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Abstract

In this thesis, we analyze the performance of three promising technologies being
considered for future fifth generation (5G) and beyond wireless communication systems,
with primary goals to: i) render 10-100 times higher user data rate, ii) serve 10-100
times more users simultaneously, iii) 1000 times more data volume per unit area, iv)
improve energy efficiency on the order of 100 times, and iv) provide higher bandwidths.
Accordingly, we focus on massive multiple-input multiple-output (MIMO) systems and
other future wireless technologies, namely millimeter wave (mmWave) and full-duplex
(FD) systems that are being considered to fulfill the above requirements.

We begin by focusing on fundamental performance limits of massive MIMO systems
under practical constraints such as low complexity processing, array size and limited
physical space. First, we analyze the performance of a massive MIMO base station
(BS) serving spatially distributed multi-antenna users within a fixed coverage area.
Stochastic geometry is used to characterize the spatially distributed users while large
dimensional random matrix theory is used to achieve deterministic approximations of
the sum rate of the system. We then examine the deployment of a massive MIMO
BS and the resulting energy efficiency (EE) by considering a more realistic set-up of a
rectangular array with increasing antenna elements within a fixed physical space. The
effects of mutual coupling and correlation among the BS antennas are incorporated
by deriving a practical mutual coupling matrix which considers coupling among all
antenna elements within the BS. Accordingly, the optimum number of antennas that
can be deployed for a particular antenna spacing when EE is considered as a design
criteria is derived. Also, it is found that mutual coupling effect reduces the EE of the
massive system by around 40-45% depending on the precoder/receiver used and the
physical space available for antenna deployment.

After establishing the constraints of antenna spacing on massive MIMO systems
for the current microwave spectrum, we shift our focus to mmWave frequencies (more
than 100GHz available bandwidth), where the wavelength is very small and as a result
more antennas can be rigged within a constrained space. Accordingly, we integrate
the massive MIMO technology with mmWave networks. In particular, we analyze the
performance of a mmWave network consisting of spatially distributed BS equipped with
very large uniform circular arrays (UCA) serving spatially distributed users within a
fixed coverage area. The use of UCA is due to its capability of scanning through both
the azimuth as well as elevation dimensions. We show that using such 3D massive
MIMO techniques in mmWave systems yield significant performance gains. Further,
we show the effect of blockages and path loss on mmWave networks. Since blockages are
found to be quite detrimental to mmWave networks, we create alternative propagation
paths with the aid of relays. In particular, we consider the deployment of relays in
outdoor mmWave networks and then derive expressions for the coverage probability
and transmission capacity from sources to a destination for such relay aided mmWave
networks using stochastic geometric tools. Overall, relay aided mmWave transmission
is seen to improve the signal to noise ratio at the destination by around 5-10dB with
respect to specific coverage probabilities.



Finally, due to the fact that the current half duplex (HD) mode transmission only
utilizes half the spectrum at the same time in the same frequency, we consider a mul-
tiuser MIMO cellular system, where a FD BS serves multiple HD users simultaneously.
However, since FD systems are plagued by severe self-interference (SI), we focus on the
design of robust transceivers, which can cancel the residual SI left after antenna and
analog cancellations. In particular, we address the sum mean-squared-errors (MSE)
minimization problem by transforming it into an equivalent semidefinite programming
(SDP) problem. We propose iterative alternating algorithms to design the transceiver
matrices jointly and accordingly show the gains of FD over HD systems. We show that
with proper SI cancellation, it is possible to achieve gains on sum rate of up to 70-80%
over HD systems.
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Lay Summary

The advent of internet, smartphones, social media, online video streaming, online
gaming, etc., has heralded an explosive growth in the amount of data being created.
This explosive growth of mobile data traffic has led to an ever-growing demand for much
higher capacity, lower latency, and energy efficiency (EE) in wireless networks, which
has culminated in the development of the fifth generation (5G) and beyond wireless
communication systems. In particular, 5G is expected to be deployed by the year
2020, with key goals of data rates in the range of Gbps, billions of connected devices,
lower latency, improved coverage and reliability, and low-cost, energy efficient, and
environment friendly operation. Accordingly, future 5G and beyond wireless systems
have to comply with three primary requirements: i) rendering very high capacity (10-
100x more than 4G) and increasing energy efficiency (on the order of 100x), ii) serving
a large number of users simultaneously (10-100x more than 4G), iii) providing an
increase in area capacity of 1000x from 4G and iv) providing higher bandwidths.

Several promising technologies such as millimeter wave (mmWave) networks, mas-
sive multiple-input multiple-output (MIMO), full duplex (FD), non-orthogonal multi-
ple access (NOMA), etc., are being considered for 5G systems. In particular, mmWave
bands with significant amounts of unused or moderately used bandwidths can provide
a significant boost to the spectral efficiency /bandwidth requirements. However, due to
the very high frequencies used in mmWave, the path-loss increases with the frequencies
for omni-directional antennas. To overcome the dependency of frequency on path-loss,
large antenna aperture can be used, which can be achieved by using very large antenna
arrays, also known as massive MIMO arrays. In fact, massive MIMO technology on
its own can provide considerable improvement in both capacity and energy efficiency.
In this approach, a base station (BS) with very large antenna array serving tens of
users in the same time-frequency resource is used to eliminate inter-cell interference
through highly directional beamforming. Another technology that has gained consid-
erable attention in recent years is full duplex (FD) MIMO, which has the potential
to double the spectral efficiency of current half duplex systems. The combination of
FD communication with massive MIMO technology can provide bi-directional wireless
communication at very high spectral and energy efficiency.

Accordingly, in this thesis, we provide a hollistic study of these three technolo-
gies and discuss the importance of using very large antenna arrays in future wireless
communications systems. We provide several advantages and corresponding trade-offs
of these technologies with respect to several real-life implementation constraints, such
as physical space for massive MIMO, blockages for mmWave, and self-interference for
FD. Overall, we show that these three technologies will indeed be the ones to fulfil the
objectives of 5G, and will shape the way we communicate in the near and far future.
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Chapter 1

Introduction

1.1 Background

Communication technologies have gone through numerous innovations over the past
century. Among all the communication technologies, wireless communication, by all
measure, has been the fastest growing segment of the communications industry. Per-
haps, it is fair to say that mobile and cellular communications, which directly impact
our daily lives have seen the most astonishing advancements of wireless communica-
tions. This has become more prominent with the shift in paradigm of communication
from voice centric to data centric. The surge in internet usage, mobile applications us-
age, social media and online video streaming through mobile devices (mobile phones,
tablets, laptops, etc.) [Fig. 1.1] [1] has heralded an explosive growth in the amount of
data being requested. Accordingly, Fig. 1.2 [2] shows the overall projected growth in
mobile data traffic from 2015 to 2020, revealing an 8-fold growth of up to 30.6 exabytes
per month (the equivalent of 7,641 million DVDs each month).

This growth has continually resulted in an ever-growing demand for much higher
capacity, lower latency and energy efficiency in wireless networks. Furthermore, as the
electromagnetic spectrum with favourable communication properties below 20 GHz is
almost completely expended, it is evident that the future demand for mobile data traffic
will not be met. As a result, research has been directed towards developing alternative
technologies and utilizing alternative spectrum regions. These have culminated in the
development of the fifth generation (5G) and beyond wireless communication systems,
expected to be deployed by the year 2020, with key goals of data rates in the range of

Gbps, billions of connected devices, lower latency, improved coverage and reliability,



1.1. Background

On Smart Phones and
tablets , the share of
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Figure 1.1: Mobile data traffic volumes by application and device type currently.
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Figure 1.2: Projected global mobile data traffic from 2015 to 2020 (in exabytes per
month).

and low-cost, energy efficient and environment-friendly operation. To further signify
the eminence of 5G, Fig. 1.3 shows the evolution of mobile technologies since the
emergence of 1G. However, a question that has often been asked by many is: “What
will 5G be?”. To seek the answer to this question, we refer to [4, 5, 6], where it has been
mentioned that the next generation wireless communication technology, also termed as

5G will be achieved through gains in the following categories:

1. Increasing the spectral efficiency through advances in multiple-input multiple-
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Figure 1.3: Evolving mobile technologies [3]. While 1G established seamless mobile
connectivity by introducing mobile voice services, 2G increased voice capacity and deliv-
ered data to masses through mobile. 3G introduced mobile broadband services for faster
and better connectivity and 4G LTE delivers more capacity for faster and better mobile
broadband experience. 5G promises to improve on the existing LTE and LTE advanced
technology. Enhanced mobile broadband with faster and more reliable user experience,
varied low cost internet of things (I0T) with a wide range of coverage, lower latency
and higher reliability are a few of the design goals of 5G.

output (MIMO) to support more bits/s/Hz per node.

2. Increasing the energy efficiency of wireless networks to improve the battery life

of user devices and reduce the transmitted power at the base stations.

3. Increasing bandwidth by shifting towards the millimeter wave (mmWave) spec-

trum.

4. Increasing the area spectral efficiency through densification of networks by im-

plementing more active nodes per unit area.

Accordingly in this thesis, we will try to address these requirements by taking into
account three promising technologies: 1) Massive multiple input multiple output, 2)

full duplex, and 3) mmWave. In particular, we will study the performance of mas-

3
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sive MIMO and full duplex to address the first and second requirement and mmWave
systems to address the third. The fourth requirement can be addressed through the
realization of heterogenous networks involving new 5G standards such as at mmWave
frequencies and existing 4G LTE and 3G networks. However, this is beyond the scope
of discussion of this thesis and will only be mentioned for the readers’ better under-

standing.

1.2 Summary of Specific Contributions

In this thesis, we provide a hollistic study of the above mentioned three technologies
and the importance of using very large antenna arrays in future wireless communica-
tions systems. In particular, massive MIMO antenna arrays can help overcome the
dependency of frequency on path-loss in mmWave systems and cancel self interference
in full duplex (FD) systems. Nonetheless, massive MIMO may require major archi-
tectural changes, particularly in the design of macro base stations, which will lead to
new types of deployments. Consequently, in this thesis, we focus on the fundamental
performance limit analysis of these technologies and provide several advantages and
corresponding trade-offs with respect to several real life implementation constraints,
such as physical space for massive MIMO, blockages for mmWave and self-interference
for full duplex. Overall, we show that these three technologies will indeed be the ones
to fulfill the objectives of 5G, that will shape the way we communicate in the near
and far future. The most important contributions along with related publications are

summarized as follows:

e We begin by presenting approximations of the sum-rate of an uplink single-cell
multi-user MIMO system consisting of large number of antennas at the BS and
multiple antennas at user equipments (UEs) in Chapter 3, while adhering to the
consideration that the users follow a Poisson point process (PPP) within the cell.
We consider correlated Rayleigh fading and uniformly distributed UEs within the
cell and power-law path loss, where the path loss exponent determines the large
scale fading of the users. We then provide high and low SNR approximations
of the sum-rate of the system, which can be considered as good low complexity
approximations of the analytical capacity. We also provide the approximate sum
rate for the kth ordered user. Further, we also touch on the analysis of the energy
efficiency (EE) of the whole system considering a realistic power consumption

model which includes the circuit power consumption of the system.
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Publications related to this chapter:

1. S. Biswas, J. Xue, F Khan, T. Ratnarajah, “Performance Analysis of Cor-
related Massive MIMO Systems with Spatially Distributed Users,” in press,
IEEE Systems Journal, 2016.

2. S. Biswas, J. Xue, F. Khan and T. Ratnarajah, “On the Capacity of Corre-
lated Massive MIMO Systems using Stochastic Geometry,” in Proc. IFEFE

International Symposium on Information Theory (ISIT), Hong Kong, June
14-19, 2015.

e In Chapter 4, we consider realistic setups of massive MIMO and analyze how
large MIMO systems bounded by fixed physical spaces fare to the demands of
increasing EE while contributing towards high spectral efficiencies (SE). We re-
examine the question- “How many antennas do we need?” [7] by means of EE
under a) realistic antenna deployments in fixed physical spaces, and b) thorough
and pragmatic power consumption models. We reflect on both the uplink and
downlink of a multi-user MIMO system which models antenna correlation and
coupling at the BS. We calculate the SE and transmitted power for both uplink
and downlink and also the EE of this system with the help of a power consumption
model similar to Chapter 3, but with additional parameters like power consumed
by amplifiers and other digital circuits. We then provide an analytical expression
for EE of this system by considering zero forcing (ZF) receiver/precoder and

simulation results for both maximum ratio combining (MRC)/maximum ratio
transmission (MRT) and ZF.

Publications related to this chapter:

1. S. Biswas, C. Masouros and T. Ratnarajah, “Performance Analysis of Large
Multiuser MIMO Systems With Space-Constrained 2-D Antenna Arrays,”
IEEFE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3492-
3505, May 2016.

2. S. Biswas, C. Masouros and T. Ratnarajah, “On the Energy Efficiency
of Massive MIMO with Space-Constrained 2D Antenna Arrays”, In Proc.
IEEE International Conference on Communications (ICC), Kuala Lumpur,
Malaysia, May 23-27, 2016.

e In Chapter 5, we analyze the performance of a mmWave network aided by re-

lays. In particular, we present a relay modeling technique in mmWave networks
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considering blockages, in which we compute the density of active relays that aid
the transmission. A closed form expression for end-to-end signal-to-noise-ratio
(SNR) is provided and the best random relay path in a mmWave network us-
ing order statistics is calculated. To investigate the asymptotic increase in the
number of transmission paths, extreme value theory is used and accordingly the
maximum end-to-end SNR of random relay paths is found to approach the Gum-
bel distribution. Finally, we provide an analysis on the coverage probability and

the transmission capacity of relay aided mmWave networks.

Publications related to this chapter:

1. S. Biswas, S. Vuppala, J. Xue and T. Ratnarajah, “On the Performance of
Relay Aided Millimeter Wave Networks,” IEFEE Journal on Selected Topics
in Signal Processing (Special Issue on mmWave), vol. 10, no. 3, pp. 576-
588, April 2016.

2. S. Biswas, S. Vuppala, J. Xue, and T. Ratnarajah, “An Analysis on Relay
Assisted Millimeter Wave Networks,” in proc, IEEE International Confer-
ence on Communications (ICC), Kuala Lumpur, Malaysia, May 23-27, 2016.

e In Chapter 6, we provide an analytical framework for a mmWave system with
massive 3D circular antenna arrays at the BSs. In particular, by considering a
3D propagation model, we take both the azimuth and elevation dimensions into
account. Accordingly, we find the optimal beamformer to achieve the maximum
signal-to-interference-plus-noise ratio (SINR) that can be provided to a user.
We then derive a closed-form expression for the first negative moment of the
SINR. To model the blockages, we carry out our analysis by incorporating the
exponential blockage model. Accordingly, we derive the coverage probability of
the system. We also extend our analysis to a multiple BS scenario, where a user
may be associated with the nearest BS. In order to analyze the performance of our
model, we begin by calculating the average rate of the system. With the help of
this rate and a certain outage probability, we analyze the transmission capacity of
the network. Via numerical results, we provide a detailed analysis on the effect of
the number of BS antennas, blockage density, path loss coefficient, node density,
and SINR threshold on a mmWave network, where BSs are equipped with very

large antenna arrays.

Publications related to this chapter:

1. S. Biswas, S. Vuppala and T. Ratnarajah, “An Analysis on mmWave Sys-
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tems Equipped with Large 3D Antenna Arrays,” under revision in IEEFFE
Journal, 2016.

e In Chapter 7, we consider a cognitive radio scenario, where a secondary BS
operating in full duplex (FD) mode communicates with uplink (UL) and downlink
(DL) secondary users (SUs) operating in HD mode simultaneously within the
service range of multiple primary users (PUs). In addition to self-interference,
co-channel interference (CCI) is also taken into account to design the optimum
robust beamformers under a norm-bounded-error model. We study the sum
mean squared error (sum-MSE) as the objective function to minimize, subject
to power constraints at the UL SUs and secondary BS, and interfering power
constraints at the PUs and propose two robust iterative algorithms. We then
show with simulation results that the proposed robust designs can significantly
increase robustness to the channel state information (CSI) errors and can provide
an improvement in performance over the non-robust design. Moreover, it is shown
that the proposed FD system can achieve a significant improvement of throughput

over half duplex (HD) system.

Publications related to this chapter:

1. A. C. Cirik, S. Biswas, and T. Ratnarajah, “Robust transceiver design in
full-duplex MIMO cognitive radios,” under revision, IEEFE Transactions on
Vehicular Technology, 2016.

2. A. C. Cirik, S. Biswas, S. Vuppala, and T. Ratnarajah, “Robust transceiver
design for full-duplex multi-user MIMO systems,” IEEE Wireless Commu-
nications Letters, vol. 5, no. 3, pp. 172-175, May 2016.

3. A. C. Cirik, S. Biswas, O. Taghizadeh, A. Liu, and T. Ratnarajah, “Ro-
bust transceiver design in full-duplex MIMO cognitive radios,” in proc,
IEEE International Conference on Communications (ICC), Kuala Lumpur,
Malaysia, May 23-27, 2016.

Other Related Papers Not Included in the Thesis:

The works mentioned below were undertaken during the PhD period but are not in-
cluded in the thesis either because they do not fit within the main objective of the

thesis, or they are earlier versions of the journal publications included in the thesis.

e S. Biswas, S.Vuppala, and T. Ratnarajah, “On the Performance of mmWave
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Networks aided by Wirelessly Powered Relays,” IEEE Journal of Selected Topics
in Signal Processing (Special Issue on Exploiting Interference towards Energy
Efficient and Secure Wireless Communications), vol. 10, no 8, pp 1522-1537,
Dec, 2016.

A. C. Cirik, S. Biswas, S. Vuppala and T. Ratnarajah, “Beamforming design
for full-duplex MIMO interference channels-QoS and energy efficiency consider-
ations,” IEFEE Transactions on Communications, vol 64, no 11, pp. 4635-4651,
Nov 2016.

S. Vuppala, S. Biswas, T. Ratnarajah “An Analysis on Secure Communication
in Millimeter/Micro-Wave Hybrid Networks,” IEEE Transactions on Communi-
cations, vol. 64, no. 8, pp. 3507-3519, Aug, 2016.

A. C. Cirik, S. Biswas, S. Vuppala, and T. Ratnarajah, “Energy efficient beam-
forming design for full-duplex MIMO interference channels,” in proc IEEE Inter-
national Conference on Communications (ICC), Paris, France, May 21-25, 2017.

A. C. Cirik, J. Xue, S. Biswas, T. Ratnarajah and M. Sellathurai, “Transceiver
design of optimum wirelessly powered full-duplex MIMO interference channel,”
In Proc IEEE 17th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), Edinburgh, UK, July 3-6, 2016.

S. Vuppala, S. Biswas, J. Xue, and T. Ratnarajah, “On the Security Region of
Best Source Indices in Random Wireless Networks,” in proc, IEEE International
Conference on Communications (ICC), Kuala Lumpur, Malaysia, May 23-27,
2016.

S. Vuppala, S. Biswas, T. Ratnarajah, “Analysis of secure communication in
millimetre wave networks: are blockages beneficial?,” IEFE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,
March 20-25, 2016.

S. Biswas, C. Masouros and T. Ratnarajah, “On the effect of antenna correlation
and coupling on energy-efficiency of massive MIMO systems,” in proc, IEEE Per-
sonal, Indoor, and Mobile Radio Communication (PIMRC), Washington D.C.,
USA, Sep 02-5, 2014.



1.3. Thesis Layout

1.3 Thesis Layout

The thesis is organized as follows:

Chapter 1 provides the motivation of research in this thesis as well as a brief

overview of research and structure of the thesis.

Chapter 2 provides an overview of wireless communications and in particular MIMO

communication techniques.

In Chapter 3, we consider the performance analysis of a correlated massive MIMO
system with spatially distributed users. In particular, we provide a deterministic sum
rate of this system with respect to different number of antennas at the BS as well as

the intensity of the users within the coverage area of the cell.

In Chapter 4, we address the issue of mutual coupling in massive MIMO antennas
arrays. In particular, we consider a realistic planar array bounded by a fixed physical
space with an area of about 1m? and analytically account for the full mutual coupling
model of the array. Accordingly, we derive the optimum number of antennas that can

be accommodated when EE is considered as a design criteria.

In Chapter 5, we analyze the performance of mmWave networks in the presence
of blockages. In particular, we investigate the potential benefits of deploying relays
in outdoor mmWave networks. We present a relay modeling technique for mmWave
networks considering blockages and compute the density of active relays that aid the
transmission. We study the coverage probability from sources to a destination for such

systems aided by the active relays.

In Chapter 6, we look into the implementation aspect of massive MIMO antenna
arrays in mmWave systems. We take into consideration a 3D propagation scenario
where both the azimuth and the elevation angles of the array are considered. Using
stochastic geometric tools, the coverage probability and transmission capacity of this

system is analysed by taking blockages into consideration.

In Chapter 7, we investigate the potential benefits of a multiuser MIMO FD system
over a HD system. However, since FD systems are plagued by severe self-interference
(SI), we focus on the design of robust transceivers, which can cancel the SI. Further-
more, we also discuss schemes, where the excess antennas of massive MIMO systems

can be utilized to eradicate the SI.

Finally in Chapter 8, we provide conclusions of this thesis and suggest future pos-

sible research extensions and directions based on the current work.






Chapter 2

An Overview of MIMO

Wireless Communications

2.1 Introduction

In this chapter, we reflect on some of the basic concepts of multiple-input multiple-
output (MIMO) wireless communications along with the evolution of smart antenna
technology from single-user MIMO to multi-user MIMO. First, we consider the point-
to-point communications followed by multi-user MIMO communications. Further, since
the spectrum crunch is one of the major issues that has plagued network providers
over the past decade, we discuss possible technologies that can be used to address this
issue. In particular, we introduce massive MIMO and discuss how it can significantly
boost the spectrum efficiency. We then place our focus on millimeter wave (mmWave)
frequencies, which offer vast unused spectrum beyond 20GHz and full duplex (FD)
communications, which can potentially double the spectrum efficiency by transmitting
and receiving data at the same time and within the same frequency. Finally, we
discuss some important mathematical preliminaries and tools, that will be used in this
thesis to develop tractable models to analyze the performance of the systems under

consideration.

2.2 MIMO Communications

MIMO is an antenna technology for wireless communications, in which multiple an-

tennas are used at both the transmitter and the receiver. In particular, MIMO is one
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Figure 2.1: An illustration of a n, x ny MIMO system.

of several forms of smart antenna technology, where the antennas at each end of the
communications system are combined to minimize errors and optimize data rate. In
conventional wireless communications, a single antenna is used at the transmitter, and
another single antenna is used at the receiver, also known as single-input single-output
(SISO) system. In some cases, this gives rise to problems with multipath effects. With
multipath, transmitted signal bounces off buildings, trees, walls, ceilings, and other ob-
jects, reaching the receiving antenna multiple times via different angles and at slightly
different times. Affected by the surrounding environment, the transmitted signal may
undergo a change in amplitude, phase and frequency and the received multipath com-
ponents may add up destructively, which results in severe degradation of quality of the
transmitted signal at the receiver. The amplitude variations of the received signals are
also known as fading [8] in wireless communications, which can cause a reduction in

data rate and an increase in the number of erroneous symbols.

2.2.1 Point-to-point MIMO

MIMO technology, unlike SISO takes advantage of the multipath behavior by using
multiple, smart transmitters and receivers with an added spatial dimension [8]. In
particular, MIMO increases receiver’s signal-capturing power by enabling antennas to
combine data streams arriving from different paths and at different times. Smart

antennas use spatial diversity technology, which puts surplus antennas to good use.
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When antennas outnumber spatial streams, the antennas can add receiver diversity
and increase performance and range. Fig. 2.1 illustrates a MIMO system with n;

transmit and n, receive antennas'. Accordingly, the received signal for this system can

be given as

y = Hx + n, (2.1)
where x = [, T,...,,,]7 is the vector of signals, simultaneously transmitted by n;
antennas and 'y = [y1, ¥2, - - -, ¥n, |’ is the vector of signals simultaneously received by n,

antennas. H is the n, x n; channel matrix between the transmitters and receivers and
n is a n, x 1 vector of additive white gaussian noise defined as CA/(0, 0*L,,,). Further,

the channel matrix H can be elaborately written as

h11 hlg Ce hlnt
h21 hgg .. hQnt

. . o (2.2)
h'nTl h’nT2 cee hnrnt

where hj; = [H];; is the channel coefficient between the jth receive antenna and the
ith transmit antenna. The channel gain |h;;| is usually Rayleigh distributed in a rich
scattering environment with no line of sight (LOS) components. For such a Rayleigh
fading model, hj; = [H];; can be defined as

1 1
In particular, if H has ii.d. elements chosen from a continuous distribution (like

Rayleigh), the system capacity can be increased by a factor of N = min{n;, n,} without

using additional transmit power or spectral bandwidth.

2.2.2 MIMO channel capacity

Considering the MIMO system in Fig. 2.1, the received signal can be given as in (2.1).

In the following, we will derive the deterministic and ergodic capacity of such a system.

!The notations n; and n, used in this chapter for transmit and receive antennas, respectively are
only for point to point communications. Other notations wherever used hereinafter, will be exclusively

defined.
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2.2.2.1 Deterministic capacity

For a random MIMO channel, the capacity can be defined as the maximum mutual
information that can be achieved by varying the probability density function (PDF) of

the transmit signal vector and is expressed as [§]

= I(x; i h 1 2.4
C tr(gixa)xgpt (x;y) bits/channel use, (2.4)

where I(x;y) is the mutual information of random vectors x and y and P, is the
maximum transmit power constraint. Now, the mutual information of two continuous

random vectors x and y can be given as

I(x;y) = h(y)—h(ylx)
= h(y) — h(Hx + n|x)

— h(y) - h(n) (2.5)

The differential entropy of y is maximized if y is zero-mean circular symmetric complex
Gaussian (ZMCSCG), which accordingly also requires x to be ZMCSCG. Now, the

differential entropy of y and n are respectively given as

h(y) = logy{det(me®y,)}, (2.6)
h(n) = logy{det(meo?L,, )}, (2.7)

where e = 2.71828 is the Euler’'s number and ®,, is the covariance matrix of the

received signal y given as

¢, = E{yy"}
= Ey{(/pHx +n)(,/pHx +n)"}
= E{(y/pHxx"H") + (nn")}
= pE{(Hxx"H")} + E {nn"}
= pH(E {xx"} H" + ¢’L,,
= pH®, HY 401, (2.8)

where @, is the covariance matrix of transmitted signal x. Now using (2.5) - (2.8),

the mutual information can be given as

I(x;y) = logy{det(me®,,)} — log,{det(reo®L,, )}
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1
= log, det (Inr + —2H<I>mHH) , (2.9)
o
Therefore, for a deterministic MIMO channel, the capacity can be given as

C= tr(gi?)xgpt {log2 [det(I,,, + %HCDMHH)]} bits per transmission. (2.10)
It is to be noted that the above optimization of the channel capacity depends on the
knowledge of the channel matrix H. If full CSI is available at the transmitter side,
an optimal transmission scheme can be obtained by allocating more power to the sub-
channels with more gains using the water-filling algorithm [8]. However, when the
transmitter side has no knowledge about the CSI, the optimal transmission scheme is
obtained by allocating equal power among all transmit antennas. The capacity of the

MIMO channel is then given as

SNR

Uz

C' = log, det <Im + HHH> bits per transmission, (2.11)

with SNR = % being the nominal SNR of the system.

2.2.2.2 Ergodic capacity

In Section 2.2.2.1, we assumed that MIMO channels are deterministic. In general,
however, MIMO channels change randomly due to the effects of channel fading. Con-
sequently, H is time-variant and becomes a random matrix. Accordingly, the MIMO

channel capacity can be given by averaging over all channel realizations as

1
Chrg = tr(gﬁ)};ﬂ Ey {log2 [det(L,, + ;Hi’mHH)]} bits per transmission. (2.12)
For the case of i.i.d. Rayleigh faded channel model, optimal transmission scheme can
be obtained by equally allocating power among all transmit antennas. Accordingly,

P, = %I. The resulting capacity is then given as

N
Crrg = Egy {log2 det (Inr + & RHHH)}

Uz

N
SNR

(2
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g

N
N
= ZE {log2(1 + > R)\i)} bits per transmission, (2.13)

where N = min(ny,n,.) is total number of channel eigenmodes or spatial sub-channels
(i.e., non-vanishing singular values of the channel matrix) and Ay, ..., Ay are the eigen-
values of HH*. Further, by considering i.i.d. Gaussian input signaling, the achievable

sum rate of the system can be similarly given as

N
R =~ Z E {log,(1 4 ~;)} bits per transmission, (2.14)

(2

where ~; can be considered to be the received SNR per spatial sub-channel. It is
worthwhile to note that v; for any wireless communication system depends on several
factors, such as channel statistics, employed communication techniques, number of
antennas used, correlation among antennas, etc. Accordingly, 7; and hence sum rate
will be considered as one of the important metrics to evaluate the system performance

in the forthcoming chapters.

2.2.3 Multi-user MIMO

Initially, MIMO came along as an optional technology with the 802.11n wireless stan-
dard in 2007. It enabled multiple streams of data to be simultaneously transmitted
or received between two Wi-Fi devices (a WiFi router and a user device) using mul-
tiple antennas and beamforming technology, which helped increase the rate at which
data passes between the devices. However, the most obvious downside to point-to-
point/single-user MIMO is that the multiple streams of data must be sent or received
between just one device at a time. Furthermore, single-user MIMO requires both the
transmitting and receiving Wi-Fi radios to support the MIMO technology, along with
having multiple antennas. While having multiple antennas at the WiFi router is feasi-
ble, the multiple antennas at the user devices add cost, weight, and size to the devices
and the processing of the MIMO signals requires more resources as well. These became
even more evident with the proliferation of smaller devices, such as smartphones and
tablets.

Multi-user MIMO (MU-MIMO) on the other hand is a set of MIMO technologies for
wireless communication, in which a set of users or wireless terminals, each with one or
more antennas, communicate with each other. In contrast, single-user MIMO considers

a single multi-antenna transmitter communicating with a single multi-antenna receiver.
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M antennas

Figure 2.2: An illustration of a multi-user MIMO communications system.

In particular, in a similar way that OFDMA adds multiple access (multi-user) capa-
bilities to OFDM, MU-MIMO adds multiple access (multi-user) capabilities to MIMO.
MU-MIMO has been investigated since the beginning of research into multi-antenna
communication, including work by authors in [9, 10] on the capacity of the MU-MIMO
links. Furthermore, multi-user MIMO offers big advantages over conventional point-
to-point MIMO: it works with cheap single-antenna terminals, a rich scattering en-
vironment is not required, and resource allocation is simplified because every active
terminal utilizes all of the time-frequency bins. Such systems are currently being im-
plemented in various wireless communication technologies such as LTE-Advanced [11]
and 802.11n [12] to name a few. In the multi-user MIMO system, downlink and uplink
channels are referred to as broadcast channel (BC) and multiple access channel (MAC),
respectively. Fig. 2.2 illustrates a multi-user MIMO communications system, where a
base station (BS) equipped with M antennas communicates with K independent users,
each equipped with N antennas. The K users form a virtual set of K x N antennas
and the end-to-end configuration between the BS and the users can be considered as
a (KN) x M MIMO system for downlink, or M x (KN) MIMO system for uplink.
Alternatively when N = 1, the end-to-end configuration between the BS and the users
can be considered as a K x M or M x K MIMO in the downlink or uplink respectively.

2.2.3.1 MIMO BC

Let x = [z1,%9,...,7|" be the downlink transmitted signal from the BS to the K

users. Then the N x 1 received signal at the k user, with £k =1,2,..., K can be given
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2.2. MIMO Communications

as
yr = HZ'x+n. (2.15)

Here, HP? with k = 1,2,..., K is the N x M downlink channel between the kth user
and the BS and n is the N x 1 noise vector. Further, the overall received downlink

signals can be represented in a vector form as

Y1 HIDL n
y HDL n
=72 | x+ | 7. (2.16)
YK HQL Ny
—— N—\— ——
YBC HDL n

2.2.3.2 MIMO MAC

Let x; = [z1,72,...,2x]T be the uplink transmitted signal to the BS from the kth
user, where k = 1,2,..., K. Then the M x 1 received signal at the BS from K users

can be given as

yvuac = HYIx + HY %, + -+ H xx +n
X1
— |V HYE, Y| 2.17
- [ 1 > 2 9ty K] : —I—Il. ( )
XK

Here, HVL, with k = 1,2,..., K is the M x N uplink channel between the BS and the

kth user and n is the M x 1 noise vector.

Unlike a single user MIMO system, where the user device is required to have multiple
antennas, in a multi-user MIMO, the K users can also be equipped with a single
antenna, i.e., N = 1. The concept of MIMO still holds and the system is now equivalent
to a K x M in the downlink and M x K in the uplink. Furthermore, the nice thing
about single antenna users is that they are inexpensive, simple and energy efficient and
each user still gets typically high throughput. Also, the assumption that users have
single antennas can be considered as a special case of users having multiple antennas
when the extra antennas are treated as additional autonomous users [13]. To ascertain
this, we consider two cases for a MIMO MAC channel: 1) a multi-user MIMO system
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with one BS and two single antenna users (i.e., K = 2, N = 1), each transmitting with
power P, and 2) a multi-user MIMO system with one BS and one dual antenna users
(i.e., K =1, N = 2) with a power constraint of 2P,. For the first case, the sum rate
for the two users can be given as [§]

P, hUL 2 P, hUL 2
R, = log, (1+M)+10g2 <1+M>. (2.18)
g

2 o2

).

In the above, hy with & = 1,2 is the channel vector between the kth user (or kth

antenna of the multi-antenna user) and the BS and o? is the noise power. Further,

Further, the sum rate for the second case can be given as

P 0

1
Ry =1 det { I + —<[h;h
2 og2<e<+02[12} P

(2.18) and (2.19) are equal and hence, K multiple users having single antennas is

equivalent to having one K-antenna user.

In this thesis, we will focus mostly on multi-user MIMO systems, where users
are either equipped with single or multiple antennas depending on the system model

considered.

2.3 Massive MIMO

Multi-user MIMO, as originally envisioned, with roughly equal numbers of service an-
tennas and terminals and frequency-division duplex operation, is not a scalable tech-
nology. On the contrary, massive MIMO is an emerging technology that scales up
MIMO by possibly orders of magnitude compared to the current state-of-the-art. As
illustrated in Fig. 2.3, massive MIMO systems use antenna arrays with a few hundred
antennas to eliminate inter-cell interference through highly directional beamforming.
The escalation of the antenna number makes the random channel deterministic and
orthogonal, which in turn eliminates the effects of uncorrelated noise and small-scale
fading. Furthermore, the large antenna arrays lead to the use of simpler linear sig-
nal processing techniques, such as matched filter precoding/detection and the required
transmit energy per bit goes to zero as the number of antennas approach to infinity
[7]. In such a system, while less power will be used by the UEs for uplink transmission
thus saving their battery, the BS will emit less RF power for downlink transmission,

which will help in reducing the electricity consumed by associated circuits, amplifiers,
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Figure 2.3: An illustration of a massive MIMO setup. Let M be the number of BS
antennas and K be the number of UEs in a particular cell. Then, % >> 1.

etc. It was shown in [14, 13] that every single-antenna user in a massive MIMO system
can scale down its transmit power proportional to the number of antennas at the BS
with perfect CSI, while the transmit power scales down proportional to the square
root of the number of BS antennas with imperfect CSI, to get the same performance
as a corresponding SISO system. This results in significant improvements in energy
efficiency (EE) for future wireless networks [5, 15]. On the other hand, massive MIMO
systems can significantly extend the range of operation compared to a single antenna

system if adequate transmit power is available.

The basic idea behind massive MIMO is to reap all the benefits of standard MIMO,
but on a much larger scale. Overall, massive MIMO is an enabler for the development
of future broadband (fixed and mobile) networks, which will be energy-efficient, secure,
and robust, and will boost the spectrum efficiency of the current state-of-the-art MIMO
systems. As such, it is an enabler for the future digital society infrastructure that will
connect the internet of people and internet of things with clouds and other network
infrastructure. Accordingly, in this thesis, Chapters 3, 4 and 6 will particularly deal

with the performance analysis of massive MIMO systems.

2.4 Other Future Cellular Systems

While Massive MIMO alone can provide significant boost to the efficiency of the spec-

trum, in order to meet the goals of data rates in the range of Gbps, billions of connected
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Figure 2.4: Available bandwidth in the mmWave spectrum. More than 20 GHz band-
width is available.

devices, lower latency, improved coverage, reliability, and low-cost, it is imperative to
look for alternate spectrums or techniques that can further alleviate the spectrum
crunch. In this regard, two new technologies, mmWave and FD are considered. Fur-
thermore, both technologies can take advantage of the large antenna arrays used in

massive MIMO technology to alleviate some of their respective design constraints.

2.4.1 Millimeter wave

MmWave bands with significant amounts of unused or moderately used bandwidths
are being considered as a suitable alternative to the current microwave spectrum. As
shown in Fig. 2.4 [16], the availability of bands in the range of 20-100 GHz makes
mmWave a lucrative prospect in the design of 5G networks. The authors in [16] explore
the available mmWave frequency bands to design a 5G enhanced local area network.
While [17] proposes a general framework to analyze the coverage and rate performance
of mmWave networks, [18] proposes a tractable mmWave cellular network model and

analyzes the coverage rate.

