

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429709509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Real-time Event Detection in Massive Streams

Saša Petrović
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2012

Abstract

New event detection, also known as first story detection (FSD), has become very

popular in recent years. The task consists of finding previously unseen events from

a stream of documents. Despite the apparent simplicity, FSD is very challenging and

has applications anywhere where timely access to fresh information is crucial: from

journalism to stock market trading, homeland security, or emergency response. With

the rise of user generated content and citizen journalism we have entered an era of big

and noisy data, yet traditional approaches for solving FSD are not designed to deal

with this new type of data.

The amount of information that is being generated today exceeds by many orders

of magnitude previously available datasets, making traditional approaches obsolete

for modern event detection. In this thesis, we propose a modern approach to event

detection that scales to unbounded streams of text, without sacrificing accuracy. This

is a crucial property that enables us to detect events from large streams like Twitter,

which none of the previous approaches were able to do.

One of the major problems in detecting new events is vocabulary mismatch, also

known as lexical variation. This problem is characterized by different authors using

different words to describe the same event, and it is inherent to human language. We

show how to mitigate this problem in FSD by using paraphrases. Our approach that

uses paraphrases achieves state-of-the-art results on the FSD task, while still maintain-

ing efficiency and being able to process unbounded streams.

Another important property of user generated content is the high level of noise,

and Twitter is no exception. This is another problem that traditional approaches were

not designed to deal with, and here we investigate different methods of reducing the

amount of noise. We show that by using information from Wikipedia, it is possible to

significantly reduce the amount of spurious events detected in Twitter, while maintain-

ing a very small latency in detection.

A question is often raised as to whether Twitter is at all useful, especially if one

has access to a high-quality stream such as the newswire, or if it should be considered

as sort of a poor man’s newswire. In our comparison of these two streams we find that

Twitter contains events not present in the newswire, and that it also breaks some events

sooner, showing that it is useful for event detection, even in the presence of newswire.

iii

Acknowledgements

First of all, I would like to thank my supervisor Miles Osborne for his great guid-

ance and encouragement throughout my PhD. Without him, this thesis would just not

be possible. A big thanks also goes to my second supervisor Victor Lavrenko for

the many helpful discussions and the long hours we spent getting decade-old systems

working again.

I would also like to thank the EPSRC-funded Cross project (EP/J020664/1) for

providing the financial support for the work done in Chapter 7.

A number of people in ILCC (and formerly, ICCS) have made my time here very

enjoyable, despite the weather. Special thanks to Moreno Coco, Desmond Elliott,

Stella Frank, Diego Frassinelli, Tom Kwiatkowski, Mike Lewis, and Dave Matthews

for all the beer, table tennis, and climbing. Most of all, thank you for your friendship.

Marina, thank you for all the support and understanding, I am lucky to have you.

Thank you for being there.

Last, but not least, I would like to thank my mother. I cannot hope to list all the

things for which I am grateful to you. Thank you for everything.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Saša Petrović)

v

Table of Contents

1 Introduction 1
1.1 Organization of the Thesis . 6

2 Background 9
2.1 Topic Detection and Tracking . 9

2.1.1 Subtasks . 10

2.1.2 Difference Between TDT and Other IR Tasks 11

2.1.3 Approaches to Solving FSD 13

2.2 Approximate Nearest Neighbor . 17

2.2.1 Locality Sensitive Hashing 19

2.2.2 Locality Sensitive Hashing with Random Hyperplanes 23

2.3 Event Detection in Social Media . 25

2.4 Streaming . 31

2.5 Conclusion . 33

3 Twitter Event Corpus 35
3.1 Motivation . 35

3.2 First Story Detection Evaluation . 36

3.3 Annotation Process . 37

3.4 Corpus Statistics . 40

3.5 Conclusion . 43

4 First Story Detection in a Streaming Setting 45
4.1 Motivation . 45

4.2 Scaling FSD to Unbounded Streams 46

4.2.1 Variance Reduction Strategy 47

4.2.2 Constant Time Approach . 50

4.2.3 Constant Space Approach 53

vii

4.2.4 Parallelizing Our Approach 54

4.3 Experiments . 55

4.3.1 Scaling and Variance Reduction 55

4.3.2 Effect of LSH Parameters 60

4.3.3 Why is Approximate Better than Exact? 62

4.3.4 Effect of Parameters for Variance Reduction Strategy 64

4.3.5 Comparison of Deletion Strategies 65

4.3.6 Parallelization . 67

4.4 Conclusion . 68

5 Improving First Story Detection Using Paraphrases 71

5.1 Motivation . 71

5.2 Background . 72

5.2.1 IR Approaches . 72

5.2.2 Machine Learning Approaches 73

5.2.3 Paraphrases . 74

5.3 Using Paraphrases in First Story Detection 74

5.3.1 Paraphrasing as a Bilinear Form 74

5.3.2 Using Paraphrases with LSH 76

5.3.3 Approximating Q1/2 . 78

5.3.4 Where Do Paraphrases Come From? 82

5.4 Experiments . 84

5.4.1 Efficacy of Query Expansion for First Story Detection 84

5.4.2 Efficiency . 90

5.4.3 Exploring the Use of Paraphrases in Twitter 91

5.5 Conclusion . 94

6 Combining Novelty with Latency 97

6.1 Clustering with Latency . 98

6.2 Evaluating Event Detection in Noisy Streams 102

6.2.1 Computing Recall . 103

6.2.2 Computing Precision . 104

6.3 Baseline Approach – Bursty Clusters 105

6.4 Conclusion . 108

viii

7 Cross-stream Event Detection 109
7.1 Data . 109

7.1.1 Wikipedia Page Views . 110

7.1.2 Newswire . 110

7.2 Combining Twitter and Wikipedia 112

7.2.1 Detecting Spikes in Wikipedia 113

7.2.2 Manually Determining the Lag 114

7.2.3 Automatically Determining the Lag 116

7.2.4 Improving the Quality of Detected Events Using Wikipedia . 120

7.3 Combining Twitter and Newswire 125

7.3.1 Manually Determining the Lag 126

7.3.2 Automatically Determining Lag Between News and Twitter . 126

7.3.3 Can Twitter Help Newswire and Vice Versa? 129

7.4 Conclusion . 144

8 Conclusion 145

Bibliography 147

ix

List of Figures

2.1 Probability of two points colliding. 23

2.2 Probability of two points colliding in at least one hash table. 24

2.3 A set of points partitioned by random hyperplanes into buckets. 25

2.4 Example of search in LSH. 26

2.5 Example of LSH failing to find the nearest neighbor. 27

4.1 Comparison of FSD DET curves. 58

4.2 Comparison of processing time. 59

4.3 Effect of the backoff threshold on Cmin. 65

4.4 Recent vs. uniform strategy for backoff on TDT. 66

4.5 Recent vs. uniform strategy for backoff on Twitter. 66

4.6 Comparison of deletion strategies on TDT5 data. 67

4.7 Comparison of deletion strategies on Twitter data. 68

4.8 Effect of parallelization on running time. 69

5.1 Distribution of first stories with and without paraphrasing. 87

5.2 Distribution of non-first stories with and without paraphrasing. 88

5.3 Effect of noise in paraphrases on FSD performance. 90

5.4 Running time on TDT5 for different systems. 91

5.5 Effect of document length on document expansion. 94

6.1 Frequency of the hashtag #ww in Twitter. 105

6.2 Frequency of the hashtag #followfriday in Twitter. 105

6.3 Frequency of the word Zanzibar in Twitter. 106

6.4 Frequency of the word ferry in Twitter. 106

6.5 Effect of latency on precision and recall of detected events. 107

7.1 Page view counts for pages Amy Winehouse and Glasgow. 111

7.2 Distribution of news sources. 112

xi

7.3 Histogram of page view counts for Betty Ford. 115

7.4 Histogram of page view counts for Motorola. 115

7.5 Distances from Twitter first stories to nearest Wikipedia title. 119

7.6 Cross-correlation between Twitter and Wikipedia streams. 120

7.7 Wiki NN strategy for different thresholds of page spikiness. 123

7.8 Comparison of Wikipedia-based and size-based strategies. 124

7.9 Distances from Twitter first stories to the nearest newswire story. . . . 128

7.10 Cross-correlation between Twitter and newswire streams. 129

7.11 Correlation between Twitter and newswire on a finer scale. 130

7.12 Effect of expanding tweets on detection cost. 134

7.13 “Wrong lead” problem. 141

7.14 Breakdown of events where Twitter leads into broad categories. 143

xii

List of Tables

2.1 Comparison of event detection approaches in the literature. 31

3.1 FSD contingency table. 36

3.2 Corpus statistics. 42

4.1 Comparison of our system to a state-of-the-art system. 57

4.2 FSD results for Twitter data. 59

4.3 Effect of k and L on the Cmin score in TDT5. 60

4.4 Effect of k and L on running time. 62

5.1 TDT5 results when using paraphrases. 86

5.2 Comparison on the May subset of TDT5. 86

5.3 Twitter results when using paraphrases. 89

5.4 Example of the paraphrase coverage problem in Twitter. 92

5.5 Coverage results for TDT and Twitter. 92

5.6 Example where paraphrases hurt performance. 93

5.7 Example where paraphrases cannot help. 93

6.1 Example of novel, non-event related tweets. 99

6.2 Detection cost for our and the UMass system. 102

7.1 Lag between events in Twitter and Wikipedia. 117

7.2 Lag between events in Twitter and newswire. 127

7.3 News events not found in our Twitter data. 135

7.4 Statistics about true events not appearing in newswire. 137

7.5 Examples of events reported on Twitter, but not in newswire. 138

7.6 Summary of filtering steps. 142

7.7 Examples of events where Twitter leads newswire. 143

xiii

List of Algorithms

1 Traditional first story detection using an inverted index 15

2 Preprocessing step of the locality-sensitive hashing algorithm. 20

3 Querying step of the locality-sensitive hashing algorithm. 21

4 First story detection with approximate-NN based on LSH. 47

5 First story detection based on LSH with variance reduction. 49

6 Variance reduction with recency. 51

7 Variance reduction with uniform strategy. 52

8 Parallelized FSD based on LSH. 56

9 Online single-link clustering with latency. 101

10 Algorithm for computing recall. 104

11 Event detection from a stream of Wikipedia page views. 114

12 Wiki NN algorithm. 121

13 Wiki spike algorithm. 122

xv

Chapter 1

Introduction

News only has value while it is still news. Finding out about a major earthquake two

days after it happened, while still informative, is probably not very useful. While there

is a continuum of allowed latency depending on the type of news, it should be fairly

clear that the sooner we hear about the news, the better. Central to the notion of news is

the concept of an event – something that happens at a specific time and place. It is not

surprising that there is a lot of interest in reporting new events as soon as they happen.

Many new events happen in the world every day. Depending on the event’s impor-

tance and scale, it may receive anywhere from none to thousands of follow-up stories

reported in the newswire. Clearly, it would be beneficial to automatically organize this

huge stream of documents produced by news agencies every day and identify only the

new events, keeping in mind that the latency in reporting these events should be mini-

mal. This is known as new event detection or first story detection (FSD) and previous

studies have shown that it is a very challenging task (Allan et al., 2000a). In the last

few years, this problem has only become harder due to the fact that news is no longer

being reported only through newswire. We live in an age where user generated con-

tent and citizen journalism have become so mainstream that news often breaks first

in other media and is only later picked up by newswire. Nowadays, these alternative

sources of news usually come in the form of social media sites, e.g., blogs, forums,

Twitter, pinboards, imageboards, etc. Of these, we focus primarily on Twitter because

of its real-time nature – people normally tweet about events as they are happening,

sometimes reporting them before mainstream media. More prominent examples of

this include leaking of Osama bin Laden’s death1 or notifying of Michael Jackson’s

1http://www.huffingtonpost.com/2011/05/02/osama-bin-laden-death-twitter-leak_
n_856121.html.

1

2 Chapter 1. Introduction

death2 an hour before any other news reported it. There are also cases where Twitter

was the primary media to carry news – e.g., events surrounding the Arab Spring were

primarily reported on Twitter and later picked up by newswire.3

Popularity of event detection in social media is probably best illustrated by exam-

ples. One example is the company BreakingNews, best known for its Twitter account

@BreakingNews.4 This team of dozen journalists and technologists “scour the planet

for breaking news” in order to provide a real-time feed of breaking news. The company

relies on almost 300 news organizations using specific hashtags to indicate breaking

stories, as well as on the massive manual effort of their employees who look for new

stories and remove duplicate ones. Another example is the startup Storyful,5 whose

team of approximately 20 journalists constantly read new tweets and report when they

spot a new event. These examples show that event detection, especially event detec-

tion in social media, is a clear user-facing task that has generated a lot of interest (e.g.,

@BreakingNews has over 4.5 million followers on Twitter). Having a system that

can automatically perform this task in real time would be very beneficial and would

significantly reduce the human effort involved.

In this thesis, we present a modern approach to event detection that scales to

massive volumes of data without sacrificing accuracy. Furthermore, we want to be

able to exploit information coming from a variety of sources (e.g., newswire, Twitter,

Wikipedia). Thus, the main challenges that we face in this work, in addition to those

present in the original work on FSD, are scale, large amounts of irrelevant information,

and combining Twitter with other streams.

The current scale at which documents are produced in social media streams exceeds

by many orders of magnitude the scale at which documents are produced in newswire.

More importantly, we cannot think of data as a finite set of documents any more.

Rather, data today is an endless stream of documents, and modern algorithms should be

designed for working in such an environment. Therefore, making sure that an approach

can handle unlimited streams of data becomes a priority. While existing work in first

story detection has largely ignored scalability and concentrated on improving accuracy,

we will need to make sure that our approach scales well to high-volume unbounded

streams both in terms of space and time.

2http://www.techradar.com/news/world-of-tech/internet/
10-news-stories-that-broke-on-twitter-first-719532.

3http://www.huffingtonpost.com/raymond-schillinger/arab-spring-social-media_
b_970165.html.

4http://twitter.com/BreakingNews.
5http://storyful.com/.

3

Traditional FSD approaches (Allan et al., 2000b; Yang et al., 1998) assume doc-

uments come from a professionally curated stream like newswire, where all the doc-

uments are about newsworthy events. When dealing with social media streams, this

is no longer the case, and most of the documents in the stream will be spam or trivial

chatter that should never be shown to the user. Therefore, a modern event detection

approach should report as many new events, while at the same time trying to minimize

the amount of irrelevant information that is shown to the user. Because this irrelevant

information is something that the user is not interested in and distracts her from the

actual information (signal), we will use the term noise to refer to it. This term is often

used to denote unwanted, irrelevant information,6 and we found it fitting to use it here

to denote all the irrelevant information about teenage pop-stars and people’s breakfasts.

News today is reported in different streams and may not even manifest as explicit

posts (e.g., page view spikes in Wikipedia). Modern approaches should take advantage

of this fact to reduce noise and latency in reporting events. In the Topic Detection and

Tracking (TDT) project, all the different streams (newswire, radio, broadcast) have

been merged into a single stream and processed as such. This approach made sense

because all these streams discuss mostly news and are created by professionals for

public consumption. On the other hand, simply combining Twitter and, say, newswire,

is more difficult as Twitter is very different: content is generated by users, its main

purpose is not reporting news, but connecting with friends, and there is a constraint on

the length of documents. Therefore, it should be clear that we need a better way of

combining information that comes from multiple different streams.

Based on the above discussion, we define four key goals that we want our event

detection approach to satisfy:

1. Generality. This refers to the types of events that we can detect. As we shall see

in Chapter 2, most existing event detection systems can only detect a certain type

of events (e.g., earthquakes or celebrity-related events), but a modern system

should capture all event types.

2. Scalability. As we just discussed, a modern approach to event detection should

be scalable to unbounded, high-volume streams. Scalability here means that the

system should not get slower over time, and that it can process all the incoming

data as soon as it arrives.

6In the context of Twitter, the term has been used extensively in the literature, see Sankaranarayanan
et al. (2009), O’Connor et al. (2010), or Genc et al. (2011) as an example.

4 Chapter 1. Introduction

3. Real-time processing. This property is orthogonal to scalability. By real-time

processing we mean that the approach should be able to detect an event with

minimal lag, i.e., as soon as possible after the event happens. It is possible for

an approach to be scalable, but not real-time, e.g., if it can process all of the data

but requires a day of data to accumulate before it can reliably detect events. We

will see examples of such approaches in Chapter 2.

4. No supervision. Finally, we require our approach to be unsupervised in the sense

that no labeled training data or interaction from the user is needed in order for the

approach to work. While this property is not crucial for a modern approach, we

restrict ourselves to unsupervised approaches for three main reasons: i) produc-

ing even small amounts of labeled training data for event detection is a tedious

and expensive task, ii) any progress that is made with unsupervised approaches

can likely be used to improve supervised approaches, while the reverse is not

true, and iii) using supervised techniques for event detection is an entire the-

sis in itself as one has to deal with issues like the choice of algorithm, feature

engineering, efficient training and re-training, etc.

We first deal with the problem of scale by developing a new method for scalable

FSD. In its core, this method uses locality sensitive hashing (LSH), an approximate

nearest neighbor technique, to dramatically reduce our search space. However, because

of the specifics of the first story detection task, using LSH alone performs poorly. This

is why we take advantage of the probabilistic bounds provided by LSH to determine

if the provided result is good enough. When we deem that this is not the case, we

perform a limited secondary search over the most recent documents in order to find a

better solution. Using LSH together with the secondary search improves the results by

19% and reduces the variance in the results by an order of magnitude. Experiments

on TDT5 (largest available collection of documents for FSD) show that our approach

is over an order of magnitude faster than a state-of-the-art FSD system and scales to

unbounded streams, while achieving the same accuracy.

One of the problems that plagues FSD, as well as other IR and NLP tasks, is the

problem of lexical variation, sometimes also known as the vocabulary mismatch prob-

lem. Because different authors use different words to describe the same events, this

often leads to non-novel stories appearing to be new because of the different vocabu-

lary that was used. We use paraphrases as a way to alleviate this problem, making sure

that we integrate them into our efficient approach so that we are still able to handle un-

5

bounded streams. Our experiments on TDT5 data show that this approach outperforms

the previously best reported result on the FSD task by 19%, while still being efficient.

We next deal with the problem of noise in Twitter. Because most of the related

work on event detection in Twitter relies on burstiness to detect true events and filter

out noise, we take this approach as a starting point. As part of this work, we conduct

the first experiments that show the tradeoff between latency in reporting the events

and their quality. We find that a low threshold on burstiness can significantly improve

results, but that aggressive thresholds, which are frequently used in the literature, hurt

recall, while not significantly improving precision, except for high latencies.

Finally, we look at combining Twitter with other streams, namely Wikipedia and

newswire. We use Wikipedia as an additional source of information to further reduce

the amount of irrelevant events detected by our approach. While Wikipedia was used

before for the purpose of event detection, we are the first to take time into account,

and we show that doing so yields significantly better results than ignoring the time

properties. Comparing Twitter with newswire, we show that most events reported

in the newswire are also reported in Twitter, while the reverse is not true. We then

conduct the first experiment to quantify to which extent Twitter breaks news before the

newswire, and show that this happens in about 0.4% of cases. Our experiments with

Twitter and newswire show that combining the two streams can lead to more events

being detected, and with a lower latency than with either stream alone.

To summarize, the main contributions of this thesis are:

• Creation of the first FSD corpus for Twitter.

• A novel algorithm for doing scalable first story detection.

• Integrating paraphrases into our efficient FSD system, which helps reduce
the effect of vocabulary mismatch in this task.

• First evaluation of the tradeoff between latency and accuracy in FSD.

• A novel method for combining Twitter and Wikipedia that can significantly
improve the quality of detected events.

• First work on using an external collection (newswire) to expand microblogs
for the purpose of detection or first story detection.

6 Chapter 1. Introduction

• Investigation of the differences between Twitter and newswire, showing that
Twitter is indeed a very useful resource for event detection, even if one has
access to newswire.

1.1 Organization of the Thesis

In this section we give a brief overview of the rest of this thesis.

Chapter 2 gives background information that is instrumental to understanding the rest

of the thesis. We first describe the task of first story detection and the related

tasks from the Topic Detection and Tracking project. We then provide back-

ground on the area of approximate nearest neighbors methods, which is the

backbone of our scalable approach to event detection. Finally, we review the

related work on event detection in social media, focusing on event detection in

Twitter. We show that none of the current approaches fully satisfy the conditions

for an event detection system laid out in this thesis.

Chapter 3 describes the corpus of tweets that we have created for the purposes of

evaluating event detection systems. While there is an increasing amount of in-

terest in detecting events from Twitter, the progress is hampered by the lack of

a corpus that could be used to compare systems. We build the first such corpus,

which enables us to perform evaluation of first story detection on Twitter, noting

also that our corpus should be helpful to other researchers working on this and

similar tasks. This work was previously reported in Petrović et al. (2012).

Chapter 4 presents our approach to scaling event detection to unbounded streams.

Our approach based on locality sensitive hashing requires O(1) processing time

per document, and uses a bounded amount of space. In our experiments, we

show that our approach achieves state-of-the-art results on the FSD task, while

being over an order of magnitude faster than a state-of-the-art system (UMass).

We explore different aspects of our approach in order to paint a complete picture

of how to set the different parameters and what their effect is on performance.

This chapter extends work previously published in Petrović et al. (2010).

Chapter 5 shows how paraphrasing can be used for query expansion yet retain effi-

ciency. We use paraphrase information in order to improve the state-of-the-art

results in the FSD task by reducing the effect of vocabulary mismatch. We show

1.1. Organization of the Thesis 7

that our approach which uses paraphrases improves the state-of-the-art results

in FSD on the standard TDT5 corpus by 18.6% over the previously best result,

while still remaining scalable. Together with parts of Chapter 3, this work was

published in Petrović et al. (2012).

Chapter 6 deals with the noisy nature of Twitter. We first show that novelty alone,

which is what the traditional TDT approaches used, performs poorly for event

detection in Twitter. On the other hand, more recent work on event detection in

social media uses a simple strategy based on burstiness of items in some time

window. We combine these two approaches and show that this leads to signifi-

cantly improved precision of detected events. We explore the tradeoff between

the length of this time window (latency) and the accuracy of detected events and

find that using a latency higher than ten minutes does not significantly improve

results, while resulting in a system that can no longer be considered real-time.

Parts of this chapter were published in Petrović et al. (2010).

Chapter 7 looks at the problem of combining evidence from other streams for the

purpose of improving different aspects of our system. By combining Twitter and

Wikipedia, we show that it is possible to achieve significantly better precision

than the baseline approach based on burstiness, and with a much lower latency.

We show that newswire articles can be used to expand tweets, producing a better

clustering of tweets. We combine Twitter and newswire and show that Twitter

is a useful resource for event detection, even if one has access to newswire.

This is because Twitter contains information not present in the newswire, and

reports some events with lower latency. Preliminary results from this chapter

were published in Osborne et al. (2012).

Chapter 8 concludes the thesis by summarizing the contributions, and giving possible

avenues for future work.

Chapter 2

Background

The work in this thesis draws upon several fields from computer science, such as in-

formation retrieval, natural language processing, and randomized algorithms. In this

chapter we review the background from these fields necessary for understanding the

rest of the thesis. Given the recent renewed interest in event detection, only in the

context of social media, we also present a survey of the related work in this area and

explain how our work sits with respect to these approaches.

2.1 Topic Detection and Tracking

Topic Detection and Tracking (TDT) (Allan, 2002) was a project started in 1998 with

the overall goal of improving technologies related to event-based information organi-

zation tasks. The project was divided into five tasks: segmentation, tracking, detection

(also called on-line clustering), first story detection (also called new event detection),

and linking. In this thesis we focus mostly on the FSD task, but we also look at the

implication of our work on some of the other tasks. In this section we give an overview

of all five tasks and the current state-of-the-art approaches in first story detection that

this work builds upon.

Because we use the terms story, event, and topic throughout the thesis, let us start

by explaining these concepts as they were defined in the TDT project. Fiscus and Dod-

dington (2002) state that a story is a topically cohesive segment of news that includes

two or more declarative independent clauses about a single event. Furthermore, they

define a topic as a seminal event or activity, along with all directly related events and

activities. Finally, event is defined as something that happens at a specific time and

place along with all necessary preconditions and unavoidable consequences. We will

9

10 Chapter 2. Background

see in Chapter 3 that some of these definitions will have to be adapted to account for

the differences between tweets, that we use in this thesis, and newswire articles, which

were used in TDT.

2.1.1 Subtasks

2.1.1.1 Segmentation

The input to a TDT system is originally meant to come in the form of automatically

transcribed text. Because this text is not yet segmented into individual stories, the first

task of the system is to segment this stream of text. More formally, the goal of the seg-

mentation task is to segment the source stream into its constituent stories, for all audio

sources (Fiscus and Doddington, 2002). In the context of TDT, a story is “a topically

cohesive segment of news that includes two or more declarative independent clauses

about a single event.” Note that this definition of a story excludes commercials, which

means that systems are not evaluated on how well they detect boundaries between

commercials. In this thesis, we will assume that the stories are already segmented, and

there will therefore be no need to develop a segmentation system. We can assume this

because we are interested in event detection in social media, where the stories do not

come from audio sources, but rather in the form of blog posts, comments, or tweets,

all of which are naturally segmented at source.

2.1.1.2 Tracking

The goal of the tracking task is to detect stories that discuss a previously known (target)

topic (Fiscus and Doddington, 2002). The target topic is given in the form of a set of

stories that are known to be on topic. A tracking system is also given a part of the

evaluation corpus for training and is required to find other on-topic stories in the rest

of the corpus. Note that systems are trained on each topic independently; other topic’s

definitions or training stories cannot be used. Tracking is very closely linked to the

first story detection task. In fact, a tracking system can be used to solve FSD, and any

nearest-neighbor based FSD system could be used to solve tracking.

2.1.1.3 Detection

This task is concerned with detecting new, previously unseen topics. It is similar to

the tracking task in that topics are defined by clustering stories that discuss the same

2.1. Topic Detection and Tracking 11

event, but it is different in that there is no training data or example stories available.

This task is often also called on-line clustering because that is what a detection system

basically does – every new story is assigned to an existing cluster, or a new cluster is

started. Because of topic independence, evaluation in this task ignores stories which

are on-topic for more than one topic.

2.1.1.4 First Story Detection

First story detection (FSD) is considered the most difficult of the five TDT tasks (Allan

et al., 2000a). The aim of the task is to detect the very first story to discuss a previ-

ously unknown event, and in this way we can consider FSD as being a special case of

detection. If we look at detection as the problem of on-line clustering, then FSD deals

with the problem of when to start a new cluster.

2.1.1.5 Linking

Of all five TDT tasks, linking is the only one that does not have a direct application.

The linking task is simply asking, given a pair of stories, whether they discuss the same

topic. To avoid evaluating the systems on all O(N2) pairs, the story pairs are chosen by

random sampling. The point of the task was to assess how good is the core component

of a TDT system, the distance metric. Because linking is a completely artificial task

and because it ignores one of the most important problems of dealing with social media

– scale, we will not devote any more consideration to it in the remainder of the thesis.

2.1.2 Difference Between TDT and Other IR Tasks

As we mentioned before, the way the TDT task is defined is very different from most

other IR tasks. The characteristics that make TDT special are:

1. Concept of relevance. As noted in Lavrenko (2004), probably the most important

feature that sets TDT apart from other tasks is the way that relevance is defined,

or rather the fact that it is not defined. Because TDT revolves around events,

the term relevance is never used. Rather, terms like on-topic or off-topic stories

replace relevant or non-relevant documents. Note that in TDT there is no concept

of a query as it usually exists in tasks like ad-hoc retrieval. In TDT, the user’s

information need is given implicitly, either as a set of seed on-topic stories (like

in tracking), a set of stories that we do not want to detect (first story detection),

or even as an unobserved variable (detection and linking).

12 Chapter 2. Background

2. Intended users. Unlike in other retrieval scenarios (e.g., web search) where the

typical user is a casual user who does not spend a lot of time formulating his

request and is satisfied with a small number of relevant results, the typical TDT

user is envisioned to be a professional analyst, like an intelligence analyst or a

journalist. This user wants to find all the stories on an event, and is thus much

more recall oriented than other users.

3. Completely online processing. Not only do all the statistics about the data have

to be computed online, but all the algorithms have to be online (incremental) as

well. For example, this means that a large class of clustering algorithms cannot

be used for the detection task. For the FSD task, this means that the decision

about whether a story is about something new has to be made right away. Al-

lowing a certain latency (called deferral in the context of TDT) in making this

decision results in better accuracy, but at the cost of being late in making the

decision. This tradeoff between latency and performance has not been explored

much in the context of TDT, but it presents an interesting problem in the social

media domain where the high volume of posts (follow-ups and/or new stories)

means that waiting only a few minutes before making the decision could signif-

icantly improve performance.

4. Heterogeneous streams of data and multi-linguality. Finally, TDT systems are

required to deal with data from very different sources. The TDT corpora include

stories from newswire (e.g., Associated Press, New York Times), radio broad-

casts (Voice of America), and TV news shows (CNN, ABC, NileTV). Radio and

TV sources come in an audio form, but they are transcribed (both automatically

and manually), and provided to participants in this form. Furthermore, the TDT

input data comes in three languages: English, Chinese, and Arabic. This sub-

stantially complicates processing as it adds another component into the system

(machine translation). In social media, especially Twitter, things are even worse:

nearly all languages with a reasonable number of speakers are represented, and

in most cases we don’t even have the information about which language the story

is written in, or this information is wrong. Because handling this massive multi-

linguality is a major undertaking on its own, we do not address it in this thesis

and choose to work only with English stories. However, most of the techniques

we develop in this thesis are language-independent and could be readily used for

detecting events in other languages.

2.1. Topic Detection and Tracking 13

2.1.3 Approaches to Solving FSD

There are several different approaches to tackling first story detection. These include

various probabilistic approaches, IR-based approaches, and those based on supervised

classification. By far the most prevalent and most successful systems today are the

ones based on information retrieval. Because our approach is also based on IR, we will

describe this approach in more detail, but also touch upon other approaches.

2.1.3.1 IR-based approaches to FSD

Systems based on information retrieval include, among others, Allan et al. (2000b),

Yang et al. (1998), and Brants et al. (2003). In this approach, documents are repre-

sented as vectors in a space where the axes are the different terms in the collection. Let

us denote by f (w,d) the term frequency of term w in document d, i.e., the number of

times w appears in d, and by D the entire collection of documents. Then, the weight of

term w in document d is equal to:

weight(w,d) = f (w,d)∗ idf (w), (2.1)

idf =
log(|D|+0.5

|{d′:w∈d′,d′∈D}|)

log(|D|+1)
, (2.2)

where |{d′ : w ∈ d′,d′ ∈ D}| is the number of documents that contain the term w. The

weight in equation (2.1) is known as the TF-IDF weight. The inverse document fre-

quency (IDF) measures the general importance of the term. Note, however, that FSD is

inherently an online task, and this presents the question of how to handle the growing

vocabulary and the updating of corpus-level statistics, such as IDF. Generally, there are

two approaches for addressing this problem: i) use fixed statistics obtained from a cor-

pus from a related domain, or ii) incrementally update the statistics every time a new

document arrives. There is also work on combining the two above approaches (Yang

et al., 1998). In this work we choose the latter approach of incrementally updating the

statistics, which means that we cannot consider the document collection D to be static

anymore. Let us assume that document d arrived at time t, and denote by Dt the collec-

tion of documents up to that point, including d. By substituting Dt for D in (2.2), we

get the incremental TF-IDF model used in Yang et al. (1998) and Brants et al. (2003).

We use this incremental TF-IDF model as the choice of document representation in

this thesis, and it is defined as:

weightt(w,d) = f (w,d)∗
log(|Dt |+0.5

|{d′:w∈d′,d′∈Dt}|)

log(|Dt |+1)
. (2.3)

14 Chapter 2. Background

Once we have the vector representations, we can use them to calculate the similar-

ities between documents. The most widely used similarity measure in TDT, which we

will also use in this thesis, is the cosine similarity:

simt(d1,d2) = cos(d1,d2) =
∑w weightt(w,d1)∗weightt(w,d2)√

∑w weight2t (w,d1)∗
√

∑w weight2t (w,d2)
. (2.4)

It is worthwhile noting that other similarity measures have been tried in the literature.

For example, Brants et al. (2003) compared the Hellinger distance to the cosine and

found that it worked much better in their system. However, this is not a definitive proof

that Hellinger distance is better than cosine, as other FSD systems based on the cosine

distance (Yang et al., 1998) outperformed the system of (Brants et al., 2003). Other

metrics that have been used include the Kullback-Leibler divergence, Jensen-Shannon

distance, and the Clarity-based distance (Lavrenko et al., 2002).

To decide whether a new document describes an event that we have not previously

seen, we compute its novelty score. The novelty score for a document d is taken

to be one minus the cosine similarity (we will sometimes refer to this as the cosine

distance) between d and the document most similar to d (aka its nearest neighbor) in

the collection Dt :

novelty(d) = 1−max
d′∈Dt

simt(d,d′). (2.5)

If the novelty score for d is greater than a threshold θ, the system outputs a decision

YES, meaning that d describes a new event. Otherwise, document d is considered

to discuss a previously known event and the system outputs the decision NO. The

threshold θ can be determined using labeled training data. However, systems are not

required to output a hard YES/NO decision, but just the novelty score. In that case, a

threshold sweep is performed and the score corresponding to the best threshold is used

to score the system (cf. equation (3.5)).

Because this approach is so widely used, we have given its pseudocode in Algo-

rithm 1. The particular variation given in Algorithm 1 uses an inverted index for effi-

ciency, and this is the approach used by the UMass FSD system (Allan et al., 2000b).

The use of an inverted index changes the novelty score in equation (2.5) to

novelty(d) = 1− max
d′:words(d′)∩words(d)6= /0

simt(d,d′), (2.6)

where words(d) is the set of words in document d. The formulation in equation (2.6)

gives exactly the same scores as the one in equation (2.5), while avoiding comparison

to those documents that have no words in common with d.

