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Abstract

X-rays have been widely exploited to unravel the structure of matter since
their discovery in 1895. Nowadays, with the emergence of new X-ray sources
with higher intensity and very short pulse duration, notably X-ray Free Elec-
tron Lasers, the number of experiments that may be considered in the X-ray
regime has increased dramatically, making the characterization of gas phase
atoms and molecules in space and time possible. This thesis explores in the
theoretical analysis and calculation of X-ray scattering atoms and molecules,
far beyond the independent atom model.

A method to calculate inelastic X-ray scattering from atoms and molecules
is presented. The method utilizes electronic wavefunctions calculated using
ab-initio electronic structure methods. Wavefunctions expressed in Gaus-
sian type orbitals allow for efficient calculations based on analytical Fourier
transforms of the electron density and overlap integrals. The method is val-
idated by extensive calculations of inelastic cross-sections in H, He+, He,
Ne, C, Na and N2. The calculated cross-sections are compared to cross-
sections from inelastic X-ray scattering experiments, electron energy-loss
spectroscopy, and theoretical reference values.

We then begin to account for the effect of nuclear motion, in the first in-
stance by predicting elastic X-ray scattering from state-selected molecules.
We find strong signatures corresponding to the specific vibrational and ro-
tational state of (polyatomic) molecules.

The ultimate goal of this thesis is to study atomic and molecular wavepack-
ets using time-resolved X-ray scattering. We present a theoretical frame-
work based on quantum electrodynamics and explore various elastic and
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inelastic limits of the scattering expressions. We then explore X-ray scatter-
ing from electronic wavepackets, following on from work by other groups,
and finally examine the time-resolved X-ray scattering from non-adiabatic
electronic-nuclear wavepackets in the H2 molecule, demonstrating the im-
portance of accounting for the inelastic effects.
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Lay summary

X-ray scattering and diffraction is enormously useful to identify and charac-
terise matter. X-rays interact very weakly with matter as they only interact
with electrons, and for a long time it has been necessary to rely on crystalline
samples that present a very large number of molecules in almost identical
orientations. The emergence of new, much more intense, X-ray sources such
as Free-Electron Lasers make it possible to study samples without intrinsic
long-range order e.g. molecules in the gas-phase. In this thesis we aim to
predict X-ray scattering using computational tools in gas-phase atoms and
molecules.

We demonstrate how atoms and molecules in a specific state interact
with X-rays, producing scattering patterns that reflect the physical behaviour
of the system. In this case, X-ray scattering is considered to be elastic, with-
out any exchange of energy with the atom or molecule.

The X-rays can also exchange energy with an atom or molecule in an
internal process called inelastic X-ray scattering. Inelastic X-ray scattering
provide information about the energy levels of a system. In this thesis we
present a new computational tool to calculate inelastic X-ray scattering in
atoms and molecules.

An important aspect of X-ray Free Electron Lasers is that they deliver the
X-rays in very short pulses, which makes it possible to study an atomic or
molecular process unfold in time. We explore the time-evolution of atomic
or molecular system excited into a nonstationary state or superposition of
states using theoretical methods. In the case of a molecule undergoing a
chemical reactions, this is sometimes referred to as molecular movie.
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Chapter 1

Introduction

The objective of this thesis is to develop new methods to calculate and char-
acterise X-ray scattering from atoms and molecules in the gas phase. Al-
though predominantly theoretical, this work aims to bridge experiment and
theory and to generate a powerful tool to elucidate molecular dynamics.

X-rays were discovered in the late 19th century and continue to play a
critical role in physics, chemistry, biomedicine and materials science. At the
moment, the emergence of new X-ray sources such as XFELs is enabling
studies of non-crystalline samples [7, 8] and time-resolved studies compa-
rable in scope and ambition to ultrafast spectroscopies as demonstrated by
recent work from our group [9, 10] as well as others [11–14].

Recent developments in the time resolution of X-ray experiments makes
it possible to study ultrafast processes such as electron dynamics and bond-
breaking [9]. Ultrafast chemistry, in the time-range of femtoseconds or even
attoseconds, has evolved since the first spectroscopic techniques were dis-
covered. From the first X-ray intermediate trapping experiments [15] and
the first picosecond-resolution synchrotron experiments [16], to the recent
molecular movies by ultrafast X-ray and electron scattering [17–20], it has only
been thirty years.

Nowadays, the reduction in X-ray pulse duration has allowed the study
of different systems using ultrafast X-ray scattering [9, 21, 22]. However,
these processes are still not completely characterised from a theoretical
point of view. The simulation of ultrafast X-ray scattering processes cor-
rectly is one of the main challenges in ultrafast chemistry. For example, the
ring-opening reaction of 1,3-cyclohexadiene investigated experimentally in
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[21], would benefit from a reliable simulation of nuclear and electronic dy-
namics in the X-ray scattering process.

The theory and computational procedures necessary to explain ultrafast
time-dependent X-ray experiments constitute the basis of this thesis, which
follows in the footsteps of previous approaches found in the literature since
the 1990s [23] and goes beyond such methods with newly-developed tech-
niques. In the last few years several attempts have been made to explain the
explicit time-dependence of a scattering event and the electron dynamics
associated with it. With this work we aim to unravel the different ingredi-
ents necessary to develop a full quantum electrodynamic description of this
contemporary problem. Möller and Henriksen [11, 12] and Santra et al.[24,
25] have established the pillars on which the study of ultrafast X-ray scatter-
ing rests, and Kowalewski et al.[26] followed the assumptions established in
[11] to isolate elastic and inelastic contributions on the general X-ray scatter-
ing picture. The theory developed here is based in the aforementioned work
but it introduces a novel method to interpret and develop the theory neces-
sary to calculate the evolution of the X-ray scattering signal from ultrafast
photochemical processes.

Other problems such as the characterisation of inelastic X-ray scatter-
ing or state-selected X-ray scattering will also be discussed in this thesis.
Electronic structure calculations form a key component in describing these
scattering events, and such quantum chemical techniques and their applica-
bility to these problems, which are crucial in the interpretation of recent ul-
trafast X-ray scattering and ultrafast electronic scattering experiments [27–
34] , will be considered.

1.1 Historical background

The first experiments to generate X-rays were reported in 1785 when
William Morgan described the characteristics of an early version of the X-
ray tube [35], although he was unaware that he was generating and observ-
ing X-rays. Instead, the discovery of X-rays is accredited to Wilhem Röntgen
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who characterised the first X-rays in 1895 [36]. Since then, this electromag-
netic radiation with a wavelength on the order of Ångströms (10−10 m) and
energy on the order of keV, has been widely exploited.

In 1912, Max von Laue, a former assistant of Max Planck in Berlin, dis-
covered the diffraction of X-rays by crystals [37]. He postulated the wave
motion of X-rays and the existence of periodic structures in crystalline ma-
terials. However, elucidation of the structure of matter using von Laue’s
method was difficult as many of the parameters in the experiment were un-
known. William L. Bragg conceived a mathematical treatment that relates
the distance between crystal planes to the X-ray diffraction angle and the X-
ray wavelength, generalizing the Von Laue laws and providing a predictive
method to interpret experiments. As a demonstration, William H. Bragg
built the first X-ray spectrometer capable of analysing the diffraction angle
produced by a fixed X-ray wavelength [38, 39].

Soon after Röntgen’s discovery, it was postulated that X-ray-matter in-
teraction produces other types of secondary radiation. In 1897 Sagnac pos-
tulated the existence of secondary radiation, explained in 1917 by Professor
Barkla of Edinburgh, who discovered that it contained emitted electrons
along with X-rays. Lise Meitner in 1922 and, independently, Pierre Victor
Auger in 1923 explained the nature of the electrons emitted; they estab-
lished that a valence electron can be emitted when the X-ray produces an
inner-shell electron vacancy in the atom or molecule. Arthur Compton pos-
tulated, in the same year, that the X-rays produced in the process can have
a longer wavelength than the original beam. This results from the interac-
tion of X-rays with electrons in the molecule, which can present an inelastic
component, reducing the energy of the scattered X-ray. This process was
named after him as the Compton effect.

X-rays have not lost importance over the years. The DNA structure was
elucidated using X-ray Crystallography by Watson and Crick in 1953 [40]
following the lead of Dorothy Crowfoot Hodgkin who solved the structures
of Cholesterol [41] and vitamin B12 [42]. In 1954 David Green, Vernon In-
gram and Max Perutz published a seminal paper describing how, in princi-
ple, X-ray diffraction could be used for the direct determination of a protein
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structure [43]. Perutz along with Kendrew would solve the structure of the
protein Myoglobin four years later [44].

1.2 Sources of X-rays

1.2.1 X-ray tubes

The first X-rays were produced in cold cathode tubes, the design of which
was improved upon by William Coolidge in order to increase the intensity
of the X-rays produced and allow a degree of control over beam parameters
such as X-ray energy [45]. The basic design is as follows; a metal filament
made of tungsten is heated, emitting electrons which are then accelerated
towards the anode. When the electrons strike the anode and they are decel-
erated, they emit so-called Bremsstrahlung (X-rays) with a continuous distri-
bution of energies. However, the spectrum generated has sharp lines super-
imposed on it as illustrated in Fig. 1.2. These correspond to fluorescence due
to the radiative relaxation of an valence electron after an inner-shell vacancy
is created by the impact of the accelerated electrons. The emitted energies
are characteristic of the material used for the anode. A commonly used ma-
terial is copper, with Kα and Kβ lines at 8047 eV and 8095 eV, respectively
[46].

FIGURE 1.1: Photograph of an old Coolidge’s tube. Taken
from n6vj.com

Coolidge’s tubes were widely adapted in X-ray diffraction experiments
in crystalline samples [38, 47]. However, the overall intensity of X-rays is
low and only a small fraction of the photons emitted can be utilized as ra-
diation is emitted isotropically [48]. Synchrotron X-ray radiation, discussed

n6vj.com
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FIGURE 1.2: Spectra produced by an X-ray tube. Kα and Kβ

represent the fluorescent emission lines embedded into the
continuum Bremsstrahlung.

next, does not have these drawbacks, presenting higher intensity and tun-
able X-ray parameters.

1.2.2 Synchrotrons

The first synchrotrons were built in the 1950s, initially for particle collision
experiments in high-energy physics [49]. It was soon realised that the syn-
chrotrons constituted a useful source of X-ray radiation, and in the 1970s
the first synchrotron purposely built for generating X-rays was constructed
(DESY).

To produce synchrotron radiation we use magnets accelerate to electrons
which thus emit electromagnetic radiation. This effect is familiar in any
charged particle accelerated up to relativistic speeds and it can be seen even
in space, as supernovae explosions produce a significant number of high
energy electrons moving around magnetic fields. This is the case in the
Crab Nebulae (see Fig. 1.3) [50].

In the following we will refer to the term brilliance in order to characterise
the X-rays produced in these facilities. This parameter is analogous to the
X-ray intensity but it also accounts for the collimation of the X-ray and the
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divergence of the beam. It can be calculated using the following expression,

Brilliance =
photons

second mrad2 mm2 0.1%BW
(1.1)

where mrad accounts for the divergence of the X-ray beam, mm measure the
size of the focal point in the X-ray and BW refers to the energy bandwidth
of the X-ray pulse.

FIGURE 1.3: Photograph of the Crab Nebula in Taurus. One
can observe the production of synchrotron radiation around
the edges produced by the magnetic field curving the trajec-
tory of high-energy electrons. Taken from en.wikipedia.org/

wiki/Crab_Nebula

First generation synchrotrons were built using bent magnets in a storage
ring. To increase the acceleration produced on electrons these devices were
substituted by wigglers and undulators in the second and third generation
synchrotrons. These were capable to increase the brilliance of the X-ray ra-
diation produced. An undulator is a device placed in the straight regions
of the synchrotron rings. Formed by a sequence of alternative magnets, it
forces the electron to oscillate perpendicular to the direction of light (see
Fig. 1.4). These oscillations are in phase, enhancing the final radiation field
produced. The operation of a wiggler is analogous to the undulator. It does
not need a straight portion of the section as it is built as a series of circular

en.wikipedia.org/wiki/Crab_Nebula
en.wikipedia.org/wiki/Crab_Nebula
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arcs with different polarity. The curved geometry produces a lower electron
oscillation angle and therefore a smaller brilliance.

FIGURE 1.4: Scheme of the undulator operation. The electrons
pass through alternated magnets producing X-ray radiation.

The European Synchrotron Radiation Facility (ESRF) in Grenoble was
the first of the third-generation hard X-ray sources to operate in 1994,
achieving an energy of 6 GeV. The ESRF has been followed by the Advanced
Photon Source at Argonne National Laboratory in late 1996, and Spring-8 in
Harima Science Garden City in Japan in 1997. The high energetic radia-
tion produced by these synchrotrons allows the elucidation of complicated
structures with reduced crystallinity [51].

1.2.3 Free-Electron Lasers

The idea of Self-Amplified Stimulated Emission (SASE) was proposed by
Madey in 1971 [52] followed by the first operation in a free electron laser
in 1977 [53]. Electrons traveling through an undulator are made to oscil-
late and thus emit photons. If their velocity is sufficiently high, the emitted
photons will co-propagate with the electrons, causing them to oscillate co-
herently in micro-bunches separated by the X-ray wavelength. This process
results in coherent and highly directed radiation, organized in short pulses.
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The modulated radiation will enhance itself along the device as the field is
incremented while the electrons move. This phenomenon is known as SASE
and it is the principal effect constituting Free Electron Lasers (see Fig. 1.5). If
somehow one could reduce the diameter of each micro-bunch, the effect of
radiation would be more localized, generating stronger radiation fields and
shorter X-ray pulses. Using linear accelerators with small diameters then
produces higher electron densities and consequently higher brilliance.

FIGURE 1.5: Schematic representation of SASE effect.

The first free-electron laser , FLASH, was opened in Hamburg in 2005.
The energy of the X-rays generated oscillated around tenths of keV, situ-
ating FLASH as a soft-X-ray free-electron laser facility. In 2009, the Linac
Coherent Light source (LCLS) was the first XFEL to accomplish X-ray ener-
gies surpassing 10 keV. It was and continues to be the free-electron laser that
generates highest brilliance hard X-ray pulses with lowest pulse-duration.
Following the opening of LCLS, another hard-XFEL with the same pulse
properties named SACLA, was built in Japan a year after. Nowadays, new
facilities are under construction, one of the most important examples being
the European XFEL that it is being built close to FLASH. In Fig. 1.6 we can
see a comparison of the evolution in the X-rays sources presented above
according to the X-ray energy and the maximum pulse brilliance achieved.

The simulations performed by our group, as based on time-resolved
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FIGURE 1.6: Comparison of different Synchrotron and X-ray
Free Electron Laser sources using the brilliance peak and the

photon energies. Figure taken from Ref. [54].
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gas phase X-ray scattering experiments, require the intensity and pulse-
duration granted by XFELs [2, 9, 55].

1.3 Opportunities at XFELs

1.3.1 Biomolecular X-ray Crystallography

The small scattering cross-section of X-rays produces a weak signal in
diffraction. This leads to long data acquisition times, especially when deal-
ing with non-crystalline samples. As biomolecular systems present short-
range order, the emergence of X-ray sources such as XFELs entailed a great
advance on the macromolecular X-ray crystallography [56]. Likewise, the
short X-ray pulses produced by XFELs allow the measuring of X-ray diffrac-
tion before the sample gets damaged by the powerful X-ray pulses [57, 58].

The lack of periodic order in the biological samples presents some other
inconveniences. Although viruses and other biological entities with ordered
structures can be studied by diffraction of isolated samples [59], in most
of the cases a biomolecular crystal should be used to obtain a reliable X-
ray diffraction. It is important to note that growing big crystals out of hy-
drophobic compounds is difficult, leading to solutions as the gas-dynamic
virtual nozzle proposed by Weierstall et al. [60]. Using this technique, suc-
cessive micro-crystals are passed through the XFEL beam embedded on a
liquid jet, were femtosecond X-ray pulses diffract from them. As these
micro-crystals posses a random orientation in the jet, data acquisition be-
comes complicated, requiring subsequent approaches such as a viscose ma-
trix to fix the orientation of the sample or another fixed target methods [61–
63].

The higher frequency of repetition expected in the new XFEL facilities
will solve all the problems coming from the crystal production and mea-
surement. Faster diffraction detectors will be able to record the diffraction
produced by single proteins in solution, overcoming all issues presented
when solid samples are required.
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1.3.2 Time-resolved X-ray scattering

First experiments using time-resolved X-ray diffraction were performed at
the ESRF in Grenoble, where a mechanical chopper was fitted along the X-
ray beam giving ∼ 100 ps X-ray pulses. A pump-probe scheme was used
for this; an optical laser initiates the dynamical process and an X-ray pulse
diffracts from the sample at different time delays [64]. Neutze et al. per-
formed the first experiments using picosecond X-ray pulses to probe the
excited state dynamics of I2 [8]. Michael Wulff, one of the pioneers in this
technique, also collaborated with Richard Neutze mapping the evolution of
transient isomers of CH2I2 [65] and the photolysis of Br2 [16, 66]. Although
synchrotron experiments opened the way for the time-resolved X-ray ex-
periments, the time-duration of the pulses achieved was not short enough
to probe the atomic motions produced during the process.

X-ray free electron lasers can produce intense X-ray pulses of very short
duration, making them suitable to study ultrafast chemical dynamics re-
duced even to the molecular motion. Processes like the structural changes
occurring in a chromophore following the absorption of light have been
studied using femtosecond X-ray pulses at LCLS [67] and even bond for-
mations in Au oligomer complexes have been mapped using this technique
[68].

Another feature associated with the high intensity profile granted by
XFELs is the opportunity to study gas-phase ultrafast processes. The inter-
nal dynamics of the molecule can be isolated due to the low density of the
gas, leading to structural determination by X-ray diffraction at each of the
steps in the process. This has been demonstrated widely in the literature,
with examples like the study of gas-phase state-selected Iodine molecules
[69] or the electrocyclic ring opening reaction of ciclohexadiene [9].

Nowadays, studying coupled nuclear and electronic propagation with
Ultrafast X-ray Diffraction [11, 13, 23, 24, 70] is one of the main challenges
to achieve using XFELs. This theoretical studies have inspired some of the
work presented in Ch. 5 and Ch. 6.

It is important to remark that although X-ray scattering techniques have
undergone great advances with the emergence of synchrotrons and XFELs,
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other experimental X-ray techniques have also benefited from their appear-
ance. The pulsed X-ray radiation generated in novel sources such as XFELs
has made non-linear and X-ray multidimensional spectroscopies a viable
proposition. Techniques such as Coulomb explosion imaging use the ultra-
short pulse durations and high intensities provided by new X-ray sources
[71, 72].

1.4 Electron scattering

The De Broglie wave-particle duality [73] allows considering the electrons
as waves with an associated wavelength. In this sense, accelerated electron
beams can be used as a probing tool analogous to X-rays. In fact, the elas-
tic and inelastic cross sections produced in X-ray scattering have the same
magnitude as in the electron scattering regime. However, at large values of
q, the electron scattering process involves more than one interaction, caus-
ing the first Born approximation to break down.

To produce accelerated electrons, a device analogous to the X-ray tube
is used. Electrons are produced in a cathode and then accelerated to-
wards an anode. Instead of striking the anode material, electrons scatter
from the sample producing diffraction patterns. The larger scattering cross-
section for electrons with respect to X-rays allows achieving ultrafast time-
resolution for the study of molecular systems in the gas phase, as demon-
strated by Ahmed Zewail in his numerous studies using ultrafast electron
diffraction [74–76].

One of the drawbacks of ultrafast electron diffraction stems from the
fact that electrons are charged particles and electron pulses suffer a great
dispersion due to the Coulombic repulsion. This broadening limits the elec-
tron pulse duration, restricting the production of femtosecond or attosecond
electron pulses. Nevertheless, new GeV sources accelerate the electrons up
to relativistic speeds, reducing this effect and allowing the production of
pulses with shorter time-duration [33]. This new feature, makes the exper-
imental goals of ultrafast electron diffraction (UED) very similar to time-
resolved X-ray diffraction ones. Recently, it has been shown by Centurion et
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al. that the vibrational modes in I2 can be characterised using UED [14], as
well as the evolution of rotational modes in N2 [17]. New approaches can
probe reaction dynamics, as has been proposed by Wilkin et al. in the study
of photo-dissociation in C2F4I2 molecules through this technique (private
communication).

Some of the characteristics of electron scattering will be exploited in
this thesis, and the theoretical analogies with X-ray scattering will be high-
lighted in Ch. 4.

1.5 Interaction of X-rays with matter

We now consider the interaction of X-rays with an atom or molecule. Al-
though the total Hamiltonian includes several terms, the interaction term
between the radiation and material system governs these processes. The
interaction Hamiltonian takes the form [77],

Ĥint = p̂ · Â +
Â2

2
(1.2)

where p̂ is the momentum operator and Â the vector potential describing
the electromagnetic field (see Ch. 2 for further details). The first term refers
to absorption and emission processes as it only involves one instance of
the field, Â, and the second terms correspond to scattering as the vector
field, Â2, appears twice. In the following we will discuss resonant and non-
resonant interactions that involve the interaction Hamiltonian.

1.5.1 Resonant X-ray matter interactions

Resonant interactions constitute the basis for X-ray spectroscopy [78, 79].
All resonant interactions are governed by the linear term in the interaction
Hamiltonian, pÂ, and involve an initial absorption of an X-ray photon [80]
which excites a core electron to a virtual or unoccupied level. Considering
the typical energies of core electrons, this implies soft X-rays with energies
in the range 0.1− 10 keV [48]. The absorption of a photon is followed by
radiative or Auger decay as depicted in Fig. 1.7. The relative magnitudes of
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these two outcomes depend on the lifetime of the core-hole (the larger the
energy, the shorter the lifetime), with radiative decay favoured by longer
lifetimes.

a) b)

c) d)

FIGURE 1.7: Different resonant x-ray-matter interaction possi-
ble scenarios. Starting from an excitation of the core electron,
radiative decay schemes are shown in a) and b), while c) and
d) represent ionisation situations or Auger Raman Scattering.
The processes have been represented using a schematic form
of one electron and three type of levels. This image is based

on the concepts in [81].

1.5.2 Non-resonant X-ray matter interactions

Non-resonant scattering is dominant away from absorption edges [81].
These interactions are governed by the second term in the interaction
Hamiltonian, Â2 [82]. In the absence of resonant interactions, non-resonant
X-ray scattering is the dominant process. As it is a two-photon process, the
treatment of p̂ · Â requires second-order perturbation theory while Â2 cor-
responds to first order [83].

Elastic scattering occurs when there is no change in the electronic struc-
ture of the sample, but an interaction of the X-ray with the electron density
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a) b)

FIGURE 1.8: Non-resonant X-ray scattering interactions with
matter. a) Elastic case b) Inelastic non-resonant scattering .
Note that Inelastic non-resonant scattering can also involve an

excitation into the continuum.

a) b) c)

FIGURE 1.9: Non-resonant X-ray-matter interactions for pro-
cesses not involving scattering. a) Excitation of a core-electron
to continuum followed by b) radiative decay or c) Auger de-

cay.

takes place [84]. Likewise, an analogous interaction can happen when a va-
lence electron is excited during the process producing the so-called inelastic
scattering (see Fig. 1.8) [3]. It is important to note that inelastic scattering
can also result in ionisation. The focus of this thesis is on elastic and inelas-
tic scattering.

