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Abstract

The purpose of this project was to investigate the application of

digital image processing techniques as a means of reducing noise in medical

ultrasonic imaging.

Ultrasonic images suffer primarily from a type of acoustic noise,
known as speckle, which is generally regarded as a major source of image

quality degradation. The origin of speckle, its statistical properties as well as

methods suggested to eliminate this artifact were reviewed. A simple model

which can characterize the statistics of speckle on displays was also

developed.

A large number of digital noise reduction techniques was investigated.
These include frame averaging techniques performed by commercially available
devices and spatial filters implemented in software. Among the latter, some

filters have been proposed in the scientific literature for ultrasonic, laser and

microwave speckle or general noise suppression and the rest are original,

developed specifically to suppress ultrasonic speckle. Particular emphasis was

placed on adaptive techniques which adjust the processing performed at each

point according to the local image content. In this way, they manage to

suppress speckle with negligible loss of genuine image detail.

Apart from preserving the diagnostically significant features of a scan

another requirement a technique must satisfy before it is accepted in routine
clinical practice is real-time operation. A spatial filter capable of satisfying
both these requirements was designed and built in hardware using low-cost

and readily available components. The possibility of incorporating all the

necessary filter circuitry into a single VLSI chip was also investigated.

In order to establish the effectiveness and usefulness of speckle

suppression, a representative sample from the techniques examined here was

applied to a large number of abdominal scans and their effect on image

quality was evaluated.

Finally, further improvements and possible uses of speckle

suppression techniques in other fields were also considered.



CHAPTER 1

INTRODUCTION

1.1. Background

1.1.1. Medical imaging

The last decade has witnessed an unprecedented expansion of new

modalities in medical imaging (Margulis & Shea, 1986). This development had

started as early as the 1950's (Higson, 1987) but it was the emergence of the

microelectronics technology which enabled the new modalities to be perfected

and introduced in routine clinical use. Until not very long ago, the only

practical method of obtaining useful images of the internal structure of the

human body was by means of X-rays. Since then, the horizons of radiology

have expanded beyond traditional X-ray imaging to embrace radioisotope and

ultrasonic imaging, thermography, computed tomography, magnetic resonance

imaging and digital radiography.

The concept of uniquely specified diseases is central to the Western

model of medicine and their identification is an essential prerequisite for

choosing the appropriate treatment. Modern radiological methods utilize the

interaction of several types of energy with the human body to form images

which provide anatomical and functional information about the structure being

imaged. This information is vital not only for detecting but, most importantly,

for assessing the spread of a disease. The wealth of diagnostic information

offered by the new imaging modalities has without any doubt improved the

health care and management of individual patients considerably. However it is

essential to keep in mind that, despite its advantages, high-technology

medicine is a very complex issue and the debate about its appropriate use is

far from over. High-technology medicine is inappropriately used if the same

objective could be achieved by simpler means, if the risks involved outweigh
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the probable benefits, if the patient's condition is too serious to respond to

treatment or if it diverts resources from activities that would bring greater

benefits (Jennet, 1984). The last criticism is the one repeated most often,

especially because of the escalating economic pressures in the Health Service.

Nevertheless, the continuing advances in new technology combined with

society's sensitivity to health care indicate that the field of medical imaging

will continue its growth in the foreseeable future.

1.1.2. Ultrasonic imaging

One of the most important modalities in medical imaging is

diagnostic ultrasound. The possibility of using ultrasonic pulses to obtain

images of internal organs has been demonstrated as early as the late 1950's

(Baum & Greenwood, 1958; Donald et al, 1958) but it is only recently that

ultrasonic imaging has gained widespread acceptability in clinical practice.

Since then, the field has expanded constantly and its applications grow year by

year. The abdomen is a particularly fruitful area of application, as are the heart

and the eye, but almost every medical discipline with an interest in imaging

soft tissues has benefited from the growth of the field. Ultrasonic scanning

has become an established tool in internal medicine, cardiology,

ophthalmology, urology, neurology, paediatrics, gynaecology and especially

obstetrics. It is estimated that over 50 million examinations are performed

every year worldwide and their number continues to increase (Hill, 1986).

Compared to other modalities, ultrasound possesses some unique

characteristics which explain its current popularity.

- Safety. Although research in the biological effects of
ultrasound started a long time ago, and it will certainly
continue for even longer, no evidence has been found yet to
suggest that present ultrasonic diagnostic practice
represents a health risk for patients or operators (Wells,
1987).

- Cost effectiveness. Ultrasound is one of the less expensive

1.1.2 Ultrasonic imaging
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modalities as far as both equipment and running costs are
concerned. For example, it is estimated that the cost of an
ultrasonic examination is between 10 and 20 times lower
than the equivalent figure for CT or NMR (Wells, 1986).
Because of its cost effectiveness ultrasound is readily
available and, consequently, it can reach wider groups of the
population.

- Speed of examination and patient comfort. The real-time
nature of ultrasonic scanning allows an examination to be
completed in a few minutes. Also, the procedure for
obtaining ultrasonic images introduces minimum patient
inconvenience. These two factors reduce the amount of
distress caused by the examination.

- Information content. In many cases, the information provided
by ultrasonic scans cannot be obtained by other means. Also,
the ability to display several images per second enhances
the usefulness of the technique because it enables the
examination of moving structures and monitoring of dynamic
events.

Because of these characteristics, ultrasound is rapidly becoming an

adjunct to physical examination and it is the favourite diagnostic approach

even in centres where CT and NMR are available (Margulis & Shea, 1986). The

previous statement does not imply, of course, that ultrasound is a kind of

modern panacea. However, when its use is governed by prudence (Wells, 1986)

it can improve the health care both from the point of view of the individual

and the society as a whole.

1.1.3. Image quality

Image quality is of central importance for the success of an ultrasonic

examination. The quality and consequently the clinical usefulness of ultrasonic

images has improved dramatically since the early days of static B-scanners.

Real-time operation has allowed the movement of internal structures to be

studied and large volumes of tissue can be scanned in a short time (McDicken,

1981). Bistable displays have been replaced by grey scale displays which allow

the visualization not only of strong echoes from organ boundaries but also the

1.1.3 Image quality
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low-level signals from soft tissue parenchyma which are more important from

the diagnostic point of view (Hussey, 1985). The move from analog to 4, 6 or

even 8-bit digital scan converters has improved the stability, accuracy,

reliability and processing of the displayed information (Ophir & Maklad, 1979;

Robinson & Knight, 1981). Electronic beam forming and dynamic focusing has

improved spatial resolution considerably (Halliwell, 1987). Finally, image quality

has improved as result of using sophisticated computer-controlled time gain

compensation systems which adjust the gain function across as well as along

the scan lines (Pye et al, 1988).

Despite all these advances, little has been done to reduce noise in

ultrasonic images. A good definition of the term "noise", which tends to be a

rather vague concept in general, is given by Cornsweet (p. 80, 1970) in his

book "Visual perception".

" In common usage, the term 'noise' refers to sounds that
interfere with the sounds the listener wants to hear. These are

generally sounds which are random in respect to the signal of
interest. The term has now been generalized to include any
signals, manifested in any form of energy, that occur irregularly
with respect to the signal of interest and tend to obscure the
signal."

Electronic noise limits the useful penetration depth of an ultrasonic

scan but otherwise does not degrade image quality (Wells & Halliwell, 1981).

However, ultrasonic images suffer from a type of acoustic noise called speckle

which represents a major source of image quality degradation (Kremkau &

Taylor, 1986). Speckle is an interference effect caused by the scattering of the

ultrasonic pulse by microscopic tissue inhomogeneities (Morrison et al, 1980).

The interference can be constructive or destructive depending on the relative

phase differences of the scattered wavelets emanating from within the

resolution cell (Wells & Halliwell, 1981). The resulting granular pattern, which is

1.1.3 Image quality
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commonly referred to as texture, can be wrongly interpreted as real whereas

in fact it bears little resemblance to the actual tissue microstructure (Flax et al,

1981). The texture of soft tissues depends heavily on the imaging system as

well as the tissue being imaged. Factors such as grey scale mapping,

transducer focusing pattern and position relative to the body, or even the

intervening tissue have a significant effect on texture (Jaffe & Harris, 1980a,

1980b; Kimme-Smith & Jones, 1984). For this reason, it is extremely difficult

for a human observer to isolate the true tissue information contained in

texture simply by visual inspection of the image. The practical consequences

of speckle are:

- Resolution. The presence of speckle reduces the ability of a
human observer to detect low-contrast lesions (Smith &
Lopez, 1982). This is particularly important because in many
diseases, such as tumours, the abnormal regions have only
slightly different echogenicity from that of the surrounding
normal tissue. The resolution of small structures, such as

ducts and tracts, is also affected due to the noise masking
effect.

- Image interpretation. The lack of direct analogy between the
speckle pattern and the actual tissue microstructure makes
ultrasonic scans difficult to interpret. The question of what is
real and what artifactual introduces an element of

uncertainty in the examination, reduces confidence in
judgements about the clinical significance of a finding and
demands a high degree of experience in order to make a
correct diagnosis.

- image variability. The strong dependence of texture on the
scanner being used has been confirmed by several
psychovisual experiments (Kimme-Smith Jones, 1984; Chivers
et al, 1986). The disturbing implication of this finding is that
the set of criteria employed by a radiologist in order to
determine if a scan is abnormal has to be modified when a

different machine is used.

- Viewer efficiency. Although no experimental data exist for
medical ultrasound, it has been observed in other areas
where this phenomenon is also encountered that speckle
reduces the efficiency of a human observer by causing
viewer fatigue (Rawson et al, 1976).

1.1.3 Image quality
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It is reasonable to expect that if speckle suppression can be achieved

without loss of true tissue information, image quality will improve due to

increased contrast and spatial resolution, enhanced viewer performance,

reduced image variability and easier image interpretation. During this project,

several established and original methods for speckle suppression were

investigated. The common characteristic of all the techniques is that they

perform speckle suppression by means of digital image processing.

1.1.4. Digital image processing

A digital image is an image f(x,y) that has discrete values both in

spatial coordinates and in brightness. We may consider a digital image as an

array of N X N picture elements (pixels) whose row and column indices

identify a point in the image and the corresponding element value gives the

grey scale level at that point. Typically, a digital image has 512 X 512 pixels

with 256 grey levels.

Interest in digital image processing sjtems from two principal

application areas; improvement of pictorial information for human

interpretation and processing image data for autonomous machine perception.

Initially, work was stimulated mainly by the space research program in the

1960's (Frieden, 1979). Since then, this area has experienced vigorous growth

and has become an interdisciplinary subject with research performed in such

fields as engineering, robotics, computer and information science, statistics,

physics, biology and medicine. The burst of activity can be attributed mainly

to three reasons:

- Development of sophisticated algorithms. In the early days,
the majority of the techniques applied in image processing,
such as linear filtering, were transplanted from the field of
one dimensional signal processing. As researchers have
become aware of the fact that pictorial information demands
a different type of processing, more complex but also more
effective techniques have emerged which take into account,
to a lesser or greater extent, the characteristics of the

1.1.4 Digital image processing
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human visual system (Mastin, 1985).

- Dedicated hardware for image processing. The advances in
semiconductor technology have enabled the design of
special VLSI integrated circuits which can implement complex
algorithms at a fraction of the time needed by a general
purpose computer (Young 8t Liu, 1986; Proceedings of the
IEEE, 1987). At the same time, the cost of dedicated hardware
is decreasing constantly.

- Growth in applications. The initial progress in algorithm and
hardware design has resulted in increased awareness of
possible users about the potential of image processing
which, in turn, has created greater demand for new
applications and has stimulated research in new areas.

At the moment even the most sophisticated image processing system

looks crude compared to the way a human observer analyses visual

information. However, the continuing advances in microelectronics and the

use of massively parallel processing devices (Uhr, 1986) should eventually

result in systems which approach the efficiency, flexibility and capabilities of

the human visual system.

Digital image processing is an essential part of many medical imaging

techniques. Computers or dedicated hardware are used to generate, enhance

and quantitate visual information in computed tomography, digital radiography,

radioisotope and magnetic resonance imaging (Todd-Pokropek, 1980; Sklansky

et al, 1986; Sharp, 1987). Although digital techniques have been used to some

extent in ultrasonic imaging, mainly for data storage, their impact has been felt

much less than in other modalities. However, digital image processing is

becoming more and more suitable for the improvement of ultrasonic scans.

The general trend towards an all-digital scanner means that echoes are

available in digital form from as early as the radiofrequency stage. The

decreasing cost and increasing speed of digital signal processing devices

makes them compatible with the inexpensive and real-time nature of

1.1.4 Digital image processing
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ultrasound. Finally, the flexibility, accuracy, reliability and performance offered

by digital techniques cannot be obtained by other methods. It is expected that

during the next few years, image processing will play an important role in the

improvement of ultrasonic image quality.

1.2. Aims and of overview of this project

The aim of this project was to investigate the application of digital

image processing techniques as a means of reducing ultrasonic speckle.

Chapter 2 deals with ultrasonic speckle in some detail. The subjects

covered are speckle generation, its statistical properties and their modification

by the signal processing stages inside the scanner, the possible information

carried by speckle about the tissue being imaged and a brief review of

techniques proposed to eliminate this artifact.

It was considered essential to begin the experimental part of this

project by examining the effectiveness and suitability of commercially available

techniques for noise reduction. The only technique specifically aimed at noise

reduction which has been incorporated into ultrasonic scanners so far is a

form of temporal filtering called recursive averaging. This technique is

examined in Chapter 3. Frame integration, which is another form of temporal

filtering, is also included in this chapter.

Apart from commercially available techniques another, perhaps more

important, objective was to review, apply and evaluate digital image

processing algorithms which have appeared in the scientific literature with

particular emphasis on adaptive, i.e. space-varying, techniques. Because

ultrasonic imaging is a relatively new field, there are still only a few algorithms

for acoustic speckle suppression. However similar artifacts are encountered in

every field that uses a coherent source of radiation such as laser and

microwave radar imaging. The increased awareness of researchers in these

1.2 Aims and of overview of this project
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fields about the image degradation caused by speckle has led to the

development of a variety of methods to suppress it. Also, from the vast

number of noise reduction algorithms available in the general image

processing literature some could prove to be useful, even if they were not

specifically developed for speckle suppression. A large number of noise

reduction algorithms was examined during this phase of the project. The

algorithms were modified, where appropriate, in order to take into account the

special characteristics of ultrasonic speckle and were applied to digitized

scans.

Experimentation with already existing noise reduction techniques was

undertaken for two reasons. The first and obvious reason was to determine

their suitability. The other reason was to identify their weaknesses and specify

the desirable characteristics of an ideal speckle suppression algorithm, so that

it would be possible to achieve better performance either by combining the

positive features of well-known techniques or by following directions

previously unexplored. During this phase of the project several new

algorithms were developed with, admittedly, varying degrees of success. At

the same period some time was devoted in deriving and studying theoretical

properties of new algorithms in order to gain a better understanding of the

way they operate. Chapter 4 describes some representative algorithms, both

established and new, and presents results from their application to ultrasonic

scans. The algorithms are classified as linear, nonlinear and adaptive

according to their operation on the input data. Their common characteristics

are that they perform spatial filtering, i.e. they use the noisy information

contained in a single frame to produce a smooth image, and they are

implemented in software.

The final objective of the project was to develop techniques which

could be used in clinical practice. The most important requirement for the

1.2 Aims and of overview of this project
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clinical application of speckle suppression is real-time operation, in the sense

that a scan should be processed in 1/10 - 1/20 of a second. This is by no

means a trivial task because it involves several million numerical calculations

per second. Computers cannot provide this kind of speed so they are

effectively suitable only for off-line applications. However research in

software techniques was considered, and was actually proved, essential for

establishing the necessary features and determining the feasibility of

algorithms suitable for real-time operation. Chapter 5 discusses the problems

associated with the real-time implementation of digital image processing

algorithms and describes the design of a hard-wired two dimensional filter

which can perform real-time speckle suppression while preserving the

important features of a scan.

From the image processing literature, it is evident that far more effort

has been devoted in developing new algorithms than in evaluating their

performance. In our opinion, this is indicative of the difficulties involved in

performing a comprehensive and rigorous evaluation. In medicine, however, it

is very important to assess the clinical usefulness of image processing

techniques, despite the difficulties involved. The approach followed here was

to apply frame averaging, software spatial filtering and hardware spatial

filtering to a large number of scans obtained by using different scanners.

Afterwards, the quality of the original and processed images was evaluated in

terms of noise content, boundary definition, contrast, diagnostic information

and overall preference both from the physician's and the physicist's point of

view. The methodology and results of the clinical evaluation are presented in

Chapter 6.

Finally, Chapter 7 discusses further developments and possible

improvements. Other applications of noise suppression in ultrasonic imaging,

apart from the ones investigated in this project, are also considered.

1.2 Aims and of overview of this project
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CHAPTER 2

ULTRASONIC SPECKLE

2.1. Introduction

Ultrasonic imaging utilizes the interaction of the human body with a

high frequency pulse to form images which provide information about the

acoustical properties of the tissue being scanned. Because of the complex and

poorly understood nature of this interaction, the information provided by the

scan is qualitative rather than quantitative, in the sense that image intensities

correspond to a combination of several factors instead of a single acoustic

tissue property. In general, B-scan images are based on the changes of the

acoustic impedance inside a medium (Fatemi & Kak, 1980). The acoustic

impedance Z can be defined as Z=pc or Z=(pu)1/2, where c is the speed of

sound, p the density and ]i the compressibility of the medium.

The returning echoes that form the ultrasonic image are generated

mainly through the mechanisms of reflection and scattering (McDicken, 1981).

Reflection occurs when the ultrasonic pulse encounters a large-scale interface

separating two media of acoustic impedances Z^ and Z2. Assuming normal

incidence, the reflected intensity lr is given in terms of the incident intensity lj

by the plane wave reflection formula

lr/li=(Z1-Z2)2/(Zl+Z2)2 (2.1)

This is of course an idealized situation which can nevertheless give us a rough

estimate of the reflective properties of tissue interfaces. Reflection is

responsible for the strong echoes received from organ boundaries such as the

interface between liver and diaphragm.

Scattering, on the other hand, occurs when a wave is fragmented in

several directions after interacting with tissue discontinuities of dimensions

2.1 Introduction
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similar to or smaller than the acoustic wavelength. This is a far more

important echo generation mechanism because the backscattered wave

provides information about the mean scattering strength of the internal

structure of an organ, as opposed to just the location of interfaces, which can

be correlated to the pathology of the tissue. It is also a far more complex

phenomenon to analyse because of the mathematical difficulties involved and

our incomplete knowledge of the tissue acoustic microstructure. However,

because of its diagnostic significance scattering has attracted considerable

attention both from the theoretical and experimental point of view. The current

status of scattering theory is reviewed by Chivers (1977) and more recently by

Dickinson (1986). All the theories that have been developed so far model

tissue either as a continuous medium where the density and compressibility

fluctuate from point to point about their mean values (inhomogeneous

continuum model) or as a large collection of point scatterers embedded at

random positions in an otherwise homogeneous medium (discrete scatterer

model).

Figure 2.1 shows a typical ultrasonic scan of the liver, kidney and the

diaphragm. The scan exhibits a characteristic granular pattern, commonly

referred to as speckle, due to scattering of the ultrasonic pulse by microscopic

tissue inhomogeneities. In the early days of grey scale ultrasonography, the

origin and implications of speckle had been the cause of much confusion and

misunderstandings. The first attempts to explain its nature (Burckhardt, 1978;

Abbot & Thurstone, 1979; Morrison 1979; Morrison et al, 1980) used analogies

from other fields where this phenomenon is also encountered, and in particular

from laser imaging. Laser speckle has been studied extensively (see for

example Journal of the Optical Society of America, special edition on speckle,

November 1976) and some of the results are directly applicable to ultrasound.

However, the analogies are somehow limited because laser speckle is

2.1 Introduction
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produced by a continuous wave reflected by a two-dimensional surface

whereas ultrasonic speckle is produced by a finite length pulse propagating

through a three-dimensional volume (Flax et al, 1981).

Figure 2.1 : Ultrasonic scan of the liver, right kidney and the diaphragm.

A qualitative explanation of how speckle is generated can be given by

using the discrete scatterer tissue model. Let us considered Figure 2.2a which

has been adapted from Wells 8t Halliwell (1981). Because of the finite width of

the beam, at any time instant the pulse interacts with a three-dimensional

volume element, the so called resolution cell, which includes a large number

of scatterers of size and spacing comparable or smaller than the wavelength.

Speckle is an interference effect due to the phase-sensitive addition by the

transducer of the scattered wavelets emanating from within the resolution cell.

Depending on the relative phase differences of the wavelets, predominantly

constructive or destructive interference may occur. The extreme cases of

interference caused by the addition of two pulses of the form shown in Figure

2.2b and having phase difference of zero, half and one wavelength, are

2.1 Introduction
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displayed in Figures 2.2c, d and e respectively (adapted from Morrison et al,

1980). The previous description of speckle generation ignores the effect of the

intervening tissue on the scattered echoes. For a more realistic description,

multiple scattering and phase distortion due to different acoustic velocities,

frequency dependent attenuation and multiple interfaces should also be

considered.

2.2. First-order statistics

The statistical properties of speckle have been studied by Burckhardt

(1978) and Wagner et al (1983). Their analysis was based on the random walk

problem which had been previously used to study laser speckle (Goodman,

1975). At a given time instant, the transducer receives N echoes scattered by

the tissue inhomogeneities within the resolution cell. The kth elementary

contribution can be represented in phasor notation as ak=|ak|exp[j<j>k], where |ak|

is the magnitude and <f>k is the phase of the scattered wavelet.

The following assumptions are made:

- The number of scatterers N is very large.

- The phasors ak are statistically independent. In other words,
the joint probability density function , in short notation pdf,
f(a-|,a2,...,a|vj) is the product of the individual pdf's f(ak).

- The phases <J>|< are uniformly distributed in the interval [0,2tt]
and independent of the magnitudes |ak|.

Then, the phase-sensitive addition by the transducer of the elementary

phasors ak corresponds to a two-dimensional random walk problem in the

complex plane. From the central limit theorem (Middleton, Chapter 7, 1960), the

transducer output A

n

A= I |ak|exp[j 4>k]=AR+jA, (2.2)
k=1

2.2 First-order statistics
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has a joint pdf

f(AR,A|)=(1/2ltif)exp[-(AR+Af)/2if] (2.3)

This is a circular Gaussian distribution with mean equal to 0 and variance

equal to if. The parameter if is defined as

if= I lak|/2 (2.4)
k=1

and provides information about the tissue scattering strength.

From probability theory (Papoulis, Chapter 7, 1981), the transform

z=g(x,y) w=h(x,y) (2.5)

has a joint pdf f2W(z,w) which can be expressed in terms of the pdf fxy(x,y) as

fzvv(z,w)=fxy(x1,y1)/|J(xi,y1)|+ ...+fxy(xn,yn)/|J(xn,yn)| (2.6)

where (x^y-,), ...,(xn,yn) are real solutions of the simultaneous equations of (2.5)

and the determinant of the Jacobian J(x,y) is defined as

|J(x,y)|=(3g(x,y)/3x)(3h(x,y)/3y)-(3g(x,y)/3y)(3h(x,y)/3x) (2.7)

Using (2.6), it can be easily proven that the transform to polar

coordinates |A|=[AR+A2]1/2 and Q^an'^A/AR) has a joint pdf

f(|A|, 0)=(|A|/2 TTif )exp[—jA|2/2if ] (2.8)

Finally the pdf f(|A|) of the envelope-detected signal |A| is given by

2tt

f(|A|)= J f(|A|,9)d6 = (|A|/if)exp[—|A|2/2if] (2.9)
0

2.2 First-order statistics
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This is a Rayleigh distribution with mean m, variance a2 and signal-to-noise

ratio SNR

m=[i\i>/2]]/2 o2={4-tt)^/2 SNR=[tt/(4-7t)]1/2=1.91 (2.10)

Despite the simplifications and assumptions made, (2.9) describes the

first-order statistics of acoustic speckle accurately. Several workers have

reported agreement between the Rayleigh distribution and experimental

histograms of the envelope-detected signal, obtained by scanning tissue

mimicking phantoms (Foster et al, 1983; Wagner et al, 1983; Zagzebski et al,

1985).

From (2.10), it can be seen that the mean of the envelope-detected

signal is proportional to the standard deviation. This is a characteristic of

multiplicative noise. Consequently, speckle can be modelled as

z=xn or z=x+xu (2.11)

where
z is the observed signal
x is the true signal
n=1+u is a noise term, statistically independent of x

The noise distribution can be found in the following manner. Assuming that an

area of the same scattering strength ijj is scanned, from (2.10) the true signal x

is equal to [iTt|t/2]1/2. Since x is constant, its pdf fx(x) is given by

fx(x)=5[x-(tni)/2)1/2], where 6(x) is the delta function (Bracewell, Chapter 5,

1986). In order that z obeys the Rayleigh distribution of (2.9) the pdf fn(n) of

the noise term n should be fn(n)=(itn/2)exp[-n27T/4] with mean mn=1 and

variance a2=(4-it)/iT. By substituting fx(x), fn(x) into the following equation

+ 00

fz(z)= J (1/|w|)fx(w)fn(z/w)dw (2.12)
— 00

2.2 First-order statistics
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which gives the pdf of the product of two independent random variables

(Papoulis, Chapter 7, 1981), it is straightforward to verify that the pdf fz(z) of

the observed signal z is given by (2.9).

Envelope detection is the first of many signal processing stages

inside the scanner which modify the statistics of speckle. When the echoes are

finally displayed as a grey scale image, the Rayleigh distribution and the

multiplicative noise model are no longer valid. For example, the histograms of

Figure 2.3 correspond to the same 64 X 64 region of a tissue mimicking

phantom' imaged under normal conditions (Figure 2.3a) and with the

logarithmic compression circuit disconnected (Figure 2.3b). The images were

obtained using a Marti real-time sector scanner manufactured by Fischer

Ultrasound Ltd. Both histograms are quite different from the Rayleigh

distribution with the histogram of Figure 2.3a having an almost Gaussian

shape. Bamber 8t Cook-Martin (1987) have also commented upon the similarity

between the Gaussian distribution and histograms of speckle calculated from

grey scale images.

In order to obtain an idea about the statistics of speckle on displays,

the simple signal transmission model of Figure 2.4 has been used. The form of

the logarithmic compression is similar to the one used by Schomberg et al

(1983) for the deconvolution of ultrasonic scans. The low-pass filter simulates

the effect of the finite bandwidth of the amplifying stages and the

interpolation/smoothing performed by the scan converter. Although it would

be preferable to develop analytical expressions for the statistical distribution of

speckle on displays, this is not possible because of the following reasons. The

'The tissue mimicking phantoms used in this work were the Cardiff resolution, grey scale and
routine quality test objects (McCarty & Stewart, 1984).

2.2 First-order statistics
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Figure 2.3 : Influence of signal processing on the statistics of acoustic speckle.
Histograms calculated from the same 64 X 64 scan of a phantom under normal
conditions (a) and with the log compression circuit disconnected (b).
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logarithmic transform of a Rayleigh variable x has been studied for the simple

case y=/nx (Deutsch, Chapter 3, 1962) but the moments (e.g. mean, variance

etc) of y cannot be obtained in closed form for the more general case

y=A/rc(Bx+1). In addition, the pdf of the output z of a linear system, like the

low-pass filter of Figure 2.4, is in general intractable unless the input y is a

Gaussian process (Davenport & Root, Chapter 9, 1958).

y=Aln(Bx + 1) z(t ) = y(t) *h(t)

Figure 2.4 : Simple signal transmission model to simulate the processing
stages inside the scanner. x(t), z(t) are the envelope-detected and displayed
signals respectively.

Computer simulations are useful when analytical expressions cannot

be obtained. In order to estimate the statistics of speckle on displays, a

simulation program based on the model of Figure 2.4 was written. The starting

point is the generation of a 10000-point random sequence. This is an

uncorrected Gaussian process, with mean and variance equal to 0 and 4)

respectively, and corresponds to the radiofrequency signal of (2.2). Envelope

detection is performed by means of the Hilbert transform (Bracewell, Chapter

12, 1986). The parameters A, B of the logarithmic compression and the

low-pass filter coefficients are adjusted to obtain agreement with experimental

data. As an example, Figure 2.5 displays the histograms of each stage for an

input sequence with tp=2292, A=37, B=0.05 and a simple 3-point running

average filter. The envelope-detected signal exhibits the characteristic shape

of the Rayleigh distribution (Figure 2.5a). The logarithmic transform distorts

the Rayleigh distribution by compressing the right-hand tail of the histogram

(Figure 2.5b) and low-pass filtering results in an almost Gaussian distribution

2.2 First-order statistics
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Figure 2.5 : Computer simulation of first-order statistics of speckle.
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(Figure 2.5c). Both the shape and moments of the final histogram agree quite

well with experimental data, like the histogram of a 64 X 64 region from a

tissue mimicking phantom shown in Figure 2.5d. Note that the actual

histogram values in Figure 2.5d have been multiplied by 10000/642 so that all

four histograms are displayed with the same scale.

MEAN GREY-SCALE LEVEL

Figure 2.6 :Standard deviation vs the mean of ultrasonic speckle. Solid curve -

computer simulation. Points - data obtained from ultrasonic phantoms using
the Siemens Sonoline SX scanner.

The graph of the standard deviation vs the mean of speckle on

displays is plotted in Figure 2.6. The solid curve was obtained by performing

the computer simulation using different values for the variance i|> of tf>e input

sequence. The points represent experimental data obtained by calculating the

mean and standard deviation of the pixels inside 64 X 64 regions from tissue

mimicking phantoms. The regions chosen were judged to have uniform

2.2 First-order statistics
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intensities without reverberations or other artifacts and were imaged using the

same time gain compensation settings. From Figure 2.6 it can be seen that

speckle is no longer multiplicative in the sense that the mean m is

proportional to the variance a2 rather than the standard deviation a. This

observation implies that the ratio o2/m is, at least approximately, constant and

therefore it could be used to characterize speckle. An example is given by

Figure 2.7a which is a scan of the liver and gallbladder. The local mean and

variance of each pixel is calculated using a 9 X 9 pixel window and the

quantity a /m is displayed in Figure 2.7b as a grey scale image. Comparison

between the two images shows that areas containing speckle in Figure 2.7a

correspond to similar midgrey levels in Figure 2.7b, whereas resolvable

structures have considerably higher intensities. The a2/m criterion is used

extensively in the design of the adaptive filters of Chapter 4. Based on the

assumption that a2/m is constant, speckle on displays can be now modelled

as

z=x+x1/2u (2.13)

where
z is the observed signal
x is the true signal
u is a noise term, statistically independent of x and having mean mu=0

The first-order statistics of this noise model are studied in Section 4.4.1

(equations 4.27 - 4.30).

The following points could be made about the validity of the

computer simulation and the choice of a2/m. First, the input of the computer

program is an uncorrelated random sequence whereas speckle is correlated

both in the axial and lateral direction (Wagner et al, 1983). Also, the

simulation uses one-dimensional data to estimate the statistics of a

two-dimensional signal. Finally, the assumption that a /m has a constant value

2.2 First-order statistics
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a

Figure 2.7 : (a) - Ultrasonic scan of the liver and gallbladder, (b) - Ratio of the
local variance over the local mean, multiplied by a scaling factor and displayed
as a grey scale image.
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is only an approximation of the actual curve of Figure 2.6. Nevertheless, the

purpose of this study was not to provide a comprehensive and rigorous

treatment of the statistics of speckle on displays but simply to find a

convenient and easily calculated quantity which could characterize speckle.

The a2/m criterion has been found in practice to satisfy these requirements.

2.3. Information or noise ?

Should speckle and its spatial variation (texture) be regarded as true

signal which provides information about the tissue pathology (Kossoff et al,

1976) or as undesirable noise which bears no relationship to the actual tissue

microstructure (Burckhardt, 1978) ? This question has been the subject of

several investigations. Their conclusions, although sometimes contradictory,

have improved our understanding of the complicated mechanisms which

govern the ultrasonic image formation.