2.1. Topic Detection and Tracking 15

Algorithm 1: Traditional first story detection using an inverted index (used by,

for example, the UMass system).
input: Novelty threshold t

1 index← []

2 foreach document d in the stream do
3 // S(d) is the set of documents that have a non-zero

4 // cosine similarity with d.

5 S(d)← /0

6 foreach term t in d do
7 foreach document d’ in index[t] do
8 update distance(d, d’)

9 S(d)← S(d)∪d′

10 end
11 index[t]← index[t] ∪ d

12 end
13 dismin(d)← 1

14 foreach document d’ in S(d) do
15 if distance(d, d’) < dismin(d) then
16 dismin(d)← distance(d, d’)

17 end

18 end
19 if dismin(d)≥ t then
20 report d as a first story

21 end

22 end

16 Chapter 2. Background

Unfortunately, this approach is not scalable to unbounded streams. To see why,

note that the max in equation (2.5) takes O(|Dt |) time to compute in the worst case.

This means that as we see more data, it takes longer and longer to process each docu-

ment. If we are to use this in a scenario where the data is unbounded, such as microblog

posts coming from Twitter, it is clear that at some point processing a single document

will take longer than it takes for a new document to arrive. By using an inverted in-

dex in equation (2.6), the average time complexity of the approach is somewhat lower,

and can be shown to be O(|Dt |b), where b is approximately 0.5, with the worst case

complexity remaining unchanged. While this means that such an approach can handle

larger datasets, it still fails to handle an unbounded stream of documents. Ideally, we

want a system where the time to process a single document does not depend on the

amount of data seen so far, i.e., we would want the time complexity to be constant.

Later in this chapter we will describe the techniques that present a key step towards

achieving this goal.

2.1.3.2 Probabilistic approaches to FSD

Besides the IR-based approaches, there is a lot of other work that deals with FSD

in different ways. One strand of research uses probabilistic models – these systems

are based mostly on non-parametric Bayesian approaches (Zhang et al., 2005; Ahmed

et al., 2011). While the non-parametric nature of these approaches makes them appeal-

ing for FSD and detection tasks because they naturally handle an increasing number

of clusters and can model cluster uncertainty, they are still lagging behind simpler ap-

proaches in terms of the official TDT evaluation metric. Also, these approaches are

computationally more expensive then other approaches, which makes them even less

suitable for processing large amounts of data, especially in an online setting. On the

other hand, probabilistic approaches are capable of presenting data to the user in a more

structured way, and have a natural probabilistic interpretation. For example, Ahmed

et al. (2011) present a system that is capable of supporting structured browsing and

creation of storylines from a stream of news.

2.1.3.3 Supervised machine learning approaches for FSD

Another direction in FSD is using supervised classifiers to arrive at the decision of

whether a new document talks about a new event. Perhaps not surprisingly, this ap-

proach has been the most successful so far. Braun and Kaneshiro (2004) used three

2.2. Approximate Nearest Neighbor 17

classifiers, combined in a majority voting scheme. The first classifier was exactly the

model used by other systems like UMass or CMU, one classifier was the standard

model, but with special handling of location features, and the last classifier was based

on detecting old documents via sentence linking. All the classifiers were trained on

TDT3 and TDT4. In the official TDT5 evaluation, this system achieved the highest

score. Kumaran and Allan (2005) presented another system that used a supervised

classifier. They output three different novelty scores: one for the full document, one

for only the named entities in the document, and one for the documents with only topic

terms kept. The intuition behind this approach is that every event is described by a set

of names that answer questions like where, who, and when, and a set of topic-specific

terms that answer the question what. If two stories match both the names and the topic

terms, they describe the same event. If either the names or the topic terms don’t match,

the stories describe different events. The three system scores are combined using a

support vector machine (Cortes and Vapnik, 1995) trained on previous TDT corpora.

To the best of our knowledge, results reported in Kumaran and Allan (2005) are the

highest reported FSD results on the TDT5 corpus (although not the highest in the of-

ficial evaluation). The obvious shortcoming of these approaches is that they require

training data, which, for FSD, is very expensive to come by.

The only work to focus on the scalability of FSD systems is Luo et al. (2007).

They introduce a number of heuristics to achieve constant document processing time:

keeping only documents from the last N days, keeping only top K terms for each

document, keeping only those documents deemed to be first stories, and comparing

documents only if they overlap in at least one of top M terms. While they are able

to achieve impressive speedups (two orders of magnitude), they do so at the expense

of accuracy – ideally, we want a system that can scale to large data, where the loss in

accuracy is a tunable parameter and more clearly understood. Furthermore, finding the

right parameter setting is not easy, and Luo et al. (2007) show that the performance

can vary substantially if the parameters are not correctly chosen. Lastly, they keep

stories from the last 30 days, which was still manageable for TDT data, but would be

infeasible for truly high-volume streams like Twitter.

2.2 Approximate Nearest Neighbor

We devote this section to the nearest neighbor problem, and its relaxation, the approx-

imate nearest neighbor. Algorithms used for efficiently solving these problems will be

18 Chapter 2. Background

crucial for our development of an efficient first story detection system that can be used

on unbounded textual streams.

Let us first consider the following nearest neighbor (NN) problem: given a set S of

n points S = {p1, . . . , pn} in some metric space X , and a query point q, find the point in

S that is closest to q. This problem can be easily solved using brute force by calculating

the distance from q to every pi in S, and picking the one that is closest. This algorithm

requires O(n) distance computations, and hence becomes prohibitively expensive for

large n. Thus, we are interested in solving the nearest neighbor problem efficiently.

Unfortunately, both empirical and theoretical results show (Weber et al., 1998) that

as the dimensionality of space X grows, it is not possible to achieve improvement in

terms of time complexity over the simple brute force algorithm. Weber et al. (1998)

showed that all the popular data- and space-partitioning methods like grid-file, k-d tree,

quadtree, R-tree, TV-tree, clustering, and many others are outperformed by simple se-

quential search whenever the dimensionality of the data is greater than 10. In fact,

Weber et al. (1998) showed an even stronger result, proving that there is no clustering

or partitioning method in high-dimensional vector spaces that does not degenerate to

sequential search once the dimension becomes sufficiently high. This is a very impor-

tant result, as the dimensionality of the vector representation of documents is typically

in the tens of thousands or even millions.

However, there are many cases where we are willing to accept a suboptimal so-

lution, as long as it is within certain bounds of the optimal one. This is why recent

research has focused on solving a relaxed version of the nearest neighbor problem,

called the approximate nearest neighbor. First, define the R-near neighbor of a point q

to be any point whose distance to q is less than or equal to R. Then, the approximate

nearest neighbor problem is defined as follows.

Definition 2.1. Randomized c-approximate R-near neighbor, or (c,R)-NN. Given a set

of points S in a d-dimensional space, parameters R > 0, δ > 0, and a query point q,

if there exists an R-near neighbor of q in S, return any cR-near neighbor of q with

probability 1−δ.

In the above definition, δ is a constant bounded away from 1. By increasing the

approximation factor c we are willing to allow for a greater error, but the algorithms

will typically be more efficient. We now define a related reporting problem that will

also be of interest.

Definition 2.2. Randomized R-near neighbor reporting problem. Given a set of points

2.2. Approximate Nearest Neighbor 19

S in a d-dimensional space, parameters R > 0, δ > 0, and a query point q, report each

R-near neighbor of q with probability at least 1−δ.

2.2.1 Locality Sensitive Hashing

The first approach to solve the approximate NN problem in sublinear time was de-

scribed in Indyk and Motwani (1998), where the authors introduced a new method

called locality sensitive hashing (LSH). The idea behind their approach is to hash query

points into buckets in such a way that the probability of collision is much higher for

points that are nearby in X .

This method relies crucially on the concept of locality-sensitive hash functions.

First, define a ball of radius r for a distance measure D as B(q,r) = {p : D(q, p)≤ r}.1

Here, D is one minus the underlying similarity measure of our space X . Let H be a

family of hash functions mapping the original space X to some universe U , H = {h :

X → U}, and consider a process where we pick h ∈ H uniformly at random. The

family H is then called (R,cR, p1, p2)-sensitive if for any two points p,q ∈ X :

• if p ∈ B(q,R) then PrH [h(p) = h(q)]≥ p1,

• if p /∈ B(q,cR) then PrH [h(p) = h(q)]≤ p2.

Here, PrH [h(p) = h(q)] is used to denote the probability that two points, p and q, hash

to the same value given a hash function h that was picked uniformly at random from

H . In order for a locality sensitive hash family to be useful, it has to satisfy p1 > p2

and c > 1. Next, for some k, define a function family G = {g : X →Uk}, such that

g(p) = (h1(p), . . . ,hk(p)), where hi ∈H are drawn randomly from H . The functions g

basically paste together the output of k hash functions h to produce a longer key,2 thus

increasing the gap between the probability of close points having the same key and the

probability of far away points having the same key. The algorithm is then split into

two phases: preprocessing, used to “index” the initial set of points S we are searching

over, and querying, where we query this index and return the answer.

Preprocessing. The preprocessing step is given in Algorithm 2. This step indexes the

set of points that we want to search over by assigning them hash codes and storing all

the points with the same code into the same bucket in a hash table. Note that, even

though the description of the algorithm assumes a static collection S we are searching

1A careful reader will notice that B(q,R) is actually the set of all R-near neighbors of q.
2Notice that the key is in our case the output of the hash function, i.e., g(p) or h(p), not p itself.

20 Chapter 2. Background

Algorithm 2: Preprocessing step of the locality-sensitive hashing algorithm.
input: Number of hash tables L, set of points S

1 for j = 1 to L do
2 g j ∼ G
3 create hashtable T[j]

4 end
5 for i = 1 to |S| do
6 for j = 1 to L do
7 insert pi in T[j][g j(pi)]

8 end

9 end

over, it is trivial to make the preprocessing step deal with streaming data. If we simply

replace the line 5 to make i loop over all the documents in the stream, this will make

the preprocessing step suitable for streams.

Querying. Pseudocode for the query phase is given in Algorithm 3. Querying refers

to the process of finding the nearest neighbor, given the preprocessed dataset and the

query. There are two different strategies for querying, each one solving a different

problem. In Strategy 1, we examine all the points that collide with the query in any

of the hash tables, and return those that are within distance R. On the other hand,

Strategy 2 stops after finding 3∗L points that are within cR of the query point. Strategy

1 solves the R-near neighbor reporting problem, while Strategy 2 solves the (c,R)-near

neighbor problem. The difference between Strategies 1 and 2 is shown in Algorithm 3

with different letters on the lines; Strategy 1 corresponds to lines labeled with a, and

Strategy 2 corresponds to lines labeled with b. Lines without any letters (e.g., the

loops) are used by both strategies.

Until now, we have given a very general description of LSH that does not rely

on any particular similarity measure. In practice, many locality sensitive families are

known for various similarity measures. For the simplest case of the distance in a d-

dimensional Hamming space Hd (the space of binary-valued vectors), the following

family is locality-sensitive:

HHamming = {hi : hi(p) = pi, p ∈ Hd}. (2.7)

A randomly drawn hash function from this family simply maps the input point p to its

value at a randomly picked coordinate. It can be shown (Indyk and Motwani, 1998)

2.2. Approximate Nearest Neighbor 21

Algorithm 3: Querying step of the locality-sensitive hashing algorithm.
input : Query point q, hash tables T containing preprocessed set S

output: A set of points S′ that are within R (Strategy 1) or cR (Strategy 2) of q

1 S′ = []

2 for j = 1 to L do
3 for p in T[j][g j(q)] do

4a if D(q, p)< R then
5a add p to S′

6a end
4b if D(q, p)< cR then
5b add p to S′

6b end
7b if |S′| ≥ 3∗L then
8b break
9b end

10 end
11 return S′

12 end

that the probabilities p1 and p2 for this family are p1 = 1−R/d and p2 = 1− cR/d.

This means that, as long as the approximation factor c is greater than one, the family

from (2.7) is locality-sensitive (p1 > p2). Other distance measures for which locality-

sensitive hash families are known include the `s distance in Rd , for any s ∈ [0,2) (An-

doni and Indyk, 2006; Datar et al., 2004),3 `2 distance on a unit hypersphere (Terasawa

and Tanaka, 2007; Andoni and Indyk, 2008), the Jaccard distance (Broder et al., 1997;

Broder, 1997), and the cosine distance (Charikar, 2002). As we have seen in Sec-

tion 2.1, the cosine distance performs best for the TDT tasks. Because in this thesis we

also heavily use the cosine distance, we will review the locality-sensitive hashing for

cosine in more detail in Section 2.2.2.

Bounds. Strategy 1 solves the randomized R-near neighbor reporting problem. To see

that this is the case, let p be any R-near neighbor of our query q. For any function

gi ∈G , the probability of p colliding with q is at least pk
1, i.e., PrG [gi(p) = gi(q)]≥ pk

1.

Then, the probability that p collides with q in at least one of the L hash tables is at least

3`s distance is the Minkowski distance of order s, defined as `s(p,q) = (∑n
i=1 |pi−qi|s)1/s.

22 Chapter 2. Background

1− (1− pk
1)

L. Thus, if we want to report any R-near neighbor p with probability at

least 1−δ, we can simply set the number of hash tables L to be

L = log1−pk
1
δ. (2.8)

While this strategy guarantees to report any R-near neighbor of q with high probability,

it unfortunately has no guarantee on the query time. In particular, the query time could

be as high as Θ(n), where n is the number of points, if the dataset is such that all the

points lie within distance R from q.

On the other hand, Strategy 2 has a clear bound of O(L) on the query time because

we only inspect a constant number of points in each of the L hash tables. Gionis et al.

(1999) showed that if we set L to Θ(nρ), where ρ = ln1/p1
ln1/p2

, this strategy solves the

randomized c-approximate R-near neighbor problem. Note that if p1 > p2, the query

time for this strategy is strictly sublinear. As we can see, the guarantee in running time

comes at the expense of solving a weaker problem than the R-near neighbor problem.

To see how the number of bits used in the hash function (parameter k) affects the

probability of collision, we look at Figure 2.1. This figure shows the probability of two

points being in the same bucket as a function of the distance between them. Here we

measure the distance in terms of the angle between the two points. Curves are plotted

for several values of k. We can see that as the two points move further apart, there is

a very low probability that they will be in the same bucket. On the other hand, if the

points are very close, the probability of collision tends to 1. This is what we referred

to as locality-sensitive behavior of the hash functions. As we add more bits to the hash

function (i.e., as we increase k), we can see that it becomes more selective, i.e., there

is a larger gap between the probabilities of close and far points colliding.

Figure 2.2 shows the effect that the number of hash tables L has on the probability

of two points colliding in at least one of the tables. We can read the figure like this:

if q is our query point and p is its nearest neighbor, the curves in Figure 2.2 show

one minus the probability of failing to retrieve that nearest neighbor. We can see that,

as we increase the number of hash tables, we reduce the probability of failing to find

the nearest neighbor. This, of course, comes at a cost of more time spent hashing.

It is interesting to note here the effect of k and L on the tradeoff between the time

spent hashing and the time spent searching for the nearest neighbor. As we increase

the number of bits k our hash functions become more selective, as we have seen in

Figure 2.1, which means the buckets contain less points, and we thus spend less time

comparing the query point to other points in the same bucket. To make sure the nearest

2.2. Approximate Nearest Neighbor 23

0

0.2

0.4

0.6

0.8

1

0 π

4
π

2
3π

4 π

Pr
[g

(p
)=

g(
q)

]

θ(p,q)

k = 1
k = 2

k = 10
k = 20

Figure 2.1: The probability of two points, p and q, colliding as a function of their dis-

tance. The hash function g is taken to be the hash function from Charikar (2002) which

we will use in this thesis. This demonstrates the locality-sensitive nature of the hash

functions – when the points are close the probability of collision is much higher. We

show graphs for several values of k, the number of bits per hash function.

neighbor collides with the query point with a high enough probability, this in turn

means we have to also increase the number of hash tables L, which means we spend

more time hashing. On the other hand, if we lower k, we can also lower L, and thus

spend less time hashing, but the buckets then contain more points and more time is

spent comparing the query point to other points that fall in the same bucket.

2.2.2 Locality Sensitive Hashing with Random Hyperplanes

Because in this thesis we are dealing with text, a particularly interesting measure of

distance will be the cosine between two documents. This is why we use the family

of hash functions proposed by Charikar (2002) in which the probability of two points

(documents) having the same hash key is is proportional to the cosine of the angle be-

tween them. This family was used, e.g., for creating similarity lists of nouns collected

from a web corpus in Ravichandran et al. (2005). Intuitively, these hash functions par-

tition the space with random hyperplanes, and the buckets are defined by the subspaces

24 Chapter 2. Background

0

0.2

0.4

0.6

0.8

1

0 π

4
π

2
3π

4 π

Pr
[g

j(
p)

=
g

j(
q)
]

fo
ra

tl
ea

st
on

e
j∈
{1

..
.L
}

θ(p,q)

k = 5, L = 1
k = 5, L = 2

k = 5, L = 10
k = 5, L = 20

Figure 2.2: The probability of two points, p and q, colliding in at least one of the hash

tables as a function of their distance. Increasing the number of hash tables L increases

the probability of collision. The hash function g is the same as that used in Figure 2.1.

formed this way. More formally, the locality sensitive family of hash functions for the

cosine distance is defined as follows:

H = {h : h(x) = sgn(〈u,x〉)}, (2.9)

where u is a random vector whose components are drawn from a Gaussian distribution

with zero mean and unit variance, ui ∼ N(0,1). Here, the sign of the inner product

simply tells us which side of the hyperplane vector x is on. It is easy to see that the

probability of two vectors x and y colliding under such a hash function is

PrH [h(x) = h(y)] = 1− θ(x,y)
π

, (2.10)

where θ(x,y) is the angle between x and y. We can read Equation (2.10) as saying the

probability of drawing a random hyperplane that separates two vectors is proportional

to the angle between them.

To illustrate this approach, we turn to Figure 2.3 which shows an example two-

dimensional set of points that we are searching over, partitioned by three randomly

drawn hyperplanes. Buckets are formed by the subspaces, with the “key” for each

bucket, i.e., the value returned by hash functions g for all points that fall in that bucket,

2.3. Event Detection in Social Media 25

(110)

(111)

(011)

(001)

(000)

(100)

h0

h2

h1

h0(p) h1(p) h2(p)

g(p)

Figure 2.3: A set of points partitioned by random hyperplanes into buckets.

marked in the figure. In Figure 2.4 we have marked a query point Q red, and the blue

points show the set of points that we will compare with our query point because they

fall in the same bucket. We can see from the figure that this set is smaller than the set

of points we started with. Finally, Figure 2.5 shows an example where LSH fails to

return the nearest neighbor. Although point Q (marked red in the figure) clearly has

a nearest neighbor in the point P (marked blue in the figure), P is never returned by

the algorithm because it does not fall in the same bucket as Q. By keeping multiple

independent hash tables (parameter L from Section 2.2), we can reduce the probability

of cases like this happening.

2.3 Event Detection in Social Media

Here we review some of the related work on detecting events in social media, paying

close attention to event detection in Twitter. While we make every attempt to be thor-

ough in our review, we note that the field of event detection in social media has grown

rapidly in the last few years, making it impossible to survey every article on this topic.

26 Chapter 2. Background

(110)

(111)

(011)

(001)

(000)

(100)

Q

Figure 2.4: Search for the nearest neighbor of a query point Q is limited to those points

that fall in the same bucket as Q. Arrows indicate the normal vectors to the hyperplanes.

Before Twitter, blogs were the most popular form of social media. Detecting events

in blogs shares some of the challenges of detecting events in Twitter: there is a large

amount of data that needs to be processed in an online (incremental) fashion, doc-

uments are unstructured, and there is a high amount of noise. Jurgens and Stevens

(2009) addressed the problem of scale in blogs by using temporal random indexing

(TRI) for event detection. TRI helps address the scale by projecting words from a

high-dimensional semantic space to a random low-dimensional space. The authors

then detect events by detecting semantic shifts in words between two time periods.

This is also a major drawback of their approach – events are based around words, and

their approach requires a user to explicitly define a set of keywords which she wants

to track. This is clearly not suitable for large-scale event detection, as many events

introduce completely new words that could not be specified a priori. Another problem

with this approach is that it seems to require a lot of volume for the semantic shift to

be accurately determined – Jurgens and Stevens (2009) used a month of data, which

means they discover events with one month lag.

One of the earliest approaches to detecting events from Twitter posts is the work

by Sakaki et al. (2010). This work was concerned with quickly detecting specific types

2.3. Event Detection in Social Media 27

(110)

(111)

(011)

(001)

(000)

(100)

Q
P

Figure 2.5: Example of LSH failing to find the nearest neighbor for a query point Q. P

is never returned because it does not fall in the same bucket as Q.

of events, earthquakes and typhoons, in order to issue a timely warning for areas that

are about to be hit by these disasters. Their approach consists of manually defining a

set of keywords relevant for the types of events they want to detect (earthquake, shak-

ing, and typhoon), and then monitoring the stream of tweets for those containing the

keywords. For each tweet that contains a relevant keyword, they use a support vector

machine (SVM) to classify it as being about an event or not. When enough tweets have

been classified as being about an event in a short period of time, their system decides

that the event is actually happening. While the authors showed promising initial re-

sults, their approach is fairly limited for two main reasons: i) a set of keywords needs

to be manually defined for each event, and there was no attempt to find the keywords

automatically, and ii) for every event type we want to find, a separate classifier needs

to be trained, which requires labeled data. This shows that such an approach might

be attractive if we want to find a small set of events with very high precision, but is

unfeasible if we want to detect any type of event, which is the goal in this thesis.

Dealing with noise and scale issues was previously addressed in Sankaranarayanan

et al. (2009). To handle noise, a preprocessing step was added which classified each

tweet as being about news or not, using a naive Bayes classifier. If the tweet was not

28 Chapter 2. Background

about news, it was not processed. To address scalability, the authors compare new

tweets only to clusters that are less than three days old, making this approach constant-

time. This way of handling scale was previously used in TDT by Luo et al. (2007).

This is probably the earliest work on event detection in Twitter, and the presented

system heavily relies on many heuristics for improving the quality of found events.

Unfortunately, no quantitative evaluation of the system was performed.

Becker et al. (2011a) use the clustering algorithm of Yang et al. (1998), and a clas-

sifier to handle noise like in Sankaranarayanan et al. (2009). Unlike Sankaranarayanan

et al. (2009), however, the classifier is used in a postprocessing step for classifying

each cluster as being about an event or not. To classify a cluster, the classifier uses

a set of features derived from all the tweets in the cluster, such as the proportion of

retweets, or the number of tweets containing the most popular hashtag. While this

approach showed very good results in identifying event clusters, it does not address

the scalability issues. Furthermore, this approach relies on having labeled data to train

a classifier, and it is not clear if retraining the classifier is needed, i.e., whether its

performance degrades over time.

Recent work has also used wavelets for detecting events in Twitter. Weng et al.

(2011) transform the words’ DFIDF4 histogram using wavelets and then compute the

cross-correlation for those words that show significant change over time. This cross-

correlation is used as the weight of edges in a graph which is then partitioned, with

the partitions corresponding to clusters of words about the same event. Evaluation

in Weng et al. (2011) showed that their system is able to detect events with reasonable

precision (76%), but also that the performance is extremely sensitive to the parameter

setting (slightly increasing or decreasing one parameter lowers the precision to about

20%). Also, it is not clear how this approach would perform if a lag lower than one

day was chosen, potentially limiting this approach to detecting only very high volume

events. A similar wavelet-based approach was also used in Cordeiro (2012), with the

difference that this approach only relied on bursty hashtags, making it more efficient.

A downside to using only hashtags is that only events that contain hashtags can be

detected. Given that only about 10% of all tweets contain hashtags, this severely limits

the usefulness of the approach. Furthermore, Cordeiro (2012) perform no evaluation of

their approach, making it unclear how well it performs. Another approach that relies on

using only hashtags is Ozdikis et al. (2012). The aim there was to perform document
4DFIDF (Document frequency-inverse document frequency) is a counterpart of TFIDF, where a

term’s document frequency is used instead of its term frequency in a document. In Weng et al. (2011)
DFIDF is used to measure a term’s importance in a certain time period.

2.3. Event Detection in Social Media 29

expansion via distributional similarity of hashtags. While authors report positive initial

results, the approach still suffers from the problem of ignoring all documents that do

not contain a hashtag.

Most recently, Agarwal et al. (2012) used a graph clustering algorithm for real-

time event detection. The approach relies on discovering highly dense clusters in a

graph where nodes are words, and edges correspond to a user using both words in her

tweets. Therefore, events are discovered as sets of words. The efficiency of this ap-

proach stems from the fact that the clusters can be discovered using an approximate

algorithm that performs only a small number of local computations. While this ap-

proach is very efficient, it can only detect sufficiently bursty events. Furthermore, like

other approaches based on detecting sets of related bursty words, the discovered sets

can be hard to interpret. Unfortunately, the evaluation of this approach is somewhat

lacking, as it ignores non-bursty events, considers spam to be actual events, and does

not measure the amount of meaningless or irrelevant events that are detected. Com-

bined with the fact that evaluation is based on words, and not documents, this makes it

very hard to interpret the results.

Other papers that deal with event detection in Twitter specifically include Li et al.

(2012b), who detect events related to crime and disasters, but require a user to input

a query in order to initiate search for events. Phuvipadawat and Murata (2010) also

claim to do real-time event detection, but only focus on tweets that are tagged with

the #breakingnews hashtag and provide no evaluation of their system. Cataldi et al.

(2010), like many others, use burstiness of terms in a time interval to detect when

an event is happening, but the approach is not scalable to a streaming setting, and

no evaluation of the system is provided. Popescu and Pennacchiotti (2010) worked

on detecting controversial events related to known named entities in Twitter. Using a

supervised machine learning approach with a rich feature set, they showed that their

system can achieve high precision at high ranks, with a lag of one day in detecting

the events. Li et al. (2012a) detect bursty phrases in Twitter and cluster them based

on the context in which they appear. These clusters are then passed through a filter to

detect the ones that are newsworthy, where Wikipedia is used to define if something is

newsworthy (phrases that appear as anchor text in Wikipedia articles are deemed to be

more newsworthy than those which do not).

There has also been some work on event detection in other social media sites. For

example, Hu et al. (2008) use popular queries submitted to search engines to filter the

stream of news and blogs and effectively detect only those events that have a large

30 Chapter 2. Background

user interest. Using multiple social media sites to create a more complete description

of events was the focus of Becker et al. (2012). They aim at identifying content for

planned events in a setup similar to the TDT tracking task, but they consider three

streams: Twitter posts, Youtube videos, and Flickr images. It is interesting to note

that Becker et al. (2012) found that it is possible to leverage the wealth of information

on Twitter to retrieve more relevant results from the other two sites. This further shows

the advantages of Twitter’s real-time, high-volume properties.

In Table 2.1 we summarize all of the discussed event detection approaches with

respect to the properties that a modern system should satisfy, as set out in Chapter 1.

We will say that an approach is general if it can detect any type of event, and not only,

say, earthquakes. Scalability is satisfied if the approach can handle unbounded streams,

i.e., if the processing costs are O(1) per document. However, while some approaches

do satisfy this condition, the hidden constant is fairly large, making them impractical

for high-volume streams. This is why we say they only partially satisfy scalability.

The real-time property is satisfied if an approach can detect events within minutes of

them happening, which is another crucial property of a useful detection system. A

system is unsupervised if it requires no training data or user interaction. Finally, we

also compare approaches based on the kind of evaluation they perform. While this is

not a property of a system, we saw in our discussion above that a lot of authors do

not perform any kind of evaluation of their system, and a lot of those that do focus

on intrinsic evaluation which does not show actual utility of the system. Performing

proper evaluation of the system based on both recall and precision is very important

as it helps other researchers establish the usefulness of an approach and facilitates

comparison. We will focus more on evaluation in Chapter 6.

We can see from Table 2.1 that none of the previous work satisfies all of the require-

ments set forth in this thesis. Agarwal et al. (2012) come close, but their approach does

not detect any event in general, but only bursty events. As we will see in Chapter 6,

a lot of events do not satisfy this property. This means that we would either have to

accept a low recall rate or a high latency in detecting the events so they would start

exhibiting the burstiness property. On the other hand, the work that we present in this

thesis is the first work to satisfy all of these properties.

2.4. Streaming 31

Paper General Scalable Real-time Evaluation Unsupervised

Hu et al. (2008) 7 7/ 3 7 7 3

Jurgens and Stevens (2009) 7 7/ 3 7 7 3

Sankaranarayanan et al. (2009) 7 3 7 7 7

Sakaki et al. (2010) 7 3 3 3 7

Popescu and Pennacchiotti (2010) 7 7 7 7 7

Cataldi et al. (2010) 7/ 3 7 3 7 7/ 3

Mathioudakis and Koudas (2010) 7/ 3 7/ 3 7 7 3

Phuvipadawat and Murata (2010) 7 7 7 7 3

Becker et al. (2011a) 7/ 3 7 7 3 7

Weng et al. (2011) 7 7 7 7 3

Cordeiro (2012) 7 3 3 7 3

Li et al. (2012a) 7 3 7 7 3

Li et al. (2012b) 7 7 7 7 7

Agarwal et al. (2012) 7/ 3 3 3 7 3

Ozdikis et al. (2012) 7 7 7 7 3

This work 3 3 3 3 3

Table 2.1: Comparison of several event detection approaches currently found in the

literature.

2.4 Streaming

Data streams and the streaming model of computation became very popular in the

recent years with the massive increase in the rate at which new data is generated. First

domains that exhibited this growth in data were database systems, and routing and

network monitoring. These domains are traditionally characterized by millions or even

billions of transactions every second, and have a requirement to compute some kind of

aggregate statistic over the whole stream. For example, one might want to know what

are the most frequent destinations for IP packets passing through a particular router,

or what is the size of the result of a join operation in a database, without actually

performing the join.

A more formal definition of streaming (Muthukrishnan, 2005) says that data streams

are represented by data that comes at a rate that is high enough to make it hard to trans-

mit, store, or perform some computation over it. Furthermore, Muthukrishnan (2005)

32 Chapter 2. Background

defines different models of computation over data streams:

1. Time series model. In this model, each new update to an element of the stream

overwrites the old value. This model might be suitable, e.g., for the volume of

trade each minute.

2. Cash register model. In this model, each new update represents an increment to

the old value of the particular element in the stream. This is probably the most

widely used of the three models, as most practical problems fit the cash register

model. For example, the number of IP packets flowing through a router, number

of items in the database that have a particular value of a chosen attribute, or the

number of particles having energy in a certain interval can all be expressed as a

problem in the cash register model.

3. Turnstile model. This is the most general of the three models, and it allows

the updates to a particular element to be negative. For example, the number of

people in a subway can be expressed as a turnstile model because people can

both enter and leave the subway.

Muthukrishnan (2005) defines the following desiderata for any streaming algorithm

(N is the number of items that the algorithm has seen up to time t): “At any time t in

the data stream, we would like the per-item processing time, storage, as well as the

computing time to be simultaneously o(N, t), preferably polylog(N, t).” This desiderata

reveals the intimate connection between randomized algorithms (of which LSH is one

example) and streaming. Where most exact algorithms provably cannot meet these

conditions, randomized algorithms satisfy them perfectly.

With the amount of available textual data also growing rapidly, much thanks to the

popularity of the Internet and social media, we are more and more starting to think

about text as a stream, instead of a static collection of words. This trend in NLP is

more than obvious; recent work on streaming in NLP includes a streaming language

model (Levenberg and Osborne, 2009), a sketch for scaling distributional similarity

to web-scale corpora (Goyal et al., 2010), computing mutual information between

verbs in a streaming context (van Durme and Lall, 2009), and a streaming translation

model (Levenberg et al., 2010), to name but a few.

Having the definition of a data stream from Muthukrishnan (2005) in mind, we

can see that Twitter’s microblog posts fit this definition perfectly. The posts come in

sequentially at a very high rate, and it is very expensive to store them all or perform

2.5. Conclusion 33

any kind of non-trivial computation over them. That is why in this thesis we require

that any algorithms we develop satisfy Muthukrishnan (2005)’s desiderata. In fact, we

go even further and strengthen the conditions set forth by Muthukrishnan (2005). We

will require that the per-item processing time, storage, as well as the computing time

in our algorithms be O(1). This is the strongest possible condition on an algorithm in

terms of complexity, and it will ensure that the algorithms will still be efficient in the

future, despite the very likely increase in the amount of available data.

Finally, we would like to highlight the main differences between the IR and the

streaming view of the world. First, in the streaming approach we will normally keep

only a small subset of the data and discard the rest. In IR, on the other hand, we tend to

keep all the data we have, and the general consensus is that having more data is always

better. Next, a streaming algorithm sees data in an online fashion and has to constantly

update global statistics, whereas IR systems usually assume a static dataset and only

compute all the global statistics once on the whole set. Lastly, the field of IR is slightly

more biased towards efficacy, whereas streaming usually has a bias towards efficiency,

allowing more approximate solutions.

2.5 Conclusion

In this chapter we presented the key background material that the work in this thesis

builds upon. We first introduced the task we are dealing with in more detail, and the

current state-of-the-art approaches to solving it. Because one of the key techniques in

our work is LSH, we devoted some space to explaining how and why it works. We

also reviewed previous work on detecting events in social media, and explained how

the work here sits with respect to it. In the rest of this thesis we develop algorithms for

event detection that address all the key challenges outlined in the introduction.

Chapter 3

Twitter Event Corpus

3.1 Motivation

Event detection research on Twitter is hampered by the lack of standard corpora that

could be used to measure performance. Recently, Becker et al. (2011b) created a cor-

pus of Twitter posts where tweets were labeled with events. Unfortunately, that corpus

is not suitable for FSD evaluation for two main reasons: i) the events were picked from

the highest-volume events identified by a specific system, introducing not only a bias

towards high-volume events, but also a bias toward the kinds of events that their sys-

tem can detect, and ii) only tweets by New York-based users were considered, which

introduces a strong bias towards the type of events that can appear in the corpus. Other

researchers working on event detection in Twitter created various ad-hoc corpora, all

of which suffer from one of the two problems: either the events are very specific (e.g.,

Sakaki et al. (2010)), or the labeling is done on a set of potential events discovered by

a particular system (e.g., Weng et al. (2011)).