However, one must remember that mmWave cellular communication is heavily de-
pendent on the propagation environment. MmWave signals are affected by several
environmental factors such as O, absorption and atmospheric conditions and cannot
penetrate through obstacles like buildings, concrete walls, vehicles, trees, etc. Further,
because of the high frequencies used in mmWayve, the path-loss with omni-directional
antennas increases with frequency. Due to these limitations, such bands were not con-

sidered suitable for cellular transmission for a long time. The authors in [19] analyze
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the performance of mmWave cellular systems using real time propagation channel mea-
surements. Blockage effects and angle spreads were also incorporated in [20] to analyze
such systems. Generally in a communication system, path losses are computed for
both line of sight (LOS) and non line of sight (NLOS) measurements. It was stated
in [21] that blockages cause substantial differences in the LOS and NLOS propagation
characteristics. Hence, it is very important to appropriately model the LOS and NLOS
links in mmWave networks. Furthermore, the measurements for path loss were carried
out for 73 GHz frequency in [22] and [23].

Recent studies and measurements have revealed that the natural way to combat
omnidirectional path loss is by proportionally increasing the antenna aperture. This
can be achieved in practice by using massive MIMO antenna arrays. The resulting
array gain overcomes the frequency dependency on the path-loss and allows mmWave
systems to provide reasonable link margin. Hence, massive MIMO technology can
be considered to be an integral setup in the implementation of mmWave networks.
Accordingly, in this thesis, the performance of mmWave systems will be evaluated in
Chapter 5 and 6.

2.4.2 Full duplex

Currently, the downlink (DL) and uplink (UL) of MU-MIMO cellular systems oper-
ate in half duplex (HD) mode, where transmission happens either in separate time
slots (Time Division Duplex, TDD) or in separate frequencies (Frequency Division
Duplex, FDD). Hence, systems are operating only at half the spectrum efficiency and
losing either on time or frequency resources. Among the emerging technologies for
next-generation wireless networks, that is believed to potentially double the spectral
efficiency (compared to conventional HD systems) is FD wireless communication. In
this approach, data is transmitted and received at the same time and within the same
frequency band as shown in Fig. 2.5. However, the benefits promised by FD can
be limited by the so-called self-interference (SI), which is a fundamental challenge in

implementing a full-duplex radio.

In particular, the SI refers to the transmitted signals that are directly received at the
terminal’s receive chain (in addition to the signals received from other transmitters).
At the receiver, the SI is generally around 110dB larger than the signal of interest.
Many feasible solutions including antenna, analog and digital cancellation have been

demonstrated experimentally to mitigate the overwhelming self-interference [24]-[25].
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Self-Interference

Figure 2.5: An illustration of FD communication. Data is transmitted between the
UL users and the BS and the BS and the DL users in the same time and frequency.

While antenna cancellation alleviates around 20dB SI, analog cancellation leads to a
further reduction of 50dB SI. However, the combination of both cancellations is still
less than the required 110dB SI cancellation. Accordingly, the performance is limited
by around 30-40dB residual self-interference, which is induced by the imperfection of
the transmit and receive front-end chains [26]-[27]. Depending on the strength of the
residual self-interference, optimal transmit strategies for HD systems can be far from

optimal for FD systems.

In addition to self-interference, co-channel interference (CCI) from UL users to
DL users is another challenge in FD networks that needs to be overcome before the
multi-access nature of the wireless medium in conjunction with full-duplex systems can
be fully exploited. To optimize system performance, self-interference and CCI in FD
systems should be addressed jointly through digital beamforming [28, 29, 30, 31]. Ad-
ditionally, in order to solve the fundamental issue of self interference, a massive antenna
array may be deployed at the BS that can exploit the excess antennas to eliminate the
self-interference. Massive MIMO has the potential to achieve all-digital full-duplex,
which will alleviate the need for new expensive analog cancellation techniques by going
all digital through the aid of simple linear precoders/recievers [32, 33]. Accordingly, in
this thesis, Chapter 7 will particularly deal with the performance evaluation of a FD

system.
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2.5 Preliminaries and Tools

In this section, we discuss some preliminaries related to MIMO channel capacity and
some important mathematical tools that will be considered in the subsequent chapters

to evaluate the system performance.

2.5.1 MSE and its relationship with sum rate

In the downlink of a cellular system, since BSs can have access to partial or perfect
CSI, it is appropriate to shift the bulk of signal processing to the transmitter side to
keep the circuitry of UEs simple and cheap. Accordingly, the transmitted signal can be
pre-processed by passing it through matrix B in the transmitter side which is countered

at the receiver side by post-processing it through another matrix A%,

Let s € C*! be the transmitted vector such that, s = Bx, where B is the precoder
and x € CI*! is the vector of L transmitted symbols. After the received signal is
processed through an equalizer, the L x 1 estimated received vector is given by x =
Ay where A € C"*L is the receiver matrix. The mean squared error (MSE) matrix
can now be defined as the covariance matrix of the error vector of the transmitted and

received vector and given as

MSE £ E{(x-x)(x—x)"}
= E{xx"} —E{xx"} —E{xx"} + E {xx"}. (2.20)

Now,

E{xx"} = A"E{(Hs+n)Hs+n)"} A
= A"E{(HBs+n)(HBx+n)"} A
= A" [HBB"H" + R, | A,
E{xd} = E{(A"(Hs+n)x")}
= AHHBE{XXH}+AHIE{HXH}
= A"HB, (2.21)

where R,, = 0°1,,., (a) is obtained due to the fact that the transmitted signal and
noise vectors are independent of each other and (b) is obtained due to E {XXH } =1L
Similarly, it can be shown that E {xﬁcH} = BPfH”A. Hence, the MSE can now be
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given as
MSE = A” [HBB"H" + R,| A — AYHB — B"H"A + 1. (2.22)

It is imperative to minimize the MSE in order to reach the capacity limits of the MIMO
system. Two step optimization techniques to iteratively optimize B and A has been

extensively studied in literature [29, 34]. Considering a minimum mean squared error

(MMSE) receiver [35], we have
A°** = (HBB”H” + R,,) 'HB. (2.23)
Now, applying this receiver, the MSE can be given as

MSE = I-B”H” (HBB"H” +R,) ' HB

—

a

= (I+B"H"R,'HB), (2.24)

N

where (a) is obtained using the Woodbury identity [36]. Now defining the interference
plus noise covariance matrix for the ith stream as R; £ (HBB”H” +-R,,—Hb;b/H),

the signal to interference plus noise ratio (SINR) for the ith data stream can be given

as
AHb,|?
SINR; 2 |a; Hb,[*
af{Riaz-

< b/'H"(R,)"'Hb, (2.25)

where the inequality comes from Cauchy-Schwarz’s inequality [37]. Further, the MSE
for the ith stream is the ¢th diagonal element of MSE and can be given as

MSE; = [(I+B”H"R,'HB)"']

0

1

= ) 2.26
1+ b H"(HBB”HY + R,, — Hb,b H")-'Hb; (2.26)
Hence, from the above the MSE can be linked to SINR as
MSE; = ! (2.27)
" 1+SINR;’ '

This allows us to establish the fact that when an MMSE receiver is used, then the
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achievable rate can be given as
R =logdet(MSE™") bits per transmission. (2.28)

Hence, it can be seen that maximizing the rate is equivalent to minimizing the MSE.
Accordingly, a sum MSE minimization problem for a MIMO FD system will be studied
in Chapter 7 of this thesis.

2.5.2 Mutual information and Stieltjes transform

Let W = HH”. As previously discussed, the mutual information of a MIMO channel
can be associated with the eigenvalues of the matrix W. Further, according to random
matrix theory (RMT), the empirical spectral distribution (ESD) of the eigenvalues of

W, can be given as

1
pw (A) = —[number of eigenvalues of W < \J. (2.29)
n”"
While it has been a constant endeavor of researchers to study the limit of the empirical
distribution, also known as limiting spectral density (LSD) u of W, [38] and [39] does
that with the help of Stieltjes transform of pw defined as

swie) 2 | [ ]

1
= —tr(W—zL, )" (2.30)

n,

VzeRT

The Stieltjes transform provides a direct way to identify the LSD of large-dimensional
random matrices. According to [40], to show that the difference between pa and p

converges vaguely to zero, it is equivalent to show that

a.s

Sw(z) — S(2) 5 0, (2.31)

where S(z) is the Stieltjes transform of p.

Now, with respect to a MIMO channel, the mutual information as given in (2.11)
can be expressed as functionals of the Stieltjes transform of W i.e., n%tr(W +pL,) 7,
with p denoting the effective signal to noise ratio (SNR) as [41, 42]

Cw 1

1
_ = — _1 JRS——
o nTIE [tr(W + pL,, )] p (2.32)
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Now with the help of Fubini’s theorem, the above derivative can be expressed as

Cow(p) = /p h (1 _Laws wInr)l) dw. (2.33)

w N,

In [41] it was shown that when the number of antennas grow asymptotically, there

exists a matrix valued function T(z) such that

LW =21, ) = Li(T(2) - 0. (2.34)

N, n,

Accordingly, Cw(p) in (2.33) was approximated as

Cwtn) - | (5 - ey (2.35)

w n,

In other words, when the number of antennas grow asymptotically,

Cw(p) — Cw(p) = 0. (2.36)

A closed form expression for Cyw(p) was also given in [41] as

Cwip) = ilog det {‘I’(—Tp)_l + \il(—p)] + 1 log det M
Y Tul=) Ty (), (237)
where
T(p) = (¥7(0) —p‘i’(p))_l, (2.38)
) = (370) - p2() . (2.39)
U(p) = diag(Pi(p), ..., Un(p)), (2.40)
B(p) = diag(Pi(p),.... s (p)), (2.41)
U,(p) = _1~ — _ V1<i<n,, (2.42)
p (1+ (D) T(p))
~ —1 ]
W,(p) = (15 Ta(D,)T() V1 <j <y, (2.43)
D; = diag(o;, 1 <i<my), (2.44)
D, = diag(o}, 1<j<n,). (2.45)
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It is to be noted that it is much easier to compute tr(T(z)) than tr(W — 21, )"
Accordingly, using the above closed-form expressions, in Chapter 3 we will evaluate
the deterministic equivalent of the ergodic capacity of the uplink of a massive MIMO

system when the users are spatially distributed.

2.5.3 Stochastic geometry

Stochastic geometry approach has recently gained significant attention to develop
tractable models to analyze the performance of wireless networks. In this approach,
the wireless network is abstracted to a convenient point process that is used to capture
the wireless network properties. For example, various stochastic geometric techniques
have been used in [43, 44] to study connectivity and signal power in wireless networks,
where the transmitters and receivers are modeled according to a certain distribution.

The following text is a brief discussion on a few fundamentals of stochastic geometry.

2.5.3.1 Borel g-algebra

In a 2-dimensional topological space, a Borel set B? is any set that can be formed
by taking the complement, countable unions and intersections of closed, open or half-
open sets. The Borel B2-algebra is formed by the collection of all Borel sets. In a
2 dimensional space, if there exists a point € R? and value r € R, so that a ball
centered at x with radius r has A C b(z,r), then the set A C R? is said to be bounded.

2.5.3.2 Poisson point process

A point process ® can be defined as a countable random collection of points that reside
in some measurable space, usually the 2 dimensional Euclidian space [43]. Poisson point
process (PPP) is the most popular and tractable point process to model the locations
of users and BSs in wireless networks. A PPP assumes that the locations of the nodes
are totally independent of each other. If a Poisson process has the same intensity A all
over the Euclidean plane, it is called a homogeneous PPP, which will have the following

properties:

e For any compact set A, ®(A) has a Poisson distribution with a mean value of

A A|, where | - | denotes the Lebesgue measure.
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e Let Ay, ..., A, be disjoint bounded sets, then ®(A4;), ..., ®(A,) are indepen-

dent random variables.

2.5.3.3 Campbell’s theorem

Campbell’s theorem relates the expectation of a function summed over a point process
to an integral involving the intensity measure of the point process. Let f : R? — [0, c0)
denote a measurable function and ® a point process, then Campbell’s theorem can be

expressed as [45]

E

Zf(x)] = RQf(x)A(dx), (2.46)

zed
where A(-) denotes the intensity measure of the set A C B?, which is the expected
number of points falling in the set A and can be expressed as A(A) = E[®(A)].

Inspired by the stochastic geometry approach to analyze the performance of wireless
networks, in Chapters 3, 5 and 6 of this thesis, we will use this approach to characterize

the spatially distributed users as well as the BSs in the network.
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Chapter 3

Massive MIMO Systems with
Spatially Distributed Users

3.1 Introduction

The presence of large number of antennas in a massive-multiple input multiple-output
(MIMO) system makes it increasingly difficult to carry out the exact performance
analysis of such a system due to the complexity of the resulting analytical expressions.
In this chapter, we analyze the performance of an uplink large scale MIMO system with
a single base station (BS) serving spatially distributed multi-antenna users within a
fixed coverage area of a densely built up urban environment. In such an environment, it
is quite hard to find dominant propagation of the signals along the line of sight (LOS).
Hence, it is quite reasonable to consider a Rayleigh faded channel in such a scenario.
Stochastic geometry is used to characterize the spatially distributed users, while large
dimensional random matrix theory is used to achieve deterministic approximations of
the sum rate of the system. In particular, the users in the vicinity of the BS are
considered to follow a Poisson point process (PPP) within the fixed coverage area.
The sum rate of this system is analyzed by varying the number of antennas at the
BS as well as the intensity of the users within the coverage area of the cell. Closed-
form approximations for the deterministic rate at low and high SINR regimes are
derived, which have very low computational complexity. Further, the deterministic
rate for a general kth ordered user is also derived. It is shown that the deterministic

approximations offer a reliable estimate of the ergodic sum-rate obtained by Monte-

Reprinted from IEEE Systems Journal, S. Biswas, J. Xue, F. A. Khan, T. Ratnarajah, “Performance Analysis of Correlated Massive
MIMO Systems with Spatially Distributed Users”, Vol. No.99, PP.1-12, Copyright (2016), with permission IEEE.
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Carlo simulations. At this point we would like to note that our results complement the
contribution of [39]. However, we consider the more general and realistic case in which

the stochastic nature of the users and their individual path losses are considered.

Furthermore, we briefly analyze the energy efficiency (EE) of such systems, which
is currently one of the primary design goals of any wireless communication system. EE
of a communication link is usually defined as the total energy required for transmission
in order to achieve a specific spectral efficiency (SE) [46], [13]. The significance of the
total power consumption in MIMO systems has been emphasized in [47] with respect
to EE. MIMO systems have been stated to offer improved EE on account of array
gains and diversity effects [8]. A common practice in determining EE is to consider
the total transmitted energy to be a constant quantity [13] which aids in reducing the
complexity of calculations. Hence, the definition of EE can be quite delusive at times
especially when a massive MIMO scenario is considered with the number of antennas
increasing asymptotically leading towards unbounded EE, which is quite improbable for
practical scenarios. The effect of number of BS antennas on EE has been discussed in
[12] and [48], while [49] discusses designing optimal EE for the uplink massive MIMO
systems considering both radio frequency (RF) and circuit power consumptions. A
trade-off between the EE and SE was also given in [49]. In our analysis, we take into
consideration the circuit power consumption of both the BS and the user equipments
(UEs) and accordingly form an EE expression which varies with the number of BS

antennas and the users.

The main contributions of this chapter can be summarized in the following points:

e We have presented approximations of the sum-rate of a single-cell multi-user
MIMO system with large number of antennas at BS and multiple antennas at
UEs. This is adhering to the consideration that the users follow a PPP within
the cell.

e We have considered correlated Rayleigh fading and uniformly distributed UEs
within the cell and power-law path loss. The path loss exponent determines the

large scale fading of the users.

e We have provided high and low signal to noise ratio (SNR) approximations of
the sum-rate of the system which can be considered as good low complexity

approximations of the analytical capacity.

e We have also provided the approximate sum rate for the kth ordered user.

32



3.2. System Model

e We also touch on the EE analysis of the system considering a realistic power

consumption model which includes the circuit power consumption of the system.

3.2 System Model

In this chapter, we consider the uplink of a single-cell multi-user MIMO Multiple
Access Channel (MAC) system consisting of a typical BS located at the origin of the
cell. We use a homogeneous PPP, ®(u) C R? with intensity x to model the locations
of the users on the plane. Let, U be the set of all users in ®(u), which are connected
to the BS at the same time. Also, let the cardinality of &/ be K. The number of
users connected at a particular time is given as K = min(Upae, N), where Uy, is the
maximum number of users that can be scheduled! in a time slot and N is the total
number of users connected to the BS. The BS with M antennas, receive signals from
K users, each equipped with ny, ..., ng antennas respectively. The number of users,
K is a function of k. A schematic illustration® of the system under consideration is
given in Fig. 3.1. Considering a separable correlation model for analytical tractability,
we model the M x n; channel, W, between the BS and the kth user as

Wi, = Hy|[u]| 72, (3.1)
with
1 1
H, = R;G,T}, (3.2)

where R% and T é are M x M and n; X n; deterministic receive and transmit correla-
tion matrices respectively. Here, G; € CM*™ consists of complex random identically
independently distributed (i.i.d) variables with zero mean and unit variance which
models independent fast fading. We assume that the users do not have any line of
sight with the BS and hence, Gy is Rayleigh-faded. The separable model allows us to
keep the correlation between any two transmitting antennas to be fixed irrespective of

the receiving antenna and vice versa. Moreover, u;, € R? denotes the physical location

'More sophisticated algorithms on decisions on how many and which users to schedule in a resource
block may be considered. However, for the sake of tractability, we ignore this aspect here.

2We consider a circular cell of radius 7 in R? with an area of 7r2. A hexagonal cell in R? can also
be considered. The radius of the cell, » can then be considered from the center to the vertex and the

. . . . L b2
area (considering a regular hexagon with side b) is given as 3by/r — 7.
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Figure 3.1: An illustration of a multi-user MIMO setup with multiple antennas both
at the BS and users.

(distance between the UE and the centre of the cell) of the kth user in meters and it
is computed with respect to the BS. The large-scale fading at a specific user location
is described by the function F(-) : R?* — R. Thus the average channel attenuation due
to path loss and shadowing® at user location u; can be represented by F(uy). The
large scale fading is assumed to be independent over M and also constant over many
coherence time intervals. This assumption is quite reasonable due to the fact that the
distances between the users and the BS are much larger than the distance between the
antennas at the BS. Also, « in (3.1) denotes the path loss exponent varying from 2 to

4, with 2 denoting a free space propagation and 4 a relatively lossy environment.

Let r denote the radius of the circular cell and u = ||u||. The user locations can be
described by the probability density function (PDF) as

2 g<u<r
fla)=1<" (3.3)

0  otherwise.

Furthermore, we model the large scale fading as

F(u)=u"2, (3.4)

3The results in this chapter are produced with the assumption that large-scale fading is dominated
by path-loss. However, these results are also applicable for more complicated fading models including
shadowing effects. For example, adding log-normal shadowing to the corresponding results is straight-
forward and can be done by modifying (1) as Wy, = Hy Bk /||xx|| 2, where 34 is a log-normal random
variable with standard deviation ospqdow-
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which is then put together with the fast fading as given in (3.1). F(ug) is a key req-
uisite in all our subsequent discussions throughout the chapter. Assuming the average
transmitted power of each user to be equal, the M x 1 received vector at the BS can

now be expressed as

Yy=vP Y Wixi+z, (3.5)

ke®(u)

P
K
denoting the average transmitted power of each user and z a vector of additive white

where |/px;, is the ng X 1 vector of symbols transmitted by the kth user, with p =

Gaussian noise with zero mean and co-variance matrix o?I,;. P is the total transmitted

power of all the users and is considered to be fixed.

Assumptions and Preliminaries

A few necessary assumptions which will be used throughout the chapter are stated

below.

1. Perfect Channel State Information : Throughout the chapter we assume that the

channel matrices {Wy }yy are perfectly known at the BS.

21,

When only transmit antenna ¢ is active, the instantaneous received SNR at the

2. Signal-to-Noise Ratio : We assume for each transmission link Gy, E{|Gy,,

2
PlGkj, |
0-2

receiving antenna j is , with p being the transmit power. Thus the effective
transmit SNR for the communication link can be given as p = %. For analytical
convenience, we set the same noise level (02) at all the antennas, though this is
not mandatory. The performance analyses performed in the later sections of this

chapter will mostly be as a function of p.

3. R, and T}, are deterministic and non-negative definite and are normalised as

tl"(Rk) = M,

3.3 Sum Rate Analysis

For very large MIMO systems, when both M, K — oo, it becomes increasingly difficult

to analyze the performance of the system based on exact analytical expressions, as
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they are often too complicated to evaluate. Even computer simulations can be quite
demanding for systems with such large dimensions. In such cases, large RMT can
help to develop approximate analytical expressions, which substantially reduce the
computational complexity. Accordingly, in this section, we formulate the approximate

ergodic sum rate of the system under consideration.

Deterministic sum rate

Let Ej be the covariance matrix of the transmitted vectors, x; of the kth user such
that

By if l=k
E{xxi} =4 ~F 3.7
b} 0  otherwise, (3.7)
and
1 1
T, =T E,T;. (3.8)

Ej, can be easily optimized for the case of Rayleigh i.i.d channel as I,,,. This is due to
the consideration that uy are independent and have the same transmit power. Further,
let

Ayt Y WW/ (3.9)

ke®(u)

Without loss of generality, the mutual information of a MIMO channel can be asso-
ciated with the eigenvalues of the matrix A, as was discussed in Section 2.5.3. The
ergodic sum rate® of such a MIMO MAC can be given as® [9, 50]

1
Ra,p) = MEH {logdet (In; + pAn)}, (3.10)

where p = %5 is the transmit SNR of the system as described earlier and Ay is as

discussed in the previous section. Considering the properties of a PPP, Zke@(u) ng —

oo for some specific probability. Furthermore, we focus on a single BS receiver with

4When the channel is a time-varying channel, the capacity of the channel can have multiple defi-
nitions depending on the channel state information (CSI) at the transmitter and/or receiver. These
definitions have different operational meanings. In particular, when the instantaneous channel gains,
also known as the CSI, are known perfectly at both transmitter and receiver, the transmitter can
adapt its transmission strategy (power and/or rate) relative to the instantaneous channel state. In
this case the ergodic capacity is the maximum mutual information averaged over all channel states.

SFor simplicity, in this chapter we assume a maximum likelihood sequence estimator at the BS to
separate different data streams.
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3.3. Sum Rate Analysis

multiple antennas such that M — oo, which receives signals from multiple users. At
this point, we stress that while the original massive MIMO definition in [7] assumed
that % > 1, we consider the more general definition from [51], where % can also be a
small constant.

Before we proceed any further, it is worth mentioning the contribution of [38] and
[39]. A deterministic equivalent of the ergodic mutual information for Rician faded
Kronecker MIMO channel was found by Zhang et al. in [39] using the Shanon transform.
This is further elucidated as Lemma 3.2 in Appendix 3.A. Let ua,,(A) and pps be the
Empirical Spectral Density (ESD) and Limiting Spectral Density (LSD) of Aj;. While
it has been a constant endeavour of researchers to study the limit of the empirical
distribution of Ay, [38] and [39] do that with the help of Stieltjes transform when
M — oo as

Sa,, (A) = SN 2250, (3.11)

where Sa,, (M) and Sy(\) are the Stieltjes transform of pa,,(A) and pp, respectively,
which was discussed in Section 2.5.3. This was then used to find a deterministic

equivalent of the ergodic mutual information and show that
Ra, — Ry =0, (3.12)

where Ry, is the deterministic equivalent of the sum rate. Accordingly, we also aim
to achieve the same by deriving R, analytically. Further, Ra,, is computed through
simulations and the convergence between Rjs and Ra,, is validated in the numerical

results section of this chapter.

Lemma 3.1. For a single-cell massive MIMO system following a PPP in R?, the
general probability of finding K wusers within the coverage area of the cell can be given
as [52]

(rp(A))"™

P[Kusers in the cell] = exp{—ru(A)} A

(3.13)

where K is the intensity and u(A) is the standard Lebesque measure of a bounded Borel

A C R?, which is formed by the topological space of the cell.

Now, leveraging the results of [19, Sec III.A] and making use of (2.37)-(2.45), for
the system model in consideration, the capacity of the system can be approximated as

in the following theorem.
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3.4. High and Low SNR Approximations

Proposition 3.1. The ergodic sum rate of a single-cell massive MIMO system with

users following a PPP, based on the LSD of Ay can be approximated as

1 >
Rulp) = o7logdet (IM+Zek(p)Rk P(k)) (3.14)
k=0
9 oo Nk ro 17%,07 1 00
2,2 ~
— \ P(k) — P(k
o 2 - G&f”(wmo ) (k) = 3" eulp)in(p) B(k),
k=0 i=1 ) LR~ k=0
where
1 >0 -
ew(p) = 7t | PR L+ ) élp)Ry P(k)] , (3.15)
k=0
1 Mep(p)T,] "
éx(p) = —tr(pTy(diag[l,, + M} : (3.16)
Mk Tk Vke®(u)

Further, G {-} is the hyper-geometric function also known as Meijer G-function [[53],
eq. (9.301)] and \p; = eig(Ty). There is a unique solution to (3.15) and (3.16) for
p € RT, where ex(p) € S(RT) and é,(p) € S(RY) for k € ®(u). Furthermore, S(RT)
can be interpreted as the class of all Stieltjes transforms of finite positive measures

carried over RT and P(k) is obtained from Lemma 3.1.

Proof. 1t is to be noted that the number of users is calculated based on a PPP with
respect to the probability given by Lemma 3.1 and the intensity of the users, k. Our
aim now is to derive the closed form expression of the deterministic ergodic sum rate
as given in (3.14) and also to show that there is a unique solution to (3.15) and (3.16).
For better understanding, we divide the proofs into two parts. The detailed derivation
of (3.14) is given in Appendix 3.B, while the proof of uniqueness of (3.15) and (3.16)
is given in Appendix 3.C. O]

3.4 High and Low SNR Approximations

In this section, we provide the high and low SNR approximations of the derived sum
rate in (3.14).
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3.4. High and Low SNR Approximations

3.4.1 High SNR regime

Fast fading channels have the same properties at high SNR as time-invariant channels,
irrespective of the knowledge of channel state information at the transmitter. In this

sub-section, we analyse the capacity in the high SNR regime i.e., p — oc.

Corollary 3.1. Let i, = n—]\iek(p). Then at relatively high SNR (p — oo) regime for
correlated massive MIMO channels, Ry approaches the exact sum rate and can be

given as
Rityona() = 2 IEECONED (3.17)
555 [log(uie) + (2los(r) +a)] BE) — S ex(p)éalo) B(k).

k=0 =1 k=0

Proof. Considering p to be large, (3.42) can be approximated as

Rtposoo(p) = %logdet (Zék(p)Rk> P(k) (3.18)

Using integration by parts and substituting the limits of the integral in the above we

obtain the proof. O

3.4.2 Low SNR regime

When the SNR of the system is relatively low, the multiplexing gains of the system
are lost. In such a scenario when p — 0, the sum rate can be approximated by the

following corollary.

Corollary 3.2. Similar to the high SNR case, at low SNR the sum rate can be approx-

mmated as

[ r@E(p)Re) | 2r (9 Ty)
Rmpo = ;{M log10 | (2—a)Mlog10 P(k) (319)

Proof. This can be easily proved by using the approximation log,(1 4+ a) ~ a/log 2 for
small a in (3.14). O
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3.5. kth User Capacity

3.4.3 Complexity analysis

In this subsection, we analyze the complexity of both the high and low SNR approxi-
mations with respect to (3.14). We focus on the complexity of calculation and running
time for common mathematical operations that are used in our algorithms. Complexity
in this analysis refers to the time complexity of performing computations with respect

to a reference Turing machine [54].

We consider the upper bound of the operation time such that for a sufficiently large
number n, the limiting behavior of a function f(n) is denoted by O (g(n)), where the
function f is bounded above by the function g. Let the complexity of €, and €, be
denoted by O(¢1) and O(¢2). Then, following the complexity of some basic mathe-
matical calculations as given in [55], for a single iteration under ®(u), the complexity
of the approximation in Proposition 3.1, Corollary 3.1 and Corollary 3.2 can be ap-
proximated as O(n®logn + n?(logn)? + ¢1¢2), O(n*logn + logn + ¢1¢) and O(n?)
respectively. Hence, it can be stated that the high and low SNR approximations have
low computational complexities when compared to the sum rate approximation given
in Proposition 3.1. Later, in the numerical section of this chapter we show that these
two approximations are quite tight and can be used appropriately in the respective

regimes.

3.5 kth User Capacity

We have so far focused our discussion based on the total number of users, K within
the coverage area of the BS. We now order the users based on their distances from the
BS as ||wi]| < [Jug]] < |Jus|] < -+ < |Jug]| < -+ < ||ug]|- In this section, we discuss
the capacity of the kth order user selected from the Poisson point process based on the

probability and intensity of the users.

Proposition 3.2. Considering the order of the users as described, the distribution of
the location of the kth ordered user with respect to the BS can be given as [52]

2(kmr?)k

T (3.20)

F(ITue|]) = exp(—rkmr?)
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3.6. Energy Efficiency

The ergodic rate for this user can now be approximated as

)n(m)(2n+k)r(2(n+k)+1)
an!T'(k)

1 . = 2(—1
RE(p) = Mlogdet(IM+ek(p)Rk)+Z (

n=0
- o 172(n+ak)+170’ 1
2,2 _
X ;:1: Gy <—¢k)\k:i ) — ex(p)ér(p), (3.21)

07 07_2(n+k)+1
a

m,n

where Gn p

parameters are as previously defined.

{-} is the hyper-geometric function and n € R with 0 < n < oco. All other

Proof. To prove this, we build on our previous proof of (3.14) and consider a random

user. The detailed derivation is given in Appendix 3.D. O

Corollary 3.3. Considering the order of the users as described in this section, the

distribution of the first user in the order can be given as
f(|Juy]]) = 2 exp(—rrr?)kmr. (3.22)

Accordingly, the rate for this user can be approximated as

1 ~ 2 2(—1)(/rm) @) p(2(nt1))
Rulp) = Mlogdet (Ins + &(p)Ry) +Z (=D )
n=0

an!

124 o
[e3

) —ei(p)éilp). (3.23)

. 07 07 _ 2(772»2)

3.6 Energy Efficiency

The energy efficiency of a communication link is the ratio of the achievable sum rate
to the total power consumed and is given in bits/joule [14], [46]. The corresponding

energy efficiency as studied in many existing works is thus given as [56, 14, 57|

Ru

= pPA | pRE’ (3.24)

where pP’4 is the power consumed by the power amplifiers and p® is the power con-
sumed by the RF components of both BS and UEs.
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3.6. Energy Efficiency

3.6.1 Power amplifiers

The average power in watt consumed by the power amplifiers during uplink can be

approximated as [9, 57|
pF4 = Pla +1), (3.25)

where a = % — 1 with ¢ being the modulation-dependent peak to average power ra-
tios (PAPR) for uplink while 5 is the power amplifier efficiency and P is the total
transmitted power of all users as described earlier.

3.6.2 RF chains

The average power in watt consumed in the RF chains for a typical MIMO transmitter-

receiver set can be given as [46]
pRF — MpBS—f-KpUE, (326)

where pP° is the power required at the BS to run the circuit components and pU¥ is

the power associated with the user equipments. They are further defined as follows

BS _ _BS BS , . BS BS BS
P = Pmiz T Prix + Papc T Ppac + Poscs (3.27)
p"" = pht 4 v + Pabe + Phhc + Poses (3.28)

where priz, Drits Papc, Ppac and  posc denote the power consumed by the mix-
ers, filters, analog-to-digital converters, digital-to-analog converters and local oscillator

respectively®.

Most existing works consider the total power consumed in the RF cicuits of the
system to be fixed. This consideration can be very detrimental in the analysis of
a large scale MIMO system, like ours, where both M, K — oo, which eventually
leads to unbounded EE. This outcome is the consequence of disregarding the fact that
dedicated circuit components with non-zero power consumption are required for each

antenna at the BS. As a matter of fact, EE does not always increase with M or K.

6The components considered in this chapter may vary from set-ups used in practical scenarios.
Any other components used can easily be included in the expressions of p?% and pUF while the ones
that are not used may be removed.
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3.7. Numerical Results

Furthermore, we have previously assumed the average fixed power transmitted by
all the users to be equal. However, the optimization of power to attain better energy
efficiency is of paramount importance. While in this chapter we give an appropriate
model for pf*¥ and validate our assumptions with simulations, the optimization of the
power and the number of antennas at the BS to attain a energy efficient system is dealt
with in Chapter 4.

3.7 Numerical Results

This section validates the system model and also verifies our result in Proposition 3.1
and the resulting corollaries by making comparisons between the ergodic sum rate
and the approximate sum rate. We analyze the behavior of the system model under
consideration with respect to increasing SNR while varying other significant system
parameters. In general, the computation of the ergodic sum rate is done through Monte
Carlo simulations (1000 realizations) which is then used to validate the simulation of the
analytical results. Unless stated otherwise, most of the values of the parameters used
are inspired from literature mentioned in references [13, 58|. For the system guidelines,
we consider a circular cell as stated earlier with a radius of » = 1000 meters. The
users are uniformly distributed within the coverage area of the cell and their numbers
are governed by Poisson distribution with intensity x and probability given by (3.13)
in Lemma 3.1. Hereinafter, we consider all the users in the system to be equipped
with two antennas and examine the validity of our approximations with respect to
simulations. While Fig. 3.2 shows the uplink sum rate versus SNR for various
antenna configurations at the BS, Fig. 3.3 shows the uplink sum rate versus SNR for
different user intensities, « inside the coverage area of the cell. Specifically, these two
figures attempt at validating Proposition 3.1. In other words, we intend to see how
well Ras(p) in (3.14) approximates to Ra,,(,) in (3.10). Here, we choose the path loss
exponent, o = 2.2 and the intensity of the users, x = 0.01. In Fig. 3.2, understandably,
the sum rate increases as we increase the average SNR. But what is notable is that, as
we increase the number of antennas from 8 to 150, the analytic curve tends to converge
tightly towards the simulation. This implies that Ra/(p) — Ra,, ) — 0 which proves
the validity of our approximation for large MIMO systems. Nevertheless, it is also
important to see how the analytical approximation fares when the system dimension
is not so large. In this regard, we see that the approximation also holds true for

fewer number of antennas as can be seen for the cases of M = 8,12,20,50 but with
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Figure 3.2: Simulation and analytical sum rate versus SNR for different number of
antennas, M at the BS. k = 0.01, a = 2.2.
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Figure 3.3: Simulation and analytical sum rate versus SNR for different intensities,
k of the users within the cell. M = 100, o = 2.2.

error of a few bits. Hence, it is crucial to investigate the scenarios when the number
of antennas is not a very large number, which we concentrate on in our subsequent
analyses. In addition, as we increase M, the ergodic sum rate also increases. For the
case of Fig. 3.3, we choose M = 100 and o = 2.2. We vary « from 0.01 to 0.02 in

44



3.7. Numerical Results

S 200t -——Si.mulation o
BT —— High SNR approximation
2
= -
3 150| M= {20, 50, 100} .
<z
©
+=
2 .’
5 1007 PR
~— ,/
o R
[y . PR
s -
oC 50t s %
E . "f‘ ‘_—’
> ’;v"—’ ——‘—
w C-zZ--""
O i

5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 40
Average SNR in dB, p

Figure 3.4: High SNR approzimation of sum rate versus SNR for different number
of antennas, M at the BS. Kk = 0.01, a = 2.2.

steps of 0.005. Our approximation holds good for all the three cases and hence, we can
assert the convergence of our analytic approximation for a massive MIMO scenario.
Furthermore, the sum rate of the system increases owing to the increase in x which
in turn increases K, thus increasing the transmit antennas. The increase in sum rate
follows a similar pattern as Fig. 3.2 with the scaling more pronounced when increasing
from £ = 0.01 to 0.015 than 0.015 to 0.02.

In Fig. 3.4, we plot the approximate sum rate for the high SNR regime from
Corollary 3.1 versus the average SNR for different combinations of M. M is varied
while x is kept at 0.01 and « at 2.2. It is quite evident from the figure that at high
SNR regime the path loss fluctuations are negated due to high transmit power of the
users, thus producing very high sum rates. Also it can be seen that the simulations and
approximations converge at relatively high SNR which validates our analysis. As can
be expected, M = 100 yields the maximum sum rate followed by other combinations.
Furthermore, the slopes of the curves become steeper with the increase in M and the
approximations converge with the simulations at very high SNR, thus validating our

result.

In Fig. 3.5 we show the sum rate approximation in the low SNR regime from
Corollary 3.2. We consider similar settings as in Fig. 3.4 with the exception of the SNR
range. Both simulations and analytic expression considering various M are plotted.

