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Abstract  

Plants rely on light to supply photosynthetic energy and to provide information of the 

surrounding environment. Phytochromes are photoreceptors that sense external light 

quality and quantity, which in turn guide the strategy of plant growth. A large body 

of research has focused on Arabidopsis thaliana seedlings, where phytochrome 

control of responses such as hypocotyl elongation, hook opening and cotyledon 

greening, has been intensively explored. Mathematical models have also helped 

elucidate the molecular mechanism of phytochrome signalling. A smaller proportion 

of studies have investigated the role of phytochrome in controlling plant plasticity in 

adult plants. This work has shown that phytochrome depletion enhances leaf petiole 

elongation and slows growth, but there is a lack of information on how these marked 

changes alter metabolism.  

In this thesis, I use phytochrome multiple mutants of to explore how phytochromes 

interact with metabolism to affect plant growth. My analysis revealed that 

phytochrome loss results in dramatically reduced biomass production, especially in 

high order phyABDE mutant that lacks four out of five phytochromes. This is caused, 

at least partly, by impaired photosynthesis in phytochrome mutants, including 

reduced chlorophyll level and less CO2 uptake. Furthermore, cell wall synthesis and 

protein levels, major dry biomass constituents, are also repressed in phytochrome-

depleted plants. Interestingly, these mutants accumulate more daytime sucrose and 

starch than wild type does, possibly due to their retarded growth in light. Further 

metabolic profiling reveals that these phytochrome mutants over-accumulate sugars, 

organic acids and amino acids. The sizable increase in raffinose and proline suggests 

a possible link to stress tolerance. Indeed, ABA and salt responses are significantly 

reduced in phytochrome mutants at both seedling and adult stages. These mutants are 

also more resistant to prolonged darkness, with less chlorophyll degradation in dark 
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and higher survival rates. 

Collectively, this thesis shows that phytochromes have a novel role in plant resource 

management, controlling the allocation of resources for growth, switching the 

metabolism between growth and stress-coping states based on the availability of light 

from the environment. It brings new interest into phytochrome research in 

Arabidopsis, suggesting possible application of such knowledge to crop studies in the 

future. 
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Lay Summary 

Plant life largely depends on light. Environmental light provides energy resources for 

photosynthesis, and notifies plants of their surroundings. Plants are able to sense 

changes in light quantity and quality through photoreceptors, including 

phytochromes. The importance of phytochromes in controlling young seedling 

establishment has been revealed by intensive research over the past decades. 

However, their role as vital regulators in adult plant development is less well 

understood. 

This thesis presents evidence that, apart from regulating plant architecture, 

phytochromes are also involved in metabolism and biomass production in adult 

plants. Severe phytochrome mutants have compromised fresh and dry weight, less 

photosynthetic pigment and reduced CO2 uptake. Plant biomass largely consists of 

cell wall and protein, and in line with their reduced biomass phenotype, these 

mutants have reduced cell wall gene expression and total protein content. Metabolic 

profiling results suggest that phytochrome loss leads to a general elevation of sugars, 

organic acids and amino acids. In phytochrome mutants, sugars over-accumulate 

during the day, in part because daytime growth is slow. Elevated levels of the 

metabolites proline and raffinose appear to render the mutant plants more tolerant to 

ABA, salt and dark stresses. 

To summarize, this thesis presents a novel function of plant photoreceptors in 

regulating plant growth, metabolism and stress resilience. 
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Chapter 1- Introduction 

1.1 Dual roles of light in plant life 

Light as the Ultimate Energy Source 

Light is best known to provide energy source for photosynthesis, where plants absorb 

light and CO2 to synthesize carbohydrates and oxygen (Figure 1.1). Photosynthesis is 

rather important as its products not only directly contribute to plant growth and 

development, but also indirectly feed the majority of all other living organisms and 

provide biological fuels. However, only light between 400-700 nm wavelengths 

(Photosynthetically Active Radiation, PAR, see Figure 1.2), less than 50% of total 

solar energy can be used to drive photosynthesis. In addition, only a small fraction of 

light energy absorbed by plants can be converted to chemical resources, and not all 

the chemical energy is used to produce biomass. In other words, photosynthesis 

efficiency is incredibly low. Typically, only 4-6% of sunlight energy can be fixed as 

carbohydrates (Zhu et al., 2008). Compounding this, plant photosynthesis is also 

constantly challenged by environmental factors, such as changes in light quality and 

quantity, temperature, atmospheric CO2 level, various stresses and pathogens 

(Kangasjärvi et al., 2012). As food problem becomes more urgent than ever due to 

the burgeoning population, reduced farmland and the challenging alterations of the 
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environment, researchers are making concerted efforts to promote photosynthetic 

efficiency, in order to improve biomass and yield production especially in crops.  

 

Figure 1.1 Simplified schematic representation of light effects on plant life. 

Light is absorbed by plants to drive photosynthesis; it is also perceived by plant 
photoreceptors to provide information of the surroundings. Both processes are of vital 
importance in contributing to plant growth and development.  

Light as the Environmental Indicator 

In the plant life cycle light has an important role even before photosynthesis has been 

initiated. Light stimulation is required for seed germination in many species. One 

classical experiment (Borthwick et al., 1952) demonstrates red light exposure could 

increase seed germination rate from 8.5% to 98% in lettuce (Lactuca sativa L.). 

Similar results were also reported in the model plant Arabidopsis (Cho et al., 2012; 

Lee et al., 2012). When covered or buried in soil, seedlings undergo an etiolated 

growth, where the hypocotyl elongates and cotyledons fold to form a hook, enabling 

the seedling to emerge from soil surface to reach the sunlight. Almost immediately 

the rapid hypocotyl elongation stops, cotyledons open to embrace light, functional 
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chloroplasts are developed, leading to a photoautotrophically competent seedling 

(Chory et al., 1996). Afterwards, light continues to provide ‘instructions’ for plant 

growth and development, including elongating towards light when shaded by 

neighbouring foliage, and transiting from vegetative growth into reproductive stage 

at appropriate time (Franklin and Quail, 2010). Light information from the 

surroundings is perceived by plants throughout the entire life cycle (Neff et al., 2000). 

This is particularly important for sessile plants that cannot move like animals to 

escape from encountered enemies or stresses. Natural environmental light varies in a 

sophisticated way, including fluctuations of light quality, quantity, duration and 

direction by hours, days and seasons. During the past decades, studies on light 

signalling responses have discovered three types of photoreceptors in plants (Chen et 

al., 2004): phytochromes (PHYs) as red (600-700 nm) and far-red (700-800 nm) light 

receptors (Casal et al., 1998); cryptochromes (CRYs), phototropins and zeitlupe 

family as blue light (400-500 nm)/UV-a (315-400 nm) receptors (Fankhauser and 

Staiger, 2002; Galvão and Fankhauser, 2015) and the UV-B (280-315 nm) light 

receptor UVB-RESISTANCE 8 (UVR8) (Tilbrook et al., 2013). Briefly, 

photoreceptors are light sensing proteins that transduce specific wavelengths of light 

information (Figure 1.2) into biochemical signals, triggering a series of molecular 

and physiological responses to regulate plant life.  

Despite that both photosynthesis and photoperception largely rely on light and 

greatly affect plant life, the interaction between these two processes is rarely reported 

(Figure 1.1). This thesis sets out to explore how photoreceptors, especially 

phytochromes, integrate photosynthetic carbon metabolism to regulate plant growth 

and biomass production in Arabidopsis. 
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Figure 1.2 Plant absorption of light at certain wavelengths. 

Plant Photosynthetically Active Radiation (PAR) ranges from 400-700 nm; UVR8 
photoreceptor responds to UV-B light between 280-315 nm; Phototropins, CRYs and ZTL 
family respond to blue light (400-500 nm)/UV-a (315-400 nm); PHYs respond to red (600-
700 nm) and far-red (700-800 nm) light. 

1.2 Phytochrome light signalling in Arabidopsis 
Among all photoreceptors, the red (R) and far-red (FR) light detectors, i.e. 

phytochromes, are probably most intensively studied. There are five members in the 

phytochrome family in Arabidopsis, phytochrome A (phyA) to phytochrome E (phyE) 

(Sharrock and Quail, 1989; Clack et al., 1994; Li et al., 2011). These phytochromes 

have partially redundant yet distinctive functions, working together to regulate 

throughout plant life, from seed dormancy and germination (Lee et al., 2012; Cho et 

al., 2012), seedling de-etiolation and photomorphogenesis (Chen and Chory, 2011) to 

reproductive transition (Chory et al., 1996).  

Phytochromes as ‘Photoswitches’ 

Phytochromes act as dimers in two forms: active (Pfr) and inactive (Pr). The attached 

tetrapyrrole chromophores absorb light, enabling phytochromes to undergo a 
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reversible conformational change between two forms upon R/FR light stimulation 

(Rockwell et al., 2006). In the dark, all phytochromes are in the Pr form, but can be 

activated by R that triggers photoconversion to the active Pfr form (Figure 1.3). Once 

activated, Pfrs are translocated into nucleus, where they regulate gene transcription 

and the downstream physiological responses through a series of transcription factors 

such as PIFs (Phytochrome Interacting Factors) (Leivar and Quail, 2011; Chen and 

Chory, 2011). The active Pfr form can be photoconverted back to the inactive Pr 

form by FR. In addition, the thermally unstable Pfr can be reversed back to Pr in a 

light-independent relaxation process called dark reversion (Rockwell et al., 2006). 

Due to these structure characteristics, phytochromes function as reversible 

photoswitches that can quickly respond to the constantly changing light conditions.  

 

Figure 1.3 Phytochrome model as a ‘photoswitch’. 

Simplified illustration of activation and inactivation of phytochromes by red/far-red light 
induced protein conformational change. 
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The photoreversible switch by R and FR described above was only observed in low-

fluence responses (LFR), where phyB is the dominant phytochrome (Tepperman et 

al., 2004; Halliday et al., 1994). As a result, a mathematical model has been proposed 

based on phyB protein dynamics and plant physiology (Rausenberger et al., 2010). 

phyD and phyE were also found to work in a similar way, sharing redundant 

functions with relatively minor effects (Devlin et al., 1999; Franklin, 2003). Also as a 

weak red light sensor, phyC was found to have a significant role in co-activating 

other photoreceptors (Franklin et al., 2003). While phyB and other light stable 

phytochromes act in LFR, phyA is light labile (Bae and Choi, 2008) and has been 

found to work in very-low-fluence responses (VLFR) and high-irradiance responses 

(HIR) (Casal et al., 1998; Rausenberger et al., 2011). PhyA is therefore responsible 

for a vast of growth and development processes in those conditions, including seed 

germination (Botto et al., 1996), seedling de-etiolation (Shinomura et al., 2000) and 

reproductive transition (Lin, 2000). Very recently, phyA was reported to partially 

work through intercellular signaling in regulating high irradiance responses to far-red 

light (Kirchenbauer et al., 2016).  
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Phytochrome Signalling Networks  

Phytochrome Regulation in Nucleus   

After being transported into the nucleus as active dimers, phytochromes continue to 

transduce environmental light signals through transcriptional regulation of hundreds 

of gene that are responsible for downstream physiological responses (Jiao et al., 

2007). Phytochromes control light signalling transcriptional networks partly by 

repressing several negative regulatory proteins in the nucleus. In particular, the PIF 

family of phytochrome interacting transcription factors and an E3 ligase 

Constitutively Photomorphogenic (COP1) are the main two inhibitory regulators of 

light responses, such as seedling photomorphogenesis (Li et al., 2011; Xu et al., 

2015).  

PIFs are a small group of basic helix-loop-helix (bHLH) transcription factors that 

were found important for seedling etiolation (Toledo-Ortiz et al., 2003). Dark-grown 

Arabidopsis quadruple pifq mutant (pif1 pif3 pif4 pif5) has short hypocotyl and open 

cotyledons that resemble WT seedlings in light (Leivar and Quail, 2011). In addition, 

PIFs also work as a hub for integration of environmental (light and temperature) and 

internal (clock, hormone and sugars) signals to regulate various responses, including 

photomophogenesis and stem elongation growth (Figure 1.4 and Leivar and Monte, 

2014). Phytochromes were reported to phosphorylate (Shin et al., 2016) and degrade 

PIFs via the 26S proteasome (Duek and Fankhauser, 2005; Leivar and Quail, 2011). 

Interestingly, PIFs also negatively regulate phyB abundance in the nucleus by 

enhancing COP1/phyB interaction to promote degradation (Figure 1.4 and Jang et al., 

2010). Phytochromes also physically interact with PIFs, sequestering them from their 

target DNA promoters to stop gene regulation (Park et al., 2012). By repressing both 
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abundance and activity of PIFs, phytochromes can transduce light signal to gene 

transcription efficiently. 

 

Figure 1.4 PIFs act as a hub in integrating internal and external signals to regulate 
photomorphogenesis and stem elongation growth. 

Adapted and reproduced from (Leivar and Monte, The Plant Cell, 2014).  

As an E3 ligase, COP1 represses photomophogenesis in dark by targeting several 

positive regulators of light responses for degradation, including ELONGATED 

HYPOCOTYL 5 (HY5), HY5-HOMOLOG (HYH) (Holm et al., 2002), LONG 

HYPOCOTYL IN FAR-RED (HFR1), LONG AFTER FAR-RED LIGHT 1 (LAF1) 

(Xu et al., 2015; Li et al., 2011). Arabidopsis cop1 mutant also develops a light-

grown phenotype in darkness (Deng et al., 1991). Activated phytochromes in the 

nucleus directly interact with SUPPRESSOR OF PHYTOCHROME A 1 (SPA1) and 

quickly dissociate COP1-SPA1 complex (Lu et al., 2015; Sheerin et al., 2015). In 

addition, COP1 was also found gradually migrating from nucleus to cytoplasm upon 

light stimulation (Subramanian et al., 2004; Pacin et al., 2014). Both contribute to an 
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inactivation of COP1 in the nucleus, stabilising the positive transcription factors for 

light induced photomophogenesis.  

Phytochrome Regulation in Cytoplasm 

Phytochromes are synthesized as inactive form in cytoplasm, only being translocated 

into nucleus when activated by red light. Active phytochromes regulate gene 

transcription in nucleus, leading to various physiological responses as described 

above. In contrast, role of phytochromes, especially the active Pfr form, in cytoplasm 

remains largely unknown. A family of cytoplasmic-specific proteins, phytochrome 

kinase substrate 1 (PKS1), was reported to be bound and phosphorylated by phyA 

and phyB (Fankhauser et al., 1999). Years later, (Paik et al., 2012) reported that 

besides transcriptional repression in the nucleus, Pfrs also directly inhibit the mRNA 

translation of protochlorophyllide reductase (PORA) in cytosol. This dual regulation 

enables phytochromes to respond quickly to light stimuli, helping seedlings to 

complete the dark to light development transition in a short time. Phytochrome 

cytoplasmic signaling in other plant species was also reviewed in (Hughes, 2012; 

Ermert et al., 2016). 
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Seedling Hypocotyl: A Model System for Phytochrome Study 

Even though phytochromes control plant physiology through the entire life cycle, 

most of the signaling research has been conducted in Arabidopsis seedlings (Li et al., 

2011; Chen and Chory, 2011). In particular, seedling hypocotyl response regulated 

by phyB through PIFs has often been used to identify potential light signaling 

components (Reed et al., 1998). This simple system provides a phenotype easy to 

measure within a short amount of time, and has contributed significantly to the 

current understanding of the molecular network downstream of light signaling 

(Leivar and Monte, 2014). Tools and softwares have been developed to monitor the 

hypocotyl elongation, enabling the investigation into signaling dynamics in great 

detail (Cole et al., 2011).  

Seedling hypocotyl response also provides a biological system for mathematical 

modeling. These models have been developed to describe the molecular mechanism 

of phytochrome signaling pathway, which in turn help to promote our understanding 

by suggesting potential unknown candidates (Johansson et al., 2014; Rausenberger et 

al., 2010, 2011). A recent observation from Halliday lab reported that while the 

hypocotyl elongation is repressed by increasing fluence rate in cool conditions (17°C 

and 22°C), it is surprisingly promoted at 27°C as light increases from about 1 

µmol·m-2·s-1 (Johansson et al., 2014). Modelling was used in this study as an 

essential tool in deciphering how a change in temperature could reverse the role of 

light in controlling seedling hypocotyl cell expansion. The temperature switch 

hypothesis was then validated with experimentation results supporting HY5 as part 

of the ‘X’ regulatory component proposed by the model. 
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Shade Response Regulated by Phytochromes 

The proportion of active and inactive phytochromes is determined by both dark 

reversion rate and the R:FR ratio in the environment (Rausenberger et al., 2010). Due 

to this specific wavelength sensitivity, phytochromes ideally function as a detector of 

vegetative neighbourhoods (see Figure 1.5 A-B for comparison of the world seen by 

human being’s eyes and that perceived by plants through phytochromes). While there 

is almost equal amount (1.2:1) of R and FR light in the natural sunlight, most of R 

light is absorbed by photosynthetic pigments, leaving a greater percentage of FR 

light under the vegetative canopy (Ruberti et al., 2012). This reduced R:FR light ratio 

(down to 0.05) leads to a promotion in phytochrome deactivation, informing plants 

of the neighbour density, triggering a series of shade avoidance responses (Ballaré, 

1999; Smith and Whitelam, 1997). In laboratories, shade is often mimicked by 

reducing R: FR ratio of light in growth facilities. Also, end-of-day FR treatment can 

be used to quickly deactivate light stable phytochromes before night falls (Franklin 

and Whitelam, 2005). 

Table 1.1 has listed the major shade responses in plant growth and development, 

from delayed seed germination (Borthwick et al., 1952), retarded leaf development to 

early flowering transition (Smith and Whitelam, 1997). In particular, shade induced 

elongation growth is probably the most dramatic phenotype (Figure 1.5 C), which 

appears to be a competitive strategy of plants for limited light. A set of phytochrome 

regulated transcription factors, PIF4 and 5, are reported to control shade induced 

elongation growth (Lorrain et al., 2008). While elongation is promoted in petioles by 

shade, leaf blade expansion is inhibited (Figure 1.5 C and Kozuka et al., 2005). In 
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addition, radish, as a root vegetable, produces dramatically reduced ‘yield’ when 

grown in shade (Figure 1.5 C Radish). This was supported by an earlier study that 

reported a shade induced reduction in dry biomass, leaf area and net assimilation rate 

in Rumex obtusifolius (Mclaren and Smith, 1978). These together indicate a possible 

phytochrome dependent carbon re-allocation from leaf/storage organ to petiole 

favouring elongation growth in shade. 
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Figure 1.5 Plants use phytochromes to detect the neighbouring vegetation and 
respond in growth alteration accordingly. 

Photo (A) shows the world perceived by humans; (B) represents the same world pictured by 
plant based on phytochromes. Bright colours show areas with high R:FR, typically the stone 
bridge and water surface where sunlight was reflected; Dark areas suggest low R:FR, 
indicating the density of vegetation which absorbs R and largely reflect FR. Reproduced from 
(Devlin, PNAS, 2016) with original photos taken by James Gillies. (C) Arabidopsis and radish 
grown in direct sunlight and shade conditions. Both plants show elongated stem and reduced 
leave size when grown in shade. Photos are reproduced as indicated.  
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Table 1.1 Shade avoidance syndromes.  

Adapted from (Smith and Whitelam, Plant Cell and Environment, 1997). 

Physiological process Response to shade (reduced R:FR ratio) 

Germination Retarded (delayed) 

Extension Growth Accelerated 

      Internode extension       Rapidly increased 

      Petiole extension       Rapidly increased 

      Leaf extension       Increased in cereals 

Leaf development Retarded 

      Leaf area growth       Marginally reduced 

      Leaf thickness       Reduced 

Chloroplast development Retarded 

      Chlorophyll synthesis       Reduced 

      Chloeophyll a:b ratio       Balance changed 

Apical dominance Strengthened 

      Branching       Inhibited 

      Tillering (in cereals and grasses)       Inhibited 

Flowering Accelerated 

      Rate of flowering       Markedly increased 

      Seed set       Severe reduction 

      Fruit development       Truncated 

Assimilation distribution Markedly change 

      Storage organ deposition       Severe reduction 
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Arabidopsis without Phytochromes 

Due to the function redundancy in signalling mediating responses, it was difficult to 

determine the individual role of each phytochrome, or to identity the overall role of 

phytochromes for plant life. Multiple mutants, especially those with all 

phytochromes deficient, were created to test the effect of severe depletion in 

phytochromes. Arabidopsis mutant without phytochromes was first generated in Col 

background, where a ft mutation was also introduced to promote germination rate 

(Strasser et al., 2010). Later, another phyABCDE mutant in Ler background was 

reported in (Hu et al., 2013), together with several other high order phytochrome 

mutants such as phyABDE. These later created alleles have FT, and show much 

earlier onset of flowering compared to WT. Both phyABCDE mutants are largely 

dependent on sufficient light illumination to survive, supporting the vital role of 

phytochromes in plant life cycle. In Arabidopsis, chlorophyll production is light 

dependent. The fact that phytochrome null mutants have much reduced but still 

detectable chlorophyll produced in red light suggests the existence of other red light 

receptors. Also, phyABDE and phyABCDE in Ler background behave similarly in 

various phenotypes, suggesting that phyC could be non-functional in the absence of 

other phytochromes (Hu et al., 2013).  

