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Abstract

The ice giants Uranus and Neptune, and exoplanets like them, contain large

amounts of water, ammonia, and methane ices, as well as hydrogen in various

forms. Yet it is unknown how these compounds organize themselves under the

extreme conditions of pressure and temperature in the planetary interiors - for

instance, would they occur as a mixture, or instead as well-separated layers within

the planets. While individual ices at high pressures and temperatures have been

studied in great detail, the properties of their mixtures are much less explored.

Experiments have previously investigated ammonia water mixtures to moderate

pressures of 10-40 GPa finding rich phase diagrams. Here the binary phase

diagram of ammonia-water mixtures is explored computationally as a function

of composition, pressure and temperature close to planetary conditions.

Crystal structure prediction methods utilizing the particle swarm optimization

approach were employed to find stable solid phases at different densities reflecting

the pressure ranges found in ice giants. Accurate energetics of different solid

structures was ensured by utilizing electronic structure methods within the

framework of density functional theory. Ammonia and water were investigated

individually in the ground state to gauge the computational methodology

and allow comparisons with the ground state mixtures. Benchmark crystal

structure prediction results for the individual ices confirmed results of previous

experimental and computational studies.

For the ammonia hydrates at low pressures the canonical mixing ratios previously

seen in experiments (1:2, 1:1, and 2:1) are found to be stable. These mixtures

form molecular compounds and, with increasing pressure, ionic phases due to

proton transfer from water to ammonia. For all hydrates, new high-pressure

structures are presented that supersede existing literature results. The phase

evolution of the different hydrates is discussed in terms of energetics, vibrational

and electronic properties.
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An overarching study of all hydrates reveals that at pressures above 1 Mbar

ammonia-rich hydrates dominate, stabilized by a remarkable structural evolution

involving fully ionic phases with O2−(NH+
4 )2 units in the 2:1 hydrate, and

O2−(N2H+
7 )2 in a newly predicted 4:1 hydrate. In those compounds, all water

molecules are completely deprotonated, an unexpected bonding phenomenon not

seen before. Beyond 500-550 GPa, close to the core-mantle boundary of Neptune,

all mixtures are predicted to become unstable towards decomposition into the

constituents ammonia and water.

Ammonia-water mixtures that were found stable in the static ground state binary

phase diagram were studied at elevated temperatures using ab initio molecular

dynamics simulations. Heating these mixtures resulted in the emergence of

plastic and superionic phases in all mixtures. The former is characterized by

excited molecules and ionic species rotating and are also able to exhibit symmetry

breaking due to temporary proton transfer depending on the mixture and the

specific crystal structure. The latter exhibit fast diffusing protons in three

dimensions that travel through the solid O-N sub-lattice. Further heating results

in full melting, with melt lines established for all mixtures and found to be close

to the Uranus and Neptune isentropes. The dynamical properties of these heated

mixtures were then analyzed in terms of local structure, diffusivity, chemical

abundances, and bond life-times. Covalent N-H bonds were found to be more

persistent than O-H bonds, suggesting the high temperature convex hull of these

mixtures may still favour ammonia-rich hydrates. Although ionicity stabilized

the cold ammonia-rich hydrates, the relative abundance of ionic vs charge-neutral

species decreased with temperature, leading to a more charge-balanced system.

A pressure-temperature phase diagram of the ammonia-water system is presented

for four different mixing ratios and up to 600 GPa and 7000 K, indicating regions

of molecular, ionic, plastic, superionic, and fluid character.
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Chapter 1

Introduction

Mixtures of molecular ices of water, ammonia and methane (together with

impurities and volatiles such as hydrogen or helium) make up a large proportion

of the mantle regions of the “ice giants” Uranus and Neptune as well as large

icy moons in our solar system, and are presumed to feature prominently in

the large number of Neptune-like exoplanets discovered by recent and current

astronomical observation campaigns [6–12]. It is not clear how molecular ices

organize themselves inside these planetary bodies – whether they form segregated

layers with distinct chemical and density profiles, or homogeneous mixtures

corresponding roughly to the global composition ratio throughout. The low

luminosity of Uranus could be explained by the presence of a thermal boundary

layer in its mantle region [13, 14], which would suggest quite drastic composition

gradients in its interior. High pressure conditions (which reach hundreds of GPa

inside ice giants) can in general favor unexpected chemical motifs, and thus

stabilize unusual compounds and stoichiometries, as found among prototypical

mineral compounds [15–19] as well as individual ices [20–26]. The mixtures of

the molecular ices might equally feature surprising pathways to stability under

compression; for instance, methane’s solubility in water increases significantly at

pressures as low as a few GPa [27].

The properties of solids are defined by their electronic structure [28] and so

electronic structure methods can be employed to study, to begin with, their

energetic stability. More simple models such as pair potentials can also be used

and are also cheaper to compute, though often suffer from a lack of accuracy due

to their functional form and are typically fitted to known data-sets for a given
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system. For a given thermodynamic point in temperature and pressure space,

there may be several competing solid structures (or any material) for a given

chemical makeup with similar free energy. In order to distinguish which the most

stable, that which nature thus wants to form for example in the deep mantle of

Neptune, a method which can accurately rank the energies of these competing

structures is required to assess the correct thermodynamically stable phase. This

is important when trying to predict the stable crystal structure for a material

[29, 30], and increasingly useful at high pressure which has been less explored by

experiment, as a tool to map the chemical space.

Electronic structure methods benefit from computing properties such as the band

gap, metalization, and ab initio molecular dynamics can be computed. Employing

these methods to high pressure and temperature water [21] had direct applications

to understanding planetary interiors. At extreme conditions water was predicted

to exhibit both solid and liquid behaviour in the “superionic” regime [21]. Other

interesting phenomena occur under pressure, such single alkali metals forming

host-guest structures [4] as well as having similar both solid and liquid like

behaviour on heating and before melting in a “chain-melted” phase of matter

[5]. Closer to home, here on Earth, electronic structure methods have been to

investigate the thermal and electronic conductivity of iron by Pozzo et al [31],

the melting [32], and predicted the chemistry of geophysically relevant reactions

of iron with crystal structure prediction combined with electronic structure in a

binary-study by Zhu et al [16]. Recently crystal structure searching combined

with electronic structure methods have been used to predict the many high

pressure superconductor with especially high critical temperatures (Tc). Binary

hydrides have found great success as high temperature superconductors at high

pressure, further motivating structure searching for binary systems, for example,

Yttrium hydride was predicted to have a Tc of 251-264 K at 120 GPa [33]. High

pressure is full of interesting phenomenon where electronic structure, structure

searching and other methods can help discover, predict, and understand.

High pressure experiments are designed to compress a material and look for

changes in physical observables. In a diamond anvil cell (DAC) [34], materials

are compressed by carefully constructed diamonds which are transparent to many

probes, such as X-rays which allow the sample’s structure to be determined.

Materials are often contained in a carefully chosen pressure medium, avoiding

chemical reactions, to try and achieve hydrostatic pressure for example in a study

with a Paris-Edinburgh cell by Marshall et al [35]. For pressures slightly higher
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than ambient pistons-cylinders can be used to squeeze materials, but to achieve

the high pressures in the cores of planets (360 GPa in Earth) DAC’s are readily

used but with sample sizes on the micrometer scale. These anvil experiments

are typically termed static, as the material is held in a state for a long time

and measured in thermodynamic equilibrium. Alternatively, there is dynamic-

compression [36], which sends a shock-wave through a material to achieve a high

density of atoms (but also temperature). Measurements can be performed during

the short compression and are they are able to reach much higher pressures than

their static counterpart. This can be performed by gas guns [37] or laser-driven

ramp compression [36], where shocks can be designed to follow special pressure

temperature paths, and even combined with a DAC for precompression.

Mixtures of ammonia and water are of interest due to their ability to form nearly

or complete hydrogen-bonded networks, and three stoichiometric mixtures exist

in nature and have been explored around ambient and low-pressure conditions:

ammonia monohydrate (AMH, NH3:H2O=1:1), ammonia dihydrate (ADH, 1:2)

and ammonia hemiydrate (AHH, 2:1) [38, 39]. These HNO hydrogen-bonded

networks form integral parts of ingredients for life in DNA and RNA and so their

interactions are important to understand both ambiently and when compressed.

For comparison, the ammonia:water solar abundance ratio is 1:7 [40]. The

individual ices pursue quite different routes under pressure: water ice follows

a sequence of atomic networks above 65 GPa, where water molecules readily give

up their protons to sit at the mid-points of nearest-neighbor O–O separations

[22, 23, 41, 42]; whereas ammonia holds onto its protons much better, and instead

self-ionizes above 120 GPa into ammonium amide over a large pressure range

before (in calculations) returning to packings of neutral molecules [25, 26, 43].

First-principles calculations have proven very useful in establishing or confirming

individually the different ice and hydrate phases and their properties. What

is missing, however, is an overarching study of the ammonia hydrates that

considers all mutual formation and decomposition reactions at various pressures

and temperatures, and also explores whether other hydrate stoichiometries could

be stabilized under specific conditions. In this thesis, we present such a study.

The three known hydrates’ phase diagrams show appreciable complexity (shown

in further detail in chapter 4): at various P − T conditions, five solid AMH and

ADH phases, as well as three solid AHH phases have been identified in experiment,

even though some of their structures have not been resolved. There is some

interplay between the three mixtures: both ADH and AMH decompose into AHH
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and ice-VII, around 3 GPa and at 280 K and 250 K, respectively, while ADH also

decomposes into AMH and ice-VII around 0.55 GPa and 190 K [44, 45]. Moreover,

around 5–20 GPa and room temperature, all ammonia hydrates are found to

form disordered molecular alloy (DMA) phases, with substitutional disorder of

ammonia and water on a body-centered cubic (bcc) lattice and calculations

predict partial ionization into OH− and NH+
4 in all hydrates [44, 46–49]. The

AHH-DMA phase has been observed in two independent experiments [48, 50] that

found, at low temperatures, transitions from AHH phase II at 19–30 GPa. AHH-

DMA was found to remain stable up to the highest experimental pressure studied,

41 GPa [48]. The molecular and DMA phases in the three hydrates have been

studied extensively through experiment and first-principles calculations, often in

combined studies.

This work is organized as follows. In the next chapters, we describe the details

of our calculations and methods. Then we introduce the individual ices of H2O

and NH3 and present high pressure results for these. Following this we explore

individually the high-pressure and -temperature phase diagrams of the three

known ammonia hydrates; for each hydrate, we provide new insights into their

high-pressure phase evolution and discuss the chemical motifs found in the most

relevant phases. Subsequently, we present a comparative stability analysis of all

hydrates, which enables us to predict stabilities and formation/decomposition for

each individual compound on enthalpic grounds.

We show that it is important to consider all hydrates together, as their stability

is mostly limited by reactions with each other, and not the simple formation

from or decomposition into the constituent ices of water and ammonia. During

this analysis, we also show that a new ammonia-rich 4:1-hydrate, we term

ammonia quarterhydrate (AQH), emerges as an unexpectedly stable compound

at relatively modest pressures. Throughout, we find that the formation of exotic

ionic compounds, based on proton transfer from water to ammonia, is important

to ensure stability, and that ammonia-rich phases (which provide sufficient proton

acceptors) are stable to much higher pressures than water-rich phases. Eventually

at pressures beyond 500 GPa we find no stable mixtures of water and ammonia,

instead there is a decomposition into the separate OH and NH systems.

Investigating these materials inside the P-T conditions predicted to occur in icy

bodies throughout the universe we simulated the realistic dynamics of the system.

We performed molecular dynamics simulations to look at the nature of the matter,

addressing whether it is solid or liquid in different regions of a planetary body.
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Going from the solid to the liquid there exist intermediate stages of matter as

the materials are heated into excited states, and once in the liquid form how does

it comprise? Are these materials still stable to full atomic decomposition in the

P-T space relevant to icy bodies? Finally, we make predictions for the stability

of these mixed ices in their regions of stability both in temperature and pressure.

In chapter 2 the theoretical methods used in this work are introduced and

demonstrated. In chapter 3 the individual ices of ammonia and water are

introduced drawing knowledge from literature and new data is presented. In

chapter 4 results on the three known hydrates (AMH, ADH, and AHH) part

of which have been published in [1, 2] in collaboration with Miriam Marques,

Yanming Ma and Yanchao Wang. In chapter 5 a comparative analysis of the

ammonia water system is performed, comparing different mixtures and searching

for new stable options published in [2]. Chapter 6 presents the results of ab

initio molecular dynamics simulations (AIMD) for the ammonia water system

concluding with the resulting pressure and temperature phase diagram published

in [3]. Some of the AIMD trajectories have been acquired by an undergraduate

summer student, Jacob Christiansen, who I co-supervised.
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Chapter 2

Theoretical Methods

In this chapter theoretical methods for simulations and analysis used in this work

are outlined. The main workhorse for condensed matter computation is density

functional theory (DFT) [51] and is the dominant method used in this work. Here

a discussion of how DFT works and its implementation in modern computer codes

is presented. Other electronic structure methods commonly applied in the field

of computational chemistry, such as Hartree Fock [52], Coupled Cluster [53], and

Møller-Plesset Perturbation Theory [54] are also introduced as they are utilized

to investigate specific questions in later chapters. Common and less common

extensions of total energy calculations that gain an understanding of the ground

state properties of a system are also discussed, such as the Electron Localization

Function (ELF) [55], Bader Charge Analysis [56], and lattice dynamics [57].

While DFT and wave-function methods are the main methods for computing

total energies, other general methods are also used. The first being Crystal

Structure Searching reviewed in [58], a stochastic method used to predict the

crystal structure for a given system. Such a method was used to investigate and

predict stable mixtures of ammonia and water beyond the current experimental

pressure range. While at its core being a problem of global optimization which is

tackled stochastically, we will see that there are various methods for accelerating

this process with added functionality.

The second method being molecular dynamics (MD) often referred to as ab-initio

molecular dynamics (AIMD) when combined with DFT [59]. This is the main
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method for simulating systems at finite temperature including temperature-driven

phase transitions. The range of analysis for MD is broad in the modern-day and

the methods used later in chapter 6 shall be discussed. For molecular ices in

particular proton transfer, diffusion rates, and melting lines are of interest with

increasing relevancy to ice giants.
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2.1 Electronic Structure Methods

2.1.1 The Many Electron Hamiltonian

To calculate the total energy, E, of an interacting many-body system in condensed

matter one can start by accurately solving the Time Independent Schrödinger

Equation (TISE),

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator and ψ is the many-body wavefunction,

which, as well as Ĥ, is a function of the coordinates of M nuclei {Ri} and N

electrons {ri} defined explicitly as,

Ψ = Ψ(R1,R2, . . . ,RM ; r1, r2, . . . , rN). (2.2)

For a system of electrons and nuclei the Hamiltonian is,

Ĥ = T̂e + T̂n + V̂ee + V̂ne + V̂nn, (2.3)

where T̂ are the kinetic energy operators of the electrons (e) and nuclei (n), and

V̂ are the interactions between electrons and nuclei. For the non-relativistic case

of a system of positively charged ions and electrons with Coulombic interactions

this can be written as,

Ĥ =−
N∑
i=1

h̄2

2me

∇2
i −

M∑
j=1

h̄2

2Mj

∇2
j+

1

2

N∑
i 6=j

e2

|ri − rj|
− 1

2

M∑
i=1

N∑
j=1

Zie
2

|Ri − rj|
+

1

2

M∑
i 6=j

ZiZje
2

|Ri −Rj|
,

(2.4)

where h̄ is Planck’s constant, e is the electron charge, me and Mi are the electron

and ionic masses respectively, and Zi is charge of the nucleus, with 4πε0 set to

unity. Equation 2.4 can be solved analytically for the hydrogen atom (1-body

with a classical nucleus) but requires the use of computers entering the two-body

problem and greater. This can be aided by taking certain approximations and by

exploiting certain properties of the system such as later in DFT.

The first approximation made for solving this Hamiltonian is the Born-Oppenheimer

approximation (BOA) also known as the adiabatic approximation [60], which
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decouples the electronic and nuclear degrees of freedom,

Ψtotal = Ψelectronic ·Ψnuclei, (2.5)

justified by Mi � me by a ratio upwards of 2000:1 meaning the electrons move

significantly faster than the nuclei or that the nuclei follow the electrons. This

means solving the Schrödinger equation with static nuclei, discarding their kinetic

energy from the electronic Hamiltonian, while losing little accuracy. Electrons are

treated quantum mechanically and nuclei classically, rewriting TISE as,

Ĥ(r1, r2, . . . , rN ;Ri)Ψ(r1, r2, . . . , rN ;Ri) = E(Ri)Ψ(r1, r2, . . . , rN ;Ri), (2.6)

now simplifying the system’s Hamiltonian to,

Ĥ = T̂e + V̂ee + V̂ne + V̂nn. (2.7)

Note that the last term is a number unique to a system’s nuclear geometry which

can be calculated by a summation of Coulomb interactions for the nuclear charges.

2.1.2 Hartree-Fock

The simplest method for approximately solving the above Hamiltonian is the

Hartree method with ansatz for the many-particle wavefunction [61],

Ψ(r1, r2, . . . , rN) = ψ1(r1)ψ2(r2) . . . ψN(rN), (2.8)

such that the electrons are not interacting other than by the mean-field Coulomb

force, leading to one-electron Schrödinger equations of the form,

− h̄2

2m
∇2ψi(r) + (Ven(r) + VH(r))ψi(r) = εiψi(r), (2.9)

yet fails to capture the essential physics and chemistry of atoms and molecules

such as atomic shell structure or chemical bonding. The electron-electron

interaction is described by a classical Coulomb repulsion also known as the

Hartree potential VH [62],

VH =

∫
n(r)

|r − r′|
dr′. (2.10)
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The Hartree-Fock (HF) method [63] includes electron-electron interactions from

the Pauli exclusion principle. The HF method works well for systems such as

single atoms and molecules, although fails to describe cases in which electron

correlation is the dominant bonding mechanism such as dispersion forces in noble

gas dimers. This is because it purely solves the Hamiltonian satisfying electron

exchange included in the anti-symmetry of the wave-function. This is achieved

by a use of a single Slater Determinant introduced in 1929 [64] which is a sum of

products of one-electron wavefunctions χN ensuring the fermionic many particle

wavefunction is anti-symmetric Ψ(r1, r2) = −Ψ(r2, r1), given in its general form

by,

Ψ(r1, r2, ..., rN) =
1√
N

∣∣∣∣∣∣∣∣∣∣
χ1(r1) χ2(r1) · · · χN(r1)

χ1(r2) χ2(r2) · · · χN(r2)
...

...
. . .

...

χ1(rN) χ2(rN) · · · χN(rN)

∣∣∣∣∣∣∣∣∣∣
, (2.11)

decoupling electrons allowing the single-particle Hartree-Fock equations to be

written as,

− h̄2

2m
∇2χi(r)+Ven(r)χi(r)+VH(r)χi(r)−

∑
j

∫
dr′

χ∗j(r
′)χ∗i (r

′)χi(r)χj(r)

|r − r′|
= εiχi(r).

(2.12)

The Hartree-Fock energy is always an upper bound value of the actual ground

state energy. The Hartree-Fock method is used to solve the TISE normally with

the Born-Oppenheimer approximation requiring a self-consistent solution starting

from an initial field, i.e. converging the total energy and charge distribution.

Quantum chemistry methods based on correlation expand the multi-electron

wavefunction in a linear combination of Slater determinants to include the missing

electron correlation (see section 2.1.10) which remains the greatest drawback of

HF.

2.1.3 The Hohenberg-Kohn Theorems

So far the Schrödinger equation has been simplified and solved in HF which

also includes the exact exchange interaction. Here the method of Density

Functional Theory approximates exchange and correlation effects. In 1964 DFT

was introduced by Hohenberg and Kohn [65]. Hohenberg and Kohn (HK) start

from the Schrödinger equation using the electron density n(r) = 〈Ψ|n̂(r)|Ψ〉
which is a scalar field. Now the system can be characterized by 3 coordinates
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rather than 3N coordinates considered in a wave-function approach.

The HK theorems are:

(1) A system of interacting particles in an external potential, Vext(r), has this

potential uniquely determined by the ground state electron or particle density,

n(r). This is equivalent to the ground state electron particle density determining

fully the Hamiltonian and therefore also all ground state properties of the system.

Vext(r) n0(r)

H ψ0(r)

HK

Figure 2.1 Relationship between electron density and the solutions to the
Hamiltonian with an external potential leading to the ground state
wave-function established by first HK theorem.

(2) A density functional F [n(r)] exists for the energy E[n(r)], in an external

potential Vext(r), which is minimized to the global minimum of E[n(r)] by the

exact ground state particle density n0(r). So the exact ground state energy can

be determined by,

E[n] = F [n] +

∫
n(r)Vext(r)d3r. (2.13)

Now in principle, the energy can be computed by a suitable trial guess for n(r)

then solved iteratively for the ground state, however the calculation remains

impractical and an efficient alternative is introduced in 2.1.4. The form or

construction for F [n] is not known nor discussed in the original proof found in [65],

and assumes non-degenerate ground states but this was extended for degenerate

systems in [66–69] by Levy and Liev using the constrained search approach.

2.1.4 The Kohn-Sham Equations

One year later in a second ground breaking paper [70] Kohn and Sham (KS)

offered an approach to approximating F [n]. Here the system of interacting

electrons is mapped to a fictitious system of non-interacting electrons experiencing

an effective external potential. The key ingredient for this is that the ground

state electron density for the fictitious system is equal to that of the real system.

This allows the system to be described by a set of one-electron Schrödinger like
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equations which are known as the Kohn-Sham equations:(
− h̄2

2m
∇2
i + VKS(r)

)
Ψi(r) = EiΨi(r), (2.14)

where the Kohn Sham Potential VKS(r) is given by,

VKS(r) = Vext(r) +

∫
n(r′)

|r − r′|
d3(r′) + Vxc[n(r)], (2.15)

where ψi are the KS pseudo orbitals describing the electrons and give the density,

n(r) =
N∑
i=1

|ψi(r)|2. (2.16)

The first two terms in equation 2.15 are simple, and the 3rd term is the exchange-

correlation potential which contains the many-body interactions of the system

beyond mean-field Hartree interactions. The exchange correlation potential is

the functional derivative of,

Vxc(r) =
δExc[n]

δn(r)
. (2.17)

The ground state energy in functional form is,

E[n(r)] = Te[n(r)] + Vee[n(r)] + Vne[n(r)], (2.18)

and for the KS system,

E = TKS + EH + EXC + Ene, (2.19)

and inspecting these terms we have the non-exact KS electron kinetic energy,

Te[n(r)] = TKS = −
N∑
i=1

h̄2

2me

∫
ψ∗i (r)∇2

iψi(r)d3r. (2.20)

The TKS is not exact as it is for independent particles and lacks the exact

corrections due to many-body effects. Orbital free DFT [71] is an alternative

method with a similar approach but does not use orbitals and the exchange-

correlation (XC) functional focuses on correcting the kinetic energy error in the

Hamiltonian rather than the error in Vee(r). Finally the exchange-correlation
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potential Vxc has no known functional form but approximations exist, some based

on exact constraints. We will start with the simplest which is the local density

approximation (LDA) [70] in the next section.

Once again the KS equations can be solved in an iterative manner through the

procedure shown in figure 2.3.

V (r) n0(r) n0(r) VKS(r)

H ψ0(r) {ψi(r)}KS HKS

HKKSHK

Figure 2.2 Diagrammatic picture of solving the KS equations using KS orbitals
and how this relates to the HK theorem for the many body problem.
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The self-consistent calculation work flow to find the converged ground state can

be summarized in an illustration:

Guess n(r)RN

Calculate effective
potential “VKS”

Solve KS equations

Calculate
n(r) =

∑N
i=1 |ψi(r)|2Update n(r)

Self
consistent?

Output ground
state quantities

no

yes

Figure 2.3 Flow chart for solving the KS equations self-consistently while
ignoring spin.
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2.1.5 The Variational Principle

The KS equations and any trial wave-function Ψi which is an eigenfunction of

the Schrödinger equation with corresponding eigenvalues Ei, iteratively converge

due to the variational principle [72]: any arbitrary trial wave-function Ψtrial has

a total energy always greater or equal to the ground state energy E0. In KS DFT

this minimisation is being achieved by optimising the electron density which acts

as optimising the trial wave-function. From this, we can arrive at an upper-bound

to the ground-state energy by,

Etrial[Ψtrial] = 〈ΨTrial|Ĥ|ΨTrial〉 ≥ E0, (2.21)

after which a steepest descent search for Ψ0 can be performed. The number of

iterated trial wave-functions can be great, and methods starting point such as

from the atomic orbitals were not found to significantly speed up this process.

2.1.6 Exchange-Correlation Functionals

The success of DFT is due to the fact that there is a map for n(r) and E between

a system of interacting electrons experiencing a nuclear potential, and non-

interacting electrons experiencing a nuclear potential plus an additional potential

to correct for the interactions. The unknown part of KS potential was named

Vxc(r) mimicking the effects of exchange interaction and correlations between

the electrons. The exact function for Vxc(r) is not known and so this has to be

approximated. The homogeneous electron gas (HEG), also known as Jellium,

can be a simple tool to model systems, shown by Drude and Summerfeld [73],

offering quantitatively correct conductivity results for many metals. This provides

motivation to use the exchange correlation energy for the HEG as a starting point

in approximating Exc as,

Exc[n] =

∫
n(r)εHEGxc (n(r))dr, (2.22)

where εxc is the exchange-correlation energy density for the HEG. The anti-

symmetry in the electronic wave-function leads to an exchange interaction energy

for swapping the coordinates of two fermions Ψ(r1, r2) = –Ψ(r2, r1). In 1930

Dirac [74] showed that exchange effects in a homogeneous system can be written
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as,

εx = −3

4

(
3

π

)1/3

n1/3 ≈ −0.458

rs
, (2.23)

where rs, the Wigner-Seitz radius (which for free electrons is rs = (3/(4πn))
1
3 ),

is based on the average inter-electron distance for a given density, confirmed

by Slater for the HEG [52]. The remaining electron correlation relies on

parameterization from accurate calculations for the wave-function of the HEG

using Quantum Monte Carlo methods. Ceperley and Alder [75] obtained results

and Perdew and Zunger parameterized [76] these as,

εc =

a+ b · ln(r) + c · rs ln(rs)d · rs, if rs < 1.

γ
1+β1

√
rsβ2rs

, if rs ≥ 1.
(2.24)

The combination of these to form εHEGxc = εx + εc is known as the Local Density

Approximation (LDA) [51]. This is local as the approximation depends only on

the spatial coordinate r for the electron density. When including electron spin this

is written as the Local Spin Density Approximation (LDSA). The LDA performed

better expected for example LDA calculations for the equilibrium lattice constant

for Silicon [77] compared well with experimental results. Systems which deviate

from the HEG often have the greatest error with DFT and thus the LDA performs

well for metals. Other functionals exist and provide a range of choice depending

on the system and what is trying to be calculated. The LDA remains subject

to the fundamental error in DFT for optical properties such as underestimated

band gaps due to the self-interaction [78] of the electron density.

The next improvement that was made to this was to also take into account the

gradients of n(r) in the General Gradient approximations (GGA’s). These take

the general form,

EGGA
xc [n] =

∫
εxc(n(r), |∇n(r)|)drṅ(r). (2.25)

Many GGA’s exist, with the most popular formulation by Perdew-Burke-

Ernzerhof [79] known as PBE. A similar GGA known as PBE-Sol was created to

perform better in solids [80], highlighting that there is a choice of XC functional

depending on the system calculated. The PBE functional gained its popularity

for achieving generally good results in most situations [81] on average but by

no means all. For molecules and small systems, DFT methods can be directly

compared with highly accurate wave-function based methods giving an indication
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of error [82] however extrapolating this into periodic systems where wave-function

methods are not readily tractable and remains a challenge. Quantum Monte

Carlo approaches come with their own approximations [83] but provide a useful

comparison to DFT based results. Exploring a system as a function of XC

functional appears important to check for consistency, with the ambition that

it is possible to physically realize why certain functionals fail to produce accurate

results.

Hybrid Functionals

To further improve upon local functionals a step was taken into non-local XC

functionals to correct for charge transfer and the self-interaction error, where

explanations for the rationale are found in [84]. These are commonly used to

calculate band gaps more accurately as they can correct for the self-interaction

error. Hybrid functionals use a mixture of density-based XC functional and HF

referred to as exact-exchange. In this work, we make use of the HSE functional

which is a range separated hybrid functional [85]. This is similar to the hybrid

proposed by Perdew, Ernzerhof, and Burke known as PBE0 [86] which takes the

form,

EPBE0
xc = EPBE

c + α
(
EHF
x − EPBE

x

)
, (2.26)

where α = 0.25 for PBE0 though this value can be varied, and different values

are favored depending on the type of the system.

The range separated HSE has a similar form but only uses exact-exchange from

HF for the short-range (SR) part and uses density based exchange for the long-

range (LR) part. HSE takes the form,

EHSE
xc = EPBE

c +

[
1

4
EHF
x (µ) +

3

4
EPBE
x (µ)

]
+
[
EPBE
x (µ)

]
LR
, (2.27)

where µ is used to control the range-separation (usually valued 0.2, as in the

HSE06 functional), and the fractions of mixing can once again be varied. When

using hybrids care must be taken if one wants to remain ab-initio rather than

choosing parameters that fit to the experiment.
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Van Der Waals Interactions

A problem of various common VXC expressions is that they do not contain the

physics of instantaneous excited dipole-dipole interactions, also known as Van

Der Waals forces. This is important for systems where Dispersion effects are

strong, mainly in:

1. Layered Systems

2. Molecular systems with hydrogen bonding

3. Van der Waals systems such as Noble Gases

This leads to another set of corrections to capture the correct physics for a system.

Van Der Waals corrections have led to set methods which generally either add

additional functions in the electronic Hamiltonian (e.g. the empirical Grimme

method [87]), or incorporate the correction into the XC functional itself (e.g.

VdW DF2 [88]). There are many corrective schemes in practice, in this work the

Tkatchenko-Scheffler (TS) [89], Grimme, and Many-Body Dispersion [90] schemes

are used. The TS method adopts a parameter free summation of interatomic

C6 coefficients using the systems electron density and accurate reference data

calculations for the free atoms. The Grimme dispersion scheme similarly uses

damped atom-pairwise dispersion C6 corrections parameterised on a large set of

reference molecules. In the MBD scheme long-range interactions are separated

and calculated by mapping the complex all-electron problem onto a set of atomic

response functions which are turned on adiabatically.

Jacob’s Ladder

The hierarchy of electronic structure methods is often ranked by Jacob’s ladder

[91], based upon the level of theory and computational cost. The general rule is

that high-level theories are more computationally expensive and so climbing the

ladder may achieve more accuracy for a given property but at a price summarised

in table 2.1. Pointed out in [92] modern XC functionals may achieve greater

accuracy in total energy but may suffer in electron density.
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Table 2.1 Summary of Jacob’s Ladder starting from the bottom entry.

Method Dependence Form Example

Fully Non-Local Unoccupied Orbitals unocc. ψi GW[93], RPA [94]
Hybrid GGA Occupied orbitals occ. ψi PBE0
Meta-GGA Kinetic Energy Density ∇2r TPSS [95]

GGA Gradient of density ∇r PBE
LDA Local density r LDA

2.1.7 Periodic systems and k-points

So far we have not discussed the type of system that we are trying to solve. For

small systems of atoms and molecules calculations appear simple. For periodic

systems such as a crystal of Avogadro’s number (NA) atoms and likely even

more electrons solving the Schrödinger equation appears intractable. The use

of periodic boundary conditions can be employed to reduce the system size for

example in a liquid, and exploiting the periodicity of a crystal helps reduced this

even further depending on the crystal symmetry. For example, a crystal of NA

atoms of BCC lithium could be reduced to a 2 atom periodic conventional unit

cell (or a 1 atom primitive unit cell) with periodic boundary conditions. Note

some crystals have unit cells with over 100 atoms still [96]. This approximation

is valid assuming that all periodic images should behave like the unit cell for

the material property being investigated. Supercells can be used for when these

symmetries are broken, for example when calculating phonons or lattice defect

energies.

To solve the Schrödinger equation for a periodic system Bloch’s theorem can be

applied. For a periodic system of nuclei, there is also a potential for that system

with the same periodicity,

V (r +L) = V (r), (2.28)

where L is a lattice vector. This will also extend to the density,

n(r +L) = n(r). (2.29)

However the wave-function, which is complex, will have periodic magnitude as
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this is controlled by,

n(r) = |ψ(r)|2, (2.30)

but the phase is not necessarily taking the same periodicity of the unit cell. This

means the wave-function is quasi-periodic with the lattice,

ψk(r) = eik·ruk(r), (2.31)

where uk(r + L) = uk(r) and eik·r is an arbitrary phase factor. As such there

are solutions for any k and so the general solution for the crystal is an integral

over the uniquely defined primitive cell in reciprocal space, the Brillouin zone.