In this chapter we describe the corpus we created for the purposes of measuring

FSD performance in Twitter. Our corpus has several advantages over the previous

Twitter event corpora: i) it is not tied to an output of any particular system, ii) it

contains both low- and high-volume events, and iii) it covers a broad range of event

types. The corpus was created by adhering to NIST’s TDT annotation guidelines as

much as possible, and adapting the rules where necessary.

35

36 Chapter 3. Twitter Event Corpus

First story Non-first story

Labeled as first story True positive (TP) False positive (FP)

Labeled as non-first story False negative (FN) True negative (TN)

Table 3.1: FSD contingency table.

3.2 First Story Detection Evaluation

Before describing our corpus, we will first give a brief overview of how FSD systems

are evaluated; for a more detailed discussion, we refer the reader to Fiscus and Dod-

dington (2002). In the official TDT evaluation, each FSD system is required to assign

a score between 0 and 1 to every document upon its arrival. Assigning this score can

be made either immediately after the story arrives, or after a fixed number of new sto-

ries have been observed. Because we assume that we are working in a true streaming

setting, we require that systems assign a score as soon as the new story arrives. Higher

scores correspond to novel stories, and vice versa. Evaluation is then carried out by

first sorting all stories according to their scores and then performing a threshold sweep.

For each value of the threshold, stories with a score above the threshold are considered

novel, and all others are considered non-novel. Therefore, for each threshold value,

one can compute the probability of a false alarm, i.e., probability of declaring a story

novel when it is actually not, and the miss probability, i.e., probability of declaring

a novel story non-novel (missing a novel story). Having computed all the miss and

false alarm probabilities, we can plot them on a graph showing the tradeoff between

these two quantities – such graphs are called detection error tradeoff (DET) curves.

However, the primary evaluation metric used in TDT is the detection cost Cdet. This

quantity is defined as follows:

Cdet(θ) =Cmiss ∗Pmiss(θ)∗Ptarget +CFA ∗PFA(θ)∗Pnon−target, (3.1)

where Cmiss and CFA are costs of miss and false alarm (1 and 0.1, respectively), Pmiss(θ)

and PFA(θ) are the miss and false alarm rate at the score threshold θ, and Ptarget and

Pnon−target are the prior target and non-target probabilities. Given a contingency table

as in 3.1, the miss and false alarm probabilities are calculated as:

Pmiss = FN/(FN +T P) (3.2)

PFA = FP/(FP+T N). (3.3)

Because it is somewhat hard to interpret the Cdet measure because of its dynamic

3.3. Annotation Process 37

range, it is usually normalized by the minimum expected performance of a system that

either answers YES or NO to all decisions. This normalization is defined as:

(Cdet)norm =Cdet/MIN(Cmiss ∗Ptarget,CFA ∗ (1−Ptarget)). (3.4)

This way a score of 1.0 indicated a system that does no better than always answer-

ing YES or NO. Different FSD systems are compared using the minimal cost Cmin,

which is the minimal value of (Cdet)norm over all threshold values:

Cmin = min
θ
(Cdet)norm(θ). (3.5)

This means that in FSD evaluation, a lower value of Cmin indicates a better system.

Because TDT evaluation uses many topics to evaluate the performance, we have to

somehow report average performance of the system. This is done by averaging Cmin

across all the topics, and it is called the topic weighted cost. The topic weighted cost

is similar to the macro averaging technique that is standard in classification and IR

evaluation. Alternatively, we could use story weighted cost (the equivalent of micro

averaging), which averages the performance over all stories. Because topics with a

large number of stories would dominate in this case, the official evaluation metric uses

the topic weighted cost; this is also the cost that we will report in this thesis.

3.3 Annotation Process

In this section we describe the annotation process for our event corpus. Note that due

to Twitter’s terms of service, we distribute the corpus as a set of tweet IDs and the

corresponding annotations – users will have to crawl the tweets themselves, but this

can be easily done using any one of the freely available crawlers for Twitter. This is

the same method that the TREC microblog track1 uses to distribute their data. All our

Twitter data was collected from the streaming API2 and consists of tweets from June

30th 2011 until September 15th 2011. After removing non-English tweets, our corpus

consists of just over 51 million tweets.

In our annotation process, we have adopted the approach used by the National In-

stitute of Standards and Technology (NIST) in labeling the data for TDT competitions.

First, we defined a set of events that we want to find in the data, thus avoiding the bias

of using events that are the output of a particular system. We choose the events from

1http://trec.nist.gov/data/tweets/
2https://stream.twitter.com/

38 Chapter 3. Twitter Event Corpus

the set of important events for the time period in our corpus, according to Wikipedia.3

Additionally, we used common knowledge of important topics at that time to define

more events. This way we define a total of 27 events.

While we tried to adhere to the NIST annotation guidelines, some changes were

necessary due to the different domain we deal with. While the original definition of

the event states that it is something that happens at a specific time and place along

with all necessary preconditions and unavoidable consequences, we change this to

drop the part about “all necessary preconditions and unavoidable consequences”. This

is to make labeling more manageable – there were more tweets about the actual event

than was possible to label, and adding all the preconditions and consequences of the

event would make the labeling task even harder. However, this does not pose a major

problem because we are mostly interested in the real-time detection of events. For

example, if an earthquake strikes, we want to know that the event happened as soon as

possible, and we can find out about the relief efforts from the news.

Furthermore, the TDT definition of a story no longer makes sense in the context

of Twitter. We simply define a story to be a single micro-blog post (tweet), written by

a specific user. If we contrast a tweet with the TDT definition of a story (“a topically

cohesive segment of news that includes two or more declarative independent clauses

about a single event”), we see that almost no properties of the original definition are

retained. Tweets need not be topically cohesive, nor do they have to refer to news (in

fact, most of them do not). Also, because of the 140 character limit on tweet length,

many tweets do not contain even two clauses. This shows just how drastically different

Twitter is from newswire, and what a significant challenge it poses for event detection.

We faced the same problems as NIST when labeling the events – there were far too

many stories to actually read and decide which (if any) events it corresponds to. In

order to narrow down the set of candidate posts for each event, we use the same pro-

cedure as used by NIST. The annotator would first read a description of the event, and

from that description compile a set of keywords to retrieve possibly relevant tweets. He

would then read through this set, labeling each tweet as on- or off-topic (i.e., whether

the tweet discusses the event or not), and also adding new keywords for retrieving the

next batch of tweets. After labeling all the tweets in one batch, the newly added key-

words were used to retrieve the next batch, and this procedure was repeated until no

new keywords were added. This process was known in TDT as search-guided anno-

tation, and it was shown to provide better consistency of annotations, compared to an

3http://en.wikipedia.org/wiki/2011

3.3. Annotation Process 39

approach of exhaustively labeling each story (Fiscus and Doddington, 2002). Unlike in

TDT, however, when retrieving tweets matching a keyword, we do not search through

the whole corpus, as this would return far too many candidates than is feasible to label.

For example, the word earthquake, which was one of the keywords used for retrieving

tweets related to the Virginia earthquake, yields a candidate set of 16 thousand tweets

just for a single day. Instead, we limit the search to a time window of one day around

the time the event happened (for each event, we know the time it happened to a reso-

lution of at least a day). Because most stories about an event are posted right after the

event, this ensures that we get most of the on-topic stories, while reducing the labeling

effort as much as possible. It is very likely that there are more on-topic stories outside

this time window, but the tradeoff between the number of such stories and the time

spent annotating makes it infeasible to label them. Note that this does not affect the

TDT results in any way.

Next, we narrow down the definition of an on-topic story. This is because the NIST

guidelines say a story should be considered on-topic if more than 10% of the article

is about the event – with the average tweet being about 10 words long, 10% of that

does not make much sense. This is why we use the following guidelines for deciding

whether a tweet is on-topic:

1. The tweet had to be written in English. As we mentioned before, many languages

are represented on Twitter, but we only focus on English in this thesis. Finding

tweets in different languages that describe the same event could be an interesting

avenue for future work.

2. The tweet must explicitly mention the event and the reader should not need

any outside knowledge to infer what happened after reading the tweet. This

means that tweets like “Just heard about Lokomotiv, this is a terrible summer for

hockey” are off-topic, even though the author was most likely referring to the

plane crash in which the Lokomotiv hockey team died.

3. The main purpose of the tweet should be to inform of the event, and stories that

only briefly refer to the main event are labeled off-topic. This means that tweets

like “About 200 people gathered at the hospital where the three Muslim men

died” would be off-topic for the event of three Muslim men dying in England

riots. This is similar to the case of stories marked BRIEF in TDT evaluation.

While TDT considered these stories potential non-first stories, we do not due to

40 Chapter 3. Twitter Event Corpus

the sheer brevity of tweets and the potential to quickly drift very far away from

the main topic.

4. The author had to be sure that the event happened – tweets like “Is Amy Wine-

house dead?” would be off-topic. This is to prevent detecting speculation.

5. Links were not taken into account. For example, if the tweet was “NASA’s big

announcement: http://. . . ”, where the link pointed to the story about the event,

the tweet was off-topic because it would require the annotator to read the story,

not just the tweet.

6. Usernames and hashtags were taken into account. For example, a tweet like

“#amywinehouseisdead” would be labeled on-topic for death of Amy Wine-

house, as would the tweet @AmyWinehouse is dead.

7. Retweets were taken into account – if the retweet is too long and breaks the

original tweet because of the 140 character limit, we label the original tweet.

8. Tweets that were about multiple events were not labeled on-topic. This is in line

with NIST guidelines which ignore stories that discuss multiple topics in the

evaluation (Fiscus and Doddington, 2002).

Finally, we should also note that while searching for first tweets, fake first tweets

were sometimes discovered. For example, in the case of the death of Richard Bowes

(victim of London riots), there was a tweet posted by a journalist from the Telegraph

informing of the man’s death more than 12 hours before he actually died. This tweet

was later retracted by the said journalist for being incorrect, but the man then died a

few hours later. Cases like this were labeled off-topic.

3.4 Corpus Statistics

In this section, we give some basic statistics about our corpus. In total, the corpus

consists of over 51 million tweets that have to be processed by the FSD system. Of

those, 3034 are labeled on-topic for one of the 27 events. The number of events in our

corpus is comparable to the first TDT corpus which contained 25 events. However, in

terms of the total number of documents, our corpus is three orders of magnitude larger

than the first TDT corpus, and two orders of magnitude larger than the biggest TDT

corpus (TDT5). The biggest event in our corpus had over 1,000 on-topic tweets (death

3.4. Corpus Statistics 41

of Amy Winehouse), and the smallest event had only two on-topic tweets (arrest of

Goran Hadžić).

Full details of our corpus are given in Table 3.2. Along with the topic description

and the number of on-topic documents, we also give the topic’s broad type, a set of

broad categories defined by NIST to help classify topics.4 Furthermore, we also note

which events were planned and which ones were unplanned. A planned event is simply

one that was known that it will happen before it happened, e.g., presidential elections

in the US. All other events are unplanned, like earthquakes, plane crashes, or terrorist

attacks. Planned and unplanned events were also known as expected and unexpected

events in TDT terminology. Almost all the related work deals with detecting events

regardless of their type, with the exception of Becker et al. (2012) that detect only

planned events. Deciding which events are planned is not an easy task – in many cases

it was known that something would happen, but it was not known exactly which of

the possible outcomes will occur. For example, when US raised the debt ceiling, it

was known well in advance that there will be a vote on whether to raise the ceiling.

However, no one could say with certainty what the outcome of the vote would be.

Cases like this were labeled as planned.

Because news on Twitter are often claimed to be reported in real time, we decided

to test this claim on the events in our corpus. For each event, we found the exact time

(to a resolution of one minute) it happened and measured the time it took for the first

tweet to appear in our data. We could not find exact time for eight of the events in our

corpus, either because an exact time does not make sense for an event (e.g., it is hard to

define a single time for the event Three men die in riots), or because this information

was unavailable (e.g., Betty Ford’s family did not disclose the exact time of her death).

Therefore, all the statistics we report concern only those 19 events for which we knew

the exact time when they happened. The average lag between an event happening and

the first tweet in our data is 129 minutes, or just over two hours. The event Goran

Hadžić arrested had by far the largest lag of all the events in our corpus. This is

because the news was first broken in other languages (non-English), and only later

picked up by English speakers on Twitter. In particular, the first non-English tweet to

report this news in our data was a tweet in German that lagged only 42 minutes behind

the actual event. This was followed by a tweet in Italian with a lag of 2 hours and

12 minutes, and a tweet in Serbian with a lag of 3 hours 41 minutes, only to be first

reported in English with a lag of 22 hours and 18 minutes.

4Broad topic type was also known under the title rule of interpretation in the TDT project.

42 Chapter 3. Twitter Event Corpus

Topic description On-topic Broad topic type P/U Lag

Amy Winehouse dies 1021 Celebrity/Human interest news U 1h17m

Atlantis shuttle lands 49 Science and discovery news P 0m

Betty Ford dies 14 Celebrity/Human interest news U N/A

Richard Bowes killed in riots in England 39 Acts of violence or war U 39m

Flight 4896 crash 11 Accidents U 1h52m

S&P downgrade US credit rating 334 Financial news P N/A

US increases debt ceiling 89 Financial news, also New laws P 0m

Terrorist attack in Delhi 39 Acts of violence or war U 9m

Earthquake in Virginia 318 Natural disasters U 2m

First victim of London riots dies 85 Acts of violence or war U 0m

War criminal Goran Hadžić arrested 2 Legal/Criminal cases U 22h18m

India and Bangladesh sign a border pact 4 Political and diplomatic meetings P N/A

Plane with Russian hockey team Lokomotiv crashes 277 Accidents U 54m

Explosion in French nuclear plant in Marcoule 162 Accidents U 57m

NASA announces there might be water on Mars 127 Science and discovery news P 8m

Google announces plans to buy Motorola Mobility 145 Financial news U N/A

Car bomb explodes in Oslo, Norway 28 Acts of violence or war U 12m

Gunman opens fire in youth camp in Norway 32 Acts of violence or war U 47m

First artificial organ transplant 17 Science and discovery news P N/A

Petrol pipeline explodes in Kenya 32 Accidents U 2h47m

Famine declared in Somalia 86 Natural disasters P N/A

South Sudan becomes independent country 34 Misc news P 5m

South Sudan becomes UN member state 9 Misc news P N/A

Three men die in riots in England 16 Acts of violence or war U N/A

Riots break out in Tottenham, England 30 Acts of violence or war U 48m

Rebels capture International Tripoli Airport 5 Acts of violence or war U 0m

Ferry sinks in Zanzibar 29 Accidents U 7h56m

Table 3.2: Statistics about our corpus. The broad topic type denotes the broad category

the event falls into, as defined by TDT5. P/U column denotes if the event is (P)lanned

or (U)nplanned. The lag between the time when the event actually happened and the

time when it was first reported in our data is shown in the last column.

3.5. Conclusion 43

The median lag of the 19 events for which we know the exact time they happened

was 39 minutes. We can see that the lag for planned events is much lower, because

people expect them to happen and tweet about them as soon as the outcome is known.

Remember also that our data constitutes a 1% sample of Twitter. This means that the

lag we report is actually an upper bound on the true lag present in Twitter, and that for

many events the actual lag is going to be much lower. Thus, it is certainly fair to say

that most events are indeed reported on Twitter in real time or very close to real time.

3.5 Conclusion

In this chapter, we presented a corpus of tweets with labeled events that will be used

throughout this thesis to evaluate the performance of our FSD approaches on Twitter.

This is the first corpus that can be used for this purpose and it addresses all of the

shortcomings of the previous Twitter event corpora. By measuring the lag between an

event taking place and its first mention in our data, we confirmed that most events are

indeed reported on Twitter in real time, which was one of the most important reasons

for undertaking the work in this thesis. In the next chapter we show how to scale FSD

systems to handle unbounded streams such as Twitter.

Chapter 4

First Story Detection in a Streaming

Setting

4.1 Motivation

The first challenge to overcome in modern event detection is dealing with the current

scale of the data. To illustrate this problem, consider that in March 2011 Twitter users

were posting over 140 million tweets per day, with a peak of 6,939 tweets per second.1

By June 2011, there were more than 200 million posts being written each day.2 Even

though we are only able to access a small sample (1%) of the full stream, this still

means that we deal with more than 2 million documents per day. For comparison, the

largest TDT corpora (TDT5) contained 278,108 documents for a period of six months

(April 1st 2003 through September 30th 2003). This amounts to an average of 1,545

documents per day, three orders of magnitude less than our small sample of Twitter

posts, or five orders of magnitude less than the full Twitter stream. If we recall the

discussion from Section 2.1.3, all the current approaches to event detection don’t scale

well with the number of documents. With the exception of Luo et al. (2007), all the

approaches take O(n) time to process a new document, which becomes prohibitive

quickly. In this chapter we present a novel algorithm for first story detection that

achieves O(1) processing time per document, while making no sacrifice in accuracy,

i.e., our system achieves the same performance as the state-of-the-art systems.

The algorithms we develop in this chapter will be scalable in terms of the per-

document processing time, which will enable us to process streams of unbounded size.

1Source: http://blog.twitter.com/2011/03/numbers.html
2Source: http://blog.twitter.com/2011/06/200-million-tweets-per-day.html

45

46 Chapter 4. First Story Detection in a Streaming Setting

In order to process high bandwidth streams of documents, we will need to apply some

kind of parallel processing, and here we also give an example of how our approach

might be parallelized.

4.2 Scaling FSD to Unbounded Streams

As we already mentioned in Section 2.1.3, the main reason why existing FSD ap-

proaches are not scalable comes from the maximization in equation (2.5) which takes

O(n) time to compute in the worst case. The main idea we introduce here is to compute

this maximum in an approximate way, thereby replacing exact search with an algorithm

for finding an approximate nearest neighbor. By using LSH we introduce a one-sided

error: the distance to the approximate nearest neighbor will always be greater than or

equal to the distance to the true nearest neighbor. The assumption we make here is that

the accuracy does not depend crucially on the value of this distance, i.e., that small

errors in the distance will not significantly hurt performance.

In particular, we replace the brute force search from equation (2.5) with locality

sensitive hashing based on the cosine distance (Charikar, 2002). Using LSH in this

manner guarantees that the time to find an approximate nearest neighbor is O(n1/c)

(where c is the chosen approximation factor) in terms of the number of documents

seen so far. The pseudocode for this algorithm is shown in Algorithm 4. Here we used

the same notation from Algorithm 2, where G is a family of k-bit locality-sensitive

hash functions. We can see that the loop which computes the distance to the nearest

neighbor now iterates only over the documents in the same LSH bucket as the query

point, computed in step 7.

We should note here that LSH is not the only technique that achieves fast retrieval

of similar documents. Semantic hashing (Salakhutdinov and Hinton, 2009) is an al-

ternative technique that assigns binary codes to documents by using multiple-level re-

stricted Boltzmann machines. While Salakhutdinov and Hinton (2009) claim that this

technique outperforms LSH in both accuracy and running time, they failed to take into

account the time required to train the RBMs, which is substantially longer than the time

it takes LSH to index the collection. It is also not clear that semantic hashing yields

better accuracy, as the authors used E2LSH (which works in `2 space) for retrieving

candidates, but evaluated on cosine similarity. However, the main reason why we do

not use semantic hashing is because it is ultimately unusable in a streaming scenario –

it cannot handle online updates in any other way but retraining the whole system, and

4.2. Scaling FSD to Unbounded Streams 47

Algorithm 4: First story detection with approximate-NN based on LSH.
input: Number of hash tables L, novelty threshold θ

1 for j = 1 to L do
2 g j ∼ G // Draw a random hash function.

3 create hashtable T[j]

4 end

5 foreach document d in the stream do
6 // Find the set of documents that collide with d.

7 S(d)←
⋃L

i=1 T [i][gi(d)]

8 for j = 1 to L do
9 T [j][g j(d)]← T [j][g j(d)]∪d

10 end
11 dismin(d)← 1

12 if S(d) 6= /0 then
13 dismin(d)← 1−maxd′∈S(d) cos(d′,d)

14 end
15 if dismin(d)≥ t then
16 report d as a first story

17 end

18 end

there is no way of handling deletions. These two points are the main requirements for

a model to be useful for streaming applications, and LSH easily handles both.

4.2.1 Variance Reduction Strategy

Unfortunately, we cannot simply replace exact nearest neighbor search with approxi-

mate search because of the one-sided error introduced by LSH. LSH only returns the

true near neighbor if it is reasonably close to the query point, but if the query point lies

far away from all other points (i.e., its nearest neighbor is far away), there is a high

probability that LSH will fail to find the true near neighbor. This can be easily seen

from Figure 2.2. For example, a document whose nearest neighbor resides at distance

π/4, has only about 40% chance that LSH with k = 5 and L = 2 will find its true near-

est neighbor. In FSD, this means that a large portion of moderately novel stories (e.g.,

stories that discuss a novel aspect of a previously known event) would be thought to

48 Chapter 4. First Story Detection in a Streaming Setting

discuss a previously unseen event. Clearly, this is not desirable, and the experimental

results from Section 4.3 confirm this.

To overcome this problem, we introduce a strategy by which, if LSH declares a

document novel (i.e., sufficiently different from all others), we start an exact search (the

details of which are given in Algorithms 6 and 7), but only compare the new document

with a small and fixed number of documents, ignoring those documents that we have

already inspected. If this additional search does not find a closer nearest neighbor, we

declare the document novel. Otherwise, we revise our decision based on the distance

to this “better” nearest neighbor. On the other hand, if LSH declares the document

to be non-novel, we do not have to do anything. This is again a consequence of the

one-sided error introduced by LSH – a document can never be incorrectly declared

non-novel (i.e., the distance to the true nearest neighbor is never more than what LSH

reports). To the best of our knowledge, we are the first to notice that pure LSH is

unsuitable for FSD. This is because all previous tasks which used LSH only care about

the close nearest neighbors (document/image retrieval, clustering), and thus operate

in the region where LSH introduces only a small amount of error. However, because

novel and non-novel documents are both important in FSD, this means that we cannot

afford the one-sided error from LSH. Thus, the strategy proposed here is a first step

into making LSH a feasible option for other tasks that rely on nearest-neighbor search,

but do not rely only on finding close nearest neighbors (any task that involves finding

novelty in the data or spotting outliers falls into this category).

Because the accuracy of our FSD system exhibits a lot of variance when using

pure LSH, we dub the strategy introduced here a variance reduction strategy. We will

sometimes also use the term backoff strategy to refer to it because it can be seen as a

backoff from approximate search to limited exact search.

The pseudocode shown in Algorithm 5 summarizes our approach based on LSH

with the variance reduction strategy. In short, we hash the document into L buckets

and find its nearest neighbor amongst the documents in those buckets. If there was a

high chance that the true nearest neighbor was missed (because it is far away from the

document), we additionally compare the document to bn most recent documents and

make a final decision based on this.

For efficiency, we use an inverted index to store documents, much like other sys-

tems (Allan et al., 2000b; Yang et al., 1998). By specifying the desired probability of

missing the nearest neighbor, we can easily compute the threshold at which we should

resort to our variance reduction strategy. If the nearest neighbor is at distance r (recall

4.2. Scaling FSD to Unbounded Streams 49

Algorithm 5: First story detection based on LSH with variance reduction.
input: Number of tables L, novelty threshold θ, backoff threshold bt , number of

documents in the backoff set bn

1 for j = 1 to L do
2 g j ∼ G // Draw a random hash function.

3 create hashtable T[j]

4 end

5 foreach document d in stream do
6 S(d) =

⋃L
i=1 T [i][gi(d)]

7 for j = 1 to L do
8 // Insert d in the appropriate hash table.

9 T [j][g j(d)]← T [j][g j(d)]∪d

10 end
11 dismin(d)← 1

12 foreach document d’ in S(d) do
13 c = 1− cos(d,d′)

14 if c < dismin(d) then
15 dismin(d)← c

16 end

17 end
18 if dismin(d)>= bt // Variance reduction step.

19 then
20 // Try to find a better nearest neighbor by performing a

21 // search over bn additional documents.

22 // This step is explained in Algorithms 6 and 7.

23 distb = BackoffNN(d, S(d), bn)

24 if dismin(d)< distb then
25 dismin(d)← distb
26 end

27 end
28 if dismin(d)>= θ then
29 report d as a first story

30 end

31 end

50 Chapter 4. First Story Detection in a Streaming Setting

that r is an angle here) from the query point, the probability that it is not reported is

Pmiss = (1− (1− arccos(1− r)/π)k)L. (4.1)

Therefore, we tune the parameter bt by choosing to tolerate a p% chance of missing

the nearest neighbor at distance of r or more from the query point.

4.2.2 Constant Time Approach

The approach we presented in the previous section paves the way for an efficient FSD

system, but the time complexity of this approach depends crucially on the number

of hash tables L, and so far we said nothing about how to set this parameter. As we

mentioned in Section 2.2, there are two ways of setting this parameter, which we called

Strategy 1 and Strategy 2. Both of these strategies have weaknesses. In Strategy 1 L

is set independently of the number of documents n, which makes it suitable for stream

processing, but on the other hand the query phase has no guarantees on the running

time – it could be Θ(n) in the worst case because we have to inspect all the points in

the appropriate buckets. Strategy 2, however, lets us examine only a constant number

of points in the buckets, but at the cost of setting L dependent on n.

To achieve constant processing time per document, we thus combine Strategy 1 and

2: we set L according to Strategy 1 (see (2.8)), and examine the buckets according to

Strategy 2. This way we are guaranteed to have L independent of the stream size, which

is important for use in a streaming setting, and we are also guaranteed that the query

phase will take constant time. This desirable property comes at a cost – our combined

strategy is no longer guaranteed to solve either the R-near neighbor or the (c,R)-near

neighbor problem. While we lose the theoretical properties guaranteed by Strategy 1

and 2, this is unfortunately necessary if we hope to achieve constant processing time.

Otherwise, it has been proven that the R-near neighbor requires Θ(n) query time, and

that solving (c,R)-near neighbor requires setting L dependent on n (Andoni and Indyk,

2008). Inspecting the buckets according to Strategy 2 is already shown in Algorithms 4

and 5, and choosing L is done by the user so we do not show this in pseudocode.

Note that until now we said nothing about how to actually inspect the additional bn

documents once we decide to use the variance reduction strategy. In Algorithm 5 this is

done in the BackoffNN function. This function takes as input the current document, col-

lision set (set of all documents that fall in the same bucket as the query point, cf. line 6

in Algorithm 5), and the bn parameter and inspects at most bn documents not in the

collision set, returning the distance to the closest of those documents. We propose two

4.2. Scaling FSD to Unbounded Streams 51

Algorithm 6: Recency strategy for performing search in variance reduction.

1 BackoffNN(d, S, bn)

2 i← 0

3 B← /0 // Set of additional documents to compare with.

4 while (|B|< bn)∧ (t > i) // Inspect at most bn documents.

5 do
6 i← i + 1

7 // Skip documents that were already inspected

8 // or have no words in common with d.

9 if (dt−i∩d 6= /0)∧ (dt−i /∈ S) then
10 B← B∪dt−i

11 end

12 end
13 distb = 1−maxd′∈B cos(d′,d)

14 return distb

different strategies for performing the search: a recency based one where fresh docu-

ments are preferred, and a uniform search where diversity of documents is preferred

over recency. The recency based strategy is shown in Algorithm 6, and the uniform

one is in Algorithm 7. We can see that the recency strategy simply iterates over the last

bn documents that share at least one word in common with the query document. On the

other hand, the uniform strategy uses an inverted index to inspect bn/‖d‖0 documents3

that share each of the ‖d‖0 words with the query document. When there are more

than bn/‖d‖0 such documents for a word, the most recent bn/‖d‖0 are inspected (not

shown in the algorithm). These two strategies have different strengths and weaknesses:

recency prefers fresh data, which is intuitively a desirable property, but it might spend

all of its time comparing the new documents to documents that have little in common

with it, other than a possibly very common word. On the other hand, uniform search

will inspect a greater variety of documents, but it might compare the new document to

very old documents which, though they may seem similar, are usually not related.

3‖d‖0 is the `0 norm of document d, and is equal to the number of distinct words in d.

52 Chapter 4. First Story Detection in a Streaming Setting

Algorithm 7: Uniform strategy for performing search in variance reduction.

1 BackoffNN(d, S, bn)

2 p← bn/‖d‖0 // Number of documents to inspect per term.

3 B← /0 // Set of additional documents to compare with.

4 foreach word ∈ d do
5 i← 0

6 // Use inverted index for efficient iteration.

7 // We iterate in the reversed order, i.e., from most recent

8 // documents first.

9 foreach d′ ∈ reverse(InvertedIndex[w]) do
10 if (d′ ∈ B)∨ (d′ ∈ S) then
11 // Skip documents that have already been added or

inspected.

12 continue

13 end
14 B← B∪d′

15 i← i + 1

16 if p = i then
17 break

18 end

19 end

20 end
21 distb = 1−maxd′∈B cos(d′,d)

22 return distb

4.2. Scaling FSD to Unbounded Streams 53

4.2.3 Constant Space Approach

In Section 4.2.2 we showed how to achieve constant time using a combined strategy

for LSH. Despite being a constant time algorithm, the approach described there is still

not suitable for stream processing because it uses an unbounded amount of space. To

see this, simply note that we never delete any documents from the LSH buckets (or the

inverted index). To achieve bounded space usage, at some point we will have to start

deleting the stored documents.

We present a number of ways for choosing which document to delete when a new

document comes in. We first define two main axes along which we choose the docu-

ments: i) what is the set of documents we consider for deletion (we will call this the

candidate set), and ii) how to pick a document from the candidate set. Note that the

candidate set is defined for each of the L hash tables, and thus we have L candidate

sets. We propose three strategies for picking each candidate set (CSi,1≤ i≤ L):

1. Global: CSi = the set of all documents stored so far. Note that this implies that

all candidate sets are the same.

2. Collision: CSi =
⋃L

m=1{d′ : hm j(dt) = hm j(d′),∀ j ∈ [1 . . .k]}, i.e., all the candi-

date sets are equal to the set of documents that collide with the new document.

3. Bucket: CSi = {d′ : hi j(dt) = hi j(d′),∀ j ∈ [1 . . .k]}, i.e., the candidate set is dif-

ferent for hash table i, and is equal to the set of documents that fall in the same

bucket as the new document in that particular hash table.

If our candidate set is chosen according to global or collision strategy, the document

we pick for deletion is immediately deleted. If, however, the candidate set is chosen

according to the bucket strategy, the document is deleted only from one hash table, and

may still be present in other hash tables. We delete the document altogether (including

deleting from the inverted index) only when it is deleted from all the hash tables. Given

a candidate set of documents that we are considering for deletion, we have two ways

of choosing which document to delete:

1. Choose the oldest document

2. Choose a random document

In addition to choosing the oldest document and a random document from the CS,

another simple strategy would be to delete the newest document. Of course, one would

54 Chapter 4. First Story Detection in a Streaming Setting

not expect that this strategy will be a very successful one (or indeed a very reasonable

one) because it ignores any new information and relies solely on old data. Despite

this, we ran initial experiments using this strategy and the results we obtained were no

better than random. This just shows that in FSD looking only at the old data is the

same as having no data at all and just making random decisions. Because of this, we

do not devote any more space to experimenting with this strategy.

4.2.4 Parallelizing Our Approach

While the constant time approach presented in this chapter is able to process an un-

bounded stream of documents, it still has a limit on the bandwidth of the documents

it can process. It is unreasonable to expect our approach to process the entire Twit-

ter stream (∼ 200 million tweets per day) on a single core on one machine. This is

the same problem all large scale systems face, and it is normally addressed by using

more cores and/or machines to distribute the computation load. Currently, there are

two major directions for doing this. Approaches such as Google’s Mapreduce frame-

work and the open-source Hadoop project distribute the computation by splitting the

data into chunks and having each node in the cluster process one chunk. Another way

of parallelizing is carried out by having every node perform different calculations on

the same set of data. Probably the best known example of this kind of approach is

multithreading (implemented, e.g., in the pthread library).

While the Mapreduce paradigm has been gaining more and more popularity in re-

cent years, it is unfortunately inherently unsuitable for the kind of online processing

that FSD requires. This is because establishing whether a story is about a new event

requires information about all the stories that arrived before it, and this means that a

shared global state must be maintained and updated after every new story comes in.

As noted in Lin and Dyer (2010), maintaining this global state becomes very expen-

sive because of the frequent synchronization needed. Thus, the speedup gained from

distributing the computation is outweighed by the extra amount of time spent starting

jobs and performing synchronization, making Mapreduce unsuitable for such online

processing. Another way to look at this is the following: Mapreduce is very efficient

for large batch jobs, but in FSD (and other online tasks) the batch size is one, making

Mapreduce inefficient for such tasks.

On the other hand, our approach naturally lends itself to parallelization using the

multithreading paradigm. In particular, there are two functions that can easily be par-

4.3. Experiments 55

allelized: hashing the stories, and comparing the new story to other stories in the col-

lision set. We show the parallel versions of these two functions in Algorithm 8. Note

that in step 27 of the algorithm we use the slice notation S[i : j] to denote the subset

{Si, . . . ,S j−1} of S. We can see that the hashing is parallelized by having each thread

hash the new document into a subset of the hash tables. The collision set S is then

formed by simply performing a union over all the collision sets returned by individual

threads. Distance computation is parallelized in a similar manner, where each thread

computes the distance from the new document to a subset of candidates. The final

nearest neighbor is taken to be the document closest to the new document, out of the

set of most similar documents returned by each thread. We will explore the gains we

get from parallelizing our approach in Section 4.3.