All these high order phytochrome mutants are dramatically elongated (Strasser et al., 

2010; Hu et al., 2013), which is probably due to PIF mediated elongation growth 

without phytochrome repression. More interestingly, these mutants were also 

reported to have retarded grow rate. When grown in 8-h photoperiod, phyABDE 

showed delayed flowering at 16°C compared to the standard 22°C, enabling more 
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rosette leaves to be produced during vegetative stage. However, even in this 

condition, the mutant still has a significantly reduced leaf production rate compared 

to Ler WT (Halliday et al., 2003), suggesting an underlying control of vegetative 

growth by phytochromes. In this project, I mainly use Ler background phyABDE to 

explore the phytochrome impact on growth, biomass and metabolism. An 

intermediate mutant, phyBD, is also included in most tests for comparison.   
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1.3 Sugar Regulation of Plant Growth and Interaction 
with Phytochromes  

Sugar Mediated Growth Regulation in Arabidopsis 

Plant growth largely depends on the carbohydrate availability generated through 

photosynthesis, which is constantly challenged by various factors in the changing 

environment, such as light, temperature, water, nutrient and pathogens (Kangasjärvi 

et al., 2012). Energy stress can be induced in unfavourable conditions, leading to 

severe growth retardation. Luckily, plants have obtained multiple strategies through 

evolution to mediate growth by coordinating carbon allocation and sugar signalling. 

As photosynthetic products, sugars can only be produced during the day with enough 

PAR, yet is still in great need at night to maintain respiration and growth. To cope 

with this situation, plants store part of the synthesized carbon in the form of starch 

during the day, and break it down into soluble sugars for nocturnal use (Stitt et al., 

2010). Diurnal changes of leaf starch was found to be adjusted accordingly in 

different photoperiods (Lee et al., 2010), demonstrating the ability to predict the 

length of the coming night and calculate the proper carbon depletion rate (Smith and 

Stitt, 2007; Scialdone et al., 2013). Even when grown in very short day lengths, 

plants were still able to survive by adjusting growth, starch, protein and central 

metabolism (Gibon et al., 2009, 2004). More amazingly, upon an unexpected early 

onset of night, Arabidopsis starch degradation could be adjusted immediately to 

ensure depletion just before the subjective morning. However, this regulation no 

longer holds when plants were grown in abnormal day lengths such as 28h or 17h, 

indicating an internal circadian control of starch degradation (Graf et al., 2010). 
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Leaf starch is usually depleted at the end of night; therefore, carbon starvation can be 

experimentally induced by an extended night period (Lastdrager et al., 2014). Like 

energy stress induced in other situations, low carbon level is sensed by T6P-SnRK1 

(KIN10 and KIN11) signalling, which triggers a series of transcriptional regulation 

to repress growth, only allowing basic life maintenance (Nunes et al., 2013; Baena-

González et al., 2007). In particular, SnRK1 activates bZIP transcription factors that 

control a number of target genes involved in amino acid metabolism. More 

interestingly, resumed sucrose level not only inactivates SnRK1 and subsequent 

bZIPs, but also represses the translation of a subset of bZIP proteins (Rahmani et al., 

2009; Hanson and Smeekens, 2009). While SnRK1 works mainly in low carbon 

situations, Target of Rapamycin (TOR) signalling was considered an important 

regulator to link high sugar availability into various growth processes (Lastdrager et 

al., 2014). Repression of TOR results in defects in cell expansion, seed yield, ABA 

regulated osmotic stress response and protein translation (Deprost et al., 2007). 

Apart from energy status detection, sugars also provide signals to regulate plant 

growth and development. Hexokinase was identified as a sugar sensor decades ago 

(Jyan-Chyun et al., 1997). A hexokinase mutant, gin2, was first found insensitive to 

high glucose induced seed germination repression (Moore, 2003). Following mutant 

analysis demonstrated a role of HXK1 in growth regulation irrespective of its 

enzyme activity, supporting glucose to work as a signalling molecule (Cho et al., 

2006). More recently, sucrose were reported to speed up plant life cycle, promoting 

early juvenile-to-adult phase transition by repressing miRNA156 expression (glucose 

shares this function but in a different mechanism) (Yang et al., 2013; Yu et al., 2013; 

PROVENIERS, 2013). T6P has been recognized as a central signalling molecule in 
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regulating plant growth and development (Schluepmann et al., 2011), and was also 

recently found to control onset of flowering (Wahl et al., 2013).  

Sugar regulation of growth largely interacts with multiple phytohormones (León, 

2003; Das et al., 2012) and circadian clock (Stitt and Zeeman, 2012; Moghaddam 

and Ende, 2013; Lastdrager et al., 2014), both of which were also reported to closely 

connected to light signalling (Fankhauser and Staiger, 2002; Lucas and Prat, 2014). 

As a result, sugars are very likely to crosstalk with light signalling in plant growth 

control as well. 

Phytochromes affect sugar metabolism partly through 
photosynthesis regulation 

Phytochrome mutant seedlings have been reported to have substantially reduced 

chlorophyll compared to WT upon red light stimulation (Strasser et al., 2010; Hu et 

al., 2013; Ghassemian et al., 2006). By re-analyzing the microarray data from (Hu et 

al., 2013), I found high percentage of light reaction genes are repressed in 

phyABCDE seedlings grown in constant red light, compared to WT (Figure 1.6). 

Among these genes, at least one third own G boxes in their promoter region, 

suggesting that they could be the target genes of light signaling components, e.g. 

PIFs or HY5 (Jiao et al., 2005; Hudson and Quail, 2003). Supporting these results, 

PIF3 has been found to repress chlorophyll biosynthetic and photosynthetic genes in 

etiolated seedlings associated with HDA15 (Liu et al., 2013). As a result, the reduced 

growth in phytochrome deficient mutants could be at least partly due to the impaired 

plant photosynthesis and subsequent production of carbohydrates. 

 



CHAPTER 1 INTRODUCTION 
 

20 
 

 

Figure 1.6 Microarray analysis shows large numbers of photosynthetic genes 
repressed in phytochrome null seedlings.  

Samples were from 4-day-old seedlings of phyABCDE and Ler grown in 50µmol·m-2sec-

1constant red light. Microarray raw data was provided by published paper (Hu et al., PNAS, 
2013). Pathway maps were generated by mapman after data analysis with GEO2R online. 
Log transformation was used to show the fold changes. (Blue dots in the map indicate down-
regulated genes in the mutant compared to WT, red dots stand for genes promoted in the 
absence of all phytochromes, white or light color means this gene has similar expressions in 
both genotypes in this condition- difference less than two-fold change.) 
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Crosstalk between sucrose and phytochrome signalling  

Apart from regulating chlorophyll biosynthesis and the amount of carbohydrates 

produced through photosynthesis, phytochromes have also been reported to interact 

with sucrose in controlling plant growth, especially in seedlings. An earlier study 

found that sucrose in the growth medium could repress the transient induction of 

plastocyanin gene during seedling development (Dijkwel et al., 1996). In addition, 

phyA mediated far-red light high-irradiance responses, including seedling cotyledon 

opening, inhibition of hypocotyl elongation and block of greening, were also 

repressed by sucrose (Dijkwel et al., 1997).  Following that, (Short, 1999) reported 

the previously observed dominant negative phenotype in phyB overexpression 

seedlings grown in FR was dependent on the availability of specifically 

metabolizable sugars in the medium. Furthermore, sucrose was also found necessary 

for COP1 degradation of phyA in etiolated seedlings (Debrieux et al., 2013), adding 

to the evidence of sucrose crosstalk with phytochrome signaling pathways.  

More recently, a series of publications reported the interaction between sucrose and 

PIFs in regulating seedling hypocotyl elongation (Liu et al., 2011; Stewart et al., 

2011; Lilley et al., 2012; Sairanen et al., 2012). While sucrose promotes seedling 

hypocotyl elongation in WT, this response is eliminated in pif mutants (Liu et al., 

2011; Stewart et al., 2011). In addition, overexpression of PIF5 results in increased 

hypocotyl length than WT in the absence of sucrose, and a further enhanced 

promotion response to exogenous sucrose application. Furthermore, sucrose was also 

found to increase PIF5 protein abundance (Stewart et al., 2011), supporting PIFs to 

be the essential regulator of sucrose promoted hypocotyl growth. Following studies 
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revealed the link between sugars, PIFs and auxin homeostasis, proposing an 

endogenous carbon-sensing pathway that promotes PIF dependent hypocotyl 

elongation through auxin biosynthesis and transportation (Sairanen et al., 2012; 

Lilley et al., 2012). 

So far, the majority of phytochrome-sugar research has been conducted in seedlings, 

and it would be interesting to explore the crosstalk further using more developed 

plants, to see how light signaling and sugar interacts to regulate plant biomass. 
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1.4 Phytochrome Signalling in Dark Responses 

Dark induced senescence 

Apart from carbon starvation described above, environmental dark stress can also 

induce premature leaf senescence. Similar to developmental senescence, plant dark 

senescence also involves chlorophyll loss, protein/nucleic degradation and 

remobilization of nutrients (Lim et al., 2007). In particular, leaf bleaching, or the loss 

of greening, is the visually most dramatic phenotype in senescence response caused 

by chlorophyll breakdown (Hörtensteiner, 2006). 

Dark induced senescence also triggers dramatic transcriptional reprogramming in 

plants. A large number of senescence-associated genes (SAGs), involved in 

processes like cellular components breakdown and hormone signalling, have been 

identified through microarray analysis (Buchanan-Wollaston et al., 2003; Lim et al., 

2007). Due to the quick accumulation upon senescence induction, SAGs are often 

regarded as senescence markers. Another set of genes, which is repressed during 

senescence, was termed senescence down-regulated genes (SDGs), including the 

chlorophyll a/b binding protein (CAB) and the Rubisco small subunit gene (SSU), 

leading to a repression of photosynthesis (Gan and Amasino, 1997). In addition, a 

group of transcription factors were specifically identified in senescence regulated 

genes (senTFs), either promoted or repressed (Balazadeh et al., 2008; Lim et al., 

2007). These senTFs controls expression of massive downstream SAGs, and are 

similarly regulated in developmental and stress induced senescence. For instance, 

ORE1 (or NAC2) and AtNAP were found to be main senescence-promoting NAC 

transcription factors (Kim et al., 2009; Guo and Gan, 2006). Despite the commonly 
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induced genes in developmental and dark induced senescence, a transcriptome 

comparison assay also revealed a significant distinction in enhanced gene profiles 

between these two types of senescence (Buchanan-Wollaston et al., 2005), 

suggesting the responses are partially overlapping yet still different. 

Phytohormones are extensively involved in senescence response (Lim et al., 2007). 

In addition to fruit ripening, ethylene has also long been known to promote leaf 

senescence (Grbic et al., 1995). Mutants with impaired ethylene signalling pathways, 

such as ethylene-resistant1 (etr1), ethylene-insensitive2 (ein2) and ethylene-

insensitive3 (ein3) ein3-like (eil1) double mutant, have significantly delayed 

senescence (Grbic et al., 1995; Oh et al., 1997; Li et al., 2013). In particular, EIN3 

was identified as an senTF, acting downstream of another senTF EIN2, to repress 

expression of microRNA164 that negatively regulates ORE1 (Li et al., 2013; Kim et 

al., 2009). ABA also controls plant development especially aging and senescence. 

Similar to ethylene, ABA application induces senescence and SAGs (Lim et al., 

2007), while ABA insensitive mutants have delayed senescence (Lee et al., 2011; 

Zhang et al., 2012). Very recently, Arabidopsis Late Embryogenesis Abundant (LEA) 

protein ABR (ABA-response protein), negatively regulated by ABI5, was found to 

delay dark induced leaf senescence (Su et al., 2016). 

  



CHAPTER 1 INTRODUCTION 
 

25 
 

Phytochrome Regulation of Dark Induced Senescence 

Phytochromes have been linked to dark induced senescence for decades. Dating back 

to 1971, a study on Marchantia reported that dark-induced chlorophyll loss could be 

inhibited by 5-min red light pulse per day, which can be reversed by 10-min 

irradiation of far-red that induces leaf bleaching (De Greef et al., 1971). Similar 

experiments were also reported in various other species, including barley, cucumber, 

tomato, mustard, etc. (Biswal and Biswal, 1984). These observations supported a role 

of phytochromes in regulating dark induced responses, especially chlorophyll 

degradation. Specifically, phytochrome activation leads to delayed leaf senescence in 

darkness.  

Unexpectedly, however, a later study reported phytochrome mutants to be 

hyposensitive to dark induced chlorophyll loss. While Ws WT grown in short-day 

photoperiods for 6 weeks has significantly reduced chlorophyll after 6-day dark 

incubation, leaves of phyB-10 and phyA-5-phyB-10 mutants maintained similar 

chlorophyll level during the dark incubation (Brouwer et al., 2014). Ws WT has 

significantly more chlorophyll than that in both phytochrome mutants under normal 

growth conditions, yet after 6-day dark treatment Ws chlorophyll is reduced to the 

mutant level. In contrast, phyA mutant was shown to have increased chlorophyll 

reduction than WT in partial shade, but not in dark (Brouwer et al., 2012, 2014). 

These studies pointed out a role for phyB, but not phyA, in dark induced chlorophyll 

loss, and that the loss of phyB eliminates dark effect on chlorophyll level. 

More recently, during the course of my thesis work, a series of studies were 

published, supporting the observations from original R/FR pulse experiments. Again, 
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phytochromes are considered as negative regulators of dark induced senescence. 

(Sakuraba et al., 2014) proposed an underlying molecular feed-forward loop, where 

PIF4 and PIF5 activate the transcription of EIN3, ABI5 and EEL genes involved 

ethylene and abscisic acid signalling; these protein in turn, together with PIF4 and 

PIF5, directly activate the expression of ORE1 to promote leaf senescence. 

Phytochromes, especially phyB, are considered to suppress senescence by negatively 

regulate PIFs. In addition, mutant analysis showed phyB was hypersensitive to dark 

stress relative to Col WT, including more chlorophyll loss, ion leakage and induction 

of senescence marker genes (SEN4 and SAG12) (Sakuraba et al., 2014). In addition, 

mutation or overexpression of PIF4 or 5 genes leads to delayed and accelerated dark 

senescence, respectively. This was observed in both physiological and molecular 

levels (Song et al., 2014; Zhang et al., 2015). Another study using rice phytochrome 

mutants confirmed the similar dark response regulated through phytochromes (Piao 

et al., 2015).  

These recent studies have greatly improved our current understanding of the 

molecular mechanism underlying phytochrome regulation of dark induced 

senescence. Nevertheless, it is incapable of explaining the previous contradictory 

observation of dark induced chlorophyll loss in Ws lines as shown in (Brouwer et al., 

2014). This demonstrates the complexity of dark response in plants, highlighting a 

possible gap in our current knowledge that remains to be understood. 
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1.5 Thesis Overview 

Objectives of Study 

Light regulation of plant growth has been established through photosynthesis and 

photoreceptors, yet how photoreceptors control vegetative biomass production in 

adult plants remains mysterious. In addition, the interaction between phytochrome 

signalling and metabolic sugars has been reported in seedling growth, but the 

underlying mechanism is unclear especially in adult plants. Finally, phytochromes 

were found to regulate dark induced plant growth retardation and senescence in adult 

plants, the mechanism of which needs further exploration. Therefore, my PhD 

project aimed to achieve the following objectives: 

1. To explore the effect of phytochromes on plant biomass accumulation by studying 

phytochrome multiple mutants;  

2. To reveal metabolic alteration induced by phytochrome deficiency as an indirect 

way to control plant biomass production; 

3. To test and compare dark induced responses in both WT and phytochrome 

multiple mutants. 
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Chapter Layout 

This thesis documents my PhD research work on exploring how phytochromes 

control growth, metabolism and stress responses in Arabidopsis thaliana. Chapter 1 

presents a literature review on the dual roles of light in plant life focusing on 

phytochrome regulation of seedling hypocotyl elongation and shade response, 

followed by studies on phytochrome-sugar interaction. Previous observations on 

phytochrome involvement in dark senescence are also introduced. Chapter 2 

describes all plant materials, and experimental protocols used in this project. After 

that, Chapter 3 focuses on how the light activated signaling pathways manipulate 

plant carbon resources to control biomass production. Despite of reduced biomass 

and repressed photosynthesis, phytochrome mutants have elevated levels of starch 

and sugar. This is suggested to link to the altered diurnal growth pattern, proposing a 

role of light activated phychromes in allocating carbohydrates into growth during 

daytime. The interaction between phytochrome and metabolism was further explored 

in Chapter 4 by assessing metabolome using GC-MS analysis. A stress like 

metabolic signature was identified in phytochrome mutants, which possibly underlies 

the reduced sensitivity to biomass repression induced by abiotic stressors like NaCl 

and ABA. Here phytochromes are further proposed to switch plant metabolic 

condition between growth-promoting and stress-priming statuses. Chapter 5 presents 

some preliminary tests on phytochromes mutant response to long-term darkness. The 

results suggest a potential re-assessment of the current knowledge by considering 

allele effect. Finally, general discussions were made in Chapter 6, highlighting the 

various questions raised from the project with perspectives of possible future work, 

and a brief conclusion of the findings and significance of research in this thesis.  
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Chapter 2- Experimental 
Procedures 

2.1 Plant Material 
Arabidopsis thaliana wild-type and mutants used in this experiment were listed as 

follows: Landsberg erecta (Ler) and Ler background phyB-5 (Reed et al., 1993), 

phyBD (Devlin et al., 1999), phyABD (Devlin et al., 1999), phyABDE (Franklin, 

2003) and phyABCDE (Hu et al., 2013); Columbia-0 (Col-0) and Col-0 background 

phyB-9 (Reed et al., 1993), PHYB-OX (Kircher et al., 2002).  

2.2 Growth Conditions 
In all experiments, seeds were collected in a 1.5ml Eppendorf (EP) tube and 

sterilised by shaking in 8% commercial bleach and 1% Tween20 solution for 10 

minutes. The sterilising solution was removed with a pipette and rinsed four times 

with distilled water. After the final wash, 0.1% autoclaved agar solution was added 

to suspend the seeds. The seeds were then spread on petri dishes with half strength 

MS-agar medium (MURASHIGE & SKOOG MEDIUM, Duchefa Biochemies; 1.2% 

agar; PH 5.8) and stratified at 4˚C in darkness for 3 days. 

For most of adult plant studies in Chapter 3, 4 and 5, seeds on medium were moved 

to Binder cabinet with diurnal (8h light: 16h dark) white light (100 µmol·m-2·s-1) at 
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18°C to induce germination and early seedling development. Two weeks later, 

seedlings of the average size were transferred to soil (Levington seed and modular 

compost, plus sand) trays in growth room maintained at 18°C with 12h light: 12h 

dark photoperiods for several weeks based on experimental requirements. There light 

was provided by Polylux XLR 835 (GE Lighting triphosphor white fluorescent tubes) 

at 100 µmol m-2s-1 (except fluence rate experiments where light level is specified in 

the according chapter).  

In Chapter 3, for shoot/root sugar quantification experiment, plants were grown in 

the same condition except that they were transferred to new medium plates instead of 

soil, for root sample collection. 

For stress assays in Chapter 4, adult plants were grown in the above condition to 

four-week-old, watered once with ABA/NaCl solution to soil capacity followed by 

normal irrigation procedure every other day. Data was collected two weeks after the 

treatment. Alternatively, seedlings were grown in medium plates under 12h light 

(100 µmol m-2s-1): 12h dark photoperiod at 18°C for 11 days, then transferred to 

growth medium with different doses of salt (NaCl)/ABA for further 10 days. 

In Chapter 5, 5-week plants were transferred to dark cabinets for about 2 weeks, then 

back to previous condition for observation. Alternatively, plants were grown in 

continuous light for a week, transferred to long day photoperiod (16h light: 8h dark) 

till 3-week-old, then treated with darkness for 5 days before sampling; in this case 

temperature was set to 23°C to match the published data.  
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2.3 Fresh and Dry Biomass Quantification 
Whole plant rosettes (aboveground part for soil-grown plants and whole seeding for 

medium-grown plants except for shoot/root-specific quantification in Chapter 3) 

were harvested and immediately weighed using a precision balance before 

dehydrated. After this, plant materials were wrapped in aluminium foil, dried in an 

oven at 80°C for 4 days before being weighed again to obtain dry biomass data.  

2.4 Chlorophyll Content Measurement 
Plant rosettes were harvested in liquid nitrogen (LN) and ground into fine powder 

while frozen. Approximately 20mg of sample powder was weighed and mixed with 

1ml of 80% acetone (cooled in ice) by shaking on the vortex. The mixture was then 

kept in darkness at 4°C overnight for extraction. After centrifuging (14000 rpm for 

10 min) the supernatant is used to measure OD values at wavelengths of 645nm and 

663nm with a spectrometer (use 80% acetone as blank). Chlorophyll content (per 

fresh weight of plant tissue) was calculated using the following equation (Ni et al., 

2009): 

Chlorophyll a (mg/g) = (12.7*OD663nm-2.69*OD645nm)*V/ (1000*FW)    

Chlorophyll b (mg/g) = (22.9*OD645nm-4.86*OD663nm)*V/ (1000*FW) 

Total Chlorophyll (mg/g) = Chlorophyll a + Chlorophyll b, where 

V = volume of the extract (ml), FW = extract fresh weight of sample powder used for 

extraction (g). Samples were diluted if OD663nm exceeds 1 and the calculation was 

adjusted accordingly. 
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2.5 Gas Exchange Measurement  
For gas exchange measurement, I used a customized chamber connected to the 

EGM-4 (PP Systems, US) (equipment demonstration see Figure 2.1, protocol 

adapted from (Chew et al., 2014)). Each time a pot of plant(s) was placed inside the 

chamber, where the CO2 level was recorded every 4.6 seconds for about one minute. 

CO2 exchange was measured in parts per million (ppm). Flux was calculated per unit 

area (m²) and results expressed relative to WT in light. 

 

Figure 2.1 Photo illustration of gas exchange measurement system.  

A customized chamber connected to a commercially purchased gas analyser used in this 
study. 

2.6 Sugar and Starch Quantification  
Plant tissue (rosettes or roots) were harvested into LN and finely ground. About 20 

mg powder was weighed into a clean EP tube for extraction. Soluble sugars were 

extracted three times using ethanol of 80%, 80% and 50% concentration respectively. 

