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Abstract 
Precision medicine and patient stratification are expanding as a result of 

innovations in high-throughput technologies applied to clinical medicine. 

Stratification can explain differences in disease trajectories and outcomes in 

heterogeneous cohorts. Thus, approaches employed for patient treatment can 

be tailored by taking into account individual variabilities and specificities. 

This thesis focuses on clustering approaches and how they can be applied to 

both single time points and time-series high-dimensional data for the 

identification of disease subtypes defined by distinct mechanisms, also called 

endotypes, in complex and/or heterogeneous diseases. Multiple carefully 

selected clustering strategies were compared to highlight which would produce 

the most relevant stratification in terms of mathematical robustness and 

biological meaning, both of which quantified using standardised methods. 

More specifically, this strategy was applied to time-series multi-omics data 

from a cohort of patients with acute pancreatitis, an inflammatory disease of 

the pancreas. Using this high-dimensional multi-omics data as well as routine 

lab and clinical measurements, the cohort was stratified into four subgroups. 

Findings from the analysis of acute pancreatitis data showed that two of the 

four subgroups could be detected in another syndrome, acute respiratory 

distress syndrome, suggesting that inflammatory signatures are comparable 

between diseases. 

With the aim of applying these principles to other diseases and using 

preliminary results from other studies suggesting that relevant subgroups 

might be highlighted, data from inflammatory bowel disease and Parkinson's 

disease cohorts was analysed. Results from our analyses confirmed that 

disease knowledge could be gained using this approach.  
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Work from this thesis provides novel approaches for the application and 

evaluation of stratification methods. Furthermore, results may constitute a 

basis for the development of tailored treatment approaches for acute 

pancreatitis, acute respiratory distress syndrome, inflammatory bowel disease 

and Parkinson’s disease. Also, the observation of commonalities between 

distinct inflammatory diseases will broaden the perspectives when analysing 

disease data and more specifically, in biomarker discovery and drug 

development processes. 
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Lay Summary 
Precision medicine is the tailoring of medical care to subgroups of patients 

based on each individual’s characteristics. Taking into account variability 

within cohorts of patients can improve the prevention, understanding, and 

treatment of diseases. For example, blood samples can be collected and used 

to identify and quantify molecules of interest which can then be used to 

separate individuals into different subgroups. 

For this project, different methods to highlight patient subgroups using many 

measurements were selected. Once the results were obtained, we compared 

them using mathematical and biological metrics to quantify the success of 

each one of them and select the most relevant one. 

Acute pancreatitis is a disease of the pancreas, a vital organ producing and 

releasing molecules involved in the digestion and the regulation of blood sugar. 

There are many causes of acute pancreatitis. However, disease mechanisms 

are still poorly understood. During acute pancreatitis, the pancreas becomes 

inflamed and this inflammation can spread to other vital organs such as the 

kidneys or lungs which can pose threats to the life of affected individuals. 

Acute pancreatitis patients evolve in many different ways which makes it very 

hard to predict if a patient will be more at risk of developing organ failure than 

others. No specific treatment exists to this date.  

In this PhD project, we highlighted four subgroups of interest among a cohort 

of patients with acute pancreatitis, using a range of different measurements. 

To do so we grouped individuals to obtain subgroups of patients as similar as 

possible to each other and as different as possible from individuals in other 

groups. Measurements important to each one of the four identified acute 

pancreatitis subgroups were compared to those used to tell apart two 

subgroups of another life-threatening syndrome, acute respiratory distress 

syndrome, characterised by respiratory failure. We found common features 
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and concluded that there were similarities between individuals affected with 

different types of critical illnesses. We performed similar analyses on data 

collected on inflammatory bowel disease patients, a term encompassing two 

diseases characterised by gut inflammation, and Parkinson’s disease patients, 

a neurodegenerative disease. We aimed to try to explain why patients with the 

same disease could be so different and classify them into subgroups which 

would be relevant for the understanding and treatment of the disease. 

We expect this to be important for future care approaches and more 

specifically for the development of treatments tailored for subgroups of 

individuals across different diseases. 
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1. Chapter 1 – Introduction 
This introductory chapter is organised around five main sections. The first 

section will lay out the project’s foundation and give some background 

information relevant to the field of precision medicine and the different projects 

undertaken as part of this PhD. In the second section, the motivation behind 

the project and how it currently fits into the field will be discussed. In the same 

section, a brief summary of this project’s contribution to the field will be 

presented. The general strategy behind the project will be described into the 

third section of this introduction. Finally, the thesis’ structure and contributions 

to knowledge will be outlined. 

 

1.1 Focus and background 
1.1.1 An introduction to precision medicine 

Precision medicine is an approach aimed at the prevention, diagnosis and 

treatment of diseases that uses information and measurements specific to 

individuals.  

Precision medicine exists in contrast to the “one-size-fits-all” strategy. 

Traditionally, medicine takes a single course for patients affected by a disease 

without necessarily taking an individual’s specific variation into account. Given 

the analysis results of surgical biopsies, histology and imaging for example, a 

diagnosis was made and, based on the disease trajectory (the evolution of a 

patient as the disease progresses) of the average patient, a care strategy was 

chosen.  

The term precision medicine recently gained in popularity and especially from 

2015. It has since been widely used (Figure 1.1). 
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Potential factors which could have driven this gained popularity compared to 

the personalised medicine term are the publication of the report “Towards 

Precision Medicine” which was published in 20111 and the launch of the 

Precision Medicine Initiative in 2015. Usually this term is preferred over 

“personalised medicine” because the later suggests that one treatment per 

patient is available while in truth treatments are often targeting subgroups of 

individuals. However, they are sometimes used interchangeably in the 

literature. 

 

Figure 1.1 – Trend plot for the ‘personalised medicine’ and ‘precision medicine’ terms 
between January 2004 and November 2019 (inclusive). The y axis represents 

worldwide popularity (relative to the number of hits) and values are scaled between 0 
and the maximum popularity for the term. Data was fetched from Google Trends 

(https://trends.google.com/trends/) using the R package gtrendsR2. 

A first step towards precision medicine is stratification, consisting of defining 

subgroups of individuals among a cohort of patients affected by a disease. 

These subgroups can be referred to as endotypes. 

 

For a given disease, endotypes are subtypes which are characterised 

by a distinct functional or pathobiological mechanism3. 
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For each one of these subgroups, specific strategies can be applied to 

diagnose and/or treat affected individuals more effectively. Furthermore, once 

defined, such information can be applied to disease prevention. 

The term “endotype” can be compared to “phenotype”, the later referring to the 

set of observable characteristics of an individual. A given phenotype usually 

presents no direct relationship to underlying mechanisms of a disease. 

Specifically, the term “precision medicine” refers to the integration of molecular 

profiles, such as genetic information, into the prevention, diagnostic and 

treatment strategies for a disease in order to provide patients with a tailored 

approach4–7. 

In summary, precision medicine is defined as a strategy taking into account 

the uniqueness of individuals, as characterised by observations and 

measurements for each patient, and allowing to choose a suitable treatment 

course accordingly. 

The field has been further enhanced by the development of technologies 

allowing researchers to measure many variables for a single individual 

simultaneously, at a given point in his/her disease trajectory. These 

measurements can be integrated to gain a better understanding of disease 

processes and identify individuals or subgroups with similar trajectories. 

Moreover, the cost of generating such measurements has greatly reduced 

over time and is even reducing faster than Moore’s law8. Moore’s law states 

that the number of transistors per chip doubles every two years, thus halving 

its price. Costs of DNA sequencing used to be compared to the slope of 

Moore’s law. However, since around 20079, when next generation sequencing 

became available, the price of sequencing has seen an even steeper 

decrease. Also, the sharing of such datasets has been facilitated by dedicated 

online platforms. This has allowed the integration of such data by many 
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research groups with diverse interests, permitting to maximise scientific 

discovery. 

 

1.1.2 How can stratification help inform decisions in 
precision medicine? 

As illustrated in the previous section, stratification is a cornerstone of precision 

medicine. To define subgroups, either presenting distinct disease mechanisms 

or treatment responses, many patient measurements can be used such as 

biosensors measurements, data from images, omics data (corresponding to 

the measurement of different pools of molecules for an organism) and 

electronic health record (EHR) data. 

This is especially true for heterogenous diseases, which can involve distinct 

underlying mechanisms and consequently have different aetiologies, 

evolutions and outcomes, and are thus characterised by multiple disease 

trajectories. Indeed, even though patients present a similar syndrome, or 

collection of symptoms, they might in reality be better described, and 

understood, as subtypes, which are yet to be defined. Defining subtypes for 

these diseases could not only help in understanding the mechanisms behind 

them but also in identifying measurements of interest which could be 

considered as candidate drug targets for the design of new treatments. One 

widespread issue is that some treatments commonly given nowadays only 

benefit a small proportion of affected individuals10. The identification of 

individuals with a given disease likely to benefit from a given treatment would 

greatly benefit patients and might be permitted by disease stratification.  

However, the choice of measurements to use to define subgroups might not 

be obvious. This is not a trivial choice and results will depend on this decision. 

To understand the complex interplay between the different types of data and 

how it relates to potential subtypes it is advantageous to measure as many 

things as possible. However, because of cost constraints this might not be 

possible for most projects. Depending on the question asked, measuring too 
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many things might not be relevant as well. Once all measurements are 

generated, the ones relevant to the question will have to be identified. 

Detecting signal from noise might pose a challenge as a subgrouping could 

appear solely because of noise rather than a relevant stratification.  

Moreover, there are many ways to stratify a cohort of patients and only some 

of them will be relevant to the disease studied. For example, in acute 

pancreatitis, a highly heterogenous inflammatory condition affecting the 

pancreas, patients can be stratified according to the severity for example. 

However, this does not correlate with outcome11,12. For this reason, collecting 

more measurements, and more specifically omics measurements, might help 

in stratifying the disease into relevant subgroups which could help in 

understanding and treating the condition.   

 

1.1.3 Early applications of precision medicine 

Even though precision medicine is a relatively recent term and has lately been 

gaining popularity, its principles are not new and have been commonly applied 

in medicine. 

Indeed, many early examples of stratification exist. Perhaps one of the most 

known examples is the stratification according to blood type, discovered in 

1901 and which is still used today. By identifying the blood types of the donor 

and receiver and matching them accordingly, successful transfusions can be 

performed13.  

Another early example includes diabetes mellitus, a disease in which the ability 

to produce or respond to insulin, a hormone involved in the control of blood 

sugar levels, is affected. Diabetes was first described as two underlying 

diseases14 in the 1930s, based on insulin sensitivity and which were later 

referred to as type 1 and type 2 diabetes15. In this work, building upon 

observations made previously and noting the varying sensitivity of individuals 

to insulin, the author describes how individuals with diabetes reacted 
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differently to the injection of insulin, one subgroup showing an immediate 

decrease in blood sugar and the other showing little or no effect. The author 

concludes that one of these subtypes is not due to a lack of insulin but rather 

to an altered sensitivity to insulin (later referred to as type 2 diabetes). The 

implications of this distinction were great as it led to more discovery in the field 

and the design of management therapies specific to each one of the two 

subtypes.  

Another well-known example is the discovery of the HER2 target in metastatic 

breast cancers, which was validated in the 1990s16. This type of metastatic 

breast cancer is characterised by the overexpression of the HER2 gene 

(human epidermal growth factor receptor 2) and the resulting protein is used 

as a marker (associated measurable trait) of efficacy for a drug, trastuzumab. 

This drug, when given to HER2-positive breast cancer patients, binds to the 

HER2 receptor, significantly reducing mortality and increasing remission17. 

More recently, in the early 2000s, mutations in the BRAF gene were identified 

in malignant melanoma18 providing a new therapeutic target which has, later 

on, been used for its treatment. For example, vemurafenib, a BRAF inhibitor 

has been shown to improve survival in affected individuals19. 

 

1.1.4 Emerging applications of precision medicine 

There are many ways to integrate patient data, which can come from many 

different sources20,21, in a precision medicine setting. Some of them are 

described in this section, which is in no way exhaustive, especially in this fast-

moving field. 

 

1.1.4.1 Biosensor-based precision medicine applications 

Biosensors, whether wearable or implantable, can allow continuous 

measurements to be recorded. This is especially important in the medical 

context in which individuals are seen by health professionals on a discrete 
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basis. These sensors can fill the gaps between visits by continuously 

monitoring a patient. This kind of data can be used for monitoring, prevention, 

diagnosis and treatment22.  

In cases where continuous observation and treatment are required, such as in 

chronic illnesses, biosensors can be coupled with treatment delivery systems 

to improve compliance and minimise side effects23 . 

A well-known example is for individuals affected with diabetes mellitus. 

Implantable biosensors allow, through the real-time monitoring of glucose 

blood level, to predict and prevent hypoglycaemic (low blood sugar) and 

hyperglycaemic (high blood sugar) episodes. According to the values 

obtained, insulin can be automatically administered according to the condition 

of each patient.  

 

1.1.4.2 Imaging data and precision medicine applications 

Imaging data and more specifically Computerised Tomography (CT), Magnetic 

Resonance Imaging (MRI), Positron Emission Tomography (PET) images can 

be used for precision medicine applications as well. 

Quantitative measurements such as size, shape and homogeneity can be 

extracted from these images and can be used to characterise variability 

between patients. These measurements are referred to as radiomics and can 

be correlated with other variables. For example, it has been shown that 

radiomics from MRI images could be used to predict endotype classification 

for invasive breast cancers24. 

 

1.1.4.3 Omics data in precision medicine 

Blood or biopsy samples can be used to qualify and quantify molecules of 

interest. For example, DNA, RNA, proteins and metabolites (small molecules) 

can be identified and measured on these samples. The study of these 
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molecules is usually referred to as omics. Respectively, genomics, 

transcriptomics, proteomics and metabolomics. 

All these measurements are not currently used at the same level in precision 

medicine and some still need maturing, such as improved acquisition 

techniques or specific bioinformatics tools, to allow for them to be fully 

integrated to clinical practice. 

Genomics, or the study of genomes, involves DNA sequencing, and is an 

example of well-integrated data in the field of precision medicine.  

For example, cystic fibrosis (CF) is a disease characterised by a build-up of 

sticky mucus in the lungs and digestive system. CF is an inherited disease 

which is the result of a defective gene25 (cystic fibrosis transmembrane 

conductance regulator). This gene encodes for a protein and when mutations 

occur, they can lead to the production of an abnormal protein which will then 

cause a defect in epithelial ion transport (transport of charged atom or 

molecule between compartments). Across patients with cystic fibrosis there is 

not a single possible mutation and stratifying individuals based on these 

mutations has helped in designing suitable drugs26,27.  For example, carriers 

of missense mutations (characterised by an amino acid change), resulting in 

the ion channel being closed more often, can be treated using compounds 

called potentiators. 

Recently, transcriptomics, or the study of gene expression, has been a great 

research interest and especially in cancer research.  

For example, the expression of eight genes in the Interferon/Stat1 pathway, 

measured using microarrays, has been linked to outcome in glioblastoma, a 

type of tumour occurring in the brain and spinal cord28. More specifically, 

upregulation of genes from this pathway predicts a poor outcome in 

glioblastoma patients.  

Another example of the use of gene expression for precision medicine is 

colorectal cancer. Indeed, gene expression of gene groups measured using 
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microarrays, has been shown to be predictive of outcome after surgery29 for 

patients with this type of cancer. 

The study of protein data, or proteomics, has also been well researched in the 

precision medicine context. For example, drug response/sensitivity was 

successfully predicted in cancer patients, using two cell line panels, based on 

a range of different protein abundances30.   

Finally, metabolomics data corresponding to the profiling of metabolites (or 

small molecules), while perhaps being a least mature field31, is also promising. 

For example, the levels of two metabolites, spermine and citrate, were 

associated with the aggressiveness of prostate cancer32. Lower levels of these 

two metabolites were associated with more aggressive forms of cancer. 

 

1.1.4.4 Electronic health records data in precision medicine 

Another resource consists of EHRs containing a breadth of data collected by 

health professionals and usually covering years. EHRs can contain laboratory 

tests, clinical measurements and prescription data for example. A study 

showed that a model could be used to classify drugs into harmful or safe 

categories for pregnant patients given data from EHRs33. 

Clinical data especially is usually a cornerstone of any precision medicine 

analysis as it can be linked to molecular data and usually gives indication of a 

patient outcome. 

 

1.1.5 Data integration for precision medicine 

Each one of the biomedical data types reported in the previous section yields 

a huge amount of measurements on its own but these can be combined to 

gain additional knowledge of studied diseases and/or biological processes. 

However, this is not trivial due to the number of variables, which is usually very 

high, and the number of samples, usually much lower. Moreover, the different 
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data types are heterogeneous, making this task even more complex. 

Regardless, this has been shown to be possible and relevant for precision 

medicine34. To deal with this amount of data and take full advantage of it, 

computational structure and tools are essential, as well as specialist 

knowledge of data and bioinformatics algorithms. 

 

1.1.6 Precision medicine, potential pitfalls 

The term precision medicine, in its broad sense, aims at taking into account 

variability using a range of different measurements. While stratification, 

consisting of separating individuals into meaningful subgroups, can help in 

understanding a disease, it can raise the concern that not all patients will be 

part of one of the subgroups or will be part of a subgroup that will not benefit 

from specific care or treatment35.  

Another potential challenge lies in the fact that there might not be enough 

funding, storage, technologies or bioinformatic tools to take full advantage of 

the precision medicine approach. 

 

1.2 Motivation 
Acute pancreatitis (AP), an inflammatory disease of the pancreas, has an 

incidence of 34 per 100,000 persons-years36 and is the most common 

gastrointestinal cause for admission to hospital emergency services. In 1 in 4 

affected individuals, AP will lead to multi-organ dysfunction syndrome 

(MODS)37 and among those, 1 in 5 will die38. Although acute pancreatitis’ 

aetiologies are known, it remains unclear what will cause a patient to evolve in 

a certain way and how this will relate to MODS and death. To this date, no 

specific therapy targeting AP is available to patients. Thus, great benefit could 

be obtained from the study of AP’s heterogeneity. 

In this project, the first precision medicine study we know of focusing solely on 

acute pancreatitis patients, we hypothesised that endotypes (also referred to 
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as condition subtypes) existed and could be defined using a range of molecular 

measurements. Moreover, we believe that describing such endotypes would 

be relevant for the field, disease knowledge and would open new therapeutic 

avenues.  

We compared acute respiratory distress syndrome (ARDS) endotypes39 with 

AP endotypes identified in this thesis using clinical and blood measurements 

and found similarities. 

Furthermore, a similar approach could be applied to other heterogeneous 

diseases. As such, clinical and genetic variants data was used to study 

heterogeneity in inflammatory bowel disease (IBD). Finally, using imaging-

derived, DNA methylation, gene expression and clinical measurements, we 

studied a cohort of Parkinson’s disease (PD) patients and aimed at correlating 

this data to the carrier status for a PD-linked mutation.  

 

1.3 Strategy 
To extract disease endotypes for AP, we performed a clustering analysis, a 

term encompassing different techniques allowing to divide a cohort of samples 

into smaller sets. This analysis was done using a cohort of AP-affected patients 

referred to as IMOFAP40 (Inflammation, Metabolism and Organ Failure in AP) 

for which different measurements were available. Samples for this cohort were 

collected for 79 individuals at the Royal Infirmary of Edinburgh between 

September and December 2013. We then systematically assessed different 

clustering solutions and selected the one which was identified as being the 

most relevant, using a priori criteria, in terms of stability and biological 

relevance. We then compared the obtained groupings to subgroups of ARDS39 

previously described and showed some similarities between AP and ARDS 

endotypes.  

For other diseases, and more specifically IBD and PD, heterogeneity was also 

studied using different clustering strategies. Here, we aimed at highlighting 
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subgroups in disease cohorts which could be of interest for the understanding 

of the disease using different types of data and methodologies. These 

analyses were motivated by previous findings suggesting the potential 

existence of disease subgroups for both IBD and PD. 

 

1.4 Thesis structure 
Following this introduction, chapter 2 will consist of a presentation of the 

different types of data which can be used for the study of diseases and for 

precision medicine-based projects and will be followed by a literature review 

presenting clustering analyses as well as some of the challenges relating to 

the type of data used in this context. 

Chapter 3 will consist of a presentation of the main project, looking at data for 

a cohort of AP-affected patients. AP will be introduced along with details about 

the available data. Methods will then be presented, starting from the clustering 

strategy and giving more details about the results’ evaluation and validation. 

Finally, results will be exposed and followed by conclusions. 

Chapter 4 will be dedicated to the comparison of endotypes described in 

chapter 2 with other critical illnesses such as ARDS. The basis for this study 

and how it could benefit the study of critical illnesses will be laid out. Methods 

chosen to make the comparisons will be presented along with selected 

datasets. After summarising the main findings, some conclusions will be 

reported. Future directions will be discussed too. 

In chapter 5, a study of the heterogeneity in IBD will be shown and potential 

analyses will be outlined.  

In chapter 6, I will describe how a Parkinson’s disease dataset was used to try 

to highlight relevant stratification. In a first section, the dataset and goal will be 

exposed. This will be followed by a presentation of employed methods. A 

results section will report obtained results. A discussion and conclusions will 

be presented as well. 
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The last chapter, chapter 7, will consist of a review of the main conclusions of 

this thesis and its limitations. Future directions will be evoked as well as 

general thoughts about disease stratification and precision medicine in the 

context of this work. 

 

1.5 Contributions to knowledge 
This thesis offers new perspectives on diverse illnesses: acute pancreatitis, 

inflammatory bowel disease, Parkinson’s disease. The similarity between 

different types of critical illnesses was also studied. 

More specifically, it produces a new way of stratifying acute pancreatitis 

individuals, different from the traditional aetiology or severity-based strategy. 

Indeed, the current classifications do not permit a clear understanding of AP’s 

underlying mechanisms nor the identification of potential biomarkers and/or 

pathways of interest that could be targeted for new therapy strategies.  

Then, different critical illnesses were shown to share the same signal. This 

consists of a novel way to look at critical illnesses. Moreover, this could be 

further explored and lead to new discoveries which would be of great interest 

for the study and treatment of critical illnesses.  

In conclusion, this thesis describes new ways to study heterogenous diseases 

and promising new stratification analyses increasing the current knowledge 

and providing further study avenues for the analysis of diseases. 

A way of studying previously identified single nucleotide polymorphisms 

located in co-expressed genomic regions for patients affected with IBD is 

described in this thesis and could be beneficial for the understanding of both 

Crohn’s disease and ulcerative colitis. Ultimately this could lead to new 

therapeutic strategies for their treatment. 

Finally, stratification in Parkinson’s disease was looked at, using a novel 

approach, and as far as the analyses showed, no relationships could be 
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established between the stratification and a single nucleotide polymorphism 

related to Parkinson’s disease. Ultimately, this suggests that the mutation 

carriers do not present specific molecular phenotypes when compared to other 

PD individuals
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2. Chapter 2 – Literature review and concepts 
This chapter introduces core concepts that are relevant to the research subject 

presented in this thesis. It is divided into three main parts. 

The first part introduces omics data, that is large datasets resulting from the 

identification and quantification of different pools of molecules in a cell, tissue, 

or organism.  

The second part discusses clustering principles, that is the process of dividing 

a set into subsets. As the main project is based on human acute pancreatitis 

and uses time-series multi-omics data, when presenting the context, emphasis 

is placed on human subjects as well as clustering techniques that are 

especially relevant to the analysis of omics data.  

The third section specifically describes clustering strategies that would be 

useful when looking at time-series multi-omics data. 

 

2.1 Omics data 
For one to understand the underlying mechanisms of a disease, the analysis 

of biological samples is essential. 

Within cells, genetic information is transmitted through the processes of 

transcription (from DNA to messenger RNA and non-coding RNA, the latter 

being involved in many processes, notably the regulation of both transcription 

and translatation41) and translation (from messenger RNA to proteins). This 

transfer is unidirectional and is referred to as the central dogma of biology42, 

which will be influenced by many factors. 

The main omics layers, DNA, RNA, proteins and metabolites, have 

complementary roles and must be analysed together to provide an overview 

of involved mechanisms. Indeed, the characterisation of a single omics layer 
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does not suffice to provide a complete description of a biological process or a 

disease43. 

Independent acquisition methods are used to provide omics measurements 

that can then be combined using different strategies to extract relevant 

information. Omics can be measured in different media (such as plasma, 

serum, urine or tissue extract) depending on the hypothesis one wishes to test 

and the constraints inherent to the experiment. 

The four major omics fields, genomics, transcriptomics, proteomics and 

metabolomics will be briefly presented in the following section. 

 

2.1.1 Genomics 

The study of an individual’s DNA, also referred to as genome, is called 

genomics. The genome of an individual can be sequenced and analysed using 

genomics technologies such as arrays or next generation sequencing 

(NGS)44,45. As whole genome sequencing is still an expensive process46, other 

strategies have been designed to only sequence regions of interest, for 

example whole exome sequencing, targeting protein-coding regions. Many 

study design variations are possible but will most likely follow the same logic 

as the following steps: 

- DNA fragmentation: The DNA sequence is extracted and digested into 

small DNA fragments. 

- Ligation with adapters: DNA fragments are ligated to adapters (short 

synthetized sequences). 

- Amplification: Sequences are cloned (using polymerase chain 

reaction) prior to sequencing or hybridisation onto a genome chip. 

Not only the DNA sequence itself can be studied, epigenomics (the study of 

reversible modifications that can potentially affect gene expression) is also an 

area of great interest47. 
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2.1.2 Transcriptomics 

Transcriptomics is the discipline studying the transcriptome of an organism, 

corresponding to the whole set of RNA molecules of an individual. RNA 

molecules in a cell or tissue can be identified and quantified in order to study 

gene regulation and function.  

As in genomics, the transcriptome is usually sequenced using high-throughput 

technologies such as micro-array or NGS technologies like RNA-Seq, the 

former measuring expression using a pre-defined set of probes and the latter 

sequencing the whole transcriptome (or mRNA landscape, depending on the 

application).  

Whole transcriptome sequencing is used to measure mRNA as well as non-

coding RNAs whereas mRNA sequencing only measures mRNA. Library 

preparation will mostly follow the same steps: 

- Transcript type selection/depletion: As ribosomal RNA makes up the 

most of RNA reads, it is usually depleted, if not of interest for the study. 

Regarding mRNA, Poly-A selection can be used to only keep mRNA 

reads as they present polyadenylated tails.  

- RNA fragmentation: Usually, after these first steps, the RNA is 

fragmented. 

- Complementary DNA synthesis and amplification: Following 

ligation of fragments with adapters, cDNA is synthetized then amplified.  

This is then followed by sequencing producing as output nucleotide sequences 

for each RNA fragment. These fragments will need to be assembled and 

mapped against a reference genome before being able to quantify gene 

expression48. When no reference genome is available, for example when 

studying non-model organisms, de novo transcriptome assembly can be 

performed. 
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2.1.3 Proteomics 

The whole set of proteins present in a sample is called the proteome. Its study 

is referred to as proteomics. To some extent, proteome and transcriptome are 

correlated but many more factors will reflect the differences observed49. As 

with transcriptomics, high-throughput technologies are used to study the 

proteome as well. Commonly, mass-spectrometry (MS)-based methods are 

employed. 

When using MS-based technologies, common workflows can consist of the 

following steps:  

- Abundant protein depletion: Plasma or serum can be used 

depending on the analysis but in both cases the samples will be 

dominated by a small group of proteins, usually housekeeping proteins 

that are not specific to the studied condition50. Special resins can be 

used to perform the depletion51. 

- If using a differential in-gel electrophoresis (DIGE)-based protocol: 

o Protein separation: In the case of DIGE, this step is performed 

on an electrophoresis gel using undigested proteins that can 

then be selected based on their expression levels. 

o Protein digestion: Proteins are digested into peptides (smaller 

sequences of amino acids, usually under 50 in length) after 

selection so that they can be analysed. 

- If using a chromatography-based protocol: 

o Protein digestion: Proteins are digested into peptides so that 

they can be analysed. 

o Protein separation: Commonly, chromatography is performed 

before the MS step to separate the different peptides before 

performing tandem MS. 

MS will then be performed and can consist of tandem MS (one MS step 

followed immediately by another one) or a simple MS. The MS step will 

separate the molecules according to their mass to charge ratio. Obtained 

spectra will be searched against databases of known peptides based on 
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peptides unique properties (mass-to-charge ratio and retention time) in order 

to generate reliable protein identification and quantification. 

 

2.1.4 Metabolomics 

While changes in the metabolome, consisting of all the small molecules in a 

biological sample, will partly be driven by changes in the proteome, 

environment will also account for its variation. Thus, measuring it can provide 

phenotype-related information that can be used to decipher processes of 

interest. Two common metabolomics acquisition methods are nuclear 

magnetic resonance (NMR) and MS52. Metabolomics technologies used share 

similarities with proteomics and preparation usually follow the step below. 

- Separation: When using MS, analytes from the samples can be 

separated before measuring mass-to-charge ratios. 

Finally, detection and quantification are performed. This can be done using 

NMR or MS. NMR uses radiofrequency and measures the molecules 

responses whereas MS isolates and fragments ions (charged molecules) to 

measure their mass-to-charge ratios and quantify the molecules by looking at 

the MS spectrum peaks. 

Metabolomics studies can be either targeted (when focusing on a certain type 

of metabolites) or untargeted (when measuring all the molecules). 

 

2.1.5 Other measurements 

Aside from the different omics presented above, which can be measured from 

different biological samples, other characteristics, that might be routinely 

collected (for example during an hospital stay in the case of human) can be 

useful to measure. Age or body mass index may be collected as part of such 

collection. These measurements can be helpful to correlate omics variables 

with phenotypic properties. 
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2.2 Clustering, definition and aims 
Clustering can be defined as the process of dividing a set of samples into 

smaller sets, named clusters. Samples in a same cluster should present similar 

features whereas samples from different sets should present dissimilar 

features. 

Cluster analysis is referred to as an unsupervised learning technique, as the 

groups are not known a-priori. This is particularly useful when one wants to 

learn about the structure of a dataset and especially to determine if devising 

subgroups would help in better describing it. Applications are numerous and 

go well beyond the sole area of biology. 

 

2.2.1 Cluster analysis steps 

Performing a cluster analysis involves different steps which will greatly depend 

upon the aim to be reached53,54. An example of steps taken during the cluster 

analysis process is described here: 

- Feature selection: One can choose to use all features or a subset of 

pre-selected features to perform the analysis. 

- Similarity measure: Similarity between samples will need to be 

quantified using a chosen metric 

- Criterion choice: Any number of clusters (from one cluster containing 

all samples to one cluster per sample) can be derived from a cluster 

analysis. By choosing a criterion (usually a cost function), quantifying 

for example the compactness of the clusters, one can determine an 

optimal partition for the analysed dataset.  

- Clustering algorithm selection: This will determine how the clusters 

are defined. Some require the user to choose the number of clusters to 

extract (such as partitioning clustering) and some do not (such as 

hierarchical clustering). 
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- Assessment: Internal measurements can be used to assess the quality 

a clustering solution and will reflect the compactness of the clusters 

and/or the separation between different clusters. Stability testing 

techniques can be used as well, they will determine how much a 

clustering solution is sensitive to change in the input data. In the case 

of biological data, known biological annotations can be used to assess 

the quality of a clustering. 

- Interpretation: After cluster allocations are determined one must 

interpret them to determine what the results are based on, to highlight 

distinctive and shared features between clusters for example.  

 

2.2.2 Feature selection 

Reasons for feature selection and a brief overview of employed strategies are 

presented in the following two paragraphs. 

 

2.2.2.1 Considerations 

When performing clustering on a dataset, the number of variables, or features, 

describing the samples can greatly vary. There can be a few variables or many, 

with sometimes numbers far exceeding the number of samples (often referred 

to as high dimensionality).  

The development of high-throughput technologies has led to the availability of 

many high-dimensional datasets. When dealing with a great number of 

variables, there can be many advantages in selecting only a subset of the initial 

variables. Indeed, using less variables will decrease the computational burden 

and can also improve the quality of the clustering by getting rid of 

noise/irrelevant variation present in a dataset55,56. Such considerations will 

also apply to supervised learning problems like classification as a minimum 

number of variables will be desired for efficient and simple models. The 

process of selecting only a subset of variables is referred to as feature 

selection. The idea behind it is that selected features must not be redundant 
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and must provide discrimination power that can be used to separate the 

samples. 

 

2.2.2.2 Strategies 

Two main strategies can be applied in this case, filtering and wrapping. 

Filtering is applied before running the clustering algorithm. Filtered variables 

will be selected based on properties of the data. For example, one might drop 

highly correlated variables as they will provide redundant information. Variance 

can also be considered as a metric to filter features as low-variance features 

might provide very little power to discriminate samples. 

