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Abstract
In this thesis, we analyze the performance of three promising technologies being

considered for future fifth generation (5G) and beyond wireless communication systems,
with primary goals to: i) render 10-100 times higher user data rate, ii) serve 10-100
times more users simultaneously, iii) 1000 times more data volume per unit area, iv)
improve energy efficiency on the order of 100 times, and iv) provide higher bandwidths.
Accordingly, we focus on massive multiple-input multiple-output (MIMO) systems and
other future wireless technologies, namely millimeter wave (mmWave) and full-duplex
(FD) systems that are being considered to fulfill the above requirements.

We begin by focusing on fundamental performance limits of massive MIMO systems
under practical constraints such as low complexity processing, array size and limited
physical space. First, we analyze the performance of a massive MIMO base station
(BS) serving spatially distributed multi-antenna users within a fixed coverage area.
Stochastic geometry is used to characterize the spatially distributed users while large
dimensional random matrix theory is used to achieve deterministic approximations of
the sum rate of the system. We then examine the deployment of a massive MIMO
BS and the resulting energy efficiency (EE) by considering a more realistic set-up of a
rectangular array with increasing antenna elements within a fixed physical space. The
effects of mutual coupling and correlation among the BS antennas are incorporated
by deriving a practical mutual coupling matrix which considers coupling among all
antenna elements within the BS. Accordingly, the optimum number of antennas that
can be deployed for a particular antenna spacing when EE is considered as a design
criteria is derived. Also, it is found that mutual coupling effect reduces the EE of the
massive system by around 40-45% depending on the precoder/receiver used and the
physical space available for antenna deployment.

After establishing the constraints of antenna spacing on massive MIMO systems
for the current microwave spectrum, we shift our focus to mmWave frequencies (more
than 100GHz available bandwidth), where the wavelength is very small and as a result
more antennas can be rigged within a constrained space. Accordingly, we integrate
the massive MIMO technology with mmWave networks. In particular, we analyze the
performance of a mmWave network consisting of spatially distributed BS equipped with
very large uniform circular arrays (UCA) serving spatially distributed users within a
fixed coverage area. The use of UCA is due to its capability of scanning through both
the azimuth as well as elevation dimensions. We show that using such 3D massive
MIMO techniques in mmWave systems yield significant performance gains. Further,
we show the effect of blockages and path loss on mmWave networks. Since blockages are
found to be quite detrimental to mmWave networks, we create alternative propagation
paths with the aid of relays. In particular, we consider the deployment of relays in
outdoor mmWave networks and then derive expressions for the coverage probability
and transmission capacity from sources to a destination for such relay aided mmWave
networks using stochastic geometric tools. Overall, relay aided mmWave transmission
is seen to improve the signal to noise ratio at the destination by around 5-10dB with
respect to specific coverage probabilities.
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Finally, due to the fact that the current half duplex (HD) mode transmission only
utilizes half the spectrum at the same time in the same frequency, we consider a mul-
tiuser MIMO cellular system, where a FD BS serves multiple HD users simultaneously.
However, since FD systems are plagued by severe self-interference (SI), we focus on the
design of robust transceivers, which can cancel the residual SI left after antenna and
analog cancellations. In particular, we address the sum mean-squared-errors (MSE)
minimization problem by transforming it into an equivalent semidefinite programming
(SDP) problem. We propose iterative alternating algorithms to design the transceiver
matrices jointly and accordingly show the gains of FD over HD systems. We show that
with proper SI cancellation, it is possible to achieve gains on sum rate of up to 70-80%
over HD systems.
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Lay Summary
The advent of internet, smartphones, social media, online video streaming, online

gaming, etc., has heralded an explosive growth in the amount of data being created.
This explosive growth of mobile data traffic has led to an ever-growing demand for much
higher capacity, lower latency, and energy efficiency (EE) in wireless networks, which
has culminated in the development of the fifth generation (5G) and beyond wireless
communication systems. In particular, 5G is expected to be deployed by the year
2020, with key goals of data rates in the range of Gbps, billions of connected devices,
lower latency, improved coverage and reliability, and low-cost, energy efficient, and
environment friendly operation. Accordingly, future 5G and beyond wireless systems
have to comply with three primary requirements: i) rendering very high capacity (10-
100× more than 4G) and increasing energy efficiency (on the order of 100×), ii) serving
a large number of users simultaneously (10-100× more than 4G), iii) providing an
increase in area capacity of 1000× from 4G and iv) providing higher bandwidths.

Several promising technologies such as millimeter wave (mmWave) networks, mas-
sive multiple-input multiple-output (MIMO), full duplex (FD), non-orthogonal multi-
ple access (NOMA), etc., are being considered for 5G systems. In particular, mmWave
bands with significant amounts of unused or moderately used bandwidths can provide
a significant boost to the spectral efficiency/bandwidth requirements. However, due to
the very high frequencies used in mmWave, the path-loss increases with the frequencies
for omni-directional antennas. To overcome the dependency of frequency on path-loss,
large antenna aperture can be used, which can be achieved by using very large antenna
arrays, also known as massive MIMO arrays. In fact, massive MIMO technology on
its own can provide considerable improvement in both capacity and energy efficiency.
In this approach, a base station (BS) with very large antenna array serving tens of
users in the same time-frequency resource is used to eliminate inter-cell interference
through highly directional beamforming. Another technology that has gained consid-
erable attention in recent years is full duplex (FD) MIMO, which has the potential
to double the spectral efficiency of current half duplex systems. The combination of
FD communication with massive MIMO technology can provide bi-directional wireless
communication at very high spectral and energy efficiency.

Accordingly, in this thesis, we provide a hollistic study of these three technolo-
gies and discuss the importance of using very large antenna arrays in future wireless
communications systems. We provide several advantages and corresponding trade-offs
of these technologies with respect to several real-life implementation constraints, such
as physical space for massive MIMO, blockages for mmWave, and self-interference for
FD. Overall, we show that these three technologies will indeed be the ones to fulfil the
objectives of 5G, and will shape the way we communicate in the near and far future.
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Chapter 1

Introduction

1.1 Background

Communication technologies have gone through numerous innovations over the past

century. Among all the communication technologies, wireless communication, by all

measure, has been the fastest growing segment of the communications industry. Per-

haps, it is fair to say that mobile and cellular communications, which directly impact

our daily lives have seen the most astonishing advancements of wireless communica-

tions. This has become more prominent with the shift in paradigm of communication

from voice centric to data centric. The surge in internet usage, mobile applications us-

age, social media and online video streaming through mobile devices (mobile phones,

tablets, laptops, etc.) [Fig. 1.1] [1] has heralded an explosive growth in the amount of

data being requested. Accordingly, Fig. 1.2 [2] shows the overall projected growth in

mobile data traffic from 2015 to 2020, revealing an 8-fold growth of up to 30.6 exabytes

per month (the equivalent of 7,641 million DVDs each month).

This growth has continually resulted in an ever-growing demand for much higher

capacity, lower latency and energy efficiency in wireless networks. Furthermore, as the

electromagnetic spectrum with favourable communication properties below 20 GHz is

almost completely expended, it is evident that the future demand for mobile data traffic

will not be met. As a result, research has been directed towards developing alternative

technologies and utilizing alternative spectrum regions. These have culminated in the

development of the fifth generation (5G) and beyond wireless communication systems,

expected to be deployed by the year 2020, with key goals of data rates in the range of

Gbps, billions of connected devices, lower latency, improved coverage and reliability,

1



1.1. Background

43% 

55% 

41% 

Smart 
Phone

Tablet

Mobile PC

File Sharing Video
Audio Web Browsing
Social Networking Software Download

On Smart	Phones	and	
tablets	,	the	share	of	
video	traffic	has	
increased.

Across	all	three	types	
of	devices,	social	
networking's	share	has	
increased.
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Figure 1.2: Projected global mobile data traffic from 2015 to 2020 (in exabytes per
month).

and low-cost, energy efficient and environment-friendly operation. To further signify

the eminence of 5G, Fig. 1.3 shows the evolution of mobile technologies since the

emergence of 1G. However, a question that has often been asked by many is: “What

will 5G be?”. To seek the answer to this question, we refer to [4, 5, 6], where it has been

mentioned that the next generation wireless communication technology, also termed as

5G will be achieved through gains in the following categories:

1. Increasing the spectral efficiency through advances in multiple-input multiple-
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Figure 1.3: Evolving mobile technologies [3]. While 1G established seamless mobile
connectivity by introducing mobile voice services, 2G increased voice capacity and deliv-
ered data to masses through mobile. 3G introduced mobile broadband services for faster
and better connectivity and 4G LTE delivers more capacity for faster and better mobile
broadband experience. 5G promises to improve on the existing LTE and LTE advanced
technology. Enhanced mobile broadband with faster and more reliable user experience,
varied low cost internet of things (IOT) with a wide range of coverage, lower latency
and higher reliability are a few of the design goals of 5G.

output (MIMO) to support more bits/s/Hz per node.

2. Increasing the energy efficiency of wireless networks to improve the battery life

of user devices and reduce the transmitted power at the base stations.

3. Increasing bandwidth by shifting towards the millimeter wave (mmWave) spec-

trum.

4. Increasing the area spectral efficiency through densification of networks by im-

plementing more active nodes per unit area.

Accordingly in this thesis, we will try to address these requirements by taking into

account three promising technologies: 1) Massive multiple input multiple output, 2)

full duplex, and 3) mmWave. In particular, we will study the performance of mas-
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sive MIMO and full duplex to address the first and second requirement and mmWave

systems to address the third. The fourth requirement can be addressed through the

realization of heterogenous networks involving new 5G standards such as at mmWave

frequencies and existing 4G LTE and 3G networks. However, this is beyond the scope

of discussion of this thesis and will only be mentioned for the readers’ better under-

standing.

1.2 Summary of Specific Contributions

In this thesis, we provide a hollistic study of the above mentioned three technologies

and the importance of using very large antenna arrays in future wireless communica-

tions systems. In particular, massive MIMO antenna arrays can help overcome the

dependency of frequency on path-loss in mmWave systems and cancel self interference

in full duplex (FD) systems. Nonetheless, massive MIMO may require major archi-

tectural changes, particularly in the design of macro base stations, which will lead to

new types of deployments. Consequently, in this thesis, we focus on the fundamental

performance limit analysis of these technologies and provide several advantages and

corresponding trade-offs with respect to several real life implementation constraints,

such as physical space for massive MIMO, blockages for mmWave and self-interference

for full duplex. Overall, we show that these three technologies will indeed be the ones

to fulfill the objectives of 5G, that will shape the way we communicate in the near

and far future. The most important contributions along with related publications are

summarized as follows:

• We begin by presenting approximations of the sum-rate of an uplink single-cell

multi-user MIMO system consisting of large number of antennas at the BS and

multiple antennas at user equipments (UEs) in Chapter 3, while adhering to the

consideration that the users follow a Poisson point process (PPP) within the cell.

We consider correlated Rayleigh fading and uniformly distributed UEs within the

cell and power-law path loss, where the path loss exponent determines the large

scale fading of the users. We then provide high and low SNR approximations

of the sum-rate of the system, which can be considered as good low complexity

approximations of the analytical capacity. We also provide the approximate sum

rate for the kth ordered user. Further, we also touch on the analysis of the energy

efficiency (EE) of the whole system considering a realistic power consumption

model which includes the circuit power consumption of the system.
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Publications related to this chapter:

1. S. Biswas, J. Xue, F Khan, T. Ratnarajah, “Performance Analysis of Cor-

related Massive MIMO Systems with Spatially Distributed Users,” in press,

IEEE Systems Journal, 2016.

2. S. Biswas, J. Xue, F. Khan and T. Ratnarajah, “On the Capacity of Corre-

lated Massive MIMO Systems using Stochastic Geometry,” in Proc. IEEE

International Symposium on Information Theory (ISIT), Hong Kong, June

14-19, 2015.

• In Chapter 4, we consider realistic setups of massive MIMO and analyze how

large MIMO systems bounded by fixed physical spaces fare to the demands of

increasing EE while contributing towards high spectral efficiencies (SE). We re-

examine the question- “How many antennas do we need?” [7] by means of EE

under a) realistic antenna deployments in fixed physical spaces, and b) thorough

and pragmatic power consumption models. We reflect on both the uplink and

downlink of a multi-user MIMO system which models antenna correlation and

coupling at the BS. We calculate the SE and transmitted power for both uplink

and downlink and also the EE of this system with the help of a power consumption

model similar to Chapter 3, but with additional parameters like power consumed

by amplifiers and other digital circuits. We then provide an analytical expression

for EE of this system by considering zero forcing (ZF) receiver/precoder and

simulation results for both maximum ratio combining (MRC)/maximum ratio

transmission (MRT) and ZF.

Publications related to this chapter:

1. S. Biswas, C. Masouros and T. Ratnarajah, “Performance Analysis of Large

Multiuser MIMO Systems With Space-Constrained 2-D Antenna Arrays,”

IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3492-

3505, May 2016.

2. S. Biswas, C. Masouros and T. Ratnarajah, “On the Energy Efficiency

of Massive MIMO with Space-Constrained 2D Antenna Arrays”, In Proc.

IEEE International Conference on Communications (ICC), Kuala Lumpur,

Malaysia, May 23-27, 2016.

• In Chapter 5, we analyze the performance of a mmWave network aided by re-

lays. In particular, we present a relay modeling technique in mmWave networks
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considering blockages, in which we compute the density of active relays that aid

the transmission. A closed form expression for end-to-end signal-to-noise-ratio

(SNR) is provided and the best random relay path in a mmWave network us-

ing order statistics is calculated. To investigate the asymptotic increase in the

number of transmission paths, extreme value theory is used and accordingly the

maximum end-to-end SNR of random relay paths is found to approach the Gum-

bel distribution. Finally, we provide an analysis on the coverage probability and

the transmission capacity of relay aided mmWave networks.

Publications related to this chapter:

1. S. Biswas, S. Vuppala, J. Xue and T. Ratnarajah, “On the Performance of

Relay Aided Millimeter Wave Networks,” IEEE Journal on Selected Topics

in Signal Processing (Special Issue on mmWave), vol. 10, no. 3, pp. 576-

588, April 2016.

2. S. Biswas, S. Vuppala, J. Xue, and T. Ratnarajah, “An Analysis on Relay

Assisted Millimeter Wave Networks,” in proc, IEEE International Confer-

ence on Communications (ICC), Kuala Lumpur, Malaysia, May 23-27, 2016.

• In Chapter 6, we provide an analytical framework for a mmWave system with

massive 3D circular antenna arrays at the BSs. In particular, by considering a

3D propagation model, we take both the azimuth and elevation dimensions into

account. Accordingly, we find the optimal beamformer to achieve the maximum

signal-to-interference-plus-noise ratio (SINR) that can be provided to a user.

We then derive a closed-form expression for the first negative moment of the

SINR. To model the blockages, we carry out our analysis by incorporating the

exponential blockage model. Accordingly, we derive the coverage probability of

the system. We also extend our analysis to a multiple BS scenario, where a user

may be associated with the nearest BS. In order to analyze the performance of our

model, we begin by calculating the average rate of the system. With the help of

this rate and a certain outage probability, we analyze the transmission capacity of

the network. Via numerical results, we provide a detailed analysis on the effect of

the number of BS antennas, blockage density, path loss coefficient, node density,

and SINR threshold on a mmWave network, where BSs are equipped with very

large antenna arrays.

Publications related to this chapter:

1. S. Biswas, S. Vuppala and T. Ratnarajah, “An Analysis on mmWave Sys-
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tems Equipped with Large 3D Antenna Arrays,” under revision in IEEE

Journal, 2016.

• In Chapter 7, we consider a cognitive radio scenario, where a secondary BS

operating in full duplex (FD) mode communicates with uplink (UL) and downlink

(DL) secondary users (SUs) operating in HD mode simultaneously within the

service range of multiple primary users (PUs). In addition to self-interference,

co-channel interference (CCI) is also taken into account to design the optimum

robust beamformers under a norm-bounded-error model. We study the sum

mean squared error (sum-MSE) as the objective function to minimize, subject

to power constraints at the UL SUs and secondary BS, and interfering power

constraints at the PUs and propose two robust iterative algorithms. We then

show with simulation results that the proposed robust designs can significantly

increase robustness to the channel state information (CSI) errors and can provide

an improvement in performance over the non-robust design. Moreover, it is shown

that the proposed FD system can achieve a significant improvement of throughput

over half duplex (HD) system.

Publications related to this chapter:

1. A. C. Cirik, S. Biswas, and T. Ratnarajah, “Robust transceiver design in

full-duplex MIMO cognitive radios,” under revision, IEEE Transactions on

Vehicular Technology, 2016.

2. A. C. Cirik, S. Biswas, S. Vuppala, and T. Ratnarajah, “Robust transceiver

design for full-duplex multi-user MIMO systems,” IEEE Wireless Commu-

nications Letters, vol. 5, no. 3, pp. 172-175, May 2016.

3. A. C. Cirik, S. Biswas, O. Taghizadeh, A. Liu, and T. Ratnarajah, “Ro-

bust transceiver design in full-duplex MIMO cognitive radios,” in proc,

IEEE International Conference on Communications (ICC), Kuala Lumpur,

Malaysia, May 23-27, 2016.

Other Related Papers Not Included in the Thesis:

The works mentioned below were undertaken during the PhD period but are not in-

cluded in the thesis either because they do not fit within the main objective of the

thesis, or they are earlier versions of the journal publications included in the thesis.

• S. Biswas, S.Vuppala, and T. Ratnarajah, “On the Performance of mmWave
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Networks aided by Wirelessly Powered Relays,” IEEE Journal of Selected Topics

in Signal Processing (Special Issue on Exploiting Interference towards Energy

Efficient and Secure Wireless Communications), vol. 10, no 8, pp 1522-1537,

Dec, 2016.

• A. C. Cirik, S. Biswas, S. Vuppala and T. Ratnarajah, “Beamforming design

for full-duplex MIMO interference channels-QoS and energy efficiency consider-

ations,” IEEE Transactions on Communications, vol 64, no 11, pp. 4635-4651,

Nov 2016.

• S. Vuppala, S. Biswas, T. Ratnarajah “An Analysis on Secure Communication

in Millimeter/Micro-Wave Hybrid Networks,” IEEE Transactions on Communi-

cations, vol. 64, no. 8, pp. 3507-3519, Aug, 2016.

• A. C. Cirik, S. Biswas, S. Vuppala, and T. Ratnarajah, “Energy efficient beam-

forming design for full-duplex MIMO interference channels,” in proc IEEE Inter-

national Conference on Communications (ICC), Paris, France, May 21-25, 2017.

• A. C. Cirik, J. Xue, S. Biswas, T. Ratnarajah and M. Sellathurai, “Transceiver

design of optimum wirelessly powered full-duplex MIMO interference channel,”

In Proc IEEE 17th International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), Edinburgh, UK, July 3-6, 2016.

• S. Vuppala, S. Biswas, J. Xue, and T. Ratnarajah, “On the Security Region of

Best Source Indices in Random Wireless Networks,” in proc, IEEE International

Conference on Communications (ICC), Kuala Lumpur, Malaysia, May 23-27,

2016.

• S. Vuppala, S. Biswas, T. Ratnarajah, “Analysis of secure communication in

millimetre wave networks: are blockages beneficial?,” IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,

March 20-25, 2016.

• S. Biswas, C. Masouros and T. Ratnarajah, “On the effect of antenna correlation

and coupling on energy-efficiency of massive MIMO systems,” in proc, IEEE Per-

sonal, Indoor, and Mobile Radio Communication (PIMRC), Washington D.C.,

USA, Sep 02-5, 2014.
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1.3 Thesis Layout

The thesis is organized as follows:

Chapter 1 provides the motivation of research in this thesis as well as a brief

overview of research and structure of the thesis.

Chapter 2 provides an overview of wireless communications and in particular MIMO

communication techniques.

In Chapter 3, we consider the performance analysis of a correlated massive MIMO

system with spatially distributed users. In particular, we provide a deterministic sum

rate of this system with respect to different number of antennas at the BS as well as

the intensity of the users within the coverage area of the cell.

In Chapter 4, we address the issue of mutual coupling in massive MIMO antennas

arrays. In particular, we consider a realistic planar array bounded by a fixed physical

space with an area of about 1m2 and analytically account for the full mutual coupling

model of the array. Accordingly, we derive the optimum number of antennas that can

be accommodated when EE is considered as a design criteria.

In Chapter 5, we analyze the performance of mmWave networks in the presence

of blockages. In particular, we investigate the potential benefits of deploying relays

in outdoor mmWave networks. We present a relay modeling technique for mmWave

networks considering blockages and compute the density of active relays that aid the

transmission. We study the coverage probability from sources to a destination for such

systems aided by the active relays.

In Chapter 6, we look into the implementation aspect of massive MIMO antenna

arrays in mmWave systems. We take into consideration a 3D propagation scenario

where both the azimuth and the elevation angles of the array are considered. Using

stochastic geometric tools, the coverage probability and transmission capacity of this

system is analysed by taking blockages into consideration.

In Chapter 7, we investigate the potential benefits of a multiuser MIMO FD system

over a HD system. However, since FD systems are plagued by severe self-interference

(SI), we focus on the design of robust transceivers, which can cancel the SI. Further-

more, we also discuss schemes, where the excess antennas of massive MIMO systems

can be utilized to eradicate the SI.

Finally in Chapter 8, we provide conclusions of this thesis and suggest future pos-

sible research extensions and directions based on the current work.
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Chapter 2

An Overview of MIMO

Wireless Communications

2.1 Introduction

In this chapter, we reflect on some of the basic concepts of multiple-input multiple-

output (MIMO) wireless communications along with the evolution of smart antenna

technology from single-user MIMO to multi-user MIMO. First, we consider the point-

to-point communications followed by multi-user MIMO communications. Further, since

the spectrum crunch is one of the major issues that has plagued network providers

over the past decade, we discuss possible technologies that can be used to address this

issue. In particular, we introduce massive MIMO and discuss how it can significantly

boost the spectrum efficiency. We then place our focus on millimeter wave (mmWave)

frequencies, which offer vast unused spectrum beyond 20GHz and full duplex (FD)

communications, which can potentially double the spectrum efficiency by transmitting

and receiving data at the same time and within the same frequency. Finally, we

discuss some important mathematical preliminaries and tools, that will be used in this

thesis to develop tractable models to analyze the performance of the systems under

consideration.

2.2 MIMO Communications

MIMO is an antenna technology for wireless communications, in which multiple an-

tennas are used at both the transmitter and the receiver. In particular, MIMO is one
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Figure 2.1: An illustration of a nr × nt MIMO system.

of several forms of smart antenna technology, where the antennas at each end of the

communications system are combined to minimize errors and optimize data rate. In

conventional wireless communications, a single antenna is used at the transmitter, and

another single antenna is used at the receiver, also known as single-input single-output

(SISO) system. In some cases, this gives rise to problems with multipath effects. With

multipath, transmitted signal bounces off buildings, trees, walls, ceilings, and other ob-

jects, reaching the receiving antenna multiple times via different angles and at slightly

different times. Affected by the surrounding environment, the transmitted signal may

undergo a change in amplitude, phase and frequency and the received multipath com-

ponents may add up destructively, which results in severe degradation of quality of the

transmitted signal at the receiver. The amplitude variations of the received signals are

also known as fading [8] in wireless communications, which can cause a reduction in

data rate and an increase in the number of erroneous symbols.

2.2.1 Point-to-point MIMO

MIMO technology, unlike SISO takes advantage of the multipath behavior by using

multiple, smart transmitters and receivers with an added spatial dimension [8]. In

particular, MIMO increases receiver’s signal-capturing power by enabling antennas to

combine data streams arriving from different paths and at different times. Smart

antennas use spatial diversity technology, which puts surplus antennas to good use.
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When antennas outnumber spatial streams, the antennas can add receiver diversity

and increase performance and range. Fig. 2.1 illustrates a MIMO system with nt

transmit and nr receive antennas1. Accordingly, the received signal for this system can

be given as

y = Hx + n, (2.1)

where x = [x1, x2, . . . , xnt ]
T is the vector of signals, simultaneously transmitted by nt

antennas and y = [y1, y2, . . . , ynr ]
T is the vector of signals simultaneously received by nr

antennas. H is the nr × nt channel matrix between the transmitters and receivers and

n is a nr × 1 vector of additive white gaussian noise defined as CN (0, σ2Inr). Further,

the channel matrix H can be elaborately written as
h11 h12 . . . h1nt

h21 h22 . . . h2nt
...

...
. . .

...

hnr1 hnr2 . . . hnrnt

 , (2.2)

where hji = [H]ji is the channel coefficient between the jth receive antenna and the

ith transmit antenna. The channel gain |hji| is usually Rayleigh distributed in a rich

scattering environment with no line of sight (LOS) components. For such a Rayleigh

fading model, hji = [H]ji can be defined as

hji = N
(

0,
1

2

)
+
√
−1 N

(
0,

1

2

)
. (2.3)

In particular, if H has i.i.d. elements chosen from a continuous distribution (like

Rayleigh), the system capacity can be increased by a factor of N = min{nt, nr} without

using additional transmit power or spectral bandwidth.

2.2.2 MIMO channel capacity

Considering the MIMO system in Fig. 2.1, the received signal can be given as in (2.1).

In the following, we will derive the deterministic and ergodic capacity of such a system.

1The notations nt and nr used in this chapter for transmit and receive antennas, respectively are
only for point to point communications. Other notations wherever used hereinafter, will be exclusively
defined.
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2.2.2.1 Deterministic capacity

For a random MIMO channel, the capacity can be defined as the maximum mutual

information that can be achieved by varying the probability density function (PDF) of

the transmit signal vector and is expressed as [8]

C = max
tr(Φxx)≤Pt

I(x; y) bits/channel use, (2.4)

where I(x; y) is the mutual information of random vectors x and y and Pt is the

maximum transmit power constraint. Now, the mutual information of two continuous

random vectors x and y can be given as

I(x; y) = h(y)− h(y|x)

= h(y)− h(Hx + n|x)

= h(y)− h(n) (2.5)

The differential entropy of y is maximized if y is zero-mean circular symmetric complex

Gaussian (ZMCSCG), which accordingly also requires x to be ZMCSCG. Now, the

differential entropy of y and n are respectively given as

h(y) = log2{det(πeΦyy)}, (2.6)

h(n) = log2{det(πeσ2Inr)}, (2.7)

where e = 2.71828 is the Euler’s number and Φyy is the covariance matrix of the

received signal y given as

Φyy = E
{
yyH

}
= EH

{
(
√
ρHx + n)(

√
ρHx + n)H

}
= E

{
(
√
ρHxxHHH) + (nnH)

}
= ρE

{
(HxxHHH)

}
+ E

{
nnH

}
= ρH(E

{
xxH

}
HH + σ2Inr

= ρHΦxxH
H + σ2Inr , (2.8)

where Φxx is the covariance matrix of transmitted signal x. Now using (2.5) - (2.8),

the mutual information can be given as

I(x; y) = log2{det(πeΦyy)} − log2{det(πeσ2Inr)}
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= log2 det

(
Inr +

1

σ2
HΦxxH

H

)
. (2.9)

Therefore, for a deterministic MIMO channel, the capacity can be given as

C = max
tr(Φxx)≤Pt

{
log2[det(Inr +

1

σ2
HΦxxH

H)]

}
bits per transmission. (2.10)

It is to be noted that the above optimization of the channel capacity depends on the

knowledge of the channel matrix H. If full CSI is available at the transmitter side,

an optimal transmission scheme can be obtained by allocating more power to the sub-

channels with more gains using the water-filling algorithm [8]. However, when the

transmitter side has no knowledge about the CSI, the optimal transmission scheme is

obtained by allocating equal power among all transmit antennas. The capacity of the

MIMO channel is then given as

C = log2 det

(
Inr +

SNR

nt
HHH

)
bits per transmission, (2.11)

with SNR = Pt
σ2 being the nominal SNR of the system.

2.2.2.2 Ergodic capacity

In Section 2.2.2.1, we assumed that MIMO channels are deterministic. In general,

however, MIMO channels change randomly due to the effects of channel fading. Con-

sequently, H is time-variant and becomes a random matrix. Accordingly, the MIMO

channel capacity can be given by averaging over all channel realizations as

CErg = max
tr(Φxx)≤Pt

EH
{

log2[det(Inr +
1

σ2
HΦxxH

H)]

}
bits per transmission. (2.12)

For the case of i.i.d. Rayleigh faded channel model, optimal transmission scheme can

be obtained by equally allocating power among all transmit antennas. Accordingly,

Φxx = Pt
nt

I. The resulting capacity is then given as

CErg = EH
{

log2 det

(
Inr +

SNR

nt
HHH

)}
= E

{
log2

N∏
i

(1 +
SNR

nt
λi)

}
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=
N∑
i

E
{

log2(1 +
SNR

nt
λi)

}
bits per transmission, (2.13)

where N = min(nt, nr) is total number of channel eigenmodes or spatial sub-channels

(i.e., non-vanishing singular values of the channel matrix) and λ1, . . . , λN are the eigen-

values of HHH . Further, by considering i.i.d. Gaussian input signaling, the achievable

sum rate of the system can be similarly given as

R ≈
N∑
i

E {log2(1 + γi)} bits per transmission, (2.14)

where γi can be considered to be the received SNR per spatial sub-channel. It is

worthwhile to note that γi for any wireless communication system depends on several

factors, such as channel statistics, employed communication techniques, number of

antennas used, correlation among antennas, etc. Accordingly, γi and hence sum rate

will be considered as one of the important metrics to evaluate the system performance

in the forthcoming chapters.

2.2.3 Multi-user MIMO

Initially, MIMO came along as an optional technology with the 802.11n wireless stan-

dard in 2007. It enabled multiple streams of data to be simultaneously transmitted

or received between two Wi-Fi devices (a WiFi router and a user device) using mul-

tiple antennas and beamforming technology, which helped increase the rate at which

data passes between the devices. However, the most obvious downside to point-to-

point/single-user MIMO is that the multiple streams of data must be sent or received

between just one device at a time. Furthermore, single-user MIMO requires both the

transmitting and receiving Wi-Fi radios to support the MIMO technology, along with

having multiple antennas. While having multiple antennas at the WiFi router is feasi-

ble, the multiple antennas at the user devices add cost, weight, and size to the devices

and the processing of the MIMO signals requires more resources as well. These became

even more evident with the proliferation of smaller devices, such as smartphones and

tablets.

Multi-user MIMO (MU-MIMO) on the other hand is a set of MIMO technologies for

wireless communication, in which a set of users or wireless terminals, each with one or

more antennas, communicate with each other. In contrast, single-user MIMO considers

a single multi-antenna transmitter communicating with a single multi-antenna receiver.
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kth user

BS

M antennas

N antennas

K users

Figure 2.2: An illustration of a multi-user MIMO communications system.

In particular, in a similar way that OFDMA adds multiple access (multi-user) capa-

bilities to OFDM, MU-MIMO adds multiple access (multi-user) capabilities to MIMO.

MU-MIMO has been investigated since the beginning of research into multi-antenna

communication, including work by authors in [9, 10] on the capacity of the MU-MIMO

links. Furthermore, multi-user MIMO offers big advantages over conventional point-

to-point MIMO: it works with cheap single-antenna terminals, a rich scattering en-

vironment is not required, and resource allocation is simplified because every active

terminal utilizes all of the time-frequency bins. Such systems are currently being im-

plemented in various wireless communication technologies such as LTE-Advanced [11]

and 802.11n [12] to name a few. In the multi-user MIMO system, downlink and uplink

channels are referred to as broadcast channel (BC) and multiple access channel (MAC),

respectively. Fig. 2.2 illustrates a multi-user MIMO communications system, where a

base station (BS) equipped with M antennas communicates with K independent users,

each equipped with N antennas. The K users form a virtual set of K × N antennas

and the end-to-end configuration between the BS and the users can be considered as

a (KN) ×M MIMO system for downlink, or M × (KN) MIMO system for uplink.

Alternatively when N = 1, the end-to-end configuration between the BS and the users

can be considered as a K×M or M×K MIMO in the downlink or uplink respectively.

2.2.3.1 MIMO BC

Let x = [x1, x2, . . . , xM ]T be the downlink transmitted signal from the BS to the K

users. Then the N × 1 received signal at the k user, with k = 1, 2, . . . , K can be given
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as

yk = HDL
k x + n. (2.15)

Here, HDL
k , with k = 1, 2, . . . , K is the N ×M downlink channel between the kth user

and the BS and n is the N × 1 noise vector. Further, the overall received downlink

signals can be represented in a vector form as
y1

y2

...

yK


︸ ︷︷ ︸

yBC

=


HDL

1

HDL
2
...

HDL
K


︸ ︷︷ ︸

HDL

x +


n1

n2

...

nK


︸ ︷︷ ︸

n

. (2.16)

2.2.3.2 MIMO MAC

Let xk = [x1, x2, . . . , xN ]T be the uplink transmitted signal to the BS from the kth

user, where k = 1, 2, . . . , K. Then the M × 1 received signal at the BS from K users

can be given as

yMAC = HUL
1 x1 + HUL

2 x2 + · · ·+ HUL
K xK + n

= [HUL
1 ,HUL

2 , . . . ,HUL
K ]


x1

x2

...

xK

+ n. (2.17)

Here, HUL
k , with k = 1, 2, . . . , K is the M ×N uplink channel between the BS and the

kth user and n is the M × 1 noise vector.

Unlike a single user MIMO system, where the user device is required to have multiple

antennas, in a multi-user MIMO, the K users can also be equipped with a single

antenna, i.e., N = 1. The concept of MIMO still holds and the system is now equivalent

to a K ×M in the downlink and M ×K in the uplink. Furthermore, the nice thing

about single antenna users is that they are inexpensive, simple and energy efficient and

each user still gets typically high throughput. Also, the assumption that users have

single antennas can be considered as a special case of users having multiple antennas

when the extra antennas are treated as additional autonomous users [13]. To ascertain

this, we consider two cases for a MIMO MAC channel: 1) a multi-user MIMO system
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with one BS and two single antenna users (i.e., K = 2, N = 1), each transmitting with

power Pt and 2) a multi-user MIMO system with one BS and one dual antenna users

(i.e., K = 1, N = 2) with a power constraint of 2Pt. For the first case, the sum rate

for the two users can be given as [8]

R1 = log2

(
1 +

Pt||hUL1 ||2

σ2

)
+ log2

(
1 +

Pt||hUL2 ||2

σ2

)
. (2.18)

Further, the sum rate for the second case can be given as

R2 = log2

(
det

(
I +

1

σ2
[h1h2]

[
Pt 0

0 Pt

][
hH1

hH2

]))
. (2.19)

In the above, hk with k = 1, 2 is the channel vector between the kth user (or kth

antenna of the multi-antenna user) and the BS and σ2 is the noise power. Further,

(2.18) and (2.19) are equal and hence, K multiple users having single antennas is

equivalent to having one K-antenna user.

In this thesis, we will focus mostly on multi-user MIMO systems, where users

are either equipped with single or multiple antennas depending on the system model

considered.

2.3 Massive MIMO

Multi-user MIMO, as originally envisioned, with roughly equal numbers of service an-

tennas and terminals and frequency-division duplex operation, is not a scalable tech-

nology. On the contrary, massive MIMO is an emerging technology that scales up

MIMO by possibly orders of magnitude compared to the current state-of-the-art. As

illustrated in Fig. 2.3, massive MIMO systems use antenna arrays with a few hundred

antennas to eliminate inter-cell interference through highly directional beamforming.

The escalation of the antenna number makes the random channel deterministic and

orthogonal, which in turn eliminates the effects of uncorrelated noise and small-scale

fading. Furthermore, the large antenna arrays lead to the use of simpler linear sig-

nal processing techniques, such as matched filter precoding/detection and the required

transmit energy per bit goes to zero as the number of antennas approach to infinity

[7]. In such a system, while less power will be used by the UEs for uplink transmission

thus saving their battery, the BS will emit less RF power for downlink transmission,

which will help in reducing the electricity consumed by associated circuits, amplifiers,
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BS

UE

BS

UE

Uplink

Downlink

Figure 2.3: An illustration of a massive MIMO setup. Let M be the number of BS
antennas and K be the number of UEs in a particular cell. Then, M

K
>> 1.

etc. It was shown in [14, 13] that every single-antenna user in a massive MIMO system

can scale down its transmit power proportional to the number of antennas at the BS

with perfect CSI, while the transmit power scales down proportional to the square

root of the number of BS antennas with imperfect CSI, to get the same performance

as a corresponding SISO system. This results in significant improvements in energy

efficiency (EE) for future wireless networks [5, 15]. On the other hand, massive MIMO

systems can significantly extend the range of operation compared to a single antenna

system if adequate transmit power is available.

The basic idea behind massive MIMO is to reap all the benefits of standard MIMO,

but on a much larger scale. Overall, massive MIMO is an enabler for the development

of future broadband (fixed and mobile) networks, which will be energy-efficient, secure,

and robust, and will boost the spectrum efficiency of the current state-of-the-art MIMO

systems. As such, it is an enabler for the future digital society infrastructure that will

connect the internet of people and internet of things with clouds and other network

infrastructure. Accordingly, in this thesis, Chapters 3, 4 and 6 will particularly deal

with the performance analysis of massive MIMO systems.

2.4 Other Future Cellular Systems

While Massive MIMO alone can provide significant boost to the efficiency of the spec-

trum, in order to meet the goals of data rates in the range of Gbps, billions of connected
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Figure 2.4: Available bandwidth in the mmWave spectrum. More than 20 GHz band-
width is available.

devices, lower latency, improved coverage, reliability, and low-cost, it is imperative to

look for alternate spectrums or techniques that can further alleviate the spectrum

crunch. In this regard, two new technologies, mmWave and FD are considered. Fur-

thermore, both technologies can take advantage of the large antenna arrays used in

massive MIMO technology to alleviate some of their respective design constraints.

2.4.1 Millimeter wave

MmWave bands with significant amounts of unused or moderately used bandwidths

are being considered as a suitable alternative to the current microwave spectrum. As

shown in Fig. 2.4 [16], the availability of bands in the range of 20-100 GHz makes

mmWave a lucrative prospect in the design of 5G networks. The authors in [16] explore

the available mmWave frequency bands to design a 5G enhanced local area network.

While [17] proposes a general framework to analyze the coverage and rate performance

of mmWave networks, [18] proposes a tractable mmWave cellular network model and

analyzes the coverage rate.

However, one must remember that mmWave cellular communication is heavily de-

pendent on the propagation environment. MmWave signals are affected by several

environmental factors such as O2 absorption and atmospheric conditions and cannot

penetrate through obstacles like buildings, concrete walls, vehicles, trees, etc. Further,

because of the high frequencies used in mmWave, the path-loss with omni-directional

antennas increases with frequency. Due to these limitations, such bands were not con-

sidered suitable for cellular transmission for a long time. The authors in [19] analyze
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the performance of mmWave cellular systems using real time propagation channel mea-

surements. Blockage effects and angle spreads were also incorporated in [20] to analyze

such systems. Generally in a communication system, path losses are computed for

both line of sight (LOS) and non line of sight (NLOS) measurements. It was stated

in [21] that blockages cause substantial differences in the LOS and NLOS propagation

characteristics. Hence, it is very important to appropriately model the LOS and NLOS

links in mmWave networks. Furthermore, the measurements for path loss were carried

out for 73 GHz frequency in [22] and [23].

Recent studies and measurements have revealed that the natural way to combat

omnidirectional path loss is by proportionally increasing the antenna aperture. This

can be achieved in practice by using massive MIMO antenna arrays. The resulting

array gain overcomes the frequency dependency on the path-loss and allows mmWave

systems to provide reasonable link margin. Hence, massive MIMO technology can

be considered to be an integral setup in the implementation of mmWave networks.

Accordingly, in this thesis, the performance of mmWave systems will be evaluated in

Chapter 5 and 6.

2.4.2 Full duplex

Currently, the downlink (DL) and uplink (UL) of MU-MIMO cellular systems oper-

ate in half duplex (HD) mode, where transmission happens either in separate time

slots (Time Division Duplex, TDD) or in separate frequencies (Frequency Division

Duplex, FDD). Hence, systems are operating only at half the spectrum efficiency and

losing either on time or frequency resources. Among the emerging technologies for

next-generation wireless networks, that is believed to potentially double the spectral

efficiency (compared to conventional HD systems) is FD wireless communication. In

this approach, data is transmitted and received at the same time and within the same

frequency band as shown in Fig. 2.5. However, the benefits promised by FD can

be limited by the so-called self-interference (SI), which is a fundamental challenge in

implementing a full-duplex radio.

In particular, the SI refers to the transmitted signals that are directly received at the

terminal’s receive chain (in addition to the signals received from other transmitters).

At the receiver, the SI is generally around 110dB larger than the signal of interest.

Many feasible solutions including antenna, analog and digital cancellation have been

demonstrated experimentally to mitigate the overwhelming self-interference [24]-[25].
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Figure 2.5: An illustration of FD communication. Data is transmitted between the
UL users and the BS and the BS and the DL users in the same time and frequency.

