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Abstract 

Although recent years have seen the development of, and increased interest 

in, Intelligent Systems, particularly Expert Systems, their poor real time response 

makes them unsuitable for many engineering applications. The design and 

implementation of special purpose hardware support, based on a structured 

knowledge representation, and capable of enabling real time relational accesses 

of a Knowledge Base, is described in this thesis. The Structured Knowledge 

Manipulation System (SKMS) employs parallel and heuristic techniques to insert, 

delete, modify or retrieve specified, or partially specified, relations from a 

Knowledge Base. Relational algebraic operations and between-bounds matching 

are supported directly by the SKMS. Moreover, a concurrent memory allocation 

and reclamation algorithm is implemented by the hardware with little speed 

overhead and no memory overheads. The results of performance evaluation 

experiments and suggestions for future developments, based on the architecture 

developed herein, are presented. 

- 



Abbreviations 

Al Artificial Intelligence 

APS Associative Predicate Store 

ART Automated Reasoning Tool 

CCS Condition Code Selector 

CISC Complex Instruction Set Computers 

CPU Central Processing Unit 

CSR Control and Status Register 

DRAM Dynamic Random Access Memory 

FOPC First Order Predicate Calculus 

FRP Ferranti Relational Processor 

GAM Generic Associative Memory 

GRIP Graph Reduction In Parallel 

IC Integrated Circuit 

IFS Intelligent File Store 

IKBS Intelligent Knowledge Based System 

IT Information Technology 

KB Knowledge Base 

KEE Knowledge Engineering Environment 

KME Knowledge Manipulation Engine 

LOOPS LISP Object Oriented Programming System 

LTC Lexical Token Converter 

MIMD Multiple Instruction Multiple Data 

MIPS Million Instructions Per Second 

MM! Man Machine Interface 

MMU Memory Management Unit 

MPS Microprogram Store 

- VII. 



PC Program Counter 

PCC Parallel Comparator Circuit 

PE Processing Element 

PSU Power Supply Unit 	 V  

QBRM Qualified Binary Relationship Model 

RAM Random Access Memory 

RAP Relational Algebraic Processor 

RF Register File 

RISC Reduced Instruction Set Computer 

RPU Relational Processing Unit 

SKMS Structured Knowledge Manipulation System 

SRAM Static Random Access Memory 

TMS Truth Maintenance System 

US User Stack 

VLSI Very Large Scale Integration 

WSI Wafer Scale Integration 

wff well formed formula 

- VIII - 



List Of Figures 

Figure 2.1: (a) initial and (b) goal state of 8-puzzle 6 

Figure 2.2: Solution graph created by breadth first search .............................. 10 

Figure 2.3: A Semantic Network 	............................................................... 18  

Figure 2.4: Examples of the ISA and ISPART relationships ........................... 20 

Figure 2.5: Example of an Inheritance Lattice (LOOPS) 	............................... 26 

Figure 3.1: The linked list representation of a general tree ............................. 42 

Figure 3.2: The binary representation of a general tree 	................................. 43 

Figure 3.3: The SKMS knowledge structure 	................................................ 45 

Figure 3.4: An example of a root_ctxt operation .......................................... 51 

Figure 3.5: An example of a higher order relation 	....................................... 52 

Figure 3.6: Typical bit-slice architecture 	..................................................... 62 

Figure 3.7: Structured Knowledge Manipulation System Architecture ............... 64 

Figure 4.1: Structured Knowledge Manipulation System - Block Diagram 69 

Figure 4.2: The VME Interface Circuit - Schematic Diagram ........................ 74 

Figure 4.3: The KB, MCS and Mailbox Addresses (from the HOST) ............... 75 

Figure 4.4: The Knowledge Base (KB) - Schematic Diagram ......................... 77 

Figure 4.5: The Microprogram Store (MPS) - Schematic Diagram .................. 79 

Figure 4.6: The Relational Processing Unit (RPU) - Block Diagram ............... 81 

Figure 4.7: The Clock Generator Circuit - Schematic Diagram ...................... 83 

Figure 4.8: The Am2925 Clock Waveforms (adapted from [81]) 	..................... 84 