The wrapping strategy employs a different concept. The clustering algorithm 

will be run using the complete set of features. The output of the clustering will 

then be used to perform a selection on the variables. Indeed, contribution 

measures can be extracted for each variable and used to apply a filter (for 

example features with the lowest contribution may be dropped as part of the 

process). Usually, this is repeated several times until an optimum is reached 

(usually defined by a pre-selected criterium). The choice of criterion might 

result in different subsets being selected. 

One can also choose to extract features of interest by creating new variables 

(using principal component analysis, for example) that will be used as input to 

the clustering algorithm to help reduce the number of irrelevant variability 

included in the model57. 

 

2.2.3 Proximity measure 

Once the input set of samples and variables has been chosen, one must define 

similarity values between samples, quantified as ‘distances’, prior to applying 

the clustering algorithm58. Distances computed will be a direct measure of how 

close/different two samples are. This crucial step will be used to define 
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clusters. Indeed, the aim is to create groups of samples that are close together 

and apart from others. 

 

2.2.3.1 Considerations 

Commonly, dissimilarity is measured as a distance. However, the choice of 

metric is inherent to the type of each one of the features. Distances metrics 

used for continuous variables will be different from the ones used for 

categorical variables. Some metrics might also take into account important 

characteristics of the variables, such as the distribution of a feature. 

 

2.2.3.2 Strategies 

Metrics used in clustering tasks can be classified in two classes, dissimilarity 

and similarity distances. Some of the most common, with emphasis being 

placed on the ones which can be applied to continuous variables, will be 

presented here. 

 

2.2.3.2.1 Dissimilarity metrics 
The most popular dissimilarity metric in the case of continuous variables is the 

Euclidean distance59. 
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As the Euclidean distance integrates squared differences in values within each 

one of the spaces (corresponding to features), one must make sure that the 

data is normalised beforehand so that each variable has a variance of the 

same order. Indeed, if not, bias might be induced by features with larger 

variances.  
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This can be compared to the Minkowski metric60, of which it is a special case 

with order equal to 2. Likewise, the Manhattan distance60 is a special case of 

the Minkowski distance but with an order of 1.  

Another common dissimilarity metric is the Canberra distance60. It is a 

weighted version of the Manhattan distance, the weight being proportional to 

the sum of absolute values in a given feature space.  

	

!"#" , ##% 	=- |#",% − ##,%|
|#",%| +	 |##,%|

&

%'(

 

Small differences in values will have a different influence on the final distance 

depending on whether those values are close to 0 or not. For a difference in 

values of the same order in magnitude, for samples close to 0, the Canberra 

distance will be much larger compared to values further away. 

Hamming distance59 calculates the number of different elements between two 

vectors and can be used as well. The magnitude of differences for any given 

feature will not influence the final distance. 

 

2.2.3.2.2 Similarity metrics 

Similarity metrics can be computed and converted back to dissimilarity so that 

they can be used for the clustering task. 

Correlation-based metrics, such as Pearson’s or Spearman’s correlation 

coefficients61 can both be valid measures of similarity when performing 

clustering.  

Pearson correlation coefficient is the correlation between two sample vectors 

and will be a number between -1 and 1.  
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A correlation value of 1 or -1 indicates that one sample can be predicted from 

the other using a linear equation. A value of 0 indicates that no linear 

relationship was identified between the two samples of interest. 

Spearman correlation can be described as the comparison of ranks of values 

between two vectors. It can be computed using the following formula.  

0"#" , ##% = 1 −	
6) (0)!,# − 0*!,#)!

&

%'(
8(8! − 1)  

Spearman’s r will be equal to Pearson’s r when replacing actual variable values 

by ranks in Pearson correlation formula. If the changes are not proportional 

but the variables are still ordered in the same way, then Spearman’s r will have 

an absolute value higher than Pearson’s. Both will detect similarities in shape 

rather than similarities in magnitude. 

These similarity metrics can be converted to dissimilarity values using an 

appropriate transformation, one of the simplest being stated below. 

!"#" , ##% 	=
1 − 0"#" , ##%

2  

 

2.2.4 Criterion 

2.2.4.1 Considerations 

Depending on the clustering algorithm chosen, there can be many ways to 

partition a set. One must choose the algorithm which provides the optimal 

clustering given a specific problem. 

In the case of unsupervised clustering, as the truth will not be known, one must 

use the features of identified clusters, such as cluster centroids, the separation 
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between clusters or the compactness of clusters to determine the quality of a 

solution. Depending on the aim of the study and the type of analysed data, 

other measures can be defined to assess the quality of a clustering solution. 

 

2.2.4.2 Strategies 

The most common way to estimate and visualise the homogeneity of clusters, 

as well as to identify an optimal number of clusters is to compute and plot 

silhouette scores for all samples62. The term silhouette refers to the outline of 

the score values when represented graphically. For each sample, a silhouette 

score reflecting how well the observation fits into its cluster can be computed. 

Its value can range between -1 and 1, a value of 1 meaning that the current 

cluster is a perfect match for this sample. The following formula is used to 

compute the silhouette score for a sample. 

:(x) 	= <(#) − =(x)
max	(=(#), <(#)) 

=(x) is defined as the average dissimilarity between sample x and all other 

objects that are from the same cluster. <(x) is the minimum average 

dissimilarity between sample x and objects from different clusters (computed 

per cluster). Intuitively this gives a value reflecting how tight samples are within 

a cluster and how separated this cluster is from the others. This can be 

averaged over clusters and clustering to have an overview of the partition 

quality. A strategy to choose a partition is to try and maximise the average 

silhouette value. 

 

2.2.5 Clustering algorithm 

2.2.5.1 Introduction 

After having chosen a method to compute pairwise dissimilarities and a 

criterion to define an optimal cluster solution, the clustering algorithm itself has 

to be selected. The clustering output can consist of hard or soft partitions, the 
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former consisting of a sample being assigned to a single cluster whereas the 

latter consists of a sample belonging to each cluster to a certain degree.  

 

2.2.5.2 Clustering methods 

An overview of some commonly used clustering methods, along with their 

advantages and disadvantages, is described in the following subsections. 

 

2.2.5.2.1 Hierarchical methods 

Hierarchical clustering is a clustering method producing nested groups53. 

Depending on the strategy chosen, the starting point will consist of a single 

group containing all samples (divisive strategy) or a set of groups containing 

each one a single sample (agglomerative strategy). Divisive strategies are 

often referred to as DIANA63 (DIvisive ANAlysis) and agglomerative as 

AGNES63 (AGglomerative NESting). This has been successfully applied to 

cluster gene expression patterns in organisms64 or a specific disease65. 

Hierarchical methods can be sensitive to outliers and noise and might not work 

when handling clusters of different sizes. 

 

2.2.5.2.1.1 DIANA 

To determine how a group should be divided in DIANA clustering, all possible 

partitions of the data would have to be considered. In large datasets, this 

constitutes a substantial computational burden. One can implement the 

following solution to greatly reduce the number of considered partitions when 

dividing a set66. Briefly, the first step consists of highlighting the sample from a 

cluster with the greatest average dissimilarity to the other elements of this 

same cluster. This sample will be used to create a new cluster. Then, all 

elements of the original cluster will be either kept in the former cluster or moved 

to the new one. This will depend on the difference between the average 

dissimilarity between the remaining members of the original cluster and the 
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average dissimilarity with the samples in the newly created group. If this 

difference is positive the object is then moved to the new cluster. This is 

repeated until stability is reached ( 

Figure 2.1). 
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Figure 2.1 - DIANA clustering iterations on dummy data produced using diana 
function in R with Euclidean distance and default parameters (cluster package). 
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2.2.5.2.1.2 AGNES 

The most commonly used hierarchical clustering strategy is agglomerative 

clustering, a so-called ‘bottom up’ approach. There are many criteria to define 

how clusters should be merged as part of the agglomerative process. These 

are referred to as linkage methods63. Four of them will be presented in this 

section. Starting from a partition with 8 1-element clusters, these will be 

merged in a pairwise fashion, given the closest clusters as defined by the 

linkage method, until only one cluster, containing all samples, is generated 

(Figure 2.2). 
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Figure 2.2 - AGNES clustering iterations on dummy data produced using agnes 
function in R with Euclidean distance, average linkage and default parameters (from 

the cluster package, plots were generated with ggplot2 library). 



Literature review and concepts 

 32 

 

Two linkage methods, utilising distances between pairs of samples, can be 

used. The first one, single linkage, defines dissimilarity between two clusters 

as the smallest distance between pairs of points, one from each cluster. The 

second one, complete linkage, uses the largest distance between pairs of 

points from different clusters in place of the smallest.  

Depending on the cluster shapes one of these two methods can be preferred, 

for example the distance between two elongated clusters will be much smaller 

when using the single linkage method, whereas the same two clusters would 

appear much further away in the case of complete linkage.  

Another popular linkage method is average linkage, also referred to as 

UPGMA (Unweighted Pair Group Method with Arithmetic mean), built upon the 

definition published previously67. The decision whether to merge two clusters 

will be made given the distances between clusters computed as the average 

distance between elements from the two clusters (performed in a pairwise 

fashion). This technique avoids the use of extreme dissimilarity values such as 

when using single and complete linkage and can offer a compromise. 

Another commonly used linkage method is Ward’s minimal increase of sum-

of-squares method68 and is based on a slightly different principle from the 

linkage methods previously introduced. Indeed, rather than directly using 

dissimilarities between samples, it computes sum-of-squares.  The merging of 

samples will be performed based on the minimum total sum of squares 

increase, in other words, for each candidate pairs of groups, it will compare 

the sum of squares of their union with the sum of squares for each one of them 

separately. Ward’s method usually performs well when group sizes are of the 

same order. If group sizes are very different, it might be difficult to highlight 

them using this algorithm. 
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2.2.5.2.1.3 Dendrograms 

To illustrate the structure of the identified clusters, a dendrogram can be used. 

It consists of a tree representation for which each leaf is a sample. Dividing 

branches represent the divisions/fusions performed as part of the chosen 

clustering algorithm. The vertical value, referred to as ‘height’, for which a split 

between two branches occurs represent the distance between the two 

corresponding clusters (Figure 2.3). Here, for example, samples 3 and 4 are 

the two most similar samples as the branches joining them splits at the 

smallest height value. 
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Figure 2.3 – Example dendrograms using the previously used dummy data (generated 
using the cluster package in R). 

 

2.2.5.2.2 Partitioning methods 

Another type of clustering method, which produce discrete cluster sets, as 

opposed to nested sets such as described in the previous paragraph, is 

referred to as partitioning clustering. Two common partitioning algorithms, K-

means and partitioning around medoids (PAM), are presented in the following 

subsections. 
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2.2.5.2.2.1 K-means 

K-means69 is one of the most commonly used partitioning clustering algorithm. 

One parameter, k, is required to run the algorithm and must be chosen by the 

user based on previous knowledge, graphical interpretation or comparison with 

results produced using other values of this parameter. K represents the 

number of clusters that will be identified by the algorithm. This is an iterative 

process composed of two steps, a centroid calculation step and an assignment 

step. First, each sample is assigned to a random cluster (the number of 

clusters being defined by k), the algorithm will then compute the centroids of 

each one of the clusters (Figure 2.4, first panel). Once the centroids are 

computed, the samples are assigned to the group with the closest centroid (as 

defined by the Euclidean distance, Figure 2.4, second panel). This is repeated 

until convergence (Figure 2.4, third panel). The algorithm aims at minimising a 

function defined by the sum of within-cluster variation and will identify a local 

minimum for this optimisation function. As it will identify a local and not a global 

minimum, it can be useful to run the algorithm with different initial conditions, 

as defined by the random assignments used at the first step of the process. K-

means clustering is frequently used in health-related studies. For example, one 

study clustered fat mass changes in obese subjects70 using this algorithm. 
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Figure 2.4 – K-means using dummy data and k=2,the three steps are represented. The 
initial random assignment and computation of centroids, represented as star markers, 
is illustrated in the first panel. The assignment to the closest centroid is illustrated in 

the second panel.  Finally, the re-computation of centroids is done. Here, in this 
simplistic example, convergence is reached. (plots generated using ggplot2 package 

in R) 

 

2.2.5.2.2.2 Partitioning Around Medoids (PAM) 

Partitioning Around Medoids63, usually referred to as PAM, is the most 

commonly used k-medoids algorithm and has been used to study disease 

clusters71. A medoid is a representative object of dataset or cluster. 

The principle behind PAM is similar to that of K-means clustering, indeed, it 

aims at highlighting clusters that minimise the average dissimilarities between 

the samples and their associated cluster representation. The difference with 

K-means is that PAM uses medoids, which are actual samples, as opposed to 
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K-means which computes centroids, corresponding to the mean vector for a 

dataset or cluster. 

After an initialisation step, for which medoids are randomly selected among 

the set of samples, given a value of k selected by the user, the main algorithm 

is organised around two steps. The first one, called the build step, during which 

the average dissimilarity between each sample and their corresponding 

medoid, as defined by the closest centre, is computed (Figure 2.5).  

 

Figure 2.5 - PAM using dummy data and k=2, initiation and build steps, medoids are 
represented as star markers. (plot generated using ggplot2 package in R) 

 

The second step consists of the swap phase, during which one of the selected 

centroids is randomly swapped for another object of the same cluster (Figure 

2.6). 
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Figure 2.6 - PAM using dummy data and k=2, swap phase, group 1 medoid is swapped 
from point 2 to 1, medoids are represented as star markers (plot generated using 
ggplot2 package in R), here, in this simplistic example, convergence is reached. 

Average dissimilarity is computed as previously and compared to the last 

obtained value, if this value is lower the swap is maintained, if the dissimilarity 

is greater the swap is dropped. This is repeated until no improvement can be 

obtained. 

 

2.2.5.2.3 Density-based methods 
Density-based methods encompasses strategies identifying clusters of points 

based on their density. This family of methods is able to identify clusters 

regardless of their shapes and deals well with outliers. 

2.2.5.2.3.1 DBSCAN 

Density-Based Spatial Clustering of Applications with Noise72 (DBSCAN) is a 

density-based clustering method. The number of clusters will be inferred from 

the data. Density is estimated by looking at neighbouring points and given a 

radius defined by the user. A second parameter, the minimum number of 

points, also defined by the user, is used to defined clusters. 

Three categories of points are defined in DBSCAN: 
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- Core points: any point with a number of neighbouring points (as defined using 

the radius value) containing at least the minimum number of points 

- Border points: a point being reachable from a core point but with less than 

the minimum number of points in its neighbourhood.  

- Outliers: a point not falling in any of the two previous categories 

 

The algorithm then goes through three steps. First, a point not assigned to a 

cluster or defined as an outlier is chosen at random. If this point is not identified 

as core point, then it is defined as an outlier. If the point is a core point, then it 

will serve as a basis for a cluster. The cluster is defined by adding points that 

are in the neighbourhood. This is repeated for all added points. Finally, these 

two steps are repeated until all points are assigned to a cluster or defined as 

outliers. An example output is represented in Figure 2.7. 

 

Figure 2.7 - DBSCAN using dummy data, radius=1 and minimum number of points=2. 
One cluster comprising two points is identified (represented in red) and three outliers 

(represented in blue) are highlighted. (plot generated using ggplot2 package in R) 
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2.2.5.2.3.2 OPTICS 

Ordering Points To Identify the Clustering Structure73 (OPTICS) is a clustering 

method similar to DBSCAN but palliating one of its weaknesses. Indeed, 

DBSCAN may have trouble identifying clusters of different densities. To do so 

core and reachability distances are defined.  

The core distance corresponds to the minimum radius value which would result 

in a point being classified as a core point. The reachability distance is defined 

between a point and a core point and is either the core distance (if the point is 

within the area defined by the core distance) or the distance between the two 

points (if the point is further away from the core point). Once a point is 

processed, the next closest point will be processed. Reachability distances are 

used along points ordering to produce the reachability plot. 

As opposed to DBSCAN, no clusters are produced are must be extracted by 

the user using the reachability plot produced. An example reachability plot is 

presented in Figure 2.8. 

 

Figure 2.8 – Reachability plot produced using dummy data and a minimum number of 
points=2. Reachability distance is represented on the y axis and ordered points are 

represented on the y axis. 

Using a reachability plot, clusters can be identified by looking at “hills” and 

“valleys”. For example, here, one cluster might be identified and would be 

composed of the third and fourth points (respectively identified as 3 and 4 in 

1 2 3 4 5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Reachability Plot

Order

Re
ac

ha
bi

lity
 d

ist
.



Literature review and concepts 

 41 

Figure 2.9) as there is a steep decrease in reachability distance between them. 

Others would be identified as outliers. This process can be automated by 

applying a threshold on steepness values. 

 

Figure 2.9 – Dummy data used to produce Figure 2.8. Coordinates of the 5 points are 
represented on axes x and y and identified clusters are reported as well. (plot 

generated using ggplot2 package in R). 

 

2.2.5.2.4 Model-based methods 

Model-based clustering methods are a family of methods based on finding a 

mathematical definition, or equation, to represent the data. Examples of 

model-based methods include Gaussian Mixture Models (GMM)74 and Self-

Organising Maps (SOM)75. 

2.2.5.2.4.1 GMM 

GMM will try and model the data as several Gaussian components, one for 

each cluster. It is hypothesised that each sample has been generated by one 

of these Gaussian components (Figure 2.10).  
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Figure 2.10  -Density histogram for a dummy variable (generated using two 
Gaussians, x1 and x2, with respective means 2 and 6 and standard deviations 1 and 4 
with rnorm function in R) with Gaussian distributions overlaid (figure generated using 

ggplot2 library). 

Parameters will be obtained by maximising the likelihood of the observed data. 

In other words, the likelihood of observing such a data distribution, given it has 

been generated by the current model, should be maximised. Omics data can 

be clustered using GMM, for example using gene expression data76. 

One intuitive way to define GMMs is to compare them to the k-means algorithm 

as they share common concepts. The former is a generalisation of the latter, 

indeed, GMM initial conditions will be randomly chosen. They consist of cluster 

location and cluster shape in the feature space. This will then be followed by 

an expectation-maximisation (EM) procedure, the expectation step (E) will 

define probabilities of membership for each sample and the maximisation step 

(M) will update the location and shape of all clusters given these probabilities 

in order to have the highest possible likelihood. This step will be repeated until 

convergence. The clusters shape can be constrained to a lower set of 

dimensions, or to the full set of dimensions, a lower set resulting in lower 

processing requirements. 

This provides two main advantages over k-means, the cluster shape is not 

constrained to a sphere and the assignments are probabilistic (each sample 
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will have a confidence value for its cluster assignment). Not only it allows 

clustering but provides a mathematical way of describing the clusters. 

Similar to the k-means algorithm, using GMMs with several different initial 

conditions can help find the most likely solution in a given dataset. 

 

2.2.5.2.4.2 SOM 

A SOM is a neural network-based model that can be used as part of a 

clustering task. SOM tries to capture as much as possible of the high-

dimensional structure of a dataset, in a low-dimensional surface (also called 

the map). The main advantage over traditional dimensionality reduction 

techniques, such as principal component analysis (PCA)77, is its ability to 

capture non-linear relationships. Applications are numerous and can help for 

example in deciphering gene expression patterns78. 

The starting point consists of a grid composed of neurons. The algorithm works 

by iteratively updating the neuron centres positions given samples positions. 

Initial conditions must be chosen, one option is to use PCA coordinates. For 

each data point, the closest centre is identified (it is referred to as Best 

Matching Unit, or BMU) using smallest Euclidean distance. SOM then looks 

for all centres that are within a given distance (that will decrease as the 

algorithm progresses) of the centre identified in the previous step using the 

distances in terms of the SOM surface. Finally, the positions of these centres 

are updated by ‘pulling’ the centres towards the current data point. One way to 

perform this consists of adding the weighted vector difference between the 

data point and cluster centre. The chosen weight is referred to as the learning 

rate and decreases for each iteration. This is then repeated until convergence 

or until the maximum number of defined iterations is reached. A schematic 

mapping between input data and a 2-dimensional grid is presented in Figure 

2.11.  
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Figure 2.11 - Projection example between some input data and a 2-dimensional SOM 
(the input space is represented on the left-hand part of the figure and the SOM space 

on the right hand part of the figure). 

One can identify clusters by looking at the final map density and the similarities 

between the different nodes. 

In this section, different clustering methods were defined. All methods will 

provide many different results which must be assessed to define which should 

be chosen. 

 

2.2.6 Assessment 

2.2.6.1 Introduction 

Using different methods and parameters, many different clustering solutions 

can be obtained. To select and/or compare results from clustering procedures 

one must prove the relevance and value of a solution. 

A solution can be evaluated in terms of various statistical properties but also, 

depending on the context, in terms of meaningfulness for the field79. For 

example, in biology, one might want to test for biological processes highlighted 

by a clustering solution.  
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Finally, it is of utmost importance for a solution to be replicable. More 

specifically, a solution should not be specific to the dataset at hand but should 

be valid for other datasets as well.  

 

2.2.6.2 Statistical properties 

To validate a clustering solution, statistical properties of the partition can be 

looked at, using either pre-defined measures or by assessing the stability of a 

solution under induced change in the input dataset. Such measurements can 

be used to compare solutions and/or to find the optimal one but also to give a 

numeric value to the quality of a partition. 

 

2.2.6.2.1 Internal indexes 

As presented in section 2.2.4.2, silhouette scores can be used to assess the 

homogeneity of obtained clusters. However, silhouette scores alone are not 

sufficient to prove the validity of a partition (a set of clusters) and one must 

look at the characteristics of the obtained clusters to determine their value. 

 

2.2.6.2.2 Stability 
When looking at the results of a clustering algorithm, it is essential to make 

sure that the solution does not rely too much on one or a few samples. In other 

words, when clustering a set of samples, one would expect the global structure 

to remain roughly the same when a small proportion of samples is excluded 

as compared to when including the whole set.  

Bootstrapping can be used to perform such task. It consists of excluding a 

proportion (user-defined) of the input samples, replacing them by copies of 

included samples and re-performing the clustering task. The resulting clusters 

can then be compared to the initial solution.  
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The Jaccard index can be used to compare two bootstrapped versions of a 

clustering solution80. This metric computes the overlap of two sets as defined 

by the following formula.  

@A"B" , B#% 	=
|B" ∩ B#|
|B" ∪ B#|

 

Jaccard index values range between 0 (no overlap) and 1 (perfect overlap) 

and can be used as a measure of similarity between clusters. When dealing 

with several clusters Jaccard index values can be averaged to provide a single 

value per partition. 

 

2.2.6.3 Biological properties 

When studying biological datasets, it is important to assess whether the results 

obtained are in line with known biology. The hypothesis arises from the fact 

that random clusters will not highlight any known biological processes as 

defined by pathway maps for example. 

Depending on the data, several techniques can be employed to assess the 

biological relevance of the solution. Depending on the data type, pathway 

analysis or gene set enrichment analysis can be used to highlight pathways or 

biological terms of interest such as KEGG pathways81 or gene ontology (GO) 

terms82. There is no gold standard to determine the relevance of a clustering 

solution and a careful examination of the results will be required.  

Results from this kind of analyses can also be used for clusters interpretation 

as they provide insight into functional properties of the clusters. 

 

2.2.6.4 Replication 

For a solution to be valid, one would aim to reach the same conclusions when 

repeating an experiment.  
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For example, a different input dataset, collected at a different hospital and 

processed differently could be used to test the validity of a clustering solution. 

If valid, a similar structure should be observed. 

The replication step generally aims at showing that obtained results are of 

sufficient quality and that our understanding of the studied system is correct83. 

 

2.2.7 Interpretation 

2.2.7.1 Aims 

As mentioned in the previous section, insights about the clustering results can 

be obtained using pathway analysis or GO terms enrichment analysis for 

example. However, there are many more ways to extract information from 

clusters. Some of them are presented in the following sections. 

 

2.2.7.2 Proportions comparison 

When looking at clustering results for patient data, if observational categorical 

variables, for example age or gender are available (they can be confounding 

variables as well), a simple comparison between proportions can be 

performed. It can be formalised by using a Chi-Square test to compare 

frequencies and then compute a p-value. An example would be to compare 

the proportion of males in a cluster and compare it to the proportion of males 

in another cluster, this would help determine if the proportions of males in the 

two groups are significantly different or, in other words, determine if the group 

labels are independent from the gender variable. This can also be done when 

there are more than two categories for both variables.  

 

2.2.7.3 Analysis of variance 

Average values per variable per cluster can be computed and compared using 

ANOVA (ANalysis Of Variance). One-way ANOVA consists of a statistical test 
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of whether averages are equal between independent groups. Post-hoc tests 

can be used to determine which groups were different for a given variable. 

When only two groups are present, a t-test can be a suitable alternative. 

 

2.2.7.4 Prediction models 

Another strategy consists of creating models that predict sample allocations 

given all or part of the input data. By doing so, one can extract variables 

contributions and thus highlight discriminant variables. 

When more than two groups were highlighted, models can be generated using 

several designs. Some algorithms support multi-class classification problems, 

but it can sometimes be beneficial, in terms of accuracy, to divide the problem 

into smaller ones. For example, binarization has been successfully applied in 

many settings and can be subdivided into one-vs-one and one-vs-all 

approaches84–86, the former referring to pairwise comparisons between groups 

and the latter to one group being compared to all others. Moreover, this can 

help highlight specificities inherent to each group rather than global 

differences. 

Some examples are provided in the sections below. 

 

2.2.7.4.1 Partial Least Squares-Discriminant Analysis (PLS-DA) 

2.2.7.4.1.1 The algorithm 

Partial Least Squares-Discriminant Analysis (PLS-DA) is a PLS problem, an 

approach maximising the covariance between the variance of predictors and 

a categorical outcome. PLS-DA is useful for dimensionality reduction, feature 

selection and classification87, thus helping to decipher the properties of a 

cluster. It is especially well adapted to deal with high-dimensional, noisy and 

collinear (when variables can be predicted from linear combinations of others) 

data. A parallel can be made with principal components analysis (PCA), the 

main difference being that PLS-DA aims at maximising the covariance 
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between the data and group labels whereas PCA aims at maximising the 

represented variance, with no knowledge of group labels. PLS-DA can be seen 

as a supervised version of PCA. 

The algorithm will project the data into a low dimensional space (the number 

of spaces being defined by the user) whilst representing as much covariance 

between the data and the group labels as possible.  

The first step consists of extracting a weight vector, E given F, the input data 

and 3, the outcome vector. 

E =	F+3 

Secondly, a score vector is computed using the input data, F and the weight 

vector, E, computed during the previous step. 

G = 	FE
H∑E!

 

The next step consists of computing the X and Y-loading vectors. The X-

loading vector, consisting of a vector with a number of elements equal to the 

number of features, will describe how the different variables relate to each 

other. Correlated variables will have similar weights on the X-loading vector. 

Similarly, the y-loading vector will describe the relationships between the 

groups and will have a length equal to the number of samples. For example, 

variables with similar loadings will have a similar contribution towards the 

separation of different groups as part of the PLS-DA model. 

X-loadings are computed as described in the equation below. 

J = 	G′F
H∑ G!

 

Similarly, Y-loadings are computed as follows. 
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L = 	3′G
H∑ G!

 

The equations previously outlined will define the first component of the PLS-

DA model. If the user has chosen more than one component, the residuals 

(the variation not accounted for at this stage) will be used to compute other 

components using the equations defined but replacing F and 3 by the 

residuals, as defined in the two equations below. 

0M:, = 	F − GJ 

0M:- = 	3 − GL 

Once all defined components are computed, the prediction model will be 

created. Regression coefficients, one for each variable, are calculated as 

shown in the following equation, one for each component. 

< = 	E(JE).(L 

To obtain the predicted value 3N for an input sample F/01/, the input data is 

multiplied by the matrix of regression coefficients O as shown below. 	
3N = 	F/01/O 

 

2.2.7.4.1.2 Variable importance for PLS-DA models 

From PLS-DA models, variable importance can be computed. The importance 

of a variable is referred to as VIP (Variance Importance in Projection) scores 

and is the contribution of a variable to the PLS-DA model. The scores are 

computed from the correlations between PLS-DA components and each one 

of the variables. They can thus be used to rank variables and/or perform 

feature selection by dropping the variable with the smallest associated VIP 

score or a given proportion of variables with the smallest VIP scores. This can 

help find a small subset of variable explaining the variation between groups 

and give a functional description of each group. 
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2.2.7.4.2 Random forests 

2.2.7.4.2.1 The algorithm 

Random forests88 is a classification algorithm that can work with both 

continuous and categorical variables, such as a group label, as outcomes. 

Random forests consists of constructing a set of decision trees, each of them 

consisting of a series of logic rules determining the label of a sample. A voting 

strategy is used to aggregate the results from all the trees and give a final label 

to a sample. 

The first step of the algorithm consists of creating randomised samples of the 

data with replacement, some samples will then be left out (referred to as out-

of-bag samples) and used to compute accuracy measures. 

For each one of these randomised samples, a defined number of trees will be 

built. The number of trees will be defined by the user. Each tree will start from 

the root and the samples will be split using a subset of randomly selected 

variables (usually of size equal to the square root of the initial variables 

number), finally, only the best one will be used to perform the split. Then, 

another layer of nodes is added and this process is repeated until the defined 

number of layers is reached. 

When performing each split, considering the chosen variable is continuous, 

several thresholds will be considered and the best one will be selected 

according to Gini impurity, a method for quantifying homogeneity for a node. 

Briefly, it computes the misclassification frequency of a random sample if its 

class was chosen solely given the distribution of sample labels after performing 

the split. 

Each tree will produce a group allocation that may be different according to 

other trees of the forest, a voting strategy can be applied to allocate a sample 

to a group, for example using the majority vote. 
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Robustness is ensured by bootstrapping applied to the samples and the 

random selection of variables. 

Errors are estimated using out-of-bag samples that are used as a testing set 

and averaged for all trees. 

 

2.2.7.4.2.2 Variable importance for Random Forest 

As with PLS-DA, variable contributions can be extracted, making random 

forests a useful tool for group characterisation.  

There are two main ways of computing variable importance in random forests. 

Out-of-bag samples can be used, the importance will then be computed using 

the accuracy decrease when the variable of interest is shuffled as opposed to 

when using the original order of values.  

Decrease of Gini impurity can also be used to estimate variables importance, 

if the Gini impurity at a split decreases consequently then it means that the 

used variable contributed greatly in helping classifying the samples. This can 

be averaged over all the nodes including this variable to generate a global 

value over all trees. 

 

2.3 Clustering time-series multi-omics datasets 
In practice, most of the presented methods in their original or adapted form 

can be used on any type of data. However, any analysis performed on multi-

omics datasets present a unique set of challenges that must be addressed to 

ensure the validity of the analysis and get a full picture of involved processes. 

Some issues are described in the following sections as well as potential 

directions to address them. 
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2.3.1 Biological and technical variability 

2.3.1.1 Challenges and specificities 

Because of the nature of the different experiments within an omics dataset, 

there will be technical variation between the different omics but also within 

each omics type89. When combining different types of data, this must be taken 

into account so that highlighted variation is not irrelevant to the analysis carried 

out or biased by a confounding variable (leading to a false association between 

the output and one or more input variables). A commonly seen example of a 

confounding variable is batch effect, which can result from the samples being 

analysed in different locations and/or processed by different technicians. 

Not all biological variation will be relevant to an experiment. For example, if the 

gene expression profile of two conditions are compared but the samples were 

collected on different tissues, not all observed differences will be associated 

with the disease, as gene expression will vary across tissues. Variation in cell 

type will also impact such experiments. More specifically, when collecting 

peripheral blood (a medium of choice because of its accessibility, other 

samples such as organs often requiring more complex and/or invasive 

procedures to collect), the sample will be composed of different cell types and 

the measured effect will be the average effect measured over all the 

subpopulations of different cells. Cell composition can vary, and this will impact 

the observed results. These are important factors to account for. 

 

2.3.1.2 Dealing with biological and technical variability 

From the first step of any project, such variations should be minimised and will 

be crucial to the results obtained. 

Confounding variables, batch effects or differences in cell composition, must 

be corrected for, depending on the data type there are specific tools designed 

to do so. 
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For example, for unknown variation in high-throughput experiments, such as 

RNA-Seq, the R package sva90 uses surrogate variable estimation to correct 

for unknown and unwanted variation. Another popular too, also available as 

an R package, ComBat91, uses empirical Bayes framework to correct for 

known technical batch effect. 

Other techniques, that can be used regardless of the data type, can be used 

to correct for unwanted variations such as linear models to only extract the 

variation which is not explained by the defined factors/confounders. 

 

2.3.2 Data types heterogeneity and relationships 

2.3.2.1 Challenges and specificities 

2.3.2.1.1 Data types heterogeneity 

Because of the difference in technologies used to produce different omics 

data, the data type associated to each set might differ. For example, RNA-Seq 

data, after pre-processing, might be available as counts (being relative to the 

expression of each gene) whilst metabolomics data might be available as area-

under-the-curve values from MS spectra. Such differences in data types will 

prevent direct comparisons from being made as data distributions of each data 

type will have different properties. 

