

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429709421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Quantum Computing

From Theory to Practice

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Einar Pius

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

to the
University of Edinburgh

August 2014

Abstract

The term quantum parallelism is commonly used to refer to a property of quantum

computations where an algorithm can act simultaneously on a superposition of states.

However, this is not the only aspect of parallelism in quantum computing. Analogously

to the classical computing model, every algorithm consists of elementary quantum

operations and the application of them could be parallelised itself. This kind of

parallelism is explored in this thesis in the one way quantum computing (1WQC) and

the quantum circuit model.

In the quantum circuit model we explore arithmetic circuits and circuit complexity

theory. Two new arithmetic circuits for quantum computers are introduced in this

work: an adder and a multiply-adder. The latter is especially interesting because its

depth (i.e. the number of parallel steps required to finish the computation) is smaller

than for any known classical circuit when applied sequentially. From the complexity

theoretical perspective we concentrate on the classes QAC0 and QAC0[2], the quantum

counterparts of AC0 and AC0[2]. The class AC0 comprises of constant depth circuits with

unbounded fan-in AND and OR gates and AC0[2] is obtained when unbounded fan-in

parity gates are added to AC0 circuits. We prove that QAC0 circuits with two layers

of multi-qubit gates cannot compute parity exactly. This is a step towards proving

QAC0 6= QAC0[2], a relation known to hold for AC0 and AC0[2].

In 1WQC, computation is done through measurements on an entangled state called

the resource state. Two well known parallelisation methods exist in this model:

signal shifting and finding the maximally delayed general flow. The first one uses

the measurement calculus formalism to rewrite the dependencies of an existing

computation, whereas the second technique exploits the geometry of the resource state

to find the optimal ordering of measurements. We prove that the aforementioned

methods result in same depth computations when the input and output sizes are equal.

Through showing this equivalence we reveal new properties of 1WQC computations

and design a new algorithm for the above mentioned parallelisations.

i

Declaration

Except where otherwise stated, the research undertaken in this thesis was the unaided

work of the author. Where the work was done in collaboration with others, a significant

contribution was made by the author.

Parts of this work have been published in the Journal of Quantum Information

Processing [1] and other parts submitted to the Journal of Quantum Information and

Computation. An earlier archived version of the latter can be found at [2].

E. Pius

August 2014

ii

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors Elham

Kashefi, Chris Johnson, and Chris Maynard. I thank Elham for getting me interested

in quantum computing in the first place, and for asking the right questions during the

PhD. She guided me through my PhD while being both critical and encouraging at the

same time and I am grateful for that. I also thank Chris Maynard, who is responsible

for me pursuing a topic that eventually led me to the quantum arithmetic circuits.

And many thanks to Chris Johnson who took up my supervision from Chris Maynard

midway through my PhD and has taken care of me since then.

I would like to thank Alain Tapp who kindly accepted me as a visiting student at the

University of Montreal in autumn 2012. The discussions I had with Alain ultimately

led to the two results in the final part of the thesis. I would like to thank my colleagues

Vedran Dunjko, Raphael Dias da Silva, and Theodoros Kapourniotis for the good times

we had together and for the discussions we had.

This PhD was made possible through the funding from the Archimedes Foundation in

Estonia and for that I am very grateful.

Finally, but by no means least, I am grateful to my lovely girlfriend Riinu, who not only

supported me while I was spending long hours in the evenings working on the thesis,

but also helped me proofread my work. I could not have done it without her.

iii

Contents

Abstract i

Declaration ii

Acknowledgements iii

Contents iv

List of figures vii

List of tables ix

Introduction 1

I Quantum Arithmetic Circuits 5

1 Preliminaries 8
1.1 Classical Circuits . 8

1.1.1 Numerical Representation . 10
1.2 Quantum Circuits . 13

1.2.1 Unbounded Quantum Gates . 20
1.2.2 Translating Boolean circuits to quantum circuits 22
1.2.3 The Quantum Fourier Transform 24

1.3 Arithmetic Circuits . 26
1.3.1 Adders . 27
1.3.2 Multipliers . 40
1.3.3 Multiply-Adders . 42

2 The QFT Multiply-Adder 45
2.1 The QMAC Circuit . 45
2.2 Analysis of the Circuit . 49

2.2.1 Pipelining: a classical alternative 54

3 The QFT Adder 55
3.1 The QFT Adder Circuit . 56

iv

CONTENTS

3.2 Analysis of the Circuit . 58

4 Implementing the QFT Arithmetic Circuits 64
4.1 Initialisation . 65
4.2 The Semiclassical QFT . 67
4.3 The Final Fan-Out . 67
4.4 The Optimised Two-Qubit QMAC . 68

4.4.1 Verifying the circuit . 71

5 Discussion and Results 74

II Measurement Based Quantum Computing 78

6 Preliminaries 80
6.1 The measurement calculus . 81

6.1.1 An example measurement pattern 83
6.1.2 Rewriting patterns . 84

6.2 Determinism in 1WQC . 84
6.2.1 Flow . 85
6.2.2 General flow . 86
6.2.3 Focused flow . 88

7 Signal shifted flow 89
7.1 Signal shifting . 89

7.1.1 The definition of signal shifting 89
7.1.2 Understanding signal shifting . 90
7.1.3 An algorithm for signal shifting 93

7.2 Constructing the SSF . 97
7.3 SSF and gflow . 100
7.4 Properties of SSF . 103

8 Computational Depth of SSF 106
8.1 The last two layers . 107
8.2 Reducing the open graph . 114
8.3 Moving back . 121
8.4 Proof of the optimality theorem . 123

9 Discussion and Results 126

III Quantum Circuit Complexity 128

10 Preliminaries 130
10.1 Classical Low-Depth Complexity Classes 130
10.2 Quantum Low-Depth Complexity Classes 132

v

CONTENTS

11 Properties of QAC circuits 140

12 Lower Bounds on Parity 144

13 Discussion and Results 155

References 157

Publications 163

vi

List of Figures

1.1 Computing the depth of a Boolean circuit. 9
1.2 Adding a negative number in the two’s complement representation using

columnar addition. The values in the carry row correspond to the carry
from the added bits in the previous column, i.e. the carry bit is 0 if the
sum of the previous column above the line is 01 or 00, and 1 if the sum
is 10 or 11. 12

1.3 Multiplying two integers in the two’s complement representation 13
1.4 An example quantum circuit. 16
1.5 Calculating the depth of a quantum circuit. 17
1.6 Common Quantum Gates. 18
1.7 A legend of the notation used in this thesis. 19
1.8 The principle of deferred measurement 20
1.9 Transforming a Toffoli to a ∧Z gate. 21
1.10 Transforming a parity to a fan-out gate. 22
1.11 The four unbounded gates used in this thesis. 23
1.12 Using the Toffoli gate to replace classical Boolean gates. 24
1.13 The Quantum Fourier Transform . 25
1.14 The half adder . 28
1.15 The full adder . 29
1.16 The quantum full adder . 30
1.17 The decomposition of the Toffoli gate into two-qubit gates [42]. 30
1.18 The ripple-carry adder . 31
1.19 The 8-bit Kogge-Stone Adder . 34
1.20 The carry-save adder . 36
1.21 The Draper adder. 37
1.22 The phase shift block of a k-qubit Draper adder. 38
1.23 The structure of the Wallace and Dadda multipliers 41
1.24 A multiply-accumulator circuit. 44

2.1 The parallel Qj(y) operator . 48
2.2 The parallel hybrid circuit of the Mj(y, x) operator. 49
2.3 The parallel hybrid circuit of the M(y, x) operator. 49
2.4 Applying the QMAC n times in a sequence 50

3.1 The parallelised Draper phase shift block 56

vii

LIST OF FIGURES

3.2 Constructing the QFT Adder: parallelising the phase shift block 56
3.3 Constructing the QFT Adder: from in-place to out-of-place adder 57
3.4 Constructing the QFT Adder: removing the initial QFT 57
3.5 Constructing the QFT Adder: removing the cancelling fan-out gates . . 57
3.6 Applying the QFT adder n times in a sequence 61

4.1 The semiclassical QFT . 67
4.2 Replacing the final fan-out gates in a circuit with measurements 69
4.3 An optimised two qubit QMAC circuit 70

6.1 An example of an open graph . 82
6.2 The open graph corresponding to a Jθ gate 83
6.3 Examples of open graphs with flow, gflow and no gflow 86

7.1 Signal shifting a measurement pattern 91
7.2 A measurement pattern, which would not benefit from signal shifting . . 92
7.3 Extending a stepwise influencing path 105

8.1 A gflow g with |I| = |O| and |V ≺g1 | < |V
≺g
0 | 107

8.2 Finding additional vertices connected to s(i) 108
8.3 The initial conditions required for Lemma 8.3. 109
8.4 The final conditions proved in Lemma 8.3. 109
8.5 An SSF reduced open graph . 115
8.6 The possible ways a vertex can be connected to two sets of vertices . . . 116

10.1 Merging subsequent AND gates . 131
10.2 The hierarchy of classical and quantum low-depth complexity classes. . 139

11.1 The ∧Z gate applied to |0〉 . 143
11.2 The ∧Z gate applied to |1〉 . 143

12.1 Simplifying a multi-gate depth one QACa circuit. 145
12.2 The general structure of multi-gate depth two QACa circuits. 148
12.3 The simplified structure of multi-gate depth two QACa circuits. 148
12.4 Dividing a multi-gate depth two QACa into ∧Z blocks. 150

13.1 A multi-gate depth two circuit computing parity of four qubits 156

viii

List of Tables

1.1 Comparison of classical and quantum ripple-carry adders 32
1.2 The value of carry output in a carry-lookahead adder 33
1.3 Comparison of classical and quantum carry-lookahead adders 35
1.4 Comparison of classical and quantum carry-save adders 37
1.5 Draper Adder Resources . 39
1.6 Dadda Multiplier Resources . 42
1.7 The depth and gate count of the MAC 42

2.1 A summary of the properties of the MAC and QMAC circuits 53
2.2 A detailed comparison of the MAC and QMAC circuits 53

3.1 Comparison of the QFT adder with carry-save and Draper adders . . . 62
3.2 A breakdown of the properties of the QFT, carry-save, and Draper adders 63

5.1 Summary of possible optimisations to the QFT Arithmetic circuits. . . . 77

ix

Introduction

The quantum computing model has two concepts of parallelism. First, quantum

computations can act on a superposition of states, modifying all of them simultaneously.

This effect has for example been used in the famous Shor’s [2] and Grover’s [3]

algorithms and does not exist in classical computers. Second, the parallelism

achieved through the application of multiple quantum gates simultaneously. This

corresponds to the classical approach of parallelisation and has been studied in both

the circuit [4, 5, 6, 7, 8] and one way quantum computing (1WQC) model [9, 10, 11].

The latter kind of parallelism, which is the focus of this work, is important in at least

two aspects. First, parallel computations could be executed faster (that is the main

motivation for parallelising), thus reducing the time that quantum states need to be

coherent for. Second, the quantum model could allow the implementation of some

algorithms in a more parallel manner than is possible classically, thus computations

could possibly run faster on parallel quantum computers. This has motivated the search

for new parallel quantum algorithms [12] and parallelisation methods [9, 10, 11]. The

problem addressed in this work is twofold: do there exist any arithmetic operations

benefitting from quantum parallelism, and how much can we expect to parallelise

computations in the quantum model?

The first part of this thesis presents a new quantum arithmetic circuit, which is

more parallel than any of its known classical counterparts. The later chapters try

to establish limits on parallelism in quantum computing by first clarifying that two

common methods in 1WQC model produce equivalent results (Part II) and proving a

lower bound on the parallel circuits computing parity (Part III).

This work introduces two new quantum Fourier transform (QFT) based arithmetic

circuits. The first of these circuits, the QFT multiply-accumulator (QMAC), is

introduced in Chapter 2 and has been published in the Journal of Quantum Information

processing [1]. A multiply-accumulator (MAC) is a circuit performing the operation

z = z+xy on numbers and is an important operation in modern digital signal processors;

1

LIST OF TABLES

thus accelerating this operation has significant practical uses. Our QMAC is the first

published quantum MAC circuit and the first basic quantum arithmetic circuit that

exhibits a lower depth than any of its classical counterparts. The defining feature of the

QMAC is its depth on sequential application, which is asymptotically smaller than in

any previously known classical or quantum MAC. This property makes the QMAC not

only a suitable candidate for a MAC unit in future quantum processors, but it could

be beneficial to implement it as an accelerator or co-processor in classical computers.

The second arithmetic circuit, the QFT adder presented in Chapter 3, has not yet been

published. It was initially left out of the QMAC paper [1] since it does not exhibit

an asymptotically lower depth than its classical counterparts, as the QMAC does.

However, later analysis showed that in sequential application its implementation could

have as much as 24 times smaller depth than any other quantum adder. Therefore,

possible future developments of quantum processors should consider the use of the QFT

adder.

In August 2013, the QMAC was presented to the physicists at the Centre for Quantum

Photonics in the University of Bristol. There was interest in the QMAC and questions

about simplifying the circuit for implementation with the technology available to their

group. Their interest and questions motivated the inclusion of Chapter 4, which

contains modifications that could simplify the experimental realisation of a QMAC.

One request from the Bristol group was the simplified circuit schema of a QMAC with

an explicit proof that it would perform the multiply-accumulation of a two-bit integer.

This circuit is included towards the end of Chapter 4 and could be used as a starting

point for experimentalists wishing to implement the QMAC.

The second part of the thesis focuses on parallelisation methods in the one way

quantum computing (1WQC) model. Computations in the 1WQC model are performed

by doing measurements on entangled qubits. These measurement outcomes are in

general probabilistic, but can be used to correct subsequent measurements to obtain

computations performing unitary operations [13]. The main result of Part II states

that two well known parallelisation techniques in 1WQC result in equal depth when

applied to computations translated from quantum circuits. These two methods

work on distinct representations of measurement based computation: one on the

measurement patterns [14] and the other on the flows [15] and general flows [16]

of the underlying graph. The description of flows and of the 1WQC is included in

Chapter 6, signal shifting is covered separately in Chapter 7. First of those methods,

signal shifting [14], comprises of a set of rewriting rules for measurement patterns.

The second technique, finding the maximally delayed general flow [9], uses only the

structure of the graph representation of 1WQC to provide a low depth dependency

2

LIST OF TABLES

structure for the measurements. Through the construction of the proof, many new

properties of 1WQC which could be used in future research of flows and signal shifting

have been discovered. One of the main techniques from the proof has already been

successfully applied to construct a translation method from 1WQC to quantum circuits

which does not increase the number of qubits in the computation [17]. In the course of

constructing the main proof, a new algorithm for signal shifting and finding maximally

delayed general flows is created. This new algorithm works on computations derived

from quantum circuits and requires O(n2) operations to complete. This is smaller than

the operations required for the best previously known algorithms for signal shifting and

finding the maximally delayed general flow, O(n6) [14] and O(n2) [9] correspondingly.

The work in Part II is available on arXiv.org [18] and has been submitted to the Journal

of Quantum Information and Computation.

The final part of this thesis focuses on quantum circuit complexity. Proving lower

bounds in complexity theory for general circuits is very hard, hence numerous circuit

families with various restrictions have been created. One of those restrictions limits the

depth of the circuits. Depth restricted circuits can also be seen as parallel circuits, since

the number of gates and bits/qubits allowed is polynomial in input, i.e. a larger number

of resources can be used to simultaneously perform a computation in fewer sequential

steps. The only lower bound known in quantum parallel complexity is between the

classes QNC0 and QAC0. The class QNC0 consists of constant depth quantum circuits

containing only quantum gates that act on a constant number of qubits. The class

QAC0 is the quantum equivalent to the classical AC0 class: constant depth Boolean

circuits with unbounded fan-in AND, OR and NOT gates. Unbounded fan-in means

that the gates can have an arbitrary number of inputs. The inequality QNC0 6= QAC0

holds because circuits in the QNC0 class cannot compute functions that depend on all

the input qubits [6].

Although not many lower bounds have been found, research in quantum circuit

complexity has revealed surprising differences in the relations between quantum circuit

classes and their classical counterparts. First, the quantum circuit classes QAC0[n]

and QAC0[m] have been proven to be equal for every m and n [5], whereas in classical

circuit complexity AC0[p] 6= AC0[q] for distinct primes p and q [19, 20]. QAC0[m] is the

quantum counterpart to the AC0[m] class, which is the class AC0 with the addition of

Mod m gates acting on any number of inputs. Second, the relation AC0[p] ⊂ TC0 [21]

(where p is a prime) between the classical classes does not hold for their quantum

counterparts, where QTC0 ⊆ QAC0[m] (for every m) [7, 22]. Here TC0 notes constant

depth threshold circuits, i.e. circuits with unbounded threshold gates and QTC0 is its

quantum counterpart where quantum threshold gates are used. Since in [7] it was

3

LIST OF TABLES

also established that TC0 ⊆ QAC[m]0, these results show that the quantum parallel

complexity classes QAC0[m] are strictly more powerful than their classical counterparts.

We present two new results in low depth quantum circuit complexity theory. These

two results are a step towards proving the inequality of two quantum circuit classes:

QAC0 and QAC0[2]. Admittedly, the initial goal was to prove this inequality in this

thesis, but this was not possible under the time constraints imposed by this PhD. The

relation AC0 6= AC0[2] is known to hold for classical circuits [23]. The approach in

proving that QAC0 6= QAC0[2] is to show that computing the parity of input qubits,

possible in QAC0[2], cannot be done in QAC0. It has already been shown that this is

impossible exactly and cleanly if the number of auxiliary qubits in the circuit is less

than the input size [8]. However, before this work nothing was known for the case when

the number of auxiliary qubits is polynomial in the input size. First, we prove that QAC

circuits with one multi-qubit gate layer cannot compute parity even probabilistically.

Second, we show that when the number of multi-qubit gate layers is two, parity cannot

be computed exactly and cleanly. During these two proofs, a number of properties for

QAC circuits are discovered. These could be useful in proving the inequality of the

QAC0 and QAC0[2] classes.

There exist computational problems that exhibit more parallelism in the quantum than

classical computing mode. This thesis expands the number of problems benefiting from

quantum computers by introducing a new parallel quantum arithmetic circuit (Part I),

while establishing boundaries through proving the equivalence of two parallelisation

methods (Part II) and giving a new lower bound of the parity function (Part III).

4

Part I

Quantum Arithmetic Circuits

5

Quantum computing has the potential to dramatically change the nature of computing,

but has mostly been a theoretical subject partly due to the difficulties in building

physical quantum circuits. However, recent progress has enabled the first, albeit small,

quantum devices to be constructed, for example utilising photonics [24]. These devices

are not complete quantum computers, but consist of simple quantum circuits capable

of processing information to solve specific problems. These devices can be made in

silicon [24] which could lead to their integration with conventional microelectronics.

How would such a hybrid of conventional and quantum microprocessor be used? Co-

processor architectures have been developed in the past but perhaps the most promising

context would be to consider the quantum device as an accelerator.

There are several examples of modern heterogeneous computer architectures. For

example, Graphical Processing Units (GPUs) have been used extensively in the field

of scientific numerical computing to accelerate specific aspects of these calculations,

where some suitably defined kernel, i.e. the core of the computation, is offloaded

from the CPU and executed faster on the GPU. Another analogy can be drawn

with field programmable gate arrays (FPGAs) where particular computational patterns

in software can be instantiated in hardware using the reprogrammable logic of these

devices, see for example [25, 26]. Rather than accelerating an entire kernel as would

be required for a GPU, a quantum device could be employed to accelerate a specific

computational pattern. Moreover, as this device would function as an accelerator,

a complete quantum computer would not be required. Furthermore, the effects of

quantum decoherence which destroys quantum information can be mitigated because

such quantum circuits need only to be in an entangled state for a brief period compared

to a full quantum computer.

The main result of this chapter is a quantum multiply-adder (QMAC) circuit, which

could potentially be implemented as a quantum accelerator for classical computers. It

is the first quantum multiply-adder design and, more importantly, the first quantum

arithmetic circuit that has a smaller depth than its classical counterparts. This is

achieved through the use of the Quantum Fourier Transform (QFT) and entangled

quantum states combined with the ability to easily copy classical bits. This new

quantum-classical hybrid circuit is presented in Chapter 2. A MAC is an important

hardware module, i.e. electronic sub-circuit, in digital signal processors (DSPs), which

are used, for example, in audio and video processing, encryption, pattern recognition,

etc [27]. Since DSPs have a very wide area of application, improving the performance

of MACs would be immensely useful. There exist two types of DSPs: fixed point and

floating point DSPs. The integer QMAC introduced in this work can be adapted for

fixed point arithmetics and could thus be used instead of classical MAC circuits in fixed

6

point DSPs.

This part starts with a brief introduction to classical and quantum arithmetic circuits

in Chapter 1 and contains some basic concepts and definitions referred to throughout

this thesis (not just from Part I). After the introduction of the QMAC circuit in

Chapter 2, the same techniques are applied in Chapter 3 to create a parallel quantum

adder, corresponding to a highly parallel Draper adder [28]. Chapter 4 contains

implementation optimisations applicable to both the QMAC and the new adder,

followed by the discussion about the results and impact of the new arithmetic circuits

in Chapter 5.

7

Chapter 1

Preliminaries

1.1 Classical Circuits

The classical arithmetic circuits in this work are represented as Boolean circuits.

Definition 1.1 (Boolean circuit [29]). A Boolean circuit is a directed graph with a set

of source nodes called the inputs, and one or more sink nodes called the outputs. Each

internal node, or “gate,” is labelled AND, OR, NOT, and produces the corresponding

function of its inputs. This graph is acyclic, meaning that there are no loops -

information flows in one direction from the inputs to the outputs.

In our work we also allow the use of the XOR gate in the Boolean circuits, since the

gate set consisting of consisting of NOT, AND, OR, and XOR is the usual gate set

used in the literature on arithmetic circuits. We use a · b for representing the AND of

two bits, a + b for the OR, a ⊕ b for the XOR, and ¬ for the NOT. The XOR an be

replaced with two AND, one OR, and one NOT gate (Equation 1.1), thus the number

of gates in our circuits is at most four times smaller than when using a gate set without

the XOR.

a⊕ b = (a+ b) · ¬(a · b) (1.1)

Some estimates on the number of gates used in circuits require rounding of values. We

use dne to denote the value of n rounded up to the nearest integer and bnc the value of n

rounded down to the nearest integer. The fan-in of a gate is its number of inputs [30].

Logic gates usually have a constant fan-in, i.e. they act on a fixed (usually small)

number of bits. This number is often, as in this thesis, chosen to be 2. The fan-out of

a circuit is the number of outputs a gate has [30]. This value is usually considered to

8

1.1. Classical Circuits

XOR

AND
OR

XOR

AND

AND

AND

x1

x2

x3 x4

x5

o1

o2

Figure 1.1: An example illustrating the concept of depth in Boolean circuits. The longest
directed paths from inputs to outputs is highlighted in bold. In this example, there exist two
longest paths (from x2 to o2 and from x3 to o2). The length of the path is the number of gates
it passes through. In this circuit the longest path, and thus the depth, of this circuit is 4.

be unbounded, i.e. there can be any number of outputs. The main parameter we use

in comparing parallelism in classical and quantum circuits is the depth of the circuit.

Definition 1.2 (The depth of a Boolean circuit [31]). The depth of a Boolean circuit

is the longest directed path from an input to the output.

An example illustrating the depth of a Boolean circuit is in Figure 1.1. Each circuit can

only process inputs of a specific size, but often it is useful to estimate how the circuits’

parameters like number of gates or depth depend on the input size. This can be done

by using circuit families.

Definition 1.3 (Circuit families [31]). Let T : N → N be a function. A T (n)-size

(depth) circuit family is a sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs

and a single output, and its (depth) size is |Cn| ≤ T (n) for every n.

Throughout this thesis, if it is mentioned that there exists a O(n) depth (or size, etc.)

circuit solving a problem, it is implicitly meant that there exists a family of O(n) depth

(or size, etc.) circuits.

Obviously the time it takes to execute any circuit depends very much on the

implementation but it is proportional to the depth of the circuit. In addition to the

number of gates on the longest path, there are many other parameters that contribute

to the execution time of a digital circuit: wiring, fan-out, etc. The depth is thus not

the most accurate measure of performance, but it is an implementation independent

way to compare the performance of various circuits. This is especially desirable when

comparing classical circuits with quantum circuits, since there has not yet emerged a

quantum architecture from where the execution times of different components could be

taken. The classical arithmetic circuits presented here are often represented as digital

circuits, where the term delay [30] is used instead of depth to represent the performance

9

1.1. Classical Circuits

of a circuit. There, each type of gate is assigned a fixed gate delay and the overall delay

of the circuit is the longest delay from inputs to outputs. This work uses the simpler

notion of depth, because it is the concept used in circuit complexity theory, which is

the focus of Part III.

1.1.1 Numerical Representation

Although the arithmetic circuits presented in this thesis are shown to work for unsigned

integers, they can be generalised to signed fixed point numbers. Unsigned integers

are used since this simplifies the notation. The adaption to use signed fixed point

numbers does not require any changes to the circuits as will be explained in the following

sections. The concepts following can be found in most of the textbooks on digital signal

processing or on computer arithmetic circuits [27, 30, 32, 33].

Fixed Point Representation

There are two main representations for real numbers in digital circits: the floating

point and the fixed point representations [27, 30, 32, 33]. This thesis uses the fixed point

representation since it is not clear if and how the new arithmetic circuits designed in the

later chapters can be adapted to floating point representation. Although the floating

point representation has superior precision and ease of use when programming, the

fixed point system is still widely used. The main advantages of fixed point arithmetic

circuits are its simple and cost efficient implementation and performance compared

to the floating point systems. When large value ranges are not needed, fixed point

representation is often suitable and provides a speed-up over floating points [30].

Thus, many Digital Signal Processors (DSPs) still use fixed point systems (for example

the Texas Instruments TMS320C64xx [34] and the Analog Devices Blackfin [35] DSP

families).

In this work the binary representation of integers is used. In a conventional number

system every k-digit number x can be written as [30, 32]

k∑

i=1

wixi, (1.2)

where xi is the i-th digit of x and wi is the weight associated with the digit. In the

binary system wi is always a power of two and xi ∈ {0, 1}. Generally, a number can

have both an integer and a fractional part. In the fixed point system this can be

10

1.1. Classical Circuits

achieved by interpreting the m rightmost digits as the integer part and k−m leftmost

digits as the fractional part. These two parts are separated by the radix point (.).

For example in the number z9z8z7z6z5.z4z3z2z1 the 4 rightmost digits comprise the

fractional part and the digits z5 to z9 make up the integer part. In general the fixed

point representation of a k digit number z with an m-digit fractional part is written

as zk · · · zm−2zm−1.zm · · · z2z1. The weights of the bits in the integer part are always

non-negative powers of two and the weights of the fractional parts are negative powers

of two. The value of a k-bit fixed point number with m bit fractional part is therefore

k∑

i=1

2i−1−mxi. (1.3)

As an example, the binary number z9z8z7z6z5.z4z3z2z1 can be written as

z92
4 + z82

3 + z72
2 + z62

1 + z52
0 + z42

−1 + z32
−2 + z22

−3 + z12
−4. (1.4)

The fixed point numbers are stored as integers, with the position of the radix point

stored separately. To add or subtract two fixed point integers with the radix point at

the same position, it is enough to add or subtract the underlying integers and keep the

radix point at the same location. To multiply two fixed point integers with the radix

point at the same position, the underlying integers can be multiplied together and the

radix point will be positioned to twice as many digits from the right as it was before.

This way it is also easy to obtain the new fixed point value with the radix point at the

same position as the multiplicands: namely the last digits can be just discarded or not

even computed. This allows us to use the arithmetic circuits presented in this thesis on

integers without having to consider whether the integers represent fixed point numbers

or not. The downside of using the fixed point representation is the loss of precision.

Namely, when multiplying two fixed-point numbers, the result can have as many bits

as the sum of the number of bits in the multiplicands. To fit the result in a fixed size

register of the size of the inputs, some of the bits might have to be be discarded. In

the worst case, half of the bits need to be discarded resulting in a significant loss of

precision.

Two’s Complement Representation

It is possible to perform arithmetic operations on signed integers (and thus also on

signed fixed point values as explained in the previous section) as if they were all

positive and just interpret the numbers as having a sign. This greatly simplifies the

11

1.1. Classical Circuits

implementation of digital arithmetic circuits by eliminating the need for considering

signs independently. One way of achieving this is to use the two’s complement

representation, which is also the most common representation for signed integers

in modern computers. In two’s complement representation, the negative number is

represented by [30]:

1. taking the binary representation of its positive counterpart,

2. flipping the bits of the positive counterpart,

3. adding one to the result.

For example the two’s complement representation of a six bit number -13:

1. the binary representation of 13 is 001101,

2. flipping these bits results in 110010,

3. and finally, adding 1 to it gives the two’s complement representation of -13:

110011.

The sign of integers in the two’s complement representation is determined by the

leftmost bit: 0 for unsigned and 1 for signed. Adding negative numbers in this

representation does not require any overhead and subtraction can be performed by

adding the two’s complement of the positive number. An example showing how adding

a negative number results in a correct answer is shown in Figure 1.2. Multiplication

1 1 0 1 1 0 (carry)

0 1 0 1 1 0 (22)

+ 1 1 0 0 1 1 (-13)

0 0 1 0 0 1 (9)

Figure 1.2: Adding a negative number in the two’s complement representation using columnar
addition. The values in the carry row correspond to the carry from the added bits in the previous
column, i.e. the carry bit is 0 if the sum of the previous column above the line is 01 or 00, and
1 if the sum is 10 or 11.

works similarly, with the additional constraint that the result must fit in the number of

bits available, but this needs to be considered even when regular binary representation

is used. The intermediate results need only to hold as many bits as is in the result, the

rest can be discarded. An example of how multiplication in two’s complement notation

works is presented in Figure 1.3 as noted by d in the example below:

Thus addition and multiplication of signed two’s complement numbers can be done

using exactly the same method as for unsigned integers. Therefore, although unsigned

12

1.2. Quantum Circuits

0 0 0 0 1 1 (3)

× 1 1 1 0 1 1 (-5)

0 0 0 0 1 1

0 0 0 1 1 0

0 0 0 0 0 0

0 1 1 0 0 0

1 1 0 0 0 0

d 1 0 0 0 0 0

d 1 1 0 0 0 1 (-15)

Figure 1.3: Multiplying two integers in the two’s complement representation. The
multiplication is done in two stages. First, the partial products are found by multiplying each
bit in the multiplier (-5) with the multiplicand (3). In the second stage, the partial products
are summed together. Here the result should be a 6-bit number, hence the 7th (leftmost) bit is
discarded.

integers are used in this thesis, the circuits would work for signed numbers in two’s

complement representation.

1.2 Quantum Circuits

We assume that the reader of this thesis is familiar with the basics of quantum

computing. A good overview can be found in the textbooks of Nielsen and Chuang [36],

and Kaye, Laflamme and Mosca [37]. Nevertheless, we provide a very brief introduction

to quantum circuits and highlight some of the definitions, concepts, terms and

techniques most often used in this thesis. We also give the four postulates of quantum

mechanics which define the underlying the mathematical framework required for this

thesis.

The analogue of the classical bit in quantum computing is the qubit. A qubit

corresponds to a two-dimensional quantum mechanical system.

Postulate 1.1 (State Space Postulate [37]). The state of a quantum system is described

by a unit vector in a Hilbert space H.

We can choose an orthonormal basis in the two-dimensional Hilbert space and label

the basis vectors as |0〉 and |1〉. Then the general state of a qubit is:

α|0〉+ β|1〉, (1.5)

where α and β are complex coefficients and |α|2 + |β|2 = 1. The {|0〉, |1〉} basis for the

state of a qubit is called the computational basis. Physical systems can be combined

13

1.2. Quantum Circuits

to form a larger composite system, the following postulate explains how these systems

can be described.

Postulate 1.2 (Composition of Systems Postulate [36]). The state space of a composite

physical system is the tensor product of the component physical systems. Moreover, if

we have systems numbered from i through n and the system number i is prepared in the

stat |ψi〉, then the joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

As a shorthand the tensor product |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 is commonly written as

|ψ1ψ2〉 · · · |ψn〉, where ψi ∈ {0, 1}. An n-qubit state is thus a unit vector in the n-fold

tensor product space H1 ⊗ H2 ⊗ · · · ⊗ Hn. The 2n basis states of this space are the

n-fold tensor products of the states |0〉 and |1〉. With these basis states, a n-qubit state

|φ〉 is a 2n dimensional complex unit vector

|φ〉 =
∑

i∈{0,1}n
αi|i〉. (1.6)

Not all multi-qubit states can be written as tensor products of their components, the

ones that cannot be represented as products are entangled states.

Definition 1.4 (Entangled states [36]). A multi-qubit state is entangled if it cannot

be written as a product of its component states.

A quantum system whose state is known exactly is said to be in a pure state, otherwise

the system is said to be in a mixed state. A mixed state is described by a density

operator :

ρ =
∑

i

pi|ψi〉〈ψi|, (1.7)

where pi is the probability that the system is in the pure state |ψi〉. The density

operator of a pure state |ψ〉 is defined as

ρ = |ψ〉〈ψ|. (1.8)

To be able to perform computations with qubits, we need to be able to change their

state. The following postulate describes, how the state of qubits changes over time.

Postulate 1.3 (Evolution Postulate [37]). The time-evolution of a closed quantum

system is described by a unitary operator. That is, for any evolution of the closed

system there exists a unitary operator U such that if the initial state of the system is

14

1.2. Quantum Circuits

|ψ〉, then after the evolution the state of the system will be

|ψ′〉 = U |ψ〉. (1.9)

Thus one way to change the state of a quantum state is to apply a unitary operator to

it. Another operation that can change the state of qubits is the measurement, which

also gives us the way to observe quantum systems.

Postulate 1.4 (Measurement Postulate [36]). Quantum measurements are described by

a collection {Mm} of measurement operators. These are operators acting on the state

space of the system being measured. The index m refers to the measurement outcomes

that may result in the experiment. If the state space of the system is |ψ〉 immediately

before the measurement, then the probability that result m occurs is given by

p(m) = 〈ψ|M †mMm|ψ〉, (1.10)

and the state of the system after the measurement is

Mm|ψ〉√
〈ψ|M †mMm|ψ〉

. (1.11)

The measurement operators satisfy the completeness equation,

∑

m

M †mMm = I. (1.12)

An important measurement, used in this thesis, is the computational basis measure-

ment, defined by measurement operators M0 = |0〉〈0|, M1 = |1〉〈1|. It is easy to

see, that performing a computational basis measurement on a general quantum state

α|0〉 + β|1〉 results in 0 with probability |α|2 and in 1 with probability |β|2. All

measurements in this work are computational basis measurements unless they are

explicitly defined.

In the quantum circuit model the qubits are represented as horizontal wires and the

unitary operators are represented as gates acting on a number of wires [37]. A generic

quantum circuit can be seen in Figure 1.4. Unless explicitly stated, the circuits used

in this thesis are only allowed to contain one and two qubit gates. Computations

represented by quantum circuits are executed by applying quantum gates from left

to right until all the gates have been applied. Due to the following principle, all the

quantum wires at the end of the computation will be assumed to be measured in this

15

1.2. Quantum Circuits

thesis.

Principle 1.1 (Principle of implicit measurement [36]). Without loss of generality, any

unterminated quantum wires (qubits which are not measured) at the end of a quantum

circuit may be assumed to be measured.

|q2i
|q1i

|q3i
|q4i |o4i

|o3i
|o2i
|o1i

Figure 1.4: A generic quantum circuit. Each horizontal line represents a “wire”. Each wire
represents a qubit in the computation performed by the quantum circuit. |q1〉, |q2〉, |q3〉, and
|q4〉 are the initial states of the qubits represented by the wires. |o1〉, |o2〉, |o3〉, |o4〉 are the
output states of those qubits. The rectangles on the wires represent quantum gates. Gates can
be applied to any number of wires.

Assume that applying a gate to the qubits in the circuit takes one discrete time step,

and that gates acting on distinct qubits can be applied in parallel. Then we can divide

quantum circuits to a number of layers, so that executing each layer takes exactly one

time step. This allows us to define the central concept thesis: the depth of a quantum

circuit. The definition used throughout this work is adapted from [4] by removing the

restriction on using only one and two qubit gates, thereby allowing to compute the

depth of circuits containing unbounded gates in Part III.

Definition 1.5 (Quantum circuit depth, adapted from [4]). A one layer circuit is

a unitary operator consisting of a tensor product of gates where each gate couples a

disjoint set of gates. A quantum circuit of depth d is a unitary operator written as a

product of d one layer circuits.

An example of how the depth of a circuit can be found is shown in Figure 1.5. Parallel

circuit complexity teory uses asymptotic complexity of the circuit depth, instead

of execution time to compare algorithms. Rather than comparing exact execution

times, the number of parallel steps required to finish the computation is used. This

simplification allows to compare algorithms without the need to consider the underlying

architecture (by architecture we mean the technology used to implement the quantum

gates, i.e. photonics, ion traps, etc.). As long as the execution time of a quantum gate

does not depend on the input size, the exact execution time will differ by at most a

constant factor from the depth of the circuit. Note that although the asymptotic circuit

depth does not depend on the architecture, it depends on the computational model, i.e.

whether the computation is represented in the adiabatic, circuit, 1WQC, or any other

16

1.2. Quantum Circuits

|q2i
|q1i

|q3i
|q4i |o4i

|o3i
|o2i
|o1i

1. 2. 3. 4. 5. 6. 7.

Figure 1.5: An example of how the depth of a quantum circuit can be calculated by dividing
the circuit into layers. The depth of this particular circuit is 7.

model. This dependency on the model is due to translating an algorithm to a different

models, which can change the depth of the computation. For example, it is known

how to translate computations from circuit model to 1WQC without increasing the

depth [10], but it is not know how to perform the opposite depth preserving translation

in the general case (see Part II for more detailed description of depth in 1WQC).

Often, instead of computing the depth of a single circuit, a uniform family of quantum

circuits is used to estimate a it function of the number of input qubits. The definition

is very similar to the definition of Boolean circuit families in Definition 1.3.

Definition 1.6 (Quantum circuit families [6]). A quantum circuit family is a sequence

{Cn}n∈N of quantum circuits, where each Cn has n inputs. We say that {Cn} is uniform

if there is a classical polynomial-time algorithm that outputs Cn on input 0n.

For example, if we say that a quantum circuit has logarithmic depth, then we mean

that the number of discrete time steps it takes to evaluate the circuit increases

logarithmically corresponding to the problem size, and the depth of the circuit is

O(log n).

Implementing a specific quantum circuit exactly is not always possible with a finite

set of gates. It not necessary in practice to compute a circuit exactly, it is enough to

approximate it to some specific accuracy.

Definition 1.7 (Approximate unitary operators). A unitary operator V approximates

another unitary operator U with with error E(U, V), if

E(U, V) = max ‖(U − V)|ψ〉‖. (1.13)

An operator U can be approximated to arbitrary precision if for every ε > 0 there exists

another unitary V such that E(U, V) < ε.