The theoretical analysis presented in Section 2.2 assumes that the

first-order statistics of speckle can be described in terms of general physical

principles without references to the imaging system. The average intensity of

speckle is related through (2.10) to the tissue scattering strength. This implies

that a more accurate estimate of the tissue acoustical properties could be

obtained by suppressing random signal fluctuations. Following similar

methodology Wagner et al (1983) concluded that the second-order statistics of

speckle and the quantities determined by them, such as the average speckle

size, depend only on the transducer characteristics and reported very good

agreement between their theoretical expressions and experimental data from

phantoms and computer simulations (Smith 8< Wagner, 1984). Flowever, they

also warned that their results are applicable to clinical images only to the

extent that tissue can be modelled as a gelatin matrix containing many small

uniformly distributed scatterers.

2.3 Information or noise ?
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The effect of the imaging system on texture has been the subject of

qualitative studies by Jaffe & Harris (1980a; 1980b). They remarked that the

transducer focusing pattern and the grey scale mapping modify the

appearance of texture. According to them, the "true" tissue texture is not the

one nearest the transducer but that which is displayed at regions of best

focus, a comment also made by Kremkau & Taylor (1986).

Computer simulations which model the entire image formation

process have been widely used to study the problem of ultrasonic texture

because they allow the effect of individual parameters on the final image to be

examined in a systematic manner. The validity of this approach has been

demonstrated by Foster et al (1983) and Zagzebski et al (1985), who have

developed three-dimensional models which take into account the transducer's

as well as the scattering medium's properties and have achieved very good

agreement between theory and experiment. Bamber and Dickinson (1980) have

performed a two-dimensional simulation of speckle based on the

inhomogeneous continuum tissue model. The results of the simulation

suggest that there is a very complicated relationship between the ultrasonic

scan of an object and the object itself. For objects of dimensions larger than

the pulse wavelength (resolvable at least in theory) the scan exhibits a marked

difference, demonstrated primarily by a finer texture, but is relatively

insensitive to the pulse width and rise/fall times. On the other hand, for

unresolvable structures the appearance of the scan depends heavily on the

pulse characteristics. Flax et al (1981) have observed that fine texture is not

indicative of high spatial resolution. They have also observed that the average

speckle size is proportional to the distance from the transducer and inversely

proportional to the number of scatterers used in the computer simulation

program. Oosterveld et al (1985) and Thijssen et al (1987) have studied the

effect of depth, attenuation and scatterer density on the first and

2.3 Information or noise ?
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second-order statistics of texture. They concluded that the mean echo level is

proportional to the square root of the scatterer density, as expected from

(2.10), but it also depends on the depth increasing towards the focal point and

decreasing beyond it. They also found that the lateral and axial dimensions of

speckle decrease as the scatterer density increases. Attenuation has a major

effect on the second-order statistics of speckle. For an attenuating medium

the lateral width of speckle increases sharply with depth. They commented

that the area around the focal point, which is preferred by the physicians

because it has the best spatial resolution, has also the least constant lateral

texture.

The effect of instrumentation parameters on texture has been

confirmed by two psychovisual experiments. In the first experiment

(Kimme-Smith & Jones, 1984), a specimen of bovine pancreas was scanned

under different imaging conditions and a group of radiologists evaluated the

visual similarity of the images. The analysis of the results demonstrated that

the grey scale mapping, the transducer focusing pattern and the intervening

tissue have a significant effect on texture whereas factors such as the

distance from the transducer or the scan conversion algorithm used are

relatively unimportant. In the second experiment (Chivers et al, 1986), scans of

four tissue mimicking phantoms of different scattering properties were

compared with a scan of normal liver to determine which phantom resembles

liver texture more closely. The procedure was repeated for four scanners and

the image similarity was judged by a group of twenty two observers. The

results suggested that the model which resembles liver most closely varies

from machine to machine. This result seem to support the hypothesis that the

textures observed are characterized primarily by the scanner that produced

them rather than the tissue mimicking phantom that was imaged.

From the above, it is clear that the average speckle intensity is a

2.3 Information or noise ?



29

useful quantity because it provides information about the tissue scattering

strength. In fact, this is the most widely used criterion by radiologists when

examining a scan. However, the spatial variation of speckle depends heavily on

so many system parameters that it is almost impossible for a human observer

to isolate the true tissue information. Consequently, judgements about the

clinical significance of texture can be misleading. The lack of a direct

correspondence between texture and the actual tissue microstructure plus the

effects speckle has on image interpretation and variability, resolution and

viewer efficiency (already mentioned in Section 1.1.3) support the argument

that speckle is an undesirable signal which should be treated as noise.

On the other hand, since speckle results from the interaction of tissue

with the ultrasonic pulse it is reasonable to assume that it should carry at

least some information about the tissue being imaged. Considerable effort has

been devoted in trying to extract this information. A group of techniques

based on computer analysis of texture attempt to identify texture features

which could be used as tissue signatures. These features include local

histograms for studying Gaucher's disease (Shawker et al, 1981) or

distinguishing between normal liver and carcinoma (Itoh et al, 1985),

co-occurence matrices for classification of diffuse and malignant liver disease

(Raeth et al, 1985) and grey level run-length histograms and grey level

difference statistics for identification of acute myocardial ischemia (McPherson

et al, 1986). A combination of textural features including first-order,

second-order and Fourier domain features has been used by Nicholas et al

(1986) to perform automatic discrimination between liver and spleen scans.

Texture has also been used for automatic tissue segmentation (Mailloux et ai,

1984; 1985).

The previous techniques are ad hoc in nature in the sense that the

selection of texture features is made on a trial-and-error basis. Other groups

2.3 Information or noise ?
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have attempted to associate the texture to the histological state of tissue.

Sommer et al (1981) and Fellingham & Sommer (1984) have found that tissue

exhibits periodic or semiperiodic structure which can be associated with

pathology. For example, cirrhotic liver disease and Flodgkin's disease in the

spleen result in coarser than normal histological appearance. They have been

able to detect the periodic structure by analysing the autocorrelation of

digitized echoes returning from the pathological site. Recently, a very

interesting approach which relates the histology of tissue to the statistical

properties of texture has been suggested. The statistical basis of this method

is described in two publications by Wagner et al (1986; 1987a). According to

this method, the tissue inhomogeneities are classified as diffuse or distributed

specular scatterers. Diffuse scatterers have dimensions smaller than the pulse

wavelength, obey Rayleigh statistics, are unresolvable and do not carry any

tissue signature apart from the mean scattering strength. Distributed specular

scatterers have dimensions comparable with the wavelength, obey Rician

statistics, are partially resolvable and provide information about the

semiperiodical structure of the tissue being imaged. The tissue signature can

be obtained by calculating the power spectrum of the texture and stripping off

the diffuse components. The technique has be proven to be useful for

classification of liver disease (Insana et al, 1986), but attention is drawn to the

need for removing the effects of the scanner in order to obtain accurate

results (Wagner et al, 1987b).

The common characteristic of the texture analysis techniques

discussed here, and indeed the vast majority of the tissue characterization

techniques, is that the information is extracted by means of complicated

numerical processing of the data performed by computers. The use of

computers is necessary because the information, and especially the

second-order statistical properties of texture, is not available from visual
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inspection. The classic work of Julesz (Julesz at al, 1973; Julesz, 1975) in

visual perception has proved that observers are sensitive to differences in the

second-order properties of texture. However, by using simulated images of the

type encountered in ultrasonic imaging Wagner et al (1985) have demonstrated

that there is a wide range of texture discrimination tasks based on

second-order statistics at which the human observer performs very poorly

whereas a machine is very efficient.

In the light of the previous discussion, the original question of this

section seems incomplete. In order to determine if speckle is information or

noise the means by which the signal is analysed should also be specified.

Machine analysis of texture seems to be a promising direction for tissue

characterization. However, as far as visual interpretation of images is

concerned, speckle not only does not convey any perceivable information but

it also interferes with the perception of diagnostically significant features. It

makes sense, therefore, to suppress the irrelevant data like speckle in order to

enhance the features of the image which are relevant to the decision making

process.

2.4. Review of ultrasonic speckle reduction techniques

It is generally hoped that speckle suppression could improve image

quality and possibly increase the diagnostic potential of ultrasonic imaging. For

this reason, speckle suppression has been, and still is, a very active area of

research. Speckle suppression techniques must satisfy the following

requirements in order to gain acceptability in clinical practice.

- Adequate noise reduction and signal preservation. Ultrasonic
images are heavily corrupted by noise. However, unlike
some other types of medical images they also possess sharp
edges which in many cases, e.g. small blood vessels, have
dimensions comparable to the speckle size. Consequently,
the techniques should suppress speckle without degrading
the resolution of the image by wiping out important features.

2.4 Review of ultrasonic speckle reduction techniques
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- Real or near real-time operation. It has been pointed out in
Chapter 1 that one of the most important advantages of
ultrasound is its real-time nature. Anything that disrupts the
interactive procedure of scanning is inevitably of limited
value.

- Low complexity. The more complex and expensive to
implement a technique is, the more difficult it becomes to
justify its use, especially in a low-cost modality like
ultrasound.

Speckle suppression techniques have yet to gain acceptance in

routine scanning. This can be attributed to the fact that they fail to satisfy

one or more of the above requirements. The last part of this section presents

a brief review of the techniques proposed so far and discusses some of their

drawbacks. The vast majority of the techniques can be divided in two broad

categories known as spatial filtering and compounding.

2.4.1. Spatial filtering

The task of spatial filtering in speckle suppression is to produce a

smooth image by estimating the true signal intensity from the noisy

information contained in a single frame. This is usually performed in the space

instead of the frequency domain because it offers more flexibility and is easier

to implement. Given a M X M digital image f(x,y), spatial filtering generates a

smooth image g(x,y) whose grey level at each point (x,y) is the combination of

the pixel intensities around a predefined neighbourhood of (x,y) in the original

image f(x,y). Linear combinations of the pixel intensities have been proposed

for noise reduction in echocardiography by Parker & Pryor (1982) and Hecker &

Poppl (1982). Alternatively, the combination can be nonlinear in the form of

median filtering (Morikubo et al, 1985) or outlier removal (Schuster et al, 1986).

The major drawback of both linear and nonlinear approaches is that they are

space-invariant, in other words they perform the same type of operation in all

parts of an image. Since the content of ultrasonic scans varies with location,

2.4.1 Spatial filtering
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the filtering algorithms should ideally be able to distinguish between specular

reflections, uniform areas of speckle and boundaries between regions of

different scattering strength and perform the appropriate type of processing.

However because of their space-invariance, linear and nonlinear filters tend to

introduce blurring and loss of true image detail. In order to overcome these

limitations, space-varying or adaptive techniques have been introduced

recently which attempt to distinguish between different regions using some

speckle characterization features. Dickinson (1982) has proposed a filter whose

smoothing action is inversely proportional to the local mean. In this way

strong echoes can be preserved, but at the expense of oversmoothing low

level signals and blurring the boundaries of low-contrast focal lesions. The use

of more sophisticated speckle characterization features based on the

first-order statistics(Bamber & Daft, 1986; Loupas et al, 1987), or a combination

of first and second-order statistics (Bamber & Cook-Martin, 1987) has resulted

in better and more effective algorithms. A more detailed discussion on this

subject is presented in Chapter 4.

2.4.2. Compounding

Compounding attempts to reduce speckle contrast by combining

independent views of the same object obtained under different imaging

conditions. This idea has been used before for speckle suppression in laser

(Goodman, 1976) and microwave radar imaging (Porcello et al, 1976). Its

origins, however, can be traced even further back to a fundamental theorem

found in every textbook of probability theory. The theorem states that the

addition of N independent, identically distributed random variables results in a

1 /2
new random variable having standard deviation reduced by N and

signal-to-noise ratio increased by the same factor. The key word in the

concept of compounding is the term "independent views". Many authors have

remarked that, unlike electronic noise or radioactive decay, speckle patterns

2.4.2 Compounding
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obtained at different times will always be identical provided that all the

imaging parameters are kept constant (Morrison et al, 1980; Wells & Halliwell,

1981). Therefore the problem is how to generate independent ,i.e. uncorrelated,

speckle patterns.

In spatial compounding, uncorrelated or partially uncorrelated views

are obtained by examining the object from different angles. One way of

achieving this is by changing the position of the transducer relative to the

body. This idea has been extensively used in B-mode static imaging (Garret et

al, 1975; Kossoff et al, 1976). In real-time scanning, a very simple form of

spatial compounding superimposes several video frames on photographic film

by keeping the camera lens open for a period of time and relies on slight

patient movement to obtain partially uncorrelated speckle patterns (Bartrum &

Crow, 1980; Sommer 81 Sue, 1983; Cunningham & Bacani, 1985). The digital

equivalent of this technique (Sommer 8i Sue, 1983; Petrovic et al, 1986) is

examined in Chapter 3 under the name frame integration. An alternative

method for obtaining independent views of the object is to divide a

multielement transducer into subapertures which share the same

transmit/receive circuits in succession (Shattuck 8i von Ramm, 1982; Shattuck

et al, 1984) or to use more than one transducer operating in parallel (Kossoff

et al, 1985; Kerr et al, 1986).

In frequency compounding, partially uncorrelated views of the object

are obtained by varying the centre frequency and/or the bandwidth of the

transmitted pulse (Magnin et al, 1982; Melton & Magnin, 1984). A variation of

this technique, known as split spectrum processing in the field of ultrasonic

nondestructive testing (Newhouse et al, 1982; Karpur et al, 1987), separates the

frequency spectrum of the received echoes in N components using adjacent

band-pass filters and then combines the individual frequency components in a

coherent or incoherent manner (Yoshida et al, 1985; 1986; Gehlbach & Sommer
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1987a; 1987b; Galloway et al, 1988).

Under ideal conditions, compounding possesses certain advantages

over filtering. In probability theory, compounding and spatial filtering are

equivalent to estimating the properties of a random process by using

information from independent repetitions (ensemble statistics) or a single

observation of the process (time statistics) respectively. The true properties of

the process are given by the ensemble statistics and time statistics are only

an approximation, particularly when a non-stationary, non-ergodic, and

correlated process like an ultrasonic image is examined. Another reason is that

after filtering, but not after compounding, the output image exhibits increased

autocorrelation which manifests itself as coarser texture. This is undesirable

both from the point of view of a human observer who tends to tolerate

uncorrelated noise more easily (Kozma & Christensen, 1976) and statistical

decision theory which predicts that there is an inverse relationship between

texture coarseness and contrast resolution (Smith et al, 1983). An additional

advantage of spatial compounding is that it could improve the definition of

specular reflections.

A successful example of spatial compounding is shown in Figure 2.8.

The unprocessed image (Figure 2.8a) is a scan of a tissue mimicking phantom,

obtained using a Siemens Sonoiine SX real-time scanner with a 3.5 MHz

transducer. By moving the transducer at 2mm increments, four scans parallel

to the horizontal axis of the phantom and belonging to the same plane were

obtained. The scans were then transferred to a computer and the amount of

horizontal and vertical shift needed for perfect registration was calculated

using a cross-correlation technique described by Pratt (Chapter 19.5, 1978).

Finally the shifted scans were added on a pixel by pixel basis and the result is

displayed in Figure 2.8b. From this figure it can be seen that, apart from

reduced speckle contrast, the compound scan exhibits improved edge
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Figure 2.8 : (a) - Original scan of an ultrasonic phantom, (b) - Spatially
compounded version of (a).
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definition, especially at the bottom part of the dark wedge.

Difficulties encountered in practice can make compounding inferior to

filtering, despite its theoretical superiority. Ideally, the combined images must

have uncorrelated speckle patterns but otherwise the image content of the

scans should be identical. In spatial compounding, due to the dependence of

factors such as the axial and lateral resolution, attenuation, refraction and

acoustic velocity on the angle of insonification, the intensity or position of

genuine structure can vary from image to image. This causes image blurring

and loss of spatial resolution. Also, the means by which uncorrelated views of

the same object are to be obtained poses more problems. The use of a

moving transducer creates problems of registration and reduced frame rate. In

addition, no system capable of operating in real-time has been reported up to

now, probably because of the mechanical difficulties involved in the accurate

and fast movement of the transducer between frames. The use of more than

one transducer overcomes the previous problems but introduces increased

hardware complexity and difficulties in accessing some organs. On the other

hand, a multielement transducer involves a compromise between using all the

elements as a single aperture for better lateral resolution and dividing them in

subapertures for better noise reduction.

Frequency compounding has similar drawbacks. The intervening tissue

does not create any problems, as in the case of spatial compounding, because

the angle of insonification is fixed. However, the dependence of the axial and

lateral resolution, attenuation and backscattering on the transmitted frequency

can cause resolution loss and image blurring. Also, the division of the available

bandwidth, in order to transmit different frequencies, results in an increase of

the pulse length and, therefore, in poorer axial resolution.

The most important factor in the design of compound systems is the
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rate of decorrelation of the speckle pattern achieved by altering the imaging

parameters. Several attempts have been made in the past to measure

experimentally and predict theoretically this rate. The most recent and

comprehensive results have been presented by Trahey et al for lateral aperture

translation (1986a) and centre frequency change (1986b). The same group has

studied the reduction of speckle contrast in relation to the resolution loss and

has found that spatial compounding offers a better tradeoff between these two

quantities (Trahey et al, 1987). More importantly, they concluded that although

target detectability improves with spatial compounding, always at the expense

of point resolution, it actually deteriorates significantly with frequency

compounding.

2.4.3. Speckle reduction via phase

A new method for speckle suppression has been proposed recently

(Seggie & Leeman, 1987; Leeman & Seggie, 1987) which does not fall into

either of the categories mentioned above. The technique is based on the

instantaneous frequency, defined as the time derivative of the radiofrequency

signal phase, which originates from frequency modulated imaging (Ferrari et al,

1982; Seggie et al, 1987). The local fluctuations in the amplitude of the

instantaneous frequency are used to determine points of an A-scan line where

destructive interference has occurred. These points serve as speckle markers.

The echoes on either side of the marker are then combined to reduce speckle

This approach has certain similarities with the adaptive filtering techniques in

the sense that both attempt to identify areas where speckle is present, but on

the whole is quite different because it uses a deterministic rather than a

statistical quantity to characterize speckle. The authors have applied their

technique on a simple cyst phantom and have obtained better noise reduction

indices than in compounding. However, it is not possible to judge the

potential of the technique, and especially how successful it is in preserving

2.4.3 Speckle reduction via pliabe
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important image features, because no clinical images have been presented so

far.

2.4.4. Commercially available techniques

Although speckle has not been addressed directly by the designers of

ultrasonic equipments, modern scanners utilize simple forms of both spatial

filtering and compounding to produce a smooth image. Straight averaging of

typically two pixels along and two pixels across an A-scan line is a common

feature of most scan converters. However, this approach cannot be extended

to fully suppress speckle by averaging more pixels because it will introduce

severe blurring and loss of true image detail. Another technique which has

recently been incorporated into scanners is a form of temporal processing.

This technique, known as recursive or frame-to-frame averaging, generates a

new output frame by performing a weighted sum of the current input and the

previous output frames. This can be regarded as a form of spatial

compounding because it is the transducer's displacement relative to the body

that generates partially uncorrelated speckle patterns. Recursive averaging is

discussed in the following chapter.

2.4.4 Commercially available techniques
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CHAPTER 3

FRAME AVERAGING TECHNIQUES

3.1. Introduction

As was mentioned in the previous chapter, a digital signal processing

technique which can be found in an increasing number of real-time scanners

performs averaging of successive video frames to reduce noise in the image.

This operation makes use of a recursion formula between the current input

and the previous output in order to produce a new output frame. Although a

variety of names such as temporal filtering, temporal processing, digital

averaging, running averaging etc have been used to describe this type of noise

reduction, recursive averaging is the term preferred here so that it can be

distinguished from straight averaging or frame integration which makes use

only of the previous inputs in order to produce a new output frame.

Both recursive averaging and frame integration belong to the same

general category of frame averaging techniques. The introduction of frame

averaging in ultrasonic scanning can be interpreted as an acknowledgment by

the manufacturers of the need to produce a less noisy image. Its

cost-effective implementation has been made possible by the widespread use

of digital scan converters and the decreasing costs of random access

memories for storing digital images. The same idea has been applied before

in many fields including electron microscopy and digital subtraction

angiography and has been found particularly effective in suppressing intensity

fluctuations (noise) which vary with time. However speckle, which is the main

type of noise encountered in ultrasonic imaging, does not vary with time if all

the imaging conditions are kept constant. As a consequence, frame averaging

techniques have to rely on small changes in the transducer's position relative

to the body in order to obtain partially uncorrelated speckle patterns and

eventually reduce speckle contrast. From this point of view they can be

Introduction
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regarded as a simple form of spatial compounding.

Recursive averaging is the only feature offered by scanners

specifically for noise reduction. Although no studies on its clinical benefits

have been reported so far, experience has shown that this type of processing

has been accepted by physicians who tend to use it frequently, particularly

when scanning "noisy" patients. For the above reasons, it was considered

essential to evaluate its performance as a first step towards determining the

value of speckle suppression. In order not to be restricted only to scanners

which offer this option, it was decided that the image processor which was

about to be purchased for digitizing and transferring data to a computer

should offer recursive averaging. The image processor finally chosen (Crystal

manufactured by Microconsultants Ltd.) can also perform frame integration.

The Crystal has over one Megabyte of dynamic memory and can store up to

two images digitized at 576 rows by 530 columns by 8 bits resolution. Unlike

other image processors which need a supervising computer, the Crystal has

been designed to work autonomously. This inevitably restricts the ease with

which it can be controlled by a computer but, at the same time, it is very

useful because it makes the processor mobile and suitable for use in a clinical

environment.

3.2. Recursive averaging

The operation of recursive averaging results in a live image. At a

given time instant which corresponds to frame number i, the output frame 0-,

is the weighted sum of the present input frame I, and the previous output

frame Oj_-|, where the frames are added on a point-by-point basis. Figure 3.1a

shows this operation in a block diagram form with (x,y) representing the pixel

which belongs to row x and column y of the digitized image and Z-1 denoting

a delay of one frame. Recursive averaging can be defined in terms of a simple

equation

3.2 Recursive averaging
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Oi{x,y)=nli(x,y)+(1-n)Oi_1(x,y) (3.1)

The weighting factor n takes the discrete values n=1, 1/2, 1/22, 1/2M with

M=12 for the Crystal. Sometimes the inverse of the weighting factor

F=1/n=l, 2, 22, ..., 2m is given. F is usually referred to by the term "number of

frames". However, it must be noted that the statement "recursive averaging for

4 frames" simply means that F=4 (n=1/4) and not that 4 frames were added.

The fact that n, F take only values which are powers of 2 is very

convenient for hardware implementation. Maher et al (1988) have examined the

Intellect 100 image processor manufactured by the same company as the

Crystal and found that recursive averaging is performed according to the

formula

which is simply a rearrangement of (3.1). The current output pixel 0;(x,y) is

calculated by subtracting the previous output from the current input value,

shifting m positions to the left (n=1/2m) and adding the result to the previous

output value. Everything is performed in integer based arithmetic without the

need for expensive, slow and complicated hardware multipliers.

The weighting factor n determines how fast the output can follow

changes of the input and represents a tradeoff between noise reduction and

blurring due to patient movement. If it is assumed that a jump of the input

occurs at frame N, i.e. lj(x,y)=A for 1<i<N and Ij(x,y)=B for N<i<+°°, the output

0|\j{x,y) will be equal to

Oj(x,y)=n[li(x,y)-Oi_l(x,y)]+Oi_1(x,y) (3.2)

0N(x,y)=nB+(1-n)A (3.3)

In a similar manner, the output O^j+i-^x.y) after i frames will be

3.2 Recursive averaging
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i-1

0N+M(x,y)=Bn £ (1-n)k+A(1-n)' (3.4)
k=0

which can be simplified further if the sum of the geometric series in (3.4) is

substituted by

i-i

I (I-n)k=[1—(1 — n)']/[1 — (1 —n)] (3.5)
k=0

By defining the quantity c as the ratio of the difference between the input

lN+j_i(x,y) and the output 0N+j_-|(x,y) over the original intensity jump B-A we

obtain the expression

i=/n(c)//n(1-n) (3.6)

By taking into account the fact that a frame corresponds to 1/25 s, the values

of Table 3.1 have been calculated from (3.6) for c=0.1 and 0.01.

Table 3.1

n c=0.1 c=0.01

1/2 0.14 0.27
1/4 0.32 0.64
1/8 0.69 1.38
1/16 1.43 2.85
1/32 2.90 5.80

For example if n=1/16 and a change of the input occurs, the

difference between the input and the output will be smaller than 10% and 1%

of the original jump after 1.43 and 2.85 s respectively.

3.2 Recursive averaging
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Ij (x,y) Ii (x,y)*n

n 0;.i(xJy)*(l-n)

Oi(x,y)

1-n

7-1

°i_i(x,y)
a Recursive averaging

0 (x, y)

b Integration

Figure 3.1 : (a) - Block diagram of recursive averaging, (b) - Block diagram of
integration.

3.2 Recursive averaging
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3.3. Frame integration

The second noise reduction technique offered by the Crystal is called

integration and results in a frozen image. This operation is performed simply

by adding N consecutive video frames and dividing the sum by N to produce a

normalized image, as it can be seen by the block diagram of Figure 3.1b and

the following equation

i+N

0(x,y)=[ I lk(x,Y) ]/N (3-7)
k=i+1

The number of frames N has to be a power of 2, i.e. N=1, 2, 22 2M, with

M=11 for the Crystal. Integration is also implemented very easily in hardware

by adding the N successive frames in a point-by-point basis and then shifting

the sum m positions to the left, where N=2m (Maher et al, 1988). N

determines the tradeoff between noise reduction and blurring due to patient

movement. The duration of integration can be found by multiplying the number

of frames N by 1/25 s.

3.4. Recursive averaging versus frame integration

It is interesting to compare the noise suppression capabilities of the

two frame averaging techniques examined here. Let us assume that the input

terms I;(x,y) belong to a sequence of independent, identically distributed

random variables Xk, k=1, 2, ..., +co, with mean E{Xk} equal to 0 and variance ajn

equal to E{X2}-E2{Xk}=E{X2}. Integration for N frames will be examined first.

From (3.7)

i+N

E{0|\j(x,y)}=E{[ I Xk ]/N}=NE{Xk}/N=0 (3.8)
k=i + 1

and

3.4 Recursive averaging versus frame integration
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i+N

E{0^(x,y)}=E{[ I Xk ]2/N2} (3.9)
k=i+1

Since Xk are mutually independent, the expected value E{X|Xj...Xk} is equal to

E{X|}E{Xj}...E{Xk}=0 for any combination of the indices i, j, k. Then

E{0^(x,y)}=l\IE{Xk}/l\l2 (3.10)

or the variance of the integrated output ofNT is related to the variance of the

input ofn by the formula

a2NT=a2n/N (3.11)

For the case of recursive averaging we assume that processing starts

at frame 1 and the first output is equal to the first input. Then from (3.1)

01(x,y)=l1(x,y)=X1

02(x,y)=nX2+(1-n)X1

Similarly, the output after N frames is given by

N-2

0N(x,y)=n I (1-n)N_2_kXk+2 + (l-n^X, (3.12)
k=0

The mean of 0N(x,y) is equal to

N-2

E{0N(x,y)}=nE{Xk} £ (1-n)N"2-k + (1-n)N-lE{Xl}=0 (3.13)
k=0

Again, because of the independence of the random variables Xk the expected
j

value E{0^j(x,y)} is equal to

E{0^(x,y)}=n2E{X2} I (1-n)2(N_2_k) + (1-n)2(N_1)E{X?} (3.14)
k=0

3.4 Recursive averaging versus frame integration
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By using (3.5) to calculate the sum of the geometric series and performing a

few algebraic simplifications we arrive at the following expression for the

variance cjrAV of the output after recursive averaging

aRAV=CT?rJn+2(1-n)2N-1]/(2-n) (3.15)

If the number of frames N during which recursive averaging is performed is

large, the output variance reaches a constant value

°RAV=<4n/(2-n) (3.16)

Number of frames N

Figure 3.2 : Noise reduction offered by integration (broken curve) and recursive
averaging (solid curves). N is the number of frames from the start of
processing; n is the weighting factor for recursive averaging; ain, aout are the
standard deviations of the unprocessed and processed signals respectively.

Figure 3.2 plots the ratio of the input standard deviation oin over the

output standard deviation aout, which describes the noise reduction achieved,

for the case of integration (broken curve) and recursive averaging (solid curve)

3.4 Recursive averaging versus frame integration
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with the weighting factor n equal to 1/2, 1/4, 1/8, 1/16 and 1/32. From this

figure it can be seen that integration is more effective in suppressing noise

than recursive averaging. Another point, perhaps not very well appreciated

from equation (3.15) but clearly demonstrated by Figure 3.2, is that the number

of frames N from the start of recursive averaging until maximum noise

reduction is reached increases dramatically as the weighting factor n becomes

smaller.

It must be noted that the values of Figure 3.2 represent the maximum

possible noise reduction when the input sequence consists of independent

terms. For the case of ultrasonic scans, the noise reduction achieved is

considerably smaller because the speckle patterns obtained during the

application of frame averaging are strongly correlated.

3.5. Applications

Figure 3.3 : Experimental set up for the clinical evaluation of frame averaging.

Recursive averaging and frame integration were clinically evaluated

using the set up of Figure 3.3. The image processor was connected to one of

the video outputs of the scanner and the processed images were displayed on

an external monitor. The original and processed scans were routed through a

switch, which selected either one or the other, to the input of a EMI

3.5 Applications
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multiformat imager. Every care was taken, by adjusting the gain of Crystal's

input amplifier and using a video buffer, that both types of images had the

same contrast and brightness levels. For each anatomical view two

unprocessed and two processed images were photographed on standard X-ray

film following the procedure described below.

1. While the image processor performs recursive averaging
find suitable view.

2. Freeze image on both the scanner and external monitor
simultaneously. Take photographs 1 (unprocessed I) and 2
(recursive averaging).

3. Unfreeze image on scanner. Flaving frozen image on
external monitor as a guide, scan patient to find the same
view.

4. Start integration

5. At the end of integration freeze images on scanner and
external monitor. Take photographs 3 (unprocessed II) and
4 (integration).

For recursive averaging a value of n=1/4 was chosen which offers

reasonable noise reduction but also allows the output to follow the input

relatively fast. For example, from Table 3.1 we see that if an intensity jump in

the input occurs at a certain time, the difference between the output and the

input will become smaller than 10% and 1% of the original jump after 0.32 and

0.64 s respectively. For the integration a value of IM=32 frames was chosen

which corresponds to a time interval of 1.28 s. The patients were instructed to

hold their breath during processing.

The results of the clinical evaluation which included 145 views (580

images in total) from 73 patients are presented in Chapter 6. The main

limitation of frame averaging is that the quality of the processed images

depends heavily on factors such as patient movement, which cannot be

controlled by the operator. Depending on the amount of movement, a

3.5 Applications



50

processed scan can be identical, smoother or severely blurred compared to

the original. A successful application of frame averaging techniques is shown

in Figure 3.4. Figures 3.4a and 3.4c are unprocessed scans of the pancreas.

Speckle has been reduced considerably in the scans of Figure 3.4b (recursive

averaging) and 3.4d (integration) but also boundaries between areas of

different echogenicity are better defined. The processed images were judged

to have superior quality by the radiologist who was responsible for the clinical

evaluation. On the other hand, Figure 3.5 shows an example where frame

averaging produces images of inferior quality. Recursive averaging (Figure

3.5b) has almost no effect on the original scan of Figure 3.5a, apart from a

slight decrease in sharpness, whereas integration results in an image (Figure

3.5d) which suffers from severe blurring and loss of image detail.

In conclusion, frame averaging offers the advantage of simple and

low-cost implementation in hardware but it also has the drawback of

introducing blurring which results in image quality degradation. Two clinical

applications of integration which have been reported recently use different

approaches to overcome the problem of blurring. Cunningham & Bacani (1985)

have implemented an analog form of integration which superimposes several

video frames on photographic film by keeping the camera lens open for a

period of time. In order to overcome the problem of blurring, they have found

it necessary to repeat this procedure at least six times for the same view to

make sure that an image of quality superior to that of the original has been

obtained. Petrovic et al (1986) have applied digital integration to

echocardiography. Their solution for avoiding blurring is to use a special

triggering method based on the ECG so that only heart scans corresponding

to the same point of the cardiac cycle are integrated. To our knowledge, there

have been no reports so far on clinical applications of recursive averaging in

ultrasonic imaging. A possible improvement of this technique could be

3.5 Applications
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achieved by using a motion detector similar to the one described by Jaffe et

al (1982) for use in digital subtraction angiography, so that speckle is

suppressed but moving structures remain unaffected. In this way, a less noisy

image could be generated without having to pay the price of blurring.



