ background, which suggests the gene may regulate 

the timing of mitosis. Lastly, the sow-T20 locus is not linked to wisi. 

Work on strain T20 had shown some interesting initial data on the 

sow-T20 mutation it contained. Strain T16 was not investigated further, 

as the new set of mutants from mutagenesis V were more productive to 

work on and they are the subject of the next section. 

5.3: Analysis of sow Mutants from Mutagenesis V. 

The mutants had been made in Mutagenesis V suppressed better than 

most earlier mutants, which made them much easier to work on. I chose 

fifteen mutants to work on, selecting those that suppressed as many 

phenotypes as possible as well as mutants showing particularly strong 

suppression. 

M. 



T20, being the best (and only) early mutant still worth investigating, was 

added to this later group of fifteen strains, making sixteen in all. In 

previous analysis, strains had been backcrossed to a wis1L strain first. 

This time, I decided to investigate linkage first. By crossing each strain to 

a derivative of T20, I would discover whether the sow-T20 locus had also 

been mutated in the strains from Mutagenesis V or not. At the same time 

it should show which strains contained more than one mutation. 

5.3.1: Intercrosses between sow mutants to define linkage groups 

Each Mut V strain was crossed to T20.126B (wisTh sow-T20 h). Intially, 

twenty spores from each cross were picked and streaked to 36°C. In some 

crosses, phenotypes segregated in an ambiguous way (as discussed 

below), so more progeny from these crosses were streaked and analysed 

for growth at 36°C. The results are given in Table 5.6. 

Table 5.6: Mut V mutants crossed to T20 
strain no. of 

spores 
picked 

no 
growth 

growth 
at 36°C 

at 36°C  

linked to 
sow-T20? 

notes 

5.7 20 4 16 no  
5.10 1 	88 0 96 yes  
5.11 20 4 16 no  
5.13 50 0 50 yes  
5.15 20 0 20 yes  
5.22 59 0 59 yes 3 segregants suppressed 

only weakly 
5.31 20 0 20 ? partially sterile (see text) 
5.36 33 1 32 yes? 6 segregants suppressed 

only weakly 
5.49 90 13 77 no >1 unlinked genes (see 

text) 
5.51 70 0 70 yes  
5.60 60 21 39 ? partially sterile (see text) 
5.74 30 0 30 yes  
5.97 60 0 1 	60 1 	yes 1______________________ 
5.102 60 1 59 yes? probably linked 
5.123 1 	20 5 15 no I 
Initially, twenty spores were picked and streaked to 36°C. No growth at this temperature 
indicates wislA behaviour; growth indicates suppressed wislii 
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If a particular MutV strain contains a suppressor which is unlinked to 

sow-T20, a quarter of the progeny is expected to be sow (see Figure 5.1). 
As both parents are wisTh, these sow segregants will not grow at 36°C, 

and these will be the only segregants in the cross unable to grow, giving 

rise to a 1:3 segregation of unsuppressed to suppressed. Strains such as 

5.7, 5.11 and 5.123 showed a 1:3 segregation, indicating that the 

suppressor gene in these strains is unlinked to sow-T20. 

The other strains did not show this 1:3 ratio, and so more progeny were 

analysed for growth at 36°C. For strains 5.10, 5.13, 5.15, 5.22, 5.51, 5.74 

and 5.97 no unsuppressed progeny segregated indicating that the 

mutations in these strains are probably allelic to sow-T20. 

The suppressing mutations in strains 5.36 and 5.102 are probably also 

allelic to sow-T20, but as one unsuppressed segregant was observed in 

each cross, this is not entirely certain. 

The remaining strains either crossed poorly or seemed to contain more 

than one suppressing mutation. For 5.31 and 5.60, nearly all the spores 

plated contained parental markers suggesting that they were not the 

product of normal meiosis. Strain 5.49 showed approximately 1:7 

segregation. This suggested that this strain had two unlinked 

suppressors and that they were segregating as well as the single 

suppressor from strain T20. These three strains was abandoned. 

Of the strains that could be analysed straightforwardly, nine contained 

mutations that were linked to sow-T20, thus forming a linkage group, 

which was named sowl. This group consists of: T20, 5.10, 5.13, 5.15, 5.22, 

5.36, 5.74, 5.97 and 5.102 (see Table 5.8). The sow-T20 mutation in strain 

T20 was accordingly renamed sowl-T20. 

The remaining strains (5.7, 5.11 and 5.123) were crossed to eachother to 

see if they formed a second linkage group. An h derivative of 5.7 was 

crossed to 5.11 and 5.123. Sixty progeny from each cross were assayed for 

growth at 36°C, as shown in Table 5.7. 



Table 5.7: linkage anaIvis hetwcn niibitivt n,i,2 

cross no growth at 
36°C 

growth at 36°C linked? 

5.7 h-i-  x 5.11 h-  1 59 yes? 
5.7 h 	x 5.123 h-  0 60 yes 

No unsuppressed progeny segregated in the cross between 5.7 and 5.123, 

showing that the sow mutations these strains contain are at least closely 

linked and therfore probably allelic. This is most likely the case for 

strains 5.7 and 5.11 too, even though a single unsuppressed segregant 

was observed. As both 5.11 and 5.123 are linked to 5.7, these three 

strains form a second linkage group, sow2. These results are summarised 

in Table 5.8. 

Table 5.8: strains in the sow linkage LrrouiDs. 
locus strains sow alleles 
sowl T20, 5.10, 5.13, 5.15, 5.22, 

5.36, 5.74, 5.97, 5.102 
sowl-T20, sowl-10, sowl-13, 
sowl-15, etc. 

sow2 5.7, 5.11, 5.123 sow2-7, sow2-11, sow2-123 

5.3.2: Backcrossing suppressed strains to a wislA strain 

Three strongly-suppressing strains from each of the sowl and 

sow2 linkage groups were picked as representative mutants. From the 

crosses to a T20 h+  strain, which were described in Section 5.3.1, it 

appeared that the strains contained a single suppressor. To verify this, 

they were backcrossed to a wis1L strain, the results of which are given in 

Table 5.9. 
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Table 5.9: new mutants backcrossed to ED1010. 
no. of asci dissected 

strain linkage 
group 

4-spored 3-spored no. of asci 
segregating 

2:2 
T20 sowl 4 3 7a 
5.10 sowl 2 1 3a 

5.22 sowl 1 1 2 
5.7 sow2 5 0 5a 

5 3 8b 

5.11 sow2 14 0 14a 
4 5 9b 

5.123 sow2 3 4 7b 
All strains were crossed to EDIOIO (wis1E) on SPA for three days at 20°C. Strains 5.10 and 
5.22 crossed poorly. Growth at 36°C was tested by streaking to YE at 36°C for three days. 
Cell length was examined on MM at 28°C. 
asegregation as per single mutation (2:2) and cosegregation of temperature resistance and 
reduced cell length. 
b2:2 segregation of temperature supression. 

The data presented in Table 5.9 confirmed that all of the above strains 

(T20, 5.7, 5.10, 5.11, 5.22 and 5.123) contained a single suppressing 

mutation. Some of the segregants from these crosses had combinations of 

markers in them that would make them useful for future work, so -70°C 

glycerol stocks were made from them. Details are given in Table 5.10. 

Table 5.10: backcrossed strains that were frozen for future use. 
Strain from cross genotype 
SP31 5.11 x ED1010 sow2-11 wis1::his1 	hisi ura4::fbp1-lacZ h 
SP39 5.7 x ED 1010 sow2-7 wis1::his1 	hisi ura4::fbpl-lacZ h 
SP6O 5.22 x ED1010 sowl-22 wis1::his1 	hisi ura4::flp1-1acZ h- 

5.3.3: sowl and sow2 show synergistic suppression. 

During the intercrosses described in Section 5.3.1, it was observed that 

some of the progeny grew better than normal suppressed wisTh strains at 

36°C and were practically identical to wild type under these conditions. 

These progeny came from crosses in which unsuppressed wislzX progeny 

were seen to segregate. The crosses must therefore have been between 

unlinked suppressors ie wisi sowl x wisi sow2. Segregation of wisi sowl 
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sow2 triple mutants would also be expected in these crosses. It seemed 

that it was the triple mutant that was growing better than the wislA sow 

double mutants at 36°C. 

To investigate, wisi sowl-T20 was crossed to wisi sow2-11 and tetrads 

were analysed. Seventeen tetrads were isolated and the segregants were 

streaked to single colonies at 36°C with wild type, wislA, wislA sowl-T20 

and wislA sow2-11 control strains. 

Three phenotypic classes were seen amongst the progeny:, the first class 

was unable to grow at 36°C and at this temperature, the cells became 

highly elongated and branched. This class was indistinguishable from the 

wislA control strain, so it was assigned the wislA genotype. 

The second class could grow at 36°C, and produced slightly elongated 

cells at this temperature. The behaviour of this class and of the two wisi 

sow double mutant controls, was indistinguishable. It was therefore 

deduced that this class represented wislA sowl and wislA sow2 double 

mutants. 

The remaining class grew very well at 36°C, producing larger colonies 

after one day than the wisi sow double mutants. These colonies consisted 

of cells that were almost indistinguishable from wild type. This class was 

deduced to represent the wislA sowl sow2 triple mutant. 

Tetrads from the wisi sowl x wisi sow2 cross contained all three 

phenotypic classes consisted of one unsuppressed segregant (ie wis1L); 

two suppressed segregants (wisi sowl and wisi sow2) and one nearly 

wild type segregant (wisi sowl sow2). These tetrads were presumably 

tetratype. The segregants from one such tetrad (10F-I) were streaked to 

single colonies at 36°C with control strains and growth after one and 

three days is shown in Figure 5.4. 
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control strains 	segregants from wisi sowl x wisi sow2 

3 days 	 1 day 	 3 days 

wild 
wislA I type 

WiSiA I wislA 
sowl sow2 

lOG I 101 

1OH I 1OF 

lOG I 101 

1OH I 1OF 

Figure 5.4: suppression of wislA temperature sensitivity by sowl 
and sow2. 
Wild type, wis1L, wisi sowl and wisi sow2 control strains were streaked with the 
segregants from tetrad 1OF-1 from the cross wisi sowl x wisi sow2 to YE at 36°C. Growth 
after one or three days is shown. 

Segregant lOG does not grow at 36°C, even after three days' incubation 

and was indistinguishable from the wislA control strain, so, presumably, 

it corresponds to wislA; 1OF and 10H form colonies after three days and 

resemble the wisi sowl and wisi sow2 control strains. They were 

therefore assigned the wisi sow genotype, although it was not possible to 

tell whether these strains contained the sowl or sow2 suppressor. 

The remaining segregant (101) formed colonies at 36°C after one day (see 

Figure 5.4). At this time, the wisi sow strains had not yet formed 

colonies, but the wild type control strain had (data not shown). The 

genotype of this strain was deduced to be wisi sowl sow2 because this 

segregant grew better than wisi sow strains. 
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The segregants from this tetrad were grown on MM to determine whether 

cell length suppression was affected in the triple mutant strains. The 

wisi sowl sow2 triple mutant consisted of cells that were the same length 

as wild type, whereas the double mutants were slightly elongated 

compared to wild type. 

These observations show that sowl and sow2 suppress wislA 

temperature sensitivity and cell length defect additively. 

5.3.4: Making wisl+  sowl and sow2 derivatives. 

When sowl-T20 had been crossed out of a wislA background in Section 

5.2.4, it generated a sowl-T20 wis1 strain, that divided at a reduced cell 

length. To investigate whether this was the case for any of the other 

sow alleles, the strains in Table 5.10 were crossed to ED933 (leul hisi 
h+). The numbers of asci dissected for each of these crosses is given in 

Table 5.11 below. 

Table 5.11: outcrosses to ED933. 
cross 4-spored 

asci 
3-spored 

asci  
total asci 

SP31 x ED933 4 8 12 
5P39 x ED933 4 4 8 
SP60 x ED933 6 4 10 

The wislA and wislA sow segregants resulting from these crosses could 

be unambiguously classified, as they could be compared to previously 

isolated control strains of known genotype (see Table 5.12). The fact that 

sowl-T20 had a very similar, but subtly different phenotype to wild type 

predicted that distinguishing strains of these genotypes would be rather 

hard. However, as shown in Table 5.13 - Table 5.15, segregants arose in 

these outcrosses that were distinguishable from wild type, albeit with 

difficulty. 
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Table 5.12: Phenotypes of control strains used in sow outcrosses 
to ED933. 

phenotypes  
control 
strain 

relevant 
genotype 

36°C 
36°C 

streaks at 
36°C 

colour on 
phloxin B 

cell length 
on MM 

SP31, 
SP39, 

wislA sow 

SP60  

+ ++ P -1.5 x w.t. 

ED1135 wislA - - P -2 x w.t. 
ED933 wild type + ++ W w.t. 

36°C - 36°C: patches were grown on YE at 36°C for three days, then replicated to YE at 
36°C. 

Consider a sample tetratype tetrad (7A-D) from the cross between SP60 

(wislA sowl-22) and ED933 (wild type) first. The following classes of 

segregants were found in this tetrad (see Table 5.13): the colony that 

grew from segregant 7B contained cells that grew well at 36°C, but were 

pink on Phloxin B and were roughly 1.5x longer than wild type cells. This 

class therefore comprised suppressed wislA cells. 7C contained cells that 

would not grow at 36°C, were pink on Phloxin B and were twice as long 

as wild type cells on minimal medium, and are thus indistinguishable 

from wisl A cells. 7D contained cells that were grew just like wild type 

under the conditions examined. 

Table 5.13: Tetratype tetrad 7A-D from SP60 x ED933. 
segregant deduced 

genotype 
36°C 

36°C 

streaks at 
36°C 

colour on 
phloxin B 

cell length 
on MM 

7A sowl-22? + ++ W <w.t.a 
7B sowl-22 + 

wislA  
++ P -1.5 x w.t. 

7C wislA - - P -2 x w.t. 
7D wild type + ++ W w.t. 

36°C - 36°C: patches were grown on YE at 36°C for three days, then replicated to YE at 
36°C. 
athis segregant consisted of slightly rounded cells which divided at a reduced cell length 
compared to wild type. 

Thus, the three segregants dealt with so far each matched one of the 

three control strains exactly. This left segregant 7A, which gave rise to 

cells which resembled wild type, but were slightly rounded and divided at 

104 



a shorter length. By a process of elimination, the genotype of this 

segregant must be wisl+ sowl-22. 

Tetrad 7A-D is used here as an example. Patterns of segregation in the 

other nine tetrads that were dissected in this cross were consistent with 

this tetrad. From this it was concluded that the sowl-22 allele, like the 
sowl-T20 allele gives rise to a reduction in cell length at division as well 

as making cells rounded. 

A representative tetratype tetrad from the SP31 (wislA sow2-11) x 

ED933 (wild type) outcross is shown in Table 5.14. 

Table 5.14: Tetratype tetrad 1OA-D from SP31 x ED933. 
segregant deduced 

genotype 
36°C 

36°C 

streaks at 
36°C 

colour on 
phioxin B 

cell length 
on MM 

10A w.t. + ++ W w.t. 
lOB wis1z + 

sow2-11  
++ P -1.5 x w.t. 

10C sow2-11? + ++ W - w.t.a 
10D wislA - - P -2 x w.t. 

36°C - 36°C: patches were grown on YE at 36°C for three days, then replicated to YE at 
36°C. 
athese cells were rounded and slightly bulgy compared to wild type. 

Again three of the four segregants (bA, lOB and 10D) corresponded to 

the three control strains (wild type, SP31 (wislA sow2-11) and ED1135 

(wislA) respectively), leaving one segregant, bC, with a novel phenotype 

of rounded and bulgy cells. This segregant must therefore have the 

genotype wis1 sow2-11. The other tetrads that were analysed in this 

cross showed a consistent pattern of segregation of phenotypes. 

The other sow2 strain that was outcrossed was SP39 (wislA sow2-7). Like 

the SP31 (wislA sow2-11) cross above, this cross gave rise to rounded and 

bulgy progeny (10D in Table 5.15) which are predicted to be wis1 

sow2- 7. 
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Table 5.15: Tetratype tetrad 1OA-D from SP39 x ED933. 
segregant deduced 

genotype 
36°C 

36°C 

streaks at 
36°C 

colour on 
phioxin B 

cell length 
on MM 

10A w.t. + ++ W w.t. 
lOB wis1z + 

sow2-7  
++ P 1.5 x w.t. 

10C wisl4 - - P -.2 x w.t. 
10D sow2-7? + ++ W w.t.a 

36°C -> 36°C: patches were grown on YE at 36°C for three days, then replicated to YE at 
36°C. 
athese cells were rounded and slightly bulgy compared to wild type. 

Although both sowl and sow2 lead to aberrant cell morphology, it is 

interesting that sow2 does not seem to accelerate cell division and 

therefore porbably plays no role in the timing of mitosis. 

Furthermore, these crosses show that, like sowl-T20, the other sow 

alleles are not lethal and both sowl and sow2 are unlinked to wisi. These 

outcrosses led to the creation of strains that were used in future work and 

their genotypes are given in Table 5.16. 

Table 5.16: sow strains generated during outcrosses 
Strain genotype 
SP133 sowl-22 hisi h 
SP148 sow2-7 hisi h 
SP165 sow2-11 hisi h- 

5.3.4. 1: 5.3.4.1: Generation of sow strains for future work. 

Judging by phenotype, some of the strains discussed in the previous 

section, namely SP148, SP165 and 5P133 (see Table 5.16), seemed highly 

likely to contain sow mutations. To confirm this, these strains were 

studied as described below (refer to Figure 5.5). 
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Generation 

5.7 x ED1010 

	

wis1z 	wisl4 

	

sow2-5. 7 	leul 
ura4::fbpl 

-lacZ 
ade6 

fl 

II 	SP39 x ED933 
wisl4 hisi 

sow2-5. 7 	leul 
ura4::fl,pl 

-lacZ 

5.11 x ED1010 	5.22 x ED1010 
wisl4 wislzi 	wislzi 	wisl4 

sow2 -5.11 leul 	sowl-5.22 	leul 
ura4::fbp ura4::fbp 

1-1acZ 1-1acZ 
ade6 ade6 

fl 

SP31 x ED933 
	

SF60 x ED933 
wislii hisi 	wisl4 hisi 

sow2 -5.11 	leul 	sowl-5.22 	leul 
ura4::fbpl 	ura4::fbpl- 

-lacZ 
	

lacZ 
r 

/ 

III 	SP148 x ED878 
sow2-5. 7 w. t. 

hisi 

V 

1V 	SP232 
sow2-5. 7  

SP165 x ED878 
sow2 -5.11 	w.t. 

hisi 

ii 

V 

SF239 
sow2-5. 11 

SP133 x ED878 
sowl-5.22 w.t. 

hisi 

L 

V 

SF237 
sowl-5.22 

Figure 5.5: derivation of strains used. 
wisl+ sow strains were obtained from the wisl4 sow mutants, 5.7, 5.11 and 5.123, that were 
obtained in Mutagenesis V. 