While antenna cancellation alleviates around 20dB SI, analog cancellation leads to a

further reduction of 50dB SI. However, the combination of both cancellations is still

less than the required 110dB SI cancellation. Accordingly, the performance is limited

by around 30-40dB residual self-interference, which is induced by the imperfection of

the transmit and receive front-end chains [26]-[27]. Depending on the strength of the

residual self-interference, optimal transmit strategies for HD systems can be far from

optimal for FD systems.

In addition to self-interference, co-channel interference (CCI) from UL users to

DL users is another challenge in FD networks that needs to be overcome before the

multi-access nature of the wireless medium in conjunction with full-duplex systems can

be fully exploited. To optimize system performance, self-interference and CCI in FD

systems should be addressed jointly through digital beamforming [28, 29, 30, 31]. Ad-

ditionally, in order to solve the fundamental issue of self interference, a massive antenna

array may be deployed at the BS that can exploit the excess antennas to eliminate the

self-interference. Massive MIMO has the potential to achieve all-digital full-duplex,

which will alleviate the need for new expensive analog cancellation techniques by going

all digital through the aid of simple linear precoders/recievers [32, 33]. Accordingly, in

this thesis, Chapter 7 will particularly deal with the performance evaluation of a FD

system.
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2.5 Preliminaries and Tools

In this section, we discuss some preliminaries related to MIMO channel capacity and

some important mathematical tools that will be considered in the subsequent chapters

to evaluate the system performance.

2.5.1 MSE and its relationship with sum rate

In the downlink of a cellular system, since BSs can have access to partial or perfect

CSI, it is appropriate to shift the bulk of signal processing to the transmitter side to

keep the circuitry of UEs simple and cheap. Accordingly, the transmitted signal can be

pre-processed by passing it through matrix B in the transmitter side which is countered

at the receiver side by post-processing it through another matrix AH .

Let s ∈ Cnt×1 be the transmitted vector such that, s = Bx, where B is the precoder

and x ∈ CL×1 is the vector of L transmitted symbols. After the received signal is

processed through an equalizer, the L × 1 estimated received vector is given by x̂ =

AHy, where A ∈ Cnr×L is the receiver matrix. The mean squared error (MSE) matrix

can now be defined as the covariance matrix of the error vector of the transmitted and

received vector and given as

MSE , E
{

(x̂− x)(x̂− x)H
}

= E
{
x̂x̂H

}
− E

{
x̂xH

}
− E

{
xx̂H

}
+ E

{
xxH

}
. (2.20)

Now,

E
{
x̂x̂H

}
= AHE

{
(Hs + n)(Hs + n)H

}
A

= AHE
{

(HBs + n)(HBx + n)H
}

A

(a)
= AH

[
HBBHHH + Rn

]
A,

E
{
x̂xH

}
= E

{
(AH(Hs + n)xH)

}
= AHHBE

{
xxH

}
+ AHE

{
nxH

}
(b)
= AHHB, (2.21)

where Rn = σ2Inr , (a) is obtained due to the fact that the transmitted signal and

noise vectors are independent of each other and (b) is obtained due to E
{
xxH

}
= I.

Similarly, it can be shown that E
{
xx̂H

}
= BHHHA. Hence, the MSE can now be
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given as

MSE = AH
[
HBBHHH + Rn

]
A−AHHB−BHHHA + I. (2.22)

It is imperative to minimize the MSE in order to reach the capacity limits of the MIMO

system. Two step optimization techniques to iteratively optimize B and A has been

extensively studied in literature [29, 34]. Considering a minimum mean squared error

(MMSE) receiver [35], we have

Aopt = (HBBHHH + Rn)−1HB. (2.23)

Now, applying this receiver, the MSE can be given as

MSE = I−BHHH
(
HBBHHH + Rn

)−1
HB

(a)
= (I + BHHHR−1

n HB)−1, (2.24)

where (a) is obtained using the Woodbury identity [36]. Now defining the interference

plus noise covariance matrix for the ith stream as Ri , (HBBHHH+Rn−Hbib
H
i HH),

the signal to interference plus noise ratio (SINR) for the ith data stream can be given

as

SINRi ,
|aHi Hbi|2

aHi Riai

≤ bHi HH(Ri)
−1Hbi, (2.25)

where the inequality comes from Cauchy-Schwarz’s inequality [37]. Further, the MSE

for the ith stream is the ith diagonal element of MSE and can be given as

MSEi =
[
(I + BHHHR−1

n HB)−1
]
ii

=
1

1 + bHi HH(HBBHHH + Rn −HbibHi HH)−1Hbi
. (2.26)

Hence, from the above the MSE can be linked to SINR as

MSEi =
1

1 + SINRi

. (2.27)

This allows us to establish the fact that when an MMSE receiver is used, then the
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achievable rate can be given as

R = log det(MSE−1) bits per transmission. (2.28)

Hence, it can be seen that maximizing the rate is equivalent to minimizing the MSE.

Accordingly, a sum MSE minimization problem for a MIMO FD system will be studied

in Chapter 7 of this thesis.

2.5.2 Mutual information and Stieltjes transform

Let W , HHH . As previously discussed, the mutual information of a MIMO channel

can be associated with the eigenvalues of the matrix W. Further, according to random

matrix theory (RMT), the empirical spectral distribution (ESD) of the eigenvalues of

W, can be given as

µW(λ) =
1

nr
[number of eigenvalues of W ≤ λ]. (2.29)

While it has been a constant endeavor of researchers to study the limit of the empirical

distribution, also known as limiting spectral density (LSD) µ of W, [38] and [39] does

that with the help of Stieltjes transform of µW defined as

SW(z) ,

[∫
R+

1

λ− z
dµW(λ)

]
∀z∈R+

=
1

nr
tr(W − zInr)−1. (2.30)

The Stieltjes transform provides a direct way to identify the LSD of large-dimensional

random matrices. According to [40], to show that the difference between µA and µ

converges vaguely to zero, it is equivalent to show that

SW(z)− S(z)
a.s.−−→ 0, (2.31)

where S(z) is the Stieltjes transform of µ.

Now, with respect to a MIMO channel, the mutual information as given in (2.11)

can be expressed as functionals of the Stieltjes transform of W i.e., 1
nr

tr(W + ρInr)
−1,

with ρ denoting the effective signal to noise ratio (SNR) as [41, 42]

∂CW

∂ρ
=

1

nr
E
[
tr(W + ρInr)

−1
]
− 1

ρ
(2.32)
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Now with the help of Fubini’s theorem, the above derivative can be expressed as

CW(ρ) =

∫ ∞
ρ

(
1

ω
− 1

nr
tr(W + ωInr)

−1

)
dω. (2.33)

In [41] it was shown that when the number of antennas grow asymptotically, there

exists a matrix valued function T(z) such that

1

nr
tr(W − zInr)−1 − 1

nr
tr(T(z))→ 0. (2.34)

Accordingly, CW(ρ) in (2.33) was approximated as

C̄W(ρ) =

∫ ∞
ρ

(
1

ω
− 1

nr
tr(T(−ω))−1

)
dω. (2.35)

In other words, when the number of antennas grow asymptotically,

CW(ρ)− C̄W(ρ)→ 0. (2.36)

A closed form expression for C̄W(ρ) was also given in [41] as

C̄W(ρ) =
1

nr
log det

[
Ψ(−ρ)−1

ρ
+ Ψ̃(−ρ)

]
+

1

nr
log det

Ψ̃(−ρ)−1

ρ

− ρ

ntnr

∑
i,j

σ2
ijTii(−ρ)T̃jj(−ρ), (2.37)

where

T(ρ) =
(
Ψ−1(ρ)− ρΨ̃(ρ)

)−1

, (2.38)

T̃(ρ) =
(
Ψ̃
−1

(ρ)− ρΨ(ρ)
)−1

, (2.39)

Ψ(ρ) = diag(Ψ1(ρ), . . . ,Ψnt(ρ)), (2.40)

Ψ̃(ρ) = diag(Ψ̃1(ρ), . . . , Ψ̃nr(ρ)), (2.41)

Ψi(ρ) =
−1

ρ
(

1 + 1
n
tr(D̃i)T̃(ρ)

) , ∀1 ≤ i ≤ nr, (2.42)

Ψ̃i(ρ) =
−1

ρ
(
1 + 1

n
tr(Dj)T(ρ)

) , ∀1 ≤ j ≤ nt, (2.43)

Dj = diag(σ2
ij, 1 ≤ i ≤ nt), (2.44)

D̃i = diag(σ2
ij, 1 ≤ j ≤ nr). (2.45)
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It is to be noted that it is much easier to compute tr(T(z)) than tr(W − zInr)−1.

Accordingly, using the above closed-form expressions, in Chapter 3 we will evaluate

the deterministic equivalent of the ergodic capacity of the uplink of a massive MIMO

system when the users are spatially distributed.

2.5.3 Stochastic geometry

Stochastic geometry approach has recently gained significant attention to develop

tractable models to analyze the performance of wireless networks. In this approach,

the wireless network is abstracted to a convenient point process that is used to capture

the wireless network properties. For example, various stochastic geometric techniques

have been used in [43, 44] to study connectivity and signal power in wireless networks,

where the transmitters and receivers are modeled according to a certain distribution.

The following text is a brief discussion on a few fundamentals of stochastic geometry.

2.5.3.1 Borel σ-algebra

In a 2-dimensional topological space, a Borel set B2 is any set that can be formed

by taking the complement, countable unions and intersections of closed, open or half-

open sets. The Borel B2-algebra is formed by the collection of all Borel sets. In a

2 dimensional space, if there exists a point x ∈ R2 and value r ∈ R, so that a ball

centered at x with radius r has A ⊂ b(x, r), then the set A ⊂ R2 is said to be bounded.

2.5.3.2 Poisson point process

A point process Φ can be defined as a countable random collection of points that reside

in some measurable space, usually the 2 dimensional Euclidian space [43]. Poisson point

process (PPP) is the most popular and tractable point process to model the locations

of users and BSs in wireless networks. A PPP assumes that the locations of the nodes

are totally independent of each other. If a Poisson process has the same intensity λ all

over the Euclidean plane, it is called a homogeneous PPP, which will have the following

properties:

• For any compact set A, Φ(A) has a Poisson distribution with a mean value of

λ|A|, where | · | denotes the Lebesgue measure.
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• Let A1, . . . , An be disjoint bounded sets, then Φ(A1), . . . , Φ(An) are indepen-

dent random variables.

2.5.3.3 Campbell’s theorem

Campbell’s theorem relates the expectation of a function summed over a point process

to an integral involving the intensity measure of the point process. Let f : R2 → [0,∞)

denote a measurable function and Φ a point process, then Campbell’s theorem can be

expressed as [45]

E

[∑
x∈Φ

f(x)

]
=

∫
R2

f(x)Λ(dx), (2.46)

where Λ(·) denotes the intensity measure of the set A ⊂ B2, which is the expected

number of points falling in the set A and can be expressed as Λ(A) = E[Φ(A)].

Inspired by the stochastic geometry approach to analyze the performance of wireless

networks, in Chapters 3, 5 and 6 of this thesis, we will use this approach to characterize

the spatially distributed users as well as the BSs in the network.
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Chapter 3

Massive MIMO Systems with

Spatially Distributed Users

3.1 Introduction

The presence of large number of antennas in a massive-multiple input multiple-output

(MIMO) system makes it increasingly difficult to carry out the exact performance

analysis of such a system due to the complexity of the resulting analytical expressions.

In this chapter, we analyze the performance of an uplink large scale MIMO system with

a single base station (BS) serving spatially distributed multi-antenna users within a

fixed coverage area of a densely built up urban environment. In such an environment, it

is quite hard to find dominant propagation of the signals along the line of sight (LOS).

Hence, it is quite reasonable to consider a Rayleigh faded channel in such a scenario.

Stochastic geometry is used to characterize the spatially distributed users, while large

dimensional random matrix theory is used to achieve deterministic approximations of

the sum rate of the system. In particular, the users in the vicinity of the BS are

considered to follow a Poisson point process (PPP) within the fixed coverage area.

The sum rate of this system is analyzed by varying the number of antennas at the

BS as well as the intensity of the users within the coverage area of the cell. Closed-

form approximations for the deterministic rate at low and high SINR regimes are

derived, which have very low computational complexity. Further, the deterministic

rate for a general kth ordered user is also derived. It is shown that the deterministic

approximations offer a reliable estimate of the ergodic sum-rate obtained by Monte-

Reprinted from IEEE Systems Journal, S. Biswas, J. Xue, F. A. Khan, T. Ratnarajah, “Performance Analysis of Correlated Massive
MIMO Systems with Spatially Distributed Users”, Vol. No.99, PP.1-12, Copyright (2016), with permission IEEE.
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3.1. Introduction

Carlo simulations. At this point we would like to note that our results complement the

contribution of [39]. However, we consider the more general and realistic case in which

the stochastic nature of the users and their individual path losses are considered.

Furthermore, we briefly analyze the energy efficiency (EE) of such systems, which

is currently one of the primary design goals of any wireless communication system. EE

of a communication link is usually defined as the total energy required for transmission

in order to achieve a specific spectral efficiency (SE) [46], [13]. The significance of the

total power consumption in MIMO systems has been emphasized in [47] with respect

to EE. MIMO systems have been stated to offer improved EE on account of array

gains and diversity effects [8]. A common practice in determining EE is to consider

the total transmitted energy to be a constant quantity [13] which aids in reducing the

complexity of calculations. Hence, the definition of EE can be quite delusive at times

especially when a massive MIMO scenario is considered with the number of antennas

increasing asymptotically leading towards unbounded EE, which is quite improbable for

practical scenarios. The effect of number of BS antennas on EE has been discussed in

[12] and [48], while [49] discusses designing optimal EE for the uplink massive MIMO

systems considering both radio frequency (RF) and circuit power consumptions. A

trade-off between the EE and SE was also given in [49]. In our analysis, we take into

consideration the circuit power consumption of both the BS and the user equipments

(UEs) and accordingly form an EE expression which varies with the number of BS

antennas and the users.

The main contributions of this chapter can be summarized in the following points:

• We have presented approximations of the sum-rate of a single-cell multi-user

MIMO system with large number of antennas at BS and multiple antennas at

UEs. This is adhering to the consideration that the users follow a PPP within

the cell.

• We have considered correlated Rayleigh fading and uniformly distributed UEs

within the cell and power-law path loss. The path loss exponent determines the

large scale fading of the users.

• We have provided high and low signal to noise ratio (SNR) approximations of

the sum-rate of the system which can be considered as good low complexity

approximations of the analytical capacity.

• We have also provided the approximate sum rate for the kth ordered user.
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3.2. System Model

• We also touch on the EE analysis of the system considering a realistic power

consumption model which includes the circuit power consumption of the system.

3.2 System Model

In this chapter, we consider the uplink of a single-cell multi-user MIMO Multiple

Access Channel (MAC) system consisting of a typical BS located at the origin of the

cell. We use a homogeneous PPP, Φ(u) ⊂ R2 with intensity κ to model the locations

of the users on the plane. Let, U be the set of all users in Φ(u), which are connected

to the BS at the same time. Also, let the cardinality of U be K. The number of

users connected at a particular time is given as K = min(Umax, N), where Umax is the

maximum number of users that can be scheduled1 in a time slot and N is the total

number of users connected to the BS. The BS with M antennas, receive signals from

K users, each equipped with n1, . . . , nK antennas respectively. The number of users,

K is a function of κ. A schematic illustration2 of the system under consideration is

given in Fig. 3.1. Considering a separable correlation model for analytical tractability,

we model the M × nk channel, Wk between the BS and the kth user as

Wk = Hk||uk||−
α
2 , (3.1)

with

Hk = R
1
2
kGkT

1
2
k , (3.2)

where R
1
2
k and T

1
2
k are M ×M and nk × nk deterministic receive and transmit correla-

tion matrices respectively. Here, Gk ∈ CM×nk consists of complex random identically

independently distributed (i.i.d) variables with zero mean and unit variance which

models independent fast fading. We assume that the users do not have any line of

sight with the BS and hence, Gk is Rayleigh-faded. The separable model allows us to

keep the correlation between any two transmitting antennas to be fixed irrespective of

the receiving antenna and vice versa. Moreover, uk ∈ R2 denotes the physical location

1More sophisticated algorithms on decisions on how many and which users to schedule in a resource
block may be considered. However, for the sake of tractability, we ignore this aspect here.

2We consider a circular cell of radius r in R2 with an area of πr2. A hexagonal cell in R2 can also
be considered. The radius of the cell, r can then be considered from the center to the vertex and the

area (considering a regular hexagon with side b) is given as 3b
√
r − b2

4 .
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kth user

BS

M antennas

nk antennas

Figure 3.1: An illustration of a multi-user MIMO setup with multiple antennas both
at the BS and users.

(distance between the UE and the centre of the cell) of the kth user in meters and it

is computed with respect to the BS. The large-scale fading at a specific user location

is described by the function F(·) : R2 → R. Thus the average channel attenuation due

to path loss and shadowing3 at user location uk can be represented by F(uk). The

large scale fading is assumed to be independent over M and also constant over many

coherence time intervals. This assumption is quite reasonable due to the fact that the

distances between the users and the BS are much larger than the distance between the

antennas at the BS. Also, α in (3.1) denotes the path loss exponent varying from 2 to

4, with 2 denoting a free space propagation and 4 a relatively lossy environment.

Let r denote the radius of the circular cell and u = ||u||. The user locations can be

described by the probability density function (PDF) as

f(u) =

2u
r2 0 ≤ u ≤ r

0 otherwise.
(3.3)

Furthermore, we model the large scale fading as

F(u) = u−
α
2 , (3.4)

3The results in this chapter are produced with the assumption that large-scale fading is dominated
by path-loss. However, these results are also applicable for more complicated fading models including
shadowing effects. For example, adding log-normal shadowing to the corresponding results is straight-
forward and can be done by modifying (1) as Wk = Hkβk/‖xk‖

α
2 , where βk is a log-normal random

variable with standard deviation σshadow.
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3.3. Sum Rate Analysis

which is then put together with the fast fading as given in (3.1). F(uk) is a key req-

uisite in all our subsequent discussions throughout the chapter. Assuming the average

transmitted power of each user to be equal, the M × 1 received vector at the BS can

now be expressed as

y =
√
p
∑

k∈Φ(u)

Wkxk + z, (3.5)

where
√
pxk is the nk × 1 vector of symbols transmitted by the kth user, with p = P

K

denoting the average transmitted power of each user and z a vector of additive white

Gaussian noise with zero mean and co-variance matrix σ2IM . P is the total transmitted

power of all the users and is considered to be fixed.

Assumptions and Preliminaries

A few necessary assumptions which will be used throughout the chapter are stated

below.

1. Perfect Channel State Information : Throughout the chapter we assume that the

channel matrices {Wk}∀k are perfectly known at the BS.

2. Signal-to-Noise Ratio : We assume for each transmission linkGkji , E{|Gkji |2} = 1.

When only transmit antenna i is active, the instantaneous received SNR at the

receiving antenna j is
p|Gkji |

2

σ2 , with p being the transmit power. Thus the effective

transmit SNR for the communication link can be given as ρ = p
σ2 . For analytical

convenience, we set the same noise level (σ2) at all the antennas, though this is

not mandatory. The performance analyses performed in the later sections of this

chapter will mostly be as a function of ρ.

3. Rk and Tk are deterministic and non-negative definite and are normalised as

tr(Rk) = M,

tr(Tk) = nk.
(3.6)

3.3 Sum Rate Analysis

For very large MIMO systems, when both M,K →∞, it becomes increasingly difficult

to analyze the performance of the system based on exact analytical expressions, as
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3.3. Sum Rate Analysis

they are often too complicated to evaluate. Even computer simulations can be quite

demanding for systems with such large dimensions. In such cases, large RMT can

help to develop approximate analytical expressions, which substantially reduce the

computational complexity. Accordingly, in this section, we formulate the approximate

ergodic sum rate of the system under consideration.

Deterministic sum rate

Let Ξk be the covariance matrix of the transmitted vectors, xk of the kth user such

that

E{xkx∗l } =

{
Ξk if l = k

0 otherwise,
(3.7)

and

Tk = T
1
2
kΞkT

1
2
k . (3.8)

Ξk can be easily optimized for the case of Rayleigh i.i.d channel as Ink . This is due to

the consideration that uk are independent and have the same transmit power. Further,

let

AM ,
∑

k∈Φ(u)

WkW
H
k . (3.9)

Without loss of generality, the mutual information of a MIMO channel can be asso-

ciated with the eigenvalues of the matrix AM as was discussed in Section 2.5.3. The

ergodic sum rate4 of such a MIMO MAC can be given as5 [9, 50]

RAM
(ρ) ≡ 1

M
EH {log det (IM + ρAM)} , (3.10)

where ρ = p
σ2 is the transmit SNR of the system as described earlier and AM is as

discussed in the previous section. Considering the properties of a PPP,
∑

k∈Φ(u) nk →
∞ for some specific probability. Furthermore, we focus on a single BS receiver with

4When the channel is a time-varying channel, the capacity of the channel can have multiple defi-
nitions depending on the channel state information (CSI) at the transmitter and/or receiver. These
definitions have different operational meanings. In particular, when the instantaneous channel gains,
also known as the CSI, are known perfectly at both transmitter and receiver, the transmitter can
adapt its transmission strategy (power and/or rate) relative to the instantaneous channel state. In
this case the ergodic capacity is the maximum mutual information averaged over all channel states.

5For simplicity, in this chapter we assume a maximum likelihood sequence estimator at the BS to
separate different data streams.
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3.3. Sum Rate Analysis

multiple antennas such that M → ∞, which receives signals from multiple users. At

this point, we stress that while the original massive MIMO definition in [7] assumed

that M
K
� 1, we consider the more general definition from [51], where M

K
can also be a

small constant.

Before we proceed any further, it is worth mentioning the contribution of [38] and

[39]. A deterministic equivalent of the ergodic mutual information for Rician faded

Kronecker MIMO channel was found by Zhang et al. in [39] using the Shanon transform.

This is further elucidated as Lemma 3.2 in Appendix 3.A. Let µAM
(λ) and µM be the

Empirical Spectral Density (ESD) and Limiting Spectral Density (LSD) of AM . While

it has been a constant endeavour of researchers to study the limit of the empirical

distribution of AM , [38] and [39] do that with the help of Stieltjes transform when

M →∞ as

SAM
(λ)− SM(λ)

a.s.−−→ 0, (3.11)

where SAM
(λ) and SM(λ) are the Stieltjes transform of µAM

(λ) and µM respectively,

which was discussed in Section 2.5.3. This was then used to find a deterministic

equivalent of the ergodic mutual information and show that

RAM
−RM

a.s.−−→ 0, (3.12)

where RM is the deterministic equivalent of the sum rate. Accordingly, we also aim

to achieve the same by deriving RM analytically. Further, RAM
is computed through

simulations and the convergence between RM and RAM
is validated in the numerical

results section of this chapter.

Lemma 3.1. For a single-cell massive MIMO system following a PPP in R2, the

general probability of finding K users within the coverage area of the cell can be given

as [52]

P[Kusers in the cell] = exp{−κµ(A)}(κµ(A))K

K!
, (3.13)

where κ is the intensity and µ(A) is the standard Lebesgue measure of a bounded Borel

A ⊂ R2, which is formed by the topological space of the cell.

Now, leveraging the results of [19, Sec III.A] and making use of (2.37)-(2.45), for

the system model in consideration, the capacity of the system can be approximated as

in the following theorem.
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Proposition 3.1. The ergodic sum rate of a single-cell massive MIMO system with

users following a PPP, based on the LSD of AM can be approximated as

RM(ρ) =
1

M
log det

(
IM +

∞∑
k=0

ε̃k(ρ)Rk P(k)

)
(3.14)

+
2

αM ln 10

∞∑
k=0

nk∑
i=1

G2,2
3,3

(
rα

ψkλki

∣∣∣∣ 1− 2
α
, 0, 1

0, 0,− 2
α

)
P(k)−

∞∑
k=0

εk(ρ)ε̃k(ρ) P(k),

where

εk(ρ) =
1

M
tr

ρRk

[
IM +

∞∑
k=0

ε̃k(ρ)Rk P(k)

]−1
 , (3.15)

ε̃k(ρ) =
1

nk
tr (ρTk 〈diag [Ink +

Mεk(ρ)Tk

nk

]−1

∀k∈Φ(u)

〉)
. (3.16)

Further, Gm,n
p,q {·} is the hyper-geometric function also known as Meijer G-function [[53],

eq. (9.301)] and λki = eig(Tk). There is a unique solution to (3.15) and (3.16) for

ρ ∈ R+, where εk(ρ) ∈ S(R+) and ε̃k(ρ) ∈ S(R+) for k ∈ Φ(u). Furthermore, S(R+)

can be interpreted as the class of all Stieltjes transforms of finite positive measures

carried over R+ and P(k) is obtained from Lemma 3.1.

Proof. It is to be noted that the number of users is calculated based on a PPP with

respect to the probability given by Lemma 3.1 and the intensity of the users, κ. Our

aim now is to derive the closed form expression of the deterministic ergodic sum rate

as given in (3.14) and also to show that there is a unique solution to (3.15) and (3.16).

For better understanding, we divide the proofs into two parts. The detailed derivation

of (3.14) is given in Appendix 3.B, while the proof of uniqueness of (3.15) and (3.16)

is given in Appendix 3.C.

3.4 High and Low SNR Approximations

In this section, we provide the high and low SNR approximations of the derived sum

rate in (3.14).
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3.4.1 High SNR regime

Fast fading channels have the same properties at high SNR as time-invariant channels,

irrespective of the knowledge of channel state information at the transmitter. In this

sub-section, we analyse the capacity in the high SNR regime i.e., ρ→∞.

Corollary 3.1. Let ψk = M
nk
εk(ρ). Then at relatively high SNR (ρ → ∞) regime for

correlated massive MIMO channels, RM approaches the exact sum rate and can be

given as

RMρ→∞(ρ) =
1

M

∞∑
k=0

log(tr(ε̃k(ρ)Rk))P(k) (3.17)

+
1

2

∞∑
k=0

nk∑
i=1

[
2 log(ψkλki) +

(
2 log(r−α) + α

)]
P(k)−

∞∑
k=0

εk(ρ)ε̃k(ρ) P(k).

Proof. Considering ρ to be large, (3.42) can be approximated as

RMρ→∞(ρ) ≈ 1

M
log det

(
∞∑
k=0

ε̃k(ρ)Rk

)
P(k) (3.18)

+
2

r2

∞∑
k=0

(
nk∑
i=1

∫ r

0

log(ψkλkiu
−α)udu

)
P(k)−

∞∑
k=0

εk(ρ)ε̃k(ρ) P(k).

Using integration by parts and substituting the limits of the integral in the above we

obtain the proof.

3.4.2 Low SNR regime

When the SNR of the system is relatively low, the multiplexing gains of the system

are lost. In such a scenario when ρ → 0, the sum rate can be approximated by the

following corollary.

Corollary 3.2. Similar to the high SNR case, at low SNR the sum rate can be approx-

imated as

RMρ→0 =
∞∑
k=0

[
1

M

tr(ε̃k(ρ)Rk)

log 10
+

2r1−αtr(ψkTk)

(2− α)M log 10

]
P(k) (3.19)

Proof. This can be easily proved by using the approximation log2(1 + a) ≈ a/ log 2 for

small a in (3.14).
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3.4.3 Complexity analysis

In this subsection, we analyze the complexity of both the high and low SNR approxi-

mations with respect to (3.14). We focus on the complexity of calculation and running

time for common mathematical operations that are used in our algorithms. Complexity

in this analysis refers to the time complexity of performing computations with respect

to a reference Turing machine [54].

We consider the upper bound of the operation time such that for a sufficiently large

number n, the limiting behavior of a function f(n) is denoted by O (g(n)), where the

function f is bounded above by the function g. Let the complexity of εk and ε̃k be

denoted by O(φ1) and O(φ2). Then, following the complexity of some basic mathe-

matical calculations as given in [55], for a single iteration under Φ(u), the complexity

of the approximation in Proposition 3.1, Corollary 3.1 and Corollary 3.2 can be ap-

proximated as O(n3 log n + n2(log n)2 + φ1φ2), O(n2 log n + log n + φ1φ2) and O(n2)

respectively. Hence, it can be stated that the high and low SNR approximations have

low computational complexities when compared to the sum rate approximation given

in Proposition 3.1. Later, in the numerical section of this chapter we show that these

two approximations are quite tight and can be used appropriately in the respective

regimes.

3.5 kth User Capacity

We have so far focused our discussion based on the total number of users, K within

the coverage area of the BS. We now order the users based on their distances from the

BS as ||u1|| < ||u2|| < ||u3|| < · · · < ||uk|| < · · · < ||uK ||. In this section, we discuss

the capacity of the kth order user selected from the Poisson point process based on the

probability and intensity of the users.

Proposition 3.2. Considering the order of the users as described, the distribution of

the location of the kth ordered user with respect to the BS can be given as [52]

f(||uk||) = exp(−κπr2)
2(κπr2)k

rΓ(k)
(3.20)
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The ergodic rate for this user can now be approximated as

Rk
M(ρ) =

1

M
log det (IM + ε̃k(ρ)Rk) +

∞∑
n=0

2(−1)n(
√
κπ)(2n+k)r(2(n+k)+1)

αn!Γ(k)

×
nk∑
i=1

G2,2
3,3

(
rα

ψkλki

∣∣∣∣ 1− 2(n+k)+1
α

, 0, 1

0, 0,− 2(n+k)+1
α

)
− εk(ρ)ε̃k(ρ), (3.21)

where Gm,n
p,q {·} is the hyper-geometric function and n ∈ R with 0 ≤ n ≤ ∞. All other

parameters are as previously defined.

Proof. To prove this, we build on our previous proof of (3.14) and consider a random

user. The detailed derivation is given in Appendix 3.D.

Corollary 3.3. Considering the order of the users as described in this section, the

distribution of the first user in the order can be given as

f(||u1||) = 2 exp(−κπr2)κπr. (3.22)

Accordingly, the rate for this user can be approximated as

R1
M(ρ) =

1

M
log det (IM + ε̃1(ρ)R1) +

∞∑
n=0

2(−1)n(
√
κπ)(2n+1)r(2(n+1))

αn!

×
nk∑
i=1

G2,2
3,3

(
rα

ψ1λ1i

∣∣∣∣ 1− 2(n+1)
α

, 0, 1

0, 0,− 2(n+2)
α

)
− ε1(ρ)ε̃1(ρ). (3.23)

3.6 Energy Efficiency

The energy efficiency of a communication link is the ratio of the achievable sum rate

to the total power consumed and is given in bits/joule [14], [46]. The corresponding

energy efficiency as studied in many existing works is thus given as [56, 14, 57]

ξ =
RM

pPA + pRF
, (3.24)

where pPA is the power consumed by the power amplifiers and pRF is the power con-

sumed by the RF components of both BS and UEs.
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3.6. Energy Efficiency

3.6.1 Power amplifiers

The average power in watt consumed by the power amplifiers during uplink can be

approximated as [9, 57]

pPA = P (α + 1), (3.25)

where α = ζ
η
− 1 with ζ being the modulation-dependent peak to average power ra-

tios (PAPR) for uplink while η is the power amplifier efficiency and P is the total

transmitted power of all users as described earlier.

3.6.2 RF chains

The average power in watt consumed in the RF chains for a typical MIMO transmitter-

receiver set can be given as [46]

pRF = MpBS +KpUE, (3.26)

where pBS is the power required at the BS to run the circuit components and pUE is

the power associated with the user equipments. They are further defined as follows

pBS = pBSmix + pBSfilt + pBSADC + pBSDAC + pBSOSC , (3.27)

pUE = pUEmix + pUEfilt + pUEADC + pUEDAC + pUEOSC , (3.28)

where pmix, pfilt, pADC , pDAC and pOSC denote the power consumed by the mix-

ers, filters, analog-to-digital converters, digital-to-analog converters and local oscillator

respectively6.

Most existing works consider the total power consumed in the RF cicuits of the

system to be fixed. This consideration can be very detrimental in the analysis of

a large scale MIMO system, like ours, where both M, K → ∞, which eventually

leads to unbounded EE. This outcome is the consequence of disregarding the fact that

dedicated circuit components with non-zero power consumption are required for each

antenna at the BS. As a matter of fact, EE does not always increase with M or K.

6The components considered in this chapter may vary from set-ups used in practical scenarios.
Any other components used can easily be included in the expressions of pBS and pUE while the ones
that are not used may be removed.
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Furthermore, we have previously assumed the average fixed power transmitted by

all the users to be equal. However, the optimization of power to attain better energy

efficiency is of paramount importance. While in this chapter we give an appropriate

model for pRF and validate our assumptions with simulations, the optimization of the

power and the number of antennas at the BS to attain a energy efficient system is dealt

with in Chapter 4.

3.7 Numerical Results

This section validates the system model and also verifies our result in Proposition 3.1

and the resulting corollaries by making comparisons between the ergodic sum rate

and the approximate sum rate. We analyze the behavior of the system model under

consideration with respect to increasing SNR while varying other significant system

parameters. In general, the computation of the ergodic sum rate is done through Monte

Carlo simulations (1000 realizations) which is then used to validate the simulation of the

analytical results. Unless stated otherwise, most of the values of the parameters used

are inspired from literature mentioned in references [13, 58]. For the system guidelines,

we consider a circular cell as stated earlier with a radius of r = 1000 meters. The

users are uniformly distributed within the coverage area of the cell and their numbers

are governed by Poisson distribution with intensity κ and probability given by (3.13)

in Lemma 3.1. Hereinafter, we consider all the users in the system to be equipped

with two antennas and examine the validity of our approximations with respect to

simulations. While Fig. 3.2 shows the uplink sum rate versus SNR for various

antenna configurations at the BS, Fig. 3.3 shows the uplink sum rate versus SNR for

different user intensities, κ inside the coverage area of the cell. Specifically, these two

figures attempt at validating Proposition 3.1. In other words, we intend to see how

well RM(ρ) in (3.14) approximates to RAM (ρ) in (3.10). Here, we choose the path loss

exponent, α = 2.2 and the intensity of the users, κ = 0.01. In Fig. 3.2, understandably,

the sum rate increases as we increase the average SNR. But what is notable is that, as

we increase the number of antennas from 8 to 150, the analytic curve tends to converge

tightly towards the simulation. This implies that RM(ρ) −RAM (ρ) → 0 which proves

the validity of our approximation for large MIMO systems. Nevertheless, it is also

important to see how the analytical approximation fares when the system dimension

is not so large. In this regard, we see that the approximation also holds true for

fewer number of antennas as can be seen for the cases of M = 8, 12, 20, 50 but with
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Figure 3.2: Simulation and analytical sum rate versus SNR for different number of
antennas, M at the BS. κ = 0.01, α = 2.2.
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Figure 3.3: Simulation and analytical sum rate versus SNR for different intensities,
κ of the users within the cell. M = 100, α = 2.2.

error of a few bits. Hence, it is crucial to investigate the scenarios when the number

of antennas is not a very large number, which we concentrate on in our subsequent

analyses. In addition, as we increase M , the ergodic sum rate also increases. For the

case of Fig. 3.3, we choose M = 100 and α = 2.2. We vary κ from 0.01 to 0.02 in
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Figure 3.4: High SNR approximation of sum rate versus SNR for different number
of antennas, M at the BS. κ = 0.01, α = 2.2.

steps of 0.005. Our approximation holds good for all the three cases and hence, we can

assert the convergence of our analytic approximation for a massive MIMO scenario.

Furthermore, the sum rate of the system increases owing to the increase in κ which

in turn increases K, thus increasing the transmit antennas. The increase in sum rate

follows a similar pattern as Fig. 3.2 with the scaling more pronounced when increasing

from κ = 0.01 to 0.015 than 0.015 to 0.02.

In Fig. 3.4, we plot the approximate sum rate for the high SNR regime from

Corollary 3.1 versus the average SNR for different combinations of M . M is varied

while κ is kept at 0.01 and α at 2.2. It is quite evident from the figure that at high

SNR regime the path loss fluctuations are negated due to high transmit power of the

users, thus producing very high sum rates. Also it can be seen that the simulations and

approximations converge at relatively high SNR which validates our analysis. As can

be expected, M = 100 yields the maximum sum rate followed by other combinations.

Furthermore, the slopes of the curves become steeper with the increase in M and the

approximations converge with the simulations at very high SNR, thus validating our

result.

In Fig. 3.5 we show the sum rate approximation in the low SNR regime from

Corollary 3.2. We consider similar settings as in Fig. 3.4 with the exception of the SNR

range. Both simulations and analytic expression considering various M are plotted.

The approximations effectively converge with the simulations for very low SNR while
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Figure 3.5: Low SNR approximation of sum rate versus SNR for different number of
antennas, M at the BS. κ = 0.01, α = 2.2.

they diverge from the simulations in the moderately low SNR region. Moreover, it can

be seen that the gap in performance when the number of antennas are increased is

quite minimal. This is due to the fact that the multiplexing gains are lost in the low

SNR regime.

At this point it is worth mentioning the fact that the high and low SNR approx-

imations are quite tight and considerably reduce the computation complexity of the

sum rate of the system. From a system design point of view, they can be quite easy

for engineers to implement in terms of computation time and complexity.

Next we analyze the EE of our system model with respect to a reference EE. We

define this EE as relative EE. First we calculate the EE of a reference system model

and then simulate the EE of our system by normalizing it with the reference system

model. We start by considering a single input single output (SISO) system with the

single user equipped with a single antenna transmitting to the BS equipped with one

antenna only. We consider PBS = 1W and pUE = 0.1W and p = 10dB [13]. Thus,

from (3.24) we have

ξref =
RMref

pref +MpBS +KpUE
. (3.29)

Numerically we calculate RMref = 0.6 bits/ transmission for M = 1 and K = 1.

Hence, from (3.29) we get ξref = 0.054 bits/Joule. The following EE discussion will be
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Figure 3.6: Relative energy efficiency versus number of BS antennas, M with respect
to a reference system (M = 1, K = 1, nk = 1), for different SNR and user intensities.
Here, α = 2.2.

based on relative EE, defined as ξ
ξref

= ξ
0.054

. Since it is a ratio, it is dimensionless. Fig.

3.6 illustrates the relative EE of the system with respect to M for different user inten-

sities and transmit powers. For a particular transmit SNR, as we increase the number

of antennas at the BS, the EE increases for a while, attains a local maximum and

then starts descending. This is an expected result as we consider a power consumption

model, which is a function of M and K with respect to the circuit power consumption.

Moreover, for a particular user intensity, with varying transmit power, the EE also

increases in the beginning, attains a local maximum and then starts decreasing. For

example, for the case of κ = 0.02, the EE curves for SNR 25 and 30 dBs start falling

between 100 and 150 antennas. This implies that a certain level of maximized EE can

be achieved in such systems by increasing the number of BS antennas but with the

important discrepancy of not requiring to increase the transmit power. In a nutshell,

the EE curve is a quasi-concave function of M which doesn’t always increase with M

in large MIMO systems.

3.8 Summary

The uplink performance of a massive MIMO system was analyzed. We use stochastic

geometry to characterise the spatially distributed users while large dimensional RMT

was used to achieve deterministic approximations of the sum rate of the system. We

analysed the sum rate of such a system both by means of simulations and analyti-

47



3.A. Useful Lemmas

cal expressions. In particular, the BS along with the users were considered to follow a

PPP. Approximations for the analytical sum rate were provided along with closed-form

expressions at the low and high SNR regimes. The approximations were further vali-

dated with Monte-Carlo simulations. The performance was evaluated with respect to

the number of antennas at the BS and the intensity of the users. Analytical approxima-

tion for the rate of the general kth ordered user based on a PPP was derived. We also

provided an analysis of the energy efficiency of the system by taking into consideration

the circuit power consumption, which was shown to be a function of the number of

antennas and the users. The relative energy efficiency of the system was plotted with

respect to varying BS antennas for different SNR range. It was shown that the energy

efficiency is a quasi-concave function of the number of base station antennas and does

not always increase linearly with it.

Unlike the sum rate, EE doesn’t monotonically increase with the number of BS

antennas and hence it is important to find the optimum number of antennas. Accord-

ingly, in the following chapter, we derive the optimum number of antennas that can

be rigged in a space constrained massive MIMO system when EE is considered as a

design criteria.

Appendix 3.A Useful Lemmas

Lemma 3.2. Let Υk = M
nk

and M,nk →∞, such that 0 < min
k

lim inf
M

Υk < max
k

lim sup
M

Υk

<∞. Then, the deterministic equivalent of the uplink ergodic sum rate for a large an-

tenna MIMO system consisting of M antennas and K users based on the Stieltjes and

Shannon transform can be given as [39]

R̄M(ρ) =
1

M
log det

(
Γ−1(ρ)

ρ

)
+

1

M

K∑
k=1

log det

(
∆̃−1(ρ)

ρ

)

− ρ
K∑
k=1

εk(ρ)ε̃k(ρ),

(3.30)

where

Γ(ρ) =
(
∆(ρ)−1 − ρH̃∆̃(ρ)H̃

H
)−1

, (3.31)

Γ̃(ρ) =
(
∆̃(ρ)−1 − ρH̃∆(ρ)H̃

H
)−1

, (3.32)
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∆(ρ) =
1

ρ

(
IM +

K∑
k=1

ε̃k(ρ)Rk

)
, (3.33)

∆̃(ρ) =
1

ρ
diag (Ink + Υkεk(ρ)Tk)∀k , (3.34)

εk(ρ) =
1

M
tr(RkΓ(ρ))∀k, (3.35)

ε̃k(ρ) =
1

nk
tr(Tk〈Γ̃(ρ)〉k)∀k, (3.36)

with H̃k being the LOS channel between the BS and the user k and ρ the total SNR of

the system. All other parameters are as previously defined.