4.3 Experiments

4.3.1 Scaling and Variance Reduction

In this section, we perform experiments that show the efficacy and efficiency of our

system, as well as explore the tunable parts of it. First, we will show that our system

based on LSH together with the variance reduction performs as well as a state-of-the-

art system. For this purpose, we compare our system to the UMass system (Allan et al.,

2000b). The UMass system has participated in the TDT2 and TDT3 competitions and

is known to perform at least as well as other existing systems who also took part in the

competition (Fiscus, 2001). Because we use the same settings as the UMass system (1-

NN clustering, cosine distance, incremental TFIDF), this ensures that any difference

in results is due to approximations made by LSH. We limit both systems to keeping

only the top 300 features in each document, where the features are sorted according

to decreasing TFIDF score. Using more than 300 features barely improves accuracy

for either system, while taking significantly more time for the UMass system. In other

words, using more features only increases the gap in running time between our system

and the UMass system. Because stemming is usually found to be helpful, we explored

using both the Krovetz stemmer (Krovetz, 1993) and the Porter stemmer (Porter, 1980)

in both systems. The difference between the two is that the Porter stemmer tends to

stem too aggressively, and the Krovetz stemmer was designed to fix the overstemming

caused by Porter. We set the LSH parameter k to 13, and L such that the probability of

missing a neighbor within the distance of 0.2 is less than 2.5%. The distance of 0.2 was

56 Chapter 4. First Story Detection in a Streaming Setting

Algorithm 8: Parallelized FSD based on LSH.
input: Number of hash tables L, number of threads N

1 ParallelHash(d, thread id)

2 tables per thread← L/N

3 begin index← thread id ∗ tables per thread

4 end index← begin index+ tables per thread

5 S = {d′ : ∃i ∈ [begin index..end index],gi(d′) = gi(d)}
6 return S

7 DistanceComputer (d, S)

8 for d’ in S do
9 current max← 0

10 if cos(d,d′)> current max then
11 current max← cos(d,d′)

12 end
13 return current max

14 end

15 Main thread

16 foreach document d in the stream do
17 for i = 0 to N - 1 do
18 create ParallelHash(d, i) // Distribute hashing.

19 end
20 // Wait for all ParallelHash threads to finish.

21 Si← Receive(ParallelHash)

22 S←
N⋃

i=1

Si

23 // Number of documents each thread has to process.

24 dpt← |S|/N

25 for i = 0 to N - 1 do
26 // Distribute distance computation.

27 create DistanceComputer(d, S[i∗dpt : (i+1)∗dpt])

28 end
29 // Wait for all DistanceComputer threads to finish.

30 local maxi← Receive(DistanceComputer)

31 dismin(d)← 1− max
1≤i≤N

local maxi

32 . . .

33 end

4.3. Experiments 57

System Cmin

UMass (Porter) 0.708

UMass (Krovetz) 0.742

Luo et al. (2007) 0.758

LSH w/o variance reduction (Strategy 1) 0.845 (0.039)

LSH w/ variance reduction (Krovetz) 0.683 (0.012)

LSH w/ variance reduction (Porter) 0.713 (0.013)

Table 4.1: Comparison of our system to a state-of-the-art system. Numbers in paren-

theses are the standard deviations of 10 runs. All systems used 300 features.

chosen as a reasonable estimate of the threshold when two documents are very similar;

we shall see later how the choice of k and L affects the performance of our system.

TDT5 results. Table 4.1 shows the Cmin scores for different FSD systems. For all of

our systems, the Cmin score we report is the mean Cmin of 10 runs of the system, and the

number in parentheses is the standard deviation of those 10 runs. First, we compare

our systems to the state-of-the-art UMass system. We can see that without variance

reduction our system achieves a rather poor result of 0.845, with a standard deviation

of 0.039. By using variance reduction, this result is improved by approximately 19%,

and the variance is reduced by an order of magnitude (equivalently, standard deviation

is reduced over three-fold). Comparing our approach that uses variance reduction with

the UMass system, we can see that we perform equally well, meaning that our system

achieves the performance level of a state-of-the-art system. The DET curves for the

UMass system and our approach that uses variance reduction are shown in Figure 4.1.

One natural question that arises here is whether our LSH-based approach is really

needed to achieve constant processing time and whether a simpler approach might

achieve the same accuracy. To answer this question, we compare our approach to the

one in Luo et al. (2007) which just keeps a history of last n documents. We can see that

our approach outperforms this baseline by 10%. This shows that there are benefits in

using a more principled approach like LSH over the simple sliding window algorithm.

Finally, we look at the effect of stemmers on Cmin. While UMass benefits more from

using the Porter stemmer, our system performs better using Krovetz stemmer. In fact,

our system based on LSH even slightly outperforms the UMass system when using the

Krovetz stemmer. On the other hand, using the Porter stemmer our system performs

slightly worse than the UMass system, but only by 0.7%.

58 Chapter 4. First Story Detection in a Streaming Setting

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Random Performance

Our system

UMass system

Figure 4.1: DET curve for our system and the UMass FSD system.

Figure 4.2 shows the time required to process 100 documents (in seconds) as a

function of the number of documents seen so far. This confirms the previous theoreti-

cal results: our system maintains constant time, whereas the UMass system processing

time grows without a bound (roughly linear with the number of previously seen doc-

uments). The total time it took the UMass system to process the TDT5 corpus was

46 hours, compared to 2 hours for our system. This means that our approach per-

forms equally well as a state-of-the-art system, while being more than 20 times faster.

More importantly, our system maintains constant processing time for each document,

whereas the state-of-the-art system’s processing time grows linearly.

Twitter results. Performance of our system on the Twitter data is shown in Table 4.2.

Due to its linear time complexity, we cannot run the UMass system on this data, as dis-

cussed earlier. First, we examine the effect of different Twitter-specific features on the

FSD performance. We can see that simply removing the username mentions and the

links from tweets improves the results substantially. This is because usernames rarely

contribute to the content of the tweet, and mostly serve to throw off the nearest neigh-

bor search. Links hurt performance mostly because of the use of multiple services for

shortening URLs, i.e., one article appearing as many different links shortened through

various services (bit.ly, t.co, goo.gl, ow.ly, etc.). On the other hand, we can see that

removing hashtags has the opposite effect. This shows that hashtags do contribute to

4.3. Experiments 59

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50000 100000 150000 200000 250000 300000

T
im

e
pe

r
10

0
do

cu
m

en
ts

 (
se

co
nd

s)

Number of documents processed

Our approach
UMass system

Figure 4.2: Comparison of processing time for our and the UMass system.

System Cmin

Baseline (no stemming, nothing removed) 0.828

Removed usernames and links 0.700

Removed the hash sign 0.832

Removed the hashtags altogether 0.876

Removed usernames and links, (Porter) 0.805

Removed usernames and links, (Krovetz) 0.747

Table 4.2: FSD results for Twitter data.

the content of tweets and should be kept. Treating hashtags as normal words (by re-

moving the hash sign) also seems to degrade performance, albeit only a little. This

indicates that hashtags should be treated as separate tokens, instead of trying to treat

them as normal words. Finally, we examine the effect of stemming the tweets. As the

last two rows of Table 4.2 show, any kind of stemming hurts the performance, which

is exactly the opposite of what was the case with TDT data. We conjecture that this is

because stemmers are designed for clean data, and Twitter data is so noisy (i.e., full of

grammatical errors and misspellings) that stemmers do more damage than good.

60 Chapter 4. First Story Detection in a Streaming Setting

k \L 10 30 50 70

5 0.672 0.703 0.736 0.718

6 0.689 0.703 0.720 0.716

7 0.666 0.693 0.721 0.717

8 0.666 0.701 0.704 0.725

9 0.673 0.679 0.692 0.711

10 0.678 0.694 0.704 0.719

11 0.666 0.685 0.707 0.696

12 0.674 0.680 0.661 0.682

13 0.671 0.675 0.680 0.685

14 0.674 0.671 0.663 0.686

15 0.666 0.684 0.663 0.685

Table 4.3: Effect of k and L on the Cmin score in TDT5.

4.3.2 Effect of LSH Parameters

We first look at the effect of LSH parameters k and L on the performance of our system.

These two parameters determine the tradeoff between accuracy of our system and its

running time. Table 4.3 shows how Cmin depends on k and L. Looking at increasing

L for any fixed k, we can see that using a higher L actually hurts performance slightly,

and that this degradation is more pronounced for lower values of k. This effect is a

consequence of the combination of LSH and the variance reduction strategy, and we

explain it in detail in Section 4.3.3.

Having seen how k and L affect Cmin, it is also important to know how they affect

the efficiency of our system. We show the running time of our system in Table 4.4.

We look at the results along two axes. First, changing L for a fixed k gives the obvi-

ous effect – as we increase L, the running time goes up because we have to do more

hashing and we compare each document to a larger set of potential candidates. How-

ever, changing k for a fixed L is much more interesting. We can see that initially

increasing k leads to decreased running time, achieving a minimum around k = 10,

and further increasing k leads to increasing running time. These results illustrate the

tradeoff between the time our system spends hashing the document, and the time it

spends comparing the document to candidates for nearest neighbor. Initially (small k),

the system does very little hashing, but as a result the LSH frequently fails to find a

4.3. Experiments 61

“good” nearest neighbor, so the variance reduction strategy fires more often, leading

to lots of time spent comparing the document to potential nearest neighbors. As we

increase k, we spend more time hashing, but the hash functions become more selec-

tive. As a result, the variance reduction fires less frequently, having a total positive

effect on the running time of our system. Further increasing k means even more time

spent hashing, but now the frequency with which variance reduction is invoked does

not decrease, so this has a total negative effect on the running time.

We can now give a more general description of how to choose a good setting for k

and L in our FSD system. Looking at both Tables 4.3 and 4.4, one might be tempted

to conclude that setting k around 10 or 11, and L to 10 gives the best tradeoff between

performance and running time. Indeed, this would yield a Cmin score of around 0.67,

and it would take only 28 minutes to process the entire TDT5 collection, which means

that we would improve the state-of-the-art results by 5%, while also being 64 times

faster. However, this kind of reasoning would lead to overfitting the parameters to the

TDT5 data. There are two main reasons for this. First, setting L to such a low value like

10, with a fairly high k of 10 leads to poor guarantees from LSH. In particular, with

k = 10 and L = 10, the probability of LSH finding a nearest neighbor with a cosine

similarity of 0.6 (which constitutes a moderately similar document) is only 26%. This

means that our variance reduction strategy would fire often, which is not very desirable

because our performance then depends more on the variance reduction parameters,

which do not have as clear probabilistic interpretation. Also, when processing a bigger

dataset one would likely have to set the bn parameter to a higher value, which would

mean that the running time would increase. Thus, we want to set L to a high value.

Now, looking back at Table 4.3, we see that with high values of L, it is better to choose a

higher value of k. As a result of this discussion, we suggest setting both k and L higher

than indicated by the numbers in Table 4.3 and 4.4. This way, our hash functions

are more selective, and we rely less on the variance reduction strategy because it fires

less frequently. Another advantage of such a parameter setting is that more time is

spent hashing, which is beneficial because hashing is more amenable to parallelizing,

especially using GPUs.4 The exact k and L we use are 13 and 70, corresponding to a

Cmin score of 0.685, and a running time of 93 minutes. With this parameter setting, the

probability of LSH finding a nearest neighbor with a cosine similarity of 0.6 is 54%,

twice as much as when k is 10 and L is 10.
4This is because hashing in LSH involves multiplying a dense random vector with a sparse document

vector. This is easier to parallelize than computing the distance between two documents, which involves
multiplying two sparse vectors. We do not experiment with parallelizing our approach using GPUs.

62 Chapter 4. First Story Detection in a Streaming Setting

k \L 10 30 50 70

5 75 212 320 343

6 53 119 186 244

7 37 75 121 162

8 31 55 83 113

9 27 45 67 90

10 27 42 61 81

11 28 47 60 92

12 28 44 61 90

13 31 56 75 93

14 33 51 73 109

15 32 50 73 120

Table 4.4: Effect of k and L on running time. Time is shown in minutes.

4.3.3 Why is Approximate Better than Exact?

As we see from the results in Tables 4.1 and 4.3, our approximate technique sometimes

outperforms the exact technique. This is somewhat surprising, as one would normally

expect that the approximations we make should only make our system perform worse,

not better, than the exact approach. This is why we devote some space here in explain-

ing why this happens.

The reason for outperforming the exact system lies in the combination of using

LSH and the variance reduction strategy. Using LSH means that, with very high prob-

ability, we will find the nearest neighbor of a newly arrived document if this neighbor

is very close, regardless of when it was written (i.e., how old this nearest neighbor

is, compared to the newly arrived document). Using the variance reduction strategy

ensures that we will find the nearest neighbor that may be somewhat similar to the

newly arrived document, but that was written recently. What our approach will not

find are nearest neighbors that are i) somewhat similar to the newly arrived document,

and ii) written long ago, compared to the newly arrived document. This means that our

approach implicitly models time and that it will improve the novelty scores of first sto-

ries that have a somewhat similar nearest neighbor that was written long ago, because

it will not find such nearest neighbors.

This also explains why using a lower L for a fixed k gave better results in Table 4.3.

4.3. Experiments 63

A high value of L increases the probability of finding the nearest neighbor, regardless

of when it was written. In the limit, if we let L→ ∞ our approach would find every

nearest neighbor exactly and thus its performance would be the same as that of the

exact system. However, with a lower value of L we only find close nearest neighbors

with high probability. This means that our approach will find two types of nearest

neighbors: those that are very similar to the document, or those that were written

recently. As we lower L this effect will become more pronounced, which is in line

with the numbers in Table 4.3. In short, lowering L for a fixed k will increase the effect

of our implicit time penalty.

In Table 4.3 we also saw that the difference in accuracy between using a small L

and a high L was more pronounced for smaller k and less pronounced for higher k. This

is easily explained by noting that k has an exponential effect (increasing k by one will

reduce the number of candidates by half), whereas L has a linear effect (increasing L by

one will only add a constant number of candidates for a nearest neighbor). This means

that for a higher k we would need to increase L a lot more to see the same difference

as we do when we compare a low and high L for a lower k. In short, while the implicit

time penalty almost disappears for a low k and high L, it is still present for a higher k

with the same value of L.

In order to illustrate this effect, we manually inspected the stories where the novelty

score was improved by using a lower L. We found, e.g., that the novelty score of the

first story for the topic Edward Said dies was improved from 0.67 to 0.77 by using

L = 10 instead of L = 70. The first story on this topic was published on September

25th 2003. When using L = 70, the nearest neighbor of the first story in this topic was

from April 3rd 2003, while setting L = 10 yielded a nearest neighbor that was written

on September 23rd 2003. This example shows that we are implicitly imposing a time

penalty, and that we can set how “aggressive” this penalty should be through k and L.

Note that we are not the first to explore using time penalty for FSD. Similar (but

more explicit) models that take time into account have been successfully used in TDT1.

For example, Yang et al. (1998) used a fixed window of n most recent documents and

only searched over documents within this window, much like the approach of Luo et al.

(2007). However, these models were unsuccessful in TDT2 and TDT3, and were thus

largely abandoned by the TDT participants. The fact that we are finding improvements

with our implicit time modelling suggests that such models would have been useful in

TDT5, had they been tried.

64 Chapter 4. First Story Detection in a Streaming Setting

4.3.4 Effect of Parameters for Variance Reduction Strategy

In this section, we investigate the effect of the two parameters in our variance reduction

strategy. The first one, backoff threshold bt , determines if the nearest neighbor returned

by LSH was good enough and if we should try and find a better nearest neighbor by

doing a limited search through the inverted index. The second one, bn, determines the

number of documents included in this limited search.

We first examine the effects of the backoff threshold bt . Lower values of this thresh-

old mean that we will resort to the additional search more often, whereas higher values

mean that the additional search will only be done in rare cases. Figure 4.3 shows that

our approach is fairly robust with respect to this parameter – any value up to 0.6 yields

results comparable to the exact system. There is no point in trying values lower than

0.3 because this just means we are getting closer to the exact system in performance. In

fact, for bt = 0 our system would always perform exact search, and thus reduce to the

basic approach used in other systems. We can see that setting bt too high (0.8 or more)

yields much worse results. A very high backoff threshold means that the variance re-

duction strategy “fires” only rarely, and it is thus not surprising that the Cmin score then

approaches the score of the system without variance reduction (cf. Table 4.1). Tak-

ing an extreme case where bt = 1, our system would reduce to the approach with no

variance reduction whose performance is given in Table 4.1. Based on Figure 4.3, we

recommend setting bt anywhere in the range between 0.5 and 0.6. In our experiments,

we always use 0.6, which means we prefer the variance reduction to fire less frequently.

The other parameter of our variance reduction strategy determines exactly how

many additional documents to inspect, once we choose to use this strategy. As we

mentioned before in Section 4.2.2, we will compare two different ways of inspecting

additional documents. The first one is based on recency and thus simply looks at the

last N documents that share at least one word with the current document. The other

strategy is to inspect, for every word in the query document, N/‖d‖0 most recent

documents which contain that word. We will call this strategy uniform. We compare

these two strategies on both TDT and Twitter data.

TDT results are shown in Figure 4.4. We can see that the strategies give comparable

results, but have very different behavior with respect to the number of documents used

for backoff. While for recency it is generally better to search over a larger number of

documents, uniform search achieves very good performance much earlier, using only

500 or 1000 documents (compared to about 10,000 for recency). Figure 4.5 shows

4.3. Experiments 65

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
 m

in

Backoff threshold

Figure 4.3: Effect of the backoff threshold on Cmin.

the same results for Twitter data. The difference between the two strategies is much

more apparent now: even though the recency-based strategy might achieve the same

performance as the uniform one, it is unclear how many documents it would take for

this to happen. With 5,000 documents in the backoff the system basically achieves

random performance, and even with 50,000 documents, performance using recency

strategy is substantially below that when using uniform strategy. Using more than

50,000 documents for backoff would lead to a very slow system (remember that with

L = 70 we only inspect 210 documents suggested by LSH) so we did not try higher

values. Figures 4.4 and 4.5 clearly show that uniform search is the preferred way of

inspecting additional documents within our variance reduction strategy.

4.3.5 Comparison of Deletion Strategies

A crucial part of making our system suitable for stream processing is its ability to

maintain constant space, which means deleting documents. Here we compare the dif-

ferent strategies for choosing which document to delete once the allocated space fills

up. We compare six strategies which correspond to all the combinations of choosing

the candidate set and choosing the document from that set, as defined in Section 4.2.3.

66 Chapter 4. First Story Detection in a Streaming Setting

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0 2 4 6 8 10 12 14 16 18 20

C
 m

in

Number of documents for backoff (thousands)

Uniform feature search
Last n documents

Figure 4.4: Comparison of the recent and the uniform strategy for backoff on TDT data.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 5 10 15 20 25 30 35 40 45 50

C
 m

in

Number of documents for backoff (thousands)

Uniform feature search
Last n documents

Figure 4.5: Comparison of the recent and uniform strategy for backoff on Twitter data.

4.3. Experiments 67

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 50 60 70 80 90 100 110 120 130 140

C
 m

in

Number of documents kept (thousands)

Oldest bucket
Oldest collision set

Oldest global
Random bucket

Random collision set
Random global

Figure 4.6: Comparison of deletion strategies on TDT5 data.

Results for TDT data are shown in Figure 4.6, and results for Twitter data are shown

in Figure 4.7. For the TDT data two things are apparent: i) in general, the more doc-

uments are kept, the better the results are, and ii) it is very hard to say if one strategy

outperforms others, i.e., all strategies perform similarly. On Twitter, the situation is

a bit clearer: all the strategies that delete the oldest document perform very similarly,

and in general they seem to perform better than the random strategies. One main dif-

ference between Twitter and TDT is that keeping more documents in Twitter hurts

performance. This result supports the intuition that Twitter is a real-time information

source where fresh news are very important, and looking too far back in the past will

hurt performance. The number of documents kept that achieves the best Cmin cost for

Twitter corresponds to roughly one hour of data that we receive, which shows just how

fast-paced this stream is.

4.3.6 Parallelization

Finally, we want to know if parallelizing our approach can help us reduce the running

time. We run our system that uses parallelization as described in Algorithm 8 with the

default parameters (k = 13, L = 70, bt = 0.6, and bn = 2000). Figure 4.8 shows the

68 Chapter 4. First Story Detection in a Streaming Setting

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 10 15 20 25 30 35 40

C
 m

in

Number of documents kept (thousands)

Oldest bucket
Oldest collision set

Oldest global
Random bucket

Random collision set
Random global

Figure 4.7: Comparison of deletion strategies on Twitter data.

running time of our system with different number of threads (the number of cores on

the machine was 24). We can see that initially there is an almost linear gain in speedup,

but it quickly flattens out for more than four threads. When using four threads, we get a

three-fold speedup over the single-threaded version. This experiment shows that there

is definitely gain to be had in parallelizing our approach, but when using more than

four threads further gains are insignificant, if any. This is most likely due to the fact

that the gain in distributing the computation load is offset by the overhead of creating

and destroying threads.

4.4 Conclusion

The first, and arguably the most important challenge that modern event detection sys-

tems face is dealing with high-volume, unbounded nature of the data. In this chapter

we introduced a way to scale existing FSD approaches to unbounded streams, while

keeping state-of-the-art results. The core of our approach consisted of using LSH for

fast search coupled with a strategy for reducing the variance of results introduced by

the one-sided error of LSH. We further showed how to make this approach constant

in both space and time, and what different steps we can make in that respect. We ex-

4.4. Conclusion 69

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

R
un

ni
ng

 ti
m

e
(m

in
ut

es
)

Number of threads

Figure 4.8: Running time of our system as a function of the number of parallel threads.

plored the different aspects of our approach and gave an overview of how they affect

performance and how to set the appropriate parameters. Our final system achieves

state-of-the-art performance on the FSD task, while processing the TDT5 dataset an

order of magnitude faster than previous state-of-the-art system. Finally, we showed a

way to parallelize our approach in order to increase the bandwidth of documents it can

handle. In the next chapter, we will look into further improving the state-of-the-art in

FSD, while keeping in mind the need for efficient and scalable solutions.

Chapter 5

Improving First Story Detection Using

Paraphrases

5.1 Motivation

In the previous chapter we showed how to scale first story detection to unbounded data

streams, which is a typical scenario when doing event detection in both news and social

media. In this chapter, we focus on addressing another major issue present in all of the

TDT tasks – the problem of lexical variation. This includes situations when the same

event is being referred to using different words. In the information retrieval literature,

this is sometimes also referred to as the vocabulary mismatch problem. To illustrate

the problem, consider the following three tweets:

1. Bomb blast near the Delhi high court

2. Explosion outside Delhi high court

3. Waiting outside Delhi high court

Although any human would say that the first two documents are much more similar,

all standard similarity measures used today will say that documents two and three are

the most similar. In particular, for the cosine measure, assuming that no IDF weighting

has been applied, the similarity between documents one and two is 0.507, compared

to a similarity of 0.8 between documents two and three. Even with IDF (or similar)

weighting, the situation would not change significantly – documents two and three will

still be more similar than one and two, while the gap between them might increase or

decrease slightly, depending on the corpus used to collect the IDF counts.

71

72 Chapter 5. Improving First Story Detection Using Paraphrases

In this chapter, we introduce a novel approach to dealing with lexical variation

in FSD. Our approach is based on using paraphrase information to detect when two

documents talk about the same event, even though they may use different words. In

our example above, explosion would be a paraphrase of blast, and knowing this in-

formation would help us establish that tweets 1 and 2 are more similar than originally

thought. We show that our approach not only outperforms competing approaches on

the FSD task, but that it is also more efficient, which was one of the main requirements

set out at the beginning of the thesis.

5.2 Background

The problem of lexical variation is not specific to the TDT domain. If anything, it is

inherent to natural language, and thus plagues many IR and NLP tasks. It is therefore

not surprising that the problem has received a lot of attention in the literature. In this

section we review the main approaches proposed for dealing with this problem.

5.2.1 IR Approaches

Some of the earliest work on solving this problem can be found in the information

retrieval literature under the umbrella term query expansion. The basic idea is simple

(assuming an ad-hoc retrieval1 scenario): the original query is expanded with addi-

tional terms in order to match documents that otherwise would not have been retrieved.

There has been a great deal of work on the different ways in which this can be done.

The first work to use query expansion for TDT was Papka et al. (1999), where mul-

tiword features were used to expand documents for tracking (thus, the new document

was considered to be the query). Papka et al. (1999) found that this helped the story-

weighted cost, but decreased the topic-weighted cost. Overall, the differences were

very small and the conclusion was that such expansion was not successful.

There are many other ways of performing query expansion, but here we focus on

relevance models because they are generally found to perform the best across a number

of IR tasks (Lavrenko, 2004). Relevance models (Lavrenko and Croft, 2001) are an

instance of a more general technique called pseudo-relevance feedback, which uses the

set of documents retrieved by the original query in order to estimate additional context

1Ad-hoc retrieval is the standard retrieval task where a user’s information need is specified through
a query that then initiates a search over a static set of documents in order to find those that are likely
relevant to the user.

5.2. Background 73

for the query. Relevance models assume that both the query and the documents relevant

to the query are just samples from the same underlying language model R. Therefore,

given a query Q and a set of documents D, if we can estimate the language model

R, we can expand Q with additional words according to p(w|R). Lavrenko and Croft

(2001) present a principled way of estimating R given Q and D based on co-occurrence

statistics. In the context of TDT, relevance models have been shown beneficial for

tracking (Lavrenko and Croft, 2001) and linking (Lavrenko et al., 2002), but they have

not been used in other TDT tasks. Here we explore for the first time the utility of using

relevance models for first story detection.

Most recently, Ozdikis et al. (2012) used document expansion for event detection

in Twitter. Their expansion was based on second-order relations, which is also known

under the name distributional similarity in NLP. While expanding the tweets this way

showed some promising initial results, this approach is inherently unsuitable for our

purposes as it does not scale to the amount of data that we deal with.

5.2.2 Machine Learning Approaches

Another way to mitigate the problem of lexical variation is by using machine learning

approaches, particularly those based on topic models (Blei et al., 2003). These ap-

proaches explicitly model topics as latent variables, usually represented as a multino-

mial distribution over words. These models can thus capture the notion of homonymy

(e.g., two meanings of the word crane can be captured by the fact that it appears in

the topic animals and in the topic construction) and synonymy (e.g., words soldier and

warrior can appear in the same topic). Because documents are represented in the latent

topic space, this alleviates the problem of lexical mismatches.

In the context of event detection, topic models have been explored in Ahmed et al.

(2011). They propose a hybrid clustering and topic model approach with rich features

such as entities, time, and topics. This probabilistic approach is able to support struc-

tured browsing and creation of storylines. Thus, it is able to provide the user with a

rich experience of browsing a collection of news documents. The drawback of this

approach is the complex inference method that makes it fairly slow. For example, even

when using multiple threads, this approach is much slower than our approach when

using a single thread. Ahmed et al. (2011) do not explicitly work out the time com-

plexity of their system, but they do note that it is not constant. Because Ahmed et al.

(2011) also use this approach for FSD, we will compare it with our approach.

74 Chapter 5. Improving First Story Detection Using Paraphrases

5.2.3 Paraphrases

In this section we give a short overview of what paraphrases have been used for in

the past. There are several levels of paraphrasing – lexical paraphrases, where the

relationship is restricted to individual lexical items, phrasal paraphrases, where longer

phrases are considered, and sentential paraphrases, where entire sentences are in a

paraphrastic relationship. Here we use the simplest form, lexical paraphrases, but our

approach is general and it would be trivial to use phrasal paraphrases in the same way.

Paraphrases were already shown to help in a number of tasks. For example, Callison-

Burch et al. (2006) found that translating paraphrases of unknown phrases improves

the performance of a machine translation system. Paraphrases have also been used for

query expansion in information retrieval (Spärck Jones and Tait, 1984; Jones et al.,

2006), or for improving question answering (Riezler et al., 2007). A much more

detailed discussion on the use of paraphrases and ways of extracting them is given

in Madnani and Dorr (2010).

5.3 Using Paraphrases in First Story Detection

5.3.1 Paraphrasing as a Bilinear Form

In this section, we explain how to use paraphrases in a first story detection system.

We account for paraphrases by changing the way the cosine similarity is computed

in equation (2.4). We do this by redefining the inner product using a bilinear form

induced by a binary word-to-word matrix of paraphrases Q. An entry of 1 at row i

and column j in this matrix indicates that words i and j are paraphrases of each other,

and a 0 means that they are not. To see that such a matrix defines a bilinear form, it

is sufficient to note that the matrix is symmetric (because the paraphrasing relation is

symmetric), and contains real entries (zeroes and ones in our case).2 Our new inner

product is defined as:

〈x,y〉Q = yT Qx, (5.1)

which means that the new cosine distance we use is given by

cosQ(x,y) =
yT Qx√

xT Qx
√

yT Qy
. (5.2)

2This is of course a simplification – in general, one might like the entries in the matrix to be real
numbers corresponding to the probability that two words are paraphrases. We leave this for future work.

5.3. Using Paraphrases in First Story Detection 75

Note that technically equation (5.1) does not define a valid inner product because

the positive definiteness property does not hold. However, this is not a problem in

practice as all the document vectors in the TFIDF representation have positive entries,

effectively making (5.1) behave like a proper inner product. If we revisit the example

with three short documents from the beginning of the chapter, by having information

that the word explosion is a paraphrase of the word blast, the cosine similarity between

the first two documents would increase from 0.507 to 0.676. When using IDF weight-

ing, words explosion and blast would likely get much higher weights than words the

and near, ultimately leading to tweets 1 and 2 being more similar than tweets 2 and 3.

As a running example in this chapter we will use the following simple paraphrasing

matrix consisting of five words:

jump spring source in f ormant witness

jump 1 1 0 0 0

spring 1 1 1 0 0

source 0 1 1 1 0

in f ormant 0 0 1 1 1

witness 0 0 0 1 1

(5.3)

For example, this matrix tells us that words spring and source are paraphrases, and

that witness and jump are not. This matrix will be used later in the chapter to illustrate

some key properties of our approach.

This approach of using paraphrases can be viewed as a special case of query/document

expansion using a similarity matrix. This general technique has appeared before un-

der many names – generalized vector space models (Wong et al., 1985), expansion

based on a similarity thesaurus (Qiu, 1995), expansion based on a statistical the-

saurus (Crouch and Yang, 1992), etc. All of these techniques use equation 5.1 to define

a new similarity measure between documents, where the matrix Q is used to introduce

some notion of similarity between terms.

As an example, we show that our bilinear form (5.1) can be seen as a special case

of the GVSM used in Tsatsaronis and Panagiotopoulou (2009). Other work, e.g. Qiu

(1995), makes this connection even more obvious. Tsatsaronis and Panagiotopoulou

(2009) define the inner product of two n-dimensional vectors x and y as

76 Chapter 5. Improving First Story Detection Using Paraphrases

〈x,y〉 =
n

∑
i=1

n

∑
j=1

SR(i, j)(xiyi + xiy j + x jyi + x jy j) (5.4)

= yT Qx+xT Qy+2
n

∑
i=1

xiyi

n

∑
j=1

SR(i, j) (5.5)

= 2yT Qx+2
n

∑
i=1

xiyi

n

∑
j=1

SR(i, j), (5.6)

where SR(i, j) is the semantic relatedness of terms i and j, and Q is the matrix where

the (i, j)-th entry is equal to SR(i, j). In our case, this relatedness can take on the values

zero or one (words i and j are either paraphrases or not). Furthermore, comparing (5.6)

to (5.1) we can see that Tsatsaronis and Panagiotopoulou (2009) give more weight to

terms that have larger total semantic relatedness (the ∑
n
j=1 SR(i, j) factor). We perform

no such weighting, as it is not clear what it is trying to achieve.

While previous work has largely concentrated on obtaining this matrix using sta-

tistical techniques, e.g., from co-occurrence counts of terms in the documents, there

were some attempts towards using linguistic knowledge to construct the similarity ma-

trix. Fox et al. (1988) use a parser to parse definitions of terms in several dictionaries

in order to obtain similar terms. They report “mild improvements” in retrieval perfor-

mance, but unfortunately do not quantify those improvements. Wallis (1993) is the

only work we are aware of that explored using linguistic paraphrases in information

retrieval. They obtain paraphrases from a dictionary (Longman Dictionary of Con-

temporary English) and use them to expand queries in an ad-hoc retrieval task. Wallis

(1993) report improvements in the high recall area, but in the low-recall high-precision

area which is of interest in standard retrieval applications they obtain worse results

than the baseline. Our approach based on paraphrases falls into this category of lin-

guistically inspired methods for document expansion. To the best of our knowledge,

we are the first to use paraphrases for first story detection.

5.3.2 Using Paraphrases with LSH

While equation (5.1) introduces the similarity measure that we would like to use with

paraphrases, it tells us nothing about how we would use it in our efficient LSH-based

system. An obvious attempt would be to hash documents as before and then apply (5.1)

to compute cosine on the set of candidates returned by LSH. Unfortunately, this would

mean that LSH operates in a different space from the one we are computing the cosine

5.3. Using Paraphrases in First Story Detection 77

in, and this would result in many good candidates being missed. This means that the

probabilistic bounds of finding a nearest neighbor would not hold any more, which is

very undesirable. We thus have to transform the original document vector x to a new

vector x′, such that when we compute 〈x′,y′〉 we get 〈x,y〉Q. It is clear that by using:

x′ = Q1/2x (5.7)

we have achieved our goal: 〈x′,y′〉= y′T x′=(Q1/2y)T (Q1/2x)= (yT Q1/2T
)(Q1/2x)=

yT Qx = 〈x,y〉Q.

We can now define the new locality-sensitive hash functions that can account for

paraphrases. Recall from before that a single hash function hi j in the original LSH

scheme hashes the vector x to:

h(x) = sgn(uT x), (5.8)

where u is a random vector. If we want to use paraphrases with LSH, we simply change

the hash function to

h1(x) = sgn(uT (Q1/2x)). (5.9)

We now show that by doing this, the LSH bounds for probability of collision hold

in the new inner product space defined by the matrix Q:

p(h(Q1/2x) = h(Q1/2y)) = 1− θ(Q1/2x,Q1/2y)
π

= 1− arccos(cos(Q1/2x,Q1/2y))
π

= 1−
arccos(yT Qx

‖x‖Q‖y‖Q
)

π

= 1− arccos(cosQ(x,y))
π

= 1− θQ(x,y)
π

.