Although the dominant non-resonant process is scattering, absorption
of a photon can occur, exciting a core-electron into the continuum. The ex-
citation of an inner-shell electron produces, as in the resonant case, a high-
energy core-hole. This excitation is then followed by a reordering of the
electrons either radiatively or by emission of Auger electrons as shown in
Fig. 1.9.
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1.6 Predicting X-ray Scattering

1.6.1 Overview

When an X-ray photon is scattered by an atom or molecule, the scattering
cross-section of the process will be related to the change in the momen-
tum of the X-ray photon and the quantum states of the atom or molecule.
The differential cross section is directly related with the interaction Hamil-
tonian in Eq. (1.2). After considering a probabilistic treatment and applying
Fermi’s golden rule, the expression for the differential scattering cross sec-
tion reads,

dI
dΩ

=

(
dI
dΩ

)
Th

∑
n

(
ωn

ω0

)2

|〈Ψn|
Nel

∑
j=1

ei~q~rj |Ψ0〉|2, (1.3)

where
(

dI
dΩ

)
Th

is the Thomson cross section for an isolated electron, Ψ0 and
Ψn are the initial and final states of the atom or molecule respectively, ω0 and
ωn are the angular X-ray frequencies of the incident and scattered X-rays
and ~q is the scattering vector. According to the Waller-Hartree approxima-
tion the energy of the incident X-ray is approximately equal to the energy of
the scattered X-ray, allowing us to set ωn

ω0
to unity. Using the closure relation

of the wavefunction, we can express it as,

dI
dΩ

=

(
dI
dΩ

)
Th
|〈Ψ0|

Nel

∑
i,j=1

ei~q(~ri−~rj |Ψ0〉|, (1.4)

where the differential cross-section only depends on the ground state wave-
functions and the relative position vector ~ri −~rj. This constitutes an ap-
proximation of the total scattering differential cross-section based on the
pair-correlation function for the ground state,

dI
dΩ

=
∫

P(~r)
sin~q~r
~q~r

d3r + N, (1.5)

where,

P(~r) = ∑
i

∑
j 6=i

∫
Ψ∗0Ψ0

dτ1..dτn

d3rij
. (1.6)
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The total differential cross section calculated above is formed by elastic
and inelastic contributions collected through the term~ri−~rj, which is a two-
electron operator. To obtain the ground state, Ψ0, elastic differential cross
section one can isolate n = 0 contributions from Eq. (1.3),

F(~q) =
dI
dΩ

=

(
dI
dΩ

)
Th
|〈Ψ0|

Nel

∑
j=1

ei~q~rj |Ψ0〉|2, (1.7)

where we notice the inclusion of a one-electron operator,~ri. Using the previ-
ous expression one can isolate the contribution of the inelastic interactions
to the total scattering cross section, S(~q),

S(~q) = Itotal(~q)− F(~q). (1.8)

In the following, we will explain the approaches used to calculate these
quantities using theoretical methods. We will also introduce new computa-
tional procedures to treat the problem from a different perspective.

1.6.2 Independent Atom Model

In 1915 Debye proposed a method to calculate scattering cross-sections [47].
According to his procedure, one can tabulate the form-factors for all atoms
and then combine them to obtain any molecular result. The tabulated
atomic form factors are included in the International Tables of Crystallography
[85], and their calculation is based on the assumption,

f0(~q) =
∫

ρel(~r)ei~q~rd3r, (1.9)

where ρel(~r) is the atomic electron density. These factors are obtained us-
ing Hartree-Fock wavefunctions for every atom in the periodic table [86–
88]. Depending on the number of electrons in the system one can use differ-
ent approaches to perform the calculation. To combine the tabulated atomic
form-factors, we can use two approaches; the first one considers that the
molecule under study is aligned in space, that is, the signal will be differ-
ent depending on what is the direction of the X-ray beam. The second one
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interprets the signal as a rotational averaged entity considering all possible
orientations of the molecule.

Within the first approximation, the system is considered to be aligned
and the atomic form factors will be then sum multiplied by a distance phase,

fmol =
Nat

∑
i

fi(~q)ei~q~ri . (1.10)

The isotropy of atoms, in which ~q = |q|, will help for this purpose as
we will not have any difference in the signal depending on symmetry or
orientation. If we consider a full elastic signal, the intensity recorded by the
detector will be proportional to the square of the form factor. This situation
produces a formula that not only depends on the diagonal terms,

I(~q) ∝ | f (~q)|2 =
Nat

∑
i
| fi(~q)|2 + 2

Nat

∑
j>i

fi(~q) f j(~q)ei~q(~ri−~rj). (1.11)

Unfortunately, the alignment of the systems usually requires further
treatments of the sample, and for this reason is not the typical situation.
Molecules, as an effect of temperature, are encountered of in all possible
orientations when the experiment is performed, leading to a rotational av-
eraged signal.

One can show that the element ei~q(~ri−~rj) is equal to ei~q~rij cos(θ) and the an-
gles for the integration will go from [0, π] and [0, 2π] as shown in figure
1.10. According to these integration limits, the rotationally-averaged sig-
nal can be calculated through the angular integrals of the original aligned
signal,
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FIGURE 1.10: Graphical definition of the momentum transfer
vector Q when the K0 direction is parallel to the x-axis. K0 and
K1 are the incoming and scattered vectors respectively. θ and

φ represent the projection angles for the vector.

∫ 2π

0

∫ π

0
fi f jei~q~rij cos(θ)dφdθ = (1.12)

2π
∫ π

0
fi f jei~q~rij cos(θ)dθ = (1.13)

2π fi f j

(
−1
i~q~rij

)(
e−i~q~rij − ei~q~rij

)
= (1.14)

4π fi f j
sin(~q~rij)

~q~rij
, (1.15)

hence, the intensity expression will account for the rotational average if we
include this relationship,
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Ideb ∝
Nat

∑
i
| fi|2 + 4π

Nat

∑
j>i

fi f j
sin(~q~rij)

~q~rij
, (1.16)

which is the Debye relationship, derived in 1915 [47]. This formula is known
as the independent atom model formalism, and it takes into account only
the atomic form factors to calculate the molecular signal.

This method is appropriate for qualitative studies of molecular systems
in their ground state. If the purpose of this work is a detailed description
of the molecule, including its bonds and properties, or excited states study,
another method beyond the independent atom model will be required, as
discussed in subsequent chapters.

1.7 Computational Chemistry

As discussed in previous sections, the calculation of scattering cross-section
is based on the knowledge of the wavefunction of the system. The cal-
culation of time-independent wavefunction relies on the non-relativistic
Schrödinger equation,

ĤΨ = EΨ, (1.17)

where Ĥ is the molecular Hamiltonian and Ψ the corresponding wavefunc-
tion. Consider a molecule with n electrons and m nuclei,

Ĥmol = −
1
2

(
n

∑
i
∇2

i +
m

∑
A
∇2

A

)
−

n,m

∑
i,A

ZA

~riA
+

n

∑
i>j

1
~rij

+
m

∑
A>B

ZAZB

~rAB
, (1.18)

where the lower-case indexes represent the electrons and the upper-case
ones the nuclei. We can see that we have kinetic and potential energy terms
for both entities and the equation can be rewritten as,

Ĥmol = T̂e + T̂N + V̂(R, r), (1.19)
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where we have named the kinetic terms as T̂, and we have put together
all the potential energy contributions as V̂. The treatment using the Hamil-
tonian definition introduced above is problematic because of the crossed
terms. This situation leads us to the approximations we will present in the
next sections.

1.7.1 Born-Oppenheimer approximation

This approximation aims to separate the nuclear and electronic motion. As
nuclei have much higher mass than electrons, the kinetic energy terms for
them are negligible in comparison with the electronic ones. If one calculates
the limit in which this approximation is valid, the Hamiltonian is modified,
accounting only for the kinetic energy term for the electrons [89],

lim
me/MN→0

Ĥmol = Ĥ∞ = T̂e + V̂(R, r), (1.20)

where me is the mass of the electrons and MN the mass of nuclei. In Eq. 1.20
we use Ĥ∞ as the infinite nuclear mass Hamiltonian to denote that nuclei are
fixed respectively to the electrons. This assumption allows us to introduce
the nuclear degrees of freedom as a parameter on the electronic terms.

For every set of nuclear positions we will have a different solution for
the infinite mass Schrödinger equation,

Ĥ∞Ψj(r; R) = EΨj(r; R), (1.21)

regarding this expression one can formulate a decomposition of the total
wavefunctions in terms of the different R values. Each value of R will con-
stitute then a complete set,

δ(r− r′) = ∑
j

Ψj(r′; R)Ψ∗j (r; R). (1.22)

Now, we can introduce the ansatz,

Ψ(r, R) =
n

∑
j=1

χj(R)Ψj(r; R), (1.23)
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where we have decomposed the wavefunction into a nuclear part χj(R) and
an electronic part Ψj(r; R) which depends parametrically on the nuclear co-
ordinates. Inserting the previous equation into the full Schrödinger equa-
tion gives,

(T̂N + Ĥe)Ψ(r, R) = EΨ(r, R), (1.24)

which can be expanded as,(
−1

2

n

∑
N
∇2

N + Ĥ∞

)
Ψj(r; R)ψ(R) = EΨj(r; R)ψ(R). (1.25)

Multiplying the sides of this equation by the conjugate complex of the
electronic wavefunction one can redefine a Schrödinger equation for the nu-
clear part,

(
−1

2

n

∑
N

∫
Ψi(r; R)∗∇2

NΨi(r; R)dr + Ei(R)

)
ψ(R) = Eψ(R). (1.26)

This equation only accounts for the diagonal terms in i as a result of the
approximation presented above. Although the dependence of the electronic
wavefunction on R is just parametric, the ∇N operator will take a different
form on each value, making the situation complicated in terms of calcula-
tions.

Their derivatives will be approximately zero or negligible small as a con-
sequence of the nuclei mass. The result of this assumption in solution of the
Schrödinger equation is dramatic, allowing one to obtain potential energy
surfaces without influence of the electronic coupling,(

−1
2

n

∑
N
∇2

N + Ei(R)

)
ψ(R) = Eψ(R), (1.27)

where Ei(R) are the potential energies we are going to use in our treatments.
The expansion coefficients, ψ(R), can be interpret then as the wavefunctions
for nuclei moving on these potential energy surfaces.
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This approximation is widely used in quantum mechanics as it simpli-
fies in a great measure the treatment of the time independent Schrödinger
equation. However in certain cases one can overpass the limits imposed by
it considering the derivative coupling non-zero elements [9, 10].

In the next sections, we will explain what methods have been developed
to obtain the electronic structure of molecules and atoms based on the as-
sumptions we have made here.

1.7.2 Electronic structure methods

Approximate wavefunctions can be calculated using computational meth-
ods. In the following we will describe these procedures based on the previ-
ous lines.

Hartree-Fock

Between 1928 and 1951 Douglas Hartree [90], Vladimir Fock [91] and John
Clarke Slater [92] introduced the idea of the self-consistent field (SCF).
Along with the molecular orbital theory, the self-consistent field establishes
an elegant solution for the electron-electron repulsion terms. Based mainly
on the Bohr atomic model it says that each electron will feel an averaged
field produced by the rest of particles in the molecule or atom. Also, they
postulated the requirement of a linear and antisymmetric combination of
spin orbitals to solve the Schrödinger equation through their iterative pro-
cess. The Hartree product is settled as the first expression to work out this
procedure, adding this to the previous assumptions one can construct a
complete framework for the solution of the time-independent Schrödinger
equation.

The so-called Hartree-Fock method can be seen then as an iterative
procedure to obtain a reliable solution of the Schrödinger equation. The
central premise is the approximation of the multi-body wavefunction,
Ψ(x1, x2, ..., xn), as a Slater determinant,
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Ψ(x1, x2, ..., xn) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) φ3(x1) ... φn(x1)

φ1(x2) φ2(x2) φ3(x2) ... φn(x2)

φ1(x3) φ2(x3) φ3(x3) ... φn(x3)

. . . . .

. . . . .

. . . . .
φ1(xn) φ2(xn) φ3(xn) ... φn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.28)

where xn represent the particle spin and spatial coordinates, n is the num-
ber of particles and φ(x) are single-particle spin-orbitals. The method can
be applied to atoms or isolated molecules and it has no restrictions on the
number of particles present on the system. To properly solve it one should
make use of Rothaan-Hall equations, which expand the problem into a non-
orthonormal basis, either Gaussian or Slater-type [93, 94]. It takes a number
of approximate orbitals and chooses an electron, considering the rest as an
static charge distribution moving around it. The Schrödinger equation is
solved for this electron using the orbitals chosen at the beginning, repeating
the process for all electrons on the system. As it is an iterative method we
will repeat the same steps, calculating a new potential, until energy conver-
gence is reached. The final set of orbitals will constitute the key parameter
to obtain the electron density of the molecule or atom under consideration.
One can define it as,

ρ(r) =
N

∑
i

bi|φi(~r)|2, (1.29)

where the occupation numbers b can be [0, 1] and φ(~r) are mono electronic
spin-orbitals.

The Hartree-Fock method works well for ground state calculations in
systems described well by a single Slater determinant. However, as we ex-
plained before, the aim of our project encompasses both ground and excited
state calculations, demanding more accuracy in the wavefunction descrip-
tion.
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Multiconfigurational Methods

As we stated above, Hartree-Fock method has its limitations. There is an
inherent error when this procedure is carried out, and the presence of only
one Slater determinant limits the result [95, 96]. To extend the problem and
take into account the correlation energy, defined as the error produced by
a Hartree-Fock treatment, we can use a Configuration Interaction method.
Based on the same ideas as the Hartree-Fock approach, these methods seek
a diagonalisation of the N-particle Hamiltonian on the basis of N-electron
Slater determinants. Depending on the number of Slater functions used to
express each wavefunction one can get closer to the exact energy [96].

The drawback of this method lies in the enormous number of determi-
nants required to study the full system even for a small molecule. However,
one can truncate the number of configurations allowed, reducing the prob-
lem but constituting a great increase in the accuracy.

The procedure starts by calculating all possible combinations of electrons
in spin-orbitals within the molecule, ordering them by the number of exci-
tations from the ground initial state. Each of the wavefunctions produced
will combine all possible permutations of electrons. The interaction between
singles and the initial state is null as a consequence of Brillouin theorem, as
well as all the interactions involving two different spin orbitals. The spin-
orbitals used for this calculation are different from the HF ones. Instead,
natural orbitals introduced by Löwdin [97] will be the perfect choice for this
purpose.

One can consider that a variational principle applied to the HF orbitals
when the number of configurations is small enough will reduce the diffi-
culty of the CI treatment. This is the primary idea constituting the multi-
configurational self-consistent field (MCSCF) methods , which truncate the
full configuration interaction and use N Slater determinants optimised from
a Hartree-Fock procedure.

The Complete Active Space Self-Consistent Field (CASSCF) method is
an example of multi-configurational procedure based in the self-consistent
field approach. A reduced number of orbitals and electrons are chosen to
represent the restricted active space. All excitations within a threshold are
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considered inside this active space, relying in a definition of the wavefunc-
tion of the form,

Ψ(r) =
Ncon f

∑
i=1

ciψi(~r), (1.30)

where the total wavefunction for a definite state is represented by the sum
of several configurations Ncon f . Each ci will correspond to a value inside the
configuration interaction vector and ψi(~r) are the different configurations
expressed in terms of Slater determinants. This method is not limited to
one-state definitions. The same set of orbitals is optimised to produce state-
averaged results, that is, several states will be described using the same con-
figurations and orbitals and the only difference will be the configuration in-
teraction vectors associated with them. CASSCF notation in this thesis will
express the level of accuracy we are including in the calculation by specify-
ing the number of electrons and active orbitals used for the calculation, i.e.
CASSCF(Nel, Norbitals).

One of the main drawbacks of Hartree-Fock is corrected using multicon-
figurational procedures such as CASSCF. The correlation energy lacking in
the single-determinant description of the wavefunction and the mean field
approximation considered in Hartree-Fock procedures can be considered.
We can divide the electron correlation in two main contributions, dynamic
and static correlation. When electrons move, they will avoid the instanta-
neous position of other electrons producing an excess of energy when we
consider a self-consistent field. It is called dynamic correlation as it depends
on electron dynamics. On the other hand, static correlation is taken into
account when a multi-determinant Slater picture is used to represent the
wavefunction.

The results produced by the CASSCF method are reliable in terms of
the energy for the different states. This method, using several slater de-
terminants, is capable of correcting the static correlation not considered in
Hartree-Fock methods. However, it shows a poor description of dynamical
correlation. Only certain approaches such as multi-reference configuration
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interaction (MRCI) or complete active space perturbation theory second or-
der (CASPT2) will correct this drawback.

Although still limited by the number of active orbitals chosen in the
MCSCF method preceding it, MRCI allows new excitations and therefore
achieve better energies than previous procedures. The MRCI method uses
by default Configuration State Functions (CSFs) to eliminate the averaged
results introduced by the usage of Slater determinants. It takes into account,
using a larger frame of possible excitations, the electron correlation not con-
sidered by the self-consistent field procedures. Methods such as CASPT2
use second order perturbation theory to solve the Schrödinger equation.
CASPT2 uses a reference multiconfigurational result to start the calcula-
tion, achieving a level of accuracy greater than other approaches mentioned
above. The main problems of CASPT2 are the singularities occasioned when
the reference is not accurate enough.

1.7.3 Quantum dynamics

Up until now, we have considered stationary states. However, this is not
a realistic picture when we are talking about photochemistry and time-
resolved dynamics. To study the evolution of a wavefunction in time we
need to use the time-dependent Schrödinger equation,

ıh̄
dΨ(r, t)

dt
= ĤΨ(r, t), (1.31)

with the time-dependent wavefunction Ψ(r, t), in which r represents the
electronic and nuclear degrees of freedom and t is the time. There are sev-
eral ways in which we can solve this equation. Making use of the meth-
ods explained before, one can calculate stationary solutions for the time-
independent Schrödinger equation and based on the separation of variables,
this result can be used to treat it [95].

The problem of this treatment relies on the impossibility to find a gen-
eral solution for the time-dependent equation. A coherent combination of
eigenfunctions can be obtained as the valid result. To do so, we need to
get a set of orthonormal basis functions that satisfy the conditions specified
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by the Schrödinger equation; this procedure can be straightforward if we
have only one nuclear degree of freedom in our wavefunction and the time
dependency of the Hamiltonian is not explicit. As we will explain in the the-
ory chapter the application of different pictures, such as Heisenberg [98] and
Interaction [99] pictures, may help in the treatment of the time-dependent
problems but in the presence of a multi-dimensional wavefunction, a dis-
cretisation using grid-based methods will be necessary [100].

Quasi-exact solutions of this equation can be achieved using different
numerical methods. One should discretise the operators and wavefunctions
to start the treatment. For analytically defined wavefunctions, the proce-
dure is straightforward, and we can use an equally spaced grid to express
it. However, most of the methods make use of non-equidistant points to
define the grid (Discrete Variable Representation) gaining the advantage
of better sampling of the wavefunction in the regions of interest, and the
wavefunction is constructed using Gaussian wave packets. The initial guess
needs to be a solution of the electronic and vibrational Hamiltonian, requir-
ing further treatments of the nuclear degrees of freedom to achieve the final
time-dependent solution [101].

Once we have the variables discretised, several procedures can be ap-
plied. From the historical second order differentiation (SOD) to the modern
Fourier transformation methods (i.e. split-operator method) a vast range of
possibilities are available to carry out the simulation [100, 101]. One should
think about the scalability of the problem with the degrees of freedom. That
is, this kind of treatments require a reduced dimensionality to be applied
and are limited to molecules with a few atoms.

When the number of degrees of freedom in the system is too large to
apply these methods, one can use other kinds of approaches to solve the
TDSE. The Multi-configurational Hartree method (MCTDH) [102], which
treats the nuclear and electronic degrees of freedom from a quantum per-
spective using pre-calculated potential energy surfaces (PECs), is one the
procedures available to solve the TDSE, but a full range of similar methods
exist. It is worth stressing that on-the-fly ab-initio calculations can be in-
cluded in the TDSE solution to dramatically reduce the computational time
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required to carry out the simulations. The Multi-configurational Ehrenfest
method (MCE) [103] or ab-initio multiple spawning (AIMS) [104], which are
considered semi-quantum, and surface hopping with arbitrary couplings
(SHARC) [105] that presents a classical treatment of the nuclear movement
combined with quantum coupling between different potential energy sur-
faces, represent essential examples of such approaches.

1.8 Overview of thesis

In Ch. 2 we provide a summary and some new developments of the theory
of X-ray scattering. In Ch. 3 we look at elastic X-ray scattering from state-
selected molecules. In Ch. 4 we present a new computational method for
calculating elastic and inelastic X-ray scattering matrix elements. Finally
in Chapters 5 and 6 we examine time-resolved X-ray scattering from non-
stationary states in the H-atom and the H2 molecule respectively.

The main theoretical considerations of X-ray scattering are discussed in
Ch. 2 but a review of the most important features is included at the begin-
ning of each Chapter, enunciating the points necessary to understand the
results presented.
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Chapter 2

Theory

2.1 Introduction

In the following Chapter we treat the theory of X-ray scattering starting
from a quantized electromagnetic field. We derive the differential cross-
section for stationary scattering, and treat the scattering from non-stationary
superposition of quantum states, i.e. wavepackets. The treatment is based
on the three following sources [77, 83, 106], with novel developments and
discussion contained in Secs. 2.6 and 2.7.

2.2 Electromagnetic fields: Classical to Quantized

The electromagnetic field can be described using Maxwell’s equations.
These expressions explain the effect of the electric, ~E(~r, t), and magnetic
fields, ~B(~r, t), on a charge distribution, ρ, and the current vector,~J,

∇ · ~E(~r, t) = ρ/ε0 (2.1)

∇ · ~B(~r, t) = 0 (2.2)

∇× ~E(~r, t) = −∂~B(~r, t)
∂t

(2.3)

∇× ~B(~r, t) = µ0~J + µ0ε0
∂~E(~r, t)

∂t
, (2.4)

where µ0 and ε0 are the permeability and permitivity in vacuum. Another
important expression related to Maxwell’s equations is the Lorentz force
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that acts on the particle,

~F = q(~E(~r, t) +~̇r× ~B(~r, t)), (2.5)

representing the force acting on a particle of charge q and position~r (with
~̇r as the velocity) , in the presence of electric and magnetic fields ~E(~r, t) and
~B(~r, t).

The description of the electromagnetic field in terms of vector potential,
~A(~r, t), and scalar potential, φ(~r, t), simplifies the treatment greatly,

~B(~r, t) = ∇× ~A(~r, t) (2.6)

∇2φ(~r, t) +
∂

∂t
(∇ · ~A(~r, t)) = −ρ/ε0 (2.7)(

∇2 ~A(~r, t)− µ0ε0
∂2 ~A(~r, t)

∂t2

)
−∇

(
∇ · ~A(~r, t) + µ0ε0

∂φ(~r, t)
∂t

)
= −µ0~J,

(2.8)

this simplification can be extended by using a gauge transformation of the
form,

~A(~r, t)→ ~A′(~r, t) = ~A(~r, t) + ∆~Λ (2.9)

Φ(~r, t)→ Φ′(~r, t) = Φ(~r, t)− d~Λ
dt

, (2.10)

where ∆~Λ is a vectorial parameter with a restricted value.If we decide that,

∇2~Λ = −∇ · ~A(~r, t), (2.11)

known as the Coulomb, or transverse gauge. It follows that Maxwell’s equa-
tions can be rewritten as,

∇ · ~A′(~r, t) = 0 (2.12)

∇2φ′(~r, t) = −ρ/ε0 (2.13)

∇2 ~A′(~r, t)− µ0ε0
∂2 ~A′(~r, t)

∂t
= −µ0~J + µ0ε0∇

∂φ′(~r, t)
∂t

, (2.14)
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where ~A(~r, t) = ~AT(~r, t) as ∇ · ~A(~r, t) = 0. This condition is fulfilled auto-
matically when the Coulomb gauge is applied and allows a decomposition
of the vector potential, ~A′(~r, t), as a sum of normal modes. As ~A(~r, t) is a
periodic function which can be constrained to a finite volume, V, we can
express it as a sum of normal modes using harmonic functions or plane-
waves,

~A(~r, t) = ∑
~k

~A~k(t)e
ı~k~r, (2.15)

where ~k is a wave vector that characterises each wave and ~A~k(t) can be
calculated using the field equation to give a general solution of the form,

~A~k(t) = ~c~k(t) +~c−~k(t), (2.16)

with a dispersion relation,
ω~k = c~k. (2.17)

From these equations one can derive the orthogonality of the vector ~k
with the direction of the propagation of the field,~k · ~A(~r, t) = 0. This rela-
tionship leads to the definition of the polarization vectors, ~e~k, which repre-
sent the direction of the field and fulfill the orthogonality relation with the
wave vector,

c~k(t) =
2

∑
σ=1

c~kσ
(t)~e~kσ

= ∑
σ

c~kσ
(0)e−iω~kt~e~kσ

, (2.18)

if we consider that V → ∞.
The previous relationships and their analogues for the expansion of

~E(~r, t) and ~B(~r, t) in plane-waves can be used to redefine the Hamiltonian
of the radiation field. Generally it can be written as,

H =
1
2

∫
[ε0~E2

T(~r, t) +
1
µ0

~B2(~r, t)]d3r, (2.19)
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which can be expressed as,

H = ∑
σ=1,2

∑
~k

Hkσ = ∑
σ=1,2

∑
~k

2L3ε0ω~k~c~kσ
~c−~kσ

(2.20)

where the total radiation Hamiltonian is a sum of different modes with
wave vector ~k and σ polarization including the definition of ~A(~r, t). The
canonical operators for position, Q̂~kσ

, and momenta, P̂~kσ
, expressed in terms

of the field coefficients~c~kσ
, can be used to formulate a quantum description

of the Hamiltonian, analogous to the classical picture,

Ĥ = ∑
~k

∑
σ=1,2

Ĥ~kσ
=

1
2
(P̂2

~kσ
+ ω2

~k
Q̂~kσ

). (2.21)

The creation and annihilation operators, â and â†, which are used to ex-
press a change in the field modes are directly related with the canonical
formulation of the radiation Hamiltonian,

â~kσ
=

1√
2h̄ω~k

(ω~kQ̂~kσ
+ ıP̂~kσ

) (2.22)

ˆa†
~ σ

k =
1√

2h̄ω~k

(ω~kQ̂2
~kσ
− ıP̂~kσ

), (2.23)

that directly comes from the solution of the system of coupled differential
equations for position and momenta. Each mode of the Hamiltonian may
then be described as,

Ĥ~kσ
= (N̂~kσ

+
1
2
)h̄ω~k, (2.24)

where,
N̂~kσ

= â~kσ
â†
~kσ

, (2.25)

which preserves the Hermitian character of the operator and is an observ-
able. The sum of different normal modes will form the total radiation
Hamiltonian,

ĤR = ∑
~k

∑
σ=1,2

h̄ω~k(â†
~kσ

â~kσ
+

1
2
). (2.26)
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From this expression we can derive the definition of the vector potential
operator, Â(~r, t), that is analogous to the classical treatment but includes the
annihilation and creation operators,

Â(~r, t) = ∑
σ

∑
~k

√
h̄

2ε0L3ω~k

(
εσ â

σ~keı(~k·~r−ω~kt) + ε∗σ â†
σ~k

e−ı(~k·~r−ω~kt)
)

. (2.27)

This expression will be useful for the description of the interaction of the
electromagnetic field and the material system.