Lemma 3.3. [59] A continuous function f(a) converges if it is a contraction. More-

over, the continuous function f(a) is a contraction if the absolute value of its first order

derivative is always less than 1.

Appendix 3.B Proof of Proposition 3.1

Proof. For the case of Rayleigh faded channels with no line of sight, Lemma 3.2 can

be modified as

R̂M(ρ) =
1

M
log det

(
Λ−1(ρ)

ρ

)
+

1

M

K∑
k=1

log det

(
Λ̃−1(ρ)

ρ

)

− ρ
K∑
k=1

εk(ρ)ε̃k(ρ),

(3.37)

where

Λ(ρ) =
1

ρ

(
IM +

K∑
k=1

ε̃k(ρ)Rk

)
, (3.38)

Λ̃(ρ) =
1

ρ
diag

(
Ink +

M

nk
εk(ρ)Tk

)
∀k
, (3.39)

εk(ρ) =
1

M
tr(RkΛ(ρ))∀k, (3.40)

ε̃k(ρ) =
1

nk
tr(Tk〈Λ̃(ρ)〉k)∀k. (3.41)

Therefore, simplifying (3.37)-(3.41) and incorporating the path losses for the users,

which follow a PPP within the cell, the sum rate of a MIMO system can be approxi-
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mated as

RM(ρ) =
1

M
log det

IM +
∑

k∈Φ(u)

ε̃k(ρ)Rk

 (3.42)

+ Eu

 1

M

∑
k∈Φ(u)

log det

(
Ink +

M

nk
F(u)εk(ρ)Tk

)− ρ ∑
k∈Φ(u)

εk(ρ)ε̃k(ρ),

where εk(ρ)and ε̃k(ρ) are as described in (3.15) and (3.16) and F denotes the large

scale fading as described before. Our aim now is to derive a closed form expression for

the second term on the right hand side of (3.42).

Let ψk = M
nk
εk(ρ). Then

Eu {log det(Ink + F(u)ψkTk)}

=
2

r2

∫ r

0

log det(Ink + ψkTku
−α)udu (3.43)

=
2

r2

∫ r

0

log

nk∏
i=1

(1 + ψkλkiu
−α)udx

=
2

r2

∫ r

0

nk∑
i=1

log(1 + ψkλkiu
−α)udu

=
2

r2 ln 10

nk∑
i=1

∫ r

0

ln(1 + ψkλkiu
−α)udu

(a)
=

2

r2 ln 10

nk∑
i=1

∫ r

0

G1,2
2,2

(
ψkλki u

−α∣∣ 1,1

1,0

)
udu

(b)
=

2

r2 ln 10

nk∑
i=1

∫ r

0

G2,1
2,2

(
1

ψkλki
uα
∣∣∣∣ 0, 1

0, 0

)
udu. (3.44)

Here, (a) is obtained using the identity [60]

log(1 + βz) =
ln(1 + βz)

ln 10
=

1

ln 10
G1,2

2,2

(
βz | 1,1

1,0

)
, (3.45)

and (b) is obtained from [[53], eq. (7.811)]. Substituting y with uα and changing the

limits of integration, (3.44) becomes,

2

r2 ln 10

nk∑
i=1

∫ rα

0

G2,1
2,2

(
1

ψkλki
y

∣∣∣∣ 0, 1

0, 0

)
1

α
y( 2

α
−1)dy. (3.46)

50



3.C. Proof of uniqueness of eq. (3.15) and eq. (3.16)

Again, substituting y
rα

with z and changing the corresponding limits of integration we

have

Eu {log det(Ink + F(u)ψkTk)}

=
2

r2 ln 10

nk∑
i=1

∫ 1

0

G2,1
2,2

(
rα

ψkλki
z

∣∣∣∣ 0, 1

0, 0

)
× 1

α
(zrα)( 2

α
−1) rαdz

=
2

α ln 10

nk∑
i=1

∫ 1

0

G2,1
2,2

(
(r)α

ψkλki
z

∣∣∣∣ 0, 1

0, 0

)
z( 1

α
−1)dz

=
2

α ln 10

nk∑
i=1

Γ(1)G2,2
3,3

(
(r)α

ψkλki

∣∣∣∣ 1− 2
α
, 0, 1

0, 0,− 2
α

)
, (3.47)

where (3.47) is obtained using [[53], eq. (7.813)]. Now, plugging (3.47) in (3.42) and

summing for k users (using Lemma 3.1), (3.14) is obtained.

Appendix 3.C Proof of uniqueness of eq. (3.15)

and eq. (3.16)

In order to prove that εk(ρ) and ε̃k(ρ) in (3.15) and (3.16) have unique solutions, it is

sufficient to show that after a single update or an iteration, εk(ρ) and ε̃k(ρ) converge.

In particular, we will use the Contraction principle [59] to show that εt+1
k (ρ)−εtk(ρ)→ 0

and ε̃t+1
k (ρ)− ε̃tk(ρ) −→ 0, where t is any instant. Now, at instant t+ 1, eq. (3.15) and

eq. (3.16) can be given as

εt+1
k (ρ) =

1

M
tr

ρRk

[
IM +

∞∑
k=0

ε̃tk(ρ)Rk P(k)

]−1
 , diag (3.48)

ε̃t+1
k (ρ) =

1

nk
tr

(
ρTk

〈
diag

[
Ink +

Mεtk(ρ)Tk

nk

]−1

∀k∈Φ(u)

〉)
. (3.49)

We assume that λi(A) is the ith eigenvalue of the matrix A. Without loss of generality,

the λi(A)s are sorted in non-increasing order as λ1(A) ≥ λ2(A) ≥ λ3(A) ≥ · · · ≥
λK(A). Herein, (3.48) and (3.49) are equivalent to [61]

εt+1
k (ρ) =

1

M

M∑
i=1

λi(ρRk)

1 + λi (
∑∞

k=0 ε̃
t
k(ρ)Rk)P(k)

, (3.50)
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ε̃t+1
k (ρ) =

1

nk

nk∑
i=1

λi(ρTk)

1 + λi

(
Mεtk(ρ)

nk
Tk

) . (3.51)

It should be noted that in our model, we assume the correlation matrices at the

BS, Rks to be all the same and hence without loss of generality, we write Rk = R.

Furthermore, let

Ψt
k =

1

nk

(
1 +

nk
Mεtk(ρ)

nk∑
i=1

1

λi(Tk)

)
. (3.52)

Then, the eigenvalues of matrix Tk is given by

λi(Tk) =
(

Ψt
kλi(Tk)−

nk
M

(
εtk(ρ)

)−1
)

+
, (3.53)

where (A)+ is the element-wise positive part of matrix (A), while for scalar (x)+ ,

max{0, x}. With the help of (3.52) and (3.53), ε̃t+1
k (ρ) can now be rewritten as

ε̃t+1
k (ρ) =

ρ

nk

nk∑
i=1

Ψt
kλi(Tk)− nk

M
(εtk(ρ))

−1

M
nk
εtk(ρ)Ψt

kλi(Tk)

=
ρ

εtk(ρ)Ψt
kM

=
ρnk
M

εtk(ρ) + nk
M

∑nk
i=1

1
λi(Tk)

. (3.54)

Letting vtk = ln (ε̃tk(ρ)), the convergence problem of εt+1
k (ρ) and ε̃t+1

k (ρ) is equivalent to

the convergence problem of the following function

vt+1
k = f(vt−1

k ), (3.55)

where f(vt−1
k ) can be written as

f(vt−1
k ) = ln

(ρnk
M

)
− ln

(
1

M

M∑
i=1

λi(ρRk)

1 + λi
(∑∞

k=0 ε̃
t−1
k (ρ)Rk P(k)

) +
nk
M

nk∑
i=1

1

λi(Tk)

)
= ln

(ρnk
M

)
− ln

(
1

M

M∑
i=1

λi(ρRk)

1 +
∑∞

j=0,j 6=k ε̃
t−1
j (ρ)λi (Rk) P(j) + ev

t−1
k λi (Rk)

+
nk
M

nk∑
i=1

1

λi(Tk)

)
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= ln
(ρnk
M

)
− ln

 1

M

M∑
i=1

ρ
1

λi(Rk) +
∑∞

j=0,j 6=k ε̃
t−1
j (ρ) P(j) + ev

t−1
k

+
nk
M

nk∑
i=1

1

λi(Tk)


(3.56)

In the following, we will prove that the function f(vt−1
k ) converges. Firstly, we note that

the function f(vt−1
k ) is obviously continuous. Secondly, we compute the first derivative

of f(vt−1
k ) as

f
′
(vt−1
k ) =

∑M
i=1

ρe
vt−1
k(

1
λi(Rk)

+
∑∞
j=0,j 6=k ε̃

t−1
j (ρ) P(j)+e

vt−1
k

)2∑M
i=1

ρ

1
λi(Rk)

+
∑∞
j=0,j 6=k ε̃

t−1
j (ρ) P(j)+e

vt−1
k

+ nk
∑nk

i=1
1

λi(Tk)

(3.57)

At this point, it is obvious that

ev
t−1
k

1
λi(Rk)

+
∑∞

j=0,j 6=k ε̃
t−1
j (ρ)P(j) + ev

t−1
k

≤ 1. (3.58)

Accordingly, from (3.57) and (3.58), we have

f
′
(vt−1
k ) ≤

∑M
i=1

ρ

1
λi(Rk)

+
∑∞
j=0,j 6=k ε̃

t−1
j (ρ) P(j)+e

vt−1
k∑M

i=1
ρ

1
λi(Rk)

+
∑∞
j=0,j 6=k ε̃

t−1
j (ρ) P(j)+e

vt−1
k

(3.59)

≤ 1.

It is easy to show that the first derivative of f(vt−1
k ) is also positive, which means

that the absolute value of f
′
(vt−1
k ) is smaller than 1. Hence, using Lemma 3.3, given

in Appendix 3.A we can state that f(vt−1
k ) is a contraction, which implies that it

converges. This concludes the proof of uniqueness of eq. (3.15) and eq. (3.16)7.

Appendix 3.D Proof of Proposition 3.2

Proof. Let ψk = M
nk
εk(ρ). Then using (3.20)

Eu {log det(Ink + F(uk)ψkTk)}

7For the special case, when a single user is considered, a similar proof of convergence was shown
in [61].
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=
2κπ

Γ(k)

nk∑
i=1

∫ r

0

log(1 + ψkλkiu
−α) exp(−κπu2)u2kdu

=
2κπ

Γ(k)

nk∑
i=1

∫ r

0

G2,1
2,2

(
1

ψkλki
uα
∣∣∣∣ 0, 1

0, 0

)
exp(−κπu2)u2kdu (3.60)

Substituting y with u
√
κπ and changing the limits of integration, (3.60) becomes

2

Γ(k)

nk∑
i=1

∫ r
√
κπ

0

G2,1
2,2

(
1

(κπ)
α
2ψkλki

yα
∣∣∣∣ 0, 1

0, 0

)
× exp(−y2)

y2k

(
√
κπ)

(k+1)
dy

(3.61)

Now, expanding exp(−y2) with the help of Taylor’s series expansion, we have

exp(−y2) =
∞∑
n=0

(−1)n
y2n

n!
(3.62)

Furthermore, using (3.62) in (3.61), we have

2
∑∞

n=0(−1)n

n!Γ(k)(
√
κπ)

(k+1)

nk∑
i=1

∫ r
√
κπ

0

G2,1
2,2

(
1

(κπ)
α
2ψkλki

yα
∣∣∣∣ 0, 1

0, 0

)
y2(n+k)dy.

(3.63)

Substituting z with y√
κπr

and changing the limits of integration, (3.63) becomes

2
∑∞

n=0(−1)n(
√
κπ)(2n+k)r(2(n+k)+1)

n!Γ(1)
×

nk∑
i=1

∫ 1

0

G2,1
2,2

(
rα

ψkλki
zα
∣∣∣∣ 0, 1

0, 0

)
z2(n+k)dz

(3.64)

Simplifying (3.64) we get

2
∑∞

n=0(−1)n(
√
κπ)(2n+k)r(2(n+k)+1)

αn!Γ(k)

×
nk∑
i=1

∫ 1

0

G2,1
2,2

(
rα

ψkλki
zα
∣∣∣∣ 0, 1

0, 0

)
p(

2(n+k)+1
α

−1)dp. (3.65)
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From (3.65) we have, ρ = 2(n+k)+1
α

, σ = 1 and χ = rα

λki
. Hence, (3.65) can be approxi-

mated as

2
∑∞

n=0(−1)n(
√
κπ)(2n+k)r(2(n+k)+1)

αn!Γ(k)
Γ(1)

nk∑
i=1

G2,2
3,3

(
rα

ψkλki

∣∣∣∣ 1− 2(n+k)+1
α

, 0, 1

0, 0,− 2(n+k)+1
α

)
(3.66)

Plugging (3.66) into (3.42) for the kth user, we obtain (3.23).
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Chapter 4

Space-Constrained Massive MIMO

Systems

4.1 Introduction

Due to the limited availability of wireless spectrum, massive multiple-input multiple-

output (MIMO) can be truly exploited only by significantly increasing the number

of antennas deployed per unit area [62]. A usual practice when deploying antenna

elements is to space them by a distance equal to or greater than half the wavelength

of the transmitted frequency [13], [58]. One of the constraints towards this end is the

limited availability of physical area for deployment of a large number of antennas at

the base station. Massively densified antenna deployment is a way out but it leads to

two effects, namely spatial correlation and antenna mutual coupling. The proximity

of the antenna elements as signal sources and electrical components causes antenna

correlation and coupling respectively [63].

The nulls and the maximum of the radiation pattern of the antennas are shifted

owing to the mutual coupling among them [64]. Mutual coupling effects among antenna

elements in 2D linear arrays have widely been studied in [65]-[66]. While [65] and [66]

focus on the performance of adaptive arrays when exerted to mutual coupling, [63]

and [67] examine the performance of massive MIMO systems with antenna elements

affected by mutual coupling owing to constrained physical space. Mutual coupling

due to constrained antenna spacing has been stated to deteriorate the performance

Reprinted from IEEE Transactions on Wireless Communications, S. Biswas, C. Masouros, T. Ratnarajah, “Performance Analysis of
Large Multiuser MIMO Systems with Space-Constrained 2-D Antenna Arrays”, Vol. 15, No. 5, PP. 3492-3505. Copyright (2016), with
permission IEEE.
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of MIMO systems by influencing the correlation of the antennas in [68], [69]. Effects

of mutual coupling on the radiation patterns of phased arrays were investigated in

[70]. Effects of transmit correlation and mutual coupling on linear precoders were

analyzed considering large scale MIMO transmitters in [63]. While a considerable

amount of work has already been done with regards to antenna coupling in MIMO,

its effects are still quite unknown when a massive MIMO scenario with hundreds of

antennas at the base station (BS) are considered. Also to be noted is that most

prior work on effects of antenna coupling on MIMO is based on linear arrays [66]-

[71] as in cellular networks, the uniform linear array1 is the most commonly deployed

configuration. However, the uniform linear array can scan only the 2D space. On the

other hand, the rectangular array can take both the azimuth and the elevation angles

into consideration. This makes rectangular array the appropriate array configuration

to exploit the 3D propagation space in the true sense.

Accordingly, since the need of the hour is to accommodate as many antennas as

possible, we present a more realistic 3D rectangular antenna array configuration with

increasing number of antennas. If antenna elements are rigged considering a spacing

less than half the wavelength of transmission, a considerable number of antennas will

be coupled affecting both the spectral efficiency (SE) and energy efficiency (EE) of the

system. While mutual coupling models for 3D antenna arrays have been ever-present in

the field of communications, most existing works on large-scale MIMO systems predict

over-optimistic performance assuming arrays with unbounded physical space, the more

relevant work in [63] considers only linear arrays and a simplified mutual coupling

model. In this work, we consider a more realistic rectangular array bounded by a fixed

physical space with an area of about 1m2 and analytically account for the full mutual

coupling model of the array.

Any new system developed in the field of communication would demand energy

saving as one of its primary design criteria. The advent of technology hasn’t actually

reduced the energy consumption of the BS and user equipments (UEs); instead energy

consumption and power radiation has become a major health and economic hazard over

the years [12]. [72] discusses the electrical power consumptions of the power amplifiers,

the cooling systems and the associated circuits installed at the BS. While large antenna

arrays have been stated to reduce uplink (UL) and downlink (DL) transmit powers

due to coherent combining and an increased antenna aperture in [62], [15] claims such

systems operate with a total output RF power of magnitude which is two times less

1Details on array geometry and in particular uniform linear and circular array configurations can
be found in Chapter 6.
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than the current technology. Thus, with the emergence of massive MIMO, we can

claim to have taken a giant leap towards reducing the consumption of energy in the

field of communication. But how massive is the leap and where will it lead us towards

conservation of energy? We will try to analyze this question with respect to EE that

can be considered to be a very proficient design goal when it comes to developing

energy efficient communication systems.

The focus of this chapter is to consider realistic setups of massive MIMO and analyze

how large MIMO systems bounded by fixed physical spaces fare to the demands of

increasing EE while contributing towards high spectral efficiencies. We re-examine the

question: “How many antennas do we need?” [7] by means of EE under a) realistic

antenna deployments in fixed physical spaces and b) thorough and pragmatic power

consumption models. We reflect on both the uplink and downlink of a multi-user

MIMO system which models antenna correlation and coupling at the BS. We calculate

the SE and transmitted power for both uplink and downlink and also the EE of this

system with the help of a power consumption model similar to [49], incorporating

parameters like power consumed by amplifiers and other digital circuits. Our analysis

is based on the effect of increasing the number of BS antennas and reducing the antenna

spacing on the EE of the system while taking into consideration two practical linear

receivers/precoders in maximum ratio combining/transmission (MRC/MRT) and zero

forcing (ZF). To obtain a fair comparison, we analyze the EE of massive MIMO systems

considering the fixed power consumption for the cases of two current communication

technologies: WIFI and LTE. While analytical expression for EE is obtained for ZF

only, simulation results are provided for both MRC and ZF.

4.2 System Model

We consider the uplink and downlink of a single cell multi-user MIMO arrangement

with one BS equipped with a uniform rectangular 3D antenna array located in a fixed

physical space of area ∆ as shown in Fig. 4.1. Each row and column of the antenna

array consists of n and m dipole antennas respectively, with each element separated

from the other by a distance d within a row or a column. M = n×m is the total number

of antennas receiving signals from K single-antenna users with M � K. The users are

assumed to transmit their data in the same time-frequency resource with λ being the

carrier wavelength. We also assume that d < λ/2 so that antenna coupling significantly

impacts the performance of the system. Furthermore, the length and breadth of the
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rectangular array are αλ and βλ (α, β ∈ N) respectively, which leads to the following

expressions

∆ = αβλ2, (4.1)

d =
αλ

m− 1
=

βλ

n− 1
. (4.2)

Hereinafter, in this chapter all the analysis performed with respect to the n×m rect-

angular array will take into consideration the following assumptions:

a) The antenna elements are placed at uniform intervals.

b) All the elements are identical to each other. In our case we consider dipoles of

equal length.

c) All the elements have equal amplitude excitation.

d) The directions of arrivals (DOAs) or directions of departures (DODs) are ran-

domly and independently distributed in angle spread φ as a (D,φ) channel (D is

explained later).

Perfect synchronization in time and frequency is considered between the BS and users,

which operate in a time division duplex (TDD) protocol. The uplink and downlink

channels are assumed to be reciprocal within a coherence block. Moreover, the uplink

and downlink transmissions follow fixed transmission ratios, ΥUL and ΥDL respectively

[58], with ΥUL + ΥDL = 1. Let T be the length of the coherence time interval and

τUL, τDL are the number of symbols used for uplink and downlink pilots respectively.

Uplink training utilizes KτUL of the coherence time interval while downlink training

occupies KτDL. The BS utilizes the uplink training to estimate the downlink channel.

Let W represent a semi-correlated frequency-flat channel matrix between the BS

and the K users which is modeled as W = HF
1
2 for uplink with H ∼ CN (0,ΣUL

M ⊗IK)

representing the uplink channel and W = F
1
2 H for downlink with H ∼ CN (0, IK ⊗

ΣDL
M )2 representing the downlink channel, where ΣUL

M = ΣDL
M = ΣM is the BS corre-

lation matrix, ⊗ denotes the Kronecker product operator and F is a K ×K diagonal

matrix, where [Fkk] = fk.
√
fk models the geometric attenuation and shadow fading

which is assumed to be independent over M and constant over several coherence time

2It is to be noted that for simplicity of notation, we represent the uplink and downlink channel
matrix with the same notation. However, wherever used, its property will be clearly mentioned.
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 θ – Elevation angle
 φ – Azimuthal angle

 αλ – Array length
 βλ – Array width
 d – Distance between two consecutive      

antennas (horizontal and vertical)
 m – Number of antennas along Y axis
 n – Number of antennas along X axis

Figure 4.1: An illustration of a multi-user MIMO setup: A 3D rectangular array con-
sisting of M dipole antennas serving K single-antenna users located uniformly within
the cell diameter in the uplink and downlink.

intervals. This holds true owing to the assumption that d� ru, where ru is the mini-

mum distance between an arbitrary user and the BS and fk changes very slowly with

time.

4.2.1 Channel model with correlation and coupling

We examine a single-cell setup with an M -antenna BS and K single-antenna users.

The uplink and downlink channels are modeled as one-sided correlated Rayleigh flat

fading channel with no line of sight. We assume the fading to be correlated only at the

BS [73]. After incorporating the mutual coupling of the receiving antennas, we model

H for uplink as [63]

H = [h1,h2, . . . ,hk, . . . ,hK ], (4.3)

where hk is the M × 1 uplink channel vector of the k-th user; given as

hk = ΓAUL
k gk (4.4)
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and for downlink as

H =
[
hT1 , . . . hTk , . . . hTK

]T
, (4.5)

where hk is the 1×M downlink channel vector of the k-th user; given as

hk = gkA
DL
k Γ, (4.6)

where Γ ∈ CM×M denotes mutual coupling, AUL
k ∈ CM×D denotes the receive steering

matrix during uplink containing D steering vectors of the receive antenna array with D

denoting the number of direction of arrivals (DOAs) while ADL
k ∈ CD×M denotes the

transmit steering matrix during downlink containing D steering vectors of the receive

antenna array with D denoting the number of direction of departures (DODs) and the

vector gk ∼ CN (0, ID) whose dimensions for uplink and downlink are D× 1 and 1×D
respectively. For the sake of simplicity, the number of DOAs and DODs are considered

to be equal. Furthermore, for the uplink transmission, [HHH] ∼ CWK(M,ΣM) where

CWq(r,S) denotes a complex Wishart distribution with degrees of freedom r, dimension

q and covariance S. Similarly for downlink transmission, [HHH ] ∼ CWK(M,ΣM).

4.2.2 Correlation at the BS

We consider the antenna array at the BS to be uniformly rectangular as shown in Fig.

4.1. As stated before, the spacing between two adjacent antennas within a row or a

column is considered to be d. Thus without loss of generality, the steering matrix with

respect to the ith direction of arrival can then be expressed as [74]

Ai = ac(φi, θ)ar(φi, θ)
T , (4.7)

where ac(θ, φ) ∈ Cn×1 is the column array steering vector given as

ac(φi, θ) =
[
1, ej

2π
λ
d cosφi sin θ, . . . , ej

2π
λ
d(n−1) cosφi sin θ

]T
(4.8)

and ar(θ, φ) ∈ Cm×1 is the row array steering vector given as

ar(φi, θ) =
[
1, ej

2π
λ
d sinφi sin θ, . . . , ej

2π
λ
d(m−1) sinφi sin θ

]T
. (4.9)

Using the vector valued operator vec{·}, which maps a m × n matrix to a mn × 1

column vector by stacking the columns of the matrix, the array steering matrix may
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Figure 4.2: An example showing the effect of mutual coupling on two dipole antennas
located adjacent to each other spaced at d distant apart.

be transformed to a 2-D array steering vector as

a(φi, θ) = vec{Ai}. (4.10)

The M ×D steering matrix of the rectangular array for uplink can now be given as

AUL = [a(φ1, θ), . . . , a(φi, θ), . . . , a(φD, θ)], (4.11)

where a(φi, θ) ∈ CM×1 for i ∈ 1, 2, 3 . . . , D. Similarly for downlink the D×M steering

matrix is given as

ADL = [a(φ1, θ)
T , . . . , a(φi, θ)

T , . . . , a(φD, θ)
T ]T . (4.12)

Hereinafter, for notational simplicity, we represent the uplink and downlink steering

matrix with the same notation A. However, the property of the matrix will be clearly

mentioned, wherever used. Throughout this chapter we consider d to be equidistant

and the D DOAs and DODs are randomly and independently distributed in an angle

spread determined by the azimuth φi ∈ [−π
2
, π

2
], i = 1, 2, 3 . . . , D and the same elevation

θ ∈ [−π
2
, π

2
]. Different degrees of transmit correlation are obtained by varying φ of the

semi-correlated (D,φ) channel.
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4.2.3 Mutual coupling at the BS

When multiple antennas radiating simultaneously are located in proximity of each other

within a fixed physical space, the electric field of one antenna impacts the distribution

of current of the adjacent antennas, which leads to the radiation pattern and input

impedance of each antenna being disturbed [68]. This phenomenon is known as antenna

coupling.

Our system model is characterized by mutual coupling among linear dipole anten-

nas of length l as shown in Fig. 4.2, which are arranged in a planar configuration

with uniform square grids and rectangular boundary as described earlier. The mutual

coupling matrix, Γ is defined as [64]

Γ = (ZL + ZA)(Z + ZLI)−1, (4.13)

where ZL, ZA and Z denote load impedance, antenna impedance and mutual impedance

matrix respectively. Z can be constructed as a M ×M matrix, which is given in (4.14)

at the bottom of this page, where Z(i,k)(j,l) denotes the mutual impedance between

antenna located at the ith row and kth column and the antenna located at the jth row

and lth column of the rectangular array with i, j ∈ 1, 2, . . . , n and k, l ∈ 1, 2, . . . ,m.

The correlation matrix at the BS for uplink can now be given as

ΣUL
M = E{HHH}

= ΓAE{gkgHk }AHΓH

= KΓAAHΓH . (4.15)

Similarly, the correlation matrix at the BS for downlink is given as

ΣDL
M = KΓHAHAΓ. (4.16)

Z =



Z(1,1)(1,1) . . . Z(1,1)(1,m) . . . Z(1,1)(2,1) . . . Z(1,1)(2,m) . . . Z(1,1)(n,1) . . . Z(1,1)(n,m)
Z(1,2)(1,1) . . . Z(1,2)(1,m) . . . Z(1,2)(2,1) . . . Z(1,2)(2,m) . . . Z(1,2)(n,1) . . . Z(1,2)(n,m)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Z(1,m)(1,1) . . . Z(1,m)(1,m) . . . Z(1,m)(2,1) . . . Z(1,m)(2,m) . . . Z(1,m)(n,1) . . . Z(1,m)(n,m)

.

.

.
. .

.
.
.
.

. .
.

.

.

.
. .

.
.
.
.

.
.
.

.

.

.
.
.
.

.

.

.
Z(n,1)(1,1) . . . Z(n,1)(1,m) . . . Z(n,1)(2,1) . . . Z(n,1)(2,m) . . . Z(n,1)(n,1) . . . Z(n,1)(n,m)

.

.

.
.
. .

.

.

.
.
. .

.

.

.
.
. .

.

.

.
.
. .

.

.

.
.
. .

.

.

.
Z(n,m)(1,1) . . . Z(n,m)(1,m) . . . Z(n,m)(2,1) . . . Z(n,m)(2,m) . . . Z(n,m)(n,1) . . . Z(n,m)(n,m)


(4.14)
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Since ΣUL
M = ΣDL

M = ΣM , we will ignore the superscripts UL and DL henceforth.

Example 4.1. Assume that the antennas at the BS are rigged in a uniform planar

array with square grids and rectangular boundary. Applying simple algebraic operations

on the Cartesian co-ordinates of the rectangular array, the distance between any two

antenna elements within the array can be given as

d(i,k)(j,l) = d
√

(i− j)2 + (k − l)2, (4.17)

where i, j, k, l are described as before.

d(i,k)(j,l) plays a significant role in determining the mutual impedance, Z(i,k)(j,l),

which based on current maximum at the input antenna terminal is given by the elec-

tromotive force (EMF) method as [64]

Z(i,k)(j,l) = R(i,k)(j,l) + jX(i,k)(j,l). (4.18)

Here, R(i,k)(j,l) and X(i,k)(j,l) are self-mutual-resistance and self-mutual-reactance be-

tween antenna located at the ith row and kth column and the antenna located at the

jth row and lth column respectively and given as [64]

R(i,k)(j,l) =

√
µ0

4π
√
ε0

[2Cin(u0)− Cin(u1)− Cin(u2)] (4.19)

and

X(i,k)(j,l) =

√
µ0

4π
√
ε0

[2Sin(u0)− Sin(u1)− Sin(u2)] , (4.20)

where µ0 and ε0 denote the magnetic and electric constants,. Furthermore, the variables

u0, u1, u2 are respectively given as

u0 = 2πd(i,k)(j,l),

u1 = 2π
(
l +
√
d2

(i,k)(j,l) + l2
)
,

u2 = 2π
(
−l +

√
d2

(i,k)(j,l) + l2
)
,

and Cin(.) and Sin(.) are cosine and sine integral functions respectively and are defined

as

Cin(a) = γ + ln(a) +

∫ a

0

cos t− 1

t
dt, (4.21)
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Sin(a) =

∫ a

0

sin t

t
dt, (4.22)

where γ is the Euler-Mascheroni constant and l is the length of the dipole antenna.

The electrical and magnetic parameters of the antennas are considered to be equal

for every antenna. Hence, considering equal spacing among the antennas along row

and column of the rectangular array, the following properties for the mutual impedance

matrix Z can be obtained -

a) Z is symmetric. Let Zuv be the element in the uth row and vth column of Z.

Then

Zuv = Zvu. (4.23)

b) Z is a Toeplitz matrix. Thus

Zuv = Z(u+1)(v+1). (4.24)

c) Z has 2M − 1 degrees of freedom.

Remark 4.1. Let Zpq = Z(i,k)(j,l), where p, q ∈ 1, 2, . . . ,M . If p = q, then Γpq = ZA,

where ZA denotes antenna or self impedance.

4.3 Spectral Efficiency and Transmitted Power

4.3.1 Uplink

During uplink transmission, the K users transmit their data in the same time-frequency

resource. Thus, the M × 1 received vector at the BS can be given as

y = WPULx + z, (4.25)

where x ∈ CK×1 is the symbol transmitted by the K users. PUL is a K ×K diagonal

matrix with the vector pUL=[pUL1 . . . pULk . . . pULK ] constituting the diagonal where pULi

is the average transmitted power of each user and pULi ≥ 0 for i = 1, 2, . . . , K and z is

a vector of additive white Gaussian noise with zero mean and variance3 σ2IM .

3Without loss of generality the variance of z is considered to be 1 in this chapter to reduce com-
plexity.
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For the detection of x, the BS uses a M ×K linear detector, V on y. The signal

and noise plus interference components of the processed received signal for the kth user

after detection can thus be given as

rk = pULk vHk wkxk︸ ︷︷ ︸
desired signal

+
K∑

i=1,i 6=k

pULi vHk wixi︸ ︷︷ ︸
interference

+ vHk n︸︷︷︸
noise

, (4.26)

where rk and xk are the kth elements of vectors r and x respectively while pULk is the

power transmitted by the kth user. We consider two low complexity detection schemes,

namely MRC and ZF at the BS. Hence,

V =

{
W, for MRC

W
(
WHW

)−1
, for ZF.

(4.27)

Assuming the channel to be ergodic, the ratio of the signal power of the kth user to

the noise-plus-interference term (SINR) can be given as

γULk =

 pULk |vHk wk|2
K∑

i=1,i 6=k
pULi |vkHwi|2 + ||vk||2

 . (4.28)

Throughout this chapter, we assume the target SINR to be provided to each of the K

users to be equal. To achieve this equal SINR condition, we use the approach given in

[75] for solving the power control problem in mobile scenarios using Perron’s theorem4.

Let us define a matrix Ψ ∈ CK×K , where

[Ψ]k,i =

{ |vkHwi|2
γULk ||vk||2

, for i 6= k
|vkHwi|2
||vk||2

, for i = k.
(4.29)

Since in our analysis the variance of z is considered to be 1, therefore, to meet the

equal SINR condition for the K users, the uplink power vector pUL has to satisfy the

4The model in [75] can be looked upon as a simplified generalization of our model without the
mutual coupling effects. The power loss due to mutual coupling, pcoup can be compensated for at the
BS with additional circuitry. Moreover, any disparities in power distribution can be accounted for by
properly designing efficient detector or precoder matrices to meet the specific power constraints of the
system.
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following condition [[75], eq. (29-33)]

pULΨ = 1(1×K). (4.30)

Simplifying (4.29) and (4.30), the power assigned to each uplink user can be given as

pULk =
γULk

qk − γULk Gki

, (4.31)

where,

qk =
|vkHwk|2

||vk||2
and Gki =

{
|vkHwi|2
||vk||2

, for i 6= k

0, for i = k.
(4.32)

The total transmitted power for K users during uplink can now be given as

pULt = E{1(1×K)p
UL}. (4.33)

Remark 4.2. The power allocation problem states that pULk > 0. Hence, the necessary

condition for pULk to have a positive solution is that qk − γkGki be non-negative for

γk > 0.

We now define the uplink SE for the kth user as [13]

RUL−A
k =

(
TΥUL − τULK

T

)
R̃UL−A
k , (4.34)

where A ∈ {MRC,ZF}, T is the coherence interval in symbols, τUL is the transmitted

uplink pilot sequence in symbols and ΥUL is the fraction of uplink transmission as

described earlier.

Definition 4.1. Let a p × p matrix, Q ∼ CWp(q,S), where p is the dimension, q is

the degree of freedom and S is the covariance. Then from [76] for any integer r > 0,

1) E{Qr} = c̃(r, q, p)S, where c̃(r, q, p) is a constant depending on r, q, p. If r = 1,

then c̃(1, q, p) = q. Hence, E(Q) = qS and E[tr(Q)] = pqS.

2) If r = −1, then E(Qr) = c̃(1, q, p)S−1 and c̃(1, q, p) = (p−q)−1. Hence, E(Q−1) =

(p− q)−1S−1 and E[tr(Q−1)] = p(p− q)−1S−1.
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Proposition 4.1. The first negative moment of the SINR for the kth user assuming

M ≥ 2, perfect CSI and MRC detection at the BS can be given as

E{(γUL−MRC
k )−1} =

tr[Σ−1
M ]
(

tr[ΣM ]
∑K

i=1,i 6=k p
UL
i fi + 1

)
pULk (M − 1)fk

. (4.35)

Accordingly, the uplink rate can be given as

R̃UL−MRC
k = log2

(
1 +

{
E{(γ−1

k )UL−MRC}
}−1

)
= log2

1 +
pULk (M − 1)fk

tr[Σ−1
M ]
(

tr[ΣM ]
∑K

i=1,i 6=k p
UL
i fi + 1

)
 . (4.36)

Now if γ̃k is the minimum target SINR required to achieve a minimum rate of R̃k for

the kth user, then the power required can be given as

p̃k
UL−MRC =

tr[Σ−1
M ]γ̃k

UL−MRC

(M − 1)fk − γ̃kUL−MRCtr[ΣM ]
K∑

i=1,i 6=k
fi

. (4.37)

Proof. The proof is given in Appendix 4.A.

Proposition 4.2. The first negative moment of the SINR for the kth user assuming

M ≥ K + 1, perfect CSI and ZF detection at the BS can be given as

E{(γUL−ZFk )−1} =
tr[Σ−1

M ]

pk(M −K)fk
. (4.38)

Accordingly, the uplink rate can be given as

R̃UL−ZF
k = E

[
log2

(
1 +

{
E{(γ−1

k )UL−ZF}
}−1
)]

= log2

(
1 +

pULk (M −K)fk

tr[Σ−1
M ]

)
. (4.39)

If γ̃k is the minimum target SINR required to achieve a minimum rate of R̃k for the

kth user, then the power required can be given as

p̃k
UL−ZF =

tr[Σ−1
M ]γ̃k

UL−ZF

(M −K)fk
. (4.40)

Proof. The proof is given in Appendix 4.B.
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4.3.2 Downlink

Since we use TDD transmission technique, the downlink channel can be represented as

a Hermitian transpose of the uplink channel. The BS transmits data streams simulta-

neously to all the K users which creates an interfering broadcast channel. To counter

the interference, we use M ×K precoding matrix at the BS denoted by T. The signal

received by the kth user can be given as

rk = pDLk f wH
k tkxk︸ ︷︷ ︸

desired signal

+
K∑

i=1,i 6=k

pDLi f wH
k tixi︸ ︷︷ ︸

interference

+ zk︸︷︷︸
noise

, (4.41)

where x ∈ CM×1 is the symbol transmitted by M antennas. pDLk ⊆ pDL = [pDL1

. . . pDLk . . . pDLK ]T is the power corresponding to the kth user similar to uplink with the

same constraints while zk is the noise associated with the kth user. tk is the vector of

the precoding matrix associated with the kth user and f = 1√
(TTH)

is a normalization

parameter to constrain the average transmitted power. Almost identical to the case of

uplink, we consider two linear precoding schemes namely MRT and ZF. Accordingly,

T =

{
W, for MRT

W
(
WHW

)−1
, for ZF.

(4.42)

The desired SINR can thus be given as

γDLk =

 pDLk
|wH
k tk|2
||tk||2

K∑
i=1,i 6=k

pDLi
|wk

Hti|2
||ti||2 + 1

 . (4.43)

Similar to uplink, we assume the target SINR to be provided to each of the K users to

be equal. Following the same approach as used to derive (4.31), the downlink power

for the kth user can be assigned as

pk
DL =

γDLk
qk − γkGki

, (4.44)

where

qk =
|wk

Htk|2

||tk||2
and Gki =

{
|wk

Hti|2
||tk||2

, for i 6= k

0, for i = k.
(4.45)
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The total transmitted power for K users during downlink can now be given as

pDLt = E{1(1×K)p
DL}. (4.46)

Remark 4.3. Adhering to the power constraint pDLk > 0, the necessary condition for

pDLk to have a positive solution is that qk − γDLkGki be non-negative for γDLk > 0.

The downlink rate similar to the uplink for the kth user can now be given as

RDL−A
k =

(
TΥDL − τDL

T

)
R̃DL−A
k , (4.47)

where A ∈ {MRC,ZF}, T is the coherence interval in symbols, τDL is the transmitted

downlink pilot sequence and ΥDL is the fraction of downlink transmission as described

earlier.

Proposition 4.3. With M ≥ 2 and assuming perfect CSI and MRC detection at the

BS, the first negative moment of the SINR for the kth user can be given as

E{(γDL−MRC
k )−1} =

tr[Σ−1
M ]
(

tr[ΣM ]
∑K

i=1,i 6=k p
DL
i fi + 1

)
pDLk (M − 1)fk

. (4.48)

The downlink rate, R̃DL−MRC
k follows accordingly similar to Proposition 4.1. Also if γ̃k

is the minimum target SINR required to achieve a minimum rate of R̃k, then the power

required can be given as

p̃k
DL−MRC =

tr[Σ−1
M ]γ̃k

DL−MRC

(M − 1)fk − γ̃kDL−MRCtr[ΣM ]
K∑

i=1,i 6=k
fi

. (4.49)

Proof. Following the same derivations as in Proposition 4.1 for the case of uplink, we

can arrive at the above result.

Proposition 4.4. With M ≥ K+1 and assuming perfect CSI and ZF detection at the

BS, the first negative moment of the SINR for the kth user is given as

E{(γDL−ZFk )−1} =
tr[Σ−1

M ]

pDLk (M −K)fk
. (4.50)

The downlink rate, R̃DL−ZF
k follows accordingly similar to Proposition 4.2. Accordingly,

if γ̃k is the minimum target SINR required to achieve a minimum rate of R̃k, then the
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power required can be given as

p̃k
DL−ZF =

tr[Σ−1
M ]γ̃k

DL−ZF

(M −K)fk
. (4.51)

Proof. This proof can be obtained following an approach similar to the derivation of

Proposition 4.2 for the case of uplink.

4.4 Energy Efficiency

EE of a communication link as stated before is the total transmit energy consumption

required per bit i.e., the ratio of the sum rate achieved to the consumed power, and

can be expressed in bits/joule as [46, 13, 58, 77, 78]5.