52

Figure 3.4 : Scan of the pancreas, (a) - Unprocessed I. (b) - Recursive
averaging.

3.5 Applications
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Figure 3.4 : Scan of the pancreas, (c) - Unprocessed II. (d) - Integration.

3.5 Applications



Figure 3.5 : Scan of the liver and kidney, (a) - Unprocessed I. (b) - Recursive
averaging.

Applications3.5
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Figure 3.5 : Scan of the liver and kidney, (c) - Unprocessed II. (d) - Integration.
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CHAPTER 4

SPATIAL FILTERING

4.1. Introduction

The common characteristic of the techniques described in Chapter 3

is that they perform temporal filtering. Each new pixel is calculated from data

belonging to previous frames and, therefore, obtained at different times. On

the contrary, spatial filtering utilizes the information contained in the

two-dimensional space domain defined by the x, y coordinates, with x and y

corresponding to the rows and columns of a digitized scan. In principle,

techniques developed for temporal filtering can also be used for spatial

filtering and vice versa. In fact when image processing by means of

two-dimensional spatial filtering was still new, most of the applications were

based on extensions of techniques developed for processing one-dimensional

time signals. In a similar manner, it is not only possible from the

mathematical point of view but also highly desirable to extend the algorithms

of this chapter so that they operate on three-dimensional data defined by the

two spatial coordinates x, y and the time coordinate t. The only reason for not

having done this, is technical problems associated with the acquisition and

storage of a large number of consecutive video frames.

The algorithms of this chapter estimate the true grey scale level of a

pixel (x,y) from a combination of the pixel intensities in a predefined

neighbourhood around (x,y). The neighbourhood is called the filter window or

filter size and is usually a square area of M X M pixels, centred at point (x,y).

The algorithms are classified as linear, nonlinear or adaptive according to the

type of operation they perform on the data inside the window. All the

algorithms have been implemented in software. The corresponding programs,

written in Fortran 77, can be found in Appendix B. Filtering has been applied to

abdominal images which were recorded on video tape during clinical

4.1 Introduction
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examination. The images were then digitized by the Crystal at 576 X 530 by 8

bits resolution and, through a parallel Direct Memory Access interface, were

transferred to a DEC PDP11/23 PLUS minicomputer for storage and processing.

The PDP11 has certain limitations with a very small random access memory

and a slow processing speed being the most important from our point of view.

These limitations inevitably created several problems in the development and

application of complex and time consuming algorithms. The purchase of a DEC

MicroV/ax II minicomputer, which offered a 20-fold increase in processing

speed and unlimited (virtual) memory, greatly enhanced the possibility for

experimentation although this happened only when the project was

approaching its completion.

Evaluating the performance of different filters can be a very difficult

task. Ideally, a quantitative measure should be used but no agreement exists

among the image processing community on which measures are the most

appropriate. A commonly used quantity is the Mean Square Error between the

noise-free and the processed image (Chin & Yeh, 1983). This approach has

been used for the evaluation of filters applied to images corrupted by

computer generated noise but it is obviously not applicable in our case

because the noise-free image is not available. Sometimes, quantitative

measures can give contradictory and confusing results. For example, according

to the information content and entropy indices an image corrupted by

computer generated noise has better quality than both the processed and

original image (Deekshatulu et al, 1985). An interesting remark on this subject

has been made by Mastin (1985) who performed a quantitative and qualitative

evaluation of several noise smoothing algorithms. He concluded that it is the

human observer's perception of quality rather than a statistical measure that

defines the "best" filter. A possible explanation for this is that a human

observer makes his judgements by scanning an image in a highly selective

4.1 Introduction
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rather than a point-by-point manner. He chooses specific areas from which he

extracts certain features and, in essence, weighs these areas more heavily

than the rest of the image (Granrath, 1981). On the other hand, a quantitative

measure which treats the image in a global manner with all the points having

equal importance cannot simulate satisfactorily the human visual system.

Because of the problems associated with quantitative measures, it

was decided to assess the various filters' performance using visual

comparisons. An evaluation and clinical assessment of software techniques,

based on a large number of scans, is presented in Chapter 6. However, due to

space limitations, the comparisons in the present chapter are based only on

the two original images of Figure 4.1 which were obtained using a 3.5 MHz

Siemens Sonoline SX scanner.

The top image, which is a scan of normal liver, gallbladder and the

hepatic vein, has been chosen for determining how well the filters preserve

high-contrast edges and small details. Of particular interest here are the small

portal tracts in the left part of the scan and the small branch of the hepatic

vein. The bottom image of Figure 4.1, which is a scan of secondary metastasis

in the liver, is used to assess the filters' ability to preserve and enhance subtle

grey scale variations like the hypoechoic metastatic lesions in the liver

parenchyma. In order to facilitate the process of visual comparisons the

64 X 64 areas enclosed by the squares in Figure 4.1 have been enlarged by a

factor of two and are displayed as 128 X 128 images at the top right corner of

the scans. Also, the 64-point vertical intensity profiles along the column

indicated by the markers just above and below the squares are displayed on

the top left corner of the scans. The same format has been followed

throughout this chapter.

When comparing images processed by various filters it is very
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Figure 4.1 : Unprocessed abdominal scans, (a) - Liver, kidney and gallbladder,
(b) - Liver metastasis. The magnified regions display the hepatic vein (top)
and metastatic deposits (bottom).

4.1 Introduction
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important to appreciate the whole range of differences, no matter how subtle

they are. In our opinion, the best way to achieve this is by taking advantage of

some image processors' ability to store a number of images and display

instantaneously one or another at the push of a button. This is equivalent to

the comparison of one-dimensional signals where superposition of the signals

is the best way to appreciate the existing differences (see for example Figures

4.5a and 4.5b in this chapter). The comments made about the performance of

the various filters were formed following this method of visual comparison

which is unfortunately not available to the reader. Because the reader has to

rely on photographs of the scans in order to compare the filters, every care

was taken to ensure that the quality of images presented in this chapter is the

highest possible. For this reason, the photographs of this chapter were taken

using a Scopix 300R imager manufactured by Agfa Gevaert which offers the

best quality among all the imagers available to us and also minimizes loss of

image detail because it produces a positive image directly from the computer

display onto photographic paper.

4.2. Linear filters

A two-dimensional filter is defined as an operator T[*] that

transforms an input sequence (l(x,y)} to an output sequence (0(x,y)}

{0(x,y)}=T[{l(x,y)}] (4.1)

If the operator T[ • ] satisfies the principle of superposition, that is, if

T({al1(x,y)+bl2(x,y)}]=aT[{l1(x,y)>]+bT[{l2(x,y)}] (4.2)

the filter is said to be linear (Cappellini & Emiliani, 1986). Linear filters are

based on the concept of the frequency spectrum. According to this concept, a

digital signal is assumed to be composed of cosine and sine terms with

varying frequencies. The minimum frequency is, of course, zero and from the

4.2 Linear filters
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sampling theorem (Bracewell, Chapter 10, 1986) the maximum frequency is half

the digitizing frequency. The relative contributions of each frequency can be

determined by taking the discrete Fourier transform of the signal. An N X N

digital image f(x,y) and its discrete Fourier transform F(u,v) are related through

the following equations

N-1 N-1

F(u,v)=N_1 £ £ f(x,y)exp[-j2tT(ux+vy)/N] (4.3)
x=0 y=0

and

N-1 N-1

f(x,y)=N"1 £ £ F(u,v)exp[j27T(ux+vy)/N] (4.4)
u=0 v=0

where the spatial and frequency coordinates x,y and u,v take values in the

range [0,N-1]. Both the discrete Fourier transform F(u,v) and its inverse f(x,y)

are assumed to be periodic with period INI. For example

F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N) (4.5)

The power spectrum |F(u,v)|2, defined as the product of F(u,v) with its

complex conjugate F*(u,v), gives an indication of the signal's energy at each

point (u,v) of the frequency plane. A point to remember is that since the origin

of the space domain is at (x0=0,y0=0) the origin of the frequency domain is at

(u0=0,v0=0) as well. This can be appreciated better by examining the 3D plot

of Figure 4.2a which is a 64 X 64 image with all pixels equal to zero apart

from those in the central 7X7 square which are equal to 1/49. Its power

spectrum is shown in Figure 4.2b with the origin of the spatial frequency axes

at point (u0=0,v0=0). In general it is more appropriate to shift F(u,v) so that the

origin of axes is at the centre (N/2,N/2) of the frequency plane. The

corresponding power spectrum is shown in Figure 4.2c. A shifted version
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Figure 4.2 : (a) - Impulse response of a 7 X 7 running average filter, (b), (c) -
Power spectrum before and after shifting the origin of the frequency plane.
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F(u',v') of the Fourier transform F(u,v) (u'=u-l\l/2, v'=v-N/2) can be obtained

using the following expression from Gonzalez & Wintz (Chapter 3, 1987).

im-1 n-1

F(u',v')=l\T1 £ £ f(x,y)(-1)*+Yexp[-j2Tr(u'x+v'y)/N] (4.6)
x=0 y=0

Then the spatial angular frequencies u)x=2ttu7N, oo =2irv7N take values between

-it and it whereas the normalized frequencies u)x/2tt, wy/2n take values
between -0.5 and 0.5. Linear filters assume that signal and noise occupy

different non-overlapping parts of the frequency spectrum. Smoothing is

performed by allowing frequencies corresponding to the signal to pass

through the filter unaffected (passband zone) whereas parts of the spectrum

occupied by noise, usually high frequencies, are suppressed (stopband zone).

Linear filtering can be performed either in the frequency or in the

space domain. In the frequency domain, the Fourier transform lf(u,v) of the

input image l(x,y) is connected to the Fourier transform Of(u,v) of the output

image 0(x,y) through the filter transfer function or frequency response H(u,v),

which takes values between 1 in the passband and 0 in the stopband zone.

Of(u,v)=H(u,v)lf(u,v) (4.7)

The equivalent operation in the space domain is based on the inverse Fourier

transform of H(u,v) which is called the impulse response or convolution mask

of the filter. For a 2K+1 X 2K+1 window and impulse response h(x,y) (x=-K, ..., K

y=-K, ..., K), each point of the output image 0(m,n) is calculated as the

convolution of the pixel intensities inside the window with h(x,y).

K K

0(m,n)= £ £ h(x,y)l(m-x,n-y) (4.8)
x=-K y=-K

Hence, the Fourier transform substitutes convolution in the space domain by
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multiplication in the frequency domain. Although both methods are common,

filtering by means of convolution was chosen here because it is easier to

implement on the PDP11 and also in order to take advantage of the Crystal's

ability to perform fast convolution.

The impulse response of the filter described by (4.8) has a finite

extent. This type of filter is called finite impulse response (FIR) and is

nonrecursive because the output depends only on a given number, equal to

the window size, of input values. Another type of filter, known as infinite

impulse response (MR), utilizes feedback from previous output values, i.e. 11R

filters are recursive. Although each type has its own advantages and

disadvantages, FIR filters were chosen because: they offer excellent linear

phase characteristics; they are always stable since no feedback paths are

used; the design techniques for FIR filters are generally simpler than those for

MR filters.

Filter design involves the calculation of the convolution mask h(x,y) so

that the resulting filter has a specified frequency response. The simplest FIR

filter is the running average, with all the convolution coefficients equal to

1/(2K+1)2, where 2K+1 X 2K+1 is the window size. In this case (4.8) can be

written as

K K

0(m,n)=(2K+1)"2 £ £ l(m-x,n-y) (4.9)
x=-K y=-K

The impulse response of a 7 X 7 running average filter is displayed as

a 3D plot in Figure 4.2a and its power spectrum is plotted in Figure 4.2c.

Running averages are very popular because they can be implemented without

any multiplications and offer the maximum noise reduction for a given window

size. However, as it can be seen from Figure 4.2c their power spectrum
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exhibits ripple in the stopband zone and, consequently, a certain amount of

high frequencies is allowed to pass through the filter.

If one wants a filter with well-behaved frequency response more

sophisticated FIR filters must be used. In order to design filters with a

specified frequency response, a number of computer programs which

implement filter design algorithms were written in Fortran. The programs were

executed on the University's mainframe computer which offers a

comprehensive package of numerical algorithms (NAG Library) including

discrete Fourier transforms. Because linear filtering has not proved very

successful, only a brief description of the design algorithms will be given here.

The first two algorithms are based on a prototype one-dimensional filter

designed using the window method (Oppenheim & Schafer, Chapter 5, 1975;

Rabiner et al, 1979). The algorithm of Kato & Matsumoto (1982) obtains the

frequency response H(u,v) of a two-dimensional filter by rotating the

one-dimensional response of the prototype filter and then performs the

inverse Fourier transform of H(u,v) in order to obtain the impulse response

h(x,y). The second algorithm, known as the McClellan transform (McClellan &

Chan, 1977), extends the prototype one-dimensional filter in two dimensions

using a transformation of the frequency response based on the family of

Chebyshev polynomials. The above methods produce filters with approximately

circular frequency response. Sometimes it is desirable to define different cutoff

frequencies along the u, v axes in the frequency domain. This can be achieved

by multiplying an ideal impulse response with appropriate two-dimensional

window functions (Fiasconaro, 1979). Finally, the algorithm based on the

polygonal approximation (Hecker & Poppl, 1982) enables the design of filters

having frequency response of arbitrary shape. In this case, instead of cutoff

frequencies the stopband zone is specified by the coordinates of a series of

points in the frequency plane.
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A large number of filters was designed using the above algorithms

with frequency responses chosen on a trial-and-error basis, although the

power spectra of images containing uniform speckle were also calculated to

obtain an idea of the frequency content of speckle. Figure 4.3a shows the

impulse response of a low-pass filter designed using the McClellan transform

with a window size of 9 X 9 and normalized cutoff frequency equal to 0.12.

The corresponding power spectrum is displayed in Figure 4.3b. Application of

this filter to the images of Figure 4.1 results in the processed images shown

in Figure 4.4. Comparisons with the original scans show that although the

low-pass filtered images are smoother, they still exhibit a considerable amount

of speckle and also suffer from blurring and loss of image detail.

Similar results were obtained with other filters. The conclusion of this

study is that linear filtering is not suitable for speckle suppression in

ultrasonic images. In fact, this statement is not restricted only to ultrasonic

images but it is generally accepted for a wide range of other types of images

as well. The inadequacy of linear filters is directly related to their poor

performance in edge/detail preservation. Many features of an image such as

edges, which convey important information to a human observer, are displayed

as sharp grey scale variations. The spectral content of these variations extends

to infinity and therefore overlaps with the noise spectrum. Consequently, any

attempt to suppress noise is accompanied by blurring of these

information-bearing structures and loss of fine detail. Also, space-invariant

linear filtering assumes that images are stationary, in the sense that their

statistical properties and local content are position independent, something

which is obviously not a valid assumption for ultrasonic scans. As a result a

filter which is optimum for one part of an image could be completely

inappropriate for another part.

The computational efficiency of linear filters depends heavily on the
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Figure 4.3 : Linear filtering, (a) - Impulse response, (b) - Power spectrum.

4.2 Linear filters



68

4.2 Linear filters



69

way they are implemented. For a straightforward implementation of a 9X9

filter with real coefficients on the MicroVax, 200 s of CPU are needed to

process a scan. The very slow execution time is due to the fact that for each

pixel 81 real multiplications, which tend to be time consuming, and 81

additions must be performed. On the other hand, the Crystal can perform the

same operation with integer instead of real convolution coefficients in only 5

s. This speed is achieved using a fast hardware multiplier/accumulator. More

recently special very large scale integration (VLSI) circuits have become

available which can perform linear filtering even faster. For example, the IMS

A100 84-pin device manufactured by Inmos can perform convolution of a

512 X 512 by 16 bits image with a 32-point 16-bit mask in 1/10 s (Inmos Ltd,

1986a). These new devices open up the possibility of space-varying filtering in

real or near real-time. More specifically, a number of filters which offer varying

degrees of smoothing, could be applied to an image in parallel. The output

image could then be formed by assigning to each pixel a value from one of

the filtered images according to the local image content.

4.3. Nonlinear filters

Despite the simplicity of the analysis, design and implementation of

linear filters and the fact that they can suppress noise very effectively in many

applications, their usefulness in image processing is limited. The main reason,

discussed in the previous section, is that they cause image degradation due to

blurring of important information-bearing features such as edges. In addition,

the concept of frequency selective filtering on which they are based can only

be applied when signal and noise are separated in the frequency domain, i.e. in

the presence of signal-independent additive noise. Even then, linear filters are

optimum, in the sense that they offer maximum noise reduction for a given

window size, only if the noise has Gaussian distribution (Bovik et al, 1983). In

recent years, considerable effort has been devoted to the development of
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nonlinear smoothers which could overcome these limitations. By definition,

nonlinear filters do not satisfy the superposition principle of (4.2). Since the

vast majority of mathematical methods used in signal processing assume that

this principle is satisfied, new tools have to be developed to analyse the

properties and performance of nonlinear filters. This is not always possible but

even when it is the analysis can be extremely complicated. As a result,

nonlinear filter design methods based on a sound mathematical theory are not

available yet. Instead, nonlinear filters are used in an ad hoc and heuristic

manner. However, despite these drawbacks they have proved useful in

numerous applications and, judging from the number of publications in the

signal processing literature, their popularity is increasing rapidly.

Although a large number of nonlinear filters was investigated during

the course of this project, due to space limitations, only a few representative

examples will be described in detail here, with the rest mentioned briefly in

the review which follows. Among the first nonlinear techniques used for

suppression of signal-dependent noise was homomorphic filtering (Oppenheim

et al, 1968). This approach uses a grey scale transformation which can, at

least approximately, decouple the noise from the signal and has been found to

yield better results than linear techniques for a variety of noise models

(Arsenault & Denis, 1983). Another class of filters, probably the most important,

was introduced to signal processing from the field of robust statistical

estimation theory (David, 1970; Huber 1981). This class is known as order

statistics or rank order filters (Heygster, 1982; Bovik et al, 1983). Other types of

nonlinear filters include nonlinear or generalized means (Kundu et al, 1984;

Pitas 81 Venetsanopoulos, 1986a) and techniques which compare the pixels

inside the window with the central pixel and perform selective averaging

based on the results of these comparisons (Davis & Rosenfeld, 1978; Lee,

1983a; Pomalaza-Raez & McGillem, 1984). At the present, the general trend is
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to develop families which encompass many types of already known filters. One

such family which includes homomorphic, order statistics, generalized means

and linear filters is known as nonlinear order statistics filters (Pitas &

Venetsanopoulos, 1986b). Another attempt to unify linear and nonlinear

techniques has been made by Maragos & Schafer (1987a; 1987b) using the

theory of mathematical morphology (Serra, 1982). Mathematical morphology

originates from the field of pattern recognition but recently it has found

applications in general noise smoothing (Stevenson & Arce, 1987), radar

speckle suppression (Crimmins, 1985) and ultrasonic speckle suppression

(Billon, 1988).

4.3.1. Median filtering

The median is the most popular member of the general nonlinear

family of order statistics filters. Initially, the sample median had been used by

statisticians as a more robust alternative to the sample mean for estimating

the central value of a population. Its effectiveness as a noise suppression

filter was first observed by Tukey (1971) who used it for smoothing time

series data. Since then, the median has found numerous applications in signal

and image processing, including medical imaging (loannidis et al, 1984;

Ritenour et al, 1984). Median filtering is performed by replacing each point of

the input by the median value of all the terms inside a window centred at this

point, after the terms have been ordered in ascending or descending order. For

example, if the window includes 2K+1 terms lj (i=1, ..., 2K+1), the median Omed

is equal to

Omed=median{|1' '2 ^K+lHlK+D (4-10)

where l(K+1) denotes the (K+1)th largest term.

The smoothing action of the median is based on the concept of

monotonicity. A point is regarded as noise if it represents an excursion from
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the local monotonicity of the signal which is insufficiently supported by the

values in its vicinity (Velleman, 1977). The deterministic properties of the

median, i.e. its effect on non random signals, have been studied by Tyan

(1981) and Gallagher & Wise (1981) and the following results have been

obtained for the one-dimensional case. A median filter of arbitrary length

preserves a monotonic sequence. If, however, the input contains segments of

different monotonicity (e.g. increasing and decreasing segments), it is

preserved by a median of 2K+1 points only if it consists of monotonic

segments of any length connected by constant segments with a length of at

least K+1 points. Therefore, a median of 2K+1 points will preserve edges and

impulses (spikes) of at least K+1 points long whereas shorter impulses will be

eliminated. These properties of the median are illustrated by the example of

Figure 4.5. The solid curve of Figure 4.5a corresponds to an ideal step edge

whereas the broken curve is obtained by adding Gaussian noise plus a positive

impulse. Figure 4.5b shows the results of applying a 5-point median (solid

curve) and a 5-point running average (broken curve) to the noisy signal.

Comparison between the two curves demonstrates that the median offers

better performance because it has preserved the sharp transition of the edge

and has suppressed the impulse. On the contrary, the running average filter

has changed the step edge to a ramp, something which is equivalent to edge

blurring in a grey scale image, and has not managed to suppress the impulse.

Another interesting property of the median is that repeated filtering results in

a "root" signal which remains invariant to any subsequent filtering. For a signal

of length L and a 2K+1-point median, a "root" signal will be obtained after

[3(L-2)]/[2(K+1)] passes at the most (Wendt et ai, 1986).

Analysing the statistical properties of median filters can be an

extremely complicated task due to their nonlinear nature, as can be seen from

the statistics of the weighted median presented in Appendix A. Nevertheless,
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Figure 4.5 : Comparison between linear and nonlinear filtering, (a) - Ideal step
edge corrupted by uncorrelated additive Gaussian noise plus a positive spike,
(b) - 5-point median and running average filtering of the noisy signal.
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over the last few years a considerable amount of work has been done in this

area which has increased the understanding of the median operation and has

helped in making its use more efficient and better suited to specific

applications. Justusson (1981) has derived the probability density functions of

the median for several signal plus noise cases. More general results for

arbitrary input sequences have been obtained by Nodes & Gallagher (1984) and

Liao et al (1985), for the one and two-dimensional case respectively. The

statistics of the median have been used to predict its performance in noise

suppression and signal preservation. The median is very efficient in

suppressing impulsive and Laplacian noise as well as any other type of noise

having a long-tailed distribution, but offers less noise suppression than the

running average for short-tailed noise distributions, like the Gaussian

(Justusson, 1981; Bovik et al, 1983). Also, the median introduces less distortion

to edges corrupted by noise than linear filters, irrespective of the noise

distribution (Justusson, 1981; Pomalaza-Raez & McGillem, 1984).

Instead of the multiplications and addition used in linear filtering, the

calculation of the median is based on comparisons. For a N-point window, the

straightforward calculation involves ordering the terms inside the window until

the [(N+1)/2]th largest (or smallest) term has been found, an operation which

needs 3(N2-1)/8 comparisons. This corresponds to 2460 comparisons per pixel

for a 9 X 9 window. Alternative methods for calculating the median, which

offer considerable increase in speed over the straightforward ordering method,

have been proposed in the literature (Ataman et al, 1980; Rao 8t Rao, 1986).

Huang's histogram update algorithm (Huang et al, 1979) which is the most

suitable for software implementation has been used here. An even faster

algorithm has been reported recently (Ahmad & Sundararajan, 1987), which has

the additional advantage of being independent of the image content and the

number of grey scale levels, but it offers only marginal speed improvement for
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the type of images considered in this project.

The results of applying a 7 X 7 median filter to the scans of Figure

4.1 are shown in Figure 4.6. From the processed scans it can be seen that

speckle has been suppressed substantially, more than by the linear filter in

Figure 4.4, and some areas like the metastatic deposits shown in detail in the

magnified region of the bottom scan have better defined boundaries. However,

the processed scans suffer from loss of genuine image detail, like the small

branch of the hepatic vein shown in the magnified region of the top scan.

Also, some edges have been blurred and in general the quality of the

processed image is not regarded as satisfactory.

As far as computational efficiency is concerned, the median is the

best among the filters considered in this chapter with only 30 s of CPU time

needed to process a scan on the MicroVax. Furthermore, due to the interest in

median filtering applications, integrated circuits which can perform median

filtering in real-time are becoming increasingly common. The first report on

this subject was published in 1983 (Oflazer, 1983) and described a VLSI chip

capable of performing one-dimensional 5-point median filtering at data rates

of up to 10 MHz. More recently, a VLSI device manufactured by LSI Logic

became commercially available which can perform 8X8 median filtering on

input data digitized at 20 MHz (Bursky, 1987). However, despite the fact that it

is now possible to perform median filtering in real-time this is not judged to

be the solution to the problem of ultrasonic speckle. The median's property of

eliminating spikes is not of particular relevance to ultrasonic images which are

corrupted by Gaussian-like rather than impulsive noise. In addition signal

preservation deteriorates rapidly as the window size increases in order to

provide adequate noise reduction, resulting in loss of image detail.

Experimentation with a large number of scans has suggested that the most

useful property of the median for our application is the ability to preserve
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boundaries between areas of slightly different echogenicity. It would be,

therefore, desirable to have a filter which incorporates this feature but

overcomes some of the limitations of the median. This is the subject of the

following subsection.

4.3.2. Double Window Modified Trimmed Mean Filtering

In recent years, there have been several efforts to develop general

classes of filters which possess some desirable features of the median but

also improve some aspects of its performance.

In an attempt to combine the properties of linear and nonlinear filters,

IMieminen et al (1987) have suggested a class of FIR-median hybrid filters

which use linear FIR substructures in conjunction with median operations.

Bovik et al (1983) have introduced a generalization of the median,

called order statistics (OS) filters, which uses a linear combination of the

ordered values inside the window. For the one-dimensional case, the output

0os of the filter is given by

2K+1

°OS= I wi'(i) (4-"M)
i=1

where, l(i) is the ith largest value among the 2K+1 terms l-j, ..., I2K+1 and w; is

the corresponding weight coefficient. By selecting the appropriate weights w,,

filters which are optimum for specific noise distributions can be obtained. For

example, the optimum filters for Gaussian, impulsive and uniform noise are the

running average (Wj=1/(2K+1), i=1, ..., 2K+1), the median (Wj=0 for i^K+1 and

wK+1 = 1) and the min/max filter (w1=w2k+i=0.5 with the rest of the weights

equal to zero), respectively.

A slightly different class known as a-trimmed means (a-TM) (Bednar

&. Watt, 1984) is obtained if a number T of samples is deleted from each end
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of the ordered data set and the remaining 2(K-T)+1 terms are averaged with

weights equal to 1/[2(K-T)+1] so that

2K+1-T

Oa_TM= I l(j)/[2(K-T)+1] (4.12)
i=T+1

T is defined in terms of a parameter a (0<a<0.5) by T=(a(2K+1)) where (x)
denotes the largest integer which does not exceed x . Although the a-TM

filters possess the characteristics of both the running average (a=0) and the

median (a=0.5), the idea of averaging a fixed number of terms (the median

value and K-T terms on each side of the median in the ordered set) is not

ideal because it does not take into account the local image content.

Better performance can be achieved by using the modified trimmed

mean (MTM) filter (Lee & Kassam, 1985) which calculates the median Omed and

then averages only samples which fall within the range [Omed-q,Omed+q],

where q is a threshold determined by the standard deviation of the noise and

the minimum edge height to be preserved. A contradiction associated with the

MTM filter is that the window size should be small, so that the median

preserves small details, but at the same time large, in order to provide

adequate noise reduction. One way to overcome this contradiction is to use a

small window of 2K+1 points to calculate the median Omed and a larger

window of 2L+1 points for the averaging operation. The resulting filter is

known as the double window modified trimmed mean (DW-MTM) filter (Lee &

Kassam, 1985). Its output 0DW is equal to

2K+1 2L+1

ODW= I Wjlj/ I W| (4.13)
i=l i=i

where
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w-1 for |lj-Omed|<q

w-0 for |lrOmed|>q (4.14)

The DW-MTM filter utilizes a two-step procedure to calculate the output. The

median of the terms inside the small window provides a first estimate of the

true signal value. Then a better, less noisy, estimate is obtained by averaging

only the terms inside the larger window whose absolute difference from the

median is smaller or equal to q.

The threshold q is determined by the standard deviation of the noise.

From Section 2.2, the standard deviation of speckle is proportional to the

square root of the local mean. This property can be incorporated into the

DW-MTM filter if we approximate the local mean m by the local median Omed

and choose q as

A similar form of q has been proposed recently by Ding & Venetsanopoulos

(1987) for DW-MTM filtering of signal-dependent noise. Figure 4.7 shows the

results of applying this filter with a 3 X 3 median window, a 7 X 7 averaging

window and c=2 to the original images of Figure 4.1. Comparisons between

the two figures shows that the DW-MTM has satisfactory performance.

Speckle has been reduced substantially and the overall appearance of the

scans is much cleaner. However, some drawbacks have been observed which

are due to the following reasons. First, even the use of a small 3X3 window

for calculating the median can cause loss of image detail. Then, although the

DW-MTM filter can preserve high contrast edges, the averaging operation

performed during the second phase of filtering can introduce a degree of

blurring to weak edges such as the branch of the hepatic vein displayed at the

top right corner of Figure 4.7.

q=c{omed}1/2 (4.15)
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As far as computational efficiency is concerned, the DW-MTM filter is

reasonably efficient with 100 s of CPU time needed to process a scan. The

relatively long execution time is due to the large number of comparisons

involved, which tend to be time consuming when they are performed in

software but can be implemented relatively easily in hardware. The DW-MTM

filter has the best performance among the filters considered so far in this

chapter. The combination of median and linear characteristics, the use of the

speckle local statistics and the efficiency of performing comparisons in

hardware make this filter an attractive possibility for speckle suppression

despite its drawbacks associated with signal preservation.

4.4. Adaptive filters

A successful noise reduction algorithm applied to ultrasonic images

must satisfy several diverse and conflicting requirements. It must offer

maximum noise reduction in uniform speckle areas, it must retain both high

and low-contrast specular reflections and, perhaps most importantly, it must

preserve and possibly enhance boundaries between areas of slightly different

echogenicity. The linear and nonlinear filters mentioned above cannot satisfy

all the requirements simultaneously because they are space-invariant, i.e. they

perform the same type of operation to all parts of an image. Linear filters

assume that the statistical properties of an image are location-invariant (e.g.

the image is assumed to be stationary) which can be described by a global

measure such as the frequency spectrum. However, the vast majority of

images and certainly ultrasonic scans are inherently nonstationary. Nonlinear

filters do not make any explicit assumptions about the stationarity of an image

and have the additional advantage of edge preservation. Even so, they fail to

satisfy the requirements mentioned above because signal preservation

deteriorates rapidly as the window size increases to provide adequate noise

reduction.
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LOCAL IMAGE
MEASURE

Figure 4.8 : General block diagram for adaptive processing. I(x,y), 0(x,y) are the
input and output grey levels at point (x,y).

An alternative approach which overcomes the limitations of

space-invariant techniques is to use a space-varying or adaptive filter which

adjusts the smoothing performed at each pixel according to the local image

content (Figure 4.8). The local image content at each point can be described

by a combination of image measures or features, calculated in a predefined

neighbourhood of this point. These measures include first-order statistics

(mean, variance), second-order statistics (autocorrelation, power spectrum),

edge gradient information or other measures of local uniformity. Adaptive

techniques acknowledge that an image is nonstationary on a global basis and

assume instead that it consists of a large number of locally stationary areas.