17

1.2. Quantum Circuits

I =

(
1 0

0 1

)

X =

(
0 1

1 0

)

Y =

(
0 −i

i 0

)

Z =

(
1 0

0 −1

)

Z(α) =

(
1 0

0 e
iα

)

H =
1√
2

(
1 1

1 −1

)

J(α) =
1√
2

(
1 e

iα

1 −e
iα

)

The identity gate

The Pauli X gate

The Pauli Y gate

The Pauli Z gate

The arbitrary phase
rotation gate

The Hadamard gate

The J gate

The gate name The gate symbol and its
unitary matrix

Symbol used in
quantum circuits

X

CNOT =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎠

∧Z =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎠

The CNOT gate

The control-Z gate

The control-phase gate
Rn =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e
2πi

2n

⎞
⎟⎟⎠

The phase rotation
gate

P =

(
1 0

0 i

)

Y

Z

Z(↵)

P

H

J(↵)

Rn

The square root of
NOT gate VV =

1 + i

2

✓
1 �i
�i 1

◆

Figure 1.6: Some of the most common one and two-qubit quantum gates.

Every computation realisable by quantum circuits can be implemented approximately

by using only a small set of different gates. We call such set a universal set of gates.

18

1.2. Quantum Circuits

Definition 1.8 (Universal set of gates [37]). A set of gates is said to be universal, if

for any integer n ≥ 1, any n-qubit unitary operator can be approximated to arbitrary

accuracy by a quantum circuit using gates from that set.

Some of the most common one and two-qubit quantum gates are presented in Figure 1.6.

Most of the gates used in this work are present in this figure. The remaining gates are

either introduced immediately before they are used or are defined in Section 1.2.1. The

gates in Figure 1.6 can be used to create multiple distinct universal sets of gates, for

example {Z(π8), H,CNOT} [36] and {J(π8), H,∧Z} [38].

Many of the circuits presented in this work are hybrid circuits, i.e. circuits which

contain both classical and quantum bits and gates. Sometimes we also need to represent

multiple qubits or bits compactly in the figure. The notation used to display all this

information is shown in Figure 1.7.

| iy

| iy

Single bit (alternative)
Multiple bits

Single qubit (alternative)
Multiple qubits

Measurement of a qubit

Output bitInput qubit

| iy Single bit Single qubit

Figure 1.7: The notation used to distinguish between qubits and bits and multiple instances
of them. Double lines for bits are only used when there is the possibility ambiguity in the
figures, otherwise single lines are used for both bits and qubits. Likewise, the alternative single
qubit lines with a single dash are used to avoid confusion over whether multiple qubits or a
single qubit is meant.

Given a 1-qubit quantum gate U , the corresponding 2-qubit controlled-U gate, denoted

as ∧U , performs the following operation [36, 37]:

∧U |0〉|ψ〉 = |0〉|ψ〉, (1.14)

∧U |1〉|ψ〉 = |1〉U |ψ〉. (1.15)

The qubit that controls the application of U is called the control qubit and the qubit

on which U acts is called the target qubit. It is possible to replace a controlled quantum

gate at the end of a quantum circuit with a measurement of the control qubit in the

computational basis followed by the application of U to the target qubit if and only

if the measurement outcome is |1〉 [36, 37]. This is due to the principle of deferred

measurement.

19

1.2. Quantum Circuits

Principle 1.2 (Principle of deferred measurement [36]). Measurements can always be

moved from an intermediate stage of a quantum circuit to the end of the circuit. If the

measurement results are used at any stage of the circuit then the classically controlled

operations can be replaced by conditional quantum operations.

The principle of deferred measurement is illustrated in Figure 1.8. This useful property

of controlled gates is used in Chapter 4 to reduce the number of two-qubit gates in our

quantum multiply adder circuit and in Chapter 12 to analyse the probabilities of the

target qubit being modified.

U U

Figure 1.8: A controlled U gate at the end of a circuit can be replaced with a measurement
and a single-qubit gate.

The following trivial lemma is included since it is often used in both Part I and III of

this thesis.

Lemma 1.1. Quantum gates commuting with the measurement of the output qubit can

be removed from the circuit without affecting the measurement outcome of output qubit.

Proof. Let U be any quantum gate commuting with the measurement of the output

qubit o. Since U commutes with the measurement of o we can measure o and then

apply U . Obviously the application of U cannot influence the already measured value,

hence we can remove it from the circuit without affecting the measurement outcome

on o.

1.2.1 Unbounded Quantum Gates

In some instances gates that act on an unlimited number of qubits are used, these

quantum gates are called unbounded quantum gates.

Definition 1.9 (Unbounded quantum gates). A quantum gate U is unbounded if it

can act on unlimited number of qubits.

Unbounded quantum gates are used in quantum circuit complexity (See Part III) where

adding an unbounded gate to the set of gates allowed in a circuit can increase the

number of solvable problems in a complexity class. The unbounded quantum gates are

20

1.2. Quantum Circuits

also used in regular quantum circuits as a shorthand to denote their decomposition to

two-qubit and single-qubit gates, i.e. instead of writing out the full decomposition the

symbol of an unbounded gate is used. In what follows, the definitions of the unbounded

quantum gates used throughout this thesis are given.

Definition 1.10 (The unbounded Toffoli gate [8]). The unbounded Toffoli gate T is

the unitary operator implementing the following map

T |x1, x2, . . . , xn, b〉 = |x1, x2, . . . , xn, b⊕
n∏

i=1

xi〉. (1.16)

The symbol representing the unbounded Toffoli gates in quantum circuits is shown in

Figure 1.11(a).

Definition 1.11 (The unbounded ∧Z gate [8]). The unbounded ∧Z (controlled-Z) gate

is the unitary operator implementing the following map

∧Z|x1, x2, . . . , xn〉 = (−1)
∏n
i=1 xi |x1, x2, . . . , xn〉. (1.17)

The symbol representing the unbounded ∧Z gates in quantum circuits is shown in

Figure 1.11(b).

The unbounded Toffoli gates can be turned into ∧Z gates by applying Hadamard gates

to to the target bit of the Toffoli gate [8] as is shown in Figure 1.9.

HH

Figure 1.9: The ∧Z gate can be turned to a Toffoli gate with two Hadamard gates and vice
versa [8].

Definition 1.12 (The unbounded fan-out gate [8]). The unbounded fan-out gate F is

the unitary operator implementing the following map

F |b, x1, x2, . . . , xn〉 = |b⊕ x1, b⊕ x2, . . . , b⊕ xn〉. (1.18)

The symbol representing the unbounded fan-out gates in quantum circuits is shown in

21

1.2. Quantum Circuits

Figure 1.11(c).

Definition 1.13 (The unbounded parity gate [8]). The unbounded parity gate P is the

unitary operator implementing the following map

P |x1, x2, . . . , xn〉 = |x1, x2, . . . , xn, b⊕
n⊕

i=1

xi〉. (1.19)

The symbol representing the unbounded parity gates in quantum circuits is shown in

Figure 1.11(d).

The unbounded parity gate can be turned into an unbounded fan-out gate via layers

of Hadamard gates before and after the gate [5] as is shown in Figure 1.10.

HH

HH

HH

HH

2

Figure 1.10: The parity gate can be turned to a fan-out gate with two Hadamard layers and
vice versa [5].

The quantum MODq gate is a generalisation of the unbounded quantum parity gate.

Definition 1.14 (The unbounded MODq gate [5]). The unbounded MODq gate is the

unitary operator implementing the following map

MODq|x1, x2, . . . , xn〉 = |x1, x2, . . . , xn, b⊕Modq(x1, x2, . . . , xn)〉, (1.20)

where Modq(x1, x2, . . . , xn) = 1 if and only if
∑n

i=1 xi 6≡ 0 mod q.

1.2.2 Translating Boolean circuits to quantum circuits

Boolean circuits can be translated to quantum circuits on a gate-by-gate basis. This can

be done by replacing the Boolean gates with quantum gates, which on computational

basis input will output a single qubit computational basis state corresponding to the

22

1.2. Quantum Circuits

|bi

|x1i

|x2i

|xni

|b �
nY

i=1

xii

|x1i

|x2i

|xni

(a) The unbounded Toffoli gate

|x1i

|x2i

|xni

|x1i

|x2i

(�1)
Qn

i=1 xi |xni
(b) The unbounded ∧Z gate. The phase change
resulting by the application of the ∧Z gate can be
written before any of the n qubits, since it is not
associated with any particular qubit but with the
state |11 · · · 1〉.

|bi

|x1i

|x2i

|xni

|bi

|b � x1i

|b � x2i

|b � xni

(c) The unbounded fan-out gate

2|bi

|x1i

|x2i

|xni

|x1i

|x2i

|xni

|b �
nM

i=1

xii

(d) The unbounded Parity gate

Figure 1.11: The four unbounded gates used in this thesis.

output of the Boolean gate. First, the NOT gate is translated to a Pauli X gate since:

X|0〉 = |1〉 (1.21)

X|1〉 = |0〉 (1.22)

Second, the AND gate is replaced with a Toffoli gate and the input to the target bit is

fixed to |0〉 as shown in Figure 1.12(b). Third, the OR gate is replaced with one Toffoli

and four Pauli X gates as shown in Figure 1.12(c). Finally, we must consider the fan-

out in classical circuits. Since copying of qubits is not possible in general [36], this is not

a trivial operation as in Boolean circuits. Note that the intermediate states of a gate by

gate translation of a Boolean circuit will be computational basis states if the input is a

computational basis state, i.e. the input to the quantum circuit correspond to classical

bit-strings. It is possible to copy the value of qubits if they are in a computational basis

state, which is the case of a translation from Boolean circuits. Namely, the unbounded

fan-out-gate (Definition 1.12 and Figure 1.11(c)) copies the state of the control qubit

(b in Figure 1.11(c)) to target qubits (x1 to xn in Figure 1.11(c)) if they are initialised

to |0〉 [5]. Thus, every Boolean circuit has a corresponding quantum circuit. The

unbounded fan-out gates can be removed from the quantum translation of a Boolean

23

1.2. Quantum Circuits

|c � (a · b)i

|bi

|ai

|ci

|ai

|bi

(a) The Toffoli gate. The qubits a and b
are called control qubits and the c is called
the target qubit.s

|bi

|ai |ai

|bi

|0i |a · bi
(b) The Toffoli gate can be used to
compute the AND of |a〉 and |b〉 by setting
the target bit to |0〉.

|bi

|ai |ai

|bi

|1i |a + bi

X

X X

X

(c) Using Pauli X gates and the De Morgan’s laws the Toffoli gate can be used to compute the
OR gate.

s

Figure 1.12: Using the Toffoli gate to replace classical Boolean gates.

circuit by replacing them with O(log n) depth sub-circuits (where n is the number of

qubits the unbounded gate acts on) consisting of two-qubit CONT gates [4].

1.2.3 The Quantum Fourier Transform

The quantum Fourier transform (QFT) is the quantum analogue of the discrete Fourier

transform (DFT) algorithm. For a given dimension n, the DFT is a linear function

mapping the vector (a0, a1, . . . aN−1) in CN to the vector (b0, b1, . . . , bN−1), where

bx =
1√
N

N−1∑

y=0

e
2πixy
N ay. (1.23)

Let {|0〉, |1〉, . . . , |N−1〉} be an orthonormal basis ofH⊗2n . QFT is the unitary operator

that maps the n qubit quantum state
∑2n−1

x=0 ax|x〉 to the state
∑2n−1

x=0 bx|x〉, where

the amplitudes bx are the DFT values from equation 1.23. The QFT of a k-qubit

24

1.2. Quantum Circuits

computational basis state |z〉 has the following useful representation [36]:

QFT |z〉 =
1√
2

(|0〉+ e2πi0.z1 |1〉)

⊗ 1√
2

(|0〉+ e2πi0.z2z1 |1〉)

⊗ · · · (1.24)

⊗ 1√
2

(|0〉+ e2πi0.zk···z2z1 |1〉).

The circuit computing the QFT is given in Figure 1.13. Throughout this thesis we use

the following notation for the individual qubits in the quantum state resulting from the

application of QFT on a computational basis state:

|QFT (z)〉b =
1√
2

(
|0〉+ e2πi0.zb···z2z1 |1〉

)
. (1.25)

The QFT in Figure 1.13 will be used as a sub-circuit in the quantum arithmetic circuits,

Rk�1

Rk

H

|z1i

|z2i Rk�2

R2Rk�1

|zki

|zk�1i |QFT (x)i2

|QFT (x)i1

|QFT (x)ik�1

|QFT (x)ik

H

H

H

R2

Figure 1.13: The quantum circuit computing the QFT of up to a permutation of the output
qubits, i.e. the output qubits need to be rearranged by reversing their order. This circuit is the
QFT circuit presented in textbooks [36, 37] and has O(k) depth [12], which is conjectured to
be the best possible depth for the exact QFT [4]

thus the parameters of the circuit are given in the following lemma:

Lemma 1.2. The QFT of k qubits in Figure 1.13 requires k qubits, k single-qubit gates,

and (k2 − k)/2 two qubit gates.

Proof. The circuit acts only on the input qubits, without requiring any auxiliary qubits;

hence the number of qubits needed is k. The only single-qubit gates are the Hadamard

gates, of which there is exactly one applied to each qubit; thus the number of one qubit

gates is k. It can be seen from Figure 1.13 that every qubit zi is the control qubit for

exactly i− 1 two qubit controlled Rj gates. Thus the total number of two qubit gates

25

1.3. Arithmetic Circuits

is

k∑

i=1

i− 1 = k(k − 1)/2 = (k2 − k)/2. (1.26)

As a summary, the parameters of the circuit in Figure 1.13 are following:

• Depth: 2k − 1 [12] (Conjectured to be the best depth for the exact QFT [4]),

• Qubits required: k (Lemma 1.2),

• Single-qubit gates: k (Lemma 1.2),

• Two qubit gates: (k2 − k)/2 (Lemma 1.2),

• Total gates: k + (k2 − k)/2 = (k2 + k)/2.

As can be seen from equation 1.24, the result of applying QFT on a k-qubit

computational basis state can be written as a tensor product of k qubits; thus QFT

acting on a computational basis state does not create any entanglement. Indeed,

the quantum algorithms utilising QFT to obtain quantum speedup use the QFT on

entangled states (Shor’s factorising algorithm being one of them [2]). This allows the

transformation of 2k complex values in the amplitudes of a quantum state by using

only k qubits — something not feasible classically. This might leave the impression

that the QFT could be used to perform extremely fast DFT, but this is not the case.

The transformations are done on the amplitudes and in general it is not possible to

measure all the amplitudes of a quantum state.

1.3 Arithmetic Circuits

There are two basic arithmetic circuits relevant to this thesis: the adder and the

multiplier. These can be combined to to create a more complex circuit, the multiply-

accumulator, as will be shown in Section 1.3.3. There exists many different classical

arithmetic circuits for both adders and multipliers, each of them having its own

advantages and disadvantages. Many good textbooks exist describing them [27, 30,

32, 33], thus a review of all of them is not included in this thesis. Included are the

descriptions of some of the more parallel arithmetic circuits, with the purpose to give

an overview of the existing quantum and classical circuits and to provide a comparison

with the arithmetic circuits designed in the later chapters.

26

1.3. Arithmetic Circuits

1.3.1 Adders

The focus of this work is parallelism and this is reflected in the adders reviewed in

this section, these are the ripple-carry adder, the carry-lookahead adder, the carry-

save adder, and the Draper adder [28]. The full definitions of these adders is given in

following subsections. The ripple-carry adder is included since it is one of the simplest

adders and although not exhibiting much parallelism, it is worthwhile to include it

since the first quantum adder proposed was a ripple-carry adder [39]. The carry-

lookahead adder on the other hand is the most parallel classical adder with depth

O(log n) and has also a quantum counterpart [40]. The third adder, the carry-save

adder, differs from most classical adders by using a redundant representation. This

makes this adder particularly efficient in calculating sums of multiple numbers, allowing

sequential addition of numbers in constant depth, but requiring a final O(log n) addition

using a non-redundant adder. The final adder reviewed, the Draper adder [28], does

not have a classical counterpart, since it acts on the amplitudes of a quantum state in a

superposition. Although initially not exhibiting much parallelism, a new parallel adder

based on the Draper adder, exhibiting similar depth to the carry-save adder is created

in Chapter 3. Before reviewing the aforementioned adders, it is necessary to describe

the basic building blocks in classical arithmetic circuits — the half and full adder.

Half and Full Adders

The basic construction blocks of classical adders are the half adder and full adder.

These adders add together two and three input bits respectively.

Definition 1.15 (Half adder [30]). A half adder is a Boolean circuit which performs

the addition of two one bit input numbers. Given two input bits X and Y the output

bits S (Sum) and C (Carry) of the half adder are

S = X + Y, (1.27)

C = X · Y. (1.28)

Since the maximum result of adding two one bit numbers is 2, with binary represen-

tation 10, the half adder needs two output bits. A circuit depicting the half adder

is shown together with its truth table in Figure 1.14. The circuits used in this work

are the common constructions used in textbooks [27, 30, 32, 33], but there exists more

than one way to implement the half and full adders. The full adder adds three input

bits, but since sum of three bits can be at most 3, with binary representation 11, it is

27

1.3. Arithmetic Circuits

enough to have two outputs.

Definition 1.16 (Full adder [30]). A full adder is a Boolean circuit which performs the

addition of three one bit input numbers. Given three input bits X, Y , Cin the output

bits S and Cout of the full adder are

S = A⊕X ⊕ Cin, (1.29)

Cout = (X · Y) + Cin(X ⊕ Y). (1.30)

A Boolean circuit for the full adder is shown together with its truth table in Figure 1.14.

Since multiple inputs are mapped to the same output values, neither the full nor the

half adder is a unitary operator and therefore cannot be directly translated to quantum

operators. The unitary counterparts of half and full adder require 3 and 4 qubits

correspondingly. The truth table and quantum circuit of the full adder is shown in

Figure 1.16.

Definition 1.17 (Quantum full adder [41]). The quantum full adder is the unitary

operator mapping a computational basis input state to an output state according to the

truth table in Figure 1.16(a).

Analogously to the half and full adders, which are the main building blocks for

classical arithmetic circuits, the quantum full adder is often used to construct quantum

arithmetic circuits, but the quantum half adder is rarely used. There exist multiple

different decompositions of the quantum full adder, two of which are used in this thesis.

The first, allowing only one and two-qubit gates and the other allowing additionally

three qubit Toffoli gates. The latter was presented in [41] and is the lowest depth

decomposition into one, two, and three qubit gates known at the time of writing this

work. Since many of the circuits presented in this work use only one and two-qubit

gates, the full adder decomposition into two-qubit gates is given in the next lemma.

Lemma 1.3 (Quantum full adder decomposition). The quantum full adder can be

X Y S C

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

(a)

S

CX

Y
XOR

AND

(b)

Figure 1.14: The truth table (a) and Boolean circuit (b) of the half adder. [30]

28

1.3. Arithmetic Circuits

X Y Cin S Cout
0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

(a)

Cout

Cin

S

X

Y
XOR

AND
OR

XOR

AND

(b)

Figure 1.15: The truth table (a) and Boolean circuit (b) of the full adder. [30]

implemented using:

1. Two Toffoli gates, two CNOT gates, and depth 4 [41].

2. Twelve two-qubit gates and depth 12.

Proof. The first of these decompositions is due to [41] and is shown in Figure 1.16(b).

The second decomposition is obtained by replacing the Toffoli gates in Figure 1.16(b)

with the Toffoli decomposition from [42], depicted in Figure 1.17. This Toffoli

decomposition has the lowest known depth and gate count, which are both 5. Since

the full adder in Figure 1.16(b) consists of two CNOT and two Toffoli gates applied in

a sequence, both the depth and the number of two-qubit gates in the decomposed full

adder is 2 · 1 + 2 · 5 = 12.

As a comparison, the depth and size of classical full and half adders used in this thesis

is stated below. These are formulated as lemmas to emphasise the properties of the

half and full adders used in this thesis.

Lemma 1.4 (Half adder decomposition). There exists a depth one Boolean circuit for

a half adder consisting of two Boolean gates.

Proof. The depth and size of the half adder circuit, obvious from Figure 1.14(b) taken

from [30], satisfy this lemma.

Lemma 1.5 (Full adder decomposition). There exists a depth three Boolean circuit for

a full adder consisting of five Boolean gates.

Proof. The depth and size of the half adder circuit, obvious from Figure 1.15(b) taken

from [30], satisfy this lemma.

29

1.3. Arithmetic Circuits

Input Output

X Y Cin C ′out X Y S Cout
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 1 1 0 1 1

1 0 1 0 1 0 0 1

1 0 1 1 1 0 0 0

1 1 0 0 1 1 0 1

1 1 0 1 1 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 0

(a)

|Couti

|Cini

|Xi

|Y i

|0i

|Si

|Xi

|Y i

(b)

Figure 1.16: The truth table (a) and quantum circuit (b) of the quantum full adder. It can
be seen from the truth table that when the fourth qubit (|C ′out〉) is initialised to |0〉, its final
value |Cout〉 will correspond to the Cout bit in a classical full adder. Setting |C ′out〉 to |1〉 will
flip this output value.

Note that by translating a full adder to a quantum adder, the depth and two-qubit gate

count will increase. This is one of the reasons why some of the quantum arithmetic

circuits encountered later have a larger depth and size than their classical counterparts.

V V † V

Figure 1.17: The decomposition of the Toffoli gate into two-qubit gates [42].

30

1.3. Arithmetic Circuits

Ripple-Carry Adder

One of the simplest adders is the ripple-carry adder shown on Figure 1.18. A k-bit

ripple-carry adder (allowing to add two k-bit integers) consists of an initial half adder

followed by k − 1 sequentially applied full adders [30]. The total number of gates used

can be estimated by adding together the Boolean gates in the full adders and half

adder.

Lemma 1.6. The ripple-carry adder for two k-bit integers can be constructed by using

5k − 3 Boolean gates.

Proof. The ripple-carry adder consists of k− 1 full adders and one half adder, whereby

the number of gates in a half adder is two (Lemma 1.4) and in a full adder is five

(Lemma 1.5). Thus the total number of gates is 5(k − 1) + 2 = 5k − 3.

Full adder Full adder Half adder

x1 y1

s1

c1c2

s2

x2 y2ykxk

sk

ck

ck�1

Figure 1.18: The ripple-carry adder [30]. The full and half adders need to be applied
sequentially from right to left.

The parameters for the ripple-carry adder are following:

• Depth: 2k − 1 [30],

• Gates: 5k − 3 (Lemma 1.6).

Since the ripple-carry adder does not require any fan-out, it is one of the most natural

adders to be translated into the quantum circuit model (fan-out is not possible in the

quantum circuit model) and indeed, the first proposed quantum adder was a ripple-

carry adder [39]. Since the unitary operators used as the replacement for the classical

full adder required an auxiliary qubit, the initial quantum ripple-carry adder needed

k auxiliary qubits. This adder was improved by Cuccaro et.al. [43] to use just one

auxiliary qubit. Their adder has the following parameters:

• Depth: 2k − 1 [43],

• Qubits required: 2k + 2 [43],

31

1.3. Arithmetic Circuits

• CNOT gates: 5k − 3 [43],

• Toffoli gates: 2k − 1 [43],

• Total gates: (5k − 3) + (2k − 1) = 7k − 4.

Note that in their paper Cuccaro et.al. did not estimate then number of quantum

NOT gates (X gates), thus these figures also exclude them. Both the depth of the

quantum ripple-carry adder and the number of qubits used is almost equal to the

classical ripple-carry adder as can be seen in Table 1.1. Nevertheless, the quantum

Table 1.1: Comparison of classical and quantum ripple-carry adders.

Depth Total Gates Qubits

Classical 2k − 1 5k − 3 -

Quantum 2k − 1 7k − 4 2k − 1

ripple-carry adder allows quantum states to be added in superpositions and thus

can be used as a subroutine in quantum algorithms. For example, it can be used

to construct the quantum modular exponentiation circuits required for the Shor’s

factorizing algorithm. [39]

Carry-Lookahead Adder

In the ripple-carry adder, every full adder (after the first one) needs to wait for the

output carry bit from the previous full adder, thus limiting the depth of the circuit

to Ω(k). Carry-lookahead adders address this problem by computing the carry bits

before they are needed in the full adders. There are various designs to do this. Some

adders compute blocks of carries simultaneously, and chain up the carry-lookahead

blocks similarly to the ripple-carry adder, others use unbounded fan-in to compute the

carry values. The carry-lookahead adder with constant fan-in, which has the lowest

depth is the Kogge-Stone adder [44]. In the rest of the thesis when a carry-lookahead

adder is used, the Koegg-Stone adder is implicitly meant unless otherwise mentioned.

From the truth table of the full adder (Figure 1.15(a)) the relation shown in Table 1.2

between the input bits and the Cout can be seen.

When X 6= Y the Cout will always equal Cin and the carry is then propagated. When

X = Y = 0 the incoming carry gets killed and if X = Y = 1 a new carry is generated

regardless of Cin. Consider an interval [i, j]. A bit G[i, j] is used to mark whether

this interval generates a carry, and a bit P [i, j] to mark if it propagates a carry. Here

32

1.3. Arithmetic Circuits

Table 1.2: The value of Cout in a carry-lookahead adder.

.

X Y Cout
0 0 0

0 1 Cin
1 0 Cin
1 1 1

the interval is used in an unconventional way, where the end is specified first and the

beginning last. This notation is used so that the beginning and end of the intervals

would correspond to how we interpret bits of a binary number, where the rightmost is

the first bit and the leftmost the k-th bit. Based on the above observation the carry

and propagate bits for the interval [i, i] can be computed as follows

G[i, i] = Xi · Yi (1.31)

P [i, i] = Xi ⊕ Yi (1.32)

Given two carry intervals [i, j] and [j − 1, k], the combined interval [i, k]

• generates a carry if and only if either [i, j] generates a carry or [j−1, k] generates

and [i, j] propagates a carry, i.e.

G[i, k] = G[i, j] +G[j − 1, k] · P [i, j]; (1.33)

• propagates a carry if and only if both [i, j] and [j − 1, k] propagate, i.e.

P [i, k] = P [i, j] · P [j − 1, k]. (1.34)

The value of G[i, 1] is 1 if and only if there will be a carry generated that reaches bit i

in the interval [i, 1], i.e. it is the carry bit required to compute the bit i in the sum of

two numbers. Using a tree structure it is possible to compute the value G[i, 1] in dlog ie
depth. When combining this tree with the generation of the G[i, i] and P [i, i] bits and

final addition of the carry and sum bits gives the Koegg-Stone adder, of which an 8-bit

example is depicted in Figure 1.19.

The first quantum carry-lookahead adder was designed in [45], but their adder had

depth O(k) while using unbounded Toffoli gates. Although having smaller depth than

the quantum ripple-carry adder when the constants in the depth are taken into account,

this depth benefit would be obtainable only if unbounded fan-out gates could be easily

implementable. Usually, only constant size (and thus fan-out) gates are allowed in

33

1.3. Arithmetic Circuits

i AND

XO
R

xi yi xi yi

G[i, i] P [i, i]

(a)

AN
D

O
R

AN
D

P [i, j]

P [i, k]G[i, k]

G[i, j] G[j � 1, k]

P [j � 1, k]

(b)

XO
R

xi yi

i XO
R

G[i, 1]

Si

(c)

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

(d)

Figure 1.19: The 8-bit Kogge-Stone adder (d) with its various components shown in (a), (b),
and (c)

34

1.3. Arithmetic Circuits

quantum circuits, and if constant size gates would be used instead of the unbounded

fan-out gates in [45], the depth would increase to O(k log k). A logarithmic depth

carry-lookahead adder design, based on the Kogge-Stone adder, was proposed in [40].

In addition to considerably smaller depth, this adder used only constant sized gates,

which is in general a desirable feature of quantum circuits. Table 1.3 gives a summary

of the properties of the quantum and classical carry-lookahead adders.

Carry-Save Adder

When multiple numbers need to be added together, the adder most suitable for the task

is the carry-save adder [46], which uses redundancy to add two numbers in constant

depth. The principle of the carry-save adder is to compute the sum and carry generated

by adding every two corresponding bit, but instead of propagating the carry, it is saved

until the next addition is performed. Obviously this system is redundant, since the

result consists of k sum bits and k carry bits. When the next number is added, the

carry from the last addition is propagated to the next position by adding it with the

new sum bits. The operation of the carry-save addition is illustrated in Figure 1.20.

As can be seen from Figure 1.20, the carry-save adders have constant depth since they

consist of full adders, which are applied in parallel. Thus the sequence of n carry-save

adders has depth O(n).

After the numbers are added together, a final conventional adder must be used to

convert the result from the redundant representation to a non-redundant by adding the

two resulting numbers (the carry bits and the sum bits). This could be done with carry-

save adders, but this requires k applications of the adder for the rightmost carry bit to

propagate to the left. A better solution is to use an O(log n) depth adder, such as the

Kogge-Stone adder, resulting in a total depth of O(n+ log k) when adding n numbers

of k-bits. Since a final non-redundant adder is needed when using carry-save adders,

Table 1.3: Comparison of classical and quantum carry-lookahead adders. Here it is assumed
that k is a power of two.

Classical Quantum

Depth 2 log k + 2 2 log k + 2

CNOT Gates - 3k − 1

Toffoli Gates - 2k − 3 log k − 3

Total Gates 5k log k + 3k + 5 5k − 3 log k − 4

Qubits - 4k − log k

35

1.3. Arithmetic Circuits

CSA

CSA

CSA

Full adderFull adderFull adder

x1,1x1,2xk,1xk,2 x2,1x2,2

Full adder Full adder Full adder

s1,1s2,1sk,1ck,1 c2,1 c1,1

0

0

00

Full adder Full adder Full adder

0

xk,3 x2,3 x1,3

s1,2s2,2sk,2ck,2 c2,2 c1,2

x1,nx2,nxk,n

sk,n�1 s2,n�1 s1,n�1c1,n�1c2,n�1ck,n�1

c1,n�2s2,n�2 s1,n�2sk,n�2 ck�1,n�2

Figure 1.20: The application of n carry-save adders of k-bits in a sequence (CSA is used to
denote a carry-save adder). To get the final result an additional non redundant adder, like the
carry-lookahead adder, needs to be used to add the carry and sum outputs of the last carry-save
adder.

this adder is not suitable to use when only two numbers are added. On the other hand,

it will give a considerable improvement in computational depth when multiple numbers

are added in a sequence, thus the carry-save adder is the most commonly used adder

in multipliers.

Interestingly, it is possible to add n numbers of k bits in depth O(log n log k) using

k-bit adders. This can be done by arranging the adders for two numbers (with O(log k)

depth) into a O(log n) depth tree and thereby summing the numbers recursively. This

solution, although having low depth, is unpractical since to compute the sums in the

first layer of the tree, O(n) adders are needed. The number of available adders in

modern electronic circuits is a fixed, and usually a small, constant and does not scale

with the problem size. Thus in this work we consider the case where there is only a

constant number of available adders. This number is usually one in the analysis, since

adding a constant number of adders would reduce the overall depth only by a constant,

when adding n numbers.

A straightforward translation (by making the classical circuit reversible and cleaning

36

1.3. Arithmetic Circuits

Table 1.4: Comparison of classical and quantum carry-save adders. The values for the classical
adder are taken from circuits presented in [30] and the quantum adder parameters are taken
the quantum carry-save adder presented in [41]. We used Lemma 1.3 to estimate the number
of two qubit-gates, whereas the original circuit consisted of 2k quantum full adders. Since the
decomposition of Lemma 1.3 does not contain any single-qubit gates, neither does the quantum
carry-save adder.

Classical Quantum

Depth 3 24

Single-Qubit Gates - -

Two-Qubit Gates - 24k

Total Gates 5k 24k

Qubits - 4k

up the auxiliary qubits) from the classical to quantum carry-save adder was shown

in [41]. The parameters of the resulting quantum circuit are compared with the classical

couterparts in Table 1.4. Since in the quantum circuit model the registers are cleaned

by applying the inverse of the quantum full adders at the end of the computation,

every full adder in the classical carry-save adder has two corresponding quantum full

adders in its quantum counterpart. This is one of the contributors to the larger depth

and number of gates in the quantum circuit — one quantum full adder consists of 12

sequential two-qubit gates and acts on four qubits.

The Draper Adder

QFT

phase
shift

Input register

Input/Output register |xi QFT † |x + yiQFT |xi QFT |x + yi

|yi |yi

Figure 1.21: The Draper adder.

Most of the quantum arithmetic circuits do not contain anything inherently quantum.

They consist of reversible Boolean gates [39, 41, 45, 47, 43, 40, 48, 49, 50], usually

Toffoli and CNOT gates, and therefore would work without modifications for classical

reversible computations. Hence it is unlikely that studying these circuits would reveal

any differences between the classical and quantum computing models. To explore

the dissimilarities between the two models and find lower depth circuits some sort

of “quantumness” has to be used in the construction of the quantum circuits. The only

known arithmetic circuit that does this is the Draper adder [28]. The structure of the

37

1.3. Arithmetic Circuits

Draper adder is shown in Figure 1.21, from where it can be seen that adding two k-bit

integers x and y modulo k has the following steps:

1. The integers are stored in two k-qubit quantum registers.

2. QFT is applied to the second register.

3. A phase shift sub-circuit, shown in Figure 1.22, is applied to the two registers.

4. QFT† is applied to the second register.

5. The second register is measured in the computational basis given as the output.

...

... ...

R1 R2 Rk�1 Rk

R1 Rk�2 Rk�1

R1 R2

R1

...
...

...

...
|y1i
|y2i

|yk�1i
|yki

|QFT (x)ik |QFT (x + y)ik

|QFT (x + y)ik�1|QFT (x)ik�1

|QFT (x)i2 |QFT (x + y)i2

|QFT (x)i1 |QFT (x + y)i1

|y1i
|y2i

|yk�1i
|yki

Figure 1.22: The phase shift block of a k-qubit Draper adder.

After the first QFT, the second quantum register is in state

QFT |x〉 =
1√
2

(|0〉+ e2πi0.x1 |1〉)

⊗ 1√
2

(|0〉+ e2πi0.x2x1 |1〉)

⊗ · · ·

⊗ 1√
2

(|0〉+ e2πi0.xk···x2x1 |1〉). (1.35)

38

1.3. Arithmetic Circuits

Thus applying the phase shift block in Figure 1.22 results in the state

1√
2

(|0〉+ e2πi(0.x1+0.y1)|1〉)

⊗ 1√
2

(|0〉+ e2πi(0.x2y1+0.y2y1)|1〉)

⊗ · · ·

⊗ 1√
2

(|0〉+ e2πi(0.xk···x2x1+0.yk···y2y1)|1〉), (1.36)

which can be rewritten as

1√
2

(|0〉+ e2πi0.(x+y)1 |1〉)

⊗ 1√
2

(|0〉+ e2πi0.(x+y)2(x+y)1 |1〉)

⊗ · · ·

⊗ 1√
2

(|0〉+ e2πi0.(x+y)k···(x+y)2(x+y)1 |1〉) = QFT |x+ y〉. (1.37)

Finally, undoing the QFT by applying the adjoint results in |x+ y〉.

The Draper adder utilises quantum effects to perform the addition: the integers are

stored and manipulated in the relative phases of the quantum state — something that

is not possible classically, since bits cannot be in a superposition. One could of course

simulate the Draper adder hoping it might reveal a new classical addition algorithm.

It is possible to use integers for storing and modifying the required powers of e like

the Draper adder does on the amplitudes. Note that in this case the simulation of the

last bit of the Draper requires the computation of x + y, the final value of the circuit

itself, removing the need to simulate the Draper adder at all and providing no new and

insightful classical algorithm.

As can be seen from Table 1.5, the depth of the Draper adder is larger than for the

classical adders reviewed so far (although smaller than the depth of the quantum ripple-

carry adder). The Draper adder needs 2k qubits for its two quantum registers and has

Table 1.5: The resources required to implement a k-qubit Draper adder.

Depth Single-Qubit
Gates

Double-Qubit
Gates

Total Gates Qubits

5k − 2 2k (3k2 − k)/2 3(k2 − k)/2 2k

39

1.3. Arithmetic Circuits

depth 5k − 2 (the QFT and QFT † have 2k − 1 depth and the phase shift block has

depth k). The total number of gates used is 3(k2 + k)/2 (the QFT , QFT †, and the

phase shift block consisting of (k2 + k)/2 gates each) out of which 2k are Hadamard

gates and (3k2 − k)/2 are control-phase gates.

1.3.2 Multipliers

The main operation in classical multiplier circuits is addition. To multiply two k-bit

numbers (possibly in the two’s complement representation) x and y, first the partial

products xy1, xy2, . . . , xyk are produced. The main difference between multipliers lies in

when and how these are computed and added together. In our work we are interested

in parallel multipliers, which have the lowest depth. In these multipliers the partial

products can be found in parallel with one step using AND gates. The most well-known

parallel multipliers are the Wallace-tree [51] and Dadda-tree [52] based multipliers. The

aforementioned multipliers have O(log n) depth, which puts the multiplication into

complexity class NC1 and is the smallest depth possible without using unbounded fan-

in gates (see Part III of this thesis for an overview of low depth complexity classes). An

high-level diagram of the Wallace and Dadda multipliers for 12 bit integers is shown in

Figure 1.23.

Since the Dadda and Wallace multipliers use the carry-save adder to add together the

partial products, they need a non-redundant adder (carry-lookahead adder for example)

to perform the final addition. The Wallace multiplier differs from the Dadda multiplier

by the partial sum bits added together at each step. The Wallace multiplier adds

together as many bits as possible, whereby the Dadda multiplier minimises the use

of half adders. For example, consider the addition of three partial sums, obtained in

multiplication of x6x5x4x3x2x1 with y3y2y1:

x6y1 x5y1 x4y1 x3y1 x2y1 x1y1

x6y2 x5y2 x4y2 x3y2 x2y2 x1y2

+ x6y3 x5y3 x4y3 x3y3 x2y3 x1y3

(1.38)

Note that since in the final step a non-redundant adder needs to sum the resulting two

partial sums, it is not needed that the sum of the bits x2y1 and x1y2 are computed

in the example above, this could be left for the last adder. In general, the full adder

has three inputs and two outputs, thus adding three bits reduces the number of bits

needed to add in the following steps by one. On the other hand, when two bits are

added using the half adder, the number of output bits is still two. Hence to minimise

40

1.3. Arithmetic Circuits

CSA CSA

CSA

CSA

CSA

CSA

CSA

CSA

CSA

CSA

CLA

xy1xy2xy3xy4xy5xy6

xy

xy7xy8xy9xy10xy11xy12

12 inputs

8 inputs

6 inputs

4 inputs

3 inputs

2 inputs

Result

Figure 1.23: A high-level overview of the Wallace and Dadda multiplier for 12 bit integers.
On each level, the number of inputs to the carry-save adders will decrease by a factor of 1.5.
The final adder needs to be a non-redundant adder like the carry-lookahead adder.

41

1.3. Arithmetic Circuits

the gate count it is beneficial to use as few half-adders as possible, as is done in the

Dadda multiplier. The Table 1.6 summarises the parameters of the Dadda multiplier,

was chosen over the Wallace multiplier because its lower gate count.