Each time sample was briefly shaken on a vortex, incubated in 80°C heating block 

for 20 min, spun in a centrifuge at the speed of 14000 rpm for 5 min and the 
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supernatant was collected into an EP tube kept on ice. All the supernatants were 

combined together for soluble sugar quantification.  

The determination mix was prepared using 15.5 ml buffer (HEPES/KOH 0.1 M, 

MgCl2 3 mM, pH 7.0), 480 µl ATP (60 mg/ml), 480 µl NADP (36 mg/ml) and 80 µl 

G6PDH. Then 40 µl ethanoic soluble sugar extract and 160 µl mix were combined 

and measured using a plate reader. OD values were read at 340 nm once stabilized 

after adding the following enzymes in order: Hexokinase, Phosphoglucose isomerase 

and Invertase. Glucose, fructose and sucrose levels are then calculated from the OD 

change and normalized to material fresh weight. 

The pellet used for starch quantification was re-suspended in 0.1 M NaOH by 

vigorous shake and 30 min 95°C incubation. Following PH neutralization by adding 

a mix of 0.5M HCl and 0.1M acetate/NaOH (PH 4.9), starch was hydrolyzed using a 

starch degradation mix (amyloglucosidase, amylase in acetate buffer) with overnight 

incubation at 37°C. Starch breakdown product, glucose, was measured the same way 

as soluble sugar measurement. 

This protocol was adapted from Mark Stitt’s lab as described in (Hendriks, 2003).   

2.7 Iodine Staining 
For starch qualitative assay (iodine staining), plant rosettes were harvested at the end 

of light period and immersed in 96% ethanol until leaves were fully de-colourized. 

Plant materials were then washed briefly in water before stained by Lugol’s iodine 

solution (SIGMA) for 5 min and de-stained in water for 1-2h until colour difference 
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between WT and phytochrome mutants was shown. For every assay, all plants were 

stained and de-stained in the identical condition. 

2.8 Total Protein Quantification 
Plant tissue was harvested and ground into fine powder in LN and protein was 

extracted using homogenization buffer [recipe: 0.0625M Tris-HCl (pH 6.8), 1% (w/v) 

Sodium dodecyl sulphate (SDS), 10% (v/v) Glycerine (Glycerol), 0.01% (v/v) 2-

Mercaptoethanol, from (Lee et al., 2012)]. Samples were incubated in heating blocks 

at 65°C for 10min before centrifuging at the highest speed for another 10min. 

Supernatant was collected into a new tube and protein was quantified using Pierce 

BCA kit according to manufacturer’s instruction. A series dilution of 2000 µg/ml 

BSA protein sample was prepared to generate the standard curve used for sample 

calculation. Data was normalized to sample fresh weight used for each individual 

extraction.  

2.9 Growth Measurement 
For rosette expansion measurement, plants were grown in soil trays to 3-week-old 

and images were taken from top using a digital camera within half an hour after 

lights-on (i.e. 9 AM) or before lights-off (i.e. 9 PM), for a continuous week period. 

Photos were processed in Adobe Photoshop to achieve optimal contrast for 

distinguishing plant rosette from soil background. Whole rosette area of each 

individual plant from every time point was then measured using ImageJ software 

(NIHimage, http://www.rsb.info.nih.gov/nih-image/). The percentage of relative 

expansion rate for day and night is calculated by setting the starting area at 100 (e.g. 
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9 AM) and subtracting the area at the end point (e.g. at 9 PM) and expressed as a 

percentage of that of the starting point. 

It might be worth mentioning that considering the overlap of rosette leaves, PRA will 

differ from the total area of dissected leaves (Vanhaeren et al., 2015). However, it is 

a non-invasive measurement that allows us to monitor the same plants for a period of 

time. Choosing to observe relatively young plants from 3-week to 4-week-old also 

helps to avoid too much leaf overlapping. 

2.10 Quantitative Real-Time PCR (qRT-PCR) 
For qRT-PCR experiments, at least 3-5 plants were pooled together as one single 

sample, and three sample replicates were harvested into LN. Plant tissue was ground 

when frozen and RNA was extracted using an RNeasy Plant Mini Kit (QIAGEN) 

with on-column DNase digestion. cDNA synthesis was performed using SuperScript 

VILO cDNA Synthesis Kit (Invitrogen) as described by the manufacturer. Primers 

were designed using PerlPrimer software (a list of sequence details can be found in 

Table 2.1). The qRT-PCR was set up as 10 µl reactions (see details in Table 2.2) 

using SYBR Green (Roche) in a 384-well plate, performed with the Roche 

Lightcycler 480 system (for program setting see Table 2.3). The results were 

analyzed using the LightCycler 480 Software (1.5.0) and plotted in Microsoft Excel. 
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Table 2.1 Sequence of primers used for qRT-PCR 

Gene Locus Primer Sequence (5’-3’) 

ACT7 AT5G09810 ACT7-F CAGTGTCTGGATCGGAGGAT 

  ACT7-R TGAACAATCGATGGACCTGA 

CSLB4 AT2G32540 CSLB4-F ACGATTTAGGAGACGATGGA 

  CSLB4-R ACCATCTCCTTAGAATTCCCA 

CSLG3 AT4G23990 CSLG3-F TAATACCTTGCTACGAGTGTCTG 

  CSLG3-R CTGGATCGTTGGAATACATATCAC 

EXP1 AT1G69530 EXP1-F CAACGCATCGCTCAATACAG 

  EXP1-R AAACCTTATTCCTCCTCTTCTCAC 

XTH7 AT4G37800 XTH7-F GATTTCCACGAATATGCCATCTC 

  XTH7-R CCTCATTGTTCTTGTAAACCCTG 

FUM1 AT2G47510 FUM1-F GTCACTTAACACAATCGCCAC 

  FUM1-R TAGTACAAGTTCACCAAGACCAC 

ATCS(CSY4) AT2G44350 CSY4-F TGAGTGCCAGAAAGTATTACCT 

  CSY4-R TACCTTTCCAGTTAAGAGAAGCC 

FUM2 AT5G50950 FUM2-F AGAAATGTGCTGCCAAGGT 

  FUM2-R CTTTCCTTCTGCTACTTCTTGTG 

ACN1 AT3G16910 ACN1-F GGTTGGTGTTTCCCTTGGT 

  ACN1-R GAATACACTTCCTTCGCCGT 

P5CS1 AT2G39800 P5CS1-F CTATTAGCACCCGAAGAGCC 

  P5CS1-R CAGTTCCAACGCCAGTAGAG 

P5CR AT5G14800   P5CR-F CAATGTCTTCTCCACTAGCGA 

  P5CR-R ACAGCCTTCTTAACAACTTGAG 

PRODH AT3G30775 PRODH-F CTGCCAAATCTTTACCAACATCTC 

  PRODH-R AGATCGCTCACTCGTTTCAG 

ABI1 AT4G26080   ABI1-F AAACTGCACTTCCATTATCCGT 
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  ABI1-R ACTGAATCACTTTCCCTCCTG 

ABI5 AT2G36270 ABI5-F CAGAACAATGCTCAGAACGG 

  ABI5-R CACCAAGAAATCCTCAAGTGTC 

DIN1 AT4G35770 DIN1-F GAGGACACCAGACGAATTCAG 

  DIN1-R GTTCTTAACCATTCCTGATCCGA 

DIN10 AT5G20250 DIN10-F ATGGATCGATTCTTCGTGCTC 

  DIN10-R TATCTTTAGCAAGCTGACACCA 

COR15A AT2G42540 COR15A-F AAAGAGGCATTAGCAGATGG 

  COR15A-R TTCTTTACCCAATGTATCTGCG 

RD29A AT5G52310 RD29A-F ATCCCACCAAAGAAGAAACTG 

  RD29A-R TCAGGAGACTCATCAGTCAC 

KIN1 AT5G15960 KIN1-F ACCAACAAGAATGCCTTCCA 

  KIN1-R CCGCATCCGATACACTCTTT 
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Table 2.2 10ul reaction system for qRT-PCR 

Reagents  Volume/ul 

2 × Mix 5 

H2O 2 

Forward primer 1 

Reverse primer 1 

cDNA  1 

Total 10 

 

Table 2.3 qRT-PCR program setting 

Program 

name 

Target 

(ºC) 

Acquisition 

mode 

Hold 

(hh:mm:ss) 

Ramp 

Rate 

(ºC/s) 

cycles Analysis Mode 

Hot start 95 none 00:05:00 4.8 1 none 

Amplification 95 None 00:00:10 4.8 45 quantification 

 60 None 00:00:20 2.5   

 72 single 00:00:20 4.8   

Melt curve 95 None 00:00:05 4.8 1 Melting Curves 

 65 None 00:01:00 2.5   

 97 Continuous - 0.11   

Cool down 40 None 00:00:10 2 1 None 
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2.11 GC-MS Metabolic Assay 
During my PhD project I also put together a series of procedures to measure plant 

metabolites: the majority of the non-targeted GC-MS protocol, including sample 

extraction, metabolite derivatization and separation, was adapted from (Lisec et al., 

2006); methods for data pre-processing and post-analysis were combined from 

various resources described below.  

Plant growth and sample collection: WT and phytochrome mutants (phyBD, 

phyABDE, phyABCDE) were grown to 5-week-old in previously described condition. 

At each individual time point (EON and EOD), 3- 5 plants were harvested and 

pooled together as one individual sample; 6 samples were collected for each 

genotype. Samples were frozen in liquid nitrogen immediately and stored at -80ºC 

for later extraction.  

Sample Extraction: Plant sample materials were finely homogenized in liquid 

nitrogen; about 100mg tissue powder was transferred into a pre-cooled EP tube. 

After adding pre-cooled methanol, 60 µl of ribitol  (0.2mg/ml) was added to each 

sample, which will later be used as the internal standard for relative quantification. 

Following procedures shown in Figure 4.1a, sample extracts were dried in a speed 

vacuum concentrator and then stored in bags filled with silica gel (FISHER 

CHEMICAL) at -80 ºC. This is to keep samples dry and cold so that metabolites 

could be stable for a while before being measured. 

Sample derivatization and data acquisition: For GC-MS to analyse sugars with 

low volatilities, plant extracts need to be derivatized before the measurement. As 

suggested by (Lisec et al., 2006), Methoxyamine Hydrochloride (98%, SIGMA-
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ALDRICH) and N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, 98.5%, 

SIGMA- ALDRICH) were used for sample derivatization. In addition, a series of 

alkanes (C7-C30 saturated alkines, 1000 µg/ml each component in hexane, SIGMA- 

ALDRICH) were added into each sample before measurement as internal retention 

time standards to support the peak identification process. A brand new column (DB-

35ms, 30m, 0.25µm, 7-inch cage by Agilent Technologies; similar to MDN35, a 

35%-phenyl-65%-dimethylpolysiloxane capillary column) was installed into the GC-

MS machine (Scimadzu GC-MS) with parameter settings adapted from the published 

protocol (Lisec et al., 2006). Samples were measured in a randomized order to 

exclude possible technical error through time. Blank samples were included every 

half-day through the measurement process to ensure that no sample residue is left in 

the system. 

Data Processing: GC-MS data file (.cdf format) was first imported into an 

Automated Mass spectral Deconvolution and Identification System (AMDIS, 

http://chemdata.nist.gov/mass-spc/amdis/downloads/), a free tool used to analyse 

GC-MS data files, including chromatogram deconvolution and metabolite 

identification. AMDIS works with a reference library (.MSL format), which contains 

a list of compounds together their mass spectrums and retention time information. 

The GOLM metabolome database (GMD) provides reference libraries particularly 

for plant metabolites (http://gmd.mpimp-golm.mpg.de/download/). Considering both 

Column Variant (MDN35) and RI Variant (ALK, based on 9 n-alkanes C10-C36), 

the reference library file ‘GMD_20111121_MDN35_ALK_MSL’ was used in this 

case. In addition, another GC-Quadrupole-MS MSRI library, 'Q_MSRI_ID' 
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(http://www.csbdb.de/csbdb/gmd/msri/gmd_msri.html), was also adopted to facilitate 

the target matching process. The reference library files were imported into NIST 

(National Institute of Standards and Technology, here a free demo version was used, 

downloaded from http://www.sisweb.com/software/ms/nist.htm#demo), a commonly 

used tool that compares spectrums detected in AMDIS to those stored in the library. 

Since retention index could be affected by different chromatographic setup, an in-

house library was generated specifically for this set of experiment by matching 

samples to the library and assigning actual retention time to detected components. 

Note that similar to the reference library, mass fragments at m/z 73, 74, 75, 147, 148 

and 149 were manually excluded from the in-house library as these were generated 

from compounds with trimethylsilyl moiety during derivatization process. This in-

house library was then used to identify each detected component based on retention 

time and mass spectrum. Net, i.e. the minimum match factor was set to 70 for 

detection. All targets with net values below 80 would be given question marks in the 

generated report and would be double checked manually. 

Once the .MSL AMDIS library is ready, an R package “Metab” (downloaded from 

https://www.bioconductor.org/packages/Metab/), provided by (Aggio et al., 2011), 

can be used as an automated pipeline for GC-MS data analysis. As required by 

Metab, first the in-house library (.MSL) needs to be converted into a .CSV file, 

which contains the name of each metabolite, retention time and 4 ion mass fragments 

(including the expected relative abundance of ion 2-4 to ion 1) for metabolite 

identification (see the reference ion library shown in Appendix Table 2). Ion 1 was 

used not only for identification but also as the specific mass fragment for metabolite 
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quantification. Following the generation of quantification report of all experimental 

samples, Metab provides code instructions for further data analyses, including false 

positive exclusion, internal standardization (relative quantification to ribitol) and 

biomass normalization (final quantification results relative to EOD WT samples can 

be found in Appendix Table 3). 

2.12 Microarray Analysis 
For phyABCDE seedling mutant microarray analysis, raw data was downloaded from 

the NCBI Gene Expression Omnibus with accession no. GSE31587 according to the 

paper (Hu et al., 2013) and analysed with GEO2R. After that, mapman (Thimm et al., 

2004) (http://mapman.gabipd.org) was used to generate diagrams of metabolic 

pathways based on the microarray data (Figure 1.6). 
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Chapter 3- A Novel Role of 
Phytochromes in Coupling Carbon 
Resource to Growth 

Part of this chapter is published in (Yang et al., 2016). All the analyses conducted in 

this chapter were the original work of this thesis. 

3.1 Introduction 
During the past few decades, phytochromes have been well-studied especially in the 

Arabidopsis seedling system (Li et al., 2011; Chen and Chory, 2011). Researchers 

are now aware of the molecular pathways that regulate photomorphogenesis, 

especially hypocotyl elongation (Leivar and Monte, 2014). Mathematical models 

have been developed that describe these molecular mechanisms, which in turn helps 

to promote our understanding by suggesting new directions for further study 

(Johansson et al., 2014; Rausenberger et al., 2010, 2011). Nevertheless, it still 

remains unclear how these photoreceptors control plant growth after seedling stage.  

Analysis of phytochrome mutants has revealed some interesting observations in post-

seedling plant architecture and growth rate (Halliday et al., 2003; Strasser et al., 2010; 

Hu et al., 2013; Mazzella et al., 2001). For instance, Arabidopsis phyB mutant has 

longer petioles, smaller leaf blades and slower leaf production rate than Ler wild 
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type (WT). Theses phenotypes become even more severe when more phytochromes 

are knocked out. In particular, phyABDE mutant grown at 16°C has a leaf production 

rate only about half of that in WT plants [calculated from data published in (Halliday 

et al., 2003)]. This indicates phytochromes are still contributing largely to plant 

growth regulation after the seedling stage. 

Plant growth depends largely on photosynthesis to generate carbon resource. Earlier 

reports have demonstrated that phytochrome mutant seedlings have substantial 

reductions in chlorophyll levels compared to WT upon red light stimulation (Strasser 

et al., 2010; Hu et al., 2013; Ghassemian et al., 2006). While this has not been 

reported in adult plants, it is possible that phytochrome mutants have constantly 

reduced photosynthesis-generated carbon supply that leads to growth repression.  

Apart from regulating plant growth through photosynthesis pigments and subsequent 

photosynthate production, phychromes could also be controlling downstream carbon 

metabolism. Dating back to 1990’s there were studies implying sucrose involvement 

in phytochrome signaling (Dijkwel et al., 1997; Short, 1999), indicating a possible 

interaction between photosynthate and photoreceptors. More recently, (Stewart et al., 

2011; Lilley et al., 2012; Sairanen et al., 2012) reported in their studies that sucrose-

promoted hypocotyl elongation largely depends on PHYTOCHROME-

INTERACTING-FACTORs (PIFs), especially PIF5. In addition, data from 

(Debrieux et al., 2013) demonstrates that sucrose is needed for CONSTITUTIVE 

PHOTOMORPHOGENESIS 1 (COP1) control of phyA abundance in etiolated 

seedlings. Like seedling chlorophyll research, these studies also focus on 

Arabidopsis at the very early developmental stage. Nevertheless, they do suggest a 
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possible interaction between photoreceptor signaling and carbon metabolism that 

may alter plant biomass production later on. 

In this chapter, I set out to test whether phytochromes control plant growth and 

biomass through sugars. By quantifying chlorophyll content, CO2 gas exchange rate I 

confirmed a reduction in photosynthesis in phytochrome mutants. Yet an excess of 

photosynthates, starch and sugars, were also found in the mutants. Potential defect in 

daytime sugar resource allocation were proposed to cause the alteration in diurnal 

growth pattern, leading to reduced biomass production in phytochrome mutants. 

Overall these results suggest an important role of phytochrome photoreceptors in 

coupling carbon metabolism to growth in Arabidopsis plants. 

3.2 Growth Condition Optimization 
According to earlier reports (Hu et al., 2013; Halliday et al., 2003), phyABDE mutant 

plants flower much earlier than WT in standard growth conditions. For instance, 

when grown at 22°C, long days (16-h L/8-h D), phyABDE flowers within three 

weeks post germination (Figure 3.1 A). This makes it difficult to get comparable 

vegetative materials from phytochrome mutants and WT adult plants at comparative 

ages. So the first task is to find the optimized growth condition to delay flowering 

time, allowing enough biomass accumulation in phytochrome mutants for the study. 

Plant flowering transition is highly sensitive to temperature (Fitter and Fitter, 2002; 

Halliday et al., 2003; Kumar and Wigge, 2010). In particular, our previous work has 

shown that the light pathways transduce temperature signals (Fitter and Fitter, 2002; 

Halliday et al., 2003; Kumar and Wigge, 2010), making phytochrome mutants 
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increasingly sensitive to temperature. This suggests that reducing temperature can 

delay flowering time in severe phytochrome mutants to allow longer vegetative 

development. Indeed, when grown at 18°C instead of 22°C, phyABDE plants didn’t 

flower until four weeks old (Figure 3.1 A-B). 

Apart from temperature, photoperiod also affects flowering onset (Park, 1999; Song 

et al., 2012). Arabidopsis is commonly known as a long-day plant, i.e. its flowering 

transition is promoted under long photoperiods while delayed in short days. 

Although it was reported that phyABDE mutant flowering behavior is insensitive to 

photoperiod (Hu et al., 2013) in relatively warm conditions (20°C), this constitutive 

flowering behavior no longer exists when temperature is reduced to 16°C (Halliday 

et al., 2003). Indeed at 18°C, when grown in short days (SD, 8-h L/16-h D) 

phyABDE flowering transition was delayed to over seven weeks (Figure 3.1 B). 

Comparing to SD, 12:12 photoperiod regime is more commonly used in relevant 

sugar studies. In this photoperiod, phyABDE can grow up to six-week-old without 

flowering, which is more comparable to the published data. 

The above evaluation of growth condition allowed me to identify an optimal regime 

for my experiments, as follows: short photoperiod (8-h L/16-h D) for first two weeks 

early seedling development, followed by 12-h L/12-h D photoperiod for further four 

weeks, at 18°C throughout. In this condition, I successfully harvested six-week-old 

phyABDE plant materials at their vegetative stage alongside phyBD and Ler WT. 
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Figure 3.1 Flowering time of phyABDE can be delayed by reducing growth 
temperature and photoperiod length.  

(A) Flowering time of phyABDE can be delayed by reducing growth temperature. When 
grown in 22°C, LD (long-day, 16-h L/8-h D) condition, phyABDE plants are flowering at 23 
DAG; when grown at 18°C, phyABDE plants are still at vegetative stage at 21 DAG, then 
flower at 28 DAG. (B) At low temperature (18°C), flowering time of phyABDE can be further 
delayed by reducing photoperiod. In LD condition, phyABDE flowers at 4-week age; while 
grown in SD (short-day, 8-h L/16-h D) condition, 7-week-old phyABDE is still at vegetative 
stage. DAG: days after germination. Arrows indicate visible inflorescence buds. 
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3.3 Phytochrome Mutant Adult Plants Possess Less 
Chlorophyll and Fix Less CO2 than WT 
Whole rosettes of six-week-old Ler WT, phyBD and phyABDE plants (growth 

regime described above) were harvested in light, for determination of chlorophyll 

level as mg per g fresh weight. A sequential chlorophyll depletion was observed in 

phyBD and the severe phyABDE mutants compared to WT (Figure 3.2 A), 

demonstrating this deficit still persists beyond the seedling stage. Nevertheless, the 

chlorophyll difference between phytochrome mutants and WT in our experiments is 

more subtle than that of red-light grown seedlings as reported in (Hu et al., 2013). 

This is not too surprising as chlorophyll fluorescence per 10 seedlings was presented 

in the publication, which could amplify the difference considering that phytochrome 

seedlings have much smaller cotyledons than WT (Hu et al., 2013). Also, other 

photoreceptors are expected to regulate this response in white light condition, which 

could partly compensate for the loss of phytochromes. At last, this data may reflect 

the comparatively reduced contribution of phytochromes to maintaining the 

chlorophyll pool in adult plants.   