Strains SP148 (sow2-5.7hisl h), SP165 (sow2-5.11 hisi h-) and SF133 

(sowl-5.22 hisi h-) ( generation III in Figure 5.4) were all crossed to wild 

type strain ED878 (h) to generate strains 5P232, SF239 and 5P237 

respectively (generation IV in Figure 5.4). To confirm that these putative 

sow strains contained a sow mutation they were each backcrossed to a 

wislL\ strain. 

SF232, SF239 and SF237 were crossed to ED975 (wisliX). Resulting asci 

were digested and roughly 100 spores from each cross were plated on YE 

+ phloxin B at 32°C. After six hours, the plates were shifted to 36°C. The 

classes of colonies that grew up in each of the crosses are given in Table 

5.17. 
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Table 5.17: results of backcross plating experiment. 
ED975 genotype large white large pink tiny dark 

crossed to:- colonies colonies pink colonies 
ED812 wild type ± - 
T20.16 sowl-T20 + a ___________ 

SP232 putative + a 
sow2-5. 7  

SP239 putative + a 
sow2-5. 11 __ ___________ 

SP237 putative + a
sow1-5.22 j 

acells in these colonies grew well, were approximately 1.5 x wild type length, 
bCells in these tiny colonies were extremely long and branched, and had ceased division. 

Cells in the large white colonies were all rougly wild type in length and 

grew well. I therefore concluded that they were wis1. The cells in the 

tiny dark red colonies very closely resembled wislA cells at 36°C. The 

large pink colonies were made up of cells that were growing well, but 

slightly elongated and red in colour, indicating that they were wis1L sow 

cells. The backcross involving the known sow strain T20.16 produced 

progeny of this class, so the presence of this class of progeny in the 

backcross of SP232 to wisTh demonstrates that there must be a sow 

mutation in strain SP232. 

Similarly, SP239 and SP237 must also be sow. Furthermore, as expected, 

there were roughly twice as many white colonies as there were large pink 

ones. It was hard to count small dark pink colonies as many of them were 

too small to see with the naked eye. 

It can hence be concluded that strains SP232, 5P239 and SP237 all 

contain sow mutations. As they came from a cross between wild type 

ED878 and strains SP148, 5P165 and 5P133 respectively, this implies 

that the latter strains must also contain sow mutations. Hence the 

strains SP148, SP165 and SP133 have been assigned the genotypes 

shown in Figure 5.4. 

5.3.4.2: Measuring cell length at division of sow strains. 

In Section 5.2.4, it was shown that sowl-T20 makes cells divide at a 

reduced length. It appeared that at least sowl-5.22 did the same (see 

108 



Section 5.3.3). To verify this apparent shortening of cell length at 

division, cell lengths were measured microscopically, as described in 

Table 5.18. 

Table 5.18: lengths at division of sow mutants. 
Strain genotype length ± 

standard 
error (gm)  

no. cells 
measured 

ED812 15.1±0.3 
14.5 ± 0.2 

10 
16 

T20.16 sowl-T20 h-  13.8±0.2 21 
SP237 sowl-22 h 13.3±0.2 25 
SP232 sow2-7 h-  15.5±0.1 24 
5P239 	I sow2-11 h 14.5±0.2 	120 
Strains were grown in MM at 32°C to mid-log phase and septated cell lengths were 
measured microscopically. 

This experiment shows that sowl mutants divide at a shorter length than 

wild type cells. If this is taken with previous cell length measurements in 

a wisTh background (see Section 4.3), it appears that a sowl mutation 

causes a reduction in cell length regardless of Wisl activity, and the 

mutation may therefore accelerate mitosis independently of Wisi. 

In contrast to this, the presence of a sow2 mutation only has an effect on 

cell length in a wisTh backgound. This implies that sow2 may require 

Wis1 for its function. 

5.4: Conclusions for Chapter 5. 

Having completed initial genetical investigation, it it was clear that the 

mutations in the suppressor strains defined two sow loci and that a single 

sow mutation was sufficient to suppress several wis1\ phenotypes. 

Having said this, the experiments on diploids containing different doses 

of sowl-T20 showed only that this mutation was semi-dominant. 

Furthermore, nine different alleles of this gene were isolated, all with 

fairly similar phenotypes. As a loss of function mutation is much easier to 

generate than an activated allele, the most likely solution to the 

dominance question is that sowl-T20 is in fact a recessive mutation and 

that the phenotypes seen in the various diploids that were constructed 
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are due to dosage effects. This implies that in wild type cells, precise 

levels of sowl+  are probably important for at least one cellular process. 

A similar argument can be constructed for the three sow2 alleles. 
Although less convincing than for sowl, it is perhaps likely that these are 

also loss-of-function mutations. 

Given that sowl and, perhaps, sow2 are most likely loss-of-function 

mutations, the additive suppression of wislA shown by sowl-T20 and 
sow2-11, suggests that the two sow genes lie in different pathways, which 

can suppress wislA independently. 

So far, the only difference seen between sowl and sow2 is that sowl can 
reduce cell length independently of wisi, whereas, for the alleles obtained 

so far, sow2 affects mitotic timing only in a wislA background, yet leads 

to aberrant cell shape on its own. This has implications for the 

relationship between the sow genes and Wisi pathway, which will be 

discussed later (see Chapter 7). 

To investigate these points, the sow mutations were characterised 

physiologically and genetically and these experiments form the topics 

considered in the next chapter. 
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Chapter 6: sowl and sow2. 

6.1: Environmental Stress and the sow mutants. 

The previous chapter discussed the phenotypes of sowl and sow2. In a 
wisTh background, a sowl or a sow2 mutation reduces cell length and 

increases stress resistance. In a wisl+ background, sowl affects cell 
length and sow2 alters cellular morphology, a phenotype which 

conceivably could be connected to cell cycle control. The observation that 

sow mutants affect cell length independently of wisi suggest that the 

stress resistance shown by sow mutants (so far only seen in a wis1E, 

strain) may also be independent of wisi. This would predict that a sow 

wisl+ strain could show different stress resistance from a wild type 

strain. It was hoped that information gleaned from this sort of exploration 

would hint at sow gene function. 

6.1.1: The sow mutants on stress-inducing media. 

To determine whether the sow mutants showed altered osmotolerance, 

sowl-T20 (strain T20.16) and wild type (ED812) strains were streaked to 

single colonies on YE supplemented with 1.5M, 1.75M, 2.OM and 2.25M 

KC1 both at 32°C and at 36°C. At 32°C, both strains were able to form 

colonies on up to 1.75M KC1, whereas at 36°C, the strains grew poorly on 

1.75M KC1. No difference in the behaviour of the two strains was seen. 

In budding yeast, four uth mutants were obtained during a screen for 

stress-resistant mutants (Austriaco, 1997). One of them shows sensitivity 

to the weedkiller, paraquat. Using the behaviour of budding yeast as a 

guide, the sow mutants were tested for paraquat sensitivity. Four sow 
strains: sowl-T20, sowl-22, sow2-7 and sow2-11 and a wild type control 

strain were streaked to single colonies on YE plates containing 0.33, 

0.033 mg/ml paraquat. The plates were incubated for three days at 32°C. 

A paraquat concentration of 0.033 mg/ml had no effect on growth; growth 

at 0.33 mg/ml is shown in Figure 6.1. 
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Figure 6.1: Growth of sow mutants on medium containing 
paraquat. 
The figure shows growth after three days at 32°C. The medium is YE supplemented with 
0.33 mg/ml paraquat. 

The sowl strains formed colonies well, the wild type poorly and the sow2 

very poorly. From the work on Saccharomyces described above, one would 

expect stress resistant mutants to be more sensitive to paraquat than 

wild type. This is what was seen in the case of sow2 mutants. However, 

sowl mutants grew better than the wild type, which is in contrast to what 

might be predicted. 

6.1.2: sow mutants grow at 39°C 

One possibility was that the sow mutants might show an increased heat 

tolerance relative to wild type, especially as the wislA sow mutants grew 

better at high temperature than on high salt, demonstrating better 

suppression of wisTh temperature sensitivity than salt sensitivity. The 

first experiment performed investigated the viability of wild type, sowl 

and sow2 mutants grown at temperatures above the normal range for 

Schizosaccharomyces pombe. The maximum temperature fission yeast 
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will grow at is 36°C; the wild type control strain was therefore not 

expected to remain viable at this temperature. 

A wild type strain and both sowl and sow2 mutants were streaked to 

single colonies at 38.5°C and 39°C. After a day, the plates were examined 

for formation of colonies, as described in Table 6.1. 

Strain genotype of 
strain 

YE 38.5°C YE 39°C 

ED812 sow - - 
T20.16 sowl-T20 + + 

SP133 sowl-22 hisi + + 
SP148 sow2-7 hisi not done + 
SP165 sow2-11 hisi + + 
The table shows the ability of wild type and sow strains to form colonies on YE at 38.5°C and 
at 39°C after two days. - indicates no colony formation at all; + indicates the formation of 
small colonies. 

Surprisingly, both sowl and sow2 strains were able to form small colonies 

at 38.5°C and at 39°C, whereas wild type formed none at all (see Figure 

6.2). 

Table 6.1: growth of sow mutants at high temperature 

wild 
type 

sow2-7 \ I sowl -22 

sowl - / \sow2-11 
120/ \ 

sowl- 
T20 

Figure 6.2: sowl and sow2 at 38.5°C. 
The figure shows the formation of colonies of wild type, sowl and sow2 strains after two 
days on YE at 38.5°C. 

However, after two days, division of all three strains had ceased. Wild 

type had divided only a few times and many of the cells had lysed and 

those that were still intact were very swollen. On the other hand, the sow 
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mutants showed essentially no lysis, although the cells were swollen, and 

many of them had one, or occasionally more, prominent septa across their 

centre. These observations show that sowl and sow2 mutants are able to 
grow at temperatures above the normal range for S. pombe. 

6.1.2.1: Phloxine B staining 

The dye phloxine B is taken up by cells whose membrane has lost its 

integrity, and is a good indicator of how healthy a colony is: sick and dead 

cells lose membrane integrity and hence stain red; whereas healthy cells 

exclude the dye and remain white. 

Freshly-growing material from wild type, sowl and sow2 strains was 

patched to YEPB at 39°C. After two days, the patches were examined for 

colour, as shown in Table 6.2. 

Table 6.2: Colour of sow strains on phloxine B at 39°C. 
Genotype of strain colour of patch 
wild type dark pink 
sowl-T20 white 
sowl-22 pale pink/whitish 
sow2-7 pale pink 
sow2-11 pink 
The table shows the colour of patches of sow and sow strains after two days at 39°C on 
YE containing phloxine B. 

To investigate this further, lOml cultures of MM including phloxine B 

were inoculated with wild type, sowl and sow2 at 39°C at approximately 

2 x 105 cells per ml. The purpose of this experiment was to investigate 

cellular morphology rather than cell growth. Even so, when samples were 

taken for microscopic examination after incubation for one day, it was 

noticed that the cell number of the sow strains had increased during the 

incubation to 2-6 x 106  cells per ml whereas the wild type culture had 

only increased roughly three-fold. 

Wild type, sowl and sow2 cells are shown after one day at 39°C in Figure 

6.3. 
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Figure 6.3: Photomicrographs of phioxine B stained cells at 39°C. 
Photomicrographs of these cells were taken with a H/DIC objective using a green filter, which 
makes red phloxine B stained cells appear black (B); unstained cells were green and appear 
white (W). 
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As Figure 6.3 shows, many of the cells in the wild type culture were dark 

and therefore must have taken up the phloxine B, implying loss of 

membrane integrity; both sowl and sow2 mutants mainly remained light, 

excluding the dye, demonstrating that the cells were still healthy. This 

constitutes further evidence that sow mutants are more heat resistant 

than wild type cells. 

6.1.2.2: Investigation of viability. 

The previous experiment demonstrated that sow mutants are healthier 

and formed colonies better than wild type at 39°C. It would therefore be 

interesting to compare their viability to wild type at this temperature. In 

order to do this, freshly-growing wild type and sow strains were spread 

onto YE at 39°C. The cells were spread as thinly as possible over a large 

area of the plate to ensure that they had a sufficient supply of nutrients, 

thus preventing starvation. 

After one, two and three days at 39°C, small samples of cells were taken 

using the end of a sterile toothpick from the edge of the patches. These 

samples were streaked to single colonies on YE at 32°C. 

Once single colonies had formed, the plates were examined 

microscopically to determine what proportion of cells were able to form 

colonies after various times at 39°C, thus allowing the viability at 39°C to 

be estimated. Data are presented in Table 6.3. 

Table 6.3: Proportion of cells forming colonies at 32°C after 
incubation at 39°C. 

time _at_39°C  
Genotype of 

strain 
one day two days three days 

wild type 10% _0% _0% 
hisi -0% -0% -0% 

sowl-T20 - 100% - 100% 90% 
sowl-T20 hisi - 100% - 100% 90% 
sow 1-22 hisi - 100% __100% 90% 
sow2-7 hisi - 100% - 100% 90% 
sow2-11 hisi - 100% - 100% 90% 

Cells were streaked to single colonies at 32°C after the number of days indicated at 39°C. 
The approximate proportion of cells that had formed colonies, as judged by microscopic 
examination of the plates, is given in the table. 
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Neither the wild type nor the hisi strain was able to form colonies after 

more than a day at 39°C. In contrast, the hisl+ sow as well as the hisi 

sow strains were able to form colonies very efficiently, even after three 

days at 39°C. This shows that the sow mutation (rather than the histidine 

auxotrophy) in these strains is responsible for their survival. 

6.1.3: sowl-T20 is resistant to heat shock. 

As sow mutants were able to tolerate steady-state high temperatures, one 

possible prediction from this would be that their heat shock tolerance 

would be improved relative to wild type. Cultures of three sow strains 

(sowl-T20, sowl-22 and sow2-7) were grown with wild type and wislA 

controls in MM at 31°C. Cells were collected by centrifugation and 

resuspended in pre-warmed medium at 47°C. Samples were taken over 

approximately fifty minutes to assay viability. Cell number was counted 

at the beginning and the end of the experiment. The number of viable 

cells in the culture was assessed by plating cells at 32°C, counting 

colonies that grew up and hence calculating the viability. The results are 

plotted on the graph in Figure 6.4. 
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Figure 6.4: Heat shock survival of sow strains. 
Exponentially-growing cultures were shifted to 47°C at time = 0. 
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The behaviour of the sowl-22 and sow2-7 mutants under heat shock was 

indistinguishable from that of the wild type control strain: these three 

strains start to lose viability after 34 minutes at 47°C. In contrast, the 

sowl-T20 strain appears to show only a slight loss of viability even after 

49 minutes' heat shock. This suggests that sowl-T20 increases heat shock 
tolerance, although later time points would be required to confirm this. 

6.1.4: sowl sow2 double mutants. 

In Section 5.3.3 it was shown that a wislA sowl sow2 triple mutant shows 
better suppression of the wislA TS phenotype than the wislA sowl and 
wislA sow2 double mutants. This implies a synergistic interaction 

between sowl and sow2 in a wis1E. background. Now, having found that 
the sow mutations make cells resistant to high temperature (a phenotype 

that could be followed easily), I wondered whether a sowl sow2 strain 
would also exhibit synergism in a wisl+  background. 

A cross was set up to generate a sowl sow2 double mutant: T20.16 (sowl-
T20)x SP233 (sow2-7). Fourteen tetrads were obtained, of which nine 

were four-spored. The colour exhibited on YEPB at 38°C was used to 

distinguish the segregants, as fortunately, subtle differences between the 

various strains were perceivable, as described in Table 6.4. 

Table 6.4: Phioxine B staining of strains from sowl x sow2 at 38°C. 
Strain Colour of patch 
wild type dark pink 
sowl-T20 light pink 
sow2-7 light pink; dark pink edge to patch 
sowl-T20 sow2-7 
(putative) 

light pink; dark pink edge to patch 

The sowl-T20 x sow2-7 cross produced eight tetrads that contained one 

segregant which was dark pink (like wild type), one which was light pink 

(sowl-T20) and two segregants that were light pink with a dark edge 

(sow2-7). These tetrads are tetratype, and furthermore, one of the two 

sow2-7-like progeny must be the sowl sow2 double mutant. These two 

segregants were indistinguishable, which suggests that, as far as ultra- 
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high temperature growth is concerned, the sow2-7 mutation is epistatic to 
the sowl-T20 mutation. 

This concludes the investigation into the sow mutants and the effects 

they exert on their own. The next section describes experiments that 

looked at the effects additional mutations have on sow mutants. 

6.2: Genetic Investigation of the sow mutants. 

A series of genetic experiments was undertaken to try to investigate the 

nature of the sow genes genetically. The first aim of these experiments 

was to cross both sowl and sow2 to known genes and use tetrad analysis 

to determine whether either of the sow genes was allelic to any known 

gene. Either the presence of non-parental tetrads or the segregation of 

wild type progeny in a cross is sufficient to demonstrate that two genes in 

a cross are unlinked and therefore cannot be allelic. Interestingly, in 

every case tested no linkage was observed, so both sowl and sow2 appear 
to correspond to novel genes. 

The second aim of this investigation was to investigate possible genetic 

interactions between known genes and the sow genes. Because none of 

the genes tested for allelism was linked to either of the sow genes, there 

will be double mutants for both a sow gene and the gene being tested 

amongst the progeny. By studying the phenotypes of these double mutant 

strains, it should be possible to see whether the sow genes interacted 

genetically with the genes they had been crossed to. It was hoped that a 

study of this sort would reveal more about the sow genes. 

Moreover, if any of the double mutants had a phenotype that could be 

selected against, it might be possible to exploit this in designing a 

strategy for cloning sowl and/or sow2. 