The eigenfunctions of the radiation Hamiltonian define the radiation
field and are necessary to calculate its interactions. The eigenfunctions form
a complete set of eigenvectors which contain information about the normal
modes of the electromagnetic field under consideration. Fock states fulfill
these premises,

N̂~kσ
|n~kσ
〉 = n~kσ

|n~kσ
〉 (2.28)

Ĥ~kσ
|n~kσ
〉 = (n~kσ

+
1
2
)h̄ω~k|n~kσ

〉. (2.29)

These vectors represent a complete Hilbert space, and can be coherently
combined to represent a multi-modal electromagnetic field. The complete
eigenvector set will also be an eigenstate of the radiation Hamiltonian, ĤR,

ĤR|{n~kσ
}〉 = ∑

~kσ

h̄ω~k(n~kσ
+

1
2
)|{n~kσ

}〉. (2.30)

The quantization of the electromagnetic field is important for the current
description of scattering from non-stationary states. In the following we
will discuss the combination of the expressions developed above with the
description of matter to formulate the Hamiltonian for the radiation-matter
(light-matter) interaction.
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2.3 Interaction Hamiltonian

Once the field Hamiltonian, ĤR, and the vector potential operator, Â(~r, t),
are quantized we can postulate an interaction picture. The influence of the
radiation field on a charged particle can be considered as classical,

p̂→ p̂− qÂ(~r, t), (2.31)

then, the kinetic part of the Hamiltonian will read,

Ĥkin =
N

∑
i=1

1
2mi

( p̂2
i − 2p̂qi Âi(~r, t) + q2

i Â2
i (~r, t)), (2.32)

where N will be the number of particles in the system, mi the mass of par-
ticle i and qi its charge. As p̂2 only affects the material system and has no
field presence we can divide Eq. (2.32) into separate parts for the material
system and the interaction terms. Including the basic potential Hamiltonian
for each part of the equation we have,

Ĥmatter = Ĥkin,matter + ĤCoulomb =
N

∑
i=1

1
2mi

p̂2
i +

1
2

N

∑
i 6=j

1
4πε0

qiqj∣∣~ri −~rj
∣∣ (2.33)

Ĥint = Ĥkin,int + Ĥspin = −
N

∑
i=1

qi

mi
(Â(~r, t) p̂− µiB̂i(~r, t)) +

N

∑
i=1

qi

2mi
Â2(~r, t),

(2.34)

where Eq. (2.34) has been reordered to isolate the terms contributing to light
absorption or scattering. Separating the terms according to the order of the
vector potential operator. Involving only one-mode transitions, the first set
of terms will explain those processes which, as in the case of absorption or
emission, require resonant interactions between the X-ray and the material
system. Conversely, squared field terms will be the key to study processes
involving two modal excitations like non-resonant scattering. Based on this,
we will name the parts of the interaction Hamiltonian separately,

Ĥint = Ĥ1 + Ĥ2, (2.35)
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where Ĥ1 contains the terms depending on Â(~r, t) and Ĥ2 those with Â(~r, t)2

dependence.

2.4 Scattering expression

When the energy of the X-ray is sufficiently large, scattering is the predomi-
nant process resulting from radiation-matter interaction. Since two photons
are involved in the process, this requires the use of a squared field term, rep-
resented through the Â2(~r, t) operator. Therefore, only Ĥ2 will be used to
represent the interaction Hamiltonian because this gives scattering in first
order time-dependent perturbation theory. Using the second part of the in-
teraction Hamiltonian inside the frame of Kramers-Heisenberg formalism,
we will calculate the scattering cross-section.

A scattering process involves an initial and a final state of the photons
and for the material system. We can calculate the transition probability us-
ing Fermi’s golden rule. If we define the initial and final states as,

|i〉 = |ΨNel
0 〉|NEM〉 (2.36)

| f 〉 = |ΨNel
f 〉â~kσ

â†
~kσ
|NEM〉, (2.37)

where |ΨNel〉 represents the material system and |NEM〉 represents the Fock
state of the photon, the amplitude of a transition between |i〉 and | f 〉will be,

S f i = lim
t→∞
〈 f |Ψ〉 =

= −2πiδ(E f − Ei − h̄ωi f )×
(
〈 f |Ĥint|i〉+ ∑

m

〈 f |Ĥint|m〉〈m|Ĥint|i〉
Ei − Em + ıε

+ ...

)
,

(2.38)

where we have introduced Fermi’s golden rule describing the transition am-
plitude as the projection of the final state on the total wave function at infi-
nite time. The rate for the transition will be the amplitude, S f i, divided by
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the period of the transition,

Γ f i =
| S f i |2

T
=

= 2πδ(E f − Ei − h̄ωi f )

∣∣∣∣∣〈 f |Ĥint|i〉+ ∑
m

〈 f |Ĥint|m〉〈m|Ĥint|i〉
Ei − Em + ıε

+ ...

∣∣∣∣∣
2

.

(2.39)

The expression above gives the transition probability between |i〉 and
| f 〉 [80]. The transition probability divided by the density of states, g(E f ),
and the photon flux for the ith mode, Φi, will give us the differential cross
section of the process. The density of states in the electromagnetic field can
be obtained considering the number of modes in a solid angle differential
element dΩ,

g(E f ) =

(
L

2πc

)3 ω2

h̄
dΩdE, (2.40)

where L is the length of the confined volume, c the speed of light, ω the
angular frequency and dΩ the solid angle element, dΩ. The flux of photons,
Φi, considering that the volume is infinite and L→ ∞, is defined by the flux
in a transition between continuous states, that involves only one photon,

Φi =
cni

L3 , (2.41)

where ni is the number of photons in the i mode and L3 is the volume ele-
ment.

Dividing the transition probability in Eq. (2.39) by the density of states in
Eq. (2.40) and the photon flux in Eq. (2.41), gives the scattering differential
cross-section as,

d2σ

dΩdh̄ω f
=

(
ω f

ωi

)
r2

0
∣∣~ei ·~e f

∣∣2 ∑
i f

∑
jj′

gi
B〈i|L̂j| f 〉〈 f |L̂j′ |i〉δ(Ei − E f + h̄ω),

(2.42)
where,

L̂j =
Nel

∑
i

eı~q~ri , (2.43)
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where we sum over all electrons in the system, Nel. gi
B is the Boltzmann

factor for state i, accounting for the thermal distribution across initial states.
The subindexes i, j, f represent the different iterated states, r0 the Bohr ra-
dius and Ei and E f are the eigenvalues of |i〉 and | f 〉. As the magnitude
of the X-ray-particle interaction is inversely proportional to the mass of the
particle, as can be inferred from qi

2mi
terms in Eq. (2.32), we have neglected

the interaction of X-rays with nuclei due to their large mass compared to
electrons.

Eq. (2.42) describes a single scattering event, and is thus constrained to
the first Born approximation. It also includes the interaction between a pho-
ton and a free electron which is initially at rest. This quantity corresponds
to the well-known Thomson cross section and is only valid if the electrons
are treated non-relativistically,(

dσ

dΩ

)
Th

=

(
ω f

ωi

)
r2

0
∣∣~ei ·~e f

∣∣2 , (2.44)

including the definition of the photon-electron interaction inside the scat-
tering equation provides a compact expression for the differential scattering
cross section,

dσ

dΩdh̄ω f
=

(
dσ

dΩ

)
Th

∑
i f

∑
jj′

gi
B〈i|Lj| f 〉〈 f |Lj′ |i〉δ(Ei − E f + h̄ω). (2.45)

The equation above represents scattering from stationary states and it
can be simplified considering gi

B〈i|Lj| f 〉〈 f |Lj′ |i〉δ(Ei − E f + h̄ω), as the dy-
namic structure-factor, s(~q, ω).

We will later consider scattering from non-stationary quantum superpo-
sition of states interacting with coherent radiation.

2.5 Elastic and inelastic non-resonant scattering

The expression for scattering from a set of stationary states provided by Eq.
(2.45) shows the complete X-ray scattering differential cross section for an
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atom or a molecule. It also allows to isolate terms corresponding to elas-
tic and inelastic scattering as discussed in Ch. 1. If the energy of the X-ray
remains unchanged after the interaction, we consider this as an elastic scat-
tering event, simplifying the equation dramatically.

Elastic scattering matrix elements are diagonal, they leave the initial
state i intact,

Li f = 〈i|L̂| f 〉δi f . (2.46)

eliminating from Eq. (2.45) all contributions due to inelastic processes,

d2σ

dΩh̄dω f
=

(
dσ

dΩ

)
Th

∣∣∣∣∣〈i| Nel

∑
j

eı~q~rj |i〉
∣∣∣∣∣
2

, (2.47)

where the squared bracket will represent the so-called elastic form factor ,
F(~q), which can be shown to be equivalent to a Fourier Transformation of
the electron density,

F(~q) = 〈i|
Nel

∑
j

eı~q~rj |i〉 =
∫

φi(r)∗φi(r)eı~qrdr =
∫

d3rρ(el)(~r)eı~q~r, (2.48)

Eq. (2.48) is useful to calculate differential scattering cross sections using
ab-initio methods, as the electron density is directly related to the electronic
wave function.

Elastic scattering has been widely exploited to characterise matter. Start-
ing from the total scattering definition introduced in Ch. 1,

dI
dΩ

=

(
dI
dΩ

)
Th
|〈Ψ0|

Nel

∑
i,j=1

eı~q(~ri−~rj)|Ψ0〉|, (2.49)

the calculation of inelastic scattering can be calculated as a contribution to it.
Using the elastic scattering expression in Eq. (2.48), and subtracting it from
the value of the total differential cross section in Eq. (2.49 the contribution
of inelastic scattering can be obtained,

Sinelastic(~q) = Itotal(~q)− Felastic(~q). (2.50)
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However we aim to isolate the inelastic scattering contributions corre-
sponding to certain transitions in the material system. We will make use of
particular cases on Eq. (2.45) of the form,

〈i|
Nel

∑
j

ei~q~rj |j〉 =
∫

φi(r)∗φj(r)eı~qrdr, (2.51)

which considers i 6= j. Although the electron density, ρ(el)(~r), cannot be
used in this case, inelastic scattering will be related to the Fourier Transfor-
mation of the transition between the states φi and φj.

2.6 Non-stationary X-ray scattering

Up to this point, we have developed a treatment that considers only sta-
tionary states. What happens if we consider a non-stationary superposition
of quantum states i.e. a wavepacket, such as excited by a burst of coherent
light? How will this interact with a coherent X-ray pulse?

Considering that the time-dependent wave function is perturbed by the
X-ray probe at time t′, the effect can be approximated using first order time-
dependent perturbation theory,

|Φ(t)(1)〉 = − ı
h̄

∫ t

0
dt′Û(t, t′)O(t′)Û(t, 0)|Φ(0)〉, (2.52)

where the time dependent operator depends only on the system time in-
dependent unperturbed Hamiltonian and the~r dependence of Φ(t) its not
explicitly shown,

Û(t, t′) = e−ıHM(t−t′)/h̄, (2.53)

and the perturbation is defined as,

O(t) = 〈Ψ
σs~ks
|Ĥint(t)|Ψσ0~k0

〉. (2.54)

Although the simplest way to treat the photon state is to consider a
mono-modal Fock construction, the X-ray now should be described as a
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multi-modal wavepacket centred at the energy of the beam, k0. This will
define the initial state for the photons as,

|Ψ
σ0~k0
〉 = ∑

~k

c~k−~k0
|σ0~k〉, (2.55)

that can be also be defined as a function of the creation operator â
σ0~k

. After
scattering, the final photon state is pure and can also be defined as a creation
operator acting in the vacuum state,

|Ψ
σf~ks
〉 = â†

σf~ks
|vac〉. (2.56)

The perturbation O(t) is then simplified greatly using the two photon
states specified in Eqs. (2.55) and (2.56),

O(t) = ∑
~k

c~k−~k0 ∑
j

q2
j

2mj

√
h̄

ε0Vω~k

√
h̄

ε0Vω~ks

εσ0ε∗σs

× eı(~k~rj−ω~kt)e−ı(~ks~rj−ω~ks
t),

(2.57)

where the exponential comes directly for the assumption of a multi-modal
wavepacket in the initial state . The tractability of the problem will be in-
creased if the previous expression depends on a measurable parameter such
as the momentum transfer vector ~q =~k0 −~ks. To introduce it, Eq. (2.57) can
be reformulated using the incoming X-ray beam vector,~k0,

ei(~k~rj−ω~kt) = e
ı(~k0~rj−ω~k0

t)
e

ı((~k−~k0)~rj−(ω~k−ω~k0
t)

, (2.58)

this factorization allows extracting some of the components from the sum
over ~k from the sum, the elements remaining can be seen as an envelope
that varies slowly,

h(~rj, t) = ∑
~k

√
ω~k0

ω~k + ω~k0

c~keı(~k~rj−ω~kt), (2.59)

where we have redefined the envelope to be centered at 0, removing the
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influence of~k0 and resulting in a much simpler expression. The perturbation
operator can be rewritten then as,

O(t) =
√

2
ω~k0

√
h̄

ε0Vω~ks

~P ∑
j

q2
j

2mj
E~k0

h(~r, t)

× e
i(~k0~rj−ω~k0

t)
e−i(~ks~rj−ω~ks

t).

(2.60)

where ~P is the polarization vector. To assure finite times in our treatment,
we include in Eq. (2.60) Fermi’s golden rule, as well as the perturbed wave
function and the differential over solid angles,

dS
dΩ

=
∫

dω~ks
ρ(ω~ks

) lim
t→∞
〈Ψ(1)(t)|Ψ(1)(t)〉, (2.61)

where ρ(ω~ks
) represents the density of scattered states. Applying the defini-

tion of a perturbed wave function to the above expression, we will get both
unperturbed and perturbed operators acting of each side of the bracket,

dσ

dΩ
=

1
h̄2

∫
dω~ks

ρ(ω~ks
)
∫ ∞

0
dt′′

∫ ∞

0
dt′

× 〈Ψ(t′′)|Û(t, t′′)†Ô(t′′)†Ô(t′)Û(t, t′)|Ψ(t′)〉,
(2.62)

substituting the operators by their definitions and reordering the equation
we will get,

dσ

dΩ
=
∫

dω~ks

ω~ks

4π3c3ε0h̄ω2
~k0

~P2
∫ ∞

0
dt′′

∫ ∞

0
dt′E~k0

(t′′)E~k0
(t′)

× e−iω~ks
(t′′−t′)〈Ψ(t′′)|L̂†Û(t′′, t′)L̂|Ψ(t′)〉,

(2.63)

where we have grouped the envelopes h(~r, t), the field amplitudes E~k0
and

the phases e
−iω~k0

t
onto E~k0

(t) functions. The h(~r, t) envelopes can be repre-
sented as r-independent functions, h(t− tp), because they act the same on
every point of the system. L̂ is again the scattering operator depending on
~q, as q2

j /2mj is restricted to electrons can be removed out of the sum. If we
now make use of the Thomson differential cross section defined previously,
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we can eliminate a few terms of the expression written above. Also we can
rewrite t as a function of composite variables t = t′+t′′

2 and δ = t′′ − t′,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫
dω~ks

∫ ∞

0
dt
∫ ∞

−∞
dδE∗~k0

(t +
δ

2
)E~k0

(t− δ

2
)

× e−ıω~ks
δ〈Ψ(t +

δ

2
)|L̂†Û(t +

δ

2
, t− δ

2
)L̂|Ψ(t− δ

2
)〉,

(2.64)

the multiplication of E∗k0
(t + δ

2)E~k0
(t− δ

2) will represent the initial field we
are using in the experiment. Considering a Gaussian profile for the envelope
we can consider each of the functions as e−t2/2γ2

reducing the expression to,

E∗~k0
(t +

δ

2
)E~k0

(t− δ

2
) = E2

~k0
|hp(t)|2

√
hp(δ), (2.65)

where,

I(t) = E2
~k0
|hp(t)|2 (2.66)

Cp(δ) =
√

hp(δ). (2.67)

With these definitions we can split the integrals into t and δ. Wave func-
tions can be expanded by considering a set of eigenstates of the Hamiltonian
forming a coherent superposition (wavepacket) which will be useful to iso-
late the time contribution from the scattering matrix elements. It is defined
as,

|Ψ(t)〉 = ∑ cie−ıEit/h̄|ψi〉, (2.68)

and it requires a transformation of time to be included onto the differential
scattering expression, (t + δ

2 ,t− δ
2 ). The identity operator, 1 = ∑k |ψk〉〈ψk|,

is considered as it will remove the double operator placed between initial
and final wave functions,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫ ∞

0
I(t) ∑

i,j,k
c∗i cje−ı(Ej−Ei)t/h̄

∫
dω~ks

ω~ks

ω~k0

〈ψk|L̂|ψi〉∗〈ψk|L̂|ψj〉
∫

dδC(δ)e
ı
(

ω~ks
−ω~k0

+h̄−1
(

Ek−
Ei+Ej

2

)
δ

)
,

(2.69)
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in which the sum over k needs to go up to infinity, complicating the treat-
ment. Also, the coherence function Fourier transformation can be inter-
preted as the power spectrum function F that will depend on the energy
of the transitions we are considering.

Following the assumptions made by the Waller-Hartree approximation,
we can settle that ω~ks

≈ ω~k0
, that is, the energy of the X-ray does not change

during the process. As the initial energy of the X-ray is large enough, this
approach is working well even when Compton contributions to the equa-
tion are considered. If we introduce this inside our expression, the momen-
tum transfer vector, q, will not depend any more on ω~ks

and the matrix
elements will be out of the ω integral,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫ ∞

0
I(t) ∑

i,j,k
c∗i cje−ı(Ej−Ei)t/h̄

〈ψk|L̂|ψi〉∗〈ψk|L̂|ψj〉
∫

dω~ks
F
(

ω~ks
+

1
h̄

(
Ek −

Ei + Ej

2

))
.

(2.70)

2.7 Molecular ultrafast X-ray scattering

The reader might note that thus far we have not considered nuclear degrees
of freedom. To do so, we will need to extend Eq. (2.70) to the case where the
degrees of freedom include not only the electrons but also the nuclei. We
describe the molecular wave function using the Born-Huang expansion,

Ψ(r, R, t) = ∑
i

χi(R, t)ψi(r; R), (2.71)

where we should note that ψi(r; R) is an eigenfunction of the electronic
Hamiltonian and only depends parametrically on the nuclear coordinate
R. This expression can be considered analogous to a Born-Oppenheimer
regime as nuclear and electronic degrees of freedom are separated but a
non-adiabatic picture can be included in this case. χi(R, t) are the nuclear
eigenfunctions and they consider all vibrational and rotational eigenstates
of the system.
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If we start from the expression of the differential cross section,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫ ∞

0
I(t)

∫ ω~ks

ω~k0

∫ ∞

−∞
C(δ)e

−ı(ω~ks
−ω~k0

)δ
Λ(t, δ)dδdω~ks

dt,

(2.72)

where we use the coherence function C(δ) and Waller-Hartree approxima-
tion. We define a new quantity that involves both electrons and nuclei in the
scattering integrals, called the scattering probability and it is represented by
Λ(δ, t). This scattering probability is defined as,

Λ(δ, t) = 〈Ψ(r, R, t)|eiĤM
δ

2h̄ L̂†e−ıĤM
δ

2h̄ L̂eıĤM
δ
h̄ |Ψ(r, R, t)〉. (2.73)

The calculation of Λ(δ, t) will depend on how accurate we want the treat-
ment of the nuclear degrees of freedom. If we expand our wave functions
the treatment will require the incorporation of the identity operator,

1 = ∑
k
|k〉〈k|, (2.74)

which only includes the electronic states. A full treatment would include
coupled rotational and vibrational eigenfunctions. Inserting it in Eq. (2.73),

Λ(δ, t) = ∑
k
〈Ψ(r, R, t)|eıĤM

δ
2h̄ |ψk〉〈ψk|L̂†e−ıĤM

δ
h̄ |ψ f 〉〈ψ f |L̂|ψi〉〈ψi|eıĤM

δ
2h̄ |Ψ(r, R, t)〉,

(2.75)

where we have one identity operator for each Hamiltonian to obtain a solv-
able form. The exponential Hamiltonian terms acting on the eigenstates
yield exponents with the corresponding eigenvalues,

Λ(δ, t) = e−ıE f ik(~r)δ/h̄〈Ψ(r, R, t)|ψk〉〈ψk|L̂†|ψ f 〉〈ψ f |L̂|ψi〉〈ψi|Ψ(r, R, t)〉
(2.76)

where the the frequency term is,

E f ik(R) = h̄ω f ik(R) = E f (R)− Ek(R) + Ei(R)

2
. (2.77)
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Furthermore, in Eq. (2.76) we have the nuclear wave functions,

|χk(R, t)〉 = 〈ψk|Ψ(r, R, t)〉 (2.78)

and the scattering matrix elements,

〈ψ f |L̂|ψi〉 = L f i(R), (2.79)

Gathering the various parts we get,

Λ(t, δ, ω f ij) = 〈χ f (R, t)|e−ıωi f k(R)δLkiL∗k f |χi(R, t)〉, (2.80)

transforming the differential cross section as follows,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∑
i f k

∫ ∞

0

∫ ∞

−∞
I(t)χi(R, t)∗χ f (R, t)dt

∫ ω~ks

ω~k0

L∗f kL f k

∫ ∞

−∞
C(δ)e

−ı(ω~ks
−ω~k0

+ωi f k(R))δ
dδdω~ks

dR.
(2.81)

We will now expand the treatment of the X-ray coherence function, C(δ).
The Fourier transform of the coherence function is equal to the power spec-
tral density, as we stated previously,

F(ω~ks
−ω~k0

+ ω f ji(r)) =
1

2π

∫ ∞

−∞
C(δ)e

−ı(ω~ks
−ω~k0

+ω f ji(r))δdδ, (2.82)

the frequency of the incident photon and the scattered one is approximately
the same, ω~ks

≈ ω~k0
according to the Waller-Hartree approximation applied

before. Therefore, the differential cross section is redefined then as,

dσ

dΩ
=

(
dσ

dΩ

)
Th

∑
ij f

∫ ∞

0

∫ ∞

−∞
I(t)χi(R, t)∗χj(R, t)dt

× L∗f iL f j

∫ ω0+∆ω

ω0−∆ω
F(ω~ks

−ω~k0
+ ω f ji(~r))dω~ks

dR,

(2.83)

where instead of using discrete frequencies we have approximated the de-
viation of ω~k0

by using a much smaller quantity that we call ∆ω. We can
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collect the final (frequency) integral in W f ij. This integral, W f ij, will account
for the number of photons in the range ω~k0

± ∆ω. We thus obtain Eq. (2.83)
in the form,

dσ

dΩ
=

(
dσ

dΩ

)
Th

∑
ij f

∫ ∞

0

∫ ∞

−∞
I(t)χi(R, t)∗χj(R, t)dt

× L∗f iL f jWij f (∆ω, R)dR.

(2.84)

Only the R values in which the probability to find the nuclei is not zero
will produce a non-zero result in the scattering signal. Also, the coherence
of the X-ray pulse will affect the scattering through Wij f (∆ω).