The approximations effectively converge with the simulations for very low SNR while
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Figure 3.5: Low SNR approximation of sum rate versus SNR for different number of
antennas, M at the BS. k = 0.01, o = 2.2.

they diverge from the simulations in the moderately low SNR region. Moreover, it can
be seen that the gap in performance when the number of antennas are increased is
quite minimal. This is due to the fact that the multiplexing gains are lost in the low

SNR regime.
At this point it is worth mentioning the fact that the high and low SNR approx-

imations are quite tight and considerably reduce the computation complexity of the
sum rate of the system. From a system design point of view, they can be quite easy

for engineers to implement in terms of computation time and complexity.

Next we analyze the EE of our system model with respect to a reference EE. We
define this EE as relative EE. First we calculate the EE of a reference system model
and then simulate the EE of our system by normalizing it with the reference system
model. We start by considering a single input single output (SISO) system with the
single user equipped with a single antenna transmitting to the BS equipped with one
antenna only. We consider PP5 = 1W and pU? = 0.1W and p = 10dB [13]. Thus,
from (3.24) we have

RMref
of = . 3.29
5 ! pref—i_lMpBS—f—KpUE ( )

Numerically we calculate Rys,.; = 0.6 bits/ transmission for M = 1 and K = 1.
Hence, from (3.29) we get &, = 0.054 bits/Joule. The following EE discussion will be
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Figure 3.6: Relative energy efficiency versus number of BS antennas, M with respect
to a reference system (M =1, K =1, ny, = 1), for different SNR and user intensities.
Here, o = 2.2.

based on relative EE, defined as % = o.gﬂ' Since it is a ratio, it is dimensionless. Fig.
3.6 illustrates the relative EE of the system with respect to M for different user inten-
sities and transmit powers. For a particular transmit SNR, as we increase the number
of antennas at the BS, the EE increases for a while, attains a local maximum and
then starts descending. This is an expected result as we consider a power consumption
model, which is a function of M and K with respect to the circuit power consumption.
Moreover, for a particular user intensity, with varying transmit power, the EE also
increases in the beginning, attains a local maximum and then starts decreasing. For
example, for the case of kK = 0.02, the EE curves for SNR 25 and 30 dBs start falling
between 100 and 150 antennas. This implies that a certain level of maximized EE can
be achieved in such systems by increasing the number of BS antennas but with the
important discrepancy of not requiring to increase the transmit power. In a nutshell,
the EE curve is a quasi-concave function of M which doesn’t always increase with M

in large MIMO systems.

3.8 Summary

The uplink performance of a massive MIMO system was analyzed. We use stochastic
geometry to characterise the spatially distributed users while large dimensional RMT
was used to achieve deterministic approximations of the sum rate of the system. We

analysed the sum rate of such a system both by means of simulations and analyti-
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3.A. Useful Lemmas

cal expressions. In particular, the BS along with the users were considered to follow a
PPP. Approximations for the analytical sum rate were provided along with closed-form
expressions at the low and high SNR regimes. The approximations were further vali-
dated with Monte-Carlo simulations. The performance was evaluated with respect to
the number of antennas at the BS and the intensity of the users. Analytical approxima-
tion for the rate of the general kth ordered user based on a PPP was derived. We also
provided an analysis of the energy efficiency of the system by taking into consideration
the circuit power consumption, which was shown to be a function of the number of
antennas and the users. The relative energy efficiency of the system was plotted with
respect to varying BS antennas for different SNR range. It was shown that the energy
efficiency is a quasi-concave function of the number of base station antennas and does

not always increase linearly with it.

Unlike the sum rate, EE doesn’t monotonically increase with the number of BS
antennas and hence it is important to find the optimum number of antennas. Accord-
ingly, in the following chapter, we derive the optimum number of antennas that can
be rigged in a space constrained massive MIMO system when EE is considered as a

design criteria.

Appendix 3.A Useful Lemmas

Lemma 3.2. Let T) = an and M,n;, — oo, such that 0 < min lim inf Y, < maxlimsup T},
k M k M
< 00. Then, the deterministic equivalent of the uplink ergodic sum rate for a large an-

tenna MIMO system consisting of M antennas and K users based on the Stieltjes and

Shannon transform can be given as [39]

_ 1 rt
Rau(p) =77 log det ( p(p )

) + %;logdet (Al(p))

. g (3.30)
—p>_enlp)Elp),
where
P(p) = ()" — fHA(E") . (3.31)
P(p) = (A(p) "~ pHAAE") (3.32)



3.B. Proof of Proposition 3.1

A(p) = % (IM +) 5k(p)Rk> , (3.33)
k=1

A(p) = ~ding (L, + Tcu(p)Tu)y (3.34)

(p) = AR (R (), (3.35)

p) = - (TE (3.36)

with Hy, being the LOS channel between the BS and the user k and p the total SNR of

the system. All other parameters are as previously defined.

Lemma 3.3. [59] A continuous function f(a) converges if it is a contraction. More-
over, the continuous function f(a) is a contraction if the absolute value of its first order

deriwative is always less than 1.

Appendix 3.B Proof of Proposition 3.1

Proof. For the case of Rayleigh faded channels with no line of sight, Lemma 3.2 can
be modified as

L e (AT LS et [A)
Ru(p) = lgdt< ; )—i—M;lgdt( ; )
. (3.37)
—p>_e(p)Elp),
where
A(p) = % (IM + Zék<P)Rk) , (3.38)
Alp) = ~ding (Ink " %wm)% , (3.39)
x(p) = 27T (ReA () (3.40)
&(p) = niktr<Tk<A<p>>k>Vk. (3.41)

Therefore, simplifying (3.37)-(3.41) and incorporating the path losses for the users,
which follow a PPP within the cell, the sum rate of a MIMO system can be approxi-
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3.B. Proof of Proposition 3.1

mated as
1 -
Rulp) = Mlogdet Iy + Z ér(p)Ry (3.42)
ke®(u)
+ Ey Z log det (Ink+ —F(u)ex(p) k) —p Z ex(p)éx(p
k€<I>( ) ke®(u

where €;(p)and €;(p) are as described in (3.15) and (3.16) and F denotes the large
scale fading as described before. Our aim now is to derive a closed form expression for
the second term on the right hand side of (3.42).

Let ¢ = anek(p). Then

B {log det(L,, + F()yTi)}
2 T
= ﬁ/ log det (I, + ¥, Tru “)udu (3.43)
0

2 [T A Y
= ﬁ/ IOgH(1+1/fk/\kiU Judz

r Tk

= Z log(1 + Y Agiu™*)udu

In(1 Mgt % )ud
7’211110;/0 n(1+ i Judu

2 T ol 11
r21n 10 Z/ Géﬁ (wk)"“ u ’ 1,0) udu

0,1
()
= « du. 44
r2 ln 10 Z/ <¢k>\kz 0’0> ua (3 )
Here, (a) is obtained using the identity [60]
_In(14p82) 1
log(1+682) = — 90— ~ m1o” (52 h ) ’ (349)

and (b) is obtained from [[53], eq. (7.811)]. Substituting y with u® and changing the

limits of integration, (3.44) becomes,

r21n102/ (@Dk)\]“

1 2
> —y&=Ddy. (3.46)
«
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3.C. Proof of uniqueness of eq. (3.15) and eq. (3.16)

Again, substituting % with z and changing the corresponding limits of integration we

have

E, {logdet(L,, + F(u)viTy)}

T2 1n1oz/ (@/Jml
- aln 10 Z/ wk)\]ﬂ
_ 2 irﬂ)(}” (r)®

aln 10 = 3,3 ¢k)\k7,

where (3.47) is obtained using [[53], eq. (7.813)]. Now, plugging (3.47) in (3.42) and

summing for k& users (using Lemma 3.1), (3.14) is obtained. O

0,1 1 ,
x = (zr®) @V pedy

0,0 o

0,1 )
2(a=Ddz
0,0

1-20, 1
) , (3.47)

0, 0,—-2
«@

Appendix 3.C Proof of uniqueness of eq. (3.15)
and eq. (3.16)

In order to prove that €,(p) and €& (p) in (3.15) and (3.16) have unique solutions, it is

sufficient to show that after a single update or an iteration, €x(p) and é(p) converge.

i (p)—€(p) = 0
& (p) — é.(p) — 0, where ¢ is any instant. Now, at instant ¢ + 1, eq. (3.15) and

In particular, we will use the Contraction principle [59] to show that e
and €

q. (3.16) can be given as

1
e (p) = —tr | Ry

i L+ ) él(p)Ry P(k)] ,diag (3.48)

k=0

1 Meét (p)T1 7"
E&l(p) = —tr| pTy ( diag {Ink + M] . (3.49)
Tk Tk VkE® (1)

We assume that A\;(A) is the ith eigenvalue of the matrix A. Without loss of generality,
the A;(A)s are sorted in non-increasing order as A;(A) > A(A) > A3(A) > -+ >
Ak (A). Herein, (3.48) and (3.49) are equivalent to [61]

t+1 PRk)
(v MZHA (o R Bk (3.50)
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3.C. Proof of uniqueness of eq. (3.15) and eq. (3.16)

N 1 & Xi(pTy)

t+1

& (p)=— . (3.51)
21 14 ), (Mek(p)Tk>

It should be noted that in our model, we assume the correlation matrices at the
BS, Rys to be all the same and hence without loss of generality, we write Ry = R.

Furthermore, let

1 (TN |
U= [1+ . 3.52
o ( V() 2 Am)) (352

Then, the eigenvalues of matrix Ty is given by

Ny -1
M(T) = (TN (T0) = 57 () ) (3.53)
where (A), is the element-wise positive part of matrix (A), while for scalar (z), =
max{0,z}. With the help of (3.52) and (3.53), &' (p) can now be rewritten as
n —1
&ty Z \Ijt/\ 5 (e.(p)
\IJ’,‘C)\i(Tk)
:L
e (p) VL M
Pt (
= TSy : 3.54)
er(p) + 5 2 o
Letting v}, = In (€}(p)), the convergence problem of €, (p) and & (p) is equivalent to
the convergence problem of the following function
vt = floh), (3.55)

where f(vi ') can be written as

S0 — 10 (P 15 Ai(pRy) ng 1
o) =1 (M) 1 (M;HAZ(& 0 e p )RkIP’(k))JrMZ/\i(Tk))

on
=1 (57)
RS Ai(pRy) meg )
_ln N — + —
(M ; 1+ Z] 0,j#k €] Yo (Ry) P(j) + e’k N (R;) M ; Ai(Tk)

52



3.D. Proof of Proposition 3.2

NN R p ni
=1 (M) : (MZ +Z et 1(p)p(j)+ev;il+ ZA Tk;)

i=1 X;(Rg) j=0,j#k €j
(3.56)

In the following, we will prove that the function f (v} ') converges. Firstly, we note that

the function f(v. ') is obviously continuous. Secondly, we compute the first derivative

of f(vy ') as

M v
2im1 -

t—1\ 2
(m+zﬁo,j¢k & (p) P(j)+e"% )

Fh) = (3.57)
* sz\il ) p R e lA(Tk
SRy T 20,52k G (P) P)+e” ©
At this point, it is obvious that
et
o : — < L. (3.58)
+ ZJ =0,j#k j (p)]P)(]) + evk
Accordingly, from (3.57) and (3.58), we have
Zg\il 1 £ T—1
. T R T 0k & (0) P() e
il < iy BT (3.59)

Zi:l £ t—1

m*zﬁo,#k &7 (p) P(j)+e"k
< 1.

It is easy to show that the first derivative of f (v,i_l) is also positive, which means
that the absolute value of f’ (v~ ') is smaller than 1. Hence, using Lemma 3.3, given
in Appendix 3.A we can state that f (v,i_l) is a contraction, which implies that it
converges. This concludes the proof of uniqueness of eq. (3.15) and eq. (3.16)7.

Appendix 3.D Proof of Proposition 3.2

Proof. Let vy, = %ek(p). Then using (3.20)

E, {logdet(I,, + F(ux)eTk)}

"For the special case, when a single user is considered, a similar proof of convergence was shown
in [61].
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26T o [
= % Z /log(l + Pp i) exp(—rru?)uFdu

2m Z / (mmﬂ

Substituting y with uy/k7m and changing the limits of integration, (3.60) becomes

0,1

) exp(—rmu?)u* du (3.60)
0,0

) "k rv/Km 1 0,1 y2k
= @ | ) eyt Ly
k) 1221: /0 22 ( (Km-)fwkkki 0,0 (\/ /€7T)(k+1)
(3.61)
Now, expanding exp(—y?) with the help of Taylor’s series expansion, we have
) o an
) = 1y (3.62)
Furthermore, using (3.62) in (3.61), we have
2 2210(_1)” S e 2,1 1 o o 2(n+k)
(k+1) Z G272 RN Y dy.
(3.63)

7= and changing the limits of integration, (3.63) becomes

0,1
% 22(n+k)dz
0,0

2300 y(— 1) (VEm) R R+ /1G21< .
0

n!T(1) — Dider
(3.64)
Simplifying (3.64) we get
25 (1) (VR e
an!T'(k)
Xi/l G2,1 r . 0,1 (2(n+k)+171)d (3 65)
z p\~ e p. :
i—1 Y0 22 wk/\kz 0,0
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From (3.65) we have, p = %

ro

Aki”

,o=1and y = Hence, (3.65) can be approxi-

mated as

2> 0 0(—1>n(\/ﬁ)(%%)r(?(wrk)“)F - 22 r® 120, 1
- 1 ,
an'F(k’) ( ) Z 3,3 ilo, 0, _ 2(ntk)+1

(3.66)

Plugging (3.66) into (3.42) for the kth user, we obtain (3.23). O
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Chapter 4

Space-Constrained Massive MIMO

Systems

4.1 Introduction

Due to the limited availability of wireless spectrum, massive multiple-input multiple-
output (MIMO) can be truly exploited only by significantly increasing the number
of antennas deployed per unit area [62]. A usual practice when deploying antenna
elements is to space them by a distance equal to or greater than half the wavelength
of the transmitted frequency [13], [58]. One of the constraints towards this end is the
limited availability of physical area for deployment of a large number of antennas at
the base station. Massively densified antenna deployment is a way out but it leads to
two effects, namely spatial correlation and antenna mutual coupling. The proximity
of the antenna elements as signal sources and electrical components causes antenna

correlation and coupling respectively [63].

The nulls and the maximum of the radiation pattern of the antennas are shifted
owing to the mutual coupling among them [64]. Mutual coupling effects among antenna
elements in 2D linear arrays have widely been studied in [65]-[66]. While [65] and [66]
focus on the performance of adaptive arrays when exerted to mutual coupling, [63]
and [67] examine the performance of massive MIMO systems with antenna elements
affected by mutual coupling owing to constrained physical space. Mutual coupling

due to constrained antenna spacing has been stated to deteriorate the performance

Reprinted from IEEE Transactions on Wireless Communications, S. Biswas, C. Masouros, T. Ratnarajah, “Performance Analysis of
Large Multiuser MIMO Systems with Space-Constrained 2-D Antenna Arrays”, Vol. 15, No. 5, PP. 3492-3505. Copyright (2016), with
permission IEEE.
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4.1. Introduction

of MIMO systems by influencing the correlation of the antennas in [68], [69]. Effects
of mutual coupling on the radiation patterns of phased arrays were investigated in
[70]. Effects of transmit correlation and mutual coupling on linear precoders were
analyzed considering large scale MIMO transmitters in [63]. While a considerable
amount of work has already been done with regards to antenna coupling in MIMO,
its effects are still quite unknown when a massive MIMO scenario with hundreds of
antennas at the base station (BS) are considered. Also to be noted is that most
prior work on effects of antenna coupling on MIMO is based on linear arrays [66]-
[71] as in cellular networks, the uniform linear array! is the most commonly deployed
configuration. However, the uniform linear array can scan only the 2D space. On the
other hand, the rectangular array can take both the azimuth and the elevation angles
into consideration. This makes rectangular array the appropriate array configuration

to exploit the 3D propagation space in the true sense.

Accordingly, since the need of the hour is to accommodate as many antennas as
possible, we present a more realistic 3D rectangular antenna array configuration with
increasing number of antennas. If antenna elements are rigged considering a spacing
less than half the wavelength of transmission, a considerable number of antennas will
be coupled affecting both the spectral efficiency (SE) and energy efficiency (EE) of the
system. While mutual coupling models for 3D antenna arrays have been ever-present in
the field of communications, most existing works on large-scale MIMO systems predict
over-optimistic performance assuming arrays with unbounded physical space, the more
relevant work in [63] considers only linear arrays and a simplified mutual coupling
model. In this work, we consider a more realistic rectangular array bounded by a fixed
physical space with an area of about 1m? and analytically account for the full mutual

coupling model of the array.

Any new system developed in the field of communication would demand energy
saving as one of its primary design criteria. The advent of technology hasn’t actually
reduced the energy consumption of the BS and user equipments (UEs); instead energy
consumption and power radiation has become a major health and economic hazard over
the years [12]. [72] discusses the electrical power consumptions of the power amplifiers,
the cooling systems and the associated circuits installed at the BS. While large antenna
arrays have been stated to reduce uplink (UL) and downlink (DL) transmit powers
due to coherent combining and an increased antenna aperture in [62], [15] claims such

systems operate with a total output RF power of magnitude which is two times less

!Details on array geometry and in particular uniform linear and circular array configurations can
be found in Chapter 6.
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than the current technology. Thus, with the emergence of massive MIMO, we can
claim to have taken a giant leap towards reducing the consumption of energy in the
field of communication. But how massive is the leap and where will it lead us towards
conservation of energy? We will try to analyze this question with respect to EE that
can be considered to be a very proficient design goal when it comes to developing

energy efficient communication systems.

The focus of this chapter is to consider realistic setups of massive MIMO and analyze
how large MIMO systems bounded by fixed physical spaces fare to the demands of
increasing EE while contributing towards high spectral efficiencies. We re-examine the
question: “How many antennas do we need?” [7] by means of EE under a) realistic
antenna deployments in fixed physical spaces and b) thorough and pragmatic power
consumption models. We reflect on both the uplink and downlink of a multi-user
MIMO system which models antenna correlation and coupling at the BS. We calculate
the SE and transmitted power for both uplink and downlink and also the EE of this
system with the help of a power consumption model similar to [49], incorporating
parameters like power consumed by amplifiers and other digital circuits. Our analysis
is based on the effect of increasing the number of BS antennas and reducing the antenna
spacing on the EE of the system while taking into consideration two practical linear
receivers/precoders in maximum ratio combining/transmission (MRC/MRT) and zero
forcing (ZF). To obtain a fair comparison, we analyze the EE of massive MIMO systems
considering the fixed power consumption for the cases of two current communication
technologies: WIFI and LTE. While analytical expression for EE is obtained for ZF
only, simulation results are provided for both MRC and ZF.

4.2 System Model

We consider the uplink and downlink of a single cell multi-user MIMO arrangement
with one BS equipped with a uniform rectangular 3D antenna array located in a fixed
physical space of area A as shown in Fig. 4.1. Each row and column of the antenna
array consists of n and m dipole antennas respectively, with each element separated
from the other by a distance d within a row or a column. M = nxm is the total number
of antennas receiving signals from K single-antenna users with M > K. The users are
assumed to transmit their data in the same time-frequency resource with A being the
carrier wavelength. We also assume that d < A/2 so that antenna coupling significantly

impacts the performance of the system. Furthermore, the length and breadth of the
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4.2. System Model

rectangular array are a\ and SA («, 8 € N) respectively, which leads to the following

expressions

A = aB)? (4.1)
a\ BA

Hereinafter, in this chapter all the analysis performed with respect to the n x m rect-

angular array will take into consideration the following assumptions:

a) The antenna elements are placed at uniform intervals.

b) All the elements are identical to each other. In our case we consider dipoles of

equal length.
c¢) All the elements have equal amplitude excitation.

d) The directions of arrivals (DOAs) or directions of departures (DODs) are ran-
domly and independently distributed in angle spread ¢ as a (D, ¢) channel (D is

explained later).

Perfect synchronization in time and frequency is considered between the BS and users,
which operate in a time division duplex (TDD) protocol. The uplink and downlink
channels are assumed to be reciprocal within a coherence block. Moreover, the uplink
and downlink transmissions follow fixed transmission ratios, YU and YP% respectively
[58], with TVL + TPL = 1. Let T be the length of the coherence time interval and
UL 7PL are the number of symbols used for uplink and downlink pilots respectively.
Uplink training utilizes K7U% of the coherence time interval while downlink training

occupies K7PF. The BS utilizes the uplink training to estimate the downlink channel.

Let W represent a semi-correlated frequency-flat channel matrix between the BS
and the K users which is modeled as W = HF? for uplink with H ~ CN (0, ZVF @ 1)
representing the uplink channel and W = FzH for downlink with H ~ CA (0,Ix ®
3 D)2 representing the downlink channel, where ¥{} = X0 = 3, is the BS corre-
lation matrix, ® denotes the Kronecker product operator and F is a K x K diagonal
matrix, where [Fyi] = fx. V/fr models the geometric attenuation and shadow fading

which is assumed to be independent over M and constant over several coherence time

2Tt is to be noted that for simplicity of notation, we represent the uplink and downlink channel
matrix with the same notation. However, wherever used, its property will be clearly mentioned.
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e 0O-Elevation angle

o - Azimuthal angle 4

e aA-Array length

o BA-Array width

e d-Distance between two consecutive
antennas (horizontal and vertical)

e m—Number of antennas along Y axis

e n—Number of antennas along X axis

Figure 4.1: An illustration of a multi-user MIMO setup: A 3D rectangular array con-
sisting of M dipole antennas serving K single-antenna users located uniformly within
the cell diameter in the uplink and downlink.

intervals. This holds true owing to the assumption that d < r,, where r, is the mini-
mum distance between an arbitrary user and the BS and f;, changes very slowly with

time.

4.2.1 Channel model with correlation and coupling

We examine a single-cell setup with an M-antenna BS and K single-antenna users.
The uplink and downlink channels are modeled as one-sided correlated Rayleigh flat
fading channel with no line of sight. We assume the fading to be correlated only at the
BS [73]. After incorporating the mutual coupling of the receiving antennas, we model
H for uplink as [63]

H:[hl,hg,...7hk,...,hK], (43)
where hy, is the M x 1 uplink channel vector of the k-th user; given as
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and for downlink as
T T r]"
H:[hl, ... nl, . hK] , (4.5)
where hy, is the 1 x M downlink channel vector of the k-th user; given as

where I' € CM*M denotes mutual coupling, AYL € CM*P denotes the receive steering
matrix during uplink containing D steering vectors of the receive antenna array with D
denoting the number of direction of arrivals (DOAs) while APL € CP*M denotes the
transmit steering matrix during downlink containing D steering vectors of the receive
antenna array with D denoting the number of direction of departures (DODs) and the
vector g, ~ CN(0,1p) whose dimensions for uplink and downlink are D x 1 and 1 x D
respectively. For the sake of simplicity, the number of DOAs and DODs are considered
to be equal. Furthermore, for the uplink transmission, [H?H| ~ CWg (M, X,) where
CW,(r,S) denotes a complex Wishart distribution with degrees of freedom r, dimension

q and covariance S. Similarly for downlink transmission, [HH?] ~ CWg (M, Xy).

4.2.2 Correlation at the BS

We consider the antenna array at the BS to be uniformly rectangular as shown in Fig.
4.1. As stated before, the spacing between two adjacent antennas within a row or a
column is considered to be d. Thus without loss of generality, the steering matrix with

respect to the ith direction of arrival can then be expressed as [74]
Ai = ac(¢i7 Q)ar(¢i7 9)T7 (47)
where a.(6, ¢) € C™! is the column array steering vector given as
127 d cos ¢; sin 0 2% d(n—1) cos ¢; sin 6 T
a.(ér,0) = [1,eu isind % i ] (4.8)
and a, (0, ¢) € C™! is the row array steering vector given as
=27 s 3 27 . . T
ar((biy 9) _ |:17 6]7dsmd)i Slno97 o ,e]Td(m_l) sin ¢; smc9] ) (49)

Using the vector valued operator vec{-}, which maps a m x n matrix to a mn x 1

column vector by stacking the columns of the matrix, the array steering matrix may
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N N

D

&
J )

Figure 4.2: An example showing the effect of mutual coupling on two dipole antennas
located adjacent to each other spaced at d distant apart.

be transformed to a 2-D array steering vector as
a(¢;,0) = vec{A;}. (4.10)
The M x D steering matrix of the rectangular array for uplink can now be given as

AYF =[a(¢y,0),...,a(¢,0),...,a(¢p,0)], (4.11)

where a(¢;,0) € CM*! fori € 1,2,3...,D. Similarly for downlink the D x M steering

matrix is given as
APE =la(¢,0)", ... a(¢:,0)", ... a(¢p,0)"]". (4.12)

Hereinafter, for notational simplicity, we represent the uplink and downlink steering
matrix with the same notation A. However, the property of the matrix will be clearly
mentioned, wherever used. Throughout this chapter we consider d to be equidistant

and the D DOAs and DODs are randomly and independently distributed in an angle
0 € [-7F, 3]. Different degrees of transmit correlation are obtained by varying ¢ of the

spread determined by the azimuth ¢; € | l,i=1,2,3..., D and the same elevation

semi-correlated (D, ¢) channel.
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4.2.3 Mutual coupling at the BS

When multiple antennas radiating simultaneously are located in proximity of each other
within a fixed physical space, the electric field of one antenna impacts the distribution
of current of the adjacent antennas, which leads to the radiation pattern and input
impedance of each antenna being disturbed [68]. This phenomenon is known as antenna
coupling.

Our system model is characterized by mutual coupling among linear dipole anten-
nas of length [ as shown in Fig. 4.2, which are arranged in a planar configuration
with uniform square grids and rectangular boundary as described earlier. The mutual

coupling matrix, I" is defined as [64]
T = (Zy+Z\)Z+ Z 1), (4.13)

where 71, Z 4 and Z denote load impedance, antenna impedance and mutual impedance
matrix respectively. Z can be constructed as a M x M matrix, which is given in (4.14)
at the bottom of this page, where Z;)(;;) denotes the mutual impedance between
antenna located at the ¢th row and kth column and the antenna located at the jth row

and [th column of the rectangular array with i, € 1,2,...,nand k,l € 1,2,...,m.

The correlation matrix at the BS for uplink can now be given as

>Vl — E{HH"}
= TAE{g.g }A"TY
= KTAA®TH, (4.15)

Similarly, the correlation matrix at the BS for downlink is given as

DL HAH
»DL = KTHAZAT. (4.16)
[Za,1a,1) - Z(1,1y(1,m) - Z(1,1)(2,1) - Z(1,1y(2,m) - Z(1,1)(n,1) s 21y (n,m)
Z(1,2)(1,1) - Z,2)(1,m) - Z(1,2)(2,1) - Z(1,2)(2,m) - Z(1,2)(n,1) s Z(1,2)(n,m)
7 — Za,myay - Zamy@am) oo Zamye o Zamyem) o Zamy(n,) o Z(1,m)(n,m)
Z(n,1y(1,1) 0 Zm,n@am) o L)1) o ZmEm) o Z(n,1)(n,1) <o Zn1)(n,m)
LZ(n,m)(1,1)  ++  Zm,m)A,m) 0 Znm)2,1) o Zm,m)2,m) o+ L(n,m)(n,1) - Z(7L,77L)(7(L,7n)- )
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Since XV} = =P = 33/, we will ignore the superscripts UL and DL henceforth.

Example 4.1. Assume that the antennas at the BS are rigged in a uniform planar
array with square grids and rectangular boundary. Applying simple algebraic operations
on the Cartesian co-ordinates of the rectangular array, the distance between any two

antenna elements within the array can be given as

dapyn = dv (i —5)? + (k= 1)?, (4.17)
where i, j, k,l are described as before.

dii k) Plays a significant role in determining the mutual impedance, Z; ),
which based on current maximum at the input antenna terminal is given by the elec-
tromotive force (EMF) method as [64]

Ziw G = Rapen +IiX6mG6n- (4.18)

Here, Ry and Xk are self-mutual-resistance and self-mutual-reactance be-
tween antenna located at the ¢th row and kth column and the antenna located at the

jth row and /th column respectively and given as [64]

m
Ry = 4;/\7;—0 2Cin(uo) — Cin(u1) — Cin(uz)] (4.19)

and

7
X(z‘,k)(j,l) = 47T—\/\7;_0 [QSm(uo) - Sm(ul) - Sin(UQ)] ) (4-20)

where 1y and €y denote the magnetic and electric constants,. Furthermore, the variables

Up, Ui, Us are respectively given as

wy = 27d( )0

_ [ 72 2
w = 27 (l + d(ijk)w) +1 > ,
_ [ 72 2
Uy = 27 ( [+ d(i’k)w) + 1 > ,

and Cj,(.) and S;,(.) are cosine and sine integral functions respectively and are defined

as

“cost —1

Cin(a) = 7+ln(a)—i—/0 Tdt, (4.21)
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4.3. Spectral Efficiency and Transmitted Power

Sin(a) = /0 L, (4.22)

where 7 is the Euler-Mascheroni constant and [ is the length of the dipole antenna.

The electrical and magnetic parameters of the antennas are considered to be equal
for every antenna. Hence, considering equal spacing among the antennas along row
and column of the rectangular array, the following properties for the mutual impedance

matrix Z can be obtained -

a) Z is symmetric. Let Z,, be the element in the uth row and vth column of Z.
Then

Zow = Zou. (4.23)

b) Z is a Toeplitz matrix. Thus
Zuv - Z(u+1)(v+1). (424)

¢) Z has 2M — 1 degrees of freedom.

Remark 4.1. Let Zy, = Z pyj1), where p,q € 1,2,..., M. If p = q, then I'yy = Zy,

where Z 4 denotes antenna or self impedance.

4.3 Spectral Efficiency and Transmitted Power

4.3.1 Uplink

During uplink transmission, the K users transmit their data in the same time-frequency

resource. Thus, the M x 1 received vector at the BS can be given as
y = WPYIx 4 7, (4.25)

where x € CK*! is the symbol transmitted by the K users. PU% is a K x K diagonal
matrix with the vector pV =[pVL ... pYL .. pY¥| constituting the diagonal where p{/*
is the average transmitted power of each user and pYZ > 0 fori =1,2,..., K and z is

a vector of additive white Gaussian noise with zero mean and variance® o%I,;.

3Without loss of generality the variance of z is considered to be 1 in this chapter to reduce com-
plexity.
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4.3. Spectral Efficiency and Transmitted Power

For the detection of x, the BS uses a M x K linear detector, V on y. The signal
and noise plus interference components of the processed received signal for the kth user

after detection can thus be given as

K
_ UL H UL _H H
Tk = pp Vi WiZp + E p; o Vy Wix; + Vi 1, (4.26)
—_——— ~——
desired signal iﬁl’wgk P noise
TV
interference

where 7, and x; are the kth elements of vectors r and x respectively while ng is the
power transmitted by the kth user. We consider two low complexity detection schemes,
namely MRC and ZF at the BS. Hence,

(4.27)

W, for MRC
W (WHW) ™' for ZF.

Assuming the channel to be ergodic, the ratio of the signal power of the kth user to

the noise-plus-interference term (SINR) can be given as

UL |<,H 2
P vy, Wil
AL = - kR k : (4.28)
> PV w4 [ vl 2
i=1,i#k

Throughout this chapter, we assume the target SINR to be provided to each of the K
users to be equal. To achieve this equal SINR condition, we use the approach given in
[75] for solving the power control problem in mobile scenarios using Perron’s theorem?.

Let us define a matrix ¥ € CX*X where

(O] =

)

(4.29)

|VkHWi\2 f ;
A ATERETT) or 7 k
{ v Ellvel[?? 7

[vi w2 -
TR for i = k.

Since in our analysis the variance of z is considered to be 1, therefore, to meet the

equal SINR condition for the K users, the uplink power vector pU? has to satisfy the

4The model in [75] can be looked upon as a simplified generalization of our model without the
mutual coupling effects. The power loss due to mutual coupling, p°®“? can be compensated for at the
BS with additional circuitry. Moreover, any disparities in power distribution can be accounted for by
properly designing efficient detector or precoder matrices to meet the specific power constraints of the
system.
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following condition [[75], eq. (29-33)]
p" W = 1,4 (4.30)

Simplifying (4.29) and (4.30), the power assigned to each uplink user can be given as

UL 712”
=k 4.31
P =G (4:31)

where,
|VkHwi\2 .
[viHwy|? i fori#k

=" and Gy = vl 4.32
%= P o, for i = k. (4.32)

The total transmitted power for K users during uplink can now be given as
pijL = E{l(lxK)pUL}. (433)

Remark 4.2. The power allocation problem states that p{* > 0. Hence, the necessary
condition for pYL to have a positive solution is that g — v,.Gri be non-negative for

Ye > 0.

We now define the uplink SE for the kth user as [13]

UL _ UL B
RUL-A = (TT ! K) RUL-A, (4.34)

T

where A € {MRC, ZF}, T is the coherence interval in symbols, 7V% is the transmitted
uplink pilot sequence in symbols and YUZ is the fraction of uplink transmission as

described earlier.

Definition 4.1. Let a p x p matriz, Q ~ CW,(q,S), where p is the dimension, q is
the degree of freedom and S is the covariance. Then from [16] for any integer r > 0,

1) E{Q"} = é(r,q,p)S, where é(r,q,p) is a constant depending on r,q,p. If r =1,
then ¢é(1,q,p) = q. Hence, E(Q) = ¢S and E[tr(Q)] = pgS.

2) Ifr = —1, then B(Q") = &(1,¢,p)S~" and &(1,q,p) = (p—q)~'. Hence, E(Q™!) =
(p—q)"'S™ and E[tr(Q7)] = p(p — ¢)7'S™".
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Proposition 4.1. The first negative moment of the SINR for the kth user assuming
M > 2, perfect CSI and MRC' detection at the BS can be given as

(5] (0200 S PS4 1)

E{ (VL MRCY-11 _ .35
((aFmey 1y P (4.35
Accordingly, the uplink rate can be given as
RUL-MEC  _ 1og, <1+ (E{(;")VE" MRC}}—1>
UL(Af
= logy[1+—— 1 (M = D/ . (4.36)
tr[X] (tr[EM] Zz 117&1@?2 L+ 1)

Now if 4, is the minimum target SINR required to achieve a minimum rate of Ry for

the kth user, then the power required can be given as

e tr[S3-115, UL—MRC
G UL~MRC _ (X0 17k _ ‘ (4.37)
(M = 1) fr = WUEMEC Sy ] >0 fi
i=1,i#k
Proof. The proof is given in Appendix 4.A. O]

Proposition 4.2. The first negative moment of the SINR for the kth user assuming
M > K + 1, perfect CSI and ZF detection at the BS can be given as

T tr[E_l]
E{(AVL-20Y1) = — M2 4.38
Accordingly, the uplink rate can be given as
éllchfZF _ E [log2< I {]E{ UL~ ZF}} )}
VLM — K) f,
=1 1 . 4.39
o8 ( + tr[35,] ( )

If 3 is the minimum target SINR required to achieve a minimum rate of Ry for the

kth user, then the power required can be given as

~UL-ZF _ tT[EJT/lekUkZF

b (M — K)fy

(4.40)

Proof. The proof is given in Appendix 4.B. O
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4.3.2 Downlink

Since we use TDD transmission technique, the downlink channel can be represented as
a Hermitian transpose of the uplink channel. The BS transmits data streams simulta-
neously to all the K users which creates an interfering broadcast channel. To counter
the interference, we use M x K precoding matrix at the BS denoted by T. The signal

received by the kth user can be given as

K
e = et fwil ey, + Z pPr fwiltimi+ 2 (4.41)
desired signal =1k noise
inten?e,rence
where x € CM*! is the symbol transmitted by M antennas. pPt C pPr = [pPr

~pPE o pPE]T is the power corresponding to the kth user similar to uplink with the

same constraints while z; is the noise associated with the kth user. t; is the vector of
N S

(TTH)
parameter to constrain the average transmitted power. Almost identical to the case of

the precoding matrix associated with the kth user and f= is a normalization

uplink, we consider two linear precoding schemes namely MRT and ZF. Accordingly,

W, for MRT
= 1 (4.42)
W (WHW) , for ZF.
The desired SINR can thus be given as
DL [wi! tkf
t
~PL - |' k}'l | . (4.43)
DL Wit
2 P e

Similar to uplink, we assume the target SINR to be provided to each of the K users to
be equal. Following the same approach as used to derive (4.31), the downlink power

for the kth user can be assigned as

DL VI?L
pPl— 4.4
g qx — VG (4.44)

where

(4.45)
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The total transmitted power for K users during downlink can now be given as
p" = E{1u.p""} (4.46)

Remark 4.3. Adhering to the power constraint p?* > 0, the necessary condition for

pPL to have a positive solution is that q, — Y2, Grs be non-negative for vPL > 0.

The downlink rate similar to the uplink for the £th user can now be given as

REL*A _ (TTDL _ DL

= ) RPL=A, (4.47)

where A € {MRC, ZF}, T is the coherence interval in symbols, 7°% is the transmitted
downlink pilot sequence and YP% is the fraction of downlink transmission as described

earlier.