Table 1.6: The resources required to implement a k-qubit Dadda multiplier. The estimates
on the number of half and full adders is taken from [53].

Depth Full Adders Half Adders Total Gates

Partial Products 1 - - k2

Intermediate CSAs 3dlog1.5 k/2e k2 − 4k + 3 k − 1 5k2 − 22k + 13

Final CLA 2 log k + 2 - - 5k log k+3k+5

Total 3dlog1.5 k/2e+
2 log k + 3

2k − 4 15k − 8 6k2−5k log k−
19k + 18

Several quantum multiplication circuits have been proposed, most of which are

reversible counterparts to classical circuits: sequential multipliers using the ripple-

carry adder [39, 54] (depth O(k2)), array multiplier [55] (depth O(k log k)), the Booth

multiplier [56] (depth O(log2 k)). The only multiplier having no classical counterpart is

the sequential multiplier utilising using the Draper adder [57]. Out of the currently

published quantum multipliers, the lowest depth one is the Booth multiplier with

depth O(log2 k) [56], which is larger than the O(log k) depth of the classical Dadda

and Wallace adders.

1.3.3 Multiply-Adders

Table 1.7: The depth and gate count of the MAC depicted in Figure 1.24. We assume that the
MAC is reused for every application, hence the gate count does not increase per application.

Depth Gates

Multiplication (Dadda) 3dlog1.5 k/2e+ 1 6k2 + 22k + 13

Addition (CSA) 2 5k

Final Addition (CLA) 2 log k + 2 5k log k+3k+5

Total for n applications 3n(dlog1.5 k/2e+ 1) +
2 log k + 2

6k2+5k log k+
30k + 18

A multiply-adder, a.k.a. multiply-accumulator (MAC) performs the multiplication of

42

1.3. Arithmetic Circuits

two integers x and y and adds the result to a register z, i.e. it performs the operation

z = z + xy. (1.39)

The MAC is usually implemented using a multiplier and an adder, thus its characteris-

tics depend on the chosen multiplier and adder. Depthwise, using the Dadda multiplier

and carry-save adder will give the best result — carry-save adder in particular since

the MAC is usually applied in a sequence to many numbers. If the Dadda adder is used

in a MAC where the addition to the output register is done with a carry-save adder,

it is possible omit the final carry-lookahead adder since the result of the multiplication

would be used as an input to a carry-save adder. Instead of the carry-lookahead adder

we could use a second carry-save adder in adding the product to the output register as

shown in figure 1.24. Of course a final non-redundant adder must be used to transform

the output to the usual binary representation. Taking this into account, the properties

of a low depth MAC are presented in Table 1.7.

Although quantum arithmetic logic units (ALUs) have been proposed in several

papers [58, 59, 60, 61], none of them analyse if the addition and multiplication could

be merged into a single, more efficient multiply-add operation. Thus this work presents

the first quantum MAC.

43

1.3. Arithmetic Circuits

Dadda multiplier

Addition to
the output register

CSA CSA

CSA

CSA

CSA

CSA

CSA

CSA

CSA

CSA

xy1xy2xy3xy4xy5xy6xy7xy8xy9xy10xy11xy12

CSA

CSAOutput
registers

CLA

Final result

Figure 1.24: A high-level overview of a MAC using the Dadda multiplier for multiplication
and the carry-save adder to add to the output register. Note that it is possible to delay the
conversion to a non-reduntant representation until all the MACs have been applied as is done
here.

44

Chapter 2

The QFT Multiply-Adder

We start this chapter by introducing a unitary operator which, when combined with the

QFT, can be used to compute the action of a classical integer MAC: z = z+y ·x, where

z, y, x ∈ Z. This, like any unitary operator, can be decomposed into one and two-qubit

gates. The decomposition presented in this section is particularly useful, since it allows

for the construction of a highly parallel quantum circuit. For application on multiple

numbers, this new circuit has lower depth than any known classical MAC. For the

sake of notational simplicity, only unsigned integers are considered but the presented

circuits work with signed integers if the two’s complement representation is used and

can be adapted to work with fixed point arithmetic as shown in Section 1.1.1.

2.1 The QMAC Circuit

Let Mj(y, x) be a single-qubit unitary operator defined as follows:

Mj(y, x)|0〉 → |0〉, (2.1)

Mj(y, x)|1〉 → e2iπ0.yj ···y1·x|1〉, (2.2)

where x, y ∈ Z are k-bit integers. The effect of applying Mj(y, x) to a state which has

the first j bits of a k-bit integer z encoded in its relative phase is

Mj(y, x)
1√
2

(|0〉+ e2πi0.zj ···z2z1 |1〉) =
1√
2

(|0〉+ e2πi(0.zj ···z2z1+0.yj ···y2y1·x)|1〉). (2.3)

The above equation shows that the action of Mj(y, x) is similar to applying a MAC

operator to the binary fraction encoded in the relative phase, i.e. it multiplies the

45

2.1. The QMAC Circuit

binary fraction 0.yj · · · y2y1 with x and adds it to 0.zj · · · z2z1. Furthermore, we define

the k qubit quantum operator M(y, x)

M(y, x) = M1(y, x)⊗M2(y, x)⊗ · · · ⊗Mk(y, x). (2.4)

The application of M(y, x) to QFT |z〉 will result in the state

M(y, x)QFT |z〉 =
1√
2

(|0〉+ e2πi(0.z1+0.y1·x)|1〉) (2.5)

⊗ 1√
2

(|0〉+ e2πi(0.z2z1+0.y2y1·x)|1〉)

⊗ · · ·

⊗ 1√
2

(|0〉+ e2πi(0.zk···z2z1+0.yk···y2y1·x)|1〉) = QFT |z + y · x〉.

Applying the QFT † operator to the result and measuring the result in the computa-

tional basis gives the output z+y ·x, which is also the result of a classical MAC applied

to x, y, z. Thus M(y, x) can be seen as a quantum operator on a quantum Fourier

transformed state corresponding to a classical MAC. Note that for any l ≤ k the l-th

qubit of M(y, x)QFT |z〉 will be in the form

1√
2

(|0〉+ e2πi(0.zl···z2z1+0.yl···y2y1·x)|1〉) =
1√
2

(|0〉+ e2πi(m.wl···w2w1)|1〉), (2.6)

where m ∈ Z and w ∈ {0, 1}l. Since

e2πi(m.wl···w2w1) = e2πi(m+0.wl···w2w1) = e2πi0.wl···w2w1 (2.7)

and l ≤ k all the bits of the result z+y ·x after the k-th will be lost, which corresponds

to computation modulo 2k − 1.

Any realistic quantum device would have to be built using quantum gates which act

on a limited number of qubits (i.e. the number of qubits the gates act on should be

fixed to a small constant), thus the M(y, x) operator needs to be decomposed into one-

and two-qubit quantum gates. To obtain a performance that surpasses classical MACs

the M(y, x) operation will be constructed in a way that allows every gate in its circuit

to be applied in one simultaneous step. The following gates are used in the circuit

construction:

46

2.1. The QMAC Circuit

Rj =

1 0

0 e
2iπ

2j

 , CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, (2.8)

where Rj is a phase shift gate and CNOT is the controlled NOT gate. Note that the

operator Rj has the following properties:

∀j ∈ Z < 1 Rj = I, (2.9)

R2m

j =

1 0

0 e
2iπ2m

2j

 =

1 0

0 e
2iπ

2j−m

 = Rj−m. (2.10)

The j-qubit fan-out operator Fj which maps |a〉|b1〉 · · · |bj−1〉 → |a〉|b1⊕a〉 · · · |bj−1⊕a〉.
It is trivial to see that F † = F . The operator Qj(y) = Rj·y1 · · ·R2·yj−1R1·yj is used

as a sub-circuit in the M(y, x) construction. The effect of Qj(y) on the one qubit

computational basis is:

Qj(y)|0〉 → |0〉, (2.11)

Qj(y)|1〉 → e2πi·0.yj ···y2y1 |1〉. (2.12)

Note that since ym, where m ∈ {1, 2, . . . , j}, is a binary value and R0 = R0
l = I for

every l ∈ Z, the operator Qj(y) can be written as follows:

Qj(y) = Ry1j · · ·R
yj−1

2 R
yj
1 . (2.13)

Furthermore, from the equalities 2.9 and 2.10 it follows that:

Qj(y)2
m

= Ry1·2
m

j · · ·Ryj−1·2m
2 R

yj ·2m
1

= Ry1j−m · · ·R
yj−1

2−mR
yj
1−m

= Qj−m(y). (2.14)

The above equation implies that Qj−m = I if j−m < 1, therefore the Mj(y, x) operator

47

2.1. The QMAC Circuit

can be written as:

Mj(y, x)|1〉 = e2πi·0.yj ···y1·x|1〉
= e2πi·0.yj ···y1·(x1·2

0+x2·21+···+xk·2k−1)|1〉
= Qj(y)xk·2

k−1 · · ·Qj(y)x2·2
1

Qj(y)x1·2
0 |1〉

= Qj−k+1(y)xk · · ·Qj−1(y)x2Qj(y)x1 |1〉
= Q1(y)xj · · ·Qj−1(y)x2Qj(y)x1 |1〉 (2.15)

Mj(y, x)|0〉 = Q1(y)xj · · ·Qj−1(y)x2Qj(y)x1 |0〉 = |0〉. (2.16)

The decomposition of Mj(y, x) into Qj(y) (Eq. 2.15 and 2.16) operators and Qj(y) into

Rj operators (Eq. 2.13) will be used to construct a parallel quantum circuit for M(y, x).

Note that the descriptions of M(y, x), Mj(y, x), and Qj(y) contain the arguments x

and y. This is undesired for implementations of a circuit, since a circuit cannot in

general change depending on the input. In the design below, this problem is resolved

by using the bits of the arguments as controls for quantum gates, i.e. the value of

classical bits is used to determine if a particular quantum gate should be applied or

not. First, the parallel hybrid circuit for the operator Qj(y) is constructed. Since

R0
j = I and R1

j = Rj , the effect of an input bit ym in Eq. 2.13, where m ∈ {1, 2, . . . , j},
is to control the application of the gate Rj+1−m. Thus the quantum circuit of Qj(y)

can be constructed using only single-qubit Rj gates controlled by classical bits ym. All

of the Rj gates in Qj(y) can be applied in parallel using auxiliary qubits and the Fj

gate [4]. Thus the parallel hybrid circuit FjQjFj of Qj(y) can be constructed as shown

in Figure 2.1. Note that we move y out of the argument of the operator and use a fixed

circuit for every y — the y will be the input to the circuit.

Qj

Fj Fj

R2

Rj

...

R1

... ...

Qj(y)| i

|0i

|0i|0i

|0i

| i

y
yj

y1

yj�1

Figure 2.1: The parallel version of the operator Qj(y). The Fj blocks can be applied in
O(log j) steps [4]. |ψ〉 is an arbitary 1 qubit state. See Figure 1.7 for circuit notation.

Since Qj(y)0 = Qj(0) = I and xi is a binary value, Mj can be written as Mj(y, x) =

Q1(y ·xj) · · ·Qj−1(y ·x2)Qj(y ·x1). The values of both y and x are classical bit-strings,

48

2.2. Analysis of the Circuit

hence the operation y · xi can be performed classically in one parallel computational

step using an AND operator between xi and every bit of y. Since Mj(y, x) can be

decomposed into diagonal operators Qj(y), there exists a parallel hybrid circuit where

all the Qj(y) operators are applied simultaneously [4]. In this circuit’s construction

the sub-circuit Qj is used as seen in Figure 2.2. Since M(y, x) is a tensor product of

Fj(j+1)/2Fj(j+1)/2 MjMj

Qj
AND

AND

AND

Fj Fj

Fj�1 Fj�1

F1 F1

Fj Fj| i

y
x yx1

yx2

yxj

y

y

y

x1

x2

xj

Mj(y, x)| i

Fj(j+1)/2Fj(j+1)/2

Qj�1

Q1

Figure 2.2: The parallel hybrid circuit of the Mj(y, x) operator.

the operators Mj(y, x), where j ∈ {1, · · · k}, the circuit of M(y, x) can be created by

simply applying an appropriate Mj sub-circuit to each of the input qubits as shown in

Figure 2.3. The circuit FMF in the aforementioned figure corresponds to the operator

M(y, x) and together with the QFT comprises the quantum MAC circuit.

2.2 Analysis of the Circuit

The main result of this work concerns the depth of the QMAC circuit in the case of

sequential application. When the circuit FMF in Figure 2.3 is applied repeatedly,

then the only F gates having a non-trivial effect will be at the beginning and the

end of the computation. This is due to the fact that FF = FF † = I and thus

MF F

M1

y
x

y

y

y

x

x

x

| 1i

| 2i

| ki (M(y, x)| i)k

(M(y, x)| i)2

(M(y, x)| i)1
M2

Mk
Fk(k+1)/2

F3

F1

Fk(k+1)/2

F3

F1

Figure 2.3: The parallel hybrid circuit of the M(y, x) operator.

49

2.2. Analysis of the Circuit

Initialisation

QFT
M ...

...
QFT †

F M F

x1 xn yny1

|0i |0i
|zi |z0i

M

x2 y2

Finalisation

Multiply-addition × n

Figure 2.4: The hybrid quantum circuit computing the MAC operation n times in a sequence
with multiplicand pairs (x1, y1), . . . , (xn, yn), where z, xi, yi ∈ Z. Here z′ = z +

∑n
i=1 xi · yi.

(FMF)(FMF) = FMMF . Combining the circuit in Figure 2.3 with the QFT and

using it to perform the multiply-addition operation of n integers results in the circuit

depicted in Figure 2.4. We divide the circuit into three parts:

• The initialisation consisting of the QFT and the initial fan-out.

• The multiply-addition consisting of the sub-circuit M and which is reapplied for

every pair of integers needed to be multiply-accumulated.

• The finalisation part consisting of the final QFT † and the final fan-out.

We analyse each of these parts separately, starting with the multiply-addition. As

can be seen from the figure, the overall depth will depend on the depth of M , which

according to the next lemma is constant.

Lemma 2.1. The quantum circuit M has depth 2 and requires (k3 + 3k2 + 2k)/6 each

of AND gates, classically controlled phase shift gates, qubits.

Proof. It can be seen from Figure 2.3 that the depth of the M circuit has to be equal to

the maximum depth of any Mj sub-circuits, where j ∈ {1, . . . , k}. By substituting the

Qj circuits in Mj , shown in Figure 2.2, with the one described in Figure 2.1, a circuit

with one layer of classical AND gates and one layer of single-qubit Rm gates can be

constructed. Thus the combined depth of any Mj and hence the M , circuit is 2.

Let size(C) be the size of a quantum circuit C, i.e. the number of one- and two-qubit

quantum gates in the decomposition of C. Every Mj sub-circuit in M corresponds to

one Mj(y, x) operator in the definition of M(y, x). Furthermore, every Ql sub-circuit in

Mj corresponds to a Ql(y) operator in the definition of Mj(y, x) (Eq. 2.15 and 2.16) and

each Rm gate in Ql corresponds to a Rm operator in the definition of Ql(y) (Eq. 2.13).

50

2.2. Analysis of the Circuit

It can be seen from Eq. 2.13 that size(Ql) = l and the size of the circuit M is therefore

size(M) =
k∑

j=1

size(Mj) =
k∑

j=1

j∑

l=1

size(Ql) (2.17)

=
k∑

j=1

j∑

l=1

l =
k∑

j=1

j(j + 1)

2
=
k3 + 3k2 + 2k

6
. (2.18)

The Rm gates are the only quantum gates in this decomposition and controlled by a

classical bit. This classical bit needs to be computed via an AND gate as can be seen

in Figure 2.2, thus we need an additional (k3 + 3k2 + 2k)/6 AND gates. Every one of

the Rm gates acts on a distinct qubit and there is no need for qubits without a gate

acting on it, thus the number of qubits equals the number of quantum gates in M .

When determining the depth of a circuit, gates of variable size, such as the F gate have

to be decomposed into one- and two-qubit quantum gates. An Fm gate can be written

as an O(logm) depth circuit consisting of only CNOT gates, where m is the number

of qubits Fm acts upon. From Figure 2.3 it can be seen that the number of qubits F

acts upon, is equal to the number of qubits M acts upon. This in turn is equal to the

number of quantum gates in M since according to Lemma 2.2 there is only one layer

of quantum gates. Thus the depth of the initialisation and finalisation parts depends

on the number of gates in M as is proven in the next lemma.

Lemma 2.2. The initialisation and finalisation sub-circuits in Figure 2.4 both have

depth 2k + dlog(k2 + k − 2)e − 2 and require

• (k3 + 3k2 + 2k)/6 qubits,

• (k3 + 3k2 − 4k)/6 CNOT gates,

• k Hadamard gates,

• (k2 − k)/2 two-qubit control-phase shift gates.

Proof. First, the finalisation circuit is the conjugate transpose of the initialisation

circuit and can be created by reversing the gate order of the latter and replacing every

gate with its conjugate transpose. Hence the gate counts, depth and qubit requirement

of these two sub-circuits is the same. The fan-out gate acting on a qubit j needs to be

able to fan-out the state such that every phase shift gate in Mj can act on a distinct

qubit. The fan-out circuit is comprised of CNOT gates and needs one CNOT gate

per phase shift gate in M to achieve this, minus k since the k values from the QFT

already have the correct state, i.e. size(F) = size(M) − k = (k3 + 3k2 − 4k)/6. The

51

2.2. Analysis of the Circuit

depth of the fan out circuit depends on the largest fan-out operation in the circuit,

which is F(k2+k)/2−1 for qubit k. This operator has a decomposition into CNOT gates

which has depth logarithmic in its size [4], i.e. dlog(k2 +k−2)e−1. The QFT contains

k Hadamard gates and (k2 − k)/2 controlled phase-shift gates and has depth 2k − 1

(Section 1.2.3) resulting in a total depth of

2k + dlog(k2 + k − 2)e − 2. (2.19)

The overall properties of a hybrid circuit performing nMAC operations on k-bit integers

can now be estimated.

Theorem 2.1. There exists a hybrid quantum circuit with depth 2n+ 4k+ 2dlog(k2 +

k − 2)e − 4 which performs n multiply additions of k-bit integers using

• (k3 + 3k2 + 2k)/6 qubits,

• n(k3 + 3k2 + 2k)/6 AND gates,

• n(k3 + 3k2 + 2k)/6 classically controlled phase-shift gates,

• 2k Hadamard gates,

• (k3 + 6k2 − 7k)/3 two-qubit gates.

Proof. The circuit in Figure 2.4 consisting of the initialisation, finalisation and M

sub-circuits performs the n multiply additions of k-bit integers. We can add together

the requirements for each of these parts specified in Lemmas 2.1 and 2.2. The qubit

requirement is (k3 + 3k2 + 2k)/6 — all of the used operations act on the same qubits,

none of them require any new ones. The Hadamard gates exist only in the initialisation

and finalisation parts, k in each. The initialisation and finalisation also contain the

only two-qubit quantum gates, (k3 + 3k2 − 4k)/6 + (k2 − k)/2 = (k3 + 6k2 − 7k)/6

each. The (k3 + 3k2 + 2k)/6 AND and classically controlled phase-shift gates will be

required for each of the n multiply additions. The total depth will be the sum of the

initialisation and finalisation (2k + dlog(k2 + k − 2)e − 2 each) and n times the depth

of M : 2n+ 4k + 2dlog(k2 + k − 2)e − 4.

Since the MAC part of this circuit acts on quantum Fourier transformed states we shall

call this circuit the QFT multiply-accumulator (QMAC). In Table 2.1 we compare the

QMAC with a classical MAC which uses the carry-save adder for addition, Kogge-Stone

carry-lookahead adder for finalisation and the Dadda multiplier. We assume that the

52

2.2. Analysis of the Circuit

Table 2.1: Comparison of the MAC and QMAC circuits. Note that the multiply-add part of
the circuits can be reused with each new input pair, thus the number of gates used would not
increase with n applications integers.

Depth of
adding n
integers

Classical
Gates

Quantum
Gates

Total
Gates

Qubits

MAC O(n log k) O(k2) - O(k2) -

QMAC O(n+ k) O(k3) O(k3) O(k3) O(k3)

Table 2.2: A detailed comparison of the MAC and QMAC circuits. Here we assume that k is
a power of two.

Depth of adding n integers Total Gates

MAC 3n(dlog1.5 k/2e+ 1) + 2 log k + 2 6k2 + 5k log k + 30k + 18

Initialisation - -

Multiply-add 3dlog1.5 k/2e+ 3 6k2 + 27k + 13

Finalisation 2 log k + 2 5k log k + 3k + 5

QMAC 2n+ 4k + 2 log(k2 + k − 2)− 4 k3 + 4k2 + k

Initialisation 2k + log (k2 + k − 2)− 2 (2k3 + 9k2 + k)/6

Multiply-add 2 (k3 + 3k2 + 2k)/3

Finalisation 2k + log (k2 + k − 2)− 2 (2k3 + 9k2 + k)/6

M circuit is reused for each input pair — a scenario which mimics the real world use

of MAC circuits. It can be seen, that the QMAC’s depth is O(log k) times smaller

as for the classical MAC. A more detailed breakdown of the compared parameters is

shown in Table 2.2. Note that the constants in the depth of the circuits depend on the

fan-in of the individual gates, which for quantum circuits is the number of qubits they

act on. For example, by allowing l qubit quantum gates, the decomposition of fan-out

described in [4] can be done with depth logl k. This would reduce the overall depth of

the QMAC circuit and in the case when non-constant fan-in gates of size n would be

allowed, the depth of the fan-out would be reduced to 1.

53

2.2. Analysis of the Circuit

2.2.1 Pipelining: a classical alternative

One well known and widely used method of speeding up computations in digital

circuits is a temporal parallelisation (parallelising in time) method called pipelining,

as is explained in [30]. Consider a Boolean circuit of depth d, which produces a result

on each execution. The execution of this circuit would take d time steps, where a time

step is the application time of a gate in the circuit. The gates in a single layer are

applied only once and they would be idle for the rest of the d − 1 time steps of the

computation. Instead they can be utilised to process a new set of input values, coming

from the previous layer each step. This way the last layer of the circuit could produce

a new result every time step after it received its initial input and thus any circuit of

depth d can output a new result each time step after the first d steps. [30]

The use of pipelining allows a depth O(log k) MAC circuit for k-bit integers to multiply-

add n integer pairs in O(n + log k) time steps. The log k time steps are required for

the first result and the n remaining results will be produced in the O(n) remaining

time steps. This implies that a classical pipelined MAC can produce the output of

n MAC applications in less time steps than a QMAC (which has depth O(n + k)).

This is regardless of the fact that the depth of the QMAC circuit is smaller than the

O(n log k + log k) depth of a MAC as proven previously.

As a comparison, let us consider how to pipeline a QMAC. The sub-circuit used for

multiply-adding the inputs to the output register (shown in Figure 2.3) has depth two.

The first layer consisting of classical AND gates and the second of classically controlled

Rj gates. Thus the execution time of the QMAC can be reduced by at most two times

through pipelining, which is negligible compared to the theoretical benefits of pipelining

to a classical MAC, which was discussed above.

A pipelined circuit is more difficult to implement than a regular Boolean circuit due

to the need of synchronising the pipelined gates [30]. Since the QMAC does not need

pipelining, its implementation could be faster than that of a conventional MAC. This

comparison between a pipelined MAC and QMAC could be explored in a possible

continuation of this work. Even if the performance of QMAC would be inferior to

a MAC, there exists at least one utilisation of the QMAC where the use of classical

circuits would be impossible: quantum computers. Namely, the QMAC uses a quantum

register for output, which allows its use as a sub-circuit in quantum algorithms where

the product of two integers needs to be added to states in a superposition. Thus the

QMAC circuit has future applications regardless of its performance compared to its

classical counterparts.

54

Chapter 3

The QFT Adder

The QMAC introduced in the previous section could be used as an adder by choosing

either x or y to be 1. Since one of the inputs is then constant, many of the gates will

not have any effect regardless of the other input value. Indeed, as will be shown in

this chapter it is possible to construct a QFT adder that requires O(k2) qubits and

O(k2) gates compared to the O(k3) qubits and O(k3) gates in the QMAC while having

roughly the same depth. Perhaps even more importantly, the size of entangled states

used in this circuit is O(k) compared to the O(k2) of the QMAC. In this construction,

the same techniques as utilised in Chapter 2 are used to construct a QFT adder. This

adder can be seen as a parallel out-of-place version of the Draper adder, optimised for

sequential addition. The required modifications have not been considered before and

result in a adder with distinct properties from the Draper adder — the QFT adder.

From the point of view of parallelism, the most important characteristic of the new

adder is the depth, which when applied to multiple numbers will be similar to the one

obtained by using the carry-save adder.

55

3.1. The QFT Adder Circuit

3.1 The QFT Adder Circuit

FAF

y
y

y

y

|QFT (x)1i

|QFT (x)2i

|QFT (x)ki |QFT (x + y)ki

|QFT (x + y)2i

|QFT (x + y)1iQ1

Q2

Qk Fk

F2

F1

Fk

F2

F1

Figure 3.1: The parallelised Draper phase shift block. Note that by using the Qj subcircuits
we have replaced one quantum register with a classical one. See Figure 1.7 for circuit notation.

Consider the single-qubit quantum operator Qj(y) as defined in Equation 2.13 and the

circuit Qj in Figure 2.1 used to compute this operator. This is the operation performed

in the Draper adder phase shift block (Figure 1.22) on qubit j if the |y〉 register is a

computational basis state. Hence the phase shift gates in the Draper phase shift block

acting on any single qubit j could be replaced with the parallelised Qj(y) operators

shown in Figure 2.1. We will use A to denote the sub-circuit performing all these phase

shifts in the parallelised adder:

A = Q1 ⊗Q2 ⊗ · · · ⊗Ok. (3.1)

The resulting parallel Draper phase shift block is shown in Figure 3.1 and the whole

adder in Figure 3.2.

QFT
A

QFT †

F

|0i |0i

|x + yi

y

F
|xi

Figure 3.2: Step 1 of constructing the QFT adder: Replacing the quantum register |y〉 with
a classical register y and parallelising the phase shift block.

Note that by using the Qj(y) operations we have changed one of the input registers from

quantum to classical. This has two desirable side effects. First, the number of two-qubit

gates is reduced by replacing the two-qubit gates with single-qubit gates controlled by

classical input, which are simpler to implement than the two-qubit gates. Second, the

56

3.1. The QFT Adder Circuit

use of classical bits means that unbounded fan-out can be used — something that would

not be possible for qubits. To add two k-bit integers x and y using the QFT adder,

one of the summands needs to be transformed using the QFT. That the same result

would be obtained by adding 0 + x+ y using the circuit in Figure 3.3.

QFT
A

QFT †

F F

|0i |0i

|0i |x + yi
A

x y

F F

Figure 3.3: Step 2 of constructing the QFT adder: changing the adder from and in-place
adder to an out-of-place adder.

Since the output register is distinct from the input registers, the adder in Figure 3.3

is an out-of-place version of the parallelised Draper adder in Figure 3.2. An important

consequence of starting with the output register in state |0〉 is that the circuit can be

further simplified. In particular, the state QFT |0〉 is equivalent to applying a single

Hadamard gate to each qubit in the state |0〉 (see Section 1.2.3), leading to the simplified

circuit in Figure 3.4.

H
A

QFT †

F F

|0i |0i

|0i |x + yi
A

x y

F F

Figure 3.4: Step 3 of constructing the QFT adder: replacing the QFT with a single layer of
Hadamard gates.

Finally, since FF = FF † = I it is possible to remove the fan-out operations between

the two phase shift blocks resulting in the final structure of the QFT adder shown in

Figure 3.5.

H
A

QFT †

F F

|0i |0i

|0i |x + yi
A

x y

Figure 3.5: Step 4 of constructing the QFT adder: removing the cancelling fan-out gates.

Before following with the analysis of the QFT adder we point out the main differences

57

3.2. Analysis of the Circuit

of the QFT and Draper adder:

• The inputs to the QFT adder are bitstrings whereas the Draper adder has

quantum inputs and one of the input registers has to be quantum for the QFT

to be applicable.

• The QFT adder is an out-of-place adder, whereby the Draper adder is an in-place

adder.

• The QFT adders phase shift block is parallelised.

These differences are significant enough to result in distinct resource requirements and

depth in these two adders.

3.2 Analysis of the Circuit

In additional to analysing the parallelism in the new adder through the depth of the

circuit, the number of qubits and gates required and the size of the entangled states is

also examined. We start with the physical resources needed to implement the proposed

QFT adder, of which there are two main types: qubits to preserve and move the

information and quantum gates to modify it. The use of classical bits as inputs reduces

the number of qubits used, but to be able to parallelise the computation we need to

add extra qubits. Overall, the number of qubits is larger than in the Draper adder, as

is proven in the following lemma.

Lemma 3.1. The QFT adder for k-bit integers requires k(k + 1)/2 qubits.

Proof. The number of qubits that are used in the QFT adder depends on the phase

shift gates that are applied in the phase shift block — every one of these phase shift

gates needs to be applied to a distinct qubit. Otherwise it would not be possible to

apply them all in one step. The fan-outs are used to create the entanglement such

that the phase shift gates can be applied simultaneously and hence don’t introduce

any additional qubits. The final QFT † will only act on the k initial qubits after the

entanglement is removed by the final fan-out layer and will also not require extra qubits.

As can be seen from figure 2.1, there are exactly j phase shift gates applied for qubit j

in the QFT adder, each to a separate qubit. Thus the total number of required qubits

is

k∑

i=1

i =
k(k + 1)

2
. (3.2)

58

3.2. Analysis of the Circuit

To perform any computations on the qubits, quantum gates must be applied to them.

Since two-qubit gates are usually much more difficult to implement than single-qubit

ones, the requirement of one, two, and classically controlled one qubit gates is pointed

out individually.

Lemma 3.2. The QFT adder requires 2k one qubit quantum gates, k(k+1)/2 classically

controlled one qubit quantum gates, and 3k(k − 1)/2 two-qubit quantum gates. These

gates are used in the initialisation, phase shift, and finalisation blocks as follows:

• Initialisation — k one qubit gates and k(k − 1)/2 two-qubit gates.

• Phase shift — k(k + 1) classically controlled one qubit gates.

• Finalisation — k one qubit gates and k(k − 1) two-qubit gates.

Proof. The initialisation step consists of a single layer of Hadamard gate followed by

the fan-out operation. The Hadamard gates being the only single-qubit gates and the

fan-out consisting of two-qubit CNOT gates. The number of Hadamard gates is equal

to k, the number of bits in the integers we are adding together. Each of the Hadamard

transformed qubits will then be fanned out using the CNOT gates for the simultaneous

application of phase shift gates. The number of CNOT gates used for the fan-out of

qubit j is equal to the number of phase shift gates in the operator Qj(y) minus one

(since one gate can be applied to the initial qubit):

k−1∑

i=1

i =
k(k − 1)

2
. (3.3)

The phase shift block in the QFT adder consists of gates Q1, Q2, . . . Qk (Figure 3.1),

consisting of 1, 2, . . . k phase shift gates respectively (Figure 2.1). Thus the number

of quantum gates in each of the two phase shift blocks, all of which are classically

controlled single-qubit gates, is

k∑

i=0

i =
k(k + 1)

2
. (3.4)

The finalisation block consists of the initialisation fan-out plus the final QFT † operator

to transform the result to the computational basis. As mentioned above, the fan-out

operator needs k(k − 1)/2 two-qubit gates. From Section 1.2.3, we know that QFT †

59

3.2. Analysis of the Circuit

uses k Hadamard gates and k(k− 1)/2 two-qubit controlled phase shift gates. Thus in

total the finalisation block required k single-qubit and k(k − 1) two-qubit gates.

We have already estimated the number of gates and qubits required for the QFT

adder. Two-qubit gates can be used to create entanglement between qubits, which

is another important measure of quantum circuits. In many quantum computation

implementations it is difficult to create and/or keep entanglement. The parallelism of

the QFT adder helps to counter the problem of keeping entangled states coherent, by

allowing the computation to finish sooner.

Lemma 3.3. The largest entangled state in the QFT adder consists of k qubits.

Proof. As can be seen in Figure 3.1, no entanglement will be created between the

fanned out output qubits — there are no two-qubit gates acting between the distinct

fanned out parts. The only entangling operators are the fan-out operators Fj . Since

the largest number of qubits a fan-out operator in the QFT adder acts on is k, the

largest entangled state in the circuit consists of k qubits.

To compute the depth of the QFT adder, first the depth of the sub-circuit A needs to

be estimated.

Lemma 3.4. The depth of the phase shift block A in the QFT adder is 1.

Proof. As can be seen in Figure 3.1, the phase shift operation consists of only

simultaneously applicable Qj(y) blocks. Since each of the Qj(y) blocks has depth

is 1 (Figure 2.1), the overall depth of A is also 1.

Lemma 3.5. The QFT adder can be used to add two k-bit integers in 2k+2dlog ke+2

depth.

Proof. As can be seen in Figure 3.5, the QFT adder for adding two k-bit integers

consists of one layer of Hadamard gates (depth 1), two fan-out operators (with the

largest one having dlog ke each), two phase-shift blocks (depth 1 each) and a final

QFT † circuit (depth 2k − 1). Thus the total depth will be

1 + 2dlog ke+ 2 + 2k − 1 = 2k + 2dlog ke+ 2. (3.5)

The depth required to compute the sum of two k-bit integers is O(k) for both Draper

adder and the new QFT adder. The depth of the Draper adder’s phase shift block is one

60

3.2. Analysis of the Circuit

of the dominating terms in the overall depth. In the QFT adder the depth of the phase

shift block is 1 (Lemma 3.4) and the depth is dominated by the O(k) depth finalisation

step. When two QFT adders are applied in sequence, the last Fj gates of the first, and

the first Fj gates of the second adder will cancel out since FjFj = FjF
†
j = I. This

makes the QFT adder especially suitable for numerous sequential applications — each

subsequent application of the QFT adder increases the overall depth of the quantum

circuit by only 1. This is shown in Figure 3.6 and is formalised in the following theorem.

H
A ...

...
QFT †

F A F

yny1

|0i |0i
A

y2

|zi|0i

Figure 3.6: Applying the QFT adder n times in a sequence. Here z′ = z +
∑n

i=1 yi.

Theorem 3.1. The QFT adder can be used to construct an n + 2k + 2dlog ke depth

circuit for adding n integers of k bits.

Proof. As can be seen in Figure 3.6, the circuit for the n time application of the QFT

adder simplifies to one layer of Hadamard gates (depth 1), n phase shift blocks (each

having depth 1), an initial and final fan-out (the depth of the largest Fj being dlog ke
for both), and a final QFT † (depth 2k − 1) operation. Thus the total depth will be

1 + n+ 2dlog ke+ 2k − 1 = n+ 2k + 2dlog ke. (3.6)

Although the depth increases with the application of n QFT adders, since multiple

application of the QFT adder requires only the repetition of the phase shift block,

we do not need any extra qubits — the number of qubits used adding any number of

integers is always O(k2). Moreover, we could reuse the phase-shift block A and thus the

implementation size would only depend on k. Another adder having small depth when

adding multiple numbers is the carry-save adder. In Table 3.1 we compare the QFT

adder with the Draper and classical and quantum carry-save adders. From Table 3.1

we see that the QFT Adder does not have any benefit over the quantum carry-save

adder when adding n integers — It uses more qubits and gates (O(k) vs O(k2)) and

has a larger depth (O(n + log k) vs O(n + k)). When we look at the more detailed

61

3.2. Analysis of the Circuit

Table 3.1: Comparison of the QFT adder with carry-save and Draper adders. The acronym
CSA is used to denote a CSA in the table. The addition part of the circuits can be reused
with each new integer, thus the number of gates used would not increase with adding multiple
integers.

Depth of
adding n
integers

Single-
Qubit
Gates

Double
Qubit
Gates

Total
Gates

Qubits

CSA O(n+log k) - - O(k log k) -

Quantum CSA O(n+log k) - O(k) O(k) O(k)

Draper Adder O(kn) O(k) O(k2) O(k2) O(k)

QFT Adder O(n+ k) O(k2) O(k2) O(k2) O(k2)

breakdown of the circuits (Table 3.2) we see that there are reasons for choosing the

QFT adder over the quantum carry-save adder. Most importantly, Table 3.2 shows

the depth for each individual addition is considerably smaller in the QFT adder, even

if Toffoli gates are allowed in the circuit. In particular, when adding n integers, then

for each integer the depth required increases by 1 for the QFT adder, by 8 for the

quantum carry-save adder with Toffoli gates, and by 24 for quantum carry-save adder

with only one and two-qubit gates. The execution time of a circuit, and thus also the

time the quantum states need to be coherent, depends on the depth of the circuit,

hence it might in some implementations be beneficial to use the QFT adder. It should

also be noted that for the integer sizes used commonly in current processors (64 bit),

the QFT adder uses about four times more gates than the quantum carry-save adder

(8256 versus 2442). Although both of these numbers are too large to be implementable

using current technology, the four fold difference is not as large as it could be since the

constants in the quantum carry-save adder are rather large. In the end the choice of

adder will depend largely on the limitations set by the architecture, much like in the

current classical digital circuits.

62

3.2. Analysis of the Circuit

Table 3.2: A detailed breakdown of the properties of various adders when used on multiple
integers. CSA is used to denote a carry save adder and QCSA a quantum carry-save adder.
The QCSA (Toffoli) is the QSCA where Toffoli gates are allowed in addition to two-qubit gates.
The finalisation in the carry-save adder is performed by a carry-lookahead adder.

Depth of adding
n integers

Total Gates Qubits

CSA 3n+ 2 log k + 2 5k log k + 8k + 5 -

Initialisation - - -

Addition 3 5k -

Finalisation 2 log k + 2 5k log k + 3k + 5 -

QCSA 24n+ 2 log k + 2 37k−15 log k−16 6k − log k

Initialisation - - -

Addition 24 24k 4k

Finalisation 2 log k + 2 13k−15 log k−16 4k − log k

QCSA (Toffoli) 8n+ 2 log k + 2 13k − 3 log k − 4 6k − log k

Initialisation - - -

Addition 8 8k 4k

Finalisation 2 log k + 2 5k − 3 log k − 4 4k − log k

Draper Adder kn+ 3k − 1 3(k2 + k)/2 2k

Initialisation 2k − 1 (k2 + k)/2 2k

Addition k (k2 + k)/2 2k

Finalisation 2k − 1 (k2 + k)/2 2k

QFT Adder n+ 2k + 2 log k 2k2 + k (k2 + k)/2

Initialisation 1 + log k (k2 + k)/2 (k2 + k)/2

Addition 1 (k2 + k)/2 (k2 + k)/2

Finalisation 2k − 1 + log k k2 (k2 + k)/2

63

Chapter 4

Implementing the QFT

Arithmetic Circuits

In this chapter we analyse the various implementation issues of the QFT arithmetic

circuits proposed in the previous two chapters and present optimisation that could

alleviate some of them. We do not consider any particular architecture, but instead

present a number of optimisations that can be applied to different parts of the QFT

Arithmetic circuits. Each of these optimisations has some disadvantages along with

the advantages and might not be always suitable to implement, thus they were not

included as part of the main QFT arithmetic circuits. The techniques themselves are

presented in Sections 4.1 through Section 4.3. After we introduce the implementation

optimisations, we’ll also show in Section 4.4 how these can be applied to the two-qubit

version of the QMAC circuit and give the fully optimised quantum circuit for it. The

two-qubit implementation is also the minimal proof of concept implementation that

utilises the parallelism of the QMAC.