CO2 gas exchange rate measurement is commonly used to predict photosynthetic 

carbon fixation efficiency. Similar to the chlorophyll data, CO2 assimilation was also 

reduced in phyBD and phyABDE than WT in a mild but significant manner (Figure 

3.2 B). Comparing to this, CO2 release rate in darkness was similar in phytochrome 

mutants and WT plants, suggesting respiration is probably unaffected in this case 

(Figure 3.2 B).  

Plant growth is cumulative that even small alterations in photosynthetic rate could 
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lead to striking changes in the final biomass (Chew et al., 2014). Therefore, the 

constitutive mild repression of photosynthesis in phytochrome mutants is still likely 

to cause vegetative growth defect in developing plants. 

 
Figure 3.2 Physiological study of WT and phytochrome mutant adult plants.   

(A) Total chlorophyll level quantification (mg per g fresh weight) in WT, phyBD and phyABDE 
whole rosette samples. (B) CO2 gas exchange rate measurement. Flux was calculated per 
unit area (m²) and results expressed relative to WT in light. Values presented are mean ± 
SEM. Asterisks indicate a significant difference between values of the phytochrome mutants 
and WT by means of Student’s t-test at *, p ≤ 0.05; **, p ≤ 0.01. 
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3.4 More Endogenous Sugars and Starch Are 
Accumulated During Daytime in Phytochrome 
Mutants 
Plants assimilate carbon through photosynthesis to generate organic metabolites such 

as sugars. Sucrose is one of the most important sugars due to its high abundance, 

easy mobility for energy supply and special role in signaling transduction. Part of the 

carbohydrates fixed in light is used to synthesize starch, stored in leaves as energy 

reserves till night falls. Once photosynthesis ceases in dark, starch will be broken 

down to sucrose to sustain plant growth and metabolism (Stitt et al., 2010; Streb and 

Zeeman, 2012; Ruan, 2014). If impaired photosynthesis (as shown in 3.3 above) is 

the main cause for the repressed growth in phytochrome deficient plants, less sucrose 

and starch would be expected in these mutants.  

Diurnal sucrose and starch quantification in six-week-old 
rosettes 

Ler WT and two phytochrome mutants (phyBD and phyABDE) were grown in 

identical conditions up to six weeks as described. Whole rosette samples were 

harvested from the start of the day at a six-hour interval, i.e. at ZT (Zeitgeber time) 0, 

6, 12, 18 and 24 over a 24-hour period. Starch and sucrose were quantified as mg per 

g sample fresh weight as described in the method chapter.  

Consistent with previous reports of day/night metabolite fluctuation in WT plant (Pal 

et al., 2013), here a similar diurnal rise and fall pattern of sucrose and starch was 

observed in all three genotypes. However, contrary to the expectation, more sucrose 

and starch are found in phyBD and phyABDE compared to WT. The difference is 
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particularly obvious at the end of day (EOD) when the sugar level reaches the peak 

(Figure 3.3 A-B). In addition, despite having more starch and sucrose at the start of 

dark period, phytochrome mutants deplete both carbohydrates to comparable levels 

relative to WT at the end of night (Figure 3.3 A-B). In brief, despite of reduced 

photosynthesis, phytochrome deficiency leads to elevated sucrose and starch in light 

and accelerated depletion in the dark, suggesting a novel role of phytochromes in 

carbon resource allocation. 
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Figure 3.3 Sucrose and starch determination assay.  

(A) Sucrose and (B) starch quantification in 6-week-old plant rosettes through time course. 
FW: fresh weight; DW: dry weight. Values presented are mean ± SEM. Statistical 
significance test could be found in Appendix Table1. 
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Iodine stain result suggests different starch composition in 
phyABDE 

Lugol’s iodine staining was also used to qualitatively check starch alteration in 5-

week-old WT and phytochrome mutants (phyBD, phyABD, phyABDE). Rosettes 

were harvested at EOD when starch level reaches the peak. Samples were immersed 

in ethanol to remove chlorophyll till fully decolorized, stained in Lugol’s solution for 

5 min and de-stain in distilled water until difference between WT and phytochrome 

mutants is shown.  

After being de-stained for a short while (Figure 3.4 A), Ler started to show a lighter 

blue than phyBD and phyABD; this color difference became more obvious after long 

time de-staining (Figure 3.4 B), supporting the previous enzymatic quantification 

results that shows more starch in phytochrome mutants than WT (Figure 3.3 B). 

Interestingly, however, unlike other genotypes, phyABDE showed a reddish-brown 

staining, which was totally de-stained after long time in water (Figure 3.4 A and B). 

Plant starch consists of two glucose polymers, amylose and amylopectin, which 

behave distinctively in iodine staining due to their different structures. Amylose 

(linear) is stained blue, while amylopectin (branched) is stained reddish brown. Since 

starch level in phyABDE was quantified higher than Ler at EOD (Figure 3.3 B), this 

result may suggest a difference in starch quality.  

GBSS and PTST are two proteins directly controlling amylose synthesis without 

affecting amylopectin (Seung et al., 2015). Amylose-free mutants, gbss, ptst-1, and 

ptst-2, produce a brown staining that is distinct from the WT, while their total starch 

levels are not altered (Seung et al., 2015). Accordingly, it is possible that phyABDE 
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mutant has little amylose, but more amylopectin than total starch content of WT. In 

contrast, phyBD and phyABD were stained similarly to WT, implying a specific role 

of phyE in affecting amylose synthesis. Considering the large application of starch in 

various industries (Santelia and Zeeman, 2011), it would be of great interest to look 

into the potential regulation from phytochromes. 

 

Figure 3.4 Iodine staining starch quality assay.  

Representative images of 5-week-old Ler WT, phyBD, phyABD and phyABDE plants after 
iodine staining. Rosettes were harvested at the end of the day, decolorized using ethanol, 
stained in Lugol’s solution to visualize starch. 
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EOD sugar quantification in shoot and root tissues  

Plants generate sugars in photosynthetic tissues and mobilize part of it to non-

photosynthetic tissues mainly in the form of sucrose. Interestingly, (Kircher and 

Schopfer, 2012) reported possible involvement of phytochromes in this process, 

facilitating sucrose transport from cotyledons to roots in de-etiolated seedlings. Since 

my sugar quantifications were all done in aboveground rosettes, it is possible that 

phytochrome mutants with higher levels of sucrose in shoot actually have less in the 

root due to deficient sugar transportation. In this case, average sugar level across the 

whole plant could still be lower in phytochrome mutants than that in WT, hence 

consistent with the photosynthesis observation.     

To test this hypothesis, I quantified fresh biomass and sugar levels (per gram fresh 

weight) in shoot and root of WT and phytochrome mutants (Figure 3.5). Five-week 

plants were grown in plates for the convenience of root sampling. In this experiment 

triple phyABD mutant was used instead of phyABDE, as adventitious roots emerge 

from the phyABDE hypocotyl, making it difficult to separate shoot and root.  

Consistent with soil-grown plants, phytochrome mutants grown in medium also show 

dramatic repression of growth compared to WT. Specifically, both root and shoot 

fresh biomasses are similarly reduced in phyBD and more affected in phyABD 

(Figure 3.5 B). In agreement with the previous sucrose quantification in soil-grown 

plant rosettes, here phyBD root, phyABD shoot and root all show a sizable increase of 

sucrose relative to WT shoot and root at the end of day (Figure 3.5 C). In addition, 

this time glucose was also quantified in all tissues and a significantly higher 

accumulation was observed in phytochrome mutants, both phyBD and phyABD 
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(Figure 3.6 D). Note that sugar concentration (per gram tissue fresh weight) is 

generally higher in root than that in shoot, probably due to lower water content in 

root. These results disagree with the hypothesis and demonstrate that rosette 

accumulation of sucrose in phytochrome mutants is not caused by impairment of 

shoot-to-root sugar transport. Rather, the overall sugar (both sucrose and glucose) 

concentration is higher in phytochrome mutants than that in WT.  
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Figure 3.5 Sucrose and starch determination assay.  

(A-B) Experimental design and tissue-specific fresh biomass quantification of shoot and root 
in WT and phytochrome mutants. (C-D) Soluble sugar (sucrose and glucose) determination 
(mg/g FW) in media-grown shoot and root tissues respectively. Values presented are mean 
± SEM. Asterisks indicate a significant difference between values of the phytochrome 
mutants and WT by means of Student’s t-test at *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 
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3.5 phyBD Has Retarded Growth Particularly During 
Daytime  
Phytochrome mutants produce less photosynthate, yet accumulate more starch and 

sugars during daytime (Figure 3.2 and 3.3). This suggests a possible scenario where 

utilization of carbon resource is impaired in these phytochrome mutants, leading to a 

day-specific excess of sugars. As a result, plant growth would be retarded due to the 

lack of resource input, particularly in light. 

PRA (projected rosette area) is a plant growth measurement that represents total area 

occupied by the whole rosette in a top-view image. This is easily obtained by 

extracting information from photos without killing plants (Vanhaeren et al., 2015). 

To test how day/night growth is altered in phytochrome mutants compared to WT, 

end of light/dark period PRAs for phyBD and WT were obtained through a 

continuous week. phyABDE was not used in this case due to its strong hyponastic 

response, which skews PRA a lot from the actual rosette area. 

In agreement with previously published data of leaf production rate (Halliday et al., 

2003), phyBD rosette expansion is also generally slower than that of WT (Figure 3.6 

A). More interestingly, the PRA expansion curve looks mostly smooth for WT, while 

that of phyBD has some zigzags especially between day 5 and 7 (Figure 3.6 A, 

enlarged section). This distinction is shown more clearly when average diurnal 

growth rate is quantified over the whole time period for both genotypes (Figure 3.6 

B). WT has an identical relative expansion rate during day and night, implying a 

steady growth regardless of light availability. In comparison, phyBD rosette expands 

at a significantly lower pace during the day than that at night. While the plot seems to 
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suggest phyBD grows faster than WT at night, this difference is not significant based 

on student’s t test (p=0.239). Therefore, during this period phyBD has a similar 

relative expansion rate to WT at night, while in light rosette expansion is largely 

retarded.  

This interesting finding partially supports the hypothesis that day accumulation of 

sugars in phytochrome mutants is caused by less consumption for plant growth in 

light period. The unaffected night expansion in phyBD also agrees with the normal 

depletion of starch and sucrose in darkness. Although things might be more 

complicated in phyABDE mutant considering the dramatic repression of growth, 

phyB and phyD seem to be the major phytochrome regulating plant growth during 

daytime. 
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Figure 3.6 Comparing to WT, phyBD has retarded growth rate especially in the day. 

(A) Quantification of WT and phyBD rosette expansion during week 3-4, post germination. 
The enlarged section highlights the diurnal differences in phyBD compared to Ler WT. 
Measurements were taken at the end of each day and night. (B) Mean relative day and night 
expansion rates are plotted for the experimental period. Values are presented as mean � 
SEM. Asterisks indicate a significant difference between values of day and night growth rate 
in phyBD by means of Student’s t-test at *, p � 0.05.   
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3.6 Phytochromes Are Major Regulators of Plant 
Biomass 
Previous studies have reported the growth phenotype of phytochrome mutants such 

as elongated petioles, reduced number of leaves and early on-set of flowering 

(Halliday et al., 2003; Halliday and Whitelam, 2003; Strasser et al., 2010; Hu et al., 

2013). However, it might be a bit surprising that neither fresh nor dry weight per 

plant has ever been quantified before. Data in Figure 3.7 A-B demonstrates that two 

phytochrome deficient mutants have distinguished rosette appearance, revealing 

dramatically reduced biomass relative to WT, both fresh and dry. This reduction is 

particularly extreme for phyABDE with only one fifth of WT biomass accumulated in 

six weeks (Figure 3.7 B).  

A large proportion of plant dry biomass comes from cell wall substance; therefore, I 

went on to check the expression of genes involved in cell wall synthesis and 

reorganization in phytochrome mutants. These gene candidates were selected based 

on published microarray data (Hu et al., 2013) combined with promoter search 

analysis. Using five-week plants (phyABDE and WT) grown in identical conditions 

described above, I harvested and extracted RNA samples every 4h through a 24h 

time course. The qRT-PCR results exhibit substantial transcript reduction of 

CELLULOSE SYNTHASE LIKE genes CSLB4, CSLG3, XYLOGLUCAN 

ENDOTRANSGLUCOSYLASE/HYDROLASE 7 (XTH7) and EXPANSIN 1 (EXP1) in 

phyABDE relative to WT (Figure 3.7 C). Specifically, all these genes show a diurnal 

change in expression level, largely repressed by the absence of phytochromes 

especially at dawn peaks.  
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As building blocks for most organisms, protein also contributes largely to plant dry 

biomass. Given that phytochrome mutants have dramatically repressed growth, their 

capability to synthesize major growth components could also be affected. By 

quantifying total protein content from five-week-old rosette samples, a mild but 

significant decrease was found in phyBD and further reduction was shown in 

phyABDE, compared to WT (Figure 3.7 D). 

To summarize, the above biomass analyses show less fresh/dry weight, reduced cell 

wall synthesis related gene expression and reduced total protein content in 

phytochrome mutants. These suggest phytochromes are controlling resource 

allocation to biomass production through cell wall and protein synthesis. 
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Figure 3.7. Phytochrome deficiency strongly affects plant biomass.  

(A) Image depicting the severe biomass phenotypes of 6-week-old phyBD and phyABDE 
mutants, when compared to Ler WT. (B) Fresh weight (FW) and dry weight (DW) of WT and 
phytochrome mutants. (C) Diurnal expression profiles of cell wall associated genes CSLB4, 
CSLG3, EXP1 and XTH7, determined by qRT-PCR, in WT and phyABDE. (D) Total protein 
quantification in 5-week-old phyBD, phyABDE and WT. Values are presented as mean ± 
SEM. Asterisks indicate a significant difference between values of the phytochrome mutants 
and WT by means of Student’s t-test ***, p ≤ 0.001.  



CHAPTER 3 PHYTOCHROME, SUGAR AND GROWTH 
 

64 
 

3.7 Discussion 
Investigations on phytochrome control over plant growth are mostly conducted in 

seedlings, where hypocotyl elongation response is usually evaluated. This simple, 

neat system allows rapid tests of different genotypes in various conditions, largely 

contributing to our knowledge of how phytochromes mediate the seedling transition 

into photoautotrophic growth at the molecular level (Quail, 2002; Li et al., 2011). 

Comparing to that, much less is known about how these photoreceptors are involved 

in plant growth at later stages. In particular, it remains largely unknown why 

phytochrome deficient plants, especially the multiple mutants, have evidently 

reduced growth at mature stage (Hu et al., 2013; Halliday et al., 2003).  

In Figure 3.7 A-B, the data demonstrates that phytochrome depletion can have a 

profound impact on fresh and dry weight in six-week-old plants at vegetative stage. 

Furthermore, cellulose, as one of the major components of plant biomass (Davison et 

al., 2013), might be reduced in phytochrome mutants. Although cellulose content 

was not directly quantified, transcript analysis results showed a clear repression of 

genes responsible for cellulose synthesis (CSLB4 and CSLG3), cell wall expansion 

(EXP1) and reorganization (XTH7) over a diurnal time course especially at the peak 

time and rising phase in phyABDE relative to WT (Figure 3.7 C). Interestingly, PIF4 

was found binding to the promoter of EXP1 as shown by ChIP analysis (Bai et al., 

2012), supporting a role of PHY-PIF in regulating cell wall synthesis at 

transcriptional level. On the other hand, (Gibon et al., 2009; HANNEMANN et al., 

2009) reported that Arabidopsis (Col) plants grown in 12/12 photoperiod have 15 mg 

protein per g FW, equivalent to 15% of dry biomass (calculated using general water 
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content 90%). Consistently, five-week WT (Ler) plants have about 20 mg/g FW total 

protein, which was found slightly lower in phyBD and more reduced in phyABDE 

(Figure 3.7 D + 2-week seedling protein data in Appendix Figure 3). Together, these 

data indicates phytochrome photoreceptors are controlling production of major 

biomass components in Arabidopsis. 

Phytochrome mutant seedlings are reported to have dramatically repressed 

chlorophyll biosynthesis compared to WT upon red light stimulation (Strasser et al., 

2010; Hu et al., 2013; Ghassemian et al., 2006). This implies at the early 

developmental stage, phytochrome deficiency could lead to a lack of carbon resource 

generated from photosynthesis. Reduced availability of organic fuel can result in 

slower growth and less cell wall/protein production, which could possibly persist 

through the entire plant life. Indeed, less chlorophyll and photosynthetic CO2 

assimilation was also detected in six-week-old phyBD and phyABDE compared to 

WT plants (Figure 3.2 A-B). However, this photosynthesis repression does not come 

along with less carbon resource. Instead, these phytochrome mutants were found to 

possess a higher concentration of sucrose and starch in rosettes than WT (Figure 3.3). 

This particularly happens during daytime, while at night they mobilize these 

resources faster, resulting in similar sugar levels at the end of night period (Figure 

3.3). To exclude the possibility that phytochrome deficiency impairs sugar 

translocation from aboveground to underground, sugar quantification was performed 

in shoot and root samples respectively. Still, five-week-old phyABD showed more 

sucrose and glucose in both tissues compared to WT, making the explanation highly 

unlikely (Figure 3.5).  
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While it is commonly accepted that plant growth depends largely on photosynthesis, 

this link between growth rate and carbohydrate content may need re-assessment. 

There have been reports of plants with reduced photosynthesis and growth yet more 

sugars. For instance, starch-less mutant phosphoglucomutase (pgm) has strongly 

reduced biomass than WT despite of high levels of sucrose accumulation during 

daytime, mostly due to the starvation stress at night given the lack of starch reserves 

(Caspar et al., 1985). Photosynthesis capacity is also restricted in this mutant, partly 

due to the feedback from high sugar substrates. In addition, other studies have 

revealed that in stress conditions where plant photosynthesis and growth are 

repressed, soluble sugars and amino acids are accumulated as part of the protection 

response (Arbona et al., 2013; Grant, 2012). Finally, as reported in a systematic 

study that tried to predict biomass from metabolic composition, no single ‘magic’ 

compound was found that could explain the biomass variance (Meyer et al., 2007). In 

contrast, the correlation was much higher when a combination of a large number of 

metabolites was considered. Interestingly, among the metabolites highly ranked in 

the multivariate analysis, sucrose as well as a few other sugar-derivatives and 

tricarboxylic acid cycle organic acids all showed weak negative correlations to 

biomass (Meyer et al., 2007). 

So far, no satisfactory explanation has been proposed for the high level of sugars in 

phytochrome mutants, yet it may be linked to the altered growth behavior. By 

monitoring day-night rosette expansion through a continuous week, I showed that 

growth defect in phyBD is cumulative (Figure 3.6 A). More interestingly, the mutant 

has a tendency to grow more during night than daytime, significantly distinctive to 
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the WT rosettes that expand evenly in light and dark (Figure 3.6 A and B). Reduced 

day growth in phytochrome mutant rosettes could be possibly linked to the 

accumulated sugars, either the catabolism of carbohydrates to support growth is 

impaired in light, or that light-activated-phytochrome dependent growth is repressed 

therefore sugar consumption is not necessary. Either way, these results suggested a 

novel role for phytochromes in allocating carbon resource to day/night growth. 

Indeed, recent years there have been some efforts in exploring the interaction 

between light and sugar pathways. Researchers studying sucrose promotion of 

hypocotyl elongation have found this to be PIF-dependent (Stewart et al., 2011; 

Lilley et al., 2012; Sairanen et al., 2012). Although these experiments were done in 

seedlings, it does provide some insights for the possible phytochrome-sugar interplay 

in adult plants as well. 

Phytochromes are well known to function by controlling levels and activity of key 

hub transcription factors such as PIFs to regulate plant growth and development, 

especially at the seedling stage. This chapter presents a more complete view of 

phytochromes, proposing their roles in carbon generation, resource allocation and 

biomass production in mature plants. In particular, this study provides evidence that 

phytochromes are involved in coordinating carbon metabolism to vegetative biomass 

accumulation, highlighting the significance of potential application to future crop 

research. 
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Chapter 4- Phytochrome Mutants 
Have Reprogrammed Metabolism 
and Reduced Sensitivity to Abiotic 
Stresses 

Part of this chapter is published in (Yang et al., 2016). All the analyses conducted in 

this chapter were the original work of this thesis. 

4.1 Introduction 
It is commonly accepted that plant growth be largely driven by carbon availability, 

but recent studies point to a more complicated interaction. While Arabidopsis grown 

in low CO2 condition unsurprisingly have reduced biomass (Li et al., 2014), 

increasing environmental CO2 concentration does not necessarily lead to enhanced 

growth, especially when nitrogen source becomes limited (Takatani et al., 2014; 

Asensio et al., 2015). Similarly, feeding carbon to starved plants was proved to be 

effective in boosting biomass (Izumi et al., 2013); however, sugar application to non-

starved plants was known to reduce photosynthetic capacity through biochemical 

feedback regulation (Sheen, 1990), or even to trigger severe developmental and 

growth stress when high doses are used (Dekkers et al., 2004 and Appendix Figure 1). 

In addition, analysis using Arabidopsis natural accessions revealed mild negative 
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correlations between starch/sucrose level and plant biomass (Meyer et al., 2007; 

Sulpice et al., 2009). 

Plant carbon resource level is determined not only by photosynthesis rate but also 

how rapidly it is utilized. Since phytochrome mutants have reduced photosynthetic 

CO2 assimilation (Figure 3.2), the over-accumulation of sugars (Figure 3.3) is most 

likely due to less carbon consumption. This leads to a potential retardation in 

transforming assimilated carbon into plant biomass. In addition, (Cross et al., 2006) 

has suggested that plant growth is not related to the absolute levels but flux of the 

central resources. phyBD mutant grows more slowly than WT (Figure 3.6), 

particularly during daytime when it has excess starch and sucrose (Figure 3.3). This 

implies that a reduced carbon flux, in addition to repressed photosynthesis, might be 

the major underlying cause for growth defects in phytochrome mutants. It also 

suggests a novel role for phytochrome photoreceptors in accommodating central 

resource into plant biomass production. 