As this is done numerically, the Brillouin zone is broken down into a discrete grid

of k-points used for Brillouin zone sampling. The number of k-points needed to

converge the approximation to this integral is necessary for accurate calculations.

2.1.8 Plane-wave basis

Approaches to DFT can be categorized by their choice of basis set with which

to represent the KS wavefunctions. Both CASTEP [28] and VASP [97] are

plane-wave codes and as such use plane-waves as their wave-function basis set.

Other codes use schemes such as a basis set of localized atomic orbitals [98], or

Gaussians, or a mixture. As ψ(r) is periodic a sensible choice can be to express

it as a Fourier series,

ψ(r) =
∑
G

cGe
iG·r, (2.32)

where cG are complex Fourier coefficients, and eiG·r is a plane-wave. The

summation is performed over all reciprocal lattice vectors, typically truncated

at some value. As this is a convergent series (|G| → ∞ : |cG| → 0) the series

can be truncated at some cut off, for example the energy of the highest frequency

plane-wave. Now ψ(r) is a vector of plane-wave coefficients cG reducing,{
− h̄2

2m
∇2 + V [n(r)]

}
ψi(r) = Eiψi, (2.33)

to a matrix diagonalisation. A trial wave-function is guessed ψtrial with cG which

is used to compute,

E = ψ†Ĥψ, (2.34)
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followed by self-consistently optimizing the cG coefficients to find the ground-

state ψ0. The basis set can be chosen based on both accuracy and computational

efficiency.

2.1.9 Pseudopotentials

A further approximation to improving computational efficiency is to replace the

core electrons with an effective potential that the valence electrons are interacting

with. So much has this succeeded that it was described as the “most powerful ab

initio quantum mechanical modeling method presently available“ when reviewed

in [99] 25 years ago and still remains relevant today. This approximation, the

frozen core approximation, is valid when the core electrons play no part in the

chemistry, which is not always true [100] at high density due to core overlap as

atoms near one another. Freezing the core electrons means fewer one-electron

wave-functions (not for hydrogen) to solve for and so can greatly reduce the

computational cost for calculations. For plane-wave codes especially, the core

electrons are highly localized with strong wave-function fluctuations and contain

nodes, and thus require undesirably high energy cut-offs to converge.

Pseudopotentials smooth the wave-function in the core radius rc and smoothly

equal that of the original wave-function beyond rc. This removes the core states

and the valence electrons are described by un-physical wavefunctions with fewer

nodes. The choice of rc or alternatively the number of valence electrons to

consider changes with density (g/cm3) as core electrons start becoming involved

in interactions as orbitals get closer and can begin to overlap.

Norm-conserving

The generation of a pseudopotential should be to maintain as many properties of

the all-electron calculation, by perfectly replacing the core electrons in the eyes of

the valence electrons. The criterion for norm-conservation is to preserve the total

charge of the all-electron wave-function within the pseudo-wave-function [101]

so that no core augmentation charges are required. The potential the valence

electrons feel changes if the core charge distribution is replaced by a smoother

distribution for r < rc.
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Figure 2.4 Example description of a pseudopotential in red comparing the all
electron (AE) in blue (dashed) potential and wavefunction. The
wavefunctions correspond respectively to the potential, both of which
are equal for r > rc.

Ultrasoft

The norm-conservation criterion is relaxed in ultrasoft pseudopotentials [102] to

generate even smoother wave-functions with even lower cut off energies. The

pseudo wave-function is split into two parts 1. An ultrasoft wave-function that

breaks norm-conservation φUS(r) and 2. a core augmentation charge which is a

charge deficit for the core region to correct for this,

Qaug(r) = ψ∗AE(r)ψAE(r)− φ∗US(r)φUS(r). (2.35)

Projector Augmented Wave

An alternative method is to use projector augmented waves (PAW) [103] which

in principle creates an all electron wave-function pseudopotential. The PAW

potential reconstructs the original all-electron wave-function from pseudo wave-

functions. All electron partial waves are added to the wave-function, and so the
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corresponding pseudo partial waves have to be taken away,

ψAEPAW = ψPS + ψAEPAW − ψPScore. (2.36)

This achieves transforming the rapid oscillations in the wave-function near ionic

cores to smoothly varying wave-functions, similar to US pseudopotentials.

2.1.10 Wavefunction Based Methods

Going beyond Hartree-Fock much more accurate wave-function methods exist.

These are useful for comparing DFT results with accurate quantum-chemistry

results. Such calculations are restricted to what is computationally tractable as

these methods scale in cost more greatly than DFT. In this work, they are used

for modeling the interactions between molecular dimers and trimers.

Perturbation Theory

Møller–Plesset perturbation theory (MP) is a post-HF method popular in

quantum chemistry [54] and the simplest wavefunction based approximation

to the correlation energy. The main idea is to improve upon the HF method

by including electron correlation via Rayleigh-Schrödinger perturbation theory,

where MP2 refers to a second-order perturbation. By assuming that the Hartree-

Fock wavefunction is close to the true ground state wavefunction the exact

Hamiltonian (operator) can be written as,

H = H0 + λV, (2.37)

where V is the external perturbation (the difference between Vee and Vx), λ is

a dimensionless parameter that controls the magnitude of the perturbation, and

H0 is the Hartree-Fock Hamiltonian.
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The HF energy can be expanded as ,

E = E(0) + λE(1) + λ2E(2) + · · · , (2.38)

and wavefunction as,

Ψ = Ψ0 + λΨ1 + λ2Ψ2 + · · · . (2.39)

The expressions for the perturbed energy and wavefunction can be substituted

into the Schrödinger equation and powers of λ can be collected leading to

partitioned expressions for the energy,

E(0) = 〈Ψ0|H0|Ψ0〉, (2.40)

E(1) = 〈Ψ0|V |Ψ0〉, (2.41)

E(2) = 〈Ψ0|V |Ψ(1)〉, (2.42)

and so forth, where |Ψ0〉 is the Slater-determinant. From this the HF energy is

EHF = 〈Ψ0|H0 +V |Ψ0〉 the sum of the zeroth and first order perturbations E0 =

E(0) + E(1) including only exchange. Further terms include electron correlation

and so the correlation energy can be approximated in MP theory as,

Ecorrelation = E(2) + E(3) + E(4) + · · · , (2.43)

with E(2) being the MP2 energy and so forth. As perturbation theory is not

variational this does not given an upper bound for the true ground state energy.

The success of the MP methods is explored in the paper “Why does MP2 work?”

[104] and explained through advantageous error cancellation.

Computationally MPn theory scales as O(Nn+3) and requires the calculation

of doubly excited states from the HF ground state. MP2 generally provides

high- quality results close to that of more exact methods [105], and increasing

n does not always improve results where instead they may display oscillatory or

slow convergence around the true ground state [106]. As well as the additional

computational cost of n > 2 MPn calculations this is why MP2 is a popular

choice to achieve results with similar accuracy to more exact levels of theory

such as coupled cluster theory. MP and HF methods use a single determinant
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wavefunction for the unperturbed system and newer methods are being developed

with multi-determinant wave-functions.

Coupled Cluster Theory

Coupled cluster (CC) theory again starts from the HF method and constructs a

many-electron wavefunction by use of an exponential cluster operator to include

electron correlation, and was originally used for studying nuclear physics [107].

CC methods build from a single reference Slater determinant by incorporating

a linear combination of excited state determinants. At some point the cluster

expansion can be truncated such as singles (CCS), doubles (CCSD), and so forth.

The CC wavefunction is written with an exponential ansatz:

|Ψ〉 = eT̂ |ψ0〉, (2.44)

where |ψ0〉 is the reference wavefunction, which does not have to be but generally

is a HF Slater determinant, and T̂ is the cluster operator. The operation of T̂ on

the reference wavefunction produces a linear combination of excited determinants

and takes the form,

T̂ = T̂1 + T̂2 + · · · . (2.45)

Here T̂1 is the operator for single excitations, expressed in second quantization

as,

T̂1 =
∑
i

∑
a

tiaâ
†
aâi, (2.46)

where â† and âi denote the creation and annihilation operators respectively, and

i, j are the occupied (particle) and a, b the unoccupied (hole) orbitals.

The CC wavefunction takes the form,

|ΨCC〉 = exp(T̂1 + T̂2 + · · · )|ψ0〉, (2.47)

|ΨCC〉 =

[∏
a,i

(1 + tiaa
†
aai)

][∏
ab,ij

(1 + tijaba
†
ba
†
aajai)

]
· · · |ψ0〉. (2.48)

The configuration interaction wavefunction (closely related in form to CC) uses

a linear combination of excitation operators ansatz,

|ΨCI〉 = (T̂1 + T̂2 + · · · )|ψ0〉, (2.49)
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and generally requires a longer expansion to achieve convergence. The exponential

form of the CC wavefunction expansion appears convergence faster with more

dominant leading terms in the expansion.

In practice CC methods are usually truncated after triple excitations at T̂3 termed

CCSDT. For large molecules CCSD(T) is used in practice and known as the

“gold standard” in quantum chemistry where the (T) indicates the triple term

is calculated non-iteratively using many-body perturbation theory generally for

computational reasons. At times more accurate methods such as full configuration

interaction (FCI, which is exact) and quantum Monte Carlo methods exist

but generally comes with greater computational cost. Interestingly, using only

single and double excitations (CCSD) is often outperformed by the cheaper

MP2 method. However, with perturbative triple corrections (CCSD(T)) the

performance is much better and is regarded as the gold standard in computational

chemistry.
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2.2 Crystal Structure Searching

How does matter condense? For a system of atoms at a given thermodynamic

state such as a fixed temperature and pressure, there exists a structure which is

the most stable, the ground state structure with the lowest free energy. All atoms

making up a system exist on a potential energy surface (PES) in structure space

where the stable and metastable structures form local minima. The number

of minima scales exponentially with the number of atoms [108], and further

complexity arises combinatorically from including different atom types. Searching

for the global minima requires exploration of the minima that lie on this PES

and so the search for stable crystal structures is a global optimization problem.

Scanning every one of these minima exhaustively is computationally unfeasible

for large and complex systems, though some simple systems can be well mapped

out. The generation of candidate structures to evaluate provides a general

problem by itself. Candidates are generally generated with symmetric structures

though some codes go through each space group individually including structures

without symmetry (P1). It is tempting to bias searching the most likely space

groups found in the Inorganic Crystal Structure Database (ICSD) [109], a data-

driven approach, though avoiding parts of structure space could end up missing

the correct structure. Methods which generate structures based on the current

search history look for energetically favorable structural motifs and attempt to

blend these together or perturb structures creating offspring which should also

be favorable. The details of this procedure for the USPEX code are explored

in [108]. Extensive searching with simple potentials such as Leonard-Jones has

been performed to study the nature of structure space [110, 111]. To reproduce

nature both accurate and efficient methods of evaluating a system’s energy are

required to explore the potential energy surface. It has often been found that

methods with too much coarse-graining, such as classical models and those with

too many energy minima, which are fast and scale well with system size N do

not order the energy of different structures correctly. For systems where the

electronic structure is important to accurately enough rank the energetics of

different structures, DFT is often chosen. Other methods for evaluating energy

have had some success especially in alloy systems with simple interactions such

as the Cluster Expansion [112] and various Machine Learning [113] methods that

generally rely on a DFT database to start from.

Historically the problem of how matter condenses was unsolvable from theory
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but in the last 15 years or so this has changed. This has often been related to

the statement of John Maddox in 1988 “One of the continuing scandals in the

physical sciences is that it remains impossible to predict the structure of even

the simplest crystalline solids from a knowledge of their composition” [114]. A

volume of structures have since been successfully predicted, by calculation and

then confirmed by experiment, and visa versa [29, 30].

Data was taken from the ICSD [109] which stores inorganic crystal structures

reported in the literature to perform analysis on known crystal structures in

this section. The ICSD is increasing at a rate of roughly 6000 structures per

year and currently nearing 200,000 structures with 9,013 distinct structure types

to date. From this, we can learn about the structure space that scientists

have currently investigated and hope that this is similar to the structure space

of nature in general. The data was mined without filtering it is likely that

there duplicate structures, especially for popular materials. In figure 2.5 the

number of ICSD structures as a function of the number of composing elements is

shown. Increasing the number of elements combinatorially increases the number

of possible structures in a simple non-interacting picture, though nature may act

very differently from this. There exist around 1,800 different structures in the

ICSD with a single element which is around 15 per element. The increase for

binary and ternary structures is expected as there is a richer phase space that

can be explored as well as different compositional combinations. The drop off

for N = 4 can be seen that science has so far not studied systems (and solved

structures) for N > 3 nearly as much or equally that nature does not favor the

formation of crystal structures with N > 3 different elements. This is subject

to confirmation bias as the simpler systems with less unique elements are more

straightforward to study and solve in diffraction studies. This does provide scope

on what systems have been studied so far in both theory and experiment, and

structure searching reports will be heavily biased to low N.

In figure 2.6 the number of formula units for ICSD structures is shown. There

appears to be a pattern with magic numbers of formula units that structures tend

to prefer. This is worth noting when performing a crystal structure search. Most

notable are the dips to 5 and 7 formula units and the most frequent numbers

are multiples of 2 and 4. Smaller peaks appear at 12, 16, and 24 formula

units which likely relate to the larger peaks at 2, 3, 4, and 8. Arguments to

explain this pattern could be made based on balancing the dipole or quadrupole

moments for the species, however, this is presented only to show that there
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Figure 2.5 ICSD statistics taken for the number of crystal structures consisting
of a certain number of elements starting from unary, binary, ternary
and so forth.

are observable differences and patterns to the chemical space. Although data

is limited theoretical studies appear to follow the same trend as the experimental

reported structures.

In figure 2.7 the number of total structures reported above a given pressure for

experiments is plotted. However, this is sensitive to the quality of meta-data

the ICSD finds and so does not always list the reported pressure. There is

difficulty achieving pressures greater than 300 GPa with diamond anvil cell (DAC)

experiments, as well as the challenges of resolving structures at these high levels

of compression.

In figure 2.8 the number of crystal structures with the top 50 most common

space group is shown, as well as the number of structures with a total of N

symmetry operations. This data shows a clear bias for certain space groups, and

this is likely to have different statistics for different material types such as metals

compared with molecular crystals. Both the material type being searched and

the distribution of space groups can be taken into account to bias a search in a

way that one thinks appropriate for efficiency.

Crystal structures underpin all material properties, therefore, scientific fields

with interest in where atoms want to exist has a natural connection with
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Figure 2.6 ICSD statistics taken for the number of crystal structures with an
integer number of formula units and any chemical composition.
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Figure 2.7 ICSD statistics taken for the number of crystal structures stored
over a given pressure. Note that the value for zero pressure is
182,757 crystal structures and pressures are not always given in the
metadata.

structure prediction. Discovering new materials can be done more affordably and

rapidly with computation and work together with the still necessary experimental
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Figure 2.8 ICSD statistics showing the number of crystal structures for the 50
most common space groups labeled with their space group number.
Inset shows the number of structures with a certain integer number
of symmetry operations.

methods to confirm the reliability of these methods [29, 30]. Structure searching

complements experimental data greatly e.g. x-ray diffraction (XRD) patterns

may reveal a crystal unit cell but are unable to refine the atom positions.

Hydrogen atoms have poor x-ray scattering so for the example of water XRD

can be used to locate the oxygen atoms combined with searching to predict

the hydrogen locations. Searching with experimental constraints also massively

reduces the size of the PES that has to be explored, such as in [115].

Crystal structure prediction (CSP) finds solid periodic systems. Other systems

such as amorphous solids [116] and glasses [117] can be studied in similar ways

but with a greatly increased computational cost. Prediction of non-periodic

collections of atoms is referred to as cluster prediction, for example, gold nano-

particles and nano-clusters [118]. Meta-stable structures with energies close to

the ground state are also a useful output from searching which may become stable

with finite temperature or varying pressure or give hints towards transition states.

In essence, CSP is a stochastic method and one can never truly know when to

stop searching. When the low temperature experimental structure has been found

independently it is likely the ground-state structure but when searching in phase

space where there are no experiments the choice of when to stop is unknown
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even if a search appears to be converged. Finding the same repeated structure

independently with methods such as AIRSS provides confidence of a converged

result. Nonetheless, CSP is helped by generic features of the PES and by self-

learning throughout the search, as described in the following sections.

2.2.1 General Features of the PES

We define a basin of attraction as a list of points that when relaxed end up in the

same energy minima, of which the PES can be divided up. Here we describe some

general features of the PES which are considered in crystal structure prediction

[119].

Figure 2.9 (a) Example PES and (b) 2D PES showing how basins can be defined
[120] in a similar way to partitioning in the Bader scheme introduced
later in this chapter.

(1) The majority of the PES describes structures where atoms are extremely close

to one another and contain almost no minima.

(2) There is a relative smoothness of the PES at low energies as a consequence of

the Bell-Evans-Polanyi principle [121]. This means that if the barrier between a

basin and its neighbor is small then the neighboring basin will often have a low

energy minimum.

(3) Following from (2) low energy basins typically occur near other low energy

basins.

(4) A Gaussian probability distribution describes the energies of the local minima
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for the PES of large systems [122].

(5) It has been shown that structures with lower energy minima are likely to have

larger basin sites in parameter space [123].

(6) The probability distribution of the sizes of the basins appears to follow a

power law against the minimum energy of a basin. This implies some ordering

such that smaller basins fill the gaps between larger ones, see figure 2.9, similar

to the Apollonian packing [120].

(7) Low and high energy minima typically correspond to symmetrical structures,

consistent with the ubiquity of crystals. Pauling’s “rule of parsimony” states

“The number of essentially different kinds of constituents in a crystal tends to be

small” [124] so the structure space is likely simple.

(8) For crystals made from organic molecules, some space groups symmetries

occur much more often than others, compared with inorganic systems which have

different symmetry preferences.

(9) Features of the PES are a result of the chemistry of the system, such as which

atoms bond to which and typical bond lengths.

2.2.2 Random Methods

The simplest way to start searching for crystal structures is to assign random

unit cells with random atomic positions scaled to some density which can then

be relaxed to the nearest energy minima on the PES. This can be done repeatedly

and in parallel to scan the PES and identify the most stable structures. A method

adopting this strategy fully is Ab Initio Random Structure Searching (AIRSS)

developed by Pickard et. al [119]. Truly random structure generation would

not be useful as atoms could be generated with core overlap and so sensible or

practical structures should be considered.

Structures are arranged in random configurations and then optimized to the

local minimum they are located near. This method is likened to throwing darts

randomly onto the PES in the hope of finding the global minimum through

brute force, as implemented by the AIRSS method. AIRSS initially implemented

the CASTEP code [28] for ab initio DFT relaxations via geometry optimization

and now supports VASP, GULP, LAMMPS, and others. The PES increases

exponentially with system size, and so the computational cost will depend upon

the size of the unit cell assumed for a crystal structure. While computational
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resources are ever-increasing this limitation may well rule out the prediction of

structures with extremely large unit cells.

A recent triumph of AIRSS, relevant to this work, was the virtually accurate

prediction of ammonia monohydrate phase II with 16 formula units in the unit

cell, see figure 2.10 [125]. This search was aided by experimental information on

the unit cell parameters and likely space group and hence symmetry operations

helped provide sensible starting structures. Building blocks of water and ammonia

molecules were also used for the structures as opposed to atoms. Such constraints

bias the search, cut down the size of the PES and speed up the search drastically,

and demonstrate the synergy between experiment and theory. In this area of

research, it is becoming more and more common to combine Raman spectroscopy,

X-ray diffraction, CSP, and neutron diffraction techniques to determine the

atomic structure.

Figure 2.10 Crystal structure of Ammonia Monohydrate phase II, nitrogen
atoms are in blue and oxygen atoms are in red. [125]

A different sampling strategy prescribes to biasing the searches from the point of

cell generation, following the principles of an evolutionary algorithm [108]. There

exists a fitness criterion, minimising enthalpy, which drives structure generation

into certain areas of the PES based on for example bond lengths and certain

symmetries that favour low energy structures. New structures are then generated

in the hope of accelerating the search to find the global minimum through a self-

improving method. Structure searching methods adopting a genetic algorithm

(GA) include USPEX [126], and the open-source XtalOpt [127] which supports

various codes for performing geometry optimizations on structures.
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2.2.3 Particle Swarm Optimization

The CALYPSO code (Crystal Structure AnaLYsis by Particle Swarm Optimiza-

tion [128]) follows a similar self-improving methodology to a genetic algorithm.

The idea of particle swarm optimization (PSO) was first proposed by Kennedy

and Eberhart [129, 130] constructing a population-based optimization method.

This is a stochastic method inspired by the formation of a flock of birds, with

each bird as a particle as they search for favourable air streams. Each particle

is performing a multidimensional search for the best local minima to help it

fly through hyperspace or PES, which is affected by the surrounding local or

global minima. These individual particles can learn from past experiences of

the swarm and adjust parameters to quickly arrive at the nearest best minima.

Communication between these particles can lead to all particles finding the best

local minima or global minima quickly. CALYPSO can perform either a local

PSO or global PSO, each aimed to find either local minima or global minima.

The local PSO communicates with particles nearby on the PES only whereas the

global PSO communicates with all particles on the PES.

CALYPSO biases the search to create structures that fly through the PES

relatively quickly, see figure 2.11, allowing for a swift exploration but also

shuts off the search from certain areas which might hide the global minimum.

The search is mixed with introducing a number of random samples for each

generation of structure to enable exploration of the full PES. This works by

measuring the velocity of certain structure parameters, such as lattice parameter

or interatomic distances, across the PES shown in figure 2.11(d). With each

generation structures new are generated by the PSO based on the best previous

structures and the velocities of their structure parameters through the PES.

The number of random structures and size of the generations that populate the

structures are just some of the parameters in these searching methods [131]. In

section 3.4 of this report, we have used CALYPSO to predict all currently known

high pressure ground state structures for ammonia.

One can never really know when to stop searching as the process is not exhaustive.

When an experimental phase is found multiple times, typically with the lowest

enthalpy of the stable structures it is likely the search has converged. Searching

with different codes and methods which also find the same lowest energy structure

also add to the confidence of a converged result. When searching blindly a number

of choices have to be made, such as the number of formula units to include in the
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Figure 2.11 Particles traversing a PES on the left. On the right are minima
finding methods: (a) and (b) random sampling schemes, (c) a
genetic algorithm, and (d) the CALYPSO method [132].

unit cell. If the converged structure does not have all real phonons and imaginary

modes are found away from the Γ point, then this is a good indicator of a larger

unit cell. Other methods include simulated annealing [133], minima hopping [134],

basin hopping [135], and metadynamics [136]. Recommended review articles on

crystal structure prediction are [29, 30, 58, 126].
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2.3 Further Electronic Structure Methods

2.3.1 Hellman-Feynman Theorem

Forces can be calculated from the Kohn-Sham wavefunctions via the Hellman-

Feynman theorem [137]. This relates the first-order derivative of the total energy

to the expectation value of the Hamiltonian’s first-order derivative. When the

derivative is with respect to spatial dimensions this gives the force. In general,

the theorem gives,

d

dλ
Eλ =

〈
Ψλ

∣∣∣∣ ddλĤλ

∣∣∣∣Ψλ

〉
, (2.50)

where λ is a continuous variable. For a system of 3D geometry such as a crystal

the derivative of the energy with respect to R(x, y, z) gives the forces can be

computed by applying the Hellman Feynman Theorem to the calculated ground

state wavefunction,

Fi = − ∂E

∂Ri

= −
∫
d3rn(r)

∂Vext(r)

∂Ri

. (2.51)

For plane wave basis functions these are independent of the ionic positions and

use the same expansion coefficients used for the variational energy minimization,

ci, so the force on the atoms can be calculated by,

∂〈E〉
∂R

=
∂

∂R

〈∑
i

c∗iψ
∗
i (r) |H|

∑
j

cjψj(r)

〉
=
∑
i

c∗i cj

〈
ψ∗i (r)

∣∣∣∣∂H∂R
∣∣∣∣ψj(r)〉 .

(2.52)

2.3.2 The Stress Tensor

The stress tensor is related to the strain by the derivative of energy with respect

to strain εαβ given by,

σαβ =
1

Ω

∂E

∂εαβ
. (2.53)

where α and β are Cartesian indices and Ω = a · (b× c) is the volume.
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Studying systems under pressure we generally consider the stresses on each face

of the unit cell, positive pressure for compression and negative pressure for

expansion. Hydrostatic pressure occurs when σxx = σyy = σzz = −P which

we will use for systems in this work and is generally what experiments aim to

achieve in diamond anvil cells whereas shock experiments are likely to experience

uniaxial stress [138].

Pulay stress [139] is an error in the stress that occurs due to an incomplete basis

set or position-independent basis functions such as plane waves. Changes to unit

cell shape and volume can discontinuously change the number of plane waves and

fast Fourier transform (FFT) grid points. This means the basis set size varies

with cell dimensions and so comparing properties of different cells develops an

error without a fully converged basis set. Codes such as CASTEP implement a

Finite Basis Set Correction by calculating the total energy change due to different

basis set sizes and uses this to approximate corrections to the total energy and

stress for different unit cell shapes.

At finite temperature, such as for molecular dynamics simulations, the pressure

is calculated by including the ideal gas pressure,

Ptotal = PT=0K + PIG = −1

3

∑
α

σαα +
NkBT

V
. (2.54)

2.3.3 Electron Localization Function

The electron localization function (ELF) was introduced by Becke and Edgecombe

in the paper [55]. ELF has become a powerful tool in analyzing bonding situations

such as between metallic or covalent bonds and at high pressure it is useful for

identifying localized electron density in electride structures. Originally the ELF

was defined as the Taylor expansion of the spherically averaged pair probability

density of finding a same-spin electron to a reference electron, based on the HF

description of the electron gas. The leading order quadratic term (zeroth and

first terms vanish) is given by,

P (r, s) =
1

3

(
σ∑
i

|∇Ψi(r)|2 − 1

4

|∇ρ(r)|2

ρ(r)

)
s2 + · · · , (2.55)
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giving D(r) as,

D(r) =
σ∑
i

|∇Ψi(r)|2 − 1

4

|∇ρ(r)|2

ρ(r)
. (2.56)

When the probability density is small, D(r) is small and the electron is more

localized. For the HEG there is a corresponding factor DHEG(r) = 3
5
(6π2)

2
3ρ(r)

5
3

and from this Becke and Edgecombe defined the ELF as,

η(r) =
1

[1 + χ2
BE(r)]

, (2.57)

where,

χBE(r) =
D(r)

DHEG(r)
. (2.58)

ELF is a measure of localization relative to the HEG. The ratio was chosen such

that high ELF values mean the electron positions are more localized (relatively)

and when η = 1/2 the Pauli repulsion is the same as in the HEG for the given

density.

As this was developed for the HF picture a further formulation was developed

by Savin et al. [140] based on the Pauli kinetic energy density. Electrons are

spatially redistributed by the Pauli principle leading to the Pauli kinetic energy

tP (r) given by,

tP (r) = t(r)− 1

8

|∇ρ(r)|2

ρ(r)
, (2.59)

which again can be compared to the value for the HEG at the same density:

tHEG(r) = cFρ(r)
5
3 , (2.60)

where cF is the Fermi constant

cF =
3

10
(3π2)

2
3 . (2.61)

For a closed shell system (no unpaired electrons) the DFT-ELF is given by,

ELF =
1

1 + χ2
S(r)

, (2.62)

where,

χS(r) =
tp(r)

tHEG(r)
. (2.63)

ELF can be used in topological analysis methods such as identifying bonding
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phenomenon via finding critical points (such as the code CRITIC [141]) and

provide intriguing visuals of molecular-orbitals or π-bonds. The DFT-ELF is

interpreted as the influence of the Pauli principle on electron kinetic energy

relative to the HEG. CALYPSO has recently developed a method for using the

PSO to search for structures with high amounts of electron localization often

labeled as electrides using the ELF as a fitness function [142].

2.3.4 Mulliken Charges

Electronic structure methods with a plane wave basis set lose the information

of localized electron density in a system. The projection of electron density on

to a Linear Combination of Atomic Orbitals (LCAO) basis set can shed light on

the missing information such as atomic charge. Within CASTEP this projection

to an LCAO basis set is carried out as described in [143], and the population

analysis of these states is then calculated with the Mulliken formalism [144]. The

plane wave calculation has eigenstates |ψα(k)〉 along a given wave vector (k) that

are projected onto a likely incomplete and non-orthonormal basis set of Bloch

functions formed from a LCAO basis set |ψµ(k)〉. The overlap matrix of the new

localised basis set is given by,

Sµν(k) = 〈ψµ(k)|ψν(k)〉, (2.64)

where the quality of this projection can be assessed by a spilling parameter which

is required to be low for meaningful results. The atomic charge Q(A), and other

populations, require the density matrix Pµν(k) and the overlap matrix Sµν(k),

and so Q(A) can be calculated from,

Q(A) =
∑
k

wk

∑
µ

∑
ν

Pµν(k)Sµν(k). (2.65)

The absolute values for atomic charge are known to have little historical meaning

as they depend greatly on the initial atomic basis set. Though their relative

values, for example when comparing two different phases or as a function of

density, with a consistent basis set offer a useful comparison. Mulliken charges

provide a cheap qualitative analysis of what the charges are doing.
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2.3.5 Bader Analysis

For a condensed system, it can be difficult to define which regions of space

belong to which atom, or even no atom at all. The Bader method uses the

concept of partitioning continuous charge density to identify where one atom

begins and another ends. From Richard Bader’s “Quantum Theory of Atoms in

molecules” [56] a method of dividing molecules into atoms was founded. Normally

in molecules, the region in space between two atoms reach a minimum in charge

density which naturally separates atoms apart. Similarly, the atom centers have

a maximum in charge density. Bader uses zero flux surfaces, a 2D surface with a

minima in charge density i.e. ∇ρ(r) · n̂ = 0, to divide atoms. From this approach,

much of the work of Bader analysis has been finding efficient ways to find these

critical points, such as searching in a 3D grid, and partition atoms within the

electron density [145], following gradients of charge density for a point in space

to find maximums from atom centers which define basins of attraction for the

charge density. This has great benefits as it only requires the electron density.

The density within the Bader volume for the atom contains a charge that the

atom has. The Bader scheme offers meaningful values for atomic charge, unlike

more qualitative Mulliken charges.

2.3.6 Lattice Dynamics: Calculating Phonons

Lattice dynamics in harmonic form takes a Taylor expansion of the energy about

the equilibrium atom co-ordinates. For a crystal of N atoms in equilibrium

geometry, with co-ordinates RN,α (α is x, y or z), the displacement of the N th

atom from its equilibrium position is measured by uN,α = xN,α − RN,α where

xN,α is the displaced coordinate. The total energy can be written as [146],

E = E0 +
∑
N,α

∂E

∂uN,α
uN,α +

1

2

∑
N,α,N ′,α′

uN,α
∂2E

∂uN,α∂uN ′,α′
uN ′,α′ + · · · , (2.66)

where the second order term contains the matrix of force constants ΦN,N ′

α,α′ ,

ΦN,N ′

α,α′ =
∂2E

∂uN,α∂uN ′,α′
. (2.67)

For equilibrium geometry the forces are all zero and so FN,α = ∂E
∂uN,α

= 0 and the
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first-order term vanishes. In the Harmonic approximation [147] third order and

higher terms are neglected. This can lead to significant errors when computing

systems which are significantly anharmonic i.e. with asymmetric potentials.

Phonon-phonon interactions are also ignored. Assuming the wavefunction is

periodic under a certain Bravais lattice as in Born-von Karman periodic boundary

conditions a monochromatic plane-wave displacement field can be defined as,

uκ,α = εmN,αq exp(iq ·RN,α − ω(q)mt), (2.68)

where q is the phonon wave vector and εmN,αq is the polarization vector due to

these perturbations. From this we arrive at an eigenvalue equation,

DN,N ′

α,α′ (q)εmN,αq = ω2
m,qεmN,αq, (2.69)

where DN,N ′

α,α′ (q) is the dynamical matrix, which is the mass-reduced Fourier

transform of the force constant matrix,

DN,N ′

α,α′ (q) =

(
1

MNMN ′

) 1
2

CN,N ′

α,α′ (q) =

(
1

MNMN ′

) 1
2 ∑

a

ΦN,N ′

α,α′ exp(−iq · ra).