ξA =
RA

pPA + pRF + pCoup
, (4.52)

where

RA =
K∑
k=1

(RUL−A
k +RDL−A

k ) (4.53)

is the total sum rate for the K users through an entire process of uplink and downlink,

pPA is the power consumed by the power amplifiers, pRF is the power consumed by the

RF components of the systems, pCoup is the power loss due to mutual coupling among

the antennas located in close proximity to each other and A ∈ {MRC,ZF}.

Remark 4.4. In order to obtain insights on how the number of antennas, the physical

space and the transmitted power affect the total EE of a massive MIMO system, it

makes sense to look at the total rate and divide it by the total power. Hence, the

EE metric used in this chapter focuses on the total rate and power of both uplink

and downlink. Following [58, 77, 78], we look at the system as a whole, but with the

5The definition of EE used in this chapter is in accordance with the mentioned literature. This
approach of dividing the SE with the average total power consumption greatly simplifies the analysis
and is comparable to the various recent literature on MIMO systems. The joint uplink-downlink
optimization makes it favorable to attain a holistic and balanced optimization for the uplink and
downlink resources, system parameters (such as antenna numbers) and to allow a performance guar-
antee vs power consumption on the full forward and reverse link between the base station (BS) and
mobile users [79, 80, 80].
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important discrepancy that the increase in the number of BS antennas happens in a

fixed physical space.

4.4.1 Power amplifiers

The average power in watt consumed by the power amplifiers during uplink and down-

link can be approximated as [46], [58]

pPA = pULt (αUL + 1) + pDLt (αDL + 1), (4.54)

where αUL = ζUL

ηUL
− 1 and αDL = ζDL

ηDL
− 1 with ζUL and ζDL being the modulation-

dependent peak to average power ratios (PAPR) for uplink and downlink respectively

while ηUL and ηDL are the power amplifier efficiencies at the UE and BS respectively

and pULt , pDLt are the transmitted powers in the uplink and downlink respectively as

described earlier.

4.4.2 RF chains

The average power in watt consumed in the RF chains for a typical MIMO transmitter-

receiver set can be given as [46]

pRF = pAfix +MpBS +KpUE (4.55)

where pAfix is the fixed power consumption at the BS dependent on the processing

scheme A ∈ {MRC,ZF}, pBS is the power required at the BS to run the circuit

components, pUE is the power associated with the user equipments which are defined

as follows

pBS = pBSmix + pBSfilt + pBSADC + pBSDAC + pBSOSC , (4.56)

pUE = pUEmix + pUEfilt + pUEADC + pUEDAC + pUEOSC , (4.57)

where pmix, pfilt, pADC , pDAC and pOSC denote the power consumed by the mix-

ers, filters, analog-to-digital converters, digital-to-analog converters and local oscillator
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respectively6.

4.4.3 Mutual coupling

The mutual coupling effect among antennas in the vicinity of each other as discussed

earlier increases the power consumption of the system. Applying simple circuit theory

analysis on Fig. 4.2, the terminal voltage for a particular antenna at the BS can be

given as [65]

vi =
M∑

j=1,i 6=j

ijΓi,j, (4.58)

where, vi denotes the terminal voltage at the ith antenna element due to a unity current

in the jth antenna element when the current in all other antenna elements is zero and

Γi,j is the total mutual coupling experienced by the ith antenna element due to all

other antennas as discussed in Section 4.3. Furthermore, iBS = [i1, i2, i3 . . . . . . iM ]T , and

vBS = [v1, v2, v3 . . . . . . vM ]T where, iBS and vBS are vectors of currents and voltages

respectively associated with the dipole antennas in the rectangular array. The power

loss due to coupling based on the current maximum now follows as

pCoup = vTBSiBS. (4.59)

In order to maintain a fixed SINR, this loss is compensated at the BS. Using (4.52)-

(4.59) we now derive an analytical expression for ξ. For the sake of simplicity, we

consider the minimum SINR, γ̄ targeted for every users to be equal for both uplink

and downlink.

Hereinafter, we consider a minimum fixed rate, R̃ to be provided to each and every

user for both uplink and downlink which leads to the uplink and downlink rates being

ΥULR̃ and ΥDLR̃ respectively. Thus the total SE of the system for one complete cycle

6The components considered in this chapter may vary depending on set-ups used in practical
scenarios. Any other components used can easily be included in the expressions of pBS and pUE while
the ones that are not may be removed. It is to be noted that the uplink and downlink transmissions
are separated by the fractions ΥUL and ΥDL respectively. Hence, by changing these parameters, the
uplink and downlink power consumption parameters can be controlled to adjust to the requirement
of the networks in consideration.
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of uplink and downlink can be given as

RA =
K∑
k=1

[(
TΥUL −KτUL

T

)
R̃UL−A
k +

(
TΥDL −KτDL

T

)
R̃DL−A
k

]
=

KR̃

T

[
T −K(τUL + τDL)

]
. (4.60)

Proposition 4.5. Taking into account the diversity loss due to mutual coupling, we aim

at guaranteeing a minimum rate of R̃. We accomplish this by dynamically allocating

power to the users and hence, define a parameter p̄ = f( γ , R̃ ). Therefore, considering

ZF processing at the BS, with no loss of generality, we can define R̃ as

R̃ = log2(1 + p̄(M −K)). (4.61)

Thus the total power consumed by the power amplifiers during one complete cycle of

uplink and downlink when a ZF processing scheme is employed at the BS is

pPAZF = Kp̄ tr[Σ−1
M ]

(
ζUL

ηUL
+
ζDL

ηDL

)
. (4.62)

Proof. The proof is given in Appendix 4.C.

4.4.4 Energy efficiency and analytical optimum of M for ZF

The EE of the system now follows from (50) as

ξZF =
K
T

(
T −K(τULτDL)

)
log2(1 + p̄(M −K))

Kp̄ tr[Σ−1
M ]
(
ζUL

ηUL
+ ζDL

ηDL

)
+MpBS +KpUE + pCoup

(4.63)

Definition 4.2. If a local maximum exists in a strictly quasi-concave function, it is

also the global maximum [56]. This global optimum can then be obtained by setting the

partial derivative of the quasi-concave function to zero.

Proposition 4.6. Considering ZF processing scheme at BS and power loss due to

mutual coupling, the maximum number of antennas, M that can be accommodated
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within a fixed physical space, ∆ which maximizes the EE, ξZF can be given as

Mmax =
1

p̄

exp

W
 p̄

(
Kp̄ tr[Σ−1

M ]
(
ζUL

ηUL
+ ζDL

ηDL

)
+KpUE + pCoup

)
pBSe

− 1− p̄K
e

+ 1

+ p̄K − 1


(4.64)

where W (∗) is the product logarithm function and e = 2.71828 is the Euler’s number

and pBS, pUE, and pCoup are obtained from (53), (54) and (58) respectively.

Proof. The proof is given in Appendix 4.D.

Furthermore, it can also be shown that the stationary point Mmax is also a global

maximum and the EE curve is quasi-concave, which increases for K + 1 ≤ M ≤
Mmax, attains a global maximum, Mmax and then decreases for Mmax ≤ M ≤ ∞ (See

Appendix 4.D).

At this point it is worth mentioning the relation between ΣM and M . While there

is no explicit mathematical expression relating these two parameters directly, from (15)

it can be seen that ΣM is related to Γ, which in turn is related to Z through (13-16).

However, Z depends on m,n and the distance d through (17-22). Since the physical

space ∆ of the antenna array is constant, any changes made on M will affect the mutual

coupling Z and subsequently the resulting correlation ΣM , which is indeed intuitive.

Proposition 4.7. Considering ZF processing scheme at BS and power loss due to

mutual coupling, the parameter p̄ that maximizes the EE, ξZF provided M is kept

constant can be given as

p̄max =
1

M −K

exp

W
(M −K)(MpBS +KpUE + pCoup)

K tr[Σ−1
M ]
(
ζUL

ηUL
+ ζDL

ηDL

)
e

− 1

e

+ 1

− 1


(4.65)

Proof. The proof is given in Appendix 4.E.

4.5 Numerical Results

On the basis of the proposed system model for massive MIMO, we analyze the effect of

mutual coupling and correlation on the SE and EE of massive MIMO systems through
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Monte Carlo simulations (10000 realizations) for the small scale fading with respect to

M , ∆ and d, which is calculated as explained in Example 4.1. As previously mentioned,

the fixed power consumption of two technologies, namely WIFI (pLTEfix = 25dBm) and

LTE (pLTEfix = 43dBm) are considered to obtain a fair comparison.

We consider a single hexagonal cell with a diameter of smax = 3000 meters which

extends from vertex to vertex. The BS is located at the center of the cell with K =

10 users uniformly distributed in the cell. The minimum distance, smin between a

user and the BS is 50 meters. The large scale fading as described in the system

model is defined as fk = tk
(sk/smin)ν

, where tk is the log-normal random variable with

a variance σ2
s , sk is the distance between the kth user and the BS varying anywhere

between smin and smax and ν is the path-loss exponent varying from 2 to 4 with 2

denoting free space propagation and 4 denoting a relatively lossy environment. For

our simulations we choose σs = 10dB and ν = 3.8. In the above channel model,

unless stated otherwise, a fixed total physical space is assumed with the dimensions

(length:width) of the rectangular array following a fixed ratio of α : β = 1 : 1. In other

words, we consider a square array with equal number of antennas along the length and

the width of the array. This ratio is just for our analytical tractability and can be

modified according to the requirements of the set-up. Further, the area of this space is

limited to αβλ2, where λ is the carrier wavelength. To simplify the V-I characteristics

calculations, the antenna elements are considered to be simple dipoles. The length of

all the M dipoles are considered to be 0.5λ. Moreover, the peak-to- average power ratio

Table 4.1: Simulation Parameters [7, 58, 63, 77]

Parameter Value Parameter Value
Length of coherence interval, T 196 Length of the dipoles, l 0.5λ
Fraction of UL
Transmission,ΥUL

0.4 PAPR uplink, ζUL 0.4

Fraction of DL
Transmission,ΥDL

0.6 PAPR downlink, ζDL 0.6

Channel coherence time, Tc 1 ms PA efficiency BS, ηDL 0.39
Length of pilots, τUL, τDL 10 PA efficiency UE, ηUL 0.3
Array length, αλ 5λ pWIFI

fix 25dBm
Array width, βλ 5λ pLTE

fix 43dBm
Antenna impedance, ZA 50Ω pBS

OSC 33dBm
Load impedance, ZL 50Ω pUE

OSC 17dBm
Length : Width ratio of ar-
ray, α : β

1:1 pBS
mix + pBS

filt + pBS
DAC + pBS

DAC 30dBm

Number of DODs/DOAs, D 150 pUE
mix + pUE

filt + pUE
DAC + pUE

DAC 16.9dBm
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(PAPR), is dependent on the modulation scheme and the associated constellation size.

It is to be noted that the total PAPR for UL and DL is equal to 1 and the values of

ζDL and ζUL are selected in such a way so that αDL > αUL. Also the power amplifier

efficiency of the BS, ηDL is considered to be greater than that of the power amplifier

efficiency of the UE, ηUL. While this is not mandatory, the consideration is due to the

fact that BS has more signal processing resources and can handle power management

better than the UEs. All the simulation parameters used are given at the bottom of

the previous page in Table 4.1.

4.5.1 Traditional model: Antenna spacing greater than half

the carrier wavelength

To comprehend the effects of constrained physical spaces in a massive MIMO set-up,

we first analyze its performance based on a system model where the spacing among the

antennas is considered to be greater than half the carrier wavelength; thus negating any

effects of mutual coupling and antenna correlation. For this scenario, we can consider

Z as an all-ones matrix. This model will allow us to analyze the dependency of the

correlation on d and also lay a platform for our analysis of mutual coupling later. The

curves in Fig. 4.4 labeled as ‘without coupling’ illustrate this scenario.

4.5.2 Proposed model: Antenna spacing less than half the

carrier wavelength

In this sub-section we analyze the behaviour of the proposed model by increasing

the number of antennas at the BS while keeping the area of the rectangular array

fixed. Typically for a fixed physical spacing, increasing the number of antennas is

associated with decreasing the antenna spacing; thus increasing mutual coupling which

in turn reduces the EE. Therefore, there is a fundamental trade-off between the EE

of the system and the number of antennas at the BS, which will be evident from the

simulation results.

Fig. 4.3 illustrates the SE of the proposed system with a fixed physical space

and shows its variation as a function of M . The spacing among the antennas varies

depending on the number of antennas which in turn affects the mutual coupling matrix.

Here we show the achievable SE in a massive MIMO system with coupling, considering

MRC/MRT and ZF detection and precoding at the BS. The length and width of the

array are constrained as α = 5 and β = 5 which is kept fixed hereinafter unless

stated otherwise. We increment the total number of antennas in squares. For example,

n = 1, 3, 5, . . . and m = 1, 3, 5, . . . which implies, M = 1, 9, 25, . . . where n and
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Figure 4.3: Spectral efficiency with respect to M using MRC/MRT and ZF detec-
tion/precoding at the BS for two fixed power consumption schemes. In this example,
α = 5 and β = 5.

m are the number of antennas along the width and length respectively of the array.

As expected with the increase in M , the SE of the system also increases. We note

however, that the improvement in SE saturates for high numbers of antennas due to

the significant correlation and coupling. For the same reason ZF outperforms MRC

by a large extent. Also it can be seen that systems corresponding to fixed power

consumption of LTE systems with a higher fixed transmission power offer higher SE as

compared to fixed power consumption of WIFI systems with a lower fixed transmission

power. For the case of ZF the difference in throughput for the two power schemes is

higher than for the case of MRC where the gap between their respective performance

is much less.

We next specifically examine the EE of such a system in detail. In Fig. 4.4, we

consider two settings: one where the physical space is not bounded by any limitations

while for the other, a setting similar to Fig. 4.3 is considered. For the first setting, the

antennas are spaced far apart to negate any effects of coupling. This figure provides

insights into EE of massive MIMO systems with and without coupling with MRC

detection/precoding. We plot the EE with respect to the number of BS antennas

M . The dashed lines show the performance of systems with fixed power consumption

equivalent to that of WIFI systems while the continuous line represents the performance

of systems with fixed power consumption equivalent to that of LTE systems like before.
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Figure 4.4: Energy efficiency with respect to M with and without coupling at the BS
using MRC detection/precoding at the BS for two fixed power consumption schemes.
In this example, α = 5 and β = 5.

Now as d is inversely proportional to M , it decreases with increasing M ; thus also

decreasing EE which is evident from the curve. For example, for M = 100 the EE

falls from 4.8 Kbits/J (without coupling) to 2.7 Kbits/J when coupling is considered.

Also to be noted is the shape of the EE curve. As stated in Proposition 4.6, the

EE curve considering coupling is seen to be concave. However, the EE curve without

coupling is also seen to be concave which eventually decreases with increasing M . This

is due to the more accurate power consumption model we have used in the chapter,

which is further exacerbated by the increasing correlation between the antennas. For

example, each antenna at the BS has its individual circuitry, which has non-zero power

consumption and hence the power consumed by the BS is a multiple of the number of

antennas, M . Most existing works consider pBS to be constant and accordingly when

M goes to infinity, the EE becomes unbounded. Our results on the contrary show that

when the power at the BS is equal to MpBS the EE does not always increase and is

a concave function of M . Furthermore, when coupling is not considered, pRFk in (52)

still holds with ξZF in (60) staying the same but without the mutual coupling term,

tr[Σ−1
M ] which can be shown to be concave similar to what was shown in Proposition

4.1.

Moreover, systems with fixed power consumption equivalent to that of WIFI sys-

tems with low power consumption naturally perform better from EE point of view like

before but when coupling is considered the gap in their performance reduces with the
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Figure 4.5: Energy efficiency with respect to M with coupling at the BS using MRC
and ZF detection/precoding at the BS for two fixed power consumption schemes. In
this example, α = 3 and β = 3.

increase in the number of antennas, M . Furthermore, depending on the system model

and channel detection/ precoding technique used, it is a concave or quasi-concave func-

tion of M .

Hereinafter, we consider three scenarios with three different physical spaces: (a)

∆ = 3λ× 3λ, (b) ∆ = 5λ× 5λ, and (c) ∆ = 7λ× 7λ. Fig. 4.5 considers scenario (a)

and compares the performance of MRC/MRT and ZF with respect to EE considering

mutual coupling at the BS. The settings are kept exactly same as Fig. 4.3 except for

∆. ZF outperforms MRC for both the cases of systems with fixed power consumption

equivalent to that of WIFI and LTE as ZF is seen to give at least five times more

throughput than MRC. Similar to Fig. 4.4, the performance gap between systems with

fixed power consumption equivalent to that of WIFI and LTE systems reduces for both

ZF and MRC. The optimal M for ZF as calculated in Section 4.5 is also plotted. The

figure shows that for WIFI systems 49 antennas and for LTE systems 81 antennas give

a global optimum EE.

Fig. 4.6 considers scenario (b) while Fig. 4.7 considers scenario (c). The rest of the

settings are kept exactly the same as Fig. 4.3. The results are similar to Fig. 4.5 as

can be expected. The EE performance can be seen to improve due to the relaxation
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Figure 4.6: Energy efficiency with respect to M with coupling at the BS using MRC
and ZF detection/precoding at the BS for two fixed power consumption schemes. In
this example, α = 5 and β = 5.
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Figure 4.7: Energy efficiency with respect to M with coupling at the BS using MRC
and ZF detection/precoding at the BS for two fixed power consumption schemes. In
this example, α = 7 and β = 7.

in BS physical area. However, it is to be noted that the optimal M changes as the

dimensions of D increase. The optimality shifts towards the right as we increase the

physical space. With a spacing of ∆ = 5λ×5λ, the number of antennas M for systems

with fixed power consumption equivalent to that of WIFI and LTE systems to give
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Figure 4.8: An illustration of the trade-off between energy efficiency and spectral
efficiency. In this example, α = 5 and β = 5.

a global EE are 49 and 121 respectively while for ∆ = 7λ × 7λ, M is 81 and 121 for

systems with fixed power consumption equivalent to that of WIFI and LTE systems

respectively. This is due to the changes in p̄max owing to the effects of mutual coupling

which accounts for Mmax. This can be considered a trade-off between the number of

antennas, M , the fixed physical space, ∆ and EE.

At this point, it is worthwhile to note that there is a trade-off between the EE and

SE of the system. This trade-off is in line with [13] and [49], where similar results were

obtained but with different system models. Due to the consideration of the circuit

power consumption at the BS which is a function of M , though the SE increases

asymptotically, the EE does not. To explicitly show this trade-off, Fig. 4.8 considers

the scenario with the bounded dimension of ∆ = 5λ×5λ. It can be seen from the figure

that as the SE of the system increases, the EE of the system increases to a point before

it starts to fall sharply. From (4.65) it is implicit that EE is a quasi concave function

of the parameter p̄. Additionally, p̄max in (4.65) can be looked upon as the optimum

power required to attain the maximum EE for a certain antenna array dimension.

The SE on the other hand is a monotonically increasing function of p̄ as can be seen

from (58). This explains the quasi concavity of the of the plot between SE and EE.

Furthermore, following the course of the previous figures, systems with fixed power

consumption equivalent to that of WIFI systems show better performance than their
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Figure 4.9: Power loss due to mutual coupling with respect to M considering different
array dimensions.

LTE counterparts with respect to EE. p̄ can be of paramount importance to network

engineers while deciding on operating regimes where it is possible to jointly increase

the SE and EE of the system. For other regimes however, p̄ can be set according to

the current traffic demands, for e.g., during night time when the traffic is low, p̄ can

be set to achieve high EE with a constraint on the SE.

Finally to further stress the impact of mutual coupling, in Fig. 4.9 we show the

impact of the number of antennas, M on the power loss due to coupling at the BS

for different antenna spacings. Though the power loss due to coupling has already

been taken into consideration in the previous results and figures, this figure specifically

explains the variation of power loss due to mutual coupling. The settings are kept

similar to Fig. 4.3. It can be seen from the figure that as the spacing between antennas

is reduced, mutual coupling increases and so does the power loss due to coupling.

The large variation between the 3λ × 3λ and the other two curves is due to more

compact physical spacing among the antennas, which results in more loss due to mutual

coupling. As stated before, we aim at restricting the physical space to within 1m2.

Hence, for example, considering about 100 antennas for the case of 3λ × 3λ scenario,

the spacing between any two adjacent antennas is equal to 0.1m, which is less than

half the wavelength of a 900 MHz GSM band and this introduces increasing amount of

mutual coupling with increasing numbers of antennas. The constructive and destructive

superposition of the signals due to mutual coupling is periodic with this decrease in
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separation for a fixed wavelength, which contributes to the periodic behavior of the

power loss.

4.6 Summary

Conventionally, massive MIMO systems are considered to achieve high EE with the

increase in number of BS antennas which might be misleading when antenna coupling

along with circuit power consumptions are considered. We have given an analysis of the

effects of mutual coupling on the EE for realistic massive MIMO systems. Simulation

results show that as the spacing between the antennas is reduced, the coupling among

them increases, resulting in a dip in EE performance. We also reveal that the EE is a

decreasing concave or quasi-concave function of M . A trade-off between the number of

antennas, M , the fixed physical space, ∆ and EE is found. Depending on the physical

space, the optimum number of antennas are found with the objective of achieving high

EE. It is evident that high EE can be obtained but at the cost of reducing M or

increasing ∆. We would like to note that the optimum value of M derived in this

chapter may not directly relate to practical engineering designs, but is an illustration

of the principle that increasing the number of antennas unboundedly is not beneficial

when EE is considered as a design criteria.

The results of this chapter provide adequate insights into how future massive MIMO

BSs can be setup within constrained physical spaces. However, when millimeter wave

frequencies are considered, due to the smaller wavelength, the constraint on physical

space is relaxed significantly and greater number of antennas can be incorporated

within very small physical spacings. Hence, in order to fully realize the potential of

massive MIMO systems, it is mandatory to shift the communication paradigm from

micro wave (µWave) to mmWave frequencies. Accordingly, while we study the rate and

coverage of mmWave networks by assuming directional beamforming in Chapter 5, we

study the performance analysis of a mmWave network, where the BSs are equipped

with massive MIMO antenna arrays in Chapter 6 .

Appendix 4.A Proof of Proposition 4.1

For MRC, γUL−MRC
k =

 pULk ||wk||4
K∑

i=1,i 6=k
pULi |wk

Hwi|2+ ||wk||2

. Dividing both the numerator and

denominator by ||wk||2 and defining w̄i = wk
Hwi

||wk||
, where w̄ is a Gaussian random
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variable with variance tr(ΣM)fi, we have

E{(γUL−MRC
k )−1} =

(
K∑

i=1,i 6=k

pULi E{|w̄i|2}+ 1

)
E
(

1

pULk ||wk||2

)
. (4.66)

Now using the property ||A|| =
√

tr(AHA) and Definition 4.1, we have

E{(γUL−MRC
k )−1} =

(
tr(ΣM)

K∑
i=1,i 6=k

pULi fi + 1

)
tr
[
Σ−1
M

]
pULk (M − 1)fk

. (4.67)

Following a similar approach on (4.33), we obtain (4.37).

Appendix 4.B Proof of Proposition 4.2

For ZF, γUL−ZFk =
pULk

[(WHW)−1]kk
. Hence

E
{[

(WHW)−1
]
kk

}
=

1

Kfk
E
{

tr
[
(WHW)−1

]}
=

tr
[
Σ−1
M

]
pULk (M −K)fk

, (4.68)

which is obtained by using Definition 4.1. Now from (4.33) and (4.38) we obtain (4.40).

Appendix 4.C Proof of Proposition 4.5

For ZF, γUL−ZFk =
pULk

[(WHW)−1]kk
. Hence, from (4.61) we have,

pZFk = p̄(M −K)
[
(WHW)−1

]
kk
. (4.69)

Therefore, using Definition 4.1 and from (4.40), (4.51) and (4.54) we have

pPAZF = Kp̄(M −K)

(
ζUL

ηUL
+
ζDL

ηDL

)
E
{

tr
[
(WHW)−1

]}
= Kp̄(M −K)

(
ζUL

ηUL
+
ζDL

ηDL

)
tr
[
Σ−1
M

]
M −K

= Kp̄ tr[Σ−1
M ]

(
ζUL

ηUL
+
ζDL

ηDL

)
. (4.70)
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Appendix 4.D Proof of Proposition 4.6

We rewrite (4.63) as

ξZF (M) =
K
T

(
T −K(τULτDL)

)
log2(1− p̄K + p̄M)

Kp̄ tr[Σ−1
M ]
(
ζUL

ηUL
+ ζDL

ηDL

)
+KpUE + pCoup +MpBS

. (4.71)

Let (1 − p̄K) = a, p̄ = b, Kp̄ tr[Σ−1
M ]
(
ζUL

ηUL
+ ζDL

ηDL

)
+ KpUE + pCoup = c, pBS = d and

K
T

(
T −K(τULτDL)

)
= f . Therefore, (4.71) implies

ξZF (M) =
f log2(a+ bM)

c+ dM
. (4.72)

In order to prove that the objective function, ξZF (M) is quasi-concave it is sufficient to

prove that the upper contour sets Sψ = {M � 0|ξZF (M) ≥ ψ} of ξZF (M) are convex

for any ψ ∈ R [81]. We investigate the cases when ψ ≤ 0 and ψ > 0. When ψ ≤ 0, the

set is empty in the contour ξZF (M) = ψ. Thus ξZF (M) is strictly quasi-convex when

ψ ≤ 0. Now when ψ > 0, Sψ is equivalent to{
M ≥ 0

∣∣∣∣ f log2(a+ bM)

c+ dM
≥ ψ

}
=⇒

{
M ≥ 0

∣∣∣∣ cψ + dMψ − f log2(a+ bM) ≤ 0

}
.

Let F = cψ + dMψ−f log2(a+ bM). Now, F is strictly convex within the range of M

as its Hessian is positive definite. Hence, Sψ is strictly convex, which concludes that

ξZF (M) is a quasi-concave function of M .

Now using Definition 4.2, we can say that the local maximum of ξZF is also the

global maximum. Furthermore, as M → ∞, ξZF → 0. Since M � 0, the local

maximum is obtained by calculating the first derivative and setting it to zero as shown

below. From (4.72) we have

∂ξZF (M)

∂M
=

∂
(
f log2(a+bM)

c+dM

)
∂M

=
fb

(a+ bM)(c+ dM) ln 2
− fd ln(a+ bM)

(c+ dM)2 ln 2
.
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(4.73)

Now equating the right hand side of (4.73) to zero, we have

b(c+ dM)

a+ bM
= d ln(a+ bM)

=⇒ bc− ad
a+ bM

= d (ln(a+ bM)− 1) . (4.74)

Let ln(a+ bM)− 1 = x. Therefore exp(x+ 1) = a+ bM . Thus (4.74) implies

bc− ad
exp(x+ 1)

= dx

=⇒ bc

de
− a

e
= x exp(x)

=⇒ x = W

(
bc

de
− a

e

)
, (4.75)

where W , known as the product logarithm is the inverse function of f(W ) = WeW for

any complex number W . Substituting x with ln(a+ bM)− 1 we have

Mmax =
exp

{
W
(
bc
de
− a

e

)
+ 1
}
− a

b
. (4.76)

Now, replacing a, b, c, d with their equivalent parameters, we obtain (4.64). Quasi-

concavity thus implies that Mmax is a global maximum and ξZF is increasing for M <

Mmax and decreasing for M > Mmax. Thus, Mmax is the unique optimal M to attain

a maximum ξZF .

Appendix 4.E Proof of Proposition 4.7

This result can be proved similarly to the proof of proposition 6 by changing the

differentiation variable from M to p̄. Accordingly we can parameterize a, b, c, d as

1, (M−K), (KpUE +pCoup+MpBS), Ktr[Σ−1
M ] ×

(
ζUL

ηUL
+ ζDL

ηDL

)
respectively. The quasi-

concavity of ξZF (p̄) follows accordingly similar to the proof in Appendix 4.D. Hence,

the local maximum will also be the global maximum which can be found by setting the

first derivative to zero, i.e.,
∂ξZF (p̄)

∂p̄
= 0. (4.77)

Solving (4.77) in a way similar to Appendix 4.D, we obtain the desired result. The

details are omitted due to space limitations.
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Chapter 5

Relay-Aided Millimeter Wave

Networks

The availability of bands in the range of 20-100 GHz makes millimeter wave (mmWave)

a lucrative prospect in the design of 5G networks [16, 20, 82, 83]. However one distinct

disadvantage of mmWave communication is that the signals at mmWave frequencies

cannot penetrate through obstacles like buildings, concrete walls, vehicles, trees, etc.

These obstacles are usually termed as blockages in a wireless communications scenario.

Among various ways to encounter blockages, one way is to go around the blockages

by incorporating relays. In conventional communication systems, relay aided trans-

mission has been regarded as an effective way to increase the coverage probability,

throughput and transmission reliability of the networks [84]. The use of relays can

be a promising solution for mmWave systems as well to combat the blockage effects

and path losses that are encountered in mmWave networks. Accordingly, multiple re-

lays can be deployed between the sources and the destination of a transmission link.

Performance evaluation of relay aided networks has been widely studied in [85]-[86].

While [85] considers the deployment of relays as a network infrastructure without a

wired backhaul connection, [87] explores the potential of deploying relays to design

a cost effective network. Recently, cooperative relaying has been proposed in order

to extend the coverage, increase the capacity and to provide cost effective solutions.

In [88], authors have studied the coverage probability of relay aided cellular networks

with different association criteria between the base station and mobile station. It has

been shown that coverage probability highly depends on path loss exponents and den-

Reprinted from IEEE Journal of Selected Topics in Signal Processing, S. Biswas, S. Vuppala, J. Xue, T. Ratnarajah, “On the
Performance of Relay Aided Millimeter Wave Networks”, Vol. 10, No. 3, PP. 576-588. Copyright (2016), with permission IEEE.
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sity of relays. Similarly, the achievable transmission capacity has been analyzed in

relay assisted device-to-device networks in [89]. Recently, the performance of Decode-

and-Forward and Amplify-and-Forward strategies with high gain antenna arrays was

characterized in [90]. The numerical results proved that directional antennas are useful

for multi-hop relays. Hence, it is implicit that relays can prove to be an important

tool in the design of mmWave cellular systems because coverage in such systems is a

more acute problem, given the large difference between LOS and NLOS propagation

characteristics.

Inspired by the stochastic geometry approach to analyze the performance of conven-

tional cellular systems, we design a framework for evaluation of the coverage and rate

performance in mmWave networks. However, applying the results of standard cellular

systems to mmWave is non-trivial due to their differences in propagation characteristics

and the use of highly directional beamforming. Directional beamforming was applied

in [82] by considering a simplified path loss model. While in [91] a blockage model

for mmWave is used to analyze the rate and coverage area of such systems, a distance

dependent path loss model along with antenna gain parameters are considered in [18]

to characterize the propagation environment in mmWave systems. Furthermore, we

would like to refer the readers to [16, 17, 91, 18] which develop several mathematical

frameworks to model the propagation characteristics of mmWave networks.

In this chapter, we incorporate relays to aid mmWave networks in order to provide

better coverage and decrease blockage effects on the transmission link. We consider a

stochastic geometry approach to characterize the spatially distributed relays and the

sources. It is assumed that the sources and the relays in the mmWave network follow

two PPPs but are independent of each other. Most works on relay-aided networks

assume that the number of relays in the network is fixed and known. However, such

fixed type network relays may not be suitable for practical outdoor environments when

a network topology dynamically changes. Due to the fact that some relays are in

outage because of blockages in the network, we consider the subset of relays which has

lesser path loss. This consideration leads to a marked Poisson process. In general,

however, one must contend with the mathematical challenges of working with such

point processes.

Furthermore, we conform to two relay selection strategies for tractable analysis,

namely random relay and best relay. The motivation behind the use of a random relay

selection is to capture blockage effects on performance of active set of relays. Specifi-

cally, the end-to-end SNR is characterized using amplify and forward technique where
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the relay obtains a noisy version of the signal transmitted by the source in presence of

blockages and then amplifies its received signal and re-transmits it to the destination

again in presence of blockages. After finding a best random path, it is possible to pro-

vide a bound on the active relays which can participate in the communication. These

relay nodes are the ones that are minimally affected by blockages. Furthermore, we also

consider the best relay selection in order to study the trade-off between performance

and complexity of random relay selection techniques in mmWave networks.

The main contributions of this chapter can be summarized as in the following points:

• We have presented a relay modeling technique in mmWave networks consider-

ing blockages, in which we compute the density of active relays that aid the

transmission.

• A closed form expression for end-to-end SNR is provided and the best random

relay path in a mmWave network using order statistics is calculated.

• To investigate the asymptotic increase in the number of transmission paths, ex-

treme value theory is used and accordingly the maximum end-to-end SNR of

random relay paths is found to approach the Gumbel distribution.

• We have also provided the closed form expression of the SNR distribution for the

best relay having maximum path gain in such a network.

• Finally, an analysis on the coverage probability and the transmission capacity of

relay aided mmWave networks is provided. It is shown that relays improve the

received SNR for mmWave networks for a specific coverage probability.

5.1 Mathematical Preliminaries

In this chapter, we extensively use log-normal random variables to model the shadowing

effects caused due to random blockages in the mmWave network. A few important

results are presented in this section for better understanding of this chapter. However,

we avoid the proofs of any results provided here as they are well known in literature of

probability theory.

Definition 5.1. A log-normal random variable X with parameters µ and σ is defined

as

X = eµ+σZ , (5.1)
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5.2. System Model

where µ and σ are the mean and standard deviation of the variable’s natural logarithm

respectively and Z is a standard normal variable. The PDF of a log-normal distribution

is given by

fX(x;µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 (5.2)

and the CDF is given by

FX(x;µ, σ) =

∫ x

0

fX(p;µ, σ)dp,

=
1

2
erfc

(
− lnx− µ

σ
√

2

)
= Q

(
lnx− µ

σ

)
,

(5.3)

where erfc is the complementary error function, and Q is the cumulative distribution

function of the standard normal distribution.

Lemma 5.1. Let Xj ∼ lnN (µj, σ
2
j ) be n statistical independent log-normally dis-

tributed variables, and Y =
∏n

j=1Xj, then Y is also log-normally distributed with

parameters
∑n

j=1 µj, and
∑n

j=1 σ
2
j .

Lemma 5.2. Let Xj ∼ lnN (µj, σ
2
j ) are independent log-normally distributed variables

with varying σ and µ parameters, and Y =
∑n

j=1Xj. Then the distribution of Y has

no closed form expression, but can be reasonably approximated by another log-normal

distribution Z with parameters[92]

µZ = ln
[∑

eµj+σ
2
j /2
]
− σ2

Z

2
, (5.4)

σ2
Z = ln

[∑
e2µj+σ

2
j (eσ

2
j − 1)

(
∑
eµj+σ

2
j /2)2

+ 1

]
. (5.5)

Lemma 5.3. Let X ∼ lnN (µ, σ2), then aX ∼ lnN (µ+ ln a, σ2), a ∈ R.

Lemma 5.4. If X ∼ lnN (µ, σ2), then 1
X
∼ lnN (−µ, σ2).

5.2 System Model

In this section, we illustrate our system model for a relay assisted mmWave network.

We focus on the communication from multiple mmWave BSs, aided by multiple relays
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Figure 5.1: An illustration of an outdoor mmWave network aided by relays.

to a typical user in the presence of blockages. The user is assumed to be located at

the origin O. We term the direct link between a BS and the user or a relay and the

user as connection link. The link between a BS and a relay is termed as the relay link.

Hereinafter, we use the terms source and destination to represent the mmWave BS and

the user respectively. The specifics of the model are described below.

5.2.1 Network modeling

We consider a relay-aided mmWave ad hoc network consisting of multiple sources

transmitting to a typical destination (reference point) as shown in Fig. 5.1. The

sources in the network are modeled as points in R2 which are distributed uniformly as

a homogeneous PPP ΦS with intensity λS. The relays are also modeled as points of a

uniform PPP, denoted by ΦR, with intensity λR in R2.

5.2.2 Path loss modeling

It is well known that shadow fading heavily depends on the site-specific details of

an environment. More specifically, path loss dependent shadow fading is typically a

result of regression analysis on a signal level measurement represented on a distance

dependent path loss scatter plot. In other words, a path loss law is fitted to the

measurement, and the residual error of the model fit is called shadow fading. The

path loss can be modeled in several ways from practical data accumulated from field

measurements. In this chapter, for analytic tractability, we use the alpha plus beta

model (based on the traditional free space path loss model) given in [16], which takes

into consideration the log-normal shadowing. Accordingly, in a mmWave transmission,
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the path loss (in dB) associated with the transmission between any two nodes xi and

xj can be given as

L(xi, xj) = η + 10α log10 ||xi − xj||+ XN , (5.6)

where ||xi − xj|| is the distance between the ith and jth nodes with {i, j} ∈ Z+ and

XN ∼ N (0, σ2). However, it is to be noted that the sources and the relays can be either

LOS or NLOS. Let the path loss at a fixed small reference distance, xi − xj = 1 be

η. Then for such a model, α can be physically interpreted as the path loss exponent.

Moreover, the parameters (α, η) can be looked upon as the floating intercept and slope

of the best linear fit data. In that case, it may not be necessary to attribute (α, η) with

any specific physical interpretation. The deviation in fitting (in dB) is modeled as a

Gaussian random variable XN (Lognormal in linear scale) with zero mean and variance

σ2. Accordingly, α, η and σ2 are altered for each of the two scenarios.

According to [83, 16], the alpha plus beta model can be compared to the free space

path loss model for a certain range of distances (30m-200m). For millimeter wave

networks, due to path loss sensitivity, the typical communication range falls under

200m. Therefore, considering the alpha plus beta model is a viable approximation for

such high frequency communications.

In mmWave networks, small scale fading does not have as much impact on transmit-

ted signals as compared to lower frequency systems. However, blockages and shadowing

are more significant in such systems. It is extensively mentioned in literature [16, 20]

that in mmWave analysis, small scale fading can be ignored. Hence, ignoring fading

and considering only shadowing, the probability density function of XN in (5.6) can be

defined as

XN ∼ fXN (x;µc, σc) =
1

x
√

2πσc
exp

(
− (log x− µc)2

2σ2
c

)
, (5.7)

where the parameters, µc and σ2
c follows from [18] and x > 0.

5.2.3 Directional beamforming modeling

Due to the small wavelength of mmWaves, directional beamforming can be exploited

for compensating the path loss and additional noise. Accordingly, antenna arrays are

deployed at the source, relays and the destination. In our model, we assume all the

sources and the relays to be equipped with directional antennas with sectorized gain
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pattern. Let θ be the beamwidth of the main lobe. Then the antenna gain pattern for

a source, relay or destination node about some angle φ is given as [17]

Gq(φ) =

{
Gmax
q if|φ| ≤ θ

Gmin
q if|φ| ≥ θ

}
, (5.8)

where q ∈ S,R,D, φ ∈ [0, 2π) is the angle of boresight direction, G
(max)
q and G

(min)
q are

the array gains of main and side lobes, respectively. The typical user does not have

the same directional gain pattern but can be modeled similarly1. For simplicity, in

this work only the source and the relays are considered to have directional gains, while

the user is assumed to have omni directional antennas similar to [18]. Hereinafter,

we assume the antenna beams of the connection link and the relay link to be aligned.

Hence, the total gain on a desired connection link is Gmax and the relay link is (Gmax)2.

5.2.4 Blockage modeling

Blockages in the network are usually concrete buildings which cannot be penetrated by

mmWave signals. In particular, the blockages form a process of random shapes, e.g.

a Boolean scheme of rectangles [91], on the plane. We consider the blockages to be

stationary blocks which are invariant with respect to direction [94]. The link between a

BS and a typical user can be either LOS or NLOS2. Different researchers have tried to

model blockages with varied level of success based on different geographical scenarios.

In [95] a PPP based random blockage model is used, where e−βr is considered to be the

probability of LOS with β being the blockage density and r the distance between the

transmitting and receiving nodes. Another model that has been considered in literature

is a fixed LOS probability model as was depicted in [18]. Leveraging the modeling of

blockages from this later model, we consider a two state statistical model for each

and every link. The link can be either LOS or NLOS. LOS link occurs when there is

a direct propagation path between a source and the destination while NLOS occurs

when the link is blocked and the destination receives the signal through reflection from

a blockage. Due to the presence of blockages, only a subset of the BSs ΦBS are LOS

to the typical user. Let the LOS area within a circular ball of radius rD be centered

around the reference point. Then, if the LOS link is of length r, the probability of the

1Several existing analytical models for single user analog beamforming enabled mmWave networks
also assume an equivalent single input single output (SISO) like system with directional antenna gains
by abstracting underlying signal level details [93].

2The notations {L, N} and {LOS, NLOS} will be interchangeably used hereinafter and both sets
signify the same meaning.
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connection link to be LOS is given by pL if r < rD and 0 otherwise. Similarly, the

NLOS probability is represented by pN. The parameters r and rD are dependent on the

geographical and deployment scenario of the network. The analytical results derived

in this chapter are based on the blockage model proposed in [18] and the numerical

analyses are done based on the data accumulated by [18] and [95].