Provided that the local uniformity measures are appropriately chosen, the

adaptive filter can determine if a point belongs to a locally stationary area and

provide maximum noise reduction or if it is near a boundary between two or

more locally stationary areas. In this case, the amount of smoothing can be

minimized depending on how close the point is to the boundary or,

alternatively, smoothing can be performed only along the direction of the

boundary in order to improve its definition. Apart from the local image

measures, the other important element of an adaptive filter is the type of
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estimator used to produce a smoothed pixel from the noisy observations in its

neighbourhood. The estimator can be determined in a heuristic manner or it

can be designed so that it satisfies a criterion of optimality such as the

minimum mean square error. Although the quality of the processed image

depends heavily on the choice of a good estimator, measures which can

provide an accurate description of the local image content are even more

important because these are the ones that control the action of the estimator.

Adaptive techniques pay the price of computational complexity

because the calculation of local image measures has to be repeated for each

pixel of the image. However, this drawback is compensated by their ability to

provide noise reduction while preserving the important features of an image.

An evaluation of several noise smoothing algorithms (Mastin, 1985) has

confirmed the importance a human observer gives to image sharpness and

detail preservation and has demonstrated the superiority of adaptive

techniques over their space invariant counterparts. A comprehensive review

of adaptive techniques for image processing, including but not restricted to

noise reduction, has been given by Tom (1985). In the rest of this section,

some representative adaptive noise smoothing filters, both well-known and

new, will be described.

4.4.1. Lee's modified algorithm

The first adaptive filter considered here is based on an algorithm

suggested by Lee (1980) for suppression of additive, multiplicative or a

combination of both types of noise. The same filter has been used for speckle

suppression in synthetic aperture radar imaging (Lee, 1981; 1986). The filter

operates by forming an output image where the grey scale level 0(x,y) of a

point (x,y) is the linear combination of the input grey scale level l(x,y) and the

local mean rri|(x,y) of the terms inside the filter window.
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0(x,y)=m|(x,y)+c[l(x,v)-m|(x,y)]=cl(x,y)+(1-c)m|(x,y) (4.16)

The parameter c determines the amount of smoothing performed at

each point (x,y). c=0 corresponds to maximum smoothing (0(x,y)=m|(x,y))

whereas c=1 has no effect on the input (0(x,y)=l(x,y)). (4.16) is encountered in

many signal processing applications which are not necessarily restricted to

noise reduction. It is generally agreed that this equation was first introduced

to image processing by Wallis (1976) who used it for space-varying contrast

enhancement. Of particular relevance to this work is Dickinson's (1982)

space-varying implementation of (4.16) for ultrasonic speckle suppression with

c chosen to be proportional to the local mean of the input rri|(x,y). The

implications of this choice are that the amount of smoothing performed in

regions of high grey scale level is reduced. Although, in this manner, blurring

of bright edges is avoided, this is achieved at the expense of oversmoothing

areas of low grey scale levels. Also, since the local mean cannot detect

boundaries between areas of different echogenicity these are inevitably blurred

by the filter.

Dickinson's filter is an example of how (4.16) can become adaptive if

the value of c at each point is determined by the local image content. Lee's

approach was to choose c so that the mean square error E{[0(x,y)-J(x,y)]2}

between the output image 0(x,y) and the noise-free image J(x,y) is minimum,

where E{J} denotes the expected value (ensemble mean) of J. Obviously c is

different for different image degradation models. For additive noise, i.e.

l(x,y)=J(x,y)+N(x,y) where N(x,y) is a zero mean, uncorrelated noise term which

is statistically independent of J(x,y), the expression for c derived by Lee is

exact. However, this is not true for multiplicative noise because he

approximates the image degradation model by a Taylor series expansion of

zero and first-order terms (Lee, 1980). A more accurate treatment of this
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subject which can be applied to any type of signal-dependent noise has been

given by Kuan et al (1985). The proof of the general form of c will be

presented below in order to clarify some points which do not appear in the

original derivation and, also, to state explicitly the assumptions made.

Consider the general image degradation model

i=Hj+n (4.17)

j is the uncorrupted image, n is a zero mean, uncorrelated noise which in

general can be signal-dependent, i is the noisy image which is available to us

and H is a blurring matrix. The small-case variables in bold represent image

arrays of M X M pixels which have been expressed as M2 X 1 vectors. For

example i , which is the transpose of the vector i, is formed from the image

l(x,y) in the following manner

iT={l(1,1), 1(1,2) 1(1,M), 1(2,1), ..., I(M,M)} (4.18)

We want to obtain an output vector o which is an estimate of j based

on i. If we impose a linear constraint in the form o can take, the minimum

mean square error solution is given by Sage & Melsa (pp 234-235, 1971) as

o=E{j}+CjiCr1(i-E{i» (4.19)

where Cjj is the cross-covariance matrix of j, i and C~1, E{i} are the inverse of

the autocovariance matrix and the expected value of i respectively.

The first assumption to be made is that the conditional expected

value E{n/j} is equal to zero. Then

E{i/j}=E{Hj+n/j}=HE{j/j}+E{n/j}=Hj (4.20)
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In other words, the noise n does not introduce bias to the signal.

Before we continue, the following theorem from probability theory is

stated (Papoulis, pp. 208-209, 1981).

E{g(x,y)}=Ex{EY{g(x,y)/x}} (4.21)

where the subscripts x, y signify that the expected values Ex , Ey are calculated

over x and y respectively. Then, if j corresponds to x and i to y

E{[j-E{j}]nT}=EJ{En{[j-E{j}]nT/j}}=Ei{[j-E{j}3En{nT/j}}=[0] (4.22)

(4.22) will be used for the calculation of the covariance matrices Cj, and Cj in

terms of Cr By definition, is equal to

Cji=E{[j-E{j}][i-E{i}]T}=E{[j-E{j}][H(j-E{j})+n]T}
=C.HT+E{[]-E{j}]nT}=CjHT (4.23)

Similarly

Ci=E{[i-E{i}][i-E{i}]T}=E{[H(j-E{j})+n][H(j-E{j})+n]T}

=HCjHT+Cn+HE{[j-E{j}]nT}+E{n[j-E{j}]T}HT
=HCjHT+Cn (4.24)

(4.23) and (4.24) can be simplified if we assume that no blurring has

occurred, that is, H=I where I is the unit diagonal matrix. Also, since the noise

term n in (4.17) is assumed to be uncorrelated, its autocovariance will be a

9 9
diagonal matrix Cn=On(x,y)I where CT^(x,y) is the nonstationary and

signal-dependent noise variance. Now, a more controversial assumption is

made about the noise-free vector j. j can be decomposed into a

nonstationary mean component E{j} and a residual j0=j-E{j} which is also

nonstationary. We assume that the residual component j0 is uncorrelated. Then

4.4.1 Lee's modified algorithm



87

the covariance Cj=E{[j—E{j>][j—E{j>]1} is equal to a~(x,y)I where a2(x,y) is the

rionstationary variance of j at point (x,y). Since Cj is diagonal, from (4.23) it can

be seen that Cjf is diagonal too and equal to Cj. Then, from (4.24) Cj is also

diagonal and equal to Cj=[oJ2(x,y)+a2n(x,y)]I. If we substitute these expressions

into (4.19) and use scalar instead of vector notation we obtain

0(x,y)=mj(x,y)+[aj(x,y)/(Oj(x,y)+a^(x,y))][l(x,y)-m|(x,y)] (4.25)

where the ensemble statistics E{j}, E{i}, a2, a2 have been replaced by the local

statistics mj(x,y), m,(x,y), a2, a^. The description of the filter is now complete

provided that a2 and can be expressed in terms of the local variance of of
the observed noisy image l(x,y).

In order to apply this filter for ultrasonic speckle suppression, we

rewrite the noise model of (2.13) using the notation of this section

l(x,y)=J(x,y)+N(x,y)=J(x,y)+[J(x,y)]1/2U (4.26)

where U is a zero mean, uncorrelated noise which is statistically independent

of J(x,y), i.e. E{J(x,y)U}=E{J(x,y)}E{U}=0. U is assumed to be stationary, in other

words its statistical properties are independent of the coordinates (x,y). The

first-order statistics of N(x,y) are equal to

E{N(x,y)}=E{[J(x,y)]1/2U}=E{[J(x,y)]1/2}E{U}=0 (4.27)

and

4(x,y)=E{N2(x,y)}-E2{N(x,y)}=E{J(x,y)U2}

=E{J(x,y)}E{U2}=mj(x,y)au (4.28)

where again we have assumed that ensemble and local statistics are

equivalent. In a similar way we obtain

rri|(x,y)=mj(x,y) (4.29)
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and

af(x,y)=aj(x,y)+mj(x,y)au (4 30)

By using (4.27) - (4.30), equation (4.25) takes the form of (4.16) with c

equal to

c=[af(x,y)-m|(x,y)au]/af(x,y)=1-m|(x,y)a^/af(x,y) (4.31)

The practical implications of (4.31) can be appreciated by examining

two extreme cases. For areas of uniform speckle with constant scattering

strength, i.e. the variance of the noise-free image a2(x,y) is equal to 0, from

(4.30) af(x,y)=nrij(x,y)au=rn|(x,y)au . Consequently, c=0 and maximum smoothing

is performed. If on the other hand the point (x,y) is close to an edge, dj(x,y)

will have a large value and, as a result, a, (x,y) will be considerably larger than

rri|(x,y)au. Then from (4.31) is easy to see that c = 1 which results in minimum

smoothing. In other words, near edges the best estimate 0(x,y) of the

noise-free value J(x,y) is the noisy signal l(x,y). The filter's operation can be

described in terms of linear filtering as convolution of the input image l(x,y)

with a impulse response h(x,y) which varies from point to point. For a

2K+1 X 2K+1 window, the central element h(K+1,K+1) of the convolution mask

is equal to c+(1-c)/(2K+1)2 whereas all the other elements are equal to

(1-c)/(2K+1)2.

In order to apply the filter described by (4.31), a value for a2 must be

specified. From the graph of Figure 2.6 ay=a2/nri| is approximately equal to 1.5.

However, using a 9 X 9 window it was observed that this value caused loss of

image detail. The best results were obtained with a2=0.9 and this is the value

used for processing the images shown in Figure 4.9. This figure demonstrates
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the ability of adaptive filters to suppress noise without affecting the true

tissue information. The processed images represent a definite improvement

over the original images of Figure 4.1. Speckle has been reduced considerably

while the edges have been preserved and the visibility of small structures like

the portal tracts in the left part of the top scan has been increased. The only

criticism which can be made is about the filter's ability to preserve boundaries

between areas of slightly different echogenicity. Points (x,y) along these

boundaries have values of a^(x,y)/rri|(x,y) which are not significantly higher

than the ones expected from uniform areas of speckle. In this case, the linear

averaging operation performed by the filter results in blurring of the

boundaries, as it can be seen from the enlarged area of the bottom scan.

Despite the fact that the filter is adaptive , it is computationally very

efficient with only 60 s of CPU time needed to process a scan on the

MicroVax. This happens because the only time consuming task the filter faces

is the calculation of the first-order local statistics. In our implementation

(Appendix B), this task is performed in an efficient recursive way by taking

advantage of the fact that when the filter window is moved one pixel to the

right most of the terms are the same as before. In conclusion, Lee's algorithm

combines efficiency in software due to its simplicity and good performance

due to its adaptive nature. The only scope for improvement is the filter's

ability to preserve subtle grey scale variations.

The basic idea of this filter has been used in many applications with

minor or major modifications. Bamber & Daft (1986) used this filter, with c

having a form similar to that of (4.31) apart from a scaling factor, for

ultrasonic speckle suppression. Chan & Lim (1985) have attempted to

overcome the problem of no smoothing near edges by using a cascade of

one-dimensional filters operating along the 0°, 45°, 90° and 135° directions

so that noise near an edge can be suppressed by the filter whose direction is
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parallel to the edge axis. This approach seems interesting but its application

to ultrasonic images did not prove particularly successful. The main reason is

that, due to the strong correlation of grey scale levels between neighbours, a

cascade of one-dimensional filters having a moderate window size cannot

suppress speckle fully and results, instead, in an image with blotchy

appearance. On the same subject of correlation, it has been already stated

that the form of c given by (4.31) assumes that the autocovariance Cj of the

noisy image l(x,y) is diagonal which means that the residual image, after the

local mean has been subtracted, is nonstationary but uncorrelated. This is

obviously not true for ultrasonic images and it is expected that if the speckle

correlation could be taken into account better performance could be achieved.

Kuan et al (1987) have done this for speckle suppression in simulated images

using the general filtering equation (4.19). However a straightforward

implementation of this equation involves the inversion of a (512)2 X (512)2

matrix which represents a tremendous computational load. The same group

have attempted to overcome this problem by dividing the image in smaller

overlapping sections and processing each section separately but without very

promising results. In this work, it has not been attempted to extend Lee's

algorithm so that it includes information about the second-order statistics of

the image because this represents a computationally demanding task which

could not be carried out on the PDP11 in a reasonable time, of say, a few

hours. However, it is recognized that the performance of the filter could be

greatly enhanced by using combinations of first and second-order local

statistics, something already done by Bamber & Cook-Martin (1987), in order

to describe the local image content more accurately, even if the combinations

of different local measures are not chosen according to a mathematical

criterion of optimality but are determined in a heuristic manner instead.
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4.4.2. Frost's modified algorithm

The filter presented here is a modified version of an adaptive

algorithm suggested by Frost et al (1981) for speckle suppression in synthetic

aperture radar imaging. A more complete description of the original algorithm

can be found in a paper by the same authors which was published later (Frost

et al, 1982) whereas the basis of its mathematical derivation has appeared in

the proceedings of a conference on remote sensing (Frost et al, 1980). The

starting point of this approach is that radar speckle can be regarded as

multiplicative noise. This is a reasonable assumption. Lee (1981) has

demonstrated the multiplicative nature of radar speckle by showing that its

local mean is proportional to its local standard deviation, something which is

also true for ultrasonic speckle after envelope detection (see Section 2.2).

Under the multiplicative noise assumption, the minimum mean square error

estimate of the true image in the frequency domain is derived. The estimate

is similar to inverse/Wiener filter formulations. By assuming that the

autocorrelation of the input image obeys an exponential decay model and

noise is an uncorrelated random process, the filter's impulse response in the

space domain is obtained. The filter is implemented by convolving the input

image with the impulse response h(x,y), which for a 2K+1 X 2K+1 window is

equal to

h(x,y)=(K-, af/m2)exp(-K2d af/m2) (4.32)

K-, is a normalizing constant chosen so that the sum of the convolution

coefficients is equal to 1, m| and 0| are the local mean and variance of the

terms inside the window, K2 is a parameter which controls the amount of

smoothing performed by the filter and d is the distance of the point (x,y) from

the centre of the window (K+1,K+1)

d=[(K+1-x)2+(K+1-y)2]1/2 (4.33)

4.4.2 Frost's modified algorithm



93

In order to use this filter for ultrasonic speckle suppression, the term

af/mf has been replaced by of/m( in (4.32) because ultrasonic speckle on

displays can be regarded as square root rather than multiplicative noise,

having mean proportional to the variance instead of the standard deviation.

The new impulse response is given by

h(x,y)=(K1 af/m|)exp(-K2af/m|) (4.34)

The filter described by (4.34) is adaptive because it includes the local

statistics term af/ni| which is calculated at each point of the image. For

uniform areas of speckle, the local statistics term has a low value and the

convolution coefficients of the filter decrease relatively slowly as we move

away from the centre of the window (K + 1,K+1), resulting in maximum noise

reduction. However if part of an edge or other resolvable structure is included

in the filter window, of/m, has a value higher than that expected for uniform

speckle. Since this causes the convolution coefficients to fall sharply as we

move away from the centre of the window, more emphasis is placed on the

central terms and, therefore, signal preservation improves at the expense of

noise suppression. The filter is similar to Lee's algorithm in the sense that

they both convolve the input image with a space-varying mask and utilize the

same local statistics quantity to describe the local image content. Their main

difference is in their region of support, i.e. the neighbourhood around an input

pixel which is used to calculate the output. In Lee' algorithm the region of

support is always fixed and equal to the window size. On the contrary, from

(4.34) it can be seen that as of/m, becomes larger an increasing number of

convolution coefficients near the periphery of the window obtain very small

values so that the actual window size is reduced near edges and only pixels

close to the centre of the window contribute to the output.
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The best results using this filter were obtained with a window size of

9X9 and K2=0.7. Figure 4.10 shows the original scans of Figure 4.1 after

processing. The performance of the filter is satisfactory, although very similar

to that of Lee's filter. Of course, there are slight differences between the two

filters which, however, cannot appreciated very well by comparing the prints of

Figures 4.9 and 4.10. The most important difference is that Frost's filter, due to

its variable region of support, can preserve details and subtle grey scale

variations somewhat better, as can be seen by comparing the magnified

regions of Figures 4.9 and 4.10.

Computationally, Frost's algorithm is very inefficient. The Fortran

subroutine listed in Appendix B takes 600 s of CPU time to process a scan,

although it uses the fast recursive method mentioned in the previous

subsection for calculating the local statistics. In fact, the local statistics

represent only a very small fraction of the computations performed by the

filter at each point of the image. The most time consuming operation is the

calculation of the convolution coefficients for each point of the window, 81 of

them for a 9 X 9 window, and the multiplication of these with the pixel

intensities inside the window. A fast implementation of 300 s has been

achieved by taking advantage of the fact that the convolution coefficients

exhibit an 8-fold symmetry. Even so, the filter is still slow and the marginal

improvement in performance over Lee's algorithm cannot justify the additional

execution time and complexity.

4.4.3. Adaptive weighted median filtering

The filters based on Lee's and Frost's algorithms have demonstrated

the superiority of adaptive techniques by offering considerable noise reduction

and, at the same time, preserving edges and other resolvable structures.

However, both filters produce an output value which is a linear combination of

the input intensities. As a result, they tend to blur small structures and subtle
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grey scale variations whose local statistics are not sufficiently different from

those of uniform speckle so that they can be recognized by the filter.

Therefore, it would be desirable to have a space-varying algorithm which

combines adjustable smoothing with the signal preserving properties of

nonlinear estimators like the median filter. These arguments have led to the

development in this project of a new algorithm called the adaptive weighted

median filter (AWMF).

The basis of the AWMF is the weighted median, a nonlinear class of

median-type filters, which includes the pure median as a specific case. This

class has been applied to astronomical images for object removal with the

weight coefficients chosen so that specific desirable features of the original

image are preserved (Brownrigg, 1984). More recently, a 3X3 weighted

median capable of real-time operation has been developed for impulse

suppression in frequency modulated satellite TV images (Perlman et al, 1987).

For the sake of simplicity, the filters examined in the next few

paragraphs which describe the properties of the weighted median, are

one-dimensional. The weighted median of a sequence {X;} is defined as the

pure median of the extended sequence formed by repeating each term w,

times, where W; is the weight coefficient which corresponds to X; (Justusson,

1981). For example, if w-| = 2, w2=3 and w3=2, the weighted median YWM of the

sequence {Xv X2, X3} is equal to

YWM=median{Xi, X-|, X2, X2, X2, X3, X3} (4.35)

Intuitively, it is expected that as more emphasis is placed on the

central weights of the window the ability of the weighted median to suppress

noise decreases but also the signal preservation increases. This characteristic

of the weighted median, which is confirmed below by using its statistical
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properties, is very useful because it allows the design of an adaptive filter with

median-type properties. One way of achieving this is by choosing a family of

weights which decrease monotonically as we move away from the centre of

the window and the rate of decrease is controlled by the local image content.

Since the families we have experimented with offered comparable

performance, the simplest and computationally most efficient of all was

chosen. This is a family of linear weights with variable slope a. For a

2K+1-point window, the weight coefficient w, at point i (i=1, ..., 2K+1) is given

by

w~(wK+1-a|K+1-i|) (4.36)

where (x) denotes the nearest integer to x if x is positive or zero if x is

negative.

The weight family of (4.36) has been used to study the effects of the

weight coefficients on the filter's smoothing characteristics. For the following

applications, a window of 2K+1=9 points and a central weight wk+i=21 have

been chosen. Figure 4.11 plots the weights for three values of tire slope a,

with the pure median corresponding to a=0. The analysis is based on some

first and second-order probability density functions (pdf's) of the weighted

median'. The derivation of the pdf's is presented in Appendix A but since the

resulting expressions tend to be very long and cumbersome they will not be

repeated here.

The variance of the output, when a constant signal corrupted by noise

is filtered by the weighted median, gives an indication of the filter's ability to

'Very recently, further work on the properties of the weighted median, including some very
interesting results on cascaded and recursive filters, has become available as a technical report
(Yli-Harja et al, 1 988).
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suppress noise in uniform areas. By using the pdf fWM(x) °f the weighted

median when the input is a constant signal m plus uncorrelated additive noise

having a symmetric pdf, the output variance aWM can be calculated from

Owm= J (x-m)2fWM(x)dx (4.37)

The variance is plotted in Figure 4.12 as a function of the slope a for the case

of Gaussian noise with mean 0 and variance 1.

As a quantitative index of the weighted median's performance in edge

preservation when noise is present, the mean square error (MSE) has been

used. Let us consider an ideal step edge of heights h1f h2 with the transition

occurring at point M and corrupted by uncorrelated additive noise. Since for a

filter size of 2K+1 points the window encounters the edge 2K times, the total

MSE is defined by Pomalaza-Raez & McGillem (1984) as

M+K-1 M+K-1

Total MSE= I E{(y-Si)2}= £ J (x-Si)2fWM(x;i)dx (4.38)
i=M-K i=M-K

where

Yj is the filter output when the window is centred at point i
Sj is the signal value at that point before noise was added
fWM(x;i) 's the pdf of the weighted median at point i when the input is an
ideal edge corrupted by noise

The total MSE is plotted in Figure 4.13 for the case of uncorrelated Gaussian

noise with mean 0 and variance 1 and edge heights h-j =0, h2=5.

Figures 4.12 and 4.13 follow a similar pattern. For weights relatively

close to the central value wK+-, (slope values a=0 to 2) the filter behaves

almost as a pure median offering maximum noise suppression but also

introducing maximum distortion to edges corrupted by noise. However as the

slope increases, i.e. as the weights fall more rapidly as we move away from

the centre of the window, edge preservation improves at the expense of the

ability to suppress noise. This happens because greater emphasis is placed on
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the central weights while the effective window size is reduced since the

weights at the periphery of the window become very small or even zero (see

equation 4.36). For very large slope values, not shown in the graphs, the

effective window size becomes 1 and the filter has no effect on the input.

The behaviour of the filter can be predicted using the quantity p, defined as

P=[£wf]/[£wi]2 It has been found that signal preservation and noise reduction

are proportional and inversely proportional to p, provided that the weights do

not have significantly different values (Loupas et al, 1988).

By calculating the Fourier transform of the autocorrelation of the

output when the input is a constant signal corrupted by uncorrelated additive

noise, the power spectrum of the weighted median has been obtained for

slope values ot=0, 3 and 6 (Figure 4.14). This figure illustrates how the slope a

modifies the low-pass characteristics of the weighted median. As the slope

increases the bandwidth becomes wider while both ripple and attenuation in

the stopband zone are reduced. It is interesting to note the similarity between

this behaviour and that of weighted average (FIR) filters.

The analysis of the weighted median's properties for the

one-dimensional case demonstrates that the selection of the weight

coefficients represents a tradeoff between noise reduction and signal

preservation. The AWMF takes advantage of this fact by adjusting the weights

at each point of the image according to the local statistics of the terms inside

the window. For a 2K+1 X 2K+1 window, the weight coefficient at (x,y) is equal

to

w(x,y)= (w(K+1,K+1)-cdcjf/m|) (4.39)

where
c is a scaling constant
rri|, of are the local mean and variance of the of the input image
d is the distance of the point (x,y) from the centre of the window (K+1,K+1)
defined by (4.33) and (x) is defined by (4.36)
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Figure 4.11 : A family of linear weight coefficients with variable slope a.

w
u

0.50

0.40

0.30

I
E-
to
p->
E- 0.20
to
o

0.10

SLOPE a

Figure 4.12 : Output variance of the weighted median as a function of the
slope a of the weight coefficients. The input is a constant signal corrupted by
uncorrelated, additive Gaussian noise.
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SLOPE a

Figure 4.13 : Total Mean Square Error introduced by the weighted median as a
function of the slope a of the weight coefficients. The input is an ideal step
edge corrupted by uncorrected, additive Gaussian noise.
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Figure 4.14 : Power spectrum of the weighted median for three sets of
weights. The input is a constant signal corrupted by uncorrected, additive
Gaussian noise (quantized to 32 levels).
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(4.39) is the two-dimensional equivalent of the weight equation (4.36)

with the product ccf/m,, which characterizes speckle, corresponding to the

slope a. For uniform areas, where intensity fluctuations are due to noise, the

quantity af/m, has a small value. From (4.39) it can be seen that the weights

have values relatively close to the central value w(K+1,K+1) and, therefore,

maximum noise reduction is performed. However, when the filter window

includes a resolvable structure or a boundary between areas of different grey

scale levels the local variance is larger than that expected form a uniform area

having the same local mean. Consequently the slope cof/m, increases and

fine image detail can be preserved.

The output of the AWMF at a particular point is obtained following a

three-step procedure. First, the local statistics and the weight coefficients are

calculated. Then, the grey level histogram H(&), £=1, ..., max grey level (256 in

our case), is formed by examining the grey level l(x,y) of each pixel (x,y) inside

the window and incrementing H(l(x,y)) by the corresponding weight coefficient.

Finally, the weighted median is determined as the minimum grey level 0AWM

which satisfies

Oawm

I H(£,) > [ I w(m,n)+1 ]/2 (4.40)
Jl-1

where £w(m,n) represents the sum of the weight coefficients.

Figure 4.15 shows the scans of Figure 4.1 after processing by the

AWMF with window size 9X9, c=20 and w(K+1,K+1)=99. Comparisons between

the two figures shows that speckle has been almost totally suppressed while

high contrast edges are as sharp as in the original and even small details like

the portal tracts at the left part of the top scan have been preserved and can

be visualized better after speckle suppression. Also, due to its median-type
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Figure 4.15 : Adaptive weighted median filtering applied to the original scans
of Figure 4.1.
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nature, the AWMF can preserve subtle grey scale variations better than Lee's

or Frost's filters. This can be seen by comparing the appearance of the small

branch of the hepatic vein (top scan) and the boundaries of the hypoechoic

lesions in the magnified regions of Figures 4.9, 4.10, 4.15.

With 230 s of CPU time needed by the MicroVax to process a scan,

the AWMF cannot be considered efficient or fast. The long execution time can

be attributed to the need to calculate the weight coefficients at each pixel of

the image and, more importantly, to the fact that Huang's fast median filtering

algorithm (Huang et al, 1979) cannot be used because the weights vary from

point to point. On the other hand, the AWMF can preserve boundaries between

areas of slightly different echogenicity better than other adaptive filters. In our

opinion, this approach succeeds in retaining the good points of median-type

filters, the preservation of subtle grey scale variations being the most

important, while it overcomes most of their drawbacks associated with loss of

genuine image detail.

An alternative way of performing adaptive median-type filtering is to

use a pure median filter with a variable-size window. A rather complex filter

based on this idea which, nevertheless, can suppress different types of noise

simultaneously has been proposed recently by Bernstein (1987). We have

experimented with a simpler algorithm. This is a two-dimensional median filter

with a window size 2L+1 X 2L+1 determined at each point of the image from

the formula

L=(K(1-caf/m|)) (4.41)

where 2K+1 X 2K+1 is the maximum window size and the rest of the symbols

are defined as in (4.39).

This filter offers performance comparable to that of the AWMF,
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something not surprising since both filters are based on the median and utilize

the same local statistics criterion. An advantage of the variable-size median is

that it is quite efficient with only 110 s of CPU time needed to process a scan

on the MicroVax. The filter is only slightly less efficient than the DW-MTM

filter (100 s) but it offers superior performance. One drawback of the

variable-size median is that it is not able to perform fine adjustments of its

smoothing characteristics, like the AWMF can, because its action can only be

controlled by its window size. For example, if a maximum window of 9 X 9

points is used the filter can offer only 5 modes of action, from window sizes

9 X 9 to 1 X 1. On the other hand, Brownrigg (1986) has shown that for a

given window length the weighted median acts in a very large, but finite,

number of ways on the data depending on the selection of the weight

coefficients. This inflexibility of the variable-size median compared to the

adaptive weighted median results in slightly inferior image quality.

4.4.4. Directional filtering

The action of most adaptive filters varies from maximum noise

smoothing in uniform areas where only noise is present to no smoothing at all

near edges. While this prevents edge blurring and loss of image detail it does

not do much to restore noisy edges and emphasize object boundaries. Another

drawback, restricted only to techniques which use the first-order local

statistics to determine the local image content like the adaptive filters of

Sections 4.4.1 - 4.4.3, is that first-order statistics do not take into account

how the pixel intensities are distributed inside the window. For example the

5X5 images of Figure 4.16 have identical means and variances but the square

on the left is obviously noise whereas the square on the right consists of two

separate regions. One approach which can overcome these drawbacks is to

perform adaptive directional filtering.
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m=U-8 m = U8

a = 5-0 cr = 5-0

Figure 4.16 : 5 X 5 binary images having identical first-order statistics but
displaying two obviously different patterns.

The human visual system possesses special mechanisms for edge

detection which are "tuned" to specific orientations (Hubei & Wiesel, 1979). The

directional information extracted by these edge detectors from a scene plays a

very important role in the brain's attempt to determine the local image content

(Peli, 1987). It makes sense therefore to develop image processing systems

which simulate the operation of the human observer by utilizing the

information about the orientation of structures contained in an image.

So far, directional processing has been used for feature extraction by

means of a multilevel image transform (Granlund, 1978; 1981), texture

discrimination (Ikonomopoulos & Munser, 1984), image coding (Ikonomopoulos

81 Kunt, 1985), image sharpening (Chanda et al, 1985) and enhancement of line

structures in images of retinal fibre, fingerprints and seismic data (Peli, 1987).

Also, two methods for noise suppression which utilize directional information

have recently appeared in the scientific literature. Both of them are based on
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Lee's adaptive algorithm. The first method, which has been mentioned already

in Section 4.4.1, uses a cascade of one-dimensional filters operating along the

four principal directions (Chan & Lim, 1985). The second method uses a

two-dimensional filter, like the one described by (4.16), with directional

information incorporated in the local mean (Kim & Jung, 1987).

A different approach to noise suppression by means of directional

processing has been developed in this project. It is a two-stage technique

which utilizes the directional information around a pixel, first to produce a

smoothed image with noise suppressed both in uniform areas and near edges,

and then to process the smoothed image with an adaptive band-pass filter in

order to enhance edges and highlight boundaries between areas of different

echogenicity. The second stage of the technique is not common at all in

noise suppression algorithms but it was considered necessary because

smoothing alone cannot sharpen edges and boundaries which draw the

attention of a human observer to the presence of organs and lesions.

The directional filter is described in the following paragraphs.

However, in order to illustrate the need for combined smoothing and

sharpening around edges let us consider the computer generated image of

Figure 4.17a. The 3D plot of the image is displayed on the left and its cross

section on the right part of this figure. The image has uniform intensity equal

to 60 apart from the two circular regions of intensity 30 and diameters 6 and

12 pixels and the three lines which are 3-pixel wide each and have intensities

100, 30 and 100, respectively. Figure 4.17b displays the same image after

uncorrelated Gaussian noise with mean 0 and variance 100 was added. It can

be seen that the low-contrast lesions have almost been buried by the noise

and the line structures have been severely distorted. Figure 4.17c is obtained

by processing the noisy image with a 9 X 9 adaptive weighted median which

has been appropriately modified for the case of additive noise (the variance af
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Figure 4.17 : Computer generated images, (a) - original, (b) - original plus
uncorrelated, additive Gaussian noise.
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Figure 4.17 : Computer generated images, (c), (d) - adaptive weighted median
and directional filtering applied to the noisy data of Figure 4.17b.

Directional filtering4.4.4
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is used instead of af/m, to control its smoothing characteristics). Figure 4.17c

demonstrates the inadequacy of this type of filtering for the restoration of

edges corrupted by noise. Although the noise has been suppressed

considerably in uniform areas, no smoothing has been performed near the

circles and lines because they have been rightly classified by the local

statistics criterion as edges. On the contrary, processing by the directional

filter, with the same parameters as the ones mentioned below, suppresses

noise in all parts of the image and enhances the visibility of the structures

contained in the image (Figure 4.17d).