 

2.3.2.1.2 Relationships between different omics 

As briefly mentioned in the introductory paragraph of section 2.1, the different 

omics data are different pieces of the same puzzle, we need all of them to paint 

a complete picture of a system and they are related to each other. Indeed, they 

all have complementary roles but cannot be deduced (at least completely) from 

one another, in part because the cascade of reactions might not be happening 

at the same rate at every level of the system and because markers are not 

solely influenced by genetic factors but also by environmental factors89. 
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2.3.2.2 Dealing with data heterogeneity and relationships 

Data types heterogeneity can be accounted for using different strategies. One 

of the simplest consists of scaling the variables (data type permitting) so that 

they can contribute equally and fairly to the analysis by applying for example 

a standard scaling to the variables. However, this is not always possible, and 

a more complex approach might be required. Data set can be modelled using 

different distributions suited to their type. For example, read counts might be 

modelled using a negative binomial distribution92,93. Negative binomial 

distribution is especially suitable because read counts are positive integers, 

describing rare events (as the number of genes is very high, the probability of 

having a read mapping to a given gene is low) and present a variance which 

can be much higher than the mean. 

Correlations might identify related biomarkers from different omics layers but 

only a moderate proportion of variance has been shown to be shared across 

omics layers94. 

Several tools have been specially designed to account for the heterogeneity in 

data types but also to exploit the relationships between the different omics 

sets.  

One of them, Multi-Omics Factor Analysis95 (MOFA) models each data type 

using a distribution suited to its type. It then returns features explaining the 

variance present in the data and highlights variance unique to each data type 

and variance shared between different types of omics data.  

Another tool, SNF96 (Similarity Network Fusion) will generate a summary view 

of a dataset as a network of patient nodes. It will first generate a network for 

each data type separately and finally produce a consensus network taking into 

account all data types, their unique and shared information. 

Relationships between genetic and epigenomic, transcriptomic, proteomic and 

metabolomic markers can be studied by QTL97 (Quantitative Trait Loci) 

studies. Such studies can help discovering which regions of the genome are 
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important for a continuous trait (or an omics marker). Such approaches require 

a rigorously controlled setting that cannot be reproduced in human studies and 

thus, have shown their limits when applied to human subjects. As a result of 

the breadth of available markers and their genotyping in human subjects, 

alternative approaches can be taken to identify QTLs98. 

 

2.3.3 High-dimensionality 

2.3.3.1 Challenges and specificities 

It is often required or advised to have a number of variables smaller than the 

number of analysed samples. However, multi-omics data inherently tends to 

have many more variables than samples. This is an asset, as much information 

will be present in the dataset but can also be a problem as the complexity will 

increase and it will be more difficult to separate the signal from the noise 

present in the dataset. This is referred to as the curse of dimensionality.  

Similarly, when building a model describing a dataset with many features, one 

would want a model with a small number of parameters that would help in 

interpretability and also would prevent overfitting (when a complex model 

becomes too dependent on the values of the training dataset and performs 

poorly on testing/new data). 

 

2.3.3.2 Dealing with high dimensionality 

Dimensionality reduction is a crucial step in any multi-omics data analysis and 

provides many advantages. It can remove irrelevant and/or redundant 

variation thus leading to improved models with higher accuracies, interpretable 

models and the required processing time/storage will be lesser. 

In most cases the structure of a high-dimensional dataset can be represented 

in a space with a small number of dimensions while conserving most of the 

variation between samples. 
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Dimensionality reduction can be very useful way to represent a dataset with 

many dimensions, PCA77 is a widely used technique for dimensionality 

reduction. PCA produces principal components constructed from linear 

combinations of the input variables and aiming at representing as much 

variance as possible. PCA can be heavily influenced by outliers and thus one 

must be cautious when applying PCA to a dataset. 

Another class of dimensionality reduction is based on feature selection (briefly 

described in paragraph 2.2.2) where features will be either discarded from the 

analysis or kept for further analysis. However, this can only be applied when 

the outcome variable is known. It can be used after clustering has been 

performed, to select features that will be used to generate the 

classification/description models. 

There are four major steps to a feature selection process99,100. The first one, 

the generation step, consists of generating a model using all features (referred 

to as recursive feature selection) or one feature (referred to as forward feature 

selection). Once a model is generated it is evaluated according to a chosen 

criterium, such as accuracy. The model features can be ranked given their 

respective importance in the model (see 2.2.7.4.1.2 and 2.2.7.4.2.2) and the 

corresponding features can be discarded/kept according to the results. This is 

repeated iteratively by removing/adding variables and generating the model 

again. Once an optimum has been reached, the procedure is stopped, and the 

final model kept. A validation step can be performed by comparing the reduced 

model to the full model for example. 

 

2.3.4 Time-series data 

2.3.4.1 Challenges and specificities 

One single time point collected for a set of samples might not always be 

enough to finely study a biological process. Many omics studies involve the 

collection of multiple time points to gain insight into the dynamic processes 
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involved in the studied system. Both linear and cyclic processes can be studied 

as well using time-series data. 

However, there are challenges related time-series data. Indeed, as different 

points will not all be independent from each other, this will violate assumptions 

for many tests and/or models. In many study settings, especially when looking 

at humans, time-series might be shifted as not all patients would be recruited 

at the same stage of their disease and this must be accounted for in the model. 

 

2.3.4.2 Dealing with time-series data 

There is a wide range of methods that can be used to analyse time-series 

omics data101–103. 

Different time points can be analysed separately and then summarised or 

compared between one another or to a reference time point. 

A time-series might be summarised using a linear model or by computing the 

area under the curve. Both of these strategies will result in a reduced number 

of values to integrate. 

Another option would consist of using classical statistical methods, for example 

by modelling the data using functions referred to as splines. 

To compare patterns followed by the markers over time, machine learning 

approaches might be used.  

Network-based approaches can be employed too and exploit correlations 

between the different markers/samples. 

 

2.4 Conclusions 
In this chapter I have laid the foundations for the work presented in this thesis 

in terms of data and analysis. This literature review was crafted as part of the 
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first section of this project and was updated throughout to take into account 

new developments and aspects which were deemed of interest to the study. 

Sections of this chapter aimed at introducing the subject and also provide a 

view of the work achieved in the area. It does not constitute an exhaustive view 

of the omics or clustering fields. Instead, it presents a broad overview of the 

current landscape and lays a foundation upon which my work is built.  

The first section introduced major types of omics data, namely, genomics, 

transcriptomics, proteomics and metabolomics. Common collection methods 

as well as preparation, and bioinformatics processing were described to give 

an overview of what is commonly used in multi-omics studies and to give a 

basis when describing datasets analysed as part of this thesis project.  

It then presented main aspects of a clustering analysis, initial considerations 

and parameters choice. Popular algorithms and/or of potential interest to the 

subject were described. Finally, validation of a clustering and specificities 

inherent to the area of biology were introduced. General directions for 

interpretation were given as well as some specific to omics data.  

The final section concluded by presenting specificities and potential issues of 

clustering analysis when applied to multi-omics datasets and gave directions 

that could be exploited to palliate them. 

In the next chapter, the AP datasets used for the main project will be described.
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3. Chapter 3 – Acute Pancreatitis (AP), 
datasets and results 

This chapter introduces the main project. It is divided in four sections. The first 

section presents background and context information related to acute 

pancreatitis (AP) and the associated disease model. This provides essential 

context for the description of executed analyses and results presented in 

sections two and three. More specifically, section two presents the two cohorts 

used to perform the analyses, data acquisition, processing, chosen methods 

and adopted strategies into more details. Results obtained along with 

interpretation are illustrated as part of section three. The fourth section is 

focused on conclusions arising from this project and how they could apply to 

diseases other than acute pancreatitis. This work has been submitted as a 

preprint on bioRxiv104 (doi: 10.1101/539569) in which all contributing co-

authors are listed. 

 

3.1 Introduction 
3.1.1 Acute pancreatitis 

Acute pancreatitis (AP) is an inflammatory condition affecting the pancreas105, 

an essential organ which is of major importance as it plays a crucial role in 

both the digestion process and the control of sugar level in blood. The 

worldwide incidence of AP is of 34 per 100 000 person-years36 and it is the 

most common gastrointestinal cause for emergency hospital admission in the 

United States106. Etiologies are diverse and include choledocholithiasis 

(gallstones in the bile duct), excess ingestion of alcohol, trauma, pancreatic 

manipulation at endoscopy, viral infections, some venoms, and specific drugs. 

Inflammation of the pancreas can cause extrapancreatic damage and 

propagate to other organs such as lungs or kidneys resulting in multiple organ 

dysfunction syndrome (MODS)107,108 in 1 in 4 AP-patients, requiring the 

admission to a specialised unit (intensive care unit or high dependency unit). 
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MODS results from systemic organ dysregulation37 and one fifth of MODS 

cases will be fatal38 (Figure 3.1). 

 

Figure 3.1 – AP, etiologies and outcomes (the widths of items are representative of 
reported percentages). 

The molecular mechanisms underlying AP-MODS are not yet clearly 

understood and there is no treatment directly targeting AP. The current 

standard of care is supportive treatment only and can include pain control, 

ventilation and fluid resuscitation109. 

Recently, work was undertaken to develop a drug against AP108. Researchers 

identified an enzyme (kynurenine-3-monooxygenase, KMO) from the 

kynurenine pathway, involved in tryptophan catabolism and resulting in the 

production of NAD+ (nicotinamide adenine dinucleotide). This enzyme was 

shown to be a crucial element in the pathogenesis of AP-MODS in mice. 

Indeed, when mice lacking KMO activity were induced with AP, crucial organs 

(kidneys, liver and lungs) were protected against dysfunction. Following this a 

series of KMO specific inhibitors was developed with the goal of obtaining the 

same protection for patients with AP. 

Alcohol

Gallstones

Other MODS

no MODS

Death

SurvivalAP



Acute Pancreatitis (AP), datasets and results 
 

 62 

 

3.1.2 Hypothesis 

Currently, the AP disease model is convergent, where the different etiologies 

lead to acinar cell damage (the acinar cells are the exocrine cells of the 

pancreas, producing digestive enzymes) and the resulting inflammatory 

responses is classified into one of three different levels, namely mild, moderate 

and severe, according to the extent of each individual patient’s local 

complications and organ failure. 

However, the amount of pancreatic damage is not directly linked to the 

occurrence of organ failure, nor its severity11,12. 

Developing the current disease paradigm further, it is highly likely that there is 

much more heterogeneity than the current model would suggest. Indeed, 

severity in AP cannot be predicted by simply considering the amount of 

pancreatic damage. Moreover, no clear pattern can be highlighted from 

routinely collected clinical data, and together, the lack of robust predictors 

makes individualised risk assessment difficult. Current prognosis scores 

include110: 

- Ranson score111, including 11 parameters in total, some of them 

requiring a measurement at 48 hours post admission. 

- Glasgow-Imrie112 score, including 7 lab measurements and age. It is 

similar to the Ranson score and requires some measurements to be 

taken post-admission.  

- CRP113 level can be used for severity stratification. 

- APACHE II111 score which is non-specific to AP and integrating 11 lab 

measurements, age and medical history.  

In order to reconcile the shortcomings of current state-of-the-art, we 

hypothesized the existence of AP endotypes or molecular subtypes. We 

predicted that describing AP as a collection of endotypes would be relevant for 

the understanding of AP as well as for potential therapy strategies.  
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3.2 Materials and methods 
3.2.1 The cohorts 

3.2.1.1 IMOFAP 

The IMOFAP cohort (Inflammation, Metabolism and Organ Failure in AP)40 

was a prospectively collected time-series cohort of samples and clinical data 

collected in a previous project by members of my group. As part of the IMOFAP 

cohort, 79 patients with suspected AP were recruited. Emergency attendees 

were recruited at the Royal Infirmary of Edinburgh between September and 

December 2013 using an alert system triggered when the following criteria 

were met, and a clinical verification was performed: 

- Sudden abdominal pain with nausea and/or vomiting 

- Serum amylase measurement value above the threshold of 100 IU/L (in 

order to capture those who were on the upslope of their serum amylase 

rise to meet the standard threshold of 300 IU/L) 

Later on, the diagnosis was confirmed using the revised Atlanta criteria114 

(amylase > 300 IU/L with a clinical presentation consistent with AP) for 57 of 

the 79 initial patients. This allowed the recruitment of individuals as early as 

possible on their disease trajectory and sample consecutive time points shortly 

afterwards. 

For these patients clinical and routine cytokine measurements were collected 

as well as peripheral blood samples at different time points between admission 

to hospital and up to 7 days after recruitment into the study (0, 3, 6, 12, 24, 48, 

72 hours and 7 days). Peripheral blood was used (see 2.3.1.1) as a basis to 

perform omics measurements, namely metabolomics, proteomics and 

transcriptomics. Details are provided in Figure 3.2. 
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Figure 3.2 - Collected data details. Dashed lines indicate median time from admission 
to intensive care transfer when required (12 hours) and median time from admission 

to death for fatalities (82 hours)38. 

Every effort was made for all recruited individuals to have samples taken for 

all described time points, it was not always possible (due to patient refusal) 

and thus some samples could not be collected (Figure 3.3). 
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Figure 3.3 – Generated data. For each time point and data type, a green cell indicates 
that data was generated, a grey cell shows when data was not generated. ‘met’ refers 

to metabolomics, ‘prot’ to proteomics and ‘rnaseq’ to transcriptomics. 
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Out of the 57 patients, 54 had at least two metabolomics measurements (one 

measurement only was available for two individuals), 45 had at least two 

proteomics measurements (one measurement was available for 12 

individuals) and 37 had at least two transcriptomics measurements (for 12 

individuals only one measurement was performed). 

  

3.2.1.2 KAPVAL 

Data from a second AP cohort, KAPVAL (Kynurenine pathway in AP, 

VALidation), consisting of 312 AP-confirmed114 individuals from the Royal 

Infirmary of Edinburgh (not overlapping with IMOFAP) recruited between 

February 2016 and January 2017 was available to me for the analyses. A 

serum amylase level above 300 IU/L was used to identify potential candidates 

which were then confirmed by specialist review of electronic health records. 

For those, metabolomics data was generated from serum and samples 

annotated with clinical and physiological data for a single time point 

corresponding to hospital admission. 

 

3.2.2 The data 

For both IMOFAP and KAPVAL cohorts, several data types were collected. 

Clinical and physiological measurements, and omics data were generated. To 

generate omics data peripheral blood samples were used. 

Because of its accessibility, peripheral blood is a sample of choice in many 

analyses and can be used to identify and quantify biomarkers of interest. 

Plasma, serum and leukocytes can be extracted from such samples and used 

to sequence the genome and measure the transcriptome, proteome and 

metabolome, as described in section 2.1 of chapter 2. 
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3.2.2.1 Transcriptomics data 

Using collected peripheral blood samples for four time points (0, 12, 24 and 48 

hours after recruitment), the transcriptome of 49 individuals was measured 

using a rRNA depletion strategy (to measure total RNA) for a subset of 

samples (n=41) and a polyA selection strategy (to obtain mRNA) for the other 

subset (n=8). Samples were then sequenced for corresponding RNA using 

Illumina HiSeq 4000 system and generating 75 paired-end reads libraries. 

Reads were stored as FASTQ files. Quality control was performed using 

FASTQC (v0.11.2) and reads were filtered and trimmed accordingly using 

cutadapt (v1.4, 3’ end trimming with a cutoff of 20 and reads shorter than 25 

were discarded). Reads were aligned against the hg38115 version of the human 

genome assembly using STAR116 (v2.5.0a). Gene expression was estimated 

using read counts as a proxy and previously aligned reads using 

featureCounts (v1.5.2)117. 

To account for the difference in library preparation between the two subsets of 

samples (total RNA vs mRNA), a two-step strategy was applied. The strategy 

consisted of filtering the counts matrix to only keep protein-coding elements 

and applying a batch removal algorithm (using NOISeq118 R library). PCA plots 

of counts before and after batch effect are shown in Figure 3.4 and Figure 3.5. 

A normalisation procedure, converting the filtered corrected counts to FPKM 

(Fragments Per Kilobase of transcript per Million reads mapped), was applied 

and consisted of a normalisation by sequencing depth followed by a 

normalisation by gene length. A Z-score scaling was finally applied to permit 

comparisons between samples.  
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Figure 3.4 – RNA-Seq counts values from featureCounts output, representing only 
protein-coding genes. The different shapes/colours represent the batches (1 

correspond to mRNA samples and 2 and 3 to total RNA samples). 

 

Figure 3.5 – RNA-Seq counts values from featureCounts output, representing only 
protein-coding genes, batch-corrected and FPKM-normalised. The different 
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shapes/colours represent the batches (1 correspond to mRNA samples and 2 and 3 to 
total RNA samples). 

The final gene set, after pre-processing, consisted of 19 766 genes. 

 

3.2.2.2 Proteomics data 

Serum extracts were obtained from blood samples at time points 0, 24 and 48 

hours after recruitment into the study in order to measure the proteome for 57 

IMOFAP samples. Abundant proteins in samples were depleted (to reduce the 

complexity of serum samples which will be dominated by a small number of 

proteins not of interest here) then samples were denatured, alkylated and 

digested. Several samples were analysed simultaneously using tandem mass 

tags labels and RPLC-MS/MS/MS and spectra were produced. Proteins were 

identified with MaxQuant, performing a search against a UniProt-based human 

proteome, abundances were estimated from generated spectra. Protein 

species with 90% or more missing values for the cohort were discarded. 

Remaining missing values were imputed using the minimum value for each 

compound as missing values would imply values below the detection limit. 

During data visualisation, it was noted that samples clustered according to run 

groups, to prevent run bias, values were corrected using ComBat to remove 

non-relevant variation between samples. Measurements were then 

transformed into Z-scores, as with RNA-Seq data. The final set consisted of 

371 protein variables. 

 

3.2.2.3 Metabolomics data 

Serum extracts were obtained from collected peripheral blood samples in the 

IMOFAP cohort for all time points between recruitment and up to 7 days after 

and used for metabolomics measurements for 56 IMOFAP individuals. Protein 

depletion was performed. They then underwent UPLC-MS/MS analysis to 

identify and quantify metabolites present. Metabolon’s proprietary software 

was used to identify compounds and abundance was estimated using area-
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under-the-curve. As previously, metabolites with 90% or more missing values 

across the sample set were not retained. Remaining missing values were 

imputed using a minimum-value strategy and thus replacing missing values by 

the minimum values (detection limit) for that metabolite. A Z-score scaling was 

finally applied to all metabolites. In total, 651 metabolites were retained for 

further analysis for the IMOFAP cohort. For the KAPVAL cohort, data was 

processed as with the IMOFAP cohort, however, the aim was to use KAPVAL 

as a validation set and thus, we retained only metabolites that were in common 

between both datasets, resulting in 426 metabolites for this cohort (n=312 

individuals). 

 

3.2.2.4 Clinical measurements 

Collected blood samples were annotated for clinical and measurements for all 

time points, when possible. Variables collected include: 

- Age 

- APACHE II score 

- BMI 

- Cause of pancreatitis 

- Charlson index 

- Critical care admission status 

- eGFR 

- Ethanol consumption status 

- Ethanol excess 

- Gender 

- Inhospital mortality 

- Length of stay 

- Mean arterial pressure 

- Modified MODS score 

- Mortality at 30 days 

- Organ dysfunction occurrence 
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- PaO2/FiO2 ratio 

- Previous AP episode occurrence 

- Recruitment source 

- Smoking status 

- Systolic blood pressure 
 

3.2.2.5 Blood measurements 

Collected samples were used to quantify blood markers. Variables collected 

(some of which were used to compute scores listed above) include: 

- 3-hydroxyanthranilic acid (nanograms per millilitre) 

- 3-hydroxykynurenine (nanograms per millilitre) 

- Alanine aminotransferase (units per litre) 

- Albumin (grams per litre) 

- Alkaline phosphatase (units per litre) 

- Amylase (units per litre) 

- Asparate aminotransferase (units per litre) 

- B7H1 (picograms per millilitre) 

- Base excess (mEq per litre) 

- Basophils (x109 per litre) 

- Bicarbonate (millimoles per litre) 

- Bilirubin (micromoles per litre) 

- Calcium (millimoles per litre) 

- Cancer antigen 15-3 (picograms per millilitre) 

- Cardiac Troponin (picograms per millilitre) 

- CD 163 (nanograms per millilitre) 

- CD40 ligand (nanograms per millilitre) 

- Chemerin (nanograms per millilitre) 

- Creatinine (micromoles per litre) 

- CRP (milligrams per litre) 

- D dimers (micrograms per litre) 

- Eosinophils (x109 per litre) 
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- Free T4 (picomoles per litre) 

- Gamma glutamyl transferase (millimoles per litre) 

- Glucose (millimoles per litre) 

- Haematocrit (percent) 

- Haemoglobin (grams per litre) 

- High density lipoprotein (millimoles per litre) 

- IL-10 (picograms per millilitre) 

- IL-17a (picograms per millilitre) 

- IL-22 (picograms per millilitre) 

- IL-6 (picograms per millilitre) 

- IL-8 (picograms per millilitre) 

- IL1 beta (picograms per millilitre) 

- Insulin (picograms per millilitre) 

- Insulin C-peptide (picograms per millilitre) 

- Interferon gamma (picograms per millilitre) 

- Kynurenic acid (nanograms per millilitre) 

- Kynurenine (nanograms per millilitre) 

- Lactate (millimoles per litre) 

- Lactate dehydrogenase (units per litre) 

- Low density lipoprotein (millimoles per litre) 

- Lymphocytes (x109 per litre) 

- Magnesium (millimoles per litre) 

- Mean corpuscular haemoglobin (picograms per cell) 

- Mean corpuscular volume (femtolitres) 

- Monocytes (x109 per litre) 

- Neutrophils (x109 per litre) 

- Partial pressure of carbon dioxide (kPa) 

- Partial pressure of oxygen (kPa) 

- pH 

- Phosphate (millimoles per litre) 

- Platelet count (x109 per litre) 

- Potassium (millimoles per litre) 
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- RAGE (nanograms per millilitre) 

- Red cell count (x109 per litre) 

- SDF 1 alpha (picograms per millilitre) 

- Sodium (millimoles per litre) 

- TFF3 (nanograms per millilitre) 

- Total plasma cholesterol (millimoles per litre) 

- TRAIL (picograms per millilitre) 

- Triglycerides (millimoles per litre) 

- Tryptophan (nanograms per millilitre) 

- TSH (mU per litre) 

- Tumour necrosis factor alpha (picograms per millilitre) 

- Urea (millimoles per litre) 

- White cell count (x109 per litre) 

 

3.2.3 Methods 

We chose to apply unsupervised techniques to highlight subgroups in our 

datasets. This allowed to analyse data with no hypothesis as to which 

mechanisms might be involved or which data types might drive the variation in 

the dataset and to prevent this from biasing the results. 

 

3.2.3.1 Tools and data 

To carry out analyses, Python (version 3.5) and R (version 3.3.2) were used. 

Libraries used included dtwclust in R, numpy, pandas, rpy2, scipy, sklearn and 

statsmodels in Python.  

The script used to compute distances between patients is available as 

appendix A.1. 

As mentioned in section 3.2.2, Z-scores were used as input before running 

chosen analysis methods. 
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3.2.3.2 Clustering 

3.2.3.2.1 Methods used to generate distance matrices 

The following methods were used to generate distances between all samples 

and allowed to generate pairwise distance matrices. 

3.2.3.2.1.1 Single time point Euclidean distances 

First, we selected a single time point, here time point 0, corresponding to the 

recruitment time point and time points 24 and 48 to compute distances 

between included samples. Using pre-processed data, Euclidean distance was 

used to obtain a measure of dissimilarity between samples. 

 

3.2.3.2.1.2 Area Under the Curve and PCA (AUC-PCA) 

To obtain a single value per variable for a time series in a selected sample, we 

computed area-under-the-curve (AUC, Figure 3.6) values using the 

trapezoidal rule.  

 

Figure 3.6 – AUC for a given time-series. Data values are represented by grey points 
and the hashed area represents the AUC. 
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This was repeated for all variables and samples. Computed AUC values 

allowed to summarise each time series as a single value expressing the 

cumulative magnitude over time. This allowed us to process values as being 

independent, broadening the analysis strategies that could be used, 

independence being a common assumption in many statistical analyses. 

Values were normalised to take into account the differences in length between 

some of the time series. Obtained values were represented using principal 

components as shown in Figure 3.7.  

 

Figure 3.7 – Example PCA plot with potential clusters identified using different 
colours. Represented variance is reported for each axis. 

More specifically, the first two components, representing the greatest part of 

the variance, were selected. Using coordinates in this 2-dimensional space, 

Euclidean distances were computed between all pairs of samples and were 

weighted according to the represented variance for each one of the principal 

components. This permitted to give more weight to a distance on principal 

component 1 as compared to principal component 2. Principal component 
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analysis (PCA) was chosen because of its ability to represent data in a lower 

dimensional space than the initial one and because it is hypothesis free77. 

Indeed, PCA does not make assumptions related to the stratification of the 

data. PCA is solely sensitive to the correlation structure present in the data. 

 

3.2.3.2.1.3 Trajectory through PCA space 

To integrate in more details patients trajectories over time, I used an approach 

described in a published study119 which demonstrated that trajectories of 

samples through selected components could be helpful in clustering 

individuals. Using all selected time points from all selected individuals, a 

projection into a 2-dimensional PC space was done. If data was missing 

between two time points for an individual, I performed linear interpolation. The 

aim was to characterise their trajectory through this space and use this to 

compute distances between individuals. To define the trajectory of a patient 

through the PC space I defined the direction taken between each pair of 

consecutive time points for this specific patient and coded the direction using 

integer values of 1 to 4 corresponding to a space division into four quadrants. 

This is illustrated in Figure 3.8.  

 

Figure 3.8 – Possible directions and associated values. 

This procedure was repeated for every patient resulting in one direction vector 

per individual. Hamming distances between all pairwise combinations of 
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direction vectors were computed by counting the number of different values, 

element-wise. These distances were used as a proxy for dissimilarity in 

trajectories. We thus combined the advantages of PCA and trajectory analysis. 

 

3.2.3.2.1.4 Dynamic time warping 

Our last tested strategy consisted of using dynamic time warping distances120 

as distance measure between individuals. Such distances were computed 

using dtwclust in R. The algorithm started by considering each pair of samples, 

for each variable, a matrix was generated and reported the difference in 

magnitude, without considering the time axis, between all possible pairs of time 

points. For each pair of individuals, a single matrix was obtained by summing 

all variable matrices, element-wise. This matrix was then used to perform the 

warping procedure, during which the time axis would be warped in order to 

minimise the distances between the two series. It consisted of finding a path 

in each matrix so that the summed number was minimal. The path started 

necessarily from the matrix element corresponding to the first points of each 

series and ended when the matrix element corresponding to the last points of 

each series was reached. An example of warping is represented in Figure 3.9. 
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Figure 3.9 – Example of alignment produced using the dynamic time warping 
algorithm. The orange and grey/blue curves represent two patients for which the 

values of a variable were measured and are represented on the y axis. The top figure 
represents the original data and the bottom figure the alignment produced (using the 

orange curve as the reference). 

This was done on a summarised matrix, in other words, the optimum matrix, 

as defined by the warping procedure, represented a consensus alignment 

minimising the summed differences in magnitude between the two compared 

individuals, for all variables, rather than one alignment per variable. The 

summed number can then be used as a distance measure between two 

patients. To allow a fairer comparison we chose to compare equally long time 

series with equally spaced time points and thus linear imputation was 

performed when required. 
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3.2.3.2.1.5 Advantages and disadvantages of presented methods 

A summary of the main advantages and disadvantages are presented for the 

four different strategies in Table 3.1. 

Table 3.1 – Methods advantages and disadvantages. 

 

Single time 

point 

Euclidean 

distances 

AUC-PCA 

PCA + 

Trajectory 

analysis 

Dynamic time 

warping 

+ 

Results are 
easier to 

interpret, and it 
can be done for 
any time point 

Results are 
easier to 
interpret 

Dynamic 
profiles can be 

compared 

Dynamic 
profiles can be 

aligned and 
compared 

- Only one time 
point is used 

Dynamic 
dimension 

reduced to one 
value, and 

similar values 
can be 

obtained from 
very different 

curves 

Shift in time-
series will 
cause bias 

Chosen time-
shift is the 

same for all 
variables 

 

All presented methods were selected to generate dissimilarity values between 

pairs of samples and we aimed at comparing the results obtained in order to 

select the most relevant. 

 

3.2.3.2.2 Clustering strategy 
Once the different dissimilarity matrices were obtained, I performed clustering 

to highlight potential subgroups of interest. Hierarchical clustering and Ward’s 

method were used. Ward’s method forms groups by minimising the sum-of-



Acute Pancreatitis (AP), datasets and results 
 

 80 

squares within each group and is commonly used for Euclidean-based 

distances. Not all presented methods are Euclidean-based, however, it has 

been used successfully for other types of distances121–123. For consistency, it 

was thus used for all distance matrices obtained. 

Any number of clusters between 1 and the number of elements clustered can 

be extracted from the type of clustering analysis described here. For this 

reason, an optimum number was chosen according to the stability of each 

solution. As one cluster would not have been informative and too many would 

have resulted in singletons, for which only little information could have been 

extracted, we restricted the number of clusters between two and twenty. 

Stability was assessed using bootstrapping combined with a Jaccard index (as 

defined in section 2.2.6.2.2) to estimate the results quality80,124. For each 

number of clusters between two and twenty, we sampled the original samples 

with replacement to create one hundred new input datasets. Each one of the 

new datasets was processed as the original dataset to obtain a partition with 

the corresponding number of clusters. I then compared the newly generated 

solution with the original solution, assessing the similarity by computing the 

overlap between pairs of most similar clusters and using the Jaccard index. An 

average value was then computed to assess the stability of the results. The 

optimum number of clusters was chosen by maximising the average Jaccard 

index. To maximise interpretability, solutions with one or more groups 

presenting less than three individuals was not retained for further analysis. 

 

3.2.3.3 Evaluation 

To evaluate the different solutions we defined a priori criteria which are 

described in this section.  
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3.2.3.3.1 Assessment strategy 
3.2.3.3.1.1 Statistical robustness 

Stability results obtained from the bootstrapping strategy presented in the 

previous section were used to select solutions for further analysis. If a solution 

had an associated Jaccard index higher than others, its structure was deemed 

to be more robust to change and of greater interest. 

 

3.2.3.3.1.2 Biological plausibility 

To quantify biological plausibility, we ran compound set enrichment analyses 

on partitions having passed the stability testing. We hypothesised that the 

highlighted partitions could be, to some extent, detected using solely time point 

0 and thus was used to perform the enrichment analyses. Moreover, for the 

partition to be of maximum utility, groups would have to be detected as early 

as possible. 

Compounds identifiers were converted, when required, using the biomaRt 

package in R.  

We obtained compound sets from two R packages, GAGE125 for gene and 

protein data (KEGG-based data81) and MetaboAnalystR126 for metabolite data. 

FANTOM5 co-expression gene sets, describing genes expressed in different 

cell types, were also downloaded from the project’s data127,128. 

Using the optimum partition, the aim was to determine whether a subset of 

compounds (with a similar function or part of a same biological process) 

presented an association with the group labels obtained from the clustering. 

To test this, we used generalised linear models and a p-value fusion strategy.  

For each element of a given compound set, we fitted a model using the group 

label as a fixed effect and the values of the corresponding compound as the 

response variable. We then compared a given model to the null model (using 

only the intercept) and performing a likelihood ratio test (using the anova 
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function with test=’LRT’ in R) to assess the effect of the group label on the 

variable values. This returned a single value that allowed us to classify the 

variable as statistically associated with the group labels and thus the partition 

of interest.  

For each compound set, composed of several variables, we combined the p-

values obtained using the likelihood ratio tests to obtain a single p-value. We 

gave weights to every compound according to the number of other sets it was 

present in. The weight was computed using the inverse of the number of sets 

a compound was part of. This allowed to minimise common sets from biasing 

the results.  

We used this summarised p-value as a way to quantify enrichment of different 

compound sets. For every type of compound set, both gene/protein and 

metabolite sets, we counted the number of significant elements (using a 

threshold FDR-corrected p-value of 0.05) and used this number to quantify the 

biological plausibility of a solution. 

Moreover, FANTOM5 data was used to identify involved cell types as it 

reported cell types gene signatures. The same enrichment strategy and cut-

off value were used to identify and count significant elements. 

This provided us an overview of the biological processes that may be involved 

and select the most meaningful clustering partition. 

 

3.2.3.3.2 Enrichment analysis 
3.2.3.3.2.1 Variable selection 

To describe biological processes specifically associated to each group, rather 

than looking at the problem globally, as described in the previous section, 

Partial Least Square Discriminant Analysis (PLS-DA) was used. PLS-DA is a 

dimensionality reduction algorithm which can also be used to perform feature 

selection and classification. 
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Here, we used PLS-DA to highlight candidate biomarkers and biological 

processes uniquely associated to each one of the identified clusters. The 

strategy consisted of creating k models, one for each cluster, to highlight 

differences between each one of them and all others, regardless of their label. 