(2.70)

The eigenvalue equation setup in 2.68 can be solved numerically, the square roots

of the eigenvalues are the frequencies of each mode, and the eigenvectors express

the atomic displacements for the mode. In order to do this the force constant

matrix ΦN,N ′

α,α′ has be calculated which is the second derivative of the total energy

with respect to two atomic displacements N,N ′. First order derivatives of the

total energy, i.e. forces, are computed via the Hellman-Feynman theorem eased by

vanishing terms in the final expression as previously discussed. Second derivatives

are more arduous:

E = 〈Ĥ〉

F = −dE
dλ

=

〈
ψ

∣∣∣∣dVdλ
∣∣∣∣ψ〉

d2E

dλ2
=

〈
dψ

dλ

∣∣∣∣dVdλ
∣∣∣∣ψ〉+

〈
ψ

∣∣∣∣dVdλ
∣∣∣∣ dψdλ

〉
−
〈
ψ

∣∣∣∣d2V

dλ2

∣∣∣∣ψ〉 .
(2.71)

Here the derivatives of the wavefunction do not vanish as the first order derivatives

of the total energy did. So in order to perform ab initio lattice dynamics

the electronic response to the displacement of an atom N must be computed.

Typically this is done via a method of finite-displacement or via perturbation
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theory. In the former calculations are performed with small and different

displacements of atom N in order to numerically evaluate the derivative. In the

latter perturbation theory calculations the response wavefunction dψ
dλ

. Methods

for calculating anharmonic phonons exist at great computational expense by

calculating higher order terms in the truncated Taylor expansion.

So far the energy has been calculated for an arbitrary wave-vector q but this can

be done on a grid of q-points over the Brillouin zone or along a special path of

high symmetry directions. The former produces phonon or vibrational density of

states F (ω) plots by plotting, for example, Gaussian functions over the frequency

eigenvalues, and the latter can be used to produce phonon dispersions.

2.3.7 Optical Spectroscopy

Spectroscopic techniques are commonly used in high pressure diamond anvil cell

experiments as the diamonds are transparent and provide direct access to the

sample. Infrared and Raman spectroscopy methods typically probe vibrational

modes at the Γ point of the Brillouin zone. The frequencies of phonon modes are

given by the square roots of the eigenvalues when solving the dynamical matrix

as previously discussed. Assuming a completely harmonic crystal where DFT

gives the correct picture then this frequency should be an almost exact match to

an experiment probing this. Whether or not the mode is Raman or IR active is

defined by the spectroscopic selection rules rooted in their symmetry and group

theory.

Infrared mode activity is only observed for transitions or vibrational modes

which cause a change in dipole moment. The OH stretch in water is an example

and the C-O bond stretch which causes a large change in dipole moment.

Raman mode activity is observed for transitions which involve a change in

polarisability. The H2 vibron is an example of a Raman active mode that is often

tracked during diamond anvil cell experiments as a measure of compression and

should disappear coinciding with a molecular to atomic transition in hydrogen

[148].

The two techniques are complementary and tend to probe different vibrational

modes. For centrosymmetric molecules, IR active modes are Raman inactive and

vice versa. The Raman shift observed depends on the energy spacing between the
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system’s modes. For gas phase (vibrons) and solid crystalline systems (phonons),

the selection rules are the same, though phonons tend to have lower frequencies

due to interactions (if attractive) with their neighbors. From a computational

perspective, we want to predict IR and Raman activity to help experiments

observe phase transitions by calculating the energy derivatives at wave-vector

q = (0, 0, 0) (zone-centered frequencies). The activity of modes (IR or Raman)

can be determined by the symmetry of the crystals, and codes such as CASTEP

can perform this analysis. The matching of theoretical spectra to observed

experimental spectra implies consistency between the real chemistry and material

properties and corresponding calculations .

2.3.8 Free Energy

The Gibbs free energy as a function of pressure (P) and temperature (T) for a

solid is given by,

G(P, T ) = E + PV + EZPE +

∫
h̄ω

exp( h̄ω
kBT
− 1)

F (ω) dω, (2.72)

where EZPE is the zero point energy given by,

EZPE =
1

2

∫
F (ω)h̄ω dω, (2.73)

and F (ω) is the phonon density of states. From this, the free energies of different

crystal phases can be compared at the same P and T. Here this was done within

the harmonic approximation. The harmonic and quasi-harmonic approximation

can be used to include the vibrational (thermal+ZPE) contributions to the free

energy. Meaningful free energies require no imaginary modes, whereby there are

no negative eigenvalues which indicate a soft mode in a q along the Brillouin

zone. These can also appear due to a lack of q-point sampling but are a physical

problem arising for systems with an energy gradient in a certain direction. These

systems are not dynamically stable and typically want to break symmetry and

increase the size of the unit cell. Later in this work, we see examples of new

phases that were arrived at by following these soft modes into a new symmetry.
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2.4 Molecular Dynamics

2.4.1 Newtonian Dynamics

To evolve an atomic system at finite temperature through time for non-relativistic

velocity scales, Newtonian dynamics can be employed and here the ions are

treated with the BOA. This can be used for example to simulate the dynamical

properties of solid phases and investigate their melting temperature [149]. An

MD simulation requires forces and corresponding particle velocities to evolve the

particles after discretized time-steps ∆t. For ab-initio MD a method such as DFT

can be used to calculate the forces on the atoms at each time-step by relaxing the

electronic structure to the ground-state with fixed nuclei and then applying the

Hellman-Feynman Theorem previously discussed. Car-Parrinello MD (CPMD)

[59] is an alternative method, popular when speed was more necessary, that does

not self-consistently relax the electronic structure to the ground-state.

The choice of ∆t should reflect the physics the simulation wants to capture and is

generally a fraction less than 1/10 of the smallest period for a solid. This can be

the characteristic vibrational frequency in the liquid as well, assuming no change

in chemistry, but at very high temperatures the dynamics require even smaller

time steps to avoid atoms getting too close between steps.

For a long enough simulation, the system should reach Ergodic conditions and

be in equilibrium. The Ergodic Hypothesis states that over long periods of time

the system will reach thermodynamic equilibrium. It is thought that after a long

enough period of time the system forgets its initial state, and probing this system

should give the same as ensemble-averaged results.

Here we use the Canonical ensemble, NVT, (fixing the number of particles, volume

and temperature) under the Born-Oppenheimer approximation, conserves this

pseudo Hamiltonian:

Ĥ =
〈

Ψ
∣∣∣Ĥe

∣∣∣Ψ〉+
1

2

N∑
i=1

N∑
j=1

ZiZj
|Ri −Rj|

+
N∑
i=1

P 2
i

2Mi

+
M∑
i=1

p2
ξi

2Qi

+NfkBTξ1+kBT
M∑
i=2

ξi,

(2.74)

with a Nose-Hoover [150] chain of M thermostats with Nf ionic degrees of freedom

to act as a heat bath. Qi are the thermostat fictitious masses, ξi are the degrees

of freedom for the thermostat, Ĥe is the electron Hamiltonian. Newtonian MD
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treats the nuclei classically, which in some cases is not appropriate such as for

light nuclei, and certain methods such as path-integral MD have been developed

to overcome this [151]. A fundamental drawback from non-quantum corrected

molecular dynamics is that zero point motion is not included. Coloured noise

addresses this drawback by using a quantum thermal bath [152].

The temperature is kept on average constant by the thermostat which can be

calculated by equipartition. In reality, the simulation will oscillate around the

specified temperature. For the ith time-step the temperature is,

Ti =
1

3NkB

N∑
j=1

Mjv
2
j , (2.75)

where N is the number of nuclei and j is the index of the nuclei. As the

temperature is increased and constrained by a fixed volume the thermal pressure

should increase so long as the thermal expansion of the system is positive, as for

an ideal gas. This means heating a given fixed cell will follow isochores rather

than isobars offered by NPT simulations. The thermal pressure is a combination

of the ideal gas pressure and the ab initio stress tensor discussed previously and

was sampled every 10 time-steps in simulations.

2.4.2 Radial Distribution Function

The Radial Distribution Function (RDF) is a pair correlation function describing

the radial packing of a system. It gives the probability of finding a particle at

a distance r from another particle. It equal to the Fourier transform structure

factor, s(q), and so is directly measurable by diffraction experiment for liquids

and solids.

Figure 2.12 Example of the measurement performed by the RDF showing the
coordination shell between r + dr.
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The RDF, g(r), can be calculated from the ensemble average of the inter-particle

distances given by,

g(r) =
1

ρ
〈
N∑

i,j=1

δ(rij − r)〉 , (2.76)

where ρ = N/V is the particle density, rij is the radial distance between particles

i and j. In 3D the coordination shell has the volume of a spherical shell and so

this can be written as,

Vshell = 4πr2ρdr. (2.77)
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Figure 2.13 Example RDF of AIMD simulations of 128 Molten Lithium atoms
under PBC at 15 GPa as a function of temperature. The
distribution is broadened with increasing temperature and for a
liquid g(r) should tend to 1 at long separation. The shaded blue
section represents the area integrated out for the first coordination
shell.

The RDF is built stochastically as a function of simulation time and so requires

trajectories to sample enough equilibrium states for the RDF to converge. The

RDF is limited to a maximum radial distance rmax by the size of the simulation

box. In 3D this is,

rmax =

√
3

2
· a, (2.78)

where a is the lattice constant assuming a cubic simulation box. This is because
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any values greater than rmax are sampling the same distribution as previously

due to periodic boundaries conditions. When calculating the RDF numerically

the bin size that is used to create a histogram at different values of r should be

chosen based on the box size and system temperature to ensure a smooth g(r).

The RDF can be used to calculate values such as the coordination number, cn,

representing the number of nearest-neighbors in the first coordination shell for a

system. For close-packed structures such as FCC and HCP, this number should

equal 12 which is the number of nearest neighbors in the static solid case. Thermal

broadening between 2 near-neighbor groups can occur in systems such as BCC

where the static nearest neighbor shells are 8 (first) and 6 (second) but in a

molecular dynamics simulation at temperature, these shell distances are very

close and the cn(BCC) has a value of 14. This is given by the function,

cn = 4π

∫ r1

r0

r2g(r)ρdr, (2.79)

where r1 is taken to be the radial value of the first minimum of g(r) (see figure

2.13).

2.4.3 Mean Squared Displacement

For mobile particles the Mean Square Displacement (MSD) measures the diffusion

of particles through the system. For a stable solid the thermal vibrations about

lattice sites should be visible as the system evolves but the value of the MSD

should remain constant over time. The MSD per particle can be calculated by,

MSD(t) = 〈(r(t)− r0)2〉 =
1

N

N∑
n=1

(rn(t)− rn(0))2, (2.80)

where r0 is the initial coordinate, N is the number of particles is the system,

and r or rn(t) is the coordinate at a time t later. This is a useful criterion for

identifying the phase for a system: solid, partially molten, and liquid states have

qualitatively different MSD behavior making it easy to identify melting and look

out for solid-solid phase transitions.

For a simple liquid, the MSD should scale linearly with time and the gradient

linearly increasing temperature [153]. Taking the gradient of the MSD gives the
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self-diffusion coefficient by the Einstein relation,

MSD(t) = 2dDt, (2.81)

for d number of spatial dimensions. For d = 3,

D = lim
t→∞

MSD(t)

6t
= lim

t→∞

1

N

N∑
n=1

(rn(t)− rn(0))2. (2.82)

For superionic phases of ice the proton conductivity can be characterized by the

non-zero proton diffusion constant.
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Figure 2.14 Example MSD for Solid BCC (blue) and Molten (red) Lithium at
15 GPa upon heating.

2.4.4 Bond Life-times

In simulated systems where bonds break and reform during the simulation time,

it is possible to estimate the mean bond life-time. A simple example is water:

even at ambient conditions proton transfer occurs which requires a covalent bond

to break and another to form creating a set of OH− and OH+
3 units. The bond

life-time is a function of phase, pressure, and temperature. From the solid-state

and under high pressure ice can be heated into the superionic regime [154]. This

requires covalent OH bonds to break and possibly reform else-where (hopping) or

the H atoms travel as a fluid around the O sub-lattice possibly forming brief H2

bonds. There are many methods for calculating the bond life-time for an atom
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i to an atom j [155]. Here we took a first-order ensemble average by tracking

individual bonds up to some cut-off distance, and the bond life-time τBLT was

calculated by,

τBLT =
1

N

N∑
i,j;rij<rc

(τformation − τbreak), (2.83)

where τ is the point in time, N is the number of recorded bonds over the

simulation, and rc is a suitable radial distance cut-off corresponding to the

maximum bond length for the system of interest such as 1.1 Å for for the O-

H bond in ice. Note this is normalized over the number of bonds recorded and

not by the number of molecules.

This approximation for the life-time of the bonds is crude, and in the superionic

regimes, we expect to have many bonds changing, breaking and even reforming

very quickly. A more general approach was used by calculating a bond auto-

correlation (BAC) function. The BAC, β(t), measures the probability of a chosen

bond existing at a time t later, and then more usefully taking the ensemble average

for the system, 〈β(t)〉. In summary, the BAC assigns a list of bonds every time

step based on the proton nearest neighbor, then scans over all other time steps to

work out the probability that this bond exists and a time t later under the criterion

that the nearest neighbor remains the same. For ammonia water mixtures only

covalent O-H and N-H bonds were considered so proton nearest neighbors were

restricted to O and N atoms. When all bonds are stable the function should tend

to a constant, and to decay when the bonds are changing. In the BAC bonds are

allowed to reform (be considered the same bond) if the proton j returns to atom

i:

β(t) =

〈
bij(t0) · bij(t0 + t)

bij(t0)2

〉
, (2.84)

where bij(t0) is an initial list of bonds (such as H1 to O8) and if this bond still

exists at a time t later then the product in the numerator is equal to unity.

The characteristic decay of the BAC with changing bonds can be fitted with an

appropriate function and has a relevant time constant τ associated with the bond

life-times. The definition of a bond for this BAC was for a proton to have the

same nearest neighbour heavy atom (oxygen for example) as the all other time

steps. The BAC yield rich information on the nature of the bond decay and

unexpectedly revealed profiles related to the specific crystal structure in certain

cases.
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2.4.5 Calculation Details

DFT

DFT calculations were performed with the CASTEP code [28]. Exchange-

correlation effects were described within the generalized gradient approximation

(GGA) using the Perdew-Burke-Ernzerhof (PBE) functional [156] unless other-

wise stated, and ultrasoft pseudopotentials. Final structure relaxations were done

with “hard” pseudopotentials with radii cutoffs no greater than 1.2 Å for oxygen

and nitrogen, and 0.6 Å for hydrogen. Plane-wave cutoffs of Ec = 1000 eV and

k-point densities of 20/Å−1 were found to give sufficiently converged energies and

forces.

Structure searching with CALYPSO

Solid crystalline structures were searched for using the particle swarm opti-

mization algorithm as implemented in CALYPSO (crystal structure analysis by

particle swarm optimization)[131, 157] together with density functional theory

total energy calculations. Structure predictions of ammonia-water mixtures were

performed with up to 16 formula units of (H2O)X(NH3)Y , where X and Y are

integers, and at 5, 10, 20, 30, 50, 80, and 100 – 1000 GPa in increments of 100

GPa. Ratios of molecules (X:Y) for searches were: (6:1, 5:1, 5:2, 4:1, 3:1, 3:2, 2:1,

7:3, 1:1, 3:7, 1:2, 2:3, 1:3, 1:4, 2:5). These searches were performed for the three

canonical mixing ratios of ammonia dihydrate (ADH), ammonia monohydrate

(AMH), and ammonia-hemihydrate (AHH). At 50, 100, and 300 GPa a binary

search was performed to look for other stable mixing ratios. If a new mixing ratio

was found to be stable, further searches were performed for this stoichiometry

at relevant pressures. Structure predictions at pressures over 1 TPa and up to

5 TPa failed to find structures stable against decomposition into NH3 and H2O.

Each structure was optimized in CALYPSO 4 times with increasing accuracy with

each new calculation. All searching was performed with the PBE functional, both

local and global PSO, generation populations of 20 or 30 and starting volumes

chosen based on the equation of state of known phases at a given pressure. The

details for each calculation step are listed in table 2.2.

CALYPSO takes a distance matrix as input for creating crystal structures.

Settings chosen are listed in table 2.2 which helped bias more molecular and

ionic initial structures to be created and avoiding formation H2 molecules. The
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N Basis Precision Ec (eV) K-points (1/Å) Force Tol (eV/Å)

1 Medium 490 0.12 0.3
2 Medium 490 0.12 0.5
3 Medium 490 0.10 0.3
4 Fine 544 0.07 0.5

Rxy (Å) H N O

H 0.8 1.0 1.0
N 1.0 1.5 1.0
O 1.0 1.1 1.5

Table 2.2 DFT parameters for different structural relaxations during ammonia
water searches with CALYPSO (above) and the distance matrix used
to accept generated structures (below).

minimum inter-atomic spacing between any two species can be specified as Rxy

in Å where x and y are the atomic species. This cuts down the structure space

that is explored but with sensible choices such as not allowing hydrogen atoms

to have overlapping orbitals one can avoid high energy initial structures.

AIMD

Exchange-correlation was again described by PBE and with the same pseudopo-

tentials as for ground state calculations. Plane-wave cutoffs were reduced to

Ec = 700 eV and only the Γ-point was sampled for constructed supercells. A

time-step of 0.5 fs was used with the NVT ensemble where the pressure was

sampled every 10 time steps.
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Chapter 3

Individual Ices: Water and

Ammonia

The high pressure crystal structure of ice has been deeply explored, along with

over 1000 papers detailing the properties of ice at ambient pressure.

3.1 Phase Diagram of Water

While water is a simple molecule there are at least 18 crystalline phases of H2O

ice. The crystalline phases as well as amorphous phases [158] are enumerated

with Roman numerals if a diffraction pattern is collected for them, shown in

figure 3.1. The low pressure phases obey the ice rules [159, 160] in which each

water molecule donates two hydrogen bonds and receives two hydrogen bonds

directed towards at the oxygen lone pairs summing to 4 hydrogen bonds per

water. More simply there are not “empty” hydrogen bonds and the protons

cannot point at one another in the ordered or disordered ices. For each ordered

ice there exists a configurationally proton disordered (higher symmetry) version

of the same heavy atom sub-lattice, such as ice VIII to ice VII with oxygen

atoms on an ordered BCC lattice. This order-disorder transition in ice has an

entropy known as Pauling entropy [161] S0 = NkBln(3/2). The disordered phase

can form a glass upon cooling unless doped with KOH [162] as this encourages

proton transfer and creates a gap in the ice rules enabling order to propagate,

althought not necessary with ice VII/VIII. Other phases of ice are suggested
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in the literature by theory generally by looking at different ways of organizing

ice-rules conforming networks and structure searching [163, 164].

Figure 3.1 Phase diagrams for H2O from recent experimental and theoretical
works. From top left: shock experiments showing evidence of
superionicity taken from [165], calculated phase diagram of the high
pressure superionic phases from taken [166], and a low pressure
phase diagram taken from [167].

At higher temperatures (above 500 K at 5 GPa) a plastic phase of ice has been

proposed from simulation where the water molecules are able to rotate about

their molecular sites (BCC in ice VII) [168–173] In these phases, the ice rules

are generally obeyed and the molecular rotations should have a correlation that

reflects this due to the high energetic cost of breaking the ice rules. At higher

pressures (5–100 GPa) and higher temperature (800 K at 30 GPa) ice VII and X

(with symmetric hydrogen bonds [174]) and above transition in calculations into

a superionic regime.

In the superionic phase, the hydrogen sub-lattice melts, losing long-range order.

This can be seen in the hydrogen RDF having a typical liquid profile [154], and

the MSD rapidly increasing as a function of temperature as the protons enter this

diffusive regime while the oxygen atoms retain their solid lattice. In figure 3.2

the calculated probability distribution of protons is shown in 3D for visualization.

The region of PT space where superionic ice is predicted to exist is shown in
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figure 3.1. For comparison, the PT conditions in the interior of icy bodies such

as Neptune and Uranus are plotted in figure 3.2, suggesting the phase is relevant

to the mantle of icy planets and the generation of magnetic fields.

Figure 3.2 High PT phase diagram of ice (left) and the proton probability
distribution for BCC superionic ice (right) are shown, both taken
from [175]. Phase I42-d was found unstable to P3121 in later work
[176].

Superionicity in ice was first theorized by Ivan Ryzhkin [177] considering proton

hopping and defects and first simulated classically by Demonts et al. [178]

describing the phase as a “fast-ion proton conductor”. Shocked water was also

proposed to have diffusive protons in the 1985 study [179]. The first AIMD

simulations of superionic ice (and ammonia) were by Cavazzoni et al. [154],

and later followed a wealth of further studies [175, 180–184]. Superionicity is

not just limited to ices such as sublattice melting in PbF2 [185, 186]. Indeed

superionic materials, transitions, and dynamics are discussed in a review article

[187]. Classical force-fields were trained on AIMD data, which allowed the

dissociation of the OH bonds and could describe the superionic transition [188].

While experiments have been carried out to investigate superionicity, the

measurements remain indirect yet consistent with the expected properties such

as reflectivity. Conductivity measurements, for example, cannot rule out that

the conductance is due to the diffusive protons or from the water molecules

themselves, though spectroscopy evidence exists [165, 179, 189]. More recently

a laser-driven shock-compression experimental study [165] was carried out with

further supporting evidence for the superionic phase with optical reflectivity and

absorption measurements and X-ray diffraction of the oxygen crystal structure

by Millot et al [190] observing a BCC to FCC transition.
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Evidence for a transition of the solid O sub-lattice between different phases of

superionic ice from BCC to a more dense FCC was put forward in [175] as shown

in figure 3.2 with a higher melting temperature and again by Sun et al [166].

Superionic-superionic phase transitions in pure ice were further investigated in

2016 [191] and later similar work showed the first ab-initio simulations of plastic

ice in 2018 [192].

Figure 3.3 Oxygen (red) and proton(grey) distributions along the OHO plane
in BCC ice taken from [191]. In (a) atom trajectories are plotted
showing the proton localization in the BCC lattice and in (b) the
trajectories are projected along the OH· · ·O bond showing whether
this is unimodal, bimodal, or delocalized.

Hernandez and Caracas focused primarily on the BCC sub-lattice of oxygen atoms

for ices over 2 GPa and simulations extend to under 200 GPa. They investigated

the transition between ice VII - ice X and the superionic regime, and in doing

so found two distinct phases of superionicity within the BCC oxygen sub-lattice.

These phases were termed superionic ice VII’ and superionic ice VII” visualized

in figure 3.3. The difference between VII’ and VII” can be seen as the proton

distribution leaving the containment of the ice VII configurationally disordered

lattice sites along the BCC diagonals.

Using different superionic phases and identifying a molecular crystal plastic

regime a phase diagram was produced [192] shown in 3.4 along with an up to

date summary of experimental melting line measurements. The plastic phase

was identified by counting OH rotation rates through the trajectories while the H

translation rates were still zero, and when both rates were finite this was deemed

superionic VII”.

While the MD is purely AIMD without quantum corrections they see a transition
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Figure 3.4 Calculated phase diagram for H2O is shown in (a). The green region
refers to the plastic regime, light blue is superionic from a bonding
analysis, and dark blue is superionic from diffusion analysis. In (a)
the solid lines refer to phase boundaries that were previously known,
the dashed lines represent new phase boundaries found. and dots
represent different AIMD simulations. A summary of experimental
melting lines for H2O is shown in (b) taken from [192].

from ice VII to ice X between 70 and 100 GPa depending on temperature which

is similar to results found in [193] where PIMD was used to account for quantum

proton distributions and to obtain a phase diagram in the lower temperature ice

VII, VIII, X transition region. There are many scales on which to view the ice

phase diagrams and this is likely true for mixtures of ammonia and water ices

with different complexities at different T and P conditions.
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3.2 Phase Diagram of Ammonia

Ammonia has been studied less than water but was recently been investigated

up to 200 GPa in experiment [26] and up to 500 GPa in structure prediction

[194, 195]. At low pressures, ammonia forms molecular crystals with each

molecule donating and receiving three hydrogen bonds. Around 14 GPa ammonia

is thought to undergo an isosymmetric phase transition to phase V [194] where

the full structure is unknown and a discontinuity in compression was observed at

55 GPa [196] suggesting a possible phase VI, both of the space group P212121.

Figure 3.5 Phase diagrams of NH3. Top left Shows the combined experimental
and computational findings [197]. Top right shows the higher
pressure solid ionic phases of ammonia predicted in [26]. Bottom
shows a calculated phase diagram including experimental transition
data by Bethkenhagen et al, [198].

At pressures above 100 GPa NH3 is predicted to form ionic phases [194] further

reviewed in [199] and returns to a molecular crystal at 440 GPa. This ionic

transition may be important when studying ammonia mixtures and has been the

subject of a joint experimental and theoretical study of ammonia monohydrate

58



observing ionic Raman signatures [199]. A recent study of the N-H binary

system predicts that NH3 becomes thermodynamically unstable at 460 GPa

and decomposes into a more favourable stoichiometry of N3H7 and NH4 [195].

Hydrogen bonding in ammonia is much weaker than in ice (2 kcal mol−1 vs.

5 kcal mol−1) [200, 201]. The van der Waals forces are also important with a

similar energy scale to that in water [202], which as previously mentioned can be

a challenge for DFT. Possible Phase VI suggested by a Raman study is thought

to show symmetrization of a hydrogen bond around 60 GPa [203].

Studies of ammonia also predicted superionicity as reported by Cavazzoni et al.

[154] and others, including Li et al. [204] more recently. Heating the ordered

phases produces two rotationally disordered (plastic) phases of ammonia, phases

II (HCP) and III (FCC) [205]. The superionic phase for ammonia was reported

to have been discovered at 57 GPa and 700 K by Ninet et al [197]. A difference in

the nitrogen sub-lattice was reported depending on the thermodynamic pathway

taken and probe technique.

Comparing phase diagrams found in the literature, most seem to agree on the

temperatures required to enter the superionic state for the various materials

considered yet the superionic melting line measured for ice has not been fully

measured experimentally. If mixtures of water and ammonia, for example, lower

the P and T conditions required to access the superionic phase to the conditions

accessible to neutron experiments or other probes then this may encourage the

conclusive discovery of this phase in ice mixtures.

Mixtures of both NH3 and H2O are likely to also exhibit superionic behavior,

and have been investigated by computational studies [206, 207]. A methane water

mixture is predicted to augment the properties of superionic phases [208].

Figure 3.6 High pressure phases of H2O ice including X (100 GPa), Pbcm (400
GPa), and P3121 (1000 GPa).
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3.3 Summary of Ground State Structures

A summary containing recent predictions on high pressure ice up to 6 TPa by

Pickard et al. [176] reports H2O decomposes into H2O2 and a hydrogen-rich phase

slightly over 5 TPa. The low pressure phases of ice consist of proton ordered

packed water molecules until phase Ice X (see figure 3.6) above 60 GPa in which

the hydrogen atoms move to the midpoints between neighbouring oxygen atoms

[209]. The calculated high pressure phase sequences are summarised in table 3.1

for water and table 3.2 for ammonia. These phases are taken from the literature

and the stability pressure range results from calculations in this work.

Space group Stability range (TPa) No. f.u. Source

Ice X 0.1–0.30 2 [174]
Pbcm 0.30-0.71 4 [210]
Pbca 0.71-0.78 8 [211]
P3121 0.78-2.01 12 [176]
Pcca 2.01-2.24 12 [176]
C2 2.24-2.36 12 [176]
P21 2.36-2.75 4 [212–214]
P21/c 2.75-6.06 8 [213]
C2/m 6.06– 2 [212]

Table 3.1 Table 1. Ground state structural phase evolution of water at high
pressure, from DFT-PBE calculations performed in this work.

Space group Stability range (GPa) No. f.u. Source

P213 0–4 4 [215]
P212121 (IV) 4-14 4 [205]
P212121 (V) 14-100 4 [216]
Pma2 100-176 4 [194]
Pca21 176-300 8 [217]
P21/m 300-440 4 [194]
Pnma 440-460 4 [194]

Table 3.2 Table 2. Ground state structural phase evolution of ammonia at high
pressure, from DFT-PBE calculations. Note that the isostructural
transition between phases IV and V is from experiments and are
energetically equal in stability in DFT-PBE.

Now that water and ammonia have been introduced, from here on results from

this study are presented. To start this work structure searching was performed

for ammonia to both confirm current results in the literature (from the AIRSS
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method) and to look for any new structures. For ammonia, all high pressure

structures previously found were again found by the PSO with Calypso. Although

not every search initially found the lowest energy structure (as shown in table 3.3),

the higher energy structures sometimes contained the lowest energy literature

structure as was the case for Pca21 at 250 GPa. In figure 3.7 an example of

search results for Z = 8, Z is the number of formula units, at 500 GPa is given,

where the ranking refers to the energetic order of structures found. Searching

was performed with coarse DFT parameters in order to scan more structures and

then the best structures were optimized with tightly converged parameters. When

using cheaper settings for searching it is important that the energetic ranking of

structures from the coarse settings is similar to that of the tight settings, and this

is achieved.

NH3 P (GPa) Z Space group

50 4 P212121

80 4 P21

150 4 Amm2
250 4 Pma2
250 8 P1
300 8 P1
400 4 Pma2
500 4 P-42m
500 8 Pnma
1000 4 Pnma

H2O P (GPa) Z Space group

4000 16 P1
4000 24 P21

Table 3.3 Summary of structure searches performed for ices H2O and NH3.
The space group for the lowest energy structure found in each search
is given.

The total energies between the two data sets are different as a different

pseudopotential was used for each, one being more expensive. The lowest 3

structures found in the searches are shown in the inset, where Pnma is the lowest

enthalpy structure for NH3 at 500 GPa consistent with literature. Searching was

performed with 8 f.u. of NH3 and the structure found for Pnma, which has 4

f.u., contained two unit cells. In practice, but not always, the step-wise energetic

ordering of structures seen in figure 3.7 for the lowest 3 energetic structures

indicates that each of these structures has the same unit cell and hence the same

enthalpy. However, there may be more than one structure with very similar
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Figure 3.7 Original search results for NH3 at 500 GPa with 8 f.u. (red)
and tight relaxation results with a harder choice of pseudopotential,
energy cut-off, and k-point mesh. The literature ground state result
of Pnma at 500 GPa (4 f.u.) was recovered. Structures are ordered
by their enthalpy from the original search results. Tightly refined
structures may not maintain the same energy ranking as the original
set as seen for structures 14-18.

energetics and so this can be misleading.
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3.4 Energetics for Water and Ammonia

Here we summarize all calculations performed on pure water and ammonia.

Firstly the enthalpy for the ordered ice phases up to 1 TPa was calculated and

compared with each other as well as literature results. In order to aid observation

of these phases experimentally we calculated their spectroscopic signatures for

both infra-red and Raman techniques. Mulliken charges were also calculated

to see if this offers quantitative discrimination of the different crystal phases.

Later in this thesis, the effect of different functionals of on the thermodynamic

stability of ice, ammonia, and mixtures is considered. Finally, we compare free

energies for ice phases up to 1 TPa and 1000 K for the harmonic approximation.

Disordered and plastic phases are not considered in free energy calculations,

and so phase boundaries found in literature have been included to give a more

complete description.

3.4.1 Water

The ground state enthalpy was calculated for the ordered phases of ice at the PBE

level of theory and compared in figure 3.8. Phase transitions occur at pressures

greater than those experimentally found by a factor of 10 which can be accounted

to the lack of including dispersion with PBE [218]. The order of phases found

by PBE is the same as experiment: XI → IX → XV → VIII → X so forth

for the proton ordered ice phases. This justifies the use of PBE as a general

starting functional for the ices. PBE results in higher transition pressures than

experiments without van der Waals corrections. This is more noticeable at lower

pressures where the phase sequence is increasing the number of near neighbors in

the first radial shell, as also observed in liquid water with increasing pressure. At

high pressure the different phases have more similar packings and so this is less

of a problem when comparing energy differences.
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Figure 3.8 Relative ground state Enthalpy for proton ordered H2O ice phases as
a function of pressure where the inset shows the low pressure phase
transitions.