In order to perform directional filtering, the one-dimensional mean md

and variance od around each point (x,y) are calculated along the directions 0°,

45°, 90° and 135° which correspond to d=1, 2, 3 and 4, respectively. From crd,

the normalized variances crdn are calculated as

<4=°dk/( I °dk) (4.42)
d = 1

The output 0-|(x,y) of the smoothing stage is then given by

4 4

01(x,y)= I (md/crdn) / I (1/adn) (4.43)
d=1 d=1

The parameter k determines the relative contributions of the directional means

md to the output Oi(x,y). For k=0 all directions contribute equally whereas for

k=+oo the direction of minimum variance contributes exclusively.

The presence of an edge along a direction d results in minimum

variance od along this direction. In this case, 1/adn is considerably larger than

the rest of the inverse normalized variances and smoothing parallel to the

edge axis is performed, which improves its definition without introducing

considerable blurring. On the other hand, if only noise is present all the
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variances have similar values. As a result, 1/adn=1/4 for d=1, ...,4 and by

accepting equal contributions from all the directional means maximum

smoothing is performed.

After the first stage is completed the normalized variances adn of the

input image are used again to perform adaptive sharpening of the smoothed

image, which enhances edges and lines without amplifying the noise. For each

point (x,y), four one-dimensional band-pass filters are designed using the

window method with a Kaiser window (Oppenheim & Schafer, Chapter 5, 1975;

Rabiner et al, 1979). The normalized high-pass cutoff frequency fH of the

filters is fixed. However, the low-pass frequency fLM is determined for each

direction from f|_M=fLadn so that f|_M obtains its maximum value fL for

directions vertical to an edge axis (adn = 1) but approaches zero for directions

parallel to an edge. Then, the pixels along each direction are convolved with

the corresponding filter coefficients and the final output 02(x,y) is obtained

from the partial results 02d(x,y) of the convolutions as

4

Oz(x.Y)= I 02d(x,y)a^n (4.44)
d=1

This time it is the direction of maximum variance which contributes more to

the final result.

The following parameters have been chosen for the directional filter.

Smoothing window of 7 points, k=2, band-pass filter window of 7 points.

Kaiser window attenuation 50 db, fH=0.4 and fL=0.1. The results of processing

the scans of Figure 4.1 by the directional filter are shown in Figure 4.18. The

first comment to be made is that edges , lines and boundaries have indeed

been enhanced. Note, for example, the dark line on the bottom-right part of

the gallbladder and the branch of the hepatic vein (top scan) or the boundaries

of the hypoechoic lesions (bottom scan). Another comment is that noise has
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Figure 4.18 : Directional filtering applied to the original scans of Figure 4.1.
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been reduced to some extent but not as much as in scans processed by the

filters described before. The directional filter suppresses small speckle but

preserves and even enhances coarser texture. This creates the subjective

impression that more information can be seen in the tissue parenchyma of the

processed scans, although the validity of this impression is questionable.

Directional filtering is extremely slow with 960 s of CPU time needed

to process a scan on the MicroVax. The computational inefficiency is due to

the two-stage filtering operation. An additional reason is that the basic

operation at each point is performed four times along different directions,

although this problem could be overcome in a parallel hardware

implementation by using a number of processors operating simultaneously on

data from different directions. It is recognized that this particular

implementation of directional filtering is not necessarily optimum in the sense

that many parts of the algorithm could be simplified considerably offering a

substantial reduction in execution time. The reason for not having done this is

that the idea could only be implemented after the purchase of the MicroVax

when this project was approaching its completion. However, it is hoped that

experimentation with different versions of the smoothing/sharpening algorithm

could not only increase the computational efficiency of the filter but could

also yield better performance.

4.4.5. Multiple filtering

A comparison based on the processed images of Section 4.4 suggests

that techniques such as Lee's, Frost's and the adaptive weighted median filter

are very efficient as far as speckle suppression in relatively uniform areas is

concerned but not in edge enhancement while the directional filter is capable

of enhancing edges and highlighting details but at the expense of inadequate

noise reduction. Although computationally excessive, it is interesting to

combine the strong points of several filters by adopting a multifiltering
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approach, i.e. a number of algorithms are applied to the same image data and

the output at each point is determined primarily by the filter which is most

appropriate for processing the area which contains the point.

This approach is perfectly consistent with the concept of adaptive

processing. In the introduction of Section 4.4 it was argued that the

smoothing performed at each point must be adjusted according to the local

image content. There is no reason why this idea could not be extended so that

processing includes a number of filter types, since it is unlikely that one filter

can be optimum for all parts of an image. In fact the human visual system,

which most image processing algorithms attempt to simulate, could be

modelled as a number of "filters" of various types, window geometries and

sizes operating in parallel in order to extract the maximum amount of

information from every part of an image.

As a first step in implementing a multiple filtering scheme, it was

assumed that the pixels of an ultrasonic scan belong either to relatively

uniform areas where speckle is the main source of grey level variations or to

areas where low or high-contrast resolvable detail is present. The most

suitable techniques to process these two area types were considered to be

the adaptive weighted median and the directional filter respectively. From the

methods tried, the one that produces the best results forms a composite

image 0(x,y) by combining information from the input image l(x,y) and the

outputs of the adaptive weighted median 0AWM(x,y) and directional filter

0DF(x,y) in the following manner.

0(x,y)=cOAWM(x,y)+( 1 -c)0DF(x,y) (4.45)

where

c=exp[-a( Bnri|(x,y)/af (x,y)-1 )2] (4.46)
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The by now familiar ratio of/ml of the local variance over the local

mean is used to classify each point of the input image. If o,/m| has a value

close to the one expected from a uniform speckle area (equal to the parameter

B in equation 4.46) c = 1 and the adaptive weighted median contributes almost

exclusively to the output. On the other hand, if o?/mf is substantially larger

(smaller) than B this implies the presence of high (low) contrast detail. In this

case c^O and the directional filter becomes the main contributor to the output.

The parameter a controls the transition between the two filters. The values of

of of/rri| which result in equal contributions are given by

af/rri|=B/{1 ±[(/n2)/a]172} (4.47)

Figure 4.19 displays the images of Figure 4.1 after multiple filtering

with a=2, B=1 and a 9 X 9 local statistics window. The parameters of the

adaptive weighted median and directional filter were the same as the ones

used for processing the images of Figure 4.15 and 4.18 respectively, with one

exception. A smaller smoothing window of 5 points was chosen for the

directional filter in order to obtain ore edge/detail enhancement.

Comparisons between the images of Figures 4.1 , 4.15 , 4.18 and 4.19 shows

that multiple filtering offers both good speckle suppression and edge/detail

enhancement; in other words it succeeds in combining the desirable features

of the algorithms on which it is based.

Application of multiple filtering to a number of ultrasonic scans has

shown that more impressive results can be expected when the original image

contains poorly defined edges and small details obscured by speckle. An

example is given in Figure 4.20. Multiple filtering (Figure 4.20d) offers as much

speckle suppression in uniform areas as the adaptive weighted median (Figure

4.20c) does. At the same time, the composite image is definitely sharper than
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both the original scan (Figure 4.20a) and the output of the directional filter

(Figure 4.20b). The visibility of small vessels and other structures in the liver

parenchyma has been improved significantly.
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Figure 4.19 : Multiple filtering applied to the original scans of Figure 4.1.
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Figure 4.20 : (a) - Unprocessed scan of the liver and right kidney, (b) -
Directional filtering, (c) - Adaptive weighted median filtering, (d) - Multiple
filtering.
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Figure 4.20 : (a) - Unprocessed scan of the liver and right kidney, (b) -
Directional filtering, (c) - Adaptive weighted median filtering, (d) - Multiple
filtering.

Multiple filtering4.4.5
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CHAPTER 5

REAL-TIME SPECKLE REDUCTION

5.1. Introduction

As mentioned in Section 2.4, a major requirement that a filtering

technique must satisfy in order to gain acceptance in clinical practice is to be

able to suppress speckle without introducing loss of genuine image detail. The

adaptive filters of the previous chapter have demonstrated that it is possible

to do this by using sophisticated computer image processing algorithms.

Another equally important requirement, however, is that processing should be

performed in real-time. "Real-time image processing" can be defined as

processing at such a speed that the data rates of the input and output images

are the same. In ultrasonic imaging, a real-time system must process a scan

in 1/10 - 1/25 s, depending on the frame rate of the scanner. Due to their

software implementation, the adaptive filters of Section 4.4 cannot offer this

kind of speed. To give an example, they are anything between 600 times

slower in the best case (Lee's algorithm and 10 frames/s) and 20000 times

slower in the worst case (directional filtering and 25 frames/s). Clearly, what is

needed is a hardware implementation.

Medical ultrasonics is not the only field where real-time image

processing is highly desirable. Almost every interactive imaging technique

could benefit from it. As a result, interest in this area has increased

considerably during the last few years. The development of algorithms and

hardware architectures which can satisfy the speed constraints imposed by

real-time operation has become a major area of academic and commercial

research. Hardware systems capable of real or near real-time operation include

image processors such as the Crystal and the GOP (Granlund, 1981) or VLSI

chips for linear filtering (Inmos Ltd, 1986a), median filtering (Oflazer, 1983;

Bursky, 1987) and image moment generation (Hatamian, 1986). Designs based

5.1 Introduction
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on standard integrated circuits have also been developed for histogram

equalization/contrast enhancement (Woods & Gonzalez, 1981; McCollum et al,

1988), two-dimensional recursive filtering (Ty & Venetsanopoulos, 1986),

median filtering (Perlman et al; 1987) and edge detection (McCafferty et al,

1987).

5.1.1. Initial design considerations

The first step in designing a real-time image processing system is to

decide if the system will be microprocessor-based or not. Microprocessors

offer great flexibility because, after the input/output interface electronics have

been built, it is fairly easy to modify or even change the algorithm used.

Unfortunately, even the fastest "state of the art" devices like the transputer

T414-20 (Inmos Ltd, 1986b) can only execute approximately 10 Million

Instructions Per Second (MIPS) while our application requires the execution of

a few hundred MIPS. Of course, it is possible to spread the processing tasks

over a large number of processors operating in parallel on the input data.

Parallel processors which are commercially available include the SIMD (single

instruction multiple data) DAP and CLIP machines (Preston, 1986), and the

MIMD (multiple instruction multiple data) Meiko Computing Surface (Bowler et

al, 1987). However, the complexity and cost of those processors is not

compatible with this project. Inevitably, the only other choice left is to design

a system using dedicated integrated circuits which can perform only one

function but in a very short time. For example, the addition of two 8-bit

numbers can be performed in 15 ns using fast TTL chips (74S283) compared to

400 ns needed by a standard microprocessor like the Motorola 68000.

Another design consideration is the form of data to be processed. We

chose to process the A-scan lines, after they have been digitized by the

scanner but before scan conversion. Compared to the obvious choice of

processing the TV image, which is available at the video output of the scanner,
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this approach has the following advantages:

- There is no need for separate A/D and D/A converters which
increase the complexity of the circuit.

- Filtering before scan conversion is more efficient. The
smoothing and interpolation performed by the scan converter
increase the spatial correlation of speckle and consequently
larger window sizes are needed to suppress this artifact in
the video image.

- The window geometry corresponds to the actual image
formation both for linear (cartesian coordinates) and sector
(polar coordinates) scans.

The main disadvantage of filtering the digitized A-scan lines instead of the

video image is lack of flexibility and portability. Since the filter design is based

on the specifications of a particular scanner, the circuit needs considerable

modifications before it can be connected to a different machine.

It was decided to connect the filter to a Z/S mechanical sector

scanner manufactured by GL Ultrasound Ltd, which had already been used in

the evaluation of the frame averaging and software speckle suppression

techniques. At that period the Z/S scanner was needed for another

departmental project. However, this did not represent a serious problem

because the development work could be carried out on a Fischer Ultrasound

Marti scanner which shares the same electronics and scan converter (Hughes

model 672) with the Z/S. The specifications of both scanners which are

relevant to the design are : 6-bit A/D conversion, sampling period varying

between 730 and 150 ns depending on the depth of penetration and line

density equal to 1.1 vectors per 1°.

5.1.2. Simulations: Processing of A-scan lines in software

Because of the inflexibility and difficulties involved in implementing an

image processing algorithm using dedicated hardware components, it is crucial

5.1.2 Simulations: Processing of A-scan lines in software
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to form an idea about its performance before it is actually constructed. This

can be achieved by simulating the algorithm's performance in software using

real A-scan data. Ideally what is needed is an interface which can transfer the

A-scan lines of a frame from a scanner to a computer and feed them back,

after they have been processed, so that they can be displayed in the same

format as the original scans. Since such an equipment was not available and

building it is a major electronics project by itself, a system developed in the

department for Adaptive Time Gain Compensation or ATGC (Pye et al, 1986),

which could meet only the first of our requirements (transfer of data to a

computer), was used instead.

The ATGC system can capture 32 consecutive A-scan lines, digitize

them up to a depth of 197 mm at 8-bit, 4 MHz resolution and store them on a

floppy disc. The fact that the system was linked to another Z/S scanner

ensured that, apart from the different specifications of the A/D conversion, the

input data used by the simulation programs would be identical to those

processed by the hardware filter. Using the ATGC system, scans of liver and

tissue mimicking phantoms were transferred to a PDP11/23 minicomputer. In

order to display the A-scan lines as a conventional image, Fortran programs

which implement different scan conversion algorithms (Ophir & Maklad, 1981;

Robinson & Knight, 1982) were developed. An example of the phantom data

used in the simulations is given by Figure 5.1. The reconstructed images

formed from 100 A-scan lines is displayed in Figure 5.1a and 5.1b after scan

conversion and interpolation respectively.

The A-scan data were used to examine the suitability of several

window geometries, sizes and filter types. Application of the same filter to a

scan, before and after scan conversion, demonstrated that processing is

indeed more efficient when applied to the A-scan lines rather than to the final

image, in the sense that a smaller window size is needed to achieve the same

5.1.2 Simulations: Processing of A-scan lines in software
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Figure 5.1 : A-scan data from ultrasonic phantom displayed as a grey scale
image after scan conversion (a) and interpolation (b).

Simulations: Processing ot A-scan lines in software5 1.2
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degree of noise reduction. Another observation was that a cascade of two

one-dimensional filters operating in the axial and lateral direction, i.e. along

and across A-scan lines, gives results which are comparable to those obtained

by a true two-dimensional filter. This has important implications for the

complexity of the hardware because it offers considerable savings in the

number of components needed. To give an example, a 7 X 3 average filter

operating on 6-bit data needs forty two 4-bit adders compared to only

fourteen needed by a 7 and a 3-point filter connected in cascade. The

decomposition of a two-dimensional filter into a cascade of one-dimensional

operations is one of the two most frequently used techniques to reduce the

amount of computations needed for implementing a filter in software or

hardware. The other technique, which is not suitable for our application, is

repeated processing using a filter with a small window size.

After having specified the window geometry, experimentation

continued in order to identify algorithms which offered satisfactory

performance in terms of noise reduction/signal preservation but also were

suitable for hardware implementation. Although Lee's algorithm (Section 4.4.1)

combines these desirable characteristics, it was not chosen because of

increased hardware complexity. In order to apply this filter, the local variance

of of the terms I. around each point must be calculated from the equation

2K+1 2K+1

of = £l2/(2K+1 )-[£l./(2K+1)]2 (5.1)
i=l" i=l'

where 2K+1 is the window size. Calculating the terms I2 is not a problem. It

can be easily done using look-up tables stored in Programmable Read Only

Memories (PROMs). However, all the subsequent stages of the filter must be

designed to cope with 12-bit numbers, if the input data I. are 6-bit wide,

something which increases considerably the size of the circuit. Also, the
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calculation of the filter's output from (4.25) needs floating-point multiplications

and divisions which are very difficult to implement in hardware. Another

candidate for hardware implementation was the DW-MTM filter (Section 4.3.2)

which requires only simple fixed-point operations like magnitude comparisons.

The algorithm which was finally chosen is very similar and equally efficient as

the DW-MTM filter but it performed slightly better in the simulations.

5.2. The algorithm

The algorithm consists of two cascaded one-dimensional filters

operating on vertical directions. First, axial processing is performed by means

of sigma filtering. The sigma filter (Lee, 1983a), is a nonlinear edge preserving

technique which compares favourably with other noise smoothing filters. More

specifically, it introduces less distortion to noisy edges than the median

(Pomalaza-Raez & McGillem, 1984) and offers equally satisfactory performance

to that of Lee's local statistics algorithm in smoothing synthetic aperture radar

images corrupted by speckle noise (Lee, 1983b). The sigma filter owes its

signal preservation properties to the fact that at each point it attempts to

identify those terms inside the window which are likely to belong to the same

population as the central pixel and uses only these to calculate the output.

The rest of the terms are assumed to come from a different population and

are excluded from further calculations. For a 2K+1-point window which

includes the terms lr ..., I2K+1< the output 0SQ is equal to

2K+1 2K+1

o = y w.i./ y w.SG l* || La |
(5.2)

i=1 i=1

where

w.=1 for |l-lK+1|<q
wi=0 for I'j-'K+Il>q (5.3)
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q is a threshold which depends on the standard deviation of noise. Through

this quantity the filter utilizes information about the signal and noise statistics

in an implicit manner, without having to calculate the local statistics around

every point. By taking into account that the standard deviation of speckle is

assumed to be proportional to the square root of the mean and by using the

central pixel lK+1 as an approximation of the mean, the threshold q has the

signal-dependent form

q=c{lK+l}1/2 (5.4)

Comparison between equations (5.2) - (5.4) and (4.13) - (4.15) shows

that the sigma and DW-MTM filters are very similar. Their only difference is

that the DW-MTM filter uses the median O , of a smaller window as a firstmed

estimate of the true signal intensity whereas the sigma filter uses the central

pixel I itself. The implication of this choice is that if a positive (negative)

spike with very large (small) intensity compared to its neighbours occupies the

centre of the window it will be preserved, because the other pixels fall outside

the intensity range [lKH~q,lK+1+q] and the sum of (5.2) includes only the central

pixel itself. In order to overcome the undesirable property of spike

preservation, Lee (1983a) has suggested replacing the output 0SG by the

average of the central pixel's immediate neighbours (4 in our case) if the

number of pixels within the intensity range is smaller than or equal to a

prespecified value M.

2K + 1

°SG=0SG if I wrM>0
i=1

°SG = [IK-1 + lK+lK+2 + lK+3]/4 °therwise <5-5>

Experimentation in software showed that the minimum window size of

5.2 The algorithm
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the sigma filter to offer adequate noise reduction was equal to 17 points. In

determining the window size of the hardware filter the quantity of interest is

not the actual number of points but the spatial extent of the window, defined

as

(spatial extent)=(window size)(speed of sound)/2(digitizing frequency)

For the simulation data, the digitizing frequency was 4 MHz at a depth of 197

mm. On the other hand, the Z/S scanner digitizes the echoes at 1.66 MHz for

the same depth. Hence, a 7-point window has the same spatial extent as the

17-point window for the simulation. Ideally, a 9-point window would be

preferable but it was not chosen because our aim was to keep the size of the

circuit as small as possible.

The simulation showed that processing only in the axial direction

produces images having a blotchy appearance, which could be removed by a

3-point lateral filter. The spatial extent of the window in the lateral direction

is determined by the line density. Since the input data used for the simulation

and for processing in hardware have equal line densities, a window size of 3

points was chosen for the hardware filter. For such a small window size it

was observed that the sigma and median filters have similar performance, with

the median offering considerable savings in the number of ICs required to

implement it. For this reason, it was decided to perform lateral processing by

means of median filtering. However, it must be noted that if a window of 5 or

more points is needed, the sigma filter is preferable because it offers better

signal preservation.

5.3. Design and implementation

After studying the circuit diagrams of the Hughes 672 scan converter,

it was decided to insert the filter in the echo path directly after analog to

digital conversion. It was considered essential for the filter to be as fast as

5.3 Design and implementation



129

possible so that it could cope with a variety of digitizing frequencies. The

design goal was to achieve a maximum speed of 150 ns per sample which

corresponds to 330 Million Instructions Per Second, if we consider that in the

software implementation of the algorithm approximately 50 Fortran statements

are executed for every output value. This performance can be obtained by

adopting a serial pipeline design. In a pipeline architecture, the processing

task is decomposed into subtasks which are performed in cascaded stages,

with the intermediate results transferred from one stage to the next using

synchronous registers (Venetsanopoulos & Cappellini, 1986). Since the speed

of the pipeline is determined by the slowest stage, parallel processing with

several calculations performed simultaneously within a stage can be used to

increase its performance.

The design was based on standard TTL integrated circuits and

look-up tables implemented using fast PROMs. The circuit diagrams can be

found in Appendix C. The filter requires the following signals from the scanner;

ADCLK : clock of the A/D converter, LP : pulse which indicates the end of an

A-scan line, GQ...G5 : 6-bit output of the A/D converter with GQ denoting the
Least Significant Bit. A brief description of the circuit follows.

5.3.1. Axial processing: Sigma filter

The 8-bit serial-in parallel-out registers (IC3 - IC8) of page 219 are

used to implement a 6-bit, 7-word shift register with the data moving one

position to the right at the low-to-high transition of the clock pulse ADCLK.

The first and last term to enter the shift register, that is, the term which will

be discarded after the next clock pulse and the most recent one, are denoted

by I and l?, respectively.

The adders of page 220 calculate the 4-neighbour average of

equation (5.5).

5.3.1 Axial processing: Sigma filter
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Figure 5.2 : Threshold curves used in the axial processing stage. The curve

q0Q, not shown here, is equal to zero for every value of l4 and corresponds to
no smoothing at all.

The weights w. of equation (5.3) are calculated by the circuit of page

221. Two comparators and an AND gate set w to one if I —q<l.<l4+q or zero

otherwise. The values l4-q, l4+q are obtained from the look-up tables IC15,
IC16. In order to be able to control the amount of smoothing performed by the

filter, four sets of values have been stored in the look-up tables. These can be

selected by the binary switches SWO and SW1. When both switches are in the

zero logical state the threshold qQ0 is equal to zero for every value of l4 and

consequently no smoothing is performed. The thresholds dsw1sw0 for the
other three sets are displayed in Figure 5.2. A final comment on this part of

the circuit is that in order to use as few ICs as possible, only the three most

recent terms L, L, L are compared with l.±q. The values of the weights wc,b b / 4 b

w_, w., are then stored and are used to calculate w_, w,, w. after one, two andb 7 o Z I

three cycles respectively.

5.3.1 Axial processing: Sigma filter
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The registers of page 222 store the intermediate results of the first

stage and transfer them to the second stage of the pipeline. The weights w.

are connected to the CLEAR inputs of the corresponding registers in order to

implement the products w.L

The circuit of page 223 is a tree of 4-bit adders which perform the

summation £w.l., whereas the sum of the weights Ew. is obtained from the

look-up table stored in IC49.

Finally, another look-up table (IC51, IC52) performs the division

Ew.l./Ew. and the comparator IC50 and the multiplexers IC53, IC54 implement

the spike suppression equation (5.5).

The design described above is a straightforward implementation of

equations (5.2) - (5.5) which has proved perfectly adequate for our purpose.

However, it is not efficient for large window sizes or input data having more

than 6 bits. An alternative design which is suitable for a VLSI implementation

because it possesses a systolic architecture (Kung, 1982), i.e. it is based on the

regular repetition of a basic cell, is described below. Figure 5.3a shows the

basic cell of this architecture. A1 is the input term, A2 is the central term of

the window, A3 is the threshold q, A4 and A5 are the sums Ew., Ew.l. from the
III

previous stage. The values stored in A2 - A5 are updated and transferred to

B2 - B5 after a delay Z"1 equal to the sampling period. A 2K+1-point filter can

be constructed by cascading 2K + 1 cells, connected as in Figure 5.3b. The

rightmost term of the window (the first to enter the shift register) is applied to

all the A1 inputs and the sums Ew., Ew.l. are obtained from the B4, B5 outputs

of the last cell. To clarify the operation of this circuit, Table 5.1 provides the

output B5 of each cell of a 3-point filter at consecutive time instants t=1, 2, 3,

4. We assume that the rightmost position of the shift register is occupied for

the first time at t=1. w denotes the weight which corresponds to I and is
u 1

5.3.1 Axial processing: Sigma filter
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:igure 5.3 : VLSI implementation of sigma filter, (a) - Basic cell, (b) -
nterconnection of 2K+1 cells to form a 2K+1-point filter.
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calculated from the comparison between I and the central term of the window

I..
j

Table 5.1

t Cell 1 Cell 2 Cell 3

1 W !
12 1

2 W I
23 2

w I +w I
12 1 22 2

3 w I
34 3

w I +w i
23 2 33 3

w I +w I +w I
12 1 22 2 32 3

4 w„_L45 4 W,-L+W. .I .34 3 44 4 W,,L+W,,I,+W .J .23 2 33 3 43 4

5.3.2. Lateral processing: median filter

In order to perform 3-point lateral filtering, the last two A-scan lines

must be stored. This is achieved by the counters, RAMs and registers of page

225 which implement a variable-length (of up to 1024 points) shift register.The

next step is to calculate the median of the input terms lv l2< l3 . The following

design is very efficient for small window sizes. IC65 - IC67 compare each term

with the rest. The results of the comparisons are then coded as a 2-bit word

S1S0 which is used to select the appropriate term from the 3-to-l multiplexer

formed by IC68 - IC70 . Finally, the median is directed back to the scanner

through the register IC73.

5.3.3. Construction and specifications

The circuit was constructed on a single board using wire wrapping

(Figure 5.4). A separate board which simulates the scanner was built to test

the numerical accuracy of the various parts of the hardware filter. The filter

was found to produce accurate results up to a minimum clock period of 140

ns which corresponds to a maximum operating frequency of 7.14 MHz. During

the construction, the combination of several factors such as a very high

5.3.3 Construction and specifications
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operating frequency, a large number of ICs changing logic state simultaneously

and the inferiority of wire wrapping compared to printed circuit construction

created problems that are not generally encountered in a less complex design.

The most important of all was the sensitivity to glitches in the power and

ground lines. In fact, the first prototype to be constructed could only produce

accurate results up to a frequency of a few hundred kHz. At higher

frequencies, some ICs would occasionally be locked in an oscillating state.

Several attempts were made to solve this problem, but it was finally overcome

only after designing and building a new circuit with better power distribution

lines.

II

_r_r.

Figure 5.4 : Prototype hardware filter.

The final circuit contains 73 ICs and has an approximate cost of £300.

Both these figures are rather modest compared to other designs such as a

3X3 median filter which needs more than 200 hundred ICs (Perlman et al.

5.3.3 Construction and specifications
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1987) or a two-dimensionai recursive filter which has an estimated cost of

$5000 (Ty & Venetsanopoulos, 1986). The circuit is relatively compact but its

complexity and size could be further reduced if custom or semicustom devices

such as Programmable Logic Arrays had been used.

To summarize, the specifications and main features of the real-time

speckle suppression filter are:

- Power consumption 12 Watts

- 6-bit input data

- 7-point Sigma filter along the axial direction

- 3-point median filter along the lateral direction

- Processing at video rates (max operating frequency 7.14
MHz)

- Adjustable smoothing (3 settings)

- Simple and cost effective construction.

5.4. Applications

The hardware filter was connected to the Z/S scanner through two

16-way ribbon cables. Its smoothing action was controlled by a hand-held

switch box which selected one of the threshold curves qc,.,,ol«,n ■ A fewSW I swo

examples of processing, taken from the clinical evaluation of the hardware

filter, are presented below.

Figure 5.5a shows an unprocessed scan of normal liver and the right

kidney (threshold qQ0) whereas Figure 5.5b displays the result of light
smoothing (threshold qQ1). This figure demonstrates the filter's ability to

preserve both strong edges and small detail. The noise reduction offered can

5.4 Applications
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Figure 5.5 : Scan of normal liver and kidney, (a) - Original, (b) - Processed
using the light smoothing curve q01.

5.4 Applications
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be appreciated better by comparing the magnified regions of Figure 5.6.

Figure 5.6 : Magnified regions of Figure 5.5a and 5.5b plus vertical intensity
profiles along the dotted line.

The effect speckle has on contrast resolution is demonstrated by the

scans of diffuse liver disease shown in Figure 5.7. Slight differences in

echogenicity within the liver parenchyma, which were previously masked by

the presence of speckle, become more apparent in the processed image of

Figure 5.7b, which was obtained using the light smoothing threshold qQr

Finally, an example of heavier smoothing (threshold q1Q) is presented
in Figure 5.8. The original scan (Figure 5.8a) is an oblique view through the

upper abdomen showing the gallbladder, an aortic aneurysm and part of the

liver. The processed scan (Figure 5.8b) is of course smoother than the original

but also exhibits better contrast and boundary definition. However, a slight

degradation of bright structures can be observed in the processed image. This

5.4 Applications
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Figure 5.7 : Diffuse liver disease, (a) - Original, (b) - Processed using the light
smoothing curve q0i.
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Figure 5.8 : Liver, gallbladder and aortic aneurysm, (a) -
Processed using the heavy smoothing curve q10.

5.4

Original, (b) -

Applications
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is due to the shape of the threshold curves used (see Figure 5.2). Better

signal preservation can be achieved if the threshold q obtains small values for

high signal intensities. An interesting idea which we plan to implement in the

near future is to set the threshold curve interactively using a number of

sliding potentiometers. In this way, it will be possible to try a large number of

curves very easily and determine the most suitable.

Although the filter design was based on the specifications of the Z/S

scanner, it was considered important to assess its performance with more

than one machine. For this reason, the hardware was modified by redesigning

its timing circuits and the filter was connected to a Siemens Sonoline SX and

a Dynamic Imaging Concept 1 scanner. Unfortunately, both scanners perform

4-bit A/D conversion. The inadequacy of using only 16 grey scale levels to

display an image was clearly demonstrated after noise reduction, with the

scans exhibiting "false contouring" (Gonzalez & Wintz, Chapter 2, 1987) which

is the main artifact associated with poor quantization. In our opinion, digital

smoothing is not suitable for direct application on 4-bit data from ultrasonic

scans.

In conclusion, the prototype filter described here has demonstrated

that speckle suppression can be performed in real-time without loss of

genuine image detail. Furthermore, this can be achieved by using an algorithm

of moderate complexity and readily available integrated circuits without the

need for "exotic" and highly complex devices.

5.4 Applications
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CHAPTER 6

CLINICAL EVALUATION OF SPECKLE SUPPRESSION TECHNIQUES

6.1. Introduction

The application of image processing in medicine aims at improving

the quality of an image and increasing its perceivable information content. The

degree of success (or failure) of a technique in achieving these aims varies

considerably from image to image because of different anatomical views,

pathological findings and quality of the original data. It is therefore very

important to assess the usefulness of an image processing technique as

objectively as possible before applying it in a clinical environment. However, a

discrepancy seems to exist between the large number of techniques proposed

in the literature and the very few reports (positive or negative) on their clinical

benefits. This is certainly the case for noise suppression in ultrasonic imaging.

Although a respectable amount of work in this area has been accumulated

over the years, as far as we know, evaluation data can be found only in one

paper which has examined the effect of digital averaging in cardiac border

definition (Petrovic et al, 1986). In our opinion, the lack of evaluation results

does not imply that researchers have ignored the need for an objective

assessment of their work. It rather demonstrates the difficulties involved in

organizing and carrying out this task in a satisfactory way. A list of image

processing evaluation studies in other diagnostic modalities, mainly nuclear

medicine, can be found in two review articles by Todd-Pokropek (1980) and

Sharp (1987).

A large number of evaluation methods attempts to determine the

effect of a processing, or more generally a diagnostic, technique on the

detectability of abnormalities contained in an image. The most comprehensive

and realistic method is based on the analysis of Receiver Operating

Characteristic (ROC) curves derived from clinical data (Swets et al, 1979). ROC

6.1 Introduction
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curves have been used for evaluating a wide range of techniques, including

noise smoothing filters applied to radioisotope images (Rai et al, 1979). The

main drawback of this approach is that a large number of images with

unequivocally established pathology, what is usually referred to as "ground" or

"absolute truth", must be available. This necessitates either biopsy or autopsy

to be performed on patients or alternatively a follow-up period of several

years. Obviously, it is very difficult to complete the collection of this kind of

data within the time limits imposed by a Ph.D. project.