In this chapter, I conducted a GC-MS (Gas Chromatography coupled with Mass 

Spectrophotometry) analysis to gain a broader view of metabolic difference between 

WT and phytochrome mutants. Over 40 primary metabolites were quantified in 5-

week rosettes of WT and three phytochrome mutants at EOD and EON. Using a 

multivariable comparison method, I was able to distinguish phytochrome mutants 

from WT based on the obtained metabolic profiles. Phytochrome mutants were found 

to have elevated levels of sugars, organic acids (mainly involved in TCA cycle) and 

amino acids. qRT-PCR analysis of key enzymes in these pathways suggests the 

metabolic alteration is not caused by transcript regulation through phytochromes. 
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The most dramatically accumulated metabolites in phytochrome mutants, raffinose 

and proline, were suggested to prime the plants more tolerant to salt/ABA stress 

induced growth repression/chlorophyll reduction. Some stress maker genes were also 

promoted in phytochrome mutants even in normal growth conditions. In summary, 

this chapter established a novel role of phytochromes in exerting strong effect on 

plant metabolic state and abiotic stress responses.  

4.2 Experimental Design and GC-MS Analysis 
Procedure 
Like many other physiological processes in living organisms, plant metabolism is 

also highly dynamic. Metabolite levels often vary from time to time, allowing plants 

to adapt to the changing environment as well as to optimize growth and development 

accordingly. In particular, many metabolites have rhythmic rise and fall on a daily 

basis. Data in Chapter 3 shows phytochrome mutants have elevated levels of sugar 

and starch compared to WT especially at EOD. This implies a metabolic profile at 

EOD would be most preferred to identify candidates affected by phytochromes. 

Additionally, EON time point was also included in order to capture possible diurnal 

changes.  

I first grew WT (Ler), phyBD, phyABDE and the quintuple mutant phyABCDE 

(lacking all five phytochromes) in media plates under short photoperiod (8:16, 8-hr 

Light/16-hr Dark) condition for 2 weeks, then transferred healthy seedlings to soil 

with 12:12 photoperiod for further 3 weeks. Temperature was maintained at 18°C 

and light level was set to 100 µmol·m-2·s-1. This growth condition was designed to 

increase leaf number and size in phytochrome mutants, especially phyAB(C)DE. For 
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sampling, 5 rosettes were pooled together as one sample; 6 sample replicates were 

harvested for each genotype at each time point.  

Plant tissues were frozen in liquid nitrogen, finely ground; metabolites were 

extracted following procedures from (Lisec et al., 2006) as shown in Figure 4.1 A. 

Note that in step c, same amount of Ribitol was added to each sample as internal 

standard for relative quantification later. MSTFA was used for sample derivatization 

(procedures in grey shade) so that sugars can be measured; a series of alkanes (C7-

C30) were added to the sample as retention time index to help identifying 

metabolites in later analysis. GC-MS analysis was conducted in the University of 

Glasgow (Chemistry department) using Shimdazu GC-MS-QP2010 Plus with a 

MDN35 column. Sample orders were randomized to avoid possible technic bias 

through time of measurement.  

For data analysis, AMDIS (Automated Mass spectral Deconvolution and 

Identification System) and NIST (National Institute of Standards and Technology) 

software together with GMD (GOLM metabolome database) mass spectrum 

reference libraries were used for peak detection and metabolite identification. R 

package ‘Metab’ (Aggio et al., 2011) was used for peak quantification and further 

normalization analysis. For a glance of the whole experiment process, see Figure 4.1 

B.   
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Figure 4.1 GC-MS experiment procedures. 

(A) Plant sample preparation for GC-MS analysis. Reproduced from (Lisec et al., Nature 
protocols, 2006). (B) A brief illustration of procedures of the whole experiment conducted in 
this study. 
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4.3 PCA Shows Distinguished Metabolic Profiles 
between WT and Phytochrome Mutants  
PCA (Principle Component Analysis) is a multivariate analytical approach 

commonly used in metabolomics data analysis due to its capability of reducing the 

dimension of variables, clustering and visualizing sample distribution (Bartel et al., 

2013). It is particularly useful when samples cannot be discriminated based on the 

level of a single metabolite, or for exploratory experiments as a preliminary step to 

identify candidates of interest. Here this method is applied to check sample quality 

(based on the distribution of replicates), to compare metabolic profiles between 

samples and to find out the metabolic candidates mostly affected by the absence of 

phytochromes. 

Figure 4.2 A shows the sample distribution of all genotypes sampled at different time 

points based on their PCA score results. Biological replicates were grouped in 

ellipses of different colours, demonstrating the metabolic variance of each type of 

sample. This plot also reveals four distinct groups of all samples, i.e. EON 

phytochrome mutants, EON WT, EOD phytochtome mutants and EOD WT, which 

indicates the biological meaning of PC1 to be sampling time and PC2 as genotype. 

Not surprisingly, the clear separation on the axis of PC1 suggests that metabolic 

profiles differ between EOD and EON samples. At the same time, distinctions 

between phytochrome mutant and WT samples at both EOD and EON on the PC2 

axis confirmed the effect of phytochrome photoreceptors on plant metabolism.  

At the first glance, phyABDE and phyABCDE samples are almost indistinguishable, 

or even largely overlapped at EOD, suggesting a comparable metabolic status shared 

by the two severely deficient phytochrome mutants. Meanwhile, phyBD samples are 
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located between WT and phyAB(C)DE at both time points. This is perhaps not 

surprising as phytochromes are reported to have redundant functions in many 

physiological responses through transcript regulation (Franklin, 2003; Hu et al., 

2013); here this data also imply that they have overlapping roles in controlling 

metabolism. 

Figure 4.2 B plots all variables (metabolites being quantified in this study) according 

to their transformation weights used to score distribution of samples as shown in 

Figure 4.2 A on the same coordinate system. Top ten significant variables are marked 

with individual names, among which succinic acid, citric acid, aspartic acid, proline, 

malic acid, fumaric acid and glutamic acid are the main contributors of PC2, which 

differentiates phytochrome mutants from WT. 
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 Figure 4.2 PCA (Principle Component Analysis) of metabolites in WT and 
phytochrome samples. 

(A) Distribution of samples clustered using PCA score results. Sample replicates from the 
same genotype at certain time point were grouped in ellipses of different colours. Here PC1: 
time differentiation, PC2: mutant differentiation. (B) Loading variables (metabolites, 
represented as blue dots here) that contributes to the scoring process. Dots with marked 
names are the top ten significant variables contributing to sample distribution as shown in A. 
Data was log-transformed before applying PCA analysis. PCA was performed using the 
Multibase Excel add-in provided by Numberical dynamics, Japan.  



CHAPTER 4 PHYTOCHROME AND METABOLISM 
 

76 
 

4.4 Phytochrome Mutants Have Elevated Levels of 
Sugars and Alcohols, Organic Acids and Amino 
Acids Compared to WT 
PCA results show that overall metabolic profiles of phytochrome mutants are 

different to that of WT at both EON and EOD (Figure 4.2). To take a closer look at 

each metabolite altered in these mutants, we classified the metabolites into three 

major classes (sugars, organic acids and amino acids) and plotted the data in bar 

charts with classical univariate statistical approach (Appendix Table 2). 

Consistent with our sugar quantification (Figure 3.3), when compared to WT, phyBD, 

phyABDE and phyABCDE all have significantly elevated levels of metabolizable 

sugars including glucose, sucrose, especially at EOD (Figure 4.3 A). In particular, 

raffinose, often indicative of stress (Krasensky and Jonak, 2012), is much higher in 

mutants than in WT (Figure 4.3 A).  

In the case of organic acids, three phytochrome mutants all show significantly 

elevated levels than WT at both EOD and EON. This includes succinic acid, malic 

acid, fumaric acid, citrate acid, glutamic acid and aspartic acid (Figure 4.3 B). All of 

these are also in the top ten list of significant variables contributing to the sample 

scoring analysis (Figure 4.2 B), supporting the consistency between two different 

analytical approaches.  

Similarly, phytochrome-deficiency also leads to an over-accumulation of specific 

amino acids at EOD and EON, e.g. proline, 4-hydroxy-proline, glutamine, leucine, 

valine, phenylalanine, serine and glycine (Figure 4.3 C). Of note, proline levels are 

markedly elevated, a phenomenon that also has been linked with stress responses 
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(Hare et al., 1999; Bhaskara et al., 2015). Again, proline was among the top ten 

variables list (Figure 4.2B).  

Collectively, phytochrome mutants have over accumulation of sugars, tricarboxylic 

acid (TCA) cycle intermediates (most of the organic acids) and amino acids 

compared to WT. This type of metabolic profile may be an inevitable consequence of 

the retarded growth phenotype. As phytochrome loss does not give rise to obvious 

differences in cellular respiration rate (Figure 3.2 B), a reduced in demand for protein 

synthesis and cellulose production (Figure. 3.7 C-D) could lead to an accrual of 

intermediates and products of the metabolic supply pathways. It might also be worth 

pointing out that for most of these metabolites, loss of phyB and phyD appears to 

have the greatest impact. This is possible as that the cell wall genes shown in Chapter 

3 also have a similar reduction in phyBD as to that in phyABDE (Appendix Figure 2). 
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Figure 4.3 GC-MS metabolomics quantification of WT and phytochrome mutants 
sampled at dawn and dusk.   

(A) Relative quantification of sugars and alcohols in WT and phytochrome mutants at EON 
and EOD respectively. (B) Relative quantification of organic acids. (C) Relative quantification 
of amino acids. Values presented are mean ± SEM. Asterisks indicate a significant 
difference between values of the phytochrome mutants and WT at EOD and EON 
respectively, by means of Student’s t-test at *, p ≤ 0.05.  
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4.5 Transcriptional Analysis of Enzyme Genes in 
Related Pathways 
Phytochromes are reported to control plant growth and development mostly through 

transcriptional network regulation (Jiao et al., 2007). Therefore, I conducted a series 

of time course qRT-PCR experiments to explore whether gene expression of the key 

enzymes responsible for the elevated metabolites are also up-regulated in 

phytochrome mutants.  

I first checked the group of organic acids, as they are constitutively elevated in 

phytochrome mutants at both EON and EOD (Figure 4.3 B). Also these metabolites 

are nicely clustered in the TCA cycle and related pathways. I picked candidate genes 

of two mitochondria localized TCA cycle enzymes, FUMARASE 1 (FUM1) and 

CITRATE SYNTHASE 4 (ATCS or CSY4), a cytosolic fumarase FUM2 and a 

glyoxylate enzyme ACETATE NON-UTILIZING 1 (ACN1) that generates a potential 

second source of organic acid metabolites. Surprisingly, despite that fact that all the 

organic acids quantified in this study are elevated, these genes are generally 

repressed in phyABDE (Figure 4.4), especially for the two fumarases at their peak 

times. This implies that the increased abundance of organic acids in phytochrome 

mutants is not caused by upregulated enzyme transcription. Instead, the excess 

metabolites could possibly repress relevant enzyme gene expression through negative 

feedback. 

I went on the check two other elevated metabolites, raffinose and proline (Figure 4.3 

A, C), which were reported to have special roles in abiotic stress responses (Hare et 

al., 1999; Bhaskara et al., 2015; Krasensky and Jonak, 2012). Similar to the TCA 

enzymes, gene expressions of biosynthetic enzymes for raffinose (RAFFINOSE 
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SYNTHASE 1/2, SIP1 and SIP2) and proline (DELTA1-PYRROLINE-5-

CARBOXYLATE SYNTHASE 1 or P5CS1, and PYRROLINE-5- CARBOXYLATE 

REDUCTASE or P5CR) are also repressed in a relatively milder manner (Figure 4.5 

A and B). In contrast, one synthetic pathway enzyme gene was indeed found to be 

induced in phyABDE compared to WT, i.e. RAFFINOSE SYNTHASE 6 / DARK 

INDUCED 10 (DIN10) (Figure 4.5 A). At the same time, the main catabolic enzyme 

of proline pathway, PROLINE DEHYDROGENASE (PRODH), is also suppressed 

(Figure 4.5 B). This might be due to a negative feedback from the product Pyrrolin-

5-Carboxylate, though its level was not revealed in our metabolome study. The up-

regulation of DIN10, together with the repression of PRODH, may partly contribute 

to the elevation of raffinose and proline content. 

The above results demonstrate that the increased abundance of certain metabolites in 

phytochrome mutants is not due to elevated enzyme gene expression in the synthesis 

pathways. Instead, the generally repressed enzyme transcription indicates a retarded 

flux of the metabolites, highlighting the novel role of phytochromes in directing 

carbon and nitrogen resource to growth.  
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Figure 4.4 Diurnal expression profiles of metabolic enzyme genes involved in TCA and 
related pathways. 

qRT-PCR results of metabolic enzyme genes (FUM1, FUM2, ATCS and ACN1) in 5-week 
WT and phyABDE samples through a 24-hour time course. Data was double plotted for 
visualization purposes. ZT: Zeitgeber time. Values are presented as mean ± SEM. 
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Figure 4.5 Diurnal expression profiles of metabolic enzyme genes in raffinose (A) and 
proline (B) metabolic pathways. 

qRT-PCR results in 5-week WT and phyABDE samples at EON and EOD, or over 24-hour 
time course. ZT: Zeitgeber time. Values are presented as mean ± SEM.  
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4.6 Phytochrome Mutants Have Reduced Sensitivity 
to Abiotic Stresses at Both Seedlings and Adult 
Stages 
It has been widely reported some metabolites, such as proline and raffinose, will be 

elevated in plants upon abiotic stress, including ABA, salt and drought (Hare et al., 

1999; Bhaskara et al., 2015; Krasensky and Jonak, 2012; Urano et al., 2009; Kempa 

et al., 2008). This is commonly regarded as a protection response, not only to 

enhance plant tolerance through osmotic adjustment but also to supply energy 

resource for resumed growth once the stress is removed. The GC-MS analysis 

revealed that phytochrome mutants have significantly more proline and raffinose 

than WT when grown in non-stress conditions, which may prime the mutants to be 

more prepared for the up-coming stresses. 

Plant growth is commonly repressed when resources are deployed to cope with 

stressors such as salt or ABA (Colebrook et al., 2014; Skirycz and Inzé, 2010). The 

retarded growth of phytochtome mutants was previously proposed to be the result of 

improper resource allocation, which, in this case, could be a prior stress preparation. 

Therefore, I speculated the metabolites might provide some stress protection in 

phytochrome mutants, making them less affected by stress induced growth repression.  

I first tested this hypothesis in young seedlings. 11-day old seedlings of WT, phyBD, 

phyABDE and phyABCDE were transferred to growth media with different doses of 

salt (NaCl) or ABA for 10 days. Photos were taken before biomass data was 

collected (Figure 4.6 A), which shows salt-induced bleaching response in WT was 

very much reduced in all three phytochrome mutants. The biomass data also concurs 

with the prediction. Indeed, while a dose-dependent inhibition of growth by ABA or 
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NaCl is shown in WT plants, the effect is sequentially less marked in phyBD, 

phyABDE and phyABCDE (Figure 4.6 B).  

In adult plants, similar results were obtained when treated with ABA or NaCl. In 

Figure 4.7, four-week-old soil-grown plants were watered once with ABA/NaCl 

solution to soil capacity followed by normal irrigation procedure every other day till 

data was collected two weeks later. Again, biomass reduction response was 

alleviated in phyABDE compared to WT with either ABA or NaCl treatment (Figure 

4.7 A). NaCl application has also been shown to reduce chloroplast levels (Jiang et 

al., 2013), which was observed in WT plants upon salt treatment from our results. In 

contrast, the phyBD and phyABDE plants once again showed less sensitivity in this 

response (Figure 4.7 B-C). In comparison, both phytochrome mutants in this case 

have similar biomass response to drought stress as compared to WT (figure 4.7 A).  

Overall, the data demonstrates that phytochrome mutants have increased levels of 

stress indicative metabolites and reduced abiotic stress response to ABA and salt. 

This suggests an interesting role of phytochromes in switching metabolic states 

between growth-promoting and stress-priming statuses. 
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Figure 4.6 Salt and ABA stress response in seedlings.  

(A) Representative photo of seedlings after stress treatment. Genotypes tested are Ler (WT), 
phyBD, phyABDE and phyABCDE. (B) Fresh weight quantification of seedling after stress 
test. Values presented are mean ± SEM. Asterisks indicate significant differences in biomass 
response to the maximum dose treatment for each phytochrome mutant vs WT, as assessed 
by two-way ANOVA (data log-transformed for analysis) (* p � 0.05, ** p � 0.01, *** p � 
0.001). ANOVA analysis was generated using the Real Statistics Resource Pack software 
(Release 4.11 Excel 2010/2013/2016) by Charles Zaiontz. 
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Figure. 4.7 Salt, ABA and drought stress response in adult plants. 

(A) Quantification of salt (NaCl) and ABA stress repression of biomass (fresh weight) in adult 
plants. (B) Appearance of WT and phytochrome plants 14 days after watering same amount 
of 350mM NaCl solution once. (C) Chlorophyll determination in each genotype from salt 
stress test as shown in (B). Values are presented as mean ± SEM. Asterisks indicate 
significant differences in the response to ABA/salt treatment for each mutant compared to 
WT, as assessed by two-way ANOVA (fresh weight data log-transformed for analysis)(* p � 
0.05). ANOVA analysis was generated using the Real Statistics Resource Pack software 
(Release 4.11 Excel 2010/2013/2016) by Charles Zaiontz. 
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4.7 Stress Marker Genes are Up-regulated in 
Phytochrome Mutants 
Phytochrome deficiency leads to elevated stress indicating metabolites and reduced 

sensitivity to salt/ABA stress, raising the question whether stress response genes are 

induced in these mutants in normal growth conditions.  

Candidate genes were picked from published reports, all shown to be induced in 

plants upon abiotic stress treatments such as salt, ABA, cold, etc (Pandey et al., 

2005). Among these, morning genes DARK INDUCIBLE 1 (DIN1), DIN10 and 

RESPONSIVE TO DESICCATION 20 (RD20) were the most induced at their 

individual peak time in phyABDE (Figure 4.8 A). Comparing to this, stress genes that 

peak at dusk, such as COLD-REGULATED 15A (COR15A), RD29A and KIN1 

(At5g15960), showed milder up-regulation in phyABDE (Figure 4.8 B). Nevertheless, 

this induction remains sustained through the entire rising phase of diurnal expression 

profile. In addition, some ABA specific signalling components, ABA INSENSITIVE 1 

(ABI1) and ABI5, showed a diurnal waveform alteration in phyABDE adult plants 

comparing to WT, indicating an increased transcript level during the daytime as well 

(Figure 4.8 C).  

Similar observation in stress gene regulation was also found in seedlings. By 

analyzing published array data (Michael et al., 2008), Daniel Seaton from the 

Halliday lab found that phyB-9 young seedlings have mild yet globally up-regulated 

stress gene expressions relative to Col-0 WT (Yang et al., 2016). Considering the 

function redundancy of phytochromes, this remains consistent with our results from 

phyABDE adult plants.  
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Overall, a general up regulation of stress genes was shown in phytochrome mutants, 

indicating a transcriptional preparation for unknown stresses. This, together with 

previous metabolic data, suggest an interesting scenario where plants in shade with 

phytochromes switched off might be more primed for upcoming environmental stress 

conditions at both metabolic and transcript levels. 
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Figure 4.8. Stress marker genes and ABA pathway gene expressions are altered in 
phyABDE compared to WT plants. 

(A) qRT-PCR analysis of stress genes induced in in 5-week-old phyABDE compared to WT 
(Ler) at peak time (ZT0 for DIN1 and DIN10; ZT4 for RD20). GOI: gene of interest. (B) 
Diurnal gene expression of stress marker genes peaking later in the day (COR15A, KIN1, 
RD29A) in WT and phyABDE. (C) qRT-PCR analysis of ABA signalling pathway genes (ABI1, 
ABI5) through a diurnal time course. Time course data is double plotted for visualization 
purpose. Values presented are mean ± SEM. Asterisks indicate a significant difference 
between values of the phyABDE and WT, by means of Student’s t-test at *, p ≤ 0.05.  
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4.8 Discussion 
Phytochrome photoreceptors are well known to regulate elongation growth and 

development in plants, yet their effect on metabolism has not been extensively 

explored. Following the interesting observation of elevated sugar levels in phyBD 

and phyABDE, this chapter shows 5-week-old phytochrome mutants have 

distinguished metabolic profiles compared to WT by probing the metabolome using 

non-targeted GC-MS approach (Figure 4.2). In particular, the data indicates 

phytochrome loss disrupts core metabolism, including a higher accumulation of 

sugar and sugar derivatives at EOD as well as constitutively elevated levels of TCA 

organic acids and several amino acids (Figure 4.3).  

The result has confirmed our time-course quantification of sugars in Chapter 3 

(Figure 3.3), and is broadly consistent with a rice study where phytochrome null 

mutant phyABC was reported to have a comparable metabolic profile (Jumtee et al., 

2009). Young leaf blades of rice phyABC also has excessive amino acids, organic 

acids, sugars, though relative to our results it over-accumulates monosaccharides to a 

remarkable degree with glucose level promoted more than 50 folds compared to WT 

rice. This suggests a cross-species role for phytochromes in regulating plant 

metabolism.  

A similar observation in metabolism alteration was also found in a clock mutant 

prr975 (PSEUDO- RESPONSE REGULATORs 9, 7, 5), which has a higher 

accumulation of raffinose and proline together with defect in TCA cycle at both 

metabolic and transcriptional level (Fukushima et al., 2009; Nakamichi et al., 2009). 

More recently, another clock mutant tic-2 (TIME FOR COFFEE) was reported to 
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have starch-excess phenotype with alteration in soluble carbohydrates including 

sucrose and fructose (Sanchez-Villarreal et al., 2013). Considering the close 

relationship between light and circadian signaling pathways, it may be unsurprising 

to propose a common role for both phytochromes and clock oscillators in regulating 

metabolic homeostasis. 