Implementing quantum circuits is not easy for a number of various reasons. The QFT

arithmetic circuits have four major implementation concerns:

1. The size of the entangled states used.

2. The number of auxiliary qubits required.

3. The number of two-qubit gates required.

4. The number of different different phase shift gates.

Parallelising computations usually requires adding resources to be able to perform a

number of steps simultaneously. In the QFT arithmetic circuits, the parallelism is

64

4.1. Initialisation

obtained by dispersing the data into entangled states and working on this new state.

Thus the entangled states are the core resources of the QFT arithmetic circuits. We can

reduce the size of the entangled states used, and therefore the amount of resources we

used for parallelisation, by sacrificing parallelism. Instead of applying all the phase shift

gates in one step, we could apply them in 2, 3, 4, etc. steps. By doing so we reduce the

number of qubits (and the size of entangled states) we need. It is easy to see, that for

k-bit QFT arithmetic circuits, executing the phase shift sub circuits in n steps reduces

the size of entangled states used to O(k/n) for the adder and O(k2/n) for the QMAC.

Since the auxiliary qubits are required only for these entangled states, the number of

total qubits in the circuit also changes to O(k2/n) and O(k3/n) correspondingly. Thus

it is possible to reduce the number of qubits and the size of entangled states in the

circuit by sacrificing parallelism.

Considering the number of two-qubit gates in the circuit, there exist optimisations that

allow us to remove some of them from the circuit. A crucial part of the QMAC circuit is

the QFT at the beginning and QFT† at end of the computation. Implementing a QFT is

not an easy task itself and might be a hinderance in implementing the proposed circuit.

The circuit of QFT requires two-qubit controlled Ri gates which like most two-qubit

quantum gates are more difficult to implement than single-qubit gates. However, the

QMAC circuit introduced in this work does not require a full QFT implementation.

In Section 4.1 we show how the initial QFT can be replaced with the creation of

Greenberger—Horne—Zeilinger (GHZ) states (usually a much simpler operation) and

in Section 4.2 we describe how the final QFT can be replaced with a semiclassical QFT.

By doing so we remove the need of two-qubit controlled Ri gates and thereby reduce

the total number of two-qubit gates in the circuit.

Although the two-qubit controlled Ri gates can be avoided, the QFT arithmetic circuits

still require Ri gates for i values in {1, 2, . . . , k}. Note that Ri+1Ri+1 = Ri. Hence if

the Rk gates are implementable, it is possible to decompose all the different Ri gates

into sequences of Rk gates. Unfortunately, this replacement sacrifices the depth of the

circuit and it is not certain that Rk gates are more easily implementable than Ri gates

for i < k.

4.1 Initialisation

Consider the initial QFT of the QFT arithmetic circuits in Figures 2.4 and 3.6. Instead

of setting the quantum input register to |z〉, its is advantageous to set the register to

to |0〉⊗k. Then computing the QFT |0〉⊗k and performing an M(z, 1) or A(z) operation

65

4.1. Initialisation

will result in the states QFT |0 + z · 1〉 and QFT |0 + z〉 correspondingly. Hence, for

the initialisation it is enough to be able to compute QFT |0〉⊗k. This can be done by

applying a Hadamard gate to all of the k qubits since

QFT |0〉⊗k = 2k/2
2k−1∑

i=0

|i〉 = H⊗k|0〉⊗k, (4.1)

which is a much simpler to implement than a full QFT circuit. The only downside is

that this optimisation allows only to add to computational basis states. I.e the output

register cannot be in a superposition, as is possible without this optimisation. Having

the output register in a superposition might be desirable when the QMAC is used as a

sub-circuit in a larger algorithm. If it is known that the numbers are never added to a

superposition state, this optimisation should always be performed.

There might be an additional benefit in applying the above optimisation. The QFT

arithmetic circuits require relatively large entangled states. Considering what is

possible using current technology, creating entanglement is still a very difficult task.

One of the most well studied and often experimentally realised entangled state is the

GHZ state [62]. The GHZ state |GHZl〉 is a l qubit entangled quantum state

|GHZl〉 =
|0〉⊗l + |1〉⊗l√

2
. (4.2)

It is easy to see, that the initial state QFT |0〉⊗k followed by the fan-out operation in

the QFT arithmetic circuits creates k GHZ states. The state of the quantum registers

in the QFT adder after the initial fan-out is therefore

|GHZ1〉 ⊗ |GHZ2〉 ⊗ · · · ⊗ |GHZk〉, (4.3)

and the state of the quantum registers in the QMAC after the fan-out is

|GHZ1〉 ⊗ |GHZ3〉 ⊗ · · · ⊗ |GHZk(k+1)/2〉. (4.4)

There have been successful experiments in creating multi-qubit GHZ states. In

particular a 8 qubit GHZ has been was created using photonics [63] and 14 qubit

state with trapped ions [64]. Since GHZ states have been experimentally realised on

multiple architectures, the fact that GHZ states are the entangled states required in

the QFT arithmetic circuits could lend to the possibility of implementing these circuits

(or at least the initialisation part of them).

66

4.2. The Semiclassical QFT

4.2 The Semiclassical QFT

Consider the QFT† at the end of the computation in the QFT Adder (Figure 3.6) and

QMAC (Figure 2.4). As was shown in [65] the QFT can be implemented semiclassically

using only measurements and single-qubit gates that depend on the classical outcomes

of these measurement. This simplification cannot be used in the most general case

where the output of the QFT would be used as input to another quantum circuit since

the measurements will destroy the quantum state. It can be used if the outcome of

the QFT arithmetic circuits is measured at the end of the computation or is always

a computational basis state. This allows for a much simple implementation of the

final QFT by removing the need for two-qubit quantum gates. The circuit of the

semiclassical QFT is depicted in Figure 4.1. Note that since the semiclassical QFT

R2

Rk�1

Rk

Rk�2

R2

H

|z1i

|z2i

Rk�1

|zki

|zk�1i H

H

H

c1

c2

ck

ck�1

Figure 4.1: The circuit of a semiclassical QFT. The outputs are classical bits ci, with P (ci =
1) = ‖〈1|QFT (z)〉i‖2. These classical bits control the application of the quantum phase shift
gates Ri. Contrary to the general QFT (Figure 1.13), the semiclassical QFT does not contain
any two-qubit quantum gates.

is just the general QFT where the two-qubit gates replaced with measurement and

classically controlled single-qubit gate, the depth of the semiclassical QFT is equal to

the depth of the general QFT. Thus, if the output of the QFT arithmetic circuits is a

computational basis state, the semiclassical QFT should be used instead of the general

QFT. For example, this would be the case if the optimisations ofae Section 4.1 were

applied.

4.3 The Final Fan-Out

The finalisation part of the QFT Arithmetic circuits can be optimised even further.

Namely, it is possible to replace the final fan-outs with measurements and controlled

NOT gates depending on these measurement outcomes similarly to the replacement

67

4.4. The Optimised Two-Qubit QMAC

of QFT with semiclassical QFT described in the previous section. Since in this fan-

out optimisation the auxiliary qubits are measured, it is applicable only if the auxiliary

qubits would be discarded after the computation. This is a reasonable assumption since

creating a new |0〉 state for the auxiliary qubits might be more efficient than reusing

the existing one by cleaning it up using the fan-out. Thus this optimisation would be

desirable on most future implementations. Figure 4.2 depicts each intermediate step of

replacing the fan-out. We start with a regular fan-out circuit decomposed into two-qubit

CNOT gates 4.2(f). Each of these CNOT gates can be replaced with one ∧Z gate and

two Hadamard gates (Figure 4.2(b)). Since we are not interested in auxiliary qubits, we

can just discard them at the end of the computation without needing them to be cleaned

up to the |0〉 state. The final Hadamard gates can therefore be removed from the circuit

since, albeit being necessary for cleaning up the auxiliary, they don’t have any effect

on the measurement of the non-auxiliary qubit we are interested in (Figure 4.2(d)).

Now the ∧Z gates can be replaced with measurements and single-qubit gates based on

the outcome of this measurement as explained in Section 1.2. Since Z = Z†, we have

that Zx1Zx2 · · ·Zxi = Zx1⊕x2⊕···⊕xi , where x1, x2, . . . , xi ∈ {0, 1}, and can replace the

controlled-Z gates with just one Z gate controlled by the XOR of all the measurements

(Figure 4.2(f)). This optimisation will not increase the overall depth of the circuit, since

the XOR of k bits can be computed using a O(log n) tree of XOR gates with fan-in

two. This depth is the same as the the depth of the initial fan-out circuit [4].

4.4 The Optimised Two-Qubit QMAC

The full circuit of the two bit QMAC on Figure 4.3 is the smallest implementation that

could demonstrate the parallelism in QMAC. We have applied all the optimisations

described in this chapter, thus the circuit requires a pair of two-qubit gates to create

the initial GHZ state. Since this is a small circuit, we can verify its correctness by

computing the values of each output qubit. This verification is motivated by discussion

with experimentalists who were interested in implementing the two qubit QMAC (in

addition to the general proofs presented in the previous chapters). They were interested

in an explicit proof that the circuit after all these optimisations would compute the

MAC as claimed. This section could be of interest to other experimentalists considering

implementing the QMAC. The two classically controlled Z gates acting at the end of

the circuit on qubit 2 can be replaced by one Z gate controlled by the XOR of the

measurement outcomes of qubits 3 and 4 (Section 4.3). We used two Z gates to simplify

the verification.

68

4.4. The Optimised Two-Qubit QMAC

(a) A fan-out cir-
cuit.

H H

H H

H H

(b) Replacing the CNOT
gates with ∧Z and
Hadamard gates.

H H

H H

H H

(c) The Hadamard gates can
be applied in one layer at
the beginning and end of the
circuit.

H

H

H

(d) Discarding
gates that don’t
have an effect to
the first qubit.

H

H

H

Z Z Z

(e) Replacing the controlled
quantum gates with mea-
surements and classical con-
trol.

H

H

H

Z

XOR

(f) It is enough to have a
single classically controlled
Z gate.

Figure 4.2: Replacing the fan-out circuit with measurements and controlled single-qubit gates.

69

4.4.
T

h
e

O
p

tim
ised

T
w

o-Q
u

b
it

Q
M

A
C

Finalisation/ReadoutQMACQMACInitialisation

|0i

|0i

|0i

|0i

H

H Z

x1

y1
AND

Z

y1
AND

x2

Z

AND
x1
y2

P

x1
ANDy1

H

HP †

H

H

Z

AND

Z

AND

Z

AND

P

AND

a1

a2

b2

b1

(x · y + a · b)1

(x · y + a · b)2

a1

a1

b1

b1

Qubit 1

Qubit 2

Qubit 3

Qubit 4

Z Z

Figure 4.3: The QMAC circuit with all the optimisations from this chapter applied.

70

4.4. The Optimised Two-Qubit QMAC

4.4.1 Verifying the circuit

Following is the proof that the circuit in Figure 4.3 implements the multiply-addition

operation (MAC) of a pair of two-bit integers integers x and y. Note that after applying

the first Hadamard gates in Figure 4.3 the state of the output qubits is QFT |0〉. The

final output of the circuit should be a two bit number 0+x ·y. For generality we assume

that the state is instead initialised to

QFT |z〉 =
1√
2

(|0〉+ e2πi0.z1 |1〉)⊗ 1√
2

(|0〉+ e2πi0.z2z1 |1〉), (4.5)

where z is a 2 bit integer and in Figure 4.3 the value of both z1 and z2 is 0. We

show that then the application of the QMAC and Finalisation parts of the circuit in

Figure 4.3 results in the application of a MAC, i.e. the first and second output bits will

be correspondingly

(z + x · y)1 = z1 ⊕ x1 · y1, (4.6)

(z + x · y)2 = z2 ⊕ z1 · x1 · y1 ⊕ x1 · y2 ⊕ x2 · y1. (4.7)

Lets first consider the operations on qubit 1.

HZy1x1
1√
2

(|0〉+ e2πi0.z1 |1〉) = H
1√
2

(|0〉+ (−1)y1·x1e2πi0.z1 |1〉) (4.8)

= H
1√
2

(|0〉+ e2πi0.z1e2πi0.y1·x1 |1〉)

= H
1√
2

(|0〉+ e2πi(0.z1+0.y1·x1)|1〉)

= H
1√
2

(|0〉+ eπi(z1+y1·x1)|1〉)

= H
1√
2

(|0〉+ eπi(z1⊕y1·x1)|1〉)

= H
1√
2

(|0〉+ (−1)z1⊕y1·x1 |1〉)

= ¬z1 ⊕ y1 · x1|0〉+ z1 ⊕ y1 · x1|1〉.

Measuring qubit 1 gives thus |1〉 if and only if z1⊕y1·x1 = 1, which is equal to (z + x · y)1
just as required. Now lets consider the operations on qubits 2, 3 and 4 which before

the QMAC block are in the state 1/
√

2(|000〉+ e2πi0.z2z1 |111〉). The QMAC block itself

is the operator P y1x1 ⊗ Zy2x1 ⊗ Zy1x2 , hence after the QMAC block the state is

71

4.4. The Optimised Two-Qubit QMAC

P y1x1 ⊗ Zy2x1 ⊗ Zy1x2 1√
2

(|000〉+ e2πi0.z2z1 |111〉) (4.9)

=
1√
2

(|000〉+ e2πi0.z2z1e2πi0.0y1·x1e2πi0.y2·x1e2πi0.y1·x2 |111〉)

=
1√
2

(|000〉+ e2πi0.z2z1e2πi0.y2y1·x1e2πi0.y1·x2 |111〉)

=
1√
2

(|000〉+ e2π(i0.z2z1+0.y2y1·x1+0.y1·x2)|111〉).

Let p = e2πi(0.z2z1+0.y2y1·x1+0.y1·x2), then the application of I ⊗ H ⊗ H before the

measurement of qubits 3 and 4 results in

I ⊗H ⊗H 1√
2

(|000〉+ p|111〉) (4.10)

=I ⊗ I ⊗H 1

2
(|000〉+ |010〉+ p|101〉 − p|111〉)

=
1

2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ p|100〉 − p|101〉 − p|110〉+ p|111〉).

When qubit 4 is measured and, based on the outcome, a Z gate is applied to the first

qubit, the resulting state will be

1

4
(|00〉+ |00〉+ |01〉+ |01〉+ p|10〉+ p|10〉 − p|11〉 − p|11〉) (4.11)

=
1

2
(|00〉+ |01〉+ p|10〉 − p|11〉).

Now measuring qubit 3 and based on the result applying a Z gate to the first qubit

results in the state

=
1

2
√

2
(|0〉+ |0〉+ p|1〉+ p|1〉) =

1√
2

(|0〉+ p|1〉). (4.12)

Finally the P † gate is applied depending on the result of the measurement on the first

72

4.4. The Optimised Two-Qubit QMAC

qubit (z1 + x1 · y1):

P †
z1⊕x1·y1 1√

2
(|0〉+ e2πi(0.z2z1+0.y2y1·x1+0.y1·x2)|1〉) (4.13)

=
1√
2

(|0〉+ e2πi(0.z2z1+0.y2y1·x1+0.y1·x2)e−2πi(0.0z1⊕0.0y1·x1)|1〉)

=
1√
2

(|0〉+ e2πi(0.z2+0.y2·x1+0.y1·x2)e2πi(0.0z1+0.0y1·x1)e−2πi(0.0z1⊕0.0y1·x1)|1〉)

=
1√
2

(|0〉+ e2πi(0.z2+0.y2·x1+0.y1·x2)e2πi0.z1·y1·x1e2πi(0.0z1⊕0.0y1·x1)e−2πi(0.0z1⊕0.0y1·x1)|1〉)

=
1√
2

(|0〉+ e2πi(0.z2+0.y2·x1+0.y1·x2+0.z1·y1·x1)|1〉).

The application of the last gate of the circuit (a Hadamard gate) to qubit 2 in the

above state results in

H
1√
2

(|0〉+ e2πi(0.z2+0.y2·x1+0.y1·x2+0.z1·y1·x1)|1〉) (4.14)

=¬z2 ⊕ z1 · x1 · y1 ⊕ x1 · y2 ⊕ x2 · y1|0〉+ z2 ⊕ z1 · x1 · y1 ⊕ x1 · y2 ⊕ x2 · y1|1〉,

which when measured gives the outcome |1〉 exactly if and only if z2 ⊕ z1 · x1 · y1 ⊕ x1 ·
y2 ⊕ x2 · y1 = 1. Therefore the outcome of the measurement of qubit 2 corresponds to

the output of the second qubit of a MAC circuit (Equation 4.7) and thus the circuit in

Figure 4.3 is correct.

73

Chapter 5

Discussion and Results

We presented two new quantum arithmetic circuits utilising the QFT — the QMAC

(Section 2.1) and the QFT adder (Section 3.1). The former is the first MAC designed

for quantum computers and enables the application of n MAC operations on k-bit

integers in O(n + k) parallel steps (Theorem 2.1). Classically, the depth of a MAC

operation is O(n log k). This is the first time that an elementary arithmetic operation,

which is very widely used, could benefit from being executed on a quantum device.

However, it is possible to achieve the same theoretical performance classically using

pipelining as discussed in Section 2.2.1. How exactly the performance of the QMAC

compares with a pipelined MAC will depend on its implementation.

The QMAC circuit realises a very specific computational pattern, the MAC. This makes

it suitable for use as an execution unit in a hybrid CPU, DSP, or even as a separate

Quantum accelerator device. Moreover, the fact that implementing this circuit does

not require a full quantum computer makes it more likely to be realisable in the near

future. The small depth of the QMAC is a consequence of using the QFT, a highly

entangled quantum state and classical fan-out, that is, copying of bits. First, since the

MAC operation is performed on the QFT state, only diagonal gates are necessary. This

makes it possible to entangle the quantum register with auxiliary qubits in a way that

allows the simultaneous application of every single-qubit quantum gate. Second, the

states of a bit can be copied by using multiple output wires to more than two registers

for the next computational step. Thus the information propagates in one step to all

the quantum gates controlled by these bits. This can be interpreted as influencing the

state of an unbounded number of qubits with just one fan-out operation.

The QFT adder we introduced has the same structure than the QMAC — it consists

of initialisation and finalisation QFT and fan-out sub-circuits and an intermediate

74

addition block, which can be repeated for addition of multiple numbers. The adder

has depth O(n+ k), as does the QMAC, when applied to n inputs and requires O(k2)

quantum gates (Theorem 2.1), but unlike the MAC operation there exists a classical

adder, the carry-save adder, that has a lower depth O(n + log k) (Section 1.3.1). The

quantum carry-save adder has depth O(n+log k) and requires O(k) gates [41] (see also

Section 1.3.1). At first, it seems that using the quantum carry-save adder is a better

choice compared to the QFT adder. However, since the constants in these estimates

are larger for the quantum carry-save adder (see Table 3.2), it can be beneficial to use

a QFT adder in some instances, for example, with small input sizes (including the 32

and 64 bits used in current processors). A comparison of the properties of the QFT

and carry-save adder (Table 3.2) reveals that in a sum of multiple integers, the depth of

QFT adder increases by 1 for each integer, whereas for the quantum carry-save adder

the increase in depth is 8 (if Toffoli gates are allowed) or 24 (if only two-qubit gates can

be used). Thus when the number of summed integers is large enough that the O(k) and

O(log k) terms in the total depth are negligible, the QFT adder would have roughly 24

times smaller depth than the quantum carry-save adder (or 8 times smaller if Toffoli

gates can be used).

For classical circuits, low depth is desirable for accelerating computations, but a higher

depth circuit is still relisable. For quantum circuits, the depth of the circuit affects

also its implementability due to decoherence, i.e. over time quantum states lose the

information stored in them. The benefit of low-depth circuits is that the operations

can be performed in parallel, thus reducing the total time required to execute the circuit

(compared to circuits with higher depth). Thus low depth parallel circuits, such as the

QMAC and QFT adder, can mitigate the loss of information due to decoherence since

the quantum states need to be coherent for a shorter time.

Future work is needed to study how and if the hybrid QFT arithmetic circuits could

be adopted to floating point operations, which are used in most of the time-intensive

computations. This would greatly increase the number of problems which would benefit

from quantum devices. Another direction would be to consider hybrid circuits for other

arithmetic operations, for example division, and examine at how the different circuits

can be combined together. The QMAC introduced in this paper has a lower depth than

a classical MAC only if it is applied in a sequence. Hence combining different quantum

arithmetic operators could result in an improved depth compared with classical circuits.

In addition of providing a comparison with existing classical circuits and other quantum

circuits we provided some guidelines how they could be optimised with the intent

of simplifying the decision of which adder or MAC to choose. The implementation

75

optimisations presented is Chapter 4 (and summarised in Table 5.1) focus on removing

two-qubit gates from the QFT arithmetic circuits. Note that if GHZ states could

be created in constant depth, then the optimised QFT arithmetic circuits wouldn’t

need any two-qubit quantum gates. This is a very desirable property, since two-

qubit gates are considerably more difficult to implement than single-qubit ones. From

implementation point of view, there are still at least three possible obstacles in

implementing QFT arithmetic circuits of useful (32 or 64 bits) size. The most obvious

ones are the number of required qubits (QFT adder O(k2) an and QMAC O(k3)) and

the number of qubits needed to be entangled at a time: O(k) and O(k2) for the QFT

adder and QMAC respectively. In addition, implementing the single-qubit phase shift

gates might be an issue. Namely for k-bit QFT arithmetic circuits phase shift gates

performing phase shifts with k different magnitudes are required. On the other hand

approximating the phase gates (for example using the Solovay-Kitaev [66] or more

recent algorithms from [67, 68, 69]), would increase the depth of the circuits and nullify

the main benefit of our circuits. The choice of which arithmetic circuits to implement

will eventually depend on the architecture which is used to implement it.

One possible continuation of this work would is a collaboration with experimentalists

to implement the proof of concept circuit presented in Section 4.4. First, to explore the

possibility to implement the QFT arithmetic circuits for further larger implementations

in full quantum computers. Second, such experiment would give some initial, albeit

very rough, estimates about the possible performance of the QMAC allowing detailed

comparisons with classical circuits. It would give more isight into whether this quantum

circuit could outperform a classical pipelined MAC (see discussion on pipelining in

Section 2.2.1) and thus reveal its potential an accelerator in classical computers.

76

Table 5.1: Summary of possible optimisations to the QFT Arithmetic circuits.

Initialisation using
Hadamard gates (Section 4.1)

Semiclassical QFT
(Section 4.2)

Measurements instead of
fan-out (Section 4.3)

Removed
Gates

QFT
adder

(k2 − k)/2 two qubit
controlled Ri gates.

(k2 − k)/2 two qubit
controlled Ri gates.

(k2 − k)/2 CNOT gates.

QMAC
(k2 − k)/2 two qubit
controlled Ri gates.

(k2 − k)/2 two qubit
controlled Ri gates.

(k3 − k)/6 CNOT gates.

Added
Gates

QFT
adder

-
(k2 − k) classically
controlled Ri gates.

(k2 − k)/2 Hadamard gates,
k classically controlled Z
gates, (k2 − k)/2 classical

XOR gates.

QMAC -
(k2 − k)/2 classically
controlled Ri gates.

(k3 − k)/6 Hadamard gates,
k classically controlled Z
gates, (k3 − k)/2 classical

XOR gates.

Change in depth Reduced by k. - -

Additional benefits The quantum register can be
initialised to a GHZ state.

- -

Limitations
The accumulation can only
be done only by adding to a

classical value.

The output is a
classical bit string.

The ancillae cannot be
reused.

77

Part II

Measurement Based Quantum

Computing

78

The quantum circuit model used in Part I is one of many models for quantum

computing. In this chapter we concentrate on a model where the computation is

driven by adaptive measurements of a quantum state. Such models of computation

are called the Measurement Based Quantum Computing (MBQC) models and in this

thesis we focus on the One Way Quantum Computing (1WQC) model described in

Chapter 6. From parallel computing perspective, this model is particularly interesting

since it has been proven to be more parallel than the circuit model [11] (this will

be explained in more detail in Part III). This has raised the question, whether it is

possible to utilise the parallelism in 1WQC to optimise computations in other classical

and quantum computation models. Indeed, the 1WQC model can be used to parallelise

quantum circuits through back-and-forth translation to it from the circuit model [10].

The main idea in this kind of parallelisation is to apply 1WQC specific optimisations to

the computation in the 1WQC model. Currently there exist two different optimisation

techniques that can be used: signal shifting [16] and finding the maximally delayed

gflow [9]. Until this work, the relationship between these two methods was unknown.

The main result of this part is the proof of equality in depth resulting in signal shifting

and finding the maximally delayed gflow, but in the process of obtaining this proof we

have found several important side results. First, to construct a flow corresponding to

a signal shifted measurement pattern, we created a new algorithm for signal shiftings

in Section 7.1.3. This new algorithm is more efficient in the number of steps required

than any previously known one. Second, by showing that signal shifting results in a

maximally delayed gflow we created a new method for finding maximally delayed gflows

of open graphs with flows using our new signal shifting algorithm. This new method of

finding maximally delayed gflows is again more efficient, in the number of elementary

steps required, than any previous algorithm that can be used for this purpose. Finally,

perhaps one of the most important contribution of this work is a number of new lemmas

and techniques regarding the structure of the signal shifted gflows. Although initially

used to prove our main theorem, they can be used to obtain new results about 1WQC as

has already been proven by [17], who have successfully applied the lemmas in Chapter 8

to create a new method of translating computations from 1WQC to the circuit model

in a way that does not increase neither the number of auxiliary qubits nor the depth

of the computation.

79

Chapter 6

Preliminaries

In 1999 Chuang and Gottesman showed how quantum teleportation could be used to

implement arbitrary quantum gates [70]. This approach was further developed by other

researchers [71, 72, 73, 74], enabling one in principle to perform arbitrary computations

given a few primitives: preparation of maximally entangled systems of fixed, small

dimension; multi-qubit measurements on arbitrary set of qubits; and the possibility of

adapting the measurement bases depending on earlier measurement outcomes.

These models draw on measurements to implement the dynamics of a computation,

and as such are called measurement-based quantum computation (MBQC) models.

For an overview see the paper by Jozsa [75]. An MBQC model using only single-qubit

measurements on special types of entangled states, the so-called cluster states, was

proposed by Raussendorf and Briegel in 2001, which became known as the one-way

quantum computing (1WQC) model [13]. Although two-dimensional cluster states can

be used as a resource for universal quantum computation in the one-way model [76],

arbitrary graph states may, or may not, serve the same purpose; investigating which

kinds of entangled states are useful resources for MBQC is an active area of research [77,

78, 79, 80, 81].

We review the basic ideas behind the one way quantum computing, with special

attention to its description in terms of the formal language known as Measurement

Calculus [14], and the flow theorems [15, 16].

80

6.1. The measurement calculus

6.1 The measurement calculus

A formal language describing the computations in the one-way model was developed

in [14]. In this framework every 1WQC algorithm (referred to as a measurement

pattern) consists of a finite sequence of five different types of commands: preparation,

entangling, measurement and two types of correction commands. These commands act

on a set of working qubits V , out of which some are identified as input and some as

output qubits, denoted by I and O correspondingly.

The preparation command Ni prepares a qubit i in the state |+〉 = 1√
2
(|0〉 + |1〉) and

has to be applied to every non-input qubit before any other command. Since it always

has to be applied to the non-input qubits, it is common to omit these commands when

a pattern is written out. This is also done in this thesis, the Ni commands are always

implicit in the pattern.

The entangling command Ei,j corresponds to applying the unitary operator ∧Z to

qubits i and j, where

∧Z =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

. (6.1)

Through the process of standardisation (Section 6.1.2) it is possible to rewrite any

measurement pattern such that all the entanglement commands are applied just after

the preparation commands. The preparation and entanglement commands together

define therefore the resources on which the computation is performed through the

application of the subsequent measurement pattern commands. These resources are

often represented as open graphs.

Definition 6.1 (open graph). An open graph is a triplet (G, I,O), where G = (V,E)

is an undirected graph, and I,O ⊆ V are respectively called input and output vertices.

The qubits of an 1WQC are represented as vertices of an open graph and the

entanglement commands as edges. An example of an open graph and description of

the notation used in their graphical representation is given in Figure 6.1.

The measurement command M θ
i corresponds to a measurement of qubit i in the basis

|±θ〉 = 1√
2
(|0〉± eiθ|1〉), with outcome si = 0 associated with |+θ〉, and outcome 1 with

|−θ〉. The measurement outcomes si are usually referred as signals.

81

6.1. The measurement calculus

82

1 53

4 6

7
Output qubit

Input and output qubit

Input qubit

Measured qubit

Figure 6.1: An example open graph corresponding to the following measurement pattern:
E7,8E6,8E3,5E3,6E4,6E1,3E2,3E2,4N3N4N5N6N8. Note that a preparation command is not
applied to qubit 7, since it is both an input and an output qubit.

The final two types of commands are the correction commands. Corrections may be of

two types, either Pauli X or Pauli Z, and they may depend on any prior measurement

results through signals, denoted by s = ⊕j∈J⊂V sj (sj = 0 or 1 and the summation

is done modulo two). This dependency can be summarised as correction commands:

Xs
i and Zsi denoting Pauli X and Z corrections on qubit i which must be applied only

when the parity of the measurement outcomes on qubits j ∈ J ⊂ V equals one (as

Z0 = X0 = I). A characteristic of the 1WQC model is that the choice of measurement

bases may depend on earlier measurement outcomes. These dependent measurements

can be conveniently written as t[M
θ
i]
s
, where

t[M
θ
i]
s

= M θ
i X

s
i Z

t
i = M

(−1)sθ+tπ
i , (6.2)

where it is understood that the operations are performed in the order from right to left

in the sequence. The left (t) and right (s) dependencies of the measurement Mi are

called its Z and X dependencies, respectively.

The commands in a measurement pattern are always applied from right to left, such

that they satisfy the following definiteness conditions [14]:

• (D0) no command depends on an outcome not yet measured;

• (D1) no command acts on a qubit already measured;

• (D2) no command acts on a qubit not yet prepared, unless it is an input qubit;

• (D3) a qubit i is measured if and only if it is not an output qubit.

82

6.1. The measurement calculus

6.1.1 An example measurement pattern

As an example, consider the pattern consisting of the qubits V = {1, 2}, I = {1}, O =

{2} and the sequence of commands:

Xs1
2 M

−θ
1 E1,2N

0
2 . (6.3)

This sequence of operations does the following: first it initialises the output qubit 2 in

the state |+〉; then it applies ∧Z on qubits 1 and 2; followed by a measurement of input

qubit 1 onto the basis {1/
√

2(|0〉 + e−iθ|1〉), 1/
√

2(|0〉 − e−iθ|1〉)}. If the result is the

latter vector then the one-bit outcome is s1 = 1 and there is a correction on the second

qubit (X1
2 = X2), otherwise no correction is necessary. The open graph corresponding

the the above sequence is given in Figure 6.2. A simple calculation shows that this

pattern implements the unitary Jθ on the state prepared in qubit 1, outputting the

result on qubit 2, where

Jθ ≡
1√
2

 1 eiθ

1 −eiθ

 . (6.4)

The simple sequence above is a convenient building block for more complicated

computations in the 1WQC model. This is because the set consisting of the single-

qubit operator Jθ (∀θ) together with the ∧Z operator acting on arbitrary pairs of

qubits can be shown to be a universal set of gates for quantum computation [82].

1 2

Figure 6.2: The open graph corresponding to the measurement pattern in equation 6.3.
We can conclude the following about the pattern by examining the graph: (1) the blue arrow
represents the command Xs1 ; (2) the edge between the two vertices the entanglement command
E1,2; (3) the square around the first qubit that it is an output qubit; qubit 1 coloured black
implies that it is measured (the angle −ω is not represented on the graph); (4) qubit 2 is left
uncoloured to show that it is an output qubit and hence needs to have the command N2 applied
to it at the beginning of a measurement pattern.

6.1.2 Rewriting patterns

The following rewrite rules ([14]) put the command sequence in the standard form,

where preparation is done first followed by the entanglement, measurements and

83

6.2. Determinism in 1WQC

corrections:

EijX
s
i ⇒ Xs

i Z
s
jEij , (6.5)

EijZ
s
i ⇒ ZsiEij , (6.6)

t[M
θ
i]
s
Xr
i ⇒ t[M

θ
i]
s+r

, (6.7)

t[M
θ
i]
s
Zri ⇒ r+t[M

θ
i]
s
. (6.8)

This procedure is called standardisation and can directly change the dependency

structure commands, possibly reducing the computational depth, without breaking

the causality ordering [10]. There exist more extensive rewrite rules such as signal

shifting and Pauli optimisation [14], which could be used for parallelising measurement

patterns [10]. The former will be described in Section 7.1, where a new algorithm for

performing it is presented. The latter is out of the scope of this work; a description of

how it can be utilised in with signal shifting for parallelisation can be found in [10].

6.2 Determinism in 1WQC

Due to the probabilistic nature of quantum measurement, not every measurement

pattern implements a deterministic computation — a completely positive, trace-

preserving (cptp) map that sends pure states to pure states. We will refer to the

collection of possible measurement outcomes as a branch of the computation. In

this work, we consider deterministic patterns which satisfies three conditions: (1) the

probability of obtaining each branch is the same, called strong determinism; (2) for

any measurement angle we have determinism, called uniform determinism; and (3)

which are deterministic after each single measurement, called stepwise determinism.

We will call those patterns simply deterministic patterns. As explained earlier,

measurement patterns can act on resource states called open graphs. Similarly to

measurement patterns, which not always implement deterministic computations, there

exist open graphs which cannot be used for deterministic computation. Identification

and characterisation of the graphs that could be used has been done in [15, 16, 83].

Following sections summarise the results most relevant to this work.

6.2.1 Flow

Sufficient conditions (known as the flow) for open graphs which can be used for

deterministic computation were presented in [15]. Flow is the basis on which we

construct the signal shifted flow in Chapter 7 and is a central concept in this thesis. In

84

6.2. Determinism in 1WQC

what follows, we denote non-input vertices as IC (complement of I in the graph) and

non-output vertices as OC (complement of O in the graph).

Definition 6.2 (Flow [15]). We say that an open graph (G, I,O) has flow if and only

if there exists a map f : OC → IC and a strict partial order ≺f over all vertices in the

graph such that for all i ∈ OC

• (F1) i ≺f f(i);

• (F2) if j ∈ N(f(i)), then j = i or i ≺f j, where N(v) is the neighbourhood of v;

• (F3) i ∈ N(f(i)).

An example of a graph with flow is shown in Figure 6.3(a). Given a flow (f,≺f) of an

open graph (G, I,O) it is possible to write a deterministic measurement pattern on the

graph [15]:

P =

≺f∏

i∈OC

(
Xsi
f(i)Z

si
N(f(i))\{i}M

αi
i

)
EGNIC . (6.9)

Note that since this pattern represents a uniformly deterministic computation, it

implements a unitary operator irrespective of the measurement angles αi. From

equation 6.9 we see that a Z-correction on a vertex j depending on the measurement

outcome of another vertex i appears only if j is a neighbour of f(i). This is formally

stated in the next corollary, which we refer to in several places.

Corollary 6.1. If (G, I,O) is an open graph with a flow (f,≺f), then there exists a

Z-correction from vertex i to another vertex j if and only if j ∈ N(f(i)) \ {i}.

The flow function f is a one-to-one function. The proof is trivial, but as this property

is extensively used in this work we will present it here.

Lemma 6.1. Let (f,≺f) be a flow on an open graph (G, I,O). The function f is an

injective function, i.e. for every i ∈ OC , f(i) is unique.

Proof. Let us assume that for some i ∈ OC , f(i) is not unique, i.e. there exists j ∈ OC
such that i 6= j but f(i) = f(j). Then according to the flow definition:

j ∈ N(f(j)) = N(f(i))⇒ i ≺f j, (6.10)

i ∈ N(f(i)) = N(f(j))⇒ j ≺f i, (6.11)

and we arrive at a contradiction because i ≺f j and j ≺f i cannot be true at the same

time. Hence f(i) has to be unique.

85

6.2. Determinism in 1WQC

4

52

1

63

(a) An open graph with
flow and gflow.

3

2

4

5

1

6

(b) An open graph with
no flow and no gflow.

3

2

4

5

1

6

(c) An open graph with
gflow and no flow.

Figure 6.3: Examples of open graphs with flow (a), gflow (b) and without either (c). Blue
lines represent the flow/gflow functions and dashed lines group together measurements that can
be performed simultaneously according to the flow/gflow partial order.

6.2.2 General flow

Flow provides only a sufficient condition for determinism but one can generalise the

above definition to obtain a condition that is both necessary and sufficient. This

generalisation allows correcting sets with more than one element. In those cases, we

say that the graph has generalised flow (or simply gflow). In what follows we define

Odd(K) = {k , |NG(k) ∩K| = 1 mod 2} to be the set of vertices where each element

is connected with the set K by an odd number of edges.

Definition 6.3 (Generalised flow [16]). We say (G, I,O) has generalised flow if there

exists a map g : OC → 2I
C

(the set of all subsets of non-input qubits) and a partial

order ≺g over all vertices in the graph such that for all i ∈ OC ,

• (G1) if j ∈ g(i) then i ≺g j;

• (G2) if j ∈ Odd(g(i)) then j = i or i ≺g j;

• (G3) i ∈ Odd(g(i)).

The set g(i) is often referred to as the correcting set for qubit i. Flow is a special case

of gflow, where g(i) contains exactly one element. An example of a gflow is given in

Figure 6.3(c). Interestingly, adding one edge to the flow in Figure 6.3(a) as done in

Figure 6.3(b) can remove both the flow and gflow from the open graph, but adding

two edges as in Figure 6.3(c) will remove only the flow from the graph. Such graphical

representation of underlying entanglement and their link to flow and gflow is fully

explained in [84]. Similar to the flow scenario, a deterministic pattern P for an open

86

6.2. Determinism in 1WQC

graph (G, I,O) can be derived given a gflow (g,≺g) on the graph:

P =

≺g∏

i∈OC

(
Xsi
g(i)Z

gi
Odd(s(i))M

αi
i

)
EGNIC . (6.12)

The gflow partial order leads to an arrangement of the vertices into layers (see below),

in which all the corresponding measurements can be performed simultaneously. The

number of layers corresponds to the number of parallel steps in which a computation

could be finished, known as the depth of the pattern.