The problem of the "absolute truth" can be overcome by using clinical

images, which are known to be normal, with artificial (computer generated)

abnormalities superimposed on them (Houston et al, 1979). However, the

clinical relevance of results obtained from such studies is determined primarily

by how realistically the computer generated artifacts can simulate true

pathology. We have explored this approach but without much success.

Phantoms which contain targets of varying sizes and intensities can

also overcome the problem of establishing the "absolute truth". A phantom of

this type, which has been designed for studying the detectability of lesions in

ultrasonic scans (Smith et al, 1983), has recently become commercially

available (Contrast/detail phantom, Nuclear Associates). The use of this

phantom would have allowed us to determine the effect of speckle

suppression on the contrast resolution of a scan, but unfortunately we did not

have access to it.

Instead of trying to determine the presence of an abnormality, an

alternative evaluation approach is to investigate the effect a processing

technique has on image quality (Cohen et al, 1978; Sharp et al, 1982; Jaffe et

al, 1982). This approach was followed here by using clinical data and asking

experienced observers to judge the quality of the images before and after

6.1 Introduction
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speckle suppression. In order to form a more complete picture of the

effectiveness of speckle suppression, image quality was defined in terms of

several criteria. The methodology followed in the clinical evaluation is

described in the next section.

6.2. Methodology

Three groups of speckle suppression techniques were evaluated;

namely frame averaging, software spatial filtering and hardware spatial

filtering. The frame averaging techniques of Chapter 3 were evaluated first

because although recursive averaging has been incorporated into scanners for

a number of years and is being used by clinicians in routine scanning, to our

knowledge no assessment of its clinical value has appeared in the literature so

far. From the software techniques presented in Chapter 4, the adaptive

weighted median and directional filters were chosen to be evaluated partly

because they are original and partly because they possess desirable features,

i.e. preservation of low-contrast areas and enhancement of edges/boundaries

respectively, which are not found in other filters. Finally, the hardware filter of

Chapter 5 was included in the evaluation because the ability to operate in

real-time makes it suitable for use in a clinical environment.

The evaluation was based on abdominal images obtained during

routine scanning. Frame averaging and hardware spatial filtering were applied

to between one and three anatomical views for each patient. The views had

been previously identified by the radiologist during the clinical examination of

the patient. The data used for the software spatial filters were recorded on

video tape and later transferred to a computer for processing. No attempt was

made to select a special group of patients. Apart from the frame averaging

trial, where a large proportion of the patients had breast cancer and were

scanned because of suspected liver metastasis, the rest represented a typical

sample of the cases referred to the X-ray department for abdominal scanning.

6.2 Methodology
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A number of scanners was used to acquire the images in order to draw more

general conclusions about the value of speckle suppression.

The original and processed scans were photographed on standard

X-ray film using an EMI Multi-lmager 6 (2 by 2 scans per film) and an Agfa

Gevaert Scopix 100 imager (3 by 3 scans per film). No attempt was made to

randomize the relative positions of the scans on the film because each

processing technique produced distinctive and easily recognizable results. At

the end of the evaluation 293 sets, each one including three or four scans of

the same view, had been obtained (1024 images in total).

The number of observers who took part in the evaluation was

determined by the availability of experts willing to participate. The images of

the first two groups were evaluated by a consultant radiologist (PLA) and a

physicist (WNMcD), both with long experience in medical ultrasonics, who

judged the medical and technical aspects respectively of processing. For the

evaluation of the hardware spatial filter, it was possible to include two more

observers; a consultant radiologist (SRW) and a physicist (SDP). The observers

judged the images, which were displayed on a light box, in sessions lasting

between one and two hours, spending an average time of 2 - 4 minutes per

set.

Five quality indices were evaluated. The observers were asked to give

marks to the images of each set according to their noise level, contrast,

boundary definition' and, in the case of the radiologists, diagnostic

information. The images were rated on a four-point numerical scale with 1

A certain overlap exists between contrast and boundary definition in the sense that they can be
determined by the presentation of either bright echoes (e.g. vessel walls) or midgrey level areas
of slightly different echogenicity (e.g. hypoechoic lesion in normal tissue background). It was left
to the observers to decide which of the two features, i.e. bright echoes and tissue regions, was
more important for each particular scan.

6.2 Methodology
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indicating very poor quality and 4 excellent quality . The observers were

allowed to give equal marks if they believed that some or all the images of a

set were comparable. The observers were also asked to rank the images of a

set in order of preference with mark 1 given to the best image. This last

category can be considered as an index of overall quality.

6.3. Statistical analysis

After seeking advice from the Department of Medical Statistics, it was

decided to analyse and present the results of the evaluation separately for

each scanner, because the success or failure of a processing technique is

determined to a great extent by the technical characteristics of the original

image. A similar decision was taken for the observers, since each individual

bases his judgements about the quality of an image on a different set of

criteria.

When comparing experimental results, statistical methods can help in

answering the question, are the observed differences between the means of

the various samples real or can they be attributed to chance ? In order to give

an answer, the null hypothesis HQ (the samples come from the same

population - no real differences exist) must be tested against the alternative

hypothesis HA (the samples belong to more than one population - the
observed differences are real). Testing the null hypothesis at an n% level of

significance means that there is a probability P=n/100 of rejecting HQ while it
is true. The smaller n is the higher the differences between the means must

be before we accept them as real and, therefore, the more confident we are

that our data are indeed distinguishable. For this evaluation, the commonly

used, and rather strict, 1% level of significance was chosen.

Since each group of processing techniques included more than two

image types, the statistical analysis was performed in two steps. For the noise,

fi.3 Statistical analysis
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contrast, boundary definition and diagnostic information categories two-way

classification analysis of variance (Snedecor & Cochran, Chapter 14, 1980) was

used first to determine if at least one image type was different from the rest.

Then, and only if the answer to the previous test was positive (i.e. not all

types belonged to the same population), multiple comparisons in pairs were

performed using the Studentized Range criterion (Snedecor & Cochran, Chapter

12, 1980) in order to decide which differences between the means were

statistically significant. The marks for the overall quality category, which are

ranks, were analysed by applying the two-way classification Friedman test

followed by multiple comparisons between the means using a criterion based

on the standard normal percentage points (Daniel, Chapter 7, 1978).

The results of the comparisons can be deduced from the Q values2

included in Tables 6.1 - 6.7, which give the minimum absolute difference two

means must have in order to be distinguishable at a 1% level of significance.

The + and + signs preceding the means of the processed images indicate that

a speckle suppression technique is better or worse respectively, compared to

the original. For the case of frame averaging, the arrows refer to comparisons

between images obtained at the same time, i.e. unprocessed I and recursive

averaging - unprocessed II and integration.

6.4. Frame averaging

Two speckle suppression techniques were tested in this evaluation:

recursive averaging and integration. The images were obtained over a period

of six months using the GL Ultrasound Ltd Z/S and Siemens Sonoline SX

scanners, both of which had 3.5 MHz mechanical sector probes. For each

'For the overall quality category, Q is determined by the number of samples and level of
significance. However, for the first four categories Q depends also on the actual marks and
consequently may have different values from one category to the other.

6.4 Frame averaging
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anatomical view a set of two unprocessed and two processed scans was

recorded on X-ray film following the protocol described in Section 3.5 . A

number of sets had to be excluded because the scans were not anatomically

comparable. The evaluation results of the remaining sets, one hundred and one

sets from fifty one patients for the Z/S and forty four sets from twenty two

patients for the SX scanner, are presented in Tables 6.1 and 6.2.

6.4.1. Results

The first observation from Tables 6.1 and 6.2, is that no significant

differences exist between unprocessed image I and II for all categories,

scanners and observers, something expected since both image types are scans

of the same anatomical views.

The analysis of the radiologist's marks for the Z/S scanner shows that

both processing techniques produced images with lower noise level. The

averaging process enhanced the appearance of poorly defined boundaries but

at the same time blurring due to patient movement reduced the brightness of

edges and small details and resulted in loss of contrast. The improvement in

noise and boundary definition was reflected on the overall quality category

where there was a marked difference in favour of the processed scans.

Diagnostic information was the only category without significant differences.

Although the marks of the physicist follow a similar pattern, it seems that he

was more sensitive to the noise level of an image and this influenced his

judgement about the performance of noise reduction techniques in a positive

way. He believed that there was an improvement in contrast, probably because

he thought that loss of contrast in the presentation of bright echoes was

offset by gain in contrast between areas of slightly different echogenicity after

noise smoothing, and he expressed a stronger overall preference for the

processed images than the radiologist.

6.4.1 Results
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TABLE 6.1 : EVALUATION OF FRAME AVERAGING

Means ± Standard Deviations for the GL Ultrasound Ltd Z/S scanner

101 sets of images from 51 patients

Radiologist (PLA)

Image 1 Noise 1 Contrast 1 Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image I 2.12±0.68 2.77±0.44 2.28±0.63 2.45±0.71 2.77±1.02

Recursive

Averaging + 2.78±0.56 I2.57±0.53 + 2.70±0.50 2.62+0.66 +1.81+0.86

Unprocessed
Image II 2.09±0.63 2.73±0.49 2.22±0.62 2.39±0.69 3.12±0.93

Integration + 2.90±0.54 + 2.34±0.60 +2.61 ±0.60 2.45±0.68 +2.30±1.17

3 Q 0.16 0.16 0.21 0.19 0.57

Physicist (WNMcD)

Image 1 Noise 1 Contrast 1 Boundary 2 Overall
Type Definition Quality

Unprocessed
Image I 1.77±0.59 2.28±0.75 2.47±0.75 3.22±0.84

Recursive

Averaging +2.75±0.64 +2.77±0.63 +2.80±0.68 +1.71 ±0.80

Unprocessed
Image II 1.98±0.66 2.34±0.73 2.46±0.83 3.13±0.86

Integration +3.32±0.58 +2.72±0.73 2.58±0.81 +1 93± 1.03

3 Q 0.22 0.31 0.31 0.57

1 = poor ; 4 = excellent quality
1 = first ; 4 = last in order of preference
Minimum statistically significant difference between two means at 1% level
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TABLE 6.2 : EVALUATION OF FRAME AVERAGING

Means ± standard deviations for the Siemens Sonoline SX scanner

44 sets of images from 22 patients

Radiologist (PLA)

Image 1 Noise 1 Contrast ' Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image I 2.27±0.54 2.66±0.47 2.43±0.50 2.39±0.61 2.11 ±0.83

Recursive

Averaging + 2.70±0.50 2.41±0.49 2.66±0.47 2.34±0.67 1.98±1.10

Unprocessed
Image II 2.25±0.53 2.66±0.47 2.39±0.53 2.30±0.69 2.43±0.91

Integration t2.70±0.50 42.09±0.70 2.27±0.65 42.02±0.72 4-3.48±0.94

3 Q 0.22 0.28 0.29 0.27 0.87

Physicist (WNMcD)

Image 1 Noise 1 Contrast 1 Boundary 2 Overall
Type Definition Quality

Unprocessed
Image I 1.84±0.52 2.16±0.47 2.48±0.75 3.20±0.94

Recursive

Averaging ±2.89±0.49 2.32±0.63 2.68±0.59 +1.89±0.86

Unprocessed
Image II 2.02 + 0.69 2.02±0.34 2.50±0.72 2.61 ±1.11

Integration +3.64±0.53 2.00±0.64 2.48±0.89 2.30±1.10

3 Q 0.36 +°° +«> 0.87

1 = poor , 4 = excellent quality
3 1 = first ; 4 = last in order of preference
3 Minimum statistically significant difference between two means at 1% level
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It is interesting to note that the performance of frame averaging

techniques, and especially integration, was generally poorer for the images

obtained with the SX scanner. Comparison with the marks given by the

radiologist for the Z/S scanner shows that the margin in favour of the

processed images was reduced or, in the case of integration, was reversed.

For the radiologist, recursive averaging and integration were no longer

significantly better than the original images as far as boundary definition is

concerned. Also, the contrast of the processed images deteriorated and

integration reduced the diagnostic information of a scan. Overall, the

radiologist judged integration to be inferior whereas no significant differences

exist between the other image types. The physicist still ranked the processed

images at the top of his preference but the margin from the unprocessed

images was reduced. The poorer performance of frame averaging can be

explained by the fact that the SX scanner produces images which are generally

less noisy and more balanced compared to those obtained by the Z/S scanner.

As a result, the blurring introduced by the frame averaging techniques weighs

more in the observers' judgement than the noise reduction offered.

6.4.2. Discussion

The results of the evaluation suggest that frame averaging can

improve the quality of a scan. The amount of improvement is related to the

quality of the original image with better results expected for noisier scans.

Recursive averaging is generally preferable to integration because it offers

superior and more consistent performance. One could argue that the blurring

introduced by integration and, as a result of that, its relatively poor

performance is due to the large number of frames chosen to be integrated (32

in this case), and consequently the two techniques would have had

comparable performance if a smaller number of frames had been chosen.

Although this is probably true, recursive averaging is still preferred because it

6.4.2 Discussion



151

produces a live instead of a frozen picture.

The main drawback of recursive averaging is that its effect on an

image is determined in a random and uncontrollable manner by patient

movement. With the "right" amount of movement (the term "right" meaning

that the movement is adequate to produce a relatively smooth image but not

excessive so that heavy blurring is introduced) an image of better quality than

the original can be obtained. This has been demonstrated already in Figure 3.4

, one of the best sets of the series, and another successful example is given in

Figure 6.1. In this figure, the appearance of the irregular and poorly defined

boundaries between liver and kidney in the original has clearly been enhanced

in the processed image and the differences in the echogenicity of the two

organs can be appreciated better. If, however, the position of the tissue being

imaged relative to the ultrasound beam does not change, the amount of

smoothing performed is negligible and the processed image looks very similar

to the original apart from a slight loss of contrast, as demonstrated by Figure

3.5 . At the other extreme, large amounts of movement, caused either when

the operator moves the probe rapidly over the body surface of a patient or

when a moving structure is imaged, result in a severely blurred image. No

such images were acquired for the evaluation since they are useless from a

clinical point of view.

In conclusion and without overlooking the image quality improvement

that recursive averaging can offer, it is not considered as the solution to the

problem of ultrasonic speckle because its effectiveness in suppressing this

artifact is determined primarily by random factors and cannot be controlled by

the users.

G.4.2 Discussion
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a

b

Figure 6.1 : A successful application of recursive averaging to a scan of normal
liver and kidney, (a) - Original, (b) - Processed.

6.4.2 Discussion
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6.5. Software spatial filtering

The adaptive weighted median and directional filters were included in

this evaluation. The filters were applied to abdominal scans acquired using the

GL Ultrasound Z/S (twenty two patients), Siemens Sonoline SX (nineteen

patients) and Acuson 128 (sixteen patients) real-time scanners, all of which

had 3.5 MHz transducers. In total, seventy five scans (twenty five from each

scanner) were recorded on video tape during clinical examination and

transferred to the MicroVax for processing and storage. For the Z/S and SX

scanners, the filter parameters mentioned in Sections 4.4.3 - 4.4.4 were used,

that is, 9X9 window, c=20 for the adaptive weighted median, 7-point

smoothing window, k=2, 7-point band-pass window, Kaiser window attenuation

50db, f =0.1, f =0.4 for the directional filter. The Acuson images, which exhibitL H

a more pronounced speckle pattern, were processed using a 11X11 window,

c=0.16 for the adaptive weighted median and a 9-point smoothing window for

the directional filter, with the other parameters same as before. It would have

been preferable if the observers had viewed the original and processed images

directly on the computer display. However, due to practical problems, the

images were recorded on X-ray film and were viewed using a light box. The

results of the evaluation are presented in Tables 6.3 - 6.5.

6.5.1. Results

By comparing the results for the three scanners, a pattern similar to

the one found in the frame averaging evaluation emerges. More specifically,

the results indicate that the greatest improvement is obtained by processing

images of poor quality acquired using the Z/S scanner. On the other hand,

processing applied to the SX images, which are quite smooth and of good

quality, offers the least improvement. The Acuson is one of the most advanced

scanners available at the moment with excellent spatial resolution and image

quality which is definitely superior to that of the Z/S and SX scanners.

6.5.1 Results
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TABLE 6.3 : EVALUATION OF SOFTWARE SPATIAL FILTERING

Means ± Standard Deviations for the GL Ultrasound Ltd Z/S scanner

25 sets of images from 22 patients

Radiologist (PLA)

Image 1 Noise 1 Contrast 1 Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image 2.2810.53 2.84 + 0.67 2.40±0.49 2.52±0.64 1.8010.57

Ad W Median

Filtering + 3.3210.55 2.72±0.53 2.64±0.56 2.36±0.62 42.8410.46

Directional

Filtering +2.9210.48 2.84+0.54 + 3.04 + 0.45 2.68±0.61 1.36i0.56

3 Q 0.31 +oo Q.37 +oo 0.83

Physicist (WNMcD)

Image 1 Noise 1 Contrast 1 Boundary
Type Definition

Unprocessed
Image 1.16±0.37 2.16±0.37 2.0410.53

Ad W Median

Filtering +2.92 + 0.48 2.36±0.62 2.32±0.95

Directional

Filtering + 2.3210.55 2.1210.32 + 2.8410.46

3 Q 0.34 +oo 0.33

^
1 = poor , 4 = excellent quality

3 1 = first ; 3 = last in order of preference
3
Minimum statistically significant difference between two means at Ivo level

2 Overall

Quality

3.00±0.00

+ 1.48±0.50

M.5210.50

0.83
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TABLE 6.4 : EVALUATION OF SOFTWARE SPATIAL FILTERING

Means ± standard deviations for the Siemens Sonoline SX scanner

25 sets of images from 19 patients

Radiologist (PLA)

Image 1 Noise 1 Contrast 1 Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image 2.52±0.57 2.40±0.57 2.56±0.50 2.64±0.62 1.56±0.57

Ad W Median

Filtering + 2.80±0.49 2.40±0.56 2.40±0.69 + 2.16±0.61 + 2.96±0.20

Directional

Filtering 2.72±0.45 2.40±0.57 2.76±0.51 2.76±0.59 1.48±0.50

3 Q 0.24 +0° +oo 0.31 0.83

Physicist (WNMcD)

Image 1 Noise 1 Contrast 1 Boundary
Type Definition

Unprocessed
Image 1.68±0.55 2.20±0.63 2.32±0.61

Ad W Median

Filtering +3.44±0.50 2.40±0.49 2.48±0.64

Directional

Filtering + 2.56±0.50 2.32±0.55 t2.92±0.63

3 Q 0.23 +oo 0.36

^
1 = poor , 4 = excellent quality
1 = first , 3 = last in order of preference

3
Minimum statistically significant difference between two means at 1% level

2 Overall

Quality

3.00±0.00

+1.24 + 0.43

+1.76 ±0.43

0.83
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TABLE 6.5 : EVALUATION OF SOFTWARE SPATIAL FILTERING

Means ± Standard Deviations for the Acuson 128 scanner

25 sets of images from 16 patients

Radiologist (PLA)

Image 1 Noise 1 Contrast 1 Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image 2.32±0.47 2.72+0.45 2.36±0.48 2.64±0.48 1.64±0.62

Ad W Median

Filtering +2.72±0.45 2.68±0.47 2.60±0.49 2.56±0.50 42.92±0.27

Directional

Filtering +2.68±0.47 2.72±0.45 +2.84±0.37 2.76±0.43 1.44±0.50

3 Q 0.28 +0° 0.28 +oo 0.83

Physicist (WNMcD)

Image
Type

1
Noise 1 Contrast 1 Boundary

Definition
Overall

Quality

Unprocessed
Image 1.64±0.56 2.20±0.49 2.08±0.48

Ad W Median

Filtering +3.24±0.59 2.44±0.57 2.24±0.59

Directional

Filtering +2.52±0.64 2.52±0.50 +3.00±0.49

3.00±0.00

t1.68±0.47

+1.32 ±0.50

Q 0.35 0.32 0.83

1 = poor , 4 = excellent quality
1 = first , 3 = last in order of preference
Minimum statistically significant difference between two means at 1% level
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However, because the appearance of speckle is quite pronounced, the results

for the Acuson fall somewhere between those of the other two scanners.

Looking at the results in more detail, it is clear that both observers

believed that processing resulted in images with reduced noise level. However,

it is interesting to note that the margin between the adaptive weighted median

and the directional filter is much wider for the physicist than for the

radiologist. This is probably due to the fact that the two observers have

different sensitivities to noise or even different understanding of what the

term "noise" means.

Contrast was the only category where processed and unprocessed

images were equivalent for both observers and all three scanners.

The filters offered improvement in boundary definition but the

differences were statistically significant only for the directional filter.

As far as diagnostic information is concerned, the radiologist believed

that the directional filter offered a slight improvement which, however, was

too small to be significant. The only significant difference in this category

was found for images from the SX scanner processed by the adaptive

weighted median filter where the radiologist believed that processing reduced

the diagnostic information.

Finally, in the overall quality category the radiologist judged the

adaptive weighted median filtered images to be significantly worse than the

other two image types. At the same, time he ranked the directional filter first

but the margin from the unprocessed images was too small to be significant.

The highest difference in favour of the directional filter was found for the Z/S

images. This difference would have been significant if more than eighty eight

images had been included in the evaluation. On the other hand, the physicist

6.5.1 Results
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believed that both filters produced better results. In fact, as can be seen from

the zero standard deviation of the unprocessed images, he ranked them

always third. The filter ranked first varies from scanner to scanner but overall

the physicist expressed a stronger preference for the adaptive weighted

median filter.

6.5.2. Discussion

The results of the evaluation suggest that the radiologist and the

physicist form their judgements using different criteria. To begin with, it seems

that their understanding of the term "noise" is quite different and so are their

expectations from processing. The physicist is fully aware of the origin and

implications of speckle. Consequently, he treats speckle purely as an

undesirable signal and judges the various filters according to how efficiently

they can suppress speckle without introducing loss of genuine image detail.

On the other hand, the radiologist tends to place less emphasis on speckle

suppression and more emphasis on the suppression of signals such as random

intensity fluctuations within vessels, cysts, etc, which he is fully convinced are

artifactual. Another problem, especially as far as diagnostic information is

concerned, is the radiologist's lack of familiarity with the processed images.

Since speckle suppression is still an area of research and not an established

technique in clinical practice, radiologists have not been exposed to it. As a

consequence, they probably feel more confident and are more efficient in

interpreting a conventional scan, something for which they have been trained

and have accumulated considerable experience, rather than one with

suppressed speckle. A comment to this effect was made by the radiologist

who took part in the evaluation. He remarked that looking at the processed

images made him feel uncomfortable as if there was something missing. This

problem, i.e. the lack of texture, was not encountered in the evaluation of

frame averaging techniques because although they reduce speckle they still

6.5.2 Discussion
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produce images with a familiar textured appearance. After the above

discussion, it is not surprising that the radiologist expressed a preference for

the directional filter which offers modest noise reduction but retains the

coarser texture, whereas the physicist preferred the adaptive weighted median

filter which offers almost complete speckle suppression.

In our opinion, based on the seventy five sets of images from this

evaluation but also on the whole involvement in this project, the main

advantage of the adaptive weighted median filter is the ability to preserve

subtle grey scale variations within the tissue parenchyma. Its major drawback

is that under certain circumstances it produces amorphous regions of constant

or nearly constant grey level, which evoke the visual impression of structures

that have no physical correlate. This behaviour is characteristic of all

median-type filters. Bovik (1987) who studied it in detail used the term

"blotching effect" to describe it and found that it is related to the window size

of the filter used. In this evaluation, blotching was most noticeable in Acuson

images which tend to have a large speckle size, especially in the far field. This

was probably the reason why the physicist, who was generally more in favour

of the adaptive weighted median filter, preferred the directional filter in the

evaluation of the Acuson images (Table 6.5).

As far as the directional filter is concerned, its strength lies in the

fact that it can combine noise reduction with improved boundary definition.

The main problem associated with it, or at least with the present

implementation, is that it can only suppress speckle of small size.

The advantages and drawbacks discussed above are demonstrated by

the following two figures which display scans of metastatic liver disease.

Figure 6.2 is an example of successful processing. The radiologist judged both

the processed images to be superior to the original. He also believed that the

6.5.2 Discussion
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adaptive weighted median filter (Figure 6.2b) offered more diagnostic

information, probably because it enhanced the visibility of the metastatic

deposits (compare the enlarged regions of Figures 6.2a, 6.2b). On the other

hand, the processed images of Figure 6.3 were judged to be inferior to the

original. Figure 6.3b demonstrates the distracting blotching effect while Figure

6.3c demonstrates the inadequate noise reduction offered by the directional

filter.

6.5.2 Discussion
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Figure 6.2 : A successful application of software spatial filtering to a scan of
liver metastasis, (a) - Original, (b) Processed by the adaptive weighted median
filter.

6.5.2 Discussion
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Figure 6.2 : (c) - Directional filtering applied to the original scan of Figure 6.2a.
c c 0 Discussion
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Figure 6.3 : An unsuccessful application of software spatial filtering to a scano iver metastasis, (a) - Original, (b) - Processed by the adaptive weightedmedian filter.

6.5.2 Discussion
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Figure 6.3 : (c) - Directional filtering applied to the original scan of Figure 6.3a.

6.5.2 Discussion



165

6.6. Hardware spatial filtering

The evaluation of the real-time filter was based on scans obtained

interactively during clinical examination of patients. The acquisition of data

was carried out over a period of three months using the GL Ultrasound Ltd Z/S

scanner interfaced to the hardware filter. Two or three suitable views from

each patient were included in the evaluation. For each view, a set of three

scans corresponding to no smoothing (threshold curve qQ0), light smoothing
(threshold curve qQ1) and heavy smoothing (threshold curve q1Q) were

recorded on X-ray film. In total, eighty sets from thirty two patients were

obtained but a number of them was excluded because the scans were not

anatomically comparable. The remaining sets, seventy three of them from

thirty patients, were evaluated by two consultant radiologists and two

physicists. The results are presented in Tables 6.6, 6.7.

6.6.1. Results

The difference in attitude that radiologists and physicists have

towards smoothed images, something already observed in the previous noise

reduction evaluations of this chapter, was confirmed by the results of the two

new observers (SRW and SDP) in the current evaluation. In general, the

physicists are strongly in favour of the processed images whereas the

radiologists tend to be cautious or even against processing.

Noise was the only category where the statistical analysis of the

evaluation marks produced identical results for the four observers. All of them

believed that the processed images had significantly less noise. However,

comparison between Tables 6.6 and 6.7 shows that, in quantitative terms, the

radiologists found less improvement than the physicists.

Contrast was a category where no statistically significant differences

were found, with the exception of one of the physicists (SDP) who gave

6.6.1 Results
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TABLE 6.6 : EVALUATION OF HARDWARE SPATIAL FILTERING

Means ± Standard Deviations for the GL Ultrasound Ltd Z/S scanner

73 sets of images from 30 patients

Radiologist (PLA)

Image 1 Noise 1 Contrast 1 Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image 2.14 + 0.61 2.67+0.55 2.26+0.65 2.29±0.65 1.91 ±0.82

Light
Smoothing +2.39±0.72 2.67±0.53 2.43±0.70 2.33±0.69 1.97±0.69

Heavy
Smoothing +2.56±0.68 2.69±0.52 2.44±0.70 2.43±0.70 2.12±0.91

3 Q 0.18 +°° +°° +°° 0.50

Radiologist (SRW)

Image 1 Noise 1 Contrast 1 Boundary 1 Diagnostic 2 Overall
Type Definition Information Quality

Unprocessed
Image 2.75+0.58 3.0U0.40 2.79+0.59 2.99±0.59 1.37±0.54

Light
Smoothing i2.90±0.49 2.99±0.47 2.88 + 0.56 2.88±0.66 4-1.96±0.68

Heavy
Smoothing +2.94±0.45 3.00±0.42 2.82±0.57 2.90±0.60 +2.66±0.64

3 Q 0.14 +°° +°° +°° 0.52

1 = poor ; 4 = excellent quality
1 = first ; 3 = last in order of preference
Minimum statistically significant difference between two means at 1% level
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TABLE 6.7 : EVALUATION OF HARDWARE SPATIAL FILTERING

Means ± Standard Deviations for the GL Ultrasound Ltd Z/S scanner

73 sets of images from 30 patients

Physicist (WNMcD)

Image 1 Noise 1 Contrast 1 Boundary 2 Overall
Type Definition Quality

Unprocessed
Image 1.10±0.29 2.29±0.63 1.64±0.58 2.92±0.32

Light
Smoothing + 2.12±0.33 2.16±0.60 + 2.22±0.60 +1.79±0.52

Heavy
Smoothing + 2.79±0.40 2.23±0.54 + 2.27±0.65 +1.29±0.48

3 Q 0.14 +oo 0.22 0.50

Physicist (SDP)

Image 1 Noise 1 Contrast 1 Boundary
Type Definition

Unprocessed
Image 1.17±0.37 1.79±0.50 2.00±0.53

Light
Smoothing t2.60±0.49 + 2.58±0.57 f2.50±0.62

Heavy
Smoothing t2.92±0.36 + 2.74±0.55 +2.36±0.71

3 Q 0.18 0.21 0.28

1 = poor ; 4 = excellent quality
1 = first ; 3 = last in order of preference

^ Minimum statistically significant difference between two means at !% level

2 Overall

Quality

2.83±0.50

+1.53±0.53

f 1,64±0.65

0.50
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significantly higher marks to the processed images.

As far as boundary definition is concerned, all the observers gave

higher marks to the processed images but only the results of the physicists

are statistically significant.

In the diagnostic information category the radiologists judged all the

image types to be equivalent, in other words no significant differences were

observed. However, it is interesting to note that one radiologist (PLA) was

slightly in favour and the other (SRW) slightly against the processed images.

Finally, in the overall quality category the radiologists believe that

processing did not improve the quality of the original images. One radiologist

(PLA) judged processed and unprocessed images to be equivalent whereas the

other (SRW) believed that processing produced significantly worse images. On

the other hand, both physicists expressed a strong preference in favour of the

processed images. One of them (WNMcD) ranked the heavily smoothed

images first while the other (SDP) judged both processed images to be

equivalent.

6.6.2. Discussion

The different criteria that physicists and radiologists use to form their

opinion about processing have already been discussed in several occasions

throughout this chapter. The main reasons were considered to be the fact that

radiologists may not be fully aware of the origin and implications of acoustic

speckle and also the lack of familiarity with speckle reduced images. The

results of the second radiologist (SRW), who had not been exposed to speckle

suppression before, seem to support the argument that the less accustomed

one is in interpreting smoothed scans, the less likely he is to prefer them. This

is demonstrated from the data of Table 6.6 (bottom) where the evaluation

marks of all image types are almost identical for the first four categories but a

6.6.2 Discussion
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very clear difference in favour of the unprocessed images exists in the overall

quality category. Admittedly, the lack of familiarity is not the only reason for

this pattern. The radiologist commented that he found it difficult to judge the

scans in an isolated manner without knowledge of the clinical history of each

patient (in fact he evaluated only sixty six out of the seventy three sets). Also,

he felt that in many cases the images of a set had comparable quality and he

ranked them only in order to conform to the evaluation protocol.

An interesting observation from the evaluation marks of the

radiologists, which is not apparent from Table 6.6, is that in the majority of the

cases where the processed images were ranked first they also had a higher

diagnostic content and contained pathological findings. This observation is

consistent with our opinion that real-time speckle suppression techniques

should be incorporated into ultrasound scanners not in order to replace the

conventional way of presenting an image but to be used as an alternative

form of displaying the echo information in cases of suspected pathology in

parenchymal tissues.

The prototype hardware filter demonstrated that speckle suppression

can be performed in real-time without loss of genuine image detail. However,

the processed scans revealed some problems of the current filter design and

hinted at possible improvements. The problems are mainly related to the

shape of the threshold curve QSWiSW0 (see Figure 5.2) and the filter size.

As far as light smoothing (threshold curve qQ1) is concerned,

inspection of the processed scans showed that consistently good quality and

satisfactory signal preservation can be expected from this type of filtering. An

example is presented in Figure 6.4 which displays a kidney with carcinoma.