The genes that were chosen to cross to sowl and sow2 came from those 

that are known to interact with wisi (see Figure 6.5). The reason for this 

was that sowl and sow2 were isolated owing to their genetic interaction 

with wisi. It is therefore likely that some of the wisi -interacting genes 

that were already known would also interact with sowl or sow2. 
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The hsp90 gene swol (see Figure 6.5) was chosen because of its role in 

stress survival (reviewed in Buchner, 1996). The styl and atfi genes were 

chosen because they lie downstream in the Wisi pathway. Wisi is a 

mitotic initiator, so cdc2, cdc25, weel and cdc13 were chosen as they are 
central to mitotic control. The type 2A phosphatases, ppal, ppa2 and ppel 
also have an effect on cell cycle, and furthermore, as the Wisi pathway is 

a phosphorylation cascade, phosphatases are needed for down-regulation. 

wisi is also known to interact with the cAMP pathway, so pkal and cyrl 

from this pathway were chosen. In addition, both the cAMP pathway and 

wisi interact with pati. 

swol ------- I stress survival 

V 
weel 

Ii 

cdc2 

cdcl3 cdc25 

G2-M control 

ppa I 

ppa2 

ppe I 

sowl sow2 

pati 

Wis I 	
T 

styl 	cAMP pathway 

atfI 

Type 2A 	Wisi pathway 
phosphatases 

Figure 6.5: The network of interactions with wisi. 
A double headed arrow indicates a genetic interaction between two genes; a single headed 
arrow denotes the action of one gene product on another and a dotted line indicates a link 
between genes and processes. 

In addition to the genes described above, a particular allele of cdc27 

(cdc27-P11) was chosen to be crossed to the sow genes. In Chapter 3, the 
observation that wislA is osmoremediable was described. It is possible 
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that the sow mutations suppress wislA phenotypes by altering cellular 
osmolarity. The cdc27-P11 mutation is also osmoremediable and it was 

chosen for this reason, rather than for the indirect role it plays in cell 

cycle progression. 

6.2.1: swol 

As discussed in Section 6.1.2, sow mutants are unusually resistant to 

high temperature. One of the ways heat stress causes damage to cells is 

by increasing protein denaturation. This is resisted in part by chaperones 

such as the heat shock protein 90 (hsp90), which helps to refold proteins 

(reviewed in Johnson and Craig, 1997). It is conceivable that the sow 
mutations suppress wislA phenotypes by interfering with this process. 

The S. pombe hsp90 gene, swol (Aligue et al., 1994) would therefore be 

an interesting gene to test for linkage to and for a genetic interaction with 

sowl and sow2. 

Strains containing the swol-26 allele are temperature sensitive and at 

35°C arrest without dividing, with swelling and extensive lysis. This 

cellular breakdown worsens as the temperature increases (Aligue et al., 

1994). 

To investigate possible allelism and genetic interactions, swol-26 was 
crossed to sowl-22, sow2-7 and sow2-11. Each cross produced roughly ten 

tetrads with enough viable progeny to interpret. First, the resulting 

tetrads were analysed for linkage between the swol and sow genes. 

Segregants were present in both the sowl and sow2 crosses that grew at 

35°C (which shows that they are swol), but which died swiftly and 

became dark red on phloxine B at 39°C, (ie sow+).  These segregants must 

therefore be wild type. The presence of wild type recombinants 

demonstrates that swol is not allelic to either sowl or sow2. 

Next, the segregants in the crosses were analysed for genetic interactions 

between swol and the sow genes. In all four-spored tetrads in the swol x 
sowl crosses, there were two segregants that would grow at 35°C (ie 

swol) and two that would not (ie swol). Judging by the presence of a 

single wild type segregant, some were TT. Those that had no wild type 

segregants were classified as NPD. 
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In NPD tetrads there are two double swol sowl mutants. At 35°C and at 

32°C, no difference was seen between the behaviour of the swol sowl 
mutants from these tetrads and control swol strains. Thus at these 
temperatures, swol is epistatic to sowl and there is no other genetic 
interaction between swol and sowl. This rules out the conjecture that 
sowl might suppress swol. 

No interaction was seen in the swol x sow2 crosses either. There does not 

therefore seem to be any interaction between the swol and sow genes. 

6.2.2: Genes downstream of Wisi. 

Next sowl and sow2 were crossed to two genes encoding proteins that lie 

downstream of Wisi in the pathway: styl and atfi. 

6.2.2.1: stvl 

The styl gene encodes the MAPK which is phosphorylated by Wisi (Kato 

et al., 1996; Millar et al., 1995; Shiozaki and Russell, 1995a). Styl then 

phosphorylates the transcription factor, Atfi (Wilkinson et al., 1996). 

As discussed in Chapter 4, an activated allele of styl might be able to 
suppress wislA phenotypes. As the sow mutations only suppress some of 

these, namely temperature sensitivity, salt sensitivity and cell cycle 

delay, it would seem that for either of the sow genes to be allelic to styl, 
the sow mutants isolated would have to be partial gain of function 

mutations, such that they were activated for some, but not all Styl 

functions. 

To investigate this, first sowl was crossed to styl. All resulting 

segregants were replicated to MM and streaked to single colonies on YE 

at 36°C, with a wisTh sowl-T20 strain, a styl strain, a sowl-T20 strain 
and a wild type as controls. 

Four different phenotypic classes were observed. One class gave highly 

elongated progeny on MM. As the styl mutation gives rise to progeny 

with this phenotype (Shiozaki and Russell, 1995a), they were deduced to 

be styl mutants. Segregants that were indistinguishable from wild type 

were also observed, as well as some that seemed slightly shorter than 

wild type, presumably corresponding to sowl-T20 mutants. An 
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interesting fourth phenotype was also seen: slightly elongated cells, very 

similar to the suppressor strains streaked as controls. These were 

inferred to be styl sowl-T20 double mutants. 

Like wislA sowl-T20, the styl sowl-T20 double mutants formed colonies 
at 36°C, whereas styl strains are unable to. Thus, sowl-T20 suppresses 
both the cell length and the high temperature defects of styl, and is 
clearly not the same gene. 

To investigate whether sow2 was linked to styl, a wislA ura4 strain with 
a copy of the ura4+ gene integrated at the styl+  locus was crossed to the 

strains wislA ura4 sow2-7 and wislA ura4 sow2-11. As the only 

functional ura4+ gene in the cross is integrated at the styl locus, ura+ 
segregants from this cross can be assumed to be styl+. All the ura+ 
segregants from the tetrads were therefore streaked to 36°C and 

replicated to MM. 

On MM, half the segregants were highly elongated (like unsuppressed 

wislA) and half were only slightly elongated (like suppressed wislA); at 

36°C half died (like unsuppressed wislA) and half grew (like suppressed 

wislA). This shows that the sow2 gene segregates independently of the 

styl locus, which implies that the two must be different genes. As the 

ura4+ marked styl strain contained the styl+ gene, it was not possible to 

investigate interactions between styl and sow2. 

6.2.2.2: atfi 

The atfi gene (also known as gad 7) encodes an ATF/CREB transcription 

factor (Kanoh et al., 1996; Takeda et al., 1995) which is regulated by 

phosphorylation by Styl (Wilkinson et al., 1996). In this manner, Atfi 

regulates the transcription of several genes in response to activation of 

the Wisl pathway. In contrast to wislA, atflA cells show no cell cycle 

defect, yet both wislA and atflA strains are more sensitive than wild type 

cells to environmental stresses such as stationary phase (Takeda et al., 

1995) and high salt (Kanoh et al., 1996; Wilkinson et al., 1996) and low 

temperature (Kanoh et al., 1996; Takeda et al., 1995). 

Whether atflA is sensitive to high temperature or not had not been 

reported. So, I streaked freshly-growing wild type, wislA and atflA 
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strains to single colonies on YE at 36°C. The wild type formed colonies 

efficiently; the wislA not at all and the atflA strain very poorly. On 

microscopic inspection, these atflA colonies contained heterogeneous cells 

that were round and swollen. There was also some lysis. Although atflA 
strains grow better than wislA at high temperature, the fact that atflA is 
partially heat sensitive shows that a significant component of wislA 

temperature sensitivity acts through Atfi. 

To investigate whether atfi was linked to sowl, an atf1::ura4+ strain 
(ED1278) was crossed to wis1::his1 hisi ura4 sowl-T20 (strain T20). In 
this cross, the only ura+segregants  must be atflA. Three four-spored asci 

(and eight with three or two spores) were obtained. All segregants were 

streaked to YE at 36°C, and examined microscopically after four days. 

As a typical example of the segregation of phenotypes seen in this cross, 

the data from one four-spored ascus, 2A-D, are presented in Table 6.5 

below: 

Table 6.5: phenotypes of segregants of cross of atfl to wislA 
sowl-T20. 
segregant atfi wisi 36°C cell length sowl 

2A + + + w.t. ? 
2B + + + w.t. ? 
2C A A - highly elongated + 
2D A A + I slightly elongated I sowl-T20 

The genotypes of the segregants in this cross were deduced from their phenotypes. ura-'-
segregants are atflA and ura are atfl+.  Pink segregants on phioxine B are wislA; white are 
wisl+.  The unsuppressed wislA segregant dies at 36°C and is long on MM, whereas, the 
wis1E. strain that grows at 36°C and is shorter on MM must contain a suppressing sowl 
mutation. See text for details. 

The three genes segregating in this cross (atfi, wisi and sowl) were 

followed by the following characteristic phenotypes. Growth on medium 

lacking uracil was used to determine the atfi allele: atfi strains are 
ura4+ and will grow on -ura medium, whereas atfl+  strains will be ura. 

The colour of the segregants on medium containing phloxine B was used 

to determine the wisi allele they contained. wislA cells are pink wis1 

cells are white. From these two tests, segregants 2C and 2D could be 

shown to be atflA wislA double mutants (see Table 6.5). 
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In wislA strains, the presence of the sowl mutation was determined by 
its suppression of the wislA mutation. wislA strains cannot grow at 36°C 

and the cells are highly elongated on MM. However, segregant 2D (which 

is wislA) could grow at 36°C and its cells were only slightly elongated on 

MM showing that this segregant also contained the sowl suppressor (see 
Table 6.5). On the other hand, segregant 2C (which is also wisTh) was 
unable to grow at 36°C and produced highly elongated cells on MM. This 

strain therefore does not contain a suppressor of wislA. 

The presence of both atfi and sowl in the same strain (segregant 2D) 

shows that sowl and atfi do not correspond to the same gene. 

Furthermore it is interesting that sowl-T20 does not require Atfi activity 

to suppress wislA temperature sensitivity. This suggests that Sowl acts 

in a different pathway from Atfl, and conceivably Wisi. Given that Atfi 

does not play a role in cell cycle control it is not surprising that the sowl-

T20 does not require Atfi to suppress the wislA cell length defect. 

6.2.3: Phosphatase genes. 

As the Wisi pathway activates its downstream targets via a cascade of 

phosphorylation, it is clear that phosphatases must act on the pathway to 

provide down-regulation. Moreover, activated MAPKS such as Styl are 

known to activate other kinases, it is likely that counteracting 

phosphatases also act downstream of Styl. 

It is conceivable that the loss of one of these phosphatases could suppress 

wislA, and thus sowl or sow2 could correspond to a mutation in a 

downstream phosphatase. 

Given that there is no phosphorylation of Styl in a wislA strain, the sow 

mutations cannot correspond to a Styl-specific phosphatase, such as Pypi 

or Pyp2, so these genes were not crossed to sowl or sow2. The Type 2A 
phosphatase genes, ppal, ppa2 and ppel, were chosen to be crossed to 

sowl and sow2. To facilitate identification of the sow segregants, a wislA 

background was chosen for these crosses. 

6.2.3.1: ppal and ppa2 

First, ppal wisi and ppa2 wisi strains were constructed, from the crosses 

ppa1::ura4 x wisl:LEU2 and ppa2::ura4 x wisl::LEU2. The choice of 
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leu and ura markers ensured that both the wisi and the ppa genes could 
be followed unambiguously, as wisTh strains will be leu+ and ppa strains 
will be ura+. (The S. cerevisiae LEU2 gene rescues the S. pombe leul 

mutation.) 

The ppal wisi and ppa2 wisi double mutants obtained from these crosses 
were shorter than wislA cells, showing that the ppa mutants suppressed 
the wisTh cell length defect, as shown previously (Warbrick and Fantes, 

1991). This is similar to sowl wisi and sow2 wisi strains. I was therefore 
interested in whether the ppa mutations could suppress other wislA 

phenotypes, particularly stress sensitivity, as this would make these 

phosphatase genes very likely to be allelic to the sow genes. 

To examine this, the ppal /2 wisTh mutants were streaked to single 

colonies on YEK and YE at 36°C. Under both conditions, the ppal /2 

wis1E, mutants failed to form colonies, as shown in Table 6.6. 

Table 6.6: ppal/2 wis1L mutants under stress conditions. 
Genotype of Strain YEK 32°C YE 36°C 
wild type + + 
wis1E - - 
ppalA + + 
ppaThwisliX - - 
ppa2z + + 
ppa2AwislzX - - 
The strains were scored for growth on YEK at 32°C and YE at 36°C. + indicates the 
formation of colonies; - indicates no colonies were formed. 

The ppal and ppa2 mutants grow on YEK and YE at 36°C, whereas the 

ppal /2 wisi mutants do not, showing that the presence of either ppa 

mutation does not allow wisi strains to tolerate stressful conditions. 
Therefore ppal and ppa2 can only suppress the wis1L cell cycle defect. 

Next, both ppal wisi and ppa2 wisi strains were crossed to a sowl wisi 

strain. The two genes segregating in these crosses are sowl and a ppa 

gene. The sowl gene allows wisi L strains to form colonies at high 

temperature. As the crosses were performed in a wisTh background, and 
the ppa genes are not able to suppress wislA temperature sensitivity, the 

only strains that will be able to form colonies must contain a sowl 
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mutation. The ura+  marker was used to follow the ppalA and ppa2L 
genes as ppa+  strains will be ura. 

Using these two methods to score for sowl and ppa genes, it was seen 

that both crosses produced wild type segregants as well as segregants 

containing both sowl and a ppa gene. The presence of non-parental 

segregants shows that sowl is not linked to ppal or ppa2. 

Furthermore, the ppa sowl wisi triple mutants grew at 36°C and were 

shorter than wislA strains. As both ppa and sow mutations suppress the 

wislA cell length defect to the same degree, it was only possible to 

conclude that the presence of both sowl and a ppa mutation does not 

suppress additively. Furthermore, the observation that the triple mutants 

were temperature resistant may suggest that for this phenotype sowl is 

epistatic to the ppa mutations. It is possible that this is also the case for 

cell length suppression, but given that ppa wisi and sowl wisi divide at 

similar lengths, this phenotype cannot be used to test this hypothesis. 

Next, sow2 wisi was crossed to ppal wisi and ppa2 wisi. Non-parental 

asci segregated, showing that sow2 is not allelic to ppal or ppa2. Also, 

like sowl, sow2 was epistatic to ppal and ppa2 in a wisTh background, at 

least as far as temperature resistance is concerned. 

6.2.3.2: ppel 

ppel encodes a somewhat diverged Type 2A phosphatase. Its sequence 

has less similarity to Type 2A phosphatases than Ppal and Ppa2. As loss 

of ppel+ causes sterility, a strain carrying a LEU2 plasmid encoding the 

ppel+ gene was used in crosses. 

First, a ppeTh wislzX double mutant was constructed. 

A wisl::hisl+ hisi ura leu strain (ED1008) was crossed to appel::ura4+ 
ura leu [p(ppe1 LEU2)] strain (ED1060) by tetrads. Fourteen tetrads 

were obtained. Half of the segregants in this cross were leu ura and the 

other half were leu+ ura+. Furthermore, it was impossible to obtain leu 
derivatives from the leu+  strains, showing that the ppel+ plasmid was 

now stably inherited. The simplest explanation for these observations was 

that the LEU2 ppel+ plasmid had integrated homologously at the 

ppel::ura4+ locus in the ppeTh strain. 
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As the ppeli\ wislA strains had integrated the ppel plasmid, it was not 
possible to examine the phenotype of the ppeTh wisTh double deletion. 
Despite this, a cross between ppel and sowl or sow2 would still reveal 
linkage if it existed. Therefore a ppe1E wislzL\ strain was crossed to both 
sowl wis1it (SP55) and sow2 wisTh (SP32). 

In these crosses, ppeli\ was followed by its accompanying ura+ marker. 
The crosses were performed in a wisliX background, so sowl and sow2 

could be followed by their ability to allow wis1E to form colonies at 36°C. 

Amongst the progeny, four different phenotypic classes were seen, 

corresponding to the following genotypes: wisTh, sow wisi, ppel wisi and 
sow ppel wisi The presence of non-parental segregants in the crosses 

involving both sowl and sow2 demonstrates that the genes in each cross 

are unlinked and therefore that neither sowl nor sow2 corresponds to 
ppel. 

6.2.4: Genes in the cyclic-AMP protein kinase (cA-PK) pathway. 

Two genes from the cA-PK pathway were tested for genetic interactions 

with the sow genes: pkal (also known as git6) and cyrl (also known as 
git2). 

6.2.4.1: cyrl. 

A cyrl mutant was crossed to sowl -T20. The crosses were dissected and 

the segregants were replicated to YEK and YEPB at 39°C. These 

conditions allowed the segregation of the two genes in this cross to be 

followed as cyrl strains are unable to grow on YEK and sow segregants 

are white and swollen with little lysis at 39°C on YEPB. 

The segregants from this cross fell into four phenotypic classes. The 

corresponding genotypes could be unambiguously assigned. These classes 

were: salt resistant and red on YEPB at 39°C (wild type); salt sensitive 

and red on YEPB at 39°C (cyrl); salt resistant and white on YEPB at 

39°C (sowl) and salt sensitive and white on YEPB at 39°C (cyrl sowl). 

The presence of non-parental progeny demonstrates that the two genes 

are unlinked. Furthermore, the double mutant had characteristics of both 

the single mutants, namely it was salt sensitive and heat resistant. This 

demonstrates that sowl and cyrl do not interact. 
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When cyrl was crossed to sow2-7, the segregation of phenotypes was 

identical to that seen in the cross to sowl. Thus sow2 is also not linked to 
cyrl and does not interact with it. 

6.2.4.2: pkal. 

pkaTh spores germinate poorly, and when they do, they take 

approximately three times longer to grow into a colony than pkal+ 

siblings. Despite this, enough progeny were obtained from both sowl x 
pkal and sow2 xpkal crosses to analyse. 

pkal cells are round and sow cells are white on YEPB at 39°C. Amongst 

the progeny from the two crosses were cells that were of wild type length 

and red on YEPB. These were deduced to be wild type. The presence of 

these segregants is sufficient to ascertain that both sowl and sow2 are 
unlinked to pkal. 