As described in section 2.2.7.4.1, data was projected onto a new space, with 

a number of components chosen by the user. Components were generated by 

maximising covariance with group labels. This allowed to generate 

discriminant components. Using calculated components, Variable Importance 

in Projection (VIP) scores can be computed using weights and will be related 

to how much each variable is involved in group discrimination. Variables can 

then be ranked and selected using a VIP threshold129. Selected elements were 

finally used to perform compound set enrichment analysis. 

 

3.2.3.3.2.2 Enrichment procedure 

To analyse VIP-filtered lists, a Reactome gene set was downloaded from 

Reactome’s website (https://reactome.org/download-data, lowest level 

pathway files). We generated compound sets containing all integrated data 

types, namely, transcriptomics, proteomics and metabolomics. These sets 

were then filtered to only include those containing at least 10 elements and no 

more than 500 elements, others were deemed uninformative and would have 

produced less robust results. 

To determine if a compound set was significantly represented in the VIP-

filtered lists, Fisher’s exact test was run using the number of matches in the 

list and the total number of compounds from the original set (which was used 

as a background set). P-values were generated and corrected for multiple 

comparisons using an FDR-based correction and applying a threshold of 0.001 

to limit the number of elements for visual representation and inspection. 

This was reproduced for time points corresponding to 24 and 48 hours 

sampling times. 
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3.2.3.3.3 Data visualisation 
An interactive webpage (available at http://baillielab.net/pancreatitis/, 

username: pancreas and password: review) was built to allow data 

visualisation. The webpage was created using D3130. It permitted to visualise 

AUC values per group per variable and average Z-score values between time 

points 0 and 48 per group. To limit the number of displayed variables, different 

datatypes were displayed separately, using a dropdown selection box and only 

a subset of variables was displayed. Selected variables were chosen 

according to their associated maximum VIP value across all four groups using 

a threshold of 2. As clinical variables and cytokines measurements had no VIP 

values, as they were not integrated in the PLS-DA models nor in the clustering 

procedure, we filtered them according to ANOVA results using a threshold of 

0.05. 

 

3.2.3.4 Reproducibility 

3.2.3.4.1 Reproducibility in an independent dataset (KAPVAL) 

To test whether groups highlighted were relevant we aimed at demonstrating 

that they could be identified from an independent AP dataset. To do so we 

used the KAPVAL (Kynurenine pathway in AP, VALidation) cohort comprising 

312 AP-confirmed individuals and as described in section 3.2.1.2.  

After discarding drug metabolites and using the 413 metabolites in common 

with the IMOFAP cohort, we generated four PLS-DA models, similarly to the 

procedure described in section 3.2.3.3.2.1. Maximising accuracy when training 

the models with IMOFAP data, we chose to integrate 3 components. To 

maximise interpretability and to prevent over-fitting, we limited the number of 

predictor variables to 25. The optimum number, between 3 and 25, was chosen 

according to accuracy values. 
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To classify KAPVAL individuals we applied each one of our four models to 

each individual and allocated them to the closest matching group, given the 

highest predicted value. 

An overview of the process is described in Figure 3.10. 

 

Figure 3.10 - Schematics representing the assignment process for KAPVAL samples 
to one of the four endotypes identified in IMOFAP cohort using PLS-DA models. 

As any sample would have been allocated to a group, it was necessary to 

check that the signal between the groups identified in IMOFAP was similar to 

the corresponding groups formed of allocated KAPVAL samples. I calculated, 

for each group, the average value of every variable not included in the models 

(369 metabolites). I compared, using a strategy inspired by Sweeney et al131, 

Spearman’s correlation coefficients (computed by comparing ranks) between 

corresponding groups and associated p-values (based on a t-distribution). 

Additionally, in-group proportion (IGP) values and associated FDR-corrected 

p-values for the 413 included metabolites were calculated. The IGP of a 

subgroup is the proportion of samples having their nearest neighbour allocated 

to that same subgroup. The nearest neighbour is determined using Pearson’s 

correlation coefficient. 
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Both strategies aimed at determining if the same signal was present in both 

cohorts. 

 

3.2.3.4.2 Comparison with an external dataset 

To compare obtained groups to data from another condition, related to AP but 

distinct (severe cases of AP can result in ARDS, other causes included sepsis, 

trauma and major surgery132), we chose Acute Respiratory Distress Syndrome 

(ARDS) endotypes described in another study39. Out of our 57 AP-confirmed 

patients, 6 (no measure was available for one individual) met the Berlin 

definition of ARDS133 for the recruitment time point. Two ARDS endotypes 

were described as part of this study, for each one of them a ranking of variables 

were available and consisted of routinely measured variables. These rankings 

were used and compared to rankings for identified AP endotypes using 

Spearman’s correlation. 19 variables out of 31 (8 physiological, 9 clinical 

biochemical, and 2 cytokine variables that were not used to produce the 

clusterings) from the study could be matched to variables available as part of 

the IMOFAP cohort. For each ARDS cohort, Spearman’s correlation 

coefficients, along with FDR-corrected p-values were generated using scipy 

and statsmodels in Python. 

 

3.2.3.4.3 Comparison with results from an independent tool (MOFAtools) 
To assess the validity of our strategy, we compared the optimum stratification 

obtained to the solution obtained using a multi-omics data analysis tool, 

MOFA95. Briefly, MOFA highlights, in multi-omics datasets, variables 

explaining variation and variation patterns using factor analysis. 

Using the generated factors, clustering can be performed using R package 

MOFAtools with variable values computed (single time point or AUC data). We 

used default parameters along with an additional filter of 1% applied to factor 

explained variance for all omics, below which, factors were not kept for further 
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analysis. To perform a fair comparison, the number of clusters was chosen 

equal to that of the optimum solution. Overlap between partitions was 

computed using the Jaccard index. 

KAPVAL labels, as obtained using PLS-DA models (described in section 

3.2.3.4.1), were compared to the ones obtained using MOFA. The overlap was 

computed using Jaccard index as well. The aim was to determine if a similar 

structure could be highlighted using MOFA. 

 

3.3 Results 
3.3.1 Clinical cohorts and measurements 

3.3.1.1 IMOFAP 

For the 57 Atlanta-confirmed AP individuals, before running the analysis, a 

further exclusion criterium was applied and consisted of excluding individuals 

with an interval between symptom onset to recruitment greater than 200 hours. 

This was done to prevent the introduction of bias as individuals in this situation 

would have been more likely to be on the late phase of their disease trajectory. 

The applied filtering of samples, describing exclusion criteria, is presented in 

Figure 3.1. 
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Figure 3.11 - Study flow chart for included patients from the IMOFAP study showing 
filtering process, reasons for exclusion and some demographics. 

For the 54 pre-selected patients from the IMOFAP cohort, 24 had mild AP, 22 

had moderately severe AP and 8 had severe AP requiring critical care. The 

number of deaths was equal to 3. 

The median time interval between symptom onset and recruitment, for the 54 

pre-selected individuals, was 21.3 hours (IQR 40.8 hours, Q1-Q3 13.5-54.4). 

More detailed demographics are presented in Table 3.2. 

  

 
 
 
 
 
 

Severe (8) Moderate (22) Mild (24) 

First symptoms onset 
> 200 hours (3) 

Acute 
pancreatitis (57) 

Overall number 
of patients (79) 

Hyperamylasemia 
(22) 

Included 
patients (54) 

Inhospital 
mortality (0) 

Inhospital 
mortality (0) 

 

Inhospital 
mortality (3) 
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Table 3.2 - IMOFAP demographics. Summary clinical data for included participants 
(n=54). 

Number of patients  54 

Gender Male 55.60% (n=30) 

Age (years) 
Median 

IQR (Q1-Q3) 

56.95 

28.98 (47.40-76.38) 

BMI 
Median 

IQR (Q1-Q3) 

27 

7.75 (23-30.75) 

Source of recruitment 
A&E 

Other 

88.89% (n=48) 

11.11% (n=6) 

Length of hospital stay 
(days) 

Median 

IQR (Q1-Q3) 

5 

4.75 (3-7.75) 

Aetiology 

Gallstones 

Alcohol 

Other 

44.44% (n=24) 

33.33% (n=18) 

22.23% (n=12) 

Charlson index (time 
point 0) 

Median 

IQR (Q1-Q3) 

2 

3 (1-4) 

Inhospital mortality 
(binary) 1 5.56% (n=3) 

Time onset recruitment 
(hours) 

Median 

IQR (Q1-Q3) 

21.29 

40.84 (13.54-54.38) 

Alcohol use 

Current 

Previous 

None 

57.41% (n=31) 

5.56% (n=3) 

37.04% (n=20) 

Smoking Current 48.15% (n=26) 
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Previous 

None 

18.52% (n=10) 

33.33% (n=18) 

Critical care admission 
(binary) 1 7.41% (n=4) 

APACHE II day 1 
Median 

IQR (Q1-Q3) 

10 

5 (8-13) 

Previous AP 

0 

1 

2 

3 or more 

68.52% (n=37) 

22.22% (n=12) 

5.56% (n=3) 

3.70% (n=2) 

CRP (mg/L) (time point 
0) 

Mean 

SD 

77.39 

93.54 

 

In terms of time points, as the median time interval from admission into hospital 

to intensive care transfer for those who needed it was 12 hours and the median 

time interval from admission to death for fatalities was 82 hours38, we chose to 

focus on the time points between recruitment into the study and up to 48 hours 

after that. 

As we were especially interested in the dynamic dimension of the IMOFAP 

cohort, when analysing data for more than one time point, we selected samples 

given the completeness of the multiomic set for an individual, across different 

time points. Logically, we also discarded samples with less than two time 

points for a data type. This resulted in a cohort with 34 patients (consisting of 

16 mild, 13 moderate and 5 severe AP cases). 

For single time point data analysis, we selected individuals with a complete set 

for the selected time point. For time point 0, this resulted in 40 patients being 

selected for analysis (consisting of 22 mild, 14 moderate and 4 severe AP 

cases). 
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3.3.1.2 KAPVAL 

All samples from the KAPVAL cohort consisted of AP-confirmed individuals 

and thus there was no need for filtering. Symptom onset data was not available 

for this cohort. 

 

Figure 3.12 - Study flow chart for included patients from the KAPVAL study showing 
filtering process, reasons for exclusion and some demographics. 

For included participants and at admission time point, 274 were in wards, 7 in 

high-dependency units and 31 in intensive care units. The number of deaths 

was equal to 16, of which 7 corresponded to patients initially in wards, 3 in 

high-dependency units and 6 in intensive care units. 

Some demographics for the KAPVAL cohort are presented in Table 3.3. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ICU (31) HDU (7) Ward (274) 

First symptoms onset 
> 200 hours (?) 

Acute  
pancreatitis (312) 

Overall number 
of patients (312) 

Hyperamylasemia 
(0) 

Included 
patients (312) 

Inhospital 
mortality (7) 

Inhospital 
mortality (3) 

 

Inhospital 
mortality (6) 

 



Acute Pancreatitis (AP), datasets and results 
 

 92 

 

Table 3.3 – KAPVAL demographics. Summary clinical data for included participants. 

Number of patients  312 

Gender Male 46.79% (n=146) 

Age (years) 
Median 

IQR (Q1-Q3) 

56.00 

30.25 (40.75-71.00) 

Inhospital mortality 
(binary) 1 5.13% (n=16) 

Critical care admission 
(binary) 1 12.18% (n=38) 

CRP (mg/L) 
Mean 

SD 

47.62 

79.85 

 

3.3.2 Evaluation of results 

AUC-PCA produced the optimum result, the total percentage of variance 

explained by the two selected components was 51.5% (40.2% for principal 

component 1 and 11.3% for principal component 2). Main results for all three 

dynamic-based methods are presented in Figure 3.13. Results based on a 

single time point (using Euclidean distances) were not presented in this figure 

as the clusters obtained using these presented a poor stability (Jaccard 

indexes from bootstrapping, as explained in section 3.3.2.1, never exceeded 

0.75) and were not carried out for analysis. This confirms that time series data 

was here necessary to highlight clusters. The dendrogram obtained for the 

analysis of time point 0 is presented in Figure 3.14. 
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Figure 3.13 - Pipeline overview using the 34 pre-selected IMOFAP individuals 
(individuals with less than 2 time points were not included in the analysis, n=20). 

Hierarchical trees for each time series-based clustering method are presented along 
with the optimal solution. Each of the clustering stability measures is reported 

(average Jaccard index) and a summary of the number of compound sets significantly 
enriched is shown for each category (respectively “F5” for FANTOM5 results, “Gene” 
for gene-based results and “Met” for metabolic compound results). For each one of 
the three methods based on time series, the best solution, equivalent to the optimal 
number of clusters (choice based on highest Jaccard index and represented using 

different colours in the dendrograms), is presented along with stability, as defined by 
the Jaccard index, and compound set analysis results summary. Reproducibility and 

Generalisability corresponds to two cohorts which were external from the main 
cohort. 
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Figure 3.14 – Hierarchical clustering results for time point 0 using Euclidean distances 
and Ward’s algorithm. Number of clusters chosen arbitrarily. 

We also looked at silhouette scores62 for the identified solution, with limited 

success, to assess the groupings. The current chosen solution resulted in an 

average silhouette score of 0.39 (individual clusters ranging from 0.23 to 0.57). 

 

3.3.2.1 Internal validity 

After performing 100 iterations of our bootstrapping strategy and computing 

the average Jaccard indexes, the AUC-PCA approach produced the best 

stability result, with a 4-cluster partition. The corresponding average computed 

Jaccard index was 0.79, showing that the obtained groups were stable. For 

the PCA-based trajectory approach and dynamic time warping approach, the 

average Jaccard index values were respectively 0.76 and 0.70. 

We compared the overlap for results obtained using the three methods, for a 

same number of clusters of four, results are reported in Figure 3.15.  
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Figure 3.15 – Overlap between clustering solutions for 4 clusters. Numbers in blue 
areas represent individuals in common between the two groups being compared. 

Average Jaccard index values are reported for each pairwise comparison. DTW refers 
to dynamic time warping, AUC+PCA to area-under-the-curve combined to principal 

component analysis and trajectory to trajectory in principal component analysis 
space. 
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The chosen clustering showed moderate overlap (JI = 0.53) when compared 

with dynamic time warping, and lower similarity (JI = 0.25) when compared 

with the trajectories in PCA space strategy.  

A similar comparison was performed but using 3 and 5 clusters (respectively 

the optimum number for dynamic time warping and PCA-based trajectory 

analyses), results are reported in Table 3.4 and Table 3.5. 

Table 3.4 - Overlap between clustering solution for 3 clusters. Average Jaccard index 
values are reported for each pairwise comparison. 

Average Jaccard 
index AUC+PCA PCA+Trajectory 

Dynamic 

time 

warping 

AUC+PCA / / / 

PCA+Trajectory 0.31 / / 

Dynamic time 

warping 
0.63 0.27 / 

 

Table 3.5 - Overlap between clustering solution for 5 clusters. Average Jaccard index 
values are reported for each pairwise comparison. 

Average Jaccard 
index AUC+PCA PCA+Trajectory 

Dynamic time 

warping 

AUC+PCA / / / 

PCA+Trajectory 0.24 / / 

Dynamic time 

warping 
0.46 0.21 / 

 

3.3.2.2 Biological validity 

For all three analysis strategies, compound set analysis produced significant 

results, showing the biological validity of highlighted partitions. Compound set 

analysis resulted in AUC-PCA being identified as the best clustering method. 

Histograms presenting the results for each one of the three methods are 
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represented in Figure 3.13. For the selected AUC-PCA partition, the top 20 

compound sets are reported in Table 3.6. 

Table 3.6 - Using likelihood ratio test, top 20 pathways (using KEGG data for gene, 
protein and metabolite data and FANTOM5 data for gene and protein data) for the AUC 

combined with PCA method. FDR-corrected p-values obtained are reported (as 
computed in R, any value smaller than 2.225074e-308 displayed as 0) along with 

pathway names/identifiers. Time point 0 used as input. 

Pathway FDR-corrected p-value 

hsa00190 Oxidative phosphorylation <.001 

hsa00230 Purine metabolism <.001 

hsa00240 Pyrimidine metabolism <.001 

hsa00510 N-Glycan biosynthesis <.001 

hsa00970 Aminoacyl-tRNA 
biosynthesis <.001 

hsa03008 Ribosome biogenesis in 
eukaryotes <.001 

hsa03010 Ribosome <.001 

hsa03013 RNA transport <.001 

hsa03015 mRNA surveillance 
pathway <.001 

hsa03018 RNA degradation <.001 

hsa03040 Spliceosome <.001 

hsa04010 MAPK signaling pathway <.001 

hsa04110 Cell cycle <.001 

hsa04120 Ubiquitin mediated 
proteolysis <.001 

hsa04141 Protein processing in 
endoplasmic reticulum <.001 

hsa04142 Lysosome <.001 

hsa04144 Endocytosis <.001 
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hsa04146 Peroxisome <.001 

hsa04660 T cell receptor signaling 
pathway <.001 

hsa00280 Valine, leucine and 
isoleucine degradation <.001 

 

3.3.3 Endotypes description 

As per the Stratified Medicines Framework3, which provides guidelines for 

attempting to stratify patient groups, we aimed to highlight distinct functional 

and/or pathophysiological mechanisms to confirm that these groups 

represented disease endotypes. 

 

3.3.3.1 Endotypes characterisation 

Ultimately, groups were highlighted, using the AUC combined with PCA 

method, given the criteria defined in section 3.3.2. More specifically, a four-

group partition produced the best results in terms of stability and biological 

relevance, compared to partitions of different sizes obtained with the same 

method.  

To select variables strongly associated to one of the four groups, we built four 

PLS-DA models, using time point 0, and ranked the variables using VIP scores. 

Indeed, endotypes, to be of maximum clinical utility, would need to be 

identifiable as soon as possible, ideally when an individual is admitted to the 

hospital.  

Top 10 variables for each group, along with associated VIP values, are 

represented in Figure 3.19 and consisted of gene or metabolite compounds. 
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Figure 3.16 -Top 10 variables from the endotype A PLS-DA model using VIP values. 
Names on the y axis refer to gene (in grey italic) or metabolite compounds. 

 

Figure 3.17 - Top 10 variables from the endotype B PLS-DA model using VIP values. 
Names on the y axis refer to gene (in grey italic) or metabolite compounds. 
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Figure 3.18 - Top 10 variables from the endotype C PLS-DA model using VIP values. 
Names on the y axis refer to gene (in grey italic) or metabolite compounds. 

 

Figure 3.19 - Top 10 variables from the endotype D PLS-DA model using VIP values. 
Names on the y axis refer to gene (in grey italic) or metabolite compounds. 

The group characterisation, using top VIP variables, was done by cross-

referencing with publicly reference online resources, namely, GeneCards 

(Weizmann Institute of Science), HUGO Gene Nomenclature Committee, 

NCBI EntrezGene, UniProtKB, Ensembl, NCBI PubChem, NCBI PubMed and 

Google Search. Prominent features, their complete names and associated 

processes are described in Table 3.7.  
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Table 3.7 - Compounds detailed table for the top 10 elements for each identified 
endotype. Complete gene names were fetched using the GeneCards resource and 

additional information using online resources as described in the previous paragraph. 

Heatmap 

compound 

Endotyp

e 
Complete name 

Additional 

information 

DMRTC1 A DMRT Like Family C1  

CGB3 A 
Chorionic 

Gonadotropin Subunit 
Beta 3 

 

N-acetyl-1-
methylhistidine* A / Amino acid 

metabolism; 
Rhabdomyolysis; 

Renal failure N-acetyl-3-
methylhistidine* A / 

PPP1R42 A Protein Phosphatase 1 
Regulatory Subunit 42  

SLC16A8 A Solute Carrier Family 
16 Member 8 

Lactate 
transporter; 
Ketone body 
transporter 

KRTAP6-3 A Keratin Associated 
Protein 6-3 

Muscle-specific 
actin binding 

protein 
upregulated 

during muscle 
injury 

XIRP1 A Xin Actin Binding 
Repeat Containing 1  

MAP3K6 A 
Mitogen-Activated 

Protein Kinase Kinase 
Kinase 6 

Apoptosis 
signaling 

BICDL2 A/B BICD Family Like 
Cargo Adaptor 2  

ZBBX B Zinc Finger B-Box 
Domain Containing  
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CFHR3 B Complement Factor H 
Related 3 

Heparin-binding; 
Complement 

regulation 

Inositol 1-
phosphate (I1P) B / Inositol 

biosynthesis 

HOXD3 B Homeobox D3 

Increases 
immune cell 
adherence; 

Overexpression 
upregulates 
glycoprotein 

IIb/IIIa 

SPEM1 B Spermatid Maturation 
1  

C6orf15 B Chromosome 6 Open 
Reading Frame 15 

Putative 
heparin/fibronecti

n binding 

TRIM48 B Tripartite Motif 
Containing 48 

Interferon-g 
signalling 
(oxidative 

stress/apoptosis 
signal-reducting 

kinase 1) 

REG3A B Regenerating Family 
Member 3 Alpha 

Bactericidal C-
type lectin; 
Known as 

pancreatitis-
associated 

protein 

PPP1R3A B Protein Phosphatase 1 
Regulatory Subunit 3A 

Genetic 
association with 
type 2 DM and 
familial partial 

lipodystrophy 3 

GNAl1 C G Protein Subunit 
Alpha I1 

N-acetyl 
transferase 

activity 
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SPTSSB C 
Serine 

Palmitoyltransferase 
Small Subunit B 

Tricarboxylic acid 
cycle 

Citrulline C / Sphingolipid 
biosynthesis 

Dopamine sulfate 
(2) C / 

Gastrointestinal 
dopamine 

metabolism 

Testosterone 
sulfate C /  

5-acetylamino-6-
amino-3-

methyluracil 
C / 

Caffeine 
metabolism 5-acetylamino-6-

formylamino-3-
methyluracil 

C / 

GGT2 C Gamma-
Glutamyltransferase 2 

g-glutamyl 
transferase; 
Glutathione 
homeostasis 

URGCP-MRPS24 C URGCP-MRPS24 
Readthrough  

ENSG0000026252
6 C / Protein coding 

OR5D16 D 
Olfactory Receptor 

Family 5 Subfamily D 
Member 16 

 

CTAG1A D Cancer/Testis Antigen 
1A  

MYADML2 D 
Myeloid Associated 

Differentiation Marker 
Like 2 

 

Ribose D /  
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CELA2A D 
Chymotrypsin Like 

Elastase Family 
Member 2A 

Pancreatic 
elastase-2 

HOXD9 D Homeobox D9  

OR6C6 D 
Olfactory Receptor 

Family 6 Subfamily C 
Member 6 

 

UGT1A3 D 

UDP 
Glucuronosyltransfera
se Family 1 Member 

A3 

Associated with 
Gilbert-type 

hyperbilirubinemi
a 

SLCO1B7 D 

Solute Carrier Organic 
Anion Transporter 

Family Member 1B7 
(Putative) 

Cysteine-type 
endopeptidase 

USP17L18 D 
Ubiquitin Specific 
Peptidase 17-Like 
Family Member 18 

Liver-specific 
organic anion 

transporter; Bile 
secretion 

 

To describe our endotypes in a systematic way, we also performed a 

compound set enrichment analysis. 

We filtered variables deemed significant for the classification task using a VIP 

threshold value129 of 1 for each one of the models (Table 3.8). 

Table 3.8 – VIP-selected variables summary. 

 Number of variables with VIP>1 

A 10,216 

B 6,584 

C 9,112 

D 7,037 
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Enrichment results using these filtered lists are presented in Figure 3.20 and 

Table 3.9. 

 

Figure 3.20 - Significant pathway terms (adjusted p-value threshold of 0.01, red 
indicates a significant item) from enrichment results for each identified group based 
on variables lists selected using VIP scores. Pathway data extracted from Reactome 

database. Results for time points 0, 24 and 48 are reported for all four endotypes. 
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Table 3.9 – Full names of significant pathway terms. 

HSA 

identifier 
Full pathway name  

HSA 

identifier 
Full pathway name 

HSA-
6807505 

RNA polymerase II 
transcribes snRNA 

genes 
 HSA-

159230 

Transport of the SLBP 
Dependant Mature 

mRNA 

HAS-
4570464 

SUMOylation of RNA 
binding proteins  HSA-

5368286 
Mitochondrial 

translation initiation 

HSA-
191859 snRNP Assembly  HSA-

3108214 

SUMOylation of DNA 
damage response and 

repair proteins 

HSA-
5419276 

Mitochondrial 
translation termination  HSA-

4551638 

SUMOylation of 
chromatin organization 

proteins 

HSA-
6809371 

Formation of the 
cornified envelope  HSA-

1268020 
Mitochondrial protein 

import 

HSA-
72163 

mRNA Splicing - Major 
Pathway  HSA-

156827 

L13a-mediated 
translational silencing 

of Ceruloplasmin 
expression 

HSA-
2408557 

Selenocysteine 
synthesis  HSA-

975957 

Nonsense Mediated 
Decay (NMD) 

enhanced by the Exon 
Junction Complex 

(EJC) 

HSA-
72187 

mRNA 3'-end 
processing  HSA-

72689 
Formation of a pool of 

free 40S subunits 

HSA-
1799339 

SRP-dependent 
cotranslational protein 
targeting to membrane 

 HSA-
6791226 

Major pathway of rRNA 
processing in the 

nucleolus and cytosol 

HSA-
975956 

Nonsense Mediated 
Decay (NMD) 

independent of the 
Exon Junction Complex 

(EJC) 

 HSA-
72165 

mRNA Splicing - Minor 
Pathway 
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HSA-
9010553 

Regulation of 
expression of SLITs 

and ROBOs 
 HSA-

72702 

Ribosomal scanning 
and start codon 

recognition 

HSA-
5389840 

Mitochondrial 
translation elongation  HSA-

159231 

Transport of Mature 
mRNA Derived from an 

Intronless Transcript 

HSA-
159236 

Transport of Mature 
mRNA derived from an 

Intron-Containing 
Transcript 

 HSA-
6790901 

rRNA modification in 
the nucleus and cytosol 

HSA-
8951664 Neddylation  HSA-

6805567 Keratinization 

HSA-
159227 

Transport of the SLBP 
independent Mature 

mRNA 
 HSA-

72764 
Eukaryotic Translation 

Termination 

HSA-
72649 

Translation initiation 
complex formation  HSA-

109688 

Cleavage of Growing 
Transcript in the 

Termination Region 

HSA-
72695 

Formation of the ternary 
complex, and 

subsequently, the 43S 
complex 

 HSA-
72706 

GTP hydrolysis and 
joining of the 60S 
ribosomal subunit 

 

3.3.3.2 Data visualisation 

To visualise some of the discriminant variables, heatmaps were generated 

using top-10 variables for each category, as defined using VIP values from 

previously generated PLS-DA models and are represented in Figure 3.21 and 

Figure 3.22, respectively for the group average and individual variable values. 
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Figure 3.21 - AP endotypes. The top 10 VIP-selected variables, average values 
(normalised and scaled) for each identified group are displayed. For visualisation 

purposes row values were scaled between 0 and 1. Colours are representative of the 
range of observed values. Values were clustered based on expression patterns 

considering average values per variable per group. 
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Figure 3.22 - For the top 10 variables, normalised and scaled average values for each 
identified patient are displayed. For visualisation purposes row values were scaled 

between 0 and 1. Colours are representative of the range of values observed. Values 
were clustered based on expression patterns considering average values per variable 

per group. Patients 5 and 11 did not survive. 

Time profiles for the top-2 VIP-selected variables are represented in Figure 

3.23 and allowed to compare their evolution over time for the four identified 

groups. 
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Figure 3.23 – For best two VIP-selected variables across endotypes, time profiles are 
represented. Values were generated as average z-score value per time point per group 

identified. Graphs generated using http://baillielab.net/pancreatitis/. 

 

Clinical data, for selected variables of interest, were then inspected. The 

distribution of severity levels (mild, moderate and severe) across our four 

endotypes is represented in Figure 3.24. 
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Figure 3.24 - For comparison purposes, distribution of clinical severity categorised by 
mMODS score in each identified endotype. 

When the proportion of severe versus non-severe cases was compared 

between the groups, independence between the group labels and severity was 

rejected (Fisher’s exact test, p=0.038). All individuals with a severe form of AP 

clustered in the A group, showing that our clustering was relevant in terms of 

disease severity. 

The distribution of etiologies was also represented in Figure 3.25 and was 

independent of groups labels (Fisher’s exact test, p=0.97). 
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Figure 3.25 - Distribution of etiology in each endotype, for comparison purposes. For 
each identified endotype, the number of patients is shown. 

We inspected gender distribution as well (Fisher’s exact test, p = 0.67) and 

time of onset of symptoms, using one-way ANOVA (p = 0.97) but could not 

reject independence with group labels. This confirmed that our groups did not 

reflect differences due to gender or symptom onset time. 

Systemic inflammatory response syndrome (SIRS) was not significantly 

associated with group labels when comparing SIRS versus no-SIRS (Fisher’s 

exact test, p=0.097). SIRS distribution across endotypes was represented in 

Figure 3.26. 
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Figure 3.26 - SIRS distribution per endotype. For each identified endotype, the number 
of patients is shown. ‘NO’ corresponds to no SIRS. 

To confirm that clusters structure was not solely determined by gender, age or 

time of onset of symptoms, we re-performed the clustering strategy, with the 

AUC-PCA method, using residuals from a linear model including gender, age 

and time onset as predictors. In other words, we only looked at variation that 

could not be linearly explained by any of these variables and performed the 

clustering using residuals only. We compared the 4-cluster partition obtained 

to our chosen clustering and observed a high level of similarity (Jaccard index 

of 0.82), moreover, distance matrices obtained showed a high correlation 

(0.91, Mantel test p-value = 0.01). 

 

3.3.4 Validation results 

3.3.4.1 External validity 

3.3.4.1.1 Allocation results 

After applying our four PLS-DA models (one for each of our endotypes) we 

inspected the distributions of PLS-DA predicted values. They are represented 

in Figure 3.27. We observed that the predicted values associated with 
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allocated samples were higher than, and not overlapping with, values 

associated with unallocated samples. 
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Figure 3.27 - For each endotype, distribution of PLS-DA predicted values for assigned 
(if the current endotype was the ‘best fit’) and unassigned KAPVAL individuals are 

represented. -1 is the target value for samples not from the current endotypes and 1 is 
the target value for samples from the current endotype. 
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3.3.4.1.2 Inspection of allocated samples 
When comparing KAPVAL allocated samples to IMOFAP samples for the 

corresponding groups, using only variables not included in the PLS-DA 

models, we obtained significant Spearman’s correlation coefficients. For 

groups 1 to 4, correlation coefficients ranged from 0.38 to 0.65 with FDR-

corrected p-values <0.001. Results are presented in Figure 3.28.  

 

Figure 3.28 - Spearman’s correlation results, reported using colours, for pairwise 
comparisons between variable average values from training set (IMOFAP) and testing 

set (KAPVAL). FDR-corrected p-values associated to each correlation coefficient, 
reported within each cell of the heatmap, were calculated as well. 

This confirmed that the endotype separation signal identified in the IMOFAP 

dataset could also be observed in KAPVAL, and was unlikely to be observed 

by chance. 

Distributions of in-hospital mortality and care level for allocated KAPVAL 

samples are represented in Figure 3.29 and Figure 3.30. 
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Figure 3.29 - Distribution of in-hospital mortality for KAPVAL-allocated individuals. 1 
represents a death event and 0 corresponds to no in-hospital death reported. 

 

Figure 3.30 - Distribution of care level (war, HDU or ICU) for KAPVAL-allocated 
individuals.  
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Independence between in-hospital mortality and group labels was not rejected 

(Fisher’s exact test, p=0.39), but admission to critical care was (Fisher’s exact 

test, p < 0.001, comparing ward stay versus HDU or ICU) 

Length of stay per group of KAPVAL-allocated samples were illustrated in 

Figure 3.31. 

 

Figure 3.31 – Per endotype, boxplots representing length of hospital stay, in days, for 
KAPVAL-allocated samples. Bars represent 95% confidence intervals. 

Median length of stay values in days were respectively 5.9, 5.1, 4.5 and 5.3 

and corresponding interquartile ranges 7.3, 10.9, 5.5 and 4.7 days (with Q1-

Q3 3.2-12.8, 2.8-10.8, 2.5-9.7 and 3.3-7.8 days). 

IGP values were computed for all endotypes at recruitment. We obtained 

values of 0.73, 0.51, 0.64 and 0.63 respectively for endotypes A, B, C and D. 

Associated p-values were smaller than 0.001 for endotypes A and D and equal 

to 0.01 for endotypes B and C. In practice this meant that the cluster quality, 

as measured with the IGP, was higher than one would expect by chance, for 

all four endotypes. 
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3.3.4.2 Generalisability in ARDS 

We sought to compare our AP endotypes to two ARDS endotypes, which were 

reported in the Calfee et al paper, because we observed similarity in the orders 

of importance for both studies. 