From this figure it can be seen that processing offers better presentation of

low-contrast detail inside the kidney and improved boundary definition. Both

6.6.2 Discussion
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radiologists agreed that the processed scan had better image quality and

offered more diagnostic information. The main drawback of this threshold

curve is that it does not provide adequate noise reduction. One way to

produce a smoother image is to use a curve which corresponds to higher

thresholds. However, the application of the curve q1Q to the seventy three
scans of this evaluation demonstrated that this is not the best approach. The

problem of blurring bright edges, which is associated with high thresholds, has

already been discussed in Section 5.4 and a way of overcoming it has been

proposed there. A more serious problem is that due to the small axial window

size, on some occasions filtering tends to join together small speckles instead

of smoothing them. This results in the distracting blotchy appearance

demonstrated by the processed scan of Figure 6.5. This scan was judged to be

of inferior quality by the majority of the observers and I personally consider it

to be the worst processed scan of the series. Therefore, it seems that in

order to obtain adequate noise reduction a filter having a bigger window in

the axial direction, of say 9 or 11 points instead of the 7 currently used, must

be designed.

6.6.2 Discussion
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a

b

Figure 6.4 : A successful application of hardware spatial filtering to a scan
showing a tumour distal to the right kidney, (a) - Original, (b) - Processed
using the light smoothing curve q01.

6.6.2 Discussion
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Figure 6.5 . An unsuccessful application of hardware spatial filterinq to a sea

o^pancreas. (a) - Original, (b) - Processed using the heavy smoothing curv

6.6.2 Discussion
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6.7. Conclusions

The evaluations described in this chapter covered a wide range of

digital noise reduction techniques applied to medical ultrasonic images

primarily to suppress speckle: frame averaging techniques which are effective

only when the transducer's position relative to the imaged structure is

changed between frames; adaptive spatial filtering implemented in software

and with emphasis either on complete speckle suppression or on combined

noise reduction and edge enhancement; hardware spatial filtering which offers

real-time operation. The techniques were applied to a number of images

acquired using different scanners and the processed images were evaluated by

panels of radiologists and physicists. The evaluation results provided some

conclusions but also left some questions unresolved.

The first conclusion from this study is that speckle suppression can

be performed in most cases without loss of diagnostic information (with the

exception of integration and adaptive weighted median filtering applied to

images from the Siemens Sonoline SX scanner). Processing can, obviously,

reduce the noise level of an image but it can also improve the boundary

definition and on certain occasions the overall quality of an image. Processing

seems to be more successful when applied to images containing pathology.

Another conclusion is that the amount of improvement offered by

processing is directly related to the quality of the original image. Better results

can be expected for noisy, poor quality input scans. It is therefore reasonable

to assume that in order to obtain the best possible results, a processing

technique should be optimized for a particular scanner.

Finally, an observation from the evaluation results, which I believe it

to be true in general, is that radiologists and physicists have different

attitudes, different expectations and use different criteria to judge the success

6.7 Conclusions
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or failure of processing. In our opinion, this can be attributed mainly to the

fact that although interest in acoustic speckle is constantly increasing, it is

still confined to the scientific community. As a consequence, physicians are

not fully aware of the artifactual nature of speckle and are not accustomed to

interpret speckle reduced images.

What the evaluations did not provide was a conclusive answer to the

question of how useful speckle suppression is from the diagnostic point of

view. There are several reasons for that: the relatively small number of

images from each scanner included in the evaluations (especially in the

software spatial filtering study), the lack of many scans with suspected or

definite pathology and, more importantly, the difficulty a radiologist faces

when he is asked to form an opinion about the diagnostic content of a single

scan. This last reason is easily explainable when we consider that during

clinical examination the diagnosis is based on several views obtained by

scanning a patient interactively. Some of these problems had been identified in

advance but it was not possible to overcome them due to practical difficulties.

In order to obtain a definite answer about the diagnostic usefulness

of speckle suppression, more rigorous and comprehensive studies must be

performed. The effect of speckle suppression on the detectability of

low-contrast lesions should be investigated by using suitable contrast

phantoms (Smith et al, 1983) but also by organizing a large scale clinical trial,

perhaps on a selected group of patients, so that an adequate number of scans

with suspected abnormalities can be acquired. However, at the same time it is

equally important to develop and introduce real-time speckle suppression

techniques in clinical practice because these techniques will reach their full

potential only when physicians have become exposed to speckle reduced

images and have accumulated sufficient experience to interpret them.

6.7 Conclusions
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CHAPTER 7

FURTHER DEVELOPMENTS AND OTHER USES

7.1. Other applications of noise suppression

So far, noise suppression has been applied to abdominal scans, where

speckle is most prevalent, in order to make their diagnostic information

content more suitable for human interpretation. In this section some other

possible uses of noise suppression are considered.

Figure 7.1 : Scan of a rectal tumour (top) processed by the directional filter
(bottom).

In the ultrasonic visualization of many parts of the human body, the

presentation of interfaces, edges and line structures is of major clinical

importance. Such parts include the infant hip, the foetal head and also the

rectum because the management of patients with rectal cancer may be

determined by a staging method based on how many layers of the rectal wall

have been attacked by the tumour (Beynon et al, 1987). We have experimented

with hip, head and rectal scans and found that the directional filter can

7.1 Other applications of noise suppression
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improve their quality because it combines noise suppression with edge

enhancement. An example is given in Figure 7.1. The top image is part of a

transverse scan of an annular rectal tumour. As can be seen from the bottom

image, processing improves the definition and sharpens the boundaries of the

tumour and rectal wall and enhances the low contrast detail of the scan. Our

experience so far suggests that this type of filtering could be of diagnostic

benefit to the areas mentioned above.

Alternatively, image sharpening and possibly increased spatial

resolution could be achieved using deconvolution techniques ( Schomberg et

al, 1983; Vaknine & Lorenz, 1984) instead of the directional filter. However,

since deconvolution techniques are extremely sensitive to random intensity

fluctuations, noise suppression using a detail-preserving filter must precede

deconvolution. The use of noise suppression as a preprocessing tool before

further machine processing is very important because it is the quality of the

input data that determines the success or failure of many techniques such as

colour coding, adaptive histogram equalization and contrast enhancement,

image segmentation and pattern recognition. The usefulness of noise

suppression in machine processing techniques which are relevant to ultrasonic

imaging is demonstrated by the examples given below.

Edge detection is the first step of almost every computer vision task.

An important application of edge detection in echocardiography is the

identification of the cardiac borders (Wolfe et al, 1987). These can then be

used to measure automatically the dimensions of several structures, an

operation which provides valuable diagnostic information. Automatic

quantitative measurements are also of interest in other fields, primarily

obstetrics. Figure 7.2 shows the results of applying a simple edge detector,

known as the Sobel operator (Gonzalez 8< Wintz, Chapter 7, 1987), to the

original scan of Figure 4.1a and the adaptive weighted median filtered scan of

7.1 Other applications of noise suppression
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ID TXT MOM Pre PP1 PP2 PP3

Figure 7.2 : (a) - Sobel edge detection operator applied to the unprocessed
scan of Figure 4.1a. (b) - The same operator applied to the speckle reduced
image of Figure 4.15a.

7.1 Other applications of noise suppression
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Figure 4.15a . By comparing the two images of Figure 7.2 it is clear that edge

detection is far more successful when applied to a scan with reduced noise.

Due to the sensitivity of the edge detector to speckle noise, the top image of

Figure 7.2 contains so many erroneous edge points that it is almost impossible

for an edge linking algorithm to trace the boundaries of the true structure. In

contrast, the number of erroneous points due to noise has been reduced

significantly in the bottom image and the real edges stand out clearly.

Recently, interest has been expressed in using multiple scans of a

three-dimensional volume to reconstruct any plane within that volume

(Halliwell et al, 1988). In this way, it is possible to visualize anatomical planes

of clinical interest which cannot be scanned directly. The reconstruction is

performed by interpolating between the multiple scans. In general,

interpolation based on noisy data produces poor results. We have used the

real-time hardware filter of Chapter 5 to investigate the effect that noise

suppression before interpolation has on the reconstructed image. An ultrasonic

phantom, which contains tissue mimicking material with wires embedded in it,

was used in the experiments. A three-dimensional volume was scanned by

moving the probe at 2 mm intervals in a direction perpendicular to the scan

plane. At each position of the probe three images, unprocessed - light

smoothing (threshold qQ1) - heavy smoothing (threshold q1Q), were recorded
on video tape. Twenty one scans for each smoothing setting were obtained.

These were transferred to a computer and programs were written to

reconstruct a slice perpendicular to the scan plane. Figure 7.3a shows one of

the multiple (unprocessed) scans with the bright markers on the left and right

of the sector defining the intersection between the scan and reconstruction

planes. The results of the reconstruction are presented in Figure 7.3b. From

top to bottom, the images were formed using unprocessed, lightly smoothed

and heavily smoothed data. Comparison of the images shows that noise

7.1 Other applications of noise suppression
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suppression before reconstruction can produce images of better quality with

"cleaner" appearance and better defined boundaries, as it can be seen by the

longitudinal cross-section of the wire. Another possibility is that by performing

noise suppression on the original data, fewer slices would be needed in order

to obtain a reconstructed image of acceptable quality. In this way considerable

reduction in storage and processing requirements could be achieved.

7.1 Other applications of noise suppression
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a

Figure 7.3 : Reconstruction of a plane from multiple scans, (a) - One of the
multiple unprocessed scans. The bright markers define the reconstructed
plane, (b) - From top to bottom, reconstructed plane using unprocessed, lightly
smoothed and heaviiy smoothed data.

7 1 Other applications of noise suppression
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7.2. Future research directions

Based on the experience gained from this project, two directions for

further research, related to different aspects of adaptive/signal-preserving

filtering, have been identified as being worth pursuing.

As far as adjusting the filter's smoothing action according to the local

image content is concerned, it is believed that first-order statistics have been

fully explored. It is regarded as unlikely that new filters based on first-order

statistics can be found which offer substantially better results. However, there

is still considerable scope for improvement by exploring higher-order statistics

and other textural properties of speckle, i.e. by taking into account the spatial

arrangement of grey levels within an area. By using features based on these

properties it should be possible to determine the boundaries between

differently textured regions as opposed to only the location of intensity

discontinuities, which is what first-order statistics can offer. Provided that

segmentation with an acceptable degree of accuracy can be achieved, adaptive

processing can be performed with variable shape windows, so that only pixels

belonging to the same region are included in the calculations, and possibly

using different filters according to the type of region to be processed.

A comprehensive survey of features and techniques used in texture

modelling, classification and segmentation has been given by Haralick (1986).

These include the autocorrelation function, which has already been used for

ultrasonic speckle suppression (Bamber & Cook-Martin, 1987), the

co-occurence matrix and the edge content and orientation per unit image

area. The theory of Markov random fields has also found applications in

texture analysis. Of particular interest here is a statistical approach to the

texture analysis problem which models the image data as a Markov random

field characterized by a class of probability distributions known as Gibbs

distributions. This class, first introduced for modelling molecular interactions in

7.2 Future research directions
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ferromagnetic materials, has increasingly been used in image processing over

the last few years for tasks such as restoration (Geman & Geman, 1984) and

modelling/segmentation (Derin & Elliot, 1987) with very promising results.

Unfortunately most of the textural analysis methods, and the Gibbs

distributions in particular, are computationally extremely demanding.

Consequently, their application is restricted to small image segments with very

few grey levels and containing a small number of region types. For this

reason, future research should not only be concerned with identifying textural

features capable of characterizing ultrasonic scans with reasonable accuracy

but also with investigating how a suitable feature could be modified so that

the amount of computations is reduced to an acceptable level.

The other direction which is considered to be worth pursuing is

hardware for real-time operation. In contrast to the last few paragraphs, the

challenge here is to reproduce the results already obtained with software

methods but at a fraction of the time originally needed, rather than to achieve

superior performance using more complex and sophisticated algorithms. It has

already been mentioned in Chapter 5 that conventional microprocessors are

incompatible with real-time operation. Also, image processing systems based

on medium or large scale integration digital circuits, like the hardware filter of

Chapter 5, can only implement algorithms of moderate complexity and size.

Therefore, the emphasis should be in developing algorithms and architectures

suitable for parallel and/or VLSI implementation. A point to be taken into

account is that it would be preferable to process the data as early as possible

in the image formation process. Ideally this should be done just before or after

the radiofrequency detection stage in order to minimize the effect of the

various signal processing stages performed inside the scanner. Finally, it would

be highly desirable to include the time dimension in the processing by using

information obtained at consecutive frames. A group of techniques which is

7.2 Future research directions
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suitable for temporal processing includes algorithms such as the DW-MTM and

Sigma filters. These filters have moderate complexity and can be implemented

in hardware relatively easily. Also, because of their edge-preserving properties

they do not affect abrupt signal changes in the time dimension and

.consequently, they can prevent blurring due to motion. Recursive

implementations of these filters could be investigated as a means of

increasing the efficiency of the hardware.

7.2 Future research directions
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Appendix A : Statistical properties of the weighted median

This appendix presents the derivation of some first and second-order

statistical properties of the weighted median which have been used in Section

4.4.3 of the main text. Due to the nonlinear nature of the weighted median, the

resulting equations tend to be long and cumbersome. However, they are in a

closed form and can be implemented on a computer in a straightforward

manner. In the following, an N-point weighted median filter is assumed, having

weight coefficients {wr w , ..., wN>. Capital and small case letters are used to

distinguish random variables from the actual values they take, e.g. X=x . Finally,

F.(x) and f.(x) denote the cumulative distribution function (cdf) and the

probability density function (pdf) of the random variable X. .

First-order statistics

The pdf of the weighted median when the input sequence includes samples

from one, two and three distributions is presented below. These three inputs

correspond to the cases of a constant signal, an ideal (step) edge and an

impulse corrupted by uncorrelated , additive noise.

Case I : Let {X,, X,, ..., X } be independent, identically distributedI Z m

(i.i.d.) random variables with distribution function Fm(x) and density function

fm(x)- The output of an N-point weighted median filter (N=m) has a pdf fWM(x)
given by

m w . -1

qJiw.+if^<qi,I'0) (A.i,
0

Case II : Let (X., X„ X } be independent random variables andI 2 m+n

let {X X }, {X , X } have distribution functions F (x), F (x) and1' ' m m+1 m+n nV " nv

density functions fm(x)» fn(x) respectively. The output of an N-point weighted
median filter (N=m+n) has a pdf fWM(x) given by
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m w j~ ^ SJ(m,0)
f (x)=f (x) II I . fp(r;m,0)f(q-r;n,m) +WM m

j = l q=-w . + 1 r = -S (m,0) G G
(A.2)

m+n w.-1 S(m,0)
+ f (x) II I fp(r;m,0)(q-r;n,m)n

j=m+l q=-w . + 1 r=-S(m,0)
J

Case III : Let {X., X„ X } be independent random variables and1 2 m+n+p

let {X,, X }, {X X }, {X X } have distribution functions1' m m + 1 m+n m+n + 1' m+n+p

Fm(x). Fn(x), Fp(x) and density functions fm(x), fn< fp(x) respectively. The output
of an l\l-point weighted median filter (N=m+n+p) has a pdf fWM(x) given by

m w.-l S^(m,0)
WM

J

fUM(x) = f (x) I I I f" f^ (r; m, 0)
j = l q=—w . +1 r = -S (m,0)

J

S(n,m)
I f (s;n,m)f (q-s-r;p,m+n)1 +

s=-S(n,m) G G J
m+n wj-^ S(m,0)

+ f(x) I I I [ f (r;m,0)n
j=m+l q=-w.+l r=-S(m,0) U

J
(A.3)

SJ(n,m)
I . f^(s;n,m)fr(q-s-r;p,in+n) 1

s=-S (n,a) G G J
m+n+p w.-l S(m,0)

J 1

+ f(x) I I I [f(r;m,0)
j=m+n+l q=—w +1 r=-S(m,0)

3

S(n,m)

I f (s;n,m)(q-s-r;p,m+n) 1
s=-S(n,m) G G J

The quantities S, S1, f and fJQ used in equations (A.1) - (A3) areie Ljuonuiico o, ^ ^
defined as

2 2

S'5,t')= i-iWt + i ' i^1Wt+i (A.4)
i * J
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and

(A. 5)

3 2-k+l 2-k + 2

f„(r;2,t)= I [F5(x)]S_k[l-F.(x)]k I I ••G k=0 jx=l J2=jl+1
2 k

• -• I S(r+S(2,t)-2 I w . )
VW1 i=1 1

j_]_ 2-k + l 2-k+2
f ( r ; 2, t) = I [F3(x)]2 k 1[l-Fi(x)]k 1 I 'G k=0 3 JX=1 J2=J1 1

j^j j2",j
2 k

I S(r+Sj(2,t)-2 I w . )
Wl+1 1=1 1
jk-J

where 5(r) is the delta function (Bracewell, Chapter 5, 1986).

Proof

Before proceeding in the actual proof it is necessary to obtain some results

which will be used extensively later. We define g.(x)=q as

q=Ji(x)=w.sgn(X.-x) (A.6)

where

'

1 if x> 0
sgn(x)=

. -1 if x<0

The pdf f.(q) of the function g.(x)=q can be written as

fi(q)=F.(x) S(q+w.) + (l-F.(x) )S(q-W.) {A 8)

where F.(x) is the distribution function of the random variable X .
r i

Again, we define

5

q=G(x; 5,t) = JiWt+.sgn(Xt+.-x) g)

Appendix A : Statistical properties of the weighted median
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The function G(x;2,,t)=q is the sum of g.(x), i=t+1 t+2, . Hence, its pdf fG(q;2,,t)
is given as the convolution of the individual pdf's f.(q) (Papoulis, Chapter 7,

1981).

fG(q; *,t)=ft+1(q)*ft +2(q)*. •-*ft+2(q)
(A. 10)

Assume that the random variables X. are identically distributed with cumulative

distribution function F^(x) . By taking into account the convolution property of
the delta function, f(x)*S(x)=f(x), and by substituting (A.8) into (A.10) the

following expression is obtained.

2 i-k+l fi-k+2

f(r;5,t)= I [F (x)]*~k[l-F (x)]k I I
U

k = 0 j1 = l j2 = J'1+1
2 k

• • • I S(r +S(5,t)-2 I w )
V'W1 1 = 1 Ji

(A.11)

where

9

S ( 2, t) = I wt+i (A. 12)
i = l

The function G'(x;2,,t) results from G(x;2,,t) if the term X is excluded.

2

G^(x;ff,t)= I w ,sgn(X .-x)
i = l t + i t + i (A13)
i*j

Again, by substituting (A.8) into (A.10) and noting that there are only 2,-1

terms in the convolution, since X. is not included, the pdf f'G(q;2,,t) is obtained.
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2_1 ff-k+1 2-k+2

f«(r;fl,t)= I [F„(x)]fi k 1[l-Ffi(x)]k> I _ 1
1=1 J2=^i

J l *0 Jn*j
k = 0 * J T =1 Jo = Jl + 1

(A. 14)
y *

I S(r+S'i(S,t)-2 I w ,

Wl+1 1 = 1 1
where

Jk"J

J(5,t)= I w. .

i=l t+1
i * J

(A. 15)

Case I : Now we can proceed to the derivation of the pdf fWM(x) of
the weighted median XWM, which can be defined as

m

fWM(x)= X P(Xj=x)P(Xj=XWM/Xj=x)
J -1

Since {X1 Xm) are identically distributed, P(X.=x)=fm(x) and
m

W>=V*> J p(Xj=XWM/X.=x)J ^

The probability of X.=x being the weighted median of the input sequence is

equal by definition to the probability of X.=x being the pure median of the

extended sequence which has S(m,0) terms in total (S(m,0) has been defined in

equation A.12) and is formed by repeating each term X., w. times. The latter

probability can be expressed as the probability that from the remaining SJ(m,0)

terms (this quantity has been defined in equation A.15) k are smaller and

S'(m,0)-k are larger than X^ . The minimum and maximum values of k are equal

kinin+Wj"(S(m'0;>+1)/2 ' kmax+ 1 = (S(m> 0) + l)/2

If we subtract the number of terms which are larger from the number of terms

which are smaller than X., the difference q must fall in the interval [-w +1,w -1]
j J i

. Therefore
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P(X . = XWM/X =x)=P(qe[-w. + l,w.-l] )
J J J J

(A. 17)

The difference q is actually given by the function G)(x;m,0), defined in (A.13) .

By using its pdf f'G(q;m,0) (see equation A.14) we have

Substitution of (A.I8) into (A. 16) yields (A.1) .

Case II : The pdf fWM(x) of the weighted median XWM can be

expressed as

fWM(x)= lim [P(x<XWM<x+dx)]/dx (A.ig)
dx-*0

(A.19) can be split into two mutually exclusive events A and B.

Event A : One of the random variables X., X (say X) falls intoI m x 7 y

[x, x+dx] and the rest m-1 and n variables are distributed in such a way that

Event B : One of the random variables X X (say X ) falls into
m + 1 m+n v 1 /

[x, x+dx] and the rest m and n-1 variables are distributed in such a way that

wj -1
P(x =XWM/X =x)= I fq(q;m,0) (A. 18)

X =X
WM'

X =x
WM '

Then

fuu(x)= lim [P(A)+P(B)]/dxWM dx->0
(A.20)

The corresponding probabilities of the events A and B are

m

P(A)= f (x)dx 1 P(X. = XWM/X e[x,x +dx])
m • | J J

(A.21)

and
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m+n

P(B)=f (x)dx I P(X. =XWM/X.«[x,x+dx]) (A.22)n
j=m+l J J

If X. belongs to the m-distribution (event A), the number of terms of the same

distribution which are larger than X. minus the number of terms which are
j

smaller than X. is given by G.(x,m,0) . According to (A. 17) the probability of X.

being the weighted median is equal to the probability that the total difference

q falls into [w.+ l, w.+ 1]. Using the pdf's FJG(q;m,0), fG(q;n,m) of the partial
differences GJ(x;m,0) and G(x;n,m), this can be written as

at w.-l SJ(a,0)
fg(r;a,0)f (q-r;n,a) (A.23)P(A)=f (x)dx X X X

j = l q=-Wj+l r=-SJ(m,0) Gv~L q
In a similar way

m+n wj-1 S(m,0)
P(B)=f(x)dxXXX fr(r;a,0)fj(q-r;n,a) (A.24)

j=m+l q=-w +1 r=-S(■,0) G
J

Finally substitution of (A.23) and (A.24) into (A.20) results in (A.2).

Case III : (A.3) can be proved by following the same methodology of

Case II .

Second-order statistics

This section presents the derivation of the weighted median's autocorrelation

function R(k) when the input is a constant signal corrupted by uncorrelated

additive noise. Assume that the sequence of random variables (X.) is filtered

by an N-point weighted median filter with weight coefficients {w.} . From the

definition (Section 4.4.3), the majority of the terms in the extended sequence

formed by taking w. copies of each term X. are less than or equal to the

weighted median YWM . Hence, the probability that the weighted median is
less than or equal to x is given by
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N

P(Ywm<x)=P( I w.sgn (Xi~x") <0 ) (a.25)
i = 1

We define the function G(x) as

N

G(x)= 1 w.sgn(X.-x)
i = l 1

which is very similar to G(x;S,,t), defined by (A.9) . Following a methodology

similar to the one used to derive (A.10), it can be proved that the pdf of G(x) is

equal to
^ N-V+1 N-VJ-2

f fq:N:Ffx);S:w)= I CFfx)^ V£l-F (x") 1V 1 £XG 4 v=0 Ji = .l J2 J1

V (A.26)

... £ S(q+S-2 I w . )
Jk = jk-1 + 1 i = 1 ' 1

where S is the sum of the weight coefficients

N

S= X w. (A.27)
i = l

Ym

A

W2 • • • W]+N-k • • • W[\j

Xj Xi+1 • • ■ Xj+f\j-k ' • Xj+f\j-i Xj+2N-1-k
_i i i i i

W<|
• • ■

wk WN

\ f

Yn

Figure A.1 : Correspondence between the terms of an input sequence and the
weight coefficients of two overlapping windows.
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Equation A.26 is the basis for the calculation of the joint cumulative

distribution function F(ym,yn) of the weighted median. Figure A.I shows two

N-point windows having k common terms and the corresponding weight

coefficients. The joint cdf will be derived by calculating the conditional

probability given an event £2, and then summing over all possible events

(Theorem of total probability, Papoulis, Chapter 2, 1981) . This approach was

suggested by Kuhlmann & Wise (1981) for the calculation of the joint cdf of

the pure median.

Ffy , y ) =P f Y <y ,Y <y 1= 1 P (Y <y , Y <y /0. )p() (A-28)
m n m m n n . mmnni j-

£2; is the event that a set of terms belonging to the overlap are less than or

equal to ym . The summation in (A.28) includes all the possible events £2j
which, for an overlap size of k terms, are 2k .

Let

A. = (terms belonging to the overlap : X. < ym)

A^ = (terms belonging to the overlap : X. > ym)

Bm = (terms belonging to the m-window but not to the overlap}

Bn = (terms belonging to the n-window but not to the overlap)

In the following, N(R), w.(2,,R), S(S,,R) denote the number of terms of

the Ji-window which belong to a set R, the weight coefficients which

correspond to these terms and the sum of the weights respectively. The

probability P(£2,) is given by David (1970)

N ( A . N ( A C)
pm. ) =CFf y n 1 Cl-FCy n 1 (A.29)

i m 111
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Also

PfY <y ,Y<y /ft. )=P(Y <y /ft.lPfY <v /ft.")mmnn 1 min i n " n 1 (A.30)

Using (A.25) and noting that, due to the event ft,, the terms in the overlap

have a fixed magnitude in respect to ym
NfB )
r c

P(Y <y /ft.)=P( 1 w.(m,B )sgn(X.-y)<S(m,A.)-S fm,A.))
m m i . , J m J® 1 x

xj -*•

By using (A.26) this can be written as

S(a,A.)-Sfm,A?)-l
l l

P (Y' <y /ft. )'= I f (p:NfB ) : F ( y ) ; w(m, B (m, B ) )
m m i _ v G m m m m

p=-S(m,B )H v '
m (A.31)

For the derivation of P(Y filj) two cases must be distinguished.

Case I : y <y
n~ m

NfB )
n

PfY„<y„/Q-}=p( E w.(n,_ .. _ - . - B ) s gn f X . -y ) +n n i j n 6 iJn
J

Nf A. )
l'

I w . fn,A. )sgnfX .-y )<-S(n,A?))
j = l J 1 J n i

which can be written as

NfB ) -S f n,A 71-1
n i

PfY <y /ft.1=
n n i

I I fG(q;N(Bn) ;F(yn);wfn,Bn)jS(n,Bn) )*
q=-Sfn,B ) r=-S(n,B )-Sfn,A.)

n n i

* f„(r-q;N(A. •); Ffy / X . <y );w(n,A.);S(n,A.)) (a.32)g l n l m j.

where f is given by (A.26) and F(y /X.<y ) byn 1— m

Ffy /X. <y )=PfX. <y /X. <y,J =-

n l m in l m

Ffv 1/Ffv >
n ®

if Vym
if yn>ym

Case II : y >y
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In a similar way it can be proved that

S(n,B ) S(n,A.)-l

PCY <y /«.)= I I f (q;N(B );F(y );w(n,B ) ;S(n,B ))*
n n i u n n n u

q=-S(n,Bn) r=-S(n,Bq)-S(n,A?)
(A.33)

* fG(r-q;N(Ap;F(yn/X.>ym);wfn,A.) ;Sfn,A.))
where f is given by (A.26) and F(y /X >ym) by

f o if *„<*■
F(yn/Xi>y«'=PfXi<yn/Xi>yM1= F(yni/(i-F(y,,)) yn>ym

The joint cumulative distribution function F(y ,y ) can now bex 1
m 1 n'

obtained by substituting (A.29) - (A.33) into (A.28) and summing over all

possible events . The resulting expression is valid for any type of input

distribution as long as the random variables are identically distributed.

Flowever, in order to obtain the joint density f(y ,y ) it will be assumed that

the input random variables are discrete. If the random variable X take the

values {y., i=1, ..., L) the joint density is equal to the (discrete) derivative of the

joint cdf

ffyn,'yn,=FCym'yn1+F'y«-l'yn-l,-Ftyn.-l'yn!"Ffy»'y»-l>
where it must be noted that

F(y • , y j) =0 if i or j =0 (A.34)

The autocorrelation R(k) is then calculated by

L L

Rfk)= I I v.v.ffy. ,y.) /A 36^
i = x j = i 1 J 1 ■> ' 35)

where k is equal to the number of terms in the overlap and L is the input

alphabet size.

Equation (A.35) has been used to calculate the results presented in
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Figure 4.14 . The noise distribution considered was Gaussian quantized to 32

levels in the minimum square error sense (Max, 1960).
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APPENDIX B : PROGRAM LISTINGS

PROGRAM SPECKLEFILTER

The following program performs processing of ultrasonic images
using one of the speckle suppression filters described In Chapter
4. The code Is written In Vax Fortran (an extension of Fortran 77)
and runs on a DEC MicroVax II minicomputer under the
MIcroVMS V4.4 operating system.

Images have 576 rows by 512 columns by 256 grey scale levels
and are stored on disc as random access files of 577 records.
Each row of the image corresponds to a 512-byte record, with
the first record of the file containing the Image header.

The name of the Input image, coordinates of region to be
processed, filter type to be used and its corresponding
parameters are specified by the user. The main program reads
the image data, stores them in an input array, calls the
appropriate filter subroutine and, when processing Is completed,
writes the results back to the disc.

In order to achieve maximum efficiency only the pixels inside a
sector scan are processed, if desirable.

VARIABLES

FILNAM

LINE

IN.OUT

TR.BR

TC.BC

LIMLLIMR

READ(5,60)CONVC
GOTO 500

160 WRITE(6,180)
180 FORMAT(' ENTER WINDOW SIZE (13)')

READ(5,200)NW
200 FORMAT(13)

GOTO 500

220 WRITE(6,240)
240 FORMAT(' ENTER AVERAGING,MEDIAN WINDOW SIZES',

* ' AND FILTER PARAMETER (213,F8.4)* )
READ(5,260)NW,MW,FILPAR

260 FORMAT(213,F8.4)
GOTO 500

320 WRITE(6,340)
340 FORMAT(' ENTER WINDOW SIZE AND FILTER PARAMETER'

* ' (I 3,F8 . 4 ) ' )
READ(5, 360)NWf FILPAR

360 FORMAT(13,F8.4)
GOTO 500

380 WRITE(6,400)
400 FORMAT(' ENTER SMOOTHING,SHARPENING ',

* ' WINDOW LENGTHS, VARIANCE WEIGHTING FACTOR,'/
* • WINDOW WIDTH AND EXP DECAY FACTOR,'/
* • LOW/HIGH CUTOFF FREQUENCIES '/
* ' AND BETA FOR KAISER WINDOW (3I3,5F8.4)'

READ( 5, 4 2 0 )NW,NWH,VWF,IWID,EDF,FL,FH,BETA
Byte array containing filename of
Image to be processed

Byte array containing grey scale
levels of a row

Integer arrays containing Input and
output Image data

User-specified first/last row numbers
of region to be processed
The corresponding column numbers

Integer arrays containing column
numbers of first/last points to be
processed along a row. type has
been specified.