The predicted double mutants in tetratype asci from both crosses 

resembled pkal mutants in that the cells were very short and rounded. 

This suggests that pkal is epistatic to both sowl and sow2. 

6.2.5: Cell cycle genes. 

Given that the sow mutants are capable of advancing mitosis, they might 

correspond to cell cycle mutations that make the cells divide at a shorter 

length. This can be brought about by loss-of-function mutations in mitotic 

inhibitors, such as the wee mutations, weel and cdc2-1w, or by gain-of-

function mutations in genes which are required to enter mitosis, such as 

cdc2, cdc13 and cdc25. 

6.2.5.1: weel-50 

weel reverses the cell cycle defect of wislz\, making the cells 

phenotypically "wee" (Warbrick and Fantes, 1991), but does not suppress 

the salt and temperature sensitivity (Stettler, S., pers. comm.). sowl and 
sow2 were therefore not expected to be allelic to weel, but as all three 

genes advance mitosis, there might be an interesting interaction between 

weel and the sow genes. 

sowl-T20 was crossed to weel-50 and tetrads were dissected. The two 

genes segregating in this cross (sowl and weel-50) were followed by the 
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following phenotypes: sowl is white on YEPB at 39°C, whereas sowl is 
pink. weel-50 strains show a temperature sensitive reduction in the cell 

length at division, dividing at almost wild type length at 25°C, and being 

"wee" at 32°C (Nurse and Thuriaux, 1980). Furthermore, weel-50 strains 
are nearly white on YEPB at 25°C, and become progressively darker pink 

on YEPB as the temperature is increased. 

In the five four-spored tetrads that were obtained, the progeny fell into 

four phenotypic classes. Using the phenotypes described above, three 

classes could be assigned to the following genotypes: wild type, weel, 

sowl. The fourth phenotypic class was novel and was assumed to 

represent sowl weel double mutants. It is described below. 

On YEPB at 28°C, 32°C, 35°C and 38.5°C, a difference was seen between 

the appearance of weel and weel sowl segregants, as described in Table 
6.7. 

Table 6.7: weel-50 vs. weel-50 sowl. 
genotype weel-50 weel-50 sowl-T20 
temp. colourt cell length colourt cell length 

28°C light P semi-wee W slightly short 
32°C P wee light P semi-wee 
35°C dark P wee (heterogeneous) light P semi-wee/wee 
38.5°C dark P wee (heterogeneous) dark P wee (heterogeneous) 

Icolour on YE supplemented with phioxine B (YEPB): P = pink; W = white. 

A weel-50 strain at 32°C is phenotypically "wee" (see Table 6.7), weel-50 

column, 32°C). At the same temperature, a weel sowl strain is semi-wee 

(see weel sowl at 32°C), which suggests it is closer to wild type activity. 

Now, a weel-50 strain is semi-wee at the cooler temperature of 28°C. This 

implies that sowl-T20 has the same effect on weel-50 as lowering the 

temperature. This effect was seen throughout the range of temperatures 

used. 

To investigate this behaviour further, the following lOml liquid cultures 

were set up: weel-50 at 25°C, weel sowl at 32°C and weel-50 at 32°C. 

The strains were inoculated thinly and grown overnight to approximately 
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5x106  cells per ml. Samples of the cells in these cultures were examined 

microscopically (see Figure 6.6). 
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25°C 

A 	weel-50 	 - 

32°C 

B 	weel-50 

C weel-50sowl-T20 

Figure 6.6: suppression of weel by sow 1. 
Cells were grown in YEPB and examined microscopically using bright field with a green 
filter. Cells that were stained with phloxine B therefore appear dark or black. weel-50 cells at 
25°C divide at roughly wild type length and exclude phloxine B so no dark cells are seen (A); 
at 32°C weel-50 cells divide at a much reduced cell length and appear round ("wee"), some 
cells also stain with phloxine B and appear dark (D) under these conditions (B). In contrast, a 
weel sowl double mutant at 32°C divides at a longer cell length than the weel single 
mutant and no stained cells are seen (C). 
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At 25°C (the permissive temperature for weel-50) the length weel-50 cells 
divide at is only slightly shorter than wild type (A, Figure 6.6) and no 

darkly-stained cells are seen, which indicates that the cells have an intact 

membrane and therefore exclude phloxine B. At 32°C, many round and 

short cells were seen (the "wee" phenotype). Moreover a proportion of the 

cells appeared dark, from phloxine B, showing that the strain is fairly 

sick at this temperature (B, Figure 6.6). 

In contrast, few cells of the sowl-T20 weel-50 double mutant were round, 

and most were longer than weel-50 cells at this temperature. (C, Figure 

6.6) Furthermore, no darkly-staining cells were seen. This shows that the 

introduction of a sowl-T20 mutation into this strain partially suppresses 

a weel-50 mutation. 

Next, sowl-22, sow2-7 and sow2-11 were each crossed to weel. In all three 
crosses, very similar results to the sowl-T20 cross were obtained. Thus, 

the presence of either sowl or sow2 makes weel-50 strains behave as if 

they are at a lower temperature. 

6.2.5.2: cdc2-1w and cdc2-33. 

cdc2-1w was crossed to sowl-22 and sow2-11. In these crosses, the 

cdc2-1w gene was followed owing to its making cells pink on YEPB at 

28°C, and "wee" at 32°C. The sow mutations could be identified because 

they make cells white on YEPB at 39°C. 

Owing to poor spore viability in both crosses, it was hard to classify some 

of the tetrads. However, in both crosses, close to a quarter of all the 

segregants were white on YEPB at 28°C (= cdc2) and pink on the same 

medium at 39°C (= sow+), and are therefore wild type. This clearly shows 

that neither sow gene is cdc2 nor linked to it. 

One four-spored ascus from sowl-22 x cdc2-1w produced progeny with 

four different phenotypes. While one of the segregants was "wee" at 32°C, 

and therefore a cdc2-1w mutant, another, was semi-wee. Deduction from 

the other segregants predicts that this should be sowl cdc2-1w. Thus, the 

sowl mutation seems to be having a somewhat restorative or suppressive 

effect on the cdc2-1w mutation. In contrast, the sow2 cdc2-1w: double 
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mutants looked like cdc2-1w mutants, showing that cdc2-1w is epistatic 
to sow2. 

sowl and sow2 were next crossed to cdc2-33, in order to investigate 

possible genetic interactions, as it had already been demonstrated that 

the sow genes were not linked to the cdc2 locus. The cdc2 sow double 
mutants were indistinguishable from cdc2, showing that neither sowl nor 
sow2 can affect the phenotype of a cdc2-33 mutant. 

6.2.5.3: cdc13 

cdc13 was crossed to sowl-22, sowl-T20 and sow2-11. As in previous 
crosses, the sow mutants were identified by the presence of white patches 

on YEPB at 39°C; cdc13 could be followed because it makes cells pink on 

YEPB at 32°C. 

For all three crosses, close to a quarter of the segregants were white at 

32°C and pink at 39°C, showing that they were wild type, and hence that 

neither sow gene is, or is linked to, cdc13. 

A subtle interaction was seen between the sow genes and cdc13. Cells in 
the cdc13 control strain were uniformly long (cdc) at 32°C, whereas 

putative cdc13 sow segregants (as deduced from the other progeny in a 

tetrad) were long, but rather heterogeneous, and thus on average, they 

were shorter than the cdc13 strain. 

6.2.5.4: cdc25. 

cdc25-22 was crossed to sowl-T20. From three tetratype tetrads obtained, 

it was clear that these two genes are not allelic, and at 35°C, the double 

mutant was indistinguishable from cdc25-22. 

6.2.6: cdc27-P11 

The cdc27-P11 mutation was chosen as it represented a temperature 

sensitive allele that was known to be osmoremediable (Hughes et al., 

1992), rather than for its role in controlling cell cycle. 

cdc27-P11 was first crossed to sowl-T20. The resulting tetrads were 

dissected, and the segregants were replica plated to YE at 36°C. Two 

segregants in each tetrad grew and two died as highly elongated cells. 
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This showed that there was clear 2:2 segrgation of cdc+  and cdc. Thus 
the presence of the cdc27-P11 allele could be clearly followed. The sowl 
mutation was followed by its white colour on YEPB at 39°C. 

Using these two tests, three phenotypic classes could be discerned 

amongst the progeny: those that were white on YEPB (ie sowl); those 

that were red on YEPB, but grew at 36°C (ie wild type) and those that 

were cdc at 36°C (ie cdc27). From the presence of wild type segregants, it 

was clear that cdc27 and sowl were not linked and therefore correspond 

to different genes. 

The phenotypically cdc class contained twice as many progeny as the 

other two classes and therefore contains both cdc27 and cdc27 sowl 

progeny. No difference between the two had been seen on YE at 36°C. To 

see whether there might be a difference at lower temperatures, the cdc 

progeny (ie cdc27 and cdc27 sowl) were streaked to single colonies at 

33.5°C, 34°C and 35°C and on YE containing sorbitol (YES) at 36°C (see 

Table 6.8). 

Table 6.8: comparison of cdc27-P11 and cdc27-P11 sowl 
segregants. 

Strainsc 33.5°C 34°C, 36°C + sorbitol 
35°C, 
36°C  

cdc27-P11 control cdc (small cols.) cdc weakly 
strain  suppressed cdc 
cdc27 segregant cdc (small cols.) cdc weakly 

suppressed cdc 
cdc27 sowl suppressed cdc; cdc weakly 
segregant 	1  med. cols. 1 suppressed cdc 
asow1T20 and sowl-22 crosses were indistinguishable 
C see text 

Two clearly distinguishable types of behaviour emerged at 33.5°C. One 

class of cdc segregants formed small colonies of very long (cdc) cells and 

were indistinguishable from a cdc27-P11 control. This class was deduced 

to be cdc27 (see Figure 6.7). The other class formed larger colonies of 

shorter cells. In this class the cdc phenotype was partially suppressed and 

their genotype was deduced to be cdc27 sowl. 
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Figure 6.7: cdc27 and cdc27 sow strains. 
cdc27 sowl, cdc27 sow2, cdc27 and wild type strains were streaked to single colonies at 
33.5°C on YE medium and photographed when colonies had formed. 

Next cdc27 was crossed to sowl-22. The behaviour of the sowl-22 allele 

was indistinguishable from that of the sowl-T20 allele. Thus, the 

suppression of the cdc phenotype seen in the cdc27 sowl double mutant is 

not due to allele specific effects. 

The two sow2 alleles, sow2-7 and sow2-11, were now crossed to cdc27, and 

analysed in the same manner as the sowl crosses had been. Like the two 

sowl alleles, these two sow2 alleles behaved identically to each other. 

The segregation of wild type progeny was seen in the sow2 crosses to 

cdc27, showing that sow2 is not linked to cdc27. Comparison of cdc27-P11 

and cdc27-P11 sow2 strains at 33.5°C, 34°C, 35°C and 36°C and at 36°C 

on YE + sorbitol showed interactions between cdc27-P11 and sow2 (see 
Table 6.9). 
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Table 6.9: comparison of cdc27-P11 and cdc27-P11 sow2 sere ants 
Strainse 33.5°C 34°C 35°C, 36°C + sorbitol 

36°C  
cdc27-P11 cdc (small cols.) cdc cdc weakly 
control strain  suppressed cdc 
cdc27 cdc (small cols.) cdc cdc weakly 
segregant  suppressed cdc 
cdc27 sow2 suppressed cdc; weak suppression cdc moderately 
segregant med. cols. of cdc; hetero- suppressed cdc 

____________________ geneous cols.  (small cols.) 
0both sow2 crosses were identical. 
C see text 

At 33.5°C, the cdc27-P11 sow2 double mutant could form colonies of 

elongated cells, whereas cdc27-P11 can only form very small colonies of 

cdc cells (see Figure 6.7). This shows that the presence of a sow2 

mutation partially suppresses cdc27-P11. 

In addition to this effect, a further effect was seen at 34°C. Normally, 

adding sorbitol to the medium at this temperature can only effect partial 

suppression of the cdc phenoptype (see the cdc27-P11 control strain in 

Table 6.9). This suppression was significantly enhanced in cdc27-P11 

sow2 segregants. 

The data presented in this section demonstrate that sow2, and sowl to a 
lesser extent, can both suppress a cdc27 mutation and interestingly, the 

effect of the sow mutation is, phenotypically, very similar to the 

osmoremediability seen when sorbitol is added to the medium. 

6.2.7: pati 

Investigating genetic interactions between pati (also known as rani), 

wisi and the sow genes was suggested by Itaru Samejima. patl-114 is a 

temperature sensitive mutation which leads to lethal haploid sporulation 

at the restrictive temperature of 34°C (lino and Yamamoto, 1985a; lino 

and Yamamoto, 1985b; Nurse, 1985). This aberrant entry into meiosis is 

suppressed by wisTh, which allows the double mutant to form colonies at 

32°C and 34°C, temperatures which are lethal to a patl-114 strain 

(Stettler et al., 1996). 
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The sow mutants were isolated as suppressors of the temperature 

sensitivity of wislA. They also suppress the salt sensitivity and the cell 

length defect resulting from a wislA. In addition to these phenotypes, 
wislA suppresses the lethality of pati at 34°C (Stettler et al., 1996). It 
would be interesting to see whether the sow mutants were also capable of 

suppressing this wislA phenotype. If they are, this would predict that the 

pati sow wislA triple mutant would be lethal at the restrictive 

temperature of pati, whereas the pati wisi double mutant would still be 

viable. If this was the case, then it provides selective conditions, which 

would allow the cloning of the sow genes. 

6.2.7.1: Making apati wisi strain. 

First a pati wislA strain was constructed. The phenotype of the pati wisi 
double mutant was varied: four of the five strains obtained consisted of 

highly elongated cells with lysis and branching. They grew poorly at 32°C 

on YE. In contrast, the fifth strain grew well, although the cells were 

highly elongated. Analysis of the five strains revealed that the progeny 

that were growing poorly were ura, and that the strain that grew well 

was ura+.  This is interesting, particularly as the YE medium used is 

supplemented with uracil. 

The ura+  pati wisi strain was able to form colonies on YE at 32°C, a 

temperature that is lethal to patl-114, and thus behaved like the 

prototrophic pati wis strain that had previously been constructed 

(Stettler et al., 1996). 

6.2.7.2: Crossing patl wisi to sowl wisi and sow2 wisi 

A wisi sowl-T20 strain was crossed to a pati wisi strain and tetrads 

were dissected. The resulting segregants were grown at 32°C and five 

four-spored tetrads were examined. These tetrads only produced three 

viable colonies, the fourth having died as highly elongated, swollen cells. 

There are four possible genotypes resulting from this cross: pati wisi, 
wisi, wisi sowl and pati wisi sowl. Three of these can grow at 32°C, 

namely pati wisi, wisi and wisi sowl, so it seemed very likely that the 

inviable segregant corresponded to a pati wisi sowl triple mutant. This 

genotype was therefore lethal at 32°C. 

138 



Next, crosses to sowl-22, sow2-7 and sow2-11 were set up. The resulting 

tetrads were dissected and progeny classified phenotypically, with the 

phenotype of the putative triple mutant judged from TT or NPD tetrads, 

as shown in Table 6.10. 

Table 6.10: vroeenv from nati wisi x wisi sow crosses. 

sow allele in  - wisl pati sow triple mutant 
 phenotype on YE at 32°C 

strains PD TT NPD cols. I 	cells cross 
sowl-T20 T20.126B x Oa  5  Oa - highly elongated and 

ED 1052 - -  swollen 
sowl-22 SP60 x 1 9 1 - highly elongated; 

ED1286 - -  extensive lysis 
sow2-7 SP39 x 0 5 2 - highly elongated; 

ED 1286 - -  extensive lysis 
sow2-11 SP31 x 1 9 1 - highly elongated, 

ED 1286 I- -  grainy; extensive lysis 
d  only five of the tetrads from this cross were analysed. 

As this Table shows, all four patl wisi sow triple mutants were unable to 

form colonies on YE at 32°C. Two independent isolates of each of the 

triple mutants containing sowl-22, sow2-7 and sow2-11 were confirmed to 
be triple mutants by backcrossing. 

Given that the interaction between the pati, wisi and sow genes is lethal, 

it might be expected that pati would interact with sowl and sow2 in a 

wisl+ background. pati was therefore crossed to sowl-T20 to investigate 

whether these two genes interacted. The progeny were examined at 25°C, 

28°C, 32°C, 36°C and 39°C. At all temperatures, the progeny that had 

been deduced to be pati sowl-T20 double mutants were indistinguishable 

from pati single mutants. Thus, surprisingly, the only interaction 

observed is that pati is epistatic to sowl-T20. 

6.2.7.3: Trying to exploit the lethality of pati wisi sow triple mutants. 

pati wisi double mutants will grow on YE at 32°C. whereas pati wisi 

sowl and pati wisi sow2 mutants will not. Thus if triple mutants are 

transformed with a wild type library, those transformants carrying wild 

type copies of the sow genes should be able to grow. However, the 
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available library carries the ura4+ marker and a dosage effect had been 

seen with the ura4 gene. 

In order to investigate whether these conditions would be viable for 

cloning the sow genes, pati wisl,patl wisi sowl and pati wisi sow2 

strains were transformed at 25°C with a multi-copy plasmid, containing 

only the ura4 marker (pON160). 

If selection based on the lethality of the triple mutant is to work, it is 

important that the pati wisi [+pON160] transformants grow well and the 

pati wisl sowl [+pON160] and pati wisi sow2 [+pON160} strains do not 

grow. Several isolates of each of three strains were streaked to single 

colonies on MM - ura at 28°C (see Table 6.11). ura derivatives could be 

obtained from all strains tested, demonstrating that the plasmids had not 

integrated. 

Table 6.11: The effects of ura dosage on the colony formation of 
pati wisi strains. 
genotype effective ura 

genotype 
MM - ura 

28°C 
wild type control + ++ 
pati wisi + pON160 MC 
pati wisi sowl-22 + pON160 MC I 	+ 
pati wisi sow2-11 + pON160 MC I 	+(+)H 
MC = multi-copy; ++ = all cells form colonies; -I-(1-) = nearly all cells form colonies; + = some 
cells form colonies 

The transformed pati wisi strain grew nearly as well as the wild type 

control. However, the pati wisi sow2-11 transformant grew as well as the 

pati wisi transformant, and the pati wisi sowl-22 transformant grew 

fairly well. This is unfortunate, as it is crucial for the desired selection 

that the triple mutant strains cannot form colonies when transformed 

with a plasmid that does not rescue a sow mutation. The same strains 

were streaked to single colonies at 30°C and at 32°C in an attempt to 

alleviate this problem, but at these temperatures, the pati wisi 

transformant was unable to form colonies. 
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Sadly these observations mean that this screening approach is useless, as 

there would be little differentiation between positive transformants and 

the background for sowl-22 and sow2-7 and none at all for sow2-11. 