Definition 6.4 (Depth of a gflow [9]). For a given open graph (G, I,O) and a gflow

(g,≺g) of (G, I,O), let

V
≺g
k =

max≺g(V (G)) if k = 0

max≺g(V (G) \ (∪i<kV ≺gi)) if k > 0

, (6.13)

where max (X)≺g = {u ∈ X s.t. ∀v ∈ X,¬(u ≺g v)} is the set of maximal elements of

X according to ≺g. The depth d≺g of the gflow is the smallest d such that V
≺g
d+1 = ∅,

(Vk)k=0...d≺g is a partition of V (G) into d≺g + 1 layers.

We define the layering function of a gflow based on the above distribution of vertices

into layers.

Definition 6.5 (Layering function). Given a gflow (g,≺g) on an open graph

(G, I,O) we define its layering function Lg : V (G) → N to be the natural number

k such that L(i) = k if and only if i ∈ V ≺gk .

There is another useful way to understand the depth of a gflow. A gflow can be

represented as a directed graph on top of an open graph as shown in Figure 6.3. The

longest path from inputs to outputs over those directed edges corresponds to the depth

of the gflow. In [9] it was shown, that a special type of gflow, called a maximally delayed

gflow, has minimal depth.

Definition 6.6 (Maximally delayed gflow [9]). For a given open graph (G, I,O) and

two given gflows (g,≺g) and (g′,≺g′) of (G, I,O), (g,≺g) is more delayed than (g′,≺g′)
if ∀k, | ∪i=0...k V

≺g
i | ≥ | ∪i=0...k V

≺g′
i | and there exists a k such that the inequality is

strict. A gflow (g,≺g) is maximally delayed if there exists no gflow of the same graph

that is more delayed.

Note that in [9] it was proven that the layering of the vertices imposed by a maximally

delayed gflow is always unique, however the gflow itself might not be unique. This is

87

6.2. Determinism in 1WQC

an important property, which together with the following lemmas is exploited later in

linking gflow to other known structures of 1WQC.

Lemma 6.2 (Lemma 1 from [9]). If (g,≺) is a maximally delayed gflow of (G, I,O)

then V ≺0 = O.

Lemma 6.3 (Lemma 2 from [9]). If (g,≺) is a maximally delayed gflow of (G, I,O)

then (g̃,≺g̃) is a maximally delayed gflow of (G, I,O ∪ V ≺1) where g̃ is the restriction

of g to V (G) \ (V ≺1 ∪ V ≺0) and ≺g̃=≺ \V ≺1 × V ≺0 .

6.2.3 Focused flow

A simpler characterisation of stepwise strong determinism called focused gflow was

introduced in [83].

Definition 6.7 (Focused gflow [83]). g : OC → 2I
C

is a focused gflow of (G, I,O) if

• (FG1) g is extensive i.e. the transitive closure of the relation {(i, j) s.t. j ∈ g(i)}
is a partial order over V (G);

• (FG2) ∀i ∈ OC , Odd(g(i)) ∩OC = {i}.

Both flow and focused gflow have been shown to be unique for open graphs where input

size is equal to output size [85, 83]. One way of explaining the uniqueness of focused

gflow is through its relation with the flow. Namely, signal shifting a flow results in a

focused gflow as will be shown in Chapter 7.

88

Chapter 7

Signal shifted flow

The parallel power of 1WQC is proven to be equivalent to quantum circuits augmented

with unbounded fan-out [11]. This motivates us to use 1WQC as an automated tool

for circuit parallelisation, using the process of signal shifting explained in Section 7.1,

as it was first presented in [10]. Another way to obtain parallel 1WQC structure is

to use the open graph of the pattern to obtain the optimal gflow of the graph [9].

From this maximally delayed gflow, it is possible to create a measurement pattern

(using Formula 6.12 given in previous chapter). Our first main result is to show the

equivalence between these two seemingly very different techniques for the patterns

obtained from a quantum circuit, that is those with flow. More precisely we show how

the effect of performing signal shifting optimisation (that is the core idea in [10]) result

in a maximally delayed gflow. This is done by first creating a new type of flow from

the signal shifted measurement pattern (Section 7.2), proving that this new flow is

actually a gflow (Section 7.3) and proving its equivalence to maximally delayed gflow

in Chapter 8. This structural link sheds further light on the complicated structure of

maximally delayed gflow and permits us to find a new efficient algorithm for finding it

for the large class of patterns obtained from a circuit.

7.1 Signal shifting

7.1.1 The definition of signal shifting

We have already described how finding an optimal gflow could be used as an

optimisation tool for one way quantum computation. Next we will explain another

known depth reducing technique used for measurement patterns. The core of this

89

7.1. Signal shifting

procedure consists of three rewrite rules which manipulate the signals (see section 6.1)

of individual commands [14]:

t[M
α
i]s ⇒ Sti [Mα

i]s, (7.1)

t[M
α
j]s St

′
i ⇒ St

′
i t[(t′+si)/si][M

α
j]s, (7.2)

Xs
j S

t
i ⇒ Sti X

s[(t+si)/si]
j , (7.3)

Zsj S
t
i ⇒ Sti Z

s[(t+si)/si]
j , (7.4)

where Sti is the signal shifting command (adding t to si) and s[t/si] denotes the

substitution of si with t in s. We call the process of applying rewrite rules 7.1 - 7.4 to a

measurement pattern until none of them can be further applied signal shifting and the

obtained pattern a signal shifted pattern. This procedure is interesting in the context of

current work, since it can be utilised to parallelise measurement patterns and quantum

circuits. This is due to the work of Broadbent and Kashefi, who in [10] showed that

signal shifting will never increase the depth of a pattern, whereas it can decrease it.

7.1.2 Understanding signal shifting

As can be seen from Rules 7.1 - 7.4, signal shifting is a method for rewriting the X-

and Z-corrections of a measurement pattern. An example illustrating that is given

in Figure 7.1. Note that we do not have a way to represent the presence of a signal

command in the graph representation of a measurement pattern. Thus the graphs

of the pattern where the signal commands are not at the end of the computation

(Figures 7.1(b) and 7.1(d)) are not actually valid representations, but are included

to give a rough idea what happens to the graph during signal shifting. The whole

process of signal shifting can be interpreted in the following way: signal shifting takes a

signal from a Z-correction on a measured qubit i (Rule 7.1, Figures 7.1(b) and 7.1(d))

and adds it to the corrections that depend on the outcome of the measurement of i

(Rules 7.2 - 7.4, Figures 7.1(c) and 7.1(e)). When the signal is added to an X-correction

command, it won’t propagate any further. On the other hand, if the signal is added to

another Z-correction of a measured vertex, then Rule 7.1 can be applied again. This

process can be repeated until no Z-corrections are left on non-output vertices. Note,

that since Rule 7.1 can only be applied to measured qubits, the process of signal shifting

will have the effect of moving all the Z-corrections in the pattern to the output qubits.

This removal of the Z-corrections from the measured qubits is the reason why signal

shifting can be used to optimise measurement patterns. Note however, that not all

measurement patterns will have their depth reduced, as is shown in Figure 7.1.

90

7.1. Signal shifting

2

43

1

65

Layer 3 Layer 2 Layer 1 Layer 0

Xs5
6 s3

[M↵5
5]Xs3

4 s1
[M↵3

3]Xs1
2 [M↵1

1]EGNIC

(a) The measurement pattern before signal
shifting.

2

43

1

65

Layer 3 Layer 2 Layer 1 Layer 0

Xs5
6 s3

[M↵5
5]Xs3

4 Ss1
3 [M↵3

3]Xs1
2 [M↵1

1]EGNIC

(b) Creating the signal command from qubit
3.

2

43

1

65

Layer 3 Layer 2 Layer 1 Layer 0

Ss1
3 Xs5

6 s3+s1
[M↵5

5]Xs3+s1
4 [M↵3

3]Xs1
2 [M↵1

1]EGNIC

(c) Moving the signal from qubit 3 to the end
of the pattern.

2

43

1

65

Layer 3 Layer 2 Layer 1 Layer 0

Ss1
3 Xs5

6 Ss3+s1
5 [M↵5

5]Xs3+s1
4 [M↵3

3]Xs1
2 [M↵1

1]EGNIC

(d) Creating the signal command from qubit
5.

2

43

1

65

Layer 3 Layer 2 Layer 1 Layer 0

Ss1
3 Ss3+s1

5 Xs5+s3+s1
6 [M↵5

5]Xs3+s1
4 [M↵3

3]Xs1
2 [M↵1

1]EGNIC

(e) Moving the signal from qubit 5 to the end of the
pattern.

Figure 7.1: Signal shifting a measurement pattern. In this particular example, the depth of
the computation will be reduced from 4 to 2 through signal shifting.

91

7.1. Signal shifting

51 2 3 4

Xs4Zs3
s2

[M↵3
4]s3

s1
[M↵3

3]s2 [M↵2
2]s1 [M↵1

1]EGNIC

(a) The measurement pattern before signal shifting.

51 2 3 4

Xs4Zs3
s2

[M↵3
4]s3 Ss1

3 [M↵3
3]s2 [M↵2

2]s1 [M↵1
1]EGNIC

(b) Creating the signal command from qubit 3.

51 2 3 4

Ss1
3 Xs4Zs3+s1

s2
[M↵3

4]s3+s1 [M↵3
3]s2 [M↵2

2]s1 [M↵1
1]EGNIC

(c) Moving the signal from qubit 3 to the end of the pattern.

51 2 3 4

Ss1
3 Xs4Zs3+s1 Ss2

4 [M↵3
4]s3+s1 [M↵3

3]s2 [M↵2
2]s1 [M↵1

1]EGNIC

(d) Creating the signal command from qubit 4.

51 2 3 4

Ss1
3 Ss2

4 Xs4+s2Zs3+s1 [M↵3
4]s3+s1 [M↵3

3]s2 [M↵2
2]s1 [M↵1

1]EGNIC

(e) Moving the signal from qubit 4 to the end of the pattern.

Figure 7.2: An example of a measurement pattern where signal shifting will not reduce the
dept of the computation.

92

7.1. Signal shifting

There is one important observation to be made from the signal shifting examples in

Figures 7.1 and 7.2. If we define a function g : OC → 2I
C

as j ∈ g(i)⇔ ∃Xsi
j ∈ P , then

together with a partial order ≺g, where the partial order respects the measurement

order, it is easy to show that (g,≺g) is an optimal gflow. This raises the question,

wether for every signal shifted computation we can use the X-correction structure to

represent an optimal gflow. Note that if that would be true, signal shifting would result

in the same computational depth as finding the optimal gflow of the graph. We will

show in the following chapters that this is the case if we start with a measurement

pattern with flow where |I| = |O|. If |I| = |O| we can construct examples where the

signal shifting does not give rise to an optimal gflow.

7.1.3 An algorithm for signal shifting

As described above, using signal shifting the signals will move from measured vertices

to vertices which have a Z-correction from it, i.e. they move along a path created by the

Z-corrections. This leads to the description of propagation of signals in a measurement

pattern through the Z-path and Z-graph as defined below.

Definition 7.1 (Z-graph). Let M be a measurement pattern on an open graph

(G, I,O). The Z dependency graph (Z-graph) of M , denoted by GZ , is a directed

acyclic graph on the vertices of G, such that there exists a directed edge from i to j if

and only if there exists a correction command Zsij in M , i.e:

• V (GZ) = V (G),

• E(G) = {(i, j) | Zsij ∈M}.

Definition 7.2 (Z-path). Let M be a measurement pattern on an open graph (G, I,O)

and GZ its Z dependency graph. A path in GZ between two vertices v and u is called a

Z-path.

When we say that two vertices are connected, we always mean connected via an

edge. When paths between vertices are considered it will be noted explicitly to avoid

confusion. The above definitions allows us to state a simple observation about the

connectivity of a graph with flow.

Lemma 7.1. If (f,≺f) is a flow on an open graph (G, I,O), and there exists a Z-path

from vertex i to vertex j, then the vertices i and f(j) cannot be connected.

Proof. The existence of a Z-path from i to j implies that i ≺f j. The Z dependency

graph is an acyclic graph, thus i 6= j. If i would be connected to f(j), then according

93

7.1. Signal shifting

to the flow property (F2):

i ∈ N(f(j)) ∧ i 6= j ⇒ j ≺f i. (7.5)

Now we have two contradicting strict partial order relations i ≺f j and j ≺f i.

Therefore i cannot be connected to f(j).

Recall that the addition of signals is done modulo 2, therefore, if an even number of

signals from a measured vertex i is added to a correction command on vertex j, the

signals will cancel out (since Z2 = X2 = I). Furthermore, it is evident from the rewrite

Rules of 7.1 - 7.4 that after signal shifting, the measurement result of vertex i will

create a new X-correction over vertex j if there exists an odd number of Z-paths from

i to a vertex k such that j is X-dependent k in the original pattern. Similarly a new

Z-correction from i to j will be created if there exists an odd number of Z-paths from

i to j. Either way, the number of Z-paths from a vertex i to another vertex j, denoted

as ζi(j), can be used to determine if the signal from i should be added to a correction.

We define ζi(i) to be 1 to simplify further calculations and definitions in this paper.

The importance of the number of Z-paths will manifest itself in subsequent sections,

where the relation between signal shifting and gflows is studied.

We define a new structure called the signal shifted flow (SSF), and show that it

satisfies the three gflow properties in Definition 6.3. Before constructing the SSF,

some definitions and lemmas are needed to justify our definition. We define the Z-

dependency neighbourhood of a vertex j to be the set of vertices from which j is receiving

a Z-correction. This set has an explicit form given as NZ(j) = {k ∈ OC |f(k) ∈
N(j)\{f(j)}}. This is due to the following facts: first, f(k) has to exist for all vertices

k ∈ OC because of the flow definition; second, since f(k) 6= f(j) the vertex k cannot

be equal to j. Because f(k) ∈ N(j) ⇒ j ∈ N(f(k)) and Corollary 6.1 there exists a

Z-correction from k to j. It is easy to see, that ζi(j) can be written as:

ζi(j) =
∑

k∈NZ(j)

ζi(k). (7.6)

There exists a Z-correction from every k ∈ NZ(j) to j. These Z-corrections can be

used to extend every such Z-path to k to reach j. If i is in the sum, then because

ζi(i) = 1 the correct number of Z-paths is obtained with equation 7.6.

All the properties proved so far allow us to present a new algorithm (Algorithm 1) for

performing the signal shifting rules over pattern with flow in the form of equation 6.9.

We keep in mind that the order in which we apply the signal shifting rules does not

94

7.1. Signal shifting

matter [15]. This algorithm as we discuss later leads to a more efficient gflow finding

algorithm.

Algorithm 1: SignalShift

Input: A measurement pattern P of a flow (f,≺f) as defined in equation 6.9.
Output: The signal shifted pattern PSS of P .

1 begin
2 toShift = OC ;
3 PSS = P ;
4 while toShift 6= ∅ do
5 select any vertex i ∈ toShift which is the smallest according to ≺f ;
6 toShift = toShift \ {i};
7 while ∃k ∈ toShift s.t. Zsik ∈ PSS do
8 Select the smallest k ∈ toShift s.t. Zsik ∈ PSS according to ≺f ;
9 In PSS , move the Zsik command next to the Mαk

k command;
10 Use Rule 7.1 on PSS to create the signal command Ssik ;
11 // Removes the Zsik command from PSS ;
12 Use Rule 7.3 on PSS to create a new Xsi

f(k) command;

13 foreach j ∈ N(f(k)) \ {k} do
14 Use Rule 7.4 on PSS to create a new Zsij command.

15 In PSS , move Ssik to the end of the pattern and remove it.

Proposition 7.1. Given as input the measurement pattern P of a flow (f,≺f) defined

in equation 6.9, Algorithm 1 outputs the signal shifted measurement pattern of P .

Proof. We will prove this proposition by showing that:

• Algorithm 1 always terminates.

• Every step in Algorithm 1 that modifies the pattern PSS is a valid application of

a signal shifting rewrite rule.

• The output of Algorithm 1, the pattern PSS , is signal shifted.

Note that the “for” loop in the algorithm terminates because the underlying open graph

is finite. The first “while” loop will terminate since we decrease the number of elements

in toShift on each loop iteration and never add anything to it. As we’ll explain now,

the second “while” loop will terminate since each k is selected only once and the open

graph is finite. Note that since j ∈ N(f(k)) \ {k}, then according to the flow definition

k ≺f j. Every new Zsij command added to PSS is such that k ≺ j and hence no

removed Zsik command can be added to PSS again. This is true also on on subsequent

95

7.1. Signal shifting

loop iterations since we choose k to be the smallest according to ≺f . Hence the second

“while” loop and the whole algorithm terminates.

For Algorithm 1 to actually perform the signal shifting, its operations have to be either

trivial commuting rules or the four signal shifting Rules 7.1 - 7.4. As can be easily seen

from the algorithm, the operations done are indeed the signal shifting rewrite Rules 7.1 -

7.4. We still need to prove, that these rules can be applied in the order shown in the

algorithm. Obviously we can use Rule 7.1 on line 8 to create the signal command

due to the fact that k ∈ toShift ⊆ OC and that every non-output qubit is measured.

Hence we have the measurement required for the creation of the signal command in

the pattern. We know that Zsik has to be in the pattern after the command Mαi
i and

before Mαk
k . The entanglement and creation commands are the first commands in the

pattern and we do not need to move the Zsik command past them. Hence we only need

to move Zsik past measurement commands on qubits that are not i and k and other

correction commands. These can be done trivially and hence we can always move the

Zsik command next to Mαk
k to apply Rule 7.1.

Next we want to move the newly created Sik command to the end of the measurement

pattern. To do that we need to commute it past the commands that appear after

it. The only commands Sik commutes non-trivially with are the ones that depend on

the measurement of qubit k as can be seen from Rules 7.1 - 7.4. Those are the X-

and Z-corrections depending on the measurement outcome of qubit k. According to

equation 6.9 there is exactly one such X-correction in the pattern P , namely Xk
f(k).

The previous steps of the algorithm could not have created any dependencies from

qubit k — the Z-correction commands have only been created depending on vertices

that we already moved from toShift. Therefore we need to create exactly one new

X-correction command using Rule 7.3. We also look at the Z-corrections depending

on k and from equation 6.9 we see that in the original pattern these are on vertices

from the set N(f(k)) \ {k}. Just like for the X-corrections, we have not created any

new Z-corrections from k in the previous steps of the algorithm. Hence this is exactly

the set of corrections we need to commute with and apply Rule 7.4. We are only left

with commands after Sik in the pattern that commute trivially with Sik. We can move

the command to the end of the pattern. The signal command at the end of the pattern

does not influence the computation and we will not add any new commands to the end

of the pattern. Hence we can remove the Ski command.

Finally we show that no more signal shifting rules can be applied after the completion

of Algorithm 1, i.e. the pattern PSS is signal shifted. We eliminate all Z-corrections

acting on a non-output qubit depending on a vertex i after removing it from the set

96

7.2. Constructing the SSF

toShift and will afterwards never create any new Z-corrections depending on that

vertex. At the end of the algorithm the set toShift is empty, hence there cannot exist

any non-output qubit that has a Z-correction acting on it and Rule 7.1 cannot be

applied anymore. Moreover, since every signal command is at the end of the pattern,

we cannot apply the Rules 7.2 to 7.4 either. This completes the proof.

Proposition 7.2. Algorithm 1 completes in O(n3) steps, where n is the number of

qubits the input pattern acts on.

Proof. The number of times the outermost and innermost loops are executed is easy

to estimate. The first while loop is entered |OC | = O(n) times and the inner foreach

loop deg(G) = O(n) times, where deg(G) is the degree of the graph. The number of

times the second while loop is entered depend on the number of times a Zsij command

is added on line 15. Adding new Z-correction commands cannot create any loops, as

otherwise the algorithm would not halt as proven in Proposition 7.1. Since there cannot

be created any loops, the number of new Zsij corrections added can only be O(n) and

the second while loop can only be entered O(n) times. Therefore the Algorithm 1

completes in O(n) ·O(n) ·O(n) = O(n3) steps.

We consider any trivial commutation of the commands of a pattern resulting in an

equivalent pattern. Therefore given the measurement pattern P of a flow (f,≺f) as

defined in Eq. 6.9 as input to Algorithm 1, the output will be the unique signal shifted

measurement pattern of P . Note that Algorithm 1 works almost like a directed graph

traversal, where there is a directed edge from vertex i to k if and only if there exists

the command Zsik in the measurement pattern. The only difference from a classical

directed graph traversal is that we allow visiting of a vertex more than once. Hence

we will traverse through every different path in the graph. However we do that exactly

once.

7.2 Constructing the SSF

As mentioned before, the evenness of the number of Z-paths can be used to determine

if a signal is added to a correction command. If an open graph has a flow, the oddness

of ζi(j) can be found as described in the following lemma.

Lemma 7.2. For every two vertices i and j in an open graph (G, I,O) with flow (f,≺f)

ζi(j) mod 2 = |{k ∈ NZ(j) | ζi(k) = 1 mod 2}| mod 2, (7.7)

97

7.2. Constructing the SSF

i.e. the oddness of ζi(j) depends only on the number of vertices in the Z-dependency

neighbourhood which have an odd number of Z-paths from i.

Proof. ζi(j) mod n can be written as

ζi(j) mod 2 =

 ∑

k∈NZ(j)

ζi(k)

 mod 2

=
∑

k∈NZ(j)

(ζi(k) mod 2) mod 2 (7.8)

=
∑

{k∈NZ(j)|ζi(k) mod 2=1}

(ζi(k) mod 2) mod 2

= |{k ∈ NZ(j) | ζi(k) mod 2 = 1}| mod 2.

All these notions will allow us to define the structure of the pattern after signal shifting

is performed.

Proposition 7.3. Given a flow (f,≺f) on an open graph (G, I,O), let s be a function

from OC 7→ P I
C

such that j ∈ s(i) if and only if ζi(f
−1(j)) mod 2 = 1. Also define

Ls to be a layering function from V (G) into a natural number:

Ls(i) = 0 ∀i ∈ O, (7.9)

Ls(i) = max
j∈s(i)

(Ls(j) + 1) ∀i /∈ O. (7.10)

Define the strict partial order ≺s with:

i ≺s j ⇔ Ls(i) > Ls(j). (7.11)

Then, the application of signal shifting Rules 7.1 - 7.4 over a measurement pattern with

flow (f,≺f) will lead to the following pattern:

P =
∏

j∈O,i∈IC
Z
siζi(j) mod 2
j

≺s∏

i∈OC

(
Xsi
s(i)M

αi
i

)
EGNIC . (7.12)

Proof. The proof is divided into three parts. First we will show that signal shifting

creates exactly the commands comprising the pattern shown in equation 7.12. These

commands do not have to be in the same order as in equation 7.12. We proceed by

showing that the layering function Ls is defined for every i ∈ V (G). Lastly, we need to

98

7.2. Constructing the SSF

prove that using the partial order ≺s derived from Ls for ordering the commands as in

equation 7.12 gives a valid measurement pattern.

Note that the preparation commands (NC
I), entanglement commands (EG) and

measurement commands (Mαi
i) are the same for equations 6.9 and 7.12. Because signal

shifting would not change these commands (Rules 7.1 - 7.3) these are as required for a

signal shifted pattern. Hence we need only to consider the correction commands.

We will look at the correction commands that would appear in a signal shifted pattern.

We do this by examining the signal shifting algorithm (Algorithm 1). As mentioned

before, the algorithm works as a directed graph traversal, in a way that every distinct

path is traversed. As seen in the algorithm every Zsik correction acting on a non-output

qubit is removed from the pattern. This is in accordance with the proposed pattern in

equation 7.12. Let us examine which new corrections are created.

The number of newly created Xsi
j depends on the number of times we enter the first

loop with command Zsi
f−1(j)

. As the algorithm is a directed graph traversal algorithm,

this happens as many times as there are different paths over the Z-dependency graph

from i to f−1(j). Because the same two Xsi
l corrections cancel each other, a new X-

correction appears in a signal shifted pattern only if ζi(f
−1(j)) mod 2 = 1. We also

note that no new Xsi
f(i) correction is created since there exists no Z-path between i and

f−1(f(i)). On the other hand Algorithm 1 leaves the already existing X- corrections

unchanged and moreover since we have defined ζi(i) = 1, we have f(i) ∈ s(i). This

implies that the set s(i) does indeed contain all the vertices that have an X-correction

depending on si after signal shifting is performed.

The number of newly created Z-corrections on an output vertex j depending on a vertex

i appearing in the signal shifted pattern is equal to the number of different paths from

i to j. The difference with non-output qubits is that these will not be removed through

the process of signal shifting. As with X-corrections, two Z-correction commands on

the same qubit will cancel each other out and hence the existence of a Zsij in the final

pattern depends on the parity of the number of paths from i to j. This can be written

in short as

Z
siζi(j) mod 2
j . (7.13)

Hence the measurement pattern in equation 7.12 has exactly the same commands as

the signal shifted pattern in equation 6.9.

Another thing we need to prove is that the layering function Ls is defined for every

i ∈ V (G). As proven above, the X-corrections depending on the measurement of

99

7.3. SSF and gflow

qubit v correspond to the set s(v). Hence we can interpret the definition of Ls(v) as

finding the maximum value of Ls for every vertex that has an X-correction from v and

adding 1 to it. The recursive definition of Ls(v) is well defined, if for every non-output

qubit we can find a path over X-corrections ending at an output qubit. We know that

signal shifting of a valid pattern creates another valid pattern. This implies that the

X-corrections cannot create a cyclic dependency structure and hence every path over

the X-corrections has an endpoint. Moreover such a path cannot end on a non-output

qubit k since f(k) ∈ s(k) and one could always extend that path with f(k). Therefore

Ls(v) is well defined.

Finally, it is easy to show that the partial order ≺s as used in equation 7.12 gives a

valid ordering of the commands. Every vertex j that has an X-correction depending

on the measurement of qubit i has a smaller Ls number and hence i ≺s j. This

way no X-correction command acts on an already measured qubit and because the

Z-corrections are applied only on output qubits, the correction ordering is valid. Every

other command is applied before the measurement command and hence the pattern in

equation 7.12 is a valid measurement pattern.

Given an open graph with a flow, we refer to the construction of the above proposition

as its corresponding signal shifted flow (SSF). Before stating the first major result of

this part, it is necessary to highlight the following property of SSF. The usefulness of

this property will manifest itself in later sections.

Corollary 7.1. If (G, I,O) is an open graph with flow (f,≺f) and SSF (s,≺s) then

for every vertex i and j such that f(j) ∈ s(i) \ {f(i)}, we can find another vertex k,

such that f(k) ∈ s(i) ∩N(j).

Proof. If f(j) ∈ s(i), then from the Proposition 7.3 of SSF we can conclude that

ζi(j) mod 2 = 1. We know that j 6= i from the assumptions. Lemma 7.2 says that

there must exist at least one other vertex k from which j has a Z-correction, such

that ζi(k) mod 2 = 1. The flow definition says that j must therefore be a neighbour

of f(k). Definition 7.3 of SSF states that f(k) must therefore be in s(i), hence f(k) ∈
s(i) ∩N(j).

7.3 SSF and gflow

As mentioned before, gflow is a sufficient and necessary condition for determinism while

flow is only a sufficient condition. At first it seems that the simple local rewriting rules

100

7.3. SSF and gflow

of signal shifting could not upgrade a flow to the more powerful gflow construction.

Indeed the proof of this statement is not trivial either and is based on discovering

various properties of flow of information in an SSF pattern.

Theorem 7.1. Given any open graph (G, I,O) with flow (f,≺f), the corresponding

signal shifted flow (s,≺s) is a gflow.

The proof is based on the following lemmas, demonstrating that s is a gflow by satisfying

all the properties of Definition 6.3. The first property (G1) of gflow is satisfied by SFF

implicitly from Definition 7.3, i.e. for every i ∈ V (G) it holds that i ≺s j if j ∈ s(i).
Consider the second gflow property (G2), i.e. if j ∈ Odd(s(i)) then j = i or i ≺s j.
We will prove an even stronger property for the SSF, namely that every vertex with an

odd number of connections to s(i) has to be either i itself or an output qubit.

Lemma 7.3. If (s,≺s) is an SSF then every non-output vertex v 6= i connected to s(i)

has an even number of connections to s(i), i.e.

∀v ∈ N(s(i)) \O ∧ v 6= i ⇒ v /∈ Odd(s(i)). (7.14)

Proof. Let v 6= i be a vertex connected to s(i), we show that the following two sets

have the same number of elements.

{k ∈ NZ(v) | ζi(k) mod 2 = 1} and s(i) ∩N(v) \ {f(v)}. (7.15)

For every j ∈ s(i) ∩N(v) \ {f(v)}, we prove f−1(j) is the unique element in

{k ∈ NZ(v) | ζi(k) mod 2 = 1}. (7.16)

Because j ∈ s(i), from Proposition 7.3 there must exist f−1(j). Also, since j ∈ N(v)

therefore v ∈ N(j) = N(f(f−1(j))). Moreover since j 6= f(v), Corollary 6.1 implies

the existence of a Z-correction from f−1(j) to v, i.e. f−1(j) ∈ NZ(v). Proposition 7.3

says that because j ∈ s(i), it must hold that ζi(f
−1(j)) mod 2 = 1. Therefore f−1(j) ∈

{k ∈ NZ(v) | ζi(k) mod 2 = 1}.

On the other hand, for every vertex u ∈ {k ∈ NZ(v) | ζi(k) mod 2 = 1}, as ζi(u)mod

= 1 then from Proposition 7.3 we have f(u) ∈ s(i). Also f(u) ∈ N(v) because of

Corollary 6.1 and finally, f(u) 6= f(v) because v cannot have a Z-correction from itself,

i.e. v /∈ NZ . Hence it holds that f(u) ∈ s(i) ∩N(v) \ {f(v)} and

|s(i) ∩N(v) \ {f(v)}| = |{k ∈ NZ(v) | ζi(k)mod = 1}|. (7.17)

101

7.3. SSF and gflow

According to Lemma 7.2 ζi(v) mod 2 = |{k ∈ NZ(v) | ζi(k) mod 2 = 1}| mod 2. If

ζi(v) mod 2 = 0, then s(i) ∩ N(v) \ {f(v)} must have an even number of elements.

Proposition 7.3 says that f(v) cannot be in s(i) and therefore v can have only even

number of connections to s(i). If ζi(v) mod = 1, then we know that s(i)∩N(v)\{f(v)}
must have an odd number of elements. If f(v) exists, it must be in s(i) because of

Proposition 7.3. In the case of f(v) ∈ s(i), we can conclude that |s(i)∩N(v)| mod 2 = 0

and v has an even number of connections to s(i). On the other hand if f(v) does not

exist, v has to be an output qubit because the flow function f is defined for every

non-output vertex. The only possibility of k having odd many connections to s(i) is

therefore if k is an output vertex, which proves the lemma.

The next lemma directly proves that an SSF also satisfies the last gflow property (G3)

which states that i ∈ Odd(s(i)).

Lemma 7.4. If (s,≺s) is an SSF, then for every i ∈ OC it holds that i ∈ Odd(s(i)).

Proof. First we show that, performing signal shifting creates new X-corrections only

between unconnected vertices. Recall that signal shifting creates a new X-correction

between vertices i and j if and only if there exists a Z-path from i to f−1(j) and an X

correction from f−1(j) to j, therefore from the Flow definition we have:

i ≺f f−1(j) ≺f j. (7.18)

Let us assume that there exists an edge between i and j. According to the Flow

definition

i ∈ N(j)

j = f(f−1(j))

}
⇒ i ∈ N(f(f−1(j))) ⇒ f−1(j) ≺f i. (7.19)

This contradicts the partial order i ≺f f−1(j) ≺f j of the Flow (f,≺f) and therefore

there cannot be an edge between vertices i and j.

Next we claim that there is exactly one edge between i and s(i). According to

Definition 7.3 of SSF, the set s(i) consists only of the vertex f(i) and the vertices

to which signal shifting created a new X dependency from i. We showed that signal

shifting does not create X dependencies between connected edges. Hence, f(i) is the

only vertex in s(i) that can be connected to i, and there must be an edge between i

and f(i) because of the flow property (F3) (i ∈ N(f(i))).

102

7.4. Properties of SSF

Proof of Theorem 7.1

Proof. To obtain the proof of Theorem 7.1, we note that the definition of SSF implies

the gflow property (G1). Lemma 7.3 implies that every SSF satisfies the gflow condition

(G2). As the third and last gflow condition is satisfied by SSF according to Lemma 7.4,

SSF is indeed a gflow and Theorem 7.1 holds.

The above theorem for the first time presents a structural link between two seemingly

different approach for parallelisation, gflow and signal shifting, for patterns with flow.

The next section explores further links between SSF and gflow, showing the usefulness

of SSF in parallelisation. We conclude with a simple corollary showing that SSF is in

fact a special case of focused flow.

Corollary 7.2. Given any open graph (G, I,O) with flow (f,≺f) and corresponding

signal shifted flow (s,≺s) the function s is a focused flow.

Proof. For (s,≺s) to be a focused gflow, s must satisfy the two properties (FG1) and

(FG2) in Definition 6.7. First, it is clear from Proposition 7.3 that the transitive

closure of the relation {(i, j) s.t. j ∈ g(i)} is a strict partial order over V (G) and hence

property (FG1) is satisfied. Second, Lemma 7.3 proves that Odd(s(i)) ∩ OC \ {i} = ∅
and Lemma 7.4 states that i ∈ Odd(s(i)). Combining these two lemmas creates exactly

the second focused flow property (FG2) ∀i ∈ OC , Odd(s(i)) = {i}.

Note that although SSF is a focused flow, a focused flow does not always have to be a

SSF. Focused flow exists for every open graph with gflow, whereas a SSF by definition

exists only for open graphs with flow.

7.4 Properties of SSF

The notions of influencing walks and partial influencing walks on open graphs with flow

was introduced in [10] to describe the set of all vertices that a measurement depends

on. An influencing walk starts with an input and ends with an output vertex, a partial

influencing walk starts with an input vertex but can end with a non-output vertex. We

will use a modified definition of influencing walks that can start from any non-output

vertex i and end at any vertex j ∈ s(i) and call it a stepwise influencing path. This

will allow us to conveniently explore the dependency structure of a pattern with SSF.

103

7.4. Properties of SSF

Definition 7.3. Let (s,≺s) be an SSF that is obtained from a flow (f,≺f) of an open

graph (G, I,O) and vertices i and j in V (G) such that j ∈ s(i). We say that a path

between vertices i and j is an stepwise influencing path, noted as ℘i(j), iff

• The path is over the edges of G.

• The first two elements on the path are i and f(i).

• Every even-placed vertex k on the path ℘i(j), starting from f(i), is in s(i).

• Every odd-placed vertex on the path ℘i(j) is the unique vertex f−1(k) of some

k ∈ s(i) such that k is the next vertex on the path ℘i(j).

It is easy to see that every second edge, in particular the edges between f−1(k) and

k ∈ s(i), in the stepwise influencing path is a flow edge. Hence the path contains no

consecutive non-flow edges. If we restrict the first vertices of the stepwise influencing

path to be input vertices, the stepwise influencing path would be a partial influencing

path, but not vice versa. Stepwise influencing paths are useful because of their

appearance in the SSF as proven by the following lemma.

Lemma 7.5. Let (s,≺s) be an SSF obtained from a flow (f,≺f) of an open graph

(G, I,O) and vertices i and j in V (G) such that j ∈ s(i). Then there always exists a

stepwise influencing path ℘i(j).

Proof. We start by constructing such a path backward from j to i. We select j and

f−1(j) as the last two vertices on the path and apply Corollary 7.1 to find the vertices

on the path, until we reach i. The formation of cycles is impossible, as this would imply

a cyclic dependency structure, impossible for a flow. We have to reach i as the set of

vertices we choose from is finite.

Note that there might be more than one stepwise influencing path from i to j. We

conclude the section about influencing paths with the following two lemmas which will

be used to prove the optimality of SSF. First, the structure of stepwise influencing

paths imposes a strict restriction on the way a vertex on the stepwise influencing path

can be connected.

Lemma 7.6. Let ℘i(j) be a stepwise influencing path from i to j in an open graph

(G, I,O) with flow (f,≺f) and corresponding SSF (s,≺s). Then f−1(j) is the only

odd-placed vertex in ℘i(j) that j is connected to.

Proof. According to the definition of stepwise influencing path, for every three

consecutive vertices v1, v2, v3 in ℘i(j) such that v1 and v3 are odd-placed we have

104

7.4. Properties of SSF

that v2 = f(v1) and v3 ∈ N(v2) = N(f(v1)). According to Corollary 6.1 there must

exist a Z-correction from v1 to v3. Therefore the odd-placed vertices in ℘i(j) are on

a Z-path from i to f−1(j) and obviously from every odd-placed vertex in ℘i(j) there

exists a Z-path to f−1(j). Lemma 7.1 says that j cannot be connected to any of the

odd-placed vertices in ℘i(j).

The previous lemma shows, that the stepwise influencing paths can be used to describe

some properties of the connectivity in open graphs with SSF. The next lemma

(illustrated in Figure 7.3) will explain how a stepwise influencing path can be extended.

Lemma 7.7. Let (G, I,O) be an open graph with flow (f,≺f) and corresponding SSF

(s,≺s) and let i and j be two non-output vertices of the open graph such that f(j) ∈ s(i).
If v ∈ N(j) ∩ s(i) \ {f(j)} then every stepwise influencing path ℘i(v) can be extended

by the vertices j and f(j) to create another stepwise influencing path ℘i(f(j)).

Proof. Adding j and f(j) to ℘i(v) satisfies the conditions for stepwise influencing paths.

There exists an edge between vertices j and v and vertices j and f(j), hence it is a valid

path. Moreover, f(j) ∈ s(i) would be an even-placed vertex on the extended path, and

j would be the unique oddly-placed vertex with f(j) ∈ s(i).

s(i)

i f(i)

v

j f(j)

initial stepwise
influencing path

extending the stepwise
influencing path

Figure 7.3: Extending a stepwise influencing path ending at vertex v according to Lemma 7.7.

105

Chapter 8

Computational Depth of SSF

Given an MBQC pattern with gflow, finding the maximally delayed gflow of its

underlying graph could potentially further reduce the depth of the computation [9].

A natural question that arises is how SSF is linked with the optimal gflow. In this

section, we prove that if the input and output sizes of the pattern are equal, then SSF

is indeed the optimal gflow. Hence we can conclude the most optimal parallelisation

that one could obtain via translation of a quantum circuit into an MBQC pattern is

achieved by the simple rewriting rules of SSF. This will also lead to a more efficient

algorithm than the one presented in [9] for finding the maximally delayed gflow of a

graph as we discuss later.

Theorem 8.1. Let (G, I,O) be an open graph with flow (f,≺f) such that |I| = |O|. Let

(s,≺s) be the SSF obtained from (f,≺f). Then (s,≺s) is the optimal gflow of (G, I,O).

The proof of the theorem is rather long, an outline is presented below. A general

reader could omit the next subsections, however various novel constructions have been

introduced in the proof that could be explored for other MBQC results and hence could

be valuable for an MBQC expert. In Section 8.1 we show that the penultimate layers

of an optimal gflow and an SSF of an open graph where |I| = |O|, are equal. Next

we introduce the concept of a reduced open graph in Section 8.2. We prove two key

properties of the optimal gflow and SSF of the reduced open graph. This highlights

the recursive structures of the gflow and SSF leading to the possibility of extending

these notions to new domains1. In Section 8.3 we put the pieces together, by showing

that the previous properties imply that reduced gflow (implicitly also optimal gflow

and SSF) layers are equal to the original gflow layers from layer 1 onward. This allows

1For example, the authors are currently exploring this structure to define the concept of partial
flow, for patterns with no deterministic computation.