Figure 4.9: Sequencer Circuit - Schematic Diagram ..................................... 87 

Figure 4.10: Sequencer Circuit Timing Specifications .................................... 88 

Figure 4.11: Control and Status Register 	.................................................... 90 

Figure 4.12: Register File (Mailbox) - Schematic Diagram ............................ 90 

Figure 4.13: The Parallel Comparator Circuit - Schematic Diagram ................ 92 

Figure 4.14: The Pointer Store - Schematic Diagram 	................................... 94 

Figure 4.15: The Status Control Circuit - Schematic Diagram ........................ 96 

Figure 4.16: The Condition Code Selector - Schematic Diagram .................... 98 

Figure 4.17: Register File Address Allocations 	............................................ 103 

Figure 6: Proposed Parallel Relational Processing System ............................... 140 

- lx - 



List Of Photographs 

Plate 4.1: Structured Knowledge Manipulation System (SKMS) Prototype .........110 

Plate 4.2: The VME Interface Circuit and Knowledge Base (KB) ....................111 

Plate 4.3: The Microprogram Store (MPS) .................................................112 

Plate 4.4: The Relational Processor Unit (RPU) - Mother Board ...................113 

Plate 4.5: The Relational Processor Unit (RPU) - Daughter Board .................114 

List Of Tables 

Table 2.1: limitations of existing architectures for knowledge systems ............... 38 

Table 3.1: Relationship between word size, string support capability and 

memory support capability 	...................................................................... 66 

Table 4.1: Allowable memory accesses within the SKMS 	............................... 72 

Table 4.2: SKMS Sequencer Instruction Set 	................................................ 100 

Table 5.1: Projected Simulation Package Times 	........................................... 119 

Table 5.2: Projected User Interface Overheads 	............................................ 120 

Table 5.3: Actual Simulation Package Performance 	...................................... 121 

Table 5.4: Intel 80286 based PC Performance 	............................................. 122 

Table 5.5: Sequent 80386 Computer Performance 	........................................ 122 

Table 5.6: Projected SKMS Performance 	.................................................... 124 

Table 5.7: Projected Communications Overheads ......................................... 125 

Table 5.8: Actual SKMS Performance 	....................................................... 126 

Table 5.9: Additional Manipulation Times . ................................................. 128 

Table 5.10: FRP Performance 	.................................................................. 130  

Table 5.11: 	IFS Performance 	................................................................... 130  

Table 5.12: Timing Comparison Of Hardware Supported KB Systems .............. 133 

- x- 



CHAPTER 1 

Introduction 

1.1. Background 

Despite the increase in use and popularity, of expert systems and Al planning and 

simulation systems, they remain unsuitable for many engineering applications due to 

poor real time response. A major limiting factor is the rate at which information in a 

knowledge base can be manipulated. Much knowledge systems research has been 

concerned with faster manipulation methods, and a variety of techniques have been 

developed to do this. 

This thesis describes the research, design, implementation and evaluation of 

special purpose hardware support for a Structured Knowledge Manipulation System 

(SKMS) for real-time engineering applications. The SKMS has been designed to 

manipulate information using a knowledge representation formalism, developed 

specifically for this purpose and described in the thesis. The system is intended as a 

low-cost, plug-in enhancement to a SUN workstation via a VMEbus, or to an IBM-

type Personal Computer via a PCbus. Computer simulation (using the C programming 

language in a UNTXt operating environment) of a basic expert shell (c.f. "Knowledge 

Craft") was performed to investigate the suitability of the proposed knowledge 

formalism with regards to: 

• 	flexibility 

• 	ease of manipulation by knowledge operators 

UNIX is a trademark of Bell Laboratories. 
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• 	support for memory allocation and reclamation (garbage collection) 

• 	knowledge retrival speed 

UNIX profiling operations were carried out to pinpoint major performance 

limitations. The hardware was then designed to alleviate the problems encountered in 

the simulation, and to exploit the strengths. Additionally, memory allocation and 

reclamation within the knowledge base was implemented by a free-list garbage 

collection algorithm, incorporated in the design. 