6.2.7.4: patl-114 is osmoremediable 

Although the genetic interaction between wisi, pati and sowl and sow2 

did not permit the cloning of the sow genes, it would be interesting to 

learn something about its mechanism. 

All the mutations that had shown an interaction with the sow genes so 

far had also been osmoremediable to some extent. Although pati did not 

show any suppression by sowl-T20, it would be worth knowing whether 

patl-114 was osmoremediable. To test this, freshly-growing pati and wild 

type cells were streaked to single colonies on YE and YES at 32°C. The 

plates are shown after three days' incubation in Figure 6.8. 

-sorbitol 
	

+sorbjtol 

pati 

wild type 

Figure 6.8: The effect of growing a pati strain on sorbitol. 
patl-114 and wild type cells growing at 32°C on YE with and without 0.9M sorbitol. 

On YE at 32°C, pati cells are unable to form colonies at all and most cells 

undergo aberrant sporulation. However, on YES at 32°C, pati cells are 

able to form colonies of normal cells with no sign of the sporulation. Thus, 

sorbitol is able to rescue the TS phenotype of the pati mutation. Perhaps 

this is achieved via the increase in osmolarity the solute creates. This was 

perhaps an unexpected result and it will be discussed in the next section. 
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6.3: Discussion 

The experiments in this final Chapter of results had two aims: to 

investigate the functions of the sowl and sow2 genes, with a view to 

cloning the genes themselves, if possible. To what extent were they able 

to answer these questions? 

The first set of experiments focused on the stress tolerance of sowl and 
sow2. They tolerate heat better than wild type, which suggests the sow 

genes play a role in the heat shock response pathway. This is to some 

extent supported by the apparent improvement in heat shock survival 

seen in a sowl-T20 strain. Further evidence would be needed to clarify 

this. 

In the genetic investigation, it was found that sowl and sow2 are not 

allelic to any of the following genes: swol, styl, ppal, ppa2, ppel, cyrl, 

pkal, weel, cdc2, cdc13, cdc27, pati; and that sowl is not allelic to atfi or 
cdc25. 

The genetic interactions fell into the following three classes: suppression 

of the temperature sensitive phenotypes of styl, weel, cdc2-1w, cdcl3, 

cdc27; suppression of the cell length defect of styl and no suppression 

(swol, atfi, ppal, ppa2, ppel, cyrl,pkal, cdc2-33 and pati). 

For weel, and the cdc genes, the effect the sow mutations have on these 

mutations is very similar to lowering the temperature, or, interestingly, 

adding sorbitol (an osmo-stabiliser) to the medium. The stability of 

proteins decreases at high temperature as well as in response to changes 

in osmolarity. It is therefore conceivable that the sow mutations suppress 

by increasing protein stability, presumably, in much the same way as 

sorbitol. This ties in intriguingly with the fact that they suppress wislA, a 

genetic background that is itself osmoremediable, even though there is no 

Wisi protein present in the strain. 

The Wisi pathway bifurcates just below Styl. Non cell cycle phenotypes 

are to a very great extent dependent on Atfi activity; cell cycle effects and 

some temperature sensitivity act through a separate branch (or perhaps 

branches) of the pathway. Suppression of both the cell cycle and heat 

sensitive styl phenotypes by the sow mutants suggests that they lie 
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outwith the known Wisi pathway. This is supported by the fact that Atfi 

is not needed for Sowl to reduce the length wisi cells divide at. 

As far as the relationship between sowl and sow2 is concerned, 

something can be gleaned from the following: in wis1L strains, the effects 

of sowl and sow2 are additive, which implies that they lie in parallel 

pathways, acting on a common target. Yet, at 39°C, the double mutant 

appears to act like sow2. If we assume the mutations are loss of function 

(as discussed in Section 5.4), then this suggests either that Sow2 lies 

downstream of Sowl or that Sowl requires Sow2 to act. As far as heat 

tolerance is concerned, their role is very likely inhibitory, given that a loss 

of function mutation makes cells more tolerant of stress. 

Experiments with pati gave rise to interesting results: although 

sowl-T20 does not interact with pati in a wisl+ strain, it is conceivable 

that other sow alleles might, especially given that pati is 

osmoremediable. The genetic interaction seen between pati, wisi and 

sowl and sow2 looked like it might provide a promising strategy for 

cloning the sow genes; however on closer investigation the selection 

afforded was not sufficient. 

This situation could perhaps be remedied by the use of the milder patl-6 

allele, or a change to SD (a synthetic S. cerevisiae minimal medium), 

which showed no ura-dependent growth differences. Alternatively, a 

leucine-based library could be used. 

Thus, cloning proved elusive, but with additional time, the sow genes 

could be mapped (using the phenotype of extreme heat resistance) and 

hence cloned. This would perhaps provide better answers to some of the 

questions tackled during this project. 
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Chapter 7: Discussion 

The overall aim of this project was to uncover the mechanism of stress 

sensitivity and cell cycle defect of wislA strains, and if possible to learn 

why these two seemingly unconnected phenotypes were downstream of 

the same gene. Two different experimental approaches were used. The 

experiments described in Chapter 3 used the tools available at the time to 

examine the physiology of wislA strains and the genetics of the Wisi 

pathway. The remaining chapters describe the isolation and 

characterisation of new mutants which suppress wisi A phenotypes. 

7.1: How Wisi mediates stress resistance. 

wislA cells are unable to grow at 36°C, and furthermore, become highly 

elongated, a phenotype which is reminiscent of cdc mutants. Therefore, to 
investigate whether wislA cells die at high temperature from cell cycle 

arrest, their behaviour was closely examined following a shift to 36°C (see 

Section 3.2.2.1). 

During this treatment, cell number increased by a factor of roughly two 

and cell length continued to increase. A striking observation was that 

wislA cells lose viability in two stages following shift to high temperature. 

Normally, cells have two lines of defence against stress. The first is a 

minimal constitutive system which will tolerate the immediate inception 

of stress, and which induces the second system: a stress response, which 

involves the production of new proteins and which can tolerate stress in 

the longer term (reviewed in Ruis and Schuller, 1995). 

When wislA cells are shifted to high temperature, those that are not 

killed instantly continue to grow, and are viable for at least five hours, 

but divide only once. This leads to highly elongated cells and suggests 

that while cell growth (ie accumulation of cytoplasm) is not immediately 

affected under these conditions, cell division is. 

S. pombe cells spend roughly 70% of their cell cycle in G2 (Nasmyth et al., 

1979), so nearly all cells in a population will be in G2. Thus, if wislA cells 

at high temperature can divide only once, it appears that high 
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temperature prevents progression through the following cell cycle, in a 

manner similar to a cdc mutant. It is likely that this reflects the 

temperature sensitivity of at least one protein that is required for cell 

cycle progression. Normally the stability of this protein is maintained by 

functioning Wisi, but this fails in a wislA strain under stress conditions. 

The identity of this protein is unknown. 

To investigate further the conjecture that wislA cells die from a cell cycle 

defect (ie because they are unable to divide) the wee150tS mutation was 

used (see Section 3.2.2.2). This mutation forces early division at the 

restrictive temperature so the cells are short. They are also stress-

resistant. weel wisi double mutant cells are also short, but stress-

sensitive, and die without the elongation seen in a wislA strain when 

stressed. 

This observation may suggest that wislA cells do not die only because of a 

cell cycle defect, because when the cell cycle is artificially accelerated by 

the weel mutation, they still are stress sensitive. A more likely 

explanation is that as Weel plays such a key role in Y-15 phosphorylation 

that its cell cycle effect is epistatic over many other mechanisms of 

regulating cell cycle and this merely reflects its acting directly on Cdc2 

and playing a key regulatory role in Cdc2 activation. 

wislA cells are longer than wild type and furthermore become longer and 

longer under increasing stress (Millar et al., 1995; Stettler et al., 1996). 

As the Wisi pathway is non-functional in a wislA strain, the increase in 

cell length seen as stress is increased cannot be mediated by the Wisi 

pathway itself. This implies that this increase in cell length is due to the 

effects of a protein with a role in cell cycle, which is increasingly 

inactivated by stress in the absence of Wisi. 

One possible way the Wisi pathway could affect the stability of proteins 

would be by regulating the amounts of compatible solutes in the 

cytoplasm. Compatible solutes are highly soluble, polar molecules that 

are compatible with the cell's metabolism. They add structure to 

cytoplasmic water and (likely as a result of this property) are effective 

stabilisers of protein structure (Galinski, 1993). 
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Sorbitol can function as a compatible solute when added to medium at 

certain concentrations and is therefore routinely used as an 

osmoprotectant in techniques such as electroporation. Often, mutations 

that arise from misfolded proteins (typically, but not exclusively, 

temperature sensitive mutations) can be rescued by the addition of a 

compatible solute, such as sorbitol, to the medium. 

In Section 3.2.4, the sorbitol-mediated osmoremediability of certain 

mutations was investigated and it was observed that wislA and other 
mutations (weel-50, cdc27-P11, cdc25-22 and patl-114) were 

osmoremediable. However, as there is no Wisl protein in a wislA strain, 

sorbitol is clearly not rescuing a mutant Wisl protein, and must therefore 

be acting on tagets of the Wisl pathway (as discussed above). This 

suggests that one of the roles of the Wisl pathway is to moderate 

cytoplasmic osmolarity. During times of stress, this function would 

appear to be indispensable as wislA cells die when stressed. 

It is known that yeasts mainly use glycerol as a compatible solute to 

resist changes in osmolarity (Aiba et al., 1995; Albertyn et al., 1994; 

Blomberg, 1997). In addition to this, the non-reducing sugar, trehalose 

affects protein stability. Trehalose synthesis requires the Tpsl protein in 

fission yeast (Blazquez et al., 1994)). This compound is involved in heat 

stress resistance in many systems (de-Araujo, 1996; Ribeiro et al., 1997; 

Strom and Kaasen, 1993). and for maintaining protein stability in 

response to heat in both budding (Solapenna and Meyerfernandes, 1994) 

and fission (Fernandez et al., 1995) yeasts. Trehalose is capable of 

stabilising hydrogen bonds in proteins in vitro. Conceivably, this is the 

mechanism by which it stabilises proteins in response to heat stress in 

the yeasts. 

Interestingly enzymes for synthesising both glycerol and trehalose are 

transcriptionally regulated by the Wisl pathway. In addition, the 

catalase encoding gene, cttl is also under the transcriptional regulation of 

the Wisl pathway (Degols and Russell, 1997). ctt1 is required for 

resistance to oxidative stress (Wieser et al., 1991). 

Activation of the Wisl pathway follows heat, osmotic, oxidative, and 

radiation stresses (Degols and Russell, 1997; Degols et al., 1996; Kato et 
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al., 1996; Samejima et al., 1997; Shiozaki and Russell, 1995a; Shiozaki 

and Russell, 1996) and, via transcription of gpdl, tpsl and cttl, leads to 

an increase in the intracellular levels of glycerol (an osmo-protectant) and 

trehalose (a thermo-protectant) and catalase (which protects against 

oxidative damage) respectively. This presumably results in cells being 

protected from osmotic, heat and oxidative stresses in response to a single 

(or multiple) stress stimulus. 

This model of a Wisl pathway-mediated mechanism for multiple stress 

tolerance is supported by evidence from, for example the observation that 

over-expression of gpdl+  in fission yeast is sufficient to rescue the 

osmotic sensitivity of the strain (Aiba et al., 1995) and that tps1 is 

required for heat shock resistance in fission yeast (Ribeiro et al., 1997). 

Cells have a two-tier system for tolerating stresses (see Section 1.4). A 

minimal constitutive system protects cells from stresses in the immediate 

term, and an inducible system, which allows adaptation to prolonged 

stress. The inducible system is induced by the constitutive system, and 

leads to cross-protection, for example, heat stress can lead to osmotic 

stress resistance. 

The model of the Wisl pathway proposed above, ties in very closely with 

the function of the inducible stress response system observed in cells. 

Furthermore, it is formally possible that in the absence of stress, the 

basal activity of the Wisl pathway, provides the constutive basal stress 

tolerance system that cells rely on to tolerate the immediate effects of 

stress. 

In support of this, when wislA cells were transferred to 36°C, a 

proportion died instantly (see Section 3.2.2.1). This suggests that the 

minimal constitutive pathway is defective, and thus many cells died 

immediately they are exposed to stressful conditions. Clearly further 

experiments would be needed to corroborate this tenet. 

Stress conditions are usually associated with cell cycle delays (heat shock 

causes a delay at Start in Saccharomyces cerevisiae (Johnston and Singer, 

1980) and a G2 delay in S. pombe (Polanshek, 1977)). The rationale is 

that this presumably allows organisms long enough to repair damage 

before dividing. In direct contravention of this conjecture is the 
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observation that activation of the Wisi stress response pathway leads to 

mitotic advance (Warbrick and Fantes, 1991). 

Why cells should have evolved a mitotic advance as part of a stress 

response is an interesting question. It hints that there might be cell-cycle 

dependent responses to stress, ie responses that can perhaps only be 

ellicited during certain stages of the cell cycle. 

Stationary phase is entered just before Start and is separate from the rest 

of the cell cycle (as shown by the budding yeast gcsl mutants (Drebot et 

al., 1987)). Furthermore, stationary phase is a highly stress resistant 

state (see Piper, 1993). Another stage of the yeast life cycle that is highly 

stress-resistant is the spore, which is the end product of entering the 

sexual differentiation pathway. 

Moreover, the processes of stress response, mating and stationary phase 

entry are profoundly affected by the Wisi MAPK pathway. Wisi is 

required for stress resistance, stationary phase survival and efficient 

mating (Kato et al., 1996; Shiozaki and Russell, 1995a; Shiozaki and 

Russell, 1996; Stettler et al., 1996). This leads to the conjecture that all 

three processes can be considered to be different approaches to stress 

survival that will be more or less appropriate choices for the organism to 

take, depending on mate and nutrient availability. 

Normally, when fission yeast cells are starved for nitrogen, mitosis is 

accelerated relative to growth and they therefore undergo two rapid 

divisions, until the cells are too small to pass the G1-S size control. This 

ensures cell cycle arrest at the appropriate point in the cell cycle (just 

before Start) for mating with a partner. 

This acceleration is not seen in wislA cells (personal observation). These 

cells fail to divide under nitrogen starvation, and elongate instead. As the 

Wisi pathway is activated by nitrogen starvation (Kato et al., 1996; 

Shiozaki and Russell, 1996; Stettler et al., 1996), this suggests that the 

acceleration normally seen is mediated by activation of the Wis 1 

pathway. The acceleration seen following activation of the Wisi pathway, 

may therefore exist in order to speed cells through mitosis until they are 

small enough to arrest at G1, thus reducing the delay between the onset 

of starvation and Gi arrest. In addition to the transcriptional defects 
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already known (Kanoh et al., 1996; Shiozaki and Russell, 1995b; 

Wilkinson et al., 1996), the failure of wisliX cells to accelerate mitosis in 

response to starvation may explain why they conjugate so poorly. 

In mammalian systems, stress-mediated activation of the p38HOG1  and 

SAPK pathways influences the developmental decisions taken by cells, in 

conjunction with signals from the "classical" MAPK pathways (Xia et al., 

1995). It appears that a similar relationship might exist between the 

fission yeast Wisi and mating MAPK pathways. 

7.2: The Wisi pathway. 

In order to investigate the architecture of the Wis 1 pathway, multiple 

mutants for mcs4, wis4 and wini were made (see Section 3.2.2). The 

stress sensitivity of multiple mutants containing wini suggested that 

Wini acted in parallel to Mcs4 and Wis4. Over-expression of wis1 is 

lethal and this was suppressed in wini, mcs4 and wis4 mutants 

(Samejima et al., 1997) confirming that these mutants lie in the Wisl 

pathway. Over-expression of the Wis1EE allele (which is partially 

activated but unregulatable) is also lethal. And lethality was not 

suppressed in wini mcs4 and wis4 strains. This shows that the wini wis4 

and mcs4 genes lie upstream in the pathway and are responsible for 

activating Wis 1. 

All three genes have now been cloned. winl+  encodes a MAPKKK 

(Samejima, I., pers. comm.) and so does wis4+  (Samejima et al., 1997; 

Shieh et al., 1997; Shiozaki et al., 1997a). Mcs4 is homologous to a 

bacterial two-component response regulator and activates Wis4 (Cottarel, 

1997; Shieh et al., 1997; Shiozaki et al., 1997a). Furthermore, two 

putative histidine kinases (Maki and Mak2) have recently been identified 

in fission yeast based on sequence similarity to budding yeast Sini 

(Makino, K. and Millar, J.A., unpublished observations in Shieh et al., 

1997) 

A Sensor Kinase of a two-component system encoded by YPD1 (Posas et 

al., 1996) lies between Sini and Sskl in the budding yeast Hogi pathway. 

Given that the Wisi MAPK pathway in fission yeast has so far mirrored 

the budding yeast Hogi pathway exactly, the existence of a fission yeast 

homologue of Ypdl is strongly predicted. 
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Furthermore, an osmosensor, Shol directly activates Pbs2 (the S. 

cerevisiae homologue of Wisi), by interacting with the N-terminus of Pbs2 

(Maeda et al., 1995). The N-terminus of Wisi contains a consensus SH3 

binding motif (Mackie, S., pers. comm.), which could hint at the existence 

of a fission yeast Shol homologue, but it seems unlikely that even if it 

exists this Shol homologue plays an important role in signalling osmotic 

stress. In fission yeast loss of both MAPKKKs (winl-1 wis4A) leads to a 

osmotically-sensitive phenotype as serious as that seen when wisi alone 

is mutated, suggesting that Wis4 and Wini are sufficient between them 

to transmit osmostress signals to Wisi (Samejima et al., 1997). In 

contrast, a ssk2E ssk22A double mutant in budding yeast is osmotically 

resistant unles shol is also mutated (Maeda et al., 1995). 

Both the Hogi and Wisi pathways are activated by osmostress. However, 

the only role that the Hogl pathway plays in budding yeast is in 

regulating osmostress. In contrast, the Wisi pathway responds to and is 

needed for the survival of many different types of stress. This situation is 

analagous to that found in the SAPK and p38HOG1  pathways in 

metazoans. 