Using the nineteen matched variables (as listed in Figure 3.32 and Figure 3.33) 

between our dataset and the ones from the ARDS endotypes study (and their 

corresponding ranks, as reported in the paper39), we compared ranks using 

Spearman’s correlation coefficients and obtained significant results when 

comparing our A endotype with both ARDS cohorts (FDR-corrected p = 0.046 

for both the ALVEOLI and ARMA cohorts). We obtained similar findings when 

comparing our endotype C with the ALVEOLI and ARMA cohorts (p = 0.046 

and p = 0.046 respectively). Results are illustrated in Figure 3.32 and Figure 

3.33. 
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Figure 3.32 – Ranks of ordered average normalised values represented for A and C 
endotypes on the x axis. Variables that occur in common with those reported in the 

ARDS study of Calfee et al are presented on the y axis. Linear trends were computed 
and represented using the ALVEOLI and ARMA cohort results. FDR-corrected p-

values are reported for each. 

 

Figure 3.33 - Spearman correlation coefficients between the four identified groups (on 
the y axis) and the two ARDS cohorts (on the x axis). FDR-corrected p-values are 

reported for all pairwise comparisons. 

 

3.3.4.3 MOFA results comparison 

To compare our results with those obtained using a validated tool, we chose 

to run MOFA on our dataset using area-under-the-curve values. Using the first 

two latent features, we extracted four clusters and compared them to ours 

using Jaccard index to estimate the overlap and the information in common 

between our selected method and MOFA. We obtained a Jaccard index of 

0.88, confirming the validity of our solution. 
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Figure 3.34 - Comparison of clusters obtained using MOFAtools with identified 
clusters. AUC values were used as input and a 4-cluster solution was extracted from 

MOFA results using the first two latent features based on explained variance. Colours 
are representative of clusters described as part of this project and shapes of 

MOFAtools predicted allocations. 

 

We then decided to compare the allocations of KAPVAL samples obtained 

previously using PLS-DA models with groups obtained from MOFA. The 

results are illustrated in Figure 3.35. 
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Figure 3.35 - Using KAPVAL metabolomics data and selecting a 4-cluster solution, 
comparison of results obtained with MOFAtools and results arising from PLS-DA 

models. Colours indicate results obtained using PLS-DA models and shapes show 
MOFAtools results. 

The two results presented structures which were quite dissimilar, the Jaccard 

index was equal to 0.22. We hypothesised that, as only one time point was 

available for the KAPVAL cohort, a single time point was not sufficient to 

highlight groups using MOFA and that we needed some knowledge of the 

dynamics (expressed through the PLS-DA models which were trained using 

IMOFAP sample allocations arising from area-under-the-curve values). 

 

3.4 Conclusions 
This analysis confirms the existence of molecular subtypes in AP. In itself, this 

is an important and novel observation. Additionally, the discovered endotypes 

go partway to explaining some of the heterogeneity of AP, and its 

consequences. The AP endotypes could be identified using multiomics data. 

More specifically, transcriptomics, proteomics and metabolomics, measured 

for different time points across a time course, defined endotypes that could not 

otherwise be identified using standard clinical and laboratory measurements. 
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The four identified groups were proved to be statistically stable and are likely 

to be biologically relevant, although the precise direct clinical relevance of the 

groups will need to be uncovered in future work. More specifically, group A 

was identified as a potentially higher risk group but no other correlations with 

clinical variables were identified at this point. 

Importantly, I could also find similar molecular endotype signatures in an 

independent validation dataset of AP patients, and also in a distinct but 

probably pathologically overlapping syndrome, ARDS. Statistically significant 

similarities were highlighted between our IMOFAP AP dataset and ARDS 

endotypes, described using clinical and cytokine measurements, for a single 

time point, in two cohorts of 549 and 473 ARDS-affected individuals, even 

though used the statistical approaches used were fundamentally different. This 

is illustrated in Figure 3.36. 
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Figure 3.36 – Endotype model summary figure. Our final model consists of a systemic 
inflammatory endotypes model. Endotypes highlighted here are represented 

alongside ARDS endotypes identified in the Calfee et al paper. 

Using an unsupervised approach, we could re-discover these two ARDS 

endotypes in a distinct clinical syndrome, with almost no overlap.  

This similarity between our AP endotypes and previously reported ARDS 

endotypes was not expected and show that the different signals defined by 

endotypes A, B, C and D were not specific to AP. Such similarities could be 

used to look at critical illnesses from a new perspective which could be 

beneficial for the understanding and treatment of other diseases. 

AP initiator

pancreas injury

gallstones alcohol ERCP trauma drugs/toxins lipids idiopathic

systemic 
inflammatory 

endotypes

Endotype model

lung injury

ARDS initiator
sepsispneumonia aspiration trauma otherpancreatitis



Acute Pancreatitis (AP), datasets and results 
 

 128 

We conclude that these patterns reflect generalisable features of the host 

response to critical injury and that they may be observed in other illnesses. To 

demonstrate this, attempts will be made to highlight identified signals in other 

critical illnesses such as sepsis or trauma. 
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4. Chapter 4 – Generalisability of critical 
illness endotypes 

This chapter builds upon findings presented in chapter 3, in which four Acute 

Pancreatitis (AP) endotypes were identified, two of which were also detected 

in Acute Respiratory Distress Syndrome (ARDS). Here, the context and 

hypothesis are presented in the first section to lay the basis for the second part 

of this chapter, presenting methods that were considered and then employed 

to test our hypothesis. Results are presented in the following section. Finally, 

the main findings are discussed and summarised. 

 

4.1 Context 
4.1.1 Starting point 

When responding to critical injury, the host response can vary greatly between 

individuals. Many recent studies have focused on explaining this heterogeneity 

by describing endotypes, also referred to as molecular subtypes, within critical 

illness syndromes such as sepsis131,134–137, trauma138, inluenza139 and acute 

respiratory distress syndrome39. Usually, variables, such as gene expression 

values, are used to describe affected patients who are then divided into groups 

using a clustering algorithm. Potentially, patients from different subgroups may 

respond differently to the same therapeutic strategy and this could help to 

identify personalised treatments. 

Endotype description always occurs in cohorts with the same illness, however, 

endotypes may share similarities across different syndromes, meaning these 

endotypes may represent parallel processes underlying different diseases. 

This is what was described previously in chapter 3 which looked at acute 

pancreatitis data. While studying the results obtained in the main project 

(chapter 3. Results) similarities in inflammatory signatures between AP and 
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ARDS were highlighted (section 3.3.4.2). In this chapter, the endotypes will be 

referred to as 1, 2, 3 and 4, as to not induce confusion between the different 

analyses carried out. 

 

4.1.2 Hypothesis and aims 

Starting from our findings in AP, we hypothesised that similar signal might be 

observed in other critical illness syndromes. We looked at a combination of 

datasets from varied sources such as public repositories and collaborating labs 

in order to test our hypothesis (Figure 4.1). As data could not always be shared 

directly with us, we liaised with the different research groups to determine the 

data format and created scripts allowing to compute metrics for those datasets 

without having the actual data onsite. Specifically, I am very grateful to Dr. 

Tracy Chew and Dr. Benjamin Tang from the University of Sydney, Dr. 

Brendon Scicluna from the Academic Medical Centre in Amsterdam, Dr. Tim 

Sweeney from Inflammatix, and Dr. Justin Whalley and Dr. Julian Knight at the 

University of Oxford for their contribution. 

 

Figure 4.1 – Hypothesis overview. We aimed at testing if the endotypes highlighted in 
the IMOFAP cohort (identified as A, B, C and D in chapter 3 and referred to here as 1, 

2, 3 and 4 respectively) could be detected in other cohorts from individuals with 
various illnesses. 
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4.2 Materials and methods 
4.2.1 Datasets 

4.2.1.1 Summary of used data 



 

 

 

 

Table 4.1 –Data overview. (*metabolomics data were available for 33 individuals and transcriptomics data for 30 individuals.) 

Cohort 
name/label 

Condition Number of 
samples 

Controls Data type Variables in 
common 

IMOFAP AP 33/30* / Metabolomics/Transcriptomics (RNA-
Seq) 

/ 

KAPVAL AP 312 / Metabolomics 432 

AP 2 AP 87 / Transcriptomics (RNA-Seq) 19,734 

MARS Sepsis 522 42 Transcriptomics (microarray) 14,104 

Sepsis 2 Sepsis 700 / Transcriptomics (microarray) 8,355 

Sepsis 3 and 
Sepsis 4 

Sepsis 403+130 / Transcriptomics (microarray) 19,766 

MOSAIC Flu 109 130 Transcriptomics (microarray) 10,481 

GSE33828 / / 881 Transcriptomics (microarray) 17,220 
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4.2.1.2 IMOFAP 
The IMOFAP cohort and associated data were described in detail in sections 

3.2.1.1 and 3.2.2. We used identified reference clusters as described in 

chapter 3. In total, 34 individuals were clustered into four subgroups, 

highlighted using metabolomics, proteomics and transcriptomics data and 

which were then tested for in distinct datasets. 

To perform the comparisons between different datasets, we used 

transcriptomics or metabolomics data, using single time points (all collected 

close to recruitment) as no dynamic data was available for the testing cohorts. 

Moreover, for all testing cohorts, samples collected early in the disease 

trajectory were available and thus, for consistency and a fairer comparison, we 

chose early time points from the IMOFAP cohort.  

Out of the 34 IMOFAP samples clustered (as described in chapter 3), 33 had 

metabolomics data available at time point 0. However, adding time point 3 did 

not permit to include the 34th individual as no data was available. 

For the transcriptomics data, using time points 0 (corresponding to 

recruitment) or 3, when no data was available for the former, we could include 

30 samples out of the initial 34. 

For the metabolomics data we used the pre-processing applied to the IMOFAP 

metabolomics data, as described in section 3.2.2 but performed the quantile 

normalisation and standard scaling on selected time points only, rather than 

on all time points simultaneously. This was done to have datasets as 

comparable as possible. Similarly, for the transcriptomics data, we performed 

standard scaling after time points selection.   

This pre-processed data consisted in our reference dataset and each one of 

the following described datasets was used to test for the four AP endotypes. 
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4.2.1.3 KAPVAL 
The KAPVAL cohort was described in detail in section 3.2.1.2 and consisted 

of 312 acute pancreatitis-affected individuals with single time point 

metabolomics data available. 

The KAPVAL data was pre-processed as the IMOFAP metabolomics data and 

as described in section 3.2.2.2.   

To be able to compare the two datasets, we filtered them both to only keep 

variables in common between the two sets. 432 metabolites were retained 

following this filtering. 

 

4.2.1.4 Pancreatitis data from Benjamin Tang’s lab (AP 2 cohort)  
Pancreatitis data from another cohort was also available and consisted of gene 

expression data measured for 87 individuals within 24 hours of admission to 

hospital. Expression values used to run the analyses consisted of single-end 

RNA-Seq data sequenced using a HiSeq2500 and normalised using RPKM. 

The data was annotated using Ensembl identifiers (version 94). 

Variables in common were selected before computing the in-group proportion 

and consisted of 19,734 genes. 

 

4.2.1.5 MARS sepsis data 
Sepsis data, provided by Brendon Scicluna, was also available to test our 

hypothesis and consisted of expression data measured using microarrays136 

(Affymetrix U219 or Illumina HTV3/HTV4). For this dataset, 522 sepsis and 42 

control samples were available. Available gene expression values consisted 

of log2-transformed Robust Multi-array Average-normalised values. 

Both our IMOFAP reference cohort and this sepsis datasets were generated 

using different genome annotation versions (Ensembl version 86 and 87, 
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respectively), as Ensembl gene identifiers refer to the same entities between 

different releases, we converted gene symbols from the sepsis dataset to 

Ensembl gene identifiers using the corresponding biomaRt Ensembl version 

(87). We then selected genes in common between the two datasets and 

variables with non-null variance in our reference dataset, this resulted in 

14,104 genes. The overlap between the two gene sets is represented in Figure 

4.2. 

 

Figure 4.2 – Venn diagram of genes in common between the MARS and IMOFAP gene 
datasets. 

The dataset was filtered to only keep sepsis samples (and thus we dropped 

the 42 control samples) and allow a fairer comparison with the IMOFAP 

dataset. As the original data consisted of probe measurements from 

microarrays, we combined probe sets targeting transcripts of a same gene 

using the probes with the highest variance values. Indeed, we hypothesised 

that probes with higher variance were more likely to help in identifying the 

cohort heterogeneity. The sepsis data was then scaled using Z-scores to 

maximise the comparability between the datasets. 
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4.2.1.6 Sepsis data from a pooled dataset from Tim Sweeney’s lab 
(Sepsis 2 cohort) 
To test for the four IMOFAP-based AP endotypes, bacterial sepsis data131 from 

14 datasets, consisting of 700 individuals, was used. The different datasets (all 

from ArrayExpress or Gene Expression Omnibus) were co-normalised as 

described in the corresponding publication131. Transcriptomics data was 

available for these individuals which was annotated with HGNC names. To 

compare the IMOFAP dataset to this dataset, we converted our Ensembl 

identifiers (version 86) to gene symbols using biomaRt and Ensembl’s latest 

version (97). 

8,355 genes were retained after filtering variables which were not in common 

between our reference (IMOFAP) dataset and this dataset. 

 

4.2.1.7 Sepsis data from J. Knight’s lab (Sepsis 3 and Sepsis 4 cohorts) 
Two cohorts of individuals with sepsis were used to perform the analysis. The 

first cohort of 403 individuals consisted of community acquired pneumonia 

sepsis patients. The second cohort was composed of 130 faecal peritonitis 

sepsis patients. 

Gene expression was measured for these patients using microarrays 

(HumanHT-12 v4, from Illumina).  

For these two cohorts, we selected variables in common with the IMOFAP 

dataset. This resulted in 19,766 genes. 

 

4.2.1.8 Flu data from the MOSAIC cohort 
Transcriptional profiles were measured for individuals admitted to hospital with 

influenza139 and were available from GEO (identifier GSM3029333). Log2-

normalised expression data was available for 130 healthy controls and 229 
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samples with influenza (199 H1N1, 24 B, 2 A and 4 H3N2) and was measured 

using microarrays (HumanHT-12 v4, from Illumina). As repeated 

measurements were available for some individuals, we chose to use the first 

time point (denoted as T1 and corresponding to enrolment) only, resulting in 

109 individuals with flu being selected. 

BiomaRt was used to annotate the probes and to extract Ensembl gene 

identifiers using Ensembl’s last version (97). We matched variables in common 

and 10,481 genes were selected for analysis. An overview of the overlap 

between the gene sets of the IMOFAP and MOSAIC cohorts is represented in 

Figure 4.3.  

 

Figure 4.3 - Venn diagram of available genes in common between the MOSAIC and 
IMOFAP gene datasets. 

As described for the MARS cohort, we selected a single probe per Ensembl 

gene identifier by selecting the one with the highest variance across all our 

samples (both cases and controls). Finally, a standard scaling applied to each 

gene was performed. 
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4.2.1.9 Control data from GEO (GSE33828) 
Transcriptional profiles were measured for individuals of different ages to study 

the variations related to aging. To do so whole blood samples were collected 

for 881 individuals aged 45 and over as part of the Rotterdam study140. Gene 

expression values were measured using a microarray platform (HumanHT-12 

v4, from Illumina). 

Probes from the microarray chip were annotated using BiomaRt and Ensembl 

gene identifiers were extracted using Ensembl’s last version (97). We matched 

variables in common and 17,220 genes were kept for further analyses. An 

overview of the overlap between the gene sets of the IMOFAP and GSE33828 

cohorts is represented in Figure 4.4.  

 

Figure 4.4 - Venn diagram of genes in common between the GSE33828 and IMOFAP 
gene datasets. 
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4.2.2 Methods 
4.2.2.1 Considered strategies 
4.2.2.1.1 PLS-DA-based strategies 

To reproduce our findings in a different cohort, we built Partial Least Squares 

Discriminant Analysis (PLS-DA) models defining each one of our reference 

endotypes which could then be used to predict allocation values for new 

samples. 

 

4.2.2.1.1.1 PLS-DA models 

To define our endotypes we chose to generate one PLS-DA model for each 

one of our endotypes. Details and advantages of using PLS-DA models with 

high-dimensionality data are reported in section 2.2.7.4.1.   

For each dataset, we identified variables in common with our acute pancreatitis 

dataset, as described previously. Once this subset of variables was identified 

we generated one-vs-all PLS-DA models. For each PLS-DA model, we 

oversampled/undersampled (explained below) according to the number of 

samples available for the current group. This was done to prevent one group 

from dominating the dataset and driving all the differences. 

For each model (corresponding to a cluster, one-vs-all design), regardless of 

the number of cluster elements, we kept all elements which were part of the 

current (elements labelled as ‘one’) cluster.  

If the current number of samples labelled as ‘one’ was greater than the average 

number of elements per cluster, we performed random undersampling for 

elements which were not part of the current cluster (not labelled as ‘one’), 

keeping a number of elements per cluster equal to the size of the smallest 

cluster. For example, 11 samples were available for group label 1 and 20 for 

other labels (respectively 10, 5 and 5 for group 2, 3 and 4), as 11 was greater 

than the average number of samples per cluster (7.75), we kept the 11 

samples from group 1 and undersampled the rest (for the 20 samples from the 
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three other clusters) by keeping 5 elements of each group (randomly selected 

if more than 5 elements were available for a group). 

If the number of samples labelled as ‘one’ was smaller than the average 

number of elements per group, we performed undersampling for other classes 

(not labelled as ‘one’), as described in the previous paragraph, and 

oversampling for the current class (labelled as ‘one’). To oversample, we used 

SMOTE141 with k=4, being the number of neighbours to use for each point of 

the current group when generating new data points. One data point was 

synthesised per sample originally in the group, resulting in a doubled number 

of samples. 

To generate the models and have a robust estimate of both parameters and 

performance, we used repeated cross-validation with the R package caret142. 

Once the dataset was selected, we reduced the number of variables used in 

each model to maximise interpretability and prevent overfitting. First, a model 

with all pre-selected variables was generated and we obtained an estimate of 

its performance. Importance scores for all variables were generated to rank 

the variables. The ranking was finally used to drop 20% of the variables with 

the lowest scores and a new model was generated. This was repeated until 

one variable remained. For each model, the accuracy value was computed. 

We then selected the number of variables with the highest accuracy value, if 

the optimum value was obtained for several variable sets, we selected the one 

with the lowest number of variables. 

 

4.2.2.1.1.2 Predicted values distributions 

Once the four PLS-DA models were generated, we applied them to samples 

from our new dataset, resulting in four predicted probabilities of belonging to 

each group for each individual using Bayes’ method. 
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The strategy was to inspect the distributions of these predicted probabilities. 

We hypothesised that if the signal associated to one of our endotypes was also 

present in another dataset then we would obtain a bimodal distribution: one 

peak around 0 for samples not likely to belong to the tested group and another 

close to 1 for samples likely to be part of the tested group, identifying samples 

corresponding to that signal.  

 

4.2.2.1.1.3 Spearman’s correlations using allocated samples 

Our second strategy consisted of using the probabilities generated from the 

PLS-DA models, as described in the previous two paragraphs. The aim was to 

allocate new samples to the best matching endotype (corresponding to the 

highest probability) and compare the average expression profile of allocated 

samples to the expression profile of each endotype in our AP dataset. To do 

so we used Spearman’s correlation coefficients and computed p-values using 

a t-distribution. 

 

4.2.2.1.2 In-group-proportion strategy 
4.2.2.1.2.1 In-group-proportion 

In-group proportion143 (IGP) was considered as a method to determine if 

clusters identified in chapter 3, using acute pancreatitis data, were present in 

independent datasets. The relationship between reproducibility and prediction 

accuracy is exploited in the IGP strategy. Indeed, a cluster defined in a dataset 

can be validated in another if predictions are accurate. IGP corresponds to the 

proportion of elements of a cluster for which their nearest neighbour (using 

Pearson correlation coefficient) is also classified in the same group. An 

example is shown in Figure 4.5 in which 5 samples are represented given the 

values of 3 variables (x, y and z). 3 of these samples (identifiers 2, 3 and 4) 

are allocated to cluster 2 (represented in blue) and 2 (identifiers 1 and 5) are 

allocated to cluster 1 (represented in red). Pairwise correlation coefficients are 

presented in Figure 4.6. To compute the IGP for the cluster 2, we look at 
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samples 2, 3 and 4 and their nearest neighbours, samples 1, 4 and 3 

respectively. 2 of the samples from cluster 2 have their nearest neighbour in 

the same cluster (samples 3 and 4) but sample 2 does not (sample 1 is in a 

different cluster), the IGP value is then 0.67 (2/3). 

 

Figure 4.5 – Cluster examples. Colours denote of cluster assignment. Three variables 
are represented and are referred to as x, y and z. 

 

Figure 4.6 – Pearson correlation coefficients between all pairs of samples. 

To compute IGP values for a test dataset, centroids for the reference clusters 

must be computed. Once computed, samples from the test dataset are 

allocated to one of the reference centroids. This is done by looking at Pearson 

correlation coefficients and allocating a sample to its closest centroid. Once all 

samples are allocated to a centroid, IGP values for the test cohort are 

calculated.  
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To determine if IGP values are higher than one would expect by chance only, 

a reference IGP distribution can be generated by randomly generating 

centroids and computing IGP values, using for example 1,000 iterations. As 

some genes will not be independent, centroids are generated using 

permutations within the principal components-defined space so that they 

would be plausible data points without being too similar to the original 

centroids. P-values will then be the proportion of IGP values from our IGP 

reference distribution that are higher than the obtained IGP values using the 

real data.  

 

4.2.2.1.2.2 Binomial confidence intervals 

P-values generated from permutation distributions might vary depending on 

the number of permutations used to compute them. As the process of 

extracting p-values from permutation distributions can be assimilated to 

counting the number of successes (corresponding to the number of times the 

permuted samples were equal to or greater than the obtained value) out of a 

certain number of draws (the number of permutations in total, used for the 

computation of the p-value), binomial confidence intervals can be used144. 

Especially, for large n (>=40), the Agresti-Coull145 interval has been 

recommended144 and is described below. !"#$% describes the corresponding 

quantile (or the boundary value) of a standard normal distribution and &#"'!"#"! 
is the confidence level required for the confidence interval (95% for example). 

( = !"#$%(1 − 0.5 ∗ (1 − &#"'!"#"!)) 

2$ = 2 + 0.5 ∗ (% 

"$ = " + (% 

4′ = 2$
"′ 
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67 = 4$ ± 	(:4
$(1 − 4$)
"$  

 

4.2.2.1.3 Network density analysis strategy 
Network density analysis146 (NDA) is an algorithm quantifying density within a 

subset of nodes part of a wider network. For example, as illustrated in Figure 

4.7, if we consider a subset of nodes (represented in red) and wish to quantify 

the density within this subset, as opposed to the rest of the network, NDA can 

be used. 

 

Figure 4.7 – Example network. Red nodes correspond to the subset of nodes we are 
interested in and edges to the correlations between the different nodes. 

Pairwise correlation values between samples are used as input for the NDA 

algorithm which then, given a subset of the samples, quantifies the subnetwork 

density. A final value is generated and consists of the sum of −;#<&' 
probabilities of a relationship at least that strong occurring between two nodes 

of the current network. To determine if the value is higher than one would 

expect by chance, this is repeated using random sets of nodes from the same 

network. Generated values are used to estimate the distribution and a final p-

value is computer by comparing the value obtained for the original network 

with values obtained from randomly generated sets. 
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For example, we will consider a network composed of 10 nodes (labelled as 

GSM) and its matrix of pairwise correlations Figure 4.8. 

 

Figure 4.8 – Correlation coefficients between all pairs of samples. 

Now we consider the subnetwork consisting of nodes GSM151369, 

GSM151370 and GSM151371. For the sake of brevity, 5 permutations will be 

run. We thus generate 5 permuted sets of nodes: [GSM151369, GSM151376, 

GSM151370], [GSM151374, GSM151376, GSM151370], [GSM151369, 

GSM151374, GSM151373], [GSM151373, GSM151369, GSM151371] and 

[GSM151371, GSM151373, GSM151377]. For each one of the sets of 

permuted nodes, we compute NDA values. For our original set, we consider 

correlation values between a pair of nodes and all other nodes of the network. 

First, we compare node GSM151369 to node GSM151370 which have a 

correlation value of 0.894356. We then extract all correlation values between 

node GSM151369 and all other nodes and count the number of values at least 

this high (2 values meet the criterium and we obtain a value of 2/9). This is 

repeated for all pairs of nodes (including the reverse comparison between the 

same two nodes). Once this is done for all nodes of the subnetwork, all 

probabilities are transformed with −;#<&' and summed to obtain a summary 

value. This process will be repeated for all 5 permuted sets and obtained 

values will be used to determine if density of the subnetwork is higher than one 

would expect by chance. 
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To test for subnetworks here, we allocated samples from a dataset to IMOFAP 

endotypes using the closest centroid as described in 4.2.2.1.2.1. 

As p-values are obtained using permuted sets, binomial intervals, as described 

in section 4.2.2.1.2.2 are relevant as well and can be used here. 

 

4.2.2.2 Chosen strategy 
We did not choose to use any of the PLS-DA-based strategies. Indeed, even 

though the idea of generating models was attractive and promising, many 

tuning steps were involved and had the potential to influence results obtained. 

The tests we performed were not entirely satisfactory, bimodal probability 

distributions could be obtained with new data but also with randomly generated 

data, indicative of an inadequate model. Regarding the allocation strategy, 

significant correlation coefficients were obtained for case data. However, even 

though random data did not produce significant coefficients, healthy data did, 

showing this strategy could identify biologically meaningful samples regardless 

of their disease status, which was not the topic of interest here. 

The NDA-based strategy was not chosen either because of its sensitivity to 

detect subnetworks. When running tests using the NDA method, p-values 

obtained were significant in most cases when the input network consisted of a 

real dataset (as opposed to a randomly generated dataset), whether the input 

consisted of individuals presenting critical illnesses or not. This could be 

explained by the allocation strategy, which may not have been accurate 

enough. It may also be explained by the noise generated by the high 

dimensionality of the datasets used, which would result in the algorithm 

detecting commonalties corresponding to widespread biological processes for 

example. 

The IGP-based strategy was selected to perform the analyses. It has been 

designed for the type of problems we are trying to solve143, has been tested 

and is much less likely to be biased as there are no other parameters or filters 
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involved as part of required pre-processing or the calculation of the metric. 

Moreover, when generating permuted datasets, the algorithm uses axes of 

variation from the dataset, thus resulting in plausible samples, which would 

help in identifying disease samples versus controls. 

 

4.3 Results 
IGP results are presented for the different cohorts (two AP cohorts, four sepsis 

cohorts, one flu cohort and one control cohort) in the following sections. For 

each cohort, we used 10,000 permutations, unless stated otherwise, to 

generate the IGP reference distributions. Confidence intervals reported 

correspond to the Agresti-Coull confidence intervals144,145 (95%). Reported p-

values correspond to the probability of obtaining at least this IGP value given 

that the group tested is not present in the other dataset. 

 

4.3.1 Case results 
4.3.1.1 KAPVAL results 
To compare the signals present in metabolomics data between IMOFAP and 

KAPVAL, we previously used PLS-DA models and Spearman’s correlation 

coefficients (section 3.2.3.4.1). Here, the in-group proportion was used with 

10,000 permutations, results are reported in Table 4.2.  

Table 4.2 – IGP results for the KAPVAL cohort. Significant p-values (0.05 threshold) 
are represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.73 98 <0.001 [0,0.019] 

2 0.48 62 0.025 [0.014,0.045] 

3 0.60 86 0.026 [0.018,0.038] 
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4 0.68 66 <0.001 [0,0.006] 

 

4.3.1.2 AP 2 data results 
In-group proportions results for the AP 2 cohort are reported in the following 

table. 

Table 4.3 –AP 2 lab data IGP results. Significant p-values (0.05 threshold) are 
represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.65 17 0.029 [0.023,0.037] 

2 0.62 21 0.122 [0.11,0.134] 

3 0.94 31 0.003 [0,0.011] 

4 0.72 18 0.017 [0.013,0.023] 

 

4.3.1.3 MARS results 
In-group proportion was used with the MARS cohort as well. IGP values and 

associated p-values are reported in Table 4.4. 

Table 4.4 –IGP results for the MARS cohort. Significant p-values (0.05 threshold) are 
represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.61 131 0.0498 [0.035,0.071] 

2 0.80 118 <0.001 [0,0.006] 

3 0.88 168 <0.001 [0,0.017] 

4 0.61 105 <0.001 [0,0.009] 
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4.3.1.4 Sepsis 2 pooled cohort results 
Results (in-group proportion values and associated p-values) for the pooled 

sepsis data from a previous publication131 are reported in the following table. 

Table 4.5 –Sepsis 2 cohort IGP results. Significant p-values (0.05 threshold) are 
represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.73 188 <0.001 [0,0.014] 

2 0.67 124 <0.001 [0,0.036] 

3 0.86 236 <0.001 [0,0.041] 

4 0.65 152 <0.001 [0,0.009] 

 
4.3.1.5 Sepsis 3 and Sepsis 4 data results 
CAP cohort: 

Table 4.6 – Sepsis 3 cohort IGP results for CAP cases. Significant p-values (0.05 
threshold) are represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.83 104 <0.001 [0,0.007] 

2 0.73 79 <0.001 [0,0.008] 

3 0.87 130 <0.001 [0,0.016] 

4 0.64 90 0.04 [0.029,0.055] 

 

FP cohort: 
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Table 4.7 - Sepsis 4 cohort IGP results for FP cases. Significant p-values (0.05 
threshold) are represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.80 35 0.038 [0.03,0.047] 

2 0.68 25 0.088 [0.075,0.103] 

3 0.85 40 0.014 [0.008,0.022] 

4 0.67 30 0.18 [0.177,0.161] 

 
4.3.1.6 MOSAIC results 
We computed in-group proportion values for the MOSAIC data. IGP values 

and associated p-values are reported in Table 4.8. 

Table 4.8 – IGP results for the MOSAIC data. Significant p-values (0.05 threshold) are 
represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.57 30 0.26 [0.24,0.277] 

2 0.50 10 <0.001 [0,0.251] 

3 0.98 41 <0.001 [0,0.022] 

4 0.61 28 0.13 [0.118,0.144] 

 

4.3.2 Summary of case results 
P-values for tested endotypes in the different cohorts are summarised in the 

table below. 

Table 4.9 – Summary of IGP result for tested case datasets. Significant p-values 
(threshold 0.05) highlighted in bold. 

Cohort 
name/lab 

Endotype 1 Endotype 2 Endotype 3 Endotype 4 
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KAPVAL <0.001 0.025 0.026 <0.001 

AP 2 0.029 0.122 0.003 0.017 

MARS 0.0498 <0.001 <0.001 <0.001 

Sepsis 2 <0.001 <0.001 <0.001 <0.001 

Sepsis 3 and 
Sepsis 4: 

CAP cohort 

FP cohort 

<0.001 

0.038 

<0.001 

0.088 

<0.001 

0.014 

0.04 

0.18 

MOSAIC 0.26 <0.001 <0.001 0.13 

 

An overview of significant matches between IMOFAP endotypes and the 

presented cohorts can be seen in Figure 4.9. 
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Figure 4.9- Circos view of significant comparisons between the four IMOFAP 
endotypes and the seven tested case cohorts. The name of each cohort is 

represented on the outer circle of the figure. The different shades of blue represent 
the four IMOFAP endotypes. Chords represent significant comparisons. The darker 

the chord, the more significant the comparison. 

 

4.3.3 Controls results 
IGP values were computed for cohorts of control samples. Results are 

reported in the following tables. 

Controls (MARS):  

Table 4.10 - IGP results for the MARS control data. Significant p-values (0.05 
threshold) are represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.50 10 0.233 [0.222,0.244] 

2 0.58 12 0.21 [0.199,0.222] 

3 0.94 16 0.007 [0.003,0.016] 

4 0 4 1 [0.978,1] 

 

Controls (MOSAIC):  

Table 4.11 - IGP results for the MOSAIC control data. Significant p-values (0.05 
threshold) are represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.64 33 0.023 [0.018,0.03] 

2 0.42 19 0.071 [0.03,0.15] 

3 0.92 48 <0.001 [0,0.039] 

4 0.60 30 0.019 [0.016,0.026] 
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Controls (GSE33828): 

Table 4.12 - IGP results for the MOSAIC control data. Significant p-values (0.05 
threshold) are represented in bold characters. 

Endotype 
number 

IGP value Number of 
allocated 
samples 

p-value Confidence 
interval 

1 0.71 255 <0.001 [0,0.02] 

2 0.72 173 <0.001 [0,0.03] 

3 0.86 326 NA / 

4 0.50 127 NA / 

 

4.3.4 Summary of control results 
P-values for tested endotypes in the different control cohorts are summarised 

in the table below. 