2.8 Electron scattering formalism

Fast electrons with short de Broglie wavelength scatter from matter much
in the same manner as X-rays. Using the notation introduced by Bethe et
al.[107] that is nicely expounded by Inokuti in his review Inelastic collisions
of fast charged particles [108], one can relate the expressions obtained for X-
ray scattering to electron scattering. The differential cross-section for an
electron in the first Born approximation will be,

dσn

dΩ
=

(
M

2πh̄2

)2
(
~k
~k0

) ∣∣∣∣∫ eı~q~run(~r1, ...,~rz)Vu0(~r1, ...,~rz)d~r1...d~rz

∣∣∣∣2 dω,

(2.85)

where M is the reduced mass of the colliding system, ~r is the position of
each particle,~k0 represents the wavevector of the particle before and~k after
the collision. We denote un as the eigenfunctions of the electrons, with Vu0

the Coulomb (electrostatic) potential.
Integrating over~r, as Bethe did [107], results in a situation similar to the

one represented by Eq. (2.45),

dσ

dΩ
=

(
dσ

dΩ

)
Ru
|s(~q, ω)|2, (2.86)
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where Thomson cross-section,
(

dσ
dΩ

)
Th

, is replaced by Rutherford cross-

section,
(

dσ
dΩ

)
Ru

, since we now consider electron-electron scattering. It is
defined as,(

dσ

dΩ

)
Ru

= 2π

(
ze2

mv2

)
Q−1d(lnQ) = 4π

(
Me2z

h̄2

)2(~k
~k0

)
~k−2~q−4d~q2,

(2.87)
where z represents the atomic charge, e the electron charge, m the electron
mass, v the velocity and Q the kinetic energy of the electron. The structure
factor including the L̂ operator is equivalent to the one included in Eq. (2.45),
considering initial and final states for the scattering process.

Oscillator strengths are usually used to calculate electron scattering. The
optical oscillator strength is related to the probability of transition between
two different states, and directly influenced by the dipole transition mo-
ment between them. To emphasize this, general oscillator strengths are
used, given by,

fn(~q) = (En/R∞)(~qa0)
−2|s(~q, ω)|2, (2.88)

where we have redefined the differential cross-section using the oscillator
strengths. In Eq. (2.88) we have included the Bohr radius, a0, the transition
energy, En, and the Rydberg constant, R∞, as well as the structure factor,
s(~q, r). To establish the relationship between this value and the optical os-
cillator strength we can use the limit of fn(~q) when~q tends to 0,

lim
~q→0

fn(~q) = fn, (2.89)

where we have included fn as,

fn = (En/R∞)M2
n, (2.90)

which is the formalism of the optical oscillator strength, with Mn as the
dipole transition moment. In this thesis, the direct analogy between electron
and X-ray scattering is particularly exploited in Ch. 4, where we examine
inelastic X-ray scattering (IXS) cross-sections and we use experimental data
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from both, IXS and electron energy loss spectroscopy (EELS) to validate our
calculations.
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Chapter 3

X-ray scattering from state-selected
molecules

3.1 Introduction

High intensity sources allow the study of new molecular properties. Recent
experiments on diatomic molecules such as H2 and I2 [31, 109–111], suggest
that spatial alignment can be used to characterize rotational and vibrational
states of the system when using X-ray scattering [14, 32, 112]. Also, ex-
perimental methods to prepare molecules in specific quantum states makes
it possible to generate highly anisotropic samples with a large fraction of
identical molecules [113–117]. Specifically, the objective of this chapter is
to describe the characterization of rotational and vibrational states in CS2

molecule using elastic X-ray scattering. The importance of alignment is
highlighted in X-ray scattering experiments and its relationship with the
rotational degrees of freedom is shown [1, 2].

We will use the Born-Oppenheimer approximation to account for vibra-
tional and rotational states. Nuclear degrees of freedom will be treated
within the same approach employed in the calculation of pure electronic
elastic X-ray scattering [84]. We will explain the theoretical and computa-
tional approaches necessary to calculate nuclear degrees of freedom, as well
as their inclusion in the X-ray scattering formalism.

A series of ab-initio methods and basis sets are benchmarked to demon-
strate their influence on the convergence of the X-ray scattering matrix el-
ements. The overall impact accounting for the electronic wavefunction as
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compared to IAM, is also discussed.

3.2 Theory

3.2.1 X-ray scattering

The elastic X-ray scattering double differential cross-section reads,

d2σ

dΩdh̄ω
=

(
dσ

dΩ

)
Th

∣∣∣∣∣〈ψα|
Nel

∑
i

eı~q~ri |ψα〉
∣∣∣∣∣
2

, (3.1)

where we have applied the Waller-Hartree approximation [118] and limited
the treatment to the elastic scattering case, considering only matrix elements
of the form, Lαα. The intensity measured on the detector will be proportional
to the square of these elements,

I(q) ∝ |Lαα|2. (3.2)

The wavefunction, ψα, is usually defined as purely electronic, eliminat-
ing any rotational or vibrational influence in the X-ray scattering signal. The
simplest approach for calculating the scattering will assume a fixed geom-
etry for the molecule, and calculate the rotationally averaged signal cor-
responding to the electronic wavefunction or even the independent atom
model. However, when molecules are aligned or state-selected, the descrip-
tion should account for the alignment and/or include vibrational and ro-
tational wavefunctions. Using the Born-Oppenheimer approximation, one
can express the wavefunction as a product of electronic, vibrational and
rotational wavefunctions, in first approximation ignores any coupling be-
tween the different components,

ψα = Ψrot
JKM(Ω)Ψvib

ν (R)Ψelec(r; R, Ω) (3.3)

where r are the electronic coordinates, R the nuclear coordinates and Ω the



Chapter 3. X-ray scattering from state-selected molecules 52

angular components. The different terms have been separated consider-
ing that the electronic wavefunction, Ψelec(r; R, Ω), only depends paramet-
rically on the internuclear distance R and Ω, which represents the Euler an-
gles, (θ, φ, χ), that describe the angular components of the rotational wave-
function as represented in Fig. 3.2.

As the scattering operator, L̂ = ∑Nel
i eı~q~ri , is a one-electron operator,

the influence of nuclear degrees of freedom can be added incoherently to
the scattering form-factors. The calculation of the scattering cross-section
depends only on the electronic wavefunction, Ψelec(r; R, Ω). The elastic
scattering contribution will be then calculated using the electron density,
ρ(r; R, Ω), as follows,

f (~q; R, Ω) =
∫

ρ(~r; R, Ω)eı~q~rd~r, (3.4)

where f (~q; R, Ω) is the scattering form-factor. The characterisation of nu-
clear degrees of freedom will require an incoherent averaging over the vi-
brational and rotational wavefunctions,

I(q) =
∫

Ω

∫
R
|Ψvib

ν |2|Ψrot
JKM|2 I(~q; R, Ω), (3.5)

where I(~q) is the averaged intensity, which includes the influence of the
vibrational and rotational states in the molecule.

The calculation of rotational and vibrational wavefunctions is explained
below as well as the parametrization of the electronic wavefunction in terms
of R and Ω.

3.2.2 Rotational wavefunctions

A rotational wavefunction, Ψrot
JKM, will depend fundamentally on the molec-

ular symmetry. As its name indicates, it will represent the fixed-body rota-
tions of the molecule around different axes, each mode of rotation charac-
terized by one of three principal quantum numbers J, K and L. The classi-
fication of molecules depending on their moments of inertia will determine
the shape of their wavefunctions and the values J, K, L quantum numbers
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can take. The molecules will be divided in three main groups, depending
on their symmetry: spherical, symmetric and asymmetric tops (see Fig. 3.1).

Spherical Top Symmetric Top Asymmetric Top

FIGURE 3.1: Representation of the different types of molecules
depending on their rotational symmetry, determined by he rel-
ative size of the different moments of inertia, In. The spherical
tops are characterized by Ia = Ib = Ic, the symmetric tops by
two identical moments of inertia, subdivided into oblate sym-
metric tops (disc-shaped), Ia = Ib > Ic, and prolate symmetric
tops (cylindrical) , Ia > Ib = Ic, and finally asymmetric tops

have Ia > Ib > Ic.

To calculate rotational wavefunctions we should solve the Hamiltonian
for the rotational states. It is expressed in terms of the moments of inertia in
the molecule,

Ĥrot = h̄−2(Ae J2
a + Be J2

b + Ce J2
c ), (3.6)

where Ae, Be and Ce are the rotational constants of the molecule and Ja, Jb

and Jc are the principal inertial axes of the equilibrium configuration. In the
calculation of rotational Hamiltonian, the relationships between moments
of inertia are crucial to obtain expressions for their wavefunctions.

Spherical and symmetric top molecules

Spherical and symmetric top molecules form the group with the highest
symmetry. While spherical molecules belong to high-symmetry groups
such as Td and Oh, all diatomic molecules and any linear system with 3-
fold or higher order rotational axis are symmetric tops. Rotational wave-
functions, Ψrot

JKM(θ, φ, χ), for these systems are described by a linear combi-
nation of spherical harmonics. To calculate them from a qualitative point
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of view, one should apply the rigid rotor approximation, that is, disregard
vibrational-coupling terms and centrifugal distortion. The rotational Hamil-
tonian for a spherical or symmetric top molecule, based on Eq. (3.6), will be,

h̄−2[Ae Ĵ2
a + Be( Ĵ2

b + Ĵ2
c )]φrot(θ, φ, χ) = ErotΨrot

JKM(θ, φ, χ). (3.7)

Selecting the a axis parallel to z and substituting the Ja, Jb and Jc opera-
tors by Ĵ2 and Ĵz in Eq. (3.7) yields,

h̄−2[Be Ĵ2 + (Ae − Be) Ĵ2
z ]φrot(θ, φ, χ) = ErotΨrot

JKM(θ, φ, χ), (3.8)

where Erot is the rotational energy and we have considered the case of an
prolate top molecule, meaning that the highest rotational constant is the one
along the molecular plane and the other two are smaller and equal, or, Ae >

Be = Ce. The energy resultant from the application of this Hamiltonian will
follow the rules of a rigid rotor,

Erot = Be J(J + 1) + (Ae − Be)k2, (3.9)

where k is the eigenvalue of the Ĵz operator and J the eigenvalue of Ĵ2. Using
the rotation matrices and eigenvalues of the operators we can obtain the
representation of the wavefunction for a prolate symmetric top,

Ψrot
JKM(θ, φ, χ) = [(2J + 1)/(8π2)]1/2[D(J)

MK(θ, φ, χ)]∗

= (−1)M−K[(2J + 1)/(8π2)]1/2[D(J)
−M−K(θ, φ, χ)], (3.10)

where D(J)
MK are the rotation matrices and J, K and M the rotational quantum

numbers, with |K| and |M| having allowed values ≤ J. The equation can be
rewritten as a function of the Euler angles (θ, φ, χ),

Ψrot
JKM(θ, φ, χ) = X J

KMeımφeıkχ

×
[
∑
σ

(−1)σ cos( θ
2)

2J+K−M−2σ − sin( θ
2)

M−K+2σ

σ!(J −M− σ)!(M− K + σ)!(J − K− σ)!

]
(3.11)
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where X J
KM is a normalization constant with the form,

X J
KM = [(J + M)!(J −M)!(J + K)!(J − K)!(2J + 1)/(8π2)]1/2. (3.12)

This equation is only valid if the center of mass of the molecule is placed
in the origin of the coordinate system and the principal rotational axis is set
up along the z direction. Other conventions can be used and they depend on
the orientation of the coordinate system and the molecular symmetry (I I Ir).

If we follow the convention exposed above, all prolate, oblate and spher-
ical top molecules will be sharing the same wavefunctions, although the
constants used will share different relationships.

Asymmetric top molecules

Asymmetric top molecules have three different moments of inertia. They
constitute the largest group, as most of the molecules do not have sufficient
symmetry to be a spherical or symmetric top. The asymmetric rotational
wavefunctions cannot be calculated as a combination of spherical harmon-
ics, requiring the diagonalization of the Hamiltonian and subsequent calcu-
lation of its eigenvalues. The final result will encompass several symmetric
top wavefunctions.

In table 3.1 we have calculated the first wavefunctions for an asymmetric
case. To evaluate this case we need a linear combination of symmetric top
wavefunctions (|JKM〉),

Ψrot
JKM(θ, φ, χ) = a|JKM〉+ b|J′K′M′〉. (3.13)

To obtain the eigenvalues of the rotational Hamiltonian we diagonalize
it expressed in the |JKM〉 basis,

Ĥrot = h̄−2
[
[(Be + Ce)/2] Ĵ2 + [Ae − (Be + Ce)/2] Ĵ2

z

+[(Be − Ce)/4][( Ĵ+M)2 + ( Ĵ−M)2]
]

. (3.14)
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J Wavefunction
0 E+ = ( 1

8π2 )
1/2

1 |1, 1, O+〉 = [|1, 1〉+ |1,−1〉] /
√

2
|1, 1, O−〉 = [|1, 1〉 − |1,−1〉] /

√
2

|1, 0, E+〉 = |1, 0〉
2 |2, 2, E−〉 = [|2, 2〉 − |2,−2〉] /

√
2

|2, 1, O+〉 = [|2, 1〉+ |2,−1〉] /
√

2
|2, 1, O−〉 = [|2, 1〉 − |2,−1〉] /

√
2

Φ+
rot(2, 0, E+) =

[c−|2, 0〉+ c+|2, 2〉] /
√

2
Φ−rot(2, 0, E+) =

[c−|2, 0〉 − c+|2, 2〉] /
√

2

c± ±2
√

Ae2−Ce(Ae+Be)−AeBe+Be2+Ce2−2Ae+Be+Ce√
3(Be−Ce)

TABLE 3.1: Asymmetric top wavefunctions for the three first
J values and all K. The nomenclature excludes M, since the
equations are independent of M. E, O,+ and − depend on
whether K is odd or even and the positive or negative linear
combination of |J, K, M〉. The J = 0 and J = 1 cases are nearly
trivial, but calculation of J = 2 requires diagonalization of the

rotational Hamiltonian matrix.

For each J we will have (2J + 1) states in K and M, the basis need to be
built as ±K linear combinations to be eigenfunctions of the operators pre-
sented in Hrot. We can classify them by the symbols O+, O−, E+ and E−

depending on the value of K (even or odd) and the sign of the linear combi-
nation (+ or −). The resultant basis functions can be directly diagonal ele-
ments of the Hamiltonian and therefore eigenvectors of it. In case we have
off-diagonal elements we need to proceed with the diagonalisation of the
system, obtaining linear combination of basis as rotational wavefunctions.

Rotational matrix and Euler angles

Rotations are related with a change in the frame constituted by the Euler
angles (see Fig. 3.2). To change the laboratory frame, (x, y, z), into the Euler
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FIGURE 3.2: Definition of the rotational Euler angles (α, β, γ).
The two frames are related by the rotation matrix

angles system, (ξ, η, ζ), we should apply a rotational matrix of the form,xi

yi

zi

 =

λxξ λxη λxζ

λyξ λyη λyζ

λzξ λzη λzζ


ξi

ηi

ζi

 , (3.15)

which will be define in terms of the angles between both coordinate systems
as expressed in Fig. 3.2,

λi1 =

 cos α cos β cos γ− sin β sin γ

− cos α cos β sin γ− sin β cos γ

sin α cos β



λi2 =

 cos α sin β cos γ + cos β sin γ

− cos α sin β sin γ + cos β cos γ

sin α sin β

 (3.16)

λi3 =

− sin α cos γ

sin α sin γ

cos α

 ,
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where (α, β, γ) are the Euler angles specified in Fig. 3.2. Since the rotation
matrix λ is unitary, inverse rotations are given by the transpose of the ma-
trix. The rotation matrix, D J

M,K(θ, φ, χ), has been defined in Eq. (3.10). Its
general interpretation relies in the transformation of an eigenstate |JM〉 to
|JK〉. It can be performed using the relationship,

R(θ, φ, χ)|JM〉 = ∑
K

D J
MK(θ, φ, χ)|JK〉. (3.17)

The rotation matrix then considers the internal rotations of the wave-
function to express all projections necessary to consider every single quan-
tum number, J, K, M [119].

3.2.3 Vibrational wavefunctions

In the following we will show how vibrational wavefunctions are calculated
and their inclusion on the total wavefunction. For simplicity we will restrict
our treatment to the simple harmonic oscillator approximation. If one con-
siders a fixed frame for the molecule, the nuclei movements related with
vibrational displacement can be expressed as,

∆αi = (αi − α
eq
i ) (3.18)

where α can represent any of the coordinates, x, y or z and eq refers to the
equilibrium position. One can use this system of coordinates to obtain the
vibrational Hamiltonian for the molecule.

Considering that the vibrational energy is defined as,

Evib =
1
2

3N

∑
i=1

mi∆αi + VN(∆αi), (3.19)

where the first term represents the kinetic energy part and the second one is
the potential energy, VN, and expanding the potential energy using a Taylor’s
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series expansion using a the set of vibrational displacements as {ui....uN},

VN =
1
2

3N

∑
i,j=1

kijuiuj +
1
6

3N

∑
i,j,k=1

kijkuiujuk +
1

24

3N

∑
i,j,k,l=1

kijuiujukul, (3.20)

which can be approximated to the first term if we consider a harmonic os-
cillator approach. Presently, vibrational wavefunctions are approximated
considering that each active normal mode can be treated as an harmonic os-
cillator. This approximation is only valid if we consider states with low val-
ues of the vibrational quantum number ν to avoid regions of anharmonicity
in the potential energy surface.

A molecule presents 3N − 6 vibrational degrees of freedom (3N − 5 if
linear) where N is the number of atoms. We need to build then 3N − 6
wavefunctions and calculate the product between them to obtain the total
vibrational wavefunction,

Ψvib
ν (Q) =

3N−6

∏
i

ΨQ
νi (Qi). (3.21)

The equation for a harmonic oscillator can be expressed as follows,

Ψνi(Qi) = Nνi Hνi(γ
1/2
i Qi)e

−γiQ2
i /2, (3.22)

where Qi is the normal mode coordinate, γi = miωi with mi being the re-
duced mass and ωi the frequency of vibration. The normalization constant
is defined as,

Nνi = γ1/4
i /(π1/22ν

i νi!)1/2, (3.23)

and Hνi(γ
1/2
i Qi) are the Hermite polynomials.

The harmonic oscillator approach can be extended using anharmonic
terms. However, in this Chapter we focus on low-lying vibrational states
to ensure that the harmonic approximation is valid.
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3.2.4 Centrosymmetry and Friedel’s law

The scattering signals usually show centrosymmetric patterns. The molecu-
lar scattering signals reflect an increased symmetry by adding an inversion
center. This property, exhibited as well in the characterization of crystalline
structures, relates to the reflection plane in the molecule, perpendicular to
the X-ray beam direction.

If the X-ray beam is pointed in the z direction,~k0 = (0, 0, z), two~q vectors
in opposite positions of the detector will vary only in the z component. The
condition to fulfill centrosymmetry will be,

~q = (qx, qy, qz) (3.24)

~q′ = (−qx,−qy, qz) (3.25)

|F(~q)|2 = |F(~q′)|2. (3.26)

Friedel’s law can be applied only to real-valued functions such as the
electron density, that is, F(~q) = F∗(−~q). The Fourier transformation of the
electron density relates x and y directions but not z requiring a symmetry
relationship between z components to produce the center of inversion.

The phenomenon can also be seen as a direct relationship between the z
components of any two ~q vectors. If a perpendicular reflection plane exists
on the molecule, qz = −qz over all space, it will produce centrosymmetric
images on the detector.

3.3 Computational details

3.3.1 Effect of basis size in scattering calculations

We have examined the dependence of scattering signal with basis set size
in two polyatomic molecules: NH3 and BF3. These two molecules have a
similar chemical formula but their symmetries are completely different. Ab-
initio results are obtained within a restricted Hartree-Fock procedure (RHF)
without relativistic corrections, while IAM results use HF tabulated factors
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including these effects [85, 120, 121]. We evaluate the absolute percent dif-
ference or the relative error, |%∆ Ĩ(q)|, for rotationally averaged scattering,

%∆ Ĩ(q) = 100× Ĩmethod(q)− Ĩref(q)
Ĩref(q)

, (3.27)

where Ĩref(q) is the reference value taken as the scattering from the HF/aug-
cc-PVQZ wavefunction. Figs. 3.3a and 3.3b show the convergence of our cal-
culations with respect to a reference value calculated using a aug-cc-PVQZ
Dunning basis. Although we use here Hartree-Fock calculations, this can be
understood as a valid comparison when multiconfigurational methods are
considered.

Both molecular geometries have been optimised at the HF/aug-cc-
pVQZ level using Molpro [122] (RBF = 2.444 a0 and RNH = 1.886 a0). The
absolute percent difference is shown in Fig. 3.3. The differences are not uni-
form across q, despite that we consider rotationally averaged signals, but
rather display significant variation. The maximum errors (differences) can
thus be systematically large for specific directions in the scattering signal,
particularly when anisotropic samples are considered, e.g. molecular crys-
tals or aligned molecules, even though mean errors are small. It is important
to note the poor performance achieved when STO-3G basis are used in Fig.
3.3. STO-3G is worse than the level of theory used to calculate IAM (HF/6-
31G). Therefore, the calculation of elastic X-ray scattering using STO-3G cal-
culated wavefunctions is far from the results achieved when larger basis sets
are considered. When other basis sets are used to calculate the ab-initio elec-
tronic wavefunction, the difference between ab-initio elastic X-ray scattering
and IAM can be attributed to the failure of the latter to account for the redis-
tribution of valence electrons due to chemical bonding i.e. it mainly relates
to the valence electrons. The discrepancies between the NH3 and BF3 cal-
culated differences bring to light that molecules with a greater number of
hydrogen atoms have a propensity to suffer larger errors when the IAM is
applied. As a direct consequence of the IAM definition, the larger the num-
ber of core electrons in the atom, the better the description of the molecu-
lar scattering. An extreme example of this is the H-atom, since its single
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FIGURE 3.3: Convergence of the calculated scattering as a
function of the basis used for the ab initio electronic wavefunc-
tion, shown as percent error (see Eq. (3.27)). The comparison
is made for molecules BF3 and NH3 in the HF/aug-cc-pVQZ
ground state optimised geometry, and the scattering signal
has been rotationally averaged. The truncated IAM curve in
Fig. 3.3a reaches smoothly an error of 15% at approximately

q = 4.4 a0.
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1s electron serves as both core and valence shell, resulting in a significant
distortion to the electron density in the presence of molecular binding, for
instance in H2 [1, 123].

In Table 3.2 one can see the comparison of different methods and ba-
sis sets on these two molecules, using as the reference value the calcula-
tions performed using the largest basis set, aug-cc-PVQZ. The maximum
and mean errors are calculated as,

〈|%∆ Ĩ(q)|〉 = 1
qmax − qmin

∫ qmax

qmin

|%∆ Ĩ(~q)| d~q (3.28)

with the integration interval [qmin, qmax] = [0, 8.3] a.u. .
In Table 3.2 we can see how poor is the performance of the smallest basis

set, STO-3G, as expected. Table 3.2 provides the energy difference, 4E =

|E− Eref|, of the ab-initio calculation with each basis relative the HF/aug-cc-
pVQZ reference. If we use4E as a proxy for the convergence of the ab initio
calculations, we see a clear correlation between4E and the accuracy of the
scattering. In BF3 it correctly identifies the best and the poorest performers,
with an unexplained out-performance by the 6-31G∗∗ calculation. In NH3,
4E, correctly ranks the mean scattering error except for a swapping around
of 6-31G and 6-31G∗∗, which rank sixth and fifth in terms of energy, but fifth
and sixth in terms of mean scattering convergence. The convergence table
also shows the time required for each scattering calculation relative to the
largest basis. Although IAM calculations are extremely fast in comparison
with ab-initio, they only yield qualitative results. Also, it is important to note
that the summation and interpolation cannot be compared with an iterative
methodology such as the Fourier transforms required in the case of ab-initio
wavefunctions.