Although it is clear that osmostress is transduced by the Wisi pathway, 

some controversy exists over exactly how osmostress is transduced. wis4iX 

cells show a wild type activation of Styl following osmotic shock and 

furthermore do not elongate under these conditions (Samejima et al., 

1997). Thus it seems that win1 is sufficient for osmostress signalling 

and the role Wis4 plays is primarily in the basal activity of the pathway 

(loss of both wini and wis4 is necessary to make cells osmosensitive 

(Samejima et al., 1997)). However, Russell and Shiozaki failed to detect 

activation of Styl following osmotic shock in an wis4 mutant and 

therefore concluded that this stress (and others) are mediated by Wis4 

(Shiozaki et al., 1997a). 

In addition, heat shock and oxidative stress lead to activation of Styl in a 

wis4 wini double mutant in a Pypi-dependent manner (Samejima et al., 

1997), which strongly suggests that these two stresses are not 

transmitted through the MAPKKKs (Wis4 and Wini) or the MAPKK 

(Wisl), but rather enter the pathway at the MAPK level via regulation of 

the tyrosine phosphatase Pypi. 
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The Wisl pathway also interacts with the cAMP pathway. This pathway 

counteracts the Wisl pathway: for example, upregulation of the cAMP 

pathway in the cgs mutants, or down-regulation of the Wisl pathway 

(wis1L) both lead to a cell cycle delay (Devoti et al., 1991; Millar et al., 

1995; Shiozaki and Russell, 1995a). The converse is also true. The 

situation is the same in mammalian system, where both the SAPK and 

38H0G1 MAPK pathways and the cyclic AMP pathway regulate 

transcription of target genes via CREB/ATF elements that lie upstream of 

genes (Clerk and Sugden, 1997; Gupta et al., 1995). In budding yeast 

there is also antagonistic regulation of STREs (the equivalent of 

CREB/ATFs) by the Hogi and cAMP pathways (Belazzi et al., 1991; 

Schuller et al., 1994; Varela et al., 1995). 

The Wisl pathway bifurcates just below Styl (see Figure 7.1). Cell cycle 

regulation and a component of heat stress tolerance lie in a branch (or 

branches) that does not involve Atfi. On the other hand, other stress 

responses and mating lie donwstream of Atfi. The part of the pathway 

mediated by Atfi is well understood, and parallels the architecture of 

stress-activated pathways in metazoans. However, the mechanism by 

which the Wisl pathway controls the G2-M transition is still completely 

unknown. 
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Figure 7.1: architecture of the Wisi pathway and interaction with 
other pathways. 
Activation of the Wisi pathway by stressful environments leads to mitotic advance, and 
induction of stress tolerance. The cyclic AMP pathway responds to nutritional signals and 
reduces stress tolerance and the propensity to mate under favourable nutritional conditions. 
Stress conditions can affect cell cycle control. 

Although Wisi does not act on the cell cycle via Atfi, clearly it must act 

on the cell cycle at some point. One possible target of Wis 1 activity is 

CAK (Mcs2fMcs6), although phosphorylation on T167 is not capable of 

inducing mitosis in the presence of Y15 phosphorylation, so this is an 

unlikely scenario. 

Wisi could exert its effect on cell cycle via a cdk inhibitor (cdi). Rum  

functions as a cdi (Correa-Bordes and Nurse, 1995), but rumi wisi double 

mutants are the same length as wisltX cells, showing that Rumi does not 

act downstream of Wisi (Fantes, P.A., pers. comm.). However, a different 

cdi could mediate the Wisi cell length defect. 
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Altering the expression of wisi has the same effect on cell cycle no matter 

whether the major regulators of Y-15 (Pyp3, Cdc25, Weel and Miki) are 

functional or not (Cripps, K., pers. comm., Fantes laboratory, unpublished 

observations, Warbrick and Fantes, 1991). This suggests that Wisi does 

not appear to act on Cdc2/Cdc13 tyrosine-15 phosphorylation via a single 

regulatory protein. This leaves open the possibility that Wisi acts on 

more than one of these regulators, or that Wisi acts via a novel 

mechanism. 

7.3: Suppressors of wislA: function of Sowl and Sow2. 

In order to elucidate the Wisi pathway, extragenic suppressors of wis1z. 

were isolated using heat sensitivity as selection (see Chapter 4). It was 

also possible to obtain mutants by using wislA osmotic sensitivity as 

selection, although this rarely gave rise to strong enough suppression to 

work with. This may be because it is simply harder to mutate the genome 

of fission yeast to generate efficient suppressors of osmotic sensitivity 

than heat sensitivity, or it may reflect the difference in exposure to the 

selection: when cells are plated on salt containing medium, they are 

immediately exposed to the high osmolarity, treatment which likely 

constitutes an osmotic shock, whereas in an incubator, plates are 

gradually heated to the required temperature. 

A minority of the strains contained mutations that also suppressed one or 

more other the other wislA phenotypes such as osmotic sensitivity and 

cell length defect. Mutants that strongly suppressed more than one wislA  

phenotype were chosen for further analysis (see Section 4.4). 

Genetic analysis revealed that twelve of the strains analysed contained a 

single mutation (see Section 5.2.1.3 and Section 5.3.2). These fell into two 

linkage groups, which were named sow for suppressor ofis1L. Nine 

strains made up the sowl linkage group (T20, 5.10, 5.13, 5.15, 5.22, 5.36, 

5.74, 5.97 and 5.102) and sow2, three strains (5-7, 5-11 and 5-123) (see 

Section 5.3.1). 

As all Wisi signals appear to act through Styl (the MAPK directly 

downstream by Wisi (Kato et al., 1996; Millar et al., 1995; Shiozaki and 

Russell, 1995a)), an activated allele of styl should suppress all wislA 

phenotypes. Yet, neither sowl nor sow2 mapped to styl (see Section 
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6.2.2. 1). This might be explained by the following observation: a MAPK 

from Xenopus has been shown to require two sequential conformational 

changes for activation (Canagarajah et al., 1997). This would be hard to 

mimic mutationally, which would explain why no activated alleles of styl 

were recovered. 

7.4: Sowl and Sow2 probably lie outside the Wisi 
pathway 

Several different experiments provided evidence that could be used 

tentatively to explain how Sowl and Sow2 might act on Wisi. The first 

such experiment (in Section 5.2.3) involved the construction of 

heterozygous diploids for sowl-T20 to examine whether this mutation 

was dominant. This allele appeared to be semi-dominant (ie the 

phenotype of the heterozygous diploid was intermediate between the 

phenotypes of the two homozygous diploids). 

Several different alleles of each of sowl and sow2 were obtained (see 

Section 5.3.1). This suggests that the mutations are loss of function to 

varying degrees, especially for sowl which has nine alleles that are 

phenotypically very similar. Given this, the apparent semi-dominance 

seen with sowl-T20 in heterozygous diploids is most likely due to a gene 

dosage effect, suggesting that regulation of precise levels of sowl+ 

transcription is important under stress conditions. This is reminiscent of 

proteins like budding yeast Hsp82 (Hsp90 in other organisms) for which 

levels are crucial for survival at high temperature (Borkovich et al., 

1989). 

The sowl mutation makes wislA strains grow at higher temperature and 

divide at shorter cell length (see Section 4.3). It has the same effects on 

wis1 cells (see Section 5.3.4.2 and Section 6.1.2). This implies that Sowl 

does not require Wisi to act, and suggests therefore that it acts in a 

separate pathway to Wisi. 

During intercross experiments linkage groups of sowl and sow2 mutants 

were defined. wisi sowl sow2 triple mutants were also constructed in 

these crosses and it was noted that they grew better at high temperature 

and divided at a shorter length than wisi sowl and wisi sow2 mutants 

(see Section 5.3.3). This additive suppression shown by sowl and sow2 
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was interesting because it corroborates the suggestion that Sowl and 

Sow2 act in parallel. 

In Chapter 6, sowl and sów2 were crossed to a set of genes that are 

known to interact with wisi in order on the one hand to determine 

whether any were linked to a sow gene and on the other hand whether 

they interacted with sowl or sow2. 

sowl and sow2 were found not to be allelic to the following genes: swol, 
styl, ppal, ppa2, ppel, cyrl,pkal, weel, cdc2, cdc13, cdc27,patl; and 

that sowl is not allelic to atfi or cdc25. These genes were as far as 

possible a complete set of the genes that are known to interact genetically 

with wisi. 

sowl was observed to suppress the cell length defect and temperature 

sensitivity of sty1i (see Section 6.2.2.1), and this did not require Atfi (see 

Section 6.2.2.2). This implies that Sowl does not lie downstream of Atfi 

in the Wisi pathway 

The other genetical interactions seen with the sow genes were a shift 

towards wild type behaviour of weel-50, cdc2-1w (sowl only), cdc13-117 
and cdc27-P11. weel-50 and cdc27-P11 were also shown to be 

osmoremediable (as well as cdc25-22 and patl-114). As sorbitol mimics 

the effects of a sow mutation in a wislA background, perhaps it also does 

in a wisl+ background, and therefore, the sow mutation is partially 

rescuing these mutant alleles by an equivalent mechanism. 

However, cdc13 was partially rescued by sowl and sow2 (see Section 

6.2.5.3), and cdc2-1w was suppressed by sowl only (see Section 6.2.5.2). 

Neither cdc13 nor cdc2-1w is osmoremediable (see Section 3.2.4). 

Furthremore, patl-114 is osmoremediable but shows no genetic 

interaction with the sow genes (see Section 6.2.7). 

This suggests that the similarity seen between the effects of sorbitol and 

sow mutations may not reflect a common mechanism, but may reflect two 

separate processes that can achieve the same result. This may suggest 

that the sows play a role in regulating chaperone-like proteins such as 

Hsp70 and Hsp90, perhaps transcriptionally. 
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It is unlikely that the sow genes act through swol as they were unable to 

rescue the swol temperature sensitive phenotype at any temperature (see 

Section 6.2.1). Hsp90 (encoded by swol) forms many large complexes, 

which include many accessory proteins including p50 (CDC37), the 

immunophilins Cyp-40, fkbp5l and fkbp52 (Bose et al., 1996; Kimura et 

al., 1997). Interestingly, a Schizosaccharomyces pombe Cyp-40 

homologue, Wis2 was identified in the same genetic screen as wisl+ 

(Warbrick and Fantes, 1992; Weisman et al., 1996). 

Interesting further experiments to explore this would involve 

investigating whether there were genetic interactions between the sow 

genes and wis2, and furthermore, it is possible that the transcriptional 

activation of certain genes involved in the heat shock response is altered 

in sow mutants. Northern analysis sow mutants would address this issue. 

While genetical data of the sort presented in this project can be useful in 

uncovering novel genes and investigating their interactions with known 

genes, it is impossible to define the cellular roles of Sowl and Sow2 any 

more accurately without molecular work. Clearly the cloning of the sow 

genes would be a first step in this direction. However, in the absence of 

another plausible strategy, genetic mapping followed by positional cloning 

seems the best option. 
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The wisl protein kinase of Schizosaccharomyces pombe is a 
member of the MAP kinase kinase family. Loss of wisi 
function has previously been reported to lead to a delay in 
the 1132-mitosis transition, loss of viability in stationary 
phase, and hypersensitivity to osmotic shock. It acts at least 
in part by activating the MAP kinase homologue sty!; loss-
of-function sty] mutants share many phenotypes with wisi 
deletion mutants. 

We show here that, in addition, loss of wisi function 
leads to defective conjugation, and to suppression of the 
hyperconjugation phenotype of the pat]-114 mutation. 
Consistent with this, the induction of the mei2 gene, which 
is normally induced by nitrogen starvation, is defective in 
wisi mutants. In wild-type cells, nitrogen starvation leads 
to mei2 induction through a fall in intracellular cyclic AMP 
(cAMP) level and activity of the cAMP-dependent protein 
kinase. We show here that wisi function is required for 
mei2 induction following nitrogen starvation. Expression of  

the f7,pl gene is negatively regulated by cAMP in response 
to glucose limitation: induction of Jbpl also requires wisi 
and sty! function. Loss of wisi is epistatic over increased 
fipl expression brought about by loss of adenylate cyclase 
(git2/cyrl) or cAMP-dependent protein kinase (pkal) 
function. These observations can be explained by a model 
in which the pkal pathway negatively regulates the wisi 
pathway, or the two pathways might act independently on 
downstream targets. The latter explanation is supported, 
at least as regards regulation of cell division, by the obser-
vation that loss of function of the regulatory subunit of the 
cAMP-dependent protein kinase (cgsl) brings about a 
modest increase in cell length at division in both wisP and 
wislA genetic backgrounds. 

Key words: Fission yeast, Cell cycle, MAP kinase, cAMP, Stress 
response, Transcriptional control 

I INTRODUCTION 

Cells respond to their environments in a variety of ways: by 
starting or stopping proliferation, by embarking on a new 
developmental course, or by varying the level of expression of 
particular genes. The transduction of signals from outside the 
cell to effect changes within it has been investigated in a range 
of cell types. In the past few years it has become clear that one 
type of signalling pathway, containing a MAP kinase (mitogen 
activated protein kinase) homologue and its activators, is of 
central importance. Within a single cell type there may be more 
than one such kinase cascade operating (reviewed by Blumer 
and Johnson, 1994; Johnson and Vaillancourt, 1994; Marshall, 
1995). In yeasts, largely independent pathways respond to 
different environmental stimuli, for example the presence of 
mating pheromone and extremes of growth conditions such as 
the osmotic strength of the medium. Only appropriate 
responses are elicited by the different stimuli (Herskowitz, 
1995). In contrast, in higher cells different cascades are often 
activated in response to a single stimulus (Cano and 
Mahadevan, 1995). 

We previously reported that the wisP gene of S. pombe  

encoded a protein kinase which regulated entry into mitosis 
and cell viability in stationary phase. At that time, as now, the 
most similar protein in the databases was the S. cerevisiae Pbs2 
protein kinase; more recently both wis 1 and Pbs2 have been 
shown to be highly homologous to the MAP kinase kinase 
(MAPKK) subfamily (Kosako et al., 1993). Pbs2 has since 
been shown to be part of a MAP kinase signalling pathway 
activated in response to high osmotic stress: Pbs2 phosphory-
lates the MAP kinase homologue Hog 1, thereby activating it 
(Brewster et al., 1993; Schiller et al., 1994). Three gene 
products involved in the activation of Pbs2 have recently been 
isolated, including two MAPKK kinases (MAPKKKs) (Maeda 
et al., 1995). In S. pombe, wisi has been implicated in osmotic 
and temperature stress responses (Millar et al., 1995; Shiozaki 
and Russell, 1995a; S. Stettler and P. A. Fantes, unpublished 
results) and a MAP kinase homologue called sty 1, spc 1 or phh 1 
has been identified as a major substrate (Millar et al., 1995; 
Shiozaki and Russell, 1995a,b; Kato et al., 1996). The protein 
tyrosine phosphatases pypi and pyp2 have been shown to 
dephosphorylate and inactivate styl (Millar et al., 1995; 
Shiozaki and Russell, 1995b). 

In this manuscript we show that in addition to its role as a 
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component of a stress-responsive pathway, wis 1 is required for 
transcriptional induction of two genes (fbpl and mei2) by 
starvation conditions, a process that is known to be mediated 
by the cAMP-protein kinase (PKA) signalling pathway. 
Probably as a consequence of this requirement, cells lacking 
wisi function are deficient in sexual differentiation. In the 
accompanying paper (Dal Santo et al., 1996), the protein 
tyrosine phosphatases pypi and pyp2 are shown to play a role 
in regulating Jbpl expression and sexual differentiation. 
These observations indicate that the wis 1-sty! pathway and the 
cAMP-PKA pathway interact and play different roles in regu-
lating gene expression and sexual development in S. pombe. 

MATERIALS AND METHODS 

Media and general techniques 
All the media used in this study are derived from the S. pombe media 
described by Moreno et al. (1991). The minimal medium used, which 
specifically contains 2% glucose and 5 gIl NH4CI, corresponds to the 
EMM medium with the following modifications: no KCI, 144 j.tgfl 
molybdic acid instead of 40 tg/l and 10 tg/1 KJ instead of 100 Vg/1. 
Minimal media with either no nitrogen (EMM-N) or limited nitrogen 
source (EMM lowN) are minimal medium as described above, with 
either no or 5 mg/I NH4C1 instead of 5 gIl. Similarly, minimal medium 
with limited carbon source (EMM lowG) is minimal medium with 
0.1% glucose instead of 2%. Complex medium, which contains 3% 
glucose, is YE medium supplemented with 75 mg/I adenine and 
uracil. 

Glycerol containing medium is as supplemented YE but contains 
3% glycerol instead of 3% glucose and is supplemented with 2% 
casaminoacids (Difco). 

The solid sporulation and conjugation medium was either MEA 
(Moreno et at., 1991) or SPA (Gutz et al., 1974). General molecular 
techniques were performed as described by Sambrook et al. (1989). 
Standard genetical procedures for S. pombe were according to Gutz 
et at. (1974) and Kohli et at. (1977). 

Yeast strains 
The genotypes of the strains used in this study, otherwise described 
in the text, are given in Table 1. Genetic nomenclature for S. pombe 
follows the rules proposed by Kohli (1987). All strains were derived 
from the haploid wild-type S. pombe strains 972 (h; =ED8 12), 975 
(h) and 968 (00) (Leupold, 1970). Strain SP259, carrying the pat]-

114 allele (lino and Yamamoto, 1985a), was a gift of Maureen 
McLeod; other pat] -114 strains were derived from SP259 by crossing. 
The double mutant wisLA pati -114 was identified at 32°C on minimal 
medium as elongated cells which sporulated upon entry into station-
ary phase. FWP139 and FWP19I, containing pkal-261 (=git6-261) 

and git2 deletion alleles, respectively, were gifts from C. S. Hoffman 
(Byrne and Hoffman, 1993; Dal Santo etal., 1996). Other strains con-
taining this mutant allele were obtained by crossing (see below). The 
ura4::Jbp1-1acZ allele (in FWP77) is a disruption of the ura4 gene by 
the Jbpl-lacZ translational fusion (Hoffman and Winston, 1990). 
Strain FYC7 1 carries the E. coli lacZ gene under the control of the 
mei2 promoter integrated at the mei2 locus (Wu and McLeod, 1995). 
Strains moderately overexpressing wisll  were derived from the 0P2 
strain (Warbrick and Fantes, 1991) in which an extra copy of the wis1 
gene, under the control of the thiamine-repressible nmtl promoter 
(Maundrell, 1990, 1993), is integrated at the wis] locus. 