Table 4.13 - Summary of IGP result for tested control datasets. Significant p-values 
(threshold 0.05) highlighted in bold. Significant p-values (0.05 threshold) are 

represented in bold characters. 

Cohort 
name/lab 

Endotype 1 Endotype 2 Endotype 3 Endotype 4 

MARS 0.233 0.21 0.007 1 

MOSAIC 0.023 0.071 <0.001 0.019 

GSE33828 <0.001 <0.001 NA NA 

 

4.4 Conclusions, discussion and future direction 
4.4.1 Conclusions 
We hypothesised that identified subgroups in the IMOFAP cohort were not 

specific to AP and could be detected in other critical illness syndromes. We 
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confirmed this using different datasets from multiple sources and in-group 

proportion measurements. Significant results were highlighted for other AP 

cohorts. More specifically, for the KAPVAL cohort, all four subgroups were 

significantly identified, and three subgroups were found significantly matching 

data from the AP 2 cohort. Similar results were obtained for the sepsis cohorts. 

For the MARS cohort, Sepsis 2 cohort data and the CAP samples from the 

Sepsis 3 cohort all four comparisons were found to be significant. For the FP 

samples of cohort Sepsis 4, two groups were detected in this cohort with 

significant values. Some overlap was also identified between our four groups 

and a cohort of individuals with flu with two out of four comparisons being 

significant. 

When performing a validation to make sure that the same results were not 

obtained when looking at control datasets, we looked at control samples from 

the MARS and MOSAIC cohorts, and the GSE33828 dataset. For the MARS 

cohorts, we obtained one significant comparison with group 3. For the 

MOSAIC cohort, three groups were significant detected (groups 1, 3 and 4). 

Moreover, for the GSE33828 dataset, we obtained two significant matches 

(plus two which might have been significant if more permutated sets had been 

generated). Thus, some common signal was highlighted. 

 

4.4.2 Discussion 
When testing for IMOFAP data-based subgroups in other cohorts, some 

comparisons did not produce significant matches. A possible reason for this 

result could be that, some samples might be mildly affected by a disease and 

are actually closer to healthy samples than case samples, thus resulting in 

smaller IGP values. It could also be explained by small cohort sizes, thus 

preventing the computation of a reliable IGP value. Another explanation would 

simply consist of some subgroups not existing for some of the studied diseases 

or individuals of a subtype not sampled for a given cohort. 
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The results obtained suggest that critical illnesses share common molecular 

signatures, but also highlight that there are also likely to be mechanistic and 

clinically-relevant differences between critical illness responses. This is 

rational, given that for example AP is a paradigm of sterile systemic 

inflammation, and faecal peritonitis is clearly due to microbial contamination. 

We also must be cautious as some of the signal was also detected in healthy 

samples. This could have several causes. For example, it could be that the 

ratio of signal/noise is too low or that some shared signal is detected which is 

in fact due to biological processes common to most samples, whether healthy 

or affected by a disease. To address this potential issue, variables could be 

filtered so that only relevant variables are selected, and the true signal can be 

tested for. Another issue which could arise and cause disease subgroup 

signals to be detected in healthy cohorts is the mislabelling of some samples. 

Indeed, some control samples might not be considered healthy because of the 

study setting or because of mislabelling. Lastly, as illustrated in Figure 4.2, 

Figure 4.3 and Figure 4.4, the overlap between our study set (IMOFAP) and 

the MARS/MOSAIC/GSE33828 datasets is quite different. This could lead in 

variables driving the differences between the different endotypes being lost. 

Furthermore, although samples from the GSE33828 data are healthy, a good 

proportion (43.4%, 382 out of 880 samples, one value being unknown) was 

above 60 years old and might have driven the cohort towards a less healthy 

gene expression signature. 

Using matched cases and controls, or having cases and controls for all studies, 

would have potentially been an asset as healthy could have been used to 

perform a normalisation on all case datasets. This could have been done for 

example using COCONUT147 (COmbat CO-Normalisation Using conTrols).  

Ensemble methods, consisting of combining the results of several algorithms 

applied to a same problem, might help in palliating the drawbacks of different 

methods and in reaching an optimal result. 
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4.4.3 Future directions 
Ultimately, this approach could be used to test for our four identified endotypes 

(IMOFAP cohort) in other available critical illness datasets. This could also be 

used to test for endotypes of other diseases and not only the subtypes 

identified in this study.  

Our findings show that the study of omics patterns, and particularly 

transcriptomics, is a potentially promising and novel approach to study severe 

systemic injury. 
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5. Chapter 5 – Endotypes in inflammatory 
bowel disease 

This chapter presents a new analysis of existing data focusing on genomic 

data in inflammatory bowel disease (IBD) affected individuals. The dataset was 

previously published (doi: 10.1371/journal.pcbi.1005934)146. The chapter is 

divided in five sections. The first section will present background and context 

information related to the starting hypothesis and data. In section two, the data 

and methods used to answer our hypothesis will be laid out. Preliminary results 

will be presented in section three. Discussion and conclusion will consist of 

sections four and five, respectively. An idea of future work that could be carried 

out given the results obtained here will also be presented throughout the 

different sections of this chapter. The input and strategy which could be 

adopted will be detailed as well as the expected output of the analysis and the 

impact it may have on the understanding of IBD. 

 

5.1 Introduction 
5.1.1 Background 
GWAS (genome-wide association studies) combined with transcription data 

has allowed the identification of loci of interest linked to given phenotypes146. 

FANTOM5127 cap analysis of gene expression (CAGE) data has allowed us to 

describe, with high accuracy, promoter specific activity and thus, to quantify 

precisely shared transcriptional regulation (coexpression) related to specific 

diseases by looking at associated loci lying within regulatory regions146. In 

short, the study of coexpression patterns has allowed us to identify loci of 

interest for the study of diseases. 

Here, we take two diseases: Crohn’s disease (CD) and ulcerative colitis (UC). 

CD and UC are the two main forms of inflammatory bowel disease (IBD). 

Spearman correlation-derived p-values from GWAS data and corresponding 
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coexpression values from the dataset described above were analysed and 

allowed the separation of loci into distinct clusters. For both CD and UC, 

identified loci were organised around two components with distinct expression 

profiles. Selection based on coexpression values permitted us to create two 

lists of loci for each disease, based on the identified components, that could 

be further studied. The hypothesis is that each one of these lists is in fact 

related to distinct forms of the diseases (endotypes), with specific underlying 

mechanisms, the stratification of which would greatly impact the care provided 

to affected patients.  

 

5.1.2 Aims and objectives 
In order to determine the mechanisms behind these disease components (two 

for CD and two for UC), corresponding to the four different lists of loci, we 

analysed genomic data and corresponding clinical data for CD and UC 

individuals. 

Two main strategies were considered. First, to understand why we observed 

distinct patterns of coexpression, we chose to use BUHMBOX148. BUHMBOX 

allows the user to discern pleiotropy from heterogeneity, that is, to distinguish 

a same locus affecting different diseases from the presence of subtypes, 

presenting similar phenotypes but being caused by distinct mechanisms.  

Here, BUHMBOX could also allow to distinguish two-hit mechanisms from 

heterogeneity. For example, if we want to distinguish if two groups of 

independent mutations are required to cause a disease from each one of these 

mutation groups being linked to a different disease subtype. 

Genetic burden can be defined as the relative risk an individual has of 

developing a disease given his or her genotype. The second considered 

strategy consisted of quantifying the genetic burden of individuals given their 

single nucleotide polymorphisms (SNPs) at the loci of interest for each one of 

the lists and correlate this burden with measured clinical features such as 

response to treatment.  
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5.2 Materials and Methods 
All analyses were run within a UNIX environment. We also used R version 

3.3.2 and Python 3.4.3 for some of the operations. 

5.2.1 SNP lists origin 
The lists of SNPs were extracted from our previous work146 using GWAS 

results obtained as part of distinct studies149–151. However, the coexpression 

analysis was performed again using newer GWAS results152,153, as the number 

of significant loci reported was much higher for the latter. I will present only the 

newest results for both BUHMBOX and the genetic burden analysis. 

Network figures corresponding to SNP subgroups for both CD and UC, as 

described in the paper146, are presented in Figure 5.1 and Figure 5.2. 

Corresponding lists of SNPs are detailed in Table 5.1 and Table 5.2.  

 

Figure 5.1 – CD coexpression network (available at 
https://baillielab.net/coexpression/view_results.php?id=cd-meta-

remapped_first_db138thresh5e-
06_complete_BACKCIRC_pj0.1_f5ep&specialdir=publish4). Each node represents  a 

GWAS significant locus                                                                                                          
Non-significant locus CD 
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SNP (red if significant at a 5e-6 threshold in the GWAS study) and each edge the 
coexpression values. The edge threshold (-log10 p-value=1.5) was chosen visually so 

that compact groups could be observed. 

Table 5.1 - SNP identifiers for the two main clusters. Only significant SNPs are 
reported. SNPs located in the same region (given distance and correlation p-value) 

were merged and are represented between square brackets. 

Cluster 1 SNPs Cluster 2 
SNPs 

[rs3024505] 

[rs7900536] 

[rs8005161] 

[rs17294280] 

[rs6545835] 

[rs2838522] 

[rs713875] 

[rs7720838] 

[rs3762313|rs3762314] 

[rs1057108] 

[rs2236262] 

[rs9909593] 

[rs1322] 

[rs2070727] 

[rs7759127] 

[rs3135395] 

[rs241448|rs241447|rs241452|rs17034|rs241451|rs241449] 

[rs2351010] 

[rs9368699] 

[rs1058207] 

[rs10065570] 
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Figure 5.2 - UC coexpression network (available at 
https://baillielab.net/coexpression/view_results.php?id=uc_db138thresh5e-

06_complete_BACKCIRC_pj0.1_f5ep&specialdir=publish4). Each node represents  a 
SNP (red if significant at a 5e-6 threshold in the GWAS study) and each edge the 

coexpression values. The edge threshold (-log10 p-value=1.56) was chosen visually 
so that compact groups could be observed. 

Table 5.2 - SNP identifiers for the two main clusters. Only significant SNPs are 
reported. SNPs located in the same region (given distance and correlation p-value) 

were merged and are represented between square brackets. 

Cluster 1 SNPs Cluster 2 SNPs 

[rs949969] 

[rs10839564] 

[rs12936231] 

[rs2427533] 

[rs9261467] 

[rs7554511] 

[rs661946] 

[rs10883371|rs10883373] 

[rs3024493] 

[rs1886730] 

[rs2382817] 

[rs9272426] 

[rs907611] 

[rs3135391] 

[rs1058026] 

[rs4934730] 

UC 
GWAS significant locus                                                                                                          
Non-significant locus 
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[rs1048709] 

[rs3812584] 

[rs12064796] 

 

In both cases we can distinctly see two distinct subgroups of SNPs.  

Networks obtained using the latest GWAS summary statistics152,153 are 

presented in Figure 5.3 and Figure 5.4. Significantly coexpressed SNPs which 

are part of node subgroups are represented in Table 5.3 and Table 5.4 

respectively. In this situation, however, we can see two subgroups for the CD 

coexpression network but only one for the UC coexpression network. 

 

  

Figure 5.3 – CD coexpression network using updated summary statistics. Each node 
represents  a SNP (red if significant at a 5e-6 threshold in the GWAS study) and each 
edge the coexpression values. The edge threshold (-log10 p-value=2.08) was chosen 

visually so that compact groups could be observed. 

 

CD 

GWAS significant locus                                                                                                          
Non-significant locus 
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Table 5.3 – SNP identifiers for the two main clusters. Only significant SNPs are 
reported. SNPs located in the same region (given distance and correlation p-value) 

were merged and are represented between square brackets. 

Cluster 1 SNPs Cluster 2 SNPs 

[rs3762314|rs3762313] 

[chr11_61602453_D] 

[chr19_10491352_I] 

[chr16_28834254_D] 

[rs61813286] 

[rs41293856|rs185786231] 

[rs6887599] 

[rs9909593] 

[rs9656588] 

[rs6545835] 

[rs2351010] 

[rs1561925] 

[rs8005161] 

[rs11738827] 

[rs1250566|rs1250567] 

[rs2149090|rs2149091|rs2149092|rs2149093] 

[rs2066848] 

[rs1057108] 

[rs4713555] 

[chr13_99934479_I] 

[rs11679791] 

[rs7734434] 

[rs4256159|rs4257569] 

[rs28510097] 

[rs9370774] 

[rs1422877|rs12651787] 
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Figure 5.4 - UC coexpression network using updated summary statistics. Each node 
represents  a SNP (red if significant at a 5e-6 threshold in the GWAS study) and each 
edge the coexpression values. The edge threshold was chosen at random as only two 

significant loci were present. 

Table 5.4 – SNP identifiers for the two main clusters. Only significant SNPs are 
reported. SNPs located in the same region (given distance and correlation p-value) 

were merged and are represented between square brackets. 

Cluster 1 SNPs 

[chr6_31240916_I] 
[rs9271171|rs9271150|rs9271151|rs536810|rs56245106|rs660895|rs11704
3483|rs111463829|rs9271148|rs9271149|rs661330|rs9271152|rs9271153|r
s9271155|rs9271156|rs535852|rs36233208|rs13205658|chr6_32577644_
D|rs17840121|rs35406945|rs9271161|rs9271162|rs9271164|rs9271165|rs

13206219|chr6_32577873_D|rs9271170|rs9271147|rs9271163] 

 

As we aimed to use the latest summary statistics files, and only CD subgroups 

could be highlighted using the coexpression analysis, we chose to focus on 

CD for all analyses presented below. 

 

UC 

GWAS significant locus                                                                                                          
Non-significant locus 
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5.2.2 Summary statistics 
5.2.2.1 Data description 
GWAS summary statistics, containing details for each tested SNP and 

association results, were retrieved from the International IBD genetics 

consortium’ website (https://www.ibdgenetics.org) for both CD and UC. As in 

the previous section, two sets of summary statistics files were available, 

corresponding to different GWAS results.  We used the most recently 

generated dataset for our analysis. A sample of the CD summary statistics file 

is presented in Table 5.5.



 

 

 

 

Table 5.5 – CD summary statistics sample from the ibdgenetics’ website. Values correspond to the latest version GWAS results152,153. Chr is 
the chromosome number where the SNP is located. SNP is the accession number and base pair position is the position in the b37 version of 
the human genome. A1 is the minor/risk allele and A2 the reference allele. Odds ratio correspond to the association between the phenotype 

(here, CD or control) and the tested alleles. P is the corresponding p-value for the odds ratio. 

Chr SNP Base pair 
position 

A1 A2 A1 frequency in 
cases 

A1 frequency in 
controls 

Odds 
ratio 

P 

10 rs185339560 2392426 T C 0.00954 0.00942 0.91 0.55 

9 rs11536848 141037798 T C 0.42 0.419 1.08 0.03 

10 rs7894567 1153222 A G 0.746 0.739 1.04 0.12 
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These summary statistics were used for the extraction of significant SNPs 

during the coexpression analysis (using a p-value threshold), to run 

BUHMBOX and as a reference to compute genetic burden values (using allele 

codes, odds ratios and p-values).  

A potential alternative would consist of re-running the coexpression analysis 

using association files generated from the available genotyping data (see 

5.2.3.1), rather than the ones described here as they corresponded to different 

datasets and did not fully overlap with the available genotyping data. 

Moreover, BUHMBOX has been tested using genotype data and association 

files which were generated using a same dataset and doing otherwise might 

result in a decreased power. 

 

5.2.2.1 Data specifications for the different analyses 
5.2.2.1.1 BUHMBOX required input 

To run BUHMBOX, summary statistics for the SNPs of interest are needed. 

Namely, the SNP identifier, the risk allele, its corresponding frequency in the 

control cohort, and the odds ratio are required. As BUHMBOX aims to detect 

heterogeneity and is based on correlations between loci, it is crucial to filter 

out correlated SNPs beforehand. Such SNPs could distort the actual structure 

that BUHMBOX is trying to detect and bias the entire analysis, thus predicting 

an incorrect result. These calculations can be performed on genotyping result 

files, as described below in 5.2.3, or using a reference panel. Both association 

files (from different GWAS results versions) can be used for the analysis, in 

order to compare the results. It would provide insights into the choice of 

suitable input when running this kind of analyses. However, we did not do it as 

part of this project. 
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5.2.2.1.2 Genetic burden analysis input 

To compute genetic burden scores, a target association file is required as well. 

Usually, the association file used to compute the genetic burden scores does 

not originate from the data on which we aim to quantify genetic burden. Indeed, 

if there are samples in common between the source (corresponding to the 

summary statistics) and the target (corresponding to the genotyping data on 

which we wish to compute the genetic burden scores) it could cause an 

inflation of the association between the disease and the scores. From the 

chosen association file, the same fields as the ones required for the 

BUHMBOX analysis will be needed. Some filtering, which will be described in 

section 5.2.3, will be performed to choose a SNP subset. Only the newest 

association file will be used here. 

 

5.2.3 Genotype data 
5.2.3.1 Data description 
The available genotype data consisted of PLINK-formatted files which we 

processed using the version 1.90p of the software. PLINK-formatted files come 

in a variety of different format but one of the most commonly used consists of 

a set of three files: 

- A bim file corresponding to a list of the different markers tested and 

containing the chromosome identifier, positional information, the SNP 

identifier, and the corresponding minor and major alleles. 

- A bed file which is a binary ped file. A ped file contains 6 fields plus 2 

fields per genotyped SNP. The first 6 fields correspond to family 

identifiers, sex and phenotype information. Each pair of following fields 

constitute allele calls. 

- A fam file containing the same 6 first fields as the bed file. 

The PLINK data we had available consisted of IBD cases (both CD and UC) 

and controls from a previous study152 which aggregated data from different 

cohorts of individuals of European descent. We chose not to add other ethnic 
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groups as they might cluster due to population structure and ’hide’ our 

subgroups of interest. Genotyping was performed using the Immunochip, a 

custom Illumina Infinium microarray platform consisting of 196,524 SNPs and 

indels. The loci selection is based on GWAS results from diseases 

characterised by immune response dysregulation. 33,977 controls samples 

were available as well as 17,897 CD and 13,768 UC samples (some of which 

were already pre-filtered). 

 

5.2.3.2 Data pre-processing 
Along with the PLINK data, quality control results were available and consisted 

of a series of filters, some of which had been applied prior to data sharing. 

These filters are described in details elsewehere154. 

 

5.2.3.2.1 Filtering of individuals 

Individuals not meeting the following criteria were not considered for the rest 

of the analysis: 

- There should be 2% or less missing data (or genotype calls) per sample 

- The heterozygosity rate of the sample should not be an outlier (based 

on F coefficient estimates with an FDR threshold of 0.01) 

- There should not be duplicates or related samples (based on pi-hat 

values with a threshold of 0.4) 

- The phenotype information should be available 

The missing phenotype and duplicated/related samples filter was applied on 

the pre-filtered set. 

 

5.2.3.2.2 Filtering of SNPs 

SNPs were filtered according to the following criteria: 
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- SNPs should not be on allosomes 

- There should be 2% or less missing data for a SNP across all batches 

- There should be 10% or less missing data for a SNP in each batch 

- The Hardy-Weinberg equilibrium, stating that the allele frequency 

should be equal to the genotype frequency, should be respected in all 

batches (for the batches containing more than 100 samples and with an 

FDR threshold of 1E-5). 

- SNPs should also be present in the 1000 Genomes project panel (in 

order to fetch relevant statistics and perform imputation if need be) 

- Allele frequencies between the batches should be homogeneous in all 

batches (for the batches containing more than 100 samples, using a 

chi-square test with an FDR threshold of 1E-5). 

- SNPs should not be monomorphic 

- The missingness between cases and controls should be of the same 

order (with a threshold of 1E-5) 

 

5.2.3.3 Data formatting 
There are many versions of the human reference genome, therefore it is 

important to check that the versions between the association and genotyping 

results file match. Here, our association file corresponded to the b37 version 

of the genome, but the genotyping results were mapped to a previous version, 

namely b36. To update the SNP identifiers and coordinates from b36 to b37, 

we used LiftOver155. 

Whether it is for the BUHMBOX analysis or for the genetic burden analysis, it 

is important to filter correlated SNPs, as mentioned in 5.2.2.1. To identify 

correlated SNPs, linkage disequilibrium (LD) can be used and illustrates non-

random relationships between different loci. PLINK can be used to compute 

correlation values and perform pruning using the indep-pairwise option. More 

specifically, for the BUHMBOX analysis, we used a 50kb window, a variant 

count of 5 (used to shift the window) and a correlation threshold of 0.1, 

meaning that correlated SNPs within a same 50kb window will be pruned 
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successively, in a pairwise fashion, until no such correlations remain. The 

window will then be shifted by 5 variants and the above step will be 

reproduced. These parameters, which are relatively stringent, are suggested 

by BUHMBOX’s developers148. 

For the genetic burden analysis, such correlations will have a lesser impact 

and thus we chose a window size of 200kb, with a variant count of 50 and a 

threshold of 0.25. This allowed a faster analysis and it permitted to retain more 

variants, which was especially important as the original SNP lists were quite 

small. 

 

5.2.4 BUHMBOX 
BUHMBOX v0.38 was used to perform the analyses presented in this section. 

For the power calculations, the version 0.1 of the corresponding script was 

used. 

 

5.2.4.1 Power calculation 
BUHMBOX’s main script is provided with a power calculation script. This script 

takes into account the number of cases and controls, the number of loci used 

in the analysis, the risk allele frequencies of these alleles and their 

corresponding odds ratios, the estimated proportion of samples expected to 

be stratified given the current list of loci and the desired significance threshold. 

A number of simulations will then be run and will provide the user with a power 

value which can be expected from the analysis. In other words, this will 

constitute a measurement of our power to detect the heterogeneity, assuming 

it is present. Under low power, if we obtain a non-significant p-value we cannot 

say with confidence that the alternative hypothesis is true but we cannot reject 

the null hypothesis either. To increase the power of the analysis, one can 

increase the number of samples and/or loci included in the analysis, where 

possible. 



Endotypes in inflammatory bowel disease 
 

 173 

Using proportions of heterogeneity equal to 0, we can compute the false 

positive rate (FPR). This will correspond to the probability of detecting 

heterogeneity within a cohort when there is actually none. 

 

5.2.4.2 Analysis 
We applied BUHMBOX to determine if a subgroup of patients with CD 

presented independent genetic characteristics based on each defined list of 

SNPs that could uncover heterogeneity.  

BUHMBOX computes correlations between the different lists of independent 

loci and patients with CD to identify excessive positive correlations between 

input loci and a subgroup of patients. If the output p-value is significant then it 

can be inferred that a distinct subgroup exists within the studied cohort and 

that the list of imputed SNPs can be used for stratification. If this procedure is 

repeated using the second list of loci for the same phenotype and a significant 

p-value is produced, then it can be inferred that at least two subgroups are 

present in the cohort and that they can be characterised by the input lists of 

loci. 

Input data consists of a list of SNP identifiers, risk allele, minor allele frequency 

and odds ratios on one side, with imputed GWAS data on the other side to 

analyse the structure of the selected population, given these loci. These values 

were extracted from the summary statistics files, as explained previously.  

 

5.2.5 Genetic burden 
5.2.5.1 Polygenic risk score 
Polygenic risk scores (PRS) are especially relevant because most diseases 

are polygenic in nature which means that many loci will contribute differently 

to the trait studied and it can be hard to have an idea of the associated risk.  
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PRS are a way to summarise the effect of several loci at the same time. It is 

usually computed, using the information of a summary statistics file, with a 

weighted sum of the risk alleles. The simplest way of computing the PRS for 

an individual is shown in the following equation:  

!"#! 	= &'"" ∗ #)!!"
#

"$%
 

'"" corresponds to the odds-ratio for the kth	SNP and #)!!" is the number of 

risk alleles for that SNP (which can be 0, 1 or 2), as described in the summary 

statistics file in section 5.2.2. We consider here a list of n SNPs. 

We chose to use Plink to compute the scores. In Plink the formula used to 

compute polygenic risk scores is slightly different and is as follows: 

!"#! 	=
∑ '"" ∗ #)!!"#
"$%

! ∗ +!
 

Here ! corresponds to the ploidy and will be equal to 2 in this case, as we are 

looking at human data. +! is the number of non-missing SNPs for individual i. 

The advantage of adding this denominator is that scores will be scaled and 

thus it will be easier to compare scores computed using different SNP lists. It 

is important to remember that PRSs provide relative risks and thus cannot be 

directly compared rigorously if computed using different SNP lists. 

Usually, PRS are used to compare the genetic burden between individuals and 

identify those which are more (or less) at risk compared to others.  

These scores would ideally be used in a clinical setting to identify patients who 

would, for example, benefit from a closer monitoring. In a 2018 study156, 

researchers computed polygenic risk scores for a range of different diseases 

and tested them using the UK biobank data. They identified patients who had 

increased risk for these diseases. Such approaches could help the early 

detection and prevention of diseases. 
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Ideally, PRS scores are computed on a set of patients which is not overlapping 

with the set used to compute the summary statistics file. Indeed, this could 

artificially inflate the association between the disease or trait studied and the 

SNPs. Here, the available summary statistics were computed on a set of 

individuals overlapping with the individuals in the genotyping file and thus 

running the analysis using the genotyping and summary statistics data 

available would have resulted in inflated associations. The best option would 

be to get data from another source, if possible. 

For binary traits (disease vs healthy for example), the odds-ratios can be log-

transformed. Log-transformed values can then be used to weight the different 

alleles. A negative value will then correspond to a protective allele and a 

positive value to a risk allele. 

Plink will be used to compute the PRSs. 

 

5.2.5.2 Analysis plan 
Here, we used the weighted sums to quantify the genetic burden for individuals 

given the different SNP lists. We used two lists of SNPs significantly associated 

with CD (Figure 5.3 and Table 5.3). For all CD individuals, we aimed at 

computing the genetic burden associated to each one of the two lists.  

One of the final goals was to compare clinical features for individuals with a 

high genetic burden in one of the two lists, to individuals having a high genetic 

burden in the other list. To select them we considered computing the difference 

between the two PRSs and select the ones with extreme values (in the 

distribution tails, for example 5% from each side of the distribution). These two 

groups of individuals could then be compared in terms of their clinical features 

such as outcome or response to treatment. 

Another potential aim would consist of correlating PRS values for both groups 

with continuous measurements such as blood measurements and or 
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continuous clinical features, if available. However, clinical measurements 

corresponding to genotyped samples were extremely sparse and would not 

have permitted reliable comparisons here. 

 

5.2.5.3 Expected output and potential impact 
Significant association and/or correlation with clinical measurements would 

help to identify potential discriminating features between the two subgroups of 

individuals highlighted using PRSs as described in the above section. 

Moreover, it might provide insights into which individuals might respond or not 

to specific treatments and how they could be identified from a genotyping array 

for example. Individuals at higher or lower risk might also be identified early on 

in their disease trajectory. 

 

5.3 Preliminary results 
5.3.1 Input data 
After applying some additional filters to the pre-processed genotyping data, we 

retained 27,458 controls, 17,897 CD and 13,768 UC cases for the analyses. 

However, as mentioned previously in section 5.2.1, using the latest GWAS 

summary statistics files, we could only obtain distinct groups of SNPs when 

looking at CD data. Thus, all presented results pertain to CD individuals.  

After applying the SNP filtering, 144,245 SNPs remained for the analyses. 

Applying liftOver to update the SNP coordinates given the b37 version of the 

genome resulted in the loss of 7 SNPs and a final set of 144,238 SNPs. 

 

5.3.2 BUHMBOX analysis results 
Considering that our lists of SNPs ranged from 3 to 31 unique elements (see 

5.2.1), we simulated several scenarios and computed power values using the 
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tool provided along with the main BUHMBOX script. At best we would have 26 

SNPs and 17,897 CD case samples and 31 SNPs and 13,768 UC case 

samples. For both, 27,448 controls samples would be available. To mimic a 

case in which we would have performed pruning beforehand, we chose to 

select only one SNP per region, as defined by an r2 filter of 0.1 and a window 

of 100 kb (illustrated between brackets in 5.2.1). More specifically, we chose 

the most significant (given the p-value) SNP per region. This was less stringent 

than the pruning suggested by BUHMBOX and thus would result in an inflated 

power value. The aim was to get an idea of what could be done before running 

the analyses. The longest list of SNPs which could be produced this way 

corresponded to CD-associated variants as illustrated in Figure 5.3 and Table 

5.3. After this filtering, 26 SNPs remained.  

Using a significance threshold of 0.05 and proportions of heterogeneity (or 

proportion of the cohort expect to be stratified given a list of SNPs) ranging 

from 0.1 to 0.6, we obtained power values between 0.07 and 0.15. These 

values were low and indicated that, if there was indeed heterogeneity, the 

chance of a significant result would be below 0.15. 

When running BUHMBOX on pre-processed SNP lists (as described in 

5.2.3.3), no significant results were obtained. 

 

5.3.3 Polygenic risk score 
To generate polygenic risk scores, scripts allowing to compute PRSs from pre-

processed PLINK data were written and are available as part of appendices 

A.2 an A.3. 

 

5.4 Conclusion 
The findings from our previous analysis146, highlighting groups of SNPs lying 

in regulatory regions presenting similar patterns of expression, led to the 
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hypothesis that there might be subgroups within CD and UC. When using 

BUHMBOX and the latest GWAS data we could not reproduce these results, 

nor we could use them to try and determine if they corresponded to subgroups 

and to which clinical features they were related. To increase BUHMBOX’s 

power, the number of loci examined could be increased. This could be done in 

different ways. For example, the coexpression analysis could be performed 

using different parameter values. Or a different set of input data, for example 

whole-genotype data (as opposed to microarray data here), could have been 

used to increase the number of variants available for the analysis. The PRS 

analysis could not be completed at this time. 

However, this does not mean that, under different conditions, subgroups 

related to these lists of SNPs might have been confirmed using the two 

strategies presented here.   

In theory, the proposed approaches could be applied to any disease, assuming 

adequate data is available. Results from such analyses could help inform 

physicians, scientists and patients about disease pathogenesis, the relative 

risks and the likeliness of a specific patient to respond to a particular treatment, 

as well as the most likely outcome. 

 

5.5 Discussion 
The growing field of precision medicine together with the ever-increasing 

amount of molecular data collected requires more and more sophisticated 

analysis strategies to harness the information present and move towards the 

identification of relevant patient subgroups. The ultimate goal is to improve the 

quality and outcome of care provided and move further away from the ‘one fits 

all’ approach. 

Usually, endotypes are highlighted from types of omics data that are not 

genomic data. Using coexpression analysis and combining GWAS results with 

gene expression patterns highlighted subgroupings of interest. 
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To our knowledge, there are no validated methods nor tools allowing the 

analysis of results from coexpression analyses. Here, we attempted first to 

validate whether the identified subgroups of SNPs were associated with 

disease subgroups, using BUHMBOX. However, BUHMBOX gives an answer 

relative to whether or not the list of given SNPs stratifies the studied cohort but 

does not return information related to which individuals belong to which 

subgroups, or whether they are linked to clinical characteristics relevant for the 

disease under study. For this reason, we put together an analysis strategy to 

allocate individuals to different subgroups (as described in 5.2.5) and 

characterise them using available clinical measurements. 

For the PRS analysis it could be argued that the odds ratios used for the score 

computation are biased because they were computed on a full dataset, and 

thus pertain to CD rather than the potential subgroups of interest. There are 

two potential alternatives to that premise: first, allocate samples to subgroups 

given their proportion of risk alleles carried and then perform a new association 

analysis from which the results could be used as weights for the PRS 

calculation; second, to use equal weights for all loci. However, the latter could 

also bias the results. Furthermore, SNP subgroups were highlighted given their 

association with the studied trait, that is CD, as a whole, and therefore it would 

be sensible to keep using the original values. 

Subgroups in CD have been recently identified elsewhere. A study157 published 

in 2016 demonstrated that there are two distinct subtypes of CD based on 

gene expression and regulation in colon samples. Moreover, these endotypes 

exhibited differences in immune response and metabolism, and correlated with 

disease behaviour as well. Along with the manuscript, the authors provided a 

list of differentially expressed genes and regions showing variation in 

chromatin accessibility. We naively compared both these results to our two 

lists of CD-associated SNPs but found no overlap. However, as our lists did 

not contain many SNPs this could have been expected and it would be 

interesting to compare the results of both analyses as it could lead to further 

insight. 
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6. Chapter 6 – Stratification in a Parkinson’s 
disease dataset 

In year 3 of my PhD project, I undertook a 12-week placement in 

GlaxoSmithKline, Stevenage, UK, in the computational biology group. The 

project I carried out in GSK is presented in this chapter, which is composed of 

four main sections. In the first section, after introducing the project, the 

objectives are stated. Then, methods considered because of their suitability 

for the type of data analysed are presented in the second section. Results 

obtained are presented in detail in the third section. Finally, the fourth part 

consists of a discussion around the results obtained and how they relate to the 

initial hypothesis and stated aims. 