106

8.1. The last two layers

us to construct a recursive proof for Theorem 8.1, which we present in Section 8.4.

8.1 The last two layers

The equality of the last layers of an SSF and maximally delayed gflow follows from

Lemma 6.2 and Proposition 7.3 — the last layer of a maximally delayed gflow and an

SSF is always the set of output vertices. To prove Theorem 8.1 we need to show that

the penultimate layers of SSF and maximally delayed gflow have the same size. One

might think that because the penultimate layer of a gflow contains all the vertices that

can be corrected by the vertices in the output layer, surely when |I| = |O| = n the

number of elements in the penultimate layer would also be n. If that would be true

we could omit the proofs in this section and skip to section 8.2, but this is not the

case as demonstrated in Figure 8.1. To prove that the penultimate layers of SSF and

maximally delayed gflow are equal we need the following properties of open graphs with

SSF. An illustration of the property proven in the first of the two lemmas is shown in

Figure 8.2.

Lemma 8.1. Let (G, I,O) be an open graph with flow (f,≺f) and corresponding SSF

(s,≺s). If i ∈ OC then for every strict subset S of s(i) containing f(i) there must exist

a non-output vertex v that is oddly connected to S such that f(v) ∈ s(i) \ S, i.e.

∀i ∈ OC ∀S ⊂ s(i) s.t. f(i) ∈ S ∃v ∈ Odd(S) s.t. f(v) ∈ s(i) \ S. (8.1)

Proof. If s(i) = {f(i)} the lemma holds trivially, as there does not exist any nonempty

strict subsets of s(i). Consider the case where s(i) contains more than one element and

S is a strict subset of s(i). Then we select any vertex j /∈ S from s(i) and look at the

stepwise influencing paths from i to j. Note that there might be more than one such

path. We move backwards from j towards i over the stepwise influencing paths in the

following way:

Layer 2 Layer 3 Layer4Layer 1

Figure 8.1: An example of a gflow where |I| = |O| and the penultimate layer has less element
than the last one.

107

8.1. The last two layers

s(i)

S

i f(i)

v f(v)

Odd many connections

Figure 8.2: For every strict subset S of s(i) containing f(i) we can find a vertex v in the odd
neighbourhood of S such that f(v) is not contained in S. This is proven in Lemma 8.1.

1. Move by two vertices

1.1 If possible, choose any stepwise influencing path where the previous even-

placed element is not in S and move to that element.

1.2 If the previous even-placed elements in all the stepwise influencing paths

from i to j are in S, then stop.

2. Repeat step 1.

Let u be the vertex to where we moved using the above process, u has to exist because

of the way we initially selected j. There are a couple of other observations that we can

make about u. First, u ∈ s(i) \ S, because of the selection of j and the way we moved

on the paths. Second, u cannot be the first even placed vertex on a stepwise influencing

path from i to u because the first element is f(i) ∈ S (according to Definition 7.3).

Third, for every stepwise influencing path ending in u, the previous even-placed vertex

has to be in S as otherwise we could have moved one more step towards i.

Considering the previous three observations we can show that the vertex v = f−1(u)

must be oddly connected to S. We begin by noting that v cannot be connected to any

vertex k ∈ s(i) \ (S ∪ {f(v)}). Otherwise, according to Lemma 7.7, we could extend

any stepwise influencing path ending at k with v and f(v). Hence k /∈ S ∪ {f(v)}
would then be an even-placed vertex on a stepwise influencing path from i to f(v). In

particular, k would be the second to last even-placed vertex on a stepwise influencing

path from i to f(v) = u Every such vertex, except f(v) itself, is in S as mentioned

before. Because, according to Lemma 7.3, v has to be evenly connected to s(i), it has

to be oddly connected to S and Lemma 8.1 holds.

Next we need to show that every non-input vertex i has a corresponding unique vertex

f−1(i), this is only true for those graphs with |I| = |O|.

108

8.1. The last two layers

Lemma 8.2. If (f,≺f) is a flow on an open graph (G,I,O), then |I| = |O| if and only

if for every j ∈ IC there exists f−1(j).

Proof. First, if |I| = |O| then also |IC | = |OC |. The flow definition uniquely defines f(i)

for every i ∈ OC and therefore f−1(j) is uniquely defined for some, but not necessarily

for all, vertices j ∈ IC . The number of vertices for which f is defined must equal the

number of vertices for which f−1 is defined and because |IC | = |OC |, f−1 must be

defined for every element in IC .

Second, Let us consider the case when for every j ∈ IC there exists f−1(j). The number

of elements for which f−1 is defined equals the number of elements f is defined for. f

is by Definition 6.2 defined for every element in OC . Hence |IC | = |OC | which implies

that |I| = |O|.

Note that the above requirement, i.e. the existence of f−1(i), is the only reason why

our proof of Theorem 8.1 fails if |I| 6= |O|. We conjecture that by padding the input

with necessary ancilla qubits without changing the underlying computation we could

extend the above theorem to the general graphs. However the proof of such result is

outside of the scope of this thesis and not relevant for the optimisation of quantum

circuit.

Note that because of Definition 6.6 if a gflow is not optimal, its penultimate layer has to

either be equal to the penultimate layer of the optimal gflow or there exists a vertex in

the penultimate layer of optimal gflow that is not included in the penultimate layer of

the other gflow. In the proof of the main result we assume that the penultimate layers

are not equal, hence we could choose a vertex with particular properties (described in

the next two lemmas) to derive a contradiction.

i

V
�g

0 = O = V �s
0

V
�g

1 V �s
1

Figure 8.3: The initial conditions
required for Lemma 8.3.

Og(i)

s(i)

f(i)

i b0

f(b0) odd number
of connections

Figure 8.4: The final conditions proved
in Lemma 8.3.

Lemma 8.3. Let (G, I,O) be an open graph where |I| = |O| with flow (f,≺f),

corresponding SSF (s,≺s) and a gflow (g,≺g) such that V
≺g
0 = O. Assume there

exists a vertex i ∈ V ≺g1 \ V ≺s1 , then

109

8.1. The last two layers

• g(i) ⊆ O,

• g(i) ∩ s(i) ⊂ s(i),

• f(i) ∈ g(i),

and there exists a vertex b0 such that

• b0 ∈ Odd(g(i) ∩ s(i)),

• f(b0) ∈ s(i) \ g(i).

Proof. Because i is in V
≺g
1 the set g(i) must be a subset of V

≺g
0 = O according to

Definition 6.4. Proposition 7.3 implies that V ≺s0 = O. This and the fact that i /∈ V ≺s1

implies that s(i) is not a subset of the output vertices O = V ≺s0 . Therefore there

must exist a non-output vertex in s(i) and, because g(i) ⊆ O, this vertex cannot be

contained in g(i). Thus the intersection of s(i) and g(i) cannot be equal to s(i) and

g(i) ∩ s(i) ⊂ s(i).

We now show that f(i) ∈ g(i). Let us assume that f(i) /∈ g(i), and choose a vertex

a1 ∈ g(i) connected to i, such a vertex has to exist because the gflow definition says

that i is oddly connected to g(i). As a1 ∈ g(i) then by the gflow definition a1 cannot be

an input qubit. According to Lemma 8.2, there must exist a vertex f−1(a1) to which

a1 is connected to. By the definition of flow, f−1(a1) cannot be an output vertex and

thus is not in layer V
≺g
0 . As g(i) ⊆ O this also means f−1(a1) /∈ g(i). On the other

hand f−1(a1) is connected to a1 ∈ g(i). Because i ∈ V ≺g1 and f−1(a1) /∈ V ≺g0 we know

from Definition 6.4 that i 6≺g f−1(a1). As f−1(a1) is connected to g(i) we can conclude

from the gflow definition that f−1(a1) has to be evenly connected to g(i) and therefore

has at least one more connection to a vertex a2 ∈ g(i).

Using the same argument for a2 as for a1 we can say that there must exist f−1(a2) /∈ g(i)

to which a2 is connected to. Let us assume that f−1(a2) is not connected to a1. This

means it has only one connection to the set A2 = {a1, a2} ⊆ g(i) and is therefore

oddly connected to it. We can continue this procedure of selecting vertices from g(i)

until we select a vertex an such that f−1(an) is connected to at least one vertex aj

in An−1 = {a1, . . . an−1} ⊆ g(i). If this happens we can no longer say with certainty

that f−1(an) is oddly connected to An ⊆ g(i), which means we cannot select any more

elements from g(i) using this method. Because (G, I,O) is a finite open graph we must

find this an in finite number of steps.

110

8.1. The last two layers

We created the set An in such a way that:

∀j ∈ {1, 2, . . . , n− 1} f−1(aj) ∈ N(aj+1) = N(f(f−1(aj+1))) (8.2)

Hence we have a Z-correction from every f−1(aj+1) to f−1(aj) and thus there exists a

Z-path from f−1(an) to every f−1(aj) such that aj ∈ An−1 and, because of Lemma 7.5,

f−1(an) cannot be connected to any vertex in An−1. This leads to a contradiction with

the assumption that it is connected to at least one vertex in An−1. Therefore our initial

assumption that f(i) /∈ g(i) must be false and g(i) must contain f(i).

From the definition of SSF we have that f(i) ∈ s(i) and therefore also f(i) ∈ g(i)∩s(i).
Now we know that g(i) ∩ s(i) is a strict subset of s(i) containing f(i); the existence of

b0 follows from Lemma 8.1.

Now we prove that if we have a vertex with the same properties as b0 in Lemma 8.3

and a (possibly empty) subset A of vertices with particular properties (which will be

defined in the next lemma) we can always increase the size of A and find another vertex

with properties of b0. This would imply the possibility of increasing the size of A to

infinity and will give us the contradiction we need.

Lemma 8.4. Let (G, I,O) be an open graph where |I| = |O| with flow (f,≺f),

corresponding SSF (s,≺s) and a gflow (g,≺g). If we have a vertex i in the open graph

such that

• g(i) ⊆ O,

• g(i) ∩ s(i) ⊂ s(i),

• f(i) ∈ g(i),

and if we have a subset A ⊆ g(i) and another vertex b0 such that

• b0 ∈ Odd(g(i) ∩ s(i)),

• f(b0) ∈ s(i) \ g(i),

• ∀j ∈ A ∃ b0
Z−→ f−1(j),

then there exists another vertex co and a non empty set B ⊆ g(i) such that

• B 6= ∅,

• B ∩A = ∅,

• c0 ∈ Odd(g(i) ∩ s(i)),

111

8.1. The last two layers

• f(c0) ∈ s(i) \ g(i),

• ∀j ∈ A ∪B ∃ c0
Z−→ f−1(j).

Proof. The proof consists of three steps: we start by constructing the set B; we proceed

with finding the vertex c0; and finally we prove that c0 has the required properties.

Define S = g(i) ∩ s(i), since f(b0) exists hence b0 cannot be an output vertex. Also

since g(i) ⊆ O therefore b0 is not in g(i). As b0 /∈ O = V
≺g
0 and g(i) ⊆ O we can

conclude from Definition 6.4 that i ∈ V
≺g
1 and i 6≺g b0. Therefore according to the

gflow definition, b0 must be in the even neighbourhood of g(i). We also know from

the initial conditions of this lemma that b0 is in the odd neighbourhood of g(i) ∩ s(i).
Thus there has to exist a vertex v1 in g(i) to which b0 is connected to, but which is not

included in g(i) ∩ s(i), i.e. v1 ∈ g(i) \ s(i). As g : OC → P I
C

, v1 ∈ g(i) cannot be an

input qubit and because f−1 exists for every non-input qubit according to Lemma 8.2,

there must exist a vertex f−1(v1) = b1. It is also important for the later part of the

proof to note that f(b1) = v1 /∈ A. This is due to Lemma 7.1, which implies that b0

cannot be connected to any vertex in A.

Define B0 = S and consider the case when b1 is evenly connected to B0. Remember

that the flow property (F3) says that there is always an edge between b1 and f(b1).

This means that b1 is oddly connected to B1 = {f(b1)} ∪ B0 which is a subset of

g(i). But again because of the gflow property (G2) we have that b1 must be evenly

connected to g(i). Thus there must exist another vertex b2 such that b1 is connected

to f(b2) ∈ g(i) \ B1, otherwise b1 could not be in the even neighbourhood of g(i). If

b2 is evenly connected to B1, it must be oddly connected to B2 = {f(b2)} ∪ B1 which

is again a subset of g(i). If b2 is oddly connected to B2 there must exist a vertex b3

such that b3 is connected to f(b3) ∈ g(i) \ B2, otherwise b2 could not be in the even

neighbourhood of g(i). We can continue this scheme until we get to vertex bn that is

oddly connected to Bn−1. As Bn = {f(bn)} ∪ Bn−1 and there exists an edge between

bn and f(bn) we get that bn must be evenly connected to Bn. Such vertex bn must

exist, otherwise we could continue selecting elements from g(i) infinitely, but (G, I,O)

is a finite open graph. We select B = Bn \S. Recall that f(b1) must exist, therefore B

must have at least on element.

Next we show bn is oddly connected to S. We note that we have the following:

∀j ∈ {1, 2, . . . , n} bj ∈ N(f(bj)) ∧ bj−1 ∈ N(f(bj)). (8.3)

Corollary 6.1 implies that for every j > 0 there exists a Z-correction from bj to bj−1.

Thus we have a Z-path from bn to every other bj where j < n, hence from Lemma 7.1 we

112

8.1. The last two layers

conclude bn cannot be connected to any vertex f(bj) ∈ Bn−1 where j < n. The number

of edges that connect the vertices in Bn−1 to vertex bn has to be the same as the number

of edges between vertices of S and bn, because Bn−1 = {f(b1), f(b2), . . . , f(bn−1)} ∪ S.

As bn was oddly connected to Bn−1, it must also be oddly connected to S. Note that

however bn does not have the required properties for c0, but will be used to find such

a vertex.

The gflow definition says that bn must be evenly connected to s(i). It is also oddly

connected to s(i) ∩ g(i) hence there must exist a vertex c ∈ s(i) \ g(i) to which bn is

connected to. According to Lemma 7.5 there exists a stepwise influencing path ℘i(c)

and due to Definition 7.3, f(i) has to be on on this path. Therefore there exists at least

one element in ℘i(c) that is in S. Let f(a0) be the last element of the path ℘i(c) in S.

Define a1 to be the vertex in ℘i(c) that comes after f(a0). We know that a1 has odd

many Z-paths from i because Definition 7.3 implies that f(a1) ∈ s(i). If a1 is already

oddly connected to S, then we are done and a1 = c0. If a1 is evenly connected to

S ⊂ s(i), then we know that it must be oddly connected to S ∪ {f(a1)} ⊆ s(i). There

must exist another vertex f(a2) ∈ s(i) \ (S ∪ {f(a1)}) to which a1 is connected to for

it to be evenly connected to s(i) as is required by Lemma 7.3. Because f(a2) ∈ s(i)
we know there exists a stepwise influencing path ℘i(f(a2)) (Lemma 7.5) and we can

extend that path by a1 and f(a1) as was proven in Lemma 7.7. We move backward

on this path and find the element a2. If a2 is oddly connected to S, we are done and

set c0 = a2. Otherwise we can continue as was the case for a1 until we find an element

am that is oddly connected to S. This element must exist since graph is finite and the

Z corrections do not create any loops. We select c0 = am. Note that am cannot be i

because f(i) ∈ S = s(i) ∩ g(i) but f(am) /∈ g(i).

There is a Z-path from am = c0 to a1 (we moved backwards along this path to find

am) and from a1 to bn because of the way we selected a1. There also exists a Z-path

from bn to every other bj such that 0 ≤ j < n, thus am will also have a Z-path to every

bj in {b1, b2, . . . , bn}. Moreover, because:

am
Z−→ bn ∧ bn

Z−→ b0 ∧ ∀j ∈ A b0
Z−→ f−1(j) ⇒

⇒ ∀j ∈ A am
Z−→ f−1(j). (8.4)

This completes the proof.

Finally we could put together Lemmas 8.3 and 8.4.

Lemma 8.5 (Equality of the penultimate SSF and optimal gflow layer). Let

113

8.2. Reducing the open graph

(G, I,O) be an open graph with flow (f,≺f), corresponding SSF (s,≺s) and optimal

gflow (g,≺g) such that |I| = |O|. Then V ≺s1 = V
≺g
1 .

Proof. Assume V ≺s1 6= V
≺g
1 we show how we can choose infinitely many different vertices

from V (G). Due to Definition 6.6 we have |V ≺s1 | ≤ |V
≺g
1 | and since V ≺s1 6= V

≺g
1 hence

trivially V
≺g
1 6⊂ V ≺s1 and there must exist a vertex i in V

≺g
1 \V ≺s1 . Then from Lemma 6.2

we have V 0
g = O and using Lemma 8.3 we obtain the following:

• g(i) ⊆ O,

• f(i) ∈ g(i),

• g(i) ∩ s(i) ⊂ s(i),

and that there exists another vertex b0 such that

• b0 ∈ Odd(g(i) ∩ s(i)),

• f(b0) ∈ s(i) \ g(i).

These constraints together with an empty set A allow us to apply Lemma 8.4.

Lemma 8.4 is constructed in such a way that whenever we can apply it to a (possibly

empty) set A, it proves the existence of another set B such that that |A| < |A ∪ B|
and Lemma 8.4 is applicable to the new set A ∪ B. Thus it is possible to apply

Lemma 8.4 infinitely many times and construct a subset of V (G) containing infinitely

many vertices. This leads to a contradiction as G is a finite graph.

8.2 Reducing the open graph

The equality of penultimate layers of SSF and gflow might suggest that one could prove

the equality of other layers simply by removing the last layer from the open graph and

reapply the lemmas from the last section. However this would fail as the vertices in

any layers can also use the output vertices in their correcting sets. Therefore we need

to be careful which vertices we remove such that the reduced graph still have a gflow.

Definition 8.1. If (G, I,O) is an open graph with flow (f,≺f) and corresponding SSF

(s,≺s) then we call the open graph (G′, I, O′) a reduced open graph according to (s,≺s),
where

• R = {v ∈ O | f−1(v) ∈ V ≺s1 } is the set of removed vertices;

• G′ = (V ′, E′) where

V ′ = V \R,

114

8.2. Reducing the open graph

E′ = E \ (V ×R);

• O′ = (V ≺s1 ∪O) \R.

We will omit “according to . . . ” and call (G′, I, O′) just reduced open graph when it

is clear from the text which SSF is used for constructing it. An example of a reduced

open graph is shown in Figure 8.5

OTHER O

i f(i)

k

j f(j)

I

a

b

c

f(k)

OTHER O' R

i f(i)

k

j f(j)

I

a

b

c

f(k)

open graph (G, I, O) reduced open graph (G', I, O')

V �s
1

Figure 8.5: An example of an SSF reduced open graph (right) together with the original open
graph (left).

As we saw in the previous section, we needed the fact that |I| = |O| to be able to prove

that the penultimate layers of SSF and optimal gflow are equal. If we want to apply

the same lemmas to the new reduced open graph, we need to guarantee that if we start

with a graph where input size equals output size, the same holds for the reduced open

graph.

Lemma 8.6. Let (G′, I, O′) be a reduced open graph of the open graph (G, I,O), then

|O| = |O′|.

Proof. Let R be the set of vertices removed from G, then for every vertex i ∈ V ≺s1

we have a corresponding unique vertex f(i) in R since Proposition 7.3 implies that

s(i) ⊆ O and f(i) ∈ s(i). On the other hand, for every vertex in R there exists a

corresponding vertex in V ≺s1 from the definition of R. Therefore for every vertex v ∈ R
that we remove from O when constructing O′ = (V ≺s1 ∪O) \R we add another vertex

f−1(v) ∈ V ≺s1 and it must hold that |O| = |O′|.

The next lemma is used later to construct a gflow of the reduced open graph from the

gflow of the original open graph.

Lemma 8.7. Let (G, I,O) be an open graph and A and B two sets in O such that

Odd(B) ∩OC = ∅. Then Odd((A ∪B) \ (A ∩B)) ∩OC = Odd(A) ∩OC .

115

8.2. Reducing the open graph

v

A B

odd odd odd
v

A B

even even even
v

A B

odd even even
v

A B

even odd odd

(b)(a) (c) (d)

Figure 8.6: The four possibilities for a vertex v ∈ OC to be connected connected to the sets
A and B. The vertex v can be either oddly (a) or evenly (b) connected the sets A \ B, B \ A
and A ∩B; oddly connected to A \B and evenly to B \A and A ∩B (c); or evenly connected
to A \B and oddly to B \A and A ∩B (d).

Proof. There are altogether four different possibilities for a vertex v ∈ OC to be

connected to the sets A and B satisfying Odd(B) ∩OC = ∅ as shown in Figure 8.6:

v ∈ Even(A) ∩Odd(A \B)⇒ v ∈ Odd(A ∩B)⇒ v ∈ Odd(B \A)⇒
⇒ v ∈ Even((A \B) ∪ (B \A)), (8.5)

v ∈ Even(A) ∩ Even(A \B)⇒ v ∈ Even(A ∩B)⇒ v ∈ Even(B \A)⇒
⇒ v ∈ Even((A \B) ∪ (B \A)), (8.6)

v ∈ Odd(A) ∩Odd(A \B)⇒ v ∈ Even(A ∩B)⇒ v ∈ Even(B \A)⇒
⇒ v ∈ Odd((A \B) ∪ (B \A)), (8.7)

v ∈ Odd(A) ∩ Even(A \B)⇒ v ∈ Odd(A ∩B)⇒ v ∈ Odd(B \A)⇒
⇒ v ∈ Odd((A \B) ∪ (B \A)). (8.8)

We see that every time v is evenly connected to A it is also evenly connected to (A \
B) ∪ (B \ A) and every time v is oddly connected to A it is also oddly connected to

(A \ B) ∪ (B \ A). Because (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B) and v is in OC it

must hold that Odd((A ∪B) \ (A ∩B)) ∩OC = Odd(A) ∩OC .

We start by creating a function that will be proven to have the required properties of

the gflow.

Lemma 8.8 (Finding the reduced gflow function). Let (G, I,O) be an open graph

with flow (f,≺f), SSF (s,≺s) and optimal gflow (g,≺g) such that |I| = |O|. Let

(G′, I, O′) be the SSF reduced open graph of (G, I,O) with the removed vertices set R,

then there exists a function g′ : O′C → P I
C∩V (G′) such that:

1. ∀i ∈ O′C g′(i) ∩O′C = g(i) ∩O′C ,

2. ∀i ∈ O′C Odd(g′(i)) ∩O′C = Odd(g(i)) ∩O′C .

Proof. We start by noting that according to Lemma 6.3 we can create an optimal

116

8.2. Reducing the open graph

gflow (g̃,≺g̃) of the open graph (G, I,O ∪ V ≺g1) = (G, I,O′ ∪ R) by restricting g to

V (G) \ (V
≺g
1 ∪ V ≺g0) = O′C and setting ≺g̃=≺g \V ≺g1 × V ≺g0 . We construct our desired

g′ function from g̃.

We consider i ∈ O′C , if there exists a vertex j ∈ R ∩ g̃(i) then from the reduced open

graph definition we have f−1(j) ∈ V ≺g1 . Also from Lemma 8.5 we have V
≺g
1 = V ≺s1 and

thus f−1(j) ∈ V ≺s1 . According to Proposition 7.3 this means that s(f−1(j)) ⊆ O. We

have Odd(s(f−1(j))) ∩ O′C = ∅ since the only odd neighbours of s(f−1(j)) are either

output vertices or the vertex f−1(j) ∈ V ≺g1 ⊆ O′.

Now we define g′(i) = (g̃(i) ∪ s(f−1(j))) \ (g̃(i)∩ s(f−1(j))), hence j 6∈ g′(i). Moreover

Lemma 8.7 implies that Odd(g′(i))∩O′C = Odd(g̃(i))∩O′C . Also g′(i)∩O′C = g̃(i)∩O′C
since s(f−1(j)) ⊆ O′. Note that, since the new set will be constructed via a union

of two sets we might add another vertex k ∈ R to the set g′(i). However, we can

remove any such vertex k added to g′(i) by applying the same procedure recursively.

For every such vertex k, it must hold that f−1(j) ≺f f−1(k) since k ∈ s(f−1(j)) and

Proposition 7.3 implies the existence of a Z-path from f−1(j) to f−1(k). Now we remove

k via the above procedure i.e. defining g′(i) = (g′(i) ∪ s(f−1(k))) \ (g′(i) ∩ s(f−1(k))).

If this would add vertex j again to g′(i), hence there exists a Z-path from f−1(k) to

f−1(j) and f−1(k) ≺f f−1(j) which contradicts the previous relation. This procedure

will eventually terminate and remove all undesired vertices k ∈ R since in the above

procedure we never create any Z-path loops.

We call a function which satisfies properties (1) and (2) of Lemma 8.8 the reduced gflow

function of g. We can interpret these properties as saying that the gflow function g′

differs from the gflow function g only by the vertices in O′, i.e. the other elements in

the correcting set are left unchanged. As a gflow consists of a function and a partial

order, we still need to define a valid partial order. The one that is most useful to us is

such that it preserves as much relations as possible from the original gflow, hence the

layering structures remain similar.

Lemma 8.9 (Constructing the reduced gflow). Let (G, I,O) be an open graph

with SSF (s,≺s), gflow (g,≺g) and (G′, I, O′) a reduced open graph of (G, I,O). If g′

is a reduced gflow function of (g,≺g), then (g′,≺g′) is a gflow of (G′, I, O′), where

∀i, j ∈ O′C i ≺g j ⇔ i ≺g′ j, (8.9)

∀i ∈ O′C ,∀j ∈ O′ ∩ g′(i) ⇒ i ≺g′ j. (8.10)

Proof. We will show that (g′,≺g′) satisfies the three gflow properties (G1) — (G3) in

Definition 6.3. First property requires that if j ∈ g′(i), then i ≺g′ j. This is obviously

117

8.2. Reducing the open graph

true if j ∈ O′. If j ∈ g′(i) ∩O′C , from Lemma 8.8 we have j ∈ g(i) which implies that

i ≺g j because (g,≺g) is a gflow. Now according the definition of ≺g′ it must also hold,

that i ≺g′ j.

Now we consider the gflow property (G2). For every j ∈ Odd(g′(i)) it must be that

j = i or i ≺g′ j. If j ∈ O′, then again this is obviously true because of the definition

of ≺g′ . If j ∈ Odd(g′(i)) ∩ O′C then we know that j ∈ Odd(g(i)) and j = i or i ≺g j.
According to the definition of ≺g′ , i ≺g j implies that i ≺g′ j and we have that if

j ∈ Odd(g′(i)) then either i = j or i ≺g′ j. Thus the gflow property (G2) is satisfied.

Finally, we require for gflow property (G3) that i ∈ Odd(g′(i)) and as i ∈ O′C this is

true because of the properties of g′.

We call the gflow (g′,≺g′) from Lemma 8.9 the reduced gflow of (g,≺g). Similarly we

can construct the SSF of the reduced open graph. Note that an SSF can only exist if

the reduced open graph has flow. Thus arises the need to prove the existence of a flow

on the reduced open graph, as is done in the next lemma.

Lemma 8.10. If (G, I,O) is an open graph with flow (f,≺f) and if (G′, I, O′) is the

reduced open graph described in Definition 8.1, then (f ′,≺f ′), where

• ∀i ∈ O′C f ′(i) = f(i)

• ≺f ′=≺f \[(V ×R) ∪ (V ≺s1 ×O)]

is a flow of (G′, I, O′).

Proof. It is sufficient to show that (f ′,≺f ′) satisfies the flow properties (F1) — (F3)

in Definition 6.2 and that f ′ is a function from O′C to IC . It is easy to see that

f ′ : O′C → V ′ \ I. f ′ acts by definition on O′C and

∀i ∈ O′C f ′(i) = f(i) ∈ V \ I. (8.11)

The graph G′ has fewer vertices than G, therefore we need to show that all the vertices

required according to the flow function f ′ are included in G′, i.e. ∀i ∈ O′C it must hold

that f ′(i) ∈ V ′. According to Definition 8.1 every vertex v removed from the initial

open graph (G, I,O) is chosen such that f−1(v) ∈ O′. Therefore it must be that every

vertex j ∈ V ′ such that f(j) /∈ V ′ must be an output vertex in (G′, I, O′C). Because

f ′(j) is not defined for outputs the vertices removed from the original graph G are not

needed for f ′ and f ′ : O′C → V ′ \ I. Hence we have that f(i) = f ′(i) ∈ IC for every

vertex i ∈ O′C and f ′ : O′C → IC .

118

8.2. Reducing the open graph

Let R be the set of removed vertices as defined in Definition 8.1. The flow property

(F1) states that i ≺f ′ f ′(i) and holds because:

∀i ∈ O′C ⊆ OC i ≺ f(i) = f ′(i) ⇒
⇒ f ′(i) /∈ R ∧ (i, f ′(i)) ∈ ≺f ⇒
⇒ (i, f ′(i)) ∈ ≺f \V ×R = ≺f ′ ⇒
⇒ i ≺f ′ f ′(i). (8.12)

To prove that (f ′,≺f ′) satisfied flow property (F2) we need to show that for every

j ∈ V ′ if j ∈ N(f ′(i)) then either j = i or i ≺f ′ j.

j ∈ N(f ′(i)) ⇒ j ∈ N(f(i)) ⇒
⇒ j = i ∨ i ≺f j ⇒
⇒ j = i ∨ (i, j) ∈≺f ∧ j ∈ V ′ = V \R ⇒
⇒ j = i ∨ (i, j) ∈≺f \V ×R = ≺f ′ ⇒
⇒ j = i ∨ i ≺f ′ j. (8.13)

Finally the flow property (F3) i ∈ N(f ′(i)) holds almost trivially:

i ∈ O′C ⊆ OC ⇒ i ∈ N(f(i)) = N(f ′(i)). (8.14)

Next we prove that the reduced gflow of an SSF is also an SFF.

Lemma 8.11 (Constructing the reduced SSF). Let (G, I,O) be an open graph

with flow (f,≺f) and SSF (s,≺s). If (G′, I, O′) is the reduced open graph, according to

(s,≺s), then there exists an SSF (s′,≺s′) of (G′, I, O′) such that (s′,≺s′) is the reduced

gflow of (s,≺s).

Proof. Let R be the set of vertices removed from (G, I,O) to get (G′, I, O′). The

reduced flow (f ′,≺f ′) exists because of Lemma 8.10. Define (s′,≺s′) to be the the SSF

derived from this reduced flow. Assume (s′,≺s′) is not a reduced gflow of (s,≺s), then

one of the properties of Lemma 8.8 should not hold, We show a contradiction in both

cases.

119

8.2. Reducing the open graph

If the first property does not hold then

∃i ∈ O′C s.t. s′(i) ∩O′C 6= s(i) ∩O′C ⇒
∃j ∈ O′C ∩ [(s(i) \ s′(i)) ∪ (s′(i) \ s(i))]⇒
(ζsi (f−1(j)) mod 2 = 1 ∧ ζs′i (f−1(j)) mod 2 = 0)∨
(ζs
′
i (f−1(j)) mod 2 = 1 ∧ ζgi (f−1(j)) mod 2 = 0)⇒

ζsi (j)mod 6= ζs
′
i (j) mod 2. (8.15)

Hence by removing vertices and edges from the open graph (G, I,O) we must have

changed ζsi (f−1(j)) by an odd number to get ζs
′
i (f−1(j)).

We look at how removing the vertices in R from the open graph (G, I,O) changes

ζsi (f−1(j)). Removing a vertex v changes the number of Z-paths from i to f−1(j) if by

removing it we also remove an edge in the Z-correction graph GZ . Let this removed

edge be (k, l), then Corollary 6.1 implies that l ∈ N(f(k)) and v has to be either k,

l or f(k). Corollary 6.1 also implies that for v to have an outgoing edge in GZ , f(v)

has to be defined. Since f is not defined for output vertices and v ∈ R ⊆ O, there

cannot be any outgoing edges from v. Therefore v cannot be k as there is an edge from

k to l in GZ . Also v cannot be l since again v cannot have an outgoing edge in GZ ,

hence v would have to be the last element on the Z-path from i to f−1(j), which is

f−1(j). This is impossible, as f−1(j) cannot be an output vertex. Therefore the only

possibility is that v = f(k).

Let v be the first vertex removed from G, such that ζsi (f−1(j)) changes by an odd

number. Hence all the paths from i to f−1(j) that disappear due to removal of v

have to go through f−1(v). Therefore there must also exist an odd number of paths

from f−1(v) to f−1(j). We know that because of Proposition 7.3, j ∈ s(f−1(v))

and f−1(v) ≺s j. On the other hand because of Definition 8.1 it must also hold that

f−1(v) ∈ V ≺s1 , which together with Definition 6.4 implies that j ∈ V ≺s0 = O. This leads

to a contradiction, because j has to be in O′C ⊆ OC and cannot be in O. Therefore

property (1) must be true for (s′,≺s′).

Now we show that property (2) has to hold. According to Lemma 7.3:

Odd(s′(i)) ∩O′C = {i} = Odd(s(i)) ∩OC . (8.16)

Because i ∈ O′C ⊆ OC , it must also hold that

Odd(s′(i)) ∩O′C = {i} = Odd(s(i)) ∩O′C , (8.17)

120

8.3. Moving back

and property (2) has to be true for (s′,≺s′).

In the specific case where |I| = |O|, it will follow from Lemma 8.11 that the unique

SSF of a reduced open graph is the reduced gflow of the original SSF.

Corollary 8.1. Let (G, I,O) be an open graph with an SSF (s,≺s) such that |I| = |O|.
If (G′, I, O′) is the reduced open graph, according to (s,≺s), of (G, I,O), then the unique

SSF (s′,≺s′) of (G′, I, O′) has the following properties:

1. ∀i ∈ O′C s′(i) ∩O′C = s(i) ∩O′C ,

2. ∀i ∈ O′C Odd(s′(i)) ∩O′C = Odd(s(i)) ∩O′C .

Proof. Because of Lemma 8.10 (G′, I, O′) has a flow. Since |I| = |O|, then according

to Lemma 8.6 |I| = |O′| and hence (G′.I, O′) has a unique flow [85]. Flow is required

for the existence of an SSF according to Proposition 7.3, therefore there can exist only

one SSF and because of Lemma 8.1 this SSF has to satisfy properties (1) and (2).

8.3 Moving back

We have proven that the penultimate layers of SSF and optimal gflow are equal if

|I| = |O|. Then we showed how to remove some vertices from the open graph and

construct an SSF and optimal gflow on the new reduced graph. Both of them are

reduced gflows, a property which we will use in this section to show that they preserve

the layering of the gflows they were derived from.

Lemma 8.12. Let (G, I,O) be an open graph with SSF (s,≺s) and gflow (g,≺g) such

that (G′, I, O′) is the reduced open graph of (G, I,O) with the removed vertices set

R. For every reduced gflow (g′,≺g′) of (G′, I, O′) such that V ≺s0 = V
≺g
0 = O and

V ≺s1 = V
≺g
1 it must hold that

∀n ≥ 0 ∪nk=0 V
≺g′
k = ∪n+1

k=0V
≺g
k \R. (8.18)

Proof. We prove Lemma 8.12 by induction and showing first that equation 8.18 holds

if n = 0, i.e. we need to prove that

V
≺g′
0 = (V

≺g
1 ∪ V ≺g0) \R. (8.19)

Lemma 6.2 tells that V
≺g′
0 = O′ and V

≺g
0 = O. Because the penultimate layers of

SSF (s,≺s) and gflow (g,≺g) are equal we also have that V ≺s1 = V
≺g
1 . Now we take

121

8.3. Moving back

the definition of O′ from Definition 8.1 of the reduced open graph and substitute the

appropriate sets:

O′ = (V ≺s1 ∪O) \R ⇒ V
≺g′
0 = (V

≺g
1 ∪ V ≺g0) \R. (8.20)

Thus equation 8.18 holds for n = 0. For the induction step we assume that equation 8.18

holds for n = m− 1, i.e

∪m−1k=0 V
≺g′
k = ∪mk=0V

≺g
k \R, (8.21)

and show that it holds for n = m. We use contradiction and assume that

∪mk=0V
≺g′
k 6= ∪m+1

k=0 V
≺g
k \R. (8.22)

There are two possibilities: either ∃i ∈ V ≺g′m \ V ≺gm+1 or ∃i ∈ V ≺gm+1 \ V
≺′g
m . We note that

according to Lemma 8.9 i ≺g j ⇔ i ≺g′ j if i ∈ O′C and j ∈ O′C . Because V
≺g′
m ⊆ O′C

for every m > 0 we have that

∃i ∈ V ≺g′m \ V ≺gm+1 ⇒ ∃j ∈ V ≺gm+1 ∩ g′(i) s.t. i ≺g j ⇒ (8.23)

⇒ i ≺g′ j ⇒ j ∈ ∪m−1k=0 V
≺g′
k = ∪mk=0 V

≺g
k ,

∃i ∈ V ≺gm+1 \ V
≺g′
m ⇒ ∃j ∈ V ≺g′m ∩ g(i) s.t. i ≺g′ j ⇒ (8.24)

⇒ i ≺g j ⇒ j ∈ ∪mk=0 V
≺g
k = ∪m−1k=0 V

≺g′
k .

As can be seen above, both of the possible cases lead to a contradiction and hence it

must hold that

∪mk=0V
≺g′
k = ∪m+1

k=0 V
≺g
k \R. (8.25)

This completes the induction step and the proof itself.

From the previous lemma we can construct a proof saying that every layer of a reduced

gflow starting from the second to last one is equal to a layer of the original gflow.

Corollary 8.2. Let (G, I,O) be an open graph with SSF (s,≺s) and gflow (g,≺g)
such that (G′, I, O′) is the reduced open graph of (G, I,O) with the removed vertices

set R. For every reduced gflow (g′,≺g′) of (G′, I, O′) such that V ≺s0 = V
≺g
0 = O and

V ≺s1 = V
≺g
1 it must hold that

∀n > 0 V
≺g′
n = V

≺g
n+1. (8.26)

122

8.4. Proof of the optimality theorem

Proof. This follows trivially from Lemma 8.12. We have that if n > 0:

∪nk=0V
≺g′
k = ∪n+1

k=0V
≺g
k \R, (8.27)

∪n−1k=0V
≺g′
k = ∪nk=0V

≺g
k \R. (8.28)

We can now subtract the elements of the second set from the first.

∪nk=0 V
≺g′
k \ ∪n−1k=0V

≺g′
k = (∪n+1

k=0V
≺g
k \R) \ (∪nk=0V

≺g
k \R) ⇒ V

≺g′
n = V

≺g
n+1 \R.

(8.29)

Because Definition 8.1 of SSF reduced open graph we know that R ⊆ O. Lemma 6.2

says that O = V
≺g
0 , hence we know that no element in R can be included in V

≺g
n+1 for

n ≥ 0 and V
≺g′
n = V

≺g
n+1.