Construction of the wisl::hist allele 

The wis1::his1 allele was constructed in order to facilitate genetic 
interaction studies. A 2.2 kb BamHI-SacI DNA fragment bearing the 
his1 gene of S. pombe (Hagan and Yanagida, 1990; lain Hagan, 

Table 1. S. pombe strains 

Strain 	 Genotype 	 Source* - 

ED800 h (=972; standard wild type) 
ED895 h mei2::mei2-1acZ 
ED898 h wisl::LEU2F mei2::mei2-1acZ leul-32 
ED900 h ura4::Jbpl-lacZ 
ED903 h wisl::LEU2 leuI-32 
ED905 hwisl:.LEU2IeUJ-32 ura4::Jbpl-1acZ 
ED906 h wisl::LEU2 leul-32 ura4::Jbp1-1acZ 
ED957 h git2-1 int::LEU2 leul-32 ura4::Jbp1-1acZ 
ED961 h 	wis1::his1 	his]-102 ura4::Jbpl-1acZ 
ED965 h 	wis1::hisI 	git2-1 int::LEU2 

ura4::Jbpl-1acZ his]-102 leul-32 
ED976 h 	wisI::his1 	his]-102 
ED983 h git2-1 int::LEU2 IeuI-32 mei2::mei2-1acZ 
ED985 h wisI::hisI 02-1 int::LEU2 

mei2::mei2-1acZ his]-102 leul-32 
ED988 h-  wis] int::nmt-wist1  -ura4 git2-I int::LEU2 

ura4:.fbpl-1acZ leul-32 
EDI010 h 	wis1::his1 	his]-102 leul-32 
ED1049 hleul-32 
ED1053 h wisl::LEU2 pat]-114 leul-32 
ED 1065 hpka1-261 ura4::fbp1-1acZ 
ED1077 h wisl::LEU2 pkal-261 ura4::Jbp1-1acZ 

leul-32 
EDI091 hpatl -114 
ED 1093 h-  wis] inr::nmt-wis1-ura4 ura4::Jbp1-1acZ 
ED1 177 h styl-1 ura4::Jbp1-1acZ leul-32 J. Millar 

ED! 185 h cgsl::ura4 ura4::Jbp1-1acZ leul-32 
ED1248 h cgsl ::ura4 wisl::LEU2 leul-32 ura4-D18 
FWP77 h ura4::Jbp1-1acZ leul-32 C. S. Hoffman 

FWP139 hpkal-261 ura4::Jbpl-1acZ leuJ-32 
ade6-M216 his7-366 C. S. Hoffman 

FWP19I hgit2-1 int::LEU2 leul-32 ura4::Jbp1-1acZ C. S. Hoffman 

ade6-M210 
Fy149 h hisl -1 02 ade6-M210 leul-32 ura4D-18 R. Allshire 

FYC7I h9° mei2::rnei2-1acZ ade6-M216 leuI-32 M. McLeod 

OP2 h-  wis] int::nmt-wisl 	-ura4 ura4 -294 Warbrick and 

leuI-32 Fantes (1991) 

SP259 h90  pat] -114 ade6-M216 M. McLeod 

*Except where indicated, all strains were constructed in the course of this 
work.  

unpublished results) was subcloned into pTZ19R (Pharmacia Biotech 
Ltd) to give plasmid pTZH. The wisV gene on plasmid pwisl-XP 
(Warbrick and Fantes, 1991) was subsequently disrupted by deletion 
of an internal 1.2 kb BglII-EcoRI fragment and its substitution with a 

2.2 kb BamHI-EcoRI hisV fragment isolated from plasmid pTZH. 
This removed most of the conserved kinase domain of the protein, 
leaving the first 93 and last 120 amino acids intact. The chromosomal 
wisl+ gene was then inactivated by single step gene transpiacement 
(Rothstein, 1983). A diploid strain homozygous for the his]-102 

mutation (hIh-  hisl-102Ihisl -102 ade6-M210/ade6-M216 leul-
32/1eul 4  ura4-D18/ura4) was transformed by electroporation 
(Prentice, 1992) with a 4.5 kb PstI-XbaI fragment bearing the 

wis1::his1 allele. Integration of the mutant allele at the wis] locus 
was confirmed by tetrad analysis and Southern blot analysis. As 
expected, the resulting wis1::his1 allele conferred on S. pombe cells 
the same mutant phenotype as the previously described wisl::LEU2 

allele (Warbrick and Fantes, 1991). 

Construction of the wis1E pkal-261 double mutant 

Double mutant wislA pkal-261 strains were constructed as follows. 

An h pkal-261 leul-32 strain derived from FWP139 was crossed 
with ED905 (h wisl::LEU2 ura4::Jbp1-1acZ leul-32) and the 
progeny analysed by tetrad analysis. Because double mutant progeny 
were indistinguishable phenotypically from single mutant wis1I 

progeny, putative wis1Et pkal-261 spores isolated from non-parental 
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tetrads were tested for their capacity to give pkal spores in 
progeny when crossed with a wis1A strain. 

eli number, viability and length 
eli number/mi of liquid culture was determined from 0. 1 ml samples 

Isoton (Coulter Electronics). Following sonication, cells were 
unted electronically with a Coulter Counter (Coulter Electronics). 
Cell viability was determined by the capacity of cells to form 
lonies on supplemented YE at 32°C. 
Cell length was determined on 25 live septated cells from cultures 
exponential growth (l-3x 106  cells/ml), using a lOOx phase contrast 

galactosidase assays 

1

galactosidase assays were performed essentially as described by 
iller (1972), on samples of 0.1 ml or I ml of culture (l06l07  cells, 
pending on the strain and the nutritional conditions) after cell per-
eabilization with chloroform and sodium dodecyl sulphate. Specific 
galactosidase activity was calculated as activity (expressed as 
420nm)/hour per 107 cells. 

U LTS 

'is! is required for nutritional induction of 
onjugation 
re  first reported the wisP gene as affecting progress through 
e G2-mitosis transition in a nutritionally sensitive manner, 

as being required for maintenance of cell viability in 
ationary phase (Warbrick and Fantes, 1991). These pheno-
pes suggested a role for wis1 in monitoring the environ-
ental status of the cell. In the course of constructing strains 
Lrrying a wisi deletion (wislA) allele we observed difficulty 

crossing such strains, and microscopic examination 
iggested a defect in conjugation. Since conjugation and 
eiosis in S. pombe are subject to nutritional control (Egel, 

989) we carried out a quantitative analysis of conjugation in 
isllx strains. 
S. pombe cells are able to undergo sexual differentiation as 

i alternative to progressing through the cell division cycle. 
his occurs in response to nutrient deprivation: media limiting 
r nitrogen are conventionally used for experimental 

urposes. Under these conditions, haploid cells of opposite 
ating type can conjugate to form a diploid zygote, which 
pidly undergoes meiosis and spore formation to give a 

rnture ascus (Egel, 1989). We tested the ability of homothal-
c (00) haploid wis1L cells to conjugate following starvation 
r either nitrogen or carbon sources. The results (Fig. 1) show 
at wis1t cells are able to conjugate after nitrogen limitation, 

lthough at a reduced level (20%) compared with wis1 cells 
/0%). However, wis]iX cells were completely unable to 
onjugate when carbon (glucose) availability was limited, 
hile wis1 cells showed a similar response to either glucose 
r nitrogen limitation. 

of patl-114 defect by loss of wisV 
tIon 
pat1 gene (also called ran]) is required for negative 
lation of sexual differentiation to maintain cells in the 
tic cycle. Partial or complete loss of pat] function in a 
)erature-sensitive pat] mutant at elevated temperatures 
ces sexual development (Nurse, 1985; lino and 

EMM 

EMM lowN 

EMM IowG 

0 	 10 	20 	30 	40 

Time (hours) 

Fig. 1. Defective conjugation of wislA cells. Homothallic (00 ) wis1 
(•) and wisl::LEU2 (S) strains were grown exponentially at 25°C 
in minimal medium to a cell density of .-.4x106  cells/mi. Cells were 
then washed and resuspended at the same cell density in either the 
same medium (EMM) or in minimal medium containing a limiting 
concentration of nitrogen source (EMM lowN) or glucose (EMM 
lowG) (see Materials and Methods). Each culture was incubated at 
25°C and at the times indicated, samples were examined 
microscopically and scored for zygote formation. Each zygote was 
scored as two cells. 

Yamamoto, 1985a,b). At 30°C, even when nutrients are not 
limiting, conjugation is stimulated in h90  pat]-114 cells and 
vegetative growth is inhibited (Nielsen and Egel, 1990; Beach 
et al., 1985). Because wis]A cells are defective in conjugation, 
and because of phenotypic similarities between wisM mutants 
and mutants defective in cgs] and cgs2 (which were isolated 
as suppressors of pat] -114; DeVoti et al., 1991), we investi-
gated whether loss of wis1 function would suppress pat]-1]4 
mutant phenotypes. 

We first investigated the effect of wislLx on the growth 
defect of pat]-]14 cells at 34°C (Fig. 2A). The pat]-114 strain 
did not grow under these conditions, while in contrast the pat]-
114 wisli\ double mutant was able to grow, indicating sup-
pression of the pat] growth defect by loss of wis] function. 
We then examined whether loss of wis] function would also 
suppress the hyperconjugation defect of pat]-114 at 30°C. 
Cultures of pat]-114 h90  and wish\ pat] -114 h90  cells were 
grown in minimal medium at 25°C and shifted to 30°C. Within 
6 hours a third of the wis1 cells had conjugated, and this 
increased to a final value of about 55% by 10 hours. In contrast, 
the wis]L pat] -114 cells showed a greatly reduced frequency 
of conjugation, with a maximum level of around 5% (Fig. 213), 
indicating that wis1L suppresses this aspect of pat]-114 mutant 
phenotype also. 

wisi is required for expression of cAMP-regulated 
genes 
The initiation of sexual differentiation in S. pombe following 
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Fig. 2. Suppression of pat] -114 growth defect and hyperconjugation 
phenotype by loss of wisJ function. (A) Growth of ED8 12 (wisI), 
ED903 (wis1), EDI09I (pat1-114) and ED1053 (wislApatl-114) 
strains at 25°C and 34°C on minimal medium. (B) Homothallic pan 
(00 patl-114) and wislApat/ (00 patl-114 wis1::LEU2) strains 
were grown in minimal medium at the permissive temperature 
(25°C) to —5x105  cells/mi. Then half of each culture was shifted to 
30°C. For each time point, the percentage of cells that had 
conjugated was determined by scoring 200 (cells + zygotes) under 
the microscope. No conjugation was observed in the control cultures 
remaining at 25°C. 

nitrogen starvation has been shown to be associated with a 
reduction in cAMP level (Maeda et al., 1990; Mochizuki and 
Yamamoto, 1992). This leads to a decrease in cAMP-
dependent protein kinase (PKA) activity and ultimately to the 
induction of mating-specific genes (Sugimoto et al., 1991). The 
conjugation defect of wislA strains led us to investigate the 
relationship between wis] and the cAMP signalling pathway 
of S. pombe. For this purpose we first investigated the regula-
tion in wislA cells of the rnei2+  gene, which encodes an 
essential activator of meiosis and is required for premeiotic 
DNA replication (Shimoda et al., 1985; Watanabe and 
Yamamoto, 1994). Expression of mei2+  is normally induced in 
response to nitrogen starvation, the usual experimental 
stimulus for initiating sexual development. Expression of 
mei2 is negatively regulated at the transcriptional level by the 
cAMP-PKA pathway. In exponential growth, the high cAMP 
level represses expression of ,nei2, but following nitrogen 
starvation the cAMP level falls and allows niei2 induction 
(DeVoti et al., 1991; Watanabe et al., 1988). We investigated 
the regulation of mei2 expression in vvis/A cells, using an inte-
grated rnei2-lacZ reporter construct in which the E. co/i lacZ 
gene is under the control of the ,nei2 promoter (Wu and 
McLeod, 1995). mei2 expression was monitored by assaying 

Fig. 3. Defective induction of the n,ej2-lacZ gene in response to 
nitrogen starvation in wislA cells. ED895 (v'isI) (D,U) and ED898 
(wislA) (O,•) cells growing exponentially in minimal medium at 
30°C were harvested, washed and resuspended at a cell density of 
-2x 106  cells/nil in either the same medium (+ NH4CI (,O); 
repressing conditions) or in the same medium but without the 
nitrogen source (—NH4CI (•,•); derepressing conditions). Cells 
were incubated at 30°C and at the time points indicated cell number 
and 3_galactosidase activities were measured. Cell viability was also 
determined 7 and 24 hours after transfer. Specific 3_galactosidase 
activities are expressed as A420n fhour per 1()7  cells. It should be 
noted that under nitrogen starvation, cell division continues for many 
hours even though biomass accumulation stops almost immediately 
(Fantes, 1984). Therefore the increase in specific 3-galactosidasc 
activity as presented here underestimates the accumulation of 13-
galactosidase in the culture as a whole. The specific 13-galactosidase 
activities at the time of shift were: wis/, 0.75; nis/A, 0.55. The 
specific activities shown are based on total cells: precise 
interpretation of the 24 hour time points is complicated by the loss of 
viability of wis]A cells at this time. 

13-galactosidase activity in wis1 and wislA cells after transfer 
from minimal medium containing ammoniuni to nitrogen-free 
medium. Fig. 3 shows that the specific 3-ga1actosidase activity 
of the wild-type cells increased, after a lag, by threefold during 
the first 7 hours of nitrogen starvation, and had increased 
eightfold at 24 hours. In contrast, in the nitrogen-starved wis1 
culture, no induction of 3-galactosidase was observed during 
the first 7 hours, with little or no induction by 24 hours (see 
legend to Fig. 3). The vvisll  cells grown in the presence of 
ammonium showed a low level of 3-galactosidase activity 
during exponential growth, which increased by sixfold at 24 
hours, by which time growth and cell division had ceased. In 
contrast, the wis/A cells showed no increase in activity 
throughout. These observations show that induction of rnei2 

in response to nitrogen starvation requires wis1 function. 
Nitrogen starvation acts at least in part by reducing the intra-
cellular level of cAMP, suggesting a connection between the 
cAMP signalling pathway and the wisl pathway. 

Another gene whose expression is under negative regulation 
by cAMP and PKA is the Jbp1 gene, which encodes fructose-
I ,6-bis-phosphatase, an enzyme of the gluconeogenic pathway 
essential for utilisation of glycerol as sole carbon source 
(Hoffman and Winston, 1990). A high level of glucose in the 
medium leads to high intracellular cAMP levels, which repress 
JbpJ expression, whereas low glucose concentration or entry 
into stationary phase lead to fbpJ induction (Hoffman and 
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Fig. 4. Defective induction of the JbpI-kicZ gene in vt4s1A cells in 
response to glucose limitation. ED900 (wisI) (,•)and ED905 
(wis1i) (O,•) cells growing exponentially at 30°C in supplemented 
minimal medium (containing 2% glucose) were washed and 
resuspended at —2xl06  cells/ml in either the same medium (D,O; 
repressing conditions) or an otherwise identical medium containing 
only 0.1% glucose (•,•; derepressing conditions). Cells were 
incubated at 30°C and at the time points indicated, samples of each 
culture were removed and cell densities and 3-galactosidase 
activities were determined (see Materials and Methods). Specific 3-
galactosidase activities are expressed as A420nm/hour per 10 cells. 
The specific 3-galactosidase activities at the time of shift were: 
wisI, 0.15; wislA, 0.08. The specific activities shown are based on 
total cells: precise interpretation of the 24 hour time points is 
complicated by the loss of viability of wislA cells at this time. 

Winston, 1989). In order to investigate Jbp1 regulation in 
vvislA cells, we used a chromosomally integrated Jbpl-IacZ 
reporter gene (Hoffman and Winston, 1990). wis] and wis]A 
cells growing exponentially in supplemented minimal medium 
containing 2% glucose (repressing conditions) were transferred 
to the same medium but containing only 0.1% glucose 
(derepressing conditions). Fig. 4 shows that in wild-type cells 
fi,pl-'-  expression is strongly and rapidly derepressed in 
response to glucose limitation, with the specific 3-galactosi-
dase activity increasing 80-fold during the first 3 hours, and 
then a further twofold by 24 hours. In contrast wish'. cells 
showed essentially no increase in 3-galactosidase activity 
throughout the first 9 hours, with only a fourfold increase by 
24 hours. 

As expected, the wis1 cells growing under repressing con-
ditions (2% glucose) showed a low level of 3-galactosidase 
activity during exponential growth. However by 24 hours, as 
the cells entered stationary phase, the activity had increased 
100-fold, presumably because of glucose deprivation (glucose 
is the primary limiting nutrient in this medium). In contrast, no 
Jbp]-iacZ derepression was observed in wislA cells on entry 
into stationary phase (Fig. 4). 

The sty] gene has been shown to encode a MAP kinase 
homologue, which is a substrate of the wisl protein kinase 
(Millar et al., 1995; Shiozaki and Russell, 1995b). sty] mutants 
show a very similar set of phenotypes to wis]A mutants, and 
we therefore tested the induction of Jbp1 in a st/-I mutant 
strain. As shown in Fig. 5, the effect of sty/-I is very similar 
to that of wis]A in that essentially no 3-galactosidase induction 
takes place after glucose limitation. 