The ab-initio scattering calculations essentially scale as the number of
terms that have to be evaluated, which in turn depend on the size of the ba-
sis used to represent the electronic wavefunction. Table 3.2 shows the num-
ber of primitive Gaussian functions per calculation, Ng, and more impor-
tantly, the number of non-zero unique Gaussian products, Ngp. The compu-
tational effort to calculate the scattering scales linearly with the number of
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METHOD Error (%) 4E Ng Ngp Speed

Mean Max (×103) up

BF3 (Eh)

IAM 1.75 7.3 - - 41k

STO-3G 6.36 15 4.69 1.0 10 68

6-31G 0.54 2.0 0.27 1.4 21 31

6-31G∗∗ 0.26 0.7 0.16 1.8 32 20

6-311++G∗∗ 0.39 1.1 0.07 2.3 51 13

aug-cc-pVDZ 0.41 1.0 0.13 4.3 105 6

aug-cc-pVTZ 0.11 0.4 0.02 8.1 259 3

aug-cc-pVQZ 0 0 0 14 655 1

NH3 (10−1 × Eh)

IAM 2.94 13 - - 16k

STO-3G 2.54 7.2 7.73 0.1 1.5 173

6-31G 0.35 1.1 0.62 0.2 3 87

6-31G∗∗ 0.38 1.3 0.29 0.2 6 43

6-311++G∗∗ 0.12 0.3 0.10 0.3 10 26

aug-cc-pVDZ 0.31 1.1 0.20 0.6 19 14

aug-cc-pVTZ 0.11 0.4 0.04 1.2 74 4

aug-cc-pVQZ 0 0 0 2.2 260 1

TABLE 3.2: Convergence and computational requirements for
scattering from HF electronic wavefunctions calculated using
various basis sets in molecules BF3 (top) and NH3 (bottom).
The errors are calculated using Eq. (3.27), with the mean (av-
erage) error calculated using Eq. (3.28). The energy difference
to the reference, 4E = |E − Eref|, is used as a proxy for the
ab-initio convergence. The table also lists the total number
of Gaussian primitives, Ng, the number of unique non-zero
Gaussian products, Ngp, and the relative speed-up of each cal-
culation. The calculations with the aug-cc-pVQZ basis set are
used as reference. Note that the ∗∗ and ++ basis sets are equiv-
alent to ∗ and + for molecules without hydrogen atoms, such

as BF3.
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unique non-zero Gaussian products, Ngp, rather than the actual number of
Gaussian primitives, Ng. For BF3, Ngp ≈ N1.38

g , and for NH3 Ngp ≈ N1.58
g .

The time required to run the scattering codes can be reduced by using a
cutoff value for the Gaussian products or a parallel version of the code. A
cutoff of 1× 10−7 produces the same results as those shown in table 3.2 but
the computational time is reduced by a half. Since the Fourier transform
calculations scale linearly, we can reduce the computational time in a sixth
by parallelising the code in different threads, even more if several cores are
used (i.e. MPI parallelization model).

3.4 Results

In the following we calculate the state-selective elastic scattering patterns in
CS2 molecule. Also we will explore the symmetry of the scattering signals
obtained and their relationship with the molecular geometry. In each case,
the images are shown as detector polar plots, that is, representing the signal
variance with spherical angles θ and φ. The angles take values between
0 ≤ φ ≤ 2π for the polar angle and 0 ≤ θ ≤ π for the radial angle. The |q|
vector dependence is implicit with θ as it depends on its value through the
formula q = 2k0 sin θ/2. As shown before in Fig. 1.10, the θ and φ angles
account for the deflection and projection angles of ki and k0.

3.4.1 Symmetry and centrosymmetry

Before starting the vibrational and rotational treatment, it is important to
remark on the effect of symmetry on the scattering signal. The symmetry
of a molecule relative to the X-ray beam is reflected directly in the scatter-
ing image. As has been explained before, Friedel’s law also applies to gas-
phase scattering from aligned molecules, providing the perpendicular plane
of symmetry respect to the incoming X-ray direction. Centrosymmetry is
produced as a direct consequence of this rule, being characteristic in those
molecules with an odd-numbered rotational axis, which is then doubled. In
molecules such as BF3 and the cyclopentadienil anion, C5H –

5 , the existence
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of a molecular plane of symmetry produces 6-fold and 10-fold symmetry
axis in the scattering pattern (see Fig. 3.4). To establish a general rule one
can say that any molecule belonging to a Dxh group of symmetry will pro-
duce centrosymmetric images.

(a) (b)

FIGURE 3.4: Scattering images for (a) BF3 (D3h point group)
and (b) C5H –

5 (D5h point group). The planar molecules are
perpendicular to the incoming X-ray and the resulting diffrac-
tion image thus doubles the molecular rotational symmetry

axis due to centrosymmetry. The value of qmax is 15.8 Å−1.

In contrast, Fig. 3.5 shows the scattering image for NF3, a strongly-
scattering ammonia analogue with C3v point group symmetry. The addi-
tional interference due to the out-of-plane nitrogen atom diminishes the
centrosymmetry in the image, but the fundamental C3 axis remains. Pro-
ceeding to a molecule with no discernible symmetry, 1,3-cyclohexadiene (C1

point group), there is a corresponding absence of symmetry in the scatter-
ing image. Note, however, that some remnant of ’not-quite’ centrosymmetry
remains even in this image. This simply reflects the approximate degree of
mirror symmetry perpendicular to the incoming X-ray.

3.4.2 Molecular scattering images

In this section we discuss the elastic scattering images for CS2 molecule. In
many instances, difference images are shown to emphasize the changes in
the scattering pattern upon excitation to a specific state. These difference im-
ages are calculated by subtracting a reference image from the excited state



Chapter 3. X-ray scattering from state-selected molecules 67

(a) (b)

FIGURE 3.5: Scattering images for (a) NF3 (C3v point group)
and (b) 1,3-cyclohexadiene (C1 point group). The main plane
of the molecules is aligned perpendicular to the incoming X-
ray. The absence of a mirror plane orthogonal to the incoming
X-rays removes or diminishes centrosymmetry in the images.

The value of qmax is 15.8 Å−1.

scattering image, with the subtraction done between images sans the ab-
solute square. The molecular scattering images present features that have
been discussed in the theory section.

CS2 vibrational states

The vibrational wavefunctions are expressed as a combination of differ-
ent normal modes. To establish the analytical treatment of vibrations, one
should consider the relationship between the modes and the anharmonicity
of them, however, in order to maintain the simplicity and tractability of the
problem we have limited our procedure to an harmonic approximation with
each of the normal modes described using an harmonic oscillator while the
total vibrational wavefunction is the multiplication of those.

To obtain the different normal modes Q, one must know the vibrational
frequencies, calculated by solving the Hessian using analytical or numerical
methods. In this case we have used CAS(10, 8)-SCF/6-311G∗ with an ana-
lytical calculation of the Hessian to obtain the frequencies. The electronic
structure calculations give us a reasonable degree of accuracy as can be seen
in the comparison of calculated frequencies and reference values in Table
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3.3, with the calculated vibrational frequencies in CS2 within 3% of the ref-
erence values ones from NIST [124].

Exp. (cm−1) Calc. (cm−1) 4 (%) Mode
1535 1491 2.9 Symmetric
658 652 1.0 Asymmetric
397 399 0.6 Bending†

TABLE 3.3: Comparison between experimental [124] and cal-
culated frequencies for CS2 in the electronic ground state. The
frequencies have been calculated using the analytical Hessian
at the CAS(10, 8)-SCF/6-311G∗ level of theory. The results are
within 3% from experiments. †Note that the bending mode is

doubly degenerate.

It is important to note that a molecule with heavy atoms, such as sul-
fur, does not display large-amplitude vibrational motion in the low-lying
vibrational states considered here. In Fig. 3.6 scattering images for the
different vibrational states in CS2 are shown. In each image, the vibra-
tional wavefunction has one quantum of excitation in a different vibrational
mode. The symmetric, Fig. 3.6(a), and asymmetric, Fig. 3.6(b), stretches give
rise to overall similar changes in the scattering pattern, but the asymmetric
stretch has additional interferences rings due to the broken symmetry in the
C−S bond lengths. Likewise, the two bending modes generate very sim-
ilar scattering patterns. The difference here are due to the bending mode
in Fig. 3.6(c) being oriented perpendicular to the incoming X-ray (in-plane),
while it is directed toward the incoming X-ray (out-of-plane) in Fig. 3.6(d).
Whether these two modes can be distinguished is therefore dependent on
the degree of orientation of the molecule. As discussed above, the vibra-
tional motions in CS2 have small amplitudes. In terms of the symmetric
stretch and the bending modes, one can essentially consider these vibra-
tions as small displacements of the central C atom relative the two nearly-
stationary S atoms. The changes in the scattering pattern due to vibrational
state are therefore only on the order of 1% or less.
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(a)

(b)

(c)

(d)

FIGURE 3.6: Difference scattering images for each of the nor-
mal vibrational modes of CS2. The vibrational states are
specified as |ν1ν2ν3ν4〉vib, with the order of vibrational quan-
tum numbers corresponding to descending energy (see Table
3.3). The following vibrational states are considered: (a) Sym-
metric stretch |1000〉vib, (b) asymmetric stretch |0100〉vib, (c)
first bending mode |0010〉vib, and (d) second bending mode
|0001〉vib. The vibrational ground state |0000〉vib is taken as

reference, and the value of qmax is 5.3 Å−1 in each image.
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(A)
|Y10|2

(B)
|Y20|2

(C)
|Y11|2

(D)
|Y22|2

FIGURE 3.7: Square-amplitude of the spherical harmonics,
|YJM(θ, φ)|2. The distance from the origin corresponds to the
value of |YJM(θ, φ)|2 in each direction - the colour and lighting
are for aesthetic purposes only. The angle θ is defined relative
the z-axis, which coincides with a C∞ principal rotation axis,

and the origin is a point of inversion.
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CS2 rotations

FIGURE 3.8: Rotational averaged image for the ground state in
CS2. As all the directions are treated in the same way and aver-
aged, the resultant differential cross section is concentric. The
excitation of different rotational states will break this spheri-
cal behaviour and it will highlight the preferred rotations on
this state. This image will be used as the reference for future

characterisations.

In the following we examine the scattering signal for CS2 rotational lev-
els. In Fig. 3.8 we have included the ground state rotational state. One
can see how all the directions are equally probable, removing the influence
of the incoming X-ray beam direction. The scattering from the rotational
ground state will be used as the reference value in the following calcula-
tions. All rotational states are obtained using the rigid rotor approximation
and they will be considered using ab-initio X-ray scattering. As we are treat-
ing a linear molecule, it is a symmetric top molecule, with the K quantum
number always zero. The rigid rotor approximation works well on this case
as the centrifugal distortion will not produce a significant change in the fi-
nal signal. To study the different features on the rotational fine structure,
we have exposed along this lines several permutations of J and M quan-
tum numbers, relating the scattering images obtained with the spherical
harmonic representation (see Fig. 3.7).

Difference images shown in Fig. 3.9 are calculated using again the
ground rotational state, J = 0 M = 0, as reference. Analyzing the cal-
culated results, one can see that the change in the signal is strong when a



Chapter 3. X-ray scattering from state-selected molecules 72

(a) (b)

(c) (d)

(e) (f)

FIGURE 3.9: Difference scattering images for rotational states
in CS2, with the ground rotational state |000〉rot taken as refer-
ence. The following rotational states |JKM〉rot are considered:
(a) |100〉rot, (b) |101〉rot, (c) |10 −1〉rot, (d) |200〉rot, (e) |201〉rot
and (f) |202〉rot. For the linear CS2 molecule, with K = 0
by definition, the images essentially reflect the shape of the
spherical harmonics, with each of the rotational states leaving
a strong signature in the scattering. The value of qmax is 5.3

Å−1 throughout.
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rotational level is excited from the ground state. Also, we can see dumb-
bell and disc shapes when different values of M are considered, relating
them to the spherical harmonics shape. Examining the individual images
in Fig. 3.9, we see that the images fall into several categories of similarity.
Figs. 3.9(a), 3.9(d), and 3.9(e), are quite similar. They correspond to scatter-
ing from dumb-bell or p-orbital type shapes of the rotational wavefunction,
with 3.9(d) the most elongated in real space and 3.9((a) the least. The scat-
tering images in Fig. 3.9(b), 3.9(c), and 3.9(f), on the other hand, correspond
to doughnut-like shapes, with 3.9(f) the flattest in real space and 3.9(b) and
3.9(c) identical since the difference between them is a phase-factor in the
wavefunction which does not affect the scattering.

CS2 rotational, vibrational, and electronic states

(a) (b)

FIGURE 3.10: Difference scattering images for CS2 in the elec-
tronic ground state for combined rotational-vibrational molec-
ular states (a) |101〉rot|1111〉vib, and (b) |100〉rot|1111〉vib. The
reference scattering image corresponds to the overall ground
state (|000〉rot|0000〉vib). The shape of the scattering pattern is
similar in the two examples, but with inverted intensity. The

value of qmax=5.3 Å−1.

We move on to simultaneously considering both rotational and vibra-
tional states. Fig. 3.10 shows difference images for the |101〉rot|1111〉vib and
|100〉rot|1111〉vib states. The trends observed when considering each type
of motion separately, as in previous sections, are preserved. The rotational
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states lead to strong, order of magnitude, changes in specific scattering di-
rections (translating into specific pixels on the detector), while the vibra-
tional states leave much weaker signatures on the order of < 1%, which is
unsurprising given that only small harmonic oscillations around the equi-
librium geometry are considered. If larger amplitude motion were included,
the changes in molecular geometry would indeed leave a very strong signa-
ture in the scattering and eventually dominate all other contributions.

(a) (b)

FIGURE 3.11: Difference scattering images for CS2 in the op-
tically bright excited electronic |B〉 state and the electronic
ground state |X〉 in (a) the ground state geometry, i.e. verti-
cal excitation, and (b) the B state equilibrium geometry. The
image (b) emphasizes the effect of molecular geometry on the
scattering images. The value of qmax=5.3 Å−1, and the incom-
ing X-ray is perpendicular to the plane of the molecule in both

cases.

As the total molecular wavefunction is discussed in this section, we also
consider changes in the electronic state of the molecule. In Fig. 3.11(a)
the changes in scattering pattern due to a vertical excitation from the CS2

ground X state to the bright excited B state are shown. The redistribution of
the electrons in the molecule leads to a distinct change in the scattering pat-
tern, not quite on the same order as the effect of rotations, but significantly
stronger than the effect of small equilibrium vibrations. It is important to
point out, however, that since the equilibrium geometry of the electronic B
state is different from the ground X state, nuclear motion necessarily ensues
upon excitation, and these large-amplitude vibrations have a strong effect
on the diffraction pattern. It is therefore generally non-trivial to separate the
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contributions from electronic redistribution and nuclear motion. As an illus-
tration, Fig. 3.11(b) shows the scattering from the molecule in the electronic
B state at the B-state equilibrium geometry, rather than the ground state ge-
ometry. The change in geometry gives a very large change in the scattering,
and overwhelms the effect of rotation and equilibrium vibrations.

3.5 Conclusions

X-ray diffraction considering specific electronic, vibrational and rotational
states have been examined in CS2. The fingerprint of nuclear excited wave-
functions has been shown to be part of elastic X-ray scattering signals. While
the excitation of isolated vibrational modes in CS2 does not produce a dra-
matic change in the elastic X-ray scattering (∼ 1%), in combination with
rotational or electronic excitation it results in a huge effect on the X-ray scat-
tering intensity. The characterisation of rotational states using elastic X-ray
scattering has shown that a strong change in the scattering signal is pro-
duced when several rotational excitations are considered in CS2 molecules.
In turn, the excitation of low-lying vibrational states in CS2 produces a small
change in the detector image. Electronic states also affect the scattering, with
effects comparable to those of rotations in the presence of significant orien-
tation or alignment. However, in most situations electronic excitation leads
to changes in the nuclear geometry [125, 126], since the potential energy
surfaces associated with different electronic states are rarely parallel. This
leads to very strong changes in the scattering, associated with the change
in molecular geometry. An interesting point is that the greater the redis-
tribution of electrons during vertical excitation of the molecule, and hence
stronger signature of the electronic state, the greater is the effect on the nu-
clear motion, which itself bears an even stronger signature.

Regarding the ab-initio X-ray diffraction method, benchmark calcula-
tions for ground and excited states have been done in BF3 and NH3

molecules. Also, the X-ray signal for different basis sets and methods has
been calculated leading to significant differences when independent atom
model (IAM) is used to predict the scattering signal. The quality of the
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wavefunction has been proven to be a proxy in the evaluation of elastic
scattering matrix elements proving that ab-initio X-ray scattering is a good
alternative to IAM when quantitative results are required. This remains true
even when full rotational averaging is considered, which otherwise has a
tendency to smother differences. An extensive explanation of our compu-
tational method is given in Ch. 4, where we explain all the characteristic of
ab-initio X-ray elastic and inelastic scattering.
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Chapter 4

Ab-initio inelastic X-ray scattering

4.1 Introduction

This chapter outlines the calculation of inelastic X-ray scattering (IXS) in
bound-to-bound transitions using ab-initio methods. Non-resonant inelas-
tic scattering, also known as the Compton effect, can be useful to explain
processes such as valence electron excitations [28], dispersion of phonons
or time-dependent electron dynamics [77]. One of the main advantages
of inelastic X-ray scattering is the possibility to access optically forbidden
transitions, allowing the characterisation of atomic and molecular electronic
structure and dynamics via synchrotron measurements [27, 29, 109, 127–
133].

High intensity and short duration pulses generated by XFELs enable
time-resolved X-ray scattering [9, 21, 22, 31, 64, 134], and thus ultrafast imag-
ing of photochemical dynamics [135]. Structural determination in these ex-
periments is provided via elastic scattering but the question is how inelas-
tic scattering contributes to the general picture. The importance of inelas-
tic scattering matrix elements have been postulated in the propagation of
atomic [13, 24] and molecular wave packets [26, 31]. For this reason, we
are aiming to calculate here IXS matrix elements using computational tools
which will be applied later to an atomic and molecular characterisation of
wave packets using time-resolved X-ray scattering.
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4.2 Theory

In the following we will describe in detail the calculation of X-ray inelastic
scattering elements. Starting from the definition of the differential X-ray
scattering cross-section we will develop the theory necessary to include an
ab-initio wave function within the light-matter interaction picture.

4.2.1 X-ray scattering

The total double differential cross section for X-ray scattering is [77],

d2σ

dΩ h̄dω f
=

(
dσ

dΩ

)
Th

s(~q, ω′), (4.1)

where
(

dσ
dΩ

)
Th

is the Thomson cross-section and s(~q, ω′) the dynamic struc-
ture factor defined in Sec. 2.4. The dynamic structure factor, s(~q, ω′), describes
the material response,

sβα(~q, ω′) = ∑
β

∣∣〈Ψβ|L̂|Ψα〉
∣∣2 δ(Eβ − Eα − h̄ω′), (4.2)

where |Ψβ〉 and |Ψα〉 are the final and initial states, ω′ = ω0 − ω1, and L̂ is
the scattering operator,

L̂ =
Nel

∑
j=1

eı~q~rj , (4.3)

with the sum running over all Nel electrons. The momentum transfer vec-
tor, ~q = ~k0 −~k1, is defined as the difference between the incident and the
scattered wave vectors, with~k0 =~k1 + ω′/c, and h̄ω′ = Eβ − Eα the transi-
tion energy, which often is negligible compared to the energy of hard X-rays
[118]. Eq. (4.2) implicitly assumes that the X-ray energy is tuned away from
the absorption edges, which would otherwise force us to account not just
for the terms that are square in vector potential, but also for the linear p̂Â
terms.

Isolating elements with α 6= β, allows us to calculate inelastic X-ray scat-
tering contributions. The electronic density approach proposed by Northey
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et al. [84] is not applicable here since we are looking at transitions between
different electronic states. This requires a reformulation of the ab-initio X-ray
scattering method.

4.2.2 Scattering matrix elements

Non-resonant IXS matrix elements correspond to transitions between differ-
ent electronic states via the scattering operator, L̂. Since excited electronic
states are considered, multiconfigurational electronic stucture methods are
necessary to calculate the electronic wavefunctions. Such methods are more
accurate than single-determinant representations, and account for electron
correlation better [136]. In multiconfigurational ab-initio electronic structure
theory the valence electrons are distributed over molecular orbitals in an
active space which consists of multiple electron configurations represented
by Slater determinants. An electronic state |Ψα〉 can be expanded as,

|Ψα〉 =
Nconf

∑
i=1

cα,i |Φα,i
SD〉, (4.4)

where cα,i are the configuration interaction coefficients for the α state and
|Φα,i

SD〉 is the Slater determinant combination for each i configuration.
The importance of each configuration for a particular electronic state is

given by the associated interaction coefficient which also expresses the occu-
pancy of the corresponding orbitals. Each Slater determinant results from
the anti-symmetrization of the Hartree product, ΦH, which can be repre-
sented by,

|Φα,i
SD〉 = (Nel !)

−1/2
Nel !

∑
n=1

(−1)pnPnΦi
H, (4.5)

where Nel is the number of electrons, Pn is the pair-wise permutation oper-
ator and φH the Hartree product defined as,

ΦH =
Nel

∏
j

χi
j (~sj)φj(~rj), (4.6)
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where χi
j (~sj) are the spin functions and φj(~rj) the spatial orbitals. The scat-

tering matrix elements Lβα between the electronic states β and α are thus
given by,

〈Ψβ|L̂|Ψα〉 = ∑
ii′

c∗β,i cα,i′ 〈Φ
β,i
SD| L̂ |Φ

α,i′
SD 〉, (4.7)

where we have used the definition in Eq. (4.4) and the scattering operator L̂
from Eq. (4.3). In highly symmetric systems (e.g. centrosymmetric systems
such as single atoms [136] or diatomic molecules [28]), an effective approach
for solving Eq. (4.7) is to expand the L̂ operator using the Wigner-Eckart
theorem but we do not follow this here. One advantage of our current treat-
ment is that it gives the full physical value of the matrix element straight
away.

The evaluation of a Slater product can be worked out using the Slater-
Condon rules. We need to consider two cases. The first case occurs if the
two Slater determinants are identical,

〈Φα,i
SD| L̂ |Φ

α,i
SD〉 =

NMO

∑
j=1

bj 〈φi
j| L̂ |φi

j〉. (4.8)

In the final line of Eq. (4.8), bj ∈ 0, 1, 2 is the occupancy number for each spa-
tial orbital in the Slater determinant when running the summation over all
unique spatial orbitals, not just those included in that specific determinant.
The second case occurs if the two Slater determinants differ by a single spin
orbital when arranged in maximum coincidence,

〈Φβ,i
SD| L̂ |Φ

α,i′
SD〉 = 〈χ

i
N| l̂ |χi′

N〉 =
{
〈φi

N| l̂ |φi′
N〉

0
(4.9)

which is nonzero when the spins of χi
N and χi′

N are parallel, but vanishes via
〈↓ | ↑〉 = 0 otherwise since 〈α|β〉 = δαβ for spins. Finally, if the two Slater
determinants differ by more than one spin orbital, the result is always zero.

The Slater-Condon rules assure that a difference of more than one spin-
orbital between the elements of the product will grant a zero result to the
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integral. In practice, it means that double excitation will have no contribu-
tion to the scattering signal and only those permutations involving one elec-
tron will be considered in our calculation. Additionally, the spin overlaps
should be non-zero, limiting the treatment to singlet-singlet or triplet-triplet
transitions.

4.2.3 Evaluation of matrix elements

The next step in our treatment is the evaluation of matrix elements using ab-
initio wave functions. Taking into account the Slater-Condon rules in Eqs.
(4.8) and (4.9), we can exclude elements that differ by more than one spin-
orbital. The spatial orbitals are given as combinations of Gaussian functions
of the form,

φj(r) =
NBF

∑
k=1
Mj

kGk(~r), (4.10)

whereMj
k are the molecular orbital expansion coefficients. The total num-

ber of basis functions Gk(~r) is NBF, with j ∈ NMO = NBF. Each basis function
Gk(~r), in turn, is a contraction of Gaussian-type orbitals (GTOs), gs(~r), such
that,

Gk(~r) =
nk

∑
s=1

µk
s gk

s (~r), (4.11)

where µk
s are the basis set contraction coefficients for the primitive GTOs. A

Cartesian Gaussian-type orbital centered at coordinates~rs = (xs, ys, zs) has
the form,

gs(~r) = Ns(x− xs)
ls(y− ys)

ms(z− zs)
ns e−γs(~r−~rs)2

, (4.12)

with exponent γs, Cartesian orbital angular momentum Ls = ls + ms + ns,
and normalisation constant Ns,

Ns =

(
2
π

)3/4 2(ls+ms+ns) γ
(2ls+2ms+2ns+3)/4
s

[(2ls − 1)!!(2ms − 1)!!(2ns − 1)!!]1/2 , (4.13)
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where !! denotes the double factorial. A double factorial or semi-factorial
is a generalization of the usual factorial ! that represents the product of all
elements from one up to some non-negative integer n that have the same
parity (i.e. odd or even numbers). The usage of Cartesian GTOs is conve-
nient in the present context, but there is of course a direct mapping between
Cartesian and spherical Gaussians [137]. If spherical Gaussians are used, the
mathematics of the analytic Fourier transform takes a different form [138].
It should be noted that spherical Gaussians are much more convenient for
centrosymmetric systems where an expansion of the L̂ operator in partial
waves using the Wigner-Eckart theorem is appropriate (see Sec. 5.2.2).