Comparing static ground state enthalpies with DFT predicts ice-VIII transitions

to ice-X at 100 GPa. In experiment however, this can be found at much earlier

pressures above 60 GPa [174]. This is due to the lack of quantum effects being

included in these calculations which play a role in the proton symmetrization

[219].
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3.4.2 Ammonia

The calculated ammonia phase diagram is shown in figure 3.9. This agrees with

literature [217] including decomposition into 2
5
NH4 + 1

5
N3H7 above 440 GPa.
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Figure 3.9 Top: Relative enthalpies for proton ordered NH3 phases as a
function of pressure calculated with the PBE functional. Below:
Including ZPE and the Gibbs free energy at T = 300 K for the low
pressure regime shows the Pa3̄ phase becoming destabilized.
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For NH3 in the low pressure region (P < 20 GPa) a Pa3̄ phase is predicted to

be more stable than the experimental P213 phase from 0.5 to 7 GPa. These two

phases are perhaps similar in structure and shown in figure 3.10. It is stable

in PBE, PBE+TS, PBE+Grimme, and PBE+MBD calculations in this work

though always by less than 10 meV/p.f.u.. Including vibrational contributions

from phonon calculations appears to destabilize this phase, reducing stability

to less than 2 meV/p.f.u. at T=0 K and it is metastable at T=300 K. This

may explain why the Pa3̄ phase has not been seen experimentally. Though

as the energy differences are small and sensitive to the dispersion correction

a thorough well-converged DFPT study moving from harmonic to the quasi-

harmonic approximation would better confirm this. Otherwise, as with H2O

ice, the PBE functional gets the ammonia phases in the correct order with the

molecular to ionic transition below 100 GPa.

Figure 3.10 Crystal structures of the two competing cubic structures of NH3 at
2 GPa. Phase P213 is FCC in its heavy atom atom positions,
though the face sites remain off centre and phase Pa3̄ has a
distorted hexagonal arrangement.
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3.4.3 Finite Temperature Stability

Including the vibrational effects of zero point motion (T=0 K) tends to favour

transitions into denser phases. This and the effects entropy (T>0 K), populating

the excited phonon modes, is captured in figure 3.11 on a logarithmic scale for

the ordered crystalline H2O phase diagram. Most phase transitions are almost
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Figure 3.11 Calculated phase diagram of H2O. Phase boundaries (black dashed
thin-line), the melting line (black dashed thick-line), and the plastic
region (light green), were taken from AIMD [192] including the
ice X transition line from interpolation. Coloured regions are
shown for stability given by phonon calculations for ordered phases.
Experimental phase boundaries (block dotted lines) for the lower
pressures were taken from [220].

vertical in their regions of stability (along the lines of experimental temperatures)

up to 1000 K suggesting entropic effects are not dominant. The transition

from ice VIII to ice X is incorrectly modeled due to imaginary modes arising

in ice-X below 120 GPa [209] leading to inaccurate calculations of the Gibbs free
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energy between 50–100 GPa. This highlights the need for quantum corrections to

correctly describe the proton symmetrization - whether the proton distribution

is bimodal or unimodal between oxygen sites.
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Including the effect of phonons in the harmonic approximation and comparing free

energies for ammonia on a grid of PT points are shown in figure 3.12 where the

Pa3̄ phase has a limited stability region which decays with increased temperature.

At higher temperatures NH3 enters a plastic phase where the molecules are free

to rotate about their heavy atom sites. This would imply that there are many

local minima with energetics close to the ground state which can be accessed

upon heating, of which Pa3̄ may be one.
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Figure 3.12 Low pressure phase diagram for the NH3 system up to 50 GPa
with melting and plastic experimental phase boundaries taken from
[26].
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Extending the ammonia phase diagram to 480 GPa not including the Pa3̄ phase,

the reentrant molecular phase of Pnma is suppressed by the decomposition into
2
5
NH4 + 1

5
N3H7. The pressure phase evolution of ammonia goes from molecular

to ionic to decomposition above 440 GPa at T= 0K. On heating, ammonia enters

plastic (experimentally) and superionic (calculated and experimentally) regions

as observed in pure H2O.
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Figure 3.13 Full phase diagram for the NH3 system up to 460 GPa. Superionic,
melting, and plastic phase boundaries were taken from [26].
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3.5 Simulated Vibrational Spectroscopy for Water

and Ammonia

Raman and infra-red absorption techniques are able to detect phase transitions

between phases of ice. In figure 3.14 we plot the simulated spectroscopic signature

for different phases according to their stability within PBE (100 GPa was chosen

for the ice VIII–X transition). At low pressures the high-frequency O–H vibron

is decreasing in energy with pressure showing the covalent bond weakening as

ice progresses towards proton symmetrization under compression. Once settling

in ice-X the O–H stretch moves to increasingly higher frequencies with pressure

signaling that the bond is strengthening.
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Figure 3.14 Zone-centered phonons for high pressure H2O ice phases as a
function of pressure. Comparative data from the literature is also
shown [221–223].
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For the low pressure phases, the spectroscopic signal as a sequence of pressure

is shown in figure 3.15. These transitions occur at pressures roughly an order of

magnitude greater than experiment though the number of modes will be correct

and spectral lines could be extrapolated back to the experimental density. Though

the O–H vibron weakens with pressure within each phase, at each transition the

vibrons strengthen to a higher set of frequencies.
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Figure 3.15 Zone-centered phonons for low pressure H2O ice phases as a
function of pressure. Comparative data from the literature is also
shown [221–223].
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In ammonia, the bonding changes are more varied. While at lower pressures

(below 100 GPa) some N–H vibrons become stiffer, others become weaker. This

is different from the water case where all protons are delocalizing in conjunction,

whereas in ammonia only some of the protons are transferring (1/3) yet ionizing

every NH3 molecule. This can be seen in figure 3.16 for phase P212121 where

there are 12 vibrons counting both IR and Raman active modes. Of these modes

4 increase with pressure, another 4 increase less drastically, and the final 4 are

decreasing with pressure consistent with the structure wanting to ionize intoNH+
4

and NH−2 units.
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Figure 3.16 High frequency zone-centered phonons for NH3 ice phases found to
be energetically stable at T = 300 K as a function of pressure.

Above 440 GPa decomposition occurs and the spectroscopic signal for both NH4

and N3H7 are included together in figure 3.16. Once ionized above 90 GPa the N–

H vibrons increase in frequency with pressure and this continues above 440 GPa

in the decomposed structures.
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The spectroscopic signal for unstable phases from literature such as P21/c

(metastable around 7.5 GPa), formerly stable P21/m (300–400 GPa before Pca21

was found), and the possibly stable Pa3̄ phase were also calculated in figure 3.17.

It may be possible to access these phases in experiment and so their spectroscopic

signal is provided here.
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Figure 3.17 Zone-centered phonons for low pressure NH3 ice phases (top left),
low pressure vibrons only (top right), and calculated unstable phases
of P21/c and P21/m (below) over their relevant pressure range.

With increasing pressure, the structures becoming more stable tend to have

strengthening of their chemical bonds evident in the calculated spectroscopic
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signals, which is particularly true for molecular systems unless they want to

eventually dissociate their covalent bond such as in compressed hydrogen.

3.6 Ammonia and Water Mulliken Charges
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Figure 3.18 Calculated Mulliken Charges for NH3 (blue) and H2O (red)
systems as a function of pressure.

We plot the Mulliken charges on the different O-H and N-H ions in figure 3.18.

Individually there appears to be little information captured by this, suggesting

the ice phases are all fairly similar but with different molecular or ionic packing.

Ice X deviates from this at lower pressures as the symmetry maintains the proton

symmetrization, while at higher pressures P3121 further decreases the charge

difference between O and H ions. No dipole moments for the crystal or molecules

were calculated but are likely to vary between the different phases.
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For ammonia and water, the polarization on H decreases with pressure while the

N ions also become more neutral. Comparatively we can see the H ions in water

ice are more polarized than in ammonia ice. This makes sense as water molecules

have a stronger dipole moment than those of ammonia. This could mean ammonia

plays the role of a malleable molecule that can be substituted into and dope water

ice structures with little energy cost while still offering a negative N ion to accept

hydrogen bonds. The less polar and less strong hydrogen bonding of ammonia

can also mean that ammonia water networks can disorder with temperature more

readily as these bonds are easier to escape or break.

3.7 Concluding Remarks

We have seen that high pressure changes the way crystals of both water and

ammonia behave. Proton symmetrization in ice X and the molecular to ionic

to molecular transition in ammonia are the most dramatic changes. Structure

searching and electronic structure methods prove valuable for learning about

the ices and have been combined with experimental studies to understand these

individual phase diagrams. Heating this phases both allow for excitations into

plastic and superionic phases before eventual melting. We will draw from this

knowledge in the next chapters when investigating mixtures of both these ices

together.
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Chapter 4

Results for known hydrates

4.1 Introduction

All ices feature a ladder of interactions, ranging from covalent, ionic/electrostatic,

hydrogen bonding (though not in methane) to weak dispersion interactions. It

is the interplay of these interactions, and their relative emphasis as the molar

volumes are reduced, that drive intriguing phase transitions, and the emergence

of new structural features. Mixing different individual ices together allows for

a new ladder of interactions to emerge, even unexpectedly so. As previously

discussed ammonia has been predicted to form an ionic crystal (NH4)+(NH2)−

above 100 GPa [194] and confirmed in experiment [25, 26]. The energetic cost of

breaking the N–H bond is outweighed by ionic bonding NH+
4 · · ·NH−2 and more

compact packing. Water leaves the molecular state via another route, forming the

atomic ice-X network structure with symmetric hydrogen bonds at 60 GPa[224]

while at terapascal pressures, it is predicted to take up more complex phases that

can be seen as partially ionic OH−/H3O+ [22, 23]. At low temperatures, nuclear

quantum effects are expected to influence the phase diagram of hydrogen-bonded

systems,[225] while at high temperatures, superionicity is predicted to occur in

both water and ammonia. Structure prediction methods have proved a useful tool

to explore the phase space of the individual ices under pressure. In this chapter,

we will build from this knowledge by searching for stable phases of mixtures of

ammonia and water. Here we start with the only three stoichiometric mixtures

found stable in nature up to 10 GPa before searching for other mixing ratios

which may be stabilized under high pressure.
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The three stoichiometric mixtures that exist in nature close to ambient conditions

are: ammonia monohydrate (AMH, NH3:H2O=1:1), ammonia dihydrate (ADH,

1:2) and ammonia hemihydrate (AHH, 2:1) [39]. Their phase diagrams are

relatively complex: six AMH phases, four ADH phases, and two AHH phases

are known at various P − T conditions, even though some of their structures

have not been resolved. AHH has arguably been studied the least among the

ammonia hydrates, possibly because of its high ammonia content, far removed

from the solar abundance ratio 1:7, and is therefore expected to be rare in nature.

However, it is a crucial phase at high pressure and temperature, where both

ADH and AMH decompose into AHH+ice-VII, around 3 GPa and at 280 K

and 250 K, respectively [38, 44]. At slightly higher pressures (around 5–20

GPa) and room temperature, all ammonia hydrates are found to form disordered

molecular alloy (DMA) phases, which feature substitutional disorder of ammonia

and water (maybe partially ionized into OH−/NH+
4 ) on a body-centered cubic

(bcc) lattice[44, 46, 48–50]. In fact, this phase was studied in AMH and shown

to be partially molecular and ionized at the same time in by Liu et al [49]. The

AHH-DMA phase has been observed in two independent experiments [48, 50] that

found, at low temperatures, transitions from AHH phase II at 19–30 GPa. AHH-

DMA was found to remain stable up to the highest pressure studied, 41 GPa

[48].

Figure 4.1 (left) The DMA structure with a BCC (Im3̄m) arrangement of
substitutionally disordered oxygen or nitrogen atoms (black) and
partially occupied proton sites (white) taken from Wilson et al [48]
on AHH. (right) The DMA structure shown for AMH by Liu et al
[49].

Previous first-principles calculations have been carried out to resolve high-

pressure molecular phases in the ammonia hydrates [226, 227]. In AMH,

calculations predicted that an ionic phase transition should stabilize NH+
4 ·OH−

over NH3·H2O around 6 GPa.[228] A more stable ionic structure was proposed
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more recently [199] and subsequent crystal structure searches on AMH uncovered

higher-pressure ionic phases, which were then used as starting points for ab initio

molecular dynamics simulations to investigate the superionic regime of AMH.[229]

These studies attempted to explore molecular mixtures at conditions present deep

within icy planetary bodies using electronic structure calculations, but there is

an inherent assumption that AMH is indeed a relevant stoichiometry at elevated

pressures in the water-ammonia phase diagram. This assumption needs to be

clarified by studies on other mixtures, first and foremost ADH and AHH, to

ultimately construct a coherent picture of the inner structure of icy planets as

dependent on the overall composition.

The following describes in detail structure searching and analysis in the ammonia-

water system, starting with the known hydrates of 2:1 Ammonia Hemihydrate

(AHH), 1:1 Ammonia Monohydrate (AMH), and 1:2 Ammonia Dihydrate (ADH).

4.2 Ammonia Hemihydrate

The three phases of AHH have all been identified from neutron diffraction studies,

see figure 4.2, in part as they occur as decomposition products of AMH and

ADH [38, 45, 48, 230]. However, their respective regions of stability are less

well established than for the other hydrates, and there are indications for high-

pressure phase transitions beyond 30–40 GPa that have yet to be identified [50].

Later in this computational study, we suggest that AHH undergoes a transition

at 40 GPa and room temperature to an ionic structure with fully deprotonated

water molecules, (NH+
4 )2O2−, which in a sequence of phase transitions remain

stable up to at least 500 GPa, before eventual decomposition [1].

Here, we present results from crystal structure predictions in conjunction with

electronic structure calculations of compressed ammonia hemihydrate, AHH.

Above 65 GPa, beyond the stability regime of the DMA phase, we find a sequence

of new high-pressure phases that ensure AHH remains a stable (and indeed

dominant) composition within the water-ammonia phase diagram to very high

pressures. The structures uncovered here are fully ionic and combine atomic O2−

anions and molecular NH+
4 cations. Oxides are a major thermodynamic sink

and found in virtually all fields of chemistry and materials science, but these

ammonium oxide structures represent to our knowledge the first example where

water in a hydrate compound becomes completely deprotonated by application of
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Figure 4.2 The proposed phase diagram of ammonia hemihydrate (AHH) taken
from Wilson et al [48]. Here the dash-dotted line refers to the
region where water-rich (AMH and ADH for example) samples
would dehydrate and form AHH-II and ice VII or VIII. The triangle
symbol is the observed freezing point into AHH-I and the solid line
is the melting line. The open symbols are points where both AHH-II
and AHH-DMA were observed. Grey and black circles and squares
refer to different heating runs detailed by Wilson et al [48]. The
arrow on the right refers to a phase transition around 19 GPa from
AHH-II to AHH-DMA.

pressure. A sequence of such structures remains stable up to 550 GPa and elevated

temperatures, where decomposition into the constituents water and ammonia is

predicted to occur.

Two structures of AHH have been solved, phases I and II. In experiments at

T = 200 K, the transition I→II is estimated to occur around 1 GPa [48]. In

our ground state calculations, this transition occurs at 4 GPa, slightly above

the experimental estimate, but in line with the negative Clapeyron slope seen

in experiment. In Figure 4.6 we show the evolution of the relative ground state

enthalpies,

∆Hf = Hf (AHH)− [Hf (H2O) + 2Hf (NH3)] (4.1)

as a function of pressure on two different scales (0-100 and 50-800 GPa), for the

known and new phases. This represents the different phases’ enthalpic stability

towards decomposition into the molecular constituents of H2O and NH3, where

at each pressure we have chosen the most stable H2O and NH3 phases.
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AHH-I is proton-disordered on one ammonia site. We used an ordered

approximate of the unit cell with space group P21/c in our calculations. Within

the AHH-I unit cell, there are five distinct structures to choose the proton

ordering. As Figure 4.3 shows, the relative enthalpy difference between these

five structures is very small. AHH-II is proton-ordered with space group P21/c.
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Figure 4.3 Calculated enthalpies for 5 unique variations of AHH-I.
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Z 4 5 6
P (GPa) N N N Space group

30 1590 510 750 P1
50 2910 840 1650 P1
80 3360 2130 1890 Cmca
100 2790 1470 2370 P3̄m1
200 4200 960 1260 P1
300 2670 1260 1320 P3̄m1
400 3930 1830 1470 P1
600 3180 1230 1890 P21

800 3570 1950 1500 P1
1000 1470 1050 990 P1
2000 1290 690 120 Ccme
3000 1710 390 600 Pnma
4000 1200 630 630 P1
5000 1440 780 630 P212121

Table 4.1 Summary for AHH structure searches.

In table 4.1 we show the results of structure searching at pressures ranging from

30 GPa to 5,000 GPa. The number of different structures relaxed for different

numbers of formula unit of AHH is also shown, and the spacegroup of the most

stable structure found by the search. There are many structures that would

appear higher in ranking the lowest energy structure and may end reach stability

at the same or other pressures after a tighter relaxation.

82



In figure 4.4 the volume is plotted against the enthalpy for all structures relaxed

(over 5000) at 300 GPa. This appears to have a candle formation originating

from the most stable structure and volume where the structures end up densely

clustered. Other low energy structures with much lower or greater volumes may

become relevant at higher pressures or lower pressures respectively. The best

structures from each of the structure searches were relaxed through the entire

pressure range and compared with the ground state enthalpy of the pure ices.

This eventually resulted in the ground state phase diagram for AHH shown in

figure 4.6. In figure 4.5 the convex hull also at 300 GPa is shown for the ammonia

water system, where we see AHH is the most relevant and so was chosen as an

ideal starting point for analyzing high pressure ice mixtures.
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Figure 4.4 Enthalpy Volume plot for a structure search with AHH at 300 GPa,
note that the gradient of enthalpy with volume gives pressure.
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Figure 4.5 Convex hull data for mixing ratios from 6:1 to 1:5 for the binary
(H2O:NH3) system. The lowest enthalpy structures from structure
searching with CALYPSO are plotted. Up to 4000 structures were
optimized at a given mixing ratio. The ice phases forming the convex
hull are taken to be Pbca for H2O and Pca21 for NH3.
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Figure 4.6 Enthalpies of formation of AHH phases as a function of pressure,
relative to decomposition into ice and ammonia (or 2

5 NH4 + 1/5
N3H7 above 450 GPa, see arrow), shown in the range 0-100 GPa
(left) and 50-800 GPa (right). The shaded region in the left panel
denotes an approximate enthalpy range of quasi-BCC structures,
with a lower bound by the most stable approximant we found (see
text). Dashed and dotted lines indicate decomposition reactions into
other ammonia hydrates.

We show in Figure 4.6 also the relative enthalpies of potential decomposition

products of AHH, namely Hf (AMH + NH3) and 1/2Hf (ADH + 3NH3), of which

AMH and ADH will be discussed in the next sections. A decomposition of AHH

into ADH and ammonia is never favorable; in fact, just below 100 GPa, we find

ADH itself to become unstable towards decomposition into water and ammonia

ice. For AMH, we find that at low pressures a proposed tetragonal ionic NH+
4 ·OH−

phase [199] is, up to 28 GPa, more stable than AHH. This phase has not yet been

seen in experiments on compressed AMH.

Amongst AHH phases, above 23 GPa in our calculations, AHH-II is followed by

several quasi-bcc phases, which are indicated by the shaded region in Figure 4.6

and which are energetically competitive up to 65 GPa. As a phase transition to a

substitutionally disordered bcc structure has been observed at 19 GPa in room-

temperature experiments, we would expect to find many competing quasi-bcc

structures in this pressure region. All relevant structures we find in this region

are half-ionized, i.e. of the composition NH3·NH+
4 ·OH−, and feature hydrogen

bonds.

These structures are not immediately obvious to be quasi-bcc – see appendix 1

for full structural details – but occupy a pressure range where experiment has

observed the bcc DMA structure. Upon closer inspection, the underlying quasi-

bcc structure becomes apparent, both in real and reciprocal space: representative
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Figure 4.7 Fully deprotonated ammonia hemihydrate structures. From top left:
Amma phase at 80 GPa; P 3̄m1 phase at 100 GPa; Pnna phase at
300 GPa; and Pnma phase at 600 GPa. Red (blue, white) spheres
denote O (N, H) atoms. All phases are drawn to the same scale,
and hydrogen bonds from NH+

4 to O are shown as dashed lines.

structures feature locally quasi-cubic molecular arrangements, and their simulated

powder x-ray diffraction peaks cluster around the peaks of an ideal bcc lattice

seen in figure 4.8. This suggests that the structure search algorithms attempt

to construct disordered phases in the pressure range around 20–60 GPa. Similar

results were also seen at low pressures, where AHH-I is stable: searching the

configuration space with too small unit cells to reproduce the actual phase

I structure, which has 12 molecules in the unit cell, resulted in candidate

structures that mimicked the molecular herringbone arrangements of AHH-

I. In the gas phase with well-separated entities, the proton transfer process

NH3+H2O→NH+
4 +OH− is endothermic by about 8 eV; it is enabled here by ionic

bonding and a more compact packing of the constituents (∆V/V = −3.3% for

AHH-II→ C2/m at 20 GPa). It is possible that these structures could be the basis

86



C2/m

Cm

P-1

Figure 4.8 XRD patterns of representative quasi-BCC phases found in our
structure searches, all simulated with λ=1.54056Å at 40 GPa, and
labeled by space group. Right-hand side shows some of the near-
cubic local arrangements of each structure (black lines are to guide
the eye and not unit cells). Red (blue, white) spheres denote O (N,
H) atoms. The ”bcc-DMA” pattern is for an idealized disordered bcc
lattice with 2:1 N:O site occupancy and a=3.05Å.

of an ordered low-temperature form of the DMA phase for AHH. Experimentally

no further phase transitions have been observed in AHH up to 40 GPa.

At 63 GPa, we find in our calculations a new orthorhombic structure of Amma

symmetry that is energetically most stable, with the intriguing attribute of doubly

deprotonated water: all H2O have donated both protons to two NH3 molecules,

which results in a fully ionic ammonium oxide compound (NH+
4 )2·O2−. At 110,

180, and 505 GPa in the ground state we find three more phase transitions, first
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to a trigonal P 3̄m1 structure, followed by two orthorhombic phases of Pnna and

Pnma symmetry, and all with the same features of fully deprotonated water and

molecular ammonium cations. These structures are shown in Figure 4.7, and

details of their crystal structures are tabulated in appendix 1. The emergence

of this sequence of ionic structures is responsible for the extended stability of

AHH against decomposition into ice and ammonia to much larger pressures, see

Figure 4.6. Eventually, at 540 GPa in the ground state, we find that AHH

decomposes into ice and ammonia. For this decomposition, we took into account

recent computational work that found NH3 to decompose into N3H7 and NH4,

which we find above 450 GPa (see arrow in right panel of Figure 4.6 [195]). Note

that water ice is not expected to decompose until multi-TPa pressures are reached

[24, 231].

It has been suggested that the PBE functional overstabilizes charge transfer

in the NH3+H2O→NH+
4 +OH− reaction [227]. We therefore re-optimized all

structures using the PBE+TS functional, which includes dispersion corrections

[89], and found little quantitative difference of the relevant structural evolution:

the transition from half- to fully ionic phases (the onset of stability of the Amma

phase) is found at 58 GPa, while decomposition of the Pnma phase into the

individual ices is calculated to occur at 458 GPa.

To estimate the effects of finite temperature, we calculated free energies for

all phases using the harmonic approximation, which takes into account the

vibrational entropy. The latter might well influence the phases’ stability range,

as we find quite a diverse chemistry in the progression from hydrogen-bonded

molecular to fully ionic phases. Figure 4.9 shows the resulting phase diagram.

This implies an earlier onset of stability for the fully ionic phases, with the Amma

phase becoming stable at 40–50 GPa at low temperatures, but also eventual

decomposition at lower pressures than in the ground state, as low as 470 GPa

depending on temperature. The temperature dependence of the stability of most

phases, apart from the eventual decomposition, is actually relatively weak, and

changes compared to the ground state results shown in Figure 4.6 are mostly

due to zero point energy (ZPE) effects (see figure 4.10 for a plot of H+ZPE as

a function of pressure). This can be rationalized with the qualitative change in

proton coordination at the ionization transition and its influence on the molecular

vibron modes that will dominate the ZPE. We find that the stability region of the

P 3̄m1 phase is much increased, at the expense of the orthorhombic Pnna and

Pnma phases. In fact, two monoclinic phases of P21/m and P21/c symmetry
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Figure 4.9 P-T phase diagram of AHH phases, computed within the quasi-
harmonic approximation. The dashed region labeled “elements”
at highest pressures represents predicted decomposition into the
constituent ices of NH and OH. The dashed black line indicates the
computed melting line of AMH [229], while solid black (grey) lines
indicate calculated planetary isentropes of Uranus (Neptune) [232].

(see figure 4.11), which are the results of soft phonon modes in P 3̄m1 at very

high pressures (see appendix 1 for structural information), become stable around

300–350 GPa and 550 GPa, respectively, and dominate the high-pressure regime

of the P-T phase diagram. For perspective, we show in Figure 4.9 the mantle

isentropes of Uranus and Neptune, as well as the melting line of AMH obtained

from MD simulations.[229] Both the melting and onset of superionicity (which we

suspect to occur significantly below the melting line) are not considered in our

quasi-harmonic approach here.
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We show in Figure 4.10 the enthalpies H = U + PV plus contributions from

vibrational zero point energies (ZPE). Note at high pressures the extended

stability region of the P 3̄m1 phase and its symmetry-reduced variant P21/m,

while the orthorhombic phases Pnna and Pnma are less relevant than in the

ground state.
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Figure 4.10 Phase diagram for ammonia hemihydrate based on H+ZPE
calculations, and plotted on a logarithmic pressure scale.

Figure 4.11 (left) Monoclinic Phase P21/m at 400 GPa. (right) Monoclinic
Phase P21/c at 650 GPa. P21/m is monoclinic distortion of the
highly symmetric P 3̄m1 structure, whereas P21/c is a symmetry-
broken variant of the P21/m structure.
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The de-protonation reaction of OH− in the gas phase, NH3+OH− →NH+
4 +O2−,

is endothermic by about 16 eV, and is shown in further detail in chapter 5.

This is twice the energy needed to remove the first proton off the water, yet

comes as a natural follow-up to the partial deprotonation of H2O. The process

requires (i) more pV work being exerted on the system, and (ii) a proton acceptor

molecule, NH3. Highly compressed AHH provides both and, as a consequence,

forms fully ionic compounds at high pressure. These are further stabilized by

more compact packing, facilitated by the presence of spherical O2− anions. Some

of the ionic phases resemble known structure types. The P 3̄m1 structure, for

instance, is (if we assume spherical NH+
4 ) the CdI2 structure type, a well-known

AB2 ionic structure [233]. The assignments of molecules in these high-pressure

phases are supported by their structural properties: the longest nearest-neighbour

N-H separations decrease from 1.10 Å in Amma at 60 GPa to 0.99 Å in Pnma at

600 GPa, while the shortest nearest-neighbour O· · ·H separations decrease from

1.35 Å to 1.17 Å for the same structures and pressures. The O-H separations at

60 GPa, for instance, are well above the separations seen in molecular water in

ice-VIII at the same pressure (1.03 Å). A topological Bader charge analysis [234]

also supports the ionic picture suggested above: the partial charges on O/NH4

are -1.27/+0.64e at 100 GPa in Amma, and are almost constant across the entire

pressure range: -1.28/+0.64e in P 3̄m1 at 100 GPa, -1.30/+0.65e in Pnna at

300 GPa, and -1.26/+0.63e in Pnma at 600 GPa.

In the inset of Figure 4.12 we show an electron localization function (ELF)

isosurface and 2D cut for the P 3̄m1 phase, which confirm the presence of covalent

bonds along the N-H separations, and the lack thereof around the oxygen anion

– for the latter, ELF reveals its closed-shell character, but there are no local

ELF maxima between the O2− and NH+
4 entities. Around the transition from

the quasi-bcc phases, at 60 GPa, the Amma phase is more compact by 1.4 %

than the lowest-energy quasi-bcc phase. Further transitions lead to ever more

compact arrangements: ∆V/V = −0.7/ − 0.5% at 120/300 GPa, the respective

onsets of stability of the P 3̄m1 and P21/m phases at room temperature. This

is in part facilitated by higher coordination of the O2− anion: because of its

spherical character, in absence of covalent bonds or localized lone pairs, it is a

much more flexible hydrogen-bond acceptor than H2O, which prefers low-density

tetrahedral coordination up to very high pressures [23]. In Amma and P 3̄m1, the

oxygen anion is six-fold coordinated to N-H bonds, which increases to eight-fold

coordination in Pnna.
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Figure 4.12 Zone-centered vibrational frequencies of AHH phases in their
respective room-temperature range of stability, focusing on the
molecular vibron region of 2400-3800 cm−1. Phases are indicated
along the top and are colored as in Figure 4.6. Solid (dashed) lines
represent Raman (IR) active modes. Open triangles refer to OH
stretch modes (seen until 40 GPa), and filled circles refer to NH
stretches. Inset shows electron localisation function (ELF) plot for
the P 3̄m1 phase at 300 GPa. The isosurface value is 0.75, and 2D
cut colors range from blue (ELF=0) to red (ELF=1).

The complete absence of O-H stretch modes in the ionic high-pressure AHH

phases should aid their spectroscopic detection. In Figure 4.12, we show the

pressure evolution of the intramolecular N-H stretch modes up to 200 GPa,

calculated within the harmonic approximation. Across phases I, II, and the half-

ionized quasi-bcc phases, the N-H vibron bands occupy a range that broadens

from 3300-3500 cm−1 at 1 atm to 3000-3500 cm−1 at 40 GPa. These frequency

ranges are in reasonable agreement with experimental data, but shifted by about

100 cm−1, likely due to anharmonic effects [50, 235]. A significant change should

be noticeable at the transition from quasi-bcc to completely ionized phases: there
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are no vibrational modes in the previously mentioned frequency range, instead

N-H stretch modes in the Amma phase occur at much higher frequencies, around

3600 cm−1 in our calculations, and increase strongly with pressure. These modes

involve stretches along N-H· · ·NH+
4 hydrogen bonds. Another set of modes

increases very strongly from 2700 cm−1 at 40 GPa to 3200 cm−1 at 110 GPa,

and involves stretches along N-H· · ·O2− hydrogen bonds. At the transition to

P 3̄m1 at 110 GPa, with a much simpler mode structure, both sets of vibrational

frequencies decrease, by about 20-80 cm−1, but continue to rise significantly with

further increased pressure. The continuous hardening of the molecular vibrons is

an indication that the intramolecular bonds in the NH+
4 units strengthen under

compression; neither phase shows signs of impending transitions to a network

structure, for instance with symmetric N-H-O or N-H-N bonds.

Electronically, all high-pressure phases, due to charge and/or proton transfer, are

wide-gap insulators. In figure 4.13 we show the evolution of the electronic band

gap as a function of pressure for the most relevant phases. At low pressures, up

to about 100 GPa in some structures, the band gaps increase with pressure; an

effect previously noted in molecular crystals with polar units, where compression

creates competing effects of widening electronic bands and shifts of intramolecular

orbital states [236, 237].
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Figure 4.13 Electronic band gaps for various phases at different pressures, as
obtained from DFT calculations. Shaded line follows the respective
most stable AHH phase at every pressure.
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Figure 4.14 The evolution of the average H-coordination of the oxygen atoms
in AHH as a function of pressure. Above 65 GPa, there are no
more donated hydrogen bonds, as all water/hydroxyl molecules are
completely deprotonated.
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From these ground state calculations, we deduce that compressed AHH goes

through three distinct regimes as pressures are applied beyond the stability

range of the known molecular phase II. Firstly, above 10 GPa, a range of quasi-

cubic, partially ionized structures are stabilized, by 100 meV/f.u. compared

with phase II at 40 GPa, see Figure 4.6 . Subsequently, above 65 GPa, a

sequence of fully ionic structures is stabilized, which feature the unusual motif

of doubly deprotonated water (i.e., O2− anions). These structures benefit from

ionic bonding and high coordination of hydrogen bonds shown in figure 4.14.

Finally, above 500 GPa, separation into the constituents ice and ammonia (which

itself is likely to decompose into other hydronitrogens) becomes favorable. This

general trend is unaffected by an increase in temperature, considered here within

the harmonic approximation. However, zero point energy effects lead to slightly

different stability ranges for each phase, and promote distortions of the CdI2-like

P 3̄m1 phase; the onset of fully ionic phases should occur around 40 GPa at room

temperature. Close to ambient conditions, the formation of molecular ammonia-

water compounds is aided by energetically favorable hydrogen bonds between

the two species [238]. With increased compression, a different factor contributes:

proton transfer, in particular in a 2:1-ammonia:water compound, results in large

stabilization due to ionic interactions and higher packing densities.

Complete deprotonation of water molecules in a compound is an intriguing

chemical motif, and we are not aware of its presence in other hydrous systems.