We would like to note that the LOS probabilities are assumed to be independent

between different links, i.e., we ignore potential correlations of blockage effects between

links. However, in reality the LOS probabilities for different links may not be indepen-

dent. Essentially in an urban area, neighbouring BSs might simultaneously be blocked

by a large building. Nonetheless, in [91], it was shown that ignoring such correlations

cause only a minor loss of accuracy in the SINR evaluation. Furthermore, the PPP

based random blockage model will be considered in Chapter 6.

5.2.5 SNR modeling

Recent studies on mmWave networks [16, 18, 20], state that in contrast to conventional

cellular networks which are usually strongly interference limited, mmWave networks

in urban settings are more noise limited. This is due to the fact that in the presence

of blockages, the signals received from unintentional sources are close to negligible.

In such densely blocked scenarios (typical for urban settings), SNR provides a good

enough approximation to signal to interference plus noise ratio (SINR) for directional

mmWave networks. Additionally, such an assumption also aids us in deriving closed

form expressions and hence, interference at the destination is ignored hereinafter.

In order to characterize the SNR distribution, we assume a two slot synchronous

communication throughout the chapter. While the active relay nodes are allowed to

receive from the sources in the first time slot, the destination is allowed to receive from

the active relay nodes and the sources in the second time slot. We also assume that

all relays co-operate with each other while transmitting and are deployed with a guard

zone3.

3The guard zone resembles a specific SNR which must be fulfilled in order for the relay node to be
deployed. This is explained in Section 5.3 of this chapter.
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First time slot

Consider that the relay nodes are served by the sources during this time slot. The SNR

at any specific relay, R can then be formulated as

γiSR =
PS(Gmax)2XN r−αiSR

N0

, (5.9)

where PS is the transmit power of the source, rSR
4 is the length of the link from the

source to relay, α is the path loss exponent, i ∈ {L, N} and N0 is the noise power.

Second time slot

Consider that the destination, D is served by a source with or without the help of relay

R during this time slot5. Then the SNR at the destination D receiving signal only

from the source, S can be given as

γiSD =
PSG

maxXN r−αiSD

N0

. (5.10)

Similarly, the SNR at the destination D receiving signal only from the relay, R can

be given as

γiRD =
PRG

maxXN r−αiRD

N0

, (5.11)

where PR is the transmit power of the relay. Note that for simplicity, we have omitted

the subscript ‘max’ from G in all our subsequent discussions. Hereinafter, for analytical

tractability, we consider that the transmitted power at the source and relay is the same

and given as P .

Now, considering that the source transmits to the destination only through the aid

of the relay, the coverage probability of such a relay-aided transmission link with a

target SNR, T is given by

PcR = 1− P{γSR < T}P{γRD < T}. (5.12)

4rAB is the distance between the A-th and B-th nodes.
5This model of considering the destination to receive the signal from the source as well as relay in the

second time slot can be useful when considering a maximal ratio combining scheme at the destination
which would take into consideration both the signals from the relay and the source provided that the
strength of the signal is above a certain threshold.
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Relay

Source Destination

Figure 5.2: Topology of a relay assisted network link.

5.3 Relay aided MmWave Transmission

Fig. 5.2 shows an example of a transmission from a source to a destination through the

aid of a relay. With the assistance of relays, it is possible to act on the constraints of

path loss in a mmWave network and also extend the communication distance, while also

improving the quality of communication. In this section we characterize the conditions

for relay aided transmission in mmWave communication networks. Further, we would

like to note that relay cooperation takes place if and only if the SNR at the destination

from the source through a direct link is not good enough and falls below a certain

threshold. In order to avoid the aid of relay, we define a required outage constraint

γout for the source-to-destination link as

Pout = P
{
γiSD < γout

}
. (5.13)

5.3.1 Preliminaries on active relays

Due to the impact of blockages, some of the relay nodes may not be available or capable

to support the transmission from source node to destination node and only a subset

of the relay nodes may participate in the communication. In this subsection we give

an insight on such active relays which are available to aid the communication from the

source to the destination.

Consider the distribution of relays follows a terrain according to its coverage prob-

ability, which depends on the blockages and deployment constraints. Hence, the distri-
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bution is far from being spatially uniform. Such conditions are clearly distinct from the

random and uniformly distributed network assumptions that lead to a Poisson number

of nodes per unit area i.e., the PPP model – commonly adopted in current literature

[88, 96, 86]. Some recent works such as [97, 98] focus on the impact of topological

models on random networks. To elaborate, in [97] hard core point processes (HCPPs)

are proposed to model networks with carrier-sensing multiple access (CSMA) tech-

niques, and in [98] the coverage probability of cellular systems are analyzed under

PPP, HCPP and Strauss Process (SP) models. These models are further compared

against field data, which demonstrate that indeed HCPP and SP lead to significantly

more accurate results than the PPP model commonly used earlier. All in all, it is

now an established fact that as far as the topological models for random networks are

concerned, the PPP alone is not sufficient, and hence alternative models need to be

considered. Motivated by such recent results [98, 97, 99], we consider the Matérn

HCPP (MHCPP) model in order to characterize the distribution of active relays in the

following analysis6.

Since we model the distribution of relays in our network with a MHCPP, it is

worthwhile to mention here some properties of MHCPP. In the MHCPP Type I, all

the points obtained from a stationary PPP of intensity λp are retained if and only if

they are at a distance of at least d from all other points. Whereas, in MHCPP Type

II model, points are obtained by deleting the primary points that co-exist within a

distance less than the hard core distance from another primary point having a lower

mark.

For a MHCPP model, which is generated from a homogenous PPP, Φp, with inten-

sity λp and repulsive distance d, the intensity λm of the MHCPP is given by [97, 99]

λm =
1− exp (−λpπd2)

πd2
. (5.14)

Consequently, the probability of a point being retained from Φp is

P =
λm
λp

=
1− exp (−λpπd2)

λpπd2
. (5.15)

These hardcore models (Type I and Type II) of point processes are not directly ap-

plicable to fading and blockage environments. This is due to the fact that the density

6The HCPP is considered in this chapter to find the density of active relays only.
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of active number of nodes depends on random fading gains and blockage processes. To

tackle the impact of fading, [99] extends the hard core process analysis for the case of

Rayleigh fading and [97] derives the active number of transmitters under generalized

fading channel by employing MHCPP Type II model. In this chapter, we leverage

the results from [97] and incorporate additional blockage effects. It is a well known

fact that the characterization of non-PPP models (general topologies) via the Laplace

Functional and probability generating functionals is in reality a challenging problem.

Therefore, the hard-core point processes are quite difficult to analyze due to the simple

reason that their probability generating functionals do not exist [100, 99, 101]. How-

ever, it has been argued in [100, 99] that the nodes further away from the hard core

distance, d can still be modeled as a PPP. Furthermore, it has been shown in [101] that

MHCPP type II is better approximated with a PPP rather than Type I. Hence, we

take into account such an approximation for analytical tractability and consider that

the distribution of relay nodes follows a PPP, while the density of the relay nodes is

approximated by that of a modified hard-core PPP with density λ̄R.

5.3.2 Density of active relays

In this subsection, we aim to find the intensity of active relays by generalizing the

traditional MHCPP for blockage environments in mmWave. To overcome underesti-

mation flaw, in [97], authors made an assumption of a bounded region, a circle with a

deterministic radius, where the nodes contribute to the event of interest. In our model,

the contribution of each relay node to the event of interest will be Bernoulli distributed

with a parameter that accounts for both shadowing and blockage process. The proce-

dure to find active density of relay nodes follows similar steps as in [97]. However, the

neighborhood success probability varies due to the addition of a blockage process in

our system.

Let ΦR be the primary point process and Φ̄R be the generalized MHCPP. In order

to generalize the traditional MHCPP with respect to SNR, the hard-core distance d

is replaced with the received SNR. A relay node is retained in Φ̄R if and only if it

has the lowest mark in its neighborhood set of relays N(xi) which is determined by

dynamically changing the random-shaped region defined by instantaneous path gains.

Lemma 5.5. Let Pζ be the neighborhood success probability. Now, if the retaining

probability of a relay node is PR = 1−e−NPζ
NPζ

with the expected number of nodes in the

disc N , then the intensity of active number of relays is given by λ̄R = λRPR [97,
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Theorem 4.1].

Therefore, in order to find the retaining probability, PR in Lemma 5.5, one must

compute the neighborhood success probability, Pζ . As mentioned earlier, the neigh-

borhood set of any relay node is determined by bounding the observation region by

Bxi(rd), where rd is a sufficiently large distance, such that the probability for a relay

located beyond rd to become a neighbor of xi is a very small number, %. Therefore,

P
{
P (Gmax)2XN
N0||xi − xj||α

> γR| ||xi − xj|| > rd

}
≤ %, (5.16)

where γR is the minimum required target SNR.

Hence, rd can be determined as

rd =
(
P (Gmax)2

N0γR
F−1
XN (%)

)1/α

, (5.17)

where, F−1 denotes the inverse of the CDF of XN .

Then the neighborhood success probability within the bounded region can be de-

fined as

Pζ = P{γxi,xj ≥ γR|xj ∈ Bxi(rd)}. (5.18)

Therefore, considering blockages (5.18) can be written as

Pζ =
∑
i∈L,N

pi

rd∫
0

(
1− FXN

(
N0γRr

αi

P (Gmax)2

))
rdr,

=
∑
i∈L,N

pi

rd∫
0

1−Q

 log

(
N0γRr

αi

P (Gmax)2

)
− µc

σc


 rdr,

(5.19)

where, Q(.) is the cumulative distribution function of the standard normal distribution.

A closed form expression for Pζ can be given as

Using (5.20), we can derive the generalized MHCPP process of the relays and their

active nodes which can withstand the blockage effects in the network to transfer the

information with less outage probability. In practical scenarios, selecting a relay from

an observation (or defined) region with a small neighborhood set of relays is opti-
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Pζ =
1

4
rd

2
∑
i∈L, N

pi

[
− exp

(
2 (αiµc + σ2

c )

α2
i

)(
N0γR

P (Gmax)2
rαid

)−2
αi

(5.20)

erf

αiµc − α log
(

N0γR
P (Gmax)2 r

αi
d

)
+ 2σ2

c
√

2αiσc

 + erf

µc − log
(

N0γR
P (Gmax)2 r

αi
d

)
√

2σc

 .

mal. Since the computational complexity increases with number of relays, a carefully

designed region can be taken into consideration.

From the above analysis, it is clear that the achievable capacity of relay assisted

link depends on the distance between the relay and the reference point. Assume that

our communication is taking place within radius rd, then source-destination pair should

select the optimal relay with distance less than rd. In the subsequent section, we discuss

relay selection techniques based on the best end-to-end SNR7 and minimum path loss.

Here, we follow two strategies for tractable analysis, namely, random relay and best

relay while taking into consideration the blockage effects. The random relay selection

technique is used to capture the blockage effects on the performance of active set

of relays while, the best relay selection is studied in order to weigh on the trade-off

between performance and complexity of random relay selection techniques in mmWave

networks.

5.4 SNR Analysis of the Relay Schemes

In this section, we analyze the SNRs of two relay selection techniques in order to

determine the best technique suitable for a mmWave communication. In the first

technique, we select the path with the best SNR from a set of random paths. The

random paths can be looked upon as the end-to-end SNR from the source to the

destination through the aid of relay. In the second case, we select the best relay first

based on the minimum path loss and then use that relay to transmit the signal to the

destination from the source.

7The end-to-end SNR signifies the total SNR from source to the destination through the aid of
relay using amplify and forward technique [86].
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5.4.1 Best path selection based on end-to-end SNR

In this subsection, in order to select any random path, we first select a random relay

and then compute the end-to-end SNR8 distribution of that path. Subsequently, we

select the path with the best SNR distribution from an asymptotic point of view (when

the number of links tend to infinity in a dense network) by using extreme value theory.

As stated before, any node can receive a signal either through LOS or NLOS link.

We now compute the SNR distribution accounting for both the LOS and NLOS links.

Thus the achievable SNR between the source and the destination can be given as9

γSD = γL
SDpL + γN

SDpN, (5.21)

where γL
SD and γN

SD are the LOS and NLOS SNRs respectively for the links from source

to destination and pL and pN are the probabilities that the links are LOS and NLOS

respectively. Similarly, the achievable SNR between the source and relay and the relay

and destination are given respectively as

γSR = γL
SRpL + γN

SRpN and (5.22)

γRD = γL
RDpL + γN

RDpN. (5.23)

Considering the LOS regime, the SNR distribution can be formulated as

FγL
SD

(z) = P
{
P GmaxXN
rαLN0

< z

}
,

= P
{
XN <

zrαLN0

P Gmax

}
,

= Q

 log

(
zN0r

αL

P Gmax

)
− µL

SD

σL
SD

 , (5.24)

where, Q(.) is the cumulative distribution function of the standard normal distribution.

8We would like to refer the readers to [86, 102] for an elaborate description on this technique.
9Since we model the links between the sources and the destination as LOS and NLOS which are

independent of each other, we leverage the notion of mark from stochastic geometry to further split
the Poisson Point Processes into two independent LOS and NLOS sub processes.
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Using Lemma 5.3, the distribution of γLSDpL can now be expressed as

FγL
SD

(z) = Q

 log

(
zN0r

αL

P Gmax

)
− (µL

SD + pL)

σL
SD

 . (5.25)

Similarly the γN
SD can be characterized. Therefore, now the total SNR can be

calculated using equation (5.21). However, γL
SD and γN

SD are two independent log-

normally distributed variables with different µ and σ parameters. In this scenario,

the distribution of the total SNR γSD has no closed form expression, but it can be

approximated by another log-normal distribution using Lemma 5.2 with parameters

µSD and σ2
SD.

In order to capture the blockage effects on both sides of relay (Source-to-Relay and

Relay-to-Destination), we consider the end-to-end SNR to find the path with the best

SNR distribution.

For practical systems, the relay gain is given by G2 = (1/(P (Gmax)2XN rαi + N0)).

However, assuming the ideal relaying gain10 i.e., G2 = (1/(P (Gmax)2X rαi)), the end-

to-end SNR of the link through the aid of relay can now be given as [86, 102]

γ̂SRD =
γSRγRD

γSR + γRD

, (5.26)

where the subscript SRD stands for the path from the source to the relay to the

destination.

Proposition 5.1. The end-to-end SNR in a relay aided mmWave network γ̂SRD is

log-normally distributed with new parameters µ̂SRD and σ̂SRD.

Proof. Let X = γSRγRD and Y = γSR + γRD, then in order to prove that Z = X
Y

is

log-normally distributed, it is sufficient to prove that Z is a log-normal random variable

with parameters µZ and σZ .

Now, from Lemma 5.1, we have

X ∼ logN (µX , σ
2
X), (5.27)

10The adoption of the ideal relaying gain is mainly for analytical tractability and can act as a tight
upper bound for the practical relaying gain. This method is widely used in literature [86, 102] to
approximate relay gains.
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where

µX = µSR + µRD, (5.28)

σ2
X = σ2

SR + σ2
RD. (5.29)

Using Lemma 5.2, Y can be tightly approximated with another log-normal random

variable with parameters

µY = ln
[∑

eµj+σ
2
j /2
]
− σ2

SD

2
, (5.30)

σ2
Y = ln

[∑
e2µj+σ

2
j (eσ

2
j − 1)

(
∑
eµj+σ

2
j /2)2

+ 1

]
. (5.31)

Again, using Lemma 5.1, the distribution of γ̄R = X
Y

can be given as another log

normal variable which is the required result.

Proposition 5.2. Let γ̄ = max{γ̂SRDi}. Then the probability distribution of the best

path from source to the destination which exhibits the maximum end-to-end SNR can

be given as

Fγ̄ =
n∏
i=1

Fγ̂SRDi
= (Fγ̂SRDi

)n, (5.32)

where n = K × N gives the total number of paths available for a given K number of

sources and N number of relays.

Proof. Let FY (y) denote the CDF of Y , then the CDF of the maximum of identically

distributed random variables X1, X2, · · · , Xn can be given as

FY (y) = P{Y < y} = P{x1 < y, x2 < y · · ·xn < y} (5.33)

Therefore, FY (y) can be obtained using order statistics [103] as follows

FY (y) = P{Y < y} =
n∏
k=1

P{xk < y} = (FXk(y))n. (5.34)

Proposition 5.2 thus follows from (5.34). Furthermore, the parameters K and N

can be computed from the mean of the expected number of source and relay nodes.

Mean of Expected Number of Source Nodes: For given values of propagation pa-
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rameters in bounded region, one can obtain the expected number of source nodes

present in the communication vicinity by describing the propagation process. Let

ΦS = { rαiN0

XP (Gmax)2 , r ∈ φ} be the path loss process, where i ∈ {LOS, NLOS}. Then

the expected number of nodes can be given as

ΛS((0, t]) = 2πλS

∫
R+

P
{

rαiN0

XNP (Gmax)2
< t

}
rdr (5.35)

The closed form expression for the above integral follows as in [18]. The mean of the

expected number of the relay nodes follows similarly with density λ̄R.

5.4.1.1 Asymptotic analysis

We now investigate the asymptotic behavior of the distribution of the maximum SNR

γ̂ of the best relay path with the help of extreme value theory. This is to obtain insights

into coverage in very dense networks. In general, extreme value theory is used to deal

with extreme values, such as maxima or minima of distributions when the number of

random variables increases asymptotically. Let ϕis be the realizations of a random

variable ϕ̄, where ϕis are independent and identically distributed with i = 1, 2, . . . , n.

By extreme value theory [104], if there exist constants a ∈ R, b > 0, and some non-

degenerate distribution function F (k) such that the distribution of ϕ̄max−a
b

scales to

F (k), then F (k) converges to one of the three standard extreme value distributions:

Gumbel, Frechet and Weibull distributions, where ϕ̄max = max(ϕ1, ϕ2, . . . , ϕn). There

are only three possible non-degenerate limiting distributions for maxima, which can be

expressed as

1. F1(k) = e−e
−k
, −∞ < k <∞

2. F2(k) = e−k
−α
u(k), α > 0

3. F3(k) =

{
e−(−k)α , α > 0, k ≤ 0

1, k > 0

where u(k) is the step function.

Proposition 5.3. Let γ̄ = max(γ̂SRD1 , γ̂SRD2 , . . . , γ̂SRDn) denote the maximum end-to-

end SNR where γ̂SRDis are independent and identically distributed and n ∈ Z+. Then,

the distribution of γ̄, Fn converges to reduced type 1 asymptotic distribution, F1(k)
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given as

Fn(ank + bn) = e(−e)(−k)

, ι (5.36)

where

an = ιnσe
µ̂SRD+κnσ̂SRD (5.37)

and

bn = eµ̂SRD+κnσ̂SRD , (5.38)

with κn = 2ι2n−(2 log ιn−log 2+log 4π)
2ιn

and ιn =
√

2 log n.

Proof. The proof of this proposition follows from Proposition 5.1 where it was proved

that γ̄ follows lognormal distribution. The distribution of γ̄, Fn(k) belongs to the

domain of attraction of the limiting distribution, if it results in one limiting dis-

tribution for extreme. The limit law for Fn(ank + bn) when F(n) has the lognor-

mal law is F1(k). This can be verified by ascertaining that the Von-Mises crite-

rion is satisfied. The Von-Mises condition [104, 105] associated with the quantity

γ̄ = max(γ̂SRD1 , γ̂SRD2 , . . . , γ̂SRDn) requires that

lim
k→∞

d

dk

[
1− Fγ̂SRD

(k)

fγ̂SRD
(k)

]
= 0, (5.39)

which indicates that γ̄ follows a Gumbel Distribution. Similarly, our result follows from

[106], where it was also verified that the limit law for a distribution function when it

follows lognormal law is of type F1(k). The derivation of parameters an and bn are

given in Appendix 5.A.

5.4.2 Best relay selection based on least path loss

The motivation behind the use of best and random relay selection is to study the

trade-off between performance and complexity of relay selection techniques in mmWave

networks. The active relays which can participate in the communication are the ones

that are minimally affected by blockages. Such a relay with the least path loss can be

considered to be the best relay.
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Proposition 5.4. In a relay aided mmWave network, the SNR distribution for the

best relay can be given as

Fγbest(t) = exp

−∑
i∈L,N

pi
αi

2πλ

(
P (Gmax)2

N0

) 2
αi
×
∞∫
t

y
−2
αi
−1

Ξ( 2
αi

)(y/rd)dy

 ,

(5.40)

where Ξj(y) = exp(σ2j2/2 + µj)Q
(
−σ2−log(y)+µ

σ

)
is the j-th truncated moment of X .

Proof. The proof is given in Appendix 5.B.

Hence, using the above proposition, we select the best relay from a set of active

relays which are obtained as stated in section 5.3. At this point it is worthwhile to

mention that compared to the decode and forward relaying technique, the amplify and

forward relaying may amplify the noise as well. Considering a NLOS condition (dense

blockage environment), best relay scheme may not be suitable in amplify and forward

systems as it will select the best among the worst channels and amplify the noise. In

such a condition, decode and forward relay is advantageous over amplify and forward

although it has higher complexity.

5.5 Coverage Probability and Transmission Capac-

ity

The relays which are located at larger distances can suffer from large path loss and incur

high maintenance costs. Thus, the relay selection method should be carefully designed

in order to achieve higher coverage rates. In this section, we analyze the performance

of our system based on two performance metrics, namely coverage probability and

transmission capacity. The coverage probability is defined as the probability that the

destination is able to receive a signal with some threshold SNR T , i.e., Pc = P[γ >

T ]. That is, the probability of coverage is the complementary cumulative distribution

function (CCDF) of the SNRs over the network. On the other hand, the transmission

capacity of a network can be defined as the achievable rate of successful transmission

per unit area, given the constraints of certain connection outage. This metric is of

interest since the characterization of the capacity of every individual active link in a

large random network is impractical. Mathematically, the transmission capacity of a
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Table 5.1: Simulation Parameters

Notation Parameter Values
rd Radius of the bounded region 200 meters
λs Density of source nodes 0.001
pLOS LOS probability 0.12
Gmax Antenna Gain 18dB
α Path loss exponent LOS-2, NLOS-4
P Node transmit power 1 Watt
N0 Noise power Thermal noise

+ 10dB noise figure.
rSD Link distance 35 meter

relay aided system is defined as

τ = (λR + λS)R(1− P(γ > T )), (5.41)

where R is the rate of a random end-to-end link defined as

R = log2(1 + T ), (5.42)

where T is the minimum threshold SNR. P(γ > T ) follows from Proposition 5.3 and

Proposition 5.4 depending on the relay selection scheme. However, for the case of

decode and forward technique, the average rate, R is calculated as in [84].

5.6 Numerical Results

In this section, we validate the system model and also verify the results mentioned in the

propositions. In general, the computations are done through Monte Carlo simulations

which is then used to validate the analytical results11.

We consider the mmWave bandwidth of 2 GHz and carrier frequency 73 GHz.

Unless stated otherwise, most of the values of the parameters used are inspired from

literature mentioned in the references [18, 17]. For the system guidelines, we mention

these parameters and their corresponding values in Table 5.1.

Fig. 5.3 shows the variation of the active number of relays with respect to the

11The parameters considered for simulation in this chapter have been taken from recent mmWave
studies [16, 20, 18].
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Figure 5.3: Intensity of active relays versus λR. The minimum required target SNR
was kept at 5dB.
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Figure 5.4: Comparison of the SNR coverage among the direct link, best path link
and any random link from the source to the destination.

intensity of the relays before thinning for different blockage outage probabilities. In

order to find the active number of relays, we need to find the retaining probability

which can be evaluated by (5.20). For a given blockage probability and given density

of the relays, one can identify the required number of active relays in order to meet

the transmission requirement in the mmWave network.
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Figure 5.5: Comparison of the SNR coverage between the best path link and any
random link from the source to the destination for LOS scenario.

In Fig. 5.4 we show the comparison of the coverage probability of the SNR among

three links, namely the direct link between the source and the destination, the best

path link from the source to the destination through the aid of relays and any random

path link which also takes relay into consideration. It is evident from the figure that

relay aided transmission has a better coverage probability when compared to a direct

link between a source and a destination. It can also be seen that the best end-to-end

link has a better coverage probability compared to any random link. Furthermore, we

would like to stress on the fact that there is a steep fall on the coverage probability

due to the shadowing effects caused by blockages.

Fig. 5.5 and Fig. 5.6 show the coverage probability for LOS and NLOS relay

links respectively. The LOS scenario arises when we consider that all NLOS links are

completely attenuated due to blockages and vice versa. In other words the path loss

exponent for such links is very large for the respective scenarios and hence these links

can be ignored when calculating the coverage probability of the system. The direct

link from source to destination without the aid of the relay for NLOS is shown in the

figure just for the sake of comparison. It is evident from the figures that relay aided

transmission has better coverage probability to a direct link between the source and

destination.

In Fig. 5.7 we give insights into the coverage probability of the system in very

dense networks. This figure is an attempt at validating Proposition 5.3 where we state
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Figure 5.6: Comparison of the SNR coverage between the best path link and any
random link from the source to the destination for NLOS scenario.
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Figure 5.7: Comparison of the SNR coverage among the best path links when the
number of links increase asymptotically.

that when the number of SNR links tend to infinity the distribution tends toward the

non-degenerate limiting distribution F1(k). From the figure it can be seen that as

we increase the value of n, the curves converge towards the asymptotic curve which

represents the Gumbel distribution. In the figure, n1, n2 and n∞ correspond to one,

two and infinite number of paths respectively. Increasing n can be looked upon as
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Figure 5.8: Coverage probability comparison between the direct link, the best path link
and best relay link from the source to the destination.
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Figure 5.9: Coverage probability comparison of different blockage models under best
relay strategy.

increasing the density of the nodes which in turn increases the coverage probability of

the system.

While the best path link is conditioned on the best end-to-end SNR between the

source and the destination, the best relay is conditioned on the least path loss. Ac-

cordingly, Fig. 5.8 shows the trade-offs of the coverage probability of the SNR among
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Figure 5.10: Transmission capacity comparison between the direct link and the best
path link from the source to the destination generated through the aid of relays.

three links, namely the direct link, the best path link and the best relay link. It can

be seen from the figure that the best relay transmission scheme out performs the other

two links. However, the best relay scheme has a high implementation complexity, since

it requires high signaling overheads and channel state information from all potential

relays. For systems with limited computational capabilities, the best path link is a

viable option, but at the expense of reduced coverage. Furthermore, it is worth noting

that the performance of the best relay is always an upper bound for the best path.

Fig. 5.9 gives the comparison between our model and a general blockage model, for

e.g., the ones considered in [17, 93]. It is evident from the figure that for a given relay

and blockage density, performance gap of the coverage probability considering the best

relay strategy between our model (fixed pL) and the e−βr model [17] is minimal. This

is comparable to the model considered in [17, 93]. We note that the adoption of step

function in our analysis enables faster calculations of the coverage probability, as it

simplifies expressions for the evaluation of the numerical integrals. In dense mmWave

networks, the error due to such an approximation (LOS step model) is generally small

and simplifies the dense network analysis. The step function approximation generally

provides a lower bound of the SINR distribution corresponding to e−βr blockage model

and the errors due to the approximation become smaller when the base station density

increases.

Finally, in Fig. 5.10 we compare the transmission capacity between the direct link
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and the best path link from the source to the destination generated through the aid

of relays. In this case, we have considered the low complexity case of the best path

link. The figure shows the existence of an optimal SNR threshold which depends on

the operating conditions of the network. The convexity of the curve can be understood

from Fig. 5.3 where it was seen that the active number of relays reach a saturation

point after a certain density. Hence, it is quite obvious for the transmission capacity

to reach a optimal point.

5.7 Summary

Blockages can be quite detrimental to the performance of outdoor mmWave networks.

A possible fix for this is to go around the blockages by creating alternative propagation

paths with the aid of relays. Accordingly, potential benefits of deploying relays in

outdoor mmWave networks were investigated in this chapter. Coverage probability

from sources to a destination aided by relays which were modeled as independent

PPPs were studied. By considering blockages in a mmWave network, a relay modeling

technique was given. New relay nodes from a set of relays were derived using generalized

MHCPP. These active nodes are the ones that can withstand the blockage effects in

the network to transfer information with less outage probability. In practical scenarios,

selecting a relay from an observation (or defined) region with a small neighborhood set

of relays is quite optimal. Since the computational complexity increases with the

number of relays, a carefully designed region can be taken into consideration. Relay

aided transmission was seen to improve the SNR by around 5dB for a specific coverage

probability. Furthermore, closed form expression for end-to-end signal to noise ratio

(SNR) was provided along with the computation of the best random relay path using

order statistics. In very dense networks, the number of links can be quite large. To

investigate such a scenario, extreme value theory was used to analyze the maximum

end-to-end SNR of random relay paths. It is quite evident from our analysis that the

use of relays can prevent the attenuation of the desired signal by negating the effects

of blockages, which in turn also increases the coverage probability and transmission

capacity of mmWave networks.

We would like to note that this chapter relies on a directional gain model for the

relays to understand the impact of relay deployment and blockages in the environment

on the coverage and rate performance of mmWave networks. The analytical directional

gain model assumes an equivalent SISO-like system with directional antenna gains by
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abstracting underlying signal level details. Accordingly, in Chapter 6 we consider a

multi-user MIMO mmWave network with multiple BSs, where the BSs are equipped

with very large antenna arrays. Further, while in this chapter, the fixed blockage

model is considered to analyze the rate and coverage area of mmWave systems, the

exponential blockage path loss model will be considered in the following chapter to

characterize the propagation environment in such systems.

Appendix 5.A Proof of Proposition 5.3

In order to evaluate the constant an and bn we first define ξ̄n = (log γ̄n − µ̂SRD)σ̂SRD,

where µ̂SRD and σ̂SRD follows from Proposition 5.1. We also define ζn = n[1− Fξ̂(ξ̂n)],

where ξ̂i is a realization of ξ̄ with i ∈ Z+ and Fξ̂(γ̂SRD) =
∫ γ̂SRD

−∞ (2π)
−1
2 e(

−γ̂SRD
2

2
)dγ̂SRD.

Now, we have from [107] that as n→∞, ξ̄n = κn − ιn log ζ, where

κn =
2ι2n − (2 log ιn − log 2 + log 4π)

2ιn
, (5.43)

and

ιn =
√

2 log n. (5.44)

Also, P{ζ ≤ u} = 1− e−u, u ≥ 0. Therefore,

P{ξ̄n ≤ ξ̂} = e−e
−(ξ̂−κn)

ιn for ∞ < ξ̂ <∞. (5.45)

Now, from the definition of ξ̄n we have

P{γ̄n ≤ γ̂SRD} = e
−
(
γ̂

−1
ιnσ̂SRD e

(
−(µ̂SRD)
ιnσ̂SRD

+κn
ιn

))
for γ̂SRD ≥ 0. (5.46)

Let ki be a realization of a new random variable ψn. Then, defining

ψn = εn(γ̄n − 1), (5.47)
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where εn = 1
ιnσ̂SRD

, we have

P{ψn < k} = P
{
γ̄n < 1 +

k

εn

}

= e

{
−(1+ k

εn
)
−εn

e
( µ̂SRD
ιnσ̂SRD

+κn
ιn )

}
. (5.48)

Also, for −∞ < k <∞, we have

P
{
γ̄n ≤ e(µ̂SRD+κnσ̂SRD)

(
1+

k

εn

)}
= e

{
−(1+ k

εn
)
−εn

}
. (5.49)

Now, as n→∞, εn →∞. Therefore,

lim
n→∞

P

{
γ̄n ≤ e

(
µ̂SRD
ιnσ̂SRD

+κn
ιn

) 1
εn

(
1 +

k

εn

)}
= e−e

−k
. (5.50)

Hence, the constants an and bn can respectively be identified from (5.50) as

an = ιnσ̂SRDe
µ̂SRD+κnσ̂SRD (5.51)

and

bn = eµ̂SRD+κnσ̂SRD . (5.52)

Appendix 5.B Proof of Proposition 5.4

Let Φ =
{
xi = P (Gmax)2

N0
r−αi

}
be path gain process, where i ∈ {L, N}. By using

Mapping theorem [43], the density function under the effect of blockages can be given

as

λ(x) =
∑
i∈L,N

pi2πλ

αi

(
P (Gmax)2

N0

) 2
αi
x
−2
αi
−1
. (5.53)
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Since our propagation process Φ is also effected by shadowing, using the displacement

theorem [43], the updated density in bounded region can be given as

λ̂(y) =

rd∫
0

λ(x)ρ(x, y) dx, (5.54)

where

ρ(x, y) =
d

dy
(1− FXN (y/x)) = − 1

x
fXN (y/x). (5.55)

Now, using (5.53) and (5.55), (5.54) can be evaluated as

λ̂(y) =
∑
i∈L,N

pi
αi

rd∫
0

2πλ

(
P (Gmax)2

N0

) 2
αi
x
−2
αi
−1
ρ(x, y) dx

=
∑
i∈L,N

pi
αi

rd∫
0

2πλ

(
P (Gmax)2

N0

) 2
αi
x
−2
αi
−1

(−fX (y/x) 1
x
) dx

=
∑
i∈L,N

pi
αi

rd∫
0

2πλ

(
P (Gmax)2

N0

) 2
αi x

−2
αi

y
fX (y/x)(− y

x2 ) dx

(z= y
x

)
=

∑
i∈L,N

pi
αi

2πλ

(
P (Gmax)2

N0

) 2
αi
y
−2
αi
−1

∞∫
y/rd

z
2
αi fX (z) dz. (5.56)

Using the void probability of a PPP, the path gain distribution for best relay in

interval of (t,∞) can thus be given as

Fγbest(t) = exp

− ∞∫
t

λ̂(y)dy

 (5.57)

= exp

−∑
i∈L,N

pi
αi

2πλ

(
P (Gmax)2

N0

) 2
αi

∞∫
t

y
−2
αi
−1

∞∫
y/rd

z
2
αi fX (z) dzdy

 .
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Chapter 6

Millimeter Wave Systems with

Massive MIMO Array

Due to the high frequencies used in millimeter wave (mmWave), the path-loss with

omni-directional antennas increases with frequency. Large antenna arrays or massive

multiple-input multiple-output (MIMO) arrays when utilized at one side of the link,

can be used to keep the antenna aperture constant [5], which eliminates the frequency

dependence of path loss relative to omnidirectional antennas. Massive MIMO arrays

when utilized at both sides of the link, can also provide a net array gain to counter the

larger thermal noise bandwidth.

Hence, massive MIMO technology can be considered to be an integral setup in

the implementation of mmWave networks. But, the presence of spatial correlation

in realistic propagation channels significantly deteriorates the system performance of

MIMO communications [108]. One way to achieve high performance in a correlated

environment is to separate the antennas sufficiently so that a large diversity order can be

obtained. However, accommodating a large number of antennas with sufficient antenna

spacing poses several constraints for practical implementation, given the limited space

at the BS and at the user device. As a consequence, several compact antenna array

topologies have emerged that pack the antennas intelligently to minimize the overall

correlation in the MIMO channel [109]. As discussed in Chapter 4, two such antenna

array configurations that have been proposed in literature are the uniform linear array

(ULA) and the uniform circular array (UCA). The initial 3GPP LTE releases defined

MIMO channels in the azimuth only. Accordingly, most prior work [110, 111, 112]

Reprinted from manuscript submitted to IEEE Transactions on Communications, S. Biswas, S. Vuppala, T. Ratnarajah, “An Analysis
on mmWave Systems Equipped with Large 3D Antenna Arrays”. Copyright (2016), with permission IEEE.

119



considered 2D cellular layouts to evaluate spatial correlation for the ULA and UCA

configurations. Furthermore, the correlation in these works was investigated in the

azimuth only. These works do not take into consideration the explicit relationship

between the spatial correlation and the angular domain consisting of both the azimuth

and the elevation dimensions. Since real world transmission channels are 3D in nature,

beamforming in the azimuth dimension alone cannot fully exploit all the degrees of

freedom (DOF) of the channel.

Recent results have revealed the potential of 3D beamforming to enhance system

performance. Encouraged by this, 3GPP is carrying out research to develop and stan-

dardize channel models for 3D MIMO systems [113, 114]. Moreover, the absence of ele-

vation dimension is not the only limitation of the existing correlation models. Authors

in [109, 115, 116, 117] do consider the spatial correlation in 3D propagation scenarios.

However, certain assumptions on the nature of the underlying angular distributions

do not represent the attributes of mmWave propagation scenarios accurately. In a

mmWave transmission, the spatial degrees of freedom offered by the channel depend

on both the channel conditions and the number of antennas deployed. Hence, to obtain

the system performance, the effects of the channel conditions and the type of antenna

array have to be considered in conjunction with each other. Most recent works that

study the impact of different channel conditions do not take into account the choice of

the antenna array, which may affect the performance analysis. This problem is further

elevated in very large MIMO systems, where a larger number of antennas are rigged

in a limited space [116]. In general, the choice of the array geometry to be deployed

at the BS is made based on numerous factors, such as cost, availability and compati-

bility of the array with the existing system. In cellular networks, the ULA is the most

commonly deployed configuration. However, the ULA can scan only the 2D space.

On the other hand, the UCA can take both the azimuth and the elevation angles into

consideration. This makes UCA the appropriate array configuration to exploit the 3D

propagation space in the true sense.

Considering the limitations of the current analysis and inspired by the stochas-

tic geometry approach to analyze the performance of large scale MIMO systems and

mmWave networks, in this chapter we consider a realistic propagation scenario of the

downlink of such a system with spatially distributed BSs with UCA serving single-

antenna users within a fixed coverage area of a densely built up urban environment.

In particular, it is assumed that the BSs and users inside the coverage area follow two

independent Poisson point processes (PPPs). We then analyze the performance of the
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6.1. Mathematical Preliminaries

system based on important metrics, namely coverage probability, average rate and area

spectral efficiency with respect to varying number of antennas at the BS as well as the

intensity of the BSs and users within the coverage area.

In particular, we provide an analytical framework for a mmWave system by consid-

ering 3D circular antenna array at the BS, which enables us to take both the azimuth

and elevation dimensions into account. Accordingly, we find the optimal beamformer

in a local sense to achieve the maximum signal-to-interference-plus-noise ratio (SINR)

that can be provided to a user. We then derive a closed-form expression for the SINR

when the number of antennas at the UCA grows without bound. Further, to model the

blockages, we carry out our analysis by incorporating the exponential blockage model.

Accordingly, we derive the coverage probability of the system. We also extend our

analysis for multiple BSs scenario, where a user may be associated to the nearest BS.

In order to analyze the performance of our model, we begin by calculating the average

rate of the system. With the help of this rate and a certain outage probability, we

analyze the transmission capacity of the network. Via numerical results, we provide

a detailed analysis on the effect of the number of BS antennas, blockage density, path

loss coefficient, node density, and SINR threshold on a mmWave network, where BSs

are equipped with very large antenna arrays.

6.1 Mathematical Preliminaries

In this section, we discuss and present a few important mathematical results that will

be integral in deriving a few of the analytical results presented in the chapter.

Lemma 6.1. The Bessel function of order zero, J0(x) can be upper bounded as

|J0(x)| ≤ wx
−1
3 , (6.1)

where w = 0.7857.

Lemma 6.2. The Bessel function of order one, J1(x) can be given as [118]

J1(x) =
∞∑
i=0

(−1)i

i! Γ(i+ 2)

(x
2

)(2i+1)

, (6.2)

where Γ(.) is the Gamma function.
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Lemma 6.3. Let an integral function I be denoted as

I(x, y) = −x
∫ Φmax

Φmin

J0(y sin(Φ)) sin(Φ)

cos3(Φ)
dΦ, (6.3)

where [x, y] ∈ R+ and [Φmin,Φmax] ∈ [π/2, π]. Then a solution for the above integral is

given as

I(x, y) = −x
2

[
J0(y sin(Φmin))

1− sin2(Φmin)
− J0(y sin(Φmax))

1− sin2(Φmax)
+
∞∑
i=0

(−1)i

i! Γ(i+ 2)

(y
2

)2(i+1)

×

(
−

(
log(1− sin2(Φmin)) +

i∑
k=1

sin2k(Φmin)

k

)
+ log(1− sin2(Φmax))

+
i∑

k=1

sin2k(Φmax)

k

)]
, (6.4)

where J0(x) the Bessel function of order zero.

Proof. The proof is given in Appendix 6.A.

6.2 System Model
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Figure 6.1: An illustration of an outdoor mmWave cellular network with 3D circular
antenna array.

In this section, we illustrate our system model of an outdoor mmWave network, where

the base station (BS) is equipped with a large antenna array configured as UCA. In

particular, for analytical tractability, we begin the analysis for a single BS setup, which
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Table 6.1: Notations

Notation Description
rc Radius of the circular coverage area
rh Minimum distance between BS and user
rk Distance from the kth user to the BS
h Height of the BS
M Number of antennas in the UCA
θ Elevation angle
φ Azimuthal angle
d Distance between two consecutive antennas
ΦBS PPP of BS
λBS Density of BS
ΦU PPP of users
λU Density of users
α Path loss exponent
m Nakagami fading parameter

will then be extended to multiple BSs setup in Section 6.4 and thereafter. We consider

the downlink of this system, as shown in Fig. 6.1, where the BS is equipped with

M antennas transmitting simultaneously to spatially distributed single antenna users.