Proposition 4.3. With M > 2 and assuming perfect CSI and MRC' detection at the
BS, the first negative moment of the SINR for the kth user can be given as

(5] (6[2ar] S P8 1)

E{(PYI@DL_MRC)_l} = kaL<M — 1) fr

(4.48)

The downlink rate, RkDL_MRC follows accordingly similar to Proposition 4.1. Also if Ay
15 the minimum target SINR required to achieve a minimum rate of Ry, then the power

required can be given as

tr[z—l] > DL—MRC

ppPEMRC = [Tk . (4.49)
(M —1) fp = WPE-MEC (S]] >0 f;
i=1,i#k

Proof. Following the same derivations as in Proposition 4.1 for the case of uplink, we

can arrive at the above result. O

Proposition 4.4. With M > K +1 and assuming perfect CSI and ZF detection at the
BS, the first negative moment of the SINR for the kth user is given as

DL—ZF\—1\ _ tr[EXj]

(4.50)

The downlink rate, fikD L=ZF follows accordingly similar to Proposition 4.2. Accordingly,

if A, is the minimum target SINR required to achieve a minimum rate of Ry, then the
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power required can be given as

~ DL-ZF _ tr[EJTJIWkDL_ZF

P (M — K) fi (451)

Proof. This proof can be obtained following an approach similar to the derivation of

Proposition 4.2 for the case of uplink. O

4.4 FEnergy Efficiency

EE of a communication link as stated before is the total transmit energy consumption
required per bit i.e., the ratio of the sum rate achieved to the consumed power, and
can be expressed in bits/joule as [46, 13, 58, 77, 78]°.

A R4
g - pPA +pRF +pCoup’ (452>
where
K
R*=> (R"* 4+ RP") (4.53)
k=1

is the total sum rate for the K users through an entire process of uplink and downlink,
pP4 is the power consumed by the power amplifiers, p™¥ is the power consumed by the
RF components of the systems, p©°* is the power loss due to mutual coupling among

the antennas located in close proximity to each other and A € {MRC, ZF'}.

Remark 4.4. In order to obtain insights on how the number of antennas, the physical
space and the transmitted power affect the total EE of a massive MIMO system, it
makes sense to look at the total rate and divide it by the total power. Hence, the
EE metric used in this chapter focuses on the total rate and power of both uplink
and downlink. Following [58, 77, 18], we look at the system as a whole, but with the

5The definition of EE used in this chapter is in accordance with the mentioned literature. This
approach of dividing the SE with the average total power consumption greatly simplifies the analysis
and is comparable to the various recent literature on MIMO systems. The joint uplink-downlink
optimization makes it favorable to attain a holistic and balanced optimization for the uplink and
downlink resources, system parameters (such as antenna numbers) and to allow a performance guar-
antee vs power consumption on the full forward and reverse link between the base station (BS) and
mobile users [79, 80, 80].
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important discrepancy that the increase in the number of BS antennas happens in a

fixed physical space.

4.4.1 Power amplifiers

The average power in watt consumed by the power amplifiers during uplink and down-

link can be approximated as [46], [58]

pPA:ng(OéUL—I—l)—}—ptDL(aDL—}—l), (454)

where oVl = g(U]—i — 1 and Pt = % — 1 with ¢V and (P’ being the modulation-

dependent peak to average power ratios (PAPR) for uplink and downlink respectively
while nY% and n”? are the power amplifier efficiencies at the UE and BS respectively
and pVL, pPL are the transmitted powers in the uplink and downlink respectively as

described earlier.

4.4.2 RF chains

The average power in watt consumed in the RF chains for a typical MIMO transmitter-

receiver set can be given as [46]
P = Pl + MpPS + Kp” (4.55)

where p}i‘m is the fixed power consumption at the BS dependent on the processing
scheme A € {MRC,ZF}, pP is the power required at the BS to run the circuit

components, pV¥ is the power associated with the user equipments which are defined

as follows
PP = pls + pli + pioe + pESic + posc (4.56)
UE UE UE |, UE UE UE
D" = Pmiz T Prix + Papc T Ppac + Posc (4.57)

where Pz, Prit, Papc, Ppac and  posc denote the power consumed by the mix-

ers, filters, analog-to-digital converters, digital-to-analog converters and local oscillator
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4.4. Emergy Efficiency

respectively®.

4.4.3 Mutual coupling

The mutual coupling effect among antennas in the vicinity of each other as discussed
earlier increases the power consumption of the system. Applying simple circuit theory
analysis on Fig. 4.2, the terminal voltage for a particular antenna at the BS can be

given as [65]

M

vi= Y iTiy, (4.58)

=L

where, v; denotes the terminal voltage at the ith antenna element due to a unity current
in the jth antenna element when the current in all other antenna elements is zero and
I'; ; is the total mutual coupling experienced by the ith antenna element due to all
other antennas as discussed in Section 4.3. Furthermore, ipg = [i,i2,13...... ip]7, and
Vs = [V1,Va, V3. ..... var]T where, ips and vpg are vectors of currents and voltages
respectively associated with the dipole antennas in the rectangular array. The power

loss due to coupling based on the current maximum now follows as
PP = viipg. (4.59)

In order to maintain a fixed SINR, this loss is compensated at the BS. Using (4.52)-
(4.59) we now derive an analytical expression for . For the sake of simplicity, we
consider the minimum SINR, 4 targeted for every users to be equal for both uplink

and downlink.

Hereinafter, we consider a minimum fixed rate, R to be provided to each and every
user for both uplink and downlink which leads to the uplink and downlink rates being

YULR and TPER respectively. Thus the total SE of the system for one complete cycle

6The components considered in this chapter may vary depending on set-ups used in practical
scenarios. Any other components used can easily be included in the expressions of p% and pVF while
the ones that are not may be removed. It is to be noted that the uplink and downlink transmissions
are separated by the fractions TVZ and YTPL respectively. Hence, by changing these parameters, the
uplink and downlink power consumption parameters can be controlled to adjust to the requirement
of the networks in consideration.
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of uplink and downlink can be given as

TYUE — K7UEN <y TYPL — KrPEN <,
B (P e

]~

T T
k=1

K
T

14

[T — K(rV" +7P5)] . (4.60)

Proposition 4.5. Taking into account the diversity loss due to mutual coupling, we aim
at guaranteeing a minimum rate of R. We accomplish this by dynamically allocating

power to the users and hence, define a parameter p = f(~,R). Therefore, considering

ZF processing at the BS, with no loss of generality, we can define R as

R =log,(1+ p(M — K)). (4.61)

Thus the total power consumed by the power amplifiers during one complete cycle of

uplink and downlink when a ZF processing scheme is employed at the BS is

CUL CDL )

Proof. The proof is given in Appendix 4.C. ]

4.4.4 Energy efficiency and analytical optimum of M for ZF

The EE of the system now follows from (50) as

E (T — K(rVErPL)) logy(1 + p(M — K))

CUL

Kﬁtr[ZX}] (77U_L + %) + MpBS + KpUE +pCoup

§ZF

(4.63)

Definition 4.2. If a local maximum exists in a strictly quasi-concave function, it is
also the global maximum [56]. This global optimum can then be obtained by setting the

partial derivative of the quasi-concave function to zero.

Proposition 4.6. Considering ZF processing scheme at BS and power loss due to

mutual coupling, the maximum number of antennas, M that can be accommodated

75



4.5. Numerical Results

within a fized physical space, /A which mazimizes the EE, Y can be given as

B (Kpt(=y] (S + 7 ) + KpVE+5°7) 1 _ e )
exp ¢ W - +1p +pK -1

M maz —

pBSe e

[ =

(4.64)

where W (x) is the product logarithm function and e = 2.71828 is the Euler’s number
and pP3, pUE, and p©°P are obtained from (53), (54) and (58) respectively.

Proof. The proof is given in Appendix 4.D. O]

Furthermore, it can also be shown that the stationary point M,,.. is also a global
maximum and the EE curve is quasi-concave, which increases for K + 1 < M <

M oz, attains a global maximum, M., and then decreases for M., < M < oo (See
Appendix 4.D).

At this point it is worth mentioning the relation between ¥, and M. While there
is no explicit mathematical expression relating these two parameters directly, from (15)
it can be seen that 3, is related to I', which in turn is related to Z through (13-16).
However, Z depends on m,n and the distance d through (17-22). Since the physical
space A of the antenna array is constant, any changes made on M will affect the mutual

coupling Z and subsequently the resulting correlation 3,,, which is indeed intuitive.

Proposition 4.7. Considering ZF processing scheme at BS and power loss due to
mutual coupling, the parameter p that mazimizes the EE, £4F provided M is kept

constant can be given as

p _ 1 exp W (M _ K)(MpBS —|—KpUE +pCoup) _1 1 .
M- K Kor{sy/] (S + o ) e ¢
(4.65)
Proof. The proof is given in Appendix 4.E. ]

4.5 Numerical Results

On the basis of the proposed system model for massive MIMO, we analyze the effect of
mutual coupling and correlation on the SE and EE of massive MIMO systems through
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Monte Carlo simulations (10000 realizations) for the small scale fading with respect to
M, A and d, which is calculated as explained in Example 4.1. As previously mentioned,
the fixed power consumption of two technologies, namely WIFI (pJ%gE = 25dBm) and

LTE (p}..” = 43dBm) are considered to obtain a fair comparison.

We consider a single hexagonal cell with a diameter of s,,,, = 3000 meters which
extends from vertex to vertex. The BS is located at the center of the cell with K =
10 users uniformly distributed in the cell. The minimum distance, s,,;, between a
user and the BS is 50 meters. The large scale fading as described in the system
173

model is defined as f; = Giloe where t; is the log-normal random variable with

a variance o2, s is the distance between the kth user and the BS varying anywhere

5
between s,,;, and S,,.. and v is the path-loss exponent varying from 2 to 4 with 2
denoting free space propagation and 4 denoting a relatively lossy environment. For
our simulations we choose o, = 10dB and v = 3.8. In the above channel model,
unless stated otherwise, a fixed total physical space is assumed with the dimensions
(length:width) of the rectangular array following a fixed ratio of v : =1 : 1. In other
words, we consider a square array with equal number of antennas along the length and
the width of the array. This ratio is just for our analytical tractability and can be
modified according to the requirements of the set-up. Further, the area of this space is
limited to aSA2%, where \ is the carrier wavelength. To simplify the V-I characteristics
calculations, the antenna elements are considered to be simple dipoles. The length of

all the M dipoles are considered to be 0.5\. Moreover, the peak-to- average power ratio

Table 4.1: Simulation Parameters [7, 58, 63, 77]

Parameter Value| Parameter Value
Length of coherence interval, T' | 196 Length of the dipoles, [ | 0.5\
Fraction of UL | 0.4 PAPR uplink, ¢YF 0.4
Transmission, YV %

Fraction of DL | 0.6 PAPR downlink, ¢P* 0.6
Transmission, TP

Channel coherence time, T, 1 ms | PA efficiency BS, nP* 0.39
Length of pilots, 7V%, 7P 10 PA efficiency UE, nV* 0.3
Array length, aA 5A Pt 25dBm
Array width, A 5\ prLE 43dBm
Antenna impedance, Z 4 5092 | pB3. 33dBm
Load impedance, Zj, 509 | pYE. 17dBm
Length: Width ratio of ar- | 1:1 pES. + pfh +pBic +rBac | 30dBm
ray, a: [

Number of DODs/DOAs, D 150 | pi%, +p%in + pDhc + phhe | 16.9dBm
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(PAPR), is dependent on the modulation scheme and the associated constellation size.
It is to be noted that the total PAPR for UL and DL is equal to 1 and the values of
(PE and (Y% are selected in such a way so that aP* > VL. Also the power amplifier
efficiency of the BS, nP is considered to be greater than that of the power amplifier
efficiency of the UE, V. While this is not mandatory, the consideration is due to the
fact that BS has more signal processing resources and can handle power management
better than the UEs. All the simulation parameters used are given at the bottom of

the previous page in Table 4.1.

4.5.1 Traditional model: Antenna spacing greater than half
the carrier wavelength

To comprehend the effects of constrained physical spaces in a massive MIMO set-up,
we first analyze its performance based on a system model where the spacing among the
antennas is considered to be greater than half the carrier wavelength; thus negating any
effects of mutual coupling and antenna correlation. For this scenario, we can consider
Z as an all-ones matrix. This model will allow us to analyze the dependency of the
correlation on d and also lay a platform for our analysis of mutual coupling later. The

curves in Fig. 4.4 labeled as ‘without coupling’ illustrate this scenario.

4.5.2 Proposed model: Antenna spacing less than half the
carrier wavelength

In this sub-section we analyze the behaviour of the proposed model by increasing
the number of antennas at the BS while keeping the area of the rectangular array
fixed. Typically for a fixed physical spacing, increasing the number of antennas is
associated with decreasing the antenna spacing; thus increasing mutual coupling which
in turn reduces the EE. Therefore, there is a fundamental trade-off between the EE
of the system and the number of antennas at the BS, which will be evident from the

simulation results.

Fig. 4.3 illustrates the SE of the proposed system with a fixed physical space
and shows its variation as a function of M. The spacing among the antennas varies
depending on the number of antennas which in turn affects the mutual coupling matrix.
Here we show the achievable SE in a massive MIMO system with coupling, considering
MRC/MRT and ZF detection and precoding at the BS. The length and width of the
array are constrained as a« = 5 and § = 5 which is kept fixed hereinafter unless
stated otherwise. We increment the total number of antennas in squares. For example,
n = 1,3,5,... and m = 1,3,5,... which implies, M = 1,9,25,... where n and
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Figure 4.3: Spectral efficiency with respect to M using MRC/MRT and ZF detec-

tion/precoding at the BS for two fized power consumption schemes. In this example,
a=>5and 3 =05.

m are the number of antennas along the width and length respectively of the array.
As expected with the increase in M, the SE of the system also increases. We note
however, that the improvement in SE saturates for high numbers of antennas due to
the significant correlation and coupling. For the same reason ZF outperforms MRC
by a large extent. Also it can be seen that systems corresponding to fixed power
consumption of LTE systems with a higher fixed transmission power offer higher SE as
compared to fixed power consumption of WIFI systems with a lower fixed transmission
power. For the case of ZF the difference in throughput for the two power schemes is
higher than for the case of MRC where the gap between their respective performance

is much less.

We next specifically examine the EE of such a system in detail. In Fig. 4.4, we
consider two settings: one where the physical space is not bounded by any limitations
while for the other, a setting similar to Fig. 4.3 is considered. For the first setting, the
antennas are spaced far apart to negate any effects of coupling. This figure provides
insights into EE of massive MIMO systems with and without coupling with MRC
detection/precoding. We plot the EE with respect to the number of BS antennas
M. The dashed lines show the performance of systems with fixed power consumption
equivalent to that of WIFI systems while the continuous line represents the performance

of systems with fixed power consumption equivalent to that of LTE systems like before.
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Figure 4.4: Energy efficiency with respect to M with and without coupling at the BS
using MRC' detection/precoding at the BS for two fixed power consumption schemes.
In this example, « =5 and = 5.

Now as d is inversely proportional to M, it decreases with increasing M; thus also
decreasing EE which is evident from the curve. For example, for M = 100 the EE
falls from 4.8 Kbits/J (without coupling) to 2.7 Kbits/J when coupling is considered.
Also to be noted is the shape of the EE curve. As stated in Proposition 4.6, the
EE curve considering coupling is seen to be concave. However, the EE curve without
coupling is also seen to be concave which eventually decreases with increasing M. This
is due to the more accurate power consumption model we have used in the chapter,
which is further exacerbated by the increasing correlation between the antennas. For
example, each antenna at the BS has its individual circuitry, which has non-zero power
consumption and hence the power consumed by the BS is a multiple of the number of
antennas, M. Most existing works consider p? to be constant and accordingly when
M goes to infinity, the EE becomes unbounded. Our results on the contrary show that
when the power at the BS is equal to Mp®° the EE does not always increase and is
a concave function of M. Furthermore, when coupling is not considered, pf¥" in (52)
still holds with £#% in (60) staying the same but without the mutual coupling term,

tr[2,;] which can be shown to be concave similar to what was shown in Proposition
4.1.

Moreover, systems with fixed power consumption equivalent to that of WIFI sys-
tems with low power consumption naturally perform better from EE point of view like

before but when coupling is considered the gap in their performance reduces with the
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Figure 4.5: Energy efficiency with respect to M with coupling at the BS using MRC
and ZF detection/precoding at the BS for two fixed power consumption schemes. In
this example, « = 3 and 3 = 3.

increase in the number of antennas, M. Furthermore, depending on the system model
and channel detection/ precoding technique used, it is a concave or quasi-concave func-
tion of M.

Hereinafter, we consider three scenarios with three different physical spaces: (a)
A =3\ x 3\ (b) A =5Xx5\ and (¢c) A =7\ x 7A. Fig. 4.5 considers scenario (a)
and compares the performance of MRC/MRT and ZF with respect to EE considering
mutual coupling at the BS. The settings are kept exactly same as Fig. 4.3 except for
A. ZF outperforms MRC for both the cases of systems with fixed power consumption
equivalent to that of WIFI and LTE as ZF is seen to give at least five times more
throughput than MRC. Similar to Fig. 4.4, the performance gap between systems with
fixed power consumption equivalent to that of WIFI and LTE systems reduces for both
ZF and MRC. The optimal M for ZF as calculated in Section 4.5 is also plotted. The
figure shows that for WIFT systems 49 antennas and for LTE systems 81 antennas give
a global optimum EE.

Fig. 4.6 considers scenario (b) while Fig. 4.7 considers scenario (c). The rest of the
settings are kept exactly the same as Fig. 4.3. The results are similar to Fig. 4.5 as

can be expected. The EE performance can be seen to improve due to the relaxation
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Figure 4.6: Energy efficiency with respect to M with coupling at the BS using MRC
and ZF detection/precoding at the BS for two fixed power consumption schemes. In
this example, « =5 and § = 5.
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Figure 4.7: Energy efficiency with respect to M with coupling at the BS using MRC

and ZF detection/precoding at the BS for two fized power consumption schemes. In
this example, « =7 and B =1T7.

in BS physical area. However, it is to be noted that the optimal M changes as the
dimensions of D increase. The optimality shifts towards the right as we increase the
physical space. With a spacing of A = 5\ x 5\, the number of antennas M for systems
with fixed power consumption equivalent to that of WIFI and LTE systems to give
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Figure 4.8: An illustration of the trade-off between energy efficiency and spectral
efficiency. In this example, « =5 and = 5.

a global EE are 49 and 121 respectively while for A = 7\ x 7A, M is 81 and 121 for
systems with fixed power consumption equivalent to that of WIFI and LTE systems
respectively. This is due to the changes in p,,., owing to the effects of mutual coupling
which accounts for M,,,.. This can be considered a trade-off between the number of

antennas, M, the fixed physical space, A and EE.

At this point, it is worthwhile to note that there is a trade-off between the EE and
SE of the system. This trade-off is in line with [13] and [49], where similar results were
obtained but with different system models. Due to the consideration of the circuit
power consumption at the BS which is a function of M, though the SE increases
asymptotically, the EE does not. To explicitly show this trade-off, Fig. 4.8 considers
the scenario with the bounded dimension of A = 5\ x 5. It can be seen from the figure
that as the SE of the system increases, the EE of the system increases to a point before
it starts to fall sharply. From (4.65) it is implicit that EE is a quasi concave function
of the parameter p. Additionally, ppe. in (4.65) can be looked upon as the optimum
power required to attain the maximum EE for a certain antenna array dimension.
The SE on the other hand is a monotonically increasing function of p as can be seen
from (58). This explains the quasi concavity of the of the plot between SE and EE.
Furthermore, following the course of the previous figures, systems with fixed power

consumption equivalent to that of WIFI systems show better performance than their
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Figure 4.9: Power loss due to mutual coupling with respect to M considering different
array dimensions.

LTE counterparts with respect to EE. p can be of paramount importance to network
engineers while deciding on operating regimes where it is possible to jointly increase
the SE and EE of the system. For other regimes however, p can be set according to
the current traffic demands, for e.g., during night time when the traffic is low, p can
be set to achieve high EE with a constraint on the SE.

Finally to further stress the impact of mutual coupling, in Fig. 4.9 we show the
impact of the number of antennas, M on the power loss due to coupling at the BS
for different antenna spacings. Though the power loss due to coupling has already
been taken into consideration in the previous results and figures, this figure specifically
explains the variation of power loss due to mutual coupling. The settings are kept
similar to Fig. 4.3. It can be seen from the figure that as the spacing between antennas
is reduced, mutual coupling increases and so does the power loss due to coupling.
The large variation between the 3\ x 3\ and the other two curves is due to more
compact physical spacing among the antennas, which results in more loss due to mutual
coupling. As stated before, we aim at restricting the physical space to within 1m?.
Hence, for example, considering about 100 antennas for the case of 3\ x 3\ scenario,
the spacing between any two adjacent antennas is equal to 0.1m, which is less than
half the wavelength of a 900 MHz GSM band and this introduces increasing amount of
mutual coupling with increasing numbers of antennas. The constructive and destructive

superposition of the signals due to mutual coupling is periodic with this decrease in
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separation for a fixed wavelength, which contributes to the periodic behavior of the

power loss.

4.6 Summary

Conventionally, massive MIMO systems are considered to achieve high EE with the
increase in number of BS antennas which might be misleading when antenna coupling
along with circuit power consumptions are considered. We have given an analysis of the
effects of mutual coupling on the EE for realistic massive MIMO systems. Simulation
results show that as the spacing between the antennas is reduced, the coupling among
them increases, resulting in a dip in EE performance. We also reveal that the EE is a
decreasing concave or quasi-concave function of M. A trade-off between the number of
antennas, M, the fixed physical space, A and EE is found. Depending on the physical
space, the optimum number of antennas are found with the objective of achieving high
EE. It is evident that high EE can be obtained but at the cost of reducing M or
increasing A. We would like to note that the optimum value of M derived in this
chapter may not directly relate to practical engineering designs, but is an illustration
of the principle that increasing the number of antennas unboundedly is not beneficial

when EE is considered as a design criteria.

The results of this chapter provide adequate insights into how future massive MIMO
BSs can be setup within constrained physical spaces. However, when millimeter wave
frequencies are considered, due to the smaller wavelength, the constraint on physical
space is relaxed significantly and greater number of antennas can be incorporated
within very small physical spacings. Hence, in order to fully realize the potential of
massive MIMO systems, it is mandatory to shift the communication paradigm from
micro wave (uWave) to mmWave frequencies. Accordingly, while we study the rate and
coverage of mmWave networks by assuming directional beamforming in Chapter 5, we
study the performance analysis of a mmWave network, where the BSs are equipped

with massive MIMO antenna arrays in Chapter 6 .

Appendix 4.A Proof of Proposition 4.1

— UL w 4 P B
For MRC, y,gL MRC _ 2 [Iwe | . Dividing both the numerator and
> Py wiH w2+ (w2
i=1,i#k
: S Hyy, . :
denominator by ||w||? and defining w; = S Where @ s a Gaussian random
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variable with variance tr(X,/) f;, we have

1
E(GE 1 = (S (41 B(ms). (o)
i=1,i#k Dy HwkH
Now using the property ||A|| = y/tr(A# A) and Definition 4.1, we have
K -1
tr [Z ]
E{(AVE-MEC) =11 — | p(2 pPEfi+1 Ml 4.67

Following a similar approach on (4.33), we obtain (4.37).

Appendix 4.B Proof of Proposition 4.2

For ZF UL ZE = m Hence
1
B(IWAW) ], ) = Bl [Wrw) )
tr [2/]

LR (4.68)

which is obtained by using Definition 4.1. Now from (4.33) and (4.38) we obtain (4.40).
Appendix 4.C Proof of Proposition 4.5

For ZF, AVE=2F = m. Hence, from (4.61) we have,

kaF =p(M — K) [(WHW)il}kk (4.69)
Therefore, using Definition 4.1 and from (4.40), (4.51) and (4.54) we have
N UL DL
Py = Kp(M — K)(n— + n—)ﬂﬂ{tr [(WHW)~']}
~ CUL CDL tr [254]
CUL CDL
= Kptr[2,/] (UUL + Uﬁ> : (4.70)
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Appendix 4.D Proof of Proposition 4.6

We rewrite (4.63) as

§ZF(M> _ % (T — K(TULTDL)) log,(1 — pK + pM) ‘
Kptr[3] (45—2 %) + KpUE + pCoup 4 MpBS

(4.71)

n

Let (1 - pK) = a, p = b, Kptr[Sf] (S + o ) + KpUE + p°o = ¢, pPS = d and

E(T — K(rVE7PL)) = f. Therefore, (4.71) implies

[log,(a + bM)

€ZF(M> - c+dM

(4.72)

In order to prove that the objective function, £2¥' (M) is quasi-concave it is sufficient to
prove that the upper contour sets Sy, = {M = 0|£ZF (M) > v} of £#F(M) are convex
for any ¢ € R [81]. We investigate the cases when ¢» < 0 and ¢ > 0. When ¢ < 0, the
set is empty in the contour £24 (M) = 1. Thus €2 (M) is strictly quasi-convex when
1 < 0. Now when ¢ > 0, Sy is equivalent to

flogy(a+ M)
{MZO‘ c+dM Zd]}

— {Mzo

ch + dMyp — flogy(a+ bM) < O}.

Let F' = cyp + dMv — flogy(a+ bM). Now, F is strictly convex within the range of M
as its Hessian is positive definite. Hence, Sy is strictly convex, which concludes that

€2F (M) is a quasi-concave function of M.

Now using Definition 4.2, we can say that the local maximum of 4% is also the
global maximum. Furthermore, as M — oo, £&4F — 0. Since M £ 0, the local
maximum is obtained by calculating the first derivative and setting it to zero as shown
below. From (4.72) we have

flogy(a+bM)
oc?F (M) 9 (—i+dM )
oM oM

fb fdIn(a + bM)
(a+bM)(c+dM)In2 (c+dM)?In2’
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(4.73)
Now equating the right hand side of (4.73) to zero, we have
b(c+dM)
— = dl M
a+bM dIn(a +bM)
bc — ad
= d(l M)—-1). 4.74
:>a+bM (In(a +bM) — 1) (4.74)
Let In(a + bM) — 1 = x. Therefore exp(x + 1) = a + bM. Thus (4.74) implies
be —
c—ad .
exp(z + 1)
be a exp(x)
T, = rexplr
bc a
= -—— - 4.
— W (de e) , (4.75)

where W, known as the product logarithm is the inverse function of f(W) = We" for

any complex number W. Substituting « with In(a + bM) — 1 we have

= IV E= D41} 20

(4.76)

Now, replacing a,b,c,d with their equivalent parameters, we obtain (4.64). Quasi-
concavity thus implies that M,,,, is a global maximum and ¢4 is increasing for M <
M4 and decreasing for M > M,,,,. Thus, M,,,, is the unique optimal M to attain

a maximum &4F.

Appendix 4.E Proof of Proposition 4.7

This result can be proved similarly to the proof of proposition 6 by changing the
differentiation variable from M to p. Accordingly we can parameterize a,b,c,d as
1, (M — K), (KpUE 4 pCow 4 MpB%), Ktr[2;}] x (% + %) respectively. The quasi-
concavity of £2F(p) follows accordingly similar to the proof in Appendix 4.D. Hence,
the local maximum will also be the global maximum which can be found by setting the
05" (p)
op

first derivative to zero, i.e.,

= 0. (4.77)

Solving (4.77) in a way similar to Appendix 4.D, we obtain the desired result. The

details are omitted due to space limitations.
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Chapter 5

Relay-Aided Millimeter Wave
Networks

The availability of bands in the range of 20-100 GHz makes millimeter wave (mmWave)
a lucrative prospect in the design of 5G networks [16, 20, 82, 83]. However one distinct
disadvantage of mmWave communication is that the signals at mmWave frequencies
cannot penetrate through obstacles like buildings, concrete walls, vehicles, trees, etc.
These obstacles are usually termed as blockages in a wireless communications scenario.
Among various ways to encounter blockages, one way is to go around the blockages
by incorporating relays. In conventional communication systems, relay aided trans-
mission has been regarded as an effective way to increase the coverage probability,
throughput and transmission reliability of the networks [84]. The use of relays can
be a promising solution for mmWave systems as well to combat the blockage effects
and path losses that are encountered in mmWave networks. Accordingly, multiple re-
lays can be deployed between the sources and the destination of a transmission link.
Performance evaluation of relay aided networks has been widely studied in [85]-[86].
While [85] considers the deployment of relays as a network infrastructure without a
wired backhaul connection, [87] explores the potential of deploying relays to design
a cost effective network. Recently, cooperative relaying has been proposed in order
to extend the coverage, increase the capacity and to provide cost effective solutions.
In [88], authors have studied the coverage probability of relay aided cellular networks
with different association criteria between the base station and mobile station. It has

been shown that coverage probability highly depends on path loss exponents and den-

Reprinted from IEEE Journal of Selected Topics in Signal Processing, S. Biswas, S. Vuppala, J. Xue, T. Ratnarajah, “On the
Performance of Relay Aided Millimeter Wave Networks”, Vol. 10, No. 3, PP. 576-588. Copyright (2016), with permission IEEE.
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sity of relays. Similarly, the achievable transmission capacity has been analyzed in
relay assisted device-to-device networks in [89]. Recently, the performance of Decode-
and-Forward and Amplify-and-Forward strategies with high gain antenna arrays was
characterized in [90]. The numerical results proved that directional antennas are useful
for multi-hop relays. Hence, it is implicit that relays can prove to be an important
tool in the design of mmWave cellular systems because coverage in such systems is a
more acute problem, given the large difference between LOS and NLOS propagation

characteristics.

Inspired by the stochastic geometry approach to analyze the performance of conven-
tional cellular systems, we design a framework for evaluation of the coverage and rate
performance in mmWave networks. However, applying the results of standard cellular
systems to mmWave is non-trivial due to their differences in propagation characteristics
and the use of highly directional beamforming. Directional beamforming was applied
in [82] by considering a simplified path loss model. While in [91] a blockage model
for mmWave is used to analyze the rate and coverage area of such systems, a distance
dependent path loss model along with antenna gain parameters are considered in [18§]
to characterize the propagation environment in mmWave systems. Furthermore, we
would like to refer the readers to [16, 17, 91, 18] which develop several mathematical

frameworks to model the propagation characteristics of mmWave networks.

In this chapter, we incorporate relays to aid mmWave networks in order to provide
better coverage and decrease blockage effects on the transmission link. We consider a
stochastic geometry approach to characterize the spatially distributed relays and the
sources. It is assumed that the sources and the relays in the mmWave network follow
two PPPs but are independent of each other. Most works on relay-aided networks
assume that the number of relays in the network is fixed and known. However, such
fixed type network relays may not be suitable for practical outdoor environments when
a network topology dynamically changes. Due to the fact that some relays are in
outage because of blockages in the network, we consider the subset of relays which has
lesser path loss. This consideration leads to a marked Poisson process. In general,
however, one must contend with the mathematical challenges of working with such

point processes.

Furthermore, we conform to two relay selection strategies for tractable analysis,
namely random relay and best relay. The motivation behind the use of a random relay
selection is to capture blockage effects on performance of active set of relays. Specifi-

cally, the end-to-end SNR is characterized using amplify and forward technique where
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5.1. Mathematical Preliminaries

the relay obtains a noisy version of the signal transmitted by the source in presence of
blockages and then amplifies its received signal and re-transmits it to the destination
again in presence of blockages. After finding a best random path, it is possible to pro-
vide a bound on the active relays which can participate in the communication. These
relay nodes are the ones that are minimally affected by blockages. Furthermore, we also
consider the best relay selection in order to study the trade-off between performance

and complexity of random relay selection techniques in mmWave networks.

The main contributions of this chapter can be summarized as in the following points:

e We have presented a relay modeling technique in mmWave networks consider-
ing blockages, in which we compute the density of active relays that aid the

transmission.

e A closed form expression for end-to-end SNR is provided and the best random

relay path in a mmWave network using order statistics is calculated.

e To investigate the asymptotic increase in the number of transmission paths, ex-
treme value theory is used and accordingly the maximum end-to-end SNR of

random relay paths is found to approach the Gumbel distribution.

e We have also provided the closed form expression of the SNR distribution for the

best relay having maximum path gain in such a network.

e Finally, an analysis on the coverage probability and the transmission capacity of
relay aided mmWave networks is provided. It is shown that relays improve the

received SNR for mmWave networks for a specific coverage probability.

5.1 Mathematical Preliminaries

In this chapter, we extensively use log-normal random variables to model the shadowing
effects caused due to random blockages in the mmWave network. A few important
results are presented in this section for better understanding of this chapter. However,
we avoid the proofs of any results provided here as they are well known in literature of

probability theory.

Definition 5.1. A log-normal random variable X with parameters p and o is defined

as
X = et (5.1)
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5.2. System Model

where p and o are the mean and standard deviation of the variable’s natural logarithm
respectively and Z is a standard normal variable. The PDF of a log-normal distribution

s given by

1 _(nz—p)?

e 202 (5.2)

fx(.ilf;,u,O') =
To\ 2T

and the CDF is given by

Fx(zip,0) = /fx(p;u,a)dp,
0
1 Inz—p\) Inz —p
© () ()

where erfc is the complementary error function, and Q) is the cumulative distribution

(5.3)

function of the standard normal distribution.

Lemma 5.1. Let X; ~ ln./\f(,uj,ajz-) be n statistical independent log-normally dis-
tributed variables, and Y = H?:l X, then Y s also log-normally distributed with

n ) n 2
parameters Y 5, jij, and Y5, 0F.

Lemma 5.2. Let X; ~ In N (y;, ajz-) are independent log-normally distributed variables
with varying o and p parameters, and Y = Z?zl X;. Then the distribution of Y has
no closed form expression, but can be reasonably approrimated by another log-normal
distribution Z with parameters[92]

2
pz =In [Z e”fJ"’JQ'/Q] - %, (5.4)
Z€2Mj+UJ2- (6012' . 1)
0y = ln[ S eﬂj+032-/2)2 + 1. (5.5)

Lemma 5.3. Let X ~ InN(u,0?), then aX ~InN(pu+1Ina, 0%), a € R.

Lemma 5.4. If X ~InN(p,0?), then & ~InN(—p, o?).

5.2 System Model

In this section, we illustrate our system model for a relay assisted mmWave network.

We focus on the communication from multiple mmWave BSs, aided by multiple relays

92



5.2. System Model

NLOS Connection
Link

LOS Connection

Figure 5.1: An illustration of an outdoor mmWave network aided by relays.

to a typical user in the presence of blockages. The user is assumed to be located at
the origin O. We term the direct link between a BS and the user or a relay and the
user as connection link. The link between a BS and a relay is termed as the relay link.
Hereinafter, we use the terms source and destination to represent the mmWave BS and

the user respectively. The specifics of the model are described below.

5.2.1 Network modeling

We consider a relay-aided mmWave ad hoc network consisting of multiple sources
transmitting to a typical destination (reference point) as shown in Fig. 5.1. The
sources in the network are modeled as points in R? which are distributed uniformly as
a homogeneous PPP &g with intensity Ag. The relays are also modeled as points of a
uniform PPP, denoted by ®g, with intensity A in R2.

5.2.2 Path loss modeling

It is well known that shadow fading heavily depends on the site-specific details of
an environment. More specifically, path loss dependent shadow fading is typically a
result of regression analysis on a signal level measurement represented on a distance
dependent path loss scatter plot. In other words, a path loss law is fitted to the
measurement, and the residual error of the model fit is called shadow fading. The
path loss can be modeled in several ways from practical data accumulated from field
measurements. In this chapter, for analytic tractability, we use the alpha plus beta
model (based on the traditional free space path loss model) given in [16], which takes

into consideration the log-normal shadowing. Accordingly, in a mmWave transmission,
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the path loss (in dB) associated with the transmission between any two nodes z; and

x; can be given as
L(z;, ;) = n+ 10alogy ||z; — z;|| + X, (5.6)

where ||z; — z;|| is the distance between the ith and jth nodes with {7, j} € Z* and
Xy ~ N(0,0%). However, it is to be noted that the sources and the relays can be either
LOS or NLOS. Let the path loss at a fixed small reference distance, z; —z; = 1 be
1. Then for such a model, o can be physically interpreted as the path loss exponent.
Moreover, the parameters («, n7) can be looked upon as the floating intercept and slope
of the best linear fit data. In that case, it may not be necessary to attribute (c, n) with
any specific physical interpretation. The deviation in fitting (in dB) is modeled as a
Gaussian random variable X (Lognormal in linear scale) with zero mean and variance

o%. Accordingly, a, n and o? are altered for each of the two scenarios.

According to [83, 16], the alpha plus beta model can be compared to the free space
path loss model for a certain range of distances (30m-200m). For millimeter wave
networks, due to path loss sensitivity, the typical communication range falls under
200m. Therefore, considering the alpha plus beta model is a viable approximation for

such high frequency communications.

In mmWave networks, small scale fading does not have as much impact on transmit-
ted signals as compared to lower frequency systems. However, blockages and shadowing
are more significant in such systems. It is extensively mentioned in literature [16, 20]
that in mmWave analysis, small scale fading can be ignored. Hence, ignoring fading
and considering only shadowing, the probability density function of X in (5.6) can be
defined as

1 (IOgZL’ — Nc)2>
Xy~ T fle,0p) = ———exp | — ——c—— |, 5.7
N fXN< H ) ,I\/%O'C p( ( )

2
202

where the parameters, . and o2 follows from [18] and z > 0.