 

6.1 Introduction and aims 
6.1.1 Parkinson’s disease 
Parkinson’s disease (PD) is a progressive neurological condition. It was 

characterised for the first time in 1817 by physician James Parkinson. This 

disease results from the loss of neurons in parts of the brain and more 

specifically in a region called substantia nigra, which is involved in the 

production of dopamine. This neurotransmitter is responsible for body 

movement regulation and a reduction of its concentration in the brain will be 

the main cause of motor symptoms observed in PD cases. A combination of 

genetic and environmental factors158 is believed to be linked to the loss of 

neurons in the substantia nigra. To this day, research has highlighted several 

gene mutations that appear to be causal in PD159 but, in most cases, it seems 

that a combination of factors is involved. Environmental factors, such as head 

injury or pesticide exposure, have been associated to PD160.  

Between patients, clinical features and progression of PD cases can vary 

greatly and it is thus difficult to make predictions or understand the underlying 
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biology involved in this observed heterogeneity. In the interest of improved 

treatment, it is crucial to identify biomarkers allowing to characterise the course 

an individual with PD will take and the implications in terms of therapeutic 

strategy. 

 

6.1.2 Context 
The LRRK2 (Leucine-Rich Repeat Kinase 2) protein-coding gene was 

identified in individuals with PD more than a decade ago161,162 and has since 

been a gene of great interest in the study of PD along with other genes such 

as GBA or SNCA163. 

The G2019S mutation, occurring in the LRRK2 gene, was identified as being 

the most common PD-related mutation164–166 (respectively by G2019S 

genotyping, LRRK2 exons sequencing and LRRK2 exon 41 sequencing). 

Carriers are more likely to develop PD (reported odds ratio of 9.62 in a GWAS 

report167) over the course of their lives compared to non-carriers. Study of 

heterogeneity, in terms of disease progression, response to treatment and 

molecular signatures, in a population of PD individuals (both G2019S carriers 

and non-carriers) would allow characterisation of the differences between 

these subpopulations and identify potential non-carriers that have a similar 

molecular signature to carrier individuals. Moreover, this could shed some light 

on processes involved in PD, as well as on the reasons behind heterogeneity 

in PD. 

For example, if the difference in progression rate was found to account for 

some of the heterogeneity, an association with some biomarkers could be 

tested for. This would help in understanding the differences between slow- and 

fast-progressing individuals and uncover potential therapeutic avenues for PD-

affected patients.  
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6.1.3 Objectives 
The objectives of this study are to characterise PD heterogeneity using several 

cohorts of PD affected individuals by integrating multiple data types (clinical 

observations and omics measurements) using unsupervised clustering. More 

specifically, stratification linked to the G2019S mutation will be highlighted. 

Moreover, non-carrier individuals with similar data signatures to G2019S 

carriers will be identified in order to detect patients who might benefit from a 

similar treatment approach. Other covariates will be tested for correlations with 

clustering results such as progression rate for example (which can be 

determined using a PD rating scale, the MDS-UPDRS168). 

As a second objective, heterogeneity will also be linked to clinical 

observations. More specifically, we will try to answer the following question: 

can clinical differences be correlated with distinct molecular signatures based 

on the available data?  

 

6.1.4 Parkinson’s Progression Markers Initiative 
To answer the unmet needs in this research area, The Michael J. Fox 

Foundation for Parkinson’s Research (MJFF) has invested into PD biomarker 

research resulting into a collaborative project, The Parkinson’s Progression 

Markers Initiative (PPMI)169. The aim of this project is to collect many different 

types of data (clinical, imaging and biological) for large numbers of PD patients 

to identify biomarkers of PD progression. 

 

6.2 Materials and methods 
6.2.1 Data overview 
6.2.1.1 Selected cohorts 
As part of the PPMI, several patient cohorts were available. We selected 

cohorts containing PD affected individuals only (namely PD, GENPD and 
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REGPD). Numbers of individuals in selected cohorts and selection criteria 

applied are detailed in the following table. 

Table 6.1 – PD cohorts overview. 

Cohort 
(enrolled 

participants
) 

Descriptio
n 

PD 
diagnosi

s date 

PD 
medicatio
n status 

Mutatio
n status 

Family 
mutatio
n status 

PD (423) 
De Novo 

PD 
subjects 

Two 
years or 

less 

Not taking 
any PD 

medication 
/ / 

GENPD 
(250) 

Genetic 
Cohort 

Subjects 
/ / 

Genetic 
mutation 

in 
LRRK2, 
GBA or 
SNCA 

/ 

REGPD 
(204) 

Genetic 
Registry 
Subjects 

/ / 

Genetic mutation in 
LRRK2, GBA or 
SNCA or a first-

degree relative with 
a mutation in one of 

these genes 

 

6.2.1.2 Available data 
An overview of available data for Individuals from the described cohorts is 

presented in the next figure. Data was organised along three main items: 

“Study data” containing clinical data and biospecimen measurements, 

“Imaging data” and “Genetic data” for high-throughput experiments results. 
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Figure 6.1 – PPMI’s website available data. CSF: cerebrospinal fluid. 

Long-term follow-up was carried out as part of the study. Presented data are 

available for different time points between screening visit and up until 5 years 

after baseline visit. 

 

6.2.2 Data filtering and pre-processing 
6.2.2.1 Multi-omics analysis 
Individuals and measurements were selected based on several criteria as they 

could not all be integrated for practical and analysis-related considerations. 

Indeed, some data measurements had only been done for a limited number of 

individuals. To be able to look at different data modalities simultaneously, we 

chose to focus on baseline data as more data was available for this time point. 

Indeed, for some cohorts, recruitment was still ongoing and some data 

acquisitions remained to be done.  

 

6.2.2.1.1 Samples filtering 

Time between PD diagnosis and baseline visit could vary greatly across 

cohorts and individuals. This is illustrated in the following figure.  
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Figure 6.2 – Time between diagnosis and baseline visit in years (each bin represents 6 
months and the colour shows the distribution per selected cohort). 

To keep as many individuals as possible but also to eliminate a part of the bias 

that would arise from individuals having larger amount of time between 

diagnosis and baseline visit, we decided to retain patients who attended 

baseline visit within 7 years and a half of diagnosis. 

We chose to integrate biospecimen measurements (performed on blood, cell 

lines and cerebrospinal fluid samples), RNA-Seq, DNA methylation and 

imaging data for which most individuals had measurements performed and 

available. 

Patient filtering is summarised in Figure 6.3. 
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Figure 6.3 -Summary of filtering applied to individuals with resulting numbers for each 
data type (BL refers to baseline samples. Number of G2019S carriers retained after the 

filtering are reported as well). 

In terms of overlap between the different data types, 129 subjects were 

reported as having data available for all four investigated data types. 98 

individuals had a single data type recorded. In total 610 patients were pre-

selected. Figure 6.4 gives an overview of the overlap between the different 

data types. 

Biospec data (n=3939)

BL* only (n=936)

PD, GENPD or REGPD cohort 
(n=524)

Time between diagnosis and 
BL visit <=7.5 years (n=524)

422 PD + 101 GENPD + 1 
REGPD (80 G2019S carriers)

RNA-Seq data (n=1932)

BL only (n=712)

PD, GENPD or REGPD cohort 
(n=372)

Time between diagnosis and 
BL visit <=7.5 years (n=371)

284 PD + 84 GENPD + 3 
REGPD (94 G2019S carriers)

DNA meth data (n=524)

BL only (n=524)

PD, GENPD or REGPD cohort 
(n=330)

Time between diagnosis and 
BL visit <=7.5 years (n=330)

330 PD (3 G2019S carriers)

Imaging data (n=2292)

BL* only (n=653)

PD, GENPD or REGPD cohort 
(n=451)

Time between diagnosis and 
BL visit <=7.5 years (n=450)

323 PD + 127 GENPD (73 
G2019S carriers)
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Figure 6.4 - Venn diagram of available data types for pre-selected individuals. 

Data was then pre-processed before being analysed, as described in the 

following section.  

 

6.2.2.1.2 Variables filtering 

Regarding biospecimen analysis results and imaging data, some variables had 

many missing values, whenever this proportion was greater than 50%, the 

variable was not considered for further analysis and was subsequently 

dropped.  

 

6.2.2.1.3 Data pre-processing 

To account for the differences in time between diagnosis and baseline visit, 

corresponding to the time point analysed, we generated linear models for each 

one of the remaining variables. The time values were used as the sole 
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predictor and residuals were extracted to obtain data free from time-related 

variation. As some of the models used accepted missing data as input (such 

as MOFA) and some did not (such as SNF), we generated two sets, one kept 

unchanged and the other one imputed using k-nearest neighbours (obtained 

using the package VIM170 in R). Finally, data was centred and scaled.  

RNA-Seq count values were pre-processed using the DESeq292 package in R 

and consisted of count values. To start with, features with no counts across all 

samples were dropped. A variance stabilising transformation (vst in DESeq2), 

aiming at stabilising the variance along the range of mean values and involving 

library depth normalisation, was applied to the remaining data. Values were 

then log 2 transformed (using a prior count of 0.25) and adjusted for time 

between diagnosis and baseline visit as well as gender biases using the R 

package limma171 (with the removeBatchEffect function). We selected the 5, 

000 genes with the highest variance across the studied set.  

DNA methylation data consisted of beta-values. After dropping probes located 

on chromosomes X and Y, values were transformed to M-values as they are 

more suited for statistical analyses172. Similarly to the processing applied to 

RNA-Seq data, we retained only the 1% probes with the highest variance 

(8,448 probes retained). 

A summary of retained variables per data type is presented in the following 

table. 
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Table 6.2 - Multi-omics data overview. 

Data type 
Number of 
retained 
variables 

Variables Details 

Biospecimen 
results 4 

pTAu, tTau, 
ABeta 1-42 and 
Alpha-synuclein 

Measured in 
cerebrospinal 

fluid 

Imaging 4 

Right and left 
putamen 

Right and left 
caudate 

Dopamine 
transporter 

SPECT 
imaging 

RNA-Seq 5,000 / From whole-
blood samples 

DNA methylation 8,448 / From whole-
blood samples 

 

6.2.2.2 Time-series analysis 
In parallel to the integration of multi-omics data, to be able to study the 

dynamics of the disease, the focus was oriented towards time-series data. 

More specifically, on RNA-Seq data for which four time points (baseline, 12, 

24 and 36 months visits) were available.  

 

6.2.2.2.1 Samples filtering 
For the analysis of time-series RNA-Seq data, individuals with at least two time 

points were retained, resulting in 329 distinct patients, all from the PD cohort. 

Filtering summary and overview of available individuals for each time point are 

summarised in Figure 6.5 and Figure 6.6. 
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Figure 6.5 - Summary of filtering applied to individuals with resulting numbers for 
each data type (number of G2019S carriers retained after the filtering are reported as 

well). 

 

Figure 6.6 - Venn diagram of available time points for RNA-Seq data (BL, V04, V06 and 
V08 respectively for baseline, 12, 24 and 36 months). 

 

RNA-Seq data (n=832)

PD, GENPD or REGPD cohort 
(n=457)

Time between diagnosis and BL 
visit <=7.5 years (n=456)

At least two time points (n=329)

329 PD (266 BL, 254 V04, 260 V06 
and 259 V08 – 3 G2019S carriers)
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6.2.2.2.2 Variables filtering and data pre-processing 
The data was pre-processed using the same strategy that was applied to the 

baseline RNA-Seq data but for each time point separately. As we wished to 

study the evolution of genes across time points, we selected the same 5,000 

genes for all four time points using the 5,000 genes with the highest variance 

for the baseline time point. 

 

6.2.3 Methods 
Two published methods were selected to analyse the data, namely MOFA95 

and SNF96, both designed to integrate different data types measured in the 

same set of individuals.  

 

6.2.3.1 MOFA 
The first one, MOFA (Multi-Omics Factor Analysis), is based on multiple factor 

analysis and aims at identifying the main sources of heterogeneity from a 

dataset with multiple data modalities. Factors representing the variation, 

similar to principal components, will be inferred from the data. Each one of the 

obtained factors will represent an independent source of variation that can be 

unique to a data modality or shared between several/all. We chose to limit the 

algorithm to 10,000 iterations (to limit computational burden) or when no 

significant improvement was accomplished. The latter was defined as a gain 

equal to or smaller than 0.1 in the ELBO (Evidence Lower BOund) score, which 

is calculated relative to how well the model fits the data, a higher value was 

associated to a better model. The algorithm was deemed converging when 

one of the two conditions was met. 
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Figure 6.7 - MOFA overview from MOFA’s manuscript95. Z, the factor matrix and the 
weights matrices (W) are obtained from the decomposition of the input matrices (Y for 

the different data modalities). 

 

6.2.3.2 SNF 
The second algorithm, SNF (Similarity Network Fusion), aims at producing one 

view of a dataset, given several data types. For each data modality/type, a 

pairwise distance matrix between all the individuals must be produced 

beforehand. This will be used as input for the SNF algorithm. Given each one 

of the distance matrices, patient networks will be produced. They will then be 

updated iteratively using data from all other networks to converge towards a 

final fused network giving an overview of the data. 20 iterations were used 

when running the fusion step, based on recommendations from the original 

manuscript96 and trials. 
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Figure 6.8 - SNF overview96. For each data type, patient similarity networks are used to 
generate the fused network. 

 

6.2.3.3 Commonalities and differences between MOFA and SNF 
algorithms 
MOFA and SNF, by design, take into account differences in input datasets 

(different number of variables and different distributions for example) and thus 

will prevent one data modality from dominating the models because of a 

greater number of variables or a different variance pattern. 

The main difference between the two algorithms lies in missing data handling. 

Indeed, MOFA will deal with missing values within a variable but also missing 

modality within a sample, the caveat being a potential bias that could be 

introduced if the structure of missing data is not random. SNF will not accept 

missing values nor missing modalities and thus they have to be dealt with 

before using the model, resulting, in most cases, in heavily imputed or reduced 

datasets (patients with missing modalities will have to be dropped for 

example). 

Batch effect can negatively affect the results obtained in both cases and should 

be corrected for beforehand or checked for. 

Both these algorithms aim to, given different data modalities, produce 

representative overviews of the variation present in the data. Although similar 

in their aim, the methods use different strategies and will produce different 

outputs. We compared the results obtained using the two methods to 
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investigate their concordance and assess how relevant the information they 

generate was to our objectives.  

 

6.2.4 Analysis 
Two main strategies were adopted to explore the dataset and characterise its 

sources of variation. For each one of these strategies we applied MOFA and 

SNF, the two algorithms presented in the previous section. Both tools can be 

run using R packages respectively named MOFAtools (v0.99.0) and SNFtool 

(v2.3.0). Analyses were performed with R 3.5.1. 

The first strategy consisted of looking at pre-selected biospecimen analysis 

results, imaging, RNA-Seq and DNA methylation data. At the time, DNA 

methylation had been performed solely on PD cohort individuals thus, the 

coverage for the available data was uneven across individuals and cohorts and 

two other options were considered. The first option was to exclude DNA 

methylation data and the second option focused solely on individuals from the 

PD cohort, as the available data was more homogenously collected for this 

cohort. We also hypothesised that this might reduce the bias linked to 

integrating data from different cohorts because of the pattern of missing 

values. 

The second strategy focused on the time dimension. Data was collected 

across a time course, especially, RNA-Seq data was collected over four 

different time points. We chose to integrate each one of the time points as a 

different data modality to characterise the variation present in the data across 

the different measurements. 

 

6.2.5 Clustering 
MOFAtools and SNFtool packages allow generation of clusters based on the 

results of the analyses.  
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More specifically, using the factors (one or a combination of several) generated 

by the model implemented in MOFA, one can cluster samples using K-means 

(described in chapter 2, section 2.2.5.2.2.1 K-means). K-means is an 

unsupervised learning algorithm that will, using distances between individuals, 

generate K clusters (where K is a positive integer defined by the user). It first 

generates K random centroids that will be used as initial conditions. It will then 

work iteratively by assigning samples to their nearest centroid and by updating 

the centroids until convergence is reached.  

The output of SNF being a similarity matrix, spectral clustering can be used to 

extract clusters. It is a graph-based clustering that will compute eigenvectors 

of the Laplacian matrix (matrix used to represent a graph) and use them to 

extract clusters, using for example, K-means173. This algorithm allows the user 

to capture the global structure present in the graph. 

For both clustering strategies one must select a number of clusters that will 

result in the best partition of the data. As the ground truth, namely the cluster 

allocations, is unknown, validity and stability indices can be computed to select 

a ‘best’ solution among the set of partitions, as described in chapter 2, section 

2.2.6.  

A ‘good’ solution would consist of individuals within clusters to be more similar 

to each other (in terms of pairwise distances) than to individuals from different 

clusters. 

Many validity indices exist and can be computed to assess a clustering 

solution, they all have strengths and weaknesses related to the way they are 

computed. To choose a solution, a majority vote can be taken using the 

suggested best number of clusters suggested by each one of these indices. 

NbClust (v3.0)174, an R package, was designed to compute validity indices for 

different number of clusters and to return the best according to the values 

obtained. This allows the user to do a majority voting and choose a ‘best’ 

number of clusters. 



Stratification in a Parkinson’s disease dataset 
 

 197 

As NbClust was not compatible with the spectral algorithm used with SNF 

results, a different strategy was adopted to choose the optimal solution for 

SNF-generated solutions. Within the SNFtool package, a function is available 

to estimate the optimal number of clusters using two validity indices, the 

eigengap index as well as one computed using the Laplacian matrix 

eigenvectors structure. 

Stability is also an important feature to consider, indeed, a ‘good’ partition 

would be expected to change only slightly when under variation. To assess 

this, a nonparametric bootstrapping technique can be adopted, where a new 

set of individuals will be used to compare the new clustering solution to the 

partition obtained using the whole set of individuals. This new set will be the 

same size as the complete set and composed of a random draw with 

replacement from the same pool of subjects. This was be performed using the 

clusterboot function from the fpc (2.1-11.1)80 package. 

 

6.2.6 Downstream analyses 
6.2.6.1 Extracting the results 
For all generated models, data was clustered as described in the previous 

section. A visual inspection of the results was carried out to try to highlight a 

link between selected covariates not included in the models (such as G2019s 

carrier status or rate of progression, determined using parts I to III of the MDS-

UPDRS, a PD rating scale, integrating non-motor and motor assessments) and 

identified clusters. 

As the output of MOFA consisted of factors inferred from the data, positions of 

individuals along these factors could be extracted and visualised using, for 

example, violin plots (showing actual values as well as their distribution) or two 

or three-dimensional scatter plots. 

The SNF algorithm produced a fused similarity matrix consisting of pairwise 

similarities between analysed individuals. The matrix could then be illustrated 
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as a network (the individuals being represented as nodes and the similarity 

between them as edges) and overlapped with covariates of interest. 

Clusters obtained using the outputs of each one of the two previously 

described methods were compared as well to assess whether they conveyed 

similar information. 

 

6.2.6.2 Enrichment analyses 
To understand the biological processes driving the variation used to extract 

clusters, enrichment analyses were performed using the Reactome 

database175. 

As part of MOFAtools, the runEnrichmentAnalysis function was available to 

perform enrichment analysis using the results of MOFA and more specifically 

the factors, thus being independent of the chosen partition. This function is 

based on the idea of principal component gene set enrichment176 and uses 

loadings (relative to the importance of each variable for a given component) 

from computed factors to quantify variables contributions. 

From SNF output, for each gene, normalised mutual information (NMI) score 

was computed against SNF clustering results allowing to produce a ranked list 

of elements. NMI values are comprised between 0 and 1, the latter 

corresponding to a perfect correlation between the group labels and the 

variable of interest. ReactomePA177 (1.24.0) package was then used to 

perform enrichment on selected genes, given an NMI value threshold or 

choosing the N genes with the highest NMI values for example. 

 

6.2.6.3 Comparisons of results obtained with MOFA and SNF algorithms 
To quantify the overlap between the results obtained with both algorithms, in 

order to assess if one of the algorithms was better at identifying a structure of 

interest, we needed to make sure they were indeed comparable. For the 
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comparison to be as fair as possible, MOFA was re-run using only the subset 

of individuals that was used to run SNF. We then extracted the best number of 

clusters, as previously described in section 6.2.5. Rand index was used to 

compute a value of the overlap between the two cluster solutions. It is 

calculated using the number of elements being in the same cluster in both 

solutions, as well as the number of elements being in different clusters. As it 

was possible to rank the variables in each one of the solutions, using factor 

loadings for MOFA results and NMI for SNF results, the ranks were compared 

by computing correlation values using Spearman’s correlation coefficient. 

Input data, or a pre-selected subset, was also represented and groups 

obtained from MOFA and SNF results were added to the plot to visually identify 

potential trends and/or stratifying traits in the data. 

 

6.3 Results 
For each one of the presented strategies, only the best solution, as described 

in section 6.2.5, will be presented here. 

6.3.1 Algorithm outputs 
MOFA was applied to three different data sets, as described in the analysis 

section. Variances explained per data modality and per factor were extracted. 

The number of factors computed by MOFA was chosen as to drop any factor 

explaining less than 1% of variance in the dataset, across all data modalities. 

To determine whether an approach seemed relevant in terms of G2019S 

mutation status or progression rate, patient values along MOFA identified 

factors were plotted and values for these variables of interest overlaid. 

Similarly, SNF was applied to the same three datasets, filtered for some 

samples to avoid any missing values, as described previously. The distance 

metric used was the Euclidean distance. Whenever comparing results 

between MOFA and SNF, for consistency, MOFA was re-run on the same 

filtered set of individuals and variables. For each run, the final fused matrix will 
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be represented. On top of this same matrix, variables of interest will be overlaid 

to identify any possible stratifying trait. The contribution of each data type to 

the final matrix will also be reported. 

 

6.3.2 Results using multi-omics data 
6.3.2.1 All cohorts with RNA-Seq, imaging and biospecimen analysis 
data 
6.3.2.1.1 MOFA results 
Input data is presented in the following table. In total, this consisted of 466 

individuals, 90 of them were G2019S carriers.  

Table 6.3 - MOFA input data overview for PD cohort and multi-omics data. 

MOFA input 
data 

Biospecimen 
data RNA-Seq DNA 

methylation 
Imaging 

data 

Variables 
included 4 5 000 / 4 

Individuals 
included 448 352 / 340 

 

As represented in Figure 6.9, RNA-Seq seems to explain most of the variance 

(R2=74.70%) and imaging data only a small proportion (R2=6.31%). 

Biospecimen data contribution falls under 1%. 
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Figure 6.9 - Proportions of variance explained per factor and per data type. 

Figure 6.10 represents coordinates of all individuals for each one of the first 

five factors (the 5 representing the most variance, LF1 to LF5). Visually, to 

check whether selected covariates were stratifying, values were represented 

as colours on the coordinates graphs. For example, progression rate was 

coded as ‘fast’ or ‘slow’ given the number of MDS-UPDRS points (parts I, II 

and III) gained on average per month. If 0.5 or more points were gained per 

month, on average, then the individual was characterised as fast progressor. 

Otherwise it was classified as slow progressor. To visualise the carrier status 

of samples, different shapes of points were used given the mutation status for 

G2019S. 

No obvious grouping could be observed regarding progression rate or carrier 

status. 
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Figure 6.10 - Pairwise plots for top 5 MOFA factors (marker colour represents 
progression rate and shape represents G2019S carrier status). No obvious 

stratification can be observed. 

Enrichment using Reactome pathway database was performed. Using an FDR 

threshold of 1%, differentially expressed pathways were identified for all eight 

factors. This is summarised in Figure 6.11.  
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Figure 6.11 - Enrichment analysis results per factor. 

 

6.3.2.1.2 SNF results 

For this analysis, there were 208 individuals, 33 of them were G2019S carriers. 

Table 6.4 - SNF input data overview for PD cohort and multi-omics data. 

SNF input 
data 

Biospecimen 
data RNA-Seq DNA 

methylation 
Imaging 

data 

Variables 
included 4 5 000 / 4 

Individuals 
included 208 208 / 208 

 

As part of the SNF algorithm, affinity matrices were computed and used to 

generate a fused matrix representing similarity values between pairs of 

individuals in the networks. Zero-values are attributed to non-neighbours. Each 

data type is represented in Figure 6.12 to Figure 6.14 and can be compared to 

the obtained fused matrix plotted in Figure 6.15. The order of samples 

represented in the matrices was defined by the labels from the 2-group spectral 

clustering results using the final fused matrix (2 was identified as the optimum 

number of clusters, as described in section 6.2.5) to allow visual comparison. 
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Progression rates (as described in 6.3.2.1) and carrier status were overlaid to 

the plot for visual inspection but no stratification was observed. 

 

Figure 6.12 - Affinity matrix for biospecimen analysis results (ordered by SNF 
subgroups, progression rate and carrier status are represented). The two groups can 
be respectively seen in the top left corner and in the bottom right corner of the matrix. 
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Figure 6.13 - Affinity matrix for imaging data (ordered by SNF subgroups, progression 
rate and carrier status are represented) The two groups can be respectively seen in 

the top left corner and in the bottom right corner of the matrix. 
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Figure 6.14 - Affinity matrix for RNA-Seq data (ordered by SNF subgroups, 
progression rate and carrier status are represented as well). The two groups cannot 

be identified for this graph. 
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Figure 6.15 – Fused matrix ordered by SNF subgroups and representing progression 
rate and carrier status. Two distinct groups are observed in the top left corner and in 

the bottom right corner of the matrix. 

NMI, measuring mutual dependence, was computed between all 2-cluster 

solutions extracted from affinity matrices (for individual data types and 

complete dataset) to assess the individual and shared contributions of each 

datatype to the clusters extracted from the fused matrix obtained using SNF. 

An NMI value of one would indicate a perfect cluster overlap. The NMI values 

are low (Table 6.5) and we can see that the fused matrix is quite different from 

the individual data types matrices. This indicates that, using individual 

datatypes, it would not be possible to highlight the structure extracted from the 

fused matrix. 
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Table 6.5 - NMI concordance matrix. (A value of one will be associated to two identical 
objects and a value of zero will indicate no mutual information) 

 Fused 
results 

Biospecimen 
data 

Imaging 
data RNA-Seq 

Fused 
results 1    

Biospecimen 
data 0.02346255 1   

Imaging data 0.00991664 0.00020970 1  

RNA-Seq 0.02558910 0.01275553 0.01506157 1 

 

6.3.2.2 PD cohort individuals with RNA-Seq, DNA methylation, imaging 
and biospecimen analysis data 
6.3.2.2.1 MOFA results 
For this analysis, in total, 412 individuals were available, 7 of them were 

G2019S carriers. 

Table 6.6 -MOFA input data overview for four omics data types. 

MOFA input 
data 

Biospecimen 
data RNA-Seq DNA 

methylation 
Imaging 

data 

Variables 
included 4 5 000 8 448 4 

Individuals 
included 405 283 328 269 

 

As illustrated in Figure 6.16, RNA-Seq explains most of the variance (73.24%) 

and DNA methylation data a smaller proportion (3.29%). Biospecimen and 

imaging data contributions are both under 1%. 
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Figure 6.16 - Proportions of variance explained per factor and per data type. 

Figure 6.17 illustrates the coordinates of each individual for each one of the 

first five factors. Similarly to previous analyses, no obvious grouping could be 

extracted in regard to progression rate or carrier status. 
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Figure 6.17 - Pairwise plots for top 5 MOFA factors (marker colour represents 
progression rate and shape represents carrier status). No obvious clustering could be 

identified. 

Enrichment using Reactome gene sets was performed. With an FDR threshold 

of 1%, the following numbers of pathways were identified for each one of the 

eight factors identified using MOFA. As illustrated in Figure 6.18, the first factor 

was associated with the highest number of differentially expressed pathways. 
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Figure 6.18 - Enrichment analysis results per factor. 

 

6.3.2.2.2 SNF results 

The data consisted of 129 distinct individuals. Among them, there were 2 

G2019S carriers. 

Table 6.7 - SNF input data overview for four omics data types. 

SNF input 
data 

Biospecimen 
data RNA-Seq DNA 

methylation 
Imaging 

data 

Variables 
included 4 5 000 8 448 4 

Individuals 
included 129 129 129 129 

 

Affinity matrices used as input for the SNF algorithm are represented in Figure 

6.19 to Figure 6.22 for each data type integrated. They can then be compared 

to the obtained fused matrix plotted in Figure 6.23. Progression rate and carrier 

status are reported on each figure as well. As previously, 2 was identified as 

the optimal group number. 
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Figure 6.19 - Affinity matrix for biospecimen analysis results (ordered by SNF 
subgroups, progression rate and carrier status are represented). Highlighted 
subgroups can be respectively seen in the top-left and bottom-right corners. 
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Figure 6.20 - Affinity matrix for imaging data (ordered by SNF subgroups, progression 
rate and carrier status are represented). Clusters identified from SNF cannot be 

obviously identified when looking at the imaging data alone. 
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Figure 6.21 - Affinity matrix for RNA-Seq data (ordered by SNF subgroups, 
progression rate and carrier status are represented). Clusters identified from SNF 

cannot be seen when looking at the RNA-Seq data alone. 
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Figure 6.22 - Affinity matrix DNA methylation data (ordered by SNF subgroups, 
progression rate and carrier status are represented). Clusters identified from SNF 

cannot be seen when looking at this DNA methylation data alone. 
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Figure 6.23 - Fused matrix ordered by SNF subgroups and representing progression 
rate and carrier status. Two distinct clusters are observed. 

Normalised mutual information scores were computed between all affinity 

matrices to assess the proportion of mutual information between the different 

matrices and with the fused results matrix. 
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Table 6.8 - NMI concordance matrix (obtained from pairwise comparisons). 

 Fused 
results 

Biospecim
en data 

Imaging 
data RNA-Seq 

DNA 
methylati

on 

Fused 
results 1     

Biospecim
en data 

0.130279
31 1    

Imaging 
data 

0.002388
42 0.00022318 1   

RNA-Seq 0.013441
34 0.00000875 0.000984

31 1  

DNA 
methylatio

n 
0.024251

10 0.00016880 0.001055
44 

0.010878
27 1 

 

6.3.3 Results using RNA-Seq time points data 
6.3.3.1 MOFA results 
For this MOFA run, 329 individuals had at least two data points for which RNA-

Seq data was available. 6 of them were G2019S carriers. 

Table 6.9 - MOFA input data overview for time-series RNA-Seq data. 

MOFA input 
data BL V04 V06 V08 

Variables 
included 5 000 5 000 5 000 5 000 

Individuals 
included 266 254 260 259 

 



Stratification in a Parkinson’s disease dataset 
 

 218 

As illustrated in Figure 6.24, all four RNA-Seq time points explained a similar 

proportion of the variance (70.93% for baseline data, 74.23% for V04 data, 

79.28% for V06 and 72.41% for V08 data point). 

 

Figure 6.24 - Proportions of variance explained per factor and per data type. 

The following figure shows coordinates of all included individuals for each one 

of the top five factors. Visually, there are no relevant groups that could be 

linked to progression rate or carrier status. 
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Figure 6.25 - Pairwise plots for top 5 MOFA factors (marker colour represents 
progression rate and shape represents carrier status). No clusters related to plotted 

covariates can be observed. 

Gene set enrichment, using factor loadings, was performed as described in 

the methods section. With an FDR threshold of 1%, the following numbers of 

pathways were identified for each one of the factors extracted with MOFA (22 

in total). Factors 4, 19 and 8 were associated with a higher number of 

differentially expressed pathways. 
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Figure 6.26 - Enrichment analysis results per factor. 

 

6.3.3.2 SNF results 
As part of this analysis, 118 individuals were used and 2 of them were G2019S 

carriers. 

Table 6.10 - SNF input data overview for time-series RNA-Seq data. 

MOFA input 
data BL V04 V06 V08 

Variables 
included 5 000 5 000 5 000 5 000 

Individuals 
included 118 118 118 118 

 

Figure 6.27 to Figure 6.30 represent the affinity matrices used as input for the 

SNF algorithm for each RNA-Seq time point data. The output of the algorithm 

is represented in Figure 6.31 and is the final fused matrix. As for previous 
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analyses, samples are ordered given SNF-identified clusters and 4 was 

identified as the optimal cluster value (as explained in section 6.2.5). 

 

Figure 6.27 - Affinity matrix for RNA-Seq baseline data (ordered by SNF subgroups, 
progression rate and carrier status are represented). Some of the four clusters can be 

seen here, especially the third one from the top. 
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Figure 6.28 - Affinity matrix for RNA-Seq V04 data (ordered by SNF subgroups, 
progression rate and carrier status are represented). The four highlighted clusters 

cannot be obviously identified from this figure.  
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Figure 6.29 - Affinity matrix for RNA-Seq V06 data (ordered by SNF subgroups, 
progression rate and carrier status are represented). Cluster 4 can here be seen on 

the bottom-right part of the graph. 
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Figure 6.30 - Affinity matrix for RNA-Seq V08 data (ordered by SNF subgroups, 
progression rate and carrier status are represented). Cluster 4 can here be seen on 

the bottom-right part of the graph. 
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Figure 6.31 - Fused matrix ordered by SNF subgroups and representing progression 
rate and carrier status. Four distinct clusters are observed. 