The users in this network are modeled as points of a uniform PPP, denoted by ΦU, with

density λU in R2. Let, K be the set of all users in ΦU, which are connected at the same

time to the BS1 in consideration. Also, let the cardinality of K be K. The number

of users connected at a particular time is given as K = min(Umax, N), where Umax is

the maximum number of users that can be scheduled in a time slot and N is the total

number of users connected to the BS. Further specifications regarding the model are

presented in Table 6.1. Moreover, in mmWave signal propagation, signal corruption is

mainly caused by small scale fading, shadowing and blockages. The modeling of these

effects are discussed in details in the following subsections.

6.2.1 Channel modeling

Let wk represents the semi-correlated frequency-flat channel vector between the BS

and the kth user. Then, wk can be modeled as wk =
√

Ξι
kηkhk, where hk models

the small scale fading channel vector between the BS and the kth user, η denotes

1As of now, we do not give any index for the BS. However, later in the chapter, for the multiple
BS scenario, this will be considered as the l th BS, with ΦBS being the BS process.
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the complex gain, which is assumed to follow Nakagami fading, and is modeled as

η ∼ fη(t;m) , mmtm−1e−mt

Γ(m)
. Here, m is the Nakagami fading parameter with Γ(m)

being the upper incomplete Gamma function and Ξι
k models the path loss attenuation

given as

Ξι
k =

1

(rk/rh)αι
. (6.5)

Here, αι, with ι ∈ {L,N} is the path loss exponent, where 2 denotes a free space

propagation and 4 a relatively lossy environment. L here refers to a line of sight (LOS)

link while N refers to a non line of sight (NLOS) link.

We assume the antenna array at the BS to be UCA. The advantage of using a UCA

is that it can exploit the real life 3D propagation space. As shown in Fig. 6.1, the BS

with UCA configuration consists of M antennas placed uniformly in a circular array

configuration with radius r, angle of elevation θ and angle of azimuth φ. Then without

loss of generality, the channel vector, hk for the kth user can be given as

hk =
[
1, ej

2π
λ
r sin θk cos(φk−φ̄1), . . . , ej

2π
λ
r(M−1) sin θk cos(φk−φ̄M−1)

]T
. (6.6)

Here, φ̄m = 2mπ
M

is the angle between the mth antenna element and the y axis of the

array.

Now, in order to model the distribution of the angle of departures (AoDs) for a

UCA, we need the distributions of both the azimuth and elevation angles. Since the

BS array is deployed at a certain height from the ground and the users are randomly

located on a circle, the azimuth angles are uniformly distributed within the interval

[0, 2π].

Lemma 6.4. The pdf of the azimuth angles φk∀k={1,...,K} for a UCA, when the users are

uniformly distributed within a circular coverage area can be given as

fφ =
1

2π
. (6.7)

However, unlike the azimuth angles, the PDF of the elevation angles φk∀k={1,...,K}

does not follow a uniform distribution and can be given by the following lemma.

Lemma 6.5. The PDF of the elevation angles θk∀k={1,...,K} for a UCA, when the users
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are uniformly distributed within a circular coverage area can be given as

fθ =

{
− 2h2

(r2
c−r2

h)

sin(θk)
cos3(θk)

, θmin ≤ θk ≤ θmax

0 otherwise,
(6.8)

where θmin = π
2

+ tan−1 h
rc

, θmax = π
2

+ tan−1 h
rh

.

Proof. The proof is given in Appendix 6.B.

6.2.2 Blockage modeling

In Chapter 5, we considered the fixed blockage probability model to analyze the

mmWave network. Another blockage model that has been extensively considered in

literature is the PPP based random blockage model. Let the LOS link be of length x,

then the probabilities of occurrence for LOS and NLOS can be denoted as pL(x) and

pN(x) = 1 − pL(x) respectively. The probability function for LOS in the network can

be derived from field measurements as was given in [20] or stochastic blockage models

in [91, 119], where the blockage parameters are characterized by some random distri-

butions. Essentially, when the blockages are modeled as a rectangle boolean scheme,

the probabilities of LOS and NLOS links can respectively be given as a function of x

as

pL(x) = e−βx, pN(x) = 1− e−βx, (6.9)

where β is the blockage density.

6.2.3 Performance metrics

Three important metrics, namely coverage probability, average rate and the area spec-

tral efficiency of the mmWave network will be studied. Due to the impact of block-

ages, these parameters tend to be of paramount importance in the characterization

of mmWave systems. Furthermore, these metrics have received considerable attention

during the last decade in the analysis of cellular networks. Accordingly, while the cov-

erage probability is the probability that a typical user receives a specific fixed signal

to interference plus noise ratio, the area spectral efficiency of a network can be defined

as the maximum achievable average data rate per unit bandwidth per unit area, given

the constraints of certain connection outage. Accordingly, in order to characterize the
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6.3. Signal to Interference plus Noise Ratio (SINR)

area spectral efficiency, one needs to calculate the average/expected rate. While rate

coverage probability has been studied in recent literature [17, 93], average rate has

not yet been properly evaluated in stochastic geometry related mmWave literature.

Finding a closed-form expression becomes very challenging when we consider other un-

certainties such as blockages, interference and shadowing. Recent papers [120, 121] use

a two-step methodological approach to compute the average rate: i) first, the coverage

probability is computed; and ii) then, the average rate is obtained by integrating the

coverage probability over the positive real axis. Accordingly, for general fading chan-

nels, a four-fold integral needs to be computed. To overcome this limitation, authors in

[122, 123] propose a new analytical framework, which reduces the number of integrals

and is also flexible enough for application to arbitrary fading distributions. Therefore,

in this chapter, leveraging the analysis from [123], we give a generalized expression to

evaluate the average rate in terms of MGFs as

E[R] =

∞∫
0

(1− LS(z))LI(z)
e−z

z
dz, (6.10)

where R is the instantaneous rate and LX(z) = E[e−zX ].

6.3 Signal to Interference plus Noise Ratio (SINR)

The BS transmits data streams simultaneously to all the connected K users which

creates an interfering broadcast channel. To encounter its effect we use a M × K

beamforming matrix at the BS denoted by T. The signal received by the user at k ∈ K
can be given as

yk =
√
ρk wH

k tksk︸ ︷︷ ︸
desired signal

+
∑

i∈K,i 6=k

√
ρiw

H
k tisi︸ ︷︷ ︸

interference

+ zk︸︷︷︸
noise

, (6.11)

where s = [s1, . . . , sk, . . . , . . . sK ] ∈ CM×1 is the symbol transmitted by M antennas,

ρk ⊆ [ρ1, . . . ρk, . . . , ρK ] is the transmitted power corresponding to the kth user, zk is

the complex circular symmetric Gaussian noise with zero mean and a variance of σ2,

which is associated with the kth user and tk is the vector of the beamforming matrix

associated with the kth user. Now, assuming the channel to be ergodic, the SINR at
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the kth user can be given as

γk =
ρk|wH

k tk|2∑
i∈K,i 6=k

ρi|wk
Hti|2 + σ2

, (6.12)

=
ρk
M

Ξι
kη

2
k |hHk tk|2∑

i∈K,i 6=k

ρi
M

Ξι
iη

2
i |hk

Hti|2 + σ2

M

, ∀ι ∈ {L,N}.

Our aim now is to design the precoders/beamformers that maximize the received

SINR on each of the BS-UE links. Accordingly, for the case of fixed antenna spacing d,

in order to achieve the maximum SINR, we explore over the asymptotic regime when

M →∞ by finding the optimal beamforming vector t∗k.

Lemma 6.6. In UCA, when M →∞, radius of the circular array r ∼ Md
2π

[124].

Proposition 6.1. Assume perfect CSI at the BS and the users, and fixed antenna

spacing. Now, when M grows without bound, then the first negative moment of the

maximum SINR for the kth user in a mmWave network can be given as

E[γ−1
k ] =

(K − 1) Ψk

∑
i∈K,i 6=k

ρiΞ
ι
iη

2
i + σ2

ρkΞι
kη

2
kM

, ∀ι ∈ {L,N},

(6.13)

where

Ψk = 1 +
2

M

M−1∑
t=1

(M − t)
(

2h2

2(r2
c − r2

h)

)2

J0(2
3
2 π
λ r
√

1− cos
(

2πt
M

)
sin(θmin))

1− sin2(θmin)

−
J0(2

3
2 π
λ r
√

1− cos
(

2πt
M

)
sin(θmax))

1− sin2(θmax)
+

∞∑
i=0

(−1)i

i! Γ(i+ 2)

 2
3
2 π
λ r
√

1− cos
(

2πt
M

)
2


2(i+1)

(
−

(
log(1− sin2(θmin)) +

i∑
l=1

sin2k(θmin)

l

)
+

(
log(1− sin2(θmax)) +

i∑
l=1

sin2k(θmax)

l

))]2

.

(6.14)

Proof. In order to prove this proposition, we split it into two parts. First, we maximize

the SINR γk in (6.12). Then, we calculate the expectation of γ−1
k to obtain (6.13). In

order to maximize γk in (6.12), we have to maximize the numerator and minimize the
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denominator. Using the Rayleigh quotient law, |hHk tk|2 can be bounded as [13]

|hHk tk|2 ≤ λmax(hkh
H
k ) = M. (6.15)

The above inequality holds only when tk is an eigenvector of |hkhHk | corresponding to

the maximum eigenvalue λmax. In other words,

tk =
hk
||hk||

. (6.16)

Furthermore, the denominator in (6.12) can be minimized if

|hHk ti|√
M
→ 0. (6.17)

For the case of UCA at the BS, we have

|hHk ti|√
M

=
1

M

∣∣∣∣∣
M−1∑
m=0

ej
2π
λ
r(δ1 cos( 2πm

M
)+δ2 sin( 2πm

M
))

∣∣∣∣∣ , (6.18)

where, δ1 , sin θk cosφk − sin θj cosφj and δ2 , sin θk sinφk − sin θj sinφj. When the

number of antennas at the BS grows without bound, the integral in (6.18) tends to a

finite integral can be expressed as

|hHk ti|√
M
→
∣∣∣∣ 1

2π

∫ 2π

0

ej
2π
λ
r(δ1 cosx+δ2 sinx)dx

∣∣∣∣ . (6.19)

Now, using ([53], Eq. (3.338.4)), the above integral can be analytically solved and

when M →∞, we have

lim
M→∞

|hHk ti|√
M
→ lim

M→∞

∣∣∣∣J0

(
2π

λ
r
√
δ2

1 + δ2
2

)∣∣∣∣ . (6.20)

With fixed antenna spacing d, when r →∞, the right hand side of (6.20) equals to zero,

which validates (6.17). However, for a fixed total physical space at the BS (fixed r),

increasing M will lead to the decrease in d. Accordingly, the RHS of (6.20) converges

to a constant non-zero limit. Hence, the optimal beamforming vector that maximizes

the SINR as M →∞ can be given as

t∗k =
hk√
M
. (6.21)
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The SINR for the kth user can now be given as

γk =
ρkΞ

ι
kη

2
kM∑

i∈K,i 6=k
ρiΞι

iη
2
i

∣∣∣hkHhi√
M

∣∣∣2 + σ2

, ∀ι ∈ {L,N}. (6.22)

In order to calculate the first negative moment of the SINR, the expectation should

be taken over the channel vectors, which is related to the azimuth and elevation AoDs

of all the users. Accordingly, the first negative moment of the maximum SINR for the

kth user can be given as

E[γ−1
k ] = E


1
M

∑
i∈K,i 6=k

ρiΞ
ι
iη

2
i

∣∣hkHhi
∣∣2 + σ2

ρkΞι
kη

2
kM

 ,

=

{
1

M

∑
i∈K,i 6=k

ρiΞ
ι
iη

2
iE
{
|hkHhi|2

}
+ σ2

}
1

ρkΞι
kη

2
kM

, ∀ι ∈ {L,N}. (6.23)

Let Ψk , 1
M
E
{
|hkHhi|2

}
. Therefore, using (6.6), we have

Ψk =
1

M
E


∣∣∣∣∣
M∑
m=1

ej
2π
λ
r(δ1 cos( 2πm

M
)+δ2 sin( 2πm

M
))

∣∣∣∣∣
2
 ,

=
1

M
E

{
M∑
n=1

M∑
m=1

ej
2π
λ
r(δ1 cos( 2πn

M
)+δ2 sin( 2πn

M
))e−j

2π
λ
r(δ1 cos( 2πm

M
)+δ2 sin( 2πm

M
))

}
,

=
1

M
E

{
M∑
n=1

M∑
m=1

ej
2π
λ
r(δ1 cos( 2πn

M
)+δ2 sin( 2πn

M
)− δ1 cos( 2πm

M
)−δ2 sin( 2πm

M
))

}
,

=
1

M
E

{
M∑
n=1

M∑
m=1

ej
2π
λ
r(δ1(cos( 2πn

M
)−cos( 2πm

M
))− δ2(sin( 2πm

M
)−sin( 2πn

M
)))

}
,

=
1

M
E

{
M∑
n=1

M∑
m=1

ej
2π
λ
r(δ1ā−δ2b̄)

}
. (6.24)

Here, ā = cos(2πn
M

) − cos(2πm
M

) and b̄ = sin(2πm
M

) − sin(2πn
M

). Now substituting δ1 ,

sin θk cosφk − sin θj cosφj and δ2 , sin θk sinφk − sin θj sinφj, we have

Ψk =
1

M

M∑
n=1

M∑
m=1

E
{
ej

2π
λ
r(ā sin θk cosφk+b̄ sin θk sinφk)

}
︸ ︷︷ ︸

E1

E
{
e−j

2π
λ
r(ā sin θj cosφj+b̄ sin θj sinφj)

}
︸ ︷︷ ︸

E2

.

(6.25)
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Let a = ā sin θk and b = b̄ sin θk. Therefore,

E1 = E
{
ej

2π
λ
r
√
a2+b2(cos(A) cosφk+sinA sinφk)

}
=

∫ θmax

θmin

∫ 2π

0

ej
2π
λ
r
√
a2+b2 cos(φk−A)fφ(φk)fθ(θk)dφkdθk. (6.26)

This integral can now be solved in two parts. Solving for the inner integral first, the

detailed mathematical steps of which are deferred to Appendix 6.C, we have

E1 = − 2h2

r2
c − r2

h

∫ θmax

θmin

J0 (ζ sin(θk))
sin(θk)

cos3(θk)
dθk, (6.27)

where ζ = 2
3
2 π
λ
r

√
1− cos

(
2π(n−m)

M

)
. Now, rewriting the summations in (6.25) using

t = n−m and using (6.27), Ψk can be rewritten as

Ψk = − 2h2

M(r2
c − r2

h)

M−1∑
t=−(M−1)

(M − |t|)
[∫ θmax

θmin

J0 (ζ sin(θk))
sin(θk)

cos3(θk)
dθk

]2

,

(a)
= − 2h2

M(r2
c − r2

h)

{
M + 2

M−1∑
t=1

(M − t)
[∫ θmax

θmin

J0 (ζ sin(θk))
sin(θk)

cos3(θk)
dθk

]2
}
,

(6.28)

where ζ̄ = 2
3
2 π
λ
r
√

1− cos
(

2πt
M

)
and (a) is obtained by putting J0(0) = 1. Now, let

x =
2h2

r2
c − r2

h

and y =
2

3
2π

λ
r

√
1− cos

(
2πt

M

)
. (6.29)

Therefore, comparing (6.29) with Lemma 6.3, the integral in (6.28) can be evaluated,

which further leads to the solution of Ψk as given in (6.14). Now, substituting the

value of Ψk in (6.23), we obtain the proof of Proposition 6.1.

Accordingly, the downlink SINR for the user k ∈ K when the number of antennas

at the BS for a UCA grows very large, can be given as

γk = {E[γ−1
k ]}−1 =

ρkΞ
ι
kη

2
kM

(K − 1) Ψk

∑
i∈K,i 6=k

ρiΞι
iη

2
i + σ2

, ∀ι ∈ {L,N}. (6.30)

However, as discussed before, mmWave networks are often affected by blockages.

Hence, it may not be possible to provide the user k ∈ K with the SINR in (6.30).
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In the following section, the effect of blockages on this system will be analyzed with

respect to various performance metrics.

Remark 6.1. The asymptotically optimal beamforming vector t∗k in (6.21) for the

ULA is an approach similar to the MRT scheme. When M becomes very large, the

channel response vectors between different users are asymptotically orthogonal to each

other resulting in the suppression of the interference between different users. Then,

the SINR achieves its maximum value. Though many other optimal schemes have been

proposed in literature for MIMO networks, this can at least be considered to be one of

the low-complexity optimal schemes in local sense, when the number of BS antennas in

a UCA grows without bound.

6.4 SINR Distribution

In this section, we derive the SINR distribution for a single BS scenario as well as

multiple BSs scenario. We begin by characterizing the overall complimentary cumu-

lative distribution function (CCDF) of the SINR γk, when the desired link is either

LOS or NLOS. Next we extend the analysis for multiple BSs scenario by incorporat-

ing interference from other BSs followed by the characterization of the SINR for this

scenario.

6.4.1 Single BS scenario

We begin by analyzing the coverage probability for the current set up, where a single

BS serves the spatially distributed users within the circular coverage area. Let T be

the target SINR. The CCDF of the SINR for the kth user can then be given as

Pγk(T ) = 1− P[γk ≤ T ]. (6.31)

Now considering the multi-path components and using the law of total probability,

the CCDF of the SINR for the kth user can be rewritten as

Pγk(T ) = P L
γk

(T )PL + PN
γk

(T )PN, (6.32)

In the above, P L
γk

(T ) and PN
γk

(T ) are the conditional CCDFs on the event that the link

between the BS and the kth user is LOS and NLOS, respectively. As such, the CCDF
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of the SINR of the kth user conditioned on the fact that the link is LOS is given as

P L
γk

(T ) = 1− P[γk ≤ T |L]. (6.33)

The CCDF of the SINR for the NLOS link can be given similarly. It is worthwhile

to note that (6.31) is sometimes referred to in literature as the coverage probability of

the network. In particular, the coverage probability is defined as the probability that

the destination is able to receive a signal with some threshold SINR T . That is, the

probability of coverage is actually the CCDF of the SINRs over the network.

Proposition 6.2. Let pk = ρkr
αι
h . Then the SINR coverage probability for a mmWave

BS equipped with a very large UCA can be given as

Pγk(T ) = PLPL
γk

(T ) + PNPN
γk

(T ), (6.34)

where

PL
γk

(T ) =
m∑
l=1

(
m

l

)
(−1)l+1 exp

(
−A l T rαL

k σ2

pkM

) ∏
ι∈L,N

exp [−2πλU (6.35)

×
∫ ∞

0

x

1−

 1

1 +
AlTr

αL
k (K−1)Ψkpi
mpkM

x−αj

mPι(x)dx

 ,
and PN

γk
(T ) follows similarly. Here, T is the SINR threshold, pL and pN are the proba-

bilities for LOS and NLOS respectively, and A = m(m!)
−1
m .

Proof. The proof of this proposition is given in Appendix 6.D.

6.4.1.1 Multiple BSs scenario

Next, we consider the scenario where multiple BSs are located within a particular

service area, where each BS serves multiple users. Accordingly, the BSs in the network

are modeled as points in R2 which are distributed uniformly as a homogeneous PPP

ΦBS with intensity λBS. Also, let the number of users connected at a particular time

to the lth BS be given as Kl = min(Umax, Nl), where Umax is the maximum number of

users that can be scheduled in a time slot and Nl is the total number of users connected

to the lth BS. The additional BSs result in extra interference for the typical user at
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the origin of R2. Accordingly, the signal received by the typical user from the BS at

l ∈ ΦBS can be given as

ykl = wH
kl,l

tklxkl +
∑

i∈Kl,i 6=k

wH
kl,l

tilxil + OBI + zkl , (6.36)

where OBI is the other BSs’ interference to the kth user from all other BSs except the

lth BS.

Accordingly, by a slight abuse of notation, the SINR of the user at k ∈ K served

by the BS at l ∈ ΦBS can be given as

γ̄kl =
|wH

kl,l
tkl |2∑

i∈K,i 6=k
|wH

kl,l
til |2+

∑
j∈ΦBS,j 6=l

∑
w∈K
|wH

kj ,j
twj |2 + σ2

. (6.37)

Now, in order to model the OBI, the notion of side lobe gain τBS can be introduced

by considering an approximation as in [125], where the angular space in the azimuth

is quantized into sectors equivalent to the number of BS antennas. Accordingly, the

SINR in (6.37) can be approximated as2

γ̄k =
ρkΞ

ι
kη

2
kM

(K − 1) Ψk

∑
i∈K,i 6=k

ρiΞι
iη

2
i + IBS + σ2

∀ι ∈ {L,N}, (6.38)

where IBS is the OBI and can be given as

IBS =
∑

j∈ΦBS,j 6=l

MρjΞ
ι
jη

2
j ×

∑
w∈Kj

||t†(θkj , φkj)t(θwj , φwj)||2. (6.39)

Now, leveraging the analysis from [125], the IBS can further be modeled as

IBS =
∑

j∈ΦBS,j 6=l

MρjΞ
ι
jη

2
jΥj, (6.40)

where

Υj =

{
1, θkj = θwj and φkj = φwj
τBS, otherwise,

(6.41)

with τBS < 1.

2For brevity, hereinafter we have removed the subscript l from all subsequent variables.
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Proposition 6.3. The SINR coverage probability for a mmWave network with multiple

BSs, each equipped with very large UCAs can be given as

Pγ̄k(T ) = PLPL
γ̄k

(T ) + PNPN
γ̄k

(T ), (6.42)

where

PL
γ̄k

(T ) =
m∑
l=1

(
m

l

)
(−1)l+1 exp

(
−A l T rαL

k σ2

pkM

)
(6.43)

∏
ι∈L,N

EIιK

[
exp

(
−A l TrαL

k I ιK
pkM

)]
EIιΦBS

[
exp

(−A l TrαL
k I ιΦBS

pkM

)]
.

PN
γ̄k

(T ) follows similarly. Here, pL and pN are the probabilities for LOS and NLOS

respectively, pk = ρkr
α
h and the rest of the parameters are as defined before.

Proof. The proof of this proposition can be obtained by similarly following the steps

of the proof of Proposition 6.2. For better understanding, we give a sketch of the proof

in Appendix 6.E.

Furthermore, we would like to note that in the above two propositions, the typical

user is conditioned on a random BS association. This may not be the case every time

and the typical user may be associated to its nearest BS to maximize its received SINR.

Lemma 6.7. The SINR coverage probability for a mmWave network with multiple

BSs, each equipped with very large UCAs conditioned on nearest BS association can be

given as

Pγ̂k(T ) =

∫
r>0

Pγ̄k(T, rk)f(rk)drk, (6.44)

where f(rk) is the nearest distance distribution of the BSs, which is given by

f(rk) = 2πλBSrke
−πλBSr

2
k . (6.45)

6.5 Average Rate and Area Spectral Efficiency

In this section, we characterize the average rate in mmWave networks considering MGF

of channel gains. To this point, the received signal gain at the user can be denoted
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as ζk = pkr
−αι
k η2

kM/σ2, where pk = ρkr
αι
h , with ι ∈ {L,N}. In order to characterize

the average rate, we need the moment generating functions of ζk. Before deriving the

corresponding MGF’s, we first characterize their corresponding distributions. Thus,

the required SNR distribution without taking interference into account can be given as

Fζk(T ) = PLP{ζk < T |L}+ PNP{ζk < T |N},

=
m∑
k=0

(
m

k

)
(−1)k+1 exp

(
−Ak T rαL

k σ2

pkM

)
e−βrk (6.46)

+
m∑
k=0

(
m

k

)
(−1)k+1 exp

(
−Ak T rαN

k σ2

pkM

)
(1− e−βrk).

Therefore, the MGF of this distribution is given as

Lζk(z) =
m∑
k=0

(
m

k

)
(−1)k+1

(
1+

zpkMl

Ak T rαL
k σ2

)−1

e−βrk (6.47)

+
m∑
k=0

(
m

k

)
(−1)k+1

(
1 +

zpkM

Ak T rαN
k σ2

)−1

(1− e−βrk).

Now, an integral-form expression for the average rate is given in the following

proposition using (6.10) and (6.38).

Proposition 6.4. The gross average rate for a typical user in a mmWave network

with multiple BSs equipped with very large UCAs can be given as

R̄ = Btotal

∞∫
0

(1− Lζk(z))LIU( z
σ2 )LIBS

( z
σ2 )

e−z

z
dz, (6.48)

where, Lζk(.) is given in (6.47), and

LIU(z) =
∏
ι∈L,N

exp

[
−2πλU

∫ ∞
0

x

(
1−

(
1

1 + z (K−1)Ψkpi
m

x−αι

)m)
Pι(x)dx

]
, (6.49)

LIBS
(z) =

∏
ι∈L,N

exp

[
−2πλBS

∫ ∞
0

x

(
1−

(
1

1 +
zMpjτ2

BS

m
x−αι

)m)
Pι(x)dx

]
. (6.50)

where pj = ρjr
αι
h and Btotal is the total bandwidth of the mmWave transmission.
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Proof. This proof follows from equation (6.10) and by using the integral-form expres-

sions of LIU( z
σ2 ) and LIBS

( z
σ2 ) from the proof of Proposition 6.3.

For the network as a whole, it is now necessary to determine the outage P[γ̄k < ε],

where ε is the outage probability. However, this depends on the distance between the

BSs and the users, and the locations of the active3 BSs. If fewer transmitters are active,

then the SINR and accordingly the outage probability can be decreased, but the overall

network throughput would also decrease. Hence, it is mandatory to balance these two

effects with a metric that can take into consideration both the average rate and outage

into consideration. One such metric is the area spectral efficiency. In particular, the

area spectral efficiency of a network is defined as the sum of the maximum average

data rates per unit bandwidth per unit area for a specific outage constraint leading to a

successful transmission resulting from an average number active BSs. Mathematically,

the area spectral efficiency of a mmWave network can be given as [17, 126, 127]

νs =
λBS R̄ (1− ε)

Btotal

, (6.51)

where λBS is the average number of active BSs4 sending a gross average rate of R̄ for

an outage probability ε and Btotal is the total bandwidth of the mmWave transmission.

6.6 Numerical Results

In this section, we validate our system model and also verify the accuracy of the re-

sults mentioned in the propositions. In general, the computations are done through

Monte Carlo simulations, which are then used to validate the analytical results. We

consider the mmWave bandwidth of 2 GHz [128] and carrier frequency 23 GHz. Unless

stated otherwise, most of the values of the parameters used are inspired from liter-

ature mentioned in the references [128, 18, 17]. A few of the parameters and their

corresponding values are given in Table 6.2. All other parameters and values will be

explicitly mentioned wherever used.

We begin by analyzing the coverage probability of the system with respect to SINR

3The active BSs are the ones that are not totally blocked by the blockages and can associate with
a user either through LOS or NLOS.

4Obtaining a closed-form expression for λBS is not tractable, but can be computed numerically
from (6.42) for a given ε.
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Table 6.2: Simulation Parameters

Notation Parameter Values
rc Radius of the circular coverage area 250m
rk Distance from the kth user to the BS 25m
h Height of the BS 15m
M Number of antennas in the UCA 200
λBS Density of BSs 0.00005
λU Density of users 0.00001
β Blockage density 0.001
G Interferer antenna gain 10 dB
α Path loss exponent LOS-2.5, NLOS-3.5
m Nakagami fading figure 6
ρ BS transmit power 30 dBm
σ2 Noise power Thermal noise

+ 10dB noise figure.

threshold for different numbers of antennas at the BS, M in Fig 6.2. In particular,

this result is a validation of Proposition 6.2. It can be seen from the figure that the

gap between the analytical and simulation results obtained after numerical evaluation

is quite tight. The figure shows that the number of antennas M has a considerable

impact on the coverage probability. As we increase the number of antennas at the BS,

the probability of coverage for a BS with respect to a typical user for a fixed transmit

power increases.

Next, in Fig. 6.3 we consider the scenario where multiple BSs are located within the

service area. Hereinafter, unless stated otherwise, this scenario will be considered in all

subsequent analyses. This figure compares the coverage probability for varying BS’s

densities. As can be observed from the figure, increasing density of BSs leads to lower

coverage. Although this result appears counter-intuitive at first, it can be explained

by the fact that deployment of more BSs increases the probability for interfering BSs.

The effect of interference from BSs can however be alleviated with the help of BS

cooperation, where a set of BSs cooperate to improve the coverage of the network.

Under such a scenario, the user can associate itself with the best BS (conditioned on

distance). Accordingly, Fig. 6.4 shows the coverage probability as a function of BS

density for the nearest BS association.

As expected, the figure shows that an increase in BS density leads to an increase

in coverage probability.
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Figure 6.2: Coverage probability as a function of M . Here, λU = 0.0001.
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Figure 6.3: Coverage probability as a function of λBS. Here, λU = 0.0001.

In Fig. 6.5, we show the coverage probability against SINR threshold for different

blockage densities. In this figure, the density of BS is kept constant, while the blockage

density is varied. It is shown from the figure that higher blockages lead to better

coverage. Although blockages might not ordinarily be expected to improve coverage, in

this figure, this outcome is not so unusual considering the fact that increased blockages

in the network also limit the interference from interfering BSs. This in turn improves

the SINR, which leads to better coverage probability.
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Figure 6.4: Coverage probability as a function of λBS under nearest BS association.
Here, λU = 0.00005 and M = 250.
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Figure 6.5: Coverage probability as a function of β. Here, λU = 0.00005 and M =
250.

After establishing the effect of various parameters with respect to coverage proba-

bility in the previous figures, we now look into the average rate analysis of the mmWave

network. Similar to Fig. 6.2, we analyze the average rate for different M as a function

of user densities in Fig. 6.6. As expected, the average rate increases (logarithmically)

as the value of M increases. However, as M grows unboundedly, the rate saturates
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Figure 6.7: Average rate as a function of β. Here, M = 100.

and almost converges to a nonzero limit. This can be explained by the fact that as

the number of antennas increases the correlation among the antennas also increases

in the UCA. It can be also seen that the performance decreases with the increase the

value of radius (rc). This can be explained from the fact that the higher radii allow

more blockages and BSs which leads to more attenuation and interference respectively,

consequently decreasing the average rate.

Next, we investigate the average rate as a function of BS density in Fig. 6.7. The
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Figure 6.8: Area spectral efficiency as a function of M and β. Here, rc = 200.

figure shows a decrease in average rate as BS density is increased. This result matches

the trend from the plots in Fig. 6.3, where the extra interference from the BSs decreases

the average rate. In addition, we consider the average rate performance for different

blockage densities and observe that increasing blockages produces better average rates.

This confirms our observation from Fig. 6.5 where increasing blockages had a positive

effect on the coverage performance of mmWave networks.

Furthermore, Fig. 6.8 shows the performance gains in terms of area spectral effi-

ciency that can be achieved by increasing the number of antennas in the UCA of the

BSs. It can be seen from the figure that the area spectral efficiency increases as the

value of M increases. However, a linear increase in SINR results in an exponential de-

crease of the area spectral efficiency of the network. This can be explained due to the

fact that the increase in SINR threshold results in the increase in outage probability,

which in turn reduces the area spectral efficiency. Furthermore, a tractable derivation

of the optimal density of BSs is an open optimization problem, the exploration of the

analytical solutions of which are deferred for future work.

6.7 Summary

In a mmWave transmission, the spatial degrees of freedom offered by the channel

depends on both the channel conditions and the number of antennas deployed. Hence,
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to obtain the system performance, the effects of the channel conditions and the type

of antenna array need to be considered in conjunction with each other. If not taken

into consideration, this can result into an elevated problem in massive MIMO systems,

where a larger number of antennas are rigged within a limited physical space. Though

the ULA is the most commonly deployed configuration, it can scan only the 2D space.

On the other hand, the UCA can take both the azimuth and the elevation angles into

consideration. This makes UCA the appropriate array configuration to exploit the 3D

propagation space in the true sense. Accordingly, this chapter deals with the downlink

of a mmWave network equipped with large 3D circular antenna array.

In particular we characterize the SINR of the system based on array geometry at

the BS. Furthermore, stochastic geometric tools are employed while modeling the in-

terference. Thereby, expressions for coverage probability and average rate are derived

and validated in the numerical section. Using this average rate, the area spectral effi-

ciency of the mmWave network was calculated followed by the area spectral efficiency.

With the help of numerical results, we provided a detailed analysis on the effect of

the number of BS antennas, blockage density, path loss coefficient, node density, and

SINR threshold on a mmWave network, where BSs are equipped with very large an-

tenna arrays. It was found that increasing M in the UCA deployed at the BS in the

network can lead to better area spectral efficiency in mmWave networks. Also, though

increasing β results in the attenuation of the desired signal, it also helps to attenuate

the interference from non-intended sources, thus increasing the resultant SINR, which

in turn increases the area spectral efficiency. However, the attenuation of the desired

signal may not be desirable and may lead to loss of transmitted information. This can

be dealt with by the use of relays, which was discussed in the previous chapter.

Appendix 6.A Proof of Lemma 6.3

Proof. Let p = sin Φ. Therefore, dΦ = dp/ cos(Φ). Now, substituting these values in

(6.3), we have

I(x, y) = −x
∫ pmax

pmin

J0(yp)p

(1− p2)2
dp. (6.52)
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Integrating (6.52) by parts, we have

I(x, y) =
xJ0(yp)

2(p2 − 1)

∣∣∣∣pmax
pmin

+ xy

∫ pmax

pmin

J1(yp)

2(p2 − 1)
dp︸ ︷︷ ︸

Ī(y)

. (6.53)

Using Lemma 6.2, we have

Ī(y) =
∞∑
i=0

(−1)i

i! Γ(i+ 2)

(y
2

)(2i+1)
∫ pmax

pmin

p(2i+1)

2(p2 − 1)
dp, (6.54)

Now, let q = p2. Therefore, (6.54) becomes

Ī(y) =
1

4

∞∑
i=0

(−1)i

i! Γ(i+ 2)

(y
2

)(2i+1)
(∫ p2

max

0

qi

q − 1
dq −

∫ p2
min

0

qi

q − 1
dq

)
,

(a)
=

1

4

∞∑
i=0

(−1)i

i! Γ(i+ 2)

(y
2

)(2i+1)
(
p

2(i+1)
max

i+ 1
2F1(1, i+ 1; i+ 2; p2

max)

− p
2(i+1)
min

i+ 1
2F1(1, i+ 1; i+ 2; p2

min)

)
, (6.55)

(b)
=

1

4

∞∑
i=0

(−1)i

i! Γ(i+ 2)

(y
2

)(2i+1)

(6.56)

×

(
−

(
log(1− p2

max) +
i∑

k=1

p2k
max

k

)
+ log(1− p2

min) +
i∑

k=1

p2k
min

k

)
,

where (a) is obtained using the integration identity from [53, Eq. (3.194.5)] and (b) is

obtained using the integration identity from [129, Eq. 07.23.03.0224.01]. Further, F is

a Hypergeometric function.

Appendix 6.B Proof of Lemma 6.5

Proof. Let ψk denote the supplementary of the elevation angle θk. Then the CDF of

the elevation angle can be given as

F (θ) = P(θk < θ) = P(ψk + π/2 < θ). (6.57)

From Fig. 1, we have tanψk = h/r0. When θ < π/2 + tan−1 h
rc

,

P(θk < θ) = 0. (6.58)
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Similarly, when π/2 + tan−1 h
rc
≤ θ ≤ π/2 + tan−1 h

rh
,

P(θK < θ) = P
(

tan−1 h

r0

< θ − π/2
)

= 1− P
(
r0 <

h

tan(θ − π/2)

)
. (6.59)

Moreover, when the users are uniformly distributed within the coverage area, the CDF

of the distance of any random user can be given as [130]

P(r0 < x) =
x2 − rh

r2
c − r2

h

. (6.60)

Therefore, from (6.58) and (6.60) we have

P(θk < θ) = 1− 1

r2
c − r2

h

(
h2

tan2(θ − π/2)
− r2

h

)
. (6.61)

Finally, when θ > π/2 + tan−1 h
rh

,

P(θk < θ) = 1. (6.62)

Therefore, from (6.58), (6.61) and (6.62) we have

F (θ) =


0, θ < Θ1

1− 1
(r2
c−r2

h)

(
h2

tan2(θ−π/2)
− r2

h

)
, Θ1 ≤ θ ≤ Θ2

1, θ > Θ2,

(6.63)

where, Θ1 = π/2 + tan−1 h
rc

and Θ2 = π/2 + tan−1 h
rh

. Now differentiating (6.63) with

respect to θ, we obtain (6.8).

Appendix 6.C Calculation of Integral in (6.26)

The integral in (6.26) can be solved in two parts. Solving for the inner integral, we

have ∫ 2π

0

ej
2π
λ
r
√
a2+b2 cos(φk−A) 1

2π
dφk
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(a)
= I0

(
j

2π

λ
r
√
a2 + b2

)
(b)
= J0

(
2π

λ
r
√
a2 + b2

)
,

= J0

2π

λ
r

√(
cos(

2πn

M
)− cos(

2πm

M
)

)2

+

(
sin(

2πm

M
)− sin(

2πn

M
)

)2

sin θk

 ,

= J0

(
2

3
2π

λ
r

√
1− cos

(
2π(n−m)

M

)
sin θk

)
. (6.64)

In the above, (a) is obtained by using the integral identity [53, Eq. (3.339)] and (b) is

obtained using the identity J0(z) = I0(jz). Now, substituting the values of the inner

integral in (6.26) with (6.64) and solving for the outer integral, we have

E1 =

∫ θmax

θmin

J0

(
2

3
2π

λ
r

√
1−cos

(
2π(n−m)

M

)
sin θk

)
fθ(θk)dθk. (6.65)

Now, using Lemma 6.5, we have

E1 = − 2h2

r2
c − r2

h

∫ θmax

θmin

J0 (ζ sin(θk))
sin(θk)

cos3(θk)
dθk, (6.66)

where ζ = 2
3
2 π
λ
r

√
1− cos

(
2π(n−m)

M

)
. Similarly, E2 can be evaluated. Since θk and θj

are random variables in the same real domain, they evaluate to the same result.

Appendix 6.D Proof of Proposition 6.2

Let pk = ρkr
αι
h . Therefore, from equation (6.30), we have

γk =
ρkΞ

ι
kη

2
kM

(K − 1) Ψk

∑
i∈K,i 6=k

ρiΞι
iη

2
i + σ2

(6.67)

=
pkr
−αι
k η2

kM

(K − 1) Ψk

∑
i∈K,i 6=k

piη2
i r
−αι
i + σ2

,

where ι ∈ {L,N}.
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Using (6.67), the CCDF of conditional SINR γk on the event that the link between

the BS and the kth user is LOS can be given as

PL
γk

(T ) = P

 pkr
−αL
k η2

kM

(K − 1) Ψk

∑
i∈K,i 6=k

piη2
i r
−αι
i + σ2

> T

 , (6.68)

= P
[
η2
k >

T rαL
k

pkM

(
σ2 + IK

)]
,

= P
[
η2
k >

T rαL
k

pkM

(
σ2 + IK

)]
,

= 1− P
[
η2
k <

T rαL
k

pkM

(
σ2 + IK

)]
, (6.69)

where IK = (K − 1) Ψk

∑
i∈K,i 6=k

piη
2
i r
−αι
i is the received aggregate interference from all

the users. In the following analysis, we employ stochastic geometry tools to model such

interference.

Leveraging the tight lower bound of a Gamma random variable of parameter m as

P[z > γ] < (1− e−Aγ)m with A = m(m!)
−1
m , we can bound (6.69) as

PL
γk

(T ) < 1− EIK
[(

1− exp

(
−AT rαL

k

pkM
(σ2 + IK)

))m]
(6.70)

Now using the Binomial theorem [93], (6.70) can be given as

PL
γk

(T ) ≈
m∑
l=1

(
m

l

)
(−1)l+1EIK

[
exp

(
−A l T rαL

k

pkM
(σ2 + IK)

)]
. (6.71)

Now considering both LOS and NLOS users and leveraging the notion of mark of

stochastic geometry, we consider the interference as two independent PPPs such that

IK = IL
K + IN

K . (6.72)

Accordingly, we can rewrite (6.71) as

PL
γk

(T ) =
m∑
l=1

(
m

l

)
(−1)l+1 exp

(
−A l T rαL

k σ2

pkM

) ∏
ι∈L,N

EIιK

[
e
−A l Tr

αL
k

IιK
pkM

]
, (6.73)

where each expectation in (6.73) is the Laplace transform of the associated sub-PPP.