5.2.3 Directional beamforming modeling

Due to the small wavelength of mmWaves, directional beamforming can be exploited
for compensating the path loss and additional noise. Accordingly, antenna arrays are
deployed at the source, relays and the destination. In our model, we assume all the

sources and the relays to be equipped with directional antennas with sectorized gain
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pattern. Let 6 be the beamwidth of the main lobe. Then the antenna gain pattern for

a source, relay or destination node about some angle ¢ is given as [17]

max if <0
Gq 1 |¢| — }’ (58)

Gq(¢) - { Gflnin if|¢| > 6
where ¢ € S, R, D, ¢ € [0, 27) is the angle of boresight direction, GYm2) and GI™™ are
the array gains of main and side lobes, respectively. The typical user does not have
the same directional gain pattern but can be modeled similarly!. For simplicity, in
this work only the source and the relays are considered to have directional gains, while
the user is assumed to have omni directional antennas similar to [18]. Hereinafter,
we assume the antenna beams of the connection link and the relay link to be aligned.

Hence, the total gain on a desired connection link is G™* and the relay link is (G™)2.

5.2.4 Blockage modeling

Blockages in the network are usually concrete buildings which cannot be penetrated by
mmWave signals. In particular, the blockages form a process of random shapes, e.g.
a Boolean scheme of rectangles [91], on the plane. We consider the blockages to be
stationary blocks which are invariant with respect to direction [94]. The link between a
BS and a typical user can be either LOS or NLOS?. Different researchers have tried to
model blockages with varied level of success based on different geographical scenarios.
In [95] a PPP based random blockage model is used, where e =" is considered to be the
probability of LOS with g being the blockage density and r the distance between the
transmitting and receiving nodes. Another model that has been considered in literature
is a fixed LOS probability model as was depicted in [18]. Leveraging the modeling of
blockages from this later model, we consider a two state statistical model for each
and every link. The link can be either LOS or NLOS. LOS link occurs when there is
a direct propagation path between a source and the destination while NLOS occurs
when the link is blocked and the destination receives the signal through reflection from
a blockage. Due to the presence of blockages, only a subset of the BSs ®gg are LOS
to the typical user. Let the LOS area within a circular ball of radius rp be centered
around the reference point. Then, if the LOS link is of length r, the probability of the

1Several existing analytical models for single user analog beamforming enabled mmWave networks
also assume an equivalent single input single output (SISO) like system with directional antenna gains
by abstracting underlying signal level details [93].

2The notations {L, N} and {LOS, NLOS} will be interchangeably used hereinafter and both sets
signify the same meaning.
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connection link to be LOS is given by py, if 7 < rp and 0 otherwise. Similarly, the
NLOS probability is represented by pn. The parameters r and rp are dependent on the
geographical and deployment scenario of the network. The analytical results derived
in this chapter are based on the blockage model proposed in [18] and the numerical

analyses are done based on the data accumulated by [18] and [95].

We would like to note that the LOS probabilities are assumed to be independent
between different links, i.e., we ignore potential correlations of blockage effects between
links. However, in reality the LOS probabilities for different links may not be indepen-
dent. Essentially in an urban area, neighbouring BSs might simultaneously be blocked
by a large building. Nonetheless, in [91], it was shown that ignoring such correlations
cause only a minor loss of accuracy in the SINR evaluation. Furthermore, the PPP

based random blockage model will be considered in Chapter 6.

5.2.5 SNR modeling

Recent studies on mmWave networks [16, 18, 20], state that in contrast to conventional
cellular networks which are usually strongly interference limited, mmWave networks
in urban settings are more noise limited. This is due to the fact that in the presence
of blockages, the signals received from unintentional sources are close to negligible.
In such densely blocked scenarios (typical for urban settings), SNR provides a good
enough approximation to signal to interference plus noise ratio (SINR) for directional
mmWave networks. Additionally, such an assumption also aids us in deriving closed

form expressions and hence, interference at the destination is ignored hereinafter.

In order to characterize the SNR distribution, we assume a two slot synchronous
communication throughout the chapter. While the active relay nodes are allowed to
receive from the sources in the first time slot, the destination is allowed to receive from
the active relay nodes and the sources in the second time slot. We also assume that
all relays co-operate with each other while transmitting and are deployed with a guard

ZOIle3 .

3The guard zone resembles a specific SNR which must be fulfilled in order for the relay node to be
deployed. This is explained in Section 5.3 of this chapter.
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First time slot

Consider that the relay nodes are served by the sources during this time slot. The SNR
at any specific relay, R can then be formulated as

PS(Gmax)2XNT§§¢

YSrR = Ny ) (5.9)

where Pg is the transmit power of the source, rqg* is the length of the link from the

source to relay, « is the path loss exponent, ¢ € {I., N} and Nj is the noise power.

Second time slot

Consider that the destination, D is served by a source with or without the help of relay
R during this time slot’. Then the SNR at the destination D receiving signal only
from the source, S can be given as

L PG X
'YSD - NO SD . (510)

Similarly, the SNR at the destination D receiving signal only from the relay, R can

be given as

PRG™™ Xy
TRD = N, i (5.11)

where Py is the transmit power of the relay. Note that for simplicity, we have omitted
the subscript ‘max’ from G in all our subsequent discussions. Hereinafter, for analytical
tractability, we consider that the transmitted power at the source and relay is the same

and given as P.

Now, considering that the source transmits to the destination only through the aid
of the relay, the coverage probability of such a relay-aided transmission link with a
target SNR, 7' is given by

Pr=1—P{ysg <T}P{wmp <T}. (5.12)

4rap is the distance between the A-th and B-th nodes.

5This model of considering the destination to receive the signal from the source as well as relay in the
second time slot can be useful when considering a maximal ratio combining scheme at the destination
which would take into consideration both the signals from the relay and the source provided that the
strength of the signal is above a certain threshold.
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Figure 5.2: Topology of a relay assisted network link.

5.3 Relay aided MmWave Transmission

Fig. 5.2 shows an example of a transmission from a source to a destination through the
aid of a relay. With the assistance of relays, it is possible to act on the constraints of
path loss in a mmWave network and also extend the communication distance, while also
improving the quality of communication. In this section we characterize the conditions
for relay aided transmission in mmWave communication networks. Further, we would
like to note that relay cooperation takes place if and only if the SNR at the destination
from the source through a direct link is not good enough and falls below a certain
threshold. In order to avoid the aid of relay, we define a required outage constraint

Yout for the source-to-destination link as

Pouws =P {’YéD < ’Yout} . (5.13)

5.3.1 Preliminaries on active relays

Due to the impact of blockages, some of the relay nodes may not be available or capable
to support the transmission from source node to destination node and only a subset
of the relay nodes may participate in the communication. In this subsection we give
an insight on such active relays which are available to aid the communication from the

source to the destination.

Consider the distribution of relays follows a terrain according to its coverage prob-

ability, which depends on the blockages and deployment constraints. Hence, the distri-
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bution is far from being spatially uniform. Such conditions are clearly distinct from the
random and uniformly distributed network assumptions that lead to a Poisson number
of nodes per unit area i.e., the PPP model — commonly adopted in current literature
[88, 96, 86]. Some recent works such as [97, 98] focus on the impact of topological
models on random networks. To elaborate, in [97] hard core point processes (HCPPs)
are proposed to model networks with carrier-sensing multiple access (CSMA) tech-
niques, and in [98] the coverage probability of cellular systems are analyzed under
PPP, HCPP and Strauss Process (SP) models. These models are further compared
against field data, which demonstrate that indeed HCPP and SP lead to significantly
more accurate results than the PPP model commonly used earlier. All in all, it is
now an established fact that as far as the topological models for random networks are
concerned, the PPP alone is not sufficient, and hence alternative models need to be
considered.  Motivated by such recent results [98, 97, 99], we consider the Matérn
HCPP (MHCPP) model in order to characterize the distribution of active relays in the

following analysis®.

Since we model the distribution of relays in our network with a MHCPP, it is
worthwhile to mention here some properties of MHCPP. In the MHCPP Type 1, all
the points obtained from a stationary PPP of intensity A, are retained if and only if
they are at a distance of at least d from all other points. Whereas, in MHCPP Type
IT model, points are obtained by deleting the primary points that co-exist within a
distance less than the hard core distance from another primary point having a lower

mark.

For a MHCPP model, which is generated from a homogenous PPP, ®,, with inten-
sity A\, and repulsive distance d, the intensity A, of the MHCPP is given by [97, 99]

1 —exp(=A\7d?)

Am 5.14
7 (5.14)
Consequently, the probability of a point being retained from @, is
A 1— —\,md?
P = = exp (—Ap7 ) (5.15)

P A2

These hardcore models (Type I and Type II) of point processes are not directly ap-
plicable to fading and blockage environments. This is due to the fact that the density

6The HCPP is considered in this chapter to find the density of active relays only.
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of active number of nodes depends on random fading gains and blockage processes. To
tackle the impact of fading, [99] extends the hard core process analysis for the case of
Rayleigh fading and [97] derives the active number of transmitters under generalized
fading channel by employing MHCPP Type II model. In this chapter, we leverage
the results from [97] and incorporate additional blockage effects. It is a well known
fact that the characterization of non-PPP models (general topologies) via the Laplace
Functional and probability generating functionals is in reality a challenging problem.
Therefore, the hard-core point processes are quite difficult to analyze due to the simple
reason that their probability generating functionals do not exist [100, 99, 101]. How-
ever, it has been argued in [100, 99] that the nodes further away from the hard core
distance, d can still be modeled as a PPP. Furthermore, it has been shown in [101] that
MHCPP type II is better approximated with a PPP rather than Type I. Hence, we
take into account such an approximation for analytical tractability and consider that
the distribution of relay nodes follows a PPP, while the density of the relay nodes is
approximated by that of a modified hard-core PPP with density \g.

5.3.2 Density of active relays

In this subsection, we aim to find the intensity of active relays by generalizing the
traditional MHCPP for blockage environments in mmWave. To overcome underesti-
mation flaw, in [97], authors made an assumption of a bounded region, a circle with a
deterministic radius, where the nodes contribute to the event of interest. In our model,
the contribution of each relay node to the event of interest will be Bernoulli distributed
with a parameter that accounts for both shadowing and blockage process. The proce-
dure to find active density of relay nodes follows similar steps as in [97]. However, the
neighborhood success probability varies due to the addition of a blockage process in

our system.

Let ®y be the primary point process and ®y be the generalized MHCPP. In order
to generalize the traditional MHCPP with respect to SNR, the hard-core distance d
is replaced with the received SNR. A relay node is retained in ®g if and only if it
has the lowest mark in its neighborhood set of relays N(z;) which is determined by

dynamically changing the random-shaped region defined by instantaneous path gains.

Lemma 5.5. Let P, be the neighborhood success probability. Now, if the retaining

1—6_NPC
NP¢

disc N, then the intensity of active number of relays is given by \g = AgPr [97,

probability of a relay node is Pr = with the expected number of nodes in the
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5.3. Relay aided MmWave Transmission

Theorem 4.1].

Therefore, in order to find the retaining probability, Pr in Lemma 5.5, one must
compute the neighborhood success probability, Pc. As mentioned earlier, the neigh-
borhood set of any relay node is determined by bounding the observation region by
B.,(rq), where 14 is a sufficiently large distance, such that the probability for a relay

located beyond r,; to become a neighbor of x; is a very small number, p. Therefore,

max )2
P{P(G ) Xy

>Rl T — x| > 1ap < 0, 5.16
R ol a1 > | (5.16)

where g is the minimum required target SNR.

Hence, ry can be determined as

(Gmax 2 _ 1/04
= (P(NO’YR) FX,\lf(Q)) ’ (5.17)

where, F'=! denotes the inverse of the CDF of X .

Then the neighborhood success probability within the bounded region can be de-

fined as
PC = P{’Yﬂ:i,m]- > '7R|«Tj - Bxl(rd)} (518)

Therefore, considering blockages (5.18) can be written as

Td
Noyrre
Pe = Z“’/ (1_% (P(Gmax>2)>rd”’
0

i€LN

max 2 ¢
- Y[ oo —HEE .

(5.19)

where, ((.) is the cumulative distribution function of the standard normal distribution.

A closed form expression for P, can be given as

Using (5.20), we can derive the generalized MHCPP process of the relays and their
active nodes which can withstand the blockage effects in the network to transfer the
information with less outage probability. In practical scenarios, selecting a relay from

an observation (or defined) region with a small neighborhood set of relays is opti-
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mal. Since the computational complexity increases with number of relays, a carefully

designed region can be taken into consideration.

From the above analysis, it is clear that the achievable capacity of relay assisted
link depends on the distance between the relay and the reference point. Assume that
our communication is taking place within radius ry4, then source-destination pair should
select the optimal relay with distance less than r4. In the subsequent section, we discuss

relay selection techniques based on the best end-to-end SNR” and minimum path loss.

Here, we follow two strategies for tractable analysis, namely, random relay and best
relay while taking into consideration the blockage effects. The random relay selection
technique is used to capture the blockage effects on the performance of active set
of relays while, the best relay selection is studied in order to weigh on the trade-off
between performance and complexity of random relay selection techniques in mmWave

networks.

5.4 SNR Analysis of the Relay Schemes

In this section, we analyze the SNRs of two relay selection techniques in order to
determine the best technique suitable for a mmWave communication. In the first
technique, we select the path with the best SNR from a set of random paths. The
random paths can be looked upon as the end-to-end SNR from the source to the
destination through the aid of relay. In the second case, we select the best relay first
based on the minimum path loss and then use that relay to transmit the signal to the

destination from the source.

"The end-to-end SNR signifies the total SNR. from source to the destination through the aid of
relay using amplify and forward technique [86].
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5.4.1 Best path selection based on end-to-end SNR

In this subsection, in order to select any random path, we first select a random relay
and then compute the end-to-end SNR® distribution of that path. Subsequently, we
select the path with the best SNR distribution from an asymptotic point of view (when

the number of links tend to infinity in a dense network) by using extreme value theory.

As stated before, any node can receive a signal either through LOS or NLOS link.

We now compute the SNR distribution accounting for both the LOS and NLOS links.

Thus the achievable SNR between the source and the destination can be given as’

Ysp = YSpPL + VEHDN, (5.21)

where v, and 73 are the LOS and NLOS SNRs respectively for the links from source
to destination and p;, and py are the probabilities that the links are LOS and NLOS
respectively. Similarly, the achievable SNR between the source and relay and the relay

and destination are given respectively as

Ysr = SrPL + YegpN and (5.22)
YRD = YHDPL + TRDPN- (5.23)

Considering the LOS regime, the SNR distribution can be formulated as

Fu (z) = P{u<z},

Ysp TOCLNO
2r*t Ny
= P Xy <
{ N PGmaX}’
zNorot L
log P Gmax — MsSp
= Q puy , (5.24)
SD

where, @)(.) is the cumulative distribution function of the standard normal distribution.

8We would like to refer the readers to [86, 102] for an elaborate description on this technique.

9Gince we model the links between the sources and the destination as LOS and NLOS which are
independent of each other, we leverage the notion of mark from stochastic geometry to further split
the Poisson Point Processes into two independent LOS and NLOS sub processes.
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Using Lemma 5.3, the distribution of v&,p1, can now be expressed as

ZN()TaL
8 (s ) — Ok 40

L
9sp

(5.25)

Similarly the 73, can be characterized. Therefore, now the total SNR can be
calculated using equation (5.21). However, 7§, and 73, are two independent log-
normally distributed variables with different © and o parameters. In this scenario,
the distribution of the total SNR ~sp has no closed form expression, but it can be
approximated by another log-normal distribution using Lemma 5.2 with parameters

2
psp and o&p.

In order to capture the blockage effects on both sides of relay (Source-to-Relay and
Relay-to-Destination), we consider the end-to-end SNR to find the path with the best
SNR distribution.

For practical systems, the relay gain is given by G? = (1/(P(G™™)2Xyr® + Ny)).
However, assuming the ideal relaying gain'® i.e., G* = (1/(P(G™*)2Xr)), the end-
to-end SNR of the link through the aid of relay can now be given as [86, 102]

YSRYRD ( 59 6)

IS/SRD = )
YSrR + YRD

where the subscript SRD stands for the path from the source to the relay to the

destination.

Proposition 5.1. The end-to-end SNR in a relay aided mmWave network Asrp is

log-normally distributed with new parameters fisgp and Osrp.

Proof. Let X = ~sryrp and Y = vsgr + Yrp, then in order to prove that Z = % is
log-normally distributed, it is sufficient to prove that Z is a log-normal random variable

with parameters py and oy.

Now, from Lemma 5.1, we have

X ~log N (px,0%), (5.27)

10The adoption of the ideal relaying gain is mainly for analytical tractability and can act as a tight
upper bound for the practical relaying gain. This method is widely used in literature [86, 102] to
approximate relay gains.
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where

Ux = USr + URD, (5.28)

0% = 0x + 0kp- (5.29)

Using Lemma 5.2, Y can be tightly approximated with another log-normal random

variable with parameters

2
iy =In [Z euﬁaf/?} _ USTD (5.30)

o2 g2
o2 =1In Ze%ﬁ (e —1) + 1.
Y (S erater/2)2

(5.31)

Again, using Lemma 5.1, the distribution of 5 = % can be given as another log

normal variable which is the required result. O

Proposition 5.2. Let ¥ = max{dsrp;}. Then the probability distribution of the best
path from source to the destination which exhibits the mazimum end-to-end SNR can

be given as

F’7 = HF’AYSRDZ- = (F’?SRDi)na (532)

=1

where n = K x N gives the total number of paths available for a given K number of

sources and N number of relays.

Proof. Let Fy(y) denote the CDF of Y, then the CDF of the maximum of identically

distributed random variables X, Xs,--- , X, can be given as
Fy(y) =P{Y <y} =Pz <y,xe<y---x, <y} (5.33)

Therefore, Fy(y) can be obtained using order statistics [103] as follows
Fy(y) =P{Y <y} = [ [ Plax <y} = (Fx.(9))" (5.34)
k=1

Proposition 5.2 thus follows from (5.34). Furthermore, the parameters K and N

can be computed from the mean of the expected number of source and relay nodes.

Mean of Ezpected Number of Source Nodes: For given values of propagation pa-
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rameters in bounded region, one can obtain the expected number of source nodes
present in the communication vicinity by describing the propagation process. Let
by = {XI;" éf,\(gx 5,7 € ¢} be the path loss process, where i € {LOS, NLOS}. Then
the expected number of nodes can be given as

. TaiNo
As((0,1]) = 272 / P{—XNP( e < t}rdr (5.35)
R+

The closed form expression for the above integral follows as in [18]. The mean of the

expected number of the relay nodes follows similarly with density Ag. O

5.4.1.1 Asymptotic analysis

We now investigate the asymptotic behavior of the distribution of the maximum SNR
4 of the best relay path with the help of extreme value theory. This is to obtain insights
into coverage in very dense networks. In general, extreme value theory is used to deal
with extreme values, such as maxima or minima of distributions when the number of
random variables increases asymptotically. Let ¢;s be the realizations of a random
variable @, where ;s are independent and identically distributed with ¢ = 1,2,...,n
By extreme value theory [104], if there exist constants a € R;b > 0, and some non-
degenerate distribution function F(k) such that the distribution of £222=% scales to
F(k), then F(k) converges to one of the three standard extreme value distributions:
Gumbel, Frechet and Weibull distributions, where @, = max(¢1, @, ..., ). There
are only three possible non-degenerate limiting distributions for maxima, which can be

expressed as

1. Fi(k)y=e"*", —00 < k < 00
2. Fy(k)=e " u(k), a>0

R a>0, k<0

3, Fg(k):{ "

where u(k) is the step function.

Proposition 5.3. Let 7 = max(9srp,, YSRDs» - - - » YSRD,,) denote the mazimum end-to-
end SNR where Ysrp, s are independent and identically distributed and n € Z*. Then,
the distribution of 7, F, converges to reduced type 1 asymptotic distribution, Fi(k)
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given as
Flank +b,) = 97 4 (5.36)
where
a4, = 1, gelsRDFrnOSRD (5.37)
and
b, = eﬂsmJmnfrsm7 (5.38)
with K, = 2.2 —(2log LnQ:ogQJrlogzm) and 1, = \/m.

Proof. The proof of this proposition follows from Proposition 5.1 where it was proved
that 4 follows lognormal distribution. The distribution of %, F, (k) belongs to the
domain of attraction of the limiting distribution, if it results in one limiting dis-
tribution for extreme. The limit law for F,(a,k + b,) when F(n) has the lognor-
mal law is Fi(k). This can be verified by ascertaining that the Von-Mises crite-
rion is satisfied. The Von-Mises condition [104, 105] associated with the quantity

¥ = max(Ysrp,, JSRD,; - - - s JSRD,, ) Tequires that

. d 1_FASRD<k) o
L o 5

which indicates that 7 follows a Gumbel Distribution. Similarly, our result follows from
[106], where it was also verified that the limit law for a distribution function when it
follows lognormal law is of type Fj(k). The derivation of parameters a, and b, are

given in Appendix 5.A. O

5.4.2 Best relay selection based on least path loss

The motivation behind the use of best and random relay selection is to study the
trade-off between performance and complexity of relay selection techniques in mmWave
networks. The active relays which can participate in the communication are the ones
that are minimally affected by blockages. Such a relay with the least path loss can be

considered to be the best relay.
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Proposition 5.4. In a relay aided mmWave network, the SNR distribution for the

best relay can be given as

2 00

; P(Gmax 2\ o; -2 _
F,...(t)=exp | — PiomA (M) X/yai 1:<g>(y/rd)dy :

o N,
iELN ¢ 0 / o

(5.40)

where Z;(y) = exp(c252/2 + 1j)Q (—%) is the j-th truncated moment of X .
Proof. The proof is given in Appendix 5.B. O]

Hence, using the above proposition, we select the best relay from a set of active
relays which are obtained as stated in section 5.3. At this point it is worthwhile to
mention that compared to the decode and forward relaying technique, the amplify and
forward relaying may amplify the noise as well. Considering a NLOS condition (dense
blockage environment), best relay scheme may not be suitable in amplify and forward
systems as it will select the best among the worst channels and amplify the noise. In
such a condition, decode and forward relay is advantageous over amplify and forward

although it has higher complexity.

5.5 Coverage Probability and Transmission Capac-
ity

The relays which are located at larger distances can suffer from large path loss and incur
high maintenance costs. Thus, the relay selection method should be carefully designed
in order to achieve higher coverage rates. In this section, we analyze the performance
of our system based on two performance metrics, namely coverage probability and
transmission capacity. The coverage probability is defined as the probability that the
destination is able to receive a signal with some threshold SNR T, i.e., P. = P[y >
T). That is, the probability of coverage is the complementary cumulative distribution
function (CCDF) of the SNRs over the network. On the other hand, the transmission
capacity of a network can be defined as the achievable rate of successful transmission
per unit area, given the constraints of certain connection outage. This metric is of
interest since the characterization of the capacity of every individual active link in a

large random network is impractical. Mathematically, the transmission capacity of a
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Table 5.1: Simulation Parameters

Notation | Parameter Values
T4 Radius of the bounded region | 200 meters
As Density of source nodes 0.001
PLOS LOS probability 0.12
G max Antenna Gain 18dB
« Path loss exponent LOS-2, NLOS-4
P Node transmit power 1 Watt
Ny Noise power Thermal noise
-+ 10dB noise figure.
rsD Link distance 35 meter

relay aided system is defined as
T=Ar+A)R(1-P(y>T)), (5.41)
where R is the rate of a random end-to-end link defined as
R =log,(1+T), (5.42)

where 7" is the minimum threshold SNR. P(y > T') follows from Proposition 5.3 and
Proposition 5.4 depending on the relay selection scheme. However, for the case of

decode and forward technique, the average rate, R is calculated as in [84].

5.6 Numerical Results

In this section, we validate the system model and also verify the results mentioned in the
propositions. In general, the computations are done through Monte Carlo simulations

which is then used to validate the analytical results!!.

We consider the mmWave bandwidth of 2 GHz and carrier frequency 73 GHz.
Unless stated otherwise, most of the values of the parameters used are inspired from
literature mentioned in the references [18, 17]. For the system guidelines, we mention

these parameters and their corresponding values in Table 5.1.

Fig. 5.3 shows the variation of the active number of relays with respect to the

"1 The parameters considered for simulation in this chapter have been taken from recent mmWave
studies [16, 20, 18].

109



5.6. Numerical Results

—
~

Intensity of Active Relays

0 0.2 0.4 0.6 0.8 1
Ay x 107

Figure 5.3: Intensity of active relays versus Agr. The minimum required target SNR
was kept at 5dB.
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Figure 5.4: Comparison of the SNR coverage among the direct link, best path link
and any random link from the source to the destination.

intensity of the relays before thinning for different blockage outage probabilities. In
order to find the active number of relays, we need to find the retaining probability
which can be evaluated by (5.20). For a given blockage probability and given density
of the relays, one can identify the required number of active relays in order to meet

the transmission requirement in the mmWave network.
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Figure 5.5: Comparison of the SNR coverage between the best path link and any
random link from the source to the destination for LOS scenario.

In Fig. 5.4 we show the comparison of the coverage probability of the SNR among
three links, namely the direct link between the source and the destination, the best
path link from the source to the destination through the aid of relays and any random
path link which also takes relay into consideration. It is evident from the figure that
relay aided transmission has a better coverage probability when compared to a direct
link between a source and a destination. It can also be seen that the best end-to-end
link has a better coverage probability compared to any random link. Furthermore, we
would like to stress on the fact that there is a steep fall on the coverage probability

due to the shadowing effects caused by blockages.
Fig. 5.5 and Fig. 5.6 show the coverage probability for LOS and NLOS relay

links respectively. The LOS scenario arises when we consider that all NLOS links are
completely attenuated due to blockages and vice versa. In other words the path loss
exponent for such links is very large for the respective scenarios and hence these links
can be ignored when calculating the coverage probability of the system. The direct
link from source to destination without the aid of the relay for NLOS is shown in the
figure just for the sake of comparison. It is evident from the figures that relay aided
transmission has better coverage probability to a direct link between the source and

destination.

In Fig. 5.7 we give insights into the coverage probability of the system in very

dense networks. This figure is an attempt at validating Proposition 5.3 where we state
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Figure 5.7: Comparison of the SNR coverage among the best path links when the

number of links increase asymptotically.

that when the number of SNR links tend to infinity the distribution tends toward the

non-degenerate limiting distribution Fj(k).

From the figure it

can be seen that as

we increase the value of n, the curves converge towards the asymptotic curve which

represents the Gumbel distribution. In the figure, ny, ny and n., correspond to one,

two and infinite number of paths respectively. Increasing n can be looked upon as
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Figure 5.8: Coverage probability comparison between the direct link, the best path link
and best relay link from the source to the destination.
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Figure 5.9: Coverage probability comparison of different blockage models under best
relay strategy.

increasing the density of the nodes which in turn increases the coverage probability of
the system.
While the best path link is conditioned on the best end-to-end SNR between the

source and the destination, the best relay is conditioned on the least path loss. Ac-

cordingly, Fig. 5.8 shows the trade-offs of the coverage probability of the SNR among
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Figure 5.10: Transmission capacity comparison between the direct link and the best
path link from the source to the destination generated through the aid of relays.

three links, namely the direct link, the best path link and the best relay link. It can
be seen from the figure that the best relay transmission scheme out performs the other
two links. However, the best relay scheme has a high implementation complexity, since
it requires high signaling overheads and channel state information from all potential
relays. For systems with limited computational capabilities, the best path link is a
viable option, but at the expense of reduced coverage. Furthermore, it is worth noting

that the performance of the best relay is always an upper bound for the best path.

Fig. 5.9 gives the comparison between our model and a general blockage model, for
e.g., the ones considered in [17, 93]. It is evident from the figure that for a given relay
and blockage density, performance gap of the coverage probability considering the best
relay strategy between our model (fixed pr) and the e " model [17] is minimal. This
is comparable to the model considered in [17, 93]. We note that the adoption of step
function in our analysis enables faster calculations of the coverage probability, as it
simplifies expressions for the evaluation of the numerical integrals. In dense mmWave
networks, the error due to such an approximation (LOS step model) is generally small
and simplifies the dense network analysis. The step function approximation generally
provides a lower bound of the SINR distribution corresponding to e #" blockage model
and the errors due to the approximation become smaller when the base station density

mcreases.

Finally, in Fig. 5.10 we compare the transmission capacity between the direct link
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and the best path link from the source to the destination generated through the aid
of relays. In this case, we have considered the low complexity case of the best path
link. The figure shows the existence of an optimal SNR threshold which depends on
the operating conditions of the network. The convexity of the curve can be understood
from Fig. 5.3 where it was seen that the active number of relays reach a saturation
point after a certain density. Hence, it is quite obvious for the transmission capacity

to reach a optimal point.

5.7 Summary

Blockages can be quite detrimental to the performance of outdoor mmWave networks.
A possible fix for this is to go around the blockages by creating alternative propagation
paths with the aid of relays. Accordingly, potential benefits of deploying relays in
outdoor mmWave networks were investigated in this chapter. Coverage probability
from sources to a destination aided by relays which were modeled as independent
PPPs were studied. By considering blockages in a mmWave network, a relay modeling
technique was given. New relay nodes from a set of relays were derived using generalized
MHCPP. These active nodes are the ones that can withstand the blockage effects in
the network to transfer information with less outage probability. In practical scenarios,
selecting a relay from an observation (or defined) region with a small neighborhood set
of relays is quite optimal. Since the computational complexity increases with the
number of relays, a carefully designed region can be taken into consideration. Relay
aided transmission was seen to improve the SNR by around 5dB for a specific coverage
probability. Furthermore, closed form expression for end-to-end signal to noise ratio
(SNR) was provided along with the computation of the best random relay path using
order statistics. In very dense networks, the number of links can be quite large. To
investigate such a scenario, extreme value theory was used to analyze the maximum
end-to-end SNR of random relay paths. It is quite evident from our analysis that the
use of relays can prevent the attenuation of the desired signal by negating the effects
of blockages, which in turn also increases the coverage probability and transmission

capacity of mmWave networks.

We would like to note that this chapter relies on a directional gain model for the
relays to understand the impact of relay deployment and blockages in the environment
on the coverage and rate performance of mmWave networks. The analytical directional

gain model assumes an equivalent SISO-like system with directional antenna gains by
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abstracting underlying signal level details. Accordingly, in Chapter 6 we consider a
multi-user MIMO mmWave network with multiple BSs, where the BSs are equipped
with very large antenna arrays. Further, while in this chapter, the fixed blockage
model is considered to analyze the rate and coverage area of mmWave systems, the
exponential blockage path loss model will be considered in the following chapter to

characterize the propagation environment in such systems.

Appendix 5.A Proof of Proposition 5.3

In order to evaluate the constant a,, and b, we first define f_n = (log ¥, — fisrD)FSRD,

where jisgp and dggp follows from Proposition 5.1. We also define ¢, = n[l — Fg(fn)],

N 2
-1 —YSRD

where & is a realization of € with i € Z* and Fé(‘ySRD) = fjiSD(%r)Te( 2 )dAsrD.

Now, we have from [107] that as n — o0, &, = Ky, — , log ¢, where

22— (2log 1, — log2 + log 4m)
N 2up,

, (5.43)

KRn

and

L, = y/2logn. (5.44)

Also, P{¢ <wu}=1—e" wu>0. Therefore,

*(é*"un)

P{&, <& =e ™ foroo< &< oo (5.45)

Now, from the definition of &, we have

~1 (*(A%SRJD)_~_;Ln
— | 4‘nFSRD e\ ‘nISRD ~ ‘n

P{¥, <Asrp} =€ < ) for Asgp > 0. (5.46)

Let k; be a realization of a new random variable 1,,. Then, defining
Un = €, (3 — 1), (5.47)
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1
tnGSRD

where €, = , we have

P{y, <k} = P{ﬁn<1+£}

(o onittis )
€

(5.48)

Also, for —oo < k < 00, we have

P {'_yn < elfsro+rndsro) (1+£>} = AT (5.49)

€n

Now, as n — oo, €, — 00. Therefore,

2 fn é k _
lim P {% < o(miim i) (1 + —) } =", (5.50)
n—00 €n

Hence, the constants a,, and b,, can respectively be identified from (5.50) as
(p = LpOggpe ST ISRD (5.51)
and

b, = ePSRDFTRRISRD (5‘52)

Appendix 5.B Proof of Proposition 5.4

Let ® = {Sb’z = P(G]\I;:X)Qr_o‘i} be path gain process, where i € {L, N}. By using

Mapping theorem [43], the density function under the effect of blockages can be given

as

ANa) =Y pii@ (P(Gmax)Q) et (5.53)

N,
ieLN Ot 0
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Since our propagation process ® is also effected by shadowing, using the displacement

theorem [43], the updated density in bounded region can be given as

Aly) = / A(@)p(z, y) d, (5.54)

where
plary) = %u—%(y/w))=—§fXN<y/x>. (5.55)

Now, using (5.53) and (5.55), (5.54) can be evaluated as

2

R max @ =2
Mo) = Zp’/2 (B e e a

i€L,N
(@ o 2
_ oyn / oo (ZGE) a8 o) a
zeLNaZ
2 -2
; Gmax o
_ oy / omn (FGE) 2 o) ) a
ZELN y
2 2 2 i 2
] ) P((Gmax a =2 2
(=) Pig (M) ya l/zaif)((z)dz. (5.56)
) Q; No
1€L,N y/rq

Using the void probability of a PPP, the path gain distribution for best relay in

interval of (¢, 00) can thus be given as

Ey.(t) = exp| - / Ay)dy (5.57)
t
= exp —Z%Qﬂ')\( (G ) /yaz /zazfx ) dzdy
i€L,N "

y/Td
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Chapter 6

Millimeter Wave Systems with
Massive MIMO Array

Due to the high frequencies used in millimeter wave (mmWave), the path-loss with
omni-directional antennas increases with frequency. Large antenna arrays or massive
multiple-input multiple-output (MIMO) arrays when utilized at one side of the link,
can be used to keep the antenna aperture constant [5], which eliminates the frequency
dependence of path loss relative to omnidirectional antennas. Massive MIMO arrays
when utilized at both sides of the link, can also provide a net array gain to counter the

larger thermal noise bandwidth.

Hence, massive MIMO technology can be considered to be an integral setup in
the implementation of mmWave networks. But, the presence of spatial correlation
in realistic propagation channels significantly deteriorates the system performance of
MIMO communications [108]. One way to achieve high performance in a correlated
environment is to separate the antennas sufficiently so that a large diversity order can be
obtained. However, accommodating a large number of antennas with sufficient antenna
spacing poses several constraints for practical implementation, given the limited space
at the BS and at the user device. As a consequence, several compact antenna array
topologies have emerged that pack the antennas intelligently to minimize the overall
correlation in the MIMO channel [109]. As discussed in Chapter 4, two such antenna
array configurations that have been proposed in literature are the uniform linear array
(ULA) and the uniform circular array (UCA). The initial 3GPP LTE releases defined
MIMO channels in the azimuth only. Accordingly, most prior work [110, 111, 112]

Reprinted from manuscript submitted to IEEE Transactions on Communications, S. Biswas, S. Vuppala, T. Ratnarajah, “An Analysis
on mmWave Systems Equipped with Large 3D Antenna Arrays”. Copyright (2016), with permission IEEE.
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considered 2D cellular layouts to evaluate spatial correlation for the ULA and UCA
configurations. Furthermore, the correlation in these works was investigated in the
azimuth only. These works do not take into consideration the explicit relationship
between the spatial correlation and the angular domain consisting of both the azimuth
and the elevation dimensions. Since real world transmission channels are 3D in nature,

beamforming in the azimuth dimension alone cannot fully exploit all the degrees of

freedom (DOF) of the channel.

Recent results have revealed the potential of 3D beamforming to enhance system
performance. Encouraged by this, 3GPP is carrying out research to develop and stan-
dardize channel models for 3D MIMO systems [113, 114]. Moreover, the absence of ele-
vation dimension is not the only limitation of the existing correlation models. Authors
in [109, 115, 116, 117] do consider the spatial correlation in 3D propagation scenarios.
However, certain assumptions on the nature of the underlying angular distributions
do not represent the attributes of mmWave propagation scenarios accurately. In a
mmWave transmission, the spatial degrees of freedom offered by the channel depend
on both the channel conditions and the number of antennas deployed. Hence, to obtain
the system performance, the effects of the channel conditions and the type of antenna
array have to be considered in conjunction with each other. Most recent works that
study the impact of different channel conditions do not take into account the choice of
the antenna array, which may affect the performance analysis. This problem is further
elevated in very large MIMO systems, where a larger number of antennas are rigged
in a limited space [116]. In general, the choice of the array geometry to be deployed
at the BS is made based on numerous factors, such as cost, availability and compati-
bility of the array with the existing system. In cellular networks, the ULA is the most
commonly deployed configuration. However, the ULA can scan only the 2D space.
On the other hand, the UCA can take both the azimuth and the elevation angles into
consideration. This makes UCA the appropriate array configuration to exploit the 3D

propagation space in the true sense.