(5.10)

This shows that the LSH bounds now hold in the new space defined by equa-

tion (5.1). The first equality in (5.10) comes from Charikar (2002), and the rest simply

follow from basic algebra.

We now look at our approach from a more general perspective. Equation (5.1) can

be viewed as defining a linear kernel, and in this case equation (5.7) represents the

78 Chapter 5. Improving First Story Detection Using Paraphrases

mapping into the kernel’s feature space. This does not depend on the kernel – it is

trivial to show that by mapping each point to its image in the feature space the LSH

bounds hold in the kernel space (the proof follows the same basic steps as (5.10)). Of

course, performing this mapping is not feasible for many types of kernels, but in the

case of a linear kernel it only introduces a small amount of overhead.

Recently, Kulis and Grauman (2009) introduced a way of hashing vectors such that

the probability of two points colliding is proportional to their distance in a feature space

induced by a specified kernel, i.e., they introduced a kernelized version of LSH. The

main idea there is to, instead of changing the input points x, change the way the random

vectors u are constructed. In particular, vectors u are no longer sampled completely at

random, but constructed as a weighted sum of t randomly sampled points. Here we will

highlight the main differences between our approach and kernelized LSH as described

in Kulis and Grauman (2009). The advantage of the approach in Kulis and Grauman

(2009) is that it works with any kernel, and avoids the sometimes expensive explicit

mappings into the feature space that we perform. However, a major disadvantage of

their approach is that, because it requires a representative sample of the dataset to

construct the random vectors, it only works with static datasets, making it unusable

in a streaming setting. Our approach, on the other hand, naturally handles streaming

data, making it possible to use kernelized LSH in problems that are inherently online

in nature, such as FSD.

5.3.3 Approximating Q1/2

Unfortunately, the square root of Q does not integrate well with LSH. To see why, let

us look at the square root of our small example matrix defined in (5.3). Its square root

is given by

0.824+0.071i 0.592−0.123i −0.057+0.142i −0.115−0.123i 0.117+0.071i

0.592−0.123i 0.766+0.213i 0.477−0.247i 0.059+0.213i −0.115−0.123i

−0.057+0.142i 0.477−0.247i 0.884+0.285i 0.477−0.247i −0.057+0.142i

−0.115−0.123i 0.059+0.213i 0.477−0.247i 0.766+0.213i 0.592−0.123i

0.117+0.071i −0.115−0.123i −0.057+0.142i 0.592−0.123i 0.824+0.071i

(5.11)

We can easily see two problems that arise here: i) the entries in this matrix are

complex, even though matrix Q had only zeroes and ones, and ii) this matrix is dense,

while Q was sparse. These problems arise because Q is not positive definite, which is a

consequence of non-transitivity of paraphrasing. Problem i) complicates the represen-

5.3. Using Paraphrases in First Story Detection 79

tation of x′ and the operations involved (we now have to store and multiply complex

numbers), and there is currently no known way of hashing complex numbers with a

cosine-preserving locality-sensitive hash function. However, problem ii) is even more

serious because having a dense Q1/2 effectively means that we are expanding every

document with every word in the vocabulary. This would increase the size of docu-

ments by several orders of magnitude, rendering our approach infeasible on all but toy

datasets. Thus, we have to find a way to approximate Q by a positive definite matrix,

which is equivalent to finding an approximation of Q1/2 with all real entries. To this

end, we introduce the following approximation:

Q̃1/2
i j =

Qi j√
∑k(Qik +Qk j)/2

. (5.12)

To understand the intuition behind the approximation (5.12), we first start with

computing the square root of a block diagonal matrix. First, let us define the direct

sum of two matrices, A (of size m×n) and B (of size p×q), as

A⊕B =

a11 . . . a1n 0 . . . 0
...

...

am1 . . . amn 0 . . . 0

0 . . . 0 b11 . . . b1q
...

...

0 . . . 0 bp1 . . . bpq

. (5.13)

We can then write the block diagonal matrix Q as a direct sum of n smaller matrices

Qk, called blocks:

Q =
n⊕

k=1

Qk. (5.14)

Such a matrix thus has the following form:

Q =

Q1 0 . . . 0

0 Q2 . . . 0
...

...

0 0 . . . Qn

 (5.15)

where all Qk are non-zero square matrices. If Q is a binary matrix, as is the case

80 Chapter 5. Improving First Story Detection Using Paraphrases

here, the blocks Qk would be matrices of all ones:

Qk =

1 . . . 1
...

1 . . . 1

 (5.16)

Because Q is a paraphrase matrix, each block in this matrix would correspond to a

cluster of words where any one of these words can substitute any other.

Finding the square root of each Qk now becomes very easy. We are looking for a

matrix B such that BT B = Qk. This can be written as a system of linear equations:

qk
i j =

nk

∑
m=1

bimbm j = 1,∀i, j = 1, . . . ,nk, (5.17)

where nk is the dimension of Qk. One possible solution to (5.17) (although not the

only one) is to have all bi j’s equal:

bi j =
1
√

nk
,∀i, j = 1, . . . ,nk. (5.18)

Unfortunately, it is not clear which nk to use here because paraphrasing matrices do

not have block diagonal form as in (5.15). The reason for this is simple – paraphrasing

is not a transitive relation. For example, words jump and spring are paraphrases, and

spring and source are paraphrases, but jump and source are not paraphrases. However,

if, for example, the words spring and source were not paraphrases, and source and

witness were, our example matrix would have the block diagonal form as in (5.15):

jump spring source in f ormant witness

jump 1 1 0 0 0

spring 1 1 0 0 0

source 0 0 1 1 1

in f ormant 0 0 1 1 1

witness 0 0 1 1 1

The main problem now becomes how to transform matrix Q into a block diagonal

matrix. If we try to simply form a transitive closure from Q,3 we would introduce a

lot of paraphrase relations that do not hold. In our example matrix, a transitive closure

over the relation defined in the matrix would mean that Q would become a matrix of

3This means that we force the relation expressed by the matrix to be transitive by adding pairs of
items to the relation until the transitivity property holds.

5.3. Using Paraphrases in First Story Detection 81

all ones, introducing six new paraphrase pairs. For larger matrices, this would be even

worse and in the end the majority of paraphrase relations in the approximation would

not have been present in the original matrix.

This is why we suggest forming local blocks which will be much smaller and intro-

duce fewer paraphrase relations that are not present in the original paraphrase matrix.

This approach works as follows. For each non-zero element qi j in Q, there are two

ways we can try to make it part of a block. One way is to take all the words that word i

can be paraphrased to, and do two things: i) form a transitive closure over those words,

which makes sure that the block that qi j is a part of has all ones, and ii) make sure that

paraphrases of word i can only be paraphrased to other paraphrases of i. For example,

this means that if we look at word jump in our example matrix, we cannot have the

word spring paraphrased to source, as source is not itself a paraphrase of jump. An-

other way is to perform the same procedure, only for the word j. Because it is not clear

that either of the two ways should be preferred, we use an approximation for nk that

interpolates between them. In particular, nk now depends on the bi j that we are trying

to compute (cf. equation (5.18)):

ni j
k =

n

∑
l=1

(qi
il +q j

l j)/2,∀i, j = 1, . . . ,n, (5.19)

where qi
il and q j

l j are entries in Q when we make the local approximations based on

words i and j, respectively. When Q is a block diagonal matrix, qi
il = qil and q j

l j = ql j,

and hence nk given by (5.19) is exact. Finally, the square root of Q is now just a direct

sum of the square roots of the diagonal matrices:

Q1/2 =
n⊕

k=1

(Qk)1/2, (5.20)

which is just another way of writing (5.12).

It is easy to verify that our approximation solves both problems that arise when

using exact Q1/2: i) all the entries in the matrix are real (a direct consequence of

equation (5.12) and the fact that entries in Q are zeroes and ones), and ii) Q̃1/2 is as

sparse as Q, which can be seen by noting that whenever qi j = 0, Q̃1/2
i j is also zero

because of (5.12). Another advantage of using our approximation is that it is very

simple and, with proper implementation, takes O(n2) time to compute, as opposed to

O(n3) for Q1/2, making it scalable to very large matrices. Furthermore, for sparse

matrices, such as those that we are dealing with, computing this approximation is even

faster and takes time linear in the number of non-zero elements in the matrix.

82 Chapter 5. Improving First Story Detection Using Paraphrases

We will take a moment here to compare this approach to that of Ture et al. (2011),

which was concerned with using LSH to efficiently find similar documents across two

languages. Their approach is similar to ours in that it uses a matrix (in their case a

translation matrix) to define a new inner product space in which cosine is computed.

The main difference, however, lies in the input documents: Ture et al. (2011) have two

types of documents, ones in the foreign language, and ones in the target language. This

asymmetry allows them to hash the documents in the target language as normal, and

hash the documents in the foreign language using

h(x) = uT (Qx). (5.21)

In our case there is no such asymmetry, which is why we have to use Q1/2 as in equa-

tion (5.7). As we have already explained, the main problem lies in the fact that exact

Q1/2 cannot be used and we have to make approximations, and this issue does not arise

in Ture et al. (2011).

Space efficient LSH. While LSH can significantly reduce the running time, it is fairly

expensive memory-wise. This memory overhead is due to the random vectors u being

very large. To solve this problem, van Durme and Lall (2010) used a hashing trick for

space-efficient storage of these vectors. They showed that it is possible to project the

vectors onto a much smaller random subspace, while still retaining good properties of

LSH. They proposed the following hash function for a vector x:

h2(x) = sgn(uT (Ax)), (5.22)

where A is a random binary matrix with exactly one non-zero element in each column.

This approach guarantees a constant space use which is bounded by the number of

rows in the A matrix. Here we show that our paraphrasing approach can be easily used

together with this space-saving approach by defining the following hash function:

h3(x) = sgn(uT (AQ̃1/2x)). (5.23)

The above equation simply states that, instead of hashing original documents x, we

hash the expanded documents Q̃1/2x. This way we get the benefits of the hashing trick

(constant space use for random vectors), while also being able to use paraphrases.

5.3.4 Where Do Paraphrases Come From?

Until now we said nothing about where we get the matrix Q from. In fact, research

on ways of extracting paraphrases from text is a challenging task in its own right, and

5.3. Using Paraphrases in First Story Detection 83

here we simply use the resources provided by researchers in this field. In particular,

we use three sources of paraphrases: Wordnet (Fellbaum, 1998), a carefully curated

lexical database of English, Microsoft Research paraphrase tables (Quirk et al., 2004),

a set of paraphrase pairs automatically extracted from news texts, and syntactically-

constrained paraphrases from Callison-Burch (2008) which are extracted from parallel

text. For all three corpora, we remove any paraphrase pairs that contain at least one

stopword. We also considered using paraphrases from Cohn et al. (2008), but using

them provided only minor improvement over the baseline model. This is likely due

to the small size of that corpus (a total of 7 thousand pairs). We do not show results

for this paraphrase corpus in our results. All three resources we use are very different:

they come from different domains (news text, legal text, general English), and they

have very little overlap (less than 5% of pairs are shared between any two resources).

Wordnet. We use Wordnet’s synonym sets (synsets) as a source of paraphrases by

considering all the pairs of words in a synset to be possible paraphrases of each other.

By doing this, we obtain 42 thousand adjective pairs, 4 thousand adverb pairs, 29

thousand verb pairs, and 80 thousand noun pairs. Note that by using Wordnet’s synsets

as a source of paraphrase data, we in effect reduce the more general definition of a

paraphrase to a simple synonym relation.

MSR paraphrases. Because Wordnet is a very expensive linguistic resource unavail-

able in most languages, we want to know how using an automatically obtained para-

phrase corpus compares to using Wordnet. The MSR paraphrase tables4 we use were

obtained automatically from clusters of news articles on the same topic, where the

paraphrase pairs were extracted using an approach based on machine translation. For

each phrase pair, the corpus contains the most likely alignment of words in the pair

along with the forward and backward probability of alignment. We use these phrase

pairs to extract word pairs by retaining only the aligned words where the probability

of both forward and backward alignment was greater than 0.2. In our preliminary ex-

periments we varied this threshold and found it has little effect on results. Using this

method, we extracted just over 50 thousand paraphrase pairs.

Syntactic paraphrases. Finally, we use the method of Callison-Burch (2008) to ex-

tract syntactically constrained paraphrases from a parallel corpus. This method re-

quires that phrases and their paraphrases to be of the same syntactic type, and has been

shown to substantially improve the quality of extracted paraphrases (Callison-Burch,

4Available from http://research.microsoft.com/en-us/downloads/
eceb4aba-f3a9-4535-9a07-95959611f613/

84 Chapter 5. Improving First Story Detection Using Paraphrases

2008). We extracted paraphrases for all the words that appeared in the MSR paraphrase

corpus, and then kept all the pairs that had the paraphrase probability of at least 0.2.

This way, we extracted 48 thousand pairs.

Generalizing our approach to multi-word units. Although in our experiments we

focus on single words, our approach can be easily generalized to multi-word para-

phrases, i.e., to phrasal paraphrases like (get married, tie the knot). To see how, simply

note that the dimensions in our matrix Q will no longer be single words, but entire

phrases, much like in a phrase table in machine translation. This will, of course, require

the document representation to change from bag-of-words to bag-of-ngrams, making

the vectors much longer and thus making our approach less efficient. A simple way

to get around this is to, instead of keeping all the n-grams in a document, keep only

those that have a paraphrase. This will reduce the total number of possible n-grams by

several orders of magnitude, thus incurring only a small computational overhead for

using phrasal paraphrases.

5.4 Experiments

5.4.1 Efficacy of Query Expansion for First Story Detection

5.4.1.1 TDT Results

Much like in Chapter 4, we run experiments on both TDT and Twitter data to test the

efficiency and effectiveness of our approach. All the experiments are conducted on the

same data as in Chapter 4. The default parameters for our streaming FSD system are

k = 13, L = 70, bt = 0.6, and n = 2000 for both TDT and Twitter.

In addition to comparing our approach to a state-of-the-art system, we also compare

it to relevance models (RMs), which are a state-of-the-art query expansion method in

tasks like ad-hoc retrieval, and have also been shown to improve results in other TDT

tasks. We tune the parameters of relevance models on the TDT1 corpus (Allan et al.,

1998). We expand each document in the TDT1 corpus using all the documents from the

same corpus, and then run our FSD system on the expanded documents. For relevance

models, we use the RM3 variant (relevance models interpolated with original query)

which performed the best on the linking task (Lavrenko et al., 2002). We run a grid

search over the parameter values and pick the setting that gave us the best Cmin score.

The particular setting we use is ce = 0.1, rew = 20, perp = 500. We then use these

parameters to expand TDT5 documents in the same way – we expand each document

5.4. Experiments 85

from TDT5 using all other documents from TDT5 and run the FSD system on the

expanded documents. Note that by doing this we are in fact ignoring the streaming

nature of the data as we are effectively using documents from both past and future

when expanding each document. This is of course a serious caveat in this experiment,

and we note here that the results we obtain this way are not the results we would

expect to obtain from using RMs in a realistic scenario. Rather, we use this as a way

of getting an upper bound on performance of RMs in FSD. It is reasonable to assume

that respecting the stream order or using a different collection of documents to expand

(e.g., Gigaword) will only perform worse than this approach. This should be kept in

mind when interpreting the results. We expand each document to the length of 1000

words, which was roughly the same as what expansion using paraphrases achieved.

This is the first time that relevance models have been used in first story detection.

Table 5.1 shows the results for TDT5 data. UMass 1000 is the run that was submit-

ted as the official run in the TDT competition.5 The best supervised system in Table 5.1

is the highest reported score in literature on the TDT5 dataset, described in Kumaran

and Allan (2005). Note that this is a supervised system trained on TDT3 and TDT4

corpora, whereas our system is fully unsupervised and requires no training data.

It is clear that using document expansion is beneficial, as all the systems that used

it outperform both supervised and unsupervised state-of-the-art systems. Furthermore,

we can see that using paraphrases performs better than relevance models. In fact, the

automatically extracted paraphrases from Callison-Burch (2008) outperform relevance

models by a large margin. This is a very promising result not only because we out-

perform relevance models, but also because these paraphrases were extracted automat-

ically, which means that we do not have to rely on expensive hand-crafted resources

like Wordnet as our source of paraphrases.

We also compare our approach to the hybrid clustering and topic model approach

from Ahmed et al. (2011). We perform the comparison on a subset of the TDT5 corpus

which consists of 46,793 articles published in May 2003. The same subset was used

in Ahmed et al. (2011), and because their system is not available, using this subset

of TDT5 was the only option in order to perform a fair comparison. In Table 5.2 we

compare the UMass system and the system from Ahmed et al. (2011) to our system

that uses syntactic paraphrases. We can see that the topic model approach performs

substantially worse than the baseline UMass system. This just confirms what years

5Our experiments, and experiments in Allan et al. (2000b) showed that keeping full documents does
not improve results, while increasing the running time.

86 Chapter 5. Improving First Story Detection Using Paraphrases

System Cmin Running time (hours)

UMass 100 0.721 13.6

UMass 1000 0.706 46.3

LSH-based approach 0.713 2.3

Kumaran and Allan (2005) 0.661 n/a

Relevance models 0.655 37.6

Paraphrases Wordnet 0.657 6.8

Paraphrases MSR 0.642 10.5

Paraphrases syntactic 0.575 7.8

Table 5.1: TDT5 results when using paraphrases, lower is better. The number next

to UMass system indicates the number of features kept for each document (selected

according to their TFIDF). All paraphrasing systems work with top 300 documents. Run-

ning time for Kumaran and Allan (2005) was unavailable but is lower bounded by the

running time of the UMass system.

System Cmin

Ahmed et al. (2011) 0.714

UMass 0.571

Paraphrases syntactic 0.499

Table 5.2: Comparison with Ahmed et al. (2011) on the May subset of TDT5.

of research in FSD have shown – a simple approach based on 1-NN clustering and

cosine distance makes for a very competitive baseline. As expected given the numbers

in Table 5.1, our system that uses paraphrases outperforms both systems.

Finally, we look at the distribution of first and non-first stories as a function of the

novelty score output by the systems. Ideally, a good FSD system would assign first

stories a high and non-first stories a low novelty score. Figures 5.1 and 5.2 show this

distribution for an approach that does not use paraphrases (UMass) and our approach

that does. We can see that we have achieved a similar effect as the approach of Ku-

maran and Allan (2005). We have improved the detection of non-first (old) stories,

which can be seen by the larger left skew of the distribution of non-first stories, com-

pared to the UMass system. This is exactly what we hoped using paraphrases would

achieve – identifying documents previously thought to be new as being about an exist-

5.4. Experiments 87

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 d

oc
um

en
ts

Novelty score

Our system w/ paraphrases
UMass system

Figure 5.1: Distribution of first stories with and without paraphrasing.

ing event, only written using different words. Note that there is no such effect in the

distribution of first stories – while a few first stories did receive lower novelty scores,

the distribution as a whole did not skew towards the lower novelty scores.

5.4.1.2 Twitter Results

For Twitter, we compare four systems: the baseline system that does not use para-

phrases and three systems that use three different sources of paraphrases, like in the

previous section. Note that we do not compare to relevance models for two main

reasons. First, because using relevance models would take too long in this case. Ex-

panding each tweet with all the tweets in the corpus, like we did for TDT, would mean

expanding 50 million documents using a database of a couple of million documents

(depending on which database we would use for expansion). We tried this approach

and found that expanding the tweets using English articles from the Gigaword corpus

(a total of about 1.6 million articles) took on average 1.8 seconds per tweet, whereas

expanding using a sample of 8 million tweets from May 2011 (time period just before

our corpus) took on average 2 seconds per tweet. A simple calculation suggests that

expanding the whole dataset would take 25,000 hours, or almost three years, if we

88 Chapter 5. Improving First Story Detection Using Paraphrases

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 d

oc
um

en
ts

Novelty score

Our system w/ paraphrases
UMass system

Figure 5.2: Distribution of non-first stories with and without paraphrasing.

used Gigaword, and expanding using the Twitter sample would take over three years

on a single machine. Clearly, this is not feasible even if we were to parallelize the

approach – in order to perform the expansion in, say, one week, we would have to

use 165 machines, which is much more than the amount of processing power that is

normally available to academic researchers.

Second, given the very different nature of news and Twitter (e.g., length of docu-

ments, different domain), it is very likely that the parameters we used for TDT would

not work well on Twitter, and we have no comparable data on which we could tune

these parameters for Twitter. This shows another advantage of our use of paraphrases

– we have no additional parameters to set and we can use paraphrases in the same way

as we did for TDT.

Despite not being able to use relevance models here, we note that related work

in this area suggests that they would not be very useful. In particular, Metzler et al.

(2012) used relevance models to expand queries in an event retrieval task using Twit-

ter data, and found that they did not outperform a baseline that does not expand the

queries. Given that they work in the same domain (Twitter), and that the queries are

event-related, this suggests that using relevance models here would not result in any

5.4. Experiments 89

significant gains.

System Cmin

Baseline 0.694

Wordnet 0.679
MSR Paraphrases 0.739

Syntactic paraphrases 0.729

Table 5.3: Twitter results when using paraphrases, lower is better.

Twitter results are shown in Table 5.3. We can see that the results here are mixed.

Syntactic paraphrases and the MSR paraphrases do not help, whereas the paraphrases

extracted from Wordnet did improve the results, although the gains are not as large

as in TDT. It is hard to make statements about the suitability of any paraphrase set

for either task, but it appears that the MSR and syntactic paraphrases work better on

TDT because they come from a similar domain (news and legal text), whereas Wordnet

works better on Twitter. In Section 5.4.3 we will investigate in more depth the possible

reasons as to why the results are different in Twitter.

5.4.1.3 How does quality of paraphrases affect results?

We have shown that using automatically obtained paraphrases to expand documents is

beneficial for first story detection. Because there are different ways of extracting para-

phrases, some of which are targeted more towards recall, and some towards precision,

we want to know which techniques would be more suitable to extract paraphrases for

use in FSD. In this context, precision is the ratio between extracted word pairs that are

actual paraphrases and all the word pairs extracted, and recall is the ratio between ex-

tracted word pairs that are actual paraphrases, and all the possible paraphrase pairs that

could have been extracted. In this experiment we focus on the syntactic paraphrases

which yielded the best results and test how lowering precision and recall affects the

results. To lower recall, we randomly remove paraphrase pairs from the corpus, and to

lower precision, we add random paraphrase pairs to our table. All the results are shown

in Figure 5.3. Numbers next to precision and recall indicate the proportion of added

random pairs and the proportion of removed pairs, respectively. For example, recall of

0.4 means that 40% of pairs were removed from the original resource, and a precision

of 0.4 means that we have added 40% of random word pairs to our paraphrase table.

90 Chapter 5. Improving First Story Detection Using Paraphrases

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
 m

in

Noise level

Precision
Recall

Baseline

Figure 5.3: Effect of precision and recall of paraphrases on TDT5 FSD performance.

Numbers next to recall and precision indicate the sampling rate and the proportion of

added random pairs, respectively.

We can see from the figure that the results are much more stable with respect to recall

– there is an initial drop in performance when we remove the first 10% of paraphrases,

but after that removing more paraphrases does not affect performance very much. On

the other hand, changing the precision has a bigger impact on the results. For example,

we can see that our system using a paraphrase corpus with 30% of pairs added at ran-

dom performs even slightly better than the system that uses the original corpus. On the

other hand, adding 20% of random pairs performs substantially worse than the original

corpus. These results show that it is more important for the paraphrases to have good

precision than to have good recall. This is a desirable property of our approach, as most

modern paraphrase extraction systems are targeted towards maximizing precision.

5.4.2 Efficiency

Having explored the effectiveness of our approach, we turn to measuring its effi-

ciency. As we mentioned before, our approach that uses paraphrases has constant

per-document time complexity, but in practice the documents we deal with have more

5.4. Experiments 91

 0

 10

 20

 30

 40

 50

Umass LSH RMs Wordnet MSR Syntactic

P
ro

ce
ss

in
g

tim
e

(h
ou

rs
)

Figure 5.4: Time required to process the TDT5 collection for different systems.

features and therefore the constant will be larger. We thus compare the running time

of our system that uses paraphrases against the running time of the baseline approach

that does not use any paraphrase information, as described in Chapter 4. Additionally,

we also compare against the system that uses relevance models. We only compare the

running time on TDT5 data because, as we previously discussed, relevance models

did not scale to Twitter data. We can see from Figure 5.4 that using paraphrases is,

as expected, slower than the vanilla approach from Chapter 4, but is still much faster

than the UMass system. The paraphrasing approach is also faster than using relevance

models (about five-fold). It is interesting to note that about two thirds of running time

for the system that used relevance models was spent on expanding the documents, and

only one third on processing them in the FSD system. This shows just how efficient

our expansion method really is, compared to state-of-the-art query expansion methods

like relevance models.

5.4.3 Exploring the Use of Paraphrases in Twitter

In this section, we explore possible reasons why using paraphrases did not yield the

same level of improvement as it did in newswire data. We conjecture that there are

92 Chapter 5. Improving First Story Detection Using Paraphrases

FLASH: S&P downgrades U.S. credit rating to AA+ with negative outlook

#S&P lowers US credit score. Shld a comp who mis-valued mortgage securities

allegedly on purpose to help banks be able t. . .

Table 5.4: Example of the paraphrase coverage problem in Twitter.

Paraphrases Coverage TDT Coverage Twitter

Wordnet 52.5 56.1

MSR 33.5 31.0

Syntactic 35.6 31.7

Table 5.5: Coverage results for TDT and Twitter.

two main reasons for this: coverage and length of tweets. We perform experiments to

confirm this.

Coverage. The sources of paraphrases that we use either come from general English

(Wordnet) or newswire (MSR and syntactic paraphrases). This means that there are a

lot of words in the Twitter data that possibly have paraphrases, but this information is

not present in our paraphrase tables. Table 5.4 shows an example of two tweets that

talk about the same event, with paraphrases bolded. Pairs (downgrade, lower) and

(rating, score) are paraphrases, but none of our three sources contain either of the two.

To investigate the extent of this problem, we measure the proportion of words in

the documents that have at least one paraphrase in our data. We call this proportion

coverage. Results for the three corpora and for TDT5 and Twitter are shown in Ta-

ble 5.5. We can see that for MSR and syntactic paraphrases, the coverage is lower in

Twitter than in TDT. On the other hand, the coverage for Wordnet is actually higher

for Twitter, which is interesting if we recall that Wordnet was the only resource that

improved performance in Twitter. This suggests that the problem of coverage is at least

partially responsible for poorer results in Twitter.

Finally, there are also cases when paraphrases can hurt performance by making two

documents that are about different topics seem similar. We show an example of this

in Table 5.6. Before paraphrasing, tweet one was most similar to tweet two, which

is reasonable because both seem to discuss the debt ceiling deal. After paraphrasing,

however, tweet three became most similar to tweet one because the word roof is a

paraphrase of the word ceiling. Clearly, this is not desirable because tweets one and

5.4. Experiments 93

1 Top news #debt #deal #ceiling #party

2 New debt ceiling deal explained

3 The roof the roof the roof is on fire!

Table 5.6: Examples of tweets where paraphrasing words hurts performance.

Nairobi oil terminal explodes near sinai slum. . . many feared dead

Police close Lunga Lunga road, Industrial area after a huge fire outbreak.

So far, 15 people rushed to Mater Hospita. . .

NASA scientists have found evidence of what they believe to be flowing water on Mars.

WATCH LIVE

7 confirmed sites of warm season flow w/ some sort of volatile material, i.e.,

water in mid latitudes of #Mars’ soute. . .

Table 5.7: Examples of tweets where paraphrasing does not help.

three do not discuss the same topic. This is also an example of the difference between

the paraphrasing resources – this problem only occurs when Wordnet or syntactic para-

phrases are used, but not with MSR paraphrases as that resource does not contain the

(roof, ceiling) pair.

Length of Twitter documents. The other major reason which we believe is limiting

the usefulness of paraphrases in Twitter is the fact that tweets are very short. Table 5.7

shows examples of tweets that are about the same events, but where there are no obvi-

ous paraphrase pairs. In particular, the first pair of tweets have no words in common

because they talk about the same event from different perspectives. The length of the

tweets is the limiting factor here – given a limited amount of space, authors of tweets

have to decide which information about the event to preserve and what to discard.

It is not surprising that different people decide on preserving different aspects of the

events. On the other hand, authors of newswire articles have no such limits on the

space (or, rather, their limits are not as strict) and can thus preserve more information

about events, thus allowing for more possibilities of finding paraphrases.

To test whether length is indeed a limiting factor here, we reproduce similar con-

ditions in the TDT5 data. We reduce each document in the TDT5 collection to the top

n terms, where the terms are scored according to their TFIDF score for the document,

and then use paraphrases to expand only these top n terms. This way, documents are

94 Chapter 5. Improving First Story Detection Using Paraphrases

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 10 100 1000

C
 m

in

Terms kept before expansion

No expansion
Paraphrases

Figure 5.5: Effect of document length on document expansion.

reduced to only the “essential” terms, similar to Twitter. We measure the Cmin score for

the baseline approach (using only the top n terms) and for the approach that expands

using paraphrases. For paraphrases, we only test the syntactic paraphrases because

they performed best in previous experiments. Results are shown in Figure 5.5. If we

compare the curve that does not use expansion with the curve that does, we can see that

the benefits of using expansion only start to show when documents are about 50 words

in length or more. When documents are reduced to 10 words, which is the length of an

average tweet, we see that there is no benefit in doing expansion. This explains why

we did not see any substantial improvement from using paraphrases in Twitter.

5.5 Conclusion

Lexical variation, also known as vocabulary mismatch, is a serious problem in almost

all NLP and IR applications. In this chapter we introduced an approach based on the

use of paraphrases that is capable of mitigating this problem, while at the same time

integrating well with the LSH framework. This means that our approach is efficient

and is suitable for use in streaming applications. While we evaluate the benefits of our

approach on the first story detection task, we emphasize here that our approach is not

5.5. Conclusion 95

specific to the problem of FSD – we presented a general technique for fast retrieval

of documents that may talk about the same topic, but using different words. In first

story detection in newswire, we showed that our approach is beneficial and achieves

state-of-the-art results on the task, while at the same time maintaining constant per-

document time complexity. Results on Twitter data suggest that there are gains to

be had using this approach, but that they are fairly small. To better understand what

causes the disparity in results between news and Twitter, we performed an analysis and

found that the two main reasons for this are poor coverage of paraphrases in Twitter

data and the brevity of tweets. In the next chapter, we will address the problem of

noise in the data that comes from Twitter. This is another problem that was not present

in the original formulation of the FSD task, but which any modern approach to event

detection should address.

Chapter 6

Combining Novelty with Latency

We mentioned in the introduction that there are two main problems – scale and noise

– when dealing with social media streams such as Twitter. While we focused on the

problem of scale in Chapter 4, in this chapter we address the issue of noise. The pres-

ence of noise in Twitter (and social media in general) is an important and well-known

problem. For Twitter specifically, it is estimated that anywhere between 1.5% (Twitter,

2010) and 14% (Yardi et al., 2009) of all tweets are spam. However, when it comes

to event detection, spam is not the only source of noise. For our purposes, noise is

anything that is not event-related or is not of interest to a large number of people. This

is of course a subjective criterion, and it is sometimes hard to say if something is in-

teresting enough to be considered an event in this sense. However, in most cases, it is

fairly clear if something should be considered noise or not. For example, noise in this

context is spam, but also all the trivial status updates (I’m cooking bacon for breakfast,

yay!) or casual conversation between users (@friend Did you know she went out with

him last night?). When this is taken into account, it turns out that a large majority

of tweets are noise, and only a handful are related to events. In fact, a study in 2009

showed that only 3.6% of all tweets are news-related (Analytics, 2009), which would

mean that, for our purposes, 96.4% of tweets are noise. In this chapter we show that

not much has changed since 2009 and that less than 1% of the first stories detected by

our approach are related to actual events. Clearly, this is a major problem and shows

that just having a system that can detect novelty (i.e., first stories) is not enough for

a useful event detection system, as over 99% of reported events, while being novel,

would not be interesting.

In this chapter we address the problem of noise by combining our novelty-based

approach with the approach based on burstiness that is frequently used in event detec-

97

98 Chapter 6. Combining Novelty with Latency

tion literature. We achieve this by trading off latency in detecting events for improving

their quality. A non-zero latency allows the system to wait for a given amount of time

before making the decision about whether something is an event. Because noise was

not an issue in the original work on TDT, we have to construct a new way of evaluating

event detection systems that accounts for noise. To the best of our knowledge, we are

also the first to explore the relationship between latency, burstiness, and their effect on

precision and recall in event detection.

6.1 Clustering with Latency

Up until now we were only concerned with detecting the first story that reports a new

event. However, when there is a large amount of noise in the data, such as is the case

with Twitter, most of the “new events” that are detected are not interesting. To show

this, we perform a simple experiment. We run our FSD system on the Twitter data,

and select all of the detected first stories (we used a threshold of 0.6 as a cutoff), which

gives us a set of 35.5 million stories. We randomly sample 100 stories from that set

and manually label each one as being an actual event or not. Out of the 100 randomly

selected stories, not a single one was labeled as an actual event. This means that less

than 1% of the first stories detected by our system are about actual events. We show

examples of the non-event related first stories in Table 6.1. We increased the novelty

threshold to 0.9 and performed the same experiment, i.e., labeled 100 randomly picked

tweets that satisfy this condition. Increasing the novelty threshold did not change the

results, and again not a single story was labeled as an event. This can be explained

by the fact that tweets with such a high novelty score mostly contain misspellings or

extremely rare hashtags. Combined with the fact that none of the first stories in our

dataset obtained a novelty score higher than 0.8, this leads to the conclusion that true

first stories in Twitter have moderately high novelty scores and Twitter stories with a

very high novelty score are mostly noise. This is in contrast with TDT5, where 15%

of first stories got novelty scores over 0.8, and shows just how much more challenging

this domain is.