Water ionization can be achieved through thermal activation, for instance in ice or

ammonia monohydrate, in transitions to superionic phases. In those temperature-

induced transitions, protons are diffusive and free to move through a quasi-static

lattice of the heavy nuclei. The triple points of solid, fluid, and superionic phases

in water and AMH, estimated from simulations, are at (P, T ) = (25 GPa, 1200 K)

and (20 GPa, 800 K), respectively [21, 229]. In AHH, the ionization of water is

achieved through a different mechanism, purely through pV work, and the protons

thus removed from the water molecules are not diffusive but bound in NH+
4 units

instead. Higher pressures (P > 65 GPa) are needed to induce this ionization,

but the resulting molecular units are arguably stronger bound than in the lower

pressure region.

To investigate the high-pressure AHH phases more closely at the conditions

expected in large icy planets, molecular dynamics calculations at elevated

temperatures are required. One interesting question is whether a superionic

region exists in AHH, and if so, how the onset temperature of superionicity is
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affected by (i) the presence of heavy cation and anion species both, and (ii) the

seemingly increased N-H bond strengths in the molecular NH+
4 units as pressure

increases. For ice, ammonia, and ammonia monohydrate, the onset temperatures

of superionicity are calculated to be relatively insensitive to pressure (therefore

also insensitive to the underlying crystal structure) and to occur around 2000,

1000, and 1000 K, respectively.[21, 229, 239] In compressed AHH, the strongly

bound ammonium cations could suggest that relatively high temperatures are

needed to induce proton mobility, which in turn would lead to reduced thermal

and electrical conductivity in any such layer present in planetary interiors. In

chapter 6 we present results AIMD calculations on AHH and other relevant

mixtures.
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4.3 Ammonia Monohydrate

Two low-pressure, low-temperature phases of AMH, AMH-I, and AMH-II, have

been fully resolved. A computational prediction by Griffiths et al. suggests that a

tetragonal ionic phase, (NH4)+(OH)−, becomes more stable than AMH-II above

2.8 GPa [240]. The high-pressure phase evolution of AMH has recently been

studied computationally by Bethkenhagen et al., who aimed to identify relevant

solid phases to be used as initial configurations for molecular dynamics (MD)

simulations [206]. The latter was then used to construct a P − T phase diagram

that studied the onset of superionicity and eventual melting of AMH. A triple

point between solid, fluid, and superionic phases was found around P = 20 GPa

and T = 800 K. The ground state high-pressure phases uncovered in the crystal

structure prediction process proved to be relevant to obtain accurate equations-

of-state data even at high temperatures [206], but the deviation of density and

internal energy from linearly mixing the pure water and ammonia equation-of-

state are at the single percent level [241].

Figure 4.15 The phase diagram of ammonia monohydrate (AMH) taken from
Liu et al [49].
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In AMH, there have been full structural solutions of three solid phases [38, 46,

49, 226, 230], with AMH-III and AMH-IV still unsolved, see figure 4.15 for a

phase diagram in pressure and temperature space. Several density functional

theory (DFT) studies have predicted the stability of ionic ammonium hydroxide

phases, (NH4)+(OH)−, over the molecular (NH3)(H2O) phases, above around

5 GPa [228, 240]. The P4/nmm phase, while predicted to be very stable, has

been difficult to observe in experiments. Only traces of these ionic phases have

been observed experimentally, possibly due to frustration of the transition kinetics

from the DMA phase [49]. Furthermore, using a combination of crystal structure

prediction and molecular dynamics calculations, the phase diagram of AMH

has been explored computationally up to 800 GPa and 6000 K, in the process

establishing a sequence of high-pressure phase transitions at low temperatures,

as well as regions of superionicity (where protons are diffusive but a crystalline

lattice of heavy ions remains) and eventual melting [206].
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Figure 4.16 Relative enthalpies of formation of AMH phases, on a logarithmic
pressure scale and relative to decomposition into NH3 and H2O.
Black circles show the P4/nmm phase reported by Griffiths et al
[240], and gray open symbols are phases suggested by Bethkenhagen
et al.[206].
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Figure 4.17 The P-T phase diagram of AMH constructed using the harmonic
approximation. The dashed line indicates the experimental melting
line,[230] the gray diamond indicates the superionicity triple point
from DFT,[206] and an approximate liquid region is indicated.

In figure 4.16 we show the enthalpies of formation of the known AMH phases,

those proposed by Griffiths et al. and (in gray symbols) by Bethkenhagen et

al., all drawn relative to decomposition into the constituents. Our calculations

confirm the literature findings regarding phase succession and transition pres-

sures: at 3.5 GPa the proposed structure by Griffiths et al. becomes more

stable than AMH-II; at 45 GPa it gives way to an orthorhombic Ima2 phase; at

140 GPa another orthorhombic phase, Pma2, becomes stable; and above 570 GPa

a monoclinic Pm phase is most stable. All of those phases are ionic, of the

form (NH+
4 )(OH−), and represent different arrangements of the ammonium and

hydroxyl groups. However, note from Figure 4.16 that these previously reported

phases become unstable towards decomposition into pure water and ammonia

at pressures above ∼ 120 GPa. This would make AMH, its appealing simple

stoichiometry notwithstanding, much less important inside icy planets’ mantles

than hitherto thought.
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In Figure 4.16 we also include results from our structure searches, listed in table

4.2. These uncovered a sequence of high-pressure phases that are, above 35 GPa,

more stable than those proposed in the literature. Most importantly, these

structures delay the decomposition of AMH into the pure ices to almost 500 GPa

in the ground state.

We find two new phases that are relevant over this large pressure range: a

tetragonal P43 structure from 35 to 140 GPa, and a monoclinic P21/m phase

between 140 and 470 GPa. The P43 phase, like the P4/nmm phases it supersedes,

is an ionic structure that comprises OH− and NH+
4 groups. The hydroxyl groups

in the P43 phase form one-dimensional hydrogen-bonded spirals (see Figure 4.18);

in comparison to the P4/nmm structure, with linear O-H· · ·O-H chains, and

the Ima2 structure, with planar zig-zag O-H· · ·O-H chains, this leads to a

more compact overall arrangement. At 50 GPa, the P43 structure is 2.5% and

0.4% more compact than the P4/nmmm and Ima2 structures, respectively.

The molecular units of P43 are arranged overall in what can be interpreted

as a quasi-BCC layout, as indicated in Figure 4.18. Liu et al simulated quasi

BCC crystals for AMH in figure 4.19 snapshots they presented are shown for

comparison. The P43 structure therefore seems to be an ordered (and ionic)

variant of the DMA phase observed experimentally at high temperatures. A

proper model of the DMA phase would require the analysis of all possible

microscopic configurations in adequate supercells of the DMAs body-centered

cubic heavy atom lattice, and their occupancy at given temperatures to compare

free energies. A recent combined experimental and computational study of AMH-

DMA reported diffractive and spectroscopic properties of low-energy candidates

for this phase from (4,4,4) supercell calculations by Liu et al [49].

At 140 GPa a monoclinic ionic P21/m structure (8 f.u./cell) becomes more stable

than P43 and remains the most stable AMH phase over a large pressure range, up

to 470 GPa. In this phase, protons of hydroxyl groups are positioned close to the

mid-points along O–H–O bonds, and those form one-dimensional chains along the

a axis, see Figure 4.20. These O-H chains are themselves arranged in a matrix of

NH+
4 cations, a structural motif for instance seen in the high-pressure phases of

the alkali hydroxides (Rb,Cs)OH [242, 243]. In half of the O-H chains the O–H–O

connections are symmetric and linear, while in the other half they are asymmetric

and bent, and form hydrogen-bonded (H2O)–O. With increased pressure, the

P21/m phase continuously adopts a higher symmetry P212121 phase with half

as many atoms in the unit cell, and where all O–H–O bonds are symmetric and
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buckled; see Figure 4.20 for their relation. The symmetrization of O-H bonds in

AMH happens at much higher pressures than what is seen e.g. in the transition

of pure ice from molecular ice-VIII to atomic ice-X [41, 244–246].

Above 470 GPa, the P21/m phase is no longer stable with respect to decom-

position into the molecular ices, and we find no other stable AMH phases in

our searches. Note that NH3 itself has been predicted to decompose into other

hydronitrogens above 460 GPa [195], which we have considered here for all

baseline calculations.

Figure 4.18 Crystal structures of the AMH P4nmm [240] and P43 phases at
10 and 50 GPa, respectively. Red (blue, white) spheres denote O
(N, H) atoms, and covalent bonds are indicated. Hydrogen bonds
are shown by bashed black lines. The P43 phase has a quasi-BCC
arrangement highlighted by black lines.

Figure 4.19 Snapshots from BCC AIMD simulations of AMH created by Liu et
al simulating the DIMA phase taken from [49].

We applied the harmonic approximation to obtain estimates of free energies for all

phases by considering vibrational entropies. The resulting P − T phase diagram
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Figure 4.20 Crystal structures of the AMH P21/m, and P212121 phases at 200
and 500 GPa, respectively.

is shown in Figure 4.17. The inclusion of ZPE does not change the stability

range for the phases very much (see figure 4.21), and elevated temperatures also

have a somewhat small effect, as most phase boundaries are almost vertical.

For reference, we include in Figure 4.17 the experimental melting line and a

triple point of the solid, liquid, and superionic phases found in previous DFT

calculations, based on other solid phases [206]. Both reference points should help

put the validity of the harmonic approximation into context: we do not expect it

to provide accurate answers above 1000 K for most of the pressure range studied

here.
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Figure 4.21 AMH phase diagram with ZPE included.

In summary, we find that AMH shows a richer phase diagram than previously
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P (GPa) Space group

30 P4/nmm
50 P43

80 P43

100 P43

200 I212121

300 Pma2
400 Pma2
500 P212121

600 Cc
700 P21

800 Pmc21

900 Pmc21

1000 Pmc21

1500 P1̄
2000 P1̄
3000 P1̄
4000 P21/c
5000 P21/c

Table 4.2 Summary of structure searches with 2-8 f.u. performed for AMH.

assumed. A set of new phases extends the stability of AMH against decomposition

into the ices from∼ 120 GPa (when considering all phases known in the literature)

to 470 GPa. These new phases are a sequence of ionic structures (OH−)·(NH+
4 )

with ever more compact arrangements and eventual formation of one-dimensional

symmetric -[-O–H-]- chains in an ammonium matrix. The molecular vibrons of

phases I and II can be seen to weaken in the Raman and IR spectra shown in

figure 4.22 while the ionic phases come in with strong vibrons becoming stiffer

with pressure. AMH is a strong candidate for ionic stability at high pressure as

the 1:1 ratio naturally forms only ionic units with no molecules left over.
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Figure 4.22 Raman and Infrared spectroscopy for phases of AMH.
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4.4 Ammonia Dihydrate

To complete the survey of known hydrates, we also investigate the high-pressure

structural evolution of ADH compounds. This is the most water-rich ammonia

hydrate known at ambient conditions and closest to the solar abundance ratio of

water and ammonia, and could therefore be of significance at extreme conditions.

Three of its solid phases, including the DMA phase, have been solved [38, 47,

227, 230] with ADH-IV still to be clarified, although its unit cell dimensions have

been reported [247]. A recent DFT study suggested the formation of an ionic

phase, (NH+
4 )(OH−)(H2O), at 12 GPa, stable up to at least 45 GPa [207] and

potential superionicity at elevated temperatures has been investigated. However,

we find the ADH phase diagram to be somewhat richer, see Figure 4.24.

Figure 4.23 The phase diagram of ammonia dihydrate (ADH) taken from
Wilson et al [48]. The dotted dehydration line is where ADH
structures break down into ice and AHH. The dash-dotted line is
the liquidus line for ADH, within this region solid crystals and
coexist with an ammonia-rich fluid in thermodynamics equilibrium.
Dashed arrows refer to experimental pathways taken into the DMA
phase.
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Figure 4.24 Relative enthalpy of formation of ADH phases, on a logarithmic
pressure scale and relative to decomposition into NH3 and H2O.

At low pressures, we find ADH-I to be most stable; it would be superseded by

ADH-II at ∼3 GPa if not for the emergence of an ionic variant of ADH-I. This

phase, which we call ADH-I∗ here, emerges through a proton transfer along a

particular hydrogen bond, HO-H· · ·NH3→ HO· · ·H-NH3, equivalent to that seen

in early calculations on compressed AMH [228] and AHH [248]. The molecular

ADH-II phase has a similar transition to an ionic variant ADH-II∗ above 7 GPa;

see Figure 4.26 for both structures. The ADH-I∗ phase is stable from 1.5 to 5 GPa

in our calculations and displaces the known ADH-II from stability. Above 5 GPa

the recently suggested I41cd phase becomes more stable. That phase, however,

remains only stable up to 10 GPa, where we find a new orthorhombic phase of

Ama2 symmetry to become more stable; and a monoclinic P21/m phase stable

above 60 GPa. The Ama2 and P21/m phases, shown in Figure 4.27, then extend

the stability region of ADH towards decomposition into the ices to over 100 GPa.

However, neither the tetragonal I41cd phase (with Z = 16 molecules per cell) nor

the base-centered orthorhombic Ama2 phase (with Z = 4) match the suggestion

for ADH-IV based on neutron diffraction data (primitive orthorhombic lattice
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Liquid

Figure 4.25 P-T phase diagram obtained from harmonic approximation, also
including the experimental melting line,[44] the computationally
predicted I41cd phase and onset of superionicity,[207] and a
tentative sketch of the liquid region.

Figure 4.26 Ionic structures ADH-I∗ at 3 GPa (left) and ADH-II∗ at 12 GPa
(right), derived by proton transfer from molecular ADH-I and
ADH-II, respectively.
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with Z = 8) [247]. A triple point is observed in the finite-temperature phase

diagram shown in figure 4.25, however, this lies above the current experimental

melting line.

Figure 4.27 Left: crystal structure of the half-ionic ADH I41cd phase at
10 GPa. Top right: newly predicted Ama2 phase at 20 GPa.
Bottom right: the high-pressure P21/m phase at 60 GPa. In all
phases, local body-centered features are highlighted.

In line with the other hydrates discussed above, ionization of water molecules

becomes preferable under pressure, and the ADH-I∗, I41cd, Ama2, and P21/m

phases all can be seen as (OH−)(NH+
4 )(H2O). The latter three all arrange in

seemingly layered structures, see Figure 4.27: along the c axis, they feature

alternate layers of NH+
4 , H2O, and OH−. Overall, this optimizes ionic interactions,

as the ionic components NH+
4 and OH− are adjacent, while the water dipole

moments are aligned along the local electric field established by adjacent

ammonium and hydroxyl layers. In addition, all structures are fully hydrogen
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P (GPa) Space group

30 P212121

50 Ama2
80 Pna21

100 P1
200 P212121

300 P1
400 P21/m
600 Pc
800 Abm2
1000 Pc
2000 Cc
3000 Pc
4000 Pc
5000 P212121

Table 4.3 Summary of structure searches with 2-8 f.u. performed for ADH.

bonded: all NH+
4 groups donate four hydrogen bonds; all water molecules donate

and accept two bonds, respectively; and all OH− groups donate one hydrogen

bond and accept four. These favorable electrostatic interactions, together with

a more compact arrangement, outweigh the energetic cost of the proton transfer

compared to the molecular phases ADH-I and -II, and stabilize these phases over

ADH-I∗ as well; at 20 GPa, the relative volume collapse from ADH-I∗ and from

I41cd to Ama2 is 7.3% and 4.5%, respectively.

Eventually, however, and at much lower pressures than for the other two hydrates,

ADH becomes unstable towards decomposition into the ices. The Raman and IR

spectra for ADH shown in figure 4.29 shows the high pressure phases, Ama2

onward, have weakening or flat modes with only a few strengthening in pressure.

This decomposition is predicted to happen around the pressure where (in ground

state calculations) atomic ice-X becomes more stable than molecular ice-VIII.

The inclusion of zero point energy, shown in figure 4.28, maintains the phase

sequence as the enthalpic picture but decreases the transition pressure.
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Figure 4.28 ADH phase diagram with ZPE included.
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Figure 4.29 Raman and Infrared spectroscopy for phases of ADH.
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4.5 Concluding Remarks

In this chapter, we have seen the three known hydrates go from molecular to

semi-ionic to as fully-ionic as possible under compression. Many structures have

been optimized in total, with some beautiful and some not so beautiful crystals

as a result. Structure searching has revealed from new arrangements for water

not previously known for AHH with fully deprotonated O2− anion over roughly

40 GPa. In AMH we have revised the phase diagram and extended the stability

due to decomposition into the constituent ices. In ADH we found some further

high pressure phases, building on previous work. Surprisingly semi-ionic forms of

ADH phases I and II were stable at very low pressures, and this is the hydrate

closest to the cosmic abundance ratio.

In an elegant way, quasi-BCC structures have emerged in all the hydrates here,

AMH, ADH, and AHH within the pressure range where the DMA/DIMA has

been observed experimentally. This suggests that the searching is working well,

but the potential surface may have many quasi-BCC phases with similar energies.

It is possible that some of these quasi-BCC structures are the ground state for the

given hydrate, but there is difficulty in experiment accessing these as suggested

by Liu et al [49]. Overall at the highest pressures of 500 GPa both AMH and

AHH become unstable, ADH at 100 GPa before this, and perhaps all ammonia

water mixtures are unstable beyond this pressure. The convex hull at 300 GPa

for different mixing ratios shows that AHH remains dominant at high pressure.

At other pressures this remains unknown and we shall investigate this in the

following chapter.

Cosmic abundance ratios for ammonia:water is approximately 1:7, quite far

removed from the 2:1 compound considered here. However, AHH is relevant

at relatively low pressures, where it appears in the phase diagrams of both of the

other known stoichiometric compounds: both are more water-rich than AHH,

but decompose into AHH-II and pure ice at appropriate pressure-temperature

conditions. AHH is also very relevant at high pressures, and not just compared

to the known AMH and ADH compositions: at 300 GPa, we find in an extensive

structure search across all (NH3)x(H2O)1−x compounds (ranging from x = 1/6 to

x = 5/6) that, besides the pure ices, only AHH is stable against decomposition,

see the convex hull plot in figure 4.5. It is therefore conceivable that AHH, driven

by its ability to form completely ionic phases, precipitates out of any ammonia-

water mixture under high-pressure conditions. At 300 GPa in our calculations,
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AHH-P 3̄m1 has a density of 3.50 g/cm3, which is 16% lighter than the most stable

ice phase at the same pressure (Pbcm symmetry, 4.17 g/cm3). Thus, compressed

water-rich ammonia-water mixtures in a planetary environment (e.g. in a 1:7

ratio or similar) could segregate into a layer of ammonia-rich ionic AHH solution

above an ocean of pure water ice. The enthalpic gain achieved in this separation

will need to compete with the entropy of mixing of the homogeneous mixture.

Another consequence of the prolonged stability of AHH under pressure is

that ammonia reservoirs should always form compounds with water, at least

until 450 GPa where it is predicted to decompose. Unless an icy planet’s

ammonia:water ratio is larger than 2:1, which is unlikely due to cosmic

observations, ammonia will be unlikely to exist on its own up to pressures around

500 GPa, where we see demixing to become favourable.
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Chapter 5

Comparative study of Ammonia

Water Mixtures

So far, we have discussed the individual hydrates, and mostly probed their

stability against decomposition into the constituent ices. However, other reactions

can and must be considered – some are already known from experimental

studies: both molecular AMH and ADH decompose into AHH-II and excess ice-

VII/VIII. Other reactions are possible; for instance, AMH could decompose into

a combination of a water-rich (such as ADH) and an ammonia-rich hydrate (such

as AHH). Likewise, AHH could decompose into a more water-rich hydrate and

an appropriate amount of pure ammonia. Cataloging all those reactions could

be done by hand, but also summarized very succinctly in a convex hull diagram.

There, we plot the relative enthalpy of formation for an arbitrary hydrate AXH,

which shall be (H2O)1−x(NH3)x, against the relative ammonia content x:

∆Hf (x) = Hf (AXH)− (1− x)Hf (H2O)− xHf (NH3) (5.1)

By construction, the compound whose enthalpies form the convex hull of ∆Hf (x)

are stable against decomposition into any other binary mixture of ammonia and

water, at the given external pressure conditions. While so far we only considered

x = 1/3, 1/2, and 2/3, ammonia hydrates could in principle take up any other

composition. We therefore performed crystal structure searches with Calypso

across the entire binary H2O–NH3 phase diagram, at 50, 100, and 300 GPa. Those

pressures were chosen to correspond to the emergence of (half-)ionic phases across

all hydrates, the predicted destabilization of ADH, and the region of stability of
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fully ionic phases in AHH, respectively.
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Figure 5.1 Ammonia-water phases found in crystal structure searches, with up
to 50 structures shown for each composition. From top: structure
search results for ∆Hf (x) at 50, 100, and 300 GPa. The Solar ratio
of 7:1 water:ammonia is indicated by the blue cross.

In Figure 5.1, we show the primary outcomes of these structure searches. It

becomes clear immediately that the discussion so far, concentrating on individual

hydrates, is insufficient. For instance, at 100 GPa, all three known hydrates have

negative enthalpies of formation (∆Hf < 0 for their respective best structures),

but only AHH (x = 2/3) is part of the convex hull. At 50 GPa, AMH

(x = 1/2) is present on the convex hull, while ADH and AHH are very close but

technically metastable. Taking the most relevant phases for each composition
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from these search results and optimizing them across the entire pressure range,

we then constructed convex hulls on a much denser sequence of pressure points.

This allows us to predict the formation and decomposition conditions for each

individual compound with much higher precision, and those results will be

discussed in detail in the next subsection.

A very intriguing feature of Figure 5.1 is, however, the emergence of a new

ammonia-rich hydrate phase at x = 0.8: a 4:1 ammonia quarterhydrate

(NH3)4(H2O) (AQH from here on), found initially at 100 GPa, is predicted to

become more stable than the constituent ices above 8.5 GPa. A representative

structure of this compound is shown in Figure 5.2.
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5.1 New Ammonia-rich Hydrate Under Pressure:

AQH

AQH is first stabilised against decomposition into the ices in a partially ionic

monoclinic P21 phase, see Figure 5.2. This phase contains NH3, NH+
4 , and OH−

units, with the heavy N and O atoms arranged in a face centered tetragonal

setup. Above 25 GPa, we find another monoclinic phase, P21/m that, like AHH

phases in a similar pressure range, features fully deprotonated water molecules –

effectively forming a (NH+
4 )2(NH3)2O2− compound.
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Figure 5.2 Left: the I4/m structure of AQH at 100 GPa. Right: relative
formation enthalpies of AQH phases as a function of pressure
against the constituent ices; inset shows covalent and hydrogen-
bonded N-H separations in N2H+

7 .

P (GPa) Space group

10 P21

50 P21/m
100 I4/m
200 I4/m
300 I4/m
400 I4

Table 5.1 Summary of structure searches with 2-8 f.u. performed for AQH.

The ammonium and ammonia molecules are hydrogen-bonded as H3N-H+ · · ·NH3.

As in the fully ionic AHH phases, the spherically symmetric oxygen anion can

act as a very efficient hydrogen-bond acceptor: in the P21/m phase of AQH,

each oxygen atom accepts 12 hydrogen bonds from NH3/NH4 units. With
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increased pressure, the ammonia-ammonium hydrogen bonds symmetrize; we

find this transition to occur just above 60 GPa. Above this pressure, AQH

contains symmetric N2H+
7 cations with a proton at the mid-point between two

NH3 molecules, thus forming a H3N–H–NH3 unit. Now in a higher symmetry

tetragonal I4/m structure, the N2H+
7 cations are stacked above each other along

the c axis, but rotated by 90◦ to minimize steric repulsion and maximise hydrogen

bonding to the oxygen anions, see Figure 5.2. Within the ab plane, the cations

are in a herringbone arrangement for the same reason. The high hydrogen-bond

coordinations of the oxygen atoms remain.

Figure 5.3 P − T phase diagram obtained using the harmonic approximation.
The transition P21/m→ I4/m is shaded.

The N2H+
7 cation has not been seen before in any ammonia hydrates, but forms

as part of the ammonia adduct of ammonium iodide, NH4I·NH3 [249–251]. Very

recently this unit has appeared in another in the study of high pressure ammonia

hydrides [252]. At ambient conditions, the cation is in the symmetry-broken H3N-
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H+ · · ·NH3 state, and takes up a rotationally disordered position in a CsCl-like

structure, together with the counterion I−. In AQH, there are twice as many

cations as O2− anions, and the structure deviates from a simple ionic structure

to optimize packing of the non-spherical N2H+
7 cations under compression.

With increased pressure, we find a sequence of symmetry-reductions to lower the

enthalpy of AQH with respect to the I4/m structure. Retaining the same ionic

building blocks, two monoclinic P 1̄ and P1 phases are stable between 200 and

300 GPa. At 300 GPa, decomposition into the ices becomes favourable again,

see Figure 5.2. The P-T phase diagram from harmonic free energies is shown

in Figure 5.3. The structural sequence is unaffected by vibrational effects, but

decomposition into the ices is predicted to occur slightly earlier than in the ground

state, around 240 GPa at low temperatures.
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Figure 5.4 Proton transfer energy landscape for linearly interpolating the
P21/m → I4/m → P21/m structures, and barrier heights as a
function of pressure to estimate the energy barrier of hydrogen bond
symmetrization in the H3N–H–NH3 units.
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We investigated the barriers towards the formation of the symmetric N2H+
7 cation

by monitoring the covalent and hydrogen-bonded N–H separations in the low-

pressure P21/m phase (see inset in Figure 5.2) and by modelling the barrier of

interconversion of H3N–H· · ·NH3 to H3N· · ·H–NH3 (see Figure 5.4). The N–H

separations in the P21/m structure equalize between 60 and 70 GPa. Likewise,

the barrier of proton hopping along the hydrogen bond becomes negligibly

small at 60 GPa. Nuclear quantum effects have the potential to lower such

symmetrization barriers, as seen in ice and hydrous minerals [253, 254], and it is

thus conceivable that AQH could be stabilised with symmetric N2H+
7 cations at

50 GPa or below. The Raman and infrared spectra is shown in figure 5.5 where

modes for P21/m can be seen softening as this symmetrization takes place, and

then going to rise again once the I4/m structure has been reached.
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Figure 5.5 Infrared and Raman active modes calculated for AQH phases as a
function of pressure.
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5.2 Comparative Energetics of Ammonia Hydrates
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Figure 5.6 Phase stability ranges for binary ammonia-water mixtures as a
function of pressure, for the ground state (left) and at T =
300 K (right). Stable compounds are labelled by commonly used
numerals or space groups, black lines signify phase transitions. For
pure ammonia, the gray region denotes decomposition into NH4

and N3H7. Thin lines denote pressure regions where a phase is
metastable (here defined as 5 meV/molecule above the convex hull).

By analyzing the information on individual compounds from the previous

subsections as accumulated in the convex hull diagrams across the entire pressure

regime, we can obtain individual stability ranges for all ammonia-water mixtures

under pressure that consider every possible decomposition reaction. Those

stability ranges are displayed in Figure 5.6, where we show both ground state

and room temperature results. The latter include lattice vibrational entropic

effects within the harmonic approximation, applied to all compounds. In both

cases, coloured bars correspond to regions of stability of the various mixtures.

Their endpoints (or intermediate gaps) signal that a specific mixture becomes

unstable against one or more decomposition reactions, which we discuss below

for every mixture involved.

In the ground state, we find AMH to be stable from P = 1 atm up to 85 GPa. The

transition from AMH-I to AMH-II, in experiment seen around 0.5 GPa, happens

in our calculations at 2.5 GPa. Above 85 GPa AMH decomposes into the highly

stable ionic AHH phases and ice. The stability range of AMH is thus much smaller

than if only the constituent ices are considered – Figure 4.16 would suggest that

AMH is stable (in a sequence of new phases) up to 470 GPa; but the highly stable
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ionic AHH phases make a decomposition into AHH and pure ice favorable above

85 GPa. Based on room temperature free energies, we predict that AMH should

decompose at even smaller pressures, around 60 GPa. For the other hydrates, we

find similar stability constraints due to non-trivial decomposition reactions.

We find ADH to be initially unstable, but stable in the region P = 0.5 . . . 6.6 GPa,

and P = 17.2 . . . 48.5 GPa. Due to the emergence of half-ionic ADH-I*, the

experimentally known phase ADH-II does not appear in our calculated phase

diagrams. In the intermediate pressure region, and also above its maximum

point of stability, ADH is found unstable against decomposition into AMH and

ice. This agrees with experiment, which finds a strongly temperature dependent

decomposition of ADH-IV into AMH and ice at pressures 2.5-6.5 GPa [255].

However, experiments find the ADH-DMA phase (which we do not model here)

at pressures above 6.5 GPa [44, 47], which marks a re-entrant stability of ADH at

high pressures. The newly found Ama2 phase represents such a re-entrant region

of stability for ADH and is responsible in our calculations for an extension of

ADH stability to almost 50 GPa.

AHH is found stable at P = 1.5 . . . 3.5 GPa in the ground state and again from

P = 79 . . . 540 GPa, where decomposition into the ices eventually takes place.

Here, the intermediate pressure instability is also due to the decomposition into

AMH and ice. While AHH-I is correctly found stable, the high-pressure phase

AHH-II does also not appear on the phase diagrams. In fact, we find both ADH

and AHH unstable in certain regions of the phase diagram (at 6.6–17.2 GPa and

3.5–79 GPa) where neither has been found in experiment to decompose.

While these discrepancies could in part be due to our calculations not including

satisfactory structural models for some of the phases relevant in these pressure

regions (such as ADH-IV and ADH-DMA) we also find that calculated regions

of instability are considerably smaller when considering room temperature free

energies (12.5–17 GPa and 3–24 GPa). This suggests that the ionic P4/nmm-

AMH structure is energetically very stable in the ground state (leading to

spurious metastability of both ADH and AHH), but not so dominant at elevated

temperatures. Note that we have not considered anharmonic corrections to the

phonon frequencies in this work. Proton transfers are responsible for several of

the new ammonia hydrate phases, and the vibrational properties of the different

chemical species thus created might have different anharmonic correction terms.

The anharmonicity of the O–H and N–H stretch modes most notably could lead

to different ZPE terms and free energies that affect the relative stability of the
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Figure 5.7 Phase stability ranges for binary ammonia-water mixtures as
a function of pressure, for the different exchange-correlation
functionals indicated along the y-axis. Stable compounds are labeled
by commonly used numerals or space groups, black lines signify phase
transitions.
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half- or fully ionic phases [256, 257]. That said, it is also possible that low-

temperature compression experiments on ADH and AHH might fail to overcome

kinetic barriers towards decomposition into AMH and ice, just like compressed

AMH itself might be unable to convert to the P4/nmm phase [49].

The new AQH phase is stable in the ground state from 25.5 . . . 198 GPa. At

either end of this pressure range, a decomposition into AHH and NH3 is more

stable than AQH. Like AHH, the AQH structures across their stability range

benefit from strong ionic interactions and high coordination upon the formation

of the unusual N2H+
7 cation. It seems plausible that AQH can be formed in a

high-pressure synthesis reaction of a 2:1 molar mixture of pure ammonia and

AHH.

The discrepancies between our calculations and the experimental phase diagrams

for both ADH and AHH hydrates in the low-pressure regions might also be

contributed to by the semilocal exchange-correlation functional that has been

argued to overstabilize ionic structures [240]. This could lead to spurious

stabilisation of ADH-I∗ over ADH-II, and of AMH-P4/nmm over both ADH and

AHH. However, the relative stabilities of the different hydrates are qualitatively

unaffected for various other exchange-correlation functionals; in figure 5.7 we

show phase diagrams equivalent to Figure 5.6 obtained from the LDA functional

as well as from dispersion-corrections of the Grimme (D2), Tkatchenko-Scheffler

(TS), and many-body dispersion (MBD) type [87, 89, 90]. While the density-

based dispersion corrections of the vdW-DF2 type (e.g., in the form of revPBE-

vdW2) and the meta-GGA SCAN functional have been shown to give very good

results for the high-pressure phase sequence of molecular ices [258–260], it is not

clear whether this also applies to other molecules and mixtures such as those

studied here. For hydrogen hydrates, the PBE functional returns more accurate

phase stabilities than dispersion corrections of the vdW-DF type, [261, 262], while

for noble gas hydrates it shows less overbinding than any dispersion-corrected

functional [263]. At pressures beyond the molecular phases (from 10’s to 100’s

of GPa, as considered here) the semilocal description of PBE should become

even more appropriate, as electron densities tend to become more uniform [264],

and non-bonded interactions become very similar amongst competing quasi-close-

packed structures [265].
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5.3 Equations of State

The equations of state for the four mixtures that were found stable, as well their

constituent components of water and ammonia are shown in figure 5.8. Dashed

lines refer to the linear mixing ratio of H2O–NH3 under compression. It is likely

that the most stable phases lie further below the separately linearly interpolated

volume.
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Figure 5.8 Equations of state for the ammonia - water ice system, including
all mixtures discussed in this work. Top are the equations of state
on a linear (top left) and logarithmic scale (top right), as well as
the linear mixing ratio volume for each mixture. Below we show the
deviations from the linear mixing ratio on linear (bottom left) and
logarithmic (bottom right) scales.