Considering the limitations of the current analysis and inspired by the stochas-
tic geometry approach to analyze the performance of large scale MIMO systems and
mmWave networks, in this chapter we consider a realistic propagation scenario of the
downlink of such a system with spatially distributed BSs with UCA serving single-
antenna users within a fixed coverage area of a densely built up urban environment.
In particular, it is assumed that the BSs and users inside the coverage area follow two

independent Poisson point processes (PPPs). We then analyze the performance of the
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6.1. Mathematical Preliminaries

system based on important metrics, namely coverage probability, average rate and area
spectral efficiency with respect to varying number of antennas at the BS as well as the

intensity of the BSs and users within the coverage area.

In particular, we provide an analytical framework for a mmWave system by consid-
ering 3D circular antenna array at the BS, which enables us to take both the azimuth
and elevation dimensions into account. Accordingly, we find the optimal beamformer
in a local sense to achieve the maximum signal-to-interference-plus-noise ratio (SINR)
that can be provided to a user. We then derive a closed-form expression for the SINR
when the number of antennas at the UCA grows without bound. Further, to model the
blockages, we carry out our analysis by incorporating the exponential blockage model.
Accordingly, we derive the coverage probability of the system. We also extend our
analysis for multiple BSs scenario, where a user may be associated to the nearest BS.
In order to analyze the performance of our model, we begin by calculating the average
rate of the system. With the help of this rate and a certain outage probability, we
analyze the transmission capacity of the network. Via numerical results, we provide
a detailed analysis on the effect of the number of BS antennas, blockage density, path
loss coefficient, node density, and SINR threshold on a mmWave network, where BSs

are equipped with very large antenna arrays.

6.1 Mathematical Preliminaries

In this section, we discuss and present a few important mathematical results that will

be integral in deriving a few of the analytical results presented in the chapter.

Lemma 6.1. The Bessel function of order zero, Jo(x) can be upper bounded as
[Jo(@)| < wzT (6.1)
where w = 0.7857.

Lemma 6.2. The Bessel function of order one, Jy(z) can be given as [118]

= (1) yay @it
Ji(z) = Z % (§> ) (6.2)

=0

where T'(.) is the Gamma function.
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6.2. System Model

Lemma 6.3. Let an integral function I be denoted as

x/cbmw Jo(ysin(q)))sm(q))dq)7 (6.3)

I(z,y) = - cos3 (D)

min

where [z,y] € RY and [Ppin, Prmaz] € [7/2, 7). Then a solution for the above integral is

gren as

x [ Jo(y sin(CI)mm)) Jo(ysin(®0z)) (—1) Y\ 2(i+1)
T = —— S S A (A
(z.9) 2 [ 1 —sin? (@) 1 —sin®(Pran) + Z i'T(i + 2) ( )

2
' sin2* (Prnin) >

log(1 — sm?(CI)mm)) + + log(1 — sin2(®max))

k

+ Z ot )] : (6.4)

where Jy(z) the Bessel function of order zero.

/\
Bl
l

Proof. The proof is given in Appendix 6.A. O]

6.2 System Model

0 — Elevation angle

@ — Azimuthal angle

d - Distance between two consecutive antennas
M - Total number of antennas

Figure 6.1: An illustration of an outdoor mmWave cellular network with 3D circular
antenna array.

In this section, we illustrate our system model of an outdoor mmWave network, where
the base station (BS) is equipped with a large antenna array configured as UCA. In

particular, for analytical tractability, we begin the analysis for a single BS setup, which
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6.2. System Model

Table 6.1: Notations

Notation Description

Te Radius of the circular coverage area

T Minimum distance between BS and user
Tk Distance from the kth user to the BS

h Height of the BS

M Number of antennas in the UCA

0

¢

d

Op

Elevation angle
Azimuthal angle
Distance between two consecutive antennas

S PPP of BS
ABs Density of BS
by PPP of users
AU Density of users
Q Path loss exponent
m Nakagami fading parameter

will then be extended to multiple BSs setup in Section 6.4 and thereafter. We consider
the downlink of this system, as shown in Fig. 6.1, where the BS is equipped with
M antennas transmitting simultaneously to spatially distributed single antenna users.
The users in this network are modeled as points of a uniform PPP, denoted by &y, with
density Ay in R2. Let, K be the set of all users in ®y, which are connected at the same
time to the BS! in consideration. Also, let the cardinality of K be K. The number
of users connected at a particular time is given as K = min(U,qz, N), where Uppae 18
the maximum number of users that can be scheduled in a time slot and N is the total
number of users connected to the BS. Further specifications regarding the model are
presented in Table 6.1. Moreover, in mmWave signal propagation, signal corruption is
mainly caused by small scale fading, shadowing and blockages. The modeling of these

effects are discussed in details in the following subsections.

6.2.1 Channel modeling

Let w;, represents the semi-correlated frequency-flat channel vector between the BS
and the kth user. Then, wj can be modeled as wj = /= n:h;, where h; models

the small scale fading channel vector between the BS and the kth user, n denotes

! As of now, we do not give any index for the BS. However, later in the chapter, for the multiple
BS scenario, this will be considered as the [ th BS, with &g being the BS process.
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6.2. System Model

the complex gain, which is assumed to follow Nakagami fading, and is modeled as

n~ fy(t;m) £ %ﬂw Here, m is the Nakagami fading parameter with I'(m)
being the upper incomplete Gamma function and = models the path loss attenuation

given as

1
== — 6.5
VAT o
Here, «a,, with ¢+ € {L,N} is the path loss exponent, where 2 denotes a free space
propagation and 4 a relatively lossy environment. L here refers to a line of sight (LOS)

link while N refers to a non line of sight (NLOS) link.

We assume the antenna array at the BS to be UCA. The advantage of using a UCA
is that it can exploit the real life 3D propagation space. As shown in Fig. 6.1, the BS
with UCA configuration consists of M antennas placed uniformly in a circular array
configuration with radius r, angle of elevation € and angle of azimuth ¢. Then without

loss of generality, the channel vector, h; for the kth user can be given as

h, = [1 ei¥rsinticosoi=dn)  iFr(M-1)sing, cos(@a‘le)]T. (6.6)
Here, ¢,, = 2’”7” is the angle between the mth antenna element and the y axis of the

array.

Now, in order to model the distribution of the angle of departures (AoDs) for a
UCA, we need the distributions of both the azimuth and elevation angles. Since the
BS array is deployed at a certain height from the ground and the users are randomly
located on a circle, the azimuth angles are uniformly distributed within the interval
0, 27].

,,,,,

uniformly distributed within a circular coverage area can be given as

1

fo=5_- (6.7)

,,,,, }
does not follow a uniform distribution and can be given by the following lemma.

Lemma 6.5. The PDF of the elevation angles Oy, _,, for a UCA, when the users

..... K}
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are uniformly distributed within a circular coverage area can be given as

- 2h2 sin(0g) ]
fa _ (r?:—r%) cos3(6,)? emm S ek S emax (68)
0 otherwise,
where Opim = 5 + tan™! %, Omaz = 5 + tan~! %
Proof. The proof is given in Appendix 6.B. O

6.2.2 Blockage modeling

In Chapter 5, we considered the fixed blockage probability model to analyze the
mmWave network. Another blockage model that has been extensively considered in
literature is the PPP based random blockage model. Let the LOS link be of length =z,
then the probabilities of occurrence for LOS and NLOS can be denoted as pr,(x) and
pn(z) = 1 — pr(z) respectively. The probability function for LOS in the network can
be derived from field measurements as was given in [20] or stochastic blockage models
in [91, 119], where the blockage parameters are characterized by some random distri-
butions. Essentially, when the blockages are modeled as a rectangle boolean scheme,
the probabilities of LOS and NLOS links can respectively be given as a function of x

as
pL(x) = eiﬁxa pN(x) =1- eiﬁxa (69)

where [ is the blockage density.

6.2.3 Performance metrics

Three important metrics, namely coverage probability, average rate and the area spec-
tral efficiency of the mmWave network will be studied. Due to the impact of block-
ages, these parameters tend to be of paramount importance in the characterization
of mmWave systems. Furthermore, these metrics have received considerable attention
during the last decade in the analysis of cellular networks. Accordingly, while the cov-
erage probability is the probability that a typical user receives a specific fixed signal
to interference plus noise ratio, the area spectral efficiency of a network can be defined
as the maximum achievable average data rate per unit bandwidth per unit area, given

the constraints of certain connection outage. Accordingly, in order to characterize the
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6.3. Signal to Interference plus Noise Ratio (SINR)

area spectral efficiency, one needs to calculate the average/expected rate. While rate
coverage probability has been studied in recent literature [17, 93], average rate has
not yet been properly evaluated in stochastic geometry related mmWave literature.
Finding a closed-form expression becomes very challenging when we consider other un-
certainties such as blockages, interference and shadowing. Recent papers [120, 121] use
a two-step methodological approach to compute the average rate: i) first, the coverage
probability is computed; and ii) then, the average rate is obtained by integrating the
coverage probability over the positive real axis. Accordingly, for general fading chan-
nels, a four-fold integral needs to be computed. To overcome this limitation, authors in
(122, 123] propose a new analytical framework, which reduces the number of integrals
and is also flexible enough for application to arbitrary fading distributions. Therefore,
in this chapter, leveraging the analysis from [123], we give a generalized expression to

evaluate the average rate in terms of MGF's as

/ (1 - L5(2) () d, (6.10)
0

where R is the instantaneous rate and Lx(z) = E[e *¥].

6.3 Signal to Interference plus Noise Ratio (SINR)

The BS transmits data streams simultaneously to all the connected K users which
creates an interfering broadcast channel. To encounter its effect we use a M x K
beamforming matrix at the BS denoted by T. The signal received by the user at k € K

can be given as

NIRRT Z \/Ewk t;s; + zk , (6.11)
%,_/
desired signal le’C ik , noise
mterge,rence
where s = [s1,...,8%,...,...5x] € CM*1 is the symbol transmitted by M antennas,
o Cp1, -+ Pry -+, px] i the transmitted power corresponding to the kth user, zj is

the complex circular symmetric Gaussian noise with zero mean and a variance of o2,
which is associated with the kth user and tj is the vector of the beamforming matrix

associated with the kth user. Now, assuming the channel to be ergodic, the SINR at
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6.3. Signal to Interference plus Noise Ratio (SINR)

the kth user can be given as

Pl w it ]?
— 6.12
" S plwiAt2 + o2 (6.12)
i€k, itk
S LEm?h 2+ 2 C
icicark ™ M

Our aim now is to design the precoders/beamformers that maximize the received
SINR on each of the BS-UE links. Accordingly, for the case of fixed antenna spacing d,
in order to achieve the maximum SINR, we explore over the asymptotic regime when

M — oo by finding the optimal beamforming vector t;.
Lemma 6.6. In UCA, when M — oo, radius of the circular array r ~ 42 [12/].

Proposition 6.1. Assume perfect CSI at the BS and the users, and fized antenna
spacing. Now, when M grows without bound, then the first negative moment of the

mazximum SINR for the kth user in a mmWave network can be given as

(K =19, > pZmi+ o’

_ €K itk
E[y ! = < , Vo e {L,N},
| b ] PkSZUiM t )
(6.13)
where
3
=t 2 orn (52 ) Jo(2Er 1~ cos (%) sin(Bui)
R M 2(r2 —r?) 1 — sin®(Onin)
" - 8 ; 2(i+1)
1o G i) = Cay (21—
1 —sin?(0rnaz) par i'T(i + 2) 2
2
sin k(emln) . 9 s k(emax)
— [ log(1 — sin*(Opmin)) —i—Z + [ log(1 — sin®(Omaz)) I
=1 =1
(6.14)

Proof. In order to prove this proposition, we split it into two parts. First, we maximize
the SINR 4, in (6.12). Then, we calculate the expectation of v, ' to obtain (6.13). In

order to maximize 7 in (6.12), we have to maximize the numerator and minimize the
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6.3. Signal to Interference plus Noise Ratio (SINR)

denominator. Using the Rayleigh quotient law, [|hft;|? can be bounded as [13]
[hit.)? < Apae(hihy’) = M. (6.15)

The above inequality holds only when t; is an eigenvector of |hih!| corresponding to

the maximum eigenvalue \,,... In other words,

hy
t 6.16
F T (619
Furthermore, the denominator in (6.12) can be minimized if
byt
— 0. 6.17
Vil (47
For the case of UCA at the BS, we have
H M-1
by ] _ 1 Z o 57 (81 cos( 372 +62 sin(27)) 7 (6.18)
v M M m=0

where, §; = sin 6, cos ¢y, — sin 0; cos ¢; and dy £ 5in @), sin ¢y, — sin 0 sin¢;. When the
number of antennas at the BS grows without bound, the integral in (6.18) tends to a

finite integral can be expressed as

Ih't;|

VM

1 2 ‘2 .
_ / eJTT(tﬁ cos 402 smyc)d‘r
2 Jo

. (6.19)

Now, using ([53], Eq. (3.338.4)), the above integral can be analytically solved and
when M — oo, we have
. |hi'ti] - 2m \/ﬁ
W Ar o { Ty 000
With fixed antenna spacing d, when r — 0o, the right hand side of (6.20) equals to zero,
which validates (6.17). However, for a fixed total physical space at the BS (fixed r),
increasing M will lead to the decrease in d. Accordingly, the RHS of (6.20) converges

. (6.20)

to a constant non-zero limit. Hence, the optimal beamforming vector that maximizes

the SINR as M — oo can be given as

hy
VM’

tr = (6.21)
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6.3. Signal to Interference plus Noise Ratio (SINR)

The SINR for the kth user can now be given as

=M
W o= PREele™ e {L,N}. (6.22)

=2 | hpfTh, 2
> PiEm; ar| T
iekC itk

In order to calculate the first negative moment of the SINR, the expectation should
be taken over the channel vectors, which is related to the azimuth and elevation AoDs
of all the users. Accordingly, the first negative moment of the maximum SINR for the

kth user can be given as

—_ 2
> Pi:§77¢2|thhi| + o?
i€k itk

pkukmM

Sis

1 — 2 Hy. |2 2 1
=< — E pizn E{|hy " h|*} + o —— VL E {L,N}. (6.23)
{M { } pk:kniM

i€k ik
Let U; £ LE {|h;"h;?} . Therefore, using (6.6), we have

2

M
1 2m 2m : 2mm
_ J5rr( 01 cos(5 )+62 sin(
U = —E mz_le o ( )| 8
1 M M
— ME Z Zej% (51 cos(2 In)+52sin(2;7”))6_j2 (61 cos( m) 4§, sin( 2Em = ))}’
n=1 m=1
1 M M
= ME Z ZejTﬂ (51 Cos(27rn)+§251n(2;;l) &1 COS(QM )—d2 sin( N}”))}’
n=1m=1

)

r(51(cos(2””) cos( ) — 52(sm(2M) sm(z"m)))}

I
i]ﬁH
—N —
ME
M=
QQ
>y

1 T 27 (§1a—02b
- —E SOy e )}. (6.24)

Here, @ = cos(¥7%) — cos(%7%) and b = sin(%7%) — sin(3*). Now substituting §; =

M M
sin 0, cos ¢, — sin 6, cos ¢; and 89 £ sin ), sin ¢y, — sin 0; sin ¢;, we have

M M
U, = 1 Z Z E {ej%"r(asinek cos ¢y +bsin Oy, sin¢k)} E {e—j%ﬂr(asinej cos ¢;+bsin 6, sin¢j)} .
M
n=1 m=1 ~ N\ ~—
E1 E2

(6.25)
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6.3. Signal to Interference plus Noise Ratio (SINR)

Let a = asinf, and b = bsin @),. Therefore,

E, = E {6] “Try/a?+b? (cos(A)cosqﬁk—f—sinAsin(z)k)}
emaz 2
- / / &I KTV 00 £ (61 o (01) ddrdbh (6.26)

This integral can now be solved in two parts. Solving for the inner integral first, the

detailed mathematical steps of which are deferred to Appendix 6.C, we have

ity ST
Bi= = /9 Jo (Csin(6y)) C;;lg(gk)dek, (6.27)

3
2

where ( = QT"T\/l — oS (W) Now, rewriting the summations in (6.25) using

t =n —m and using (6.27), ¥ can be rewritten as

2h* — [ [Omas _ sin(6y,) 1°
Uy = DGR Z (M —t]) /9 | Jo (¢ sin(6y)) . Sg(ek)dek ;
¢ R y—(m-1) L Omin
M-1 r 0 -2
(@ 27 B / maz , sin(6y)
= —M(rg — r}%) M+ 2 tzl (M Zf) o Jo ({ sm(Qk)) o8 ((9 )dOk ,

(6.28)

—_ 3
where ¢ = £%74/1 — cos (%) and (a) is obtained by putting Jo(0) = 1. Now, let

2h? 22 2t
T = o and y = ;ﬁr\/l — COS (%) (6.29)

Therefore, comparing (6.29) with Lemma 6.3, the integral in (6.28) can be evaluated,

which further leads to the solution of Wy as given in (6.14). Now, substituting the
value of Uy, in (6.23), we obtain the proof of Proposition 6.1. ]

Accordingly, the downlink SINR for the user £ € K when the number of antennas
at the BS for a UCA grows very large, can be given as

1]}—1 _ pkEZ;UI%M

(K=1)T, > pE?+ o
iekatk

e = {E[n

Vi€ {L,N}.  (6.30)

However, as discussed before, mmWave networks are often affected by blockages.
Hence, it may not be possible to provide the user k£ € K with the SINR in (6.30).
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6.4. SINR Distribution

In the following section, the effect of blockages on this system will be analyzed with

respect to various performance metrics.

Remark 6.1. The asymptotically optimal beamforming vector ti in (6.21) for the
ULA s an approach similar to the MRT scheme. When M becomes very large, the
channel response vectors between different users are asymptotically orthogonal to each
other resulting in the suppression of the interference between different users. Then,
the SINR achieves its mazximum value. Though many other optimal schemes have been
proposed in literature for MIMO networks, this can at least be considered to be one of
the low-complezity optimal schemes in local sense, when the number of BS antennas in

a UCA grows without bound.

6.4 SINR Distribution

In this section, we derive the SINR distribution for a single BS scenario as well as
multiple BSs scenario. We begin by characterizing the overall complimentary cumu-
lative distribution function (CCDF) of the SINR ~;, when the desired link is either
LOS or NLOS. Next we extend the analysis for multiple BSs scenario by incorporat-
ing interference from other BSs followed by the characterization of the SINR for this

scenario.

6.4.1 Single BS scenario

We begin by analyzing the coverage probability for the current set up, where a single
BS serves the spatially distributed users within the circular coverage area. Let T be
the target SINR. The CCDF of the SINR for the kth user can then be given as

P, (T)=1-"Ply <T). (6.31)

Now considering the multi-path components and using the law of total probability,
the CCDF of the SINR for the kth user can be rewritten as

P, (T) = P} (T)P. + P} (T)Px, (6.32)

In the above, Pl (T') and P} (T) are the conditional CCDFs on the event that the link
between the BS and the kth user is LOS and NLOS, respectively. As such, the CCDF
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6.4. SINR Distribution

of the SINR of the kth user conditioned on the fact that the link is LOS is given as
Pl(T)=1—Ply < T|L]. (6.33)

The CCDF of the SINR for the NLOS link can be given similarly. It is worthwhile
to note that (6.31) is sometimes referred to in literature as the coverage probability of
the network. In particular, the coverage probability is defined as the probability that
the destination is able to receive a signal with some threshold SINR 7. That is, the
probability of coverage is actually the CCDF of the SINRs over the network.

Proposition 6.2. Let p, = piry*. Then the SINR coverage probability for a mm Wave
BS equipped with a very large UCA can be given as

P, (T) = PP (T) + PyP (T), (6.34)

where
L B m 141 —AlTr*o0?
P (T) = Z ( ] )(—1) exp <pk—M H exp [—27m Ay (6.35)
=1 eL,N
o 1
X/ v| 1= AT Y (K—1)Wyp; WOLE
0 1+ T T

and PSL (T') follows similarly. Here, T is the SINR threshold, py, and px are the proba-
bilities for LOS and NLOS respectively, and A = m(m!)%.

Proof. The proof of this proposition is given in Appendix 6.D.

6.4.1.1 Multiple BSs scenario

Next, we consider the scenario where multiple BSs are located within a particular
service area, where each BS serves multiple users. Accordingly, the BSs in the network
are modeled as points in R? which are distributed uniformly as a homogeneous PPP
dpg with intensity Ags. Also, let the number of users connected at a particular time
to the Ith BS be given as K; = min(U, 4z, N;), where U, 4, is the maximum number of
users that can be scheduled in a time slot and V; is the total number of users connected

to the {th BS. The additional BSs result in extra interference for the typical user at
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the origin of R2. Accordingly, the signal received by the typical user from the BS at

[ € g can be given as

Yk, = Wg,ltkzxkl + Z ng,ltizxiz + OBI + Zkys (636)
1€Ky,i#k

where OBI is the other BSs’ interference to the kth user from all other BSs except the
Ith BS.

Accordingly, by a slight abuse of notation, the SINR of the user at k € K served
by the BS at [ € ®g can be given as

. |vvl?l{,ltkz|2
T = H t |2 H 2 2" (6.37)
> dwita P+ > X Wil st Pt o
i€k itk ’ jedps,jAlwek

Now, in order to model the OBI, the notion of side lobe gain 7gg can be introduced
by considering an approximation as in [125], where the angular space in the azimuth
is quantized into sectors equivalent to the number of BS antennas. Accordingly, the
SINR in (6.37) can be approximated as?
2P M
5 = i Vi € {L,N}, (6.38)

(K—=1) Uy > pEn? 4 Igs + o2
ickisth

where Igg is the OBI and can be given as

Ins = > MpEn) x Y |It1(0k,, d,)t(0u,, du,)|> (6.39)

JEPBs,I#l weK;

Now, leveraging the analysis from [125], the Igg can further be modeled as

Is= Y MpEnY,, (6.40)
JEPBS,JF#L
where
1, 6, =0, and ¢p. = .
v, b = and ¢p; = Qu; (6.41)
TBs, otherwise,
with g < 1.

2For brevity, hereinafter we have removed the subscript [ from all subsequent variables.
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6.5. Average Rate and Area Spectral Efficiency

Proposition 6.3. The SINR coverage probability for a mmWave network with multiple
BSs, each equipped with very large UCAs can be given as

Ps.(T) = PLP5 (T) + PxPL (T), (6.42)

“(m —AlT ri*o?
PL(T) =) ( z ) (—1)"*exp (—pk 7 ) (6.43)
—ALTRVIL AT T,
H ]EI)LC |:€Xp (pk—M>:| EI&’BS |f;‘Xp ( pkM .

P,%L (T') follows similarly. Here, pr, and px are the probabilities for LOS and NLOS

respectively, pr, = piry; and the rest of the parameters are as defined before.

Proof. The proof of this proposition can be obtained by similarly following the steps
of the proof of Proposition 6.2. For better understanding, we give a sketch of the proof
in Appendix 6.E. O]

Furthermore, we would like to note that in the above two propositions, the typical
user is conditioned on a random BS association. This may not be the case every time

and the typical user may be associated to its nearest BS to maximize its received SINR.

Lemma 6.7. The SINR coverage probability for a mmWave network with multiple
BSs, each equipped with very large UCAs conditioned on nearest BS association can be

given as

Poll) = [ Pr(Tir)f(rdn, (6.44)

r>0

where f(ry) is the nearest distance distribution of the BSs, which is given by

f(re) = 2mApsrye ™S, (6.45)

6.5 Average Rate and Area Spectral Efficiency

In this section, we characterize the average rate in mmWave networks considering MGF

of channel gains. To this point, the received signal gain at the user can be denoted
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6.5. Average Rate and Area Spectral Efficiency

as C, = pery, “niM/o?, where pp = pprit, with ¢ € {L,N}. In order to characterize
the average rate, we need the moment generating functions of (. Before deriving the
corresponding MGF’s, we first characterize their corresponding distributions. Thus,

the required SNR distribution without taking interference into account can be given as

Fe (T) = PLP{¢, < T|L} + PyP{¢ < TN},

S —AkTry"o”
= Z (7:) (—1)" " exp (—j\;k 7 ) e Prr (6.46)
=0 Pk
" m —AETriNo? _
+Z (k) (—1)Fexp (pk—]\fk) (1 —e P,
k=0

Therefore, the MGF of this distribution is given as

m -1
_ M\ ket zpp Ml By
L (2) E (k’) (—1) <1+—A ? TT,C;LU2) e (6.47)

=0
v 1
k-‘rl 1 <Pk 1_ —Bry )
+Z( ) ( T apremez) o)

Now, an integral-form expression for the average rate is given in the following

proposition using (6.10) and (6.38).

Proposition 6.4. The gross average rate for a typical user in a mmWave network

with multiple BSs equipped with very large UCAs can be given as

o0

_ e *?
R = B [ (1= £6,(2)) £ (3 £ () (6.48)
0

where, L, (.) is given in (6.47), and

o 1
Lz, (2 Hexp [ 27?)\U/ (1— (1 N Z(Kl)\I’kpix_a) ")Pb(x)dx] , (6.49)

teL,N m

Lr0(2) = [[ex [—szs /0 §<1—<1+ Mplj - Q>W>PL(x>dx]. (6.50)

where p; = p;r* and Bioar 15 the total bandwidth of the mmWave transmission.
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Proof. This proof follows from equation (6.10) and by using the integral-form expres-

sions of Lz,(%) and Lz,4(5) from the proof of Proposition 6.3. O

For the network as a whole, it is now necessary to determine the outage P[7, < €|,
where € is the outage probability. However, this depends on the distance between the
BSs and the users, and the locations of the active® BSs. If fewer transmitters are active,
then the SINR and accordingly the outage probability can be decreased, but the overall
network throughput would also decrease. Hence, it is mandatory to balance these two
effects with a metric that can take into consideration both the average rate and outage
into consideration. One such metric is the area spectral efficiency. In particular, the
area spectral efficiency of a network is defined as the sum of the maximum average
data rates per unit bandwidth per unit area for a specific outage constraint leading to a
successful transmission resulting from an average number active BSs. Mathematically,

the area spectral efficiency of a mmWave network can be given as [17, 126, 127]

. )\Bs7§,(1—€>

s - 5
Btotal

(6.51)

where \pg is the average number of active BSs* sending a gross average rate of R for

an outage probability € and Byt is the total bandwidth of the mmWave transmission.

6.6 Numerical Results

In this section, we validate our system model and also verify the accuracy of the re-
sults mentioned in the propositions. In general, the computations are done through
Monte Carlo simulations, which are then used to validate the analytical results. We
consider the mmWave bandwidth of 2 GHz [128] and carrier frequency 23 GHz. Unless
stated otherwise, most of the values of the parameters used are inspired from liter-
ature mentioned in the references [128, 18, 17]. A few of the parameters and their
corresponding values are given in Table 6.2. All other parameters and values will be

explicitly mentioned wherever used.

We begin by analyzing the coverage probability of the system with respect to SINR

3The active BSs are the ones that are not totally blocked by the blockages and can associate with
a user either through LOS or NLOS.

40btaining a closed-form expression for Agg is not tractable, but can be computed numerically
from (6.42) for a given e.
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6.6. Numerical Results

Table 6.2: Simulation Parameters

Notation | Parameter Values
Te Radius of the circular coverage area | 250m
Tk Distance from the kth user to the BS | 25m
h Height of the BS 15m
M Number of antennas in the UCA 200
ABS Density of BSs 0.00005
Au Density of users 0.00001
I6] Blockage density 0.001
G Interferer antenna gain 10 dB
o Path loss exponent LOS-2.5, NLOS-3.5
m Nakagami fading figure 6
P BS transmit power 30 dBm
o? Noise power Thermal noise
+ 10dB noise figure.

threshold for different numbers of antennas at the BS, M in Fig 6.2. In particular,
this result is a validation of Proposition 6.2. It can be seen from the figure that the
gap between the analytical and simulation results obtained after numerical evaluation
is quite tight. The figure shows that the number of antennas M has a considerable
impact on the coverage probability. As we increase the number of antennas at the BS,
the probability of coverage for a BS with respect to a typical user for a fixed transmit

power increases.

Next, in Fig. 6.3 we consider the scenario where multiple BSs are located within the
service area. Hereinafter, unless stated otherwise, this scenario will be considered in all
subsequent analyses. This figure compares the coverage probability for varying BS’s
densities. As can be observed from the figure, increasing density of BSs leads to lower
coverage. Although this result appears counter-intuitive at first, it can be explained
by the fact that deployment of more BSs increases the probability for interfering BSs.
The effect of interference from BSs can however be alleviated with the help of BS
cooperation, where a set of BSs cooperate to improve the coverage of the network.
Under such a scenario, the user can associate itself with the best BS (conditioned on
distance). Accordingly, Fig. 6.4 shows the coverage probability as a function of BS

density for the nearest BS association.

As expected, the figure shows that an increase in BS density leads to an increase

in coverage probability.
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Figure 6.3: Coverage probability as a function of Ags. Here, A\y = 0.0001.

In Fig. 6.5, we show the coverage probability against SINR threshold for different
blockage densities. In this figure, the density of BS is kept constant, while the blockage
density is varied. It is shown from the figure that higher blockages lead to better
coverage. Although blockages might not ordinarily be expected to improve coverage, in
this figure, this outcome is not so unusual considering the fact that increased blockages
in the network also limit the interference from interfering BSs. This in turn improves
the SINR, which leads to better coverage probability.
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Figure 6.5: Coverage probability as a function of B. Here, Ay = 0.00005 and M =
250.

After establishing the effect of various parameters with respect to coverage proba-
bility in the previous figures, we now look into the average rate analysis of the mmWave
network. Similar to Fig. 6.2, we analyze the average rate for different M as a function
of user densities in Fig. 6.6. As expected, the average rate increases (logarithmically)

as the value of M increases. However, as M grows unboundedly, the rate saturates
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and almost converges to a nonzero limit. This can be explained by the fact that as
the number of antennas increases the correlation among the antennas also increases
in the UCA. It can be also seen that the performance decreases with the increase the
value of radius (r.). This can be explained from the fact that the higher radii allow
more blockages and BSs which leads to more attenuation and interference respectively,

consequently decreasing the average rate.

Next, we investigate the average rate as a function of BS density in Fig. 6.7. The
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figure shows a decrease in average rate as BS density is increased. This result matches
the trend from the plots in Fig. 6.3, where the extra interference from the BSs decreases
the average rate. In addition, we consider the average rate performance for different
blockage densities and observe that increasing blockages produces better average rates.
This confirms our observation from Fig. 6.5 where increasing blockages had a positive

effect on the coverage performance of mmWave networks.

Furthermore, Fig. 6.8 shows the performance gains in terms of area spectral effi-
ciency that can be achieved by increasing the number of antennas in the UCA of the
BSs. It can be seen from the figure that the area spectral efficiency increases as the
value of M increases. However, a linear increase in SINR results in an exponential de-
crease of the area spectral efficiency of the network. This can be explained due to the
fact that the increase in SINR threshold results in the increase in outage probability,
which in turn reduces the area spectral efficiency. Furthermore, a tractable derivation
of the optimal density of BSs is an open optimization problem, the exploration of the

analytical solutions of which are deferred for future work.

6.7 Summary

In a mmWave transmission, the spatial degrees of freedom offered by the channel

depends on both the channel conditions and the number of antennas deployed. Hence,
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6.A. Proof of Lemma 6.3

to obtain the system performance, the effects of the channel conditions and the type
of antenna array need to be considered in conjunction with each other. If not taken
into consideration, this can result into an elevated problem in massive MIMO systems,
where a larger number of antennas are rigged within a limited physical space. Though
the ULA is the most commonly deployed configuration, it can scan only the 2D space.
On the other hand, the UCA can take both the azimuth and the elevation angles into
consideration. This makes UCA the appropriate array configuration to exploit the 3D
propagation space in the true sense. Accordingly, this chapter deals with the downlink

of a mmWave network equipped with large 3D circular antenna array.

In particular we characterize the SINR of the system based on array geometry at
the BS. Furthermore, stochastic geometric tools are employed while modeling the in-
terference. Thereby, expressions for coverage probability and average rate are derived
and validated in the numerical section. Using this average rate, the area spectral effi-
ciency of the mmWave network was calculated followed by the area spectral efficiency.
With the help of numerical results, we provided a detailed analysis on the effect of
the number of BS antennas, blockage density, path loss coefficient, node density, and
SINR threshold on a mmWave network, where BSs are equipped with very large an-
tenna arrays. It was found that increasing M in the UCA deployed at the BS in the
network can lead to better area spectral efficiency in mmWave networks. Also, though
increasing ( results in the attenuation of the desired signal, it also helps to attenuate
the interference from non-intended sources, thus increasing the resultant SINR, which
in turn increases the area spectral efficiency. However, the attenuation of the desired
signal may not be desirable and may lead to loss of transmitted information. This can

be dealt with by the use of relays, which was discussed in the previous chapter.

Appendix 6.A Proof of Lemma 6.3

Proof. Let p = sin®. Therefore, d® = dp/ cos(P). Now, substituting these values in
(6.3), we have

ez Jo(yp)p
I(x,y) = —:c/ ————dp. 6.52
( y> Pmin (1 ! 2)2 ( )
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6.B. Proof of Lemma 6.5

Integrating (6.52) by parts, we have

xJy (yp) Pmaz /pmaz J, (yp)
I(x,y) = =~ + xy —————dp. 6.53
7(y)
Using Lemma 6.2, we have
_ B o0 (_1)1 y>(2z+1) Pmazx p(QZ-‘rl)
I(y) = Z:; iIT(i +2) (5 o™ (6:54)

Now, let ¢ = p?. Therefore, (6.54) becomes

_ 1 s (_1)7' Y (2i+1) /pgnaac q’L /pgnzn ql
RIS pic ) i i)
) 4§Z!F(z+2) 2 <O 117 ) =1

1S, (—1) @i+1) (prat! —
- _Z ( ) (g> <p 2F1(17Z+1;Z+2;p3nax)

—
S
N

4= ilT(i+2) \2 i+ 1
pz(m)
- TR i 20 | (6.55)
®» Iy~ (=1 (y><2i“>
® I Yy 6.56
4§¢!r(¢+2) 2 (6.56)

i

g p2k p2k
X - lOg(l - pzna:p) + Z % + 1Og(1 - piun) + Z % )
k=1 k=1

where (a) is obtained using the integration identity from [53, Eq. (3.194.5)] and (b) is
obtained using the integration identity from [129, Eq. 07.23.03.0224.01]. Further, F' is

a Hypergeometric function. 0
Appendix 6.B Proof of Lemma 6.5

Proof. Let 1, denote the supplementary of the elevation angle 6,. Then the CDF of

the elevation angle can be given as
F(0) = PO < 0) =P(tpy +7/2 < 0). (6.57)
From Fig. 1, we have tanvy = h/ro. When 6 < 7/2 + tan™! 7%,
PO, < 0) = 0. (6.58)
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6.C. Calculation of Integral in (6.26)

Similarly, when 7/2 + tan™! % <0< 7/2+tan! %’
L h
PO <) = P(tan™ — <0 —7/2
To

= 1-P (7"0 < M) . (6.59)

Moreover, when the users are uniformly distributed within the coverage area, the CDF

of the distance of any random user can be given as [130]

P(ry < z) = “:z - :g (6.60)
Therefore, from (6.58) and (6.60) we have
PO <0) =1~ ! - (taHQ(th - r,%) | (6.61)
Finally, when 6 > 7/2 + tan™! %,
PO, <6)=1. (6.62)
Therefore, from (6.58), (6.61) and (6.62) we have
0, 0 <6,
F(6) = 1- i (taDQ(gim) - r,%) L 0,<6<6, (6.63)
1, 0 > O,

where, ©; = 7/2 4+ tan™' & and O, = 7/2 + tan~' 2. Now differentiating (6.63) with
Th

Te

respect to 6, we obtain (6.8). O

Appendix 6.C Calculation of Integral in (6.26)

The integral in (6.26) can be solved in two parts. Solving for the inner integral, we

have

2T
/ o1 Va2 cos(dr—A) idqsk
; 2m
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—~
S
N

I <]2§m>

2
Jo (Tﬂ'r\/ a? + b2) ,
2m 2mn 2mm \° . 2mm 2 \° .
Jo Tr\/<cos(ﬁ)—cos( i )) + (sm(v)—sm(v)) sinfy |,

= J <2iﬂr\/1 — cos (W) sin 9k> : (6.64)

In the above, (a) is obtained by using the integral identity [53, Eq. (3.339)] and (b) is
obtained using the identity Jo(z) = [y(jz). Now, substituting the values of the inner

—
=
=

integral in (6.26) with (6.64) and solving for the outer integral, we have

ema:c 2% 2 _
E, = / Jo ( Aﬂr\/l—cos (W) sin 9k> fo(Or)dby. (6.65)
amin

Now, using Lemma 6.5, we have

Omaz :
B =2 /9 Jo (¢ sin(6,)) S0k) 4o (6.66)

r2—ri Jo, cos3(0)

3
where ( = QQT“T 1 — cos <w> Similarly, s can be evaluated. Since 0 and 0;

are random variables in the same real domain, they evaluate to the same result.

Appendix 6.D Proof of Proposition 6.2

Let pr = piry*. Therefore, from equation (6.30), we have

e = prEgmeM
(K =1, > pZmf+ o?
i€, itk
prry M

(K =1 > pamiry ™ + o2
i€k, itk

(6.67)

where ¢ € {L,N}.