The one-electron bracket can then be evaluated as,

〈φa| l̂ |φb〉 =
NBF

∑
k1,k2

Ma
k1
Mb

k2

nk1
,nk2

∑
s1,s2

µk1
s1 µk2

s2 Kk1k2
s1s2 F~r[g

k1k2
s1s2 (~r)](~q),

where we use the Gaussian product theorem [139] to rewrite the product
gk1

s1 (r)gk2
s2 (~r) as,

gk1
s1 (~r)gk2

s2 (~r) = Kk1k2
s1s2 gk1k2

s1s2 (~r), (4.14)

where Kk1k2
s1s2 = exp[−γk1

s1 γk2
s2 (~r

k1
s1 −~r

k2
s2 )

2/(γk1
s1 + γk2

s2 )] is the pre-factor and
gk1k2

s1s2 (r) is a new Gaussian centered at~rk1k2
s1s2 = (γk1

s1~r
k1
s1 + γk2

s2~r
k2
s2 )/(γ

k1
s1 + γk2

s2 )

with exponent γk1k2
s1s2 = γk1

s1 + γk2
s2 . Since the Cartesian coordinates (x, y, z)

are linearly independent and each Gaussian function can be written as a
product of x, y and z components,

gk1k2
s1s2 (~r) = ∏

r′=x,y,z
gk1k2

s1s2 (r
′), (4.15)

the problem is reduced to the solution of one-dimensional Fourier trans-
forms,

Fx

[
gk1k2

s1s2 (x)
]
(q). (4.16)

To calculate the Fourier transform of one-dimensional Gaussians we can
express them as,

g(x; l) = xle−γx2
, (4.17)
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where l is the angular momentum in the Cartesian representation. The
Fourier transform of these terms can be determined analytically using the
recursive formula from Ref. [84],

Fx[x f (x)](q) = −ı
d
dq
Fx[ f (x)](q) (4.18)

which leads to a general expression for Eq. (4.16) of the form,

Fx[g(x; l)](q) =
ıl√πe−q2/4γ

2lγ(2l+1)/2

l/2

∑
p=0

(−1)p l!γpql−2p

(l − 2p)!p!
. (4.19)

Reference [84] provides a table of solutions. The calculation of the
Fourier Transformations can also be done numerically using Fast Fourier
Transformation (FFT) [84].

4.3 Computational details

In the following we will explain the main features associated with the prac-
tical calculation of IXS matrix elements using computational procedures.
The analysis of ab-initio results and the calculation of matrix elements is car-
ried out using a code developed by myself called Ab-Initio X-ray Diffraction:
Elastic and Inelastic (AIXRDEI). The main assumptions made in this code are
collected in the theory (Sec. 4.2) and ab-initio sections (Sec. 4.3.1) , but a few
additional points will be discussed below.

4.3.1 Electronic structure calculations

As mentioned earlier in this thesis, multiconfigurational methods are re-
quired to describe excited states in atoms or molecules. We have chosen
complete active space self-consistent field (CASSCF), described in Sec. 1.7.2,
as our reference procedure. As we are treating small systems, large active
spaces are chosen, without any frozen orbitals. State-averaged calculations
are used throughout this chapter, allowing us to consider different electronic



Chapter 4. Ab-initio inelastic X-ray scattering 84

states in an even-handed manner. Symmetry is applied whenever applica-
ble, which makes it possible to isolate angular momentum components, and
thus enabling e.g. monopole decomposition.

We also use multireference configuration interaction (MRCI) in a few
instances in order to establish an upper limit on the accuracy. The theory
is analogous to CASSCF but uses reference Slater determinants calculated
through a perturbation theory scheme or specified by the user. The results
are usually better in terms of the energy since dynamic correlation is better
accounted for. However, in some cases the lack of symmetry in the state-
averaged MRCI calculations, produces worse results than CASSCF.

The IXS calculations require that both CASSCF and MRCI use configu-
ration state functions (CSFs) instead of unmatched Slater determinants. The
reason is technical; usage of spin-weighted Slater determinants will produce
a zero result in average as both possible spin contributions are expressed
with opposite signs. The output from the electronic structure calculations
when using CSFs, on other hand, expresses the spin populations as branches
with merely statistical meaning in terms of spin quantum numbers, produc-
ing a non-zero result when average is done.

To calculate IXS matrix elements, a permutation over different configu-
rations is done. Applying Slater-Condon rules, the possible products be-
tween states are reduced to the instances where only one spin-orbital differs
between determinants. The pseudo-code expression thus reads,

〈Ψβ|L̂|Ψα〉 =
∣∣∣∣∣NCI

∑
i,j

vCI
β,iv

CI
α,j〈Φ

β,i
SD| L̂ |Φ

α,j
SD〉
∣∣∣∣∣
2

, (4.20)

where vCI
α are the CI-vectors of length NCI . One can take these coefficients

and the associated configuration directly from the multiconfigurational cal-
culation. All ab-initio electronic structure calculations are carried out using
the MOLPRO software package [122].
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4.3.2 The X-ray scattering code

The code reads the output from the electronic structure calculations
(presently the code only interfaces MOLPRO [122]), and iterates over all or-
bitals and configurations to calculate the required Fourier transforms. One
can choose what matrix elements to calculated by selecting the two states
involved,

L(1, 2)→
NCI

∑
i,j

vCI
1,i v

CI
2,j F

[
〈φ1|L̂|φ2〉

]
(q), (4.21)

which is analogous to Eq. (4.20). The code outputs by default the (dynamic)
structure-factors calculated using Eq. (4.2) but as electron scattering is some-
times also considered, the output can also be provided in the form of gener-
alized oscillator strengths (GOSs). The calculation of GOSs is explained in
Ref. [136]. They are given by,

G(q, ωn −ω0) =
2(ωn −ω0)

q2 |s(q, ωn −ω0)| (4.22)

where Eq. (4.22) includes implicit rotational average, calculated using the
amplitude of dynamic structure form factors( i.e. without the associated
phase). The energy resolution is not averaged though, isolating particular
transitions.

4.3.3 Geometric considerations

The momentum transfer vector, ~q, is calculated using Ref. [80]. Setting the
incident X-ray vector,~k0, parallel to the ẑ-direction,

~k0 = k0

0
0
1

 (4.23)

~k1 = k1

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 (4.24)
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~q =

−k1 sin(θ) cos(φ)
−k1 sin(θ) sin(φ)
(k0 − k1) cos(θ)

 , (4.25)

where~k1 represents the scattered X-ray beam. In the case of the elastic scat-
tering, the k0 and k1 wavevectors have identical length as no energy transfer
is involved. Albeit negligible in magnitude when compared to the X-ray en-
ergy, inelastic X-ray scattering produces a change in the energy of the X-ray,

ω f = ωi −
∆Etrans

h̄
, (4.26)

where ∆Etrans corresponds to the energy involved in the transition and h̄ is
Planck’s constant.

As molecules are not usually aligned with respect to the incoming X-ray,
we should introduce the so called incoherent rotational average to account for
the anisotropy of molecular orientations. It reads,

〈S(q, ω′)〉2 =
∫

Ω
|S(~q(θ, φ, γ), ω′)|2 sin2 θdθdφdχ, (4.27)

where θ, φ and γ are the so-called Euler angles with dΩ = dθdφdγ, and q
is the momentum transfer vector. The integration of scattering structure-
factors over all directions produces an isotropic signal which only depends
on q = |~q|.

4.4 Results

4.4.1 Single-electron atoms

We begin by validating our methods for single-electron atoms where the
solution is known analytically, as discussed in Sec. 5.2.2. Specifically we ex-
amine the inelastic scattering for H and He+. The ab-initio electronic wave
functions are calculated at the CASSCF(3,1) level, using the Dunning d-aug-
cc-PV5Z basis. The diffuse augmented family of Dunning basis sets allows
a better description of the diffuse orbitals. Hydrogen-like atoms present
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FIGURE 4.1: Comparison between numerical ab-initio calcula-
tions, using our approach, and analytical results for (a) the H
neutral atom, and (b) the He+ cation. The dynamic structure
factor, S(q, ω), is shown for the transitions 2s ← 1s, 2px(2py)

← 1s, 2pz ← 1s, and 3s← 1s.

Rydberg-like behaviour when the principal quantum number n is greater
than one, requiring a good description of the diffuse parts of electron wave-
functions. Results obtained with more common basis sets, although they
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agree well in terms of the energy, show poor agreement in the s(~q, ω) for
small values of q, emphasizing the importance of a correct description of
the wavefunction at large r. Transition energies for the levels under consid-
eration, (2s, 2p, 3s) ← 1s, are within < 0.1% of the experimental [140] and
analytical results. As can be seen from Fig. 4.1, the ab-initio results agree ex-
tremely well with the analytical solutions. Comparing the He+ states in Fig.
4.1b with the H states in Fig. 4.1a, the more compact wavefunction density
in He+ results in a shifting of the maximum values of the matrix elements
towards larger q. It reflects the inverse relationship between real space, r,
and reciprocal space, q. The agreement between ab-initio and analytic re-
sults demonstrates the accuracy of our calculation for sufficiently accurate
ab-initio electronic wavefunctions.

4.4.2 Two-electron atoms
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2s ← 1s aug-cc-PV6Z 

2s ← 1s aug-cc-PV5Z 

2s ← 1s aug-cc-PVQZ 

2s ← 1s d-aug-cc-PV5Z 

FIGURE 4.2: Calculated dynamic structure factor, S(q, ω), in
He for the 1S0 (1s2s) ← 1S0 (1s2) transition compared to re-
sults from Cann and Thakkar [141]. The numerical calcula-
tions are performed with CASSCF(2,10) and four Dunning ba-
sis sets (aug-cc-PVQZ, aug-cc-PV5Z, aug-cc-PV6Z, and d-aug-

cc-PV5Z).
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FIGURE 4.3: Calculated dynamic structure factor, S(q, ω), in
He for the 1S0 (1s2s) ← 1S0 (1s2) and 1P1 (1s2p) ← 1S0 (1s2)
transitions compared to theory by Cann and Thakkar [141]
and experiments by Xie et al. [131]. The ab-initio calcula-
tions are done at the CASSCF(2,10)/aug-cc-PV6Z and the
CASSCF(2,10)/d-aug-cc-PV5Z levels, with the d-aug results

identified by the label "(diff.)".

We now consider the neutral He atom, a two-electron system. The elec-
tronic states of He are well known from the literature. The energy conver-
gence for CASSCF(2,10) ab-initio calculations with four different Dunning
basis sets is shown in Table 4.1 for the two excited states 1S0 (1s2s) and
1P1 (1s2p). The corresponding dynamic structure factor for the 1S0 (1s2s←
1S0 (1s2) transition from the ground state is shown in Fig. 4.2 together with
reference calculations using explicitly correlated wave functions by Cann
and Thakkar [141].

Ab-initio calculations are performed using symmetry cards for states
with l 6= 0, which allows the isolation of specific angular momentum com-
ponents. The IXS code benefits from symmetry specifications as they make
possible to split the results into different monopole contributions.

As discussed above, good agreement is found between our results and
the reference values. Maximum convergence is reached when the larger
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He 1S0(1s2s) 1P1(1s2p)

E (eV) ∆E (%) E (eV) ∆E (%)

Exp. [140] 20.615 − 21.218 −

PVQZ 20.793 0.8 23.943 12.8

PV5Z 20.748 0.6 23.078 8.8

PV6Z 20.684 0.3 22.667 6.8

d-PV5Z 20.000 3.0 20.680 2.5

TABLE 4.1: The energies E for the 1S0 (1s2s) and 1P1 (1s2p)
states in He calculated at the CASSCF(2,10) level with Dun-
ning basis sets: aug-cc-PVQZ, aug-cc-PV5Z, aug-cc-PV6Z, and
d-aug-cc-PV5Z. The percentage error, ∆E, compared to exper-

imental values from NIST [140] is also given.

basis set is used, establishing a direct relationship between the level of the-
ory employed in the ab-initio calculations and the accuracy of the inelastic
matrix elements. The same behaviour has been shown recently for elastic
scattering contributions [1, 2]. The result might improve if a higher number
of determinants is used or a higher level of ab-initio theory is used, using for
instance full-CI methods. The main discrepancies occur at lower values of q,
suggesting that it is the tail of the wave function which is the most difficult
to converge. Even though the description can be improved, the results are
good overall and the energy convergence shows excellent agreement with
experimental values as shown in Table 4.1.

The next step is to consider other transitions in He. In Fig. 4.3 we
compare our dynamic structure factors for the two transitions 1S0 (1s2s)←
1S0 (1s2) and 1P1 (1s2p)← 1S0 (1s2) to experimental results by Xie et al. [131]
and reference calculations by Cann and Thakkar [141]. In reference [141]
s(q, ω) is calculated using a highly accurate wavefunction, obtained using a
sophisticated R-matrix procedure. In particular, R-matrix theory uses exact
Coulomb functions for the long-range single-electron tail of the wavefunc-
tion. For this reason, the reference results agree better with the experimental
ones at q < 2 a.u.. Nevertheless, our results show a very good agreement
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with both experimental and computational reference values. As expected,
the inclusion of diffuse basis functions in the electronic ab-initio wavefunc-
tion calculation yields better results at small q when treating the 1P1 transi-
tion. Energy convergences are shown in Table 4.1. The differences between
our result and the references could come from the angular momenta defi-
nition we have used. To isolate different contributions using ab-initio is dif-
ficult even when using symmetry cards, making a careful inspection of the
ab-initio results necessary to assign various components of the transition.

4.4.3 Multi-electron atoms

Below we treat Ne, C and Na atoms. As has been mentioned before, some
of the inelastic scattering reference data is provided by electron energy-
loss spectroscopy (EELS) studies. Data from EELS is generally provided
in terms of generalised oscillator strenghts (GOSs) and in order to match
tabulated data, our results for C and Na are given in terms of GOSs rather
than dynamic structure factor as before. Oscillator strengths are dimen-
sionless quantities that express the probability of absorption or emission
between two levels in an atom or molecule. When the momentum transfer
vector is zero, generalized oscillator strengths are equivalent to the oscilla-
tor strength, providing an alternative route for characterising the oscillator
strengths for optical dipole transitions.

Ne

Inelastic scattering in Ne atom can be studied experimentally using two
main techniques, Inelastic X-ray Scattering (IXS) [29] and Electron Loss Spec-
troscopy (EELS) [142]. Since Ne is a noble gas atom the probability of tran-
sitions is low. We consider the main valence excitations from the stable
closed-shell np6 ground state and we compare our results with reference
results, both theoretical [136, 143] and experimental [29, 142].

As we are considering 2p53s, 2p53p ← 2p6 transitions, the total angular
momentum can be decomposed into several components, l = 0, 1, 2.... Like-
wise, the matrix elements can show be partitioned into monopole, dipole
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FIGURE 4.4: The dynamic structure factor, S(q, ω), in Ne for
the 3s← 2p dipolar and 3p← 2p monopolar and quadrupolar

transitions compared to results by Amusia et al. [136].

and quadrupole contributions. We have performed a CASSCF(9,10)/aug-
cc-PVTZ calculation to isolate each of these transitions. Symmetry cards
are necessary for this purpose, isolating three different angular momentum
components. The energies obtained for each of the processes studied are
collected in Table 4.2 showing an excellent agreement with experimental
reference values.

In Fig. 4.4 we compare our results with those obtained using random-
phase with exchange (RPAE) calculations by Amusia et al. [136] for the
monopole and quadrupole 3p ← 2p and the dipole 3s ← 2p transitions.
Note that the cross sections have been rotationally averaged. Overall, the
agreement is very good, with the only notable discrepancy occurring for
the dipole 3s ← 2p transition, where the low-q peak in our calculations is
marginally shifted to lower values of q compared to Amusia et al. [136], al-
though the height and width of the peak agree almost perfectly. The Amusia
et al. calculations [136] have been compared to the recent IXS experiments by
Zhu et al. [29], and the agreement for the monopole 2p53p[1/2]0, the dipole
2p53s[1/2]1, and the quadrupole 2p53p[5/2, 3/2]2 were found to be quite
good, which carries over to our present calculations.
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Ne Eexp (eV) Ecalc (eV) ∆E (%)

2s2p53s [1/2]1 16.715 16.554 1.0

2s2p53p [1/2]0 18.555 18.290 1.4

2s2p53p [3/2]2 18.704 18.720 0.1

TABLE 4.2: The energies Ecalc for excited states in Ne atom
calculated using CASSCF(9,10)/aug-cc-PVTZ. The percentage
error, ∆E, relative experimental values Eexp from NIST [140] is

also given.

C and Na
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FIGURE 4.5: The generalized oscillator strengths, GOS(q, ω),
in C for the two transitions 3P0 (2s2p3) ← 3P0 (2s22p2) and
3D0 (2s2p3) ← 3P0 (2s22p2). The current ab-initio calculations
using CASSCF(5,6)/aug-cc-PVTZ are compared to RPAE cal-

culations by Chen and Msezane [144].

Next we consider two open-shell atoms, C and Na. In this case, the
electronic configuration of these systems allows to interpret how inner-shell
transitions and different multiplicities can be studied using our method. En-
ergy convergence is good considering that we treat excitations that involve
a reordering of the atomic inner electrons. Electron correlation will play an
important role in this case, due to the fact that unpaired electrons suffer a
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FIGURE 4.6: The generalized oscillator strength, GOS(q, ω), in
Na for the 2P ([He]2s22p53s2) ← 2S ([He]2s22p63s) transition.
The ab-initio calculations using CASSCF(9,11)/aug-cc-PVQZ
are compared to experiments by Bielschowsky [145] and the-

ory by Chen and Msezane [144].

bigger dynamic correlation than closed-shell electrons, requiring corrections
by procedures such as CASPT2. Calculations are done at the CASSCF/aug-
cc-PVTZ level and the energy convergence is shown in Table 4.3.

The IXS cross sections for the transitions from the ground state of the
C atom to the first two inner-shell excited states, i.e. 3P ([He]2s2p3) ←
3P ([He]2s22p2) and 3D ([He]2s2p3) ← 3P ([He]2s22p2), are shown in Fig.
4.5. Our ab-initio calculations agree well with the RPAE calculations by
Chen and Msezane [144], also included in Fig. 4.5. For q2 → 0 the GOSs
should converge to the optical oscillator strength of the transitions. In our
calculations these values are 0.0615 and 0.1130, respectively, which agrees
reasonably well with the experimental values of 0.0634 and 0.0718 [146], as
well as previous theory [144].

In Na, we have performed the ab-initio calculations at the
CASSCF(9,11)/aug-cc-PVQZ level of theory. We consider an inner
shell excitation from the doublet ground state, i.e. the 2P ([He]2s22p53s2)

← 2S ([He]2s22p63s) transition, which has a very low oscillator strength
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Atom [state] Eexp (eV) Ecalc (eV) ∆E (%)

C [2s2p3 3P] 9.330[140] 9.576 2.6

C [2s2p3 3D] 7.946[140] 7.410 6.7

Na [2p53s2 2P] 31.200[145] 31.489 0.9

TABLE 4.3: The energies Ecalc for excited states in atoms C and
Na calculated at the CASSCF/aug-cc-PVTZ level of theory
(see text for details). The percentage error, ∆E, compared to
experimental values Eexp from NIST [140] and Bielschowsky

et al. [145] is also given.

compared to outer electron excitations. The cross sections, shown in Fig. 4.6
compare well to previous theory at the HF and RPAE level [144] and EELS
experiments by Bielschowsky et al. [145].

4.4.4 Molecules
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FIGURE 4.7: The generalized oscillator strength, GOS(q, ω),
for the a 1Πg ← X 1Σ+

g transition in N2. Our CASSCF and
MRCI ab-initio results are compared to experimental results
from Leung et al. [147] and Barbieri et al. [148], and to calcula-

tions by Giannerini et al. [149].

The most important case we are treating in this chapter will correspond
to the calculation of inelastic X-ray scattering cross sections in molecules.
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N2 E (eV) ∆E (%)

Exp. [147] 9.300 −

CASSCF(14,12) 9.332 0.3

MRCI(14,10) 9.700 4.3

TABLE 4.4: The energy E for the a 1Πg state in N2, correspond-
ing to the transition energy from the X 1Σ+

g ground state. The
experimental result is taken from Leung et al.[147]. Ab-initio
CASSCF(14,12) and MRCI(14,10) results are shown, using the
Dunning Rydberg-adapted aug-cc-PVCTZ basis. The percent-
age error, ∆E, compared to the experimental value is also

given.

We have considered the nitrogen molecule, N2, which has a great impor-
tance as one of the main components of our atmosphere. We concentrate
on the Lyman-Birge-Hopfield band, which is probed by dipole forbidden
transitions at 9.3 eV. Previous studies have been done using the quadrupole
transition, a 1Πg ← X 1Σ+

g , which is unavailable to standard spectroscopic
measurements.

Chung and Ling [150] started the studies on this band in the 1970s with
their work using wavefunctions obtained using Hartree-Fock methods, fol-
lowed by the Tamm-Dancoff approximation (TDA) and random-phase ap-
proximation (RPA) calculations by Szabo and Ostlund [139]. Several other
theoretical approaches have been applied through the years trying to ac-
count for the inelastic scattering behaviour of this transition [149, 151] which
has also been studied extensively experimentally [129, 130, 147, 148, 152].

A detailed analysis of TD-DFT theory and experiments in Ref. [130],
shows further that the a 1Πg ← X 1Σ+

g transition occurs in a region where
there are additional contributions from the octupolar w 1∆u ← X 1Σ+

g tran-
sition in the experimental signal, although in the following we focus on the
transition to the a 1Πg state.

The energy for the transition obtained using SA-CASSCF(14,12)/aug-cc-
PVCTZ is within 0.3 % of the experimental [147] value. Table 4.4 shows the
experimental and theoretical energies E for the a 1Πg state in N2, as well
as the percentage error, ∆E, compared to experimental values from Leung
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[147]. Also included are the results for a MRCI(14,10)/aug-cc-PVCTZ cal-
culation, which in principle should perform better than CASSCF, but due
to convergence problems had to be run at lower symmetry which adversely
affected the energy convergence.

The generalized oscillator strength, GOS(q, ω), that we have calculated
is in good agreement with the experimental results from Leung et al. [147]
and Barbieri et al. [148], shown in Fig. 4.7, as well as recent theoretical cal-
culations by Giannerini [149]. The MRCI results provide a slightly lower
scattering cross section, but the difference is small. The experimental EELS
signal differs from the IXS signal at large values of q. Bradley et al. [129] have
identified deviations from first Born approximation scattering in the EELS
signal at high q by comparison to IXS, along the lines of similar observations
in Ne discussed earlier. As electrons are charged particles, several interac-
tions can occur when it scatter from the system, however, the treatment is
reduced to a single event. The effect of multiple scattering events is even
larger when large values of q are considered and for this reason our calcu-
lated cross sections show a small deviation at large values q when compared
to experimental cross-sections. The difference between our results and the
experimental cross-sections can also be due to additional contributions from
the w 1∆u state in the Lyman-Birge-Hopfield band [130].

4.4.5 Computational times and scaling with basis sets

We examine briefly the scaling properties of the IXS code with respect to the
basis sets used to calculate the ab-initio electronic wavefunction. As men-
tioned in Sec. 4.2 the Gaussian products are Fourier transformed to calcu-
late the X-ray scattering structure-factor, s(~q, ω). The number of Gaussian
products will be directly related to the size of basis sets as shown in Table
4.5.

Table 4.5 shows the accuracy given by each basis set in the calculation of
ab-initio electronic wavefunctions using the 1S0 (2s) ←1 S0 (1s) transition
energy. The accuracy of the wavefunction will be the critical parameter in
order to obtain reliable IXS matrix elements, as shown in Sec. 4.4. The scala-
bility with the number of Gaussian products, Ngp. The number of Gaussians
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H 1S0 (2s)←1 S0 (1s) IXS

∆E (%) Ng Ngp Speed-up

PVDZ 1 15 900 23

PVQZ 0.5 74 2.3× 104 14

PV5Z 0.2 140 8× 104 3

d-PV5Z 0.2 175 1.3× 105 2.3

PV6Z 0.1 194 1.5× 105 1.3

d-PV6Z 0 229 2× 105 1

TABLE 4.5: Speed-up for the IXS matrix element of the tran-
sition 1S0 (2s) ←1 S0 (1s) state in H atom calculated at the
CASSCF(1,3) level with Pople and Dunning basis sets: 3-21G,
6-311G, aug-cc-PVDZ, aug-cc-PVQZ, aug-cc-PV5Z, d-aug-cc-
PV5Z, aug-cc-PV6Z, d-aug-cc-PV6Z. The energy percentage
error, ∆E, compared to larger basis set (d-aug-cc-PV6Z) is also
given. We show the number of Gaussians (Ng) used to cal-
culate the ab-initio electronic wavefunctions and the number
of Gaussian products (Ngp) used in the calculation of IXS ma-
trix elements. The speed-up is calculated with respect to the
amount of time necessary to obtain the IXS matrix elements

with the largest basis set (d-aug-cc-PV6Z)
.
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will determine not only the accuracy of the wavefunction but also the time
required to calculate the IXS matrix elements. The speed-up is calculated
for several basis sets, showing a compromise between accuracy and com-
puter resources. The results are presented for a single-electron atom but the
general trend is the same for multi-electron atoms and molecules.