Now, using stochastic geometry and a slight abuse of notation, the expectation in (6.73)
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for the LOS case with respect to IL
K can be given as

E[exp(−sIL
K)]= EIK,ηi

[
exp

(
−s
∑
i∈K

piη
2
i x
−αL
i (K − 1)Ψk

)]
,

(a)
=EIK

{∏
i∈K

Eηi
[
exp

(
−s piη2

i x
−αL
i (K − 1)Ψk

)]}
, (6.74)

(b)
=EIK

{∏
i∈K

(
1

1 + s (K−1)Ψkpi
m

x−αL
i

)m}
,

(c)
= exp

[
−2πλU

∫ ∞
0

x

(
1−

(
1

1 + s (K−1)Ψkpi
m

x−αL

)m)
e−βxdx

]
,

where (a) follows from the assumption of independent small scale fading, (b) follows

from the use of the moment generating function of Nakagami-m random variable and

(c) follows due to the use of probability generating functionals of PPPs. Similarly,

the Laplace transform of interference in the NLOS case can be derived. Following

footprints of the derivation of PL
γk

(T ), PN
γk

(T ) can be calculated, which concludes this

proof.

Appendix 6.E Proof of Proposition 6.3

The CCDF of conditional SINR γ̄k in LOS can be given from (6.38) as

PL
γ̄k

(T ) = P
[
η2
k >

T rαL
k

pkM

(
σ2 + IK + IBS

)]
, (6.75)

Similar to the proof of Proposition 6.2, we approximate (6.75) as

PL
γ̄k

(T ) ≈
∑m

l=1

(
m
l

)
(−1)l+1EIK

[
exp

(
−A l T rαL

k

pkM
(σ2 + IK + IBS)

)]
. (6.76)

Now considering both LOS and NLOS BSs, and users and leveraging the notion of

mark of stochastic geometry, we have

IK = IL
K + IN

K , and IΦBS
= IL

ΦBS
+ IN

ΦBS
. (6.77)
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Accordingly, we can rewrite (6.76) as

PL
γ̄k

(T ) =
m∑
l=1

(
m

l

)
(−1)l+1e

−A l T r
αL
k

σ2

pkM

×
∏

ι∈{L,N}

EIιK

[
e
−A l Tr

αL
k

IιK
pkM

]
EIιBS

[
e
−A l TrαL IιΦBS

pkM

]
, (6.78)

where EIjK [.] follows from the proof of Proposition 6.2 and is given as

E[exp(−sI ιK)] =
∏
ι∈L,N

exp

[
−2πλU

∫ ∞
0

x

(
1−

(
1

1 + s (K−1)Ψkpi
m

x−αι

)m)
Pι(x)dx

]
,

(6.79)

Similarly, considering IL
ΦBS

E[exp(−sIL
ΦBS

)] = Eη,Υj
[
exp

(
−sMpjx

−αL
j η2

jΥj

)]
(a)

≤ Eη
[
exp

(
−sMpjx

αL
j η2

j τ
2
BS

)]
, (6.80)

(b)
= exp

[
−2πλBS

∫ ∞
0

x

(
1−

(
1

1 +
sMpjτ2

BS

m
x−αL

)m)
e−βxdx

]
,

where (a) follows by taking the upper bound on the Laplace functional with Υj ≥ τBS

and (b) is obtained by following a similar approach as the proof of Proposition 6.2.

Similarly, IN
ΦBS

case can be derived. This proof concludes by deriving the closed-form

expression for PN
γ̄k

(T ).
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Chapter 7

Full-Duplex MIMO Cognitive

Radios

7.1 Introduction

Among the emerging technologies for next-generation wireless networks, full duplex

(FD) communication is considered a way to potentially double the speed of wireless

communication, and is a potential candidate for 5G systems since it enables available

spectral resources to be fully utilized in time and frequency.

Many feasible solutions including antenna, analog and digital cancellation have

been demonstrated experimentally to mitigate the overwhelming self-interference (SI),

which is the fundamental challenge in implementing a full-duplex radio [24, 25]. How-

ever, the performance is limited by the residual self-interference to be induced by the

imperfection of the transmit and receive front-end chain [26, 27]. In addition to self-

interference, co-channel interference (CCI) from uplink (UL) users to downlink (DL)

users is another challenge in full-duplex networks that needs to be overcome to fully

exploit the multi-access nature of the wireless medium in conjunction with full-duplex

systems. To optimize the system performance, self-interference and CCI in FD systems

should be addressed jointly through beamforming [28, 29, 30, 31].

In addition to FD systems, cognitive radio system is also a promising technology

to enhance spectrum efficiency [131]. Accordingly, cognitive radios can be deployed

in FD mode. A FD cognitive radio (CR) can simultaneously transmit and sense the

Part of this chapter is reprinted from IEEE International Conference on Communications (ICC), A. C. Cirik, S. Biswas,
O. Taghizadeh, A. Liu, T. Ratnarajah, “On the Performance of Relay Aided Millimeter Wave Networks”. Copyright (2016), with
permission IEEE.
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transmission status of other nodes [132, 133]. In underlay cognitive radio systems, a set

of unlicensed secondary users (SUs) operate within the service range of licensed primary

users (PUs) where the amount of interference from SUs to PUs must be constrained

to meet the Quality-of-Service (QoS) requirements for the PUs. Since it is difficult

to obtain the estimates of the channels between SUs and PUs (due to the lack of full

SU-PU cooperation), it is important to consider the imperfect channel estimates, and

develop robust beamforming schemes that ensure constrained interference on PUs [134,

135].

There are two classes of models frequently used to characterize the imperfect channel

state information (CSI): the stochastic and the deterministic (or worst-case) models.

In the stochastic model, the channel is usually modeled as a complex random matrix

with normally distributed elements, and the transmitter knows the mean and/or the

covariance [136]. In the norm-bounded deterministic model, the instantaneous channel

lies in a known set of possible values, which represents the amount of uncertainty on

the channel, i.e., the bigger the set is, the more uncertainty there is [134, 135].

A sum mean squared error (MSE) minimization problem for a multiple-input multiple-

output (MIMO) FD cognitive radio system has been studied in [79], in which the opti-

mization problem has been cast as a second-order cone programming (SOCP). However,

the authors have not taken the channel estimation errors into account, and the SOCP-

based algorithm proposed in [79] cannot be applied under norm-bounded deterministic

imperfect CSI. Therefore, it is important to design robust transceivers for FD underlay

cognitive radio systems that take into account imperfect channel knowledge.

Motivated by the above, in this chapter, we consider a scenario where a secondary

BS operating in FD mode communicates with UL and DL SUs operating in HD mode si-

multaneously within the service range of multiple PUs. In addition to self-interference,

CCI is also taken into account to design the optimum robust beamformers under a

norm-bounded-error model. We study the sum-MSE as the objective function to min-

imize, subject to power constraints at the UL SUs and secondary BS, and interfering

power constraints at the PUs. Since this problem is semi-infinite and non-convex, two

methods are proposed to jointly design the transceiver matrices at the secondary BS

and users. In the first method, the semi-infinite constraints are first transformed into

the tractable forms, and an iterative Semidefinite programming (SDP) algorithm which

optimizes the transmit and receiving beamforming matrices in alternating manner is

proposed. At each iteration, sum-MSE decreases monotonically, and is guaranteed to

converge. On the other hand, to further reduce the design complexity, the cutting-set
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method [137, 138] is adopted in the second method, where the sum-MSE optimization

problem is solved by employing an iterative procedure which consists of alternating

transceiver design and channel determination steps. In particular, the former step

involves the transceiver design with a given worst-case channel set, and the latter

step involves the calculation of worst-case channels in the uncertainty regions given

transceiver designs. Simulation results demonstrate that the proposed robust designs

can significantly increase robustness to the CSI errors and can provide the improved

performance over the non-robust design. Moreover, it is shown that the proposed FD

system can achieve a significant improvement of throughput over a HD system.

7.2 System Model

We consider a FD cognitive cellular system, in which a secondary FD BS commu-

nicates with HD mode UL and DL SUs, simultaneously within the service range of

PUs as illustrated in Fig. 7.1. The BS equipped with M0 transmit and N0 receive

antennas serves K UL and J DL users simultaneously. The number of antennas of the

k-th UL and the j-th DL user are denoted by Mk and Nj, respectively. The channels

HUL
k ∈ CN0×Mk and HDL

j ∈ CNj×M0 represent the k-th UL and the j-th DL channel,

respectively. H0 ∈ CN0×M0 is the self-interference channel from the transmitter anten-

nas of BS to the receiver antennas of BS. HDU
jk ∈ CNj×Mk denotes the CCI channel

from the k-th UL user to the j-th DL user.

We also take into account the limited dynamic range (DR), which is caused by non-

ideal amplifiers, oscillators, analog-to-digital converters (ADCs), and digital-to-analog

converters (DACs). We adopt the limited DR model in [139], which has also been

commonly used in [140]-[27]. Particularly, at each receive antenna an additive white

Gaussian “receiver distortion” with variance β times the energy of the undistorted

received signal on that receive antenna is applied, and at each transmit antenna, an

additive white Gaussian “transmitter noise” with variance κ times the energy of the

intended transmit signal is applied. This transmitter/receiver distortion model is valid,

since it was shown by hardware measurements in [141] and [142] that the non-ideality

of the transmitter and receiver chain can be approximated by an independent Gaussian

noise model, respectively.

The vector of source symbols of length dULk transmitted by the k-th UL user is

denoted as sULk ∈ CdULk ×1. It is assumed that the symbols are independent and iden-

tically distributed (i.i.d.) with unit power, i.e., E
[
sULk

(
sULk
)H]

= IdULk . Similarly, the
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Figure 7.1: An illustration of a FD multi-user MIMO CR cellular system.

transmit symbols of length dDLj for the j-th DL user is denoted by sDLj ∈ CdDLj ×1,

with E
[
sDLj

(
sDLj
)H]

= IdDLj . Denoting the precoders for the data streams of the k-

th UL and j-th DL user as VUL
k ∈ CMk×dULk , and VDL

j ∈ CM0×dDLj , respectively, the

transmitted signal of the k-th UL user and that of the BS can be written respectively,

as

xULk = VUL
k sULk , x0 =

J∑
j=1

VDL
j sDLj . (7.1)

We consider a FD multi-user MIMO system that suffers from self-interference and

CCI. The signal received by the BS and that received by the j-th DL user can be

written respectively, as

y0 =
K∑
k=1

HUL
k

(
xULk + cULk

)
+ H0 (x0 + c0) + e0 + n0, (7.2)

yDLj = HDL
j (x0 + c0) +

K∑
k=1

HDU
jk

(
xULk + cULk

)
+ eDLj + nDLj , (7.3)

where n0 ∈ CN0 and nDLj ∈ CNj denote the additive white Gaussian noise (AWGN)

vector with zero mean and covariance matrix R0 = σ2
0IN0 and RDL

j = σ2
j INj at the BS
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and the j-th DL user, respectively.1

In (7.2)-(7.3), cULk (c0) is the transmitter distortion at the k-th UL user (BS),

which models the effect of limited transmitter DR, and closely approximates the effects

of additive power-amplifier noise, non-linearities in the DAC and phase noise. The

covariance matrix of cULk is given by κ (κ� 1) times the energy of the intended signal

at each transmit antenna [139]. In particular cULk can be modeled as

cULk ∼ CN
(
0, κ diag

(
VUL
k

(
VUL
k

)H))
, (7.4)

cULk ⊥ xULk . (7.5)

Finally, in (7.3)((7.2)), eDLj (e0) is the receiver distortion at the j-th DL user (BS),

which models the effect of limited receiver DR, and closely approximates the combined

effects of additive gain-control noise, non-linearities in the ADC and phase noise. The

covariance matrix of eDLj is given by β (β � 1) times the energy of the undistorted

received signal at each receive antenna [139]. In particular, eDLj can be modeled as

eDLj ∼ CN
(
0, βdiag

(
ΦDL
j

))
, (7.6)

eDLj ⊥ uDLj , (7.7)

where ΦDL
j = Cov{uDLj } and uDLj is the undistorted received vector at the j-th DL

user, i.e., uDLj = yDLj − eDLj . The discussion on the transmitter/receiver distortion

model holds for c0 and e0, as well.

The received signals are processed by linear decoders, denoted as UUL
k ∈ CN0×dULk ,

and UDL
j ∈ CNj×dDLj by the BS and j-th DL user, respectively. Therefore the estimate

of data streams of the k-th UL user at the BS is given as ŝULk =
(
UUL
k

)H
y0, and

similarly, the estimate of data streams of the j-th DL user is ŝDLj =
(
UDL
j

)H
yDLj .

Using these estimates, the MSE of the k-th UL and j-th DL user, can be respectively

given as2 [79]

MSEUL
k = E

{
(ŝULk − sULk )(ŝULk − sULk )H

}
= E

{((
UUL
k

)H
y0 − sULk

)((
UUL
k

)H
y0 − sULk

)H}

1Since the SU receiver cannot differentiate the interference generated by the PUs from the back-
ground thermal noise, the noise vectors in (7.2) and (7.3) captures the background thermal noise as
well as the interference generated by the PUs. This assumption is also adopted in [134] and [143]-[144],
and the noise is modeled as zero mean with unit variance in [134, 145] as we have assumed in this
chapter.

2The details on how to calculate the MSE is given in Section 2.5.2.
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=
((

UUL
k

)H
HUL
k VUL

k − IdULk

)((
UUL
k

)H
HUL
k VUL

k − IdULk

)H
+
(
UUL
k

)H
ΣUL
k UUL

k , (7.8)

MSEDL
j = E

{
(ŝDLj − sDLj )(ŝDLj − sDLj )H

}
= E

{((
UDL
j

)H
yDLj − sDLj

)((
UDL
j

)H
yDLj − sDLj

)H}
=

((
UDL
j

)H
HDL
j VDL

j − IdDLj

)((
UDL
j

)H
HDL
j VDL

j − IdDLj

)H
+
(
UDL
j

)H
ΣDL
j UDL

j . (7.9)

In (7.8) and (7.9), ΣUL
k and ΣDL

j are the approximated aggregate interference-plus-

noise terms3 4 at the k-th UL and j-th DL user, respectively, and are expressed as

[139]

ΣUL
k ≈

K∑
j 6=k

HUL
j VUL

j

(
VUL
j

)H (
HUL
j

)H
+ κ

K∑
j=1

HUL
j diag

(
VUL
j

(
VUL
j

)H) (
HUL
j

)H
+

J∑
j=1

H0

(
VDL
j

(
VDL
j

)H
+ κdiag

(
VDL
j

(
VDL
j

)H))
HH

0

+ β
K∑
j=1

diag
(
HUL
j VUL

j

(
VUL
j

)H (
HUL
j

)H)
+ β

J∑
j=1

diag
(
H0V

DL
j

(
VDL
j

)H
HH

0

)
+ σ2

0IN0 , (7.10)

ΣDL
j ≈

J∑
i 6=j

HDL
j VDL

i

(
VDL
i

)H (
HDL
j

)H
+ κ

J∑
i=1

HDL
j diag

(
VDL
i

(
VDL
i

)H) (
HDL
j

)H
+

K∑
k=1

HDU
jk

(
VUL
k

(
VUL
k

)H
+ κdiag

(
VUL
k

(
VUL
k

)H)) (
HDU
jk

)H
+β

J∑
i=1

diag
(
HDL
j VDL

i

(
VDL
i

)H (
HDL
j

)H)
+ β

K∑
k=1

diag
(
HDU
jk VUL

k

(
VUL
k

)H (
HDU
jk

)H)
+ σ2

j INj . (7.11)

Without loss of generality, we assume that there is only DL transmission over the

considered frequency band in the primary network. Therefore, the power of the inter-

ference resulting from the secondary UL users and BS at the l-th PU equipped with Tl

3Note that ΣUL
k and ΣDL

j are approximated under κ � 1 and β � 1, which is a practical
assumption [146, 139]. Therefore, the terms including the multiplication of κ and β are negligible,
and have been ignored in the approximation.

4In practice, since the BS knows the codeword x0 (its own transmitted signal), and the self-
interference channel H0, the term H0x0 can be canceled out in (7.2). In the following sections, we
will keep this term merely to be able to use the simplification in the next subsection. However, in the
performance simulations, this term will not be considered.
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receive antennas can be written as

IPUl =
K∑
k=1

tr
{

Glk

(
VUL
k

(
VUL
k

)H
+ κdiag

(
VUL
k

(
VUL
k

)H))
GH
lk

}
(7.12)

+
J∑
j=1

tr
{

Gl

(
VDL
j

(
VDL
j

)H
+ κdiag

(
VDL
j

(
VDL
j

)H))
GH
l

}
,

where Glk ∈ CTl×Mk
(
Gl ∈ CTl×M0

)
is the channel between the l-th PU and k-th UL

user (l-th PU and the BS).

7.2.1 Joint beamforming design

In this chapter, we tackle the sum-MSE minimization problem, which is formulated as

min
V,U

K∑
k=1

tr
{
MSEUL

k

}
+

J∑
j=1

tr
{
MSEDL

j

}
(7.13)

s.t. tr
{

VUL
k

(
VUL
k

)H} ≤ Pk, k = 1, . . . , K, (7.14)

J∑
j=1

tr
{

VDL
j

(
VDL
j

)H} ≤ P0, (7.15)

IPUl ≤ λl, l = 1, . . . , L, (7.16)

where Pk in (7.14) is the transmit power constraint at the k-th UL user, P0 in (7.15)

is the total power constraint at the BS, and λl in (7.16) is the upper limit of the inter-

ference allowed to be imposed on the l-th PU. Here,

V =
{
VUL
k , k = 1, . . . , K, VDL

j , j = 1, . . . , J
}

and

U =
{
UUL
k , k = 1, . . . , K, UDL

j , j = 1, . . . , J
}

are the set of all transmit and receive beamforming matrices, respectively.

Simplification of Notation: To simplify the notation, we will combine UL and DL

channels, similar to [31]. Let us use SUL and SDL to represent the set of K UL and

J DL channels, respectively. Denoting Hij, Glj, ni and receive (transmit) antenna
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numbers Ñi

(
M̃i

)
as

Hij =



HUL
j , i ∈ SUL, j ∈ SUL,

H0, i ∈ SUL, j ∈ SDL,

HDU
ij , i ∈ SDL, j ∈ SUL,

HDL
i , i ∈ SDL, j ∈ SDL,

Glj =

Glj, j ∈ SUL,

Gl, j ∈ SDL,

ni =

n0, i ∈ SUL,

nDLi , i ∈ SDL,

Ñi

(
M̃i

)
=

N0 (Mi) , i ∈ SUL,

Ni (M0) , i ∈ SDL,

and referring to VX
i , UX

i , dXi and ΣX
i , X ∈ {UL,DL} as Vi, Ui, di and Σi, respectively,

the MSE of the i-th link, i ∈ S , SUL
⋃
SDL can be written as

MSEi =
(
UH
i HiiVi − Idi

) (
UH
i HiiVi − Idi

)H
+ UH

i ΣiUi, (7.17)

where

Σi =
∑

j∈S,j 6=i

HijVjV
H
j HH

ij + κ
∑
j∈S

Hijdiag
(
VjV

H
j

)
HH
ij β

∑
j∈S

diag
(
HijVjV

H
j HH

ij

)
+ σ2

i IÑi ,

(7.18)

and the interference power at the l-th PU, IPUl in (7.12) can be rewritten as

IPUl =
∑
j∈S

tr
{
Glj

(
VjV

H
j + κdiag

(
VjV

H
j

))
GH
lj

}
. (7.19)

Using the simplified notation, the problem (7.13)-(7.16) can be rewritten as

min
V,U

∑
i∈S

tr {MSEi} (7.20)

s.t. tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (7.21)
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∑
i∈SDL

tr
{
ViV

H
i

}
≤ P0, (7.22)

IPUl ≤ λl, l = 1, . . . , L, (7.23)

7.2.2 Imperfect CSI model

In this chapter, the CSI for both the channels in secondary network, and the channels

between secondary and primary network are assumed to be imperfectly known. The

imperfect CSI is modelled using a deterministic norm-bounded error model [134]-[135],

which is expressed as

Hij ∈ Hij =
{

H̃ij + ∆i : ‖∆i‖F ≤ δi, j ∈ S
}
, (7.24)

Glj ∈ Glj =
{

G̃lj + Λl : ‖Λl‖F ≤ θl, j ∈ S
}
, (7.25)

where H̃ij, G̃lj, and δi, θl denote the nominal value of the CSI and uncertainty bounds,

respectively.

Under channel uncertainties, the optimization problem (7.20)-(7.23) can be rewrit-

ten as

min
V,U

max
∀Hij∈Hij

∑
i∈S

tr {MSEi} (7.26)

s.t. tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (7.27)∑

i∈SDL
tr
{
ViV

H
i

}
≤ P0, (7.28)

IPUl ≤ λl, ∀Glj ∈ Glj, l = 1, . . . , L. (7.29)

Due to the constraint (7.29), the problem (7.26) is a semi-infinite program [147,

Ch. 3], and we will derive an equivalent constraint in linear matrix inequality (LMI)

form in Section 7.3, so that the problem (7.26) will turn into an equivalent SDP, which

can be efficiently solved by standard interior point methods. Then, in an attempt to

further reduce the complexity of the SDP algorithm, in Section 7.4, we will develop a

cutting-set based algorithm to solve the non-convex problem (7.26).
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7.3 Robust Transceiver Design based

on SDP Method

Since the problem (7.26) is an intractable semi-infinite optimization problem [148], in

the following, we will turn it into a tractable form. Using epigraph form and introducing

slack variables τi, the minimax problem (7.26) can be equivalently rewritten as the

following minimization problem:

min
V,U,τ

∑
i∈S

τi (7.30)

s.t. tr {MSEi} ≤ τi, ∀Hij ∈ Hij, i ∈ S, (7.31)

tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (7.32)∑

i∈SDL
tr
{
ViV

H
i

}
≤ P0, (7.33)

IPUl ≤ λl, ∀Glj ∈ Glj, l = 1, . . . , L, (7.34)

where τ is a stacked vector composed of τi, i ∈ S.

The problem (7.30) can be formulated as a standard SDP, which is defined as

minimizing a linear objective under LMI constraints, which is a matrix constraint

in the form of A (x) � 0, where the matrix A depends linearly on x. Thanks to

this formulation, many well known algorithms for solving SDPs, for example, interior

point methods [81] can be exploited to solve the optimization problem efficiently in

polynomial time. To solve the optimization problem (7.30), we need to write tr{MSEi}
and IPUl in vector forms, the derivation of which are given in Appendix 7.C. Now, using

the vector forms, the SDP formulation, equivalent to the problem (7.30) is expressed

as below, the lengthy proof of which is relegated to Appendix 7.B.

min
V,U,τ ,εi≥0,ηl≥0

∑
i∈S

τi (7.35)

s.t.

 τi − εi µ̃H
i 01×ÑiM̃

µ̃i IAi −δiD∆i

0ÑiM̃×1 −δiDH
∆i

εiIÑiM̃

 � 0, i ∈ S, (7.36)

‖vec (Vi)‖2
2 ≤ Pi, i ∈ SUL, (7.37)

‖bvec (Vi)ci∈SDL‖
2
2 ≤ P0, (7.38)
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λl − ηl ι̃Hl 01×TlM̃

ι̃l IBl −θlEΛl

0TlM̃×1 −θlEH
Λl

ηlITlM̃

�0, l=1, . . . , L. (7.39)

The variables Ai, Bl, µ̃i, D∆i
, ι̃l, and EΛl are respectively defined as

Ai = di

(∑
j∈S

(
dj + M̃j

)
+ Ñi

)
+ Ñi

∑
j∈S

dj, (7.40)

Bl = Tl
∑
j∈S

(
dj + M̃j

)
, (7.41)

µ̃i =



(
VT
i ⊗UH

i

)
vec
(
H̃ii

)
− vec (Idi)⌊(

VT
j ⊗UH

i

)
vec
(
H̃ij

)⌋
j∈S,j 6=i⌊⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)
vec
(
H̃ij

)⌋
`∈D(T )

j

⌋
j∈S⌊⌊√

β
(
VT
j ⊗ (UH

i Γ`)
)

vec
(
H̃ij

)⌋
`∈D(R)

i

⌋
j∈S

σivec (Ui)


, (7.42)

µ∆i
=



(
VT
i ⊗UH

i

)⌊(
VT
j ⊗UH

i

)⌋
j∈S,j 6=i⌊⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)⌋
`∈D(T )

j

⌋
j∈S⌊⌊√

β
(
VT
j ⊗ (UH

i Γ`)
)⌋

`∈D(R)
i

⌋
j∈S

0diÑi×ÑiM̃


︸ ︷︷ ︸

D∆i

vec (∆i) , (7.43)

ι̃l =


⌊(

VT
j ⊗ ITl

)
vec
(
G̃lj

)⌋
j∈S

√
κ

⌊⌊(
(Γ`Vj)

T ⊗ ITl
)

vec
(
G̃lj

)⌋
`∈D(T )

j

⌋
j∈S

, (7.44)

ιΛl =

 ⌊(
VT
j ⊗ ITl

)⌋
j∈S√

κ
⌊⌊(

(Γ`Vj)
T ⊗ ITl

)⌋
`∈D(T )

j

⌋
j∈S


︸ ︷︷ ︸

EΛl

vec (Λl) . (7.45)

As it can be seen from (7.36), the problem (7.35) does not hold a jointly convex
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Table 7.1: Sum-MSE Minimization using SDP Algorithm

1) Set the iteration number n = 0 and initialize V[n].

2) n← n+ 1. Update U
[n]
i , i ∈ S by solving the convex SDP problem (7.35)

under fixed V[n−1].

3) Update V
[n]
i , i ∈ S by solving the convex SDP (7.35)

under fixed U[n].
4) Repeat steps 2 and 3 until convergence.

structure over the optimization variables. Nevertheless it is a separately convex opti-

mization problem over the transmit beamforming matrices V, and the receiving beam-

forming matrices U, once the other variables are fixed. This facilitates an alternating

optimization algorithm where in each iteration the solution to (7.35) is calculated, as a

convex optimization problem, assuming an alternatively fixed V or U. The described

optimization iterations continue until a stationary point is obtained, or a pre-defined

number of iterations is reached. Please see Table 7.1 for a detailed algorithm descrip-

tion.

The proposed sum-MSE algorithm monotonically decreases the total MSE over

each iteration by updating the transceivers in an alternating fashion. Also the fact

that MSE is bounded below (at least by zero), it is quite obvious that the proposed

sum-MSE minimization algorithm is convergent [149, 150]. However, the sum-MSE

optimization problem is not jointly convex. Hence, the proposed algorithm is not

guaranteed to converge to a global optimum point. As a result, it is important to select

good initialization points to ensure a suboptimal solution with a good performance.

For the simulations, we use right singular matrices as the initialization technique [151].

7.3.1 Computational complexity

In this subsection, the computational complexity of the proposed SDP method in

Table 7.1 is discussed. The number of arithmetic operations required to solve a standard

real-valued SDP problem

min
x∈Rn

cTx (7.46)

s.t. A0 +
n∑
i=1

xiAi � 0, (7.47)

‖x‖2 ≤ R, (7.48)

160



7.3. Robust Transceiver Design based on SDP Method

Table 7.2: Complexity Parameters of SDP-based Method

Number of variables (n) Dimension of blocks (ai)

V
∑

i∈S 2M̃di + 2|S|+ L ai = Ai + ÑiM̃ + 1, i ∈ S
ai = M̃dULi + 1, i ∈ SUL
ai = M̃

∑
i∈SDL d

DL
i + 1

al = Bl + TlM̃ + 1, l, . . . , L

Ui 2Ñidi + 2 ai = Ai + ÑiM̃ + 1, i ∈ S

where Ai denotes the symmetric block-diagonal matrices with P diagonal blocks of

size al × al, l = 1, . . . , P , is upper-bounded by [148]

O (1)

(
1 +

P∑
l=1

al

)1/2

n

(
n2 + n

P∑
l=1

a2
l +

P∑
l=1

a3
l

)
. (7.49)

Since the proposed algorithm in Table 7.1 solves a SDP problem in Step 2 and

Step 3, the number of arithmetic operations required to compute optimal Vi and Ui is

calculated from (7.49) as follows. In computing Vi, the number of diagonal blocks P

is equal to |S|+
∣∣SUL∣∣+L+ 1. For the MSE constraint of each user, the dimension of

blocks are ai = Ai + ÑiM̃ + 1, i ∈ S. For the UL SU power constraint, the dimension

of the blocks are ai = M̃dULi + 1, i ∈ SUL. For the BS power constraint, the dimension

of the block is ai = M̃
∑

i∈SDL d
DL
i + 1, and for the PU interference constraint, the

dimension of the blocks are al = Bl + TlM̃ + 1, l, . . . , L. The unknown variables to

be determined are of size n =
∑

i∈S 2M̃di + 2|S|+L, where the first term corresponds

to the real and image parts of Vi and the other terms represent the additional slack

variables. The calculation of the number of arithmetic operations required to compute

Ui can be carried out similarly. The computational complexity parameters for solving

the sum-MSE minimization problem using SDP method are given in Table 7.2. It is

observed that when the number of users and transmit/receive antennas increase, the

computational complexity of the SDP-based method can be unacceptably high.

7.3.2 CSI acquisition

We assume that the secondary BS has the knowledge of nominal channels and the radius

of uncertainty regions. We undertake a centralized approach where the secondary BS

coordinates the calibration of channel matrices, collects all channel matrices, computes

the beamforming matrices based on the imperfect CSI, and then distributes them to the

161



7.4. Robust Transceiver Design based on Cutting-Set Method

SUs. The estimation of CSI matrices in the secondary network follows a similar strategy

to that of traditional systems, as the secondary nodes cooperate with the secondary

BS. This is performed via the exchange of the training sequences and feedback, and

the application of usual CSI estimation methods [152]. On the other hand, it is more

challenging to obtain an accurate estimate for the CSI between the secondary and

primary networks, as the primary network is usually not willing to cooperate with the

secondary network. In this regard, few methods have been suggested to combat this

problem. Firstly, in case the primary system adopts the TDD scheme, the secondary

network can obtain the CSI to the primary nodes by taking advantage of the channel

reciprocity, and overhearing the transmissions from the primary network [152]-[153].

Secondly, a partial CSI can be obtained via blind environmental learning [154, 155].

Third, an estimate of CSI can be obtained via the realization of a band manager with

the ability to exchange the CSI between the secondary and primary networks [156,

157, 158], and finally, if possible, the primary system can cooperate with the secondary

network to exchange the channel estimates [152]. Of course, since the primary and

secondary systems are not fully coordinated, the quality of these channel estimates

will be degraded. Hence, we choose to model these imperfections by considering norm-

bounded estimation errors for the links between the secondary transmitters and primary

receivers. Note that after secondary network obtain the CSIs of the channels, they

report them to the central scheduler to perform resource allocation/transceiver design

in each time slot [159].

7.4 Robust Transceiver Design based

on Cutting-Set Method

Although the SDP-based iterative design improves the system performance, it has a

high computational complexity. In this section, we propose a low complexity algorithm,

the cutting-set method [137], which provides a new way to deal with the channel

uncertainties by separating CSI errors from the robust transceiver design problem. In

particular, the original problem is solved through a two step alternating algorithm,

namely transceiver design and worst-case channel determination steps. In the first

step (transceiver design), the optimal beamforming matrices are computed under the

assumption that the errors belong to a certain known uncertainty region (fixed set

of CSI), whereas the second step (worst-case channel determination) computes the

worst-case channel error matrices that maximize the constraint functions under the
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assumption that transceiver beamforming matrices computed in the first step are fixed.

In the following, we give both steps of the cutting-set algorithm in detail to solve the

robust MSE-based optimization problem.

7.4.1 Transceiver design for fixed CSI

In the transceiver design step, a version of the semi-infinite problem is solved over

finite subsets of the uncertainty regions. Assuming that the worst-case channels are

given (fixed CSI), the optimal Vi and Ui are computed through solving the following

optimization problem:

min
V,U,τ

∑
i∈S

τi (7.50)

s.t. ‖µi‖
2
2 ≤ τi, i ∈ S, (7.51)

‖vec (Vi)‖2
2 ≤ Pi, i ∈ SUL, (7.52)

‖bvec (Vi)ci∈SDL‖
2
2 ≤ P0, (7.53)

‖ιl‖2
2 ≤ λl, l = 1, . . . , L. (7.54)

Note that this problem is similar to the optimization problem (7.74) (without CSI

errors) given in Appendix 7.B, and with straightforward manipulation, it is easy to show

that the SDP formulation without CSI errors would reduce to the SOCP formulation.

Hence, we can reformulate the problem (7.50) as a SOCP problem under fixed V or

fixed U [79].

7.4.2 Worst-case channel determination for given transceivers

In the second step, worst-case analysis is carried out where channels that violate the

constraints are determined and appended to the finite uncertainty subsets. For fixed

transceiver beamforming matrices computed in the first step, the worst-case channels,

which maximize the MSE and PU interference constraints given in (7.51) and (7.54),

respectively, are computed in the bounded uncertainty regions. Note that under fixed

transceiver beamforming matrices, the MSE and PU interference constraints are inde-

pendent of each other with respect to the CSI errors. For a fixed transceiver design,

the worst-case CSI errors that maximize the MSE of the i-th user can be obtained by
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solving the following problem

max
∆i

tr {MSEi} (7.55)

s.t. ‖∆i‖F ≤ δi. (7.56)

Since the objective function (7.55) is non-convex, the problem is intractable, and

thus to simplify the computation, we adopt a first order approximation by neglecting

all the terms that involve the second orders of CSI errors in (7.17). The approximation

is expressed as

tr {MSEi} ≈ tr
{

˜MSEi

}
+ 2<

{
tr

{
UH
i ∆iVi

(
UH
i H̃iiVi − Idi

)H}}
+

∑
j∈S,j 6=i

2<
{

tr
{

UH
i ∆iVjV

H
j H̃H

ijUi

}}
+ κ

∑
j∈S

2<
{
tr
{
UH
i ∆idiag

(
VjV

H
j

)
H̃H
ijUi

}}
+ β

∑
j∈S

2<
{
tr
{
VjV

H
j H̃H

ijdiag
(
UiU

H
i

)
∆i

}}
(a)
= tr

{
˜MSEi

}
+ 2<

{
vecH

(
BH
i

)
vec (∆i)

}
, (7.57)

where tr
{

˜MSEi

}
is obtained by setting all CSI errors in (7.17) to zero, (a) is obtained

by using the identity tr {AB} = vecH
(
AH
)

vec (B), and Bi is expressed as

Bi = Vi

(
UH
i H̃iiVi − Idi

)H
UH
i +

∑
j∈S,j 6=i

VjV
H
j H̃H

ijUiU
H
i

+ κ
∑
j∈S

diag
(
VjV

H
j

)
H̃H
ijUiU

H
i + β

∑
j∈S

VjV
H
j H̃H

ijdiag
(
UiU

H
i

)
. (7.58)

Using Cauchy-Schwarz inequality in the approximate MSE expression in (7.57), the

worst-case CSI errors corresponding to the MSE constraints are computed as (Please

see Appendix 7.D for the complete derivation.)

∆i =
δi

‖vec (Bi)‖2

BH
i . (7.59)

After computing the worst-case CSI errors, the corresponding worst-case channels can

be written as Hij = H̃ij+∆i, j ∈ S. Note that since the worst-case CSI error in (7.59)

is computed based on the approximation in (7.57), the MSE constraints in (7.51) may
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be violated even if the corresponding worst-case channels are in the given uncertainty

regions. However, this violation is negligible, since the effect of the second order terms

of CSI errors on the performance are insignificant when the CSI error is small [160].

Next, we compute the worst-case CSI errors corresponding to the PU interfer-

ence (7.34). Specifically, for a fixed transceiver matrices, the worst-case CSI errors

that maximize the interference power at the l-th PU is computed by solving the fol-

lowing problem

max
Λl

IPUl (7.60)

s.t. ‖Λl‖F ≤ θl, (7.61)

which is, again, difficult to solve. Similar to (7.57), to simplify the analysis and com-

putation, an approximation for (7.19) involving only the first-order errors (ignoring the

second-order terms) is adopted, and the approximation is expressed as

IPUl ≈ ĨPUl +
∑
j∈S

2<
{

tr
{

ΛlVjV
H
j G̃H

lj

}}
+ κ

∑
j∈S

2<
{

tr
{

Λldiag
(
VjV

H
j

)
G̃H
lj

}}
= ĨPUl + 2<

{
vecH

(
CH
l

)
vec (Λl)

}
, (7.62)

where ĨPUl is obtained by setting all CSI errors in (7.19) to zero, and Cl is defined as

Cl =
∑
j∈S

(
VjV

H
j + κdiag

(
VjV

H
j

))
G̃H
lj . (7.63)

Using Cauchy-Schwarz inequality in the approximate expression (7.62), the worst-case

errors corresponding to the l-th PU interference are obtained similarly as that of (7.59)

as

Λl =
θl

‖vec (Cl)‖2

CH
l . (7.64)

The corresponding worst-case channels can be expressed as Glj = G̃lj + Λl, j ∈ S.

7.4.3 Iterative algorithm for the robust design

The proposed cutting-set algorithm to solve the robust MSE-based problem involves

a two-step algorithm alternating over transceiver design and worst-case channel de-

termination steps described in the previous two subsections. The algorithm starts
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Table 7.3: Sum-MSE Minimization using Cutting-Set Method

1) Set the iteration number n = 0 and initialize H[n].

2) Update U
[n]
i and V

[n]
i by solving the problem (7.50) with the given set H[n]

utilizing a similar iterative algorithm given in Table 7.1.

3) Compute the worst-case channels, denoted as H̃[n] using (7.59) and (7.64).
4) Find the violating channels and append them to the set,

i.e., H[n+1] =
{
H̃[n],H[n]

}
.

5) If the termination criterion is satisfied, then end. Otherwise, set n← n+ 1
and go to Step 2.

with the set of channel matrices H, which initially contains only the imperfect CSI

H̃ij, {i, j} ∈ S and G̃lj, j ∈ S, l = 1, . . . , L. In the first (transceiver design) step,

the problem (7.50) is solved with all the given channels in the set H (the constraints

should involve all the elements of H).

In the worst-case channel determination step, the worst-case channels are obtained

by solving the problems (7.55) and (7.60). If the resulting channels for all links, i.e.,

H̃ij + ∆i and G̃lj + Λl violate the constraints in (7.51) and/or (7.54) for the fixed

transceiver matrices calculated in the previous step, these worst-channels are added

to the set H. The algorithm alternates between these two steps until it does not pro-

duce any violating channel, i.e., the maximum constraint violation is below a specified

threshold. Note that during the worst-case channel determination step, the set H may

be expanded (or remain the same) depending on the constraint violations. During the

minimization step (first step), the precoder and receive beamforming matrices are com-

puted to meet MSE and PU interference constraints for increasing number of worst-case

channels in H (MSE and PU interference constraints must include all the channels in

H) resulting in increased robustness. Particularly, as the size of the set H increases,

the number of effective constraints in the transceiver design problem increases.

It has been demonstrated in [137] that the iterative procedure can be terminated

within a few iterations. When the worst-case analysis problem has an exact solution,

the iterations of the cutting-set algorithm lead to the optimal solution, whereas the

iterations lead to a suboptimal solution if the worst-case analysis makes use of approx-

imations [137]. Due to the MSE and interference approximations in (7.57) and (7.62),

respectively, the proposed iterative algorithm is not guaranteed to lead to the robust

optimal solution, and generally leads to the locally optimal solution. The proposed

algorithm is outlined in Table 7.3.
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Table 7.4: Complexity Parameters of Cutting-Set Method

Number of variables (n) Dimension of blocks (ai)

V
∑

i∈S 2M̃di + |S| ai = Ai − Ñidi, i ∈ S
ai = M̃dULi , i ∈ SUL
ai = M̃

∑
i∈SDL d

DL
i

al = Bl, l, . . . , L

Ui 2Ñidi + 1 ai = Ai, i ∈ S

7.4.4 Computational complexity

The computation complexity of the cutting-set method mainly depends on solving

the SOCP problem (7.50), since the computation complexity to update the worst-case

channels set is negligible. Consider the real-valued problem

min
x∈Rn

cTx (7.65)

s.t. ‖Aix + bi‖ ≤ cTi x + di, i = 1, . . . , P, (7.66)

‖x‖2 ≤ R, (7.67)

where bi ∈ Rai . The number of elementary arithmetic operations necessary for solving

this problem is upper-bounded by [148]

O (1) (1 + P )1/2 n

(
n2 + P +

P∑
i=0

a2
i

)
. (7.68)

The number of inequalities P + 1 is equal to |S| +
∣∣SUL∣∣ + L + 1. For the MSE

constraint of each user, the dimension of blocks are ai = Ai− Ñidi, i ∈ S. For the UL

SU power constraint, the dimension of the blocks are ai = M̃dULi , i ∈ SUL. For the BS

power constraint, the dimension of the block is ai = M̃
∑

i∈SDL d
DL
i , and for the PU

interference constraint, the dimension of the blocks are al = Bl, l, . . . , L. The unknown

variables to be determined are of size n =
∑

i∈S 2M̃di+ |S|. It is worth noting that the

complexity of the other subproblems can be determined in a similar manner. Then,

the complexity parameters for sum-MSE minimization problem based on cutting-set

method is given in Table 7.4. Compared to the analytical results in Table 7.2, the

computational complexity of the cutting-set method in each iteration has much lower

complexity than that of the SDP-based method.
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7.5 Numerical Results

In this section, we numerically investigate the sum-MSE minimization problem for

a FD MIMO cognitive cellular system. We start by comparing the sum MSE per-

formance of the two algorithms, proposed in the chapter as a function of transmit-

ter/receiver distortion, κ/β and channel uncertainty size, δ/θ. We then analyze the

sum-rate performance of the FD system as a function of the number of antennas Ñ ,

transmitter/receiver distortion, κ/β, channel uncertainty size, δ/θ and CCI attenua-

tion factor5, ν. The tolerance (the difference between MSE of two iterations) of the

proposed iterative algorithm is set to 10−4, the maximum number of iterations is set

to 50, and the results are averaged over 100 independent channel realizations. Since

the optimization problems we are dealing with are non-convex, we need to choose good

initialization points to have a suboptimal solution with good performance. In this

chapter, we use right singular matrices initialization [151].