420 FORMAT(313,5F8.4)
500 CONTINUE

**» TRANSFER IMAGE DATA FROM DISC TO MEMORY
DO 520 IR=1,576
IREC8 = IRU

READ(8'IREC8)(LINE(IC),IC=1,512)
TRANSFORM BYTE VALUES TO INTEGERS

*** STORE THEM INTO INPUT AND OUTPUT ARRAYS
DO 520 IC=1» 512
IPIX=LINE(IC)
IF(IPIX.LT.O)IPIX=IPIX+256
IN(IC,IR)=IPIX
OUT(IC,IR)=IPIX

ISCANT

IFILTN

The filter parameters are defined at the beginning of the
appropriate filter subroutines

BYTE FILNAM(32),CONVC(32),LINE(512),BYTEMP
CHARACTER*1 TEMP

DIMENSION LIML(576),LIMR(576)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
EQUIVALENCE (BYTEMP,TEMP)

COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F1/ CONVC

COMMON/F234567/ NW,FILPAR,MW
COMMON/F7/ NWH,IWID,VWF,EDF,FL,FH,BETA

*** SPECIFY IMAGE TO BE PROCESSED
20 WRITE(6,40)
40 FORMAT(* ENTER FILE NAME :')

READ(5,60)FILNAM
60 FORMAT(32A1)

OPEN RANDOM ACCESS FILE CONTAINING IMAGE DATA

OPEN(UNIT=8,NAME=FILNAM,ACCESS='DIRECT',
* RECORDSIZE=12 8,ASSOCIATEVARIABLE=IREC8,ERR = 20)

SELECT REGION TO BE PROCESSED,FILTER TO BE USED
*** AND SCANNER TYPE

WRITE(6,80)
80 FORMAT(' ENTER TOP-LEFT/BOTTOM-RIGHT ROW,COLUMN'/

• ' ,FILTER NUMBER AND SCANNER TYPE (614)')
READ(5,100)TR,TC,BR,BC,IFILTN,ISCANT

100 FORMAT(614)

'** SPECIFY FILTER PARAMETERS

GOTO(120,160,220,320,320,320,380)IFILTN
120 WRITE(6,140)
140 FORMAT(' ENTER FILE NAME FOR FIR COEFFICIENTS :')

CONTINUE

-♦FOR EVERY ROW IR

DO 540 IR=TR,BR
CALCULATE COLUMNS OF FIRST/LAST POINT
TO BE PROCESSED ALONG IR

CALL LIMCOL(IR)
540 CONTINUE

*** CALL SELECTED FILTER SUBROUTINE

GOTO(560,580,600,620,640,660,680)IFILTN
560 CALL FILT1

GOTO 740
580 CALL FILT2

GOTO 740
600 CALL FILT3

GOTO 740
620 CALL FILT4

GOTO 740
640 CALL FILT5

GOTO 740
660 CALL FILT6

GOTO 740
680 CALL FILT7
740 CONTINUE

*** TRANSFER OUTPUT IMAGE DATA FROM MEMORY TO DISC
DO 780 IR=TR,BR

*** TRANSFORM INTEGER VALUES TO BYTES
DO 760 IC=1,512
ITEMP=OUT(IC,IR)
TEMP=CHAR(ITEMP)
LINE(IC)=BYTEMP

760 CONTINUE

IREC8 = IR+-1

WRITE(8'IREC8)(LINE(IC),IC=1,512)
780 CONTINUE

STOP

END

User-specified scanner type 520

User-specified filter type
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SUBROUTINE LIMCOL(IR)

This subroutine calculates the column numbers of the first/last
points to be processed along row IR and stores them In arrays
LIML. LIMR. For linear scanners, the column numbers are

row-Independent and equal to the user-specified values. For
sector scanners, they are determined by the sector geometry.

VARIABLES

IR

IRO.ICO.RAD.THETA

LIMLT.LIMRT

TC.BC

IC1.IC3

IC2.IC4

ILC.IRC

LIMLLIMR

Current Image row

Centre coordinates,radius and
half-angle of the sector

Column numbers of
leftmost/rightmost points of the
sector

User-specified first/last column of
region to be processed

Column numbers defined by the
intersection of row IR with the linear

segments of the sector

Corresponding quantities for the
circular segment of the sector

Columns of firts/last points to be
processed along row IR

Arrays containing ILC.IRC values

DIMENSION LIML(576),LIMR(576)
INTEGER TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT

*** GEOMETRICAL DATA FOR SCANNERS

GOTO(10,20,40,60,80)ISCANT

♦** LINEAR SCANNER
10 ILC=TC

IRC=BC

GOTO 120

IC4 = ICO *RADF
TC=MAX0(TC,IC1,IC2,LIMLT)
BC=MIN0(BC,IC3,IC4,LIMRT)

»** STORE RESULTS
120 LIML(IR) =ILC

LIMR(IR)= IRC

RETURN

END

SUBROUTINE FILT1

Two-dimensional linear (FIR) filter

VARIABLES

IN.OUT.TR.BR.LIMULIMR

CONVC

NW

FIR

SF.SUM

See main program

Name of file containing filter data

Window length/width. Actual window
size is NW X NW

Real array containing filter
coefficients

Sums of filter coefficients and
convolution partial results

BYTE CONVC(32)
DIMENSION LIML(576),LIMR(576),FIR(31,31)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F1/ CONVC

OPEN SEQUENTIAL ACCESS FILTER DATA FILE
OPEN(UNIT=9,NAME=CONVC,TYPE='OLD * )

READ WINDOW LENGTH/WIDTH
READ(9,20)NW

20 FORMAT(12)

* * *

60

GL Z/S SCANNER - OSCILLATING PROBE
IR0=25

IC0=228
THETA=0.4742
RAD=460.
LIMLT=48
LIMRT=410
GOTO 100
GL Z/S SCANNER - ROTATING PROBE
IR0=32
IC0=228
THETA=0.6023
RAD=454.
LIMLT=22
LIMRT=442

GOTO 100
SIEMENS SX SCANNER

IR0 = 3 4

IC0=253
THETA=0.6142

RAD=460.

LIMLT=32
LIMRT=480
GOTO 100
ACUSON SCANNER
IR0=60
IC0=258
THETA=0.6012
RAD=440.
LIMLT= 46
LIMRT=472

CONTINUE

••• READ FILTER COEFFICIENTS
DO 60 1=1,NW

READ(9,40)(FIR(J,I),J=1,NW)
40 FORMAT(31F12.8)
60 CONTINUE

»*» CALCULATE WINDOW PARAMETERS
NW2 = (NW-1)/2
N=NW2+i

NSQ=NW*NW

**« -►FOR EVERY ROW IR
DO 100 IR=TR,BR

**• +AND FOR EVERY POINT TO BE PROCESSED ALONG IR
DO 100 IC=LIML(IR),LIMR(IR)

CONVOLVE IMAGE DATA WITH FILTER COEFFICIENTS
SUM=0.

SF=0.

DO 80 1=1,NW
IRM= IR+-I-N

DO 80 J =I,NW
ICM=IC+J-N

WC=FIR(J,I)
SF=SF*WC

SUM=SUMfWC*IN(ICM,IRM)
80 CONTINUE

*»* STORE NEAREST INTEGER OF RESULT

OUT(IC,IR)=INT(SUM/SF+0.5)

100 CONTINUE

CALCULATE COLUMN NUMBERS

OF FIRST/LAST POINTS TO BE PROCESSED

ANGF=(IR-IR0)*SIN(THETA)/COS(THETA)
RADF =SQRT(RAD* *2-FLOAT(IR-IR0)**2)
IC1=IC0-ANGF
IC2 = IC0-RADF
IC3=IC0+ANGF

RETURN

END

SUBROUTINE FILT2

Two-dimensional median filter implemented using Huang's fast
algorithm. This algorithms takes advantage of the fact that only
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a small fraction of the pixels Inside the window is deleted and an
equal number is added every time the window moves one
position to the right.

VARIABLES

IN.OUT.TR.BR.LIMLUMR

NW

HIST

140

See main program

Window length/width. Actual window
size is NW X NW

Integer array containing the grey
level histogram of the pixels Inside
the window

MDN Median value at a particular point

LTMDN Number of pixels Inside the window
with grey level less than the median

DIMENSION LIML(576),LIMR(576),IN(512,576)
INTEGER OUT(512,576),HIST(256), TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F234567/ NW,FILPAR,MW

*** CALCULATE WINDOW PARAMETERS

NW2=(NW-l)/2
N =NW2 +1

NSQ=NW*NW
NSQ2=(NSQ-1)/2

-►FOR EVERY ROW IR

DO 180 IR=TR,BR

*** INITIALIZE HISTOGRAM
DO 20 1=1,256
HIST(I)=0

20 CONTINUE

*** CALCULATE MEDIAN FOR THE FIRST POINT OF IR

IC=LIML(IR)

IF(TEMP.LE.NSQ2 )GOTO 160
LTMDN=TEMP

MDN=MDN-1
GOTO 120

IF(LTMDN.GT.NSQ2)GOTO 160
MDN=MDN+1

LTMDN=LTMDN+HIST(MDN)
GOTO 140

*** STORE MEDIAN VALUE
160 OUT(IC,IR)=MDN-1

180 CONTINUE

RETURN

END

SUBROUTINE FILT3

Double window modified trimmed mean (DW-MTM) filter. The
variance of noise Is assumed to be proportional to its mean. The
median Is calculated as in SUBROUTINE FILT2 .

VARIABLES

IN.OUT.TR.BR.LIMLLIMR

NW

MW

HIST.MDN,LTMDN

MED

Q

FILPAR

IDIF

See main program

Averaging window length/width.
Actual window size Is NW X NW

Median window length/width. Actual
window size is MW X MW

See SUBROUTINE FILT2

Integer array containing median
values Omed of row IR
Threshold q defined as q=c(Om„d],/2
Constant c In the above expression.
Controls the amount of smoothing
performed
Absolute difference between a pixel

FORM GREY LEVEL HISTOGRAM
DO 40 1=1,NW
IRM=IR+I-N

DO 40 J=1,NW
ICM=IC+J-N

IPIX=IN(ICM,IRM)+1
HIST(IPIX)=HIST(IPIX)+1

40 CONTINUE

**♦ FIND ((NW*NW-l)/2]lh LARGEST VALUE
LTMDN=0

DO 60 1=1,256
LTMDN = LTMDN +HIST( I)
IF(LTMDN.GT.NSQ2)GOTO 80

60 CONTINUE

*** MEDIAN HAS BEEN FOUND
80 MDN=I

OUT(IC,IR)=MDN-1

*** -^FIND MEDIAN VALUE FOR THE REST OF THE POINTS
*** TO BE PROCESSED ALONG IR

DO 180 IC=LIML(IR)+1,LIMR(IR)

UPDATE HISTOGRAM AND LTMDN

ICM=IC-N

DO 100 1=1,NW
IRM=IR+I-N

IPXOLD=IN(ICM,IRM)+1
HIST(IPXOLD)=HIST(IPXOLD)-1
IF(IPXOLD.LE.MDN)LTMDN=LTMDN-1
IPXNEW=IN(ICM+NW,IRMJ+l
HIST(IPXNEW)=HIST(IPXNEW)+1
IF(IPXNEW.LE.MDN)LTMDN=LTMDN+1

100 CONTINUE

FIND CURRENT MEDIAN USING PREVIOUS MEDIAN VALUE

IF(LTMDN.GT.NSQ2)GOTO 120
GOTO 140

120 TEMP=LTMDN-HIST(MDN)

and median Omed
ICOUNT.SUM Number and sum of terms inside the

window whose difference from the
median Omfld is not greater than the
threshold q

DIMENSION LIML(576),LIMR(576),MED(512),IN(512,576)
INTEGER OUT(512,576),HIST(256),TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F234567/ NW,FILPAR,MW

*** CALCULATE AVERAGING,MEDIAN WINDOW PARAMETERS

NW2=(NW-1)/2
N=NW2 +1

NSQ=NW*NW
MW2 = (MW-1)/2
M=MW2+l

MSQ-MW * MW
MSQ2=(MSQ-l)/2

*** -►FOR EVERY ROW IR

DO 220 IR=TR,BR

*** -^PERFORM MW X MW MEDIAN FILTERING

DO 20 1=1,256

HIST(I)=0
20 CONTINUE

IC=LIML(IR)
DO 40 1=1,MW
IRM=IR+I-M

DO 40 J=1,MW
ICM=IC+J-M

IPIX=IN(ICM,IRM)f1
HIST(IPIX)=HIST(IPIX)f1

40 CONTINUE

LTMDN=0

DO 60 1=1,256
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LTMDN=LTMDN+HIST(I)
IF(LTMDN.GT.MSQ2)GOTO 80

60 CONTINUE

80 MDN=I

MED(IC)=MDN-1

DO 180 IC=LIML(IR)+1,LIMR(IR)

ICM=IC-M

DO 100 1=1,MW
IRM=IR+I-M

IPXOLD=IN(ICM,IRM) ♦ 1
HIST(IPXOLD)=HIST(IPXOLD)-1
IF(IPXOLD.LE.MDN)LTMDN=LTMDN-1
IPXNEW=IN(ICM+MW,IRM)+1
HIST(IPXNEW)=HIST(IPXNEW)+1
IF(IPXNEW.LE.MDN)LTMDN=LTMDN+I

100 CONTINUE

IF(LTMDN.GT.MSQ2)GOTO 120
GOTO 140

120 TEMP= LTMDN-HIST(MDN)
IF(TEMP.LE.MSQ2)GOTO 160
LTMDN=TEMP

MDN=MDN-1

GOTO 120
140 IF(LTMDN.GT.MSQ2)GOTO 160

MDN=MDN+1

LTMDN=LTMDN+HIST(MDN)
GOTO 140

FILPAR

contributions of the input and the
local mean to the output value

Used for the calculation of
C. Controls the amount of smoothing
performed.

DIMENSION LIML(576),LIMR(576),AV(512 ),VAR(512)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
COMMON/A/ TR,TC,8R,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F234567/ NW,FILPAR,MW
COMMON/STAT/ AV,VAR

■♦FOR EVERY ROW IR

DO 20 IR=TR,BR

CALCULATE LOCAL STATISTICS
CALL IMSTAT(IR)

♦FOR EVERY POINT TO BE PROCESSED ALONG IR
DO 20 IC=LIML{IR),LIMR(IR)

CALCULATE WEIGHTING FACTOR C

ICPIX=IN(IC,IR)
A=1.-AV(IC)*FILPAR**2/VAR(IC)
IF(A.LT.0.}A=0.

STORE NEAREST INTEGER OF RESULT
OUT (IC, IR ) = INT( AV (IC) ♦■A* ( ICPIX-AV (IC ) J+0.5)

160 MED(IC)=MDN-1

180 CONTINUE

♦FOR EVERY POINT TO BE PROCESSED ALONG IR
DO 220 IC=LIML(IR),LIMR(IR)

CALCULATE THRESHOLD q
MDN=MED(IC)

RETURN

END

SUBROUTINE FILT5

Frost's modified algorithm. Fast calculation of local statistics by
SUBROUTINE IMSTAT(IR) . The variance of noise is assumed to
be proportional to its mean.

Q=FILPAR*SQRT(FLOAT(MDN))

*** CALCULATE ICOUNT AND SUM

ICOUNT=0

SUM=0.

DO 200 1=1,NW
IRM=IR+I-N

DO 200 J=1,NW
ICM=IC+J-N

IPIX=IN(ICM,IRM)
IDIF=IABS(IPIX-MDN)
IF(IDIF.GT.Q)GOTO 200
ICOUNT=ICOUNT+1

SUM=SUM+IPIX

200 CONTINUE

»** STORE NEAREST INTEGER OF RESULT

OUT(IC,IR)=INT(SUM/ICOUNT+0.5)

RETURN

END

VARIABLES

IN.OUT.TR.BRXIMULIMR

NW

AV.VAR

DIST

A

FILPAR

WC

SF.SUM

See main program

Window length/width. Actual window
size is NW X NW

Arrays containing the local mean and
variance of points to be processed
along IR

Array containing distance of each
point Inside the window from the
centre

Local statistics factor, A=co2/m
Constant c in the above expression.
Controls the amount of smoothing
performed

Filter coefficient at a particular point

Sums of filter coefficients and
convolution partial results

SUBROUTINE FILT4

Lee's modified algorithm. Fast calculation of local statistics by
SUBROUTINE IMSTAT(IR) . The variance of noise is assumed to
be proportional to its mean.

VARIABLES

IN.OUT.TR.BR.LIMLLIMR

NW

AV.VAR

See main program

Window length/width. Actual window
size Is NW X NW

Arrays containing the local mean and
variance of points to be processed
along IR

Weighting factor. Controls

DIMENSION LIML(576),LIMR(576),AV(512),VAR(512)
DIMENSION DIST(31,31)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F234567/ NW,FILPAR,MW
COMMON/STAT/ AV,VAR

CALCULATE WINDOW PARAMETERS

NW2 = (NW-1)/2
N = NW2 +1

NSQ=NW*NW

CALCULATE DISTANCES FROM CENTRE OF WINDOW

DO 20 1=1,NW
DO 20 J = 1, NW

DIST(I,J)=(I-N)**2+(J-N)**2
DIST(I,J)=SQRT(DIST(I,J))
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CALCULATE WINDOW PARAMETERS

NW2=(NW-l)/2
N =NW2 +1

CALCULATE DISTANCES FROM CENTRE OF THE WINDOW
DO 20 1=1,N
DO 20 J = 1,N
DIST(I,J)=(I-N)**2+(J-N)**2
DIST(I,J)=SQRT(DIST(I,J))
CONTINUE

•♦FOR EVERY ROW TO BE PROCESSED
DO 220 IR=TR,BR

CALCULATE LOCAL STATISTICS
CALL IMSTAT(IR)

-►FOR EVERY POINT TO BE PROCESSED ALONG IR
DO 220 IC=LIML(IR),LIMR(IR)

20 CONTINUE **

**• -►FOR EVERY ROW IR

DO 60 IR=TR,BR
* * -

*** CALCULATE LOCAL STATISTICS
CALL IMSTAT(IR)

*** -►FOR EVERY POINT TO BE PROCESSED ALONG IR
DO 60 IC=LIML(IR),LIMR(IR) 20

**♦ CALCULATE LOCAL STATISTICS FACTOR **

A=FILPAR*VAR(IC)/AV(IC)

»•* CALCULATE FILTER COEFFICIENTS *►

CONVOLVE IMAGE DATA WITH THEM
SUM=0.
SF=0. **
DO 40 1=1,NW
IRM=IR+I-N

DO 40 J=1,NW **
ICM=IC+J-N

WC=EXP(-A*DIST(I,J))
SF=SF+WC **

SUM=SUM+WC*IN(ICM,IRM)
40 CONTINUE

*** STORE NEAREST INTEGER OF RESULT

OUT(IC,IR)=INT(SUM/SF+0.5) 80

60 CONTINUE **

RETURN

END

SUBROUTINE FILT0

Adaptive weighted median filter. Fast calculation of local
statistics by SUBROUTINE IMSTAT(IR) . The variance of noise Is
assumed to be proportional to Its mean.

VARIABLES

IN.OUT.TR.BR.LIML.LIMR See main program

NW Window length/width. Actual window
size is NW X NW

AV.VAR Arrays containing the local mean and
variance of points to be processed
along IR

DIST Array containing the distance of each
point Inside the window from the
centre

A Local statistics factor. A=co2/m
FILPAR

WF

MIST Gray level histogram of terms Inside
the window

MDN Weighted median of the terms Inside
the window. I.e. median of the
extended sequence formed by
repeating each term as many times
as the corresponding weight
coefficients

LTMDN Number of terms with grey level less
than the weighted median

DIMENSION LIML(576),LIMR(576)
DIMENSION AV(512),VAR(512),DIST(31,31)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
INTEGER WF(31,31),HIST(256)
COMMON/A/ TR , TC , BR , BC, LIML, LIMR , IFII.TN, ISCANT
COMMON/B/ IN,OUT

COMMON/F234567/ NW,FILPAR,MW
COMMON/STAT/ AV,VAR

CALCULATE LOCAL STATISTICS FACTOR

A=FILPAR*VAR(IC)/AV(IC)

CALCULATE WEIGHT COEFFICIENTS
DO 80 J=1,MW
DO 80 1=1,MW

WF(I,J)=99.-A#DIST(I,J)
IF(WF(I,J).LT.0)WF(I,J)=0
CONTINUE

INITIALIZE GREY LEVEL HISTOGRAM
DO 140 1=1,256

HIST(I)=0
140 CONTINUE

*♦* CALCULATE HISTOGRAM OF EXTENDED SEQUENCE
IWFS=0

DO 160 1=1,NW
IRM=IRfI-N

DO 160 J=1,NW

ICM=IC+J-N

IWFS=IWFS+WF(I,J)
IPIX=IN(ICM,IRM)+1
HIST(IPIX)=HIST(IPIX)+WF(I,J)

160 CONTINUE

*** FIND MEDIAN OF EXTENDED SEQUENCE
LTMDN=0

IWFS2=(IWFS-1)/2
DO 180 1=1,256
LTMDN=LTMDN+HIST(I)
IF(LTMDN.GT.IWFS2)GOTO 200

180 CONTINUE

STORE RESULT

MDN= I

OUT(IC,IR)=MDN-1

CONTINUE

RETURN

END

SUBROUTINE IMSTAT(IR)

Local statistics subroutine. Called by SUBROUTINE FILT4, FILT5 &
FILT6 to calculate the local mean and variance of points along a
specific row. Fast implementation based on the observation that
when an NW X NW window is shifted one position to the right, a
column of NW terms leaves and a new one enters the window
but the rest NW2-2NW terms remain the same.

VARIABLES

IN.OUT.TR.BR.LIMLLIMR See main program

NW Window length/width. Actual window
size Is NW X NW

SUM.SQSUM Arrays containing the sum and sum
of squares of terms belonging to a
particular column of the window

Constant c In the above expression. •**

Controls the amount of smoothing 200
performed

Weight coefficient at a particular
point 220
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SUMT.SQSUMT Total sum and sum of squares of
terms inside the window

SUMN.SQSUMN Sum and sum of squares of terms
belonging to the rightmost (most
recently Included) column of the
window

AV,VAR Arrays containing the local mean and
variance of points to be processed
along row IR

DIMENSION LIML(576),LIMR(576)
DIMENSION SUM(31)#SQSUM( 31),AV(512 ),VAR(512)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F234567/ NW,FILPAR,NW
COMMON/STAT/ AV,VAR

*** CALCULATE WINDOW PARAMETERS
NW2=(NW-l)/2
N=NW2♦1

NSQ=NW*NW

INITIALIZE ARRAYS
DO 20 1=1,NW

SUM(I)=0.
SQSUM(I)=0.

20 CONTINUE

CALCULATE LOCAL STATISTICS
*** OF FIRST POINT TO BE PROCESSED

IC=LIML(IR)
SUMT=0.

SQSUMT=0.
DO 60 J=I,NW
ICM= IC+-J-N
DO 40 1=1,NW
IRM= IR+-1 -N
PIX=IN(ICM,IRM)

120 CONTINUE

RETURN

END

SUBROUTINE FILT7

Directional smoothing/sharpening

VARIABLES

IN.OUT.TR.BR.LIMLLIMR

NW.NWH

IWID

EDF

WIDC

ICONTR

IND

DAV.DVAR

VWF

VARN

BETA

WKAISER

See main program

Window lengths for
smoothing/sharpening

Width of directional windows (usually
IWID-1)

Exponential decay factor. Determines
relative contributions of terms along
the window width

Weight coefficients for the terms
along the window width
Indicates processing stage: 1
smoothing - 2 : sharpening
Indicates direction of processing; 1 :
horizontal - 3 vertical - 3,4
diagonal

Arrays containing the local
directional mean and variance of the
terms inside the window

Variance weighting factor

Array containing normalized
directional variances of every image
point
Attenuation of Kaiser window for
bandpass filter design

Array containing Kaiser window

SUM(J)=SUM(J)+PIX
SQSUM(J)=SQSUM(J)+PIX**2

40 CONTINUE

SUMT=SUMT+SUM(J)
SQSUMT=SOSUMT+SQSUM(J)

60 CONTINUE

AV(IC)=SUMT/NSQ+0.001
VAR(IC)=SQSUMT/NSQ-AV(IC)**2+0.001

♦♦♦ -►CALCULATE LOCAL STATISTICS FOR THE REST
OF THE POINTS TO BE PROCESSED ALONG IR

DO 120 IC=LIML(IR)+1,LIMR(IR)

CALCULATE SUM AND SUM OF SQUARES FOR NEW COLUMN
SUMN=0.

SQSUMN=0.
ICM=IC+NW2
DO 80 1=1,NW
IRM=IRM-N

PIX=IN(ICM,IRM)
SUMN=SUMN+PIX

SQSUMN=SQSUMN+PIX# *2
80 CONTINUE

•** CALCULATE TOTAL SUM AND SUM OF SQUARES
SUMT=SUMT+SUMN-SUM(I)
SQSUMT=SQSUMT+SQSUMN-SQSUM(1)

CALCULATE LOCAL STATISTICS

AV(IC)=SUMT/NSQ+0.001
VAR(IC)=SQSUMT/NSQ-AV(IC)**2+0.001

••• UPDATE SUM ARRAYS BY SHIFTING THEM

ONE POSITION TO THE LEFT

DO 100 1=1,NW-1

SUM(I)=SUM(1*1)
SQSUM(I)=SQSUM(1+1)

100 CONTINUE

SUM(NW)= SUMN
SQSUM(NW)=SQSUMN

coefficients

FLFH User specified low and high cutoff
frequency of bandpass filter

FLM Actual low cutoff frequency at each
point

BPCOEF Array containing bandpass filter
coefficients

DIMENSION LIML(576),LIMR(576)
DIMENSION VARN(4,512,576),DAV(4),DVAR(4)
DIMENSION WIDC(31),WKAISER(31),BPCOEF(3 I)
INTEGER IN(512,576),OUT(512,576),TR,TC,BR,BC
COMMON/A/ TR,TC,BR,BC,LIML,LIMR,IFILTN,ISCANT
COMMON/B/ IN,OUT
COMMON/F234567/ NW,FILPAR,NW
COMMON/F7/ NWH,IWID,VWF,EDF,FL,FH,BETA

*** CALCULATE WINDOW PARAMETERS AND CONSTANTS

NW2=(NW-1)/2
N=NW2♦1

NWH 2 - ( NWH -1) / 2
NH=NWH2*1

IWID2=(IWID-1)/2
IW=IWID2*1

PI=4.*ATAN(1.)

CALCULATE WEIGHTS ALONG THE WINDOW WIDTH
SUM=0.

DO 20 1=1,IWID
WIDC(I)=EXP(-EDF*(I-IW)* *2)
SUM=SUM*WIDC (I)

20 CONTINUE

DO 40 1=1,IWID
WIDC(I)=WIDC(I)/SUM

40 CONTINUE

**♦ CALCULATE KAISER WINDOW COEFFICIENTS
CALL KAISER(NWH,WKAISER,BETA)
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ICONTR =0
••• UPDATE PROCESSING STAGE INDICATOR
60 ICONTR3ICONTR+ L

■♦FOR EVERY ROW IR

DO 680 IR=TR,BR

■♦AND FOR EVERY POINT TO BE PROCESSED ALONG IR
DO 680 IC3LIML(IR),LIMR(IR)

IF(ICOPTTR. EQ . 2 )GOTO 340

*** PERFORM SMOOTHING
SUMNV=0.

SUMNVI=0.

*** -*FOR EVERY DIRECTION
DO 300 IND3I,4

CALCULATE MEAN AND VARIANCE

SUM30.

SQSUM=0.
DO 280 K = 1,NW

ALONG THE WINDOW LENGTH

GOTO(80,100,120,140)IND
80 I* IR

J*IC+R-N

GOTO 160
100 I*IR+K-N

J3IC-K+N

GOTO 160

120 I3IR+K-N

J»IC

GOTO 160
140 I«IR+K-N

J*IC+K-N

160 CONTINUE

••• AND ALONG THE WINDOW WIDTH

PIX=0.
DO 270 L=1,IWID
GOTO( 180,200,220,240) IND

180 IM=I+L-IW

JM»J

GOTO 260
200 IM=I+L-IW

JM»J+L-IW

GOTO 260
220 IM3I

JM»J+L-IW

GOTO 260
240 IM=I+L-IW

JM*J-L+-1W

260 PIX=PIX+IN(JM,IM)*WIDC(L)
270 CONTINUE

SUM=SUM+PIX

SQSUM3 SQSUM+PIX##2

280 CONTINUE

DAV(IND)=SUM/NW+0.001
DVAR(IND)=SQSUM/NW-DAV(IND)**2+0.001
TEMP=DVAR(IC)•♦VWF
SUMNV3 SUMNV+TEMP

SUMNVI=SUMNVI+1/TEMP

300 CONTINUE

CALCULATE NORMALIZED VARIANCES AND OUTPUT

OUTP=0.

DO 320 IND=1,4
VARN(IND,IC,IR) = DVAR(IND)*•VWF/SUMNV
OUTP=OUTP+DAV(IND)/VARN(IND,IC,IR)

320 CONTINUE

*** STORE NEAREST INTEGER OF RESULT

OUT(IC,IR)=1 NT (OUTP/SUMNVI+0.5)
GOTO 680

PERFORM SHARPENING

340 CONTINUE

OUTP=0.
VSUM=0.

**• -♦FOR EVERY DIRECTION
DO 660 I ND31,4

CALCULATE BANDPASS FILTER COEFFICIENTS

TEMP=0.

FLM=FL#VARN(IND,IC,IR)
FD=FH-FLM

FS=FH+FLM

BPCOEF(NH)=2 *FD*WKAISER(1)
BPSUM3BPCOEF(NH)
DO 400 M*2,NH

C-PI*(M-1)
BPCOEF(M+NWH2)=2*SIN(C*FD)'COS(C*FS)*WKAISER(M)/C
BPSUM3BPSUM+2♦BPCOEF(M+NWH2)

400 CONTINUE

DO 420 M=NH,NWH
BPCOEF(M) =BPCOEF(M)/BPSUM
BPCOEF(NWH+1 -M)3BPCOEF(M)

420 CONTINUE

CONVOLVE IMAGE DATA WITH FILTER COEFFICIENTS

DO 640 K=1,NWH

GOTO(440,460,480,500)IND

440 1= IR

J3IC+K-NH
GOTO 520

460 I*IR+K-NH

J3IC-K+NH

GOTO 520
480 I3IR+K-NH

J»IC
GOTO 520

500 I3 IR +K-NH

J3IC+K-NH
520 CONTINUE

PIX=0.

DO 630 Lal.IWID
GOTO(540,560,580,600)IND

540 IMM+L-IW

JM«J

GOTO 620

560 IM=I+L-IW

JM=J+L-IW

GOTO 620

580 IM3I

JM3J+L-IW

GOTO 620
600 IM«I+L-IW

JM3J-L+IW

620 PIX3PIX+IN(JM,IM)*WIDC(L)
630 CONTINUE

BPC= BPCOEF(K)
TEMP=TEMP+ PI X *BPC

640 CONTINUE

TEMP=TEMP*VARN(IND,IC,IR)
OUTP=OUTP+TEMP

660 CONTINUE

STORE NEAREST INTEGER OF RESULT

OUT(IC,IR)31 NT(OUTP+0.5)

680 CONTINUE

**• IF SHARPENING IS COMPLETED STOP

IF(ICONTR.EQ.2)GOTO 720

**• IF SMOOTHING IS COMPLETED
»•* TRANSFER SMOOTHED DATA TO INPUT ARRAY

1X3 700 I =TR , BR
DO 700 J3LIML(I)-NWH,LIMR(I)+NWH
IN(J,I)=OUT(J,I)
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700 CONTINUE

••• GO BACK TO PERFORM SHARPENING
GOTO 60

720 CONTINUE

RETURN

END

SUBROUTINE KAISER(NF.W.BETA)

This subroutine calculates the Kaiser window coefficients for
one-dimensional bandpass filter design. Called from SUBROUTINE
F1LT7

VARIABLES

NF

W

BETA

BES

DIMENSION W(31)
REAL INO

N*(NF*I)/2
BBS*INO(BETA)
XIND* ( NF-1 ) * *2
DO 20 1*1»N
XI*4.*(1-1)* *2
Vf( I )*INO(BETA#SQRT( 1 .-XI/XIND) )/BES

20 CONTINUE
RETURN

END

REAL FUNCTION INO(X)

This function evaluates the zero-order modified Bessel function
of the first Kind as a polynomial series of up to 25 terms.

Window size

Kaiser window coefficients

Attenuation of Kaiser window in db

Modified Bessel function of the first
kind (zero order)

Y*X/2.
T*I.E-08

E*l.

DE*1.

DO 20 1*1,25
XI = I

DE*DE*Y/XI
SDE=DE**2
E=B*SDE

IF(E#T-SDE)20,20,40
20 CONTINUE
40 INO*E

RETURN

END
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Appendix C : Circuit diagrams

This Appendix presents the circuit diagrams of the real-time hardware

filter of Chapter 5. The following signals from the scanner are required.

- ADCLK : A/D converter clock.

- LP : End of A-scan line pulse.

- Gq...G5 : 6-bit A/D converter output (GQ is the LSB).
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