However, when plotting the differences from the linear mixing ratio in figure 5.8, it

is seen that this is only true below 100 GPa. This is perhaps due to the formation

of ice-X and NH3 forming ionic crystals and so the competing constituent ices
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are much denser from here on. This implies that the stability of the hydrates

beyond 100 GPa is due to U , the internal energy. This is consistent with all

phases benefiting from ionic bonding under pressure which we explore further in

the next section. All mixtures deviate mildly from the linear mixing ratio over the

pressure range. For a liquid, these lines would be smoother, as crystals restrict

degrees of freedom and lead to sudden discontinuous volume changes on phases

transitions. It is likely that the deviations from the linear mixing would be within

1 percent for the liquid system.
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5.4 Ionic Motifs Under Pressure
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Figure 5.9 Nearest-neighbor O–H (top) and N–H (bottom) separations across all
ammonia hydrates and ices, in their respective most stable ground
state phase as a function of pressure.

Across all phases, ionization emerges as a clear pathway towards stability

with increased pressure. All newly presented phases in the known hydrate

stoichiometries, as well as the new ammonia quarterhydrate, benefit from proton

transfer from water to ammonia. If the overall composition permits, water

molecules tend to be fully deprotonated and the hydrates then comprise ionic

motifs of the form O2−·(NH+
4 )2 or O2−·(N2H+

7 )2 that are supported by copious

hydrogen bonding. The cationic molecular units are very stable; none are

predicted to undergo changes until the hydrates themselves decompose. In all

cases, electrostatic contributions and more compact packing outweigh the energy

cost of the ionization reactions. In Figure 5.9 we visualize the nearest-neighbor O–

H and N–H separations across all relevant compounds as a function of pressure.

The graphs are jagged because of internal phase transitions, but both trends

and distinct changes in chemistry can be identified. The shortest O–H and N–

H separations usually form covalent bonds that are quite incompressible and

relatively independent of the particular structure. However, overall the N–H

bonds tend to shorten with pressure, while the O–H bonds tend to remain

constant or even lengthen; a sign of weakening of covalent O–H bonds under

pressure. Very prominent rapid increases in RO−H are visible at the onset of ice-
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X in H2O at 100 GPa; and the onset of fully ionic AHH and AQH phases around

30 and 70 GPa, respectively. All three events share the complete disintegration of

the water molecule; in the hydrates, they signal the formation of hydronitrogen

cations. At higher pressures, overall compression will shorten RO−H again. The

most prominent jump in RN−H (much smaller in magnitude) is the appearance of

the ionic P4/nmm phase in AMH at 4 GPa, and signals that the covalent bonds

in NH+
4 are longer than in NH3.

Figure 5.10 Binding energies of water-ammonia dimers and trimers from
PBE calculations, relative to neutral gas phase molecules, and
normalized per hydrogen bond. Blue solid line: HOH· · ·NH3; green
dashed line: H3NH· · ·OH; purple dotted line: H3NH· · ·O· · ·HNH3.
Geometries are shown as insets.

To further rationalize the successive deprotonation of water molecules in these

hydrates under pressure we performed molecular calculations on selected water-

ammonia dimers and trimers, using the Gaussian09 software package and aug-

cc-pVTZ basis sets [266, 267]. In the gas phase (at large distances), the proton

transfer reaction H2O + NH3 → OH− + NH+
4 is endothermic by about 8 eV,

and the second proton transfer, resulting in O2− + 2NH+
4 , costs another 16 eV.

However, electrostatic attraction largely makes up for this cost. As can be

seen in Figure 5.10, the minima of the potential energies of H3NH· · ·OH and

H3NH· · ·O· · ·HNH3 are only 1.4 and 1.9 eV per hydrogen bond above the

minimum of the neutral hydrogen-bonded HOH· · ·NH3 dimer. These metastable

minima occur at smaller RN−O separations than the most stable minimum but,

crucially, these ionised structures have lower energies than the neutral dimer at

small separations. Ultimately, at the smallest separation and along the repulsive

part of the potential energy surface, fully de-protonated water is the most stable
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configuration. While these simple models can not fully explain the behaviour

of extended phases, where mutual coordination and other energy contributions

are significant, they corroborate the behaviour seen in the compressed ammonia

hydrates.
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Figure 5.11 Interaction potential energy surfaces for dimer and trimer
setups taken from ammonia water crystals or the lowest energy
representation calculated at different levels of theory.

Other dimer setups found in ammonia-water crystals were also calculated and the

potential energy surfaces are shown in figure 5.11. There are 4 different molecular

dimers, and then 4 corresponding ionic dimers, however only combinations of

ammonia and water were chosen for ionic dimers. Trimers of NH3· · ·H2O· · ·NH3

and NH+
4 · · ·O2−· · ·NH+

4 were calculated due their occurrence at high pressure

where ammonia-rich hydrates are stabilized by O2− anions. Problems were

encountered for ionic calculations combined with MP2 and CCSD(T). Here

the minima were calculated correctly, but at greater, separation the calculated

potential has maxima and turns over, seen in figure 5.11.
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Figure 5.12 Isosurfaces of the electron localisation function (ELF=0.7) in
ammonia hydrates, together with cross sections from ELF=0.7
(blue) to ELF=1.0 (red). (a) AMH-P4/nmm at 10 GPa, (b)
AMH-P43 at 100 GPa, (c) AHH-P 3̄m1 at 200 GPa, (d) AQH-
I4/m at 100 GPa. All structures drawn to the same scale.
Hydrogen bonds are indicated by dashed lines.

The chemical interpretations, based so far on geometrical arguments and

suggestive drawing of bonds, are corroborated by topological real-space analyses

of the electronic charge density and the electron localization function (ELF)

[140, 268, 269]. These real-space scalar fields are obtained with the VASP code

in conjunction with hard projector-augmented wave (PAW) frozen core data sets

[270, 271]. In Figure 5.12 we show ELF isosurfaces and cross sections for some

of the most relevant structures across the different hydrates. These support

the interpretation of the various atomic and ionic molecular units discussed so

far: AMH structures feature localised OH− and NH+
4 groups; AHH and AQH

feature near-spherical isolated oxygen anions and counterions NH+
4 and N2H+

7 ,

respectively.
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Structure nbasin b.i.p ELF Partial charges
AMH-P4/nmm V(N,H8i) 2.066 N-H8i · • ·O 0.244 q(NH4) +0.736
(10 GPa) V(O,H2c) 1.643 dH=0.539 dO=1.136 q(OH) -0.736

V(O) 6.093
O-H2c · • ·O 0.053
dH=0.766 dO=1.312

AMH-P43 V(N,H1) 2.092 N-H1 · • ·O 0.315 q(NH4) +0.683
(100 GPa) V(N,H2) 2.091 dH=0.456 dO= 1.011 q(OH) -0.683

V(N,H4) 2.072 N-H2 · • ·O 0.353
V(N,H5) 2.062 dH=0.438 dO= 0.994
V(O,H3) 1.593 N-H4 · • ·O 0.351

V(O) 6.090 dH=0.437 dO=0.994
N-H5 · • ·O 0.278
dH=0.462 dO=0.997

O-H3 · • ·O 0.507
dH=0.371 dO=0.955

AHH-P 3̄m1 V(N,H2d) 1.987 N-H6i · • ·O 0.487 q(NH4) +0.650
(200 GPa) V(N,H6i) 2.121 dH=0.365 dO= 0.912 q(O) -1.299

V(O) 7.299
N-H2d · • ·N 0.314
dH=0.454 dN=0.954

AQH-I4/m V(N,H4c) 2.032 N− • −H4c 0.848 q(N2H7) +0.655
(100 GPa) V(N,H16i) 1.999 dN=0.906 dH=0.305 q(O) -1.309

V(N,H8h) 1.899 N-H16i · • ·O 0.267
V(H4c) 0.422 dH=0.506 dO=1.053
V(O) 1.309 N-H8h · • ·O 0.221

dH=0.548 dH=1.089

Table 5.2 Valence charge density analysis of ammonia hydrates based on the
ELF partitioning of space. nbasin is total valence charge in each ELF
basin; b.i.p.’s as sketched are characterised by their distances d to
nearest atoms, and their ELF value; and partial charges q are summed
up for the subunits discussed in the text.

A quantitative analysis of the same data is summarised in Table 5.2, this analysis

was performed by Dr. Miriam Marqués at the University of Edinburgh using the

Critic code [141]. The topological analysis first identifies the critical points of

the charge density and ELF scalar fields, i.e., points where their gradients vanish

[269]. These are then classified as maxima, first- or second-order saddle points,

or minima. The unit cell is unambiguously partitioned into topological atoms,

defined by the union of the electron density maxima with their attraction basins

and delimited by zero-flux surfaces. The density maxima are usually located

at the nuclei, while the first-order saddle points (denoted bond critical points,

132



b.c.p.) usually correspond to chemical bonds, within the quantum theory of

atoms in molecules [234, 272]. The electron density and its Laplacian at the

b.c.p.’s can be used to characterize the bond strengths and their character. An

equivalent partition of space based on the ELF also yields non-overlapping, space-

filling basins with well-defined chemical interpretations: atomic shells, covalent

bonds, and lone pairs. By definition, ELF is a relative measure of the electron

localization with respect to the homogeneous electron gas (HEG) and its values

are bound between 0 and 1.0, with 0.5 the value of the HEG. ELF commonly

exhibits maxima and, in general, approaches 1.0 in the regions of space where

electron pairing occurs.

We studied here not only the distribution of ELF maxima but also its first-

order saddle points (called bond interaction points, b.i.p.), which can be used

to establish connectivity between ELF basins and to characterize the chemical

bonding. We also integrate the valence electron charge density over the distinct

ELF basins of the hydrates’ unit cells. This gives an effective charge associated

with each ELF maximum, and thus partial charges associated with the different

molecular subunits. Bonding between these units is analysed in terms of the

b.i.p.’s: their locations and ELF values allow clear distinctions between covalent

and hydrogen bonds present in these systems.

From Table 5.2 we first see that the covalent N–H and O–H bonds (where present)

hold roughly 2.0 and 1.6 electrons each; the respective interpretations as NH4 and

OH units are justified. The partial charges on NH4 (+0.65· · · 0.74 electrons) and

N2H7 (+0.655) are consistent with a +1 formal charge (in NaCl the same analysis

yields ±0.85 electrons per ion). Likewise, partial charges on OH (-0.68· · · 0.74

electrons) and O (-1.3 electrons) are consistent with formal charges -1 and -2,

respectively. The dashed lines shown e.g. in Figure 5.12 all have b.i.p.’s along

the respective (O/N)-H· · · (O/N) connections but these have very low ELF values,

between 0.05 and 0.5; this is consistent with their interpretation as hydrogen

bonds.

The strength of the hydrogen bonds is, in fact, determined by these ELF values,

or, more precisely, by the difference between the ELF value at the b.i.p. separating

core and valence of the proton donor AH (typically lower than 0.2) and the

ELF value at the hydrogen bond interaction point defined as the b.i.p. linking

the proton donor V(A,H) and proton acceptor V(B). A positive value for this

difference, also called the core-valence bifurcation index, corresponds to weak

hydrogen bonds, whereas negative values for this difference characterize medium
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and strong hydrogen bonds [273, 274]. An extreme case appears on the N2H7

subunit, where the central H atom has its own detached monosynaptic basin

with a population of 0.42 e− and is strongly connected to the N atoms either side

(ELF=0.848 at the b.i.p.). Therefore, this symmetrical very strong hydrogen

bond can be considered as a true chemical bond. A similar bonding image

has been found in ice X along the O-H-O line [245]. A Bader analysis, based

purely on the topology of the electron density, gives the same results shown

in table 5.3: partial charges on the different subunits are consistent with their

formal charges stated throughout; strong covalent bonds exist within the subunits

(with high densities, strongly negative Laplacians at the bond points), and they

are connected by multiple hydrogen bonds (with low densities, weakly positive

Laplacians at the bond points).
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nbasin b.c.p. ρ ∇2ρ Partial charges
AMH-P4/nmm H8i 0.5169 H8i-N 0.3138 -2.0817 q(NH4) +0.6985

V(N) 6.2341 dH=0.2593 dN=0.7969 q(OH) -0.6985
V(O) 7.6985 H8i-O 0.055 0.1159

dH=0.5485 dO=1.1211
H2c-O 0.0182 0.0701

dH=0.7686 dO=1.3094
AMH-P43 H1 0.4709 H1-N 0.34666 -2.3302 q(NH4) +0.6765

H2 0.4855 dH=0.2280 dN=0.79427 q(OH) -0.6765
H4 0.4756 H1-O 0.0930 0.2206
H5 0.5115 dH=0.4627 dO=0.9996

V(N) 6.3800 H2-O 0.1025 0.2291
V(O) 7.3479 dH=0.0.4429 dO=0.9810

H4-O 0.0994 0.2324
dH=0.4432 dO=0.9811

H5-O 0.0877 0.2494
dH=0.4648 dO=0.9897

H3-O 0.1328 0.0197
dH=0.3825 dO=0.9424

AHH-P 3̄m1 H6i 0.4850 H6i-O 0.1513 0.2245 q(NH4) 0.6337
V(O) 7.2674 dH=0.3727 dO=0.6766 q(O) -1.2674
V(N) 6.9114 H2d-N 0.1044 0.3113

dH=0.4570 dO=0.9506
AQH-I4/m H4c 0.5015 H4c-N 0.2028 -0.5230 q(N2H7) +0.6498

H16i 0.5666 dH=0.3288 dN=0.8823 q(O) -1.2997
H8h 0.5788 H16i-O 0.0761 0.1986

V(N) 6.2124 dH=0.5093 dO=1.0486
V(O) 7.2996 H8h-O 0.0655 0.1720

dH=0.5502 dO=1.0816

Table 5.3 Bader QTAIM analysis for ammonia hydrates. nbasin denotes
valence charge density integrated in each basin. Bond critical points
(b.c.p.’s) are sketched out and characterised by their charge density ρ,
Laplacian ∇2ρ, and separation from nearest atoms. Partial charges
q for the different subunits come from sums of nbasin as appropriate.
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5.5 Conclusions

In summary, we have presented here a comprehensive computational study across

the binary composition range of ammonia-water mixtures, as a function of

compression. Chapter 4 highlighted a series of new phases stable in ammonia

monohydrate, AMH, that were not considered before; presented a similar series

of phases in ammonia hemihydrate, AHH, that are fully ionic solids; and

suggest a sequence of new high-pressure phases for ammonia dihydrate, ADH. By

sampling arbitrary binary ammonia-water mixtures we predict a new ammonia-

rich compound, ammonia quarterhydrate or AQH, to become stable in an

experimentally accessible pressure range. AQH features the unusual N2H+
7 cation

above 60 GPa.

Compounds, where proton transfer from water to ammonia is limited by the

number of acceptor ammonia molecules (ADH and AMH), are found to be stable

only up to moderate pressures, about 1 Mbar, whereas compounds that allow full

deprotonation of water (AHH and AQH) are stable to much higher pressures. The

latter compounds feature cationic hydronitrogens, NH+
4 and N2H+

7 , that persist

until the respective hydrates are predicted to decompose completely. Mixtures

of ammonia and water thus choose a unique chemical response to compression:

they combine water’s propensity to give up its protons with ammonia’s tendency

to form ionized hydrogen-bonded structures.

We have shown that it is insufficient to study the phase transformations of

individual hydrates, as their respective stability is mostly limited by decom-

position into combinations of other hydrates, and not the constituent ices. By

considering all these decomposition reactions, and finite temperature effects at the

harmonic level, we were able to construct the full phase diagram of all ammonia

hydrates at specific pressure and temperature conditions. Those findings are

qualitatively unaffected by our choice of exchange-correlation functional.This

phase diagram shows reasonable agreement with experiment regarding stabilities,

phase transitions, and decomposition reactions amongst molecular hydrate phases

at low pressures, even though the roles of DMA phases and unresolved hydrate

structures such as AMH-IV and ADH-IV should be explored further.

At high pressures, the formation of fully ionic solids will have consequences for

the finite temperature behavior of these phases. If strongly bound molecular

cation motifs persist up to high pressures, partial melting of the mixtures (e.g.
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the formation of superionic phases) might be shifted to higher temperatures, or

even replaced by the formation of ionic liquids upon melting. This, in turn, will

influence thermal and electric conductivities of any such mixture along icy planet

isentropes. Testing these assumptions is the focus of the next chapter.

The trend that emerges here with pressure, towards the formation of ammonia-

rich hydrates, is intriguing, as it runs counter to the cosmic abundance ratio of

ammonia and water. It could suggest that all ammonia-water mixtures separate

into water ice and ammonia-rich hydrates under sufficient compression. The latter

would always be less gravimetrically dense than pure water ice and could therefore

contribute to more complex inner structures in the mantles of icy planets than

hitherto considered. Now we have considered the T = 0 K phase diagram for

the ammonia water mixtures we can proceed from their stability to their finite

temperature properties. In the next chapter, we will build from these stable

phases and perform ab initio molecular dynamics simulations to assess the finite-

temperature phase diagram of the mixtures and emergent properties.
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Chapter 6

Ab Initio Molecular Dynamics

So far we have investigated the Ammonia-Water system in the ground state.

Approximations were used, such as harmonic approximation, to predict free

energies at finite temperature, but the dynamics at finite temperature remains

to be investigated. Previously we have seen that ionization is the major

stabilizing driving-force for mixtures under pressure, but will this remain true at

temperature? Importantly what phase do these mixtures form for the Pressure,

Temperature conditions found in icy planets such as Uranus and Neptune - is the

mantle a superionic solid or liquid?

All mixtures are expected to transition into a superionic regime and eventually

melt when heated sufficiently. This is true for NH3 and H2O separately [21],

discussed in chapter 3, and previously calculated for AMH and ADH, [207, 229].

Plastic phases previously discussed also exist for the separate ices and should

be kept in mind. Here we investigate the four mixtures we found to be stable:

(ADH, AMH, AHH, AQH) with ab initio molecular dynamics (AIMD). Properties

to investigate include melting, characteristics of the liquid, superionic transitions,

molecularity vs ionicity, which chemical species exist, anisotropies between N and

O, OH and NH bond life-times. General analysis tools include radial distribution

functions, mean squared displacements, and diffusion coefficients. In total 1.528

nanoseconds of AIMD was trajectories were accumulated. Discussion of results

starts by looking at the phase diagrams for individual mixtures. Experimentally

these mixtures enter an alloy phase of DMA or DIMA [46, 49] at relatively low

pressures and temperatures and we do not attempt to model the substitutional

disorder in this work. This could be approached using Monte Carlo methods
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for swapping molecular units in combination with total energy evaluations using

classical potentials as the statistics require great sampling. Setting up AIMD

initial conditions from BCC crystals with randomly assigned O or N based

units can also be considered as investigated in [49], which may affect superionic

transition and melting temperatures.

6.1 Previous Work

Previous AIMD studies on high temperature ammonia water mixtures include

[207, 229] and a lower temperature study on AMH [49]. These works provide

comparison as well as useful technical details and have different initial conditions.

Studies of ammonia and water separately have been discussed in chapter 3 and

can also be compared with results obtained in this work. A simple picture might

expect results for mixtures to lie somewhere linearly in-between results for the

separate ices. This seems to roughly hold for the EOS of molecular mixtures

[241].

In the study of Bethkenhagen et al. [229] superionic behavior and melting were

investigated for the 1:1 mixture AMH. As previously discussed in chapter 4, three

high pressure phases (Ima2, Pma2, and Pm) were predicted using an evolutionary

structure searching approach with XtalOpt [127] as a starting point for AIMD in

planetary conditions. Shown in figure 6.1 is the resultant phase diagram which

also compares with ammonia and water superionic data from earlier work. Here

the diffusion coefficients for the mixture were compared to ammonia and water

and found to be similar in the superionic regime.

The water-rich 1:2 mixture ADH was investigated by Jiang et al. [207] up to 40

GPa using a classical structure searching approach to predict new crystal phases

with a Monte Carlo packing algorithm from POLYMORPH [276]. A new phase

of I41cd was found stable over 15 GPa as previously discussed in chapter 4. This

phase was heated to explore the likely superionic transition. This phase has a

very large unit cell, the discovery aided by using classical searching methods, and

so requires very large simulation cells (192 molecules in the conventional cell,

and a 2x1 supercell of 384 molecules was used in MD) for molecular dynamics

runs. This study also notes that the kinetic contribution to the stress tensor has

not been considered when reporting PT conditions for the AIMD results. From

proton mean squared displacement (MSD) analysis a superionic transition line
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Figure 6.1 Phase diagram for AMH calculated from AIMD, taken from [229].
Yellow and red shaded regions refer to the superionic phase space
for ammonia and water respectively [198, 275]. Symbols are along
isochores in T-P space including the thermal pressure. Different
symbols indicate solid (blue squares), superionic (purple diamonds),
and fluid (orange circles) states. Solid-Solid (black lines) phase
boundaries are based on phonon free energy calculations. Adiabats
for Uranus and Neptune indicate the T-P path expected inside these
icy planets.

was found between 4 and 40 GPa shown in figure 6.2. Remarkably they report

the transition in which protons become ‘obviously mobile’ to occur at 2.45 GPa

and 480 K which is a much lower temperature than the 1:1 mixture and the

separate ices. Interestingly the first point for the superionic transition lies above

the experimental melting line by about 240 K at 2.5 GPa (melting at 240 K

experimentally). The MSD for N,O ions at 4 GPa is not provided in this study

so it is not possible to tell if this in a liquid state or a super-heated solid.

In the work of Liu et. al [49] on AMH simulations were used in combination

with experiments. The solid DMA phase was of most interest to this study and

so simulations focused on studying this, and at temperatures below superionicity

and melting. AIMD simulations, continued from classical potentials or randomly

generated BCC initial conditions, were used to generate vibrational density

of states which could be compared with experimental IR and Raman data.

Simulation boxes contained 128-432 molecules with a lattice constant of a = 3.320

Å. Both showed evidence of neutral molecular H2O and NH3 units as well as ionic

OH− and NH+
4 units.

Simulations of mixtures of H2O, NH3, and CH4 were performed in previous

studies, investigating the bonding properties in [277] and the linear mixing
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Figure 6.2 Superionic transition phase diagram for ADH calculated from
AIMD, taken from [207]. The ionic region refers to the solid I41cd
ADH phase.

approximation in [241]. These simulations were performed at high temperatures

and pressures, hot enough (20,000 K) to be within the molten state and so address

liquid properties. This does not require knowledge of the solid phase diagram

which is mostly unknown. Binary mixtures such as H2O:CH4 were used as well

as ternary mixtures. Individual molten ice simulations could be compared with

these mixtures to evaluate the linear mixing approximation find a deviation from

the ideal linear mixing ratio of amounting to only -1% to 4%.

In chapter 4 an improved ground state stability is shown for AMH and ADH, and

in chapter 5 the energetics of different mixtures reveal the stability of mixtures

with pressure. This further motivates AIMD to be performed with the new

structures and to compare results to these previous studies. In AMH and ADH

more stable solid structures may subdue superionic transition and full melting

temperatures.
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6.2 Phase Diagrams

The PT phase spaces for AIMD were chosen for mixtures based on their enthalpic

stability found in chapter 5 resulting in the phase diagrams shown in figure 6.3.

For example, the most stable high pressure mixture of AHH was considered up

to 600 GPa. The isentropes for Neptune and Uranus are included and data from

previous studies are shown for AMH and ADH. Solid-solid phase boundaries from

free energy calculations in chapter 3 were used. Further simulation details are

listed in the appendix. For all mixtures, we find regions of solid phases, rotating

or plastic solids, superionic, and finally liquid phases with temperature evolution.

These states were classified by inspecting the MSD as in figure 6.4. Phases found

between the solid and superionic regime are referred to as excited phases and

described in more detail in section 6.3.

For ADH, simulations were chosen to have the same number of molecules (up

to 432) as in [207] for consistent comparison and to accommodate the unit cell

of the large I41cd phase. As the superionic transition was reported at lower

temperatures and pressures where a fine grid of PT points from 100–1000 K was

chosen. On heating units were observed to rotate and at higher temperatures

form superionic phases as expected. In comparison with the previous work, we

find the solid–liquid melting transition between the first two points (500 K, 2

and 8 GPa) of the reported superionic transition showing the previously claimed

superionic region is likely to be in a fluid state. In the I41cd phase we find a

transition starting between 500–600 K and 14 GPa in agreement with Jiang et

al. however the transition is too excited phases and not the superionic regime.

Care must be taken when simulations are run for less than 2 ps which can lead

to misleading MSD extrapolations. For the I41cd phase we find the superionic

transition higher in temperature, between 700–800 K. Higher in pressure the

Ama2 phase is found more stable than I41cd, which has higher transition

temperatures into the excited and superionic regions. For phase P21/m no excited

phases were found but could occur between 1000 or 1500 K. Results partly agree

with Jiang et. al with differences in details of the transition conditions, the nature

of the thermally excited phase, and show more stable phases can subdue these

temperature-induced phase transitions.

Simulations of AMH were performed covering a smaller pressure range than

the work of Bethkenhagen et al. [229] in temperature increments of 500 K.
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Figure 6.3 Phase diagrams for the four mixtures in their region of stability.
Dark blue and cyan shaded regions refer to excited (rotations and
or ionised) systems and the superionic phase respectively. Orange
shaded region is the liquid while solid phases are labeled and colored
individually. Grey shaded region is the calculated decomposition the
constituent ices of NH and OH. Experimental melt lines for ADH
and AMH are from [48]. For AMH the grey cross notes the AMH
triple point from [241] and the dash line represents the melt line
from the same study. For ADH the dashed line with white diamonds
represents the superionic transition line found in [207].

While Bethkenhagen et al. used 32 molecules per cell, our simulations used

144-288 molecules per cell in each run. The differences between the simulations

are the run-time, AIMD parameters, initial starting phase beyond P4/nmm

and the number of molecules. Results show different melting lines, superionic

temperatures and in our case the emergence of excited phases. For the P4/nmm

phase starting from 10 GPa and heating this work does not show melting to occur
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until 1500 K compared to 1000 K in Bethkenhagen et al. suggesting this PT point

may be super-heated and wants to melt. This discrepancy is interesting as more

molecules were used in this study, which normally leads to more accurate melting

temperatures, though the total run-times afforded by using fewer molecules may

lead to reaching the equilibrium state of the liquid.

At 30 GPa and above we find that at 1000 K AMH enters excited rotating phases

(see figure 6.4) and is not yet superionic in contrast with the assignment by

Bethkenhagen et al. In fact the superionic transition is not observed until 1500 K

above 30 GPa. Above 30 GPa the melting line is found to be lower in temperature

than reported by Bethkenhagen et al. This difference is interesting as more stable

phases were used such as P43 which might be harder to melt and a greater number

of molecules were used in our simulations making it easier to melt, suggesting this

difference is likely due to the phases being super-heated. It seems unlikely that

the less enthalpically stable phases found in previous work would lead to a higher

temperature melt line. For all mixtures, the discovery of more stable phases, via

predictive methods and experiments, could further stabilize high pressure phases

around the isentropes of Neptune and Uranus and perhaps subdue the melting

temperature further.
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Figure 6.4 AIMD data for AMH-P4/nmm at 30 GPa, left: proton trajectories
for 10 ps run at 1000 K. Right: Diffusion constants for different
atomic species as a function of temperature. Long dash / short
dashed / dotted lines denote onsets of excited / superionic / fluid
regimes.

The solid phases of AHH were heated up to 500 GPa as this covers the pressure

region where AHH is relevant among the water-ammonia mixtures. Supercell
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details are included in the appendix. For AHH every phase entered an excited

regime upon heating before either melting or becoming superionic and then

eventually melting. Between 200 and 300 GPa the excited phases extend up

to 1500 K, higher than other mixtures. The melting line appears to flatten out

above 300 GPa causing the superionic phases to not include the isentropes of

Uranus and Neptune above this pressure.

In AQH the phase diagram includes heated solid phases up to 300 GPa. Again

most phases enter an excited regime at 1000 K above 60 GPa and then enter the

superionic regime before eventual melting. Interestingly the P21 phase exhibits

excited behavior at a modest temperature of 500 K and 20 GPa. This phase is in

the low pressure regime where AQH is less stable and perhaps this allows for less

tightly bound units with weaker interactions or greater free volume within the

unit cell, allowing for rotations and temporary charge transfers. Above 100 GPa

and 300 K the superionic region appears to be just stable along the isentropes of

Uranus and Neptune.
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6.2.1 Superionic Regions

Superionicity is an interesting region of phase space for ices as celestial icy bodies

are likely to exhibit this behavior.
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Figure 6.5 Superionic regions for all four mixtures, and data for the individual
ices is taken from [198, 275]. The highest shown pressure for
each mixture corresponds to the AIMD PT grid used and roughly
corresponds to their limit of stability.

Water by itself remains the most stable ice compared with ammonia and their

mixtures at high temperatures and high pressures (decomposing over 5 TPa) in

figure 6.5 and appears to require the highest temperature to enter the superionic

regime. The story is somewhat different in the recent work of Hernandez et. al

[192] who identify the H2O solid-superionic-liquid triple point at 16 GPa and

810 K. Differences exist due to the criterion used to designate superionicity and
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the grid of P T values chosen for simulations.

Ammonia has a solid-superionic-liquid triple point at roughly 25 GPa and 1500

K from the work of [239] which does not report on any plastic phases in their

AIMD simulations. Cavazzoni et. al [21] show quite a different phase diagram

with a solid-plastic-liquid triple point around 10 GPa and 400 K reporting a more

stable plastic regime. These two triple points are consistent along the melting

line but disagree on whether the solid is in a superionic or plastic regime below

1500 K at 25 GPa.

For the mixtures, the solid-superionic-liquid triple points all occur below 30

GPa and 1000 K. For AHH the triple point appears around 10 GPa and 600 K

however this is a plastic-superionic-liquid triple point unlike the other 3. Further

simulations on a finer grid around these triple points would help identify exactly

what type and where the triple points are for these mixtures similar to that of

water [192]. The AQH triple point is around 10 GPa and 900 K though this

temperature is likely lower than 900 K as no actual melting AIMD simulations

were performed below 10 GPa and so the melting line is extrapolated below this

pressure. For ADH the triple point occurs around 12 GPa and 800 K though data

suggests this could also be a plastic-superionic-liquid triple point. For AMH the

triple point occurs around 12 GPa and 850 K.

For ADH a fine grid was used up to 1000 K though with less simulation time due

to a large number of atoms and so there is less sampling of equilibrium states

yet the triple point is found to be similar to the other mixtures. In figure 6.5 we

see AHH has the superionic transition shifted to a higher temperature between

150 and 350 GPa likely due to the strong ionic bonding these phases offer. The

mixtures are all found to enter a plastic or excited regime which shifts up the

superionic transition temperature with this intermediate state. In general, the

mixtures have a superionic region that occupies mostly the same PT space. At

lower pressures and temperatures the mixing of ammonia and water can lead to

enhanced proton transfer and is likely the cause for lower PT requirements to enter

the superionic regime than for water and ammonia separately. A quantitative

analysis of the superionic regions is presented later in this chapter.
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6.2.2 Melting Lines

Inspecting figures 6.5 and 6.6 the melting lines for mixtures appear to closely

follow those of ammonia and water separately up to 100 GPa as expected from

previous work. Above 100 GPa ammonia melts at much lower temperatures

than water for example at 300 GPa ammonia melts around 3500 K and water

at 6500 K in figure 6.5. In this higher pressure region, the mixtures appear to

melt directly in between these for example at 5000 K at 300 GPa. Notably, the

triple points of the mixtures appear at lower P T conditions in agreement with

previous studies likely due to the favorable proton dynamics the mixed system

offers. The calculated melt line also finds the mixed ice to be solid in the region

of the Neptune and Uranus isentropes above 70 GPa.
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Figure 6.6 Combined melt lines for all four mixtures and the melting line for
AMH* from [229].