1.2. Chapter Summary 

A prerequisite to the design of a knowledge based system is the appreciation and 

understanding of what techniques are used within such systems, and to this end, the 

first section of Chapter 2 serves as an introduction to some basic Al techniques. Since 

the primary consideration of all intelligent system design is a suitable knowledge 

representation formalism, the next section of Chapter 2 describes the two major 

formalisms in general use. The remaining sections provide an overview of the current 

state of Al software and hardware research. The major limiting factor in hardware 

based systems, the inadequacy of Von Neumann computer architectures, is also 

discussed; which leads on to the attempts to develop suitable hardware based systems 

(both enhanced Von Neumann systems and those based on novel architectures). 

Finally, a summary of the current level of hardware research and proposals for future 

projectst is presented. 

Chapter 3 describes the SKMS conceptual design; the development of the 

knowledge representation formalism and its relation to the manipulation operators and 

garbage collection, which leads to the definition of a functional specification for the 

system. The software simulation of a basic expert shell is also described, with 

t Special Interest Group in Knowledge Manipulation Engines proposals to Alvey Directorate 
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particular attention to hardware design considerations and performance limitations. 

The design and construction of the hardware is discussed in Chapter 4. The 

system is divided into its separate functional components, and their relation and 

interfaces to one another are described in detail. Appendices B and C provide an 

index of all the signals defined within the system and the microprogram control word. 

Several levels of software are required for the. entire system, and are discussed briefly 

at the end of the chapter. A more detailed description of the software (the language 

and assemblers) can be found in Appendices D, E, F and G. 

Chapter 5 describes the projected and actual performance evaluation of the 

SKMS, with comparisons between the software simulation running on a variety of 

systems, and with other hardware implemented knowledge based systems. Problem 

areas within the SKMS design are highlighted, and opportunities for improvement and 

their projected performance improvements are presented. 

Chapter 6 summarises the salient points introduced and developed in this thesis. 

Conclusions relating to the performance evaluation and possible system improvements 

are also discussed. Future developments of the SKMS are investigated, and a basic 

design of a Parallel Relational Processor System, based on fabricated Relational 

Processing Units, is proposed. 
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CHAPTER 2 

Intelligent Systems 

2.1. Introduction 

What is Artificial Intelligence (AT)? There are various opinions and definitions 

of the meanings of Artificial and of Intelligence and an excellent review of Al can be 

found in references [1,2,3,4]. However, the following two definitions sum up Al 

pretty well. 

"Artificial Intelligence is the study of how to make computers do things at 

which, at the moment, people are better." from Rich [1]. 

"...many human mental activities.. .are said to demand 'intelligence'... se vera I 

computer systems can perform tasks such as these.. .we might say that such 

systems possess some degree of 'artificial intelligence'..." from Nilsson [3]. 

Alan Turing [5] proposed what is now known as the Turing Test to determine 

whether a machine could think. The test is conducted using 2 people and the machine 

under test. One person remains in one room while the second person and the machine 

are in a separate room. The first person then asks questions of the other person or 

machine. The role of the machine is to act like a person and if the interrogator is 

unable to determine who has replied (machine or person), then the machine has passed 

the test and is said to be able to think. Some people believe that no machine will ever 

pass the Turing Test. 

Initially, study into machine intelligence was generally confined to game playing 

and theorem proving software. The game of checkers (draughts) was used as an 

example of machine learning [6]; while playing, the program remembered moves which 
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it could use later to improve its game. The Logic Theory Machine [7] was used to 

prove mathematical theorems, and the General Problem Solver [8] was developed to 

tackle simple tasks in reasoning such as scheduling meetings. 

Systems of this type were, for a while, the dominant area of study in Al; the 

problems are structured, they do not require large amounts of data to work from 

(databases), and success or failure is easily measured - we either win the game or 

prove the theorem, or we don't. Unfortunately, many tasks, such as medical diagnosis 

[10], chemical analysis [9] and engineering design [11,13], are not so well structured. 

They require access to a great deal of knowledge and success often involves finding a 

satisfactory solution to a problem rather than the best. Since we generally associate 

such work with experts, then those programs which have been developed to tackle 

these type of problems are referred to as expert systems. 

Expert systems are becoming the most widely used application of artificial 

intelligence. Several such systems have been. applied in engineering, namely: 

monitoring and diagnosis [14], consultancy [11], modelling [12], and VLSI design [13]. 