To compare the contribution of each data type to the final result, NMI scores 

were computed. 
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Table 6.11 - NMI concordance matrix (obtained from pairwise comparisons). 

 Fused 
results BL V04 V06 V08 

Fused 
results 1     

BL 0.13119198 1    

V04 0.02239540 0.00293057 1   

V06 0.00188194 0.00868078 0.00186331 1  

V08 0.05045202 0.04864873 0.00006263 0.01544828 1 

 

Visual inspection of MOFA and SNF outputs did not highlight groupings 

correlated to G2019S carrier status or progression rate. 

 

6.3.4 Example detailed results and comparisons between 
MOFA and SNF 
6.3.4.1 MOFA model details 
Although highlighted variations did not correlate with the two variables of 

interest, namely progression rate and G2019-carrier status, it was deemed of 

interest to further investigate the observed variation. To do so, the model 

generated using the MOFA method which used biospecimen analysis results, 

imaging, RNA-Seq and DNA methylation data, for PD cohort individuals, was 

analysed in more detail.  

Specifically, we looked at Reactome enriched terms (as represented in Figure 

6.19) more closely for all 8 factors. We also used all 8 MOFA-generated factors 

to cluster the selected population and visualise those using pairwise graphs. 

We aimed at investigating the cluster structures across selected factors. 
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For each factor, the top 25 terms with FDR values under a threshold of 1% 

were highlighted in Figure 6.32 to Figure 6.39.  

 

Figure 6.32 - Enrichment results for factor 1. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 

 

Figure 6.33 - Enrichment results for factor 2. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 
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Figure 6.34 - Enrichment results for factor 3. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 

 

Figure 6.35 - Enrichment results for factor 4. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 
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Figure 6.36 - Enrichment results for factor 5. Absolute values of log-transformed p-
values are represented for top-25 pathway hits.  

 

Figure 6.37 - Enrichment results for factor 6. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 
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Figure 6.38 - Enrichment results for factor 7. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 

 

Figure 6.39 - Enrichment results for factor 8. Absolute values of log-transformed p-
values are represented for top-25 pathway hits. 

 

The optimal number of clusters for this solution was 2. This was determined 

based on internal validity indexes (most were optimal for 2 clusters, for 

example, the silhouette score was 0.45) and bootstrapping (for which stability 

was maximised when considering a 2-cluster solution, the average Jaccard 

score being 0.95). 
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As there were missing values, generated clusters did not involve all the 

samples, the two obtained clusters were respectively composed of 178 and 34 

patients. Using all pairwise combinations of the 8 MOFA factors, clusters were 

represented in the following figure. 

 

Figure 6.40 - Pairwise plots for top 8 MOFA factors (marker colour represents cluster 
allocations). No obvious clustering was extracted from this figure. 

Clusters generated were highly correlated with factor 1. This is expected as, 

even though all 8 factors were used, factor 1 represented more variance when 

compared to other factors. Recurring enrichment terms linked to factor 1 were 

immune system, interferon signalling and glycosylation. 
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As RNA-Seq is the data type contributing the most to this factor, top absolute 

loadings for all 8 factors among RNA-Seq variables are represented in Figure 

6.41. 

 

Figure 6.41 - Variables with highest absolute weights on factor 1. 

Details for these genes are available in the following table. 
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Table 6.12 - Top 10 genes details. 

ENSG gene identifier Gene name Gene type 

ENSG00000200795 RNU4-1 snRNA 

ENSG00000126860 EVI2A Protein coding 

ENSG00000163682 RPL9 Protein coding 

ENSG00000222414 RNU2-59P snRNA 

ENSG00000239039 SNORD13 snoRNA 

ENSG00000200087 SNORA73B snoRNA 

ENSG00000212402 SNORA74B snoRNA 

ENSG00000223001 RNU2-61P snRNA 

ENSG00000134419 RPS15A Protein coding 

ENSG00000114942 EEF1B2 Protein coding 

 

6.3.4.2 SNF network details 
SNF clusters were extracted (as described in section 6.2.5) and investigated, 

for the same set of variables, using only samples having all four data types 

available, as described in section 6.3.3. More specifically, the top 50 features 

(selected and ordered based on NMI values) were plotted along with the 

identified subgroups. We can see that, among the top 50 features, three data 

types are represented, biospecimen measurements, DNA methylation and 

RNA-Seq variables. Patterns of expression can also be compared and appear 

to be similar within a data type. 
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Figure 6.42 - Heatmap of top 50 features from SNF fused network (a row scaling was 
applied and dendrograms were computed using the 'correlation' metric and the 

‘complete’ method for the  columns). Cluster labels, as extracted using SNF output, 
are reported as ‘group’. 

 

6.3.4.3 Comparison between MOFA and SNF results 
For a fair comparison between solutions obtained with the two algorithms, 

MOFA was re-run with the same subset of individuals as SNF. Indeed, the 

former did not support missing data and some individuals had to be filtered 

out. The loadings of all variables from MOFA’s first factor were compared to 

NMI values obtained when comparing the best clustering solution to the input 

data. More specifically, the rankings of these variables were compared for 

each data type using Spearman’s correlation coefficient. Results are 

presented in Table 6.13. 
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Correlation coefficients were rather low, highlighting the fact that MOFA and 

SNF produced different results and thus were highlighting different features of 

the same dataset. 

Table 6.13 - Spearman's correlation results between MOFA and SNF-ranked lists of 
variables. 

MOFA vs SNF Spearman’s correlation 
coefficient 

Biospecimen variables 0.2 

DNA methylation variables -0.067 

Imaging variables 0.2 

RNA-Seq variables -0.032 

 

6.4 Discussion 
6.4.1 Limitations 
Due to the heterogeneous nature of the cohort data, there were some 

limitations to the analyses. For example, most G2019s carriers were 

represented in the GENPD and REGPD cohorts (see section 6.2.1.1) for which 

DNA methylation and follow-up RNA-Seq time points were not available. It was 

thus complex to integrate this data type while at the same time trying to 

highlight G2019s differences with non-carriers. This strategy might prove 

successful when RNA-Seq data and DNA methylation data is available for 

more GENPD and REGPD individuals. 

Although MOFA and SNF are designed specifically for multi-omics data they 

each present different limitations due to their respective designs. Being linear, 

the MOFA will miss some non-linear relationships present in the data. On the 

other hand, SNF results will be strongly impacted by the fact that SNF does 

not accept missing values and will thus be greatly dependent on inherent data 

imputation and filtering performed beforehand. 
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Moreover, MOFA and SNF results were quite different (section 6.3.4.3). One 

possible explanation was that they highlighted different features of a same 

dataset. However, as SNF input consisted of distance matrices, the choice of 

distance metric used would have greatly affected the output. It would be of 

interest to compare the results from MOFA with SNF results obtained using 

different distance metrics. 

 

6.4.2 Subsequent analyses 
Autoencoders, that can be used to produce a reduced set of features from a 

multi-modal dataset, have been successfully used in multi-omics data 

integration strategies178,179. They might be of interest to study PPMI’s data, 

however, one should carefully consider the interpretability of such results as 

well as the number of individuals integrated as a low number might lead to 

poor model performance180. 

 

6.5 RNA-Seq normalisation strategies 
In all MOFA-generated models, most of the variance was explained by RNA-

Seq data. Consequently, generated factors relied heavily on the way RNA-Seq 

data was pre-processed and more specifically, on the normalisation strategy. 

To assess whether the chosen normalisation, namely VST-transformed, was 

optimal, we tested two other strategies, namely FPKM (Fragments Per 

Kilobase Million) and TPM (Transcripts Per Kilobase Million) normalisations, 

both followed by a log 2 transformation with a 0.25 prior count. We chose to 

compare the results using biospecimen analysis results, imaging, RNA-Seq 

and DNA methylation data for PD-cohort individuals. 

PCA plots for each one of the strategies (including VST-based), using baseline 

RNA-Seq data, were created and are presented below. 
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Figure 6.43 - PCA plot of RNA-Seq normalised counts. VST-based normalisation. 
G2019S carrier status is represented. 

 

 

Figure 6.44 - PCA plot of RNA-Seq normalised counts. FPKM-based normalisation. 
G2019S carrier status is represented. 
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Figure 6.45 - PCA plot of RNA-Seq normalised counts. TPM-based normalisation. 
G2019S carrier status is represented. 

Visually, these plots are quite different and hint that MOFA may produce 

results models differing greatly. The main model presented in the results 

section was compared to models using FPKM-based expression values and 

TPM-based expression values. Factors obtained, as well as variance 

explained by each data type and factor, are presented in the following figures. 

VST-based corresponding variance plot is available in Figure 6.16. 
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Figure 6.46 - Variance distribution across views and factors for FPKM-based MOFA 
model. 
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Figure 6.47 - Variance distribution across views and factors for TPM-based MOFA 
model. 

In all results, RNA-Seq data is responsible for most of the explained variance, 

as expected. DNA methylation explains, in a single factor and usually not 

shared with other data types, a small proportion of the data variance. Although 

VST-based and FPKM-based models seem to explain a greater part of 

variance overall, it is difficult to highlight a ‘best’ model.  

Enrichment analysis was performed, as described in the material and methods 

section, for each strategy. Results are represented in the next figures in which 

the terms with an associated FDR smaller than 1% are counted, per factor. 

Enrichment from VST-based results is represented in Figure 6.18. The FPKM-

based model produced no enriched terms using this threshold. Even though 

more variance was explained for this normalisation, as opposed to TPM-based 

normalisation for example, this might not have been relevant in terms of 

biology. The characteristic ‘horseshoe’ shape181 seen in Figure 6.44 might be 

a PCA artefact sometimes observed when many values in the input set are 
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zeros. This could also explain why not biological relevance could be 

highlighted using this strategy. 

 

 

Figure 6.48 - Enriched terms with FDR<1% per factor for TPM-based model. 

The number of Reactome enriched terms was much greater when using VST-

normalised RNA-Seq counts and suggested that this normalisation strategy 

might have more power in highlighting biologically relevant features. 

Overall, we deemed the VST-based strategy to yield a greater potential in 

terms of biologically-relevant information and this strategy was used 

throughout the analyses reported in this chapter.
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7. Chapter 7 – Conclusions 
This chapter summarises the main findings and conclusions of this thesis. It is 

divided into four sections. The first and second sections present conclusions 

from the different chapters and discuss the main limitations of the different 

projects and analyses. Future directions which could be taken following what 

was done as part of this thesis project are evoked in a third section. The fourth 

and last section expose general thoughts about what might be achieved in 

precision medicine in the near future. 

 

7.1 Conclusions 
This thesis focused on the application of different clustering methods, each 

tailored to a different type of dataset, to highlight novel relevant subgroups of 

different heterogeneous diseases, namely endotypes. Disease stratification is 

a trending topic at the moment and is facilitated by the recent surge of available 

high-volume omics data. Stratification is crucial for the understanding, 

prevention and treatment of complex heterogenous diseases. Understanding 

the mechanisms involved in the heterogeneity can help, for example, the 

research of appropriate drug targets and thus has the potential to improve the 

quality and outcome of care delivered to patients. Furthermore, following the 

identification of candidate drug targets, new treatments could be developed 

and administrated to patients using for example predictive algorithms using 

information from highlighted endotypes. Moreover, patients at higher risk might 

be identified early in their disease, and could be monitored more closely. 

Conversely, patients at higher probability of recovery might be spared 

unnecessary, harmful or invasive medical procedures which under normal 

circumstances would have been offered. Using data from EHR, a parallel could 

be made between characterised heterogeneity and routine measurements 

available for affected individuals. Also, the current success of treatments 
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carried out could be compared to the endotypes distribution to determine if a 

correlation could be established and if a more successful care approach, 

among those currently existing, could be applied.  

Stable, biologically relevant and novel endotypes of AP were found after 

comparing the results of several clustering algorithms applied to time-series 

multi-omics data104. Different levels of AP severity were found in each of the 

subgroups. Importantly, aetiology was not found to be associated with 

subgroups, yet distinct pathways were found to be associated with each of the 

endotypes, confirming the involvement of discrete processes in the 

pathogenesis of AP-MODS, and bringing clarity to the heterogeneity of AP. We 

can unequivocally conclude that molecular subtypes exist in AP, which meet 

the definition of endotypes. After validation in an independent dataset, the four 

endotypes were compared to two published endotypes of another disease, 

ARDS39, and shown to be overlapping. This suggests that there may be 

commonality in some molecular mechanisms between different causes of 

critical illnesses.  

I therefore tested the omics profiles of our four AP endotypes in other types of 

critical illnesses, including sepsis and flu, which, to my knowledge, had not 

been done before.  

Next, complementary stratification strategies were applied to IBD datasets in 

order to test the hypothesis that CD and UC could be themselves further 

subdivided into endotypes. Data from a previous study146 and preliminary 

analyses carried as part of this thesis suggested that our hypothesis was a 

promising and worth of more exploration. More specifically, the hypothesis 

stating that CD was in fact a collection of different subgroups with similar 

symptoms, was found to be of great interest for its study and has been 

suggested elsewhere recently157. 

Clustering applied to PD data was then explored. More specifically, I aimed at 

highlighting how the obtained partitions were related to a given mutation: 

G2019S. Multi-omics data was used, yet found not to be relevant when trying 
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to correlate mutation status with potential subgroups. Finding individuals with 

similar profiles to individuals with the G2019S mutation will be of great interest 

for the study of PD. However, the number of mutation carrier individuals was 

too low in my project dataset to draw reliable conclusions. 

In conclusion, the analytical approaches and strategies that I have developed 

in my PhD project, and present here form the basis for a general approach to 

cohort stratification, and I hope to make a contribution to a better 

understanding of heterogenous diseases in general. 

 

7.2 Limitations 
AP endotypes were highlighted using multi-omics data in chapter 3. Different 

strategies were employed to generate stratified sets of individuals and 

compare them fairly and rigorously. Moreover, some overlap was 

demonstrated between two of the identified AP endotypes and ARDS 

endotypes identified previously. This finding opens a new avenue to study 

critical illnesses, what similarities might exist, and how this understanding 

could be relevant for individuals needing treatment. It would be interesting to 

add more individuals to this study to further validate and refine the identified 

clusters. Higher sample numbers would also help strengthen the comparison 

with ARDS. Although the comparisons were significant, a comparison with a 

higher number of variables would be a great improvement and would help in 

understanding this overlap better. Having said that, it is also quite possible that 

a larger number of individuals analysed, and a larger number of variables may 

actually uncover greater differences between the various aetiologies of critical 

illness than it does similarities. 

In the data available to me, however, to show that this observed overlap could 

be seen in other diseases, I used the IGP to compare the 4 AP endotypes in 

other diseases, for example sepsis, as described in chapter 4. Perhaps the 

biggest challenge with the type of analyses I have undertaken lies in 
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heterogeneity in the data. It can be challenging to normalise datasets so that 

they can be compared with confidence. Indeed, with the rapid advance of data 

acquisition technologies, data formats and data processing tools change 

rapidly and are often not directly comparable. 

In chapter 5, previously identified subgroups of SNPs relevant to IBD were 

shown to be promising for patient stratification, especially in CD. Strategies to 

further characterise them are exposed and discussed. It might be interesting 

to integrate samples with more measured loci (which could be done directly by 

genome wide sequencing for example or by imputing the already available 

data using a reference panel). 

Chapter 6 summarises work focusing on PD and more specifically on its 

stratification relating to the G2019S mutation. This could help in highlighting 

non-carriers with similar profiles to carriers which could then benefit from a 

similar treatment approach for example. Stratification using different types of 

omics data, with the transcriptomics data contributing most to the variation 

observed, did not permit to highlight correlations with the mutation status as 

mutation carriers did not cluster together. However, more data and especially 

more samples with mutation status available, would constitute an invaluable 

opportunity for the understanding of PD and its relation to the G2019S 

mutation. Such datasets should be available as part of future releases of the 

PPMI’s project169.  

 

7.3 Future directions 
Many interesting projects could stem from the work presented in this thesis 

and some of them will be evoked in this section. 

For the characterisation of endotypes in AP, in addition to refining them using 

more samples, other data types could be integrated. For example, 

metagenomics datasets could be acquired and the relationships between the 

microbiome and AP subgroups explored. 
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As mentioned in the previous section, the overlap of omics profiles between 

different illnesses could be further studied by comparing more datasets. This 

could be done by comparing our four AP endotypes to other diseases but also 

to other disease endotypes, similarly to what was done with the two endotypes 

of ARDS. 

The computation of PRS seems to be promising for the study of genetic data 

and how it relates to disease stratification. This could be further studied by 

integrating more data from UC/CD but by also reproducing similar analyses in 

other diseases using the breadth of data available nowadays. 

To gain further understanding of PD, without specifically investigating the 

mutation G2019S, the identified heterogeneity could be studied in more detail 

and compared with other clinical measurements. This could be reproduced 

with more data types in order to have a complete picture of this heterogeneity 

throughout the different data types. 

 

7.4 Thoughts on precision medicine 
Precision medicine approaches have the potential to increase our 

understanding of many diseases, particularly heterogenous conditions as they 

may be described as homogenous subtypes. This could help improve 

treatment strategies for affected individuals. Biobanks, collecting different 

types of data for large number of individuals, such as UK biobank182 or the 

100,000 genome project183 and data repositories such as the Gene Expression 

Omnibus184 are yielding an enormous potential that can be used for these 

analyses and are crucial in our endeavour to understand disease pathogenesis 

better.  

A crucial step after disease stratification is to translate the findings to actual 

clinical practice and routine healthcare. Some examples of applications been 

mentioned in chapter 1 and there are ongoing projects aiming at integrating 

data in order to personalise medical care. One example is a collaboration 
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between the NHS, Illumina and Genomics England,185 which was announced 

in January 2020 that aims to provide whole genome sequencing as a routine 

diagnosis for patients affected by rare diseases and some cancers. For eligible 

individuals, this will directly improve diagnosis and guide treatment decisions. 
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Appendices 
A. Sample scripts 
A.1 time_s_dist.py 

1. '''''  

2. 3 main methods allowing to generate distances between samples with differen

t time points  

3. input data must present no missing values  

4. 2 methods to write the obtained distances in different format (json or abc)

  

5. '''   

6.    

7. import pandas as pd   
8. from scipy.spatial.distance import hamming   
9. import numpy   
10. from sklearn.decomposition.pca import PCA   
11. from sklearn.metrics import auc   
12. import rpy2   
13. from rpy2.robjects.packages import importr   
14. import rpy2.robjects as ro   
15. from rpy2.robjects import pandas2ri   
16. pandas2ri.activate()   
17. import rpy2.robjects.numpy2ri   
18. rpy2.robjects.numpy2ri.activate()   
19. import scipy.spatial.distance as d   
20.    
21.    
22. '''''  
23. Dynamic Time Warping function  
24. input: DataFrame with variables as columns and samples as rows, assumes nor

malisation+extrapolation, time point values should be a column with index='

TimePointScale' / sample identifiers should be a column with index='ID'  

25. output: numpy matrix of pairwise distances between samples  
26. '''   
27. def dtw_dist_mat(data_complete_dtw):   
28.        
29.     #extract identifier columns   
30.     data_ID = list(set(data_complete_dtw['ID']))   
31.        
32.     #create an empty array, will be used as input for dtwclust package in R

   

33.     list_ = []   
34.    
35.     #for each patient   
36.     for id_ in data_ID:   
37.         #extract part of dataframe related to this identifier   
38.         data_tmp = data_complete_dtw.loc[data_complete_dtw['ID']==id_]   
39.         #get time vector and sort dataframe according to it   
40.         data_tmp = data_tmp.sort_values('TimePointScale')   
41.         #drop time and id columns   
42.         data_tmp=data_tmp.drop('TimePointScale', axis=1)   
43.         data_tmp=data_tmp.drop('ID', axis=1)   
44.    
45.         #append the data to a list as required by dtwclust R package   
46.         list_.append(data_tmp.as_matrix())   
47.    
48.     #store data into r environment   
49.     ro.globalenv['indexes']=data_ID   
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50.     ro.globalenv['list_']=list_   
51.    
52.     #set names for each element of the list   
53.     ro.r('names(list_)<-indexes')   
54.    
55.     #load dtwclust library   
56.     ro.r('library(dtwclust)')   
57.    
58.     #perform dtw, distance matrix is extracted so method will not change th

e output   

59.     ro.r('res <- dtwclust(list_,type = "hierarchical")')   
60.    
61.     #extract distance matrix produced   
62.     ro.r('dm <- attributes(res)$distmat')   
63.    
64.     #get it from r envirnoment then format it so it can be used in Python   
65.     dm_dtw = ro.globalenv['dm']   
66.     dm_dtw = ro.r['matrix'](dm_dtw, nrow = len(data_ID))   
67.     dm_dtw = numpy.matrix(dm_dtw)   
68.        
69.     return dm_dtw   
70.    
71.    
72.    
73.    
74. '''''  
75. Area Under the Curve and PCA function  
76. input: DataFrame with variables as columns and samples as rows, assumes nor

malisation+extrapolation, time point values should be a column with index='

TimePointScale' / sample identifiers should be a column with index='ID'  

77. output: numpy matrix of pairwise distances between samples  
78. '''   
79. def auc_pca(data_,auc_suffix):   
80.        
81.     #extract identifier columns   
82.     data_ID = list(set(data_['ID']))   
83.     #create an empty dataframe where the auc values will be added   
84.     df_ = pd.DataFrame(index=range(0,len(data_ID)), columns=data_.columns.v

alues)   

85.    
86.     #compute auc for each variable for each patient   
87.     for v in data_:   
88.         #create a vector where auc values will be stored   
89.         col = []   
90.         for id_ in data_ID:   
91.    
92.             #extract value vector for this patient for this variable   
93.             df_vals = data_.loc[data_['ID']==id_][v]   
94.             #extract value vector for this patient for time   
95.             df_t = data_.loc[data_['ID']==id_]['TimePointScale']   
96.                
97.             #normalise it so that it takes into account the difference in l

enght of each serie   

98.             auc_val = auc(df_t,df_vals)/((max(df_t)-min(df_t)))   
99.    
100.             col.append(auc_val)   

101.         #add this vector as a new column to the auc values DataFrame

   

102.         df_[v] = col   

103.    

104.     #drop time and identifier columns   

105.     df_ = df_.drop('TimePointScale', axis=1)   

106.     df_ = df_.drop('ID', axis=1)   
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107.        

108.     #store variables   

109.     cols_ = df_.columns.values   

110.    

111.     #perform pca   

112.     pca = PCA(n_components=len(cols_))   

113.     pca.fit(df_)   

114.     pca_data = pca.transform(df_)   

115.     pca_data_comp_1_2 = pca_data[:,0:2]   

116.        

117.     #extract unique identifiers and add them back to the dataframe   

118.     df_['ID']=data_ID       

119.    

120.     #save AUC values   

121.     to_save = df_.copy()   

122.     to_save.to_csv(auc_suffix+'auc_values.csv')   

123.        

124.     #compute each axe's contribution   

125.     a = ((pca.explained_variance_/numpy.sum(pca.explained_variance_)

)*100)[0]   

126.     b = ((pca.explained_variance_/numpy.sum(pca.explained_variance_)

)*100)[1]   

127.        

128.     #compute Euclidean distances corrected for explained variance fo

r each axis   

129.     dm_pca = d.pdist(pca_data_comp_1_2, lambda u, v: numpy.sqrt((((u
[0]-v[0])**2)*a)+(((u[1]-v[1])**2)*b)))   

130.        

131.     #create numpy distance matrix (euclidean)   

132.     dm_pca  = d.squareform(dm_pca)   

133.     dm_pca = numpy.matrix(dm_pca)   

134.    

135.     return dm_pca   
136.    

137.    

138. '''''  

139. PCA and Trajectory function  

140. input: DataFrame with variables as columns and samples as rows, assu

mes normalisation+extrapolation, time point values should be a column with 

index='TimePointScale' / sample identifiers should be a column with index='

ID'  

141. output: numpy matrix of pairwise distances between samples  

142. '''   

143. def pca_traj(data_pre_processed):   
144.    

145.     #isolate new id and time vectors   

146.     data_ID_pca = data_pre_processed['ID']   

147.     data_TimePointScale_pca = data_pre_processed['TimePointScale']   

148.        

149.     #drop id and time vectors   

150.     data_pre_processed=data_pre_processed.drop('ID', axis=1)   

151.     data_pre_processed=data_pre_processed.drop('TimePointScale', axi

s=1)   

152.    

153.    

154.     #perform pca   

155.     pca = PCA(n_components=len(data_pre_processed.columns.values))   

156.     pca.fit(data_pre_processed)   

157.     pca_data = pca.transform(data_pre_processed)   

158.    

159.    

160.     #isolate first and second components   

161.     pca_data_comp_1 = pca_data[:,0]   
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162.     pca_data_comp_2 = pca_data[:,1]   

163.    

164.     #add projected values using pca to dataframe   

165.     pca_data_comp_1 = pd.DataFrame(pca_data_comp_1,columns=['PC1']).

reset_index(drop=True)   

166.     pca_data_comp_2 = pd.DataFrame(pca_data_comp_2,columns=['PC2']).

reset_index(drop=True)   

167.     data_pre_processed = pd.concat([pca_data_comp_1,pca_data_comp_2,

data_ID_pca,data_TimePointScale_pca],axis=1)   

168.    

169.     var1 = 'PC1'   

170.     var2 = 'PC2'   

171.     #create a dictionary to store the trajectory of each patient thr

ough the defined space   

172.     dict_traj = {}   

173.     for id_ in list(set(data_ID_pca)):   
174.         #extract data for each patient   

175.         data_ = data_pre_processed.loc[data_pre_processed['ID']==id_

]   

176.    

177.         #create an empty trajectory vector   

178.         traj = []   

179.    

180.         data_ = data_.reset_index(drop=True)   

181.    

182.         i = 0   

183.         #for each time point   

184.         for val in data_['TimePointScale']:   
185.             if i < len(data_['TimePointScale'])-1:   
186.    

187.                 #get value for current time point and for next time 

point   

188.                 val1 = data_.loc[(data_['TimePointScale'])==val][var

1][i]   

189.                 val2 = data_.loc[(data_['TimePointScale'])==val][var

2][i]   

190.    

191.                 #get the change on x axis and on y axis   

192.                 x_change = data_.loc[(data_['TimePointScale'])==data

_['TimePointScale'][i+1]][var1][i+1] - val1   

193.                 y_change = data_.loc[(data_['TimePointScale'])==data

_['TimePointScale'][i+1]][var2][i+1] - val2   

194.    

195.                 #according to the changes associate value   

196.                 if x_change>=0 and y_change>=0:   
197.                     traj.append(4)   

198.                 else:   
199.                     if x_change<0 and y_change<0:   
200.                         traj.append(2)   

201.                     else:   
202.                         if x_change<0 and y_change>=0:   
203.                             traj.append(3)   

204.                         else:   
205.                             traj.append(1)   

206.    

207.             i = i+1   

208.             #add computed trajectory to dictionary   

209.             dict_traj[id_] = traj   

210.    

211.     #create an empty matrix where the hamming distances between traj

ectories will be recorded   

212.     matrix = numpy.zeros((len(dict_traj),len(dict_traj)))   

213.    
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214.     i = 0   

215.     #compute hamming distances   

216.     for k1,elem_i in dict_traj.items():   
217.         j = 0   

218.         for k2,elem_j in dict_traj.items():   
219.             matrix[i,j] = hamming(elem_i,elem_j)   

220.    

221.             j = j +1   

222.         i = i+1   

223.      

224.     matrix = numpy.matrix(matrix)   

225.     return matrix   
226.    

227. '''''  

228. Function to create JSON files out of distance matrices  

229. input: pairwise distance Numpy matrix, array of labels (identifiers)

  

230. output: String following JSON format that can be saved as a JSON fil

e  

231. '''   

232. def create_json( datam,labels):   
233.     string_json = ''   

234.     string_json = '{"nodes":['   

235.        

236.     #create node element for each id   

237.     for label in labels:   
238.            

239.         if label == labels[len(labels)-1]:   
240.             string_json += '{"id":"'+str(int(label))+'"}'   

241.         else:   
242.             string_json += '{"id":"'+str(int(label))+'"},'   

243.    

244.     string_json += '],"links":['   

245.    

246.     #create distance element between each node pair   

247.     for label_i in labels:   
248.         for label_j in labels:   
249.    

250.             if (label_i < label_j):    
251.    

252.                 index_i = int(numpy.where(labels==label_i)[0].item(0

))   

253.                 index_j = int(numpy.where(labels==label_j)[0].item(0

))   

254.    

255.                 val=datam.item((index_i,index_j))   

256.                    

257.                 max_val = datam.max()   

258.                 min_val = datam.min()   

259.    

260.    

261.                 #scale value so that distances are between 0 and 100

   

262.                 val = (val-min_val)/(max_val - min_val)   

263.                 val = val*100   

264.    

265.    

266.                 if label_i == labels[len(labels)-
2] and label_j == labels[len(labels)-1]:   

267.                         string_json += '{"source":'+str(index_i)+',"

target":'+str(index_j)+',"value":'+str(val)+'}'   

268.                 else:   
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269.                     string_json += '{"source":'+str(index_i)+',"targ

et":'+str(index_j)+',"value":'+str(val)+'},'   

270.    

271.     string_json += ']}'   

272.    

273.     return string_json 

 
A.2 PGR_script.job 

1. #!/bin/bash   

2. #$ -cwd   

3. #$ -l h_vmem=128G   

4.    

5. . /etc/profile.d/modules.sh   

6.    

7. module add roslin/plink/1.90p   

8. module add R/3.3.2   

9. module add python/2.7.10   

10.    
11. data_folder='/exports/eddie/scratch/s1685915/ibd'   
12.    
13. ##################   
14. #LD pruning for PGR analyses   
15. #uses output from the BB pre-processing   
16. ##################   
17. #for CD + Controls   
18. plink \   
19.     --bfile ${data_folder}/results/TEAS.uncleaned.ichip.CD.Control.b37 \   
20.     --indep-pairwise 200 50 0.25 \   
21.     --allow-no-sex \   
22.     --filter-controls \   
23.     --out ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC   
24.    
25. ##################   
26. #Filter given LD values   
27. ##################   
28. #for CD + Controls   
29. plink \   
30.     --bfile ${data_folder}/results/TEAS.uncleaned.ichip.CD.Control.b37 \   
31.     --

extract ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC.prune

.in \   

32.     --allow-no-sex \   
33.     --make-bed \   
34.     --out ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC   
35.    
36. ##################   
37. #Tranform OR values   
38. ##################   
39. Rscript transform_or.R   
40.    
41. ##################   
42. #Compute PGRs   
43. ##################   
44. plink \   
45.     --

bfile ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC \   

46.     --filter-controls \   
47.     --score ${data_folder}/results/pgr_input_cd_1.txt 1 2 4 center \   
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48.     --extract results/pgr_input_cd_1.txt \   
49.     --out ${data_folder}/results/PGR.Control_1.res   
50.        
51. plink \   
52.     --

bfile ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC \   

53.     --filter-cases \   
54.     --score ${data_folder}/results/pgr_input_cd_1.txt 1 2 4 center \   
55.     --extract results/pgr_input_cd_1.txt \   
56.     --out ${data_folder}/results/PGR.CD_1.res   
57.    
58. plink \   
59.     --

bfile ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC \   

60.     --filter-controls \   
61.     --score ${data_folder}/results/pgr_input_cd_2.txt 1 2 4 center \   
62.     --extract results/pgr_input_cd_2.txt \   
63.     --out ${data_folder}/results/PGR.Control_2.res   
64.        
65. plink \   
66.     --

bfile ${data_folder}/results/TEAS.uncleaned.ichip.PGR.CD.Control.QC \   

67.     --filter-cases \   
68.     --score ${data_folder}/results/pgr_input_cd_2.txt 1 2 4 center \    
69.     --extract results/pgr_input_cd_2.txt \   
70.     --out ${data_folder}/results/PGR.CD_2.res   

 

A.3 transform_or.R 

1. library(data.table)   

2.    

3. dat_gp1 <- fread("/exports/eddie/scratch/s1685915/ibd/results/bb_input_cd_1

.txt")   

4. dat_gp2 <- fread("/exports/eddie/scratch/s1685915/ibd/results/bb_input_cd_2

.txt")   

5.    

6. fwrite(dat_gp1[,V4:=log(V4)], "/exports/eddie/scratch/s1685915/ibd/results/

pgr_input_cd_1.txt", sep="\t")   

7. fwrite(dat_gp2[,V4:=log(V4)], "/exports/eddie/scratch/s1685915/ibd/results/

pgr_input_cd_1.txt", sep="\t")   

 