This example shows that simply detecting first stories is not enough in the presence

of such a large amount of noise. In many real scenarios, however, we can allow for

some latency in detecting the events (say, a couple of minutes), if this would mean

that the quality of detected events would substantially improve. This is why here we

explore the connection between detection quality and latency.

6.1. Clustering with Latency 99

Juicy Couture, Ed Hardy, Coach, Kate Spade and many more! Stay tuned for more

brands coming in http://. . .

i lovee my nephew hair :D

Going to look at houses tomorrow. One of them is right behind Sonic & Taco Casa.

If I live there, I might weigh 400 lbs within a year.

Hope a bad morning doesnt turn into a bad day...

Table 6.1: Examples of tweets that are novel (i.e., detected as first stories), but not

related to events.

We now describe how the extra time (latency) that is given to the system can be

used to improve event detection. The main idea is to form clusters of documents that

talk about the same topic, which is essentially the same as doing the TDT detection

task (cf. Section 2.1.1.3). When performing clustering, latency is used to constrain

how long we are allowed to wait after forming a new cluster before having to make a

decision if the cluster is about an actual event. This effectively adds a postprocessing

step in which, given a cluster, the system has to decide if the cluster is about an actual

event or not. There are a number of ways in which clusters can be used to improve

the quality of detected events. For example, a simple strategy would be to use the

size of clusters and keep only those whose size exceeds some threshold. In TDT, this

postprocessing step was not necessary because all the documents were “newsworthy”

and thus all the clusters were reported. However, in Twitter, as we just showed, most

clusters should not be reported, and the postprocessing step is essential if we want to

get reasonable output from the system.

A related concept was previously explored in the context of TDT, known as the

deferral period. In particular, a system with a deferral period of say, ten units, could

decide if a story is a first story after being presented with ten stories that follow it. A

major disadvantage of defining the deferral period in terms of the number of documents

is the fact that it is disconnected from real time, becoming stream-specific. In TDT5,

a deferral period of 100 documents would correspond to roughly one and a half hours,

while in Twitter 100 documents corresponds to a fraction of a second. This means that

comparing deferrals across streams becomes very hard and we therefore advocate here

defining latency in terms of real time. This will enable us to compare latencies across

different streams and also make our results much more interpretable. It is important

here to make a distinction between the deferral period used in TDT and the latency that

100 Chapter 6. Combining Novelty with Latency

we use. The deferral period in TDT was used to improve the accuracy of the system

for a given task (FSD, detection, tracking, etc.), while here we use latency to reduce

the noise in the detected events. One way to think about this is the following: given a

perfect detection system, i.e., one that with 100% accuracy clusters stories into topics,

most of the clusters it would produce from the Twitter stream would still be noise. The

deferral period in TDT was used to push the accuracy of systems towards these 100%,

but latency as we use it here is used to deal with the output of a detection system, i.e.,

with the clusters produced.

The clustering algorithm that we use is essentially the same as that used in the

UMass system (Allan et al., 2000b), with the added limit on the lifetime of clusters

(explained below). This is an online single-link clustering approach that integrates

well with our nearest neighbor-based approach to solving FSD. All the input that this

algorithm requires is, for each document, its nearest neighbor and the distance to that

neighbor, which is exactly what our FSD approach computes. This makes it very inex-

pensive to perform the clustering, as no additional information needs to be computed.

On the other hand, agglomerative clustering approaches such as that used in Yang et al.

(1998) and Becker et al. (2011a) have to find the nearest cluster for every document,

where clusters are represented by centroids. This increases the time complexity of their

algorithm to O(m), where m is the number of clusters, whereas our approach is O(1).

Obviously, by keeping a constant number of clusters the agglomerative approaches can

also be made constant, but this introduces additional complexity (how to decide how

many and which clusters to keep?), and the constant is much larger than in our case.

We summarize our online single-link clustering with latency in Algorithm 9. This

approach can be seen as performing standard single-link clustering, but a document

can only be assigned to a cluster if it arrived within some time window from the oldest

document in that cluster. If the document arrived outside of this allowed time window,

it is simply discarded. This ensures that, once we detect a first story, we make a

decision if this story is about an actual event within the allowed latency. After we

make a decision, we can delete the cluster as no other document can be assigned to it.

Note that computing the nearest neighbor and the distance to it, shown in steps 3 and 4,

is actually performed by our FSD system, but we do not show this in the pseudocode

for simplicity. We emphasize here that we think of document clusters produced by our

system as events, so in the rest of the thesis we will use the term detected event to mean

a cluster of documents output by our system.

In order to make sure that the clusters produced by our algorithm are sensible and

6.1. Clustering with Latency 101

Algorithm 9: Online single-link clustering with latency.
input: Stream of documents D, clustering threshold θ, latency l

1 c← [] // Initially, all the clusters are empty.

2 foreach Document di in stream D do
3 dnn← argmax j∈{1,...,i−1} cos(d j,di)

4 distmin← 1− cos(dnn,di)

5 if distmin > θ then
6 ci←{di} // Start new cluster with seed document di.

7 t(ci)← t(di) // Store the timestamp of the seed document.

8 end
9 else if t(di)− t(cdnn)≤ l then

10 // Add di to the same cluster as dnn if di arrived at

11 // most l seconds after the first document in that

12 // cluster. Otherwise, discard di.

13 cdnn ← cdnn ∪di

14 cdi ← cdnn

15 end

16 end

that they correspond to topics, we first evaluate our approach on the TDT detection

task. Notice that if we use a latency of +∞ in Algorithm 9, we exactly recover the

clustering algorithm used by UMass (Allan et al., 2000b). Therefore, doing this should

give us the same results on the detection task as the UMass system. We run our algo-

rithm on the detection task in TDT5 with a latency of +∞, and compare the results

for different thresholds θ to the results of the UMass system. Results are shown in Ta-

ble 6.2. Because detection has exactly the same time and space complexity as FSD, we

note that our system is again over an order of magnitude faster than the UMass system,

and is scalable to unbounded streams. As we can see from Table 6.2, our system is

comparable to the UMass system, and in fact performs slightly better. This experiment

shows that our clustering approach is competitive and produces reasonable clusters.

102 Chapter 6. Combining Novelty with Latency

Threshold Our approach UMass

0.21 0.1636 0.1525

0.22 0.1440 0.1499

0.23 0.1623 0.1473
0.24 0.1593 0.1551

0.25 0.1406 0.1530

0.26 0.1532 0.1580

0.27 0.1612 0.1624

0.28 0.1725 0.1664

0.29 0.1646 0.1734

0.3 0.1675 0.1820

Table 6.2: Detection cost Cdet for our system and the UMass system. Lower is better.

6.2 Evaluating Event Detection in Noisy Streams

Traditionally, evaluation of FSD systems, as performed in the TDT project, assumed

that the documents come from a noiseless stream such as newswire. This means that

all the documents in the stream are considered newsworthy and come from a reputable

source. As a result, TDT evaluation has ignored precision and focused instead only

on miss and false alarm rate (cf. Section 3.2). However, Twitter (and any other social

media stream) is very noisy. Not only is there a significant amount of spam present

in the stream, but most of the tweets that are not spam are not news-related. This is

expected given that Twitter is primarily a social, and not a news reporting site, but it

means that the same way of evaluating event detection as used in TDT is no longer

suitable here. Therefore, it is maybe not that surprising that a lot of the work on event

detection in Twitter has focused on using precision or related metrics, while ignoring

recall. However, it should be fairly clear that, in order to get a complete picture of the

usefulness of an event detection system, we should measure both recall and precision.

Measuring either recall or precision exactly is practically impossible on this scale.

In order to measure recall, we would need to find every single event in our dataset of 51

million tweets, and in order to measure precision, we would need to label every event

that our system detects (which can be on the order of hundreds of thousands). However,

as we describe later in the chapter, there are ways of providing an unbiased estimate

of these quantities that is manageable from the perspective of human effort involved.

6.2. Evaluating Event Detection in Noisy Streams 103

Unfortunately, we are not aware of any prior work that reliably measures both recall

and precision. For example, Weng et al. (2011) and Hu et al. (2008) do not use recall

at all and instead focus only on other measures (precision and semantic shift). Those

authors who do measure recall, only measure it on a small subset of events that passed

some filter. This is because all of these approaches are concerned with detecting a

specific type of event, and not with any event in general. Unfortunately, this also

means that the recall numbers presented for such approaches only hold for specific

types of events, and do not generalize to all event types. For example, Sakaki et al.

(2010) measure recall of their system on the set of events that concern earthquakes

and typhoons, which is a very biased sample. Becker et al. (2011a) use the size of a

cluster together with a condition that the author is based in New York as a filter for

their events, which is again a very strong bias. Finally, Popescu and Pennacchiotti

(2010) only use tweets that talk about celebrities. On the other hand, we define events

independently from our Twitter data and do not restrict ourselves to any specific type

of event. While we used Wikipedia to help guide us in choosing the events, we did not

consult our Twitter data in any way to make sure that, e.g., the event is even present

in the data. This is obvious from the event arrest of Goran Hadžić, which, although

being a major event, was only mentioned twice in our Twitter dataset. Therefore, we

will present the first evaluation of a system for general event detection in Twitter. We

will now explain how we compute recall and precision in our experiments.

6.2.1 Computing Recall

We compute recall using the set of 27 reference events described in Chapter 3. To

measure recall, for every event detected by our system (a cluster of tweets), we have to

decide if it “covers” any of the reference events, i.e., we have to define what makes a

true positive. To decide if a detected event covers a reference event, we use an approach

similar to that used in the TDT detection task (Fiscus and Doddington, 2002). We

compute the proportion of tweets in the detected event (i.e., cluster) that are part of a

single reference event. If this proportion is greater than some threshold, we say that the

detected event covered a reference event. Finally, recall is computed by dividing the

number of covered reference events (true positives) by the total number of events (27

in our case). This approach is presented in Algorithm 10. In all our experiments we

use the threshold θ = 0.5, i.e., we require that at least half of the tweets in the detected

cluster appear in the same reference cluster.

104 Chapter 6. Combining Novelty with Latency

Algorithm 10: Algorithm for computing recall.
input : Set of detected events E, set of reference events R, threshold θ

output: Recall

1 covered← /0

2 foreach Event e in E do
3 foreach Reference event r in R do
4 p← e∩r

|e|

5 if p > θ then
6 covered← covered∪ r

7 end

8 end

9 end
10 return |covered|

|R|

6.2.2 Computing Precision

Computing precision is more difficult than computing recall because now we cannot

use the corpus from Chapter 3. The reason for this is that our corpus only contains

positive examples (actual events), and precision should measure how many non-events

(spam, trivial chatter) we detect along with actual events. This is why we adopt the fol-

lowing approach: from the set of all detected events we randomly sample 100 events

and manually label which ones correspond to actual events. This will give us an esti-

mate of the precision of the detected events. While this approach is somewhat manually

intensive, it is unbiased and therefore provides us with a reasonably accurate estimate

of the true precision. For the purposes of labeling, each cluster is represented by its

centroid tweet, and this is shown to the annotator. We do not show all the tweets in

the cluster as some of the clusters contain thousands of tweets, which would make

the labeling task too intensive. However, our detection experiments from Section 6.1

showed that the clusters produced by our system are reasonable, and thus the centroid

should be a good representative of the cluster (we also confirmed this by manual in-

spection of a few random clusters). Because of the substantial manual effort involved

in labeling these tweets, we only use one annotator. However, as we discuss later in

the chapter, we used a second annotator to label a random subset of these tweets and

found that the agreement between two annotators was substantial. This shows that the

amount of variance introduced in the results by using only one annotator is minimal.

6.3. Baseline Approach – Bursty Clusters 105

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450

F
re

qu
en

cy
 o

f #
w

w

Time (hours)

Figure 6.1: Frequency of the hashtag #ww.

We can see the bursty behaviour repeating

in a weekly pattern.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

F
re

qu
en

cy
 o

f #
fo

llo
w

fr
id

ay

Time (hours)

Figure 6.2: Frequency of the hashtag #fol-

lowfriday. We can see the bursty behaviour

repeating in a weekly pattern.

6.3 Baseline Approach – Bursty Clusters

Burstiness, a sudden increase in the frequency of some item, is often used in event de-

tection. Its use is motivated by the observation that event-related words exhibit bursty

behavior – when an event happens (say, Amy Winehouse dies), words related to that

event (Amy, Winehouse, die, dead) will be used much more frequently than in the past.

This idea forms the basis of many approaches to event detection in Twitter (Math-

ioudakis and Koudas, 2010; Cataldi et al., 2010; Weng et al., 2011; Cordeiro, 2012;

Li et al., 2012a; Agarwal et al., 2012; Ozdikis et al., 2012). However, using bursti-

ness in place of novelty has two major flaws. First, just because something suddenly

became popular does not mean that it is related to a new event (leading to a loss of

precision), and second, a lot of new events will never become popular (leading to a

loss of recall). As an example of the first problem, note that many words on Twitter

exhibit cyclical bursty behaviour. This means that simple burstiness approaches will

detect these words as events every time they become bursty, thus reducing precision. In

Figures 6.1 and 6.2 we show the frequencies of hashtags #ww and #followfriday over

time. It is clear that both hashtags exhibit cyclical burstiness, but they are not related

to any events – #ww means woof wednesday and is used by animal lovers to commu-

nicate on Wednesdays, while #followfriday is used on Fridays by users who want to

get more followers. Because our approach incorporates novelty, it does not suffer from

this problem, as tweets that contain these hashtags will not be deemed novel, and thus

will not start new clusters.

To illustrate the lack of burstiness in new events on a real example, we show the

106 Chapter 6. Combining Novelty with Latency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

F
re

qu
en

cy
 o

f w
or

d
Z

an
zi

ba
r

Time (ten minute intervals)

First tweet

Figure 6.3: Frequency of the word Zanzibar

around the time of the ferry sinking acci-

dent. Red point shows the first tweet that

mentions this event.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

F
re

qu
en

cy
 o

f w
or

d
fe

rr
y

Time (ten minute intervals)

First tweet

Figure 6.4: Frequency of the word ferry

around the time of the ferry sinking acci-

dent. Red point shows the first tweet that

mentions this event.

frequency of words Zanzibar and ferry in the Twitter data around the time when a

ferry sank in Zanzibar, killing almost 3,000 people. The frequencies are shown in

Figures 6.3 and 6.4. We can see that neither of the two words that are crucially re-

lated to the event exhibit significant spikes around the time when the event happened.

This lack of burstiness would make most existing event detection approaches miss this

event. Agarwal et al. (2012) were the first to mention the problem of low recall, noting

that 45% of events in their data did not pass the burstiness threshold. Unfortunately,

they simply ignore this problem and measure recall as a percent of the events that are

bursty. We repeated their experiment on our data with the same settings (20 minute

latency, burstiness threshold of four), and found that 44% of events did not pass this

filter. This confirms the findings of Agarwal et al. (2012) and shows that burstiness-

based approaches with an aggressive threshold1 result in low recall, which is rarely

acknowledged in the literature.

While we have shown that using novelty also suffers from the problem of low

precision, it alleviates the problem of low recall because all new events should be

novel. Therefore, we combine novelty with burstiness in hope of still achieving good

recall, while improving precision. We combine burstiness and novelty in the following

way: for each cluster output by the clustering algorithm 9, we examine its size, and

if the size exceeds a given threshold, we report the cluster as an event, otherwise we

discard it. Burstiness is accounted for by the cluster size, whereas novelty comes from

the fact that a new cluster can be started only by a novel tweet. Note that, unlike the

1Other approaches like Li et al. (2012a) and Ozdikis et al. (2012) use even higher thresholds.

6.3. Baseline Approach – Bursty Clusters 107

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

P
re

ci
si

on

Recall

2m

2

3

4

5

5m

2

34

5

6

10m

234

5

6

10

1h

25

6

7910

33

Figure 6.5: Effect of latency on precision and recall of detected events. Numbers next

to points indicate the size threshold that was used.

previous work, we deal with entire documents, instead of single words. This is an

advantage of our approach, as event detection is about detecting breaking stories, not

detecting breaking words. Because mapping clusters of words to real events is a very

hard and subjective task, we do not compare our approach to other approaches based

on burstiness of single words. In the rest of the thesis, we will refer to this approach as

Size for the sake of simplicity.

To get an idea of the relationship between latency, the size threshold (i.e., the bursti-

ness threshold), recall, and precision, we turn to the precision-recall plot in Figure 6.5.

There are a couple of things to note from this figure. First, by using burstiness with the

lowest possible threshold of two, we are able to significantly (p = 0.05) improve upon

the approach that does not use size, which had less than 1% precision. By using this

threshold, recall dropped from 93% to 85%, which is acceptable.

For very low latencies (two and five minutes) further increasing the size threshold

does not significantly improve precision, while significantly affecting recall. For a

latency of ten minutes or higher we see an improvement in precision as we increase

the threshold. This suggests that, if we want very low latency, using a size threshold of

more than two does not make sense. Finally, we see that as we increase latency, results

108 Chapter 6. Combining Novelty with Latency

generally improve, but very slowly. For example, for a latency of one hour, precision

at recall 15% is significantly (p = 0.05) higher than the precision at the same recall

for latency of two and five minutes, but not for latency of ten minutes. Based on these

results, we will use a latency of ten minutes in the future experiments as this still means

we are detecting events in near real-time, while at the same time achieving results that

are generally better (although not significantly) than those achieved by lower latencies.

6.4 Conclusion

In this chapter we showed how to use our FSD system from earlier chapters for de-

tecting events. We first showed that a traditional approach based on novelty alone

performs poorly in the presence of noise, as over 99% of detected events are not inter-

esting. Given that this is the approach that was used in detection systems in TDT, this

shows just how challenging Twitter is from the perspective of event detection, com-

pared to newswire. We then combined the novelty-based approach from TDT with

burstiness and showed that this can significantly improve precision, with only a slight

drop in recall. Finally, we explored the relationship between latency in detecting the

events and the burstiness threshold and found that a threshold higher than two does not

significantly improve results, and that a latency of ten minutes gives us the best trade-

off between improved precision and detecting events in real-time. In the next chapter,

we will see how external information could be used to further improve precision.

Chapter 7

Cross-stream Event Detection

Today, new events are reported in multiple streams (newswire, Twitter, blogs, Wikipedia,

etc.). Modern approaches to event detection should be wise to take advantage of this

redundancy in order to improve different aspects of their performance. For example,

we might want to reduce noise by noting that if something is mentioned only in Twit-

ter, but not in newswire or blogs, then it is less likely to be related to a real event.

Another idea might be to use the fact that some events break first in Twitter and others

break first in newswire, in order to reduce the overall latency in detecting the events.

In this chapter, we look at ways of combining evidence from multiple streams in order

to improve different aspects of our system.

First, we combine Twitter and Wikipedia and show that by doing so we can signifi-

cantly reduce the amount of noise in the detected events. We then combine Twitter with

newswire and show that combining the two streams can reduce the latency in detecting

the events, as well as detect more events than would be possible from using newswire

alone. Because we are mostly interested in combining social with non-social media

streams, we leave separately combining Wikipedia and newswire for future work.

7.1 Data

We first describe the two datasets that are used throughout this chapter as a source of

additional information for event detection.

109

110 Chapter 7. Cross-stream Event Detection

7.1.1 Wikipedia Page Views

Wikipedia is a free online encyclopedia that can be edited by anyone. It is a rich,

constantly evolving information source that contains over 4 million articles in English

alone, and over 27 million articles in total across multiple languages. Events can be

reflected in Wikipedia in many ways: through new page creation (e.g., when a plane

crashes a new Wikipedia page is created about this event), edits to existing pages (e.g.,

when a celebrity dies their page is updated with this information), or through page

view counts (e.g., when a celebrity dies many people visit their Wikipedia page to get

more information about the circumstances, making the page view count for that page

spike). Of these, page view counts are used pretty much exclusively in the literature

on event detection. This is perhaps not surprising given that Ciglan and Nørvåg (2010)

found that spikes in Wikipedia page views correspond to real-world events, suggesting

that it is sufficient to use this data for the purposes of event detection. Therefore, in

keeping with the existing work on event detection and Wikipedia, we focus on page

view counts in this thesis.

The page view counts1 come in the form of page names and the number of visits

to that Wikipedia page in a particular hour.2 If an event happens, we expect the view

counts for pages concerning the involved entities to spike. As an example, consider the

page view counts for the page Amy Winehouse and the page Glasgow in the period from

June 1st 2011 to November 31st 2011, shown in Figure 7.1. While the page views for

Glasgow remain more or less at the same level (presumably because no major events

concerning Glasgow happened during that time), the view counts for Amy Winehouse

exhibit a spike on the date when she cancelled her European tour and a very big spike

on the date of her death. This example backs up the intuition that real-world events are

reflected in the stream of Wikipedia page counts, and can be identified by looking at

the spikes in the data. In Section 7.2 we will investigate this claim more formally.

7.1.2 Newswire

As our source of newswire data we use articles from eight major news sources: BBC,

CNN, Google News, Guardian, New York Times, Reuters, The Register, and Wired.

1Obtained from Wikipedia’s public logs http://dumps.wikimedia.org/
2To be completely precise, the number represents the number of page requests, not page views. Page

requests can be generated by crawlers and even pages that do not exist in Wikipedia can have a non-zero
request count (e.g., if someone tries to enter the URL directly in the browser but misspells the page or if
the crawler requests a non-existing page). However, this is a minor technical difference and in the rest
of the thesis we will refer to this as page views.

7.1. Data 111

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20 40 60 80 100 120 140 160

P
ag

e
V

ie
w

s
(d

ai
ly

 a
ve

ra
ge

, l
og

-s
ca

le
)

Days

Amy Winehouse
Glasgow

Figure 7.1: Page view counts for pages Amy Winehouse and Glasgow. Note the loga-

rithmic scale on the y-axis.

This data was provided to us by the Terrier team at the University of Glasgow.3 It

consists of 180 thousand articles spanning the whole of 2011. The data was collected

through the RSS feeds of these sources, and contains the article’s headline and the full

text, as they appear in the feed. Each article also comes with a timestamp, to a resolu-

tion of one second, that indicates the time when the article was published in the RSS

feed. This timestamp is not the same as the time when the article was first published

on the website, and this should be taken into account when reading the results. Mostly,

our experiments which use timestamps should be interpreted as examining the rela-

tionship between newswire RSS feeds and Twitter. In some of our later experiments

we do try to estimate how much these timestamps are off from the true timestamps and

take this into account in our results. In the rest of the thesis, when we say newswire we

will use it to mean the eight newswire sources that are covered in our data, unless it is

explicitly stated otherwise.

The distribution of sources and the average lengths of documents for each source

are shown in Figure 7.2. We can see that majority of articles (about 55%) come from

the BBC and the New York Times, whereas other six sources account for about 45% of

3http://terrier.org/

112 Chapter 7. Cross-stream Event Detection

BBC NYT Reuters CNN Guardian Register Google Wired
News source

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
op

or
tio

n
of

 a
rt

ic
le

s
in

 th
e

co
rp

us

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e

le
ng

th

Proportion
Average length

Figure 7.2: Distribution of news sources in our data and average document length.

the data. In terms of document length, all sources have similar length articles, except

for Guardian, whose articles are an order of magnitude longer than others.

7.2 Combining Twitter and Wikipedia

Wikipedia has already been used for a number of purposes: from ontology building to

text mining tasks. Listing all of its applications here is beyond the scope of this thesis,

but an interested reader is referred to Medelyan et al. (2009) for a very comprehensive

list of related work in this area. Given its widespread use, it is perhaps not surprising

that researchers have also started looking into using Wikipedia for event detection. The

first step in this direction was Ciglan and Nørvåg (2010) who showed that increases

in Wikipedia page views correspond to events happening in the real world. Ahn et al.

(2011) made the first attempt to detect events from Wikipedia based on the spikiness

of the page views for an article. They identify 100 spiking pages on a daily basis,

cluster, and summarize them in order to present the result to a user. In this work we

will be more interested in finding spiking pages with a lower lag, and combining this

information with events detected from Twitter.

The only work that we are aware of which uses both Twitter and Wikipedia is the

work by Li et al. (2012a). They use Wikipedia to define what is “newsworthy”, and

then use this to rerank the detected events according to newsworthiness. The re-ranking

7.2. Combining Twitter and Wikipedia 113

function looks at how likely a phrase p is to be the anchor text in a Wikipedia article

that contains p. However, this approach treats all pages equally (i.e., ignores the page

views) and there is no treatment of time. Finally, Li et al. (2012a) do not measure how

much improvement in their results is due to the use of Wikipedia.

To better understand the relationship between the two streams and what kind of

results we might expect, we first examine the lag between the Twitter stream and the

stream of Wikipedia page views. We perform a twofold analysis of the lag: a man-

ual one, where we measure the lag between Twitter and Wikipedia on the set of 27

reference events described in Chapter 3, and an automatic one where we try to auto-

matically determine the lag. This is the first time that Twitter and Wikipedia have been

compared with respect to their time properties. After this, we will explore possible

ways of combining these two streams for the purposes of event detection.

7.2.1 Detecting Spikes in Wikipedia

Our first step is to produce a stream of “events” from the page view data. Clearly, we

cannot use the standard FSD approaches here as the data does not consist of documents,

but of page titles and their view numbers. This is why we use a simple, but effective

algorithm for detecting potential events in this stream. The basic idea is that big spikes

in page view data indicate that an event might be happening. We treat the data as a

time series and use a moving window of n hours (where n is a parameter) to compute

the historic mean and standard deviation of page views in this period. We then test to

see if the new page view count differs substantially from the mean. More precisely, if

the count is more than k standard deviations greater than the historic mean, we report

it as an event (k is a parameter of the algorithm). This is shown in Algorithm 11.

Algorithm 11 is essentially the same as Grubbs’ test (Grubbs, 1969) with a minor

difference that we outline below. Detecting outliers from a time series is a vast field in

itself and our aim here is not to provide a comprehensive study of the different outlier

detection methods. We choose this particular technique because of its efficiency and

simplicity, but we note that other methods might perform better. We leave this for

future work. For a review of the many techniques that exist in the literature, we refer

the reader to Kriegel et al. (2009).

The main difference between our algorithm and Grubbs’ test is that the G statistic

computed in step 4 cannot be interpreted in terms of significance levels, as is the case

in Grubbs’ test. The reason for this is the fact that the page view data does not follow

114 Chapter 7. Cross-stream Event Detection

Algorithm 11: Detecting events in a stream of Wikipedia page views.
input: Wikipedia page view statistics P, window size n, threshold k

1 foreach xt in P do
2 x̄(t) = 1

n ∑
t−1
i=t−n xi

3 s2(t) = 1
n−1 ∑

t−1
i=t−n(xi− x̄(t))2

4 G = xt−x̄(t)
s

5 if G > k then
6 Report page t as event

7 end

8 end

a normal distribution, which is an assumption made in Grubbs’ test. To illustrate that

the normality assumption does not hold, we show histograms of the page view data

for Betty Ford’s and Motorola’s Wikipedia page in Figures 7.3 and 7.4. It can be

easily seen from the figures that the distribution is not normal and has a long tail to

the right. Note that we did not show page views higher than 200 in the histograms.

If we had shown the page views above 200, the right tail would extend all the way

to 40,000, making the histogram illegible. To actually test the normality assumption

we performed the Shapiro-Wilks test (Shapiro and Wilk, 1965) on a number of pages.

We found that the null hypothesis (normality assumption) could always be rejected at

p = 10−15, which is a definitive proof that the distribution is not normal. Therefore,

we use Algorithm 11 to detect outliers (i.e., events) but note that the parameter k does

not have the same interpretation as it does in Grubbs’ test (i.e., it cannot be interpreted

in terms of significance levels).

7.2.2 Manually Determining the Lag

In order to establish the utility of using Wikipedia page views for event detection, we

first carry out a manual investigation of the lag between this stream and the Twitter

stream. First, we note that because the page view counts arrive in hourly intervals,

this puts a lower bound on the latency. Assuming that there is an equal chance of

an event happening at any minute of the hour, which is a very weak and reasonable

assumption, this means that in expectation the minimum lag of the Wikipedia stream

is 30 minutes. Using the stream of events detected from the Wikipedia page counts

using Algorithm 11 (with n = 24 and k = 7), we measure the lag from the first tweet

7.2. Combining Twitter and Wikipedia 115

0 50 100 150 200
Number of page views in one hour

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

Figure 7.3: Histogram of page view counts for Betty Ford.

0 50 100 150 200
Number of page views in one hour

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

Figure 7.4: Histogram of page view counts for Motorola.

116 Chapter 7. Cross-stream Event Detection

of each of the 27 reference events in our Twitter corpus. We do this by manually

examining the stream of detected events in Wikipedia from the time that the event

happened and looking for page titles that are related to the event. Whether a page title

is related to an event is of course a subjective measure, and this should be kept in mind

when interpreting the results.

Results of this evaluation are shown in Table 7.1. Overall, Wikipedia lagged behind

Twitter on 20 events, Twitter lagged behind Wikipedia on one event, and six events

were not detected in the Wikipedia stream at all. The only event where Wikipedia was

leading was the arrest of Goran Hadžić because news of this event first broke in non-

English media and non-English Twitter (we only deal with English tweets). For the 20

events where Wikipedia lagged, the median lag was one hour and 22 minutes.

7.2.3 Automatically Determining the Lag

As we mentioned in the previous section, manually determining the lag between Wikipedia

and Twitter has certain limitations. For example, for the event India and Bangladesh

sign a border pact, in manual evaluation we determine that the spike in page views for

the page Bangladesh is caused by this event. However, this may or may not be true,

which is why we also carry out further evaluation in an attempt to determine the lag

between two streams.

In this experiment, we use our FSD system and the single-link clustering approach

described in Algorithm 9 to obtain a large set of potential events from Twitter. In

particular, we keep all the clusters that grew to ten or more tweets in one hour. Each

cluster here is represented by the mean of all tweets in the cluster. This gave us 14,181

potential events in Twitter (keep in mind that around 94% of these clusters, according

to Figure 6.5, will not be actual events). We then use this stream together with the

Wikipedia stream of outliers described in Section 7.2.2 in the following way: for each

detected event in the Twitter stream (represented by the centroid tweet), we find its

nearest neighbor in the stream of spiky Wikipedia pages in terms of the cosine distance.

Because Wikipedia page dumps come in an hourly interval, we also bucket the tweets

in hourly intervals by rounding up their timestamps to the hour. By changing the hourly

interval in which we search for the nearest neighbor, we can simulate the desired lag

between the two streams. For real events, we would expect the distance to the nearest

neighbor to be lower than for spurious events. This is because we expect that for real

events (e.g., death of Amy Winehouse), a matching title will be spiking in Wikipedia

7.2. Combining Twitter and Wikipedia 117

Event Lag

Amy Winehouse dies 1h 49m

Atlantis shuttle lands 1h 4m

Betty Ford dies 1h 3m

Richard Bowes killed in riots in England n/a

Flight 4896 crash 1h 14m

S&P downgrade US credit rating 1h 42m

US increases debt ceiling n/a

Terrorist attack in Delhi 2h 7m

Earthquake in Virginia 1h 7m

First victim of London riots dies n/a

War criminal Goran Hadzic arrested -20h 18m

India and Bangladesh sign a border pact 36m

Plane with Russian hockey team Lokomotiv crashes 1h 1m

Explosion in French nuclear plant in Marcoule 1h 18m

NASA announces there might be water on Mars 1h 52m

Google announces plans to buy Motorola Mobility 1h 22m

Car bomb explodes in Oslo, Norway 1h 22m

Gunman opens fire in youth camp in Norway 1h 46m

First artificial organ transplant n/a

Petrol pipeline explodes in Kenya 4h 43m

Famine declared in Somalia n/a

South Sudan becomes independent country 1h 55m

South Sudan becomes UN member state n/a

Three men die in riots in England n/a

Riots break out in Tottenham, England 1h 52m

Rebels capture International Tripoli Airport 52m

Ferry sinks in Zanzibar 1h 4m

Table 7.1: Lag between events detected in Wikipedia and their counterparts in Twitter.

Lag less than zero means that we detected an event in Wikipedia sooner than in Twitter.

n/a means that the event was not detected in Wikipedia.

118 Chapter 7. Cross-stream Event Detection

(e.g., Amy Winehouse’s Wikipedia page), whereas for spurious events no good match

will be found (e.g., for the spurious event One hour is not enough! #ANTM we would

not expect to find a spiking Wikipedia page with a similar title). Therefore, when the

two streams are properly aligned, i.e., when the best lag is chosen, we would expect

the mean distance to the nearest neighbor to be minimum.

At the same time, we would expect the standard deviation of the distances to be

maximum when the two streams have optimal alignment. To see why this is so, con-

sider, e.g., the event ferry sinks in Zanzibar. If we choose a lag of -3 hours, i.e., we

think that Wikipedia leads Twitter by three hours, this means that the tweets for the

ferry sinking event will be compared to Wikipedia page titles that were spiking three

hours before the event happened. Because it is extremely unlikely that any page re-

lated to this event would be spiking at that time because the event had not happened

yet, the distance from tweets that talk about this event to the nearest spiking Wikipedia

page title will be large. Because distances to the nearest spiking Wikipedia page title

for spurious events will also be large, the overall standard deviation of the scores will

be small. On the other hand, for a correctly chosen lag, the distances of real events

to spiking page titles will decrease, while the distances of spurious events will not,

causing an increase in the standard deviation of the scores.

The mean distances and the standard deviation of these distances are shown in

Figure 7.5, for different lags. We can see that when Wikipedia lags Twitter by one hour,

the mean distance is minimal, with the standard deviation being maximal. Because we

rounded up Twitter timestamps,4 this means that we have introduced on average half

an hour lag in the Twitter stream. Together with the one hour lag that we measured,

this sums up to a lag of one and a half hours, which is similar to what was measured

manually on the set of 27 reference events. Note that we have tried varying the k

parameter in Algorithm 11 that is used to define how spiky the page has to be in order

to be considered an outlier in Wikipedia. We lowered this parameter to k = 3 and

the results were still the same, with the minimum average distance and the maximum

standard deviation still achieved for a lag of one hour. This shows that our method of

measuring the lag does not depend on the setting of the k parameter in Algorithm 11.