Although applications might differ, the same Al principles generally apply to expert 

systems. 

All Al applications involve problem solving; whether it is the solution required to 

win a game, the best design for a particular electronic circuit, or working out the 

meaning of some written text. Often, direct methods for determining solutions to 

problems cannot be employed. For example, consider the 8-puzzle of figure 2.1 where 

the task is to reach the goal state by changing the positions of the tiles. Clearly, any 

attempt to solve this must involve trial and error (ie search). For such problems, it is 

convenient for them to be described using state space representation and tackled using 

a state space search. First, a state space containing all the possible configurations of 

the tiles must be defined. States representing the start configuration and solution 
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(a) (b) 

configuration must be specified. These are the initial state and goal state respectively. 

Note that complex problems may have more than one initial state or goal state. It is 

also necessary to specify a set of rules for moving from one state to another within the 

state space. For example, move(8,5) might be used to cause the tile in position 5 (the 

6) to be moved to position 8 (the blank space) in figure 2.1(a). 

It is necessary to consider how to represent information about the current state at 

each node. For the 8-puzzle, this is trivial. The node could be a series of numbers 

representing the values of the 8 tiles in the 9 positions. For example the node 

representing the initial state of the 8-puzzle in figure 2.1 might be (283164705); the 

zero being the empty space. 

Figure 2.1: (a) initial state and (b) goal state of 8-puzzle. 

-6- 



The Al community have long recognised the growing importance of expert 

systems in several application domains and, as they increase in complexity, so must the 

machines they run on. This trend would eventually lead to expert systems becoming 

extremely expensive to develop. Since most expert systems are based on the same 

underlying principles, sophisticated tools were designed to facilitate their development. 

These tools are generally known as expert shells. Examples are LOOPS, KEE, ART 

and Knowledge Craft, which are discussed in Chapter 3. 

The 8-puzzle problem provided an example of a simple numerical representation 

• for each of the possible tile configurations in the state space. However, imagine that 

the problem is more complicated such as telling a robot to walk across a room. How 

do we represent the environment; such as the positions of chairs and windows. This 

problem of knowledge representation is very difficult and has not been completely 

solved. If we try to store too much information at each node we may eventually 

exhaust even a very large memory. However, if we do not store enough, the problem 

could become extremely difficult or even impossible to solve. The most important task 

for a designer of an intelligent system, for example an expert system or expert shell, is 

how to represent the knowledge base. All other aspects of design, both software (such 

as search methods), and hardware (memory configuration etc), depend on the selection 

of a knowledge representation formalism. 

Having provided a brief introduction to intelligent systems and knowledge 

representation, the rest of this chapter aims to provide a brief insight in ,  to the types of 

problems tackled by Al, and the techniques developed to solve them. Various 

software and hardware based systems are discussed, with particular attention being paid 

to the current trends - their features, applications and limitations. It is from 

conclusions based on these reviews that many of the ideas for this project have been 

developed. 
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2.2. Al Techniques 

2.2.1. Production Systems. 

Search is the basis of many intelligent processes. Some sort of structure, which 

simplified the search process, would be useful. Production systems [3,15] provide such 

a structure for problem solving and Nilsson [3] describes a basic production system 

algorithm. Such a structure is useful since new inputs into the database cause 

behavioural changes in the system, and new rules can be added easily without 

disrupting the whole system. 

Procedure 	PRODUCTION 

1 	DATA - initial database 

2 	until DATA satisfies the termination condition, do: 

3 	begin 

4 	 select some rule,R,in the set of rules that can be applied to DATA 

5 	 DATA .- result of applying R to DATA 

6 	end 

Consider the 8-puzzle again. A possible search strategy is breadth-first search. 

Here, it is necessary to construct a search tree with the initial state at the root node. 

Using the rules, generate all the possible subsequent states at the daughter nodes. 