145



6.D. Proof of Proposition 6.2

Using (6.67), the CCDF of conditional SINR ~; on the event that the link between
the BS and the kth user is LOS can be given as

le’k 77kM
PL(TY=PP >T|, 6.68
i N7 TR SR (6:68)
i€k, itk
T rov
=P > —t I
|:nk pkM (U + IC):|’
T rot
=P|n2>—f (62+1
|:77]c pkM (O‘ _I_ IC) )
T rov
:1—P{n,§< “Tk_ (52 +I,<)}, (6.69)
peM

where Iy = (K — 1) U, > pin?r;® is the received aggregate interference from all
i€k ik
the users. In the following analysis, we employ stochastic geometry tools to model such

interference.

Leveraging the tight lower bound of a Gamma random variable of parameter m as
P[z > 4] < (1 — e )™ with A = m(m!)= , we can bound (6.69) as

PL(T) < 1—Ej [(1 — exp (%(02 + I@))m} (6.70)

Now using the Binomial theorem [93], (6.70) can be given as

PL(T) =~ i (7)(—1)”%&31,C {exp (%(02 +]1c))} : (6.71)

=1

Now considering both LOS and NLOS users and leveraging the notion of mark of

stochastic geometry, we consider the interference as two independent PPPs such that

Ix = I + I§. (6.72)

Accordingly, we can rewrite (6.71) as

Py =Y (7)(-1)l+1 exp( A;Z\Z’?L 2) I1 &

=1 teL,N

ar
7AlT7‘ IIC

T ], (6.73)

where each expectation in (6.73) is the Laplace transform of the associated sub-PPP.

Now, using stochastic geometry and a slight abuse of notation, the expectation in (6.73)
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for the LOS case with respect to I can be given as

Elexp(—sIg)]=Ery,

Y

exp (—s mefa:;aL(K — 1)\Ifk>

1€k

ek

() 1
:EI ;
A0 (ot |
© B N 1 ~pa
= exp [ QWAU/Ox(l (1 N S(K_Ti)qj’cpixa) )e dx] ,

where (a) follows from the assumption of independent small scale fading, (b) follows

@Ek {HEm lexp (=spimia; “V (K — 1)0,)] } : (6.74)

from the use of the moment generating function of Nakagami-m random variable and
(c) follows due to the use of probability generating functionals of PPPs. Similarly,
the Laplace transform of interference in the NLOS case can be derived. Following

footprints of the derivation of P (T'), P} (T') can be calculated, which concludes this
proof.

Appendix 6.EE  Proof of Proposition 6.3

The CCDF of conditional SINR #; in LOS can be given from (6.38) as

ar,

Tr
PL(T)=P lnﬁ > mll\i! (0% + Ix + IBS)} , (6.75)

Similar to the proof of Proposition 6.2, we approximate (6.75) as
L m o (m I+1 —AlTrY
PLD) ~ Y (D)D" E [exp (502 + I+ Is)) | (676)

Now considering both LOS and NLOS BSs, and users and leveraging the notion of

mark of stochastic geometry, we have

Ie = Ig + IY, and loyg = Iy, + I3 (6.77)
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Accordingly, we can rewrite (6.76) as

m m —AZT’I‘ZLUQ
- B3

=1
M M
X H EI)LC e Pk E[és e Pk R (678)
1e{L,N}

where E [.] follows from the proof of Proposition 6.2 and is given as

o0 1 m
Elexp(—six)] H exp[ 27T/\U/O x(l—(l+ = I)Wkplx ) )PL(CL’)dI],

eL,N
(6.79)
Similarly, considering I},‘BS
Elexp(— sléBS)] =E,, [exp (—sijx;aLn?Tj)}
(a)
< E, [exp (—sMp;z{ nimis)] | (6.80)

Y

[ee] 1 m
® exp —27T/\Bs/ x| 1- i e Prdy
0 1+ WJL BS p-—ar,

where (a) follows by taking the upper bound on the Laplace functional with T; > 7ag
and (b) is obtained by following a similar approach as the proof of Proposition 6.2.
Similarly, IgBS case can be derived. This proof concludes by deriving the closed-form

expression for PX (T').
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Chapter 7

Full-Duplex MIMO Cognitive
Radios

7.1 Introduction

Among the emerging technologies for next-generation wireless networks, full duplex
(FD) communication is considered a way to potentially double the speed of wireless
communication, and is a potential candidate for 5G systems since it enables available

spectral resources to be fully utilized in time and frequency.

Many feasible solutions including antenna, analog and digital cancellation have
been demonstrated experimentally to mitigate the overwhelming self-interference (SI),
which is the fundamental challenge in implementing a full-duplex radio [24, 25]. How-
ever, the performance is limited by the residual self-interference to be induced by the
imperfection of the transmit and receive front-end chain [26, 27]. In addition to self-
interference, co-channel interference (CCI) from uplink (UL) users to downlink (DL)
users is another challenge in full-duplex networks that needs to be overcome to fully
exploit the multi-access nature of the wireless medium in conjunction with full-duplex
systems. To optimize the system performance, self-interference and CCI in FD systems
should be addressed jointly through beamforming [28, 29, 30, 31].

In addition to FD systems, cognitive radio system is also a promising technology
to enhance spectrum efficiency [131]. Accordingly, cognitive radios can be deployed

in FD mode. A FD cognitive radio (CR) can simultaneously transmit and sense the

Part of this chapter is reprinted from IEEE International Conference on Communications (ICC), A. C. Cirik, S. Biswas,
O. Taghizadeh, A. Liu, T. Ratnarajah, “On the Performance of Relay Aided Millimeter Wave Networks”. Copyright (2016), with
permission IEEE.
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7.1. Introduction

transmission status of other nodes [132, 133]. In underlay cognitive radio systems, a set
of unlicensed secondary users (SUs) operate within the service range of licensed primary
users (PUs) where the amount of interference from SUs to PUs must be constrained
to meet the Quality-of-Service (QoS) requirements for the PUs. Since it is difficult
to obtain the estimates of the channels between SUs and PUs (due to the lack of full
SU-PU cooperation), it is important to consider the imperfect channel estimates, and

develop robust beamforming schemes that ensure constrained interference on PUs [134,
135].

There are two classes of models frequently used to characterize the imperfect channel
state information (CSI): the stochastic and the deterministic (or worst-case) models.
In the stochastic model, the channel is usually modeled as a complex random matrix
with normally distributed elements, and the transmitter knows the mean and/or the
covariance [136]. In the norm-bounded deterministic model, the instantaneous channel
lies in a known set of possible values, which represents the amount of uncertainty on

the channel, i.e., the bigger the set is, the more uncertainty there is [134, 135].

A sum mean squared error (MSE) minimization problem for a multiple-input multiple-
output (MIMO) FD cognitive radio system has been studied in [79], in which the opti-
mization problem has been cast as a second-order cone programming (SOCP). However,
the authors have not taken the channel estimation errors into account, and the SOCP-
based algorithm proposed in [79] cannot be applied under norm-bounded deterministic
imperfect CSI. Therefore, it is important to design robust transceivers for FD underlay

cognitive radio systems that take into account imperfect channel knowledge.

Motivated by the above, in this chapter, we consider a scenario where a secondary
BS operating in FD mode communicates with UL and DL SUs operating in HD mode si-
multaneously within the service range of multiple PUs. In addition to self-interference,
CCI is also taken into account to design the optimum robust beamformers under a
norm-bounded-error model. We study the sum-MSE as the objective function to min-
imize, subject to power constraints at the UL SUs and secondary BS, and interfering
power constraints at the PUs. Since this problem is semi-infinite and non-convex, two
methods are proposed to jointly design the transceiver matrices at the secondary BS
and users. In the first method, the semi-infinite constraints are first transformed into
the tractable forms, and an iterative Semidefinite programming (SDP) algorithm which
optimizes the transmit and receiving beamforming matrices in alternating manner is
proposed. At each iteration, sum-MSE decreases monotonically, and is guaranteed to

converge. On the other hand, to further reduce the design complexity, the cutting-set
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method [137, 138] is adopted in the second method, where the sum-MSE optimization
problem is solved by employing an iterative procedure which consists of alternating
transceiver design and channel determination steps. In particular, the former step
involves the transceiver design with a given worst-case channel set, and the latter
step involves the calculation of worst-case channels in the uncertainty regions given
transceiver designs. Simulation results demonstrate that the proposed robust designs
can significantly increase robustness to the CSI errors and can provide the improved
performance over the non-robust design. Moreover, it is shown that the proposed FD

system can achieve a significant improvement of throughput over a HD system.

7.2 System Model

We consider a FD cognitive cellular system, in which a secondary FD BS commu-
nicates with HD mode UL and DL SUs, simultaneously within the service range of
PUs as illustrated in Fig. 7.1. The BS equipped with M, transmit and N, receive
antennas serves K UL and J DL users simultaneously. The number of antennas of the
k-th UL and the j-th DL user are denoted by M, and N;, respectively. The channels
HYL € CNoxMi and H?L € CNi*Mo represent the k-th UL and the j-th DL channel,
respectively. Hy € CNo*Mo ig the self-interference channel from the transmitter anten-
nas of BS to the receiver antennas of BS. Hj;” € CY>*Mk denotes the CCI channel

from the k-th UL user to the j-th DL user.

We also take into account the limited dynamic range (DR), which is caused by non-
ideal amplifiers, oscillators, analog-to-digital converters (ADCs), and digital-to-analog
converters (DACs). We adopt the limited DR model in [139], which has also been
commonly used in [140]-[27]. Particularly, at each receive antenna an additive white
Gaussian “receiver distortion” with variance  times the energy of the undistorted
received signal on that receive antenna is applied, and at each transmit antenna, an
additive white Gaussian “transmitter noise” with variance x times the energy of the
intended transmit signal is applied. This transmitter/receiver distortion model is valid,
since it was shown by hardware measurements in [141] and [142] that the non-ideality
of the transmitter and receiver chain can be approximated by an independent Gaussian

noise model, respectively.

The vector of source symbols of length dY’ transmitted by the k-th UL user is
denoted as sU € CH"*!. Tt is assumed that the symbols are independent and iden-
tically distributed (i.i.d.) with unit power, i.e., E |:S][€]L (sgL)H} = Ipe. Similarly, the
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Figure 7.1: An illustration of a FD multi-user MIMO CR cellular system.

transmit symbols of length dP” for the j-th DL user is denoted by sP* e cy

with E [S?L (SJDL)H} = I p.. Denoting the precoders for the data streams of the k-
J

th UL and j-th DL user as VVF € CM+*&"  and VP e CMoxd?" respectively, the

transmitted signal of the k-th UL user and that of the BS can be written respectively,

as

J

UL __ UL UL _ E DL_DL

i=1

We consider a FD multi-user MIMO system that suffers from self-interference and
CCI. The signal received by the BS and that received by the j-th DL user can be

written respectively, as

K
Yo = Z H)'" (x/" + ci") +Ho (%0 + ¢) + € + ny, (7.2)
k=1
K
YPE = HPE(xy+co) + 3O HEY (E 4 o)+ e nfh (13)
k=1

where ny € C and nP* € C" denote the additive white Gaussian noise (AWGN)

vector with zero mean and covariance matrix Ry = 081 N, and R;-j L — JJQ.I ~; at the BS
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and the j-th DL user, respectively.!

In (7.2)-(7.3), c¥L (cp) is the transmitter distortion at the k-th UL user (BS),
which models the effect of limited transmitter DR, and closely approximates the effects
of additive power-amplifier noise, non-linearities in the DAC and phase noise. The
covariance matrix of c{' is given by k (k < 1) times the energy of the intended signal

L

at each transmit antenna [139]. In particular ¢{* can be modeled as

Lo CN (0, k diag (V,QJL (V,ZL)H)) , (7.4)
et L xUE. (7.5)

Finally, in (7.3)((7.2)), ePL (ep) is the receiver distortion at the j-th DL user (BS),
which models the effect of hrnlted receiver DR, and closely approximates the combined
effects of additive gain-control noise, non-linearities in the ADC and phase noise. The
covariance matrix of eP” is given by f (4 <« 1) times the energy of the undistorted

received signal at each receive antenna [139]. In particular, efL can be modeled as

e’" ~ CN (0, fdiag (®7")) (7.6)
eP” L ult, (7.7)

where @Y = Cov{u}*} and u?” is the undistorted received vector at the j-th DL
user, ie., uPt = yPr — el

model holds for ¢y and e, as well.

The discussion on the transmitter/receiver distortion

The received signals are processed by linear decoders, denoted as UV € (CN”dgL,

and Uf L g cNsxdP* by the BS and j-th DL user, respectively. Therefore the estimate
of data streams of the k-th UL user at the BS is given as s{* (UUL) yo, and
similarly, the estimate of data streams of the j-th DL user is 7% = (U]DL)H yir.
Using these estimates, the MSE of the k-th UL and j-th DL user, can be respectively

given as? [79]
MSE{* = E{(s} syt —sHHy

- (o) ()

Since the SU receiver cannot differentiate the interference generated by the PUs from the back-
ground thermal noise, the noise vectors in (7.2) and (7.3) captures the background thermal noise as
well as the interference generated by the PUs. This assumption is also adopted in [134] and [143]-[144],
and the noise is modeled as zero mean with unit variance in [134, 145] as we have assumed in this
chapter.

2The details on how to calculate the MSE is given in Section 2.5.2.
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H H H
= (U BYVEE — 1) (U7 BYEVEE —140.)
+(uyh) " sftuyt, (7.8)

MSEPL = E{(sP - sPh)(sPL — sPL)H)

H
= B{ (s (ot )
H H H
= ((UPH" HPIVPE —1pn ) (UPH) T HPIVPE ~ 10 )
+ (uPhy " sbryubr, (7.9)
In (7.8) and (7.9), EgL and Ef L are the approximated aggregate interference-plus-

noise terms® 4 at the k-th UL and j-th DL user, respectively, and are expressed as
[139]

K K
P~ S EYIVEE (VN E) ok 3 e (VP (V)T (1)

7k =1
+ XJ: Hy (VPE (VPR + kdiag (VPE (VPE)™)) B
"k ,
+ 8 diag (HYEVYE (VIR (BYE)T) + 5 diag (HoVPE (VP HE)
2 -
+ O‘%JINO, J (7.10)
mP & Y HPIVPE (VPY) (D) 4 Y Bt (VP (vED) ") (1D
i#j i=1

K
+ Y HR (VR (VPR 4 wdiag (VEE (VPR ) (R
k=1

J K
483 diag (HPPVPE (V) (B79)") + 53 diag (HETVE® (VD)™ (H)")
i=1 k=1

Without loss of generality, we assume that there is only DL transmission over the
considered frequency band in the primary network. Therefore, the power of the inter-

ference resulting from the secondary UL users and BS at the I[-th PU equipped with T;

3Note that ZgL and Ef L are approximated under k < 1 and 8 < 1, which is a practical
assumption [146, 139]. Therefore, the terms including the multiplication of x and S are negligible,
and have been ignored in the approximation.

4In practice, since the BS knows the codeword x( (its own transmitted signal), and the self-
interference channel Hy, the term Hgxg can be canceled out in (7.2). In the following sections, we
will keep this term merely to be able to use the simplification in the next subsection. However, in the
performance simulations, this term will not be considered.
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receive antennas can be written as

= G (VEF (VY s (VEE (VYY) G} o
k=1
b3 e (VO (vPY - wding (V2 (vEH))) G

J=1

where Gy, € CTi*Mk (Gl € CTZXMO) is the channel between the [-th PU and k-th UL
user (I-th PU and the BS).

7.2.1 Joint beamforming design

In this chapter, we tackle the sum-MSE minimization problem, which is formulated as

K J

win ;;tr{AASEgL}4—§;tr{hdsEfL} (7.13)
= =

5.t w{VfL(V?ﬁH}glﬁ,kzlr.wKL (7.14)
J
S {vPE (P < R, (7.15)
j=1
rv<an 1=1,...,L, (7.16)

where P in (7.14) is the transmit power constraint at the k-th UL user, P, in (7.15)
is the total power constraint at the BS, and \; in (7.16) is the upper limit of the inter-
ference allowed to be imposed on the [-th PU. Here,

V={V{" k=1 K VP j=1.J}
and
U={U" k=1,... K, U j=1,.J}

are the set of all transmit and receive beamforming matrices, respectively.

Simplification of Notation: To simplify the notation, we will combine UL and DL
channels, similar to [31]. Let us use SY* and SP* to represent the set of K UL and

J DL channels, respectively. Denoting H;;, Gy;, n; and receive (transmit) antenna
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numbers NZ <MZ> as

)
HYM i e SUF, j e SUF,

Hy, icSYl, je8PL,

Hij =
H)V ieSPE jeSUYr
\HiDL, icSPL jeSPE
Glj7 ] € SUL7

G, =
Gla j € SDL7
Ny, 1€ SUL,

T nPL e SPL

- (- No (M;), i€ S,

N; (M), i€ SPE

and referring to VX, UX, dX and ;*, X € {UL, DL} as V;, U;, d; and X;, respectively,
the MSE of the i-th link, i € S = SUF|JSPL can be written as

MSE;, = (U'H,V,-1,)(U"H,V,-1,)" + U's,U, (7.17)
where
% o= Y HyV,VIH[!+r) Hjdiag(V,V])H 3 diag (H;V,;V/H/)
JES, j#i jeS jES
+ O'?INZ,,
(7.18)

and the interference power at the I-th PU, IV in (7.12) can be rewritten as

v = Ztr {Gy; (V V]! + wdiag (V; V) G } - (7.19)

JjeES

Using the simplified notation, the problem (7.13)-(7.16) can be rewritten as

win ;tr {MSE;} (7.20)
st tw{V,VI'} < B, ie S, (7.21)
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> w{vivi} <p, (7.22)
ieSPL
v <n 1=1,...,L, (7.23)

7.2.2 Imperfect CSI model

In this chapter, the CSI for both the channels in secondary network, and the channels
between secondary and primary network are assumed to be imperfectly known. The
imperfect CSI is modelled using a deterministic norm-bounded error model [134]-[135],

which is expressed as
H,; e Hy = {I:Iij + A |Alr <9, j€ 3} ) (7.24)
G, €6, = {Glj +A | Alp L0, G S} ; (7.25)

where I:Iij, él]-, and 9;, #; denote the nominal value of the CSI and uncertainty bounds,

respectively.

Under channel uncertainties, the optimization problem (7.20)-(7.23) can be rewrit-

ten as
r‘r,uIIJl VHIE%%({” ;tr {MSE,} (7.26)
s.t. tr {V,VI'} <P, ieS8", (7.27)
> w{Vviv/i} <h, (7.28)
ieSPL
IFY< M\, VG, €Gy, l=1,...,L. (7.29)

Due to the constraint (7.29), the problem (7.26) is a semi-infinite program [147,
Ch. 3], and we will derive an equivalent constraint in linear matrix inequality (LMI)
form in Section 7.3, so that the problem (7.26) will turn into an equivalent SDP, which
can be efficiently solved by standard interior point methods. Then, in an attempt to
further reduce the complexity of the SDP algorithm, in Section 7.4, we will develop a

cutting-set based algorithm to solve the non-convex problem (7.26).
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7.3 Robust Transceiver Design based
on SDP Method

Since the problem (7.26) is an intractable semi-infinite optimization problem [148], in
the following, we will turn it into a tractable form. Using epigraph form and introducing
slack variables 7;, the minimax problem (7.26) can be equivalently rewritten as the

following minimization problem:

min Z T (7.30)

VvV.,U,r -

5.t tiMSE} <7, VHj € Hij, i €S, (7.31)
tr {V,VI'} <P, ieS", (7.32)
> u{vivi} <h, (7.33)
ieSPL
IPY <\, VG €Gy, 1=1,..., L, (7.34)

where 7 is a stacked vector composed of 7;, i € S.

The problem (7.30) can be formulated as a standard SDP, which is defined as
minimizing a linear objective under LMI constraints, which is a matrix constraint
in the form of A (x) = 0, where the matrix A depends linearly on x. Thanks to
this formulation, many well known algorithms for solving SDPs, for example, interior
point methods [81] can be exploited to solve the optimization problem efficiently in
polynomial time. To solve the optimization problem (7.30), we need to write tr{ MSE; }
and I’V in vector forms, the derivation of which are given in Appendix 7.C. Now, using
the vector forms, the SDP formulation, equivalent to the problem (7.30) is expressed
as below, the lengthy proof of which is relegated to Appendix 7.B.

min Z i (7.35)
icS

V,U,Te; >0,m=>0

T — € [

s.t. i I,, —0Da, |>=0,i€S, (7.36)
0551 —0DR  alyy

|vec (V)||2 < P;, i € SUF, (7.37)

ILvee (Vi)Jiespellz < Fo, (7.38)
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~H
AL — ] 0y i1

. _elEAl EO, lzl,,L

0ria —OEY  nlpy

L I

The variables A;, By, f1;, Da,, &;, and E,, are respectively defined as

Ay = d; (Z(dj+Mj>+Ni>+NiZdju

JjeS JjeS

TZZ(deer),

JjES

jSs)
I

(VI @ Uf) vec (H”> — vec (1)
UVJT R UZH) vec (ﬂijﬂje&#i

i; U\/E (TeVy)T @ UJT) vec <I:Il]>J

(T
LeD; jes

_WB (Vi @ (UfTY)) vec <I:Iij>J£eD§R)J res
I oivec (U;) i
[ (VI @ Ul '
(Vi@ U] sm
pa, = | [VE @OV U0 pn]| e (),
[LVB (V] @ (UIT0) ]
i 04, %, x 87 .
o {(V]T ® Ir,) vec (élj)JjES
L(VJT ® ITl)JjG
Ly, = VR U((I‘évj)T ® ITZ)JZSEDJ(-T)J]-GS vec (Ay) .

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

As it can be seen from (7.36), the problem (7.35) does not hold a jointly convex
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Table 7.1: Sum-MSE Minimization using SDP Algorithm

1) Set the iteration number n = 0 and initialize V1.

2) n <~ n+ 1. Update UZ[-”], i € S by solving the convex SDP problem (7.35)
under fixed V=1,

3) Update Vl[n], i € S by solving the convex SDP (7.35)
under fixed UM,

4) Repeat steps 2 and 3 until convergence.

structure over the optimization variables. Nevertheless it is a separately convex opti-
mization problem over the transmit beamforming matrices V, and the receiving beam-
forming matrices U, once the other variables are fixed. This facilitates an alternating
optimization algorithm where in each iteration the solution to (7.35) is calculated, as a
convex optimization problem, assuming an alternatively fixed V or U. The described
optimization iterations continue until a stationary point is obtained, or a pre-defined
number of iterations is reached. Please see Table 7.1 for a detailed algorithm descrip-

tion.

The proposed sum-MSE algorithm monotonically decreases the total MSE over
each iteration by updating the transceivers in an alternating fashion. Also the fact
that MSE is bounded below (at least by zero), it is quite obvious that the proposed
sum-MSE minimization algorithm is convergent [149, 150]. However, the sum-MSE
optimization problem is not jointly convex. Hence, the proposed algorithm is not
guaranteed to converge to a global optimum point. As a result, it is important to select
good initialization points to ensure a suboptimal solution with a good performance.

For the simulations, we use right singular matrices as the initialization technique [151].

7.3.1 Computational complexity

In this subsection, the computational complexity of the proposed SDP method in
Table 7.1 is discussed. The number of arithmetic operations required to solve a standard

real-valued SDP problem

min c’'x (7.46)
XERN
=1
Ix[l2 < R, (7.48)
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Table 7.2: Complexity Parameters of SDP-based Method

Number of variables (n) | Dimension of blocks (a;)
\4 ZieSQMdi‘i'QlS“"L ai=A;+NM+1 1€S§
a; = MdV* 41, i € SUE

a; = MZZ‘EsDL dZDL +1
a=B+T/M+1,1,...,L

where A; denotes the symmetric block-diagonal matrices with P diagonal blocks of

size a; X a;, | =1,..., P, is upper-bounded by [148]

P 1/2 P P
O (1) (1 +Zal) n <n2 —i—nZa? —l—Za?) : (7.49)
I=1 I=1 1=1

Since the proposed algorithm in Table 7.1 solves a SDP problem in Step 2 and
Step 3, the number of arithmetic operations required to compute optimal V; and Uj is
calculated from (7.49) as follows. In computing V;, the number of diagonal blocks P
is equal to |S| + |SYE| 4 L + 1. For the MSE constraint of each user, the dimension of
blocks are a; = A; + N;M +1, i € S. For the UL SU power constraint, the dimension
of the blocks are a; = M d¥E 41, i € SUL. For the BS power constraint, the dimension
of the block is a; = M > icsor dPF + 1, and for the PU interference constraint, the
dimension of the blocks are @ = B, + T)M + 1, I,...,L. The unknown variables to
be determined are of size n = 3", ¢ 2Md; + 2|S| + L, where the first term corresponds
to the real and image parts of V; and the other terms represent the additional slack
variables. The calculation of the number of arithmetic operations required to compute
U; can be carried out similarly. The computational complexity parameters for solving
the sum-MSE minimization problem using SDP method are given in Table 7.2. It is
observed that when the number of users and transmit/receive antennas increase, the

computational complexity of the SDP-based method can be unacceptably high.

7.3.2 CSI acquisition

We assume that the secondary BS has the knowledge of nominal channels and the radius
of uncertainty regions. We undertake a centralized approach where the secondary BS
coordinates the calibration of channel matrices, collects all channel matrices, computes

the beamforming matrices based on the imperfect CSI, and then distributes them to the
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SUs. The estimation of CSI matrices in the secondary network follows a similar strategy
to that of traditional systems, as the secondary nodes cooperate with the secondary
BS. This is performed via the exchange of the training sequences and feedback, and
the application of usual CSI estimation methods [152]. On the other hand, it is more
challenging to obtain an accurate estimate for the CSI between the secondary and
primary networks, as the primary network is usually not willing to cooperate with the
secondary network. In this regard, few methods have been suggested to combat this
problem. Firstly, in case the primary system adopts the TDD scheme, the secondary
network can obtain the CSI to the primary nodes by taking advantage of the channel
reciprocity, and overhearing the transmissions from the primary network [152]-[153].
Secondly, a partial CSI can be obtained via blind environmental learning [154, 155].
Third, an estimate of CSI can be obtained via the realization of a band manager with
the ability to exchange the CSI between the secondary and primary networks [156,
157, 158], and finally, if possible, the primary system can cooperate with the secondary
network to exchange the channel estimates [152]. Of course, since the primary and
secondary systems are not fully coordinated, the quality of these channel estimates
will be degraded. Hence, we choose to model these imperfections by considering norm-
bounded estimation errors for the links between the secondary transmitters and primary
receivers. Note that after secondary network obtain the CSIs of the channels, they
report them to the central scheduler to perform resource allocation/transceiver design
in each time slot [159].

7.4 Robust Transceiver Design based
on Cutting-Set Method

Although the SDP-based iterative design improves the system performance, it has a
high computational complexity. In this section, we propose a low complexity algorithm,
the cutting-set method [137], which provides a new way to deal with the channel
uncertainties by separating CSI errors from the robust transceiver design problem. In
particular, the original problem is solved through a two step alternating algorithm,
namely transceiver design and worst-case channel determination steps. In the first
step (transceiver design), the optimal beamforming matrices are computed under the
assumption that the errors belong to a certain known uncertainty region (fixed set
of CSI), whereas the second step (worst-case channel determination) computes the

worst-case channel error matrices that maximize the constraint functions under the
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assumption that transceiver beamforming matrices computed in the first step are fixed.
In the following, we give both steps of the cutting-set algorithm in detail to solve the

robust MSE-based optimization problem.

7.4.1 Transceiver design for fixed CSI

In the transceiver design step, a version of the semi-infinite problem is solved over
finite subsets of the uncertainty regions. Assuming that the worst-case channels are
given (fixed CSI), the optimal V; and U; are computed through solving the following

optimization problem:

min Z T (7.50)

VvV, U,r
i€S

s.t. Hulﬂg <7,1€S, (7.51)
[vec (V|12 < P;, i € SUE, (7.52)
Ivee (Vi) liesoells < P, (7.53)
a2 <N, 1=1,..., L. (7.54)

Note that this problem is similar to the optimization problem (7.74) (without CSI
errors) given in Appendix 7.B, and with straightforward manipulation, it is easy to show
that the SDP formulation without CSI errors would reduce to the SOCP formulation.
Hence, we can reformulate the problem (7.50) as a SOCP problem under fixed V or
fixed U [79].

7.4.2 Worst-case channel determination for given transceivers

In the second step, worst-case analysis is carried out where channels that violate the
constraints are determined and appended to the finite uncertainty subsets. For fixed
transceiver beamforming matrices computed in the first step, the worst-case channels,
which maximize the MSE and PU interference constraints given in (7.51) and (7.54),
respectively, are computed in the bounded uncertainty regions. Note that under fixed
transceiver beamforming matrices, the MSE and PU interference constraints are inde-
pendent of each other with respect to the CSI errors. For a fixed transceiver design,

the worst-case CSI errors that maximize the MSE of the i-th user can be obtained by
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solving the following problem

max tr {MSE;} (7.55)

Since the objective function (7.55) is non-convex, the problem is intractable, and
thus to simplify the computation, we adopt a first order approximation by neglecting
all the terms that involve the second orders of CSI errors in (7.17). The approximation

is expressed as

~ ~ H
tr {MSE;} =~ tr{MSE,» +2€FE{tr{UfAiVi <Uf{HiiVi—Idi) }}

j
+ Y wm{u{ufav,viaiu

JES.jF#1
+ kK jze; 2R {tr{Uf{Aidiag (VjV]H) ICIZ[UZ }}
HypH H
+ 6%2%{tr{ VIl diag (UUI) A}
@ tr {M~SEZ} + 2% {VecH (BZH) vec (Ai)}, (7.57)

where tr {M~SEZ} is obtained by setting all CSI errors in (7.17) to zero, (a) is obtained
by using the identity tr {AB} = vec’ (AH) vec (B), and B; is expressed as

B, = Vi <Uf{ﬁiiVi—Id) ul+ Y v, viaIUU!

JES,jF#i
+ kY diag (V;VI)HIU UM + 8>V, VIH diag (U;U/") . (7.58)
JjeS jes

Using Cauchy-Schwarz inequality in the approximate MSE expression in (7.57), the
worst-case CSI errors corresponding to the MSE constraints are computed as (Please

see Appendix 7.D for the complete derivation.)

Oi

Ag=
lvee (B:)]l2

BY. (7.59)
After computing the worst-case CSI errors, the corresponding worst-case channels can

be written as H;; = I:Iij +A,;, j €S. Note that since the worst-case CSI error in (7.59)
is computed based on the approximation in (7.57), the MSE constraints in (7.51) may
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be violated even if the corresponding worst-case channels are in the given uncertainty
regions. However, this violation is negligible, since the effect of the second order terms

of CSI errors on the performance are insignificant when the CSI error is small [160].

Next, we compute the worst-case CSI errors corresponding to the PU interfer-
ence (7.34). Specifically, for a fixed transceiver matrices, the worst-case CSI errors
that maximize the interference power at the [-th PU is computed by solving the fol-

lowing problem

max v (7.60)
Ay

which is, again, difficult to solve. Similar to (7.57), to simplify the analysis and com-
putation, an approximation for (7.19) involving only the first-order errors (ignoring the

second-order terms) is adopted, and the approximation is expressed as

17~ I Y o AV VIGE L 4 03 on (o { Adiag (V,VI) G}
jes jes
= IV 4 2R {vec" (C[") vec(A))}, (7.62)
where IV is obtained by setting all CSI errors in (7.19) to zero, and C; is defined as
Ci =) (V;VI+ kdiag (V;VI)) G/l (7.63)
jes

Using Cauchy-Schwarz inequality in the approximate expression (7.62), the worst-case
errors corresponding to the [-th PU interference are obtained similarly as that of (7.59)

as

Z

Ay=—"*"
LT vee (CY)]:

C/ . (7.64)

The corresponding worst-case channels can be expressed as Gy; = G’lj + A, JES.

7.4.3 Iterative algorithm for the robust design

The proposed cutting-set algorithm to solve the robust MSE-based problem involves
a two-step algorithm alternating over transceiver design and worst-case channel de-

termination steps described in the previous two subsections. The algorithm starts
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Table 7.3: Sum-MSE Minimization using Cutting-Set Method

1) Set the iteration number n = 0 and initialize H.

2) Update U™ and VI by solving the problem (7.50) with the given set A
utilizing a similar iterative algorithm given in Table 7.1.

3) Compute the worst-case channels, denoted as Hj, using (7.59) and (7.64).

4) Find the violating channels and append them to the set,

ie., HIHI = {7:[[”],7'[["}}.

5) If the termination criterion is satisfied, then end. Otherwise, set n < n + 1
and go to Step 2.

with the set of channel matrices H, which initially contains only the imperfect CSI
I:Iij, {i,j} € § and élj, jeS, Il =1,...,L. In the first (transceiver design) step,
the problem (7.50) is solved with all the given channels in the set H (the constraints

should involve all the elements of H).

In the worst-case channel determination step, the worst-case channels are obtained
by solving the problems (7.55) and (7.60). If the resulting channels for all links, i.e.,
H,; + A; and Gy; + A; violate the constraints in (7.51) and/or (7.54) for the fixed
transceiver matrices calculated in the previous step, these worst-channels are added
to the set H. The algorithm alternates between these two steps until it does not pro-
duce any violating channel, i.e., the maximum constraint violation is below a specified
threshold. Note that during the worst-case channel determination step, the set H may
be expanded (or remain the same) depending on the constraint violations. During the
minimization step (first step), the precoder and receive beamforming matrices are com-
puted to meet MSE and PU interference constraints for increasing number of worst-case
channels in # (MSE and PU interference constraints must include all the channels in
H) resulting in increased robustness. Particularly, as the size of the set H increases,

the number of effective constraints in the transceiver design problem increases.

It has been demonstrated in [137] that the iterative procedure can be terminated
within a few iterations. When the worst-case analysis problem has an exact solution,
the iterations of the cutting-set algorithm lead to the optimal solution, whereas the
iterations lead to a suboptimal solution if the worst-case analysis makes use of approx-
imations [137]. Due to the MSE and interference approximations in (7.57) and (7.62),
respectively, the proposed iterative algorithm is not guaranteed to lead to the robust
optimal solution, and generally leads to the locally optimal solution. The proposed

algorithm is outlined in Table 7.3.
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Table 7.4: Complexity Parameters of Cutting-Set Method

Number of variables (n) | Dimension of blocks (a;)
V| Xies2Md; + S| a;=A; —Nid;, 1 €8

a; = MdV™, i e SUL

ai = MZz‘eSDL ap*
al:Bl, l,...,L

7.4.4 Computational complexity

The computation complexity of the cutting-set method mainly depends on solving
the SOCP problem (7.50), since the computation complexity to update the worst-case

channels set is negligible. Consider the real-valued problem

min c’'x (7.65)
XER™
s.t. |Ax +by|| <clx+d;, i=1,...,P (7.66)

Ix[l2 < R, (7.67)

where b; € R*. The number of elementary arithmetic operations necessary for solving

this problem is upper-bounded by [148]

p
O1)(1+P)n <n2+P+Za§). (7.68)
i=0
The number of inequalities P + 1 is equal to [S| + {SUL{ + L + 1. For the MSE
constraint of each user, the dimension of blocks are a; = A; — Nidi, 1 € S. For the UL
SU power constraint, the dimension of the blocks are a; = M dVE i € SUL. For the BS
power constraint, the dimension of the block is a; = M Y iesprL dPL. and for the PU
interference constraint, the dimension of the blocks are a; = By, [, ..., L. The unknown
variables to be determined are of size n = 3, ¢ 2Md; +|S|. It is worth noting that the
complexity of the other subproblems can be determined in a similar manner. Then,
the complexity parameters for sum-MSE minimization problem based on cutting-set
method is given in Table 7.4. Compared to the analytical results in Table 7.2, the
computational complexity of the cutting-set method in each iteration has much lower
complexity than that of the SDP-based method.

167



7.5. Numerical Results

7.5 Numerical Results

In this section, we numerically investigate the sum-MSE minimization problem for
a FD MIMO cognitive cellular system. We start by comparing the sum MSE per-
formance of the two algorithms, proposed in the chapter as a function of transmit-
ter/receiver distortion, x/f and channel uncertainty size, §/0. We then analyze the
sum-rate performance of the FD system as a function of the number of antennas N,
transmitter /receiver distortion, /3, channel uncertainty size, §/6 and CCI attenua-
tion factor®, v. The tolerance (the difference between MSE of two iterations) of the
proposed iterative algorithm is set to 107%, the maximum number of iterations is set
to 50, and the results are averaged over 100 independent channel realizations. Since
the optimization problems we are dealing with are non-convex, we need to choose good
initialization points to have a suboptimal solution with good performance. In this

chapter, we use right singular matrices initialization [151].

We consider small cell deployments [161] and compare the FD system with the HD
system under the 3GPP LTE specifications. Small cell is considered to be suitable
for deployment of FD technology due to its low transmit power, short transmission
distances and low mobility [30, 162]. We consider a single hexagonal cell consisting of
a BS in the center with M, transmit and Ny receive antennas. K = 2 UL and J = 2 DL
users equipped with N antennas randomly distributed in the cell®. For simplicity, we
assume My = Ny =N = N. The CR system has L = 2 PUs, with the same maximum
allowed interfering power (i.e., \; = 0dB).