In table 4.6 we have compared the integrated IXS matrix elements for
the 1S0 (2s)←1 S0 (1s) transition in H atom, calculated using different basis
sets. To benchmark the calculation we have used the analytical result given
by the treatment explained in Sec. 5.2.2. The trend is clear, the number of
Gaussian functions used to obtain the ab-initio electronic wavefunction has
a direct influence in the goodness of the results. Nevertheless, in the case of
Rydberg-like states the inclusion of extra-diffuse basis sets allows a better
description of the IXS matrix elements, as can be seen for instance when we
use diffuse Dunning basis sets, d-aug-cc-PV5Z and d-aug-cc-PV6Z, in the
present calculation.

4.5 Conclusions

In this Chapter we have shown how the IXS cross-sections can be calculated
using multiconfigurational ab-initio wavefunctions in atoms and molecules.
The agreement of our results with experimental and theoretical reference
values is excellent, validating our theoretical procedure and computer code
for calculating IXS matrix elements. Via calculations in a wide range of
atomic and molecular systems, we have demonstrated how the vast range of
ab-initio possibilities can be treated and adapted to the scattering problem.
From R-matrix [129, 130, 136] to time-dependent DFT [151] calculations, we
have compared our results with other methods, showing a great agreement
with them in terms of energies and quality of scattering matrix elements.
Also, we have introduced the deep analogies between X-ray and electron
scattering to reproduce experimental obervations from both electron (EELS)
and X-ray (IXS) scattering. In terms of the range systems studied, different
number of electrons, multiplicities and angular momenta considered using
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H 1S0 (2s)←1 S0 (1s) IXS

I Ng Ngp %∆I

Analytical 0.3419 − − −

PVDZ 0.0404 15 900 18.3

PVQZ 0.0360 74 2.3× 104 5.3

PV5Z 0.3471 140 8× 104 1.4

PV6Z 0.3434 194 1.5× 105 0.6

d-PV5Z 0.3402 175 1.3× 105 0.5

d-PV6Z 0.3421 229 2× 105 0.4

TABLE 4.6: Comparison of the integrated IXS matrix element
for the 1S0 (2s) ←1 S0 (1s) transition in H atom calculated at
the CASSCF(1,3) level with Dunning basis sets: aug-cc-PVDZ,
aug-cc-PVQZ, aug-cc-PV5Z, d-aug-cc-PV5Z, aug-cc-PV6Z, d-
aug-cc-PV6Z. The quality of the IXS matrix elements is bench-
marked against analytical results given by the approximation
made in Sec. 5.2.2. %∆I shows the percentage difference be-

tween the numerical and the analytical data.
.
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our approach, providing insight into on how these features influence calcu-
lated results and how we can exploit the ab-initio electronic structure soft-
ware to obtain the best results.

Importantly, we have demonstrated that the quality of IXS matrix ele-
ments directly relates to the quality of the wavefunction. For instance, an
accurate calculation of the diffuse parts of the wavefunction (i.e. at large val-
ues of r) is important for the calculation of X-ray scattering matrix elements,
in particular at low q. For this reason, highly accurate wavefunction calcu-
lations such as the R-matrix method produce reliable IXS matrix elements.
Nevertheless, the accuracy achieved by our code and the ab-initio electronic
wavefunctions calculated is comparable to methods such as RPAE [136] or
the usage of explicitly correlated wavefunctions [141].

In later chapters we will study phenomena such as the non-adiabatic
transfer population or the nuclear dynamics; the ability of our method to ex-
plain all the possible features in a molecular description will allow us to ex-
pand the treatment even to the spin-orbit coupling limit. The link between
IXS and EELS also suggests that the code developed here could be useful
for detailed analysis of ultrafast electron diffraction (UED) data, as long as
the nuclear-scattering contribution is included in the elastic terms [153]. Fu-
ture extensions of this work would be to include the effect of nuclear motion
in the IXS signal, as we have recently done for elastic scattering [1, 2], and
to consider Compton ionization by the inclusion of continuum states either
via multichannel quantum defect formalism [154–156] or a Dyson orbital
approach [157]. We also aim to examine in greater detail the mapping of
the wavefunction in momentum space made possible by inelastic measure-
ments.
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Chapter 5

Hydrogen atom wavepacket
dynamics

5.1 Introduction

The higher intensity and short X-ray pulse duration achieved by new
sources of X-rays such as XFELs permit time-resolved X-ray studies in
atoms and molecules [64, 158, 159]. In this chapter we will study the time
evolution of an electronic wavepacket in an H-atom using X-ray scattering.
The H-atom is excited into a coherent superposition of electronic states, i.e.
a wavepacket, using a pump electromagnetic pulse. The subsequent time-
evolution of this excited wavepacket is probed using non-resonant X-ray
scattering.

The evolution of electronic wavepackets in hydrogen atoms using X-ray
scattering has been studied widely from a theoretical perspective [11–13,
23, 24]. The purpose of this Chapter is to test the theory and methodol-
ogy developed in Sec. 2.6 using analytical hydrogen wavefunctions. The
calculations are carried out along the lines of the pioneering work of Dixit,
Vendrell and Santra in Ref. [24] with a special interest on the influence of
IXS in the general time-resolved X-ray scattering picture.
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5.2 Theory

5.2.1 Time-resolved X-ray Scattering

The main theory of time-resolved scattering has been discussed in Sec. 2.6.
A coherent superposition of states is excited using an optical pulse and then
is probed using X-ray scattering at different delay times. To calculate the
time-dependent differential scattering cross-section we use Eq. (2.70). It
reads,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫ ∞

0
I(t)∑

ij f
c∗i cje−ı(Ej−Ei)t/h̄

〈ψi|L̂|ψ f 〉∗〈ψ f |L̂|ψj〉
∫

dω~ks
F
(

ω~ks
+

1
h̄

(
E f −

Ei + Ej

2

))
,

(5.1)

where we have expressed the atomic wavefunction as a coherent superpo-
sition of states, i.e. a wavepacket,

|Ψ(r, t)〉 = ∑
i

cieıEit/h̄|ψi(r)〉. (5.2)

The implementation of Eq. (5.1) requires the integration of the power
spectrum function, F

(
ω~ks

+ 1
h̄

(
Ek −

Ei+Ej
2

))
, which can be done using the

procedure explained in Sec. 2.7, yielding,

W f ij(∆ω) =
∫ ω0+∆ω

ω0−∆ω
F(ωs ±ω f ij)dωs, (5.3)

which follows directly from the Waller-Hartree approximation applied to
Eq. (5.1). Previous studies [23, 24, 160] set the power spectrum value as a
constant. However, when the Waller-Hartree approximation is applied, we
establish that a discrete number of photons are taking part in the scattering
process. This is the reason to consider that only the photons in the vicinity
of ωk0 are scattered by the system. Consequently the value of ∆ω will set
the level of energy interval and the detection range.
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Inserting Eq. (5.3) into Eq. (5.1) yields,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫ ∞

0
∑
ij f

c∗i cje−ı(Ej−Ei)t/h̄
∫ ∞

−∞
I(t)dt

× L∗f iL f jWij f (∆ω)dωks ,

(5.4)

where f goes to infinity, and i and j are the wave packet indexes. The scat-
tering matrix elements, Li f and L f j, take the form 〈i|L̂| f 〉, where L̂ is the
scattering operator.

5.2.2 Scattering matrix elements

The calculation of scattering matrix elements, Lαβ, using ab-initio electronic
wavefunctions has been discussed in detail in Ch. 4. However, as studying
the H atom, the calculation of the scattering matrix elements can be done
analytically. The scattering matrix elements, Lαβ, are defined as,

Lαβ = 〈ψα(r)|L̂|ψβ(r)〉 (5.5)

where ψα(r) and ψβ(r) are the two wavefunctions involved in the scattering
event. We can divide any wavefunction in radial, Rnl(r) and angular parts,
Ylm(θ, φ),

ψnlm(r) = Rnl(r)Ylm(θ, φ) (5.6)

where Ylm(θ, φ) are spherical harmonics that depend on the quantum num-
bers l and m while n is the principal quantum number. The radial wave-
functions for the H-atom are known analytically. They read,

Rnl(r) =

√
(n− l − 1)!
2n[(n + l)!]

(
2Z
na0

)l+3/2

rle−
Zr

na0 L2l+1
n−l−1

(
2Zr
na0

)
, (5.7)

where Z is the charge of the nuclei, 1 in the case of H, r is the radial dis-
tance, a0 is the Bohr radius and L2l+1

n−l−1 are the Legendre polynomials. The L̂
operator from Eq. (5.4), defined as L̂ = ∑j e−ı~qrj , can be expanded in partial
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waves using the Wigner-Eckart theorem,

e−ı~qr = 4π
∞

∑
l=1

m=l

∑
m=−l

ıY∗lm(θ, φ)Bl(~qr)Ylm(θ~q, φ~q) (5.8)

where θ~q and φ~q define the position of the momentum transfer vector ~q in
the laboratory frame and Bl is the spherical Bessel function of the product
~qr,

Bl(~qr) = 2l(~qr)l
∞

∑
k=0

(−1)k(k + l)!
k!(2k + 2l + 1)!

(~qr)2k. (5.9)

Inserting Eqs. (5.14) and (5.8) in Eq. (5.4) yields,

Lαβ(~q) = 4πYl~qm~q
(θ~q, φ~q)

Nel

∑
k=0

|lα+lβ|

∑
l=|lα−lβ|

∫ ∞

0
Rnαlα(~rk)Bl(~qrk)Rnβlβ

(~rk)d~rk

∫ ∫
Ylαmα

(θ, φ)Ylβmβ
(θ, φ)Ylm(θ, φ) sin θdθdφ,

(5.10)

where the integral over~r is the so-called Bessel transformation. The integra-
tion over spherical harmonics is performed using the Wigner-Eckart theo-
rem and its relationship with Clebsch-Gordan coefficients,∫ ∫

Ylαmα
(θ, φ)Ylβmβ

(θ, φ)Ylm(θ, φ)dθdφ =

=

√
(2lα + 1)(2lβ + 1)

4π(2l + 1)
〈lαlβ00|lαlβl0〉〈lαlβmαmβ|lαlβlm〉.

(5.11)

5.3 Results

5.3.1 The 3d0-4 f0 wavepacket

In the following we discuss the results obtained when the time-evolution
of a two-level wavepacket is measured in H atom using X-ray scattering.
We have chosen the 3d0 and 4 f0 electronic states of H to construct the
wavepacket (see Fig. 5.1) in order to compare to Ref. [24]. The population
of the 3d and 4 f states is considered equal for simplicity and the bandwidth
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of the X-ray pulse, represented by Wijk(∆ω) from Eq. (5.4), is chosen to be
small enough to couple states up to n = 11. The scattering patterns are
shown using polar detector images as a function of θ (radial detection co-
ordinate) and φ (angular detection coordinate) angles with qmax = 3.5. The
evolution of the system will be probed at a range of different time windows,
(t− τ), by the X-ray pulse. In Eq. (5.4) the intensity of the X-ray, I(t), will be
centered at each different pump-probe delay, τ. The envelope of the X-ray
pulse, E, is represented by using a Gaussian function of the form,

E(t− τ) = E0e
(t−τ)

γ2 , (5.12)

where E0 is the amplitude of the pulse, t the time, τ the pump-probe time
delay and γ the width of the envelope. The intensity of the pulse, I(t),
will be proportional to the square of the pulse envelope, E, in Eq. (5.12),
I(t) ∝ (E(t− τ))2. In this simulation we set E2

0 = 1014 W/cm2 and γ = 1 fs.

a)3d0 b)4 f0 c)3d0 + 4 f0

FIGURE 5.1: Representation of the shape of the electronic
wavefunction. We show the isosurface of the real valued part
for a) 3d0 ( R32Y20), b) 4 f0 ( R43Y30) and c) the coherent super-

position of the two. The cutoff for the isosurface is 1.0.

The first situation considered in our calculations is the one expressed by
Eq. (5.4). An infinite number of states are included via the identity oper-
ator, 1 = ∑ f | f 〉〈 f |, coupling all possible levels in the atom with the non-
stationary wavepacket formed by the coherent superposition of 3d0 and 4 f0

electronic states.
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0 T/4

T/2 3T/4

FIGURE 5.2: X-ray scattering signals for the wavepacket cor-
responding to the coherent superposition of 3d0 and 4 f0 elec-
tronic states in H atom. The scattering patterns are represent
at different pump-probe delay times 0, T/4, T/2, 3T/4 where
T is the period of the electronic wavepacket, T = 2π/∆E =
6.27 fs. The X-ray is chosen to be parallel to y direction and

qmax=3.5 a.u. in all four figures.



Chapter 5. Hydrogen atom wavepacket dynamics 108

Fig. 5.2 shows the evolution of the X-ray scattering signal at different
pump-probe delay times. The period, T, is calculated using the energy dif-
ference ∆E = E4 − E3,

T =
2π

∆E
= 6.27 fs. (5.13)

The time-dependent scattering patterns in Fig. 5.2 match the expected
non-stationary wavepacket behaviour, representing almost perfectly the
shape of the electronic charge distribution in the wavepacket. Our cal-
culation agrees perfectly with the calculated scattering patterns in Ref.
[24]. This demonstrates that the inclusion of IXS terms, Lαβ, in the gen-
eral time-dependent X-ray scattering formula produces the correct physical
behaviour of the wavepacket.

When only the influence of the electron density is considered to calculate
the scattering pattern, i.e. elastic scattering , the time-dependent behaviour
is not reflected in the final signal. Eq. (5.4) is simplified to a great extent
when only the elastic scattering terms i.e Lαα, are considered. It yields,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∫ ∞

0

∫ ∞

−∞
∑

i
c2

i I(t)L2
iidt. (5.14)

In Fig. 5.3 we show the result of Eq. (5.4) applied to the coherent super-
position of 3d0 and 4 f0 states. The wavepacket oscillations are not reflected
in the scattering pattern as the elastic scattering elements do not contain any
time-dependent information. This behaviour only appears when atomic
systems are considered; as discussed in Ch. 6, the nuclear wavepackets in
molecules contain time-dependent information that is not removed when
the elastic approximation is applied.

5.3.2 The 3d1-4 f3 wavepacket

The second case that we consider is the scattering pattern from a coherent
superposition of 3d1 and 4 f3 hydrogen atom states. The wavepacket is anal-
ogous to the one employed in Sec. 5.3.1, only the m quantum numbers are
changed. The shape of the spherical harmonics forming the wavepacket is
different (see Fig. 5.4), resulting in a change in the scattering patterns. The
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0 T/4

T/2 3T/4

FIGURE 5.3: Elastic X-ray scattering signals for the
wavepacket corresponding to the coherent superposition of
3d0 and 4 f0 electronic states in H atom. The scattering patterns
are represent at different pump-probe delay times 0, T/4,
T/2, 3T/4 where T is the period of the electronic wavepacket,
T = 2π/∆E = 6.27 fs. The X-ray is chosen to be parallel to y

direction and qmax=3.5 a.u. in all four figures.



Chapter 5. Hydrogen atom wavepacket dynamics 110

X-ray pulse specifications are the same as the ones employed in Sec. 5.3.1,
as we are treating an analogous wavepacket in terms of energy. The period
of the wavepacket also remains the same, T = 6.27 fs, since the energy in a
hydrogen atom only depends on the principal quantum number n.

a)3d1 b)4 f3 c)3d1 + 4 f3

FIGURE 5.4: Representation of the shape of the electronic
wavefunction. We show the isosurface of the real valued part
for a) 3d1 ( R32Y21), b) 4 f0 ( R43Y33) and c) the coherent super-

position of the two. The cutoff for the isosurface is 1.0.

In Fig. 5.5 we show the scattering patterns of the coherent superposition
of 3d1 and 4 f3 electronic states in hydrogen at different pump-probe delay
times. The oscillations of the wavepacket are reflected in the X-ray scat-
tering signal, and the geometry of the spherical harmonics produces rec-
ognizable signatures in the scattering patterns (see Fig. 5.4). The scattering
pattern at half the period, T/2, is not equal to the scattering at T as a direct
consequence of the symmetry in the wavepacket, different from the 3d0/4 f0

superposition of states.

5.4 Conclusions

We have calculated time-resolved X-ray scattering in two H-atom electronic
wavepackets. The wavepackets are formed by a coherent superposition of
3d and 4 f electronic states, taking different values of m in each of the cases
considered. The aim was to test the calculation of the time-dependent X-ray
scattering patterns described by Eq. (5.4) and compare to the calculations of
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0 T/4

T/2 3T/4

FIGURE 5.5: X-ray scattering signals for the wavepacket cor-
responding to the coherent superposition of 3d1 and 4 f3 elec-
tronic states in H atom. The scattering patterns are represent
at different pump-probe delay times 0, T/4, T/2, 3T/4 where
T is the period of the electronic wavepacket, T = 2π/∆E =
6.27 fs. The X-ray is chosen to be parallel to y direction and

qmax=3.5 a.u. in all four figures.
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Dixit et al. [24] and Simmermacher et al. [13]. Our calculated results agree
very well with the calculated scattering patterns in Ref. [24], validating the
quantum electrodynamics (QED) description developed in Sec. 2.7.

The oscillations of the wavepackets and their periods are reflected in the
scattering patterns obtained using Eq. (5.4), showing a direct relationship
between the X-ray scattering and the physical behaviour of the system. This
demonstrates the importance of IXS in time-resolved X-ray scattering, since
the elastic scattering terms do not produce any time-dependent signal and
the IXS terms carry all temporal information (see Figs. 5.2 and 5.3).

The analytical H case, validated against Ref. [24], serves as a starting
point in the study of time-resolved X-ray scattering. More complex atoms
with larger number of electrons (and molecules) can be studied using the
developed theory and the tool of ab-initio X-ray scattering presented in Ch.
4. We will see in the next Chapter that, in the molecular case, the consid-
eration of non-stationary nuclear wavepackets diminishes these effects, al-
though the inclusion of IXS in the scattering picture is still necessary (see
discussion in Ch. 6).
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Chapter 6

H2 dynamics

6.1 Introduction

New X-ray sources such as X-ray Free-Electron Lasers, with higher inten-
sity and shorter pulse duration than synchrotrons make it possible to study
molecular dynamics using time-resolved X-ray scattering. An increasing
number of experimental realisations of ultrafast scattering are emerging,
both using X-rays [9, 21, 22] and the analogous ultrafast electron scattering
(UED) technique [14, 34, 112]. So far, the experiments have been interpreted
under the assumption that the scattering is purely elastic. As proposed by
Cao and Wilson [23] and several other theoretical groups [13, 24, 26, 31], the
dynamical behaviour of the system may require that inelastic scattering is
included in the time-resolved X-ray picture, as demonstrated to dramatic
effect for electronic wavepackets in hydrogen atoms (see discussion in Ch.
5 and Ref. [24]). In the following we apply the molecular time-dependent
X-ray formalism developed in Ch. 2, which implicitly includes IXS.

The simulations are carried out using calculated ab-initio electronic
wavefunctions in H2. We consider a pump-probe scheme in which the time-
evolution of an excited wavepacket is probed at different times by an X-ray
pulse. The computational methods applied will be described in detail. We
carry out quantum dynamics simulations to describe the evolution of the
electronic and nuclear states of the molecule in time. The scattering signal
is calculated using our ab-initio scattering code as described in Ch. 4 and the
theory derived in Ch. 2.
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6.2 Theory

6.2.1 Molecular time-dependent X-ray scattering

The treatment of molecular ultrafast X-ray scattering has been discussed in
detail in Sec. 2.7. The time-dependent molecular wavefunction is expanded
in nuclear and electronic parts using the Born-Huang expansion,

Ψ(r, R, t) = ∑
i

χi(R, t)ψi(r; R), (6.1)

where ψi(r; R) are the electronic wavefunctions and χi(R, t) represent the
nuclear wavefunctions. The electronic eigenfunctions depend only para-
metrically on the nuclear coordinate R. In the present treatment we do not
consider the rotational motion.

Inserting the expression for the time-dependent molecular wavefunction
from Eq. (6.1) into the time-resolved X-ray scattering formalism yields,

dσ

dΩ
=

(
dσ

dΩ

)
Th

∑
ij f

∫ ∞

0

∫ ∞

−∞
I(t)χi(R, t)∗χj(R, t)dt

× L∗f iL f jWij f (∆ω)dωks dR,

(6.2)

which is the expression for the molecular time-resolved differential-cross
section developed in Sec. 2.7 (see Eq. (2.84)). We recall that scattering is a
two-photon process, in which scattered photons produce f ← i and f → j
transitions. The nature of the process requires the consideration of an infi-
nite range of f states as a direct consequence of the inclusion of electronic
identity operator, 1 = ∑∞

f | f 〉〈 f |. The identity operator is only constructed
in terms of electronic wavefunctions here, although it can include also vi-
brational and rotational states. Further details in the development of Eq.
(6.2) are given in Sec. 2.7.
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6.2.2 Molecular Hamiltonian: adiabatic and diabatic repre-

sentations

In the following we discuss the representation of the electronic wavefunc-
tions used in this Chapter. The Hamiltonian terms in the laboratory frame
can be combined as follows,

ĤN = T̂N(R) + Ĥelec(R, r), (6.3)

where we have expressed the nuclear kinetic energy term as T̂N(R) and
the remaining terms collected in Ĥelec(R, r). The kinetic energy operator,
T̂N(R), for a diatomic can be expressed in polar coordinates as,

T̂N(R) = − 1
2µ

[
1

R2
∂

∂R

(
R2 ∂

∂R

)
+

L̂N

R2

]
, (6.4)

where µ is the reduced mass of the nuclei and L̂N is the nuclear angular
momentum operator.

Considering an stationary Born-Huang expansion analogous to Eq. (6.1)
we can express the wavefunction as,

Ψ(r, R) =
N

∑
i

ψi(r; R)χi(R), (6.5)

where N is the dimensionality of the electronic Hilbert space (i.e. the num-
ber of electronic states) and we have decomposed the total wavefunction
into electronic, ψi(r; R), and nuclear wavefunctions, χi(R). The electronic
wavefunctions, ψi(r; R), will be eigenfunctions of electronic Hamiltonian,
Ĥelec(R, r), defined in Eq. (6.3). Inserting Eq. (6.5) into Eq. (6.3) yields,

Ĥ(r, R)Ψ(r, R) =
(
T̂N(R) + Ĥelec(r, R)

) N

∑
i

ψi(r; R)χi(R) =

=
N

∑
i

T̂n(R)ψi(r; R)χi(R) +
N

∑
i

Eelec
i (R)ψi(r; R)χi(R) = ET

N

∑
i

ψi(r; R)χi(R)

(6.6)
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where Eelec
i is the electronic (ab-initio) energy for state i and ET the total en-

ergy. Multiplying both sides of Eq. (6.6) by the electronic wavefunctions,
ψj(r; R) and integrating over the electron coordinates, r, yields,

(Eelec
j (R)− ET)χj(R) +

N

∑
j
〈ψj(r; R)|T̂N(R)|ψi(r; R〉χj(R), (6.7)

where we have reordered the terms using the orthonormality of the elec-
tronic wavefunctions and we use bracket notation for convenience. Ignor-
ing the angular dependence of T̂N(R) and invoking the Born-Oppenheimer
approximation described in Ch. 1, the problem for a diatomic molecule is
reduced to a single degree of freedom, the internuclear separation R. Insert-
ing Eq. (6.4) into Eq. (6.7) leads to,

(
Eelec

j (R)− ET

)
χj(R)− 1

2µ

N

∑
i
〈ψj(r; R)| 1

R2
∂

∂R

(
R2 ∂

∂R

)
|ψi(r; R)〉χi(R) = 0,

(6.8)
which can be rearranged by multiplying −2µ and using the properties of
the derivative,[

d2

dR2 − 2µ(Eelec
j (R)− ET)

]
χ(R)+

∑
i

2 〈ψj(r; R)| ∂

∂R
|ψi(r; R)〉︸ ︷︷ ︸

Aji

∂χ(R)
∂R

+ 〈ψj(r; R)| ∂2

∂R2 |ψi(r; R)〉︸ ︷︷ ︸
Bji

χ(R) = 0,

(6.9)

where Aji and Bji are the first and second derivative couplings respectively,
also called non-adiabatic coupling elements (NACMEs). Non-adiabatic cou-
pling elements are important in the treatment of avoided crossings or coni-
cal intersections as their magnitude will determine the probability of a cross-
ing between coupled wavefunctions.
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Eq. (6.9) can be expressed in a matrix form,(
d2

dR2 I − 2µ(V (ad)(R)− E) + B(R)
)

χ(R) + 2A
∂χ(R)

∂R
= 0, (6.10)

where I is the identity matrix, E is the matrix of eigenvalues, A and B are the
non-adiabatic coupling matrices and V (a) is the diagonal matrix of eigenval-
ues of the electronic ab-initio Hamiltonian. Eq. (6.10) is known as adiabatic
representation. In many instances, the propagation of the nuclear wavefunc-
tions is simpler in a diabatic representation, in which the the new diabatic ba-
sis, will set the NACMEs to zero. The wavefunctions in this representation
become,

χ(d)(R) = C†(R)χ(R), (6.11)

ψ(d)(r; R) = ψ(r; R)C(R), (6.12)

where the superscript (d) denotes the diabatic representation and C(R) is
the unitary rotation matrix which relates both representations. As stated by
Smith [161] and Dishoek et al. [162], C(R) can be calculated by using the first
derivative coupling matrix, A,

dC
dR

+ AC = 0, (6.13)

which can be used in Eq. (6.10) yielding,(
d2

dR2 I − 2µ(V (d)(R)− E)
)

χd(R) = 0, (6.14)

which is the diabatic representation of the Schrödinger equation for a di-
atomic. Eq. (6.14) is useful when dynamics are calculated as it implic-
itly considers the non-adiabatic coupling between electronic wavefunctions.
The diabatization procedure is based on Eq. (6.13), which assumes only one
coordinate, but generalisations to more degrees of freedom exist.
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6.2.3 Nuclear Propagation

The time-dependent X-ray scattering cross-section in Eq. (6.2) requires the
propagation in time of the nuclear wavefunctions, χ(R, t). The time-
dependency of a quantum system can be studied by solving the time-
dependent Schrödinger equation. It is represented as,

ıh̄
dχ(R, t)

dt
= Ĥχ(R, t). (6.15)

where we have isolated the nuclear wavefunctions, χ(R, t), from the Born-
Huang expansion of the total wavefunction in Eq. (6.1). We will use a solve
Eq. (6.15) using the so-called split operator method [101].