Then, for each of the daughter nodes, create all the subsequent nodes; and so on until 

a goal state is reached. Figure 2.2 is the solution graph obtained by a breadth first 

search strategy. Another possibility is depth-first search. Here, a single branch is 

expanded until either a goal state, or a pre-determined depth, is reached (whereupon 

the next branch is searched). Such search strategies will find solutions to simple 

problems such as the 8-puzzle. However, not all problems are so simple. 
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Consider the following problem: 

The Travelling Salesman Problem. 

"A salesman has a list of cities, each of which he must visit exactly once. 

There are direct roads between each pair of cities on the list. Find the route 

the salesman should follow so that he travels the shortest possible distance on 

a round trip, starting at any one of the cities and then returning there." from 

Rich [1]. 

This problem could be solved by either breadth-first, or depth-first search. 

However, consider the problem if there are a large number of cities. For N cities, the 

number of different paths from initial to goal state is: 

T01 = (N - 1)! 

Consequently, the time required to find the solution would soon become too great to 

be worthwhile. This limitation is known as combinatorial explosion, and should be 

avoided if possible. One improvement would be to perform a depth-first search and 

discard any branch whose length increased beyond the current shortest length. This 

method is known as branch-and-bound and is more efficient than the other two but it 

still takes a long time to solve the problem for a large number of cities. 

2.2.2. Heuristic Search. 

Since many systematic search techniques give rise to combinatorial explosion, it is 

often necessary to use a method which is not guaranteed to find the best solution,. but 

will find a good solution. These techniques are known as heuristics. Their main 

advantage is that generally they give a greatly reduced solution time for hard problems. 

The nearest neighbour algorithm is an examplc of an heuristic search method and 

applied to the above problem would involve the salesman starting from any city he 

liked, then visiting the nearest city that he had not already visited and so on until he 

had finished. This particular heuristic allows the problem to be solved in polynomial 
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2.2.3. Rule Selection. 

There are various different ways that we can select rules applicable to the search 

process. The primary requirement is to understand the structure of the rules 

themselves. In order to be able to match rules against situations, each rule must have a 

precondition. In other words, we must know what the current state must be for each 

rule to be applicable. Therefore, we can see that it would be possible to search 

through all the rules selecting all those with preconditions that match the current state. 

Unfortunately, this matching process is not always clear-cut and also, as problems 

become more complex, then the number of rules may increase and so a search before 

each rule execution would be inefficient. Heuristic techniques are often used to 

determine which rules should be used; as well as being included within the rules to aid 

the search process. For a good general overview on this subject, see Rich [1]. 

2.2.4. Weak Methods 

This is the name given to a series of general-purpose search strategies. They are 

'weak' because, in certain situations, they are susceptible to combinatorial explosion. 

The more common methods are described briefly. 

Generate and test is a depth first procedure and is of the form: generate a 

possible solution; if it is a goal state, stop; otherwise generate the next possible solution; 

and so on. A highly successful program which finds the structure of organic 

compounds [9] uses a combination of planning and a generate and test search strategy 

know as plan-generate-test. Hill climbing is similar to generate and test except that it 

uses information fed back from the testing of the possible solution. Rich [1] describes 

a hill climbing procedure. This method is better than the last and can lead quite 

quickly to a solution. Unfortunately, hill climbing is susceptible to several problems 

and it is inefficient in large search spaces. Breadth first search was described earlier. 

Unfortunately, although this method is guaranteed to find a solution, it •requires a 
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great deal of memory and a great deal of work, since all nodes are expanded to find all 

their children. This is an illustration of the combinatorial explosion problem 

introduced previously. Best first search is a combination of depth-first and breadth-

first search. The first act is to create all of the daughter nodes of the initial state. 

Some sort of heuristic function is used to determine how good each node is. The best 

node is then expanded and so on. Means-end analysis is a search technique which 

reasons both forwards and backwards. The strategy solves the major parts of the 

problem first and then goes back to .  solve the smaller problems which occur in fitting 

the major parts together. The process is based on discovering the differences between 

the initial and goal states. On finding a difference, an operator (rule) which can 

reduce the difference is selected. Unfortunately, it may not be possible to apply that 

operator because the pre-conditions are not correct. Hence, the new problem is to get 

from the initial state to the state which provides the right pre-conditions. Once the 

operator is applied, it may not produce exactly the required goal state. Therefore, the 

next problem is to get from the state produced to the goal state. Thus the problem has 

been subdivided into two sub-problems. The same process is then applied to the sub-

problems. This is a basic example of hierarchical problem solving. The General 

Problem Solver [8] was the first Al program to use this method. 