The channel between BS and users (both SUs and PUs) are assumed to experi-
ence the path loss model for line-of-sight (LOS), and the channel between UL and
DL users are assumed to experience the path loss model for non-line-of-sight (NLOS)

communications. Detailed simulation parameters are shown in Table 7.5.

5Tt is important to note that while the channel matrices are assumed to be given for each user,
it is essential for a practical system to exploit a smart channel assignment algorithm prior to pre-
coder/decoder design. This is particularly essential for a FD setup as the CCI can be reduced by
assigning the users with weaker interference paths into the same channel. In order to incorporate the
effect of channel assignment into our simulation, we assume an attenuation coefficient, namely v, on
the CCI channels, which represent the degree of isolation among UL and DL users due to channel
assignment.

6Although the BS has Ny + M, antennas in total, we assume that only My (Ng) antennas can
be used for transmission (reception) in HD mode. This assumption is similar to [31]. The reason
is that in practical systems RF front-ends are scarce resources, since they are much more expensive
than antennas. Therefore, we assume that BS only has Mj transmission front-ends and Ny receiving
front-ends, and do not carry out antenna partitioning.
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Table 7.5: Simulation Parameters

Parameter Settings

Cell Radius 40m

Carrier Frequency 2GHz

Bandwidth 10MHz

Thermal Noise Density —174dBm/Hz

Noise Figure BS: 13dB, User: 9dB
Path Loss (dB) between BS and users 103.8 +20.9log,, d

(d in km)

Path Loss (dB) between users (d in km) | 145.4 + 37.5log;, d
Shadowing Standard Deviation LOS: 3dB, NLOS: 4dB

The estimated channel gain between the BS to kth UL user is given by I:IgL =
VEIEHYE where HUT denotes the small scale fading following a complex Gaussian dis-
tribution with zero mean and unit variance, and {* = 10-*/10 " X ¢ {LOS, NLOS}
represents the large scale fading consisting of path loss and shadowing, where LOS
and NLOS are calculated from a specific path loss model given in Table 7.5. The
channels between BS and DL users, between UL users and DL users, between BS
and PUs, and between UL users and PUs are defined similarly. We adopt the Ri-
cian model in [163], in which the self-interference channel is distributed as Hy ~

CN (,/Jf—;gR}AIO, ﬁIN0 ® IMO>, where K is the Rician factor, and H, is a deter-
. Unless stated otherwise, we consider, N = 2, x = § = —70dB,

v=0band d =60 =0.1.

ministic matrix

Fig. 7.2 shows the evolution of the proposed algorithms, i.e., the convergence of
the algorithms in Table 7.1 and Table 7.3. The monotonic decrease of the sum-MSE
can be verified, and is seen that the cutting set algorithm converges more rapidly than
SDP.

After establishing the convergence of the two algorithms, we now present a thor-
ough comparison of the SDP and cutting-set methods in terms of computational com-
plexity (complex multiplications) and CPU time (time in secs required for conver-
gence) /iteration number (number of iterations required to converge) in Fig. 7.3a and
Fig. 7.3b, respectively with respect to different number of antennas. Similarly, in
Fig. 7.4a and Fig. 7.4b, computational complexity and CPU time/iteration number

are plotted with respect to different number of users for the two algorithms, respec-

"Similar to [30], without loss of generality, we set Kz = 1 and Hy to be the matrix of all ones for
all experiments.
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Figure 7.2: Convergence behavior of the proposed algorithms.

tively.® Note that in Fig. 7.3b and Fig. 7.4b, the bar plots represent the CPU time and
lines represent the number of iterations. As expected, cutting-set algorithm always has
the lowest complexity and requires less computational time than SDP, especially at

high number of antennas and users, which is inline with our computational complexity
analysis in Table 7.2 and 7.4.

We now compare the proposed SDP and cutting set algorithms in terms of sum-
MSE performance for different x =  values in Fig. 7.5. From the figure, it can be seen
that the cutting set algorithm performs as well as the SDP based one with a nominal
performance gap. This loss in performance is well compensated from the computa-
tional point of view as the cutting set based method provides affordable computational
complexity with respect to its SDP counterpart. Hence, the cutting set method can be
considered as a good alternative to the SDP method, which offers a decent trade-off

between performance and computational complexity.

To further highlight the similarities between the two algorithms, in Fig. 7.6, we com-
pare both SDP and cutting set in terms of sum-MSE performance for various channel
uncertainty sizes. When the size of the channel uncertainty is low, the performance of
both the algorithms are quite similar, whereas with an increase in 6 = # values, the

performance gap between the two algorithm increases. The reason is that cutting-set

8For system guidelines we note that, the proposed algorithms are evaluated centrally using MAT-
LAB R20015a on a Linux server with Intel Xeon processor (16 cores, each clocked at 2 GHz) and 31.4
GiB of memory.
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Figure 7.3: Complexity, CPU time and iteration number comparisons of SDP and
cutting-set algorithm systems with respect to different number of antennas. In (a), 3
UL, 3 DL, 2 PU equipped with 3 antennas, and d = 2 data stream transmission is
assumed.
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Figure 7.4: Complexity, CPU time and iteration number comparisons of SDP and
cutting-set algorithm systems with respect to different number of users. In (a), 4 trans-
mit/receive antennas, 2 PU equipped with 3 antennas, and d = 2 data stream trans-
mission s assumed.
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Figure 7.5: Sum-MSE comparison of SDP and cutting-set algorithms for an FD
system with respect to transmitter/receiver distortion, i.e., Kk, .
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Figure 7.6: Sum-MSE comparison of SDP and cutting-set algorithms for an FD
system with respect to channel uncertainty, 6 = 0. Here, k = = —40dB.

algorithm is derived based on the approximations given in (7.57) and (7.62), where the
second-order CSI errors are ignored. But as the channel uncertainty size increases, the

effect of second-order CSI errors become more apparent.

In our next example, we show the complementary cumulative distribution (CCD)

of the total interference power from the secondary users to the primary users, i.e.,
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Figure 7.7: Probability of interference power from secondary to primary network with
respect to the maximum allowed total interfering power, \.

P[IPV > A, where 1PV = 327 1PV and A = 3.1, \i. Here, the precoders/decoders
are designed based on the SDP based algorithm. It can be seen from Fig. 7.7 that
the probability of total interference power from the secondary network to the PUs is
zero when it is higher than A = 3dB, which is the maximum allowed total interfering
power (considering 2 PUs, with each allowing 0dB interference). This is in conjunction
to constraint (7.34), which ensures that the interference to the primary users is always
kept below or equal to the maximum allowed total interfering power. While achieving
the equality condition in (7.34) will ensure maximum sum rate for the secondary users,
the proposed algorithm mainly operates below the maximum allowed interfering power
to protect the primary users, but still satisfying the required quality of service of the
secondary users. Moreover, the area under the CCD curve can be contemplated as the

region, under which the proposed algorithm is always feasible.

Hereinafter, we will compare FD with HD systems in terms of sum-rate perfor-
mance as a function of k = 3 values for different numbers of antennas based on the
SDP algorithm (We haven’t included the performance of the cutting-set algorithm here-
inafter, since we have observed both SDP and cutting-set algorithms give very similar

performance). The sum-rate of the MIMO FD cellular system can be expressed as

d;
Lum =Y Y log, (1+SINR;,), (7.69)

€S k=1
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Figure 7.8: Sum-rate comparison of FD and HD systems with respect to transmit-
ter/receiver distortion, i.e., k, 5. Here, Kk = .

where SINR;, is the SINR of the k-th stream of user ¢ and can be given as defined in
Section 2.5.2 as

1

Yk

(7.70)

In (7.70), w;, and v;, are the k-th column of U;, and V;, respectively. As seen in
Fig. 7.8, the performance of HD system is not affected with x and § values, and at
high self-interference cancellation levels, FD system achieves around 1.6 times more
sum-rate than that of HD. However, at low self-interference cancellation levels (below
around k = [ = —55dB), the distortion is magnified with the increasing number of

antennas and the performance of FD system drops below that of HD scheme.

In Fig. 7.9, the importance of the smart channel assignment, as a stage prior to
the precoder/decoder design is depicted for the SDP algorithm. The CCI attenuation
represents the provided isolation among the UL and DL users. It is seen that as the
suppression level of CCI increases, the FD system starts outperforming the HD system,
and thus isolation among the UL and DL users is essential for a successful coexistence
of UL and DL users in a FD setup.

In Fig. 7.10, we compare FD with HD systems in terms of sum-rate performance
for different k = [ values as a function of 6 = 6 based on the SDP algorithm. From the

figure, it can be seen that the performance of both the FD and HD systems degrades as
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Figure 7.9: Sum-rate comparison of FD and HD systems with respect to CCI atten-
uation factor, i.e., v.
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Figure 7.10: Sum-rate comparison of FD and HD systems with respect to channel
uncertainty, 6 = 0.

the size of the uncertainty region increases. However, the FD system suffers more as a
result of that and the gap between the FD and HD system decreases. But, if the channel
uncertainty is nominal along with a low distortion level (around -70 dB), FD systems
achieve around 1.4 times more sum-rate than that of HD systems. This degradation in

performance of the F'D system is explained as follows. Since there are more interference
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channels (self-interference and CCI) in FD systems, as the uncertainty level of the
channels increases, the system performance of the FD system degrades more. This
indicates that the channel estimation is a critical factor for successful deployment of

FD systems.

7.6 Summary

In this chapter, we have studied the robust MSE-based transceiver design problem
for a FD MIMO cognitive cellular system that suffers from self-interference and CCI
under the limited DR at the transmitters and receivers, and norm-bounded channel
uncertainties. Since the globally optimal solution is difficult to obtain due to the
non-convex nature of the problems, an alternating SDP-based algorithm that iterates
between transmit and receiving beamforming matrices while keeping the other fixed
is first proposed. Second, an efficient cutting-set method was proposed to solve the
original complicated problems by applying an alternating sequence of transceiver design
and channel determination steps. As simulation results demonstrate, compared to the
SDP-based method, the cutting-set method achieves a similar performance with a
lower computational complexity. Moreover, it has been shown in simulations that the
sum-rate achieved by FD system is higher than that of HD system under reasonable

self-interference cancellation and/or CCI attenuation values.

Furthermore, in this chapter, sophisticated transmit and receive filters were used
to cancel the self interference. However, the advent of massive MIMO systems has
opened up possibilities to suppress the self interference to the desired 110dB by simply
leveraging the excess antennas used in a large MIMO antenna array. Accordingly,
discussion on designs of simple precoders/detectors to cancel the self interference at

the BS are provided in the following chapter.

Appendix 7.A Useful Lemmas

Lemma 7.1. [164] Given matrices P, Q, A with A = AT the semi-infinite LMI of
the form of

A - PIXQ + QIX!P, VX IX|F < p,
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holds if and only if 3¢ > 0 such that

= 0. (7.71)

A —Q"Q —pP”
—pP el

Lemma 7.2. Schur Complement Lemma [81]: Let Q and R be symmetric matrices.

Then the following two expressions are equivalent.

S
Q 0 = R>=0 Q-—SR'S*>o0.
S* R

Appendix 7.B Problem Reformulation

To solve the optimization problem (7.30), we first write it in a more compact form

for ease of exposition. To that end, we write tr{ MSE;} and IV in vector forms. As

shown in Appendix 7.C, the vector forms of tr{MSE;} and /'Y can be written as

tr{MSE;} = ||u,]|3 and I’V = ||u)]|3, where p; and ¢; are given as

(VI ® UH) vec (Hy) — vec (1y,)
L(VJT ® U{I) vec (Hij)JjES,j;éi
= U\/E ((TeV))" ® UJT) vec <HU)J£GD§T)L€S (7.72)
U\/B (V;f ® (Uflrf)) vec <Hij)JegD§R>Jj

o;vec (Uy)
L(VJT ® Ifn) vec (G’lj)JjES
NG U((I‘ng)T ® Izy) vec <Glj)J€€DJ('T)JjES ;

)

(7.73)

L =

where D;R) represents the set {1--- Nj}, DJ(T) represents the set {1--- ]\Zj} and I'y is
a square matrix with zero elements, except for the /-th diagonal element, equal to 1.
Using the vector forms (7.72) and (7.73), the problem (7.30) can be rewritten as

min Z T (7.74)

VvV, U,r
€S

5.t leills <7 Ailr <63, i €S, (7.75)
[vee (V)|)3 < P, i € SUF, (7.76)
ILvee (Vi) Jiespellz < Fo, (7.77)
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HL[HS S )\l; HAlHF S 91, | = 1, RN ,L. (778)

Semi-infinite optimization problems can be formulated in terms of LMIs. Such
a reduction, if possible, has important practical consequences: It means that those
semi-infinite problems can be solved efficiently with interior-point methods for LMI
problems [81]. Note that the constraints (7.75) and (7.78) are not in the form of an
LMI because the optimization variables do not appear linearly in these constraints.
To recast the semi-infinite problem (7.74) as a SDP problem, the Schur complement
lemma given in Lemma 7.2 is used to rewrite the constraints (7.75) and (7.78) in LMI

form. Accordingly, the resulting optimization problem is written as

min Z T (7.79)

VvV, U,r
€S
AT
s.t. ! >0, HAZHF < (5i, 1€ S, (780)
By La;
lvec (V|2 < P, i € SUF, (7.81)
[Lvec (Vi) ]icsoell3 < P, (7.82)
/\l LlH
=0, | A)lp <6, 1=1,... L, (7.83)
v Ip,

where the dimensions of the identity matrices in (7.80) and (7.83) are given, respec-

tively, as

A = d; (Z (45 + 1) + N> + N3, (7.84)

JES JeES

LY (4 +05). (7.85)

jes

B

To further simplify the problem (7.79) , Lemma 7.1 is used to relax the semi-
infiniteness of the constraints (7.80) and (7.83).

However, to apply Lemma 7.1, we need to separate the estimated channel and the

channel estimation error. To this end, the LMI in (7.80) is first expressed as

0 pf
IJ’A,L' OA@ X Ai

~H
Ti My

=0 (7.86)
T2 VY ’
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where?

(VI ®@ UH) vec ( ) vec (Iy,)
L(VT@)UH Vec( >J
H,

JES,j#i
i, = H\/E ((I‘gV T'® UH) vec ( >J€€Dm ’ (7.87)
JES
VB (V] @ (UlTy)vee (By) | |
L i jES
L o;vec (Uz) ]
' (VIeull) '
(Vi @UN) ] s m
Ba, = “\/E (T V)T @ Uﬁ)J@emees vec (A;) . (7.88)
VB (V] @ (UIT) |y pm |
I 04, 5, N, 37 ]
Dy,
By choosing
—H
T; y’z
= | _ , P=[0g x> DA ], (7.89)
(17 V¥
= vec(4;), Q=1[-1,01x4,], (7.90)
and applying Lemma 7.1, the LMI in (7.80) is relaxed as
R T
h I,, -0Da | = 0,i€S, (7.91)
Og,irxa —0DX,  elyy
¢ > 0,i€S. (7.92)
Using a similar procedure, the LMI in (7.83) is expressed as
Y 0 i
U ‘-, (7.93)
Ll IBl l’Al OBZXBZ

9To simplify the presentation, from now on we will assume the number of transmit antennas at the
BS is equal to number of transmit antennas at the UL users, i.e., M = My = M;, i € SUL.
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where
_ {(V;‘F ® Ir, ) vec (GU)JJGS
0= VE U((FM)T ® Ir,) vec (Glj)JeevﬁT)J E |
L(V;F ® ITL)JjE
Ly = VE U((Fevj)T ® ITl)J;Da('T>Jj€5 e

1

Then the LMI in (7.83) is relaxed as

~H B
AL —m ] 01><TLM

) Ip, —0,En, = 0,1l=1,...,L,
OTlMxl _GZEZ WZITZM

m Z 0, lzl,,L

(7.94)

(7.95)

(7.96)

(7.97)

Using the relaxed LMIs in (7.91) and (7.96), the SDP problem, which is equivalent

0 (7.26) can be formulated as (7.35).

Appendix 7.C MSE Computation

Using (7.17), tr{ MSE;} can be written as

tr{MSE;} = tr { (UPH,V, - 1) (UFH,V, - 1,)" + U EiUi}
+ Y w{UMH,V,VIHIU,} + Z ktr {UH;;diag (V, V) HI'U, }

JES,jF#i JjES
+ Y per {UMdiag (H; V,VIH) U, } + otr {UM'U; }
JeS
= o {(UFHV, - 1) (U V- 1) " 1+ 3 o {UFH, v, VIS U )
JES,jF#i
+ >0 ke {UFH,T,V,VITIHIU}
JES pep(")
+ >0 s {UATH,V,VIHATIU} + o2tr {UF UL}, (7.98)
J€S (e
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where D](-R) represents the set {1--- N}, D§T) represents the set {1---M;} and T/ is
a square matrix with zero elements, except for the /-th diagonal element, equal to 1.
Applying the vec(-) operation, and the identity ||vec (A)]|3 = tr {AAH}, (7.98) can

be rewritten as

= Hvec (UZHHZZVZ) — vec(Iy,) ’; + Z Hvec (Uf{HijVj) Hz + 02 ||vec (UZ)||§
JES jFi
+ 3N ke (UIH,T V)|, + > D B |lvee (UATH, V) [, . (7.99)
JES pep(™) JES pep™

Using the identity vec(ABC) = (C” ® A) vec (B), (7.99) can be written as 42,13,
where p; is given in (7.72).

Similar to (7.99), I’V can be written as

IV = > | lvee (GyV)lls+ Y. wllvec (G V)3 |- (7.100)

JjES KE'D](_T)

Using the identity vec(ABC) = (C” @ A) vec (B), (7.100) can be written as lleill3,

where ¢; is given in (7.73).

Appendix 7.D Calculation of Worst Case CSI Er-

ror

The approximate MSE expression in (7.57) can be rewritten as

vec (B]') vec (A;) = ||vec(B]) - vec (A;) ||
< vee(B{T) |[||vec (A;) || (7.101)
= ||vec(B{") ||6, (7.102)

where () denotes the dot product operator and (7.101) is obtained by using the Cauchy-
Schwarz inequality, ||ab|| < ||al|||b||. Now equality is achieved for s € R when

vec (A;) = s vec(B]T) (7.103)
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Now plugging (7.103) in (7.102), we have

s [lvec(BI) ||> = ||vec(B]") |6

— § = L

— lvee(BI) ||

d;vec(BH)

A) = V)

= el = el |

6;(BH)

— A, = —— 7 7.104
|[vee(B) || (7100
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Chapter 8

Conclusions

8.1 Summary

Future wireless communication networks will predominantly be formed with mobile
devices such as smart phones, tablets, wearables, internet of things (IoTs) etc. This
has resulted in an exponential growth in the amount of wireless data being created.
However, spectrum resources in the current microwave regime is almost expended and
it is evident that the wave of data requirement will not be met with the current state-of-
the-art technologies. Hence, spectrum and energy efficient design of future wireless net-
works become extremely important. Accordingly, it is imperative to shift the communi-
cation paradigm to beyond 20GHz, where more than 100GHz of unused millimeter wave
(mmWave) bandwidth is available. Furthermore, advanced and optimized communica-
tion and signal processing techniques also need to be developed to meet the demands
future cellular networks. In this thesis, we provided a holistic study of three promis-
ing technologies (massive multiple-input multiple-output (MIMO), mmWave and full
duplex (FD)), which have the potential to meet three primary requirements of future
5G wireless communication systems: i) delivering very high (10X more than current
state-of-the-art) and increasing energy efficiency (on the order of 100X), ii) serving a
large number of users simultaneously and iii) providing higher bandwidths. We have
provided several advantages and corresponding trade-offs of these technologies with re-
spect to several real-life implementation constraints, such as physical space for massive
MIMO, blockages for mmWave, and self-interference for FD.

In Chapter 3, the uplink performance of a massive MIMO system was analysed.

Stochastic geometry was used to characterise the spatially distributed users while large
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dimensional random matrix theory (RMT) was used to achieve deterministic approx-
imations of the sum rate of the system. Approximations for the analytical sum rate
were provided along with closed-form expressions at the low and high signal to noise
ratio (SNR) regimes. The approximations were further validated with Monte-Carlo
simulations. The performance was evaluated with respect to the number of antennas
at the base station (BS) and the intensity of the users. We also provided an analysis
of the energy efficiency of the system by taking into consideration the circuit power
consumption, which was shown to be a function of the number of antennas and the
users. The relative EE of the system was plotted with respect to varying BS antennas
for different SNR ranges. It was shown that the energy efficiency is a quasi-concave
function of the number of base station antennas and does not always increase linearly
with it. Accordingly, in Chapter 4 the optimum number of antennas that can be rigged
in a space-constrained massive MIMO system when energy efficiency (EE) is consid-
ered as a design criteria was derived. A trade-off between the number of antennas, the
fixed physical space and EE was found. It is evident that high EE can be obtained,
but at the cost of reducing the number of antennas or increasing the physical space
for the antennas to be deployed. The results provide adequate insights into how future

massive MIMO BSs can be set-up within constrained physical spaces.

However, when millimeter wave frequencies are considered, due to the smaller wave-
length, the constraint on physical space is relaxed significantly and a much larger num-
ber of antennas can be incorporated within very small physical spaces. Hence, in order
to fully realize the potential of massive MIMO systems, it is mandatory to shift the
communication paradigm from micro wave to mmWave frequencies. Furthermore, in-
terest in mmWave bands has recently gained significant attention due to the fact that
microwave bandwidth is almost expended. However, in a mmWave network, blockages
often attenuate the desired signal and may lead to the loss of transmitted information.
This can be dealt with the use of relays, which was discussed in details in Chapter 5.
New nodes that form a set of relays were derived using the generalized Matérn Hard
Core Point Process (MHCPP). These active nodes are the ones that can withstand
the blockage effects in the network to transfer information with less outage probability.
Relay aided transmission was seen to improve the SNR by around 5dB for a specific
coverage probability. It is quite evident from our analysis that the use of relays can
prevent the attenuation of the desired signal by negating the effects of blockages, which
in turn also increases the coverage probability and transmission capacity of mmWave

networks.
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Furthermore, in Chapter 6 we study the performance analysis of a multi-user MIMO
mmWave network with multiple BSs, where the BSs are equipped with massive MIMO
antenna arrays. In particular, we considered a realistic propagation scenario of the
downlink of such a system with spatially distributed BSs equipped a with large 3D
circular antenna array serving single-antenna users within a fixed coverage area of
a densely built up urban environment. The performance of this system was analyzed
based on important metrics, namely coverage probability, average rate and area spectral
efficiency with respect to varying number of antennas at the BS, the intensity of the

BSs and users and blockage densities within the coverage area.

Finally, in Chapter 7, to improve the spectrum efficiency even further, we studied
the robust MSE-based transceiver design problem for a FD MIMO cognitive cellular
system.The system under consideration suffered from self-interference and co-channel
interference (CCI) under the limited dynamic range (DR) at the transmitters and
receivers, and norm-bounded channel uncertainties. Since a globally optimal solution
is difficult to obtain due to the non-convex nature of the problems, an alternating
iterative algorithm that iterates between transmit and receiving beamforming matrices
while keeping the other fixed was proposed. It was shown that the sum-rate achieved
by FD system is higher than that of half duplex (HD) system under reasonable self-

interference cancellation and/or CCI attenuation values.

Overall, we can conclude that these three technologies can indeed be the ones to
fulfil the requirements of 5G, and will definitely shape the way we communicate in the
near and far future. At this point, we note that in this thesis we have presented a
fundamental analysis based on various assumptions in order to gain first-hand design
insights. However, by lifting the constraints on the assumptions, it is possible to extend
the current work to several other complicated scenarios, which will be considered for
future work. A few possible extensions of the current work for each of massive MIMO,

mmWave and FD are discussed in the section below.

8.2 Extensions

8.2.1 Massive MIMO

The deterministic sum rate derived in Chapter 3 and the EE optimal parameter values
derived in Chapter 4 were based on the assumption of perfect channel state informa-

tion (CSI) and a single cell scenario. Further, perfect interference mitigation scheme
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for a given cell/BS was considered in Chapter 3. These assumptions enabled us to
gain a first-hand design insight for massive MIMO systems. Extensions to imperfect
CSI and multi-cell scenarios will be considered in future works. Below, we give some
preliminaries on imperfect CSI and multi-cell scenario with respect to the considered

system models.

8.2.1.1 Imperfect CSI

In particular, CSI acquisition by the BS can be done through the use of uplink pilots,
where a coherence interval of the channel is used for uplink training. Let us consider
the use of orthogonal pilot squence of length K7U% and the power used by the kth user
to transmit the uplink pilot be po?/3. The parameters and notations used here are in
conjunction with Chapter 4. Now, using MMSE channel estimation [58] we have the

estimated channel as

we~ e [0, — % 1), (8.1)
L+ oz
where the estimation error of the covariance matrix is given as G5 [ 1 — H;l) I
ﬁKTUL

Now, treating the channel estimates as true channels and applying approximate zero
forcing (ZF) in the uplink and downlink while also considering the estimation errors

as noise, the achievable rate for the kth UE can be given as [58]

B ﬁUL
R=log, | 1+ b : (8.2)

vl (0—2 ; (1 - ) Kpcf?)
ﬁKTUL

, then the total average rate of the system is given as

SUL _ po?(M—K)|[vp|[?
= I+ ——or
pKT

R = log, (1 + p(M = K) ) : (8.3)

1 1
L+ o + 5ot

This rate can be obtained using the power consumed by the power amplifiers in a
similar way as is given in (4.62), with p being the optimization parameter similar
to Proposition 4.5. However, optimizing p to obtain an optimum EE is not straight
forward due to the fact that unlike in the perfect CSI case, in (8.3) p appears in both the

numerator and denominator. Consequently, the analytical difficulties of the imperfect

188



8.2. Extensions

CSI case when mutual coupling effects are considered at the BS will be considered in

future works.

8.2.1.2 Multi-cell scenario

When multiple cells are considered, it becomes necessary to reuse the pilot sequences
in the neighbouring cells, which results in pilot contamination [7]. It is important to
investigate its effects on the resultant EE in massive MIMO systems. For example,
assuming that there are J cells in the network, let the location of the kth user in the
jth cell be denoted by x;;, and the average channel attenuation due to path loss and
shadowing between a user location x € R? and the jth BS be represented by F;(x). If
a symmetric scenario is considered, where the parameters in all the cells including the
number of BS antennas, user distributions and propagation conditions, etc., are the
same, then the average channel attenuation E {F;(x;i)} is independent of the index j

of the cell. Accordingly, let the uplink power for the kth UE in the cell j given as

UL _ ﬁUQ(M - K)H"ijQ

L _ , 8.4

where Ppc is the power loss due to pilot contamination and vj; is the receive filter.

Now, applying approximate ZF and averaging over all channel realizations, we have
[58]

1+ Pec + Spror
Bi(M — K)

E{[|v;l[*} = (8.5)

Hence, ﬁng_pﬂOt = %f is the power that needs be used for pilot transmission. Further,
the BS in cell 7 may not be aware of the positions of UEs in other cells, which might
be using the same pilots. Accordingly, the average interference from adjacent cells due
to using the same pilots needs to be calculated, which is another extension for future

work along with calculation of the EE optimal parameters for the multi-cell scenario.

8.2.2 Millimeter wave

8.2.2.1 Hybrid beamforming

In Chapter 6, it was considered that the BSs are equipped with fully-digital baseband

processing. This approach however requires that a radio frequency (RF) chain be
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associated with each antenna. This may become unfeasible when massive MIMO is
considered. On the contrary, fully analog solutions require only a single RF chain
for the whole antenna array. However, such techniques have zero capability of digital
processing, which motivates the use of hybrid beamforming that promises to strike
a balance between these two techniques. In the hybrid structure, the number of RF
chains can vary from 1 (fully analog beamforming) to the total number of antennas
(fully digital beamforming). Two architectures, namely a fully-connected architecture,
where each RF chain has phase shifters connected to all antennas in the array and an
array of sub-arrays architecture, where the entire array is divided into sub-arrays and all
antennas in a sub- array are connected via phase shifters to exactly one RF chain have
been proposed in literature [165, 166, 167]. While the beamforming gain is higher in the
former, the power consumption and hardware complexity of precoder/combiner for a
fixed number of antennas is lower in the latter. Accordingly, precoding and combining
with hybrid beamforming can be implemented in Chapter 5 and 6 to develop a tractable

model for coverage and rate in multi-user mmWave networks.

8.2.2.2 Hybrid mmWave-microwave communication

Unlike microwave, mmWave provides a vast amount of unused spectrum. However, as
discussed in Chapter 5 and 6, mmWave has its own limitations as well. Hence, to meet
the quality of service (QoS) requirements of the network, it is imperative to harvest the
benefits offered by both worlds. In order to take advantage of the vast spectrum while
circumventing the shortcomings of mmWave bands, hybrid communication involving
both microwave and mmWave BS can be considered, where mmWave communication
is employed when blockage effects on the desired signal to interference plus noise ratio
(SINR) is minimum, and switches to microwave otherwise. Accordingly, we give some

qualitative comments on microWave and mmWave tiers’ association probabilities.

Let us consider the downlink transmission in a hybrid cellular network comprising
of both mmWave and microwave networks. Also, let the mmWave BSs be modeled
as a two dimensional homogeneous poisson point process (PPP) ®,, with density A,
while the microwave BSs follow another homogeneous PPP ®,, with density A,. All the
processes are independent of each other. Assuming the typical user equipment (UE) to
be located at the origin, a simple offloading technique may be adopted wherein the typ-
ical UE is offloaded to the microwave network if the capacity achieved on the mmWave
network drops below a certain threshold. Similar offloading strategies were analyzed in

[18] and stated to be reasonable for mmWave based networks. Also assuming that the
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typical UE is associated with the best BS, which provides the UE with the strongest
signal, it is reasonable to consider an identical bias factor B, or B,, as was considered
in [168, 169], which is always positive. When B = 1, no biasing is considered and
the association goes back to a traditional cell association based on maximum received
power or nearest node. Leveraging the analysis from [168], and considering that the
UE is connected to the best BS in terms of long term averaged biased received power,
the UE association is generally conditioned on the least path loss distribution. So, it
is important to characterize such distributions in mmWave networks under the effect
of blockages. As mentioned earlier in Chapter 6, any link, i.e., the distance between
the UE and BS in a mmWave network depends on the blockage probability model.
Therefore, the least path loss distribution in a mmWave network is not the same as for

the case of a microwave network.

Consider a point process, where the points represent the path loss between the
UE and randomly placed BSs in a mmWave network. Let ®,, = {fl = %} be
a homogeneous PPP of intensity \,,, with GG; being the antenna array gain function
and P, the transmitted signal power. Here, the link distance x is a random variable,
and its LOS state occurs with the probability of e=#*. By using Mapping theorem [43,
Theorem 2.34], the density function of this one dimensional PPP under the effect of

blockages can be given as'

1 1

(erGle)aL (TPmGLBm)aN
A([0,7]) = / 27 A e P da + / 2mAmz(1 — e P®)dz.  (8.6)
0 0

Using the void probability of a PPP and with the help of (8.6), the least path loss

distribution in a mmWave network can be given as

F{(r)
1 L 1
= exp (—W)\m(erGle)aN —%(1—6_6(7"1%@3"1) "(1+ B(rP,G By)or))
1 1
+ 2%ém<1_efﬁ(erGzBm) N<1 + B(T’PmGle>aN))> i (87)

Now, let p,, be the association probability of a typical user connected to a microwave

network, i.e., the probability that all mmWave BSs have maximum path loss when the

!The notations of variables used here are the same as used in Chapter 6.
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user is connected to the nearest microwave BS. If r,, is the nearest microwave BS node,

then p, can be represented as

pu = B, [P[P.Bur, " > PuGiByr, "],

= [P (wit > ) a0 (85)
0

@

where P < o Gz o > 1;:;) can be obtained by taking the CCDF of equation (8.7) and

fr,(r) is given as

Jro(ry) = 2w,y exp(—)\mﬁ). (8.9)

Hence, the association probability that a typical UE is connected to the microwave

network can be given as [170]

00 1 o
pu:27rx\#/r exp (—Am ((%) om r@))g‘ﬂwzdr’ (8.10)

0

The association probability for the mmWave network p,, can be obtained similarly.
With the association probabilities of the respective tiers of networks established, other
important problems such as resource scheduling, power allocations, etc., and perfor-
mance metrics such as outage probability, transmission capacity, area spectral effi-

ciency, etc., of the hybrid network can now be evaluated.
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8.2.3 Full duplex

8.2.3.1 Per-antenna power constraint

In Chapter 7, the considered power constraint at the BS was for the BS as a whole
However, in a physical implementation of a multi-antenna node, each antenna has its
own power amplifier in its analog front-end, and is limited individually by the linearity
of the power amplifier. Thus, a power constraint imposed on a per-antenna basis is
more realistic. Assuming that the maximum transmit power of the m-th antenna at
BS and the n-th antenna at the i-th UL user are set to Fj" and P}, respectively. Then,

we have the following transmit power constraints

2
H (Idu ® V;@) vee (V)| < P, i e V2, (8.11)
i 2
2
H | (Tapr @ v™) vee <Vi)JieSDL <R (8.12)
where the vectors vI' = [01xn-1, 1, O1xa—n] and v™ = [O1xm-1, 1, O1xar—m]. Re-

placing (7.37) and (7.38) with (8.11) and (8.12), respectively, the proposed algorithms
are still applicable for the resulting optimization problem and will be be studied in

future work.

8.2.3.2 Uncertainty in the noise covariance

We assumed in the proposed algorithms in Chapter 7 that the noise covariance matrices
Ry and R;-DL are known perfectly. However, since the noise covariance is obtained by
antenna calibration measurements, in practical systems it is only known approximately.
Hence, it is also important to design robust transceivers under channel and noise co-

variance uncertainties. To that end, we assume the model in [171], which characterizes
~1/2
the noise using only the square root of the covariance matrix, i.e., R(l)/ = Ro/ + A,
DIN1/2 ~ DL\ 1/2 ~1/2 ~ DL . ]
and (Rj )= (Rj ) + A, pr, where Ry and R, are known while the covari-
J
ance uncertainties are also bounded in their Frobenius norm, i.e., ||A,, ||z < d,, and

HAn]DL < (5anL. With this model, the noise term |vec (U;)||3 in (7.99) is replaced

F

2
with Hvec <UZHRZ-1/2> ‘ , and the MSE at the i-th user is written as
2

2

: (8.13)

2

tr{MSE:} £ a; + Hvec (urR)?)
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where q; includes all the terms in (7.99) except |vec (U,)|2, and R; is equal to Ry if i

is an UL user and RP% otherwise.

The noise term in (8.13) is handled by introducing a slack variable w;, i.e.,
Hvec (Uflf{;ﬂ) + (I, ® U vec (A")H < wj, (8.14)
2

where A, is equal to A, if 7 is an UL user and A, bz otherwise. Lemma 7.1 can be

used in (8.14) to obtain an equivalent LMI that covers the noise term of the i-th user.

Consider the MSE constraint tr {MSE;} < 7 in (7.31). By introducing slack
variables v;, from (8.13) it can be written as tr {MSE;} = v?4+w? < 7;, where \/a; < v;.
Since these MSE constraints and the noise uncertainty constraint in (8.14) can be
expressed in SDP forms, the proposed algorithms will be used in future to study the

noise covariance uncertainty.

8.2.3.3 Full duplex in massive MIMO communication

In Chapter 7, baseband processing techniques using sophisticated transmit and receive
filters were used to cancel the self interference. However, the advent of massive MIMO
systems has opened up possibilities to suppress the self interference to the desired 110dB
by simply leveraging the excess antennas used in a large MIMO antenna array. To this
end, simple precoders/detectors may be used at the BS to cancel the self interference
(32, 33]. Accordingly, the precoder used in (7.1) for downlink can be modified to send

the transmitted signal as

J DL
SJ

Xp = Z(V]'DL>mod(SJDL)moda (S]'DL)mod = s (815)

j:1 0N0><].

where Oy, 1 is the Ny x 1 all-zeros vector transmitted to the receiving antennas of the
BS to suppress the self interference. The precoder can be a conventional precoder used
for massive MIMO [13, 15] as H (HH?)~!. However, in order to suppress the self
interference, the conventional ZF precorder may be modified to send zeros to the BS

receive antennas only as

(V]DL)rnod = H? (H,. H? ), (8.16)
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where

HPL
J
Hmo = . 8.17
d H, (8.17)

By applying blockwise matrix inversion, the precoder in (8.16) is equivalent to defining

the precoder used in (7.1) as

VPE = (BP9 B (B ) H(HPY)) (HPHHPYT - HPVH (HH) H(HPD)
(8.18)

The downlink MSE /sum-rate can now be calculated using this modified precoder. For
asymptotically large number of antennas, the sum rate can then be approximated
using tools such as law of large numbers or extreme value theory. Furthermore, with
the calculation of the deterministic sum-rate, another open problem to calculate the
optimal ratio between the number of transmit and receive antennas at the BS so as to
maximize both the downlink and uplink sum-rate arises, which will also be studied in

future works.
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