It turns out, that if the gflow we have for the original open graph is the optimal one,

then the reduced gflow will be optimal for the reduced open graph.

Lemma 8.13 (Constructing the optimal reduced gflow). Let (G, I,O) be an open

graph with SSF (s,≺s) and optimal gflow (g,≺g). If (G′, I, O′) is the reduced open graph

of (G, I,O) then the reduced gflow (g′,≺g′) of (g,≺g) is the optimal gflow of (G′, I, O′).

Proof. First, because of Lemma 8.9 (g′,≺ g′) has to be a gflow of (G′, I, O′). Let us

assume that (g′,≺g′) is not the optimal gflow of (G′, I, O′) and let (d,≺d) be the optimal

one. Then according to Definition 6.6

∃n > 0, i ∈ O′C s.t. i ∈ V ≺dn \ V ≺g′n ∧ ∀k < n V
≺g′
k = V ≺dk , (8.30)

and since d(i) ∈ ∪n−1k=0V
≺d
k = ∪n−1k=0V

≺g′
k from Lemma 8.12 we obtain d(i) ∈ ∪nk=0V

≺g
k \R,

where the R is the set of vertices removed from the original graph. Now we know from

Definition 6.6 that i is in V
≺g
n+1 which according to Corollary 8.2 must be equal to V

≺g′
n .

This leads to a contradiction because i ∈ V ≺dn \ V ≺g′n and thus (g′,≺g′) has to be the

optimal gflow of (G′, I, O′).

8.4 Proof of the optimality theorem

We can now prove Theorem 8.1 by showing that the vertex layering of any SSF and

an optimal gflow is exactly the same. Let (G, I,O) be an open graph with flow (f,≺f
) such that |I| = |O|. Let (s,≺s) be the SSF obtained from (f,≺f) according to

Proposition 7.3 and (g,≺g) the optimal gflow of (G, I,O). According to Proposition 7.3

123

8.4. Proof of the optimality theorem

the last layer of any SSF is the set of output vertices. Lemma 6.2 says that this is also

true for the last layer of an optimal gflow, therefore V ≺s0 = V
≺g
0 = O. The layers V ≺s1

and V
≺g
1 are equal because of Lemma 8.5.

Now we need to show that layers V ≺sn and V
≺g
n are equal for n > 1. We can construct

a reduced open graph (Definition 8.1) (G′, I, O′) from (G, I,O). We now consider

the unique SSF (s′,≺s′) and reduced gflow (g′,≺g′) of (G′, I, O′), which according to

Lemma 8.13 is optimal. According to Lemma 8.12, V
≺g′
n = V

≺g
n+1 for every n > 0

and because SSF is by Theorem 7.1 a gflow the same lemma also implies that V
≺s′
n =

V ≺sn+1. Because of the way a reduced open graph is defined, we know that |I| = |O′|
(Lemma 8.6). Thus we can again use Lemma 8.5 to say that V

≺g
2 = V

≺g′
1 = V

≺s′
1 =

V ≺s2 . We can now take (G′, I, O′) and find its reduced open graph to show using the

same technique that V
≺g
3 = V ≺s3 . This can be continued until we reach the empty

layers, in which case we have considered all the layers according to (s,≺s) and (g,≺g).
As every layer of (s,≺s) and (g,≺g) will be equal and (g,≺g) is the optimal gflow, the

SSF of a flow of an open graph (G, I,O) is an optimal gflow if |I| = |O|, which proves

Theorem 8.1.

The above theorem together with Algorithm 1 for signal shifting implies a new method

for finding maximally delayed flows on graphs with flow. In particular, if an open graph

has flow and its input size equals output size, the maximally delayed gflow can be found

in O(n3) steps. This is more efficient in the number of operations than previous best

known algorithm which completes in O(n4) steps [9], but can find the maximally delayed

gflow (if it exists) of arbitrary open graphs.

Corollary 8.3. The maximally delayed gflow on an open graph (G, I,O) with flow

(f,≺f) and |I| = |O| can be found in O(n3) computational steps, where n is the number

of vertices in G.

Proof. We prove that the following process gives us the maximally delayed gflow of

(G, I,O) in O(n3) steps, by showing that each step in the process takes at most O(n3)

elementary operations.

1. Find the unique flow (f,≺f) using O(n2) operations.

2. Create the flow pattern (equation 6.9) of (f,≺f) using O(n2) operations.

3. Signal shift the resulting pattern using O(n3) operations.

4. Construct the SSF from the signal shifted pattern suing O(n2) operations.

Step (1) can be completed using O(n2) operations with the algorithm from [9] and

Step (3) takes no more than O(n3) operations if Algorithm 1 is used. To estimate

124

8.4. Proof of the optimality theorem

the number of operations required for steps (2 and 4) we first estimate the number of

commands in a gflow pattern, since flow is a stricter version of gflow this upper bound

holds also for flow.

• One preparation command Ni for every vertex i ∈ IC — total of O(n) preparation

commands.

• One entanglement command Ei,j for for every edge Ei,j ∈ E(G) — total of O(n2)

entanglement commands.

• One measurement command Mαi
i per vertex i ∈ V (G) — total of O(n)

measurement commands.

• Up to n X- and Z-correction commands per vertex in V (G) — total of O(n2)

correction commands.

The non-correction commands for the pattern in flow Step (2) can be created by

processing the open graph and the correction commands by parsing a description of the

flow. Since the open graph has at most O(n2) elements (n vertices and O(n2) edges) the

non correction commands can be created in O(n2) steps. The measurement commands

should be added to the pattern respecting the flow partial ordering. This can be done

in O(n log n) steps by first sorting the vertices using any reasonable sorting algorithm.

After the non-correction commands are added to the pattern, the correction commands

can be inserted before the measurement command acting on the vertex they act on.

These can be read from the description of the flow (equation 6.9) and since there is a

total of O(n2) of them the whole Step (2) takes o(n2) operations.

The gflow (g,≺g) in Step (4) can be created with one read over the measurement

pattern (equation 7.12) resulting from Step (3). This can be done by taking j ∈ s(i) if

and only if there exists an Xsi
j command in the pattern and i ≺g j if and only if there

exists a Xsi
j or Zsij command in the pattern. Since there are at most O(n2) commands

in the pattern, the gflow can be constructed in O(n2) operations. Finally, because of

Theorem 8.1 the constructed SSF is a maximally delayed gflow

125

Chapter 9

Discussion and Results

Initially, 1WQC was proposed as an alternative architecture for the implementation of

quantum computing. However, from early on the distinct parallel power of the model

attracted researchers to explore further this unique feature of the model. In a series

of results the key concepts of flow, signal shifted flow, gflow, maximally delayed gflow,

focused gflow, and information preserving flow were introduced [15, 14, 16, 9, 83].

They address the general question of determinism in 1WQC, while shedding light on

the parallelism as well. Although it is now known that the parallel power of 1WQC is

equivalent to the quantum circuit with unbounded fan-out [11], further investigation

is required to fully take advantage of this extra power. In this part of the thesis we

continued this line of research by presenting a surprising link between signal shifted

flow and maximally delayed gflow. The surprise comes from the fact that the former is

obtained via a simple rewrite rules of pushing the Z-dependencies of a pattern to the

end of the computation, while the latter is constructed directly from the structure of

the underlying graph. This leads to a new efficient procedure for finding the maximally

delayed gflow of graphs with flow, as was discussed in the last section. The structure

of the flows for which our algorithm produces a maximally delayed gflow if |I| 6= |O|
remains an open question.

Moreover, the link between signal shifted flow and maximally delayed gflow opens a new

direction to unify the “flow” structure further and fully characterise the constructions

behind the parallel power of 1WQC. The techniques presented in this work have

already been used to translate computations in the 1WQC model to circuit model

witho neither increasing the depth of the computation nor introducing any auxiliary

qubits [17]. Further application of the different techniques introduced in this paper to

known quantum algorithms, as well as a full comparison with other known optimisation

126

methods beyond 1WQC constitute an interesting subject to be explored in the future.

We end this part of the thesis with a few concrete open questions that could benefit

from the 1WQC properties proven in this thesis.

1. Removal of auxiliary qubits from quantum circuits corresponding to

parallelised 1WQC patterns. The usual translation of 1WQC patterns to

quantum circuits introduces a number of auxiliary qubits to the circuits. The

method for translating from 1WQC to quantum circuits without those auxiliary

qubits has existed for a while, but the depth of the computation was not

considered. [86] To benefit from the 1WQC parallelisation techniques, a method

which preserves the depth while not adding any auxiliary qubits is required.

One such method has recently been proposed by Miyazaki et al. [17] using the

techniques introduced in a preprint of the work in Part II of this thesis. There is

another approach to solving this problem, namely da Silva et al. proposed in [87]

a set of rewrite rules for quantum circuits that can in some instances be used to

remove these auxiliary qubits. We worked together with da Silva on this question,

using the rigid structure of SSF [18]. The goal of the collaboration, which has not

been achieved yet, was to show that these rewrite procedures result in a circuit

with no auxiliary qubits if the underlying open graph has SSF.

2. Extending graphs to stepwise strongly uniform determinism by adding

and/or removing edges. Consider a scenario where a group of experimentalists

can create a specific 1WQC resource state corresponding to an open graph. The

structure of the graph is limited by their experiment and they would like to

implement deterministic computations with it. Assume that the graph does not

have gflow, hence stepwise strongly uniformly deterministic computations are

impossible. A graph with gflow could be creatable through minor modifications

to their experiment, which they can do, as opposed to using a completely new set-

up. It would be beneficial if they could find out what kind of modifications they

could do to obtain a resource with gflow. This motivates the following question:

does there exist an algorithm which can in polynomial time give the minimum

number of changes for any open graph to be transformed to an open graph with

gflow by adding and removing edges?

127

Part III

Quantum Circuit Complexity

128

When designing new parallel algorithms it is beneficial to know how much an algorithm

can be parallelised, i.e. what is the lowest possible depth of a circuit implementing it.

If this is not known, one might be searching for a parallel algorithm for a problem

which does not have one, or trying to reduce the depth of a parallel algorithm which

is already as parallel as possible. We address this problem through examining the

parity function on quantum computers and establishing new bounds on the depth

of circuits implementing it in the quantum computing model. This is done from a

complexity theoretical point of view, starting with a review of the classical and quantum

circuit complexity classes in Chapter 10. It is known that in the classical computing

model parity cannot be computed with constant depth circuits with unbounded fan-

in AND and OR gates [88, 23, 89, 90]. This class of circuits is called constant depth

alternating circuits and is denoted as AC0. On the other hand, computing parity is

possible when additional unbounded modulo 2 gates are allowed, resulting in the AC0

with modulo 2 complexity class, denoted with AC0[2]. This result is not known to

hold for the analogous quantum classes QAC0 and QAC0[2] and proving a similar result

QAC0 6= QAC0[2] is the motivation of this part. In Chapter 12, two new results are

proven regarding the relationship between these two classes. First, it is shown that

the parity of more than two qubits cannot be computed probabilistically with QAC

circuits having only one layer of multi-qubit gates. Second, the QAC0 circuits that

have two layers of multi-qubit gates cannot compute parity of more than five qubits

exactly. These two results are a step towards our ultimate goal, which we intend to

pursue beyond this thesis — the proof of QAC0 6= QAC0[2].

129

Chapter 10

Preliminaries

10.1 Classical Low-Depth Complexity Classes

The results of this part focus on quantum complexity classes, but it is useful to have

an overview of the classical counterparts to see where exactly the quantum classes

are in the complexity classes’ hierarchy. This section gives the definitions and relations

between the classical circuit complexity classes, followed by their quantum counterparts’

descriptions in the next section. Most of the definitions of the classical classes here are

taken from [31], with minor differences in formulation and notation for consistency with

the rest of this thesis, especially considering the definitions of the quantum complexity

classes in the next section. Important concepts in these definitions are the depth of a

circuit and the fan-in of gates, defined in Section 1.1. The depth of a Boolean circuit

is the longest path from an input to the output and fan-in is the number of inputs to

a gate. The number of inputs in an unbounded fan-in gate can be arbitrarily large,

contrary to a bounded fan-in gate, where this is fixed to a constant (usually two). In

circuit complexity, inputs of different size are usually processed by separate circuits.

Computational problems are hence associated with families of circuits (Definition 1.3),

which contain a distinct circuit for each input size. Sometimes a uniformity constraint is

imposed on the circuit families, the most common are the polynomial-time and logspace

uniform families of circuits.

Definition 10.1 (polynomial-time uniform circuit families [31]). A circuit family {Cn}
is polynomial-time uniform if there exists a polynomial-time turing machine that on

input 1n outputs the description of the circuit Cn.

130

10.1. Classical Low-Depth Complexity Classes

AND
AND

AND

x1

x2 x3 x4

((x1 ^ x2) ^ x3) ^ x4 x1 ^ x2 ^ x3 ^ x4

AND

x1

x2

x3

x4

Figure 10.1: Subsequent AND gates can be merged into one AND with a larger input size.,
but this is obviously not possible if the fan-in of gates is limited. Similar equivalence holds for
the OR gates.

Definition 10.2 (logspace uniform circuit families). A circuit family {Cn} is logspace

uniform if there exists a turing machine that uses logarithmic space and on input 1n

outputs the description of the circuit Cn.

We start with the most basic circuit complexity class, the class which does not allow

any unbounded fan-in gates: the Nick’s Class (NC), named after Nick Pippenger, who

first defined this class [31].

Definition 10.3 (Nick’s Class (NC) [31]). For every d, a language L is in NCd if L

can be decided by a logspace uniform family of circuits {Cn} where Cn has poly(n) size,

depth O(logd n), and the gates have bounded fan-in. The class NC = ∪i≥0NCi.

When the restriction of bounded fan-in is lifted from NC, we get the next major circuit

class: the Alternating Circuits AC, the name referring to alternations between AND

and OR gates in the circuit.

Definition 10.4 (Alternating Circuits (AC) [31]). For every d, a language L is in

ACd if L can be decided by a family of circuits {Cn} where Cn has poly(n) size, depth

O(logd n), and the gates are allowed to have unbounded fan-in. The class AC = ∪i≥0ACi.

Since unbounded fan-in is allowed in AC, sequential gates of the same type can always

be merged into one larger gate (demonstrated in Figure 10.1), the gates therefore always

alternate between AND and OR and hence the name of the class. It is known that for

each i ∈ N [31]

NCi ⊆ ACi ⊆ NCi+1, (10.1)

and the only known strict inclusions in the above sequence are NC0 ⊂ AC0 and AC0 ⊂
NC1 [31]. The next complexity classes considered in this work are obtained by adding

MODq gates to the set of gates allowed in the AC0 class.

131

10.2. Quantum Low-Depth Complexity Classes

Definition 10.5 (The MODm gate [31]). For any integer q, the MODq gate outputs

0 if the sum of its inputs is 0 modulo q, and 1 otherwise.

The Modq gates can be interpreted as counting gates since they return true if and only

if the number of input bits equals a fixed count q, thus the name of the next complexity

class: AC with Counters (ACC).

Definition 10.6 (AC with Counters (ACC0) [31]). For every q > 1, a language L is

in AC0[q] if L can be decided by a family of circuits {Cn} where Cn has poly(n) size,

constant depth, and consists of unbounded fan-in AND, OR, NOT, and MODq gates.

The class ACC0 = ∪i>1AC
0[i].

For two distinct primes p and q, AC[q] 6= AC[m], where m is a power of p [19, 20]. It is

also known that PARITY , which is a MODq gate with q = 2 cannot be computed in

AC0, thus the classes AC0 and AC0[2] cannot be equal [23]. The final classical complexity

class included in this work is obtained by adding the unbounded MAJORITY gates

to the allowed set of gates in AC.

Definition 10.7 (The MAJORITY gate [20]). The majority gate outputs one if and

only if at least half of the inputs are ones.

Definition 10.8 (Threshold Circuits (TC) [91]). For every d, a language L is in TCd

if L can be decided by a family of circuits {Cn} where Cn has poly(n) size, depth

O(logd n), and consisting of unbounded fan-in AND, OR, NOT, and majority gates.

The class TC = ∪i≥0TCi.

The class TC0 is known to include ACC0 [21] and to be a subset of NC1 [21], but

neither of these inclusions is known to be strict. We thus have the following hierarchy

of classical low-depth complexity classes

NC0 ⊂ AC0 ⊂ AC0[2] ⊂ ACC0 ⊆ TC0 ⊆ NC1. (10.2)

10.2 Quantum Low-Depth Complexity Classes

Before defining the quantum circuit complexity classes, the concept of clean computa-

tions needs to be explained. Some of the known results described later and one of the

main results of this work apply only to clean computations.

132

10.2. Quantum Low-Depth Complexity Classes

Definition 10.9 (Clean computations [8]). We say that a quantum circuit C cleanly

computes a unitary operator U if for any x1, . . . , xn and y1, . . . , yn

〈y1 · · · yn0 · · · 0|C|x1 · · ·xn0 · · · 0〉 = 〈y1 · · · yn0 · · · 0|U ⊗ I|x1 · · ·xn0 · · · 0〉. (10.3)

The benefit of clean computations can be seen when considering a quantum algorithm

and its circuit A, which consists of multiple sub-circuits C1, C2, . . . , Cn applied in

sequence. Consider the case when all of the sub-circuits perform clean computations.

Then the final state of these qubits after each sub-circuit is the all zero computational

basis state |0 · · · 0〉 and the auxiliary qubits of one sub-circuit can be used as the

auxiliary qubits of the next one. Thus, if aux(C) is the number of auxiliary qubits

used by a quantum circuit C, the total number of auxiliary qubits required for A is

aux(A) =
n

max
i=1

aux(Ci). (10.4)

On the other hand, if none of the circuits C1, C2, . . . , Cn performs a clean computation,

the auxiliary qubits cannot be reused since quantum circuits in general expect the

auxiliary qubits to be initialised in the all zero computational basis state |0 · · · 0〉 [4].

The total number of auxiliary qubits in A then becomes

aux(A) =

n∑

i=1

aux(Ci). (10.5)

It is of course possible that only some of the sub-circuits are clean. Then the

auxiliary qubits of the clean circuits can be reused, whereby the auxiliary qubits of

non-clean circuits needs cannot. Thus the benefit of clean computations comes from

the reusability of the auxiliary qubits. From complexity theoretical point of view, the

restriction on the final state of the auxiliary qubits can simplify the analysis of the

circuits, as can be seen in the later parts of this thesis.

The quantum language classes are defined in two parts. First, several classes of quantum

circuit families (Definition 1.6) are defined. These classes impose restrictions on the

allowed gates and the depth of the circuits. Whereby the depth of Boolean circuits

is defined as the longest path from inputs to outputs, the depth of quantum circuits

(Definition 1.5) is the number of layers (containing simultaneously applicable gates) in

the circuit. Second, the classes of languages are defined on these circuit families classes.

These classes differ in the probabilities by which an input is accepted or rejected. This

approach was also used in [5] and offers a succinct way to describe of a large number of

complexity classes with different acceptance probabilities and restrictions on the circuit.

133

10.2. Quantum Low-Depth Complexity Classes

The first class of quantum circuit families, initially defined in [4], is the analogue to the

NC class. The definition included in this work is taken from [6].

Definition 10.10 (Quantum NC (QNC) [6]). QNCd is the class of quantum circuit

families {Cn}n∈N for which there exists a polynomial p such that each Cn contains at

most n input qubits and at most p(n) auxiliary qubits. Each Cn has depth O(logd n)

and uses only single-qubit and CNOT gates. The single qubit gates must be from a fixed

finite set. The class of quantum circuit families QNC is ∪i≥0QNCi.

The definition of the quantum counterpart of the AC class requires the quantum

equivalent of the classical unbounded AND (or OR) gate. From the Definition 1.10

of the unbounded Toffoli gate it can be seen that if the target qubit b is initialised to 0,

the final state of b will contain the AND of all the remaining qubits. Thus the Toffoli

gate is used as the quantum counterpart of the classical AND gate in the definition of

the quantum AC (QAC) class. The definition included here is from [5] and adapted to

match the rest of the thesis.

Definition 10.11 (Quantum AC (QAC) [5]). QACd is the class of quantum circuit

families {Cn}n≥0 for which there exists a polynomial p such that each Cn contains at

most n input qubits and at most p(n) auxiliary qubits. Each Cn has depth O(logd n)

and uses only single qubit and unbounded Toffoli gates. The single qubit gates must be

from a fixed finite set. The class of quantum circuit families QAC is ∪i≥0QACi.

Note that the QAC class does not contain alternating layers AND and OR classes like

its classical counterpart. Instead, it consists of Toffoli gates, interlaced with single

qubit gates. By adding unbounded MODq gates to the class QAC we get the quantum

counterparts to the AC[q] and ACC classes.

Definition 10.12 (QACC [5]). QACd[q] is the class of quantum circuit families {Cn}n≥0
for which there exists a polynomial p such that each Cn contains at most n input

qubits and at most p(n) auxiliary qubits. Each Cn has depth O(logd n) and uses only

single qubit, unbounded Toffoli and unbounded quantum MODq gates (as defined in

Definition 1.14). The single qubit gates must be from a fixed finite set. The class of

quantum circuit families QACCk = ∪i≥0QACk[i] and QACC = ∪i≥0QACCi.

Surprisingly, Green et al. proved that for any p, q > 1, MODp can be constructed from

MODq gates for any q in constant depth, which implies that for any q, k ∈ N, q > 1,

QACCk = QACCk[q] [5]. This is in contrast to the classical classes, where it is known

that AC[p] 6= AC[q] when p and q are distinct primes [20]. We can also extend the QAC

134

10.2. Quantum Low-Depth Complexity Classes

class with unbounded quantum threshold gates to derive the QTC class, the quantum

counterpart to TC.

Definition 10.13 (QTC [7]). QTCd is the class of quantum circuit families {Cn}n≥0
for which there exists a polynomial p such that each Cn contains at most n input qubits

and at most p(n) auxiliary qubits. Each Cn has depth O(logd n) and uses only single

qubit, unbounded Toffoli and unbounded threshold gates. The single qubit gates must be

from a fixed finite set. The class of quantum circuit families QTC is ∪i≥0QTCi.

Given any of the above defined classes of quantum circuit families, QNCk, QACk,

QACk[q], QACCk, QTCk, the classes of languages are defined as follows:

Definition 10.14 (Classes of languages). Let F be a class of quantum circuit families.

• EF (Exact F) is the class of languages L such that there exists {Cn} ∈ F such that

for every x

x ∈ L ⇔ Pr[Cn(x) = 1] = 1, (10.6)

x /∈ L ⇔ Pr[Cn(x) = 1] = 0. (10.7)

• BF (Bounded error F) is the class of languages L such that there exists {Cn} ∈ F

such that for every x

x ∈ L ⇔ Pr[Cn(x) = 1] ≥ 2

3
, (10.8)

x /∈ L ⇔ Pr[Cn(x) = 1] ≤ 1

3
. (10.9)

• RF (One-sided bounded error F) is the class of languages L such that there exists

{Cn} ∈ F such that for every x

x ∈ L ⇔ Pr[Cn(x) = 1] ≥ 1

2
, (10.10)

x /∈ L ⇔ Pr[Cn(x) = 1] = 0. (10.11)

• NF (Non-deterministic F) is the class of languages L such that there exists {Cn} ∈
F such that for every x

x ∈ L ⇔ Pr[Cn(x) = 1] > 0, (10.12)

x /∈ L ⇔ Pr[Cn(x) = 1] = 0. (10.13)

135

10.2. Quantum Low-Depth Complexity Classes

• PrF (Probabilistic F) is the class of languages L such that there exists {Cn} ∈ F

such that for every x

x ∈ L ⇔ Pr[Cn(x) = 1] >
1

2
, (10.14)

x /∈ L ⇔ Pr[Cn(x) = 1] ≤ 1

2
. (10.15)

Note the difference between classes of languages, classes of circuit families, and circuit

families. For example, for every input size n, there exists a O(log n) depth quantum

circuit Cn, which uses only CNOT gates, 0 auxiliary qubits, and whose output qubit is

|1〉 if and only if the number of qubits in state |1〉 in the input is equal to 1 (mod 2) [8].

The circuits C1, C2, . . . , Cn comprise the family of quantum circuits {Cn}. According to

Definition 10.10, this family of quantum circuits belongs to the QNCd class of quantum

circuit families for each d ≥ 1. Let the language PARITY be defined as follows:

Definition 10.15. PARITY = {x ∈ {0, 1}n :
∑n

i=1 x1 (mod 2) = 1}

Definition 10.14 can now be used to determine if and to which language class PARITY

belongs to. Since the class of circuit families {Cn} ∈ QNC1 is such that

x ∈ PARITY ⇔ Pr[Cn(x) = 1] = 1, (10.16)

x /∈ PARITY ⇔ Pr[Cn(x) = 1] = 0, (10.17)

it is obvious that PARITY ∈ EQNC1. But this is not the only suitable language class,

it is easy to see that PARITY ∈ BQNC1, PARITY ∈ RQNC1, PARITY ∈ NQNC1,

and PARITY ∈ PrQNC1.

In additional to comparing language classes, it is possible to compare classes of circuit

families. Since the definitions of the language classes depend on the underlying circuit

family classes (Definition 10.14), an equality in between two classes of circuit families A

and B implies that all the corresponding language classes are also equal to each other,

e.g EA = EB, PrA = PrB, etc.

Definition 10.16. We say that two classes of circuit families F ad G are equal if for

every {Cn}n∈N ∈ F there exists {Gn}n∈N ∈ G such that for every i ∈ N circuits Ci and

Gi implement the same unitary operator, and vice versa.

Due to the impossibility of copying quantum states, the quantum complexity classes

defined above cannot have unbounded fan-out. This is contrary to their classical

counterparts, where unbounded fan-out is allowed. When fan-out in Boolean circuits is

136

10.2. Quantum Low-Depth Complexity Classes

translated to quantum circuits, it is replaced with a O(log k) depth sub-circuit (where

k is the size of the fan-out) consisting of a tree of two qubit CNOT gates [4]. Thus the

depth of Boolean circuits increases by O(log n) when translating to quantum circuits.

It is possible to rewrite Boolean circuits such that the depth is preserved, all the gates

have fan-out one, and the unbounded fan-out is performed at the beginning of the

circuit on the input bits. This can be done recursively by starting at the first layer

and replacing the inputs to a Boolean gate, which are results of fan-out, with a copy

of the sub-circuit computing the fanned out value. If c is the maximum fan-in of

the gates in a Boolean circuit, then the total number of gates in the circuit and the

number of input bits to the first layer is O(cd), where d is the depth of the circuit. For

NC0, this results in O(1) size circuit acting on O(1) bits. Thus the fan-out required in

the beginning of the circuit has a maximum size of O(1), which can be computed in

constant depth with a tree of CNOT gates and thus NC0 ⊂ QNC0. For NC1 circuits

this results in O(2logn) = O(n) size circuits acting on O(n) bits with O(n) size fan-out

at the beginning of the circuit. The O(n) size fan-out can be performed by a CNOT

circuit of depth O(log n), thus the NC1 circuit with fan-out at the beginning of the

circuit can be translated to a O(log n) depth quantum circuit and NC1 ⊂ QNC1. For

NCd classes for d > 1 this construction does not work, since moving the fan-out to the

beginning of the circuit will result in super-polynomial circuit sizes of O(2log
d n), which

are not allowed by definition of neither NCd nor QNCd. Therefore it is not known

whether NCd ⊂ QNCd for d > 1. For unbounded fan-in circuits AC0, TC0, moving

fan-out to the beginning of the circuit results in a circuit where the initial fan-out is of

size O(poly(n)). Translating this to a quantum fan-out consisting of two qubit CNOT

gates results in O(log n) depth quantum circuit, which cannot be computed in neither

QAC0 nor QTC0. For unbounded fan-in circuits ACd, TCd, where d > 0 moving fan-out

to the beginning of the circuit results in O(nlog
d n) size circuits, which is not allowed

according to the definitions of the circuit complexity classes, hence it is not known

whether ACd ⊂ QACd and TCd ⊂ QTCd. In classes QACd[q] and QACC, it has been

proven that constant-depth quantum fan-out is possible [5] and thus ACd[q] ⊆ QACd[q]

and ACC ⊂ QACC. Augmenting the quantum classes with unbounded quantum fan-out

gates, described in Definition 1.12, gives rise to new, surprisingly powerful, complexity

classes.

Definition 10.17 (Unbounded fan-out classes [5, 7]). Let F be a class of quantum

circuit families. The class Ff , called the unbounded fan-out F , is defined as the class

F with addition of the unbounded fan-out gates to the set of allowed gates.

The power of unbounded fan-out in quantum circuits was first pointed out by Green,

137

10.2. Quantum Low-Depth Complexity Classes

et al. in [5], where they showed that QACdf = QACd[2] = QACCd. The first relation

(QACdf = QACd[2]) is a consequence of the fact that a parity gate can be implemented

with one fan-out gate and two layers of Hadamard gates (see Section 1.2.1). Thus

adding unbounded fan-out to the QACd class results in the class QACd[2], which

was proven to equal QACCd in the same paper [5]. Their work was the first to

highlight an important difference between quantum and classical complexity classes

— allowing a quantum operator which is able to fan-out the classical states, i.e.

computational basis states, in quantum circuits results in a new complexity class. In

contrast, unbounded fan-out is allowed for the classical complexity classes. Notably,

the classical counterparts, as explained in the previous section, relate to each other as

AC0
f ⊂ AC0[2] ⊂ ACC0, where AC0

f = AC0 since unbounded fan-out is allowed for the

AC0 class.

More surprisingly, Hoyer et al. showed that BQNCdf = BQACdf and QACdf = QTCdf [7].

Their work left open the question wether every QACdf circuit, regardless of the

probability of accepting an input, can be implemented in QNCdf . Recently, Takahashi

and Tani, solved this problem by proving that it is possible to implement the unbounded

OR (and thus also AND) gate exactly with constant depth using only unbounded fan-

out and single qubit gates [22], thus QACdf = QACd[2] = QNCdf = QTCdf .

The numerous complexity classes and the relationships between them presented in this

chapter are summarised in Figure 10.2. In can be seen from Figure 10.2 that biggest

difference of the quantum hierarchy compared to the classical is between the constant

depth quantum classes with unbounded fan-out and their classical counterparts:

NC0
f ⊂ AC0

f ⊂ AC0
f [2] ⊂ ACCf ⊆ TC0

f , (10.18)

QNC0
f = QAC0

f = QAC0
f [2] = QACCf = QTC0

f , (10.19)

where the suffix f is added to the classical classes to highlight the fact that unbounded

fan-out is allowed implicitly.

The unbounded fan-out class QNC0
f is also the focus of this work. Since parity can

be transformed into fan-out with two layers of Hadamard gates, the circuits with

unbounded fan-out also contain unbounded parity. Thus one approach to proving

that QAC0 6= QNC0
f is to show that QAC0 circuits cannot compute parity. It has

been proven, that when the number of auxiliary qubits is less than the size of the

input, it is not possible to compute parity exactly and cleanly using QAC0 circuits,

i.e. PARITY is not in cleanly computing EQAC0 with less than n auxiliary qubits [8].

It remains an open question, addressed in this thesis, whether this also holds when

the number of auxiliary qubits is polynomial in the number of inputs. Both in the

138

10.2. Quantum Low-Depth Complexity Classes

NC¹

QNC¹P

BQP

NC⁰ BQNC⁰

AC⁰

AC⁰[m]

ACC⁰

TC⁰

QAC⁰

QTC⁰

QNC⁰fQAC⁰fQTC⁰f QACC⁰ QAC⁰[m]

BPP

A ⇢ B A ✓ B A = B

Goal of this work
QAC0 ⇢ QNC0

f

Classical Complexity
Classes

 Quantum Complexity Classes

A B A B A B

Figure 10.2: The hierarchy of classical and quantum low-depth complexity classes.

proofs of BQACk ⊆ BQNCkf [7] and QACk ⊆ QNCkf [22], the number of auxiliary qubits

needed is greater than the input size. Therefore the availability of auxiliary qubits is

an important factor in creating parallel quantum circuits. The work in this part of the

thesis is pushing towards the proof of QAC0 6= QNC0
f by proving that PARITY is not

in PrQAC0 with one layer of multi-qubit gates and not in cleanly computing EQAC0

with two layers of multi-qubit gates.

139

Chapter 11

Properties of QAC circuits

For the purpose of this thesis we define a modified version of QAC circuits, the class

QACa.

Definition 11.1 (QACa). QACda is the class of quantum circuit families {Cn}n≥0 for

which there exists a polynomial p such that each Cn contains at most n input qubits and

at most p(n) auxiliary qubits. Each Cn has depth O(logd n) and contains only single

qubit and unbounded ∧Z gates. Arbitrary single qubit gates can be used. The single

qubit layers are always interlaced with ∧Z layers, and the first and last layer in a circuit

is a single qubit gate layer. The class of quantum circuit families QACa = ∪i≥0QACi.

As can be seen from the above definition, the class QACa has three main differences

from QAC. First, the ∧Z gates are used instead of Toffoli gates since they do not have

any target qubit. Each qubit a ∧Z gate acts on is treated equally, hence when analysing

QACa circuits we do not have to consider separately target and control qubits. Second,

arbitrary single qubit gates are allowed. This is a more general condition than in QAC,

but for our purposes, limiting to fixed gate set does not give any benefit. Third, the

single qubit layers are interlaced with two-qubit gates. This rigid structure allows for

an easier analysis of the circuits as will be clear in the following sections.

Definition 11.2 (The multi-gate depth). The multi-gate depth of a quantum circuit

is the number of layers containing multi-qubit gates.

There could be problems solvable by QACa circuits with lower depth than is possible

using QAC circuits. This is possible since all subsequent single qubit gates in QAC

can be replaced by one gate in QACa (where arbitrary single qubit gates are allowed),

thereby possibly reducing depth of the circuit. Since the depths of QAC and QACa

140

circuits implementing the same unitary operators cannot be assumed to equal, proofs

concerning the depth of QACa might not be adaptable to QAC. Therefore, we define

the multi-gate depth, which is more persistent between the two circuit family classes.

Lemma 11.1. For each QAC circuit C with depth d and multi-gate depth m there

exists a QACa circuit with depth d′ ≤ 2d+ 1 and the same multi-gate depth.

Proof. Let C be a QAC circuit with multi-gate depth d. To rewrite it to a QACa circuit

we need to

• replace the Toffoli gates with ∧Z,

• guarantee that the circuit starts and ends with a single qubit layer,

• guarantee that single qubit layers are always next to ∧Z layers and vice versa.

• separate the ∧Z and single qubit gates to distinct layers.

First, we replace every two sequential single qubit gates U1U2 with the gate V = U1U2.

This is done until there are no sequential single qubit gates in the circuit and is allowed

since QACa circuits can contain arbitrary single qubit gates. Obviously, this does not

increase neither the multi-gate nor the regular depth of the circuit. Second, we add

a new empty single qubit layer after each existing layer and move all the single qubit

gates from the previous layer to it. This doubles the number of layers and hence the

depth of the circuit, but separates the Toffoli layers from the single qubit layers and

does not increase the multi-qubit depth. Since we add a single qubit layer after each

existing layer, we also guarantee that the circuit ends with a single qubit layer. Third,

if the first layer of the circuit is not a single qubit layer, we will add a single qubit layer

with identity operators to the beginning of the circuit, increasing the depth by one to

2d+ 1 and keeping the multi-gate depth the same. Finally, we replace the Toffoli gates

with two Hadamard and one ∧Z gates as shown in Figure 1.9. The H gates introduced

can be merged with the single qubit gates in the layers before and after the ∧Z gate.

Thus the replacement of Toffoli with ∧Z gates will not increase neither the depth nor

the multi-gate depth. The circuit now corresponds to the definition of a QACa circuit

and the overall depth has increased to 2d+1 and multi-gate depth has stayed the same

as in the original circuit C.

If a problem can be shown to be not computable in multi-gate depth d QACa circuit,

then the above lemma can be used to show that it is also impossible in multi-gate depth

d QAC circuits. This is formalised in the following corollary:

141

Corollary 11.1. If a decision problem is not solvable with QACa circuits of multi-gate

depth d, it is also not solvable with QAC circuits of multi-gate depth d.

Proof. Lets assume that a decision problem is not solvable with multi-gate depth d

QACa circuits but there exists a multi-gate depth d QAC circuit solving it. Then

according to Lemma 11.1 there exists a multi-gate depth d QACa circuit solving it,

contradicting with the initial assumption.

The above lemma allows us to use the more rigid structure of QACa circuits in the later

proofs ot prove properties of QAC circuits. In general, the qubits can be either in a

computational basis or superposition state before the first ∧Z gate is applied to them.

The following lemma proves that the auxiliary qubits can always be assumed to be in

a superposition state. This property simplifies the later analysis of QACa circuits.

Lemma 11.2. Every QAC circuit can be rewritten such that all the auxiliary qubits

are in a superposition before the first ∧Z gate is applied to them. This rewrite can be

done by either removing ∧Z gates or by replacing ∧Z gates with smaller ∧Z gates and

removing auxiliary qubits from the circuit.

Proof. We can simplify the circuit such that every auxiliary qubit is in a non

computational basis state before a ∧Z gate is applied to them. If the auxiliary qubit is

in the |0〉 state, then the ∧Z gate would never be applied and we can remove the ∧Z
gate from the circuit by using circuit identity in Figure 11.1. Since the ∧Z gate layers

are interlaced with single qubit gate layers, this can be repeated until the auxiliary

qubit is in some state other than |0〉 before a ∧Z gate. If the auxiliary qubit is in the

state |1〉 before a ∧Z gate is applied, we can simply replace the ∧Z with one that acts

on the same qubits except for the auxiliary qubits in state |1〉 (Figure 11.2). This can

be done since ∧Z is a symmetric controlled gate and if a control qubit is in the state

|1〉 independently of the input, we can remove the control from the gate.

142

|0i |0i

Figure 11.1: If an input to the ∧Zn gate
is |0〉, the gate can be removed from the
circuit.

|1i|1i

Figure 11.2: If an input to the ∧Zn gate
is |1〉, the gate can be replaced it with a
∧Zn−1 gate, which does not act on the
qubit in state |1〉.

143

Chapter 12

Lower Bounds on Parity

It has been conjectured in [8] that a QAC circuit cleanly computing parity of n inputs

needs to have a depth greater than or equal to 2 log n. We propose a slightly different

conjecture, highlighting the importance of multi-gate layers in a circuit and omitting

the requirement for clean computation.

Conjecture 12.1. A multi-gate depth d QAC circuit can compute the parity of at most

2d inputs exactly.

If the above conjecture would be true, it would imply the inequality of the circuit

classes QAC0 and QAC0[2], since parity can be computed using one unbounded MOD2

gate in QAC0[2]. This chapter presents the two main results of Part III supporting

our conjecture. First, we will prove that multi-gate depth one is not enough to even

probabilistically compute parity with QAC circuits. This property is initially proven

for the QACa class, which has a more rigid structure, but later it will be shown that

this also holds for the QAC class.