2.2.5. Planning. 

Often, we require to solve very complicated problems with many different 

combinations of states. It is often convenient to decompose such problems into 

smaller, independent, manageable ones. Unfortunately, some problems are not 

decomposable since the sub-problems are not independent, but interact. These are 

often iermed nearly decomposable problems and can be solved by a combination of 

decomposition methods and methods whereby interactions are detected, recorded and 

acted upon during the solution. These are known as planning techniques and are very 

important in instances such as card games where the outcome of a solution step is 
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unpredictable and so the set of possible outcomes is accounted for during the planning 

stage. A great deal of work has been done in this field; often hand in hand with work 

on knowledge representation since plan representation, fast data retrieval and 

manipulation are very important for efficient planning systems. Rich [1] and Nilsson 

[3] both provide good overviews on this subject. Daniel and Tate [16] provide a more 

detailed example by means of a retrospective on a specific planning project. 

2.2.6. Contexts 

There are many problems encountered in Al where we may want to store more 

than one notional state of the database. This is best described by way of two 

examples. 

Consider the problem of circuit design and imagine that we are at the stage of 

"setting the values" of some components. In circuit design, the alteration of the value 

of one component invariably alters the requirements for another. This is an example 

of a nearly decomposable problem which would be tackled using hypothetical 

reasoning or planning. It would be necessary to look at the effects, on the whole 

circuit, of making changes to single components combined with any consequent 

changes to the other components. In this case, it would be advantageous to support 

multiple values of components and the resultant state of the whole circuit, within the 

same database so that they can be compared and the best alternative chosen. 

Now consider the problem of plotting the actions of a .robot. Not only do we 

have to consider all the alternatives that it could take within its environment at any 

instance, but also the changes in the environment which may occur with the passing of 

time. 
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These different states of the database or knowledge base are known as contexts. 

Examples of Al database support systems which provide such a facility are 

CONNIVER [18], QA4/QLISP [19], PEARL [20], and HBASE [21]. Tate [17], 

provides a specification of the functions which he feels should be supported by a 

context database system for planning applications. 

2.3. Knowledge Representation 

2.3.1. Introduction. 

It has become apparent from the above discussions that Al programs require a 

great deal of knowledge and associated manipulation methods. We require to store 

information about the problem domain as well as information about how to find a 

solution. Knowledge representations and their associated manipulation techniques 

have been the subject of intense study. Several formalisms have been developed, but 

generally, knowledge representation can be divided into two types: 

• 	logical expressions 

• 	structures 

This chapter provides descriptions of each of these representations, their 

advantages and their limitations. 

2.3.2. Knowledge Representation Using Logic. 

2.3.2.1. Predicate Calculus. 

First Order Predicate Calculus (FOPC) is a formalism—which has been used for 

many applications in Al systems. Chapter 4 of Nilsson [3] provides a good 

introduction to predicate calculus in Al, its syntax and application. Any language is 

made up of symbols and expressions. In predicate calculus, these are known as well 
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formed formulae (wif). Well formed formulae are a means of representing facts in 

logic. For example, the fact "John was a man" could be represented as man(John). 

Note that, unfortunately, we have not represented the idea of past tense. 

We use the logical 'and' (&), 'or' (+) and 'implies' (-) connectives to make 

compound statements such as "John likes Mary and John likes Escorts" and "John 

drives either an Escort or a Porsche" and "if the car is John's car, then the car is an 

Escort". 

likes(John, Mary) & likes(John, Escorts) 

drives(John, Escort) + drives(John, Porsche) 

owns(John, carl) -. isa(carl, Escort) 

A formula can be negated by preceding it with the symbol "-". Formulae can be 

quantified either universally (Vx) or existentially (ax). For example, we would need 

to specify the information "For all x, where x is a man, then x is a person'. 

(Vx) man(x) -. person(x) 

Similarly, we could represent the information "There is a person who wrote 

Brave-New-World" as: 

( x) write(x, Brave-New-World) 