These results show that the wisl+lstvll pathway is required 
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Fig. 5. Defective induction of fbpl-iacZ gene in sty/-I cells in 
response to glucose limitation. ED900 (sty 1+) (D) and EDI 177 
(sty/-I) (•) cells were grown and starved for glucose essentially as 
described for Fig. 4: cell densities at the time of transfer were 4x 106 
for ED900 and 8x 105 for EDI 177; 3-galactosidase activities were 
assayed as before. Specific 3-galactosidase activities are expressed as 
A420,,T11/hour per 10 cells. The specific 3-galactosidase activities at 
the time of shift were: sty]', 0.58; sty/-I, 0.24. 

for fbpI derepression in response to glucose limitation. Wild-
type cells express JbpI during growth on glycerol (Hoffman 
and Winston, 1990). Consistent with their inability to derepress 
tI'p] expression under normally derepressing conditions, 
wislA and sty]-] mutants are unable to utilise glycerol as sole 
carbon source (data not shown). 

wisi is epistatic over mutants defective in the 
cAMP-PKA pathway 
The experiments described above show that wisll is required 
for the transcriptional induction offbpl and ,nei2 in response 
to nutrient deprivation, which is mediated by a low cAMP 
signal via a reduction in PKA activity (Byrne and Hoffman, 
1993; Hoffman and Winston, 1991; Watanabe et al., 1988). 
This suggested a connection between the wis 1 pathway and the 
cAMP-PKA signalling pathway. We therefore tested the rela-
tionships between wisi and genes encoding known elements 
of the cAMP pathway by genetic epistasis analysis. Mutants 
defective in the genes coding for adenylate cyclase (git2/cyrl), 
which converts ATP into cAMP, or the catalytic subunit of 
PKA (pkal/git6) have little or no PKA activity in vivo, and 
show phenotypes opposite in sense to those shown by wislA 
mutants. Specifically, loss-of function mutants in these genes 
divide at reduced cell length (Dal Santo et al., 1996), and are 
derepressed for sexual development and for .tbpi and mei2 
expression (Maeda et al., 1990, 1994; Kawamukai et al., 1991; 
also see below). Conversely, wislA cells are elongated, and 
defective in conjugation and in fbpi and ,n62 derepression, 
similar to the effects of overexpressing cyrT6 /git2 or pka1 
(Kawamukai et al., 1991; Maeda et al., 1994). We therefore 
constructed a series of double mutant strains containing wisM 
and a mutation in either the git2 or pkal gene, and performed 
epistasis tests by assaying the expression of 3-galactosidase 
from the Jbpl and ,nei2 reporter genes. 

We first investigated the regulation of ,nei2 expression in a 
wislA git2A double mutant. Table 2 shows that wis]L cells 
showed little or no increase in ,nez2 expression during the tran-
sition from exponential to stationary phase of growth, in 
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Table 2. ,nei2-IacZ gene expression in a wis1A git2A double 
mutant  

Table 5.Jbp1-1acZ gene expression in wisl overexpressing 
strains 

Genotype 3-galactosidase activity Genotype 3-galactosidase activity 

Strain wisl 	gi/2 Exponential 	*Stationary Strain wisi 	git2 Exponential 	*Stationary 

ED895 + 	+ 0.7 	 3.8 ED900 + 	+ 0.3 	 23 

ED898 A 	+ 0.7 	 0.9 ED 1093 OP 	+ 1.5 	 45 

ED983 + 	A 5.0 	 15.9 ED957 + 	A 25 	 43 

ED985 A 	A 0.8 	 1.0 ED988 OP 	A 40 	 55 

Cells were grown at 30°C in supplemented YE medium (repressing 
conditions) and samples were removed to estimate the specific 3-
galactosidase activities (expressed as A420fl/hour per 107  total cells). The 

values given for each strain during exponential growth phase are average 

values from several time points. 
*Calculated on the basis of total cells/nil: see legend to Fig. 3. 

Table 3.JlipI4acZ gene expression in a wisILX git2A double 
mutant 

Genotype 	 3-galactosidase activity 

Strain 	wi,sI 	git2 	Exponential 	5Stationary 

ED900 + 	+ 0.2 19 

ED961 A 	+ 0.05 0.5 

ED957 + 	A 30 65 

ED965 A 	A 0.08 0.7 

For experimental details, see legend to Table 2. 
*Calculated on the basis of total cells/ml: see legend to Fig. 4. 

contrast to the wisl control where a greater than fivefold 
induction was observed, similar to the results in Fig. 3. The 
git2A strain showed a high level of mei2 expression during 
exponential growth, consistent with the reported alleviation of 
nutritional repression (DeVoti et al., 1991); ,nei2 expression 
increased further in stationary phase. The double wislA git2 
mutant behaved as the wisM single mutant, showing the 
normal level of niei2 expression during exponential growth, 
and failing to derepress in stationary phase, indicating that 
wisl is epistatic over git2A for regulation of ,n62 expression. 

The regulation of Jbpl in a wisTh git2A double mutant was 
investigated: Table 3 shows that, again, the double mutant 
behaved as the single wislA mutant parent in showing a 
slightly reduced level of flip] expression during exponential 
growth. The git2A mutant showed greatly increased fbpl 
expression in exponential phase, as previously reported 
(Hoffman and Winston, 1990, 1991). A parallel set of experi-
ments was carried out using the pkal-261 mutation, which is 
defective in pkal activity (Jin et al., 1995; Dal Santo et al., 
1996). The effect of the pkal-261 mutation was very similar 
to that of git2A in showing elevated jbpJ expression during 

Table 4.Jbpl-1acZ gene expression in a wisThpkal double 
mutant 

Genotype 	 3-galactosidase activity 

Strain 	wisl 	j,kai 	Exponential 	*Stationary 

ED900 	+ 	+ 	 0.12 	 9.0 

ED906 	A 	+ 	 0.08 	 0.30 

ED 1065 	+ 	- 	 77 	 95 

ED1077 	A 	- 	 0.15 	 1.8 

For experimental details, see legend for Table 2. 
*Calculated on the basis of total cells/ml: see legend to Fig. 4. 

Cells were grown at 32°C in minimal medium rather than supplemented 
YE medium in order to allow full derepression of wisl expression from the 

thiamine repressible mod promoter (OP). Specific 3_galactosidase activities 

are expressed in A425 /hour per 10 cells. The values given for each strain 
during exponential growth phase are average values from several time points. 

*Calculated on the basis of total cells/ml: see legend to Fig. 4. 	- 

exponential growth (Table 4). Wild-type cells showed a large 
(- 100-fold) increase in JbpI expression during the transition 
into stationary phase, due at least in part to depletion of glucose 
in the medium. The git2 and pkcii single mutants showed a 
modest increase from an already very high level. flip] 
expression in the the wislA single and double mutants 
increased by between four- and tenfold in stationary phase. 
Although fbp/ was expressed at very low levels in wis]A and 
sty] mutants during exponential growth, we consistently 
observed an increase of up to ninefold in stationary phase cells 
(Tables 3 and 4; Fig. 5). This suggests the existence of a 
regulatory system for Jbpl that acts independently of the wisi-
styl pathway. 

In summary, for all the phenotypes that we examined, i.e. 
cell length, starvation-induced sexual differentiation and 
expression of mei2 andjbpl, the double wislL\ git2A and wis1L 
pkal mutants resembled wislA cells and differed from git2A 
and pkal cells. In addition, the double mutants were unable to 
utilise glycerol as sole carbon source, like wislA. Thus loss of 
wisl+ function is epistatic over several effects of a defective 
cAMP signalling pathway. 

A modest increase in wisl expression causes a reduction in 
cell length, indicating that wisl has a rate-limiting role in 
regulating entry into mitosis (Warbrick and Fantes, 1991). We 
therefore investigated whether wisl abundance might also be 
limiting for flip] expression by comparing f3-galactosidase 
activities in git2 and git2A cells overexpressing wisl. Table 
5 shows that under normally repressing conditions, increasing 
wisl 1  expression led to fivefold-increased fbp]-IacZ 
expression in the git2 control strain, indicating that the level 
of wisl protein is indeed limiting under normal conditions. 

The opposite effects of loss of function of the cAMP-PKA 
and wis I pathways, and the epistasis of wisi over git2 and pkal 
mutations, suggested that either the PKA pathway negatively 
regulated the wisl pathway, or that the two pathways exerted 
opposite effects on a common downstream target or targets 
(see Discussion). To try to resolve this question, we tested the 
effect of simultaneously activating the PKA pathway and elim-
inating wisl function, in two ways. First, we constructed 
double mutant strains lacking both wisl function and the 
regulatory subunit of PKA, cgs I (loss of cgsl function leads 
to increased activity of pkal; DeVoti et al., 1991). We deter-
mined the length of dividing cells of this strain, and of the 
parent single mutants (Table 6). cgs] cells showed a small 
but repeatable increase in cell length compared with their cgs/ 



Table 6. Cell length at division of wislzi% and cgslZi strains 

Experiment I 	Experiment 2 

Genotype 	—cAMP/ +cAMP/ 	—cAMP! 

Strain 	wis] cgs! caffeine caffeine caffeine 

ED 1049 + + 13.4±0.5 15.2±0.5 13.5±0.8 

EDIOIO A + 21.1±1.0 24.6±1.8 

ED905 A + 23.7±1.4 

ED 1185 + A 15.6±0.5 ND 15.5±0.8 

ED 1248 A A 23.6±1.5 ND 26.2±2.2 

Cells were grown at 29°C in minimal medium to I .5-3x106  cells/mi. The 
lengths of 25 septated cells were determined; mean ± standard deviation is 
shown for each condition. Where indicated, cAMP (10 mM) and caffeine (5 
mM) were included in the growth medium. 

counterparts, in both svisl+ and wisM genetic backgrounds. 
Second, we investigated the effect of adding cAMP and 
caffeine to the growth medium of wis l+ and wisiA strains, a 
procedure which has been shown to increase pkal activity 
(Watanabe et al., 1988). Again, a modest increase in cell 
division length was observed when pkal was activated. 
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Fig. 6. Models for the mode of action of the wis I and pka I pathways 
in S. pombe. See text for details. 

DISCUSSION 

We reported previously that the MAPKK homologue wisl 
regulates the timing of the G2-M transition and is required for 
maintenance of cell viability in stationary phase (Warbrick and 
Fantes, 1991). In this paper we show that wisl has other 
cellular roles: loss of vvis.11  impairs conjugation and suppresses 
pat]-114 hyperconjugation phenotype. In addition, wis l+ is 
required for transcriptional induction of reporter genes driven 
by the mei2 or Jbp11  promoters. wisM cells are unable to 
induce either gene, and are unable to grow on glycerol as 
carbon source. Recently a MAPK substrate of wisl, known 
variously as styl, phhl or spcl, has been isolated (Millar et al., 
1995; Shiozaki and Russell, 1995b). We show here that, con-
sistent with this, loss of stv1 function abolishes Jbp1 
inducibility by glucose deprivation, and the ability to grow on 
glycerol. Other phenotypic similarities are described elsewhere 
(Millar et al., 1995; Shiozaki and Russell, 1995b; Kato et al., 
1996). 

The expression of both mei2 andfbp1 is repressed by the 
cAMP-PKA pathway (DeVoti et al., 1991; Watanabe et al., 
1988; Hoffman and Winston, 1991), and most of the pheno-
typic effects of wisl described above can be explained on the 
basis of an interaction between the cAMP-PKA signalling 
pathway and the wisl pathway. This is most directly shown by 
the opposite effects of mutants in the wis I and PKA pathways 
on regulation of mei2 and JbpJ. wis] mutants fail to activate 
transcription of these genes, whereas in mutants defective in 
adenylate cyclase (git2) or cAMP-dependent protein kinase 
(pkal) they are constitutively expressed. However, the 
apparent relationship between the wisl and cAMP-PKA 
pathways extends beyond this. cAMP is a repressor of sexual 
differentiation in S. poinbe: loss of pkal or git2 4icyrJ 
function allows initiation of sexual differentiation under nutri-
tional conditions that prevent this in wild-type cells 
(Kawamukai et al., 1991; Maeda et al., 1990). Conversely, 
overexpression of pkal or git2Icyrt leads to sterility 
(Kawamukai et al., 1991; Maeda et al., 1994). Also, cAMP  

prevents hyperconjugation induced by a temperature-sensitive 
pat] mutation (Beach et al., 1985). We show here that loss of 
wisl function impairs conjugation, and blocks pat/-induced 
hyperconjugation. Furthermore, mutants lacking either 
adenylate cyclase or PKA show reduced cell size (Jin et al., 
1995; Dal Santo et al., 1996), similar to the effect of moderate 
overexpression of wisl (Warbrick and Fantes, 1991); we 
show here that hyperactivation of PKA during exponential 
growth leads to a modest increase in cell length. We conclude 
that the wisi -styl and PKA pathways have a close functional 
relationship, acting in opposite senses on several distinct target 
systems. 

In principle, the wisl pathway could act either upstream or 
downstream of PKA, or the two pathways could act on a 
common downstream substrate in opposing senses. It seems 
unlikely that wisl acts upstream of pkal (or adenylate cyclase, 
encoded by git2) in a linear pathway, because double mutants 
lacking both wisl and pkal show phenotypes very similar to 
the wislt\ parent, with respect to inducibility of mei2 andfbpl, 
cell size and conjugation phenotypes. Two basic possibilities 
remain: wisl acts downstream of pkal and is (directly or 
indirectly) negatively regulated by it (Fig. 6A), or that the wisi 
and PKA pathways converge on a common substrate or sub-
strates (Fig. 6B). It is of course possible that the PKA pathway 
interacts with the wisl pathway at more than one point. 

Model A provides an economical explanation of the 
opposing effects of the wisl -styl and PKA pathways, and in 
particular the complete epistasis of wis 1A mutations over pka/ 
and git2 mutations for cell length, conjugation and JbpI 
inducibility phenotypes. Also, cgs] mutants, in which pkal is 
more active, resemble wisl and sty] mutants in showing cell 
elongation and reduced ability to induce fbpl (DeVoti et al., 
1991; Hoffman and Winston, 1991). An analogous situation to 
model A is found in mammalian cells, where PKA negatively 
regulates Raf- 1, an activator of MEK (equivalent to MAPKK) 
(Hafner et al., 1994; Faure and Hafner, 1995). However, three 
sets of observations are inconsistent with the simplest form of 
this model. Firstly, both wisi and cgsl mutants show increased 
cell length at division, and double mutants show an additive 
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effect, although the effect of cgsl is modest (Table 6). This 
indicates that the PKA pathway acts on a component(s) that is 
(are) downstream of sty I; it does not formally exclude the pos-
sibility that PKA might also act on wisi or further up the 
pathway (see below). Secondly, cgsl mutants, unlike wisi or 
sty] mutants, are neither heat- nor osmotically sensitive (S.P. 
and PAP., unpublished observations). This could be explained 
if there were a mechanism distinct from the PKA pathway that 
regulated wisi activity in response to heat and osmotic 
stresses. Thirdly, we noted during the construction and testing 
of the wisi cgsl double mutant strain that the double mutant 
was completely sterile, in contrast to the parent single mutants, 
which, although deficient in mating, were still able to cross. 
This suggests that the effects on mating efficiency of the PKA 
and wisl-sty2 pathways are independent. 

An alternative possible relationship between the PKA and 
the wis I-sty I signalling pathways is that the two act in parallel 
(model B), and converge on a common component (or com-
ponents) which in turn regulate(s) various cellular activities. 
Dual regulation by the PKA and wis I-sty I pathways of several 
different aspects of cellular behaviour might be mediated by 
convergence of the pathways on several different targets, each 
controlling a single cellular activity, although this seems intrin-
sically unlikely. Alternatively these might be controlled indi-
rectly through a single regulatory molecule, which is under 
dual PKA and wisi -styl control (Fig. 6). Recently, two tran-
scription factors related to the mammalian CREB/ATF family 
have been identified in S. poinbe: atf I (Takeda et al., 1995) and 
perl (Watanabe and Yamamoto, 1996). Loss of function of 
either of these factors leads to phenotypes very similar to those 
of wis] and sty] mutants: partial sterility, inability to derepress 
genes under cAMP-PKA regulation, and loss of viability in sta-
tionary phase of growth. This suggests that either atf I or perl 
or both may be targets of the wis i-sty I pathway, perhaps 
requiring phosphorylation by styl for activity. For some phe-
notypes under the control of both the cAMP-PKA pathway and 
of atf 1 and perl, the effects of mutations in the two pathways 
appear to be additive, indicating that inhibition of atfl/perl 
activity by the PKA pathway acts independently of the activa-
tion of these transcription factors. Thus, if either atf I or pen 
is indeed activated by wisl-styl, then at least one point of 
interaction between the PKA and wisl-styl pathways would 
be below the level of styl. Regulation of this type is shown by 
the C7!7 gene in S. cerevisiae, which is subject to indepen-
dent regulation by cAMP-PKA and the Pbs2-Hogl pathway 
(Schüller et al., 1994; Marchler et al., 1993). 

One important role of the wisi pathway is as a stress 
response system. Cells lacking wisi or styl are very sensitive 
to conditions of high osmolarity or elevated temperature 
(Millar et al., 1995; Shiozaki and Russell, 1995a,b; S.S. and 
P.A.F., unpublished observations), and the activity of the 
pathway has been shown to respond to changes in external 
osmolarity (Millar et al., 1995; Shiozaki and Russell, 1995b; 
Kato et al., 1996). The relationship between the stress response 
role of wisi and its connection with the cAMP signalling 
pathway is unclear. While a functional wisi pathway is 
necessary for proper control of expression of cAMP-regulated 
genes, sexual differentiation and correct mitotic timing, it is 
not known whether signals for these events are actually trans-
mitted through the pathway. It is possible that signalling is 
mediated through the cAMP-PKA pathway, which exerts its  

effect by interacting with the wisl -styl pathway (model B, Fig. 
6). However, the observations that moderately increasing the 
level of wisi expression affects both entry into mitosis 
(Warbrick and Fantes, 1991) and the level of expression of 
fbpl (Table 5) suggests that wis 1 does indeed have a regula-
tory role. Strong overexpression of wis l+  causes cell swelling 
and lysis (our unpublished observations; Millar et al., 1995), 
and loss of styl function blocks this lethality (Shiozaki and 
Russell, 1995b), indicating that the effect is mediated through 
styl. However overexpression of sty] is not lethal, suggest-
ing that the phosphorylation and activation of styl by wis], 
rather than styl abundance, limits the activity of the pathway. 

Dal Santo et al. (1996) show that increased activity of either 
of two protein tyrosine phosphatases, pypl and pyp2, represses 
jbpl expression and has other effects similar to loss of wisl 
or styl function. Together with the recent demonstration 
(Millar et al., 1995; Shiozaki and Russell, 1995b) that these 
phosphatases act on styl and inactivate it, these observations 
provide strong support for an important role of the wisE 
pathway in nutritional modulation of cellular activity. Inter-
estingly, pyp2 contains two consensus PKA phosphorylation 
sites, suggesting that part of the interaction between the wis I 
and PKA pathways might be mediated at the styl. level by 
cAMP-regulated dephosphorylation. Other regulatory mecha-
nisms must operate, however, since deletion of pyp2 has no 
effect onfbpl regulation (Dal Santo et al., 1996). 

In this paper we address one aspect of wisl-styl function, 
the relationship with cAMP-regulated gene expression. It is not 
clear at present whether or how this group of effects is related 
to other cellular roles, such as response to osmotic or temper-
ature stress, maintenance of cell viability in stationary phase 
and the traverse of major cell cycle transitions, although cross-
connections between these aspects of cellular behaviour have 
been reported in budding yeast (Werner-Washburne et al., 
1993; Tokiwa et al., 1994). 
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