We consider small cell deployments [161] and compare the FD system with the HD

system under the 3GPP LTE specifications. Small cell is considered to be suitable

for deployment of FD technology due to its low transmit power, short transmission

distances and low mobility [30, 162]. We consider a single hexagonal cell consisting of

a BS in the center with M0 transmit and N0 receive antennas. K = 2 UL and J = 2 DL

users equipped with N antennas randomly distributed in the cell6. For simplicity, we

assume M0 = N0 = N = Ñ . The CR system has L = 2 PUs, with the same maximum

allowed interfering power (i.e., λl = 0dB).

The channel between BS and users (both SUs and PUs) are assumed to experi-

ence the path loss model for line-of-sight (LOS), and the channel between UL and

DL users are assumed to experience the path loss model for non-line-of-sight (NLOS)

communications. Detailed simulation parameters are shown in Table 7.5.

5It is important to note that while the channel matrices are assumed to be given for each user,
it is essential for a practical system to exploit a smart channel assignment algorithm prior to pre-
coder/decoder design. This is particularly essential for a FD setup as the CCI can be reduced by
assigning the users with weaker interference paths into the same channel. In order to incorporate the
effect of channel assignment into our simulation, we assume an attenuation coefficient, namely ν, on
the CCI channels, which represent the degree of isolation among UL and DL users due to channel
assignment.

6Although the BS has N0 + M0 antennas in total, we assume that only M0 (N0) antennas can
be used for transmission (reception) in HD mode. This assumption is similar to [31]. The reason
is that in practical systems RF front-ends are scarce resources, since they are much more expensive
than antennas. Therefore, we assume that BS only has M0 transmission front-ends and N0 receiving
front-ends, and do not carry out antenna partitioning.
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Table 7.5: Simulation Parameters

Parameter Settings
Cell Radius 40m
Carrier Frequency 2GHz
Bandwidth 10MHz
Thermal Noise Density −174dBm/Hz
Noise Figure BS: 13dB, User: 9dB
Path Loss (dB) between BS and users 103.8 + 20.9 log10 d
(d in km)
Path Loss (dB) between users (d in km) 145.4 + 37.5 log10 d
Shadowing Standard Deviation LOS: 3dB, NLOS: 4dB

The estimated channel gain between the BS to kth UL user is given by H̃UL
k =√

κULk ĤUL
k , where ĤUL

k denotes the small scale fading following a complex Gaussian dis-

tribution with zero mean and unit variance, and κULk = 10(−X/10), X ∈ {LOS,NLOS}
represents the large scale fading consisting of path loss and shadowing, where LOS

and NLOS are calculated from a specific path loss model given in Table 7.5. The

channels between BS and DL users, between UL users and DL users, between BS

and PUs, and between UL users and PUs are defined similarly. We adopt the Ri-

cian model in [163], in which the self-interference channel is distributed as H̃0 ∼
CN

(√
KR

1+KR
Ĥ0,

1
1+KR

IN0 ⊗ IM0

)
, where KR is the Rician factor, and Ĥ0 is a deter-

ministic matrix7. Unless stated otherwise, we consider, Ñ = 2, κ = β = −70dB,

ν = 0.5 and δ = θ = 0.1.

Fig. 7.2 shows the evolution of the proposed algorithms, i.e., the convergence of

the algorithms in Table 7.1 and Table 7.3. The monotonic decrease of the sum-MSE

can be verified, and is seen that the cutting set algorithm converges more rapidly than

SDP.

After establishing the convergence of the two algorithms, we now present a thor-

ough comparison of the SDP and cutting-set methods in terms of computational com-

plexity (complex multiplications) and CPU time (time in secs required for conver-

gence)/iteration number (number of iterations required to converge) in Fig. 7.3a and

Fig. 7.3b, respectively with respect to different number of antennas. Similarly, in

Fig. 7.4a and Fig. 7.4b, computational complexity and CPU time/iteration number

are plotted with respect to different number of users for the two algorithms, respec-

7Similar to [30], without loss of generality, we set KR = 1 and H̃0 to be the matrix of all ones for
all experiments.
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Figure 7.2: Convergence behavior of the proposed algorithms.

tively.8 Note that in Fig. 7.3b and Fig. 7.4b, the bar plots represent the CPU time and

lines represent the number of iterations. As expected, cutting-set algorithm always has

the lowest complexity and requires less computational time than SDP, especially at

high number of antennas and users, which is inline with our computational complexity

analysis in Table 7.2 and 7.4.

We now compare the proposed SDP and cutting set algorithms in terms of sum-

MSE performance for different κ = β values in Fig. 7.5. From the figure, it can be seen

that the cutting set algorithm performs as well as the SDP based one with a nominal

performance gap. This loss in performance is well compensated from the computa-

tional point of view as the cutting set based method provides affordable computational

complexity with respect to its SDP counterpart. Hence, the cutting set method can be

considered as a good alternative to the SDP method, which offers a decent trade-off

between performance and computational complexity.

To further highlight the similarities between the two algorithms, in Fig. 7.6, we com-

pare both SDP and cutting set in terms of sum-MSE performance for various channel

uncertainty sizes. When the size of the channel uncertainty is low, the performance of

both the algorithms are quite similar, whereas with an increase in δ = θ values, the

performance gap between the two algorithm increases. The reason is that cutting-set

8For system guidelines we note that, the proposed algorithms are evaluated centrally using MAT-
LAB R20015a on a Linux server with Intel Xeon processor (16 cores, each clocked at 2 GHz) and 31.4
GiB of memory.
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(a) Complexity comparison.
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(b) CPU time and iteration number comparisons.

Figure 7.3: Complexity, CPU time and iteration number comparisons of SDP and
cutting-set algorithm systems with respect to different number of antennas. In (a), 3
UL, 3 DL, 2 PU equipped with 3 antennas, and d = 2 data stream transmission is
assumed.
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Figure 7.4: Complexity, CPU time and iteration number comparisons of SDP and
cutting-set algorithm systems with respect to different number of users. In (a), 4 trans-
mit/receive antennas, 2 PU equipped with 3 antennas, and d = 2 data stream trans-
mission is assumed.
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Figure 7.5: Sum-MSE comparison of SDP and cutting-set algorithms for an FD
system with respect to transmitter/receiver distortion, i.e., κ, β.
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Figure 7.6: Sum-MSE comparison of SDP and cutting-set algorithms for an FD
system with respect to channel uncertainty, δ = θ. Here, κ = β = −40dB.

algorithm is derived based on the approximations given in (7.57) and (7.62), where the

second-order CSI errors are ignored. But as the channel uncertainty size increases, the

effect of second-order CSI errors become more apparent.

In our next example, we show the complementary cumulative distribution (CCD)

of the total interference power from the secondary users to the primary users, i.e.,
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Figure 7.7: Probability of interference power from secondary to primary network with
respect to the maximum allowed total interfering power, λ.

P[IPU ≥ λ], where IPU =
∑L

l=1 I
PU
l and λ =

∑L
l=1 λl. Here, the precoders/decoders

are designed based on the SDP based algorithm. It can be seen from Fig. 7.7 that

the probability of total interference power from the secondary network to the PUs is

zero when it is higher than λ = 3dB, which is the maximum allowed total interfering

power (considering 2 PUs, with each allowing 0dB interference). This is in conjunction

to constraint (7.34), which ensures that the interference to the primary users is always

kept below or equal to the maximum allowed total interfering power. While achieving

the equality condition in (7.34) will ensure maximum sum rate for the secondary users,

the proposed algorithm mainly operates below the maximum allowed interfering power

to protect the primary users, but still satisfying the required quality of service of the

secondary users. Moreover, the area under the CCD curve can be contemplated as the

region, under which the proposed algorithm is always feasible.

Hereinafter, we will compare FD with HD systems in terms of sum-rate perfor-

mance as a function of κ = β values for different numbers of antennas based on the

SDP algorithm (We haven’t included the performance of the cutting-set algorithm here-

inafter, since we have observed both SDP and cutting-set algorithms give very similar

performance). The sum-rate of the MIMO FD cellular system can be expressed as

Isum =
∑
i∈S

di∑
k=1

log2 (1 + SINRik) , (7.69)
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Figure 7.8: Sum-rate comparison of FD and HD systems with respect to transmit-
ter/receiver distortion, i.e., κ, β. Here, κ = β.

where SINRik is the SINR of the k-th stream of user i and can be given as defined in

Section 2.5.2 as

SINRik =
1

MSEik

− 1. (7.70)

In (7.70), uik and vik are the k-th column of Ui, and Vi, respectively. As seen in

Fig. 7.8, the performance of HD system is not affected with κ and β values, and at

high self-interference cancellation levels, FD system achieves around 1.6 times more

sum-rate than that of HD. However, at low self-interference cancellation levels (below

around κ = β = −55dB), the distortion is magnified with the increasing number of

antennas and the performance of FD system drops below that of HD scheme.

In Fig. 7.9, the importance of the smart channel assignment, as a stage prior to

the precoder/decoder design is depicted for the SDP algorithm. The CCI attenuation

represents the provided isolation among the UL and DL users. It is seen that as the

suppression level of CCI increases, the FD system starts outperforming the HD system,

and thus isolation among the UL and DL users is essential for a successful coexistence

of UL and DL users in a FD setup.

In Fig. 7.10, we compare FD with HD systems in terms of sum-rate performance

for different κ = β values as a function of δ = θ based on the SDP algorithm. From the

figure, it can be seen that the performance of both the FD and HD systems degrades as
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Figure 7.9: Sum-rate comparison of FD and HD systems with respect to CCI atten-
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the size of the uncertainty region increases. However, the FD system suffers more as a

result of that and the gap between the FD and HD system decreases. But, if the channel

uncertainty is nominal along with a low distortion level (around -70 dB), FD systems

achieve around 1.4 times more sum-rate than that of HD systems. This degradation in

performance of the FD system is explained as follows. Since there are more interference
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channels (self-interference and CCI) in FD systems, as the uncertainty level of the

channels increases, the system performance of the FD system degrades more. This

indicates that the channel estimation is a critical factor for successful deployment of

FD systems.

7.6 Summary

In this chapter, we have studied the robust MSE-based transceiver design problem

for a FD MIMO cognitive cellular system that suffers from self-interference and CCI

under the limited DR at the transmitters and receivers, and norm-bounded channel

uncertainties. Since the globally optimal solution is difficult to obtain due to the

non-convex nature of the problems, an alternating SDP-based algorithm that iterates

between transmit and receiving beamforming matrices while keeping the other fixed

is first proposed. Second, an efficient cutting-set method was proposed to solve the

original complicated problems by applying an alternating sequence of transceiver design

and channel determination steps. As simulation results demonstrate, compared to the

SDP-based method, the cutting-set method achieves a similar performance with a

lower computational complexity. Moreover, it has been shown in simulations that the

sum-rate achieved by FD system is higher than that of HD system under reasonable

self-interference cancellation and/or CCI attenuation values.

Furthermore, in this chapter, sophisticated transmit and receive filters were used

to cancel the self interference. However, the advent of massive MIMO systems has

opened up possibilities to suppress the self interference to the desired 110dB by simply

leveraging the excess antennas used in a large MIMO antenna array. Accordingly,

discussion on designs of simple precoders/detectors to cancel the self interference at

the BS are provided in the following chapter.

Appendix 7.A Useful Lemmas

Lemma 7.1. [164] Given matrices P, Q, A with A = AH , the semi-infinite LMI of

the form of

A � PHXQ + QHXHP, ∀X : ‖X‖F ≤ ρ,
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holds if and only if ∃ε ≥ 0 such that[
A− εQHQ −ρPH

−ρP εI

]
� 0. (7.71)

Lemma 7.2. Schur Complement Lemma [81]: Let Q and R be symmetric matrices.

Then the following two expressions are equivalent.[
Q S

S∗ R

]
� 0 , R � 0, Q− SR−1S∗ � 0.

Appendix 7.B Problem Reformulation

To solve the optimization problem (7.30), we first write it in a more compact form

for ease of exposition. To that end, we write tr{MSEi} and IPUl in vector forms. As

shown in Appendix 7.C, the vector forms of tr{MSEi} and IPUl can be written as

tr{MSEi} = ‖µi‖
2
2 and IPUl = ‖ιl‖2

2, where µi and ιl are given as

µi=



(
VT
i ⊗UH

i

)
vec (Hii)− vec (Idi)⌊(

VT
j ⊗UH

i

)
vec (Hij)

⌋
j∈S,j 6=i⌊⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)
vec (Hij)

⌋
`∈D(T )

j

⌋
j∈S⌊⌊√

β
(
VT
j ⊗ (UH

i Γ`)
)

vec (Hij)
⌋
`∈D(R)

i

⌋
j∈S

σivec (Ui)


(7.72)

ιl =

 ⌊(
VT
j ⊗ ITl

)
vec (Glj)

⌋
j∈S√

κ
⌊⌊(

(Γ`Vj)
T ⊗ ITl

)
vec (Glj)

⌋
`∈D(T )

j

⌋
j∈S

, (7.73)

where D(R)
j represents the set {1 · · · Ñj}, D(T )

j represents the set {1 · · · M̃j} and Γ` is

a square matrix with zero elements, except for the `-th diagonal element, equal to 1.

Using the vector forms (7.72) and (7.73), the problem (7.30) can be rewritten as

min
V,U,τ

∑
i∈S

τi (7.74)

s.t. ‖µi‖
2
2 ≤ τi, ‖∆i‖F ≤ δi, i ∈ S, (7.75)

‖vec (Vi)‖2
2 ≤ Pi, i ∈ SUL, (7.76)

‖bvec (Vi)ci∈SDL‖
2
2 ≤ P0, (7.77)

178



7.B. Problem Reformulation

‖ιl‖2
2 ≤ λl, ‖Λl‖F ≤ θl, l = 1, . . . , L. (7.78)

Semi-infinite optimization problems can be formulated in terms of LMIs. Such

a reduction, if possible, has important practical consequences: It means that those

semi-infinite problems can be solved efficiently with interior-point methods for LMI

problems [81]. Note that the constraints (7.75) and (7.78) are not in the form of an

LMI because the optimization variables do not appear linearly in these constraints.

To recast the semi-infinite problem (7.74) as a SDP problem, the Schur complement

lemma given in Lemma 7.2 is used to rewrite the constraints (7.75) and (7.78) in LMI

form. Accordingly, the resulting optimization problem is written as

min
V,U,τ

∑
i∈S

τi (7.79)

s.t.

[
τi µH

i

µi IAi

]
� 0, ‖∆i‖F ≤ δi, i ∈ S, (7.80)

‖vec (Vi)‖2
2 ≤ Pi, i ∈ SUL, (7.81)

‖bvec (Vi)ci∈SDL‖
2
2 ≤ P0, (7.82)[

λl ιHl
ιl IBl

]
� 0, ‖Λl‖F ≤ θl, l = 1, . . . , L, (7.83)

where the dimensions of the identity matrices in (7.80) and (7.83) are given, respec-

tively, as

Ai = di

(∑
j∈S

(
dj + M̃j

)
+ Ñi

)
+ Ñi

∑
j∈S

dj, (7.84)

Bl = Tl
∑
j∈S

(
dj + M̃j

)
. (7.85)

To further simplify the problem (7.79) , Lemma 7.1 is used to relax the semi-

infiniteness of the constraints (7.80) and (7.83).

However, to apply Lemma 7.1, we need to separate the estimated channel and the

channel estimation error. To this end, the LMI in (7.80) is first expressed as[
τi µ̃H

i

µ̃i IAi

]
+

[
0 µH

∆i

µ∆i
0Ai×Ai

]
� 0, (7.86)
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where9

µ̃i =



(
VT
i ⊗UH

i

)
vec
(
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− vec (Idi)⌊(

VT
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, (7.87)

µ∆i
=



(
VT
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j ⊗UH

i

)⌋
j∈S,j 6=i⌊⌊√
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(
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β
(
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j ⊗ (UH

i Γ`)
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`∈D(R)
i

⌋
j∈S

0diÑi×ÑiM̃


︸ ︷︷ ︸

D∆i

vec (∆i) . (7.88)

By choosing

A =

[
τi µ̃H

i

µ̃i IAi

]
, P =

[
0ÑiM̃×1, DH

∆i

]
, (7.89)

X = vec (∆i) , Q = [−1,01×Ai ] , (7.90)

and applying Lemma 7.1, the LMI in (7.80) is relaxed as τi − εi µ̃H
i 01×ÑiM̃

µ̃i IAi −δiD∆i

0ÑiM̃×1 −δiDH
∆i

εiIÑiM̃

 � 0, i ∈ S, (7.91)

εi ≥ 0, i ∈ S. (7.92)

Using a similar procedure, the LMI in (7.83) is expressed as[
λl ι̃Hl

ι̃l IBl

]
+

[
0 ιHΛl
ιΛl 0Bl×Bl

]
� 0, (7.93)

9To simplify the presentation, from now on we will assume the number of transmit antennas at the
BS is equal to number of transmit antennas at the UL users, i.e., M̃ = M0 = Mi, i ∈ SUL.
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where

ι̃l =


⌊(

VT
j ⊗ ITl

)
vec
(
G̃lj
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√
κ
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, (7.94)

ιΛl =

 ⌊(
VT
j ⊗ ITl

)⌋
j∈S√

κ
⌊⌊(

(Γ`Vj)
T ⊗ ITl

)⌋
`∈D(T )

j

⌋
j∈S


︸ ︷︷ ︸

EΛl

vec (Λl) . (7.95)

Then the LMI in (7.83) is relaxed as λl − ηl ι̃Hl 01×TlM̃

ι̃l IBl −θlEΛl

0TlM̃×1 −θlEH
Λl

ηlITlM̃

 � 0, l = 1, . . . , L, (7.96)

ηl ≥ 0, l = 1, . . . , L. (7.97)

Using the relaxed LMIs in (7.91) and (7.96), the SDP problem, which is equivalent

to (7.26) can be formulated as (7.35).

Appendix 7.C MSE Computation

Using (7.17), tr{MSEi} can be written as

tr{MSEi} = tr
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where D(R)
j represents the set {1 · · · Ñj}, D(T )

j represents the set {1 · · · M̃j} and Γ` is

a square matrix with zero elements, except for the `-th diagonal element, equal to 1.

Applying the vec(·) operation, and the identity ‖vec (A) ‖2
2 = tr

{
AAH

}
, (7.98) can

be rewritten as
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Using the identity vec(ABC) =
(
CT ⊗A

)
vec (B), (7.99) can be written as ‖µi‖

2
2,

where µi is given in (7.72).

Similar to (7.99), IPUl can be written as

IPUl =
∑
j∈S

‖vec (GljVj)‖2
2 +

∑
`∈D(T )

j

κ ‖vec (GljΓ`Vj)‖2
2

 . (7.100)

Using the identity vec(ABC) =
(
CT ⊗A

)
vec (B), (7.100) can be written as ‖ιl‖2

2,

where ιl is given in (7.73).

Appendix 7.D Calculation of Worst Case CSI Er-

ror

The approximate MSE expression in (7.57) can be rewritten as

vecH
(
BH
i

)
vec (∆i) = ||vec

(
BH
i

)
· vec (∆i) ||

≤ ||vec
(
BH
i

)
||||vec (∆i) || (7.101)

= ||vec
(
BH
i

)
||δi, (7.102)

where (·) denotes the dot product operator and (7.101) is obtained by using the Cauchy-

Schwarz inequality, ||ab|| ≤ ||a||||b||. Now equality is achieved for s ∈ R when

vec (∆i) = s vec
(
BH
i

)
(7.103)
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Now plugging (7.103) in (7.102), we have

s ||vec
(
BH
i

)
||2 = ||vec
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i
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||δi

=⇒ s =
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||vec(BH

i ) ||
. (7.104)
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Chapter 8

Conclusions

8.1 Summary

Future wireless communication networks will predominantly be formed with mobile

devices such as smart phones, tablets, wearables, internet of things (IoTs) etc. This

has resulted in an exponential growth in the amount of wireless data being created.

However, spectrum resources in the current microwave regime is almost expended and

it is evident that the wave of data requirement will not be met with the current state-of-

the-art technologies. Hence, spectrum and energy efficient design of future wireless net-

works become extremely important. Accordingly, it is imperative to shift the communi-

cation paradigm to beyond 20GHz, where more than 100GHz of unused millimeter wave

(mmWave) bandwidth is available. Furthermore, advanced and optimized communica-

tion and signal processing techniques also need to be developed to meet the demands

future cellular networks. In this thesis, we provided a holistic study of three promis-

ing technologies (massive multiple-input multiple-output (MIMO), mmWave and full

duplex (FD)), which have the potential to meet three primary requirements of future

5G wireless communication systems: i) delivering very high (10X more than current

state-of-the-art) and increasing energy efficiency (on the order of 100X), ii) serving a

large number of users simultaneously and iii) providing higher bandwidths. We have

provided several advantages and corresponding trade-offs of these technologies with re-

spect to several real-life implementation constraints, such as physical space for massive

MIMO, blockages for mmWave, and self-interference for FD.

In Chapter 3, the uplink performance of a massive MIMO system was analysed.

Stochastic geometry was used to characterise the spatially distributed users while large
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dimensional random matrix theory (RMT) was used to achieve deterministic approx-

imations of the sum rate of the system. Approximations for the analytical sum rate

were provided along with closed-form expressions at the low and high signal to noise

ratio (SNR) regimes. The approximations were further validated with Monte-Carlo

simulations. The performance was evaluated with respect to the number of antennas

at the base station (BS) and the intensity of the users. We also provided an analysis

of the energy efficiency of the system by taking into consideration the circuit power

consumption, which was shown to be a function of the number of antennas and the

users. The relative EE of the system was plotted with respect to varying BS antennas

for different SNR ranges. It was shown that the energy efficiency is a quasi-concave

function of the number of base station antennas and does not always increase linearly

with it. Accordingly, in Chapter 4 the optimum number of antennas that can be rigged

in a space-constrained massive MIMO system when energy efficiency (EE) is consid-

ered as a design criteria was derived. A trade-off between the number of antennas, the

fixed physical space and EE was found. It is evident that high EE can be obtained,

but at the cost of reducing the number of antennas or increasing the physical space

for the antennas to be deployed. The results provide adequate insights into how future

massive MIMO BSs can be set-up within constrained physical spaces.

However, when millimeter wave frequencies are considered, due to the smaller wave-

length, the constraint on physical space is relaxed significantly and a much larger num-

ber of antennas can be incorporated within very small physical spaces. Hence, in order

to fully realize the potential of massive MIMO systems, it is mandatory to shift the

communication paradigm from micro wave to mmWave frequencies. Furthermore, in-

terest in mmWave bands has recently gained significant attention due to the fact that

microwave bandwidth is almost expended. However, in a mmWave network, blockages

often attenuate the desired signal and may lead to the loss of transmitted information.

This can be dealt with the use of relays, which was discussed in details in Chapter 5.

New nodes that form a set of relays were derived using the generalized Matérn Hard

Core Point Process (MHCPP). These active nodes are the ones that can withstand

the blockage effects in the network to transfer information with less outage probability.

Relay aided transmission was seen to improve the SNR by around 5dB for a specific

coverage probability. It is quite evident from our analysis that the use of relays can

prevent the attenuation of the desired signal by negating the effects of blockages, which

in turn also increases the coverage probability and transmission capacity of mmWave

networks.
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Furthermore, in Chapter 6 we study the performance analysis of a multi-user MIMO

mmWave network with multiple BSs, where the BSs are equipped with massive MIMO

antenna arrays. In particular, we considered a realistic propagation scenario of the

downlink of such a system with spatially distributed BSs equipped a with large 3D

circular antenna array serving single-antenna users within a fixed coverage area of

a densely built up urban environment. The performance of this system was analyzed

based on important metrics, namely coverage probability, average rate and area spectral

efficiency with respect to varying number of antennas at the BS, the intensity of the

BSs and users and blockage densities within the coverage area.

Finally, in Chapter 7, to improve the spectrum efficiency even further, we studied

the robust MSE-based transceiver design problem for a FD MIMO cognitive cellular

system.The system under consideration suffered from self-interference and co-channel

interference (CCI) under the limited dynamic range (DR) at the transmitters and

receivers, and norm-bounded channel uncertainties. Since a globally optimal solution

is difficult to obtain due to the non-convex nature of the problems, an alternating

iterative algorithm that iterates between transmit and receiving beamforming matrices

while keeping the other fixed was proposed. It was shown that the sum-rate achieved

by FD system is higher than that of half duplex (HD) system under reasonable self-

interference cancellation and/or CCI attenuation values.

Overall, we can conclude that these three technologies can indeed be the ones to

fulfil the requirements of 5G, and will definitely shape the way we communicate in the

near and far future. At this point, we note that in this thesis we have presented a

fundamental analysis based on various assumptions in order to gain first-hand design

insights. However, by lifting the constraints on the assumptions, it is possible to extend

the current work to several other complicated scenarios, which will be considered for

future work. A few possible extensions of the current work for each of massive MIMO,

mmWave and FD are discussed in the section below.

8.2 Extensions

8.2.1 Massive MIMO

The deterministic sum rate derived in Chapter 3 and the EE optimal parameter values

derived in Chapter 4 were based on the assumption of perfect channel state informa-

tion (CSI) and a single cell scenario. Further, perfect interference mitigation scheme
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for a given cell/BS was considered in Chapter 3. These assumptions enabled us to

gain a first-hand design insight for massive MIMO systems. Extensions to imperfect

CSI and multi-cell scenarios will be considered in future works. Below, we give some

preliminaries on imperfect CSI and multi-cell scenario with respect to the considered

system models.

8.2.1.1 Imperfect CSI

In particular, CSI acquisition by the BS can be done through the use of uplink pilots,

where a coherence interval of the channel is used for uplink training. Let us consider

the use of orthogonal pilot squence of length KτUL and the power used by the kth user

to transmit the uplink pilot be p̄σ2/βk. The parameters and notations used here are in

conjunction with Chapter 4. Now, using MMSE channel estimation [58] we have the

estimated channel as

ŵk ∼ CN

(
0,

βk
1 + 1

p̄KτUL

I

)
, (8.1)

where the estimation error of the covariance matrix is given as βk

(
1− 1

1+ 1

p̄KτUL

)
I.

Now, treating the channel estimates as true channels and applying approximate zero

forcing (ZF) in the uplink and downlink while also considering the estimation errors

as noise, the achievable rate for the kth UE can be given as [58]

R̃ = log2

1 +
p̃ULk

||vk||2
(
σ2 +

(
1− 1

1+ 1

p̄KτUL

)
Kp̄σ2

)
 . (8.2)

If p̃ULk = p̄σ2(M−K)||vk||2
1+ 1

ρKτUL
, then the total average rate of the system is given as

R̃ = log2

(
1 +

p̄(M −K)

1 + 1
τUL

+ 1
p̄KτUL

)
. (8.3)

This rate can be obtained using the power consumed by the power amplifiers in a

similar way as is given in (4.62), with p̄ being the optimization parameter similar

to Proposition 4.5. However, optimizing p̄ to obtain an optimum EE is not straight

forward due to the fact that unlike in the perfect CSI case, in (8.3) p̄ appears in both the

numerator and denominator. Consequently, the analytical difficulties of the imperfect
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CSI case when mutual coupling effects are considered at the BS will be considered in

future works.

8.2.1.2 Multi-cell scenario

When multiple cells are considered, it becomes necessary to reuse the pilot sequences

in the neighbouring cells, which results in pilot contamination [7]. It is important to

investigate its effects on the resultant EE in massive MIMO systems. For example,

assuming that there are J cells in the network, let the location of the kth user in the

jth cell be denoted by xjk and the average channel attenuation due to path loss and

shadowing between a user location x ∈ R2 and the jth BS be represented by Fj(x). If

a symmetric scenario is considered, where the parameters in all the cells including the

number of BS antennas, user distributions and propagation conditions, etc., are the

same, then the average channel attenuation E {Fj(xjk)} is independent of the index j

of the cell. Accordingly, let the uplink power for the kth UE in the cell j given as

p̃ULjk =
p̄σ2(M −K)||vjk||2

1 + PPC + 1
ρKτUL

, (8.4)

where PPC is the power loss due to pilot contamination and vjk is the receive filter.

Now, applying approximate ZF and averaging over all channel realizations, we have

[58]

E{||vjk||2} =
1 + PPC + 1

ρKτUL

βjk(M −K)
, . (8.5)

Hence, p̃ UL−pilot
jk = σ2p̄

βjk
is the power that needs be used for pilot transmission. Further,

the BS in cell j may not be aware of the positions of UEs in other cells, which might

be using the same pilots. Accordingly, the average interference from adjacent cells due

to using the same pilots needs to be calculated, which is another extension for future

work along with calculation of the EE optimal parameters for the multi-cell scenario.

8.2.2 Millimeter wave

8.2.2.1 Hybrid beamforming

In Chapter 6, it was considered that the BSs are equipped with fully-digital baseband

processing. This approach however requires that a radio frequency (RF) chain be
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associated with each antenna. This may become unfeasible when massive MIMO is

considered. On the contrary, fully analog solutions require only a single RF chain

for the whole antenna array. However, such techniques have zero capability of digital

processing, which motivates the use of hybrid beamforming that promises to strike

a balance between these two techniques. In the hybrid structure, the number of RF

chains can vary from 1 (fully analog beamforming) to the total number of antennas

(fully digital beamforming). Two architectures, namely a fully-connected architecture,

where each RF chain has phase shifters connected to all antennas in the array and an

array of sub-arrays architecture, where the entire array is divided into sub-arrays and all

antennas in a sub- array are connected via phase shifters to exactly one RF chain have

been proposed in literature [165, 166, 167]. While the beamforming gain is higher in the

former, the power consumption and hardware complexity of precoder/combiner for a

fixed number of antennas is lower in the latter. Accordingly, precoding and combining

with hybrid beamforming can be implemented in Chapter 5 and 6 to develop a tractable

model for coverage and rate in multi-user mmWave networks.

8.2.2.2 Hybrid mmWave-microwave communication

Unlike microwave, mmWave provides a vast amount of unused spectrum. However, as

discussed in Chapter 5 and 6, mmWave has its own limitations as well. Hence, to meet

the quality of service (QoS) requirements of the network, it is imperative to harvest the

benefits offered by both worlds. In order to take advantage of the vast spectrum while

circumventing the shortcomings of mmWave bands, hybrid communication involving

both microwave and mmWave BS can be considered, where mmWave communication

is employed when blockage effects on the desired signal to interference plus noise ratio

(SINR) is minimum, and switches to microwave otherwise. Accordingly, we give some

qualitative comments on microWave and mmWave tiers’ association probabilities.

Let us consider the downlink transmission in a hybrid cellular network comprising

of both mmWave and microwave networks. Also, let the mmWave BSs be modeled

as a two dimensional homogeneous poisson point process (PPP) Φm with density λm,

while the microwave BSs follow another homogeneous PPP Φµ with density λµ. All the

processes are independent of each other. Assuming the typical user equipment (UE) to

be located at the origin, a simple offloading technique may be adopted wherein the typ-

ical UE is offloaded to the microwave network if the capacity achieved on the mmWave

network drops below a certain threshold. Similar offloading strategies were analyzed in

[18] and stated to be reasonable for mmWave based networks. Also assuming that the
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typical UE is associated with the best BS, which provides the UE with the strongest

signal, it is reasonable to consider an identical bias factor Bµ or Bm as was considered

in [168, 169], which is always positive. When B = 1, no biasing is considered and

the association goes back to a traditional cell association based on maximum received

power or nearest node. Leveraging the analysis from [168], and considering that the

UE is connected to the best BS in terms of long term averaged biased received power,

the UE association is generally conditioned on the least path loss distribution. So, it

is important to characterize such distributions in mmWave networks under the effect

of blockages. As mentioned earlier in Chapter 6, any link, i.e., the distance between

the UE and BS in a mmWave network depends on the blockage probability model.

Therefore, the least path loss distribution in a mmWave network is not the same as for

the case of a microwave network.

Consider a point process, where the points represent the path loss between the

UE and randomly placed BSs in a mmWave network. Let Φ̄m =
{
ξl ,

xαml
PmGlBm

}
be

a homogeneous PPP of intensity λm, with Gl being the antenna array gain function

and Pm the transmitted signal power. Here, the link distance x is a random variable,

and its LOS state occurs with the probability of e−βx. By using Mapping theorem [43,

Theorem 2.34], the density function of this one dimensional PPP under the effect of

blockages can be given as1

Λ([0, r]) =

(rPmGlBm)

1
αL∫

0

2πλmxe
−βxdx+

(rPmGlBm)

1
αN∫

0

2πλmx(1− e−βx)dx. (8.6)

Using the void probability of a PPP and with the help of (8.6), the least path loss

distribution in a mmWave network can be given as

Fm
ξl

(r)

= exp

(
−πλm(rPmGlBm)

1
αN −2πλm

β2 (1−e−β(rPmGlBm)

1
αL(1 + β(rPmGlBm)

1
αL ))

+ 2πλm
β2 (1−e−β(rPmGlBm)

1
αN(1 + β(rPmGlBm)

1
αN ))

)
. (8.7)

Now, let pµ be the association probability of a typical user connected to a microwave

network, i.e., the probability that all mmWave BSs have maximum path loss when the

1The notations of variables used here are the same as used in Chapter 6.
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user is connected to the nearest microwave BS. If rµ is the nearest microwave BS node,

then pµ can be represented as

pµ = Erµ
[
P
[
PµBµr

−αµ
µ > PmGlBmr

−αm
m

]]
,

=

∞∫
0

P
(

rαmm
PmGlBm

>
r
αµ
µ

PµBµ

)
frµ(r)dr, (8.8)

where P
(

rαmm
PmGlBm

>
r
αµ
µ

PµBµ

)
can be obtained by taking the CCDF of equation (8.7) and

frµ(r) is given as

frµ(rµ) = 2πλµrµ exp(−λπr2
µ). (8.9)

Hence, the association probability that a typical UE is connected to the microwave

network can be given as [170]

pµ=2πλµ

∞∫
0

r exp

(
−Λm

((
P̄m
P̄µ

) 1
αm r

αµ
αm

))
e−πλµr

2

dr, (8.10)

where P̄m = PmGlBm, P̄µ = PµBµ and

Λm

(
P̄m
P̄µ

1
αm r

αµ
αm

)

= πλm

(
P̄m
P̄µ

) 1
αN r

αµ
αN − 2πλm

β2

1−e
−β
(
P̄m
P̄µ

) 1
αN r

αµ
αN

(
1 + β

(
P̄m
P̄µ

) 1
αN r

αµ
αN

)
+ 2πλm

β2

1−e
−β
(
P̄m
P̄µ

) 1
αL r

αµ
αL

(
1 + β

(
P̄m
P̄µ

) 1
αL r

αµ
αL

) .

The association probability for the mmWave network pm can be obtained similarly.

With the association probabilities of the respective tiers of networks established, other

important problems such as resource scheduling, power allocations, etc., and perfor-

mance metrics such as outage probability, transmission capacity, area spectral effi-

ciency, etc., of the hybrid network can now be evaluated.
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8.2.3 Full duplex

8.2.3.1 Per-antenna power constraint

In Chapter 7, the considered power constraint at the BS was for the BS as a whole

However, in a physical implementation of a multi-antenna node, each antenna has its

own power amplifier in its analog front-end, and is limited individually by the linearity

of the power amplifier. Thus, a power constraint imposed on a per-antenna basis is

more realistic. Assuming that the maximum transmit power of the m-th antenna at

BS and the n-th antenna at the i-th UL user are set to Pm
0 and P n

i , respectively. Then,

we have the following transmit power constraints∥∥∥(IdULi ⊗ vni

)
vec (Vi)

∥∥∥2

2
≤ P n

i , i ∈ SUL, (8.11)∥∥∥⌊(IdDLi ⊗ vm
)

vec (Vi)
⌋
i∈SDL

∥∥∥2

2
≤ Pm

0 , (8.12)

where the vectors vni = [01×n−1, 1, 01×Mi−n] and vm = [01×m−1, 1, 01×M0−m]. Re-

placing (7.37) and (7.38) with (8.11) and (8.12), respectively, the proposed algorithms

are still applicable for the resulting optimization problem and will be be studied in

future work.

8.2.3.2 Uncertainty in the noise covariance

We assumed in the proposed algorithms in Chapter 7 that the noise covariance matrices

R0 and RDL
j are known perfectly. However, since the noise covariance is obtained by

antenna calibration measurements, in practical systems it is only known approximately.

Hence, it is also important to design robust transceivers under channel and noise co-

variance uncertainties. To that end, we assume the model in [171], which characterizes

the noise using only the square root of the covariance matrix, i.e., R
1/2
0 = R̃

1/2

0 + ∆n0

and
(
RDL
j

)1/2
=
(
R̃
DL

j

)1/2

+ ∆nDLj
, where R̃

1/2

0 and R̃
DL

j are known while the covari-

ance uncertainties are also bounded in their Frobenius norm, i.e., ‖∆n0‖F ≤ δn0 and∥∥∥∆nDLj

∥∥∥
F
≤ δnDLj . With this model, the noise term ‖vec (Ui)‖2

2 in (7.99) is replaced

with
∥∥∥vec

(
UH
i R

1/2
i

)∥∥∥2

2
, and the MSE at the i-th user is written as

tr{MSEi} , ai +
∥∥∥vec

(
UH
i R

1/2
i

)∥∥∥2

2
, (8.13)
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where ai includes all the terms in (7.99) except ‖vec (Ui)‖2
2, and Ri is equal to R0 if i

is an UL user and RDL
i otherwise.

The noise term in (8.13) is handled by introducing a slack variable ωi, i.e.,∥∥∥vec
(
UH
i R̃

1/2

i

)
+
(
Idi ⊗UH

i

)
vec (∆ni)

∥∥∥
2
≤ ωi, (8.14)

where ∆ni is equal to ∆n0 if i is an UL user and ∆nDLi
otherwise. Lemma 7.1 can be

used in (8.14) to obtain an equivalent LMI that covers the noise term of the i-th user.

Consider the MSE constraint tr {MSEi} ≤ τi in (7.31). By introducing slack

variables νi, from (8.13) it can be written as tr {MSEi} = ν2
i +ω2

i ≤ τi, where
√
ai ≤ νi.

Since these MSE constraints and the noise uncertainty constraint in (8.14) can be

expressed in SDP forms, the proposed algorithms will be used in future to study the

noise covariance uncertainty.

8.2.3.3 Full duplex in massive MIMO communication

In Chapter 7, baseband processing techniques using sophisticated transmit and receive

filters were used to cancel the self interference. However, the advent of massive MIMO

systems has opened up possibilities to suppress the self interference to the desired 110dB

by simply leveraging the excess antennas used in a large MIMO antenna array. To this

end, simple precoders/detectors may be used at the BS to cancel the self interference

[32, 33]. Accordingly, the precoder used in (7.1) for downlink can be modified to send

the transmitted signal as

x0 =
J∑
j=1

(VDL
j )mod(sDLj )mod, (sDLj )mod =

 sDLj

0N0×1

 , (8.15)

where 0N0×1 is the N0× 1 all-zeros vector transmitted to the receiving antennas of the

BS to suppress the self interference. The precoder can be a conventional precoder used

for massive MIMO [13, 15] as HH(HHH)−1. However, in order to suppress the self

interference, the conventional ZF precorder may be modified to send zeros to the BS

receive antennas only as

(VDL
j )mod = HH

mod(HmodH
H
mod)−1, (8.16)
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where

Hmod =

HDL
j

H0

 . (8.17)

By applying blockwise matrix inversion, the precoder in (8.16) is equivalent to defining

the precoder used in (7.1) as

VDL
j =

(
(HDL

j )H −HH
0 (H0H

H
0 )−1H0(HDL

j )H
) (

HDL
j (HDL

j )H −HDL
j HH

0 (H0H
H
0 )−1H0(HDL

j )H
)−1

(8.18)

The downlink MSE/sum-rate can now be calculated using this modified precoder. For

asymptotically large number of antennas, the sum rate can then be approximated

using tools such as law of large numbers or extreme value theory. Furthermore, with

the calculation of the deterministic sum-rate, another open problem to calculate the

optimal ratio between the number of transmit and receive antennas at the BS so as to

maximize both the downlink and uplink sum-rate arises, which will also be studied in

future works.
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