Theorem 12.1. Multi-gate depth one PQACa circuits cannot compute parity of more

than two qubits.

Proof. Assume that it is possible to compute the parity of three qubits x1, x2, and

x3 probabilistically with unbounded error using one ∧Z gate. First, one of the input

qubits is fixed to |0〉 and treated as an auxiliary qubit, thus reducing the circuit to

compute the parity of just two qubits. If one of the input qubits is the output qubit,

this will be the fixed qubit, otherwise the fixed qubit can be chosen randomly. Without

loss of generality it can be assumed that the fixed qubit was x3 (the qubits can always

be relabeled). The resulting circuit will have the structure showed in Figure 12.1(a).

144

|x2i

|x1i

|0i

|0i

U0,1

U0,2

U0,3

U0,l

U1,1

U1,2

U1,3

U1,l |x1 � x2i

(a) If there exists a depth one probabilistic
QAC0 circuit computing parity, it is
possible to construct the above circuit.

U0,1

U0,2

U0,3

U0,l U1,l

|x2i

|x1i

|0i

|0i |x1 � x2i

(b) Since the gates on the non-output
qubits cannot affect the measurement
outcome of it, they can be discard them
from the circuit.

U0,1

U0,2

U0,3

U0,l U1,l

|x2i

|x1i

|0i

|0i |x1 � x2iZ

AND

(c) By applying the principle of delayed measurement, the ∧Z gate can be replaced with
measurements controlling one Z gate.

Figure 12.1: Simplifying a multi-gate depth one QACa circuit.

The single-qubit operations in the final layer acting on the non-output qubits can be

removed (Figure 12.1(b)) — these operators can not change the measurement outcome

of the output qubit (Lemma 1.1). Since a ∧Z operation is a controlled Z gate, it can

be replaced with measurements controlling a Z gate on the output qubit Z (see the

principle of delayed measurement in Section 1.2). The simplified circuit will have the

structure depicted in Figure 12.1(c).

Let unitary operators U0,1 and U0,2 be the first unitary operators acting on x1 and x2

145

correspondingly:

U0,1|0〉 = α1|0〉+ β1|1〉, (12.1)

U0,1|1〉 = α′1|0〉+ β′1|1〉, (12.2)

U0,2|0〉 = α2|0〉+ β2|1〉, (12.3)

U0,2|1〉 = α′2|0〉+ β′2|1〉. (12.4)

Since only single-qubit gates are acting on the non-output qubits, they do not get

entangled and the probability of each qubit being measured in state |1〉 is independent

of other qubits. The probability of either the qubits I∪A\{x1, x2, o} all being measured

in state |1〉 is constant for all of the values of x1 and x2; we will denote this probability

as a. Taking this into account, the probability that all non-output qubits are measured

in state |1〉, and therefore also the probability of the Z gate being applied, is

Pr(Z|x1, x2) = a|〈1|U0,1|x1〉|2|〈1|U0,2|x2〉|2. (12.5)

There are only two possible final states for the output qubit o: U1,oZU0,o|0〉 and

U1,oU0,o|0〉. The probabilities either of these two states being |1〉 is |〈1|U1,oZU0,o|0〉|2 =

CZ and |〈1|U1,oU0,o|0〉|2 = C correspondingly. The probability of the output qubit

being measured in state |1〉 is therefore

(1− Pr(Z|x1, x2))C + Pr(Z|x1, x2)CZ = C + Pr(Z|x1, x2)(CZ − C). (12.6)

Since the circuit computes parity of x1 and x2 probabilistically, this probability needs

to be greater than 1/2 for x1 6= x2 and less than or equal to 1/2 otherwise. Thus if we

consider all possible values for x1 and x2 the following inequalities must hold:

C + a|β′1|
2|β2|2(CZ − C) > 1/2, (12.7)

C + a|β1|2|β′2|
2
(CZ − C) > 1/2, (12.8)

C + a|β1|2|β2|2(CZ − C) ≤ 1/2, (12.9)

C + a|β′1|
2|β′2|

2
(CZ − C) ≤ 1/2. (12.10)

By adding inequality 12.9 to 12.7 and 12.10 to 12.8 we get the relations:

C + a|β′1|
2|β2|2(CZ − C) + 1/2 < 1/2 + C + a|β1|2|β2|2(CZ − C), (12.11)

C + a|β1|2|β′2|
2
(CZ − C) + 1/2 < 1/2 + C + a|β′1|

2|β′2|
2
(CZ − C), (12.12)

146

which when simplified will lead to a contradiction:

|β′1|
2
< |β1|2, (12.13)

|β1|2 < |β′1|
2
. (12.14)

Thus it cannot be possible to compute parity with PQACa circuits having only one ∧Z
layer.

The lower bound for parity proven in the above theorem holds for the PQACa circuits,

which have a more rigid structure than QAC circuits. However, the result can easily be

extended to the QAC circuits.

Corollary 12.1. Parity of more than two qubits cannot be computed probabilistically

with multi-gate depth one QAC circuits.

Proof. Corollary 11.1 implies that if a multi-depth one QAC circuit could compute

parity of more than two qubits, there would exits a QACa circuit having the same

multi-gate depth. This is not possible because of Theorem 12.1, hence the corollary

must be true.

The proof ofTheorem 12.1 relies on the qubits being not entangled before the final

∧Z gate. This allowed to analyse the probability of the ∧Z gate affecting the final

measurement and through that the probability of the final outcome being |1〉. In

multi-gate depth two circuits the ∧Z gates in the first multi-gate layer can create

entanglement, thus this assumption is no longer valid. To show that parity cannot

be computed in multi-gate depth two circuits we needed additional restrictions on the

circuits: the exactness and cleanness of computations. Note that we conjectured at

the beginning of this chapter that the cleanness might not be necessary, removing the

cleanness constraint is a possible continuation of this work.

Theorem 12.2. Parity of more than 5 qubits cannot be computed exactly cleanly with

multi-gate depth two QAC circuits.

This theorem is proven for multi-gate depth two QACa circuits, which through

Corollary 11.1 extends to QAC circuits. We start by simplifying the multi-gate depth

two QACa circuits, whose general structure can be seen in Figure 12.2. First, the

single-qubit gates acting on non-output qubits in the final layer can be removed since

they cannot influence the measurement outcome of the output qubit (Lemma 1.1).

Second, due to the principle of implicit measurement it can be assumed that all the

147

I IA A I IA A I A

Figure 12.2: The general structure of multi-gate depth two QACa circuits. The empty
rectangles denote arbitrary single-qubit gates.

I IA A I IA A I A O

Z

Figure 12.3: The simplified structure of multi-gate depth two QACa circuits. All of the non-
output qubits acted on by the final ∧Z in the original circuit are measured, and a Z gate is
applied to the output qubit if and only if all the measured qubits were in state |1〉. The output
qubit can be any one of the qubits, but in this figure it is one of the qubits to which no ∧Z
gate is applied in the first multi-gate layer.

148

non-output qubits are measured. By applying the principle of deferred measurement

it is now possible to replace the final ∧Z with a Z on the output qubit depending on

the outcomes of all the other qubits this ∧Z acts on. After these simplifications we get

the structure shown in Figure 12.3, which is used throughout the rest of this thesis.

Now, to help us prove Theorem 12.2 we will reveal some properties of multi-gate depth

2 QACa circuits.

Lemma 12.1. In a EQACa circuit, the final ∧Z gate can be discarded if there exists an

input value for which the application of the final ∧Z gate does not influence the final

measurement outcome of the output qubit o.

Proof. Let Uo be the final single-qubit gate applied to o. The circuit computes an exact

output value and thus the output qubit cannot be entangled. As discussed above, the

∧Z gate can be seen as a Z gate, which is applied based on the measurement outcome

of some non-output qubits. Thus there are exactly four states in which o can be before

the final ∧Z:

|ψ1〉 = U †o |1〉, (12.15)

|ψ2〉 = ZU †o |1〉, (12.16)

|ψ3〉 = U †o |0〉, (12.17)

|ψ4〉 = ZU †o |0〉. (12.18)

If there exists a value for which the application of the last ∧Z does not affect the final

measurement of o, then since unitary operators map orthogonal states to orthogonal

states and |ψ2〉 and |ψ4〉 are orthogonal, the following will hold:

|〈1|UoZ|ψ2〉|2 = |〈1|Uo|ψ2〉|2 ⇔ |〈1|UoZ|ψ4〉|2 = |〈1|Uo|ψ4〉|2. (12.19)

Since applying Z to |ψ2〉 and |ψ4〉 does not change the final measurement outcome, we

can just discard the final ∧Z gate altogether.

The proof works on any depth of EQACa circuits, not only depth two ones, which are

the focus of this section. To be able to remove the final ∧Z, it is enough to find one

input value for which the application of the last ∧Z does not matter. This allows to

further restrict the structure of the EQAC in the following lemmas. Next the the qubits

are divided into blocks based on the ∧Z gates applied in the first layer.

Definition 12.1 (∧Z block). Two qubits in a multi-gate depth two QACa circuit belong

to the same ∧Z block, if and only if there exists a ∧Z in the first multi-gate layer that

149

I IA A I IA A I A O

Z

Figure 12.4: An example of a multi-gate depth two circuit divided into blocks as per
Definition 12.1. The dashed lines represent borders between distinct blocks.

acts on both of them. The block to which the output qubit belongs to is called the output

block. We define the number of blocks in a quantum circuit C as Bn(C) and the number

of qubits in the same block as the output qubit as Bo(C).

The ∧Z blocks are called blocks for short in this thesis. The division into blocks,

demonstrated in Figure 12.4, and the values of Bn(C) and Bo(C) for a circuit are

central to our proofs in the forthcoming lemmas.

Lemma 12.2. For every input in a multi-gate depth two EQACa circuit, all the qubits

not in the output block must be in a computational basis state before the last ∧Z.

Proof. Lets assume that there exists an input for which one of the non-output block

qubits xi is not in a computational basis state before the last ∧Z. We use the simplified

multi-gate depth two QACa circuit shown in Figure 12.3. Then the application of Z on

the output qubit has a probability of being applied, which depends the measurement

outcome of xi. Lemma 12.1 tells that the application of this Z influences the final

outcome, which will be probabilistic since xi is not in a computational basis state. If xi

would be in the same block as the output qubit, the output could depend on the state

of xi before the last ∧Z and the probabilistic application of the Z gate could result in

a non-probabilistic result. This is not the case, and the probabilistic application of Z

results in the final output being probabilistic, which is impossible in EQACa circuits.

Lemma 12.3. Let C be a multi-gate depth two EQACa circuit. If the number of input

150

qubits acted on by two ∧Z gates in the output block of C is less than two, then only the

output qubit can be in a superposition before the first ∧Z.

Proof. The the final ∧Z will always be applied to the output qubit o, otherwise we can

discard the gate from the circuit because of Lemma 1.1. Assume that there exists a

qubit xi in the output block such that it is only acted on by the first ∧Z and xi is in

a superposition before this gate is applied. If o is in a computational basis state before

the first ∧Z, we can choose a value for it that kills the gate and the final output cannot

then depend on xi. The value of xi could be flipped, changing the parity of the inputs,

whereas the output of the circuit would stay the same. On the other hand, if o is in

a superposition, xi will be entangled to it after the first ∧Z gate. The entanglement

between the two qubits cannot be destroyed with the final ∧Z because we cannot

destroy entanglement without acting on both of the qubits. Now we need to consider

the possibility of transferring the entanglement between xi and o from o to another

qubit. All the qubits in the output block will be auxiliary qubits which according to

Lemma 11.2 are also in a superposition before the first ∧Z and thus already entangled

with xi, thus we cannot transfer the entanglement with xi from o to them. The non-

output block qubits on the other hand must be in a computational basis state before

the final ∧Z because of Lemma 12.2. Thus the final ∧Z cannot change their state and

transfer of entanglement from o is impossible. For the final measurement the output

qubit will therefore be entangled and have a probabilistic outcome which is impossible

for QAC circuits.

The following three lemmas can be combined to prove Theorem 12.2. First, we will

prove that in a multi-gate depth two EQACa circuit, there can be only one non-output

block with input qubits. Then we prove that the non-output block can have at most

two input qubits and the output block no more than three, thus limiting the maximum

number of possible inputs to five.

Lemma 12.4. A multi-gate depth two EQAC circuit C cannot compute parity of all its

input qubits if it contains more than one non-output block with input qubits.

Proof. Assume that there are at least two non-output blocks with input qubits. We

can choose inputs to one of the non-output blocks such that one of the qubits acted on

by the last ∧Z gate is |0〉. This is possible because of Lemma 12.2. If we now flip a

input to the other non-output block, the output of the circuit will stay the same, since

the output qubit can’t depend on any value in this block, but the parity of the input

changes. Thus the circuit C cannot compute parity of all its inputs.

151

If Bn(C) ≤ 2, it would not be possible to kill the output qubit’s dependency on the

inputs by simply killing the last ∧Z. If Bn(C) = 2, no matter how we fix the one

non-output block, since the output block qubits all have a common ∧Z gate acting

on them, the final outcome will depend on all of the qubits in that block. On the

other hand, if Bn(C) = 1, we cannot kill even the last ∧Z (for now) since Lemma 12.2

states that only the non-output block qubits need to be measured in the computational

basis. Thus a different approach is needed for the case Bn ≤ 2. We prove separately

that the non-output and output blocks cannot contain more than 2 and 3 input qubits

correspondingly.

Lemma 12.5. A multi-gate depth two EQACa circuit C computing parity cannot

contain a non-output qubit block with more than two input qubits.

Proof. Assume that there exists a non-output block with at least three input qubits.

There must be at least one qubit on which both the first and second level ∧Z gate is

applied to, otherwise the output qubit could not depend on all of the inputs in this

block. Out of the qubits that are acted on by both of the ∧Z gates, there needs to be

one, which we label as x1, that is in a superposition before the first ∧Z gate. Otherwise,

the first ∧Z gate would not affect any qubits which are used for the second ∧Z and

through that the output qubit, and thus the the first ∧Z could be removed. Removing

the first ∧Z would mean that the qubits we assumed were in the same block actually are

not. Thus this is impossible. The qubit x1 has to be the only qubit in a superposition

before the first ∧Z, otherwise it would get entangled which cannot happen because of

Lemma 12.2. Assuming that x1 is an input qubit, there are at least two more input

qubits x2 and x3 in the non-output block. They need to be in a computational basis

state before the first ∧Z because of the above argument and also before the second ∧Z
because of Lemma 12.2. We will fix x2 to kill the first ∧Z which leaves two possibilities

for x3. First, if the second ∧Z does not act on x3, then the output cannot depend

on this qubit and if we flip it, the parity of the inputs changes but the output of the

circuit does not. Second, if the last ∧Z acts on x3, we will fix it to kill the last ∧Z gate.

Thus no other qubit in the same non-output block can influence the final outcome of

the circuit, but there is at least one more input qubit in that block which we can flip

to change the parity of the inputs without affecting the outcome of the circuit. We

have fixed only qubits x2 and x3. Therefore if any of the non-output blocks in a depth

two QAC circuit contains at least three input qubits, C cannot compute parity of all

its input qubits.

Finally, we prove the maximum number of input qubits in the output block by using

152

the technique presented in [8]. In general, their method will not work if the number

of auxiliary qubits is not bounded. However, it can be adapted to the very limited

structure of the multi-gate depth two circuit we have derived, as is shown in the next

lemma.

Lemma 12.6 (The technique in this proof is adapted from [8]). A multi-gate depth two

EQAC circuit C computing parity cleanly cannot contain more than three input qubits

in the output block.

Proof. This proof focuses on the output block and fixes three qubits in it to a specific

value. These qubits are input qubits q1, q2, and the output qubit o. The requirement of

clean computation is imposed on C so that the output qubit could not be an auxiliary

qubit and thus it is possible for us to select its initial value. Let q2 be one of the

non-output qubits acted on by both ∧Z gates. If no such qubit exists, then according

to Lemma 12.3 all of the non-output qubits will be in a computational basis before

the first ∧Z. Thus we can fix one of the input qubits to a value that kills the first

∧Z. Since Bo(C) > 2, there must exist another qubit such that the second ∧Z is not

applied to it. After the first ∧Z is killed, this qubit cannot affect the outcome of the

final measurement of the output qubit o. We can change the parity of inputs by flipping

this qubit, but the output of the circuit will not change. Now that we have established

that there exists a qubit q2 such that both of the ∧Z gates are applied to it, we will fix

the qubits q1, q2, and o as follows:

q1 = U †0,q1 |0〉, (12.20)

q2 = U †0,q2U
†
1,q2
|0〉, (12.21)

o = U †0,oU
†
1,oU

†
1,o|0〉. (12.22)

Qubit q1 will kill the first ∧Z, since U0,q1U
†
0,q1
|0〉 = |0〉. The state of qubit q2

before the second ∧Z will therefore be U1,q2U0,q2U
†
0,q2

U †1,q2 |0〉 = |0〉, which kills the

second ∧Z. Since both of the ∧Z gates are killed, the output qubit will always be

U2,oU1,oU0,oU
†
0,oU

†
1,oU

†
1,o|0〉 = |0〉. Since C computes parity, it must hold, that parity

for the same assignment of values to q1, q2, and o must also be 0. On the other hand,

the output of a parity computation can be 0 if and only if its input is a computational

basis state, hence the values assigned to q1, q2, and o are computational basis states

and thus valid inputs. Since Bo(C) > 3 and we fixed only three inputs, there must

exist at least one more input qubit in the output block, but the output qubit cannot

depend on this qubit. Thus C cannot compute the parity of all of its input qubits.

153

Proof of Theorem 12.2. Lemma 12.4 proves that there cannot be more than one non-

output block in a multi-gate depth two QACa circuit computing parity exactly. This

non-output block can contain at most two input qubits, as is proven in Lemma 12.5.

When we add this to the maximum number of input qubits in the output block, which is

three as proven in Lemma 12.6, we get the maximum possible number of inputs which

is five. Note that the condition of clean computation was imposed in Lemma 12.6.

Finally, by using Corollary 11.1 we can conclude that a multi-gate depth two QAC

circuit can not compute parity exactly cleanly.

154

Chapter 13

Discussion and Results

The final part of this thesis resulted in two complexity theoretical results. First, it was

shown that multi-gate depth one QAC circuits cannot compute parity probabilistically.

Second, we proved that multi-gate depth two QAC circuits cannot compute parity

exactly cleanly. These results are a step towards proving that parity cannot be

computed with EQAC0 circuits. This was previously proven to be true only if the

number of auxiliary qubits in the circuit is limited to O(n) [8], whereas we impose not

restrictions on the number of auxiliary qubits. The motivation for this problem lies in

creating a distinction between the quantum complexity classes QAC0 and QAC0[2]. The

latter class having access to unbounded parity gates and hence naturally being able to

compute parity of all input qubits.

The lemmas leading to the proof about multi-gate depth two circuits (Theorem 12.2)

use two techniques: First, reducing the circuit to multi-gate depth one circuits by

killing the final ∧Z. Second, using the exactness of the computation and thus the

impossibility of the qubits to be in a non-computational basis state before the last

∧Z gate. The proof of [8], which we also use, does not fit into these two categories,

their approach is to kill of all the gates acting on the output qubit. In one of our

proofs we need to apply the technique from [8] to the specific circuit structure where

it is possible that the output qubit is entangled in the first layer and disentangled in

the last layer. Interestingly, this is also the main problem in extending our techniques

to depth three and beyond. Namely, in depth three circuits we cannot easily deduce

whether the qubits are entangled or not in the last layer. The larger depth allows for

the possibility of the entanglement being destroyed, whereby one of the techniques we

used relied on the fact that we could identify cases in which the qubits are entangled

at the end of the computation. One approach to extending the result is to try to find

155

H H

H HH H

|x1i

|x2i

|x3i

|x4i

|x2 � x1i

|x4 � x3 � x2 � x1i

|x1i

|x3i

|x1i

|x2i

|x3i

|x4i

|x2 � x1i

|x4 � x3 � x2 � x1i

|x1i

|x3i

Figure 13.1: A multi-gate depth two circuit computing parity of four qubits.

an alternative solution to the conditions that required the use of [8] techniques. Since

their method was required in a situation that arises with depth three circuits, perhaps

this would allow to solve the problem initialy to depth three and then for the general

case of arbitrary constant depth. Another benefit in replacing the [8] technique is the

possibility of removing the requirement of the circuits to perform clean computations,

which would make the result presented in this thesis more general. The method in [8]

can only work for non-clean computations if there are no auxiliary qubits.

There are some open questions left even for multi-gate depth two EQAC circuits. We

proved that multi-gate depth two circuits cannot compute parity exactly cleanly for

more than 5 qubits. Conjecture 12.1 on the other hand implies that the parity of

maximally four qubits could be computed. We also conjectured that the cleanness

restriction is unnecessary. It thus remains an open question whether we can improve

the proofs presented here to remove the cleanness condition and reduce the number of

qubits for which parity can be computed. Note that while a circuit computing parity

of four qubits is trivial (Figure 13.1), we could not construct a multi-gate depth two

QAC circuit for computing parity of five qubits.

It remains an open question whether multi-gate depth two QAC circuits can compute

parity with bounded error. Before this thesis, it was only known that it cannot be

computed with QNC0 circuits. This lower bound existed since the output of QNC0

circuits can only depend on a constant number of the input qubits [6]. Theorem 12.1

improves this bound by proving that parity cannot be computed probabilistically by

QAC0 circuits of multi-gate depth one, whose output can depend on every input qubit.

It is unlikely that the techniques in this work allow to improve this bound. The proofs

of Theorem 12.2 is not extendable to bounded error circuits since it relies on the output

qubit being disentangled from the rest of the qubits at the end of the computation. The

proof of Theorem 12.1, is also unlikely to be extendable to arbitrary constant depth,

since it depends on some of the non-output qubits being disentangled before the ∧Z
gate. This assumption only holds for multi-gate depth one circuits.

156

Bibliography

[1] Christopher M Maynard and Einar Pius. A quantum multiply-accumulator. Quantum
Information Processing, 13(5):1127–1138, May 2014.

[2] Peter W Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484, 1997.

[3] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of 28th annual ACM symposium on Theory of computing (STOC’96), pages 212–219, New
York, New York, USA, 1996. ACM Press.

[4] Cristopher Moore and Martin Nilsson. Parallel Quantum Computation and Quantum
Codes. SIAM Journal on Computing, 31(3):799–815, January 2001.

[5] Frederic Green, Steven Homer, Cristopher Moore, and Christopher Pollett. Counting,
Fanout, And The Complexity Of Quantum ACC. Quantum Information and Computation,
2(1):35–65, January 2002.

[6] Stephen Fenner, Frederic Green, Steven Homer, and Yong Zhang. Bounds on the Power of
Constant-Depth Quantum Circuits. In Proceedings of the 15th International Symposium
on on Fundamentals of Computation Theory (FCT 2005), pages 44–55, August 2005.

[7] Peter Høyer and Robert Spalek. Quantum Circuits with Unbounded Fan-out. Theory of
Computing, 1(5):81–103, August 2002.

[8] Maosen Fang, Stephen Fenner, Frederic Green, Steven Homer, and Yong Zhang. Quantum
Lower Bounds for Fanout. Quantum Information and Computation, 6(1):46–57, January
2006.

[9] Mehdi Mhalla and Simon Perdrix. Finding Optimal Flows Efficiently. In Proceedings
of the 35th international colloquium on Automata, Languages and Programming, Part I
(ICALP’08), pages 857–868, Berlin, Heidelberg, 2008.

[10] Anne Broadbent and Elham Kashefi. Parallelizing quantum circuits. Theoretical Computer
Science, 410(26):2489–2510, 2009.

[11] Dan E Browne, Elham Kashefi, and Simon Perdrix. Computational depth complexity of
measurement-based quantum computation. In Proceeding of the 5th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC’10), pages
35–46, December 2010.

[12] Richard Cleve and John Watrous. Fast Parallel Circuits for the quantum Fourier transform.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS
2000), pages 526–536, Rendo Beach, CA, USA, 2000. IEEE Comput. Soc.

157

BIBLIOGRAPHY

[13] Robert Raussendorf, Hans Briegel, and Daniel Browne. The one-way quantum computer - a
non-network model of quantum computation. Journal of Modern Optics, 49(8):1299–1306,
2002.

[14] Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus.
Journal of the ACM, 54(2), April 2007.

[15] Vincent Danos and Elham Kashefi. Determinism in the one-way model. Physical Review
A, 74(5):052310, 2006.

[16] Daniel Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. Generalized flow and
determinism in measurement-based quantum computation. New Journal of Physics, 9:250,
August 2007.

[17] Jisho Miyazaki, Michal Hajdušek, and Mio Murao. Translating measurement-based
quantum computation with gflow into quantum circuit. arXiv:1310.4043v2, November
2013.

[18] Raphael Dias da Silva, Einar Pius, and Elham Kashefi. Global Quantum Circuit
Optimization. arXiv:1301.0351, January 2013.

[19] A A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, April 1987.

[20] R Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. Proceedings of the nineteenth annual ACM symposium on Theory of computing
(STOC ’87), pages 77–82, January 1987.

[21] David A Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41(3):274–306, December 1990.

[22] Yasuhiro Takahashi and Seiichiro Tani. Constant-Depth Exact Quantum Circuits for the
OR and Threshold Functions. arXiv:1112.6063v2, December 2011.

[23] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical systems theory, 17(1):13–27, 1984.

[24] D Bonneau, E Engin, K Ohira, N Suzuki, H Yoshida, N Iizuka, M Ezaki, C M
Natarajan, M G Tanner, R H Hadfield, S N Dorenbos, V Zwiller, J L O’Brien, and
M G Thompson. Quantum interference and manipulation of entanglement in silicon
wire waveguide quantum circuits. Journal of Physics A: Mathematical and Theoretical,
14(4):045003, April 2012.

[25] R Baxter, S Booth, M Bull, G Cawood, J Perry, M Parsons, A Simpson, A Trew,
A McCormick, G Smart, R Smart, A Cantle, R Chamberlain, and G Genest. Maxwell
- a 64 FPGA Supercomputer. In 2nd NASA/ESA Conference on Adaptive Hardware and
Systems, pages 287–294, August 2007.

[26] O Almer, R V Bennett, I Böhm, A C Murray, X Qu, M Zuluaga, B Franke, and
N P Topham. An End-to-End Design Flow for Automated Instruction Set Extension
and Complex Instruction Selection based on GCC. In Proceedings of 1st International
Workshop on GCC Research Opportunities, 2009.

[27] Dake Liu. Embedded DSP Processor Design: Application Specific Instruction Set
Processors. Systems on Silicon. Morgan Kaufmann, Linkoping University, May 2008.

[28] Thomas G Draper. Addition on a Quantum Computer. arXiv:quant-ph/0008033v1, August
2000.

158

BIBLIOGRAPHY

[29] Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University
Press, October 2011.

[30] Amos R Omondi. Computer arithmetic systems. Algorithms, Architecture, and
Implementation. Prentice Hall International (UK) Limited, 1994.

[31] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, April 2009.

[32] Lars Wanhammar. DSP Integrated Circuits. Academic Press, February 1999.

[33] Milos D Ercegovac and Tomas Lang. Digital Arithmetic. The Morgan Kaufmann Series in
Computer Architecture and Design. Morgan Kaufmann Publishers, September 2003.

[34] Texas Instruments. Texas Instruments C64x DSP [online]. Avaliable at:
http://www.ti.com/product/TMS320C6455 [Accessed: 17 August 2014].

[35] Blackfin ADSP-BF50x Processors [online]. Avaliable at:
http://www.analog.com/static/imported-files/white papers/Blackfin BF50x Next Innovation.pdf
[Accessed: 17 August 2014].

[36] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, October 2000.

[37] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum
Computing. Oxford University Press, USA, 1 edition, January 2007.

[38] Vincent Danos, Elham Kashefi, and Prakash Panangaden. Parsimonious and robust
realizations of unitary maps in the one-way model. Physical Review A, 72(6):064301,
December 2005.

[39] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary
arithmetic operations. Physical Review A, 54(1):147–153, July 1996.

[40] Thomas G Draper, Samuel A Kutin, Eric M Rains, and Krysta M Svore. A Logarithmic-
Depth Quantum Carry-Lookahead Adder. Quantum Information and Computation,
6(4&5):351–369, July 2006.

[41] Phil Gossett. Quantum Carry-Save Arithmetic. arXiv:quant-ph/9808061v2, August 1998.

[42] Adriano Barenco, Charles Bennett, Richard Cleve, David Divincenzo, Norman Margolus,
Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter. Elementary gates for
quantum computation. Physical Review A, 52(5):3457–3467, November 1995.

[43] Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. A new
quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1, October 2004.

[44] Peter M Kogge, Harold S Stone, and Harold S. A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations. IEEE Transactions on Computers,
C-22(8):786–793, August 1973.

[45] Kai-Wen Cheng and Chien-Cheng Tseng. Quantum Plain and Carry Look-Ahead Adders.
arXiv:quant-ph/0206028v1, June 2002.

[46] John G Earle. Latched carry save adder circuit for multipliers. Google Patents, September
1967.

[47] Kai-Wen Cheng and Chien-Cheng Tseng. Quantum full adder and subtractor. Electronics
Letters, 38(22):1343–1344, October 2002.

[48] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum Addition Circuits and
Unbounded Fan-Out. Quantum Information and Computation, 10(9&10):872–890, 2010.

159

BIBLIOGRAPHY

[49] Agung Trisetyarso and Rodney Van Meter. Circuit Design for A Measurement-Based
Quantum Carry-Lookahead Adder. International Journal of Quantum Information,
8(5):843–867, August 2010.

[50] Lafifa Jamal, Md Shamsujjoha, and Hafiz Md Hasan Babu. Design of Optimal Reversible
Carry Look-Ahead Adder with Optimal Garbage and Quantum Cost. International Journal
of Engineering and Technology, 2(1):44–50, January 2012.

[51] C S Wallace. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic
Computers, EC-13(1):14–17, 1964.

[52] L Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34:349–356, 1965.

[53] Whitney J Townsend, Jr Swartzlander Earl E, and Jacob A Abraham. A comparison of
Dadda and Wallace multiplier delays. In Proceeding so the Advanced Signal Processing
Algorithms, Architectures, and Implementations XIII, pages 552–560, December 2003.

[54] David Beckman, Amalavoyal Chari, Srikrishna Devabhaktuni, and John Preskill. Efficient
networks for quantum factoring. Physical Review A, 54(2):1034–1063, August 1996.

[55] Himanshu Thapliyal and M.B Srinivas. Novel Reversible Multiplier Architecture Using
Reversible TSG Gate. IEEE International Conference on Computer Systems and
Applications, pages 100–103, May 2006.

[56] J J Álvarez-Sánchez, J V Álvarez-Bravo, and L M Nieto. A quantum architecture for
multiplying signed integers. Journal of Physics: Conference Series, 128(1):1–9, October
2008.

[57] Giuseppe Florio and Domenico Picca. Quantum implementation of elementary arithmetic
operations. arXiv.org, March 2004.

[58] H Thapliyal and M.B Srinivas. Novel Reversible ‘TSG’ Gate and Its Application
for Designing Components of Primitive Reversible/Quantum ALU. In Information,
Communications and Signal Processing, 2005 Fifth International Conference on, pages
1425–1429, 2005.

[59] Moayad A Fahdil, Ali Foud Al-Azawi, and Sammer Said. Operations Algorithms on
Quantum Computer. International Journal of Computer Science and Network Security,
10(1):85–95, January 2010.

[60] Michael Kirkedal Thomsen, Robert Glück, and Holger Bock Axelsen. Reversible arithmetic
logic unit for quantum arithmetic. Journal of Physics A: Mathematical and Theoretical,
43(38):382002, August 2010.

[61] Y Syamala and A.V.N Tilak. Reversible Arithmetic Logic Unit. In 3rd International
Conference on Electronics Computer Technology, pages 207–211, 2011.

[62] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going Beyond Bell’s
Theorem. December 2007.

[63] Thomas Monz, Philipp Schindler, Julio T Barreiro, Michael Chwalla, Daniel Nigg,
William A Coish, Maximilian Harlander, Wolfgang Hänsel, Markus Hennrich, and Rainer
Blatt. 14-Qubit Entanglement: Creation and Coherence. Physical Review Letters,
106(13):130506, March 2011.

[64] Xing-Can Yao, Tian-Xiong Wang, Ping Xu, He Lu, Ge-Sheng Pan, Xiao-Hui Bao, Cheng-
Zhi Peng, Chao-Yang Lu, Yu-Ao Chen, and Jian-Wei Pan. Observation of eight-photon
entanglement. Nature Photonics, 6(4):225–228, February 2012.

160

BIBLIOGRAPHY

[65] Robert Griffiths and Chi-Sheng Niu. Semiclassical Fourier Transform for Quantum
Computation. Physical Review Letters, 76(17):3228–3231, April 1996.

[66] Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev algorithm. Quantum
Information and Computation, 6(1):81–95, January 2006.

[67] Efficient Clifford+T approximation of single-qubit operators. arXiv:1212.6253, December
2012.

[68] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymptotically Optimal
Approximation of Single Qubit Unitaries by Clifford and T Circuits Using a Constant
Number of Ancillary Qubits. Physical Review Letters, 110(19):190502, May 2013.

[69] Optimal ancilla-free Clifford+T approximation of z-rotations. arXiv:1403.2975, March
2014.

[70] Daniel Gottesman and Isaac Chuang. Quantum Teleportation is a Universal
Computational Primitive. Nature, 402:390–393, 1999.

[71] Susana F Huelga, Joan A Vaccaro, Anthony Chefles, and Martin B Plenio. Quantum
Remote Control: Teleportation of Unitary Operations. Physical Review A, 63(042303):5,
2001.

[72] Susana F Huelga, Martin B Plenio, and Joan A Vaccaro. Remote control of restricted sets
of operations: Teleportation of Angles. Physical Review A, 65(042316), 2002.

[73] Debbie Leung. Two-qubit Projective Measurements are Universal for Quantum
Computation. arXiv:quant-ph/0111122v2, 2002.

[74] Michael Nielsen. Universal quantum computation using only projective measurement,
quantum memory, and preparation of the 0 state. Physics Letters A, 2-3(308):96–100,
February 2003.

[75] Richard Jozsa. An introduction to measurement based quantum computation. arXiv:quant-
ph/0508124v2, page 22, January 2006.

[76] Robert Raussendorf, Daniel Browne, and Hans Briegel. Measurement-based quantum
computation on cluster states. Physical Review A, 68(022312), August 2003.

[77] Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, Marteen Van den Nest, and
Hans J Briegel. Entanglement in Graph States and its Applications. In Proceedings of the
International School of Physics ”Enrico Fermi”, pages 115–218, February 2006.

[78] Maarten Van Den Nest, Akimasa Miyake, Wolfgang Dür, and Hans Briegel. Universal
Resources for Measurement-Based Quantum Computation. Physical Review Letters,
97(15):150504, October 2006.

[79] David Gross, Jens Eisert, and Steven T Flammia. Most quantum states are too entangled
to be useful as computational resources. Physical Review Letters, 102(190501):5, 2009.

[80] Caterina E Mora, Marco Piani, Akimasa Miyake, Marteen Van den Nest, Wolfgang Dür,
and H J Briegel. Universal resources for approximate and stochastic measurement-based
quantum computation. Physical Review A, 81(4):042315, April 2010.

[81] Tzu-Chieh Wei, Ian Affleck, and Robert Raussendorf. Affleck-Kennedy-Lieb-Tasaki State
on a Honeycomb Lattice is a Universal Quantum Computational Resource. Physical Review
Letters, 106(7):070501, February 2011.

[82] Vincent Danos and Elham Kashefi. Pauli Measurements are Universal. Electronic Notes
in Theoretical Computer Science, 170:95–100, 2007.

161

BIBLIOGRAPHY

[83] Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya, and Peter S Turner. Which
graph states are useful for quantum information processing? In Proceeding of the 6th
Conference on the Theory of Quantum Computation, Communication and Cryptography
(TQC 2011), 2010.

[84] Damian Markham and Elham Kashefi. Entanglement, Flow and Classical Simulatability in
Measurement Based Quantum Computation. In Jan Rutten, editor, Horizons of the Mind.
A Tribute to Prakash Panangaden, pages 427–453. Springer International Publishing, 2014.

[85] Niel de Beaudrap. Finding flows in the one-way measurement model. Physical Review A,
77(2):022328, January 2008.

[86] Ross Duncan and Simon Perdrix. Rewriting Measurement-Based Quantum Computations
with Generalised Flow. Automata, Languages and Programming, pages 285–296, 2010.

[87] Raphael Dias da Silva and Ernesto F Galvão. Compact quantum circuits from one-way
quantum computation. Physical Review A, 88(1):012319, July 2013.

[88] Miklós Ajtai.
∑1

1-Formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–
48, 1983.

[89] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In 26th
Annual Symposium on Foundations of Computer Science, pages 1–10. IEEE, October 1985.

[90] Johan Hastad. Almost optimal lower bounds for small depth circuits. STOC ’86:
Proceedings of the eighteenth annual ACM symposium on Theory of computing, November
1986.

[91] William Hesse. Division Is in Uniform TC0. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming, pages 104–114. Springer-Verlag,
July 2001.

162

Publications

Christopher M Maynard and Einar Pius. A quantum multiply-accumulator. In
Quantum Information Processing, 13(5):1127-1138, May 2014.

Einar Pius, Elham Kashefi, and Raphael Dias da Silva. Global quantum circuit
optimisation. Accepted to be published in Quantum Information and Computation,
2015.

163

	cover sheet
	Thesis
	Abstract
	Declaration
	Acknowledgements
	Contents
	List of figures
	List of tables
	Introduction
	I Quantum Arithmetic Circuits
	Preliminaries
	Classical Circuits
	Numerical Representation

	Quantum Circuits
	Unbounded Quantum Gates
	Translating Boolean circuits to quantum circuits
	The Quantum Fourier Transform

	Arithmetic Circuits
	Adders
	Multipliers
	Multiply-Adders

	The QFT Multiply-Adder
	The QMAC Circuit
	Analysis of the Circuit
	Pipelining: a classical alternative

	The QFT Adder
	The QFT Adder Circuit
	Analysis of the Circuit

	Implementing the QFT Arithmetic Circuits
	Initialisation
	The Semiclassical QFT
	The Final Fan-Out
	The Optimised Two-Qubit QMAC
	Verifying the circuit

	Discussion and Results

	II Measurement Based Quantum Computing
	Preliminaries
	The measurement calculus
	An example measurement pattern
	Rewriting patterns

	Determinism in 1WQC
	Flow
	General flow
	Focused flow

	Signal shifted flow
	Signal shifting
	The definition of signal shifting
	Understanding signal shifting
	An algorithm for signal shifting

	Constructing the SSF
	SSF and gflow
	Properties of SSF

	Computational Depth of SSF
	The last two layers
	Reducing the open graph
	Moving back
	Proof of the optimality theorem

	Discussion and Results

	III Quantum Circuit Complexity
	Preliminaries
	Classical Low-Depth Complexity Classes
	Quantum Low-Depth Complexity Classes

	Properties of QAC circuits
	Lower Bounds on Parity
	Discussion and Results
	References
	Publications