In figure 6.6 the melting lines for the different hydrates are compared with

previous data on AMH and one another. On the resolution of the PT grid chosen

with steps of 500 K above 1000 K the melting lines are very similar above 50 GPa,

rarely differing by more than 600 K. In the regions where a mixture is more stable,
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the melting line appears to be higher. For example, ADH and AMH have higher

melting lines below 50 GPa where they are more dominant on the binary convex

hull. At higher pressures, AHH and AQH are more stable and have higher melting

lines although ADH and AMH melt lines were not calculated above 100 GPa. In

comparison with data by Bethkenhagen et. al [229] (labeled AMH* in figure

6.6), all melt lines in this work above 30 GPa are lower and likely indicate a

systematic difference in how these were calculated such as finite-size effects and

determination of melting by the MSD. The melt lines are close to the isentropes

of Neptune and Uranus and so more precisely determining the melt line above

50 GPa could be of further interest. Investigating other melting methods such

as the Z-method, annealing, thermodynamic integration, and phase-coexistence

could aid this determination.

Both AHH and AQH have melting lines close to the isentropes of Neptune and

Uranus (see figure 6.3). Melting lines were calculated using a “heat until it

melts” method which has the shortcomings of super-heating and so is likely to

over-estimate the melting temperature. This implies that along the Neptune

and Uranus isentropes mixtures are likely in a liquid state. However, if these

structures are still able to form an alloy at high PT conditions then this entropic

gain may increase the stability of the superionic phase and push up the melt

line. Furthermore, an ammonia-rich alloyed phase may take a different ammonia

mixing ratio than 2:1 or 4:1 which can enhance the solid and superionic stability

further.
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6.3 Excited Region: Plastic and Warm Phases

Low pressure phases for AMH, ADH, and AHH have configurationally disordered

phases, typically NH3 molecules where the hydrogen bonding is the weakest and

are the least tightly bound. Simulations starting from ordered approximants of

these phases (for example AHH-I) may expect to find an order-disorder transition

as observed in experiment at sufficiently high temperatures. When systems

exhibit solid diffusion (where the system remains solid but slow diffusion of

atoms of molecules may take place) of O and N sites, such as AHH-II, this can

mean the crystal is close to melting or wants to undergo a phase transition. As

the DMA/DIMA phase has been observed experimentally with substitutional

disorder this is something to consider during analysis. The solid diffusion could

be substitutionally disordering the BCC (or otherwise) crystal itself which is

consistent with experiment, or entering a high temperature phase with a different

symmetry or even trying to melt. These can be sensitive to the simulation

time that was afforded, which can lead to superheating and a lack of sampling

equilibrium states with AIMD. Simulations for ADH between T = 100–1000 K

used a large number of atoms and were run for under 2 ps which may not be

enough to see what kind of diffusion is occurring. For the mixtures of ices, the

situation is more complicated as there are many different structural setups and

sources of proton attraction.

Figure 6.7 Example movements of the excited phases at temperatures lower
than the superionic regime. Left shows rotational modes for various
unit types; Right shows temporary proton transfer.

Visualizing low temperature simulations, being temperatures lower than the

superionic regime but hot enough to sample excitations, reveals molecular and
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Figure 6.8 Snapshot of AHH at 500 GPa and 1000 K with the proton trajectory
for 5 ps shown as points. During the simulation some NH+

4

units undergo rotations as well as temporarily donating a proton.
Bonds are drawn between N,O and protons with a cutoff distance of
1.1 Å for the final trajectory step.

ionic rotation, temporary charge transfer, and solid N-O diffusion shown in figure

6.7, before entering a clear superionic phase. These 3 events lead to increased

proton mean squared displacement but with lower diffusion coefficients than with

superionic protons. For a system of rotating molecules, the MSD should increase

initially and oscillate around a converged value where protons are halfway from

their maximum displacement. Rotations may be as quasi-free rotors, as in the

plastic phase, or jumps/translations leading to configurational disorder. Proton

transfer may occur either temporarily for example in the dynamic equilibrium

with units of NH3 + H2O ⇀↽ NH+
4 OH

− and returning to a molecular state

and vice versa. Alternatively a different proton than the newly acquired proton

transfers to another neighbour. This hopping mechanism, aided by quantum

tunneling, exists in low temperature ices already [278], but with a very low

diffusion rate.

Quantitative counting of translation and rotation rates could be performed
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P (GPa) T (K) Phase Description

3 200 I NH3 rotations
3 400 I NH3 and H2O rotations
10 500 II Rotation and ionization
10 750 II Rotation and ionization
10 1000 II Liquid

20 500 II
Rotation and ionization
Substitution between O,N sites

20 1000 II
Superionic
Substitution between O,N sites

20 1500 II Liquid
40 1000 A2/m Superionic along BCC diagonals
60 1000 Amma Rotation and NH3 +H2O ⇀↽ NH+

4 +OH−

100 1000 Amma Rotation and NH3 +H2O ⇀↽ NH+
4 +OH−

350 1000 P 3̄m1 Rotation and NH3 +H2O ⇀↽ NH+
4 +OH−

400 1000 P 3̄m1 Rotation and NH3 +H2O ⇀↽ NH+
4 +OH−

500 1000 P 3̄m1 Rotation and NH3 +H2O ⇀↽ NH+
4 +OH−

500 1500 P 3̄m1 Superionic

Table 6.1 Summary of visual analysis of the dominant events in AHH-AIMD
at temperatures below and across the superionic regime.
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Figure 6.9 Proton mean squared displacement for rotating units in warm AHH
at 500 GPa.
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though is complicated by proton transfer and changes of a molecular unit type

such as H2O to H3O+. A qualitative description of what is observed in visualizing

these phases is listed in table 6.1. Similar observations hold for all mixtures.

A high pressure example of molecular/ionic rotations is shown in figure 6.8 for

AHH where NH+
4 units rotates via occasionally flipping between hydrogen bond

locations. The MSD for this simulation is shown in figure 6.9 which appears to

continually rise for 1.5 ps but then begins to converge to a value around 1.75-

2.0 Å2. The distance between proton sites on the NH+
4 unit in phase P 3̄m1 at

500 GPa is d = 1.625 Å, assuming the structure maintains the same symmetry

before and after rotations the MSD should be expected to converge to d2 =

2.64× (3/4) Å2 with (1/4) of the protons remaining in their initial position. This

means there are certain finite values of MSD to look out for when simulating

molecular compounds at extreme conditions, and in the work of Jiang. et al [207]

plasticity may have been mistaken for superionicity.
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6.4 Radial and Pair Distribution Functions

The radial distribution function alone reveals information about the system over

the entire simulation. Whether the system is solid or liquid can be learned from

inspecting the radial distribution function (RDF) for simple systems, however

for a ternary ice complexity arises. A partial melt, as in the superionic phase,

biases the RDF to that of a typical liquid by losing much of the peak structure

yet retaining the peaks of the N,O sub-lattice. This is shown in figure 6.10 for

AHH at 100 GPa in the P3̄m1 phase. The full RDF shows the overall structure

and examining individual pair distribution functions (PDF), where NH, OH, NO,

HH, NN, and OO are possible, reveals what the full RDF is built from.
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Figure 6.10 RDF’s and PDF’s for AHH at 100 GPA where dashed lines
indicate the superionic phase.

As phase P3̄m1 is ammonia-rich and consists of NH+
4 and O2− units gNH(r) will

have a strong peak at lower r values than gOH(r) with no covalent bond in the

solid phase. In figure 6.10 the effect of heating into the superionic phase shows

the gradual build-up of OH covalent bonds as a peak grows in gOH(r) at 1 Å. The

peak at 1.3 Å in gOH(r) decays but only disappears in the molten phase shown

at 5000 K. On the other hand for gNH(r) the main peak at 1 Å only broadens

with temperature, showing the perseverance of the NH bond. At long separation,

the g(r) tends to a constant, unlike in a solid, which is similar to that of a liquid

showing the analogy of the hydrogen sub-lattice melting in the superionic phase
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transition.

In the molten state individual PDF’s in figure 6.11 reveal high pressure

temperature chemistry. Firstly in gHH(r) a peak around 0.7 Å begins to grow at

4000 K which is consistent with the typical H2 bond length at 100 GPa, although

isolated hydrogen is atomic at this temperature and pressure. The bond life-time

is likely to be short-lived as a result of this though the other chemical bodies

could encourage the molecular bond to form. This high temperature molecule

formation can explain the growing shoulder and the lowest values of r in the

full g(r). The molecule appears only to form when in the molten phase and the

superionic phase does not accommodate H2 molecules. Furthermore, gNN(r) in

figure 6.11 shows the formation of N-N bonds peaked around 1.3 Å. These N-N

bonds could range from N2 molecules (1.1 Å) to more complex polymers (single

N-N bond is 1.6 Å) with additional protons, though the bonds are likely to be

short-lived.
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Figure 6.11 PDF’s for AHH at 100 GPa where dashed lines indicate the
superionic phase. Labels indicate the likely chemistry where and a
peak is observed around a typical covalent bond length at 100 GPa.

The full data set of RDF’s and PDF’s at all densities and temperatures simulated

is given in the appendix. For the case of AHH at 100 GPa the formation of O-

O bonds appears much more difficult, though we can see the appearance, while

marginal, of N-O bonds in g(r)NO as a small peak grows at 1.3 Å in the molten

state. The fact these molecules appear to form at the same time in the molten
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state may be connected: The molten system allows for N,O ions to be free and

become close enough to form covalent bonds. This means there are less covalent

NH and OH bonds allowing the hydrogens both space and the chemical freedom

to form H2 molecules. At higher temperatures still, the full dissociation of bonds

is likely to occur on the way to a plasma. This can be seen for H2 at 7000 K in

figure 6.11 as the PDF begins to form a smooth distribution.
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6.5 Neutral vs Charged Species

The ammonia-rich hydrates in particular benefit from proton transfer and the

resultant formation of partially charged species to form ionic solids. To study the

partition into neutral (molecular) and charged (ionic) species of these solids at

finite temperature and what is happening in the superionic phase the trajectories

were analyzed to identify molecular unit types such as H2O and OH−. The

local environment for each heavy atom (N,O) was screened up to a typical bond

length chosen as rc = 1.15 Å to look for H atoms where a covalent bond could be

assumed. Counting the number of covalent bonds per (N,O) indicates whether the

unit is NH−2 or NH+
4 for example and thus we can count the number of molecular

and ionic species in the simulation. This may be sensitive to equilibration and

run-time but simulations appear to find a stable ratio quickly. In this analysis

units NH+
4 and OH− were deemed “ionic” whereas NH3 and H2O are molecular.

Data for ADH are shown in figure 6.12 and data for all simulations are given in

the appendix.
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Figure 6.12 Analysis of the units making up ADH as a function of P and
T. Note that the starting configuration in the ground state always
contained 2/3 ionic species. Dashed lines indicate the temperature
at which a superionic phase was observed and dotted indicate the
melting temperature.

Below 200 GPa there is a crossover from ionic dominance to molecular dominance

on heating into the superionic phase. Above 200 GPa (AHH and AQH only) the

molecular and ionic units find a balance in the superionic phase, possibly due

to the increased number of protons in the ammonia-rich mixtures and pressure
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favoring ionic structures. Heating into the liquid state can find the total number

of molecular and ionic units fall below 1.0 due to the formation of other species

such as N2 or rare examples such as NH3+
6 . In section 6.8 an analysis of the

[N,O]–H bonding and radial distribution functions delves further into this. In

general, high temperature finds a mixture of ionic and molecular units across the

pressure range with pressure controlling how this deviates from a 50:50 split.

By interpolating data on the fraction of molecular units over a PT grid, molecular

content phase diagrams can be produced shown in figure 6.13. Across all mixtures,

low temperatures favor ionic phases as most phases started in ionic structures.
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Figure 6.13 Fraction of molecular units found in mixtures, black dashed lines
are the respective melt lines. Dark blue (ionic) is a fraction of 0.0
and yellow (molecular) is 1.0.

Further simulations which anneal the superionic state may find again the

same ionic phases or may result in a glassy phase such as the topologically

frustrated state suggested in previous AMH work [49]. On heating, the molecular
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fraction rises as mixtures enter the superionic regime. In the liquid state,

the molecular fraction appears to be temperature independent at very high

temperature and instead depends on pressure, though very hot liquids would

experience full decomposition of bonds eventually. Overall at low pressures and

high temperatures the molecular fraction is high, whereas at high pressure and

low temperature the ionic fraction is dominant.

6.6 Chemical Composition

Various chemical species can be found in the mixtures, from the expected H2O

to the rarer NH2+
5 with the same rc = 1.15 Å, though abundance depends on

the global stoichiometry. For example, AHH and AQH are likely to find O2−

units while ADH is likely to find far fewer. In figure 6.14 the fraction of each

species tracked in ADH and normalized to a total of all heavy atoms (N+O) are

plotted. In general, the chemical species follow the same trends as a function of

P and T as the molecular fraction varies - though here this behavior is broken

down unit by unit. Rare units increase in likelihood once the superionic phase

has been entered. For the case of ADH, which has a fine temperature grid below

1000 K, the rise in NH3 molecules mirrors the decrease in OH− and NH+
4 ionic

species. This transition starts to begin before full superionicity sets in, showing

some proton transfer in the excited and plastic regions.
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Figure 6.14 Relative abundance of most relevant species in ADH simulations.

Phases with OH chains complicate this counting as they may symmetrize protons

with increased temperature and appear as O2− or as H2O instead. Overall the
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unit fractions are dominated by the expected NH+
4 +NH3 +H2O+OH−+O2−

units found in the ground state structures. Other mixtures exhibit similar

behavior but depend also on the initial conditions. For example high pressure

ammonia-rich hydrates with deprotonated oxygen O2− start with low OH bearing

species at low temperature but this increases with temperature as different

regimes are entered, see figure 6.15.
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Figure 6.15 Relative abundance of most relevant species in AHH simulations.
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6.7 Covalently Bonded Protons

The previous sections studied the bonding configurations of the heavy atoms in

the mixtures. In contrast, we can also study the bonding of the hydrogens: how

many covalent bonds do they form on average at various PT conditions? This

could be relevant in the superionic region, where protons are diffusive but not

necessarily unbound. Here we count the number of hydrogen covalent bonds

again using rc = 1.15 Å. Whether the bond is NH or OH is also recorded and

summarized in figure 6.16 and normalized by the number of N,O–H covalent

bonds in the ground state i.e. assuming an icy molecular structure.

4 GPa
Total
N⋅H
O⋅H

10 GPa

30 GPa

(N
H

X
 / 

N
H
)

0
0.2
0.4
0.6
0.8

1
50 GPa

60 GPa

0 1000 2000 3000

80 GPa

T (K)
0 1000 2000 3000 4000

Figure 6.16 Number of X-H (X = N,O) bonds and their type in ADH as a
function of temperature for various pressures.

For ADH the expected number bond fractions are 4/7 and 3/7 (NH, OH) in

the solid ground state which is observed at the lowest temperatures. This then

changes as different units are formed at higher temperatures. The number of

bonds found increases above the number of hydrogen atoms, and so above 1.0 in

figure 6.16, in high pressure phases and can be attributed to the system wanting
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to form symmetric OH chains as in ice X. In the dynamic case with OH chains,

a simple range-based definition of the OH covalent bond falls short. For all ADH

phases chosen there is a transition from majority NH bonds to majority OH

bonds. This also implies that the bond life-times will be anisotropic between OH

and NH both species and differ again at low or high temperature.

For all mixtures there is in an increase of OH bonds at high temperature, entering

the superionic regime can trigger onset. A likely cause for this is the more

electronegative oxygen ion attracting more free protons even though nitrogen

is able to form a greater number of bonds. Virtually all protons appear bonded

to a heavy atom in the superionic region. On the opposite end of the mixing ratio,

the covalently bonded protons are shown in figure 6.17. N-H bonds dominate the

total numbers due to the chemistry but also due to the deprotonated O2− units

above 60 GPa. Heating the deprotonated AQH phases into the superionic regime

shows the growth of O-H bonds returning.
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Figure 6.17 Number of X-H (X = N,O) bonds and their type in AQH as a
function of temperature for various pressures.
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6.8 Bond Life-times

To quantify the longevity of covalent bonds we calculated estimates of the bond

life-times as shown in figure 6.18 following the methodology outlined in section

2.4.4. At low temperatures, NH bonds break less often and so last longer, though

at higher temperatures there is a transition as OH bonds appear to have greater

stability. This is perhaps because the mobile hydrogen ions are positively charged

and the oxygen atoms are more likely to have a negative local environment

acting as transient proton attractors. In general increasing pressure at lower

temperatures stabilizes NH bonds and weakens OH bonds. However, at high

temperatures (over 1500 K) the NH bonds can become weaker relative to the OH

bonds. This relative bond strength turnover holds in other mixtures also where

the temperatures are hot enough.
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Figure 6.18 Bond life-times of X-H bonds in ADH.

There are problems with such a simple method of counting the life-time of a bond.
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This approach requires all X-H bonds to be similar in length distribution, which

is not the case in the AQH N2H7 units for example. A second assumption is that

all bonds will break during the simulation at some point, which is not always

the case. An alternative method is therefore used here to analyze the bonding

in the form of a correlation function B(t). This bond auto-correlation function

(BAC) measures the probability that an initial bond at a time t is found at a time

t+ δt later normalized to the number of covalent bonds assigned at the time t. A

covalent bond is defined here in two ways: by the nearest heavy atom (N,O) to a

proton and also within a radius of 2.0 Å. This means the number of covalent X-H

bonds should be the same as the number of protons in the solid and superionic

phase, and also uses information from persistent bonds that do not easily break.
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Figure 6.19 Bond auto correlation functions for NH and OH bonds in ADH.
Dash lines refer to the superionic phase and dotted lines refer to
the excited states.

The results of this analysis for ADH are shown in figure 6.19 and given for all

mixtures in the appendix. The correlation function starts at 1.0 and decays as

a function of time as a bond is less likely to be found at a time t + δt later. At

low temperatures bonds are found to be persistent and likely to survive into the

future. Upon heating into the superionic regime and liquid state this changes

as the protons become more mobile. It can be seen that OH bonds are more
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likely to break than the persistent NH bonds meaning that more of the superionic

diffusion is mediated by the oxygen ions. As this method measures the probability

of maintaining the close nearest neighbour heavy atom, it captures information

in systems with symmetric hydrogen bonds (AQH) or OH chains (AMH,ADH).

This can be seen in figure 6.19 at 80 GPa for the OH correlations. These appear

to decrease in a step-wise manner with increasing temperature yet remain fairly

stable as they are not decaying exponentially. This is because at that pressure

1/3 of the protons form OH bonds and are in a double-well potential along the

OH chains formed in the P21/m ADH structure. With increasing temperature

more of these protons are visiting the double or single potential well formed

between oxygen atoms meaning the nearest neighbor is rapidly switching. On

further heating to 1500 K the OH protons become much more mobile than the

NH protons indicated by the relatively different gradients in the B(t)OH and

B(t)NH functions which are more rapidly heading to zero.

τ α
 [f

s]
 [N

H
]

100
101
102
103
104
105
106

4 GPa
10 GPa
30 GPa
50 GPa
60 GPa
80 GPa

τ α
 [f

s]
 [O

H
]

100
101
102
103
104
105
106

T [K]
0 1000 2000 3000 4000

Figure 6.20 Estimated bond life-times τα from the BAC in ADH.

The exponentially decaying regime of the BAC has an associated time τα, which

is shown in figure 6.20 for ADH. NH bonds are shown to be more persistent than

OH bonds across the range of pressures and temperatures. The calculation of

τα requires the BAC to be in the decaying regime in order to fit an exponential

function and so limits the points at which data can be acquired. Once in the

superionic and molten regimes bonds are readily breaking and the data collection
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becomes more accurate.

6.9 Diffusion Regimes

Diffusion constants reveal the dynamics of the system and are expected to change

for dynamical phase transitions. In the solid-state the Diffusion constant for

H, N and O should be close to vanishing, though small solid-solid diffusion is

possible especially at lower pressures with more open space. Transitioning into

the superionic regime shows a sharp increase in DH while maintaining a solid

DNO of zero. Finally, in the molten state, all three ions are thermally activated

and diffusing through the simulation.
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Figure 6.21 Diffusion constants as a function of pressure in AMH.

For pressures of 60 and 80 GPa an unexpected kink occurs in the hydrogen

diffusion rate when the lattice melts, see figure 6.21. This kink does not occur

at all pressures and not in all mixtures. This implies that the hydrogens no

longer have a stable N,O (BCC or otherwise) lattice to flow through and have
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mobile N,O atoms diffusing around making it easier to be obstructed and or form

covalent bonds. Once in the molten state, the proton diffusion appears to regain

the same scaling with increased temperature. Similar diffusion is seen for all

mixtures however not all exhibit kinks on melting.

6.10 Concluding Remarks

Solid phases derived from the static ground state binary phase diagram of

ammonia water mixtures were simulated at finite temperature. This heating led

to similar phase transitions as those found in the individual ices of ammonia and

water. Heating solid phases in the low pressure region directly enter the liquid

regime. At moderate pressures above 10 GPa an excited plastic regime which can

be combined with slow charge transfer can be found in all four mixtures before

further heating into the superionic phase with fast diffusing protons. This phase

sequence is similar to that of ice and ammonia separately although simulations

with a finer resolution would be required to accurately compare the triple points

for the solid-plastic-superionic phases. All mixtures enter the superionic phase

and exhibit stronger, longer-lived, N-H bonding compared to the relatively weaker

O-H bonding. This reflects the chemistry found in the ground state static

calculations and suggests the high temperature convex hull of the ammonia-water

system may still favour high ammonia content at high pressure.

The melting lines were calculated by simple direct heating providing analysis

of the liquid that forms. The melting lines were shown to be very close to

the isentropes of Uranus and Neptune and directly between those of ammonia

and water separately. Interestingly the four mixture melting lines are very close

in P T space rather than fanning out depending on composition as suggested

from a linear mixing approximation. Simulations of ADH and AMH produce

similar results to previous studies, though more stable phases were used and the

excited plastic regime was identified in this work. Mixtures were simulated at

PT conditions based on the stability found by the static ground state convex

hull which does not account for the entropy gain of alloyed phases found in

the mixtures experimentally. Sampling the entropy of mixing in the alloy could

be possible by switching units around lattice sites along with MD, though very

expensive for ab-initio methods, could extend the thermodynamic stability of the

mixed system. No demixing was found in simulations though it may be expected

at higher pressures where mixtures are found to be much more unstable.
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Chapter 7

Conclusion

The ammonia water system has been investigated at extreme temperatures and

pressures with a variety of theoretical methods. Crystal structures provided

a powerful method for starting this investigation into an unknown crystal and

chemical space. New structures and even a new hydrate, AQH, were predicted

at pressures starting from roughly 14 GPa. At low pressures and temperatures

ammonia and water mix first as molecular crystals, followed by a sequence of ionic

transitions which, if possible, lead to fully ionic structures. Fully ionic structures

can be formed by AMH, AHH, and AQH and so require a ratio of ammonia:water

greater than or equal to 1:1. This appears to simply come out of the chemistry

and water donates protons to ammonia in all these cases to form ionic structures.

Ammonia to ammonia donation was not seen in this work but is possible for even

richer ammonia content. In ADH water molecules are always retained, though

at higher pressures which are beyond their stability on the ground state convex

hull, the water molecules can become symmetric which could be considered a

fully ionic structure as well.

For water to donate two protons to ammonia molecules the required ratio is 2:1

or greater, evident in the structures found for AHH and AQH. High pressure

stabilizes the mixture of ammonia and water through ionic bonding and the

complete deprotonation of the water molecule is the strongest observed form of

that. For this reason the ground state convex hull over 100 GPa is dominated by

ammonia-rich mixtures, contrary to the icy giants which are expected to be water-

rich. The dehydration of ammonia hydrates has been observed experimentally

under 10 GPa but the high pressure dominance of ammonia-rich hydrates has
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not yet been explored. Experiments confirming the complete deprotonation of

the water molecules, such as in AHH, would help support this conclusion. This

implies a partitioning of the ices within the planet, perhaps into pure water and

an ammonia-rich hydrate.

The experimentally observed DMA phase may provide a competing alternative

explanation to partitioning, especially as this would be further stabilized by

temperature effects. The DMA could be present throughout the low pressure

regions, where the solid ices are stable. This could take the form of a structure

similar to ice VII crystal but doped with ammonia randomly throughout, and

possibly methane. In chapter 6 molecular dynamics simulations showed ground

state crystal phases exhibit rotational and symmetry breaking changes such as

proton transfer upon heating. Mixtures of ammonia and water could enable

an earlier onset of these entropy favored states, followed later by superionicity

at again lower temperatures than in pure water. In the future, eventually free

energy calculations may be performed for mixtures of planetary ices which exhibit

dynamical behavior (plasticity, superionicity) and could create an accurate convex

hull at finite temperature.

Superionicity was observed for all of the mixtures, starting from temperatures

higher than those of pure ammonia and less than those of pure water, in most

cases. At lower pressures and temperatures (under 20 GPa and 1000 K) the

mixtures, such as AHH, enter the superionic regime at even lower temperatures

and pressures than the pure ammonia and pure water ices. This is likely mediated

by greater variation of hydrogen bonding within the crystals, enabling rotational

disorder, and the attractive potential of water donating protons to ammonia

molecules aiding the initialization of the proton dynamics. Eventually, ammonia

water mixtures melt at temperatures and pressures close to the Uranus and

Neptune isentropes over 100 GPa. The melting lines of the mixtures fall between

the melting lines of pure ammonia and pure water in this region of temperature

and pressure space.

Above roughly 500 GPa all the mixtures of ammonia and water appear unstable to

decomposition into their constituent ices. Temperature and alloying (providing

an entropy of mixing) may offer some further stabilization but results in this

work suggest mixtures become highly energetically unfavorable at these very high

pressures. Considering the ternary systems of HNO and HCO, followed later by

the quaternary system of HCNO, may further stabilize mixtures of planetary ices

in a less conventional way. Here the binary system of NH3 and H2O was considered
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and has provided a rich insight into how these planetary ices arrange themselves as

a function of pressure. The future of structure searching benefits from improved

methodology, in setup and self-learning, and scales with the improvements of high

performance computing. Investigating more combinatorially difficult systems will

become possible. By crystal structure searching and ab initio molecular dynamics

simulations the extreme conditions phase diagram of the ammonia water system

has been computationally explored. New crystal structures were predicted and

their properties were computed. A surprising complete deprotonation of water

molecules was observed first in AHH and then later in AQH. All mixtures have

phase diagrams in pressure and temperature that relate to pure H2O with added

complexity due to the nature of the mixture and more diverse crystal structures

and bonding.
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[259] Michael J Gillan, Dario Alfè, and Angelos Michaelides. Perspective: How
good is DFT for water? The Journal of Chemical Physics, 144(13):130901,
2016.

[260] Jianwei Sun, Richard C Remsing, Yubo Zhang, Zhaoru Sun, Adrienn
Ruzsinszky, Haowei Peng, Zenghui Yang, Arpita Paul, Umesh Waghmare,
Xifan Wu, et al. Accurate first-principles structures and energies of diversely
bonded systems from an efficient density functional. Nature Chemistry,
8(9):831, 2016.

[261] Pattanasak Teeratchanan. First-principles studies of gas hydrates and
clathrates under pressure. 2018.

[262] Jan Kosata, Padryk Merkl, Pattanasak Teeratchanan, and Andreas
Hermann. Stability of Hydrogen hydrates from second-order Møller–
Plesset perturbation theory. The Journal of Physical Chemistry Letters,
9(18):5624–5629, 2018.

[263] Pattanasak Teeratchanan and Andreas Hermann. Computational phase
diagrams of noble gas hydrates under pressure. The Journal of Chemical
Physics, 143(15):154507, 2015.

[264] Miguel Martinez-Canales, Chris J Pickard, and Richard J Needs.
Thermodynamically stable phases of Carbon at multiterapascal pressures.
Physical Review Letters, 108(4):045704, 2012.

[265] Andreas Hermann, Neil W Ashcroft, and Roald Hoffmann. Isotopic
differentiation and sublattice melting in dense dynamic ice. Physical Review
B, 88(21):214113, 2013.

[266] M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb,
J R Cheeseman, G Scalmani, V Barone, B Mennucci, G A Petersson,
H Nakatsuji, M Caricato, X Li, H P Hratchian, A F Izmaylov, J Bloino,
G Zheng, J L Sonnenberg, M Hada, M Ehara, K Toyota, R Fukuda,
J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, T Vreven,
J A Montgomery Jr., J E Peralta, F Ogliaro, M Bearpark, J J Heyd,
E Brothers, K N Kudin, V N Staroverov, R Kobayashi, J Normand,
K Raghavachari, A Rendell, J C Burant, S S Iyengar, J Tomasi, M Cossi,
N Rega, J M Millam, M Klene, J E Knox, J B Cross, V Bakken, C Adamo,

192



J Jaramillo, R Gomperts, R E Stratmann, O Yazyev, A J Austin, R Cammi,
C Pomelli, J W Ochterski, R L Martin, K Morokuma, V G Zakrzewski, G A
Voth, P Salvador, J J Dannenberg, S Dapprich, A D Daniels, Ö Farkas, J B
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The First Appendix -
Crystallographic Information

AHH - Crystallographic information

In the following tables, we give the crystal structures of the AHH phases discussed
in this work, each at a relevant pressure point.