Phytochromes are well known to control plant physiology through transcriptional 

regulation; hence the metabolite accumulation in phytochrome mutants might be 

caused by an activation of relevant enzyme genes. However, this hypothesis is 

denied by the result that shows several metabolic genes are repressed in phyABDE, 

demonstrating the metabolite excess phenotype is not due to enhancement of enzyme 

gene expression (Figure 4.4- 4.5). Instead, the general repression of enzymes might 

be the result of negative feedback from excess metabolites. Over accumulated 

products may inhibit synthetic enzyme genes, leading to a slowed down metabolic 

process. These results partly agree the idea that growth is not related to the absolute 

levels but the flux of the central resources (Cross et al., 2006).  

Interestingly, the metabolic phenotype of phytochrome mutants partly resembles that 

of plants under ABA/NaCl treatment [Figure 4.3 and (Urano et al., 2009; Kempa et 

al., 2008)]. In particular, the remarkably elevated levels of raffinose and proline are 

commonly regarded as key indicators of abiotic stress (Krasensky and Jonak, 2012). 

The prr975 clock mutant with elevated raffinose and proline also has an 

accumulation of ABA content and is reported to be more resistant to abiotic stress 

such as drought and freezing (Fukushima et al., 2009; Nakamichi et al., 2009). 

Furthermore, a recent study shows maize PIF3 transgenic rice has increased 
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tolerance to salt and drought abiotic stress (Gao et al., 2015). All these suggest 

phytochrome mutants might also have enhanced resistance to stress compared to WT. 

Plants under salt or ABA conditions would re-allocate resource to cope with the 

stress, leading to a temporal alleviation of growth. This was confirmed in our stress 

tests of WT plants, where fresh biomass was largely reduced when treated with NaCl 

or ABA at both seedling (Figure 4.6) and more developmental adult (Figure 4.7 A) 

stages. In contrast, phytochrome mutants (both young and mature) with 

compromised growth are less responsive to the stress induced biomass repression 

(Figure 4.6, 4.7 A). Similarly, leaf bleaching, or chlorophyll reduction, as another 

stress phenotype is also very much alleviated in phytochrome mutants (Figure 4.6 A, 

4.7 B-C). In addition, stress marker genes are elevated in phytochrome deficient 

plants grown in non-stress conditions (Figure 4.8), suggesting a possible scenario 

where phytochrome absence primes plants at both metabolic and transcriptional level 

to better cope with future stresses.  

It is worth noting that, the above stress observation in phytochrome mutants probably 

depends on ambient temperature. A previous study on freezing tolerance revealed a 

similar induction of cold responsive genes like COR15A in Arabidopsis seedlings 

under low R: FR light at 16°C but not 22°C (Franklin and Whitelam, 2007). 

Similarly, (Patel et al., 2013) reported low R: FR grown Arabidopsis has elevated 

levels of soluble sugars, glycine and proline, again at 16°C but not 22°C. In this 

chapter, all plants were grown at 18°C, closer to the cool temperature used in 

previous research. A different metabolic profile and stress response in phytochrome 

mutants might be shown at warm temperatures. This adds to the scenario where 
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phytochromes are coordinating plant growth and stress physiology in a temperature-

dependent manner.  

In summary, following results from Chapter 3, this chapter further uncovered a 

broader metabolic change in phytochrome mutants, including a general induction of 

sugars, organic acids and amino acids. In particular, the elevated levels of raffinose 

and proline are likely to contribute to the reduced sensitivity of growth inhibition by 

abiotic stresses such as ABA and NaCl. An extensive up regulation of stress genes in 

non-stress conditions may also prime phytochrome mutants to better cope with the 

upcoming stresses. Taken together, this chapter provides evidence that phytochromes 

have a great impact on plant metabolism, and may control the switch between growth 

and stress physiology at both metabolic and transcriptional level. This knowledge 

could be helpful in estimating the effect of natural shade on plant biomass and stress 

resilience.  
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Chapter 5- Phytochrome Mutants 
Have Altered Response to 
Prolonged Darkness  

5.1 Introduction  
Plants have evolved to adapt to the ever-changing light in natural environment, 

especially the diurnal light alternate. Starch mobilisation in plants is finely optimized 

to maintain respiration and continuous growth at night when sunlight is unavailable 

(Stitt and Zeeman, 2012). More amazingly, plants can predict the length of the 

coming night and adjust starch degradation rate right from the beginning of dusk to 

ensure carbon depletion just before dawn (Smith and Stitt, 2007; Graf et al., 2010; 

Scialdone et al., 2013). Even in very short photoperiods, where carbon resource is 

limited, plants can still survive by precisely coordinating growth, starch, protein and 

central metabolism (Gibon et al., 2009, 2004).  

When plants are left in darkness longer than expected night, starch supply will run 

out, inducing a carbon starvation response. Low carbon level is detected by T6P-

SnRK1 signalling components that trigger a series of transcriptional regulation to 

repress growth, only allowing minimum life maintenance (Nunes et al., 2013; Baena-

González et al., 2007). Following responses include remobilization of chlorophyll, 

proteins and lipids, accompanied by changes in chloroplast size and number, a 

process known as autophagy (Izumi et al., 2013; Wang et al., 2013; Rose et al., 2006; 
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Wada et al., 2008). At this point, leaf colour is changed to yellow visibly; plant 

senescence is triggered.  

Dark induced plant senescence seems similar to age induced senescence in many 

ways, including chlorophyll loss and induction of several senescence associated 

genes (Woo et al., 2001; Guo and Gan, 2006; Kim et al., 2009). As a result, dark 

treatment has long been used as a rapid approach to study developmental senescence 

(Weaver and Amasino, 2001). Despite of the known shared mechanism, however, a 

transcriptome assay reveals a significant distinction between dark and age induced 

senescence (Buchanan-Wollaston et al., 2005). In addition, unlike age senescence 

that usually develops from leaf tip to base, dark induces leaf senescence without 

directional preference (Song et al., 2014).  

It might not be too surprising that phytochromes have been linked to dark induced 

senescence for decades. Early work reported that 5-min red light pulse per day 

inhibits dark-induced chlorophyll loss in Marchantia, while a following 10-min far-

red light can reverse this effect and induce bleaching (De Greef et al., 1971). This 

was also observed in Arabidopsis in a recent study, where a detailed molecular 

mechanism has been proposed (Sakuraba et al., 2014): PIF4 and PIF5 promote leaf 

senescence through ethylene and abscisic acid signalling, as well as direct activation 

of ORE1 (a main NAC transcription factor that promotes senescence). Phytochromes, 

especially phyB, are considered to suppress senescence by negatively regulating PIFs. 

This was also supported by the observation that phyB mutant has more chlorophyll 

loss, ion leakage and senescence marker genes expression (SEN4 and SAG12) in 

response to darkness than Col WT (Sakuraba et al., 2014). This is further supported 
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by following studies using phytochrome/pif mutants or transgenic lines in 

Arabidopsis (Song et al., 2014; Zhang et al., 2015) and rice (Piao et al., 2015). PIF3, 

4 and 5 are also reported to regulate developmental senescence in Arabidopsis (Song 

et al., 2014), indicating the PHY-PIF might control the shared pathway of both dark 

and age induced senescence in plants.  

Surprisingly, however, phytochrome mutants are also reported to be hyposensitive to 

dark induced chlorophyll degradation (Brouwer et al., 2014): 6-week Ws WT had 

significantly reduced chlorophyll after 6-day dark treatment, while phyB-10 and 

phyA-5-phyB-10 mutants maintained their chlorophyll levels throughout the dark 

period. phyA mutant, however, was shown to have increased chlorophyll reduction 

than WT in partial shade but not in dark (Brouwer et al., 2012, 2014). These indicate 

a more complicated relationship between phytochromes and dark induced response 

that cannot be fully explained by current knowledge. 

So far, it remains unclear how high order phytochrome mutants react to prolonged 

darkness. Data from Chapter 4 suggests altered metabolic profiles may prime 

phytochrome mutants more tolerant to external salt and ABA (Figure 4.3, 4.6, 4.7). 

Dark induced stress shares some common responses to other stressors; likewise, 

phytochrome mutants could also be protected from darkness through the 

accumulation of metabolites like proline and pre-induced stress genes like DINs 

(Figure 4.8). In this chapter, I performed some dark experiments to find that Ler 

phytochrome mutants, including phyBD and the more severe phyABD, phyABDE, 

have reduced sensitivity to darkness in terms of survival rate and chlorophyll loss. 

The results agree with a published study in Wassilewskija (Ws) phytochrome 
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mutants, yet go against other reports using Col lines. A preliminary test of 

background effect on dark induced chlorophyll loss in phytochrome mutants is then 

carried out. 

5.2 Phytochrome Multiple Mutants Are Less 
Responsive to Dark than Ler WT  
For consistency, Ler (WT), phyBD, phyABD and phyABDE plants were grown in 

previous condition: 100 µmol·m-2·s-1 white light, 8L: 16D short photoperiod for the 

first two weeks, followed by 12L: 12D photoperiod for three weeks; Temperature 

was maintained at 18°C throughout the whole experiment. Five-week plants were 

transferred to dark cabinets for two weeks, then back to 12L: 12D photoperiods to 

score survival rate. 

Phytochrome mutants are more likely to survive through 2-
week darkness 

After dark treatment, a large proportion of WT plants turned yellow, particularly the 

older leaves. In contrast, phyBD, phyABD and phyABDE showed less leaf yellowing 

(Figure 5.1, 5wks+D14). The difference was even more striking after plants were 

transferred back to diurnal conditions for a week. Re-introduction to light/dark cycles 

caused widespread bleaching and death of WT plants, while a high percentage of 

phytochrome mutants recovered and resumed growth (Figure 5.1, 5wks+D14+L7). 

This implies that dark treatment caused more damage in WT than in phytochrome 

mutant plants. 
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Phytochrome mutants have less chlorophyll loss in response 
to dark treatment  

In line with the survival test, I quantified chlorophyll level in these plants before and 

after 1, 7 and 10 days’ dark incubation. Consistent with published results (Sakuraba 

et al., 2014; Song et al., 2014; Brouwer et al., 2012), WT plants have reduced 

chlorophyll content during prolonged darkness. In particular, after 7-day dark 

treatment, Ler chlorophyll level dropped to half of that in normal growth conditions 

(Figure 5.2, Ler D10 vs D0). In contrast, phytochrome mutants have significantly 

less chlorophyll than Ler before the treatment (Figure 5.2, D0; consistent with Figure 

3.1 A); their chlorophyll content also fell after 7 days in darkness, but at a 

significantly reduced rate compared to the WT (phyBD 0.28, phyABD 0.34, 

phyABDE 0.27 vs Ler 0.46, Figure 5.2).  

Observations above suggest that phytochrome mutants withstand prolonged darkness 

better than WT, and are more likely to survive afterwards. Similar to other stress 

tests described in Chapter 4, the absence of phytochromes, mainly phyB and phyD, 

reduced plant sensitivity to dark stress, highlighting a potential advantage of these 

plants in certain environmental conditions where light is blocked unexpectedly. 

  



CHAPTER 5 PHYTOCHROME AND DARK STRESS 
 

100 
 

 

 

Figure 5.1 Phytochrome mutants are more likely to survive after dark incubation than 
WT plants.  

Five-week-old plants (Ler, phyBD, phyABD, phyABDE) were moved to dark cabinets for 2 
weeks (5wks+D14) and returned to 12: 12 light/dark cycle for another week (5wks+D14+L7). 
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Figure 5.2 Chlorophyll quantifications in Ler WT and phytochrome mutants at 
subjective dusk (D0), day 1, 7 and 10 (D1, 7, 10) of darkness.  

ND: D10 data for phyABDE is missing due to sample availability. Values are presented as 
mean � SEM. Numbers above the bars indicate the difference of chlorophyll levels between 
D7 and D0 for each genotype. Asterisks indicate significant differences in chlorophyll loss for 
each phytochrome mutant vs WT, assessed by two-way ANOVA (* p ≤ 0.05, ** p ≤ 0.01). 
ANOVA analysis was generated using the Real Statistics Resource Pack software (Release 
4.11 Excel 2010/2013/2016) by Charles Zaiontz. 
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5.3 Background Effect on Phytochrome-dependent 
Chlorophyll Loss in Response to Darkness 

The finding that phytochrome mutants are hyposensitive to dark induced chlorophyll 

loss is consistent with a published study using phyB-10 and phyA-5-phyB-10 in Ws 

background (Brouwer et al., 2014). However, an opposite result has been reported 

that phyB is hypersensitive to dark induced leaf yellowing- PHYB-OX and pif 

mutants are the opposite- compared to Col WT (Sakuraba et al., 2014; Song et al., 

2014; Zhang et al., 2015). This inconsistency raises an interesting question whether 

dark induced chlorophyll loss response in phytochrome mutants is accession-

dependent.  

To test this, I grew Col and Ler lines in identical growth conditions to same age. 

Chlorophyll content was quantified using whole rosette samples both before and after 

dark incubation. 
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Unlike Ler lines, 5-week phyB-9 (Col) doesn’t show reduced 
sensitivity to dark induced chlorophyll loss and plant death 

Plants were first grown in previous condition described in 5.2. This is a cool 

condition with short photoperiods that allows all genotypes to grow up to 5-week-old 

before initiation of flowering. It is noteworthy that this condition is similar to that of 

Ws study in (Brouwer et al., 2014), where phyB-10 and phyA-5-phyB-10 were grown 

in short-day condition for 6 weeks.  

Again, all genotypes (Ler and phyBD, phyABDE; Col and phyB-9) showed more or 

less leaf bleaching (Figure 5.3 A) and chlorophyll reduction (Figure 5.3 B) after dark 

incubation. Consistent with data from Figure 5.2, a significantly reduced chlorophyll 

loss was shown in phyBD relative to Ler WT after 2-week dark treatment (0.25 vs 

0.63, Figure 5.3 B). Particularly, at the end of dark incubation, phyBD had more 

chlorophyll than Ler WT (Figure 5.3 B). In contrast, 5-week phyB-9 had less 

chlorophyll than Col WT after darkness, agreeing with published data in (Sakuraba et 

al., 2014). Meanwhile, unlike the Ler lines, Col and phyB-9 had similar amount of 

chlorophyll loss during the dark period (0.59 vs 0.54, Figure 5.3 B).  

When plants were returned to previous diurnal condition for 4, 7 and 14 days, most 

Ler rosettes gradually bleached and died, while a high percentage of phyBD and 

phyABDE resumed growth (Figure 5.3 C; consistent with data in Figure 5.1). In 

comparison, both Col and phyB-9 plants survived at a similar rate, in agreement with 

their indistinctive chlorophyll loss in dark treatment (Figure 5.3 B-C).  
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Briefly, these observations support the hypothesis that phytochrome control of 

chlorophyll loss (and post-dark survival rate) in response to dark incubation is 

background-dependent.  
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Figure 5.3 Dark responses of 5-week-old plants using Ler and Col lines.  

(A) Photo of plants before and after dark treatment. (B) Total chlorophyll quantification of 
plants shown in (A). Data for phyABDE is missing due to sample availability. Numbers above 
the bars indicate the difference of chlorophyll between D14 and D0 for each genotype. 
Values are presented as mean ± SEM. Asterisks indicate significant differences in the 
response to 14-day dark treatment compared to the D0 between phytochrome mutants and 
respective WTs, as assessed by two-way ANOVA (ns: p>0.05; *** p ≤ 0.001). ANOVA 
analysis was generated using the Real Statistics Resource Pack software (Release 4.11 
Excel 2010/2013/2016) by Charles Zaiontz. (C) Photos of plants after being returned to light/ 
dark diurnal cycle for 4, 7 and 14 days respectively.  
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Similar background effect was also found in 3-week 
seedlings under long-day photoperiod, 23°C condition 

In the second test, a completely different growth condition was used to test the 

robustness of the background-dependent dark response. Specifically, plants were 

grown in continuous light for one week before transferred to long day (16L: 8D), 

23°C condition for further two weeks. This condition, comparing to the previous one, 

is longer in photoperiod and warmer in temperature, both accelerating flowering 

transition in WT and even more rapidly in phytochrome mutants (Figure 5.4 A). In 

addition to genotypes used in the first test, Ler phyB and Col PHYB-OX were also 

included to facilitate data comparison. 

First of all, plants in this test also showed leaf bleaching and chlorophyll reduction 

after 5-day darkness (Figure 5.4 A-B), implying a similar dark response in this 

condition. Again, each Ler phytochrome mutant has significantly less chlorophyll 

loss than WT (phyB   0.31, phyBD 0.32 vs Ler 0.55, Figure 5.4 B), demonstrating a 

robust dark hyposensitivity in Ler phytochrome mutants. In particular, phyB and 

phyBD had similar chlorophyll level both before and after darkness, suggesting phyB 

to be the main phytochrome in controlling chlorophyll response to darkness. 

In this very condition, Col phyB-9 has been reported to be more sensitive to dark 

induced response, while PHYB-OX transgenic line does the opposite (Sakuraba et al., 

2014). Consistently, phyB-9 had significantly less, while PHYB-OX had more, 

chlorophyll than Col WT after dark treatment (Figure 5.4 B). Unlike that in Ler lines, 

dark induced chlorophyll losses in phyB-9 and Col are indistinctive (0.37 vs 0.41, 

p>0.05). Meanwhile, PHYB-OX has significantly reduced chlorophyll loss than Col 

(0.3 vs 0.41), supporting the published observation.  
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To summarize, similar results were obtained from a dramatically different growth 

condition, despite the distinction in developmental stages, implying that the 

accession effect on dark response in phytochrome mutants is fairly robust.  

  



CHAPTER 5 PHYTOCHROME AND DARK STRESS 
 

108 
 

 

Figure 5.4 Dark responses of 3-week-old plants using Ler and Col lines.  

Photos of plants (A) and total chlorophyll quantification (B) before and after 5-day dark 
treatment. Numbers above the bars indicate the difference of chlorophyll between D5 and D0 
for each genotype. Values are presented as mean � SEM. Asterisks indicate significant 
differences in chlorophyll loss between phytochrome mutants and respective WTs, as 
assessed by two-way ANOVA ( * p � 0.05, *** p � 0.001). ANOVA analysis was generated 
using the Real Statistics Resource Pack software (Release 4.11 Excel 2010/2013/2016) by 
Charles Zaiontz. 
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5.4 Plants Grown in High-light Are More Susceptible 
to Dark Stress 
While testing the accession effect, I also postulated that the dark hyposensitivity 

observed in Ler phytochrome mutants might be related to retarded growth rate. This 

hypothesis came from the idea that plants with slower growth (Figure 3.6) and higher 

accumulation of sugar (Figure 3.3, 3.5) may require less fuel to sustain life 

maintenance, therefore survive longer in darkness. 

Plant growth rate is easily manipulated by altering light intensity. Plants grown in 

high light conditions, with increased photosynthesis rate, are expected to grow faster 

and accumulate biomass more quickly than in low light. Indeed, as suggested by a 

previous growth test, both Ler WT and phyBD accumulate more biomass under high 

light (Figure 5.5). Interestingly, the data also illustrates that phyBD is more 

responsive that Ler WT to high light, suggested by a greater fold-change of fresh 

biomass between two light levels.  

To test whether prior exposure to different light levels could alter the severity of the 

dark-induced response, I grew Ler WT, phyBD and phyABD under 50, 100 or 170 

µmol·m-2·s-1 for 5 weeks. Again, faster growth, indicated by larger rosettes, was 

observed for both WT and phytochrome mutants as fluence rate increases (Figure 5.6, 

Dark 0). Plants were then transferred to a dark cabinet for 13-day incubation. 

Interestingly, after dark treatment, Ler WT from three light levels show a gradient 

yellowing of leaves, implying that high light grown plants are more susceptible to 

dark induced bleaching (Figure 5.6, Ler, Dark 13). This fluence rate-dependent dark 

response is even more obvious after plants were returned to previous growth 
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condition for 4 days (Figure 5.6, Ler, Dark 13 + Light 4). In contrast, however, 

despite that phytochome mutant growth was also promoted by increased light (Figure 

5.5 and 5.6 Dark 0), this gradient response was mostly missing in phyBD or phyABD 

(Figure 5.6, phyBD and phyABD, Dark 13). In addition, after re-introduction of light 

for 4 days, phyBD and phyABD under all three light conditions had similar yet 

significantly higher survival rates than Ler WT (Figure 5.6, Dark 13 + Light 4).  

This result implies that growth rate per se may not underlie the enhanced 

susceptibility to dark treatment, while at the same time, the level of irradiance to 

which the plants are exposed to before dark treatment may have a strong impact on 

the severity of dark senescence. Furthermore, phytochromes, especially phyB and 

phyD, are playing important roles in mediating this fluence rate-dependent response, 

suggesting the activation of phytochromes under high (red) light condition might 

cause plants to be more susceptible to unexpected darkness.   
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Figure 5.5 Represent photo and fresh biomass of Ler and phyBD grown in different 
light levels.  

LL: low light (90 µmol·m-2·s-1); HL: high light (175 µmol·m-2·s-1). Plants were harvested at 5-
week-old. Numbers above the bars indicate the fold change of fresh biomass of plants grown 
in HL relative to LL. Values are presented as mean � SEM. 
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Figure 5.6 Dark test results of phytochrome mutants and WT from different light 
conditions.  