Briefly, this method allows the solution of the time dependent
Schrödinger equation by splitting the propagator operator Û(t, t0) into a
kinetic and a potential operator parts. Considering that the Hamiltonian is
time-independent we can write the formal solution for the wavefunction as,

Ψ(t) = e−ıĤtΨ(0) = e−ı(T̂+V̂)tΨ(0), (6.16)

where Ψ(0) is the initial guess of the wavefunction, T̂ is the kinetic energy
operator and V̂ the potential energy operator. If we then represent the vari-
ation of the wavefunction, Ψ(t), in one time step ∆t it yields,

Ψ(t + ∆t) = e−ıĤ∆tΨ(t) = e−ı(T̂+V̂)∆tΨ(t), (6.17)

where we consider ∆t as a infinitesimal period of time. Eq. (6.17) can be
solved separating the Hamiltonian in T̂ and V̂ energy operators. However,
as the potential and kinetic operators do not commute, the error produced
is large and another procedure is required. We can diminish the error pro-
duced in the splitting by using the Baker-Campbell-Hausdorf theorem and
Eq. (6.17). It yields an equation comparable with the original definition of
the Hamiltonian with an associated error equal to Ô(∆t3). It has the form,

Ψ(t + ∆t) = e−ıĤ∆tΨ(t) ≈ e−ı T̂
2 ∆te−ıV̂∆te−ı T̂

2 ∆tΨ(t), (6.18)
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where the Hamiltonian term, e−ıĤ∆t, has been split in two half-kinetic opera-
tor exponentials, e−ı T̂

2 ∆t, and one potential operator exponential, e−ıV̂∆t. Di-
viding the potential energy operator in two equal parts will yield the same
result.

The practical application of this method requires the usage of fast Fourier
transformations for the operators T̂ and V̂ in their respective representa-
tions. The operator T̂ is diagonal in the momentum space and, in turn, V̂ is
diagonal in the position space. The calculation of the time-dependent wave-
function will be then carried out using forward (momenta) and backward
(position) fast Fourier transforms. If the kinetic operator is not diagonal in
the momentum space other approaches must be used.

6.2.4 Scattering matrix elements

The procedure to calculate scattering matrix elements is explained in Ch. 4.
In brief, the scattering matrix element, Lαβ, between two states, Ψα and Ψβ,
is represented as,

Lαβ = 〈Ψα|
Nel

∑
i

e−ı~q~r|Ψβ〉, (6.19)

where ∑Nel
i e−ı~q~r is the corresponding scattering operator, L̂, with the sum

running over the number of electrons in the system, Nel. The calculation of
the matrix elements is carried out by Fourier transforming the multiconfig-
urational ab-initio electronic wavefunctions of the form,

|Ψα(r; R)〉 =
Nconf

∑
i=1

cα,i |Φα,i
SD〉, (6.20)

where the wavefunction, Ψα(r; R), depends parametrically on the nuclear
coordinate, R, and is expanded in terms of Slater determinants, |Φα,i

SD〉. The
representation of the wavefunction in terms of Gaussian functions allows
the Fourier transformation to be calculated analytically as explained in Ch.
4.
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6.3 Computational Details

The simulations performed to calculate time-resolved X-ray scattering from
H2 molecules are based on X-ray scattering codes written in our group [2,
84], while the dynamics simulations were done using the software package
WAVEPACKET [30] with the ab-initio electronic structure calculations done
using the ab-initio software package MOLPRO [122].

We are using ab-initio electronic wavefunctions calculated at the
CASSCF(2,24)/d-aug-cc-PVDZ level to account for the first 9 singlet elec-
tronic states included in the X-ray scattering picture. The ab-initio potential
energy curves are benchmarked against reference potential energy curves
calculated by Wolniewicz et al. [163]. The dynamics is propagated on the
reference potential energy curves. The IXS matrix elements and the final
time-resolved X-ray scattering signal are obtained using the procedures ex-
plained in Chapters 2 and 4.

6.4 Results

6.4.1 H2 potential energy curves

We begin by examining the results obtained in the calculation of potential
energy curves in H2. As it is a diatomic molecule, it has only one nuclear
degree of freedom, the interatomic distance. We use a CASSCF(2,24)/d-
aug-cc-PVDZ method to calculate the eigenvalues for 9 singlet states with
different symmetries. The grid in R goes from 0.5 to 7.0 a.u. with a stepsize
of ∆R = 0.005. In Fig. 6.1 we compare calculated ab-initio electronic ener-
gies as a function of the internuclear distance with the reference potential
energy curves calculated by Wolniewicz et al. [164]. The agreement between
our results and the reference results is reliable despite our use of a method
without dynamical correlation. Using MRCI or CASPT2 would correct the
differences between the two sets of results but, as we are accounting for nine
states, this would also constitute a rather expensive calculation.

The H2 states with a Π character are doubly degenerate, producing a
change in the character of the wavefunction at R > 3.5 a.u.. To guarantee
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FIGURE 6.1: Comparison of the first eight singlet excited states
in H2 molecule (excluding ground state). The potential en-
ergy curves are calculated using ab-initio electronic calcula-
tions at CASSCF(2,24)/d-aug-cc-PVDZ level with an even-
spaced grid on R. It is worth noting that 1Πu and 1Πg states are
doubly degenerated. The reference potential energy curves

(solid lines) are taken from Ref. [165].

the numerical continuity of scattering matrix elements, Lij, we restrict our
treatment to 0.5 < R < 3.5 a.u.. In Fig. 6.2 we show the potentials labeled by
their symmetries and the range we have used to perform our calculations.

6.4.2 Nuclear propagation results

The calculation of time-dependent wavefunctions has been carried out us-
ing the split-operator method as explained in Sec. (6.2.3). Diabatization of
the potential energy curves is carried out using the method explained in Sec.
6.2.3. We are considering the first two 1Σ+

g states in the simulation, 21Σ+
g and
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FIGURE 6.2: Potential energy curves with n = 1, 2 in H2. The
potential energy curves are calculated using ab-initio electronic
calculations at CASSCF(2,24)/d-aug-cc-PVDZ level with an
even spaced grid on R. The shadowed part indicates the re-
gion in which the scattering matrix elements are not continu-
ous due to changes in the wavefunction character i.e. R > 3.5

a.u. .

31Σ+
g , and to calculate their diabatic representation we use analytical poten-

tial energy curves and NACMEs from Wolniewicz et al. [165]. In Fig. 6.3
we can see a non-adiabatic representation of the two states, 21Σ+

g and 31Σ+
g .

It shows how both states are coupled, with a clear avoided-crossing region
around 1.5 a.u..

The diabatic states represented in Fig. 6.3 are used in the time-
propagation of the nuclear wavepacket. In Fig. 6.4 the initial conditions
for the propagation are shown. As we can see, the initial population of the
wavepacket is equal in both states, constructed using Gaussian functions
with a width of 0.1 a.u., centred at 1.55 a.u. and an initial momentum of 0
a.u..
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FIGURE 6.3: Adiabatic (red) and Non-Adiabatic (black) repre-
sentations of the potential energy curves for the first two 1Σ+

g
excited states in H2 molecule.

The wavepacket simulation uses a time-step of 0.25 fs with 120 points.
Once the simulation has finished, an adiabatization of the final results is
carried out. In Fig. 6.10 we show the evolution of the adiabatic wavepackets.
While the first excited state, 21Σ+

g , dissociates at 20 fs , the second excited
state, 31Σ+

g , remains bound during all the simulation. A population transfer
occurs at 6 fs between both levels via the avoided crossing.

The population of the first state increases to 80%, but the dispersion of
both wavepackets is noticeable, coupling all possible R values in terms of
scattering. This wavepacket simulation aims to be illustrative in order to
study the time-resolved X-ray scattering signal. Nevertheless, in an actual
experiment the bandwidth and characteristics of the pulse will determine
the initial composition of the wavepacket.

6.4.3 Scattering Matrix Elements

In Eq. (6.2) different scattering matrix elements (SMEs), Lαβ, are considered.
The treatment includes SMEs between the initial electronic states used in
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FIGURE 6.4: Initial conditions for the wavepacket propagation
using 21Σ+

g and 31Σ+
g states in H2. The initial populations are

considered equal in both states. The wavepacket is simulated
using a Gaussian function with a width of 0.1 a.u., centred at

1.55 a.u. and an initial momentum of 0 a.u..

the simulation, 21Σ+
g and 31Σ+

g , and the bound electronic states included via
the identity operator, 1 = ∑∞

k |ψk(r; R〉〈ψk(r; R|. We have considered nine
singlet states in the simulation, producing 18 SMEs that are represented in
Fig. 6.6. The calculated SMEs show smooth and continuous behaviour as
we avoid the potential regions with R > 3.5 a.u., and their magnitude will
be determined by the probability of transition between the states involved.
The region of 1.5 a.u. shows clearly the fingerprint of the avoided crossing
in most of the SMEs as the character of the electronic wavefunction changes
rapidly at these values of the internuclear bond-distance, R.
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(A) 21Σ+
g wave packet evolution in time.

(B) 31Σ+
g wave packet evolution in time.

FIGURE 6.5: Time-evolution of the adiabatic nuclear wave
packet amplitudes, |χ(R, t)|, for the first two excited 1Σ+

g

states in H2. A) 21Σ+
g state and B) 31Σ+

g state. The amplitudes
are calculated using the package WAVEPACKET.
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(A) 21Σ+
g -11Σ+

g (B) 21Σ+
g -11Σu

(C) 21Σ+
g -21Σ+

g (D) 21Σ+
g -11Πu

(E) 21Σ+
g -11Πu (F) 21Σ+

g -31Σ+
g

(G) 21Σ+
g -21Σu (H) 21Σ+

g -21Σu
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(I) 21Σ+
g -11Πg (J) 31Σ+

g -11Σ+
g

(K) 31Σ+
g -11Σu (L) 31Σ+

g -21Σ+
g

(M) 31Σ+
g -11Πu (N) 31Σ+

g -11Πu

(O) 31Σ+
g -31Σ+

g (P) 31Σ+
g -21Σu
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(Q) 31Σ+
g -21Σu (R) 31Σ+

g -21Πg

FIGURE 6.6: Scattering matrix elements, Lαβ, between the first
9 singlet states of H2. The matrix elements are labeled using

the states involved in the SME i.e. α-β.

6.4.4 Time-resolved X-ray scattering: The complete picture

The results obtained in the previous sections can be combined into Eq. (6.2)
yielding an X-ray scattering time-dependent signal. The wavepacket en-
compassing the 21Σ+

g and 31Σ+
g states evolves in time and interacts with the

X-ray photons. As this interaction involves two instances of the radiation
field, we consider scattering as a two-step process in which the wavepacket
interacts with the continuum of states in the molecule. This situation is rep-
resented in Fig. 6.7; the i and j indexes represent the electronic states consid-
ered within the wavepacket simulation and the index f the rest of electronic
bound states.

Considering an X-ray intensity profile, I(t − τ), with a window of 0.5
a.u. in W f ij, one can simulate a time-resolved X-ray scattering situation in
which only the states with n < 2 are considered (i.e. 9 states in the case
of H2 molecule). In order to represent the signal change in time we will
use the percentage difference intensity, %∆I(sc)(τ). Taking as reference the
initial wavepacket scattering intensity, Isc(τ = 0), it reads,

%∆I(sc)(τ) =
I(sc)(τ)− I(sc)(τ = 0)

I(sc)(τ = 0)
· 100, (6.21)

where I(sc)(τ) is the scattering intensity collected by the detector at different
probing times, I(t− τ).
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FIGURE 6.7: Schematic representation of the physical process
taking place in the scattering event. The transitions are labeled
according to equation 2.84. In this case i 6= j 6= f , reproducing
an extreme situation. This indexes can take any value inside

the framework studied.

In Fig. 6.8 we represent the full picture for the time-resolved X-ray scat-
tering of a 21Σ+

g , 31Σ+
g wavepacket in H2. The changes in population be-

tween both states are collected by the signal. An initial non-adiabatic pop-
ulation transfer occurs at 6 fs, followed by a partial dissociation of the 31Σ+

g

state at 10 fs. In the 10 < τ < 30 fs range the signal shows an oscilla-
tory behaviour as a direct consequence of the wavepacket movement but
no population transfers occur.

The time-evolution of the signal is guided by the scattering interactions
occurring between the X-ray and the molecule. The inclusion of inelastic
scattering interactions between both 21Σ+

g and 31Σ+
g states will produce the

most dramatic changes in the intensity collected by the detector, as demon-
strated in Secs. 6.4.5 and 6.4.6.
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FIGURE 6.8: X-ray scattering intensity shown as percent-
age difference, %∆I, for the time-evolution of a 21Σ+

g /31Σ+
g

wavepacket in H2 as a function of q and time. The X-ray scat-
tering signal is calculated using Eq. (2.84) taking as the refer-

ence I(sc)(τ = 0)
.

6.4.5 Time-resolved X-ray scattering: The elastic picture

Considering only the elastic contributions in Eq. (6.2) leads to,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∑
i

∫ ∞

0

∫ ∞

−∞
I(t)χi(R, t)∗χi(R, t)dtL2

iidR, (6.22)

where we have considered the scattering interaction as purely elastic and
we have neglected the influence of the rest of states included via the iden-
tity operator, 1. The time-resolved elastic scattering signal is shown in Fig.
6.9. We can see that the non-adiabatic population transfer still produces
a change in the intensity at 6 fs. Nevertheless, the difference with the com-
plete picture in Fig. 6.8 is noticeable. The percentage difference is very small
in comparison and the profile is not the same around population transfers.
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FIGURE 6.9: Elastic X-ray scattering intensity shown as
percentage difference, %∆I, for the time-evolution of a
21Σ+

g /31Σ+
g wavepacket in H2 as a function of q and time. The

X-ray scattering signal is calculated using Eq. (6.22) taking as
the reference I(sc)(τ = 0)

The elastic population transfer between the states can be explained us-
ing the individual elastic scattering matrix elements for the 21Σ+

g and 31Σ+
g

states and the difference between them. The percentage difference in Fig.
6.10 shows a maximum at R = 1.5 a.u., where the avoided crossing occurs.

6.4.6 Time-resolved X-ray scattering: The semi-complete

picture

There is yet another picture that can be postulated for the study of time-
dependent X-ray scattering. Considering that the X-ray scattering is a two-
photon process, one might consider that the wavepacket scatters elastically
but the process includes non-resonant interactions with the rest of states,
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FIGURE 6.10: Percentage difference between 21Σ+
g and 31Σ+

g
elastic scattering intensities.

FIGURE 6.11: Schematic representation of the physical process
taking place when only elastic wave packet scattering is con-
sidered. The transitions are labeled according to equation 6.23.
In this case i 6= f . This indexes can take any value inside the

framework studied.

1 = ∑∞
f | f 〉〈 f |. Eq. (6.2) then is rearranged as follows,

dσ

dΩ
=

1
2π

(
dσ

dΩ

)
Th

∑
i f

∫ ∞

0

∫ ∞

−∞
I(t)χi(R, t)∗χi(R, t)dt

× L∗f iL f iWi f (∆ω)dωks dR,

(6.23)
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where only an elastic interaction is considered between the nuclear
wavepackets. In Fig. 6.11 a schematic representation of the scattering pro-
cess is shown.

In Fig. 6.12 we have represented the percentage intensity difference cal-
culated using Eq. (6.23) and the percentage differences with respect to the
pure elastic case calculated using Eq. (6.22) and the complete scattering pro-
cess in Eq. (2.84). We can see that the effect of the rest of the bound states
is negligible if only elastic scattering is considered between the wavepack-
ets. Inelastic scattering terms guide the intensity changes of time-resolved
scattering signal. Although small in magnitude, the SMEs coupling the two
wavepackets are the key quantity to map the evolution of the system in time
via X-ray scattering.

6.4.7 Conclusion

In this Chapter we have simulated time-resolved X-ray scattering in H2. We
have constructed our wavepacket from the first two excited 1Σ+

g states in
H2 and have propagated the wavepacket in time. The wavepacket propa-
gation has been followed by the simulation of a the X-ray scattering signal
at various pump-probe delay times.

We have explored the influence of IXS on the final time-resolved X-ray
scattering. As demonstrated by Dixit et al. [24], the time-resolved X-ray
scattering signal requires that IXS is included. Although the IXS terms are
smaller in magnitude than elastic X-ray scattering terms, they are necessary
to correctly account for the light-matter interaction guided by Â2 terms in
the interaction Hamiltonian. In this work, the importance of IXS has been
demonstrated in practice. When only the elastic interactions are considered
between the X-ray and the material system, the mapping does not reflect the
features of the wavepacket propagation (see Fig. 6.9), even when the rest of
states are included (see Fig. 6.12). However, as elastic scattering is directly
related to the electron density of the molecule, the treatment of molecules
with a higher number of core electrons will decrease the importance of IXS
in the final scattering picture.
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(A)

(B) (C)

FIGURE 6.12: (A) Elastic X-ray intensity percentage difference,
%∆I, for the time-evolution of a 21Σ+

g /31Σ+
g wavepacket in H2

as a function of q and time. This simulation includes the rest of
the bound states in the scattering picture as expressed in Eq.
(6.23). The reference is taken as I(sc)(τ = 0). (B) Percentage
difference between the pure elastic scattering picture and the
elastic scattering picture including all bound states. (C) Per-
centage difference between the pure elastic scattering picture

and the complete scattering picture
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Chapter 7

Conclusion

In this thesis we have aimed to explain the main features of elastic and in-
elastic X-ray scattering from a theoretical point of view. We have tried to
explain the main characteristics lying in the treatment of ultrafast X-ray
scattering experiments and the computational methods required to calcu-
late them. Based on the perspectives of different theoretical studies [11, 12,
24, 25, 80, 160] we have developed the theory and used our methods to sim-
ulate ultrafast X-ray scattering processes in atoms and molecules.

Starting with an introductory explanation about the history of X-rays,
the experiments available using this X-ray scattering and the capabilities
of novel X-ray sources, the main characteristics of the X-ray scattering pro-
cesses have been unravelled.

The theory of X-ray scattering is explained from first principles in Ch. 2.
The quantization of the electromagnetic field and the description of the in-
teraction Hamiltonian have been followed by Fermi’s golden rule to arrive
at the stationary differential scattering cross-section. The non-stationary X-
ray scattering differential cross-section is also derived using quantum elec-
trodynamics, considering the atomic and molecular cases individually.

Once the theory is discussed, we examine the elastic X-ray scattering
of state-selected molecules in Ch. 3 based on Refs. [1, 2]. Going beyond
rotationally-averaged signals, and following the lead of recent experimen-
tal studies [14, 31, 112], we aim to explain how the aligned or state-selected
molecules reflect their properties in their scattering patterns. Using the pro-
cedures developed in this thesis to calculate ab-initio X-ray scattering signals
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[3, 84] and including rotational and vibrational contributions in the wave-
function of the system, we have characterised the influence of rotational and
vibrational excitations in the X-ray scattering patterns of the CS2 molecule.

In Ch. 4, which is based on Ref. [3], we calculate inelastic X-ray scat-
tering in atoms (H, He+,He, Na and C) and the N2 molecule. The Chapter
demonstrates how inelastic X-ray scattering can be calculated using ab-initio
electronic wavefunctions and the effect of the quality of the ab-initio calcula-
tions is evaluated and benchmarked against reference values. Our approach
is also validated by comparing our calculations with experimental data from
inelastic X-ray scattering and electron energy-loss spectroscopies, showing
an excellent agreement in both cases. The analogy between X-ray and elec-
tron scattering is discussed in some detail, with particular attention to the
deviation of electron scattering signals at large values of q, corresponding
to the break-down of the first Born approximation. Ch. 4 also presents the
ab-initio X-ray scattering elastic and inelastic code (AIXRD), developed dur-
ing this thesis. The code calculates elastic or inelastic X-ray scattering dif-
ferential cross-sections for atoms and molecules, using ab-initio calculated
electronic wavefunctions.

In Ch. 5 the temporal evolution of an excited coherent superposition of
electronic states in hydrogen atoms is studied using time-resolved X-ray
scattering. We validate our calculations by comparing them to Ref. [24]. The
obtained scattering patterns show the importance of inelastic X-ray scatter-
ing in a physically correct description of the scattering process, as these ele-
ments entail all the temporal information in the X-ray scattering signal [13,
24].

In the final Chapter, Ch. 6, we combine all the previous results to carry
out a simulation of time-resolved X-ray scattering in H2 molecules. The
molecular wavefunction is excited into a coherent superposition of nuclear
and electronic states and its time-evolution is probed using X-ray scatter-
ing. In this case, the temporal information is also contained in the nuclear
wavepackets, making it possible to produce time-dependent scattering pat-
terns using elastic X-ray scattering. However the greatest contribution still
comes from the IXS terms included in the full scattering picture.
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The future directions of this work mainly fall in two categories. Firstly,
the time-dependent picture developed in Chs. 5 and 6 could be applied
to larger systems. In this thesis we have only treated two systems us-
ing time-resolved X-ray scattering, H and H2, which present a low level
of complexity in terms of their electronic structure. Systems with a larger
number of nuclear degrees of freedom could be studied using our com-
putational method. The dynamics simulations in larger molecules would
require multidimensional methods such as multiconfigurational Ehren-
fest [103], surface-hopping [105] or multiconfigurational time-dependent
Hartree [102, 166] to carry out the nuclear wavepacket propagation. The
X-ray scattering calculations will need to be revisited to consider larger and
more complex molecules. Photochemical reactions such as the dissociation
of a diiodobenzene [22] or the ring-opening reaction in 1,3-cyclohexadiene
[21], could be studied using time-resolved X-ray scattering beyond the in-
dependent atom model [47] by using our ab-initio electronic wavefunction-
based methods. The importance of these studies will not only rely on the
characterisation of the time-evolution but also in the importance of IXS
when larger number of electrons and nuclear degrees of freedom are con-
sidered.

Secondly, improvements could be made in the QED description of the
time-resolved X-ray scattering picture. At the moment, only bound states
are considered in the identity operator, 1 = ∑ f | f 〉〈 f |. However, as we
calculate non-resonant X-ray scattering, also transitions into the continuum
can also take place via IXS. The consideration of continuum states using
multichannel quantum defect theory [167] or Dyson orbitals [25, 157] can be
included in the time-dependent picture yielding the specific fingerprint of
the particle-hole X-ray scattering. We aim to study how the excitations into
the continuum affect the X-ray scattering patterns in the H-atom, where the
continuum wavefunctions are analytical, and in larger systems, by using for
instance a momentum representation for the wavefunctions [25].

Finally, interfacing the AIXRDEI code with other electronic structure
softwares than MOLPRO [122] and a wider range of methods would be a
priority. As our code is based on the treatment of Gaussian type orbitals
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to calculate the X-ray scattering signal, any method, such as density func-
tional theory [168], or even the plane wave expansion in periodic systems,
could be treated by new computational implementations of our Gaussian
functions-based approach.
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