To completely remove any doubt about the possible biases that the parameters in

Algorithm 11 might have introduced in measuring the lag, we conduct a third experi-

ment. This experiment will take all of the available data into account, and is therefore
4Twitter timestamps have a resolution of one second, but Wikipedia timestamps have a resolution of

one hour, so we have to round Twitter timestamps to an hour. We chose to round up the timestamps, but
this makes no difference for the final results.

7.2. Combining Twitter and Wikipedia 119

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

-6 -4 -2 0 2 4 6

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

M
ea

n
di

st
an

ce

S
td

. d
ev

.

Lag (hours)

Mean distance
Std. dev.

Figure 7.5: Mean and standard deviation of distances from Twitter first stories and their

nearest Wikipedia page titles.

independent of the method for detecting events in either Wikipedia or Twitter. In this

experiment, we compute the cross-correlation between the full Twitter5 and the full

Wikipedia stream. Cross-correlation is a commonly used similarity measure between

two streams in the signal processing literature (Orfanidis, 1996).

In order to compute the cross-correlation we first have to represent the streams as

time series. We do this by simply transforming each stream into multiple time series,

one for each word in the vocabulary. The value of the series for word w at time τ

(we shall denote this fw(τ) for Twitter and gw(τ) for Wikipedia) is then simply defined

as the frequency of word w at hour τ in the stream. For Wikipedia, we get these

frequencies from the page view counts, whereas for Twitter we count the number of

occurrences of w in a particular period. We then compute the cross-correlation as

(f ?g)(t) =
+∞

∑
τ=−∞

∑
w
(fw(τ)∗gw(t + τ)). (7.1)

A higher value of cross-correlation for a certain lag means that the streams are bet-

ter aligned for that lag. We plot the cross-correlation values for different lags in Fig-

5By full Twitter stream we mean using all the Twitter data that we have available. This is not the full
Twitter stream, but the 1% sample that is publicly available.

120 Chapter 7. Cross-stream Event Detection

 1.46e+13

 1.48e+13

 1.5e+13

 1.52e+13

 1.54e+13

 1.56e+13

 1.58e+13

 1.6e+13

-10 -5 0 5 10

C
ro

ss
-c

or
re

la
tio

n

Lag of Wikipedia w.r.t. Twitter (hours)

Figure 7.6: Cross-correlation between Twitter and Wikipedia streams.

ure 7.6. We can see that the maximum cross-correlation is achieved when Wikipedia

lags behind Twitter by one hour. Taking into consideration the fact that we rounded up

Twitter timestamps, we again get the same result as before, i.e., that Wikipedia lags by

one and a half hours.

7.2.4 Improving the Quality of Detected Events Using Wikipedia

Here we present two ways (strategies) of combining the Twitter stream with the stream

of Wikipedia page views. Both of them aim at assigning a score to each detected

event from the Twitter stream that should correspond to how likely this event is a real

event, and not some Twitter-specific artifact (spam, trivial/non-interesting event, etc.).

By choosing a threshold for this score, we declare all events with the score above the

threshold to be real events, and everything else to be a spurious event. In all of our

experiments we use the clustering with latency approach described in Section 6.1 with

a latency of ten minutes to obtain the list of potential events in Twitter.

The first way of combining the two streams explicitly uses Wikipedia’s stream of

outliers, and the score it assigns to Twitter events can be summarized as similarity

to the nearest Wikipedia outlier. That is, the score assigned to each detected Twitter

event is equal to the cosine similarity between the cluster’s centroid tweet6 and the

6Recall that events are just clusters of tweets.

7.2. Combining Twitter and Wikipedia 121

nearest page title in the stream of Wikipedia outliers (obtained as in Algorithm 11).

When searching for the nearest neighbor, we only look at the Wikipedia pages from

the appropriate time interval, i.e., using the latest available (with respect to the most

recent tweet in the cluster) page view statistics. The intuition behind this approach is

that real events will be very similar to a page that is “spiking” in Wikipedia. We call

this strategy Wiki NN, and it is shown in Algorithm 12.

Algorithm 12: Wiki NN algorithm for filtering Twitter events using Wikipedia.
input : Potential Twitter events T , Wikipedia outliers W , threshold θ, lag l

output: A stream of filtered Twitter events

1 foreach Cluster c in T do
2 d← centroid tweet in cluster c

3 // t(d) is the timestamp of tweet d.

4 // W [t(d)+ l] is the set of outlier pages in the hour t(d)+ l.

5 sim←maxp∈W [t(d)+l] cos(d, p)

6 if sim≥ θ then
7 Report c as an event

8 end

9 end

The other way of combining the two streams does not explicitly use the stream of

outliers because producing this stream involves defining a threshold that decides if a

page is spiking or not. A different threshold will produce a different stream of outliers,

which may (or may not) change the results. Rather than using this threshold to define if

a Wikipedia page is spiking or not, the second strategy uses the “spikiness” of the page

directly. In this strategy, we assign a score to each detected Twitter event according to

the spikiness of its nearest neighbor in the full Wikipedia stream. The spikiness of a

page is the G score that was used in Algorithm 11 to decide if a Wikipedia page is an

outlier. We call this strategy Wiki spike because it uses spikiness of a Wikipedia page

to decide if an event is real. As before, we only use the Wikipedia information from

the appropriate time interval. Pseudocode for this approach is shown in Algorithm 13.

We use these two strategies to filter out those events that are artifacts of the noise

present in the Twitter stream. As before, we measure precision and recall of this ap-

proach. As the basis of the events detected from Twitter, we use the basic clustering

approach from Section 6.1 with clustering threshold 0.4 and latency of ten minutes.

We remove all singleton clusters formed this way. All the Wikipedia information used

122 Chapter 7. Cross-stream Event Detection

Algorithm 13: Wiki spike algorithm for filtering Twitter events using Wikipedia.
input : Potential Twitter events T , Full Wikipedia stream W , spikiness scores

of Wikipedia pages S, threshold θ, lag l

output: A stream of filtered Twitter events

1 foreach Cluster c in T do
2 d← centroid tweet in cluster c

3 // t(d) is the timestamp of tweet d.

4 // W [t(d)+ l] are all the pages viewed in the hour t(d)+ l.

5 pnn← argmaxp∈W [t(d)+l] cos(d, p)

6 // S(p) is the spikiness score of a Wikipedia page p.

7 // This is the G score computed in Algorithm 11.

8 if S(pnn)≥ θ then
9 Report c as an event

10 end

11 end

in these experiments has a lag of 0 with respect to the Twitter stream, which means

that we only use Wikipedia information that was available at the time when the event

was detected and thus no additional lag is introduced by using Wikipedia.

Because the Wiki NN strategy depends on the set of pages that are determined to

be spiking using Algorithm 11, we first look at how the parameter k of Algorithm 11

affects the results of this strategy. Lowering k will give us more spiking pages, but

they will contain more “noise”, i.e., pages that are not spiking because of an event,

whereas increasing k will give us fewer spiking pages, but they are more likely to be

related to actual events. We try k = 3 and k = 7, as well as setting k = −∞. Setting

k = −∞ means that, for every time interval, we consider all Wikipedia pages as spik-

ing. This is somewhat similar to the approach used by Li et al. (2012a), in that time

and page view numbers are ignored, and Wikipedia is only used to determine if the

tweet contains a newsworthy concept. Results are shown in Figure 7.7. First, we note

that, for higher levels of recall, there is no significant difference between precisions of

different thresholds. However, for lower recall, using a threshold for page spikiness

achieves significantly better precision than not using it (i.e., setting it to −∞). In fact,

notice that when we increase the threshold of the Wiki NN algorithm when k = −∞,

this leads to lower precision. On the other hand, when using k = 3 and k = 7 increas-

ing θ leads to lowering recall and increasing precision. This is somewhat expected as

7.2. Combining Twitter and Wikipedia 123

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

P
re

ci
si

on

Recall

k = 7

0.01

0.05

0.1

0.2

0.3

k = 3

0.010.1

0.2

0.3

k = -∞

0.1

0.3

0.50.55

Figure 7.7: Performance of Wiki NN strategy for different thresholds of page spikiness.

k =−∞ means that all pages are used.

tweets which look a lot like general Wikipedia page titles are not likely to be reporting

a real event. Note also that setting k to a value different than −∞ implicitly takes time

into account because we only keep a set of pages that spike in a certain time interval.

This experiment therefore also shows that taking time information in Wikipedia into

account results in a significantly higher precision (for low recall values).

We now show the precision-recall plot of the two strategies that use Wikipedia

data (Wiki NN and Wiki spike) as well as the baseline strategy (size). Labels next

to the points indicate the value of threshold used for the particular strategy. We can

see from Figure 7.8 that using Wikipedia achieves the expected effect – precision is

increased, while recall is lowered compared to the size strategy. The main reason for

the lower recall is the latency in the Wikipedia stream – a lot of true events get low

scores because the spike in Wikipedia for the corresponding pages only happened an

hour after the event was detected in Twitter. For example, if we use the Wikipedia data

with a lag of one hour, Wiki spike can achieve 30% recall with 28% precision. For

comparison, with a lag of 0 hours, the same strategy achieves a recall of 26% with a

precision of 13%. This would mean that using the lag of one hour would achieve a

higher recall with a significantly higher precision (p = 0.01). However, a latency of

124 Chapter 7. Cross-stream Event Detection

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

P
re

ci
si

on

Recall

Wiki NN

0.01

0.05

0.1

0.2

0.3

Wiki spike

0.5

2

3

4
5

6

7

Size

234
5

6

10

Figure 7.8: Comparison of strategies that use Wikipedia with the size-based baseline.

Numbers next to points indicate different threshold values for the particular strategy.

one hour is unacceptable for the purposes of real-time event detection, so we only use

Wikipedia information with a lag of 0 hours, i.e., no lag.

We can see that in general, Wiki spike achieves a much higher precision, but also

somewhat lower recall, than Wiki NN. As we lower recall, both strategies outper-

form the baseline strategy that uses only size. For example, for a recall of 25%, both

strategies that use Wikipedia achieve significantly (p= 0.05 using a two-sample z-test)

higher precision than the size-based strategy. For the same recall level, the Wiki spike

strategy also significantly outperforms Wiki NN. However, we can also see that both

strategies cannot achieve as high recall levels as the size strategy. We tried lowering

the thresholds for both strategies as low as possible without the threshold being zero,

but this did not improve recall. When the threshold is zero (i.e., Wikipedia data is

not taken into account), both of these strategies reduce to the size strategy, and thus

achieve the same recall and precision as this baseline strategy.

Like we mentioned in Section 6.2.2, each point in Figures 6.5, 7.7, and 7.8 involved

one annotator labeling 100 tweets. To make sure that using only one annotator does

not introduce bias into our results, we randomly sampled 500 clusters from the set of

all clusters labeled by the first annotator (roughly 4,500), and had a second annotator

7.3. Combining Twitter and Newswire 125

label them. We measured Cohen’s kappa coefficient (Cohen, 1960) between the two

annotators on this set of 500 clusters and found it was 0.70, which is usually taken to

mean substantial agreement. This shows that using only one annotator is justified, as

there is a good agreement between humans on which clusters represent events.

Comparing the two strategies that use Wikipedia data, we find the Wiki NN strategy

to be less preferred. Firstly, it uses one additional parameter (the threshold k that

determines if a page is spiking or not). As we saw in Figure 7.7, results are not very

sensitive to this parameter, but having less parameters is always better. If we take

into account that Wiki spike can achieve significantly higher precision for lower recall

levels (e.g., precision 37% at recall 11%, vs. precision 12% for the same recall), we

conclude that Wiki spike is the preferred strategy for incorporating information from

Wikipedia into a system that detects events in Twitter.

7.3 Combining Twitter and Newswire

There has been relatively little work on comparing newswire and Twitter streams. The

work that does exist in this area mostly focuses on comparing the two streams in terms

of topical similarity, but ignoring the time aspect. Subašić and Berendt (2011) com-

pared tweets and blogs to articles from Reuters, Associated Press (AP), and profes-

sional news outlets in terms of the similarity of the underlying language models. They

found that tweets were very similar to headlines of news articles, but also that they

were dissimilar from the full texts. This is why in our cross-correlation experiments

below we compare tweets and headlines and not tweets and full texts. The only work

that we are aware of which does take the time aspect into account is the work by Kwak

et al. (2010), where the authors compare CNN and Twitter. While they provide no

quantitative analysis, the authors note that CNN mostly leads Twitter, but that some

events, like sports matches and accidents, do break on Twitter sooner.

Zhao et al. (2011) compared Twitter and the New York Times (NYT) using topic

models, LDA in particular. They found that both cover the same broad category of

topics, but that the distribution of the topics is different. For example, they found

that entity-oriented news dominates in Twitter, whereas event-oriented news dominates

in NYT. Zhao et al. (2011) also found that there are topics that are covered only in

the newswire (mostly world news), as well as those covered only in Twitter (mostly

celebrity-related news). This indicates that combining news and Twitter could indeed

be beneficial as there is the potential to capture a wider range of events than by using

126 Chapter 7. Cross-stream Event Detection

either stream alone. In this section we conduct the first comparison of newswire and

Twitter that takes time into account, which is crucial for any applications that rely on

real-time properties of either stream.

7.3.1 Manually Determining the Lag

Like with Wikipedia, we first manually inspect the set of 27 reference events in order

to establish their lag in the newswire. Unlike in Wikipedia, there is no need to perform

any kind of preprocessing of the data as we have full texts of all the articles and we can

establish if an article talks about an event with absolute certainty. We show the results

of this experiment in Table 7.2. We can see that the situation here is quite different than

in Wikipedia (cf. Table 7.1). First of all, two events were not found in the newswire

stream, compared to six events that were not found in Wikipedia. Second, we can see

that newswire leads Twitter on four events, compared to only one in Wikipedia. Lastly,

we see that the lag in newswire is much lower than the lag in Wikipedia, with a median

lag of 28 minutes. This is in line with the expectation that newswire is much more

real-time, but it is interesting that Twitter still seems to lead in reporting breaking news

most of the time.

7.3.2 Automatically Determining Lag Between News and Twitter

In this section we perform similar experiments as in Section 7.2.3 in order to auto-

matically establish the lag between the newswire and Twitter streams. In the first

experiment, we try to determine the lag between the events detected in Twitter and

events detected in newswire. For Twitter, we use the same set of events as was used in

Section 7.2.3 for determining the lag with respect to Wikipedia. For newswire, we run

our FSD system on the whole newswire dataset to obtain the novelty scores, and then

perform clustering as described in Section 6.1 with a threshold of 0.4, and we keep all

the clusters. For each event detected in Twitter we then measure the cosine distance

to the nearest event detected in newswire, where both Twitter and newswire events are

represented by the centroid story. Like in Section 7.2.3 we measure the average dis-

tance and the standard deviation of the distances for all of the Twitter events. Results of

this experiment for different values of the lag are shown in Figure 7.9. We can see that

the minimum average distance and the maximum standard deviation are both achieved

for a lag of zero hours. This again shows that the two streams are in sync and suggests

that newswire might be more useful than Wikipedia for real-time event detection.

7.3. Combining Twitter and Newswire 127

Event Lag

Amy Winehouse dies 30m

Atlantis shuttle lands 2m

Betty Ford dies 46m

Richard Bowes killed in riots in England 7h 29m

Flight 4896 crash 19m

S&P downgrade US credit rating 25m

US increases debt ceiling 7m

Terrorist attack in Delhi 28m

Earthquake in Virginia 8m

First victim of London riots dies 36h 43m

War criminal Goran Hadzic arrested -22h 3m

India and Bangladesh sign a border pact n/a

Plane with Russian hockey team Lokomotiv crashes 50m

Explosion in French nuclear plant in Marcoule 19m

NASA announces there might be water on Mars 3m

Google announces plans to buy Motorola Mobility -3m

Car bomb explodes in Oslo, Norway 18m

Gunman opens fire in youth camp in Norway 40m

First artificial organ transplant -22m

Petrol pipeline explodes in Kenya 1h 48m

Famine declared in Somalia 3m

South Sudan becomes independent country 29m

South Sudan becomes UN member state 21m

Three men die in riots in England 2h 40m

Riots break out in Tottenham, England 40m

Rebels capture International Tripoli Airport n/a

Ferry sinks in Zanzibar -2m

Table 7.2: Lag between newswire and their counterparts in Twitter. Lag less than zero

means that an event was reported in newswire first, while n/a means that the event was

not mentioned in newswire.

128 Chapter 7. Cross-stream Event Detection

 0.9945

 0.995

 0.9955

 0.996

 0.9965

 0.997

-10 -5 0 5 10
 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

M
ea

n
di

st
an

ce

S
td

. d
ev

.

Lag (hours)

Mean distance
Std. dev.

Figure 7.9: Mean and standard deviation of distances from Twitter first stories to the

nearest first story in the newswire.

In the second experiment, we measure the cross-correlation between the two streams.

For Twitter, we use the whole stream that we have available (over 51 million doc-

uments), whereas for newswire we take the headlines of all the documents in our

dataset. We show the cross-correlation for the headlines because it has been shown that

tweets have much more similar language to news headlines than to full texts (Subašić

and Berendt, 2011). We also computed the cross-correlation between tweets and full

newswire articles and got the same results.7 We plot the correlation between the two

streams in Figure 7.10. This figure confirms the results of the previous two experiments

– the maximum correlation between two streams is achieved with zero lag. Because

timestamps in newswire have a much finer resolution than the Wikipedia timestamps,

we can measure the cross-correlation on a finer scale. Figure 7.11 shows the cross-

correlation where the unit lag is ten minutes. We can still see that the maximum corre-

lation is achieved for a lag of zero, which means that the lag between the two streams is

less than ten minutes. Based on the results of the manual inspection, as well as the two

experiments in this section, we conclude that the lag between Twitter and newswire is

7The only difference was that, because of very long Guardian articles, we had to normalize the cross-
correlation by the number of words in each interval. Without this, we would essentially be measuring
the lag between Guardian and Twitter.

7.3. Combining Twitter and Newswire 129

 900000

 920000

 940000

 960000

 980000

 1e+06

 1.02e+06

 1.04e+06

 1.06e+06

 1.08e+06

 1.1e+06

-10 -5 0 5 10

C
ro

ss
-c

or
re

la
tio

n

Lag of newswire w.r.t. Twitter (hours)

Figure 7.10: Cross-correlation between Twitter and newswire streams.

less than one hour, which is very promising from the perspective of using newswire for

real-time event detection.

7.3.3 Can Twitter Help Newswire and Vice Versa?

In Section 7.2 we used Wikipedia page views as an additional source of information to

help us reduce the amount of detected events that do not correspond to real events. In

this section we will see if combining Twitter and newswire is at all helpful for either

stream. We will focus on two questions: i) do both streams report the same set of

events, and ii) do both streams break events at the same time? A negative answer to

either of the two questions would show that combining the two streams is meaningful

from the perspective of event detection.

First of all, why do we not use newswire in a similar manner to Wikipedia and try

to reduce the amount of noise in events detected from Twitter? The reason for this

is simple – if we have access to the newswire stream, this already provides us with a

very high quality stream of events. In fact, the newswire stream has precision 100%

(all the events reported there are actual events) with very high recall, so performing an

intersection of Twitter and newswire, like we did with Wikipedia and Twitter, makes

130 Chapter 7. Cross-stream Event Detection

 160000

 165000

 170000

 175000

 180000

 185000

 190000

-20 -15 -10 -5 0 5 10 15 20

C
ro

ss
-c

or
re

la
tio

n

Lag of newswire w.r.t. Twitter (in tens of minutes)

Figure 7.11: Cross-correlation between Twitter and newswire streams on a finer scale.

little sense as we can only reduce precision and recall. This then begs the question:

if we do have the newswire stream, is Twitter at all helpful for the purpose of event

detection? Or, equivalently, why would one be at all interested in detecting events from

Twitter? This is a fundamental question, yet no previous research in event detection

in social media has even tried to address it. In this section we will show that Twitter

is indeed useful for event detection even if we have access to the newswire, and for

several reasons: i) most importantly, it can reduce the latency of detecting the events

in cases where news breaks on Twitter before, ii) there are events that are reported in

Twitter, but not in newswire, and iii) Twitter serves as an aggregator of all the different

newswire sources, which would be very difficult to keep track of individually. While

point i) has been hinted at before in the literature, to the best of our knowledge, it was

never tested. The best that one can find in the literature are examples of isolated events

where news broke on Twitter sooner than in newswire, but it was never measured to

which extent this is the case. Here we provide the first evidence that this is true on a

large scale. To the best of our knowledge, point ii) was never addressed in the literature

before and we are the first to provide evidence that there are events that appear in

Twitter, but not in newswire. Point iii), while being a somewhat practical issue, is

very important nevertheless. Keeping track of all the possible newswire sources is not

7.3. Combining Twitter and Newswire 131

an easy task in practice because of the sheer number of possible sources. Depending

on where the line is drawn as to what constitutes newswire (e.g., do tech blogs like

Ars Technica or Mashable count as newswire?), there are thousands of websites that

one would have to crawl in order to get a “full” newswire stream. On the other hand,

Twitter integrates all of these sources into one, easy-to-consume stream which can

serve as a replacement for the newswire.

7.3.3.1 Improving Twitter Detection with the Help of Newswire

We start off by focusing on Twitter and using newswire as additional information for

improving the clustering of tweets into event clusters. In the next sections, we will

look at other ways that Twitter can benefit from newswire, and also ways in which

newswire can benefit from information in Twitter.

The main idea here is to use newswire to help us deal with brevity of tweets. As

we noted in Chapter 5, the length of tweets can be a limiting factor because authors

often have to focus on one aspect of the event, making tweets that discuss the same

event seem very dissimilar. One way in which we addressed this problem was by using

paraphrases to expand tweets. Here we use newswire articles to define additional terms

for expansion. The main idea is to find a newswire article that discusses the same event

as the tweet and use the terms in that article for expansion. Because we cannot be sure

if the retrieved article talks about the same event or not, we simply use the cosine

similarity to define a weighting on the terms in the article. Let t be the timestamp of

tweet xt , and ynn be the newswire article most similar to xt :

ynn = argmax
j∈{1...t}

cos(xt ,y j). (7.2)

Note that ynn is chosen from the newswire articles written up to the time when

tweet xt arrived, which makes sure that we do not use information from the future. We

expand the tweet xt into x′t as follows:

x′t = xt + cos(xt ,ynn)ynn. (7.3)

We then use the expanded tweet x′t to perform which ever task is required, just as

we would use the original tweet.

Using an external collection to expand queries is not a new idea – it is at least a

decade old with Kwok et al. (2000) adding documents from an external collection to

132 Chapter 7. Cross-stream Event Detection

the set of documents used for pseudo-relevance feedback. Diaz and Metzler (2006) in-

troduced the idea of using external corpora in a mixture model and showed that it can

improve the estimation of relevance models. More recently, Weerkamp et al. (2009)

gave a general framework for using external corpora for expansion, showing, e.g., that

the model of Diaz and Metzler (2006) is a special case of one of their models. What is

new here is that i) we are the first to perform expansion for detection or FSD with an

external collection, and ii) we study expansion in a streaming setting, where both the

original collection and the external collection arrive incrementally, as opposed to pre-

vious work which assumed that both collections are static. This is also the reason why

we do not use prior methods for query expansion in our experiments – these methods

are batch and not designed with efficiency in mind. On the other hand, the approach

we suggest in Equation 7.3, while simple, is incremental and amenable to integration

with LSH, as it only uses information about similarity to the nearest neighbor.

We first try this approach on the Twitter FSD task. We found that the Cmin cost in-

creased from 0.69 to 0.75, indicating that this approach is not helpful for the FSD task.

Upon closer inspection, we found that there are two main reasons for this: i) expand-

ing the first story with a non-related newswire document makes this story look old, and

ii) our document expansion makes first stories about planned events seem less novel.

Problem i) occurs in cases where Twitter leads newswire, and thus there is no good

document to expand with at the time when the first story in Twitter arrives. Therefore,

the first story ends up being expanded with a non-related newswire story that was al-

ready reported in Twitter, making the first story seem less novel. For example, the first

story about Amy Winehouse’s death is expanded using the newswire article with the

headline Sunday Mirror phone-hacking claim because the first newswire article about

Amy’s death arrived 30 minutes after the first tweet. Because the phone hacking scan-

dal was already discussed in Twitter, this made the first story about Amy Winehouse’s

death look less novel. To show the extent of this problem, we ran the same experi-

ment (expanding tweets with newswire), but with the newswire stream shifted one day

into the past. This means that problem i) should be non-existing, as we are effectively

looking one day into the future of the newswire stream. Doing this improved the Cmin

score from 0.75 to 0.67, showing that tardiness of the newswire stream with respect to

Twitter is indeed problematic here.

To illustrate the second problem, consider the event UN declares famine in Soma-

lia. This is a planned event, as it was speculated that this would happen for a long

while before the famine was actually declared. The first tweet about this event in our

7.3. Combining Twitter and Newswire 133

data is #UN declares famine in two drought-hit areas #Somalia - southern Bakool &

lower Shabelle, but there were many prior tweets predicting that this will happen, e.g.,

U.N. set to declare #famine in parts of #Somalia. By performing expansion, tweets

like these will only look more similar, making the true first story seem less novel. Be-

cause FSD evaluation is very sensitive to how well the first story is identified (given

a novelty threshold, the miss rate in FSD can be either 0% or 100%), this means that

reducing the novelty of first stories has a severe effect on the overall Cmin score. Both

of the problems we mentioned make first stories appear less novel, and it is therefore

not surprising that performing such expansion in FSD is not helpful.

Despite the negative results in FSD, we posit that the overall quality of the clusters

produced from the tweets expanded with newswire articles is improved. We test this

claim by performing the detection task with and without the expansion. Like we men-

tioned before, detection is targeted at evaluating the quality of entire clusters, not just

the first stories, and therefore measures exactly the quantity we are interested in.

In Chapter 5 we introduced a method for expanding tweets based on paraphrase

information. This method improved the FSD score (albeit not much), suggesting that

it should also be useful for the detection task. Therefore, we compare expansion using

the newswire articles with this method. While news has been used before for expanding

tweets in the context of event retrieval (Metzler et al., 2012), it was used as a static

dataset, and the news articles were not from the same time period. In this experiment,

we will also explore the effect that recency has on expansion using an external source

like the newswire. To this end, we use the same newswire stream for expansion as in

equation (7.3), but we introduce a lag of one day into this stream. This way we can test

if recency of the external source has any effect on the efficacy of the expansion.

Results are shown in Figure 7.12. Comparing these results to those for detection in

TDT5 (Table 6.2), it becomes immediately apparent that Twitter is a much more chal-

lenging domain than newswire. Several things can be seen from Figure 7.12. First,

expanding tweets using either newswire or paraphrases is beneficial. Second, while

using paraphrases only improved the FSD score by 2%, using them for detection im-

proved the score by 8.5%, showing again how challenging the FSD task really is.

Third, expansion using newswire outperforms expansion using paraphrases, probably

because newswire introduces more relevant terms. Finally, we can see that recency

does matter: introducing a lag of just one day into the newswire stream decreases the

results by 3.5%. Overall, the cost for the best threshold is improved from 0.398 to

0.316, or 20.6%, when fresh newswire is used for expansion. This clearly shows that

134 Chapter 7. Cross-stream Event Detection

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

C
os

t

Threshold

No expansion
News

News one day late
Paraphrases Wordnet

Figure 7.12: Twitter detection cost with and without expansion. Lower is better.

expanding the tweets using the information from newswire is beneficial and produces

a better clustering. We note here that clustering tweets according to the events they dis-

cuss also has applications outside of event detection, e.g., event retrieval, identifying

popular events, or finding out which users are interested in which events. To the best

of our knowledge, this is the first work that uses an external corpus to expand tweets

for the purpose of detection or first story detection. We are also the first to treat the

external source as a stream and to show that recency in this case is beneficial.

7.3.3.2 How Many Newswire Events Are Reported in Twitter?

We now focus on the problem of determining how many events that are reported in the

newswire are also reported in Twitter. We do this in order to determine if there is a bias

in Twitter, i.e., if there are events that are not mentioned on Twitter for some reason. We

would expect that all of the events reported in the newswire are also reported in Twitter,

if for no other reason, then because every news organization has a Twitter account that

tweets links to the articles they publish. In this section, we conduct experiments to test

if this is true by looking for news events that are not reported in Twitter.

We first cluster the newswire stream using Algorithm 9 with a threshold of 0.4

and latency of −∞, meaning that we do not impose a lifetime on the clusters. We

7.3. Combining Twitter and Newswire 135

Iranian actor Pegah Ahangarani arrested in Teheran

Court upholds decision to impose control order on terror suspect in London

Support of Assad government shows signs of weakening

French socialist project ’sharing and caring’ in bid to beat Nicolas Sarkozy

Dick Cheney autobiography heaps praise on Tony Blair

Table 7.3: News events not found in our Twitter data.

perform the same procedure on the Twitter stream, keeping all, even singleton clusters.

We then align the clusters from the newswire and Twitter streams using the following

simple procedure: for every newswire cluster, we find its nearest neighbor (in terms

of the cosine similarity) in the stream of Twitter clusters. We will refer to the cosine

similarity between the news cluster and its closest Twitter cluster as pair similarity. In

both streams, clusters are represented by the sum of all document vectors in the cluster.

Note that, while clustering either stream is not necessary, we do it in order to improve

the running time of the algorithm for aligning the streams. By using clustering, the

newswire stream is reduced four, and the Twitter stream is reduced two times in size.

Because news-tweet pairs whose similarity is lower are more likely to be “bad

alignments”, i.e., not refer to the same event, these pairs represent a good starting point

for finding news events that are not found in Twitter. We choose a pair similarity score

of 0.03 as a cutoff and keep only those pairs whose similarity is below this threshold.

This threshold is arbitrary, but it does not affect our results, as we just need it to be low

enough to make sure there are “bad alignments” in the data. Out of 27,000 newswire

events in the data, 3,000 events had the pair similarity score lower than 0.03. Out

of those 3,000 news-Twitter pairs we randomly sample 100 and label them according

to whether these pairs actually refer to the same event or not. We found that 79 of

those pairs do refer to the same event, whereas 21 did not. Because the alignment

algorithm is not perfect, we further inspect the 21 news events manually. In particular,

we manually search our dataset of 51 million tweets using keyword search, looking

for mentions of those 21 events. Using the manual keyword search, we find that 16 of

those events were mentioned in Twitter, whereas five were not mentioned at all in our

Twitter data. The five events not found in our data are shown in Table 7.3.

This result suggests that around 5% of newswire events are not reported in our

data. However, keeping in mind that we work with the 1% sample of full Twitter, it

is very likely that the full Twitter stream contains all of the events mentioned in the

136 Chapter 7. Cross-stream Event Detection

newswire. We performed a manual search over the full Twitter stream using Google

and found that all five of the missing events were reported on Twitter, suggesting that

this intuition is right. This experiment shows that we can effectively view newswire

as a (cleaner) subset of the full Twitter stream, and also that even the small 1% stream

contains around 95% of the events reported in the newswire.

7.3.3.3 How Many Twitter Events Are Reported in Newswire?

In this section we focus on the events that are reported in Twitter, but not in newswire.

This should answer the question about whether Twitter is just a subset of newswire,

or if it carries additional information not found in traditional media. To answer this

question, we perform the following experiment. We take the potential events detected

from the Twitter stream, and for each one we find the closest matching event in the

newswire stream (exactly the opposite of what was done in Section 7.3.3.2). We then

look for news-tweet pairs where the similarity between the Twitter cluster and the

newswire cluster is lower than some threshold. This gives us a list of potential Twitter

events that have no good match in the newswire stream, and are thus not reported in

the newswire. However, a lot of these events will be noise, and we thus resort to the

same procedure as when measuring precision of detected events: we sample n events

and label them as corresponding to real events or not, which will give us an estimate

of how many real events exist in Twitter that are not covered in the newswire.

We use two different lists of potential Twitter events: one obtained by using the

size strategy with a size threshold of two (we will call this list size), and one obtained

by using the Wiki spike strategy with a threshold of three (we will call this list Wiki

spike). These two lists are quite different, as previous experiments showed. Using size

strategy will give us higher recall, but lower precision of events, whereas using Wiki

spike will give us lower recall but higher precision. We note here that by using the

Wiki spike list, we are in effect combining three streams at once: Twitter is combined

with Wikipedia to produce this cleaner list of events, and we align this with newswire

in order to detect more events. By combining the size list with newswire and keeping

all potential events whose closest match in newswire has a cosine similarity below

0.05,8 we obtain 710,000 Twitter events that are not matched in the newswire. We

randomly sample 500 of those events and label them as being real events or not. We

find that 12 of those correspond to real events. When combining the Wiki spike list of

8This score is arbitrary and does not guarantee that all the alignments that have a score below 0.05
will be “bad”. We will account for this in our experiments by manually inspecting the alignments.

7.3. Combining Twitter and Newswire 137

Wiki spike Size

True events that passed the 0.05 filter 42 12

After removing duplicate events 37 12

After removing bad alignments 26 7

After removing events reported in other newswire sources 24 4

Table 7.4: Statistics about true events in the sample of 500 detected events that did not

have a good match in the newswire.

potential Twitter events with newswire and keeping those events that had the newswire

nearest neighbor with a cosine similarity below 0.05, we obtain 4,800 events. Again

we sample 500 events and label them, leaving us with 42 real events. After obtaining

the list of real events from the two samples, we need to perform additional pruning

to make sure that those events are indeed not mentioned in the newswire. First, we

remove any duplicate events. After that, because the score of 0.05 that we used for

cutoff does not guarantee that the news-tweet pair is not related to the same event, we

manually inspect the alignments and remove those pairs where the news item refers to

the same event as the Twitter item. Because the alignment method itself is not perfect,

i.e., it is possible that cosine similarity did not find the correct news item to align with

the Twitter item, we also manually inspect our newswire data and remove cases where

there exists a news article about the same event. Finally, we also remove all the Twitter

events where the tweets were obviously posted by some other newswire source that is

not present in our data (AP, CBS, Slashdot, etc.). In the end, this leaves 24 out of 42

Twitter events from the Wiki spike sample, and 4 out of 12 events from the size sample.