Low light: 50 µmol·m-2·s-1; Middle (Mid) light: 100 µmol·m-2·s-1; High light: 170 µmol·m-2·s-1. 
5-week plants were transferred to dark cabinets for 13 days, and then transferred back to 
original light conditions respectively for 4 days.  
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5.5 Discussion 
In this chapter, I set out to test dark response in Ler and high order phytochrome 

mutants by assessing chlorophyll loss and survival rate after dark incubation. The 

results demonstrated a hyposensitive response in phyBD, phyABD and phyABDE 

compared to Ler (Figure 5.1 and 5.2), indicating the loss of phytochromes could 

protect plants from dark induced stress. This may not be too surprising, as 

phytochrome mutants were found less sensitive to ABA/salt stresses Figure 4.6 and 

4.7). These mutants were believed to benefit from their altered metabolism, 

particularly the accumulation of stress indicators like proline and raffinose (Figure 

4.3), and pre-induced stress genes (see Figure 4.8). Likewise, phytochrome mutants 

could also be protected from dark stress through the same mechanism as plants in 

dark exhibit similar phenotypic responses like growth retardation, leaf bleaching and 

transcript alterations (e.g. induction of DIN genes).  

An alternative hypothesis was that growing slowly might enable plants to withstand 

darkness for a longer period. In this scenario, phyBD grows at a much slower rate 

than Ler WT (Figure 3.6), implying a reduced necessity for energy resource to 

sustain growth; therefore, less chlorophyll is degraded in the dark (Figure 5.2). 

However, this growth rate hypothesis is unlikely to be true when two sets of data 

were cross-compared: phyBD under around 170 µmol·m-2·s-1 light grows faster 

(Figure 5.5) and survived (Figure 5.6); Ler at about 100 µmol·m-2·s-1 grows more 

slowly (Figure 5.5) but died after dark treatment (Figure 5.6).  

Interestingly, data in Figure 5.6 also demonstrated that increasing light level could 

enhance plant susceptibility to darkness in a phytochrome-dependent manner. While 
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Ler WT plants showed a fluence rate response in leaf bleaching and survival chance 

after darkness, this response was mostly diminished in phyBD and phyABD (Figure 

5.6). The idea that phytochromes are important in mediating light intensity-

dependent dark response is rather novel. Not only prior light level effect on dark 

response has never been reported before, but also a red light pulse was known to 

inhibit dark induced bleaching in various species (De Greef et al., 1971; Sakuraba et 

al., 2014). It seems phytochrome activation before darkness enhances plant dark 

sensitivity, while phytochrome activation during darkness inhibits dark response. In 

natural conditions, plants in shade, such as high densities, perceive a decrease in red 

to far-red light ratio and receive less photosynthetic light. These plants, as suggested 

by my results, might be more tolerant to sudden darkness than those in direct sunlight.  

By the time my results were obtained, there had already been a published study 

showing Ws background phyB-10 is hyposensitive to dark induced chlorophyll loss 

(Brouwer et al., 2014). Because Ws wt contains a naturally occurring phyD mutation 

(Aukerman et al., 1997), a PHYD-expressing line (PHYD+) was also introduced and 

no distinction was found in chlorophyll level between Ws and PHYD+ either before 

or after darkness (Brouwer et al., 2014). These suggest a specific function of PHYB 

in promoting dark induced bleaching. In contrast, however, the majority of studies 

point to an opposite role for PHYB, which inhibits dark induced senescence by 

negatively regulating PIFs and various downstream pathways (Sakuraba et al., 2014; 

Song et al., 2014). Since almost all these experiments were conducted using Col 

background accessions, I speculated there might be variations between the 

backgrounds. Phytochrome effect on dark induced chlorophyll loss response was 

then compared between Ler and Col accessions, including wt and phytochrome 
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mutants. Results from two different conditions both showed a reduced chlorophyll 

loss in Ler background phytochrome mutants, which was missing in Col lines 

(Figure 5.3 and 5.4). This preliminarily supports the background effect on 

phytochrome involvement in dark response, necessitating potential re-evaluation of 

the general conclusions drawn from Col. 

It might be worth pointing out that the absolute chlorophyll level after darkness per 

se does not seem to correlate with plant survival rate. phyB-9 with the least 

chlorophyll at the end of dark incubation survived, while Ler are all bleached, after 

14 days back to light (Figure 5.3). Rather, the amount of chlorophyll loss during 

darkness is more likely to implicate the severity of tissue damage caused by dark. 

Also, whether age or developmental stage affect the results of dark test still remains 

mysterious. Plants grown under long photoperiod, 23°C condition for 3 weeks have 

already entered reproductive phase, particularly for phytochrome mutants (Figure 5.4 

A).  

Collectively, this chapter explored the role of phytochromes in dark induced stress 

response, particularly chlorophyll loss and the post-dark survival rate. A reduced 

dark sensitivity was shown in phytochrome mutants from Ler but not Col 

background, suggesting potential underlying variations between natural accessions. 

Further, increasing light intensity was found to promote plant susceptibility to dark 

induced bleaching in a phytochrome-dependent manner.  
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Chapter 6- Discussion 

Previous phytochrome studies have mainly focused on elucidating the early 

molecular signaling events that follow photoreceptor activation in seedling 

developmental stage. More recently, new interests have been raised to explore 

phytochrome-signaling interaction with sugars, from chlorophyll synthesis regulation 

to hypocotyl elongation promoted by exogenous sucrose application. Phytochrome 

effects on adult plant growth and biomass has also been reported; yet relevant 

knowledge is rather fragmented. This thesis sets out to study how phytochromes 

control biomass production through carbon metabolism, especially in adult plants. I 

have shown that phytochrome mutants have reduced photosynthesis, growth and 

biomass, yet excess sugars and proline together with enhanced stress tolerance. A 

hypothesis was then proposed that phytochromes are playing important roles in 

regulating plant metabolic switch between growth-promoting and stress-coping 

statuses. Following observations presented in Chapter 3-5, here I want to discuss 

some intriguing questions raised by my data, and propose some perspectives for 

potential future work that would help uncover the molecular mechanism underlying 

phytochrome control over growth and stress. 
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6.1 Phytochrome Regulation of Carbon Resource 
Chapter 3 shows phytochrome mutants accumulate more starch and sugars (Figure 

3.3). This is rather surprising considering photosynthesis is partly repressed in these 

mutants (Figure 3.2). The observation of altered diurnal growth pattern in phyBD 

implies less carbon being invested into growth especially during daytime (Figure 3.6). 

In other words, phytochromes were suggested to regulate carbon allocation into 

growth particularly in light. However, how this regulation works remains mysterious. 

Below are some potentially interesting ideas I have come up to pursue this question.  

First, it is still unclear how sucrose consumption is regulated by phytochromes. One 

possible way could be through manipulating sucrose allocation and partitioning 

between the sink and source leaves. This is partly supported by a metabolic study in 

rice that shows the phyABC null mutant differs greatly from WT in young leaves but 

not so much in mature leaves (Jumtee et al., 2009). This hypothesis could 

presumably be tested by tracking sucrose directly using CO2 isotopes labeling 

analysis as described in (Kölling et al., 2013). It would be even more helpful if 

attached young single leaf expansion can be monitored to see how it is affected by 

both sucrose import and CO2 assimilation. By comparing these parameters between 

WT and mutants, we will be able to establish which of these processes is 

phytochrome dependent.  

Second, phytochrome mutants may not always have more starch and sucrose than 

WT. Certainly, at the 2-week-old both WT and phytochrome mutant seedlings have 

little starch, and there is no obvious difference at this stage (Appendix Figure 3). In 

addition, these young seedlings without phytochromes were found to have more 
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glucose, instead of sucrose, than WT (Appendix Figure 3). This involves the 

transition of dominant sugars used by plants at different developmental stages, also 

the change in their photosynthesis and carbon consumption rate. As a result, a time 

course quantification of sugars from seedling to mature plant would be helpful in 

elucidating phytochrome effect on carbon content.  

Third, apart from regulating starch quantity, phytochromes might also affect starch 

quality. Chapter 3 presents an interesting preliminary finding that phyABDE has 

much less amylose than WT (iodine staining results, Figure. 3.4), which is probably 

caused by the absence of phytochrome E. The idea that light signaling could affect 

starch composition through plant photoreceptor is rather interesting and could be of 

great value to biotechnology research in starch industries.  

6.2 Phytochrome Control of Growth: Perspectives 
from XTHs Regulation  
A large body of photoreceptor research has established the role of phytochromes in 

inhibiting elongation growth. For plants in dark, shade (e.g. low R: FR light 

experimental conditions where phytochromes are inactivated), or plants without 

phytochromes, seedling hypocotyl length, or leaf petiole elongation, is promoted 

partly through auxin pathways by PIFs (Lorrain et al., 2008). More recently, 

brassinosteroid, gibberellin signaling and temperature are also found to work closely 

with PIFs in regulating elongation (Bai et al., 2012; Sun et al., 2012). However, these 

plants have reduced biomass as longer petioles are often accompanied by reduced 

leaf blade area.  
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This thesis aimed to explore the biomass regulation through phytochromes; therefore, 

focus has been leaf blade expansion rather than petiole elongation. In Chapter 3 

phytochrome mutants are shown to have retarded growth based on lower biomass, 

less rosette expansion (Figure 3.5) and reduced expression of a few cell wall 

synthesis/reorganization genes including XTH7 (Figure 3.7 C). Down-regulation of 

XTH7 was also found in a phyABDE seedling microarray analysis, together with 

XTH6, 12, 13, 14, 24, 26 (Hu et al., 2013). Interestingly, however, other XTH genes 

such as XTH5, 8, 11, 15, 17, 19, 25, 30, 31, 33 were promoted in phyABDE seedlings 

(Appendix Table 4). This is also supported by earlier studies where XTH 9, 15, 16, 

17, 19 were found induced in low R: FR light conditions (Sasidharan and Pierik, 

2010; Sasidharan et al., 2010).  

The differently regulated XTHs by phytochromes suggest distinctive functions of 

these genes in the respective locations. Following a study that shows both 

photoreceptors and sugars are responsible for the different growth response to shade 

in leaf blade and petiole (Kozuka et al., 2005), the same lab reported that several 

XTH genes express differently in these two locations (Kozuka et al., 2010). XTH19 

and XTH22, together with auxin pathway genes such as IAA6 and 19, are induced by 

far-red light treatment at the end of day in petioles but much less in blades. Likewise, 

it would be interesting to test weather genes like XTH7 and CSLB4, CSLG3, EXP1 

(Figure 3.7 C) are repressed in leaf blades rather than petioles in phytochrome 

mutants. 

33 XTH genes in Arabidopsis are classified into three groups based on their gene 

structures (Rose et al., 2002). Interestingly, the most repressed XTH6 and 7 in 
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phyABDE seedlings are from group 1, while XTH15 and 19 that are promoted by 

phytochrome inactivation both belong to group 2. This implies that XTHs might be 

regulated differently based on their gene structures. Actually, even XTHs induced by 

shade were reported to be regulated differently: XTH15 is regulated by PIFs in leaf 

blade/lamina and does not respond to auxin, while XTH19 responds to auxin and is 

not a PIF target based on ChIP data (de Wit et al., 2015). So far, how XTH6 and 7 

genes are regulated by phytochromes has not been studied yet, and it would be 

interesting to see how phytochrome and related transcription factors manipulate these 

XTH genes to control expansion growth. 

6.3 Phytochrome as the Metabolic Switch for Stress 
Priming Status?  
Chapter 4 shows Arabidopsis phytochrome mutants have altered metabolic profile 

compared to Ler WT (Figure 4.3) and suggests this could help prime plants more 

tolerant to unexpected stressors, such as exogenous salt and ABA application (Figure 

4.6-4.7). Indeed, we have detected accumulation of metabolites like proline and 

raffinose that have long been reported to accumulate upon stresses (Kempa et al., 

2008). However, the idea to connect phytochrome and stress pathway through 

metabolism is still quite novel and awaits further inspections. 

Just like sugars, it is unclear how other metabolites accumulate in phytochrome 

mutants, especially proline. Apart from being induced by stress, proline has also been 

found to accumulate in reproductive organs upon developmental transition to 

flowering (Mattioli et al., 2009). In particular, proline catabolic genes, including 

PRODH, were found to be promoted in developmental but repressed in stress-
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induced proline accumulation (Nakashima et al., 1998). The catabolism of proline in 

flowers, siliques and seeds were suggested to provide energy during reproductive 

phase (Mattioli et al., 2009). In Figure 4.5, PRODH was shown upregulated in 

phyABDE mutant, suggesting at least part of the excess proline might be due to 

earlier on-set of flowering. This hypothesis could be tested by quantifying proline 

content locally, such as in apical meristem where flowers would emerge. 

It would also be interesting to explore how light and other factors interplay in this 

metabolic switching process. As similar metabolic profiles were found in several 

clock mutants, including prr975 (Fukushima et al., 2009; Nakamichi et al., 2009) and 

tic-2 (Sanchez-Villarreal et al., 2013), it is very possible that light and clock share 

this metabolic control. In addition, temperature is also likely to be involved in this 

regulation, not only because it has long been reported to interact with light signalling 

components, but also that Arabidopsis metabolism responds to shade at 16°C but not 

at 22°C (Patel et al., 2013). This provides potential research directions to common 

downstream regulators of these pathways in regulating metabolites associated with 

stress response.  

6.4 Potential Natural Variation in Phytochrome 
Control of Dark Response 
Chapter 5 presents some preliminary dark tests that show Col and Ler background 

phytochtome mutants respond to dark induced chlorophyll loss in distinctive ways. 

Similar results from Ler and Ws alleles (Brouwer et al., 2014) suggested Col might 

be the outlier in this case. Considering most of our knowledge on phytochrome 

control over dark induced senescence came from studies using Col lines, it is 
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necessary to find out the potential allelic variation and perhaps re-evaluate the 

current conclusions. 

Studies on Arabidopsis natural variation have revealed unique knowledge in biology 

from plant development, physiology to ecology and evolution (see thorough reviews 

in Alonso-Blanco and Koornneef, 2000; Koornneef et al., 2004; Weigel, 2012). 

Typical case examples include the onset of flowering, pathogen resistance and 

various aspects of plant growth (Koornneef et al., 2004). In particular, Ler has 

natural disruption in a receptor-like kinase ERECTA (Torii et al., 1996), which was  

found to regulate plant shade response at 16°C through natural genetic variation 

analysis (Patel et al., 2013). Interestingly, erecta mutant was reported to have 

enhanced susceptibility to Verticillium longisporum disease (Häffner et al., 2014), 

suggesting potential difference in stress resistance response between Ler and Col 

alleles. As another example, the key repressor of gibberellin (GA) responses, 

DELLA, previously largely studied in Ler background, was reported essential for 

fertility in Col but not in Ler allele (Plackett et al., 2014). Since DELLA has been 

found to coordinate light and GA signalling by sequestering and degrading PIFs (Li 

et al., 2016; Lucas et al., 2008; Feng et al., 2008), it further adds to the possibility 

that light signaling related responses could differ between Ler and Col alleles.  

Still, it is worth noting that in chapter 5 only chlorophyll phenotype (and post-dark-

survival rate of 5-week plant) was inspected between Ler and Col lines. Dark 

response also includes many other aspects, such as ion leakage and induction of 

senescence-associated genes. Whether these phenotypes differ in Ler/Ws 

phytochrome mutants and Col lines remains to be tested. 
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6.5 Concluding Remarks 
This thesis presents a novel role of photoreceptors in regulating plant growth, 

metabolism and stress resilience, making a conceptual advance in the way we view 

light signaling. By studying phytochrome multiple mutants, I have shown that 

changes in light signaling are accompanied by important adjustments in carbon 

metabolism and biomass production. Furthermore, phytochromes might switch plant 

metabolism between growth-promoting and stress-coping states. Finally, my data 

proposes that the current knowledge about phytochome regulation of dark induced 

senescence might need re-evaluation of background allele effect. Taken together, 

these new findings have brought new interest into the field, highlighting the role of 

phytochromes in coordinating growth and stress physiology, suggesting potential 

application of such knowledge to crop biomass studies. 
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Appendix Figure 1. Plant fresh weight and leaf area are reduced when supplied with 
sugars in high light conditions.  

(A-B) Plants were grown at 17℃ in 12h 80 µmol·m-2sec-1 red light/ 12h dark conditions for 3 
weeks before transferring to new media with or without sugars. (C-D) Plants were grown at 
17℃ in 12h 20 µmol·m-2sec-1 red light/ 12h dark conditions for 4 weeks before transferring to 
new media with or without sugars. Fresh weight, leaf area and leaf number were determined 
another 2 week after the sugar treatment. All the values are means ± SE from at least 7 
plants for high light group and 4 for low light group. 
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Appendix Figure 2. Q-PCR analysis of cell wall synthesis related genes in 5-week-old 
phyBD, phyABDE and phyNull (phyABCDE) at EON and EOD. 
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Appendix Figure 3. Protein, Starch and Soluble Sugar Quantification in 2-week-old 
Seedlings. 

Ler, phyBD and phyABDE were grown in short photoperiod (8L:16D) for 2 weeks at 18C. 
Samples were collected at EOD. 
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Appendix Table 1. Starch and sucrose quantification with statistical analysis results. 

Values presented are mean � SEM. Asterisks indicate a significant difference between values of the phytochrome mutants and WT at each time point, 
by means of t-test at ns: p ≥ 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

Sample	information	 SUCROSE	 STARCH	
time	 genotype	 mean	 se	 p-value	 significance	 mean	 se	 p-value	 significance	
9am	(ZT0)	 ler	 0.1698	 0.0106	 		 		 0.1747	 0.0072	 		 		
		 phyBD	 0.3339	 0.0136	 6E-06	 ***	 0.5566	 0.009	 4E-11	 ***	
		 phyABDE	 0.3383	 0.0265	 0.0008	 ***	 0.2978	 0.014	 7E-05	 ***	
3pm	(ZT6)	 ler	 0.5571	 0.0389	 		 		 2.242	 0.0817	 		 		
		 phyBD	 0.547	 0.0266	 0.8341	 ns	 3.3551	 0.1524	 0.0002	 ***	
		 phyABDE	 0.7272	 0.0596	 0.0577	 ns	 2.6523	 0.0956	 0.0526	 ns	

9pm	(ZT12)	 ler	 0.6973	 0.1092	 		 		 3.6774	 0.2519	 		 		

		 phyBD	 1.0048	 0.0442	 0.0368	 *	 5.9063	 0.1496	 6E-05	 ***	

		 phyABDE	 1.2164	 0.0395	 0.0038	 **	 5.3446	 0.1073	 0.0136	 *	

3am	(ZT18)	 ler	 0.6869	 0.0519	 		 		 1.5669	 0.0399	 		 		

		 phyBD	 0.5612	 0.0447	 0.0969	 ns	 3.2274	 0.0664	 2E-07	 ***	

		 phyABDE	 0.5129	 0.0319	 0.0205	 *	 2.5617	 0.0736	 2E-05	 ***	

9am	(ZT24)	 ler	 0.1062	 0.0277	 		 		 0.1799	 0.0067	 		 		

		 phyBD	 0.2228	 0.0321	 0.0208	 *	 0.5094	 0.0103	 1E-09	 ***	

		 phyABDE	 0.3158	 0.0324	 0.0006	 ***	 0.3134	 0.0112	 6E-06	 ***	
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Appendix Table 2. Ion library used for quantifying each metabolite 

Name	
Retention	
Time	 ref_ion1	 ref_ion2	 ref_ion1	 ref_ion2	 ion2to1	 ion3to1	 ion4to1	

Name	 RT	 ref_ion1	 ref_ion2	 ref_ion3	 ref_ion4	 ion2to1	 ion3to1	 ion4to1	
Lactic	acid	(2TMS)	 3.398	 117	 88	 118	 190	 0.104	 0.1	 0.1	
Hydroxylamine(3TMS)	 3.47	 133	 146	 119	 86	 0.678	 0.599	 0.38	
L-Alanine	(2TMS)	 3.738	 116	 117	 72	 130	 0.106	 0.05	 0.048	
Oxalic	acid	(2TMS)	 4.611	 72	 133	 100	 86	 0.925	 0.788	 0.613	
L-Valine	(2TMS)	 4.89	 144	 145	 218	 100	 0.161	 0.122	 0.06	
Glycerol(3TMS)	 5.246	 205	 103	 117	 133	 0.983	 0.919	 0.391	
Hydroxycarbamic	acid	(3TMS)	 5.36	 70	 278	 133	 160	 0.293	 0.255	 0.107	

Leucine(2TMS)	 5.468	 158	 159	 102	 NA	 0.145	 0.112	 NA	

Isoleucine(2TMS)	 5.71	 158	 159	 218	 NA	 0.17	 0.153	 NA	

Glycine(3TMS)	 5.807	 174	 86	 175	 100	 0.434	 0.199	 0.194	

L-Proline	(2TMS)	 6.05	 142	 143	 144	 72	 0.117	 0.041	 0.034	

Glyceric	acid	(3TMS)	 6.141	 189	 103	 102	 133	 0.832	 0.509	 0.497	
Benzoic	acid	(1TMS)	 6.203	 105	 77	 179	 135	 0.847	 0.645	 0.581	
Serine(3TMS)	 6.374	 204	 218	 100	 116	 0.882	 0.455	 0.247	
Succinic	acid	(2TMS)	 6.508	 247	 72	 129	 172	 0.943	 0.906	 0.679	
L-Threonine	(3TMS)	 6.547	 117	 218	 219	 101	 0.638	 0.607	 0.538	
Fumaric	acid	(2TMS)	 6.606	 245	 143	 246	 115	 0.253	 0.177	 0.128	
Malic	acid	(3TMS)	 7.82	 233	 133	 101	 72	 0.842	 0.807	 0.719	
proline,	4-Hydroxy	(3TMS)	 7.946	 71	 230	 85	 140	 0.92	 0.614	 0.472	
Aspartic	acid	(3TMS)	 8.109	 232	 100	 233	 218	 0.517	 0.194	 0.191	
Ribitol	(5TMS)-IS	 8.876	 103	 217	 129	 205	 0.712	 0.444	 0.392	
Glutamic	acid	(3TMS)	 8.985	 246	 128	 84	 247	 0.525	 0.256	 0.191	
Phenylalanine	(2TMS)	 9.413	 218	 192	 100	 82	 0.832	 0.474	 0.407	
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Appendix Table 2. Ion library used for quantifying each metabolite (continued). 