A2/m at 40 GPa

Lattice Parameters (Å) (◦)
a=5.01170 α=90.35538
b=5.01170 β=90.35538
c=4.42760 γ=49.49192

Atom x y z
H1 -1.401262 0.001637 1.261673
H2 -0.789822 -0.227092 0.756344
H3 -0.853953 0.146047 1.077493
H4 -0.633092 0.366908 1.038542
H5 -1.134164 -0.134164 0.559657
H6 -1.336092 -0.336092 1.426181
N1 -0.735693 0.264307 0.754234
N2 -0.927824 0.072176 1.248501
O1 -1.416524 -0.416524 0.753799

Table 1 Crystallographic information AHHA2/m
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P-1 at 40 GPa

Lattice Parameters (Å) (◦) P (GPa)
a=4.18483 α=93.53268 40

Space Group b=4.89899 β=114.50651
P-1 c=5.05895 γ=111.34557

Atom x y z
H1 -0.031562 0.555233 0.277870
H2 0.571216 -0.055934 0.275155
H3 0.477958 0.729867 0.606652
H4 -0.090408 0.735246 0.524810
H5 0.086474 -0.080546 0.304915
H6 0.153359 0.777879 -0.036526
H7 0.569473 0.767817 -0.025791
H8 0.358976 0.556349 0.170563
N1 0.083386 0.755452 0.422716
N2 0.410853 0.760689 0.092884
O1 0.733732 0.737477 0.758691

Table 2 Crystallographic information AHHP − 1

Cm at 40 GPa

Lattice Parameters (Å) (◦)
a=5.01170 α=90.35538
b=5.01170 β=90.35538
c=4.42760 γ=49.49192

Atom x y z
H1 1.826421 0.236235 0.950516
H2 0.654700 0.262343 0.498742
H3 1.361322 0.975228 0.899360
H4 -0.059241 0.349228 0.417302
H9 0.135036 0.135036 0.135697
H10 0.656185 0.656185 0.763917
H11 -0.091769 -0.091769 0.119227
H12 0.667353 0.667353 0.538020
H13 1.186632 1.186632 0.796638
H14 -0.405337 0.594663 0.258806
H15 0.271351 1.271351 0.616189
H16 -0.237799 0.762201 0.231508
N1 0.427344 0.427344 0.432090
N2 0.965679 0.965679 0.951005
N3 1.287807 1.287807 0.941160
N4 0.089876 1.089876 0.426344
O1 0.764723 -0.235277 0.436290
O2 1.603323 0.603323 0.933290

Table 3 Crystallographic information AHHCm
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Amma at 100 GPa

Lattice Parameters (Å) (◦)
a=4.10159 α=90.0000
b=3.93591 β=90.0000
c=8.34930 γ=90.0000

Atom x y z
H1 1.249907 0.470293 0.947169
H2 1.750156 0.518141 0.254183
H3 2.054955 0.250000 0.606497
H4 1.961905 0.250000 0.404644
H5 1.537959 0.250000 0.404637
H6 1.444750 0.250000 0.606550
N1 1.749879 0.250000 0.483109
N2 1.250191 0.750000 1.177484
O1 1.750188 0.750000 0.661922

Table 4 Crystallographic information AHHAmma

P-3m1 at 100 GPa

Lattice Parameters (Å) (◦)
a=3.87096 α=90.00000
b=3.87096 β=90.00000
c=2.58199 γ=120.0000

Atom x y z
H1 0.666667 0.333333 0.742039
H2 0.360936 0.180468 0.238696
N1 0.666667 0.333333 0.357703
O1 0.000000 0.000000 0.000000

Table 5 Crystallographic information AHHP 3̄m1

Pnna at 300 GPa

Lattice Parameters (Å) (◦)
a=3.91915 α=90.00000
b=3.72074 β=90.00000
c=6.71249 γ=90.00000

Atom x y z
H1 -0.022939 0.956920 1.147448
H2 -0.462344 0.451029 1.136614
H3 -0.176545 0.762465 0.656199
H4 -0.347914 0.739631 0.443158
N1 -0.398162 0.748495 0.587527
O1 -0.115451 0.250000 0.250000

Table 6 Crystallographic information AHHPnna
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Pnma at 600 GPa

Lattice Parameters (Å) (◦)
a=3.96707 α=90.00000
b=3.22762 β=90.00000
c=5.98678 γ=90.00000

Atom x y z
H1 1.156792 0.495967 0.851905
H2 1.677432 0.509783 0.320586
H3 1.984307 0.250000 0.679619
H4 1.862624 0.250000 0.443980
H5 1.496334 0.250000 0.459493
H6 1.154936 0.250000 0.457907
N1 1.681498 0.250000 0.557029
N2 1.300080 0.750000 1.118227
O1 1.968856 0.750000 0.723700

Table 7 Crystallographic information AHHPnma

P21/m at 400 GPa

Lattice Parameters (Å) (◦)
a=5.70349 α=90.00000
b=3.52038 β=97.90412
c=2.24096 γ=90.00000

Atom x y z
H1 0.319669 -0.511019 0.302069
H2 0.848876 -0.006609 0.181909
H9 0.410249 -0.750000 0.897519
H10 0.557144 -0.750000 0.339177
H13 0.924471 -0.250000 0.716142
H14 1.111486 -0.250000 0.278069
N1 0.392262 -0.750000 0.472131
N3 0.941276 -0.250000 0.286887
O1 0.279157 -0.250000 -0.079104

Table 8 Crystallographic information AHHP21/m
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P21/c at 600 GPa

Lattice Parameters (Å) (◦)
a=10.83316 α=90.00000
b=3.37127 β=99.57314
c=2.15195 γ=90.00000

Atom x y z
H1 0.153288 0.476515 0.311418
H2 0.425244 0.015799 0.174453
H3 0.339784 1.008925 0.701268
H4 0.074128 0.482431 0.825957
H9 0.202084 0.218927 0.923936
H10 0.276246 0.274393 0.359065
H13 0.462693 0.770254 0.709074
H14 0.561760 0.763523 0.302229
N1 0.192773 0.239126 0.489587
N3 0.473403 0.766567 0.266675
O1 0.143322 0.734427 0.909052

Table 9 Crystallographic information AHHP21/c
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AHH-I at 1 GPa

Lattice Parameters (Å) (◦)
a=5.36458 α=90.000000
b=7.89413 β=92.571178
c=8.08543 γ=90.000000

Atom x y z
H1 0.386473 0.533238 0.826563
H2 0.924102 0.463913 0.171713
H3 0.923993 0.833118 -0.048053
H4 0.622616 0.859833 -0.085704
H5 0.724078 0.725106 0.056162
H6 0.245945 0.587084 0.997357
H7 0.260117 0.803133 0.794102
H8 0.264519 1.004506 0.841259
N1 0.235628 0.596894 0.870305
N2 0.243294 0.158007 0.992918
O1 0.285347 0.920860 0.747851

Table 10 Crystallographic information AHHI

AHH-II at 10 GPa

Lattice Parameters (Å) (◦)
a=3.16423 α=90.00000
b=8.84224 β=93.33907
c=8.33336 γ=90.00000

Atom x y z
H1 0.761617 0.027000 0.367719
H2 0.775042 0.126474 0.537683
H3 0.383072 0.145450 0.401705
H4 0.733247 0.875884 0.024040
H5 0.722634 0.777506 0.855109
H6 0.338617 0.894919 0.889162
H7 0.147588 0.781785 0.182418
H8 0.168637 0.966279 0.187997
N1 0.703285 0.131017 0.415613
N2 0.658850 0.881119 0.902831
O1 0.037847 0.874446 0.240317

Table 11 Crystallographic information AHHII
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Molecular P 1̄ at 5 GPa

Lattice Parameters (Å) (◦)
a=4.6192 α=88.102
b=4.9412 β=115.88
c=5.6751 γ=89.655

Atom x y z
H1 0.52813 0.52813 0.52813
H2 0.89506 0.89506 0.89506
H3 -0.3142 -0.3142 -0.3142
H4 -0.8456 -0.8456 -0.8456
H5 0.39908 0.39908 0.39908
H6 0.13203 0.13203 0.13203
H7 0.60200 0.60200 0.60200
H8 0.82916 0.82916 0.82916
N1 0.23133 0.23133 0.23133
N2 0.46127 0.46127 0.46127
O1 -0.0871 -0.0871 -0.0871

Table 12 Crystallographic information AHHmolecularP1
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AMH - Crystallographic information

Here lists the crystallographic information for AMH phases used in this work.

AMH - I (P212121) at 1 GPa

Lattice Parameters (Å) (◦)
a 4.3741 α 90
b 5.4402 β 90
c 9.5271 γ 90

Atom x y z
H1 0.45325 0.21244 0.00427
H5 0.23071 0.02792 0.44826
H9 0.42153 0.37079 0.35954
H13 0.04724 0.37014 0.35249
H17 0.24476 0.21632 0.23297
N1 0.23598 0.26220 0.33728
O1 0.26829 0.10892 0.02318

AMH - II (P212121) at 3 GPa

Lattice Parameters (Å) (◦)
a 18.143 α 90
b 6.6162 β 90
c 6.5939 γ 90

Atom x y z
H1 0.03096 0.66663 0.97043
H2 0.04653 0.84084 0.14141
H3 0.98023 0.66862 0.17859
H4 0.12796 0.32161 0.24711
H5 0.09478 0.54970 0.23080
H6 0.19656 0.57976 0.05479
H7 0.26088 0.60316 0.87593
H8 0.19488 0.77570 0.89761
H9 0.12110 0.43235 0.54302
H10 0.15088 0.49719 0.77004
N1 0.03251 0.69150 0.12284
N2 0.20627 0.62479 0.90837
O1 0.13612 0.46444 0.29622
O2 0.11163 0.41301 0.69162
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P4/nmm at 10 GPa

Lattice Parameters (Å) (◦)
a 4.8697 α 90
b 4.8697 β 90
c 3.0459 γ 90

Atom x y z
H1 0.68000 0.50000 0.30657
H9 0.50000 1.00000 0.20796
N1 0.50000 0.50000 0.50000
O1 0.50000 1.00000 0.89020

P43 at 50 GPa

Lattice Parameters (Å) (◦)
a 4.8697 α 90
b 4.8697 β 90
c 3.0459 γ 90

Atom x y z
H1 0.68000 0.50000 0.30657
H9 0.50000 1.00000 0.20796
N1 0.50000 0.50000 0.50000
O1 0.50000 1.00000 0.89020
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P21/m at 200 GPa

Lattice Parameters (Å) (◦)
a 3.6885 α 89.885
b 4.1386 β 90
c 9.3466 γ 90

Atom x y z
H1 0.24998 0.24997 -0.00003
H2 0.27190 0.44168 0.34378
H3 0.76826 0.57240 0.09119
H4 -0.00003 0.41347 0.20464
H5 0.49997 0.36395 0.20031
H6 0.25359 0.75375 0.24054
H9 0.49997 0.59215 0.48727
H10 -0.00003 0.62598 0.94726
H12 0.73436 0.83662 0.38758
H13 0.23283 0.09060 0.15746
H14 0.99997 0.90772 0.05480
H15 0.49997 0.96946 0.52585
H19 0.49997 0.10419 0.32743
H20 0.99997 0.12042 0.30507
H21 0.24997 0.24998 0.49997
N1 -0.00003 0.17358 0.19698
N2 0.49997 0.82238 0.44239
N3 0.99997 0.66822 0.05577
N4 0.49997 0.33852 0.30930
O1 0.99997 0.17806 0.94345
O2 0.49997 0.82694 0.19127
O3 -0.00003 0.68268 0.30472
O5 0.99997 0.17320 0.44365
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ADH - Crystallographic information

Here lists the crystallographic information for ADH phases used in this work.

ADH - I at 1 GPa (P212121)

Lattice Parameters (Å) (◦)
a 6.964 α 90
b 6.8162 β 90
c 6.9508 γ 90

Atom x y z
H1 0.25732 0.76030 0.73190
H2 0.79469 0.66740 0.48772
H3 0.93488 0.24138 0.18111
H4 0.67605 0.57261 0.76744
H5 0.15020 0.48148 0.84768
H6 0.51764 0.34674 0.34412
H7 0.84951 0.15804 0.48792
N1 0.62482 0.87228 0.13029
O1 0.65460 0.34741 0.85401
O2 0.69709 0.70770 0.71263
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ADH - I* at 1 GPa (P212121)

Lattice Parameters (Å) (◦)
a 6.542 α 90
b 6.4833 β 90
c 6.4937 γ 90

Atom x y z
H1 0.22027 0.72384 0.75262
H2 0.81194 0.65277 0.54207
H3 0.90715 0.21885 0.19702
H4 0.66853 0.52244 0.85362
H5 0.17242 0.47292 0.81431
H6 0.51974 0.34468 0.32253
H7 0.82972 0.16537 0.49496
N1 0.63359 0.87305 0.14976
O1 0.63418 0.37538 0.89862
O2 0.72481 0.73953 0.76024

ADH - II at 3 GPa (P21/c)

Lattice Parameters (Å) (◦)
a 5.7961 α 90
b 6.4522 β 102.525
c 7.4272 γ 90

Atom x y z
H1 0.73896 0.02045 0.41595
H2 0.68137 0.83853 0.26437
H3 1.01994 0.22685 0.50916
H4 0.67169 0.05555 0.71768
H5 0.55345 0.47420 0.71507
H6 0.65708 0.65386 0.59518
H7 0.79044 0.35950 0.53918
N1 0.80106 0.01977 0.83081
O1 0.29732 0.13119 0.60018
O2 0.14778 0.74076 0.55076
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ADH - II* at 10 GPa (P21/c)

Lattice Parameters (Å) (◦)
a 5.251 α 90
b 5.9752 β 99.816
c 7.079 γ 90

Atom x y z
H1 0.73006 0.03565 0.42079
H2 0.67121 0.84264 0.25635
H3 1.03125 0.23601 0.51246
H4 0.68055 0.06793 0.70647
H5 0.52032 0.47175 0.73186
H6 0.62731 0.67251 0.60325
H7 0.77121 0.38670 0.55771
N1 0.82280 0.02919 0.81970
O1 0.31697 0.12829 0.60021
O2 0.14981 0.72575 0.54811

I41cd at 10 GPa

Lattice Parameters (Å) (◦)
a 6.508 α 90
b 6.508 β 90
c 19.992 γ 90

Atom x y z
H1 0.33828 0.59712 0.04355
H2 0.57789 0.74536 0.97454
H3 0.83516 0.91252 0.93753
H4 0.66974 0.09735 0.94194
H5 0.40933 0.65454 0.79536
H6 0.58726 0.66616 0.85955
H7 0.40748 0.85141 0.85133
N1 0.50046 0.75136 0.82537
O1 0.43506 0.74945 0.98807
O2 0.75529 0.01295 0.90876
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Ama2 at 40 GPa

Lattice Parameters (Å) (◦)
a 5.035 α 90
b 5.035 β 90
c 4.0285 γ 50.843

Atom x y z
H1 0.82441 -0.77019 0.54379
H2 0.06280 0.58518 1.03709
H9 0.51109 0.42916 0.25000
H11 0.25248 0.13822 0.75000
H12 0.63846 -0.25811 0.75000
N1 0.00175 0.51489 0.25000
O1 0.33493 -0.15414 0.25000
O3 0.18118 0.69093 0.75000

P21/m at 80 GPa

Lattice Parameters (Å) (◦)
a 3.8791 α 66.858
b 4.0058 β 90
c 4.7144 γ 90

Atom x y z
H1 0.85933 0.95468 0.45962
H2 0.07176 0.49476 0.73641
H3 0.30097 0.73797 0.86179
H6 0.57177 0.85855 0.15221
H9 0.57179 0.29943 0.12478
N1 0.07177 0.99449 0.32304
O1 0.57174 0.80529 0.68989
O2 0.57175 0.47950 0.33879
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AQH - Crystallographic information

Here lists the crystallographic information for AQH phases used in this work.

P21-molecular at 5 GPa

Lattice Parameters (Å) (◦)
a 6.5216 α 90
b 6.9451 β 90
c 5.2011 γ 87.505

Atom x y z
H1 0.45362 0.05247 0.49839
H2 0.04126 0.53310 0.49905
H3 0.10672 0.24443 0.15625
H4 0.92440 0.76583 0.15846
H5 0.24964 0.90643 0.15861
H6 0.79223 0.07417 0.15699
H7 0.24737 0.90771 0.84311
H8 0.79468 0.07549 0.84305
H9 0.92226 0.76933 0.84328
H10 0.11082 0.24494 0.84114
H11 0.13373 0.07067 0.50126
H12 0.74268 0.86057 0.50010
H13 0.07389 0.84626 0.50058
H14 0.82290 0.24610 0.49999
N1 0.90503 0.68295 -0.00058
N2 0.14373 0.32411 -0.00029
N3 0.70411 0.10776 -0.00085
N4 0.33644 0.87518 -0.00031
O1 0.00884 -0.01466 0.50176
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P21-ionic at 20 GPa

Lattice Parameters (Å) (◦)
a 6.6416 α 90
b 4.5334 β 86.134
c 5.7555 γ 90

Atom x y z
H1 0.98772 0.93038 0.82728
H2 0.54063 0.92895 0.67598
H3 0.68781 0.93452 0.95400
H4 0.81416 0.93119 0.54442
H9 0.01143 0.06818 0.17095
H10 0.45937 0.07085 0.32409
H11 0.31217 0.06542 0.04602
H12 0.18568 0.06879 0.45525
H17 0.79521 0.25005 0.22372
H18 0.25778 0.24986 0.78809
H19 0.82899 0.25015 0.89140
H20 0.60174 0.24997 0.50038
H21 0.49730 0.24992 0.89116
H22 0.99498 0.25001 0.58747
N1 0.45004 0.74991 0.66274
N2 0.06591 0.75008 0.87212
N3 0.85123 0.74988 0.44375
N4 0.65650 0.74995 0.05492
O1 0.73416 0.24978 0.75726
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P21/m at 40 GPa

Lattice Parameters (Å) (◦)
a 5.9219 α 90
b 5.9281 β 90
c 4.0941 γ 89.925

Atom x y z
H1 0.49645 0.03186 0.50000
H2 0.02782 0.50525 0.50000
H3 0.05111 0.20108 0.20230
H4 0.94355 0.79240 0.19872
H5 0.20329 0.94523 0.20279
H6 0.79183 0.05212 0.19853
H11 0.24172 0.15557 0.50000
H12 0.75659 0.84389 0.50000
H13 0.15367 0.75934 0.50000
H14 0.84074 0.24224 0.50000
N1 0.91184 0.69331 0.00000
N2 0.08876 0.29847 0.00000
N3 0.69454 0.08891 0.00000
N4 0.30157 0.90994 0.00000
O1 0.01378 0.00216 0.50000

I4/m at 60 GPa

Lattice Parameters (Å) (◦)
a 5.7662 α 90
b 5.7662 β 90
c 3.947 γ 90

Atom x y z
H1 0.00000 0.50000 0.00000
H2 0.54890 0.70296 0.20645
H3 0.24038 0.16105 0.00000
N1 0.41339 0.19728 0.00000
O1 0.00000 0.00000 0.00000
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P21 at 250 GPa

Lattice Parameters (Å) (◦)
a 4.0057 α 107.945
b 4.0139 β 72.072
c 6.1407 γ 100.089

Atom x y z
H1 0.03402 0.00784 0.26136
H2 -0.40121 1.48071 -0.23097
H3 0.70330 1.24245 -0.05726
H4 0.20478 0.72680 0.48662
H5 0.95865 0.69207 0.33562
H6 -0.66657 1.00766 -0.63087
H7 -1.37768 1.84402 0.13734
H8 0.13124 1.40694 1.10311
H9 -0.25176 0.26094 0.26777
H10 0.13514 0.30804 0.41303
H11 0.61379 0.83367 -0.11745
H12 0.65727 0.86448 0.38848
H13 -0.22358 0.55226 0.11826
H27 0.50000 0.50000 0.50000
H28 0.00000 0.00000 0.00000
N1 -0.19293 2.01531 0.89980
N2 0.30925 0.50522 0.39724
N3 -1.40816 1.99365 0.30003
N4 -0.09487 1.48717 1.20744
O1 0.00000 0.00000 0.50000
O2 0.50000 0.50000 0.00000
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P1 at 300 GPa

Lattice Parameters (Å) (◦)
a 3.9289 α 108.21
b 3.9399 β 71.88
c 6.0194 γ 100.09

Atom x y z
H1 0.01091 0.01247 0.25242
H2 0.60326 0.47962 0.76730
H3 0.68907 0.24318 0.93905
H4 0.21713 0.73194 0.49419
H5 0.97109 0.70041 0.33008
H6 0.33364 0.01519 0.37786
H7 0.61182 0.82953 0.14097
H8 0.12948 0.39126 0.09746
H9 0.74957 0.26635 0.26811
H10 0.12850 0.30651 0.41171
H11 0.61806 0.82520 0.88495
H12 0.65067 0.85643 0.39612
H13 0.77322 0.54748 0.11379
H14 0.97626 0.98999 0.73695
H15 0.39269 0.52201 0.22567
H16 0.28792 0.75270 0.05915
H17 0.79516 0.27368 0.50650
H18 0.03439 0.30765 0.66336
H19 0.67499 1.00988 0.63989
H20 0.34148 0.10368 0.87582
H21 0.87215 0.60310 0.90060
H22 0.25554 0.72912 0.72416
H23 0.86835 0.70042 0.57877
H24 0.39951 0.15900 0.14163
H25 0.35343 0.16679 0.62331
H26 0.23123 0.44354 0.87866
H27 0.50181 0.49702 0.49453
H28 -0.01870 0.00823 0.00128
N1 0.80775 0.01780 0.89990
N2 0.30744 0.50283 0.39323
N3 0.59671 0.99016 0.30283
N4 0.90621 0.48851 0.20470
N5 0.20252 0.99075 0.09995
N6 0.69416 0.50029 0.59966
N7 0.41136 0.00980 0.69837
N8 0.09701 0.51517 0.79218
O1 0.00578 0.00237 0.49914
O2 0.50153 0.49876 -0.00478
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The Second Appendix - Phonon
Dispersions

AHH - Phonon dispersions -v2

Below, we show the phonon dispersion relations for all phases discussed in the
main manuscript at pressure points relevant to their respective stability range.
For the monoclinic phases points have the following coordinates:
Z = (0,0,1/2) Γ = (0,0,0) Y = (0,1/2,0) A = (-1/2,1/2,0)
B = (-1/2,0,0) D = (-1/2,0,1/2) E = (-1/2,1/2,1/2) C =
(0,1/2,1/2)
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Figure 1 Left: AHH-I at 1 GPa; right: AHH-II at 10 GPa.
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Figure 2 From left: Cm, P1̄, and A2/m phases, all at 30 GPa.
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Figure 3 Left: Amma at 100 GPa; right: P 3̄m1 at 150 GPa.
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Figure 4 Left: P21/m at 400 GPa; right: P21/c at 650 GPa.
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Figure 5 Left: Pnna at 300 GPa; right: Pnma at 700 GPa.
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AMH - Phonon dispersions
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Figure 6 Left: AMH-I at 1 GPa; right: AMH-II at 3 GPa.
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Figure 7 Left: P4/nmm at 10 GPa; right: P43 at 50 GPa.
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Figure 8 AMH-I at 500 GPa.

216



ADH - Phonon dispersions
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Figure 9 Left: ADH-I at 1 GPa; right: ADH-II at 5 GPa.

Γ Z T Y S X U R
0

1000

2000

3000

4000

ω
 (

c
m

-1
)

Z Γ Y A B D E C
0

1000

2000

3000

4000
ω

 (
c
m

-1
)

Figure 10 Left: ADH-I* at 4 GPa; right: ADH-II** at 5 GPa.
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Figure 11 From Left: I41cd at 8 GPa, Ama2 at 30 GPa, and P21/m at 80 GPa.
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AQH - Phonon dispersions
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Figure 12 Left: P21 at 5 GPa; right: P21/m at 30 GPa.
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Figure 13 I4/m at 100 GPa.
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The Third Appendix - Molecular
Dynamics

Here lists the details and analysis data of AIMD simulations.
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Simulation Details

Details for ADH simulations:

Table 13 ADH simulation time (ps) summary and details for low T.

P (Gpa)
T (K) 4 10 30 50 60 80
100 0.85 0.62 1.38 1.06 1.09 1.31
200 0.91 0.66 1.16 1.31 1.07 1.38
300 0.77 0.59 1.50 1.13 1.35 1.45
400 1.16 0.76 1.30 1.39 1.41 1.47
500 1.39 0.57 1.55 1.18 1.42 1.22
600 0.99 0.81 1.54 0.78 1.16 1.25
700 0.94 0.58 1.19 0.92 1.37 1.41
800 0.78 0.69 1.24 1.07 1.10 1.56
900 0.88 0.69 0.78 1.03 1.28 1.32
1000 0.88 0.66 0.97 1.04 1.02 1.29
Molecules 432 384 324 384 384 384
Atoms 1440 1280 1080 1280 1280 1280
Phase P212121 I41cd Ama2 P21/m
ρ (g/cm3) 1.31 1.66 2.10 2.33 2.44 2.62

Table 14 ADH simulation time (ps) summary and details for high T.

P (GPa)
T (K) 4 10 30 50 60 80
1500 3.42 3.86 6.59 4.75 3.22
2000 3.33 3.27 4.15 3.81 3.74
2500 3.94 3.96 4.95 5.76 5.80
3000 3.75 3.14 5.30 5.78 5.88
3500 3.02 4.77 5.90 3.25
4000 2.66 3.52 4.75 4.59
4500 2.50 4.81 4.00 1.65
5000 2.02 3.71 4.69 1.63
Molecules 96 108 72 72 72
Atoms 320 360 240 240 240
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Table 15 ADH finite temperature pressure (GPa)

P (GPa)
T (K) 4 10 30 50 60 80
100 4.97 10.46 30.53 50.65 60.73 80.70
200 4.71 11.02 31.31 51.31 61.45 81.54
300 4.36 11.49 32.16 52.15 62.26 82.31
400 4.14 12.03 32.96 52.87 63.04 83.11
500 5.56 12.53 33.68 53.64 63.73 83.88
600 6.02 13.07 34.46 54.44 64.50 84.60
700 6.62 13.57 35.08 55.02 65.14 85.16
800 6.92 14.58 35.75 55.56 65.81 85.84
900 7.30 15.37 36.71 57.26 66.66 86.66
1000 7.67 16.51 37.46 56.60 67.43 87.42

T (K) 4 10 30 50 60 80
1500 21.88 43.17 63.10 72.80 92.30
2000 24.10 49.66 68.36 78.00 97.83
2500 26.14 52.52 72.41 82.44 101.92
3000 27.68 56.28 79.01 87.66 105.57
3500 58.78 82.44 93.11 113.24
4000 61.66 85.57 96.63 117.68
4500 64.19 88.72 100.08 120.81
5000 66.96 92.07 102.80 124.57
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Details for AMH simulations:

Table 16 AMH simulation times (ps)

P (GPa)
T (K) 10 30 60 80 100 200 300 400 500
500 8.71 9.02 7.34 10.15 0.62 0.75 0.69 0.50 0.88
1000 6.36 10.21 8.29 10.16 0.56 0.74 0.65 0.58 0.87
1500 5.72 8.77 7.43 9.73 0.58 0.80 1.19 0.56 0.87
2000 5.83 6.60 7.50 8.28 0.44 0.71 0.68 0.54 0.85
2500 6.01 8.70 5.81 6.98 0.48 0.50 0.62 0.53 0.80
3000 5.36 2.36 7.64 8.33 0.39 0.57 1.10 0.50 0.77
3500 3.34 3.14 0.19 0.67 1.08 0.45 0.72
4000 3.30 2.84 0.12 0.46 1.03 0.46 0.65
4500 3.10 3.05 0.03 0.43 0.49 0.43 0.67
5000 2.33 3.86 0.03 0.31 0.23 0.36

Molecules 144 144 144 144 288 288 288 288 288
Atoms 504 504 504 504 1008 1008 1008 1008 1008
Phase P4/nmm P43 P21/m

rho (g/cm3) 1.61 1.97 2.35 2.51 2.71 3.26 3.68 4.03 4.33

Table 17 AMH Finite temperature pressure (GPa)

P (GPa)
T (K) 10 30 60 80 100 200 300 400 500
500 12.74 33.11 63.55 83.40 106.62 205.65 305.43 405.13 504.78
1000 18.17 35.30 67.50 87.09 111.44 210.83 310.72 410.32 510.25
1500 22.19 40.05 72.54 92.20 117.62 216.10 316.08 415.61 514.31
2000 24.61 46.39 77.21 96.79 124.93 222.92 321.55 419.52 517.28
2500 26.73 49.18 81.92 101.07 129.94 228.54 326.71 424.19 522.39
3000 28.57 52.04 85.62 105.41 134.26 233.69 331.67 429.88 527.92
3500 93.99 112.82 140.26 238.29 336.98 435.47 534.30
4000 96.99 118.10 144.85 243.89 342.51 441.94 540.54
4500 100.17 121.66 145.68 249.00 348.64 448.17 547.52
5000 103.26 124.56 255.57 356.35 454.43 554.36
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Details for AHH simulations: Note for simulations marked with a * the number
of molecules is one half of that described, seen for 60 GPa.

Table 18 AHH simulation times (ps)

P (GPa)
T (K) 3 T (K) 10
200 4.12 500 15.28
400 5.09 750 17.26
600 6.42 1000 19.08
800 7.29 1500 21.66
1000 7.80 2000 23.38
1500 9.40
2000 10.75
2500 11.57
3000 12.25

Molecules 96 96
Atoms 352 352
Phase I II

ρ (g/cm3) 1.13 1.49
P (GPa)

T (K) 20 40 60 100 200 250 300 350 400 500
500 1.10 1.51 5.04 5.45 13.21 2.32 10.82 2.01 2.73 5.04
1000 0.90 1.89 4.53 4.78 11.50 2.07 10.83 2.00 2.04 7.56
1500 0.87 1.24 5.01 4.56 11.22 2.20 10.65 1.75 1.91 7.38
2000 0.46 1.79 3.94 4.23 10.78 1.98 10.09 1.86 2.64 5.67
2500 0.82 1.22 3.93 4.18 10.36 1.84 10.72 1.78 2.16 4.84
3000 0.82 1.54 3.81 4.27 10.41 1.94 10.34 1.42 1.71 5.29
3500 0.16 5.13* 4.68 10.38 1.89 10.86 0.73 0.64 6.51
4000 73.80 4.67* 2.41 11.32 1.37 10.51 0.59 0.71 5.23
4500 2.66 2.35 7.74 1.30 11.52 0.53 0.55 5.27
5000 2.36 2.21 10.90 0.42 0.43 3.45
5500 0.47 1.77 9.97 3.51
6000 0.47 1.00 9.94 3.25
6500 0.47 1.28 2.89 3.09
7000 0.46 1.57 2.82 2.95
7500 1.72 2.96
8000 1.31 2.95

Molecules 96 108 216 216 135 288 135 288 288 180
Atoms 352 396 792 792 495 1056 495 1056 1056 660
Phase II A2m Amma P3̄m1
ρ (g/cm3) 1.72 2.05 2.28 2.57 3.11 3.32 3.51 3.71 3.88 4.19
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Details for AQH simulations:

Table 20 AQH simulation times (ps) and details

P (GPa)
T (K) 20 40 60 80 100 150 200 300
500 11.09 10.07 11.04 10.10 11.81 13.38 3.07 3.18
1000 9.98 10.69 10.27 10.60 10.00 11.44 2.88 3.30
1500 8.61 10.15 10.14 10.34 10.78 11.20 2.76 3.30
2000 9.04 10.22 10.45 11.39 10.43 10.31 2.72 3.02
2500 8.91 10.25 10.59 10.41 10.40 10.12 2.57 2.96
3000 10.24 10.66 10.51 11.69 10.20 2.55 2.86
3500 2.25 5.49 4.91 10.68 2.62 2.90
4000 2.12 2.34 4.09 9.89 2.35 2.58
4500 2.93 1.17 2.48

Molecules 120 120 120 120 120 120 160 160
Atoms 456 456 456 456 456 456 608 608
Phase P21 P21m I4/m P-1

ρ (g/cm3) 1.65 1.99 2.18 2.33 2.46 2.75 2.99 3.41

Table 21 AQH finite temperature stress (GPa)

P (GPa)
T (K) 20 40 60 80 100 150 200 300
500 23.41 43.68 64.52 84.23 104.00 153.48 203.62 303.05
1000 27.47 49.47 67.74 87.33 106.94 156.52 206.99 307.60
1500 31.27 55.79 74.95 93.00 111.54 159.55 209.20 310.46
2000 35.21 59.31 79.14 97.73 116.29 163.77 213.27 314.88
2500 37.56 65.69 82.59 101.49 120.41 167.89 217.55 319.09
3000 67.34 85.68 104.88 123.88 172.02 221.79 323.95
3500 93.49 108.61 127.55 176.05 226.33 328.84
4000 96.89 117.25 133.71 180.55 230.77 333.91
4500 189.95 235.23 339.37
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The Fourth Appendix - ADH AIMD
Analysis
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Figure 14 ADH analysis of ionicity (top left), unit types (top right, bottom left),
and covalent hydrogen bonds (bottom right).
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Figure 15 ADH analysis of estimated bond life times (top left), ion diffusion
(top right).
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Figure 16 ADH analysis of bond auto correlation function.
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Figure 17 ADH analysis of MSD.
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Figure 18 ADH analysis of RDF and PDF (NH,OH,HH).
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Figure 19 ADH analysis of PDF (NN,OO,NO).
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The Fifth Appendix - AMH AIMD
Analysis
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Figure 20 AMH analysis of ionicity (top left), unit types (top right, bottom left),
and covalent hydrogen bonds (bottom right).

231



Total
N⋅H
O⋅H

10 GPa

A
ve

ra
ge

 B
on

d 
Li

fe
 T

im
e 

(p
s)

0.1

1

10
30 GPa

60 GPa

T (K)
1000 2000

80 GPa

T (K)
1000500 2000 5000

H
N
O

10 GPa

D
iff

us
io

n 
(Å

2  / 
ps

)

0

2

4

6

8
30 GPa

Lattice Melt

60 GPa

0

2

4

6

T (K)
0 1000 2000 3000 4000

Lattice Melt

80 GPa

T (K)
0 1000 2000 3000 4000 5000

Figure 21 AMH analysis of estimated bond life times (top left), ion diffusion
(top right).

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Superionic

10 GPa

M
S

D
H
 (

B
oh

rs
2 )

0

20

40

60

80

100

Excited

30 GPa

Excited

Superionic

60 GPa

t (ps)
0 2 4 6 8

Excited

Superionic

80 GPa

t (ps)
0 2 4 6 8 10

Melt

10 GPa
M

S
D

N
O
 (

B
oh

rs
2 )

0

20

40

60

80

100

Melt

30 GPa

Melt

60 GPa

t (ps)
0 2 4 6 8

 Melt

80 GPa

t (ps)
0 2 4 6 8 10

Figure 22 AMH analysis of MSD.
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Figure 23 AMH analysis of bond auto correlation function.
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Figure 24 AMH analysis of RDF and PDF (NH,OH,HH).
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Figure 25 AMH analysis of PDF (NN,OO,NO).
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Figure 26 AQH analysis of ionicity (top left), unit types (top right, bottom left),
and covalent hydrogen bonds (bottom right).
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Figure 27 AQH analysis of estimated bond life times (top left), ion diffusion
(top right).
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Figure 28 AQH analysis of MSD.
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Figure 29 AQH analysis of bond auto correlation function.
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Figure 30 AQH analysis of RDF and PDF (NH,OH,HH).
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Figure 31 AQH analysis of PDF (NN,OO,NO).
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Figure 32 AHH analysis of ionicity (top left), unit types (top right, bottom left),
and covalent hydrogen bonds (bottom right).
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Figure 33 AHH analysis of estimated bond life times (top left), ion diffusion
(top right).
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Figure 34 AHH analysis of MSD.
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Figure 35 AHH analysis of bond auto correlation function.
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Figure 36 AHH analysis of RDF and PDF (NH,OH,HH).
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Figure 37 AHH analysis of PDF (NN,OO,NO).
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