This experiment is summarized in Table 7.4.

Based on the Wiki spike numbers, we estimate that 4.8% of events reported by the

Wiki spike strategy, and not having a news item more similar than 0.05 cosine, represent

true events that are not reported by the newswire. Given that there are 4,800 such

events, 4.8% of that is 230 estimated events that were not reported in the newswire, but

were reported on Twitter during the 80-day period in our data. The same calculations

based on the size numbers suggest that there are 5,680 such events. These two numbers

(230 and 5,680) give us an idea on the order of magnitude of the number of events that

are reported on Twitter and not in newswire. Remember also that we are working only

with a 1% sample of the full Twitter stream, so the actual numbers will likely be higher.

In Table 7.5 we show examples of the events that were reported on Twitter but not

138 Chapter 7. Cross-stream Event Detection

Apparently looters broke into Derby County’s trophy cabinet last night. Police are

searching for 3 youths covered in cobwebs! #riots

RIP Rick Rypien. Sad to see another death in the NHL. Too many tragedies

in the world lately...

UFC on Versus 5 results: Jacob Volkmann def. Danny Castillo via unanimous

decision (29-28, 29-28, 29-28)

RT @NASA: NASA is ready to move forward with Space Launch System, a new

capability for human exploration beyond Earth

Car reg NP05 LPU looting PC World Charlton. Retweet and shame.

RT @DerbysPolice: To reiterate rumours circulating there is disorder or looting

in Derby city are untrue. Please RT. #derby #police

Table 7.5: Examples of events reported on Twitter, but not in our newswire data.

in the newswire. Out of the 28 events that passed our rigorous inspection, we note that

15 of these events were sports-related, while the rest were a mix of all other event types.

This is in line with the findings of Kwak et al. (2010) where it was found that Twitter

leads CNN mostly in sports events, and suggests that Twitter is a very good source of

up-to-date sports news, probably because a lot of sports fans tweet about the games as

they unfold. The fifth example in Table 7.5 shows another strength of Twitter. During

the London riots, there were a lot of tweets about minor acts of violence that did not

make it into the mainstream news, but Twitter served as a medium that carried all of

these micro-events. The last example in Table 7.5 also shows how the law enforcement

used Twitter to dispute rumours during the riots. This information would not make it

into the newswire as it only had value for a very limited period of time, making Twitter

the ideal medium to carry it.

7.3.3.4 Does News Really Break on Twitter Before it Does in Newswire?

In section 7.3.3.3 we showed that there are events that are not reported in the newswire.

In this section we want to find out in how many cases, if any, Twitter breaks the news

before newswire, out of those events reported in both streams. One of the main reasons

Twitter is so popular for event detection is the fact that news sometimes breaks there

sooner than in the newswire. However, all the literature on event detection in Twitter

cites a handful of most famous examples, but the extent to which Twitter breaks the

news before newswire does is not clear. There has also been no prior work that we

7.3. Combining Twitter and Newswire 139

know of which tries to automatically identify events where Twitter leads newswire.

The work in this section represents the first work that investigates this phenomenon

on a large scale, beyond a small number of handpicked examples, and is also the first

work to semi-automatically extract events where Twitter leads newswire.

In this experiment, we start with the same stream of news-tweet event pairs as in

Section 7.3.3.2. However, unlike in Section 7.3.3.2, we are now interested in news-

tweet pairs which do refer to the same event. Therefore, we keep all the pairs with an

alignment score greater than 0.05. Out of 27 thousand news-tweet pairs, this leaves us

with 13 thousand pairs, or about a half. We then remove all pairs where the event was

reported in newswire sooner, leaving us with 5.5 thousand pairs. At this point, the 5.5

thousand out of 27 thousand total cases where Twitter leads mean that Twitter leads

the RSS feeds of eight major newswire sources in approximately 20% of cases. We

find that the median lead was 3209 seconds, or 53 minutes.

However, there are many caveats in the results we just presented. For one, we want

to know if Twitter leads the true newswire stream, not just the RSS feed. We also want

to generalize over more newswire sources, and there is also no guarantee that using a

threshold of 0.05 yields good news-tweet alignments. This is why we perform a much

more rigorous experiment where we use a series of filtering steps to remove news-tweet

pairs that should not be considered as cases where Twitter broke the news about the

event first. In this experiment we try to be as conservative as possible, always choosing

to err on the side of reporting fewer cases where Twitter leads. By doing this we most

likely remove some cases where Twitter does indeed lead, so the results we obtain here

can be considered as a sort of a lower bound on the number of instances where Twitter

leads newswire. We now explain the filtering steps used to remove news-tweet pairs.

Removing tweets with a link. We remove all the news-tweet pairs where the tweet

contained a link. This is because posting a link in the tweet usually means that there is

already an article somewhere on the web, indicating that the news was already reported,

possibly in some other newswire source not present in our data. An example of a

tweet that is removed by this filter is A judge ends house arrest for former IMF leader

Dominique Strauss-Kahn: http://t.co/zJgwyVZ. This filter removed over 4.5 thousand

pairs, leaving us with 725 pairs.

Removing pairs where the tweet mentions a newswire source. This is a simple, yet

effective way to remove cases where the tweet is simply a repost of some newswire

headline. An example of such a tweet is [nytimes] Europe gives $17 Billion to Greece

to Avoid Default: Euro zone finance ministers have decided to. . . . We remove all pairs

140 Chapter 7. Cross-stream Event Detection

where the tweet contains one of the following words: BBC, AP, NYT, CNN, Reuters,

NYTimes, AFP, AJE, AAP, BBCWorld, or WashingtonPost. We also remove all tweets

that contain the word via, which most often indicates that the tweet was read through

some newswire source. After applying this filter, we were left with 580 pairs.

Remove all retweets. While a retweet does not necessarily mean that the news comes

from newswire (e.g., it might be a retweet of a tweet that broke the news on Twitter),

we choose to err on the side of being conservative about the pairs we keep and thus

remove all pairs where the tweet is a retweet. This filter will capture cases where the

news came from a less known newswire source or simply one not listed in the previous

step. For example, the tweet RT @nytimespolitics: In Ohio, a new governor is off to

a smooth start would be removed by this filter. After applying this filter, we were left

with 391 pairs.

Remove bad alignments. Choosing a threshold of 0.05 does not guarantee that the

news-tweet alignment will be correct, i.e., it does not guarantee that both items in the

pair will refer to the same event. This is why we manually inspect the remaining 391

pairs and remove those where the tweet and the newswire article to not refer to the same

event. As an example of a “bad” alignment, consider the pair where the news article

was Assistant Commissioner John Yates, who reviewed a Met police investigation into

phone hacking, says he is 99% certain his own mobile was hacked., whereas the tweet

that was aligned with this article was John Yates, senior Metropolitan police officer

who reviewed the 1st inquiry into phone hacking repeatedly lied to parliament / #MET

#Police. While the two stories are related, they do not refer to the same event. After

applying this filter, we were left with 331 pairs.

Remove tweets copied from the newswire. Twitter users often pick up news from

the newswire and then post the same text in the form of a tweet, but omitting the

link to the original article and not giving credit to the newswire source that broke the

news. This is why we inspect each of the remaining 331 pairs and remove those cases

where it is obvious that the tweet is a copy of the news article. An example of such

a case would be the news article Author uncovers Lennon’s letters: More than 250

letters and cards sent by John Lennon to family and friends are to be published for

the first time by Beatles biographer Hunter Davies., whereas the matching tweet was

#InstantFollowBack #TeamFollowBack Author uncovers Lennon’s letters #IfollowBack

#TeamAutoFollow. In this stage we also removed tweets that mentioned newswire

sources which did not appear in our previous list of major newswire sources (e.g., we

found tweets from Yahoo News and NBC). After this stage, there were 129 pairs left.

7.3. Combining Twitter and Newswire 141

Remove duplicate events. Because the clustering on the newswire side is not perfect,

some events appear twice in our list because they were assigned to multiple clusters.

In this stage we remove all duplicate mentions of events, making sure that each event

in our list is mentioned only once. There were 11 events mentioned more than once,

leaving us with 118 unique events after this step.

Remove wrong lead. Another consequence of imperfect clustering on the newswire

side is that, because some events are split into multiple clusters, we may find that

Twitter leads one of the later mentions of the event. This problem is illustrated in Fig-

ure 7.13. Let some event E be split into three clusters N1, N2, and N3 in the newswire,

and let the same event be split into two clusters, T1 and T2, in Twitter. If we align N1

with T2, and N2 with T1, it will appear like Twitter is leading event E because T1 leads

N2, and we have no way of knowing that N1 and N2 correspond to the same event. Be-

cause of this, we manually inspect the full newswire data and realign each remaining

Twitter cluster with the earliest newswire cluster that talks about the same event. In

Figure 7.13, this is equivalent to realigning T1 with N1. This will cause some pairs to

be dropped from our list, as it will become apparent that the newswire article really

leads Twitter, not the other way around. After this step, we were left with 97 pairs.

N1 N2 N3

T1 T2

Time

Twitter

Newswire

Figure 7.13: “Wrong lead” problem. Even though event is reported first in cluster N1,

Twitter seems to lead because cluster N1 is aligned with cluster T2, and cluster N2 is

aligned with cluster T1.

All of these steps are summarized in Table 7.6. Number for each filter is obtained

after applying it along with all the previous filters. We can see that removing tweets

with links removes around 85% of all pairs, while the other steps remove a smaller

number of pairs. In the end, we are left with 97 news-tweet pairs for which we are

142 Chapter 7. Cross-stream Event Detection

Filter Pairs left

No filter 5,471

Removed links 725

Removed newswire source mentions 580

Removed retweets 391

Removed bad alignments 331

Removed copied from newswire 129

Removed duplicate events 118

Removed “wrong lead” 97

Table 7.6: Summary of filtering steps for extracting events where Twitter leads.

fairly certain that they refer to events that broke on Twitter sooner than in the newswire.

Examples of these events are shown in Table 7.7. Because there are around 27 thousand

events in our newswire data, this means that in our dataset Twitter leads newswire in

0.4% of cases. This estimate is a lower bound – some of the filtering steps removed

true cases where Twitter lead newswire, and there are less than 27 thousand events in

the newswire because some events were split into multiple clusters.

In order to make sense of what kinds of events break on Twitter before they do

in the newswire, we categorize the 97 events into seven broad categories: politics,

sports, disasters & accidents, business & economy, entertainment, technology, and

other. These categories are fairly self-explanatory, with perhaps the exception of disas-

ters & accidents which, along with natural disasters and accidents contained events like

terrorist attacks or shootings. The breakdown of these events is shown in Figure 7.14.

Perhaps not surprisingly, we can see that a lot of events when Twitter leads are sports

events (one third) and disaster-related events. However, it is interesting to note that a

lot of cases when Twitter leads represent politics and business events, which we would

expect the newswire to carry first.

Finally, we inspect by how much Twitter leads in these 97 events. First, we find that

the median lead in the 97 events is 4,980 seconds, or about one and a half hours. This

is of course not conclusive evidence that Twitter actually leads by this much because of

the problems with our timestamps as discussed earlier.9 However, when we removed

tweets copied from the newswire, this also provided us with data to estimate the possi-

9It does mean that for those cases Twitter leads by one and a half hours over the RSS feeds of the
major newswire sources.

7.3. Combining Twitter and Newswire 143

Magnitude 5.4 earthquake hits western Japan

Rapper Lil Wayne ends up in hospital after a skateboarding accident

Malaysian police use tear gas on protesters

Baidu senior VP resigns

Sherwood Schwartz dies

Thor Hushovd wins stage 13 of Tour de France

Japan wins FIFA Women’s World Cup

Michele Bachmann wins Iowa straw poll

Table 7.7: Examples of events where Twitter leads newswire.

ble error in our timestamps. We can use the 202 pairs of news-tweets where the tweets

were the same as newswire article, only with an earlier timestamp, to estimate by how

much our RSS feed timestamps are off. Calculating the median of the differences be-

tween the newswire timestamp and the Twitter timestamp, we find it is 2,889 seconds,

or about 48 minutes. This suggests that our RSS timestamps are on average about 48

minutes late after the actual article publication time. Given that Twitter was leading by

about one and a half hours, this would still suggest that Twitter is leading by about 40

minutes. We note again that this is not conclusive proof about the amount of time by

which Twitter leads, but it does give us an indication about the order of magnitude.

Sports Disasters Politics Business Ent. Tech. Other
Event type

0

5

10

15

20

25

30

35

Co
un

t

Figure 7.14: Breakdown of events where Twitter leads into broad categories.

144 Chapter 7. Cross-stream Event Detection

7.4 Conclusion

In this chapter, we showed that combining information from multiple streams is helpful

for event detection. We used Wikipedia page view data as an additional information

source to improve the quality of detected events. We first showed that the page view

data lags behind Twitter by about one hour. We then presented two novel methods for

combining the information from Wikipedia with Twitter and showed that they can be

used to significantly improve the precision of detected events for low recall levels over

the simple method that just uses burstiness.

We also explored combining Twitter with the newswire stream. We first showed

that we can expand tweets using terms found in related newswire articles, which leads

to improved clustering of the tweets. We explored the time relationship between the

two streams and showed that the newswire RSS feed is time-aligned with Twitter, i.e.,

that on average, neither stream leads or lags. We confirmed that all of the events

in newswire are reported in Twitter, and that even the 1% Twitter stream contains

about 95% of the events reported in the newswire. However, we found that the reverse

is not true – there are many events reported in Twitter that are not reported in the

newswire, like outcomes of sports events or events that are of interest only for a very

short while. Finally, we showed that there are many cases where Twitter leads the RSS

feed of newswire, and that, although not many, there are also cases where Twitter leads

genuine newswire. Our experiments show that combining Twitter and newswire can

be beneficial for both streams, as we would be able to identify more events and with a

lower latency than is possible with either stream alone.

Chapter 8

Conclusion

This thesis presented original work on streaming algorithms for detecting events from

unbounded streams of text, such as those typical of social media. There are four main

contributions of this thesis. First, we presented algorithms for scaling traditional ap-

proaches so that they handle unbounded streams. We then presented a way of improv-

ing state-of-the-art performance in this task by incorporating paraphrase information

into our approach. We next looked at ways of reducing the noise present in social

media streams by allowing for some small latency in detecting events and by combin-

ing evidence from Twitter and Wikipedia streams. Finally, we showed that combining

Twitter and newswire can be beneficial for several reasons. First, newswire can be

used to improve clustering of tweets according to events they discuss. Second, there

are cases where Twitter breaks news of the event before newswire does, and lastly,

there are events reported in Twitter that are not mentioned in the newswire. The last

two points show that event detection in Twitter is a meaningful task, even if one has

access to the newswire stream.

In a world where almost everyone has a phone with a camera and an internet con-

nection, the rate at which data is produced is increasing, and the lag with which people

report events in only getting smaller. This will lead to problems like event detection in

social media streams becoming more and more important, as we start to receive infor-

mation directly from the source, instead of through an intermediary like the newswire.

The work presented in this thesis provides a foundation for modern event detection

systems that will have to deal with these huge amounts of data and high levels of noise

typical of social media streams.

Applications of our work range from journalism, where users are interested in orga-

nizing the incoming stream of documents into topically related clusters, stock market

145

146 Chapter 8. Conclusion

where traders are interested in finding about novel information with minimal lag, to

homeland security and emergency response, where one is typically interested in de-

tecting specific types of events, like riots or earthquakes. The work presented here

also has impact outside of the field of event detection. Our variance reduction strat-

egy combined with an approximate nearest neighbor search technique can be used for

fast outlier detection in large datasets, while the work on combining paraphrases with

LSH could help reduce the effects of vocabulary mismatch in other large-scale IR ap-

plications, e.g., large-scale ad-hoc retrieval. Finally, our analysis of the relationship

between Twitter, Wikipedia, and newswire is the first comparison of these sources that

takes their time properties into account, and we show that we can use the respective

strengths of these streams to improve performance beyond using just one.

While we primarily focused on Twitter in this thesis, our models are general and

we also tested them on newswire. Because there is nothing specific to Twitter in our

approach, it is readily usable for other social media streams such as blogs or forums.

There are several ways in which the work in this thesis could be extended. First,

dealing with noise could be addressed from the perspective of supervised learning,

where the main challenges lie in choosing an efficient/incremental learning algorithm,

using a minimal amount of expensive training data, and addressing the potential need

for retraining. A different direction could be looking into and scaling many other doc-

ument expansion techniques in order to deal with the brevity of documents in Twitter.

Bibliography

Agarwal, M. K., Ramamritham, K., and Bhide, M. (2012). Real time discovery of

dense clusters in highly dynamic graphs: Identifying real world events in highly

dynamic environments. Proceedings of the VLDB Endowment, 5(10):980–991.

Ahmed, A., Ho, Q., Eisenstein, J., Xing, E., Smola, A., and Teo, C. H. (2011). Unified

analysis of streaming news. In Proceedings of the 20th International Conference on

World Wide Web, pages 267–276. ACM.

Ahn, B. G., van Durme, B., and Callison-Burch, C. (2011). Wikitopics: What is

popular on Wikipedia and why. In Proceedings of the Workshop on Automatic Sum-

marization for Different Genres, Media, and Languages, pages 33–40. Association

for Computational Linguistics.

Allan, J. (2002). Topic detection and tracking: event-based information organization.

Kluwer Academic Publishers.

Allan, J., Lavrenko, V., and Jin, H. (2000a). First story detection in TDT is hard. In

Proceedings of The 21st ACM International Conference on Information and Knowl-

edge Management, pages 374–381. ACM.

Allan, J., Lavrenko, V., Malin, D., and Swan, R. (2000b). Detections, bounds, and

timelines: UMass and TDT-3. In Proceedings of Topic Detection and Tracking

Workshop, pages 167–174.

Allan, J., Yang, Y., Carbonell, J., Yamron, J., Doddington, G., and Wayne, C. (1998).

TDT pilot study corpus. Catalog no. LDC98T25.

Analytics, P. (2009). Twitter study. http://www.pearanalytics.com/blog/wp-

content/uploads/2010/05/Twitter-Study-August-2009.pdf.

147

148 Bibliography

Andoni, A. and Indyk, P. (2006). Efficient algorithms for substring near neighbor

problem. In Proceedings of the 17th annual ACM-SIAM symposium on Discrete

algorithms, pages 1203–1212. ACM.

Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Communications of the ACM, 51(1):117–122.

Becker, H., Iter, D., Naaman, M., and Gravano, L. (2012). Identifying content for

planned events across social media sites. In Proceedings of the 5th ACM interna-

tional conference on Web search and data mining, pages 533–542. ACM.

Becker, H., Naaman, M., and Gravano, L. (2011a). Beyond trending topics: Real-

world event identification on Twitter. In Proceedings of the 5th International Con-

ference on Weblogs and Social Media, pages 438–441. The AAAI Press.

Becker, H., Naaman, M., and Gravano, L. (2011b). Selecting quality Twitter content

for events. In Proceedings of the 5th International Conference on Weblogs and

Social Media, pages 442–445. The AAAI Press.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal

of Machine Learning Research, 3:993–1022.

Brants, T., Chen, F., and Farahat, A. (2003). A system for new event detection. In

Proceedings of the 26th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 330–337. ACM.

Braun, R. K. and Kaneshiro, R. (2004). Exploiting topic pragmatics for new event

detection in TDT-2004. Technical report, National Institute of Standards and Tech-

nology.

Broder, A. Z. (1997). On the resemblance and containment of documents. In Proceed-

ings of Compression and Complexity of Sequences, pages 21–29. IEEE Computer

Society.

Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. (1997). Syntactic

clustering of the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166.

Callison-Burch, C. (2008). Syntactic constraints on paraphrases extracted from par-

allel corpora. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 196–205. Association for Computational Linguistics.

Bibliography 149

Callison-Burch, C., Koehn, P., and Osborne, M. (2006). Improved statistical machine

translation using paraphrases. In Proceedings of the main conference on Human

Language Technology Conference of the North American Chapter of the Associ-

ation of Computational Linguistics, pages 17–24. Association for Computational

Linguistics.

Cataldi, M., Caro, L. D., and Schifanella, C. (2010). Emerging topic detection on

Twitter based on temporal and social terms evaluation. In Proceedings of the 10th

International Workshop on Multimedia Data Mining, pages 4:1–4:10. ACM.

Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms.

In Proceedings of the 34th annual ACM symposium on Theory of computing, pages

380–388. ACM.

Ciglan, M. and Nørvåg, K. (2010). Wikipop: Personalized event detection system

based on Wikipedia page view statistics. In Proceedings of the 19th ACM interna-

tional conference on Information and knowledge management, pages 1931–1932.

ACM.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20(1):37–46.

Cohn, T., Callison-Burch, C., and Lapata, M. (2008). Constructing corpora for the

development and evaluation of paraphrase systems. Computational Linguistics,

34(4):597–614.

Cordeiro, M. (2012). Twitter event detection: Combining wavelet analysis and topic

inference summarization. In Doctoral Symposium in Informatics Engineering, pages

123–138.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

Crouch, C. J. and Yang, B. (1992). Experiments in automatic statistical thesaurus con-

struction. In Proceedings of the 15th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 77–88. ACM.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. (2004). Locality-sensitive hash-

ing scheme based on p-stable distributions. In Proceedings of the 20th annual sym-

posium on Computational geometry, pages 253–262. ACM.

150 Bibliography

Diaz, F. and Metzler, D. (2006). Improving the estimation of relevance models using

large external corpora. In Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 154–161.

ACM.

van Durme, B. and Lall, A. (2009). Streaming pointwise mutual information. In

Advances in Neural Information Processing Systems 22, pages 1892–1900.

van Durme, B. and Lall, A. (2010). Online generation of locality sensitive hash signa-

tures. In Proceedings of the 48th Annual Meeting of the Association for Computa-

tional Linguistics, pages 231–235. Association for Computational Linguistics.

Fellbaum, C. (1998). WordNet: An electronic lexical database. The MIT press.

Fiscus, J. (2001). Overview of results (NIST). In Proceedings of the TDT 2001 Work-

shop.

Fiscus, J. G. and Doddington, G. R. (2002). Topic detection and tracking evalua-

tion overview. Topic detection and tracking: event-based information organization,

pages 17–31.

Fox, E. A., Nutter, J. T., Ahlswede, T., Evens, M., and Markowitz, J. (1988). Building

a large thesaurus for information retrieval. In Proceedings of the 2nd conference

on Applied natural language processing, pages 101–108. Association for Computa-

tional Linguistics.

Genc, Y., Sakamoto, Y., and Nickerson, J. V. (2011). Discovering context: Classi-

fying tweets through a semantic transform based on Wikipedia. Foundations of

Augmented Cognition. Directing the Future of Adaptive Systems, pages 484–492.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search in high dimensions

via hashing. In Proceedings of the 25th International Conference on Very Large

Data Bases, pages 518–529. Morgan Kaufmann Publishers Inc.

Goyal, A., Jagarlamudi, J., Daumé III, H., and Venkatasubramanian, S. (2010). Sketch

techniques for scaling distributional similarity to the web. In Proceedings of the

Workshop on GEometrical Models of Natural Language Semantics, pages 51–56.

Association for Computational Linguistics.

Bibliography 151

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Tech-

nometrics, 11(1):1–21.

Hu, M., Sun, A., and Lim, E.-P. (2008). Event detection with common user interests. In

Proceedings of the 10th ACM workshop on Web information and data management,

pages 1–8. ACM.

Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: Towards removing

the curse of dimensionality. In Proceedings of the 30th annual ACM symposium on

Theory of computing, pages 604–613. ACM.

Jones, R., Rey, B., Madani, O., and Greiner, W. (2006). Generating query substitutions.

In Proceedings of the 15th International Conference on World Wide Web, pages 387–

396. ACM.

Jurgens, D. and Stevens, K. (2009). Event detection in blogs using temporal random

indexing. In Proceedings of the Workshop on Events in Emerging Text Types, pages

9–16. Association for Computational Linguistics.

Kriegel, H.-P., Kröger, P., and Zimek, A. (2009). Outlier detection techniques. Tutorial

at the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Krovetz, R. (1993). Viewing morphology as an inference process. In Proceedings of

the 16th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 191–202. ACM.

Kulis, B. and Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable

image search. In Proceedings of 12th International Conference on Computer Vision,

pages 2130–2137. IEEE.

Kumaran, G. and Allan, J. (2005). Using names and topics for new event detection.

In Proceedings of the conference on Human Language Technology and Empirical

Methods in Natural Language Processing, pages 121–128. Association for Compu-

tational Linguistics.

Kwak, H., Lee, C., Park, H., and Moon, S. (2010). What is Twitter, a social network or

a news media? In Proceedings of the 19th International Conference on World Wide

Web, pages 591–600. ACM.

152 Bibliography

Kwok, K.-L., Grunfeld, L., Dinstl, N., and Chan, M. (2000). TREC-9 cross language,

web and question-answering track experiments using PIRCS. In TREC.

Lavrenko, V. (2004). A generative theory of relevance. PhD thesis, University of

Massachusetts.

Lavrenko, V., Allan, J., DeGuzman, E., LaFlamme, D., Pollard, V., and Thomas, S.

(2002). Relevance models for topic detection and tracking. In Proceedings of the 2nd

international conference on Human Language Technology Research, pages 115–

121. Morgan Kaufmann Publishers Inc.

Lavrenko, V. and Croft, B. W. (2001). Relevance based language models. In Pro-

ceedings of the 24th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 120–127. ACM.

Levenberg, A., Callison-Burch, C., and Osborne, M. (2010). Stream-based translation

models for statistical machine translation. In Human Language Technologies: The

11th Annual Conference of the North American Chapter of the Association for Com-

putational Linguistics, pages 394–402. Association for Computational Linguistics.

Levenberg, A. and Osborne, M. (2009). Stream-based randomised language models

for SMT. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing, pages 756–764. Association for Computational Linguistics.

Li, C., Sun, A., and Datta, A. (2012a). Twevent: Segment-based event detection from

tweets. In Proceedings of ACM Conference on Information and Knowledge Man-

agement. ACM.

Li, R., Lei, K. H., Khadiwala, R., and Chang, K. C.-C. (2012b). TEDAS: A Twitter-

based event detection and analysis system. In Proceedings of 28th International

Conference on Data Engineering, pages 1273–1276. IEEE Computer Society.

Lin, J. and Dyer, C. (2010). Data-Intensive Text Processing with MapReduce. Morgan

& Claypool Publishers.

Luo, G., Tang, C., and Yu, P. S. (2007). Resource-adaptive real-time new event de-

tection. In Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 497–508. ACM.

Bibliography 153

Madnani, N. and Dorr, B. (2010). Generating phrasal and sentential paraphrases: A

survey of data-driven methods. Computational Linguistics, 36(3):341–387.

Mathioudakis, M. and Koudas, N. (2010). Twittermonitor: Trend detection over the

Twitter stream. In Proceedings of the 2010 ACM SIGMOD International Conference

on Management of data, pages 1155–1158. ACM.

Medelyan, O., Milne, D., Legg, C., and Witten, I. H. (2009). Mining meaning from

Wikipedia. International Journal of Human-Computer Studies, 67(9):716–754.

Metzler, D., Cai, C., and Hovy, E. (2012). Structured event retrieval over microblog

archives. In Proceedings of Human Language Technologies: Conference of the

North American Chapter of the Association of Computational Linguistics, pages

646–655. Association for Computational Linguistics.

Muthukrishnan, S. M. (2005). Data streams: algorithms and applications. Foundations

and Trends in Theoretical Computer Science, 1(2):117–236.

O’Connor, B., Balasubramanyan, R., Routledge, B. R., and Smith, N. A. (2010). From

tweets to polls: Linking text sentiment to public opinion time series. In Proceedings

of the 4th International Conference on Weblogs and Social Media, pages 122–129.

The AAAI Press.

Orfanidis, S. J. (1996). Optimum signal processing: An introduction. Macmillan New

York.

Osborne, M., Petrović, S., McCreadie, R., Macdonald, C., and Ounis, I. (2012). Bieber

no more: First story detection using Twitter and Wikipedia. In Proceedings of the

SIGIR workshop on Time-Aware Information Access.

Ozdikis, O., Senkul, P., and Oguztuzun, H. (2012). Semantic expansion of hashtags

for enhanced event detection in Twitter. In Proceedings of the 1st International

Workshop on Online Social Systems.

Papka, R., Allan, J., and Lavrenko, V. (1999). UMass approaches to detection and

tracking at TDT2. In DARPA: Broadcast News Workshop, pages 111–116.

Petrović, S., Osborne, M., and Lavrenko, V. (2010). Streaming first story detection

with application to Twitter. In Proceedings of the 11th annual conference of the

North American Chapter of the Association for Computational Linguistics, pages

181–189. Association for Computational Linguistics.

154 Bibliography

Petrović, S., Osborne, M., and Lavrenko, V. (2012). Using paraphrases for improving

first story detection in news and Twitter. In Proceedings of Human Language Tech-

nologies: Conference of the North American Chapter of the Association for Com-

putational Linguistics, pages 338–346. Association for Computational Linguistics.

Phuvipadawat, S. and Murata, T. (2010). Breaking news detection and tracking in

Twitter. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology, pages 120–123. IEEE Computer

Society.

Popescu, A.-M. and Pennacchiotti, M. (2010). Detecting controversial events from

Twitter. In Proceedings of the 19th ACM international conference on Information

and knowledge management, pages 1873–1876. ACM.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Qiu, Y. (1995). Automatic query expansion based on a similarity Thesaurus. PhD

thesis, ETH Zürich.

Quirk, C., Brockett, C., and Dolan, W. (2004). Monolingual machine translation for

paraphrase generation. In Proceedings of the 2004 Conference on Empirical Meth-

ods in Natural Language Processing, pages 142–149. Association for Computa-

tional Linguistics.

Ravichandran, D., Pantel, P., and Hovy, E. (2005). Randomized algorithms and NLP:

using locality sensitive hash function for high speed noun clustering. In Proceedings

of the 43rd Annual Meeting on Association for Computational Linguistics, pages

622–629. Association for Computational Linguistics.

Riezler, S., Vasserman, A., Tsochantaridis, I., Mittal, V., and Liu, Y. (2007). Statistical

machine translation for query expansion in answer retrieval. In Proceedings of the

45th Annual Meeting of the Association of Computational Linguistics, pages 464–

471. Association for Computational Linguistics.

Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). Earthquake shakes Twitter users:

real-time event detection by social sensors. In Proceedings of the 19th International

Conference on World Wide Web, pages 851–860. ACM.

Salakhutdinov, R. and Hinton, G. (2009). Semantic hashing. International Journal of

Approximate Reasoning, 50(7):969–978.

Bibliography 155

Sankaranarayanan, J., Samet, H., Teitler, B. E., Lieberman, M. D., and Sperling, J.

(2009). Twitterstand: news in tweets. In Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, pages

42–51. ACM.

Shapiro, S. and Wilk, M. (1965). An analysis of variance test for normality (complete

samples). Biometrika, 52(3/4):591–611.

Spärck Jones, K. and Tait, J. (1984). Automatic search term variant generation. Journal

of Documentation, 40(1):50–66.

Subašić, I. and Berendt, B. (2011). Peddling or creating? Investigating the role of

Twitter in news reporting. Advances in Information Retrieval, pages 207–213.

Terasawa, K. and Tanaka, Y. (2007). Spherical LSH for approximate nearest neighbor

search on unit hypersphere. Algorithms and Data Structures, pages 27–38.

Tsatsaronis, G. and Panagiotopoulou, V. (2009). A generalized vector space model for

text retrieval based on semantic relatedness. In Proceedings of the 12th Conference

of the European Chapter of the Association for Computational Linguistics: Student

Research Workshop, pages 70–78. Association for Computational Linguistics.

Ture, F., Elsayed, T., and Lin, J. (2011). No free lunch: Brute force vs. locality-

sensitive hashing for cross-lingual pairwise similarity. In Proceedings of the 34th

international ACM SIGIR conference on Research and development in Information,

pages 943–952. ACM.

Twitter (2010). State of Twitter spam. http://blog.twitter.com/2010/03/state-of-twitter-

spam.html.

Wallis, P. (1993). Information retrieval based on paraphrase. In Proceedings of the 1st

Pacific Association for Computational Linguistics Conference.

Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In Proceedings

of the 24th International Conference on Very Large Data Bases, pages 194–205.

Morgan Kaufmann Publishers Inc.

Weerkamp, W., Balog, K., and de Rijke, M. (2009). A generative blog post retrieval

model that uses query expansion based on external collections. In Proceedings of the

156 Bibliography

Joint conference of the 47th Annual Meeting of the Association for Computational

Linguistics and the 4th International Joint Conference on Natural Language Pro-

cessing of the Asian Federation of Natural Language Processing, pages 1057–1065.

Association for Computational Linguistics.

Weng, J., Yao, Y., Leonardi, E., and Lee, F. (2011). Event detection in Twitter. In Pro-

ceedings of the 5th International Conference on Weblogs and Social Media, pages

401–408. The AAAI Press.

Wong, S. K. M., Ziarko, W., and Wong, P. C. N. (1985). Generalized vector spaces

model in information retrieval. In Proceedings of the 8th annual international ACM

SIGIR conference on Research and development in information retrieval, pages 18–

25. ACM.

Yang, Y., Pierce, T., and Carbonell, J. (1998). A study of retrospective and on-line

event detection. In Proceedings of the 21st annual international ACM SIGIR con-

ference on Research and development in information retrieval, pages 28–36. ACM.

Yardi, S., Romero, D., Schoenebeck, G., and dannah boyd (2009). Detecting spam in

a Twitter network. First Monday, 15(1).

Zhang, J., Ghahramani, Z., and Yang, Y. (2005). A probabilistic model for online

document clustering with application to novelty detection. In Advances in Neural

Information Processing Systems 17.

Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., and Li, X. (2011). Com-

paring Twitter and traditional media using topic models. Advances in Information

Retrieval, pages 338–349.

	PhD coversheet April 2012
	petrovic-thesis