Asparagine	(3TMS)	 9.712	 116	 132	 231	 141	 0.404	 0.312	 0.205	
1,6-Anhydroglucose	(3TMS)	 9.847	 204	 217	 103	 117	 0.813	 0.225	 0.211	
2-	Desoxyinosose	methoxyamine	(4TMS)	 10.104	 133	 89	 116	 103	 0.408	 0.355	 0.287	

Fructose	methoxyamine	(5TMS)	 10.224	 103	 217	 307	 133	 0.37	 0.15	 0.092	

Glucose	methoxyamine	(5TMS)	 10.42	 205	 160	 319	 103	 0.87	 0.786	 0.724	

Citric	acid	(4TMS)	 10.459	 273	 133	 72	 347	 0.187	 0.165	 0.165	

Glutamine(3TMS)	 10.549	 156	 155	 245	 157	 0.337	 0.178	 0.146	

Diethyleneglycol	(2TMS)	 10.6	 117	 116	 103	 101	 0.548	 0.259	 0.181	
Tetradecanoic	acid(1TMS)	 10.883	 117	 129	 132	 285	 0.301	 0.271	 0.262	
Dehydroascorbic	acid	dimer;	L(+)-Ascorbic	acid	{BP}	 11.041	 173	 157	 129	 89	 0.89	 0.572	 0.318	
myo-Inositol	(6TMS)	 11.544	 217	 305	 191	 318	 0.819	 0.545	 0.397	
Galactose	methoxyamine	(5TMS)	 11.704	 319	 205	 103	 320	 0.821	 0.599	 0.322	
Hexadecanoic	acid	(1TMS)	 12.287	 117	 129	 132	 313	 0.331	 0.314	 0.26	
2-O-Glycerol-beta-D-galactopyranoside	(6TMS)	 12.546	 204	 205	 217	 131	 0.208	 0.115	 0.094	
Spermidine	(5TMS)	 12.753	 144	 116	 174	 156	 0.829	 0.378	 0.341	
Indole-3-acetonitrile	 12.788	 228	 129	 213	 101	 0.943	 0.313	 0.1	
Octadecanoic	acid	(1TMS)	 13.581	 117	 132	 129	 341	 0.361	 0.346	 0.258	
Sucrose	(8TMS)	 14.769	 361	 217	 103	 129	 0.532	 0.44	 0.346	
Docosanol	(1TMS)	 15.159	 383	 103	 159	 89	 0.766	 0.644	 0.383	
Maltose	methoxyamine	{BP}	(8TMS)	 15.457	 204	 361	 217	 103	 0.499	 0.442	 0.355	
Galactinol(9TMS)	 16.377	 204	 129	 191	 217	 0.963	 0.831	 0.699	
Trehalose	(8TMS)	 17.216	 361	 103	 217	 129	 0.474	 0.355	 0.33	
Raffinose	(11TMS)	 18.079	 361	 217	 204	 103	 0.556	 0.45	 0.366	
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Appendix Table 3. Relative metabolite contents of EON and EOD samples of WT and phytochrome mutants. 

Data was normalized to WT EOD sample. NA indicates no detection of such metabolite in the given sample. 

	 EOD	 EON	

Compound		 WT	 SE	 phyB
D	 SE	 phyA

BDE	 SE	 phyA
BCDE	 SE	 WT	 SE	 phyB

D	 SE	 phyA
BDE	 SE	 phyA

BCDE	 SE	

1,6-Anhydroglucose	
(3TMS)	 1.000	 0.147	 0.821	 0.107	 0.750	 0.177	 0.884	 0.159	 1.215	 0.089	 0.934	 0.101	 0.735	 0.071	 0.735	 0.096	

2-	Desoxyinosose	
methoxyamine	(4TMS)	 1.000	 0.075	 1.402	 0.095	 1.396	 0.082	 1.461	 0.194	 0.358	 0.025	 1.109	 0.061	 0.353	 0.048	 0.504	 0.039	

2-O-Glycerol-beta-D-
galactopyranoside	(6TMS)	 1.000	 0.023	 1.065	 0.040	 1.062	 0.014	 0.893	 0.169	 0.818	 0.156	 1.213	 0.051	 1.090	 0.028	 1.118	 0.040	

Asparagine	(3TMS)	 1.000	 0.124	 0.748	 0.128	 0.971	 0.176	 1.339	 0.302	 0.748	 0.120	 1.113	 0.237	 0.919	 0.194	 1.398	 0.129	
Aspartic	acid	(3TMS)	 1.000	 0.060	 1.211	 0.041	 1.206	 0.087	 1.148	 0.078	 0.979	 0.092	 1.426	 0.196	 1.345	 0.062	 1.502	 0.071	
Benzoic	acid	(1TMS)	 1.000	 0.062	 1.215	 0.178	 1.068	 0.040	 1.121	 0.067	 0.666	 0.122	 0.903	 0.113	 0.808	 0.070	 0.854	 0.155	
Citric	acid	(4TMS)	 1.000	 0.208	 0.917	 0.073	 1.459	 0.119	 1.489	 0.122	 0.732	 0.066	 1.522	 0.225	 1.243	 0.112	 1.470	 0.117	
Dehydroascorbic	acid	
dimer;	L(+)-Ascorbic	acid	
{BP}	

1.000	 0.031	 0.836	 0.064	 0.942	 0.054	 0.964	 0.068	 1.076	 0.035	 1.056	 0.065	 1.446	 0.057	 1.502	 0.058	

Diethyleneglycol	(2TMS)	 1.000	 0.054	 1.107	 0.116	 1.028	 0.035	 0.999	 0.066	 0.996	 0.020	 1.158	 0.060	 1.010	 0.037	 0.938	 0.044	
Docosanol	(1TMS)	 1.000	 0.188	 0.894	 0.171	 0.808	 0.178	 0.822	 0.145	 0.885	 0.196	 1.035	 0.078	 0.993	 0.060	 0.952	 0.086	
Fructose	methoxyamine	
(5TMS)	 1.000	 0.098	 1.076	 0.195	 1.218	 0.068	 0.593	 0.087	 0.260	 0.013	 0.334	 0.040	 0.278	 0.026	 0.290	 0.057	

Fumaric	acid	(2TMS)	 1.000	 0.061	 1.106	 0.064	 1.327	 0.175	 1.578	 0.074	 0.405	 0.026	 0.656	 0.061	 1.048	 0.079	 1.010	 0.053	
Galactinol(9TMS)	 1.000	 0.146	 1.030	 0.106	 1.250	 0.326	 1.122	 0.206	 0.783	 0.214	 1.119	 0.204	 1.106	 0.298	 0.964	 0.261	
Galactose	methoxyamine	
(5TMS)	 1.000	 0.063	 1.086	 0.053	 0.955	 0.028	 1.013	 0.041	 1.074	 0.103	 1.054	 0.119	 0.723	 0.071	 0.957	 0.074	
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Appendix Table 3. Relative metabolite contents of EON and EOD samples of WT and phytochrome mutants (continued). 

	 EOD	 EON	

Compound		 WT	 SE	 phyB
D	 SE	 phyA

BDE	 SE	 phyA
BCDE	 SE	 WT	 SE	 phyB

D	 SE	 phyA
BDE	 SE	 phyA

BCDE	 SE	

Glucose	methoxyamine	
(5TMS)	 1.000	 0.023	 1.948	 0.321	 2.085	 0.201	 1.101	 0.102	 0.334	 0.034	 0.665	 0.087	 0.314	 0.022	 0.420	 0.055	

Glutamic	acid	(3TMS)	 1.000	 0.059	 1.185	 0.058	 1.361	 0.042	 1.846	 0.121	 1.002	 0.065	 1.263	 0.170	 1.356	 0.108	 1.411	 0.051	
Glutamine(3TMS)	 1.000	 0.106	 1.352	 0.061	 1.493	 0.195	 2.139	 0.397	 0.291	 0.041	 0.634	 0.131	 0.465	 0.038	 0.863	 0.097	
Glyceric	acid	(3TMS)	 1.000	 0.058	 1.080	 0.102	 0.870	 0.044	 1.025	 0.065	 NA	 0.000	 NA	 0.000	 NA	 0.000	 0.247	 0.048	
Glycerol(3TMS)	 1.000	 0.253	 1.054	 0.167	 1.273	 0.322	 1.549	 0.400	 0.828	 0.044	 0.850	 0.060	 0.846	 0.082	 0.655	 0.045	
Glycine(3TMS)	 1.000	 0.022	 0.980	 0.064	 1.053	 0.097	 1.381	 0.139	 NA	 0.000	 0.037	 0.006	 0.082	 0.025	 0.106	 0.010	
Hexadecanoic	acid	(1TMS)	 1.000	 0.096	 1.250	 0.134	 1.049	 0.115	 1.047	 0.041	 0.988	 0.082	 1.155	 0.082	 0.956	 0.052	 1.009	 0.069	
Hydroxycarbamic	acid	
(3TMS)	 1.000	 0.078	 4.047	 0.430	 3.672	 0.502	 3.614	 0.504	 0.644	 0.046	 3.055	 0.115	 2.532	 0.187	 2.103	 0.178	

Hydroxylamine(3TMS)	 1.000	 0.039	 0.949	 0.063	 0.872	 0.043	 0.851	 0.072	 0.806	 0.053	 0.918	 0.086	 0.655	 0.039	 0.604	 0.025	
Indole-3-acetonitrile	 1.000	 0.254	 0.838	 0.211	 0.886	 0.196	 0.548	 0.123	 0.703	 0.130	 NA	 0.000	 0.661	 0.161	 NA	 0.000	
Isoleucine(2TMS)	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	
Lactic	acid	(2TMS)	 1.000	 0.142	 1.022	 0.177	 1.068	 0.294	 1.104	 0.326	 0.739	 0.088	 1.542	 0.602	 1.321	 0.263	 1.710	 0.495	
L-Alanine	(2TMS)	 1.000	 0.030	 1.143	 0.057	 0.985	 0.085	 1.380	 0.084	 0.882	 0.048	 0.854	 0.063	 0.786	 0.048	 0.968	 0.049	
Leucine(2TMS)	 1.000	 0.081	 1.357	 0.099	 1.360	 0.084	 1.450	 0.207	 0.743	 0.134	 1.693	 0.134	 1.943	 0.141	 2.005	 0.093	
L-Proline	(2TMS)	 1.000	 0.035	 3.708	 0.183	 3.743	 0.284	 3.622	 0.354	 0.527	 0.021	 2.866	 0.117	 2.502	 0.214	 2.037	 0.249	
L-Threonine	(3TMS)	 1.000	 0.048	 1.038	 0.022	 0.821	 0.024	 0.856	 0.026	 0.481	 0.015	 0.644	 0.038	 0.455	 0.036	 0.550	 0.030	
L-Valine	(2TMS)	 1.000	 0.050	 1.241	 0.051	 1.135	 0.036	 1.218	 0.106	 0.632	 0.028	 0.925	 0.058	 0.923	 0.040	 1.008	 0.041	
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Appendix Table 3. Relative metabolite contents of EON and EOD samples of WT and phytochrome mutants (continued). 

	 EOD	 EON	

Compound		 WT	 SE	 phyB
D	 SE	 phyA

BDE	 SE	 phyA
BCDE	 SE	 WT	 SE	 phyB

D	 SE	 phyA
BDE	 SE	 phyA

BCDE	 SE	

Malic	acid	(3TMS)	 1.000	 0.126	 1.854	 0.102	 1.964	 0.072	 3.019	 0.195	 0.286	 0.026	 0.902	 0.132	 0.857	 0.046	 1.422	 0.074	
Maltose	methoxyamine	
{BP}	(8TMS)	 1.000	 0.170	 1.536	 0.067	 1.263	 0.399	 1.332	 0.271	 1.649	 0.108	 1.851	 0.197	 0.764	 0.049	 1.864	 0.125	

myo-Inositol	(6TMS)	 1.000	 0.064	 1.115	 0.065	 0.837	 0.029	 1.251	 0.076	 0.979	 0.036	 1.201	 0.113	 0.860	 0.027	 1.110	 0.143	
Octadecanoic	acid	(1TMS)	 1.000	 0.075	 1.257	 0.177	 1.109	 0.071	 1.100	 0.056	 0.981	 0.068	 1.185	 0.094	 0.924	 0.029	 1.055	 0.081	
Oxalic	acid	(2TMS)	 1.000	 0.068	 1.103	 0.087	 1.082	 0.125	 1.104	 0.075	 1.093	 0.069	 1.284	 0.079	 0.956	 0.065	 0.947	 0.030	
Phenylalanine	(2TMS)	 1.000	 0.111	 0.891	 0.055	 1.268	 0.055	 1.108	 0.075	 0.251	 0.061	 0.382	 0.094	 0.499	 0.063	 0.571	 0.053	
proline,	4-Hydroxy	(3TMS)	 1.000	 0.234	 0.789	 0.079	 0.867	 0.161	 0.893	 0.059	 0.909	 0.171	 0.957	 0.077	 0.955	 0.092	 0.978	 0.101	
Raffinose	(11TMS)	 1.000	 0.175	 4.763	 1.058	 2.999	 0.313	 1.961	 0.250	 0.558	 0.126	 4.558	 0.876	 0.941	 0.074	 1.060	 0.180	
Ribitol	(5TMS)	IS	 1.000	 0.020	 0.992	 0.010	 0.983	 0.003	 0.989	 0.006	 0.971	 0.014	 0.992	 0.006	 0.990	 0.010	 0.987	 0.007	
Serine(3TMS)	 1.000	 0.071	 1.262	 0.064	 1.130	 0.063	 1.401	 0.052	 0.293	 0.024	 0.389	 0.049	 0.328	 0.026	 0.451	 0.033	
Spermidine	(5TMS)	 1.000	 0.065	 1.128	 0.105	 0.856	 0.031	 0.795	 0.043	 0.677	 0.026	 0.967	 0.088	 0.563	 0.038	 0.617	 0.049	
Succinic	acid	(2TMS)	 1.000	 0.175	 2.154	 0.399	 1.853	 0.167	 3.285	 0.244	 1.535	 0.100	 4.018	 0.375	 3.030	 0.193	 4.179	 0.149	
Sucrose	(8TMS)	 1.000	 0.042	 1.120	 0.061	 1.116	 0.026	 1.061	 0.027	 0.837	 0.051	 0.939	 0.063	 0.789	 0.031	 0.872	 0.027	
Tetradecanoic	acid(1TMS)	 1.000	 0.056	 1.120	 0.083	 0.993	 0.037	 1.031	 0.055	 0.753	 0.044	 0.870	 0.067	 0.745	 0.022	 0.752	 0.030	
Trehalose	(8TMS)	 1.000	 0.173	 0.738	 0.131	 0.943	 0.214	 0.997	 0.145	 0.864	 0.110	 1.044	 0.195	 0.990	 0.148	 1.120	 0.100	
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Appendix Table 4. XTHs are regulated differently in phyABDE compared to WT.  

This table lists all the XTHs that have altered expression in phyABDE seedlings grown in 50Um continuous red light compared to WT. Results re-
analyzed from published microarray data (Hu et al., 2013).  

ID	 adj.P.Val	 P.Value	 t	 B	 logFC	
Gene.	
symbol	 Gene.title	

247162_at	 1.94E-07	 5.78E-11	 -3.38E+01	 15.54792	 -6.7	 XTH6	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	6	
253040_at	 3.17E-07	 2.98E-10	 -2.82E+01	 14.15331	 -4.34	 XTH7	 xyloglucan	endotransglucosylase/hydrolase	protein	7	
254044_at	 1.45E-04	 6.08E-06	 -9.21	 4.199799	 -3.39	 XTH14	 xyloglucan	endotransglucosylase/hydrolase	protein	14	
247871_at	 4.46E-06	 2.83E-08	 -1.70E+01	 9.807188	 -2.87	 XTH12	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	12	
247914_at	 9.88E-05	 3.52E-06	 -9.82	 4.781051	 -2.37	 XTH13	 xyloglucan	endotransglucosylase/hydrolase	13	
253763_at	 2.69E-04	 1.47E-05	 -8.28	 3.258702	 -1.68	 XTH26	 xyloglucan	endotransglucosylase/hydrolase	26	
263598_at	 9.13E-05	 3.11E-06	 -9.97	 4.913465	 -1.28	 EXGT-A3	 endoxyloglucan	transferase	A3	
253666_at	 7.26E-04	 5.73E-05	 -6.99	 1.798882	 -1	 XTH24	 xyloglucan	endotransglucosylase/hydrolase	protein	24	
247925_at	 1.96E-02	 4.72E-03	 -3.7	 -2.88726	 -7.38E-01	 XTH22	 xyloglucan	endotransglucosylase/hydrolase	protein	22	
261550_at	 5.20E-03	 8.31E-04	 -4.87	 -1.05673	 -7.05E-01	 RHS8	 xyloglucan-specific	galacturonosyltransferase	
259041_at	 5.28E-03	 8.51E-04	 -4.85	 -1.08237	 -6.51E-01	 CSLC6	 putative	xyloglucan	glycosyltransferase	6	
262842_at	 6.26E-03	 1.06E-03	 -4.69	 -1.31998	 -6.35E-01	 XTH28	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	28	
265845_at	 1.40E-01	 6.09E-02	 -2.13	 -5.4737	 -3.14E-01	 XEG113	 xyloglucanase	113	
266376_at	 2.38E-01	 1.25E-01	 -1.69	 -6.14507	 -2.25E-01	 XTH10	 xyloglucan	endotransglucosylase/hydrolase	protein	10	
266215_at	 7.13E-01	 5.83E-01	 -5.70E-01	 -7.34159	 -9.90E-02	 XTH4	 endoxyloglucan	transferase	A1	
265283_at	 8.41E-01	 7.54E-01	 -3.23E-01	 -7.46053	 -6.65E-02	 MUR3	 xyloglucan	galactosyltransferase	KATAMARI1	
254801_at	 9.78E-01	 9.61E-01	 -5.03E-02	 -7.51644	 -6.58E-03	 XTH1	 xyloglucan	endotransglucosylase/hydrolase	1	
257102_at	 9.78E-01	 9.62E-01	 -4.84E-02	 -7.51654	 -6.22E-03	 XTH3	 xyloglucan	endotransglucosylase/hydrolase	3	
255433_at	 6.78E-01	 5.42E-01	 6.33E-01	 -7.30094	 1.06E-01	 XTH9	 xyloglucan	endotransglucosylase/hydrolase	9	
254598_at	 4.53E-01	 3.02E-01	 1.09	 -6.89598	 1.63E-01	 XTH29	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	29	
251192_at	 3.24E-01	 1.90E-01	 1.41	 -6.51687	 1.95E-01	 XT1	 xyloglucan	6-xylosyltransferase	
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Appendix Table 4. XTHs are regulated differently in phyABDE compared to WT (continued). 

ID	 adj.P.Val	 P.Value	 t	 B	 logFC	
Gene.	
symbol	 Gene.title	

248732_at	 4.48E-01	 2.97E-01	 1.1	 -6.88462	 2.00E-01	 XTH20	 xyloglucan	endotransglucosylase/hydrolase	protein	20	
266066_at	 1.74E-01	 8.17E-02	 1.95	 -5.75361	 3.44E-01	 XTH21	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	21	
257203_at	 6.32E-02	 2.15E-02	 2.77	 -4.44412	 4.06E-01	 XTH16	 xyloglucan	endotransglucosylase/hydrolase	protein	16	
254802_at	 1.91E-02	 4.56E-03	 3.72	 -2.85169	 4.92E-01	 XTH2	 xyloglucan	endotransglucosylase/hydrolase	2	
254042_at	 2.77E-02	 7.37E-03	 3.42	 -3.35106	 5.42E-01	 XTR6	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	23	
250591_at	 1.53E-02	 3.43E-03	 3.91	 -2.55462	 5.48E-01	 AT5G07720	 xyloglucan	6-xylosyltransferase	
260222_at	 3.94E-03	 5.69E-04	 5.14	 -0.65383	 6.91E-01	 XXT5	 xyloglucan	xylosyltransferase	5	
253628_at	 4.29E-02	 1.30E-02	 3.07	 -3.93386	 8.55E-01	 XTH18	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	18	
263841_at	 4.81E-04	 3.26E-05	 7.5	 2.405465	 9.46E-01	 XTH32	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	32	
257071_at	 2.33E-04	 1.19E-05	 8.49	 3.479128	 1.06	 CSLC04	 xyloglucan	glycosyltransferase	4	
245794_at	 8.31E-04	 6.88E-05	 6.83	 1.604475	 1.07	 XTH30	 probable	xyloglucan	endotransglucosylase/hydrolase	30	
261825_at	 1.31E-04	 5.33E-06	 9.35	 4.340377	 1.26	 XTH8	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	8	
252320_at	 7.95E-04	 6.47E-05	 6.88	 1.669598	 1.34	 XTH11	 probable	xyloglucan	endotransglucosylase/hydrolase	11	
250214_at	 1.87E-04	 8.76E-06	 8.81	 3.809171	 1.5	 XTH5	 endoxyloglucan	transferase	A4	
264157_at	 8.13E-03	 1.50E-03	 4.46	 -1.68318	 1.5	 XTH17	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	17	
247866_at	 1.14E-01	 4.68E-02	 2.29	 -5.21822	 1.75	 XTH25	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	25	
263207_at	 1.08E-05	 1.22E-07	 1.45E+01	 8.314768	 1.85	 XTH33	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	33	
252607_at	 1.11E-04	 4.17E-06	 9.63	 4.600906	 1.96	 XTH31	 xyloglucan	endotransglucosylase/hydrolase	
253608_at	 7.56E-05	 2.38E-06	 1.03E+01	 5.197637	 2.02	 XTH19	 xyloglucan	endotransglucosylase/hydrolase	19	
245325_at	 3.21E-06	 1.66E-08	 1.81E+01	 10.34516	 3.12	 XTH15	 probable	xyloglucan	endotransglucosylase/hydrolase	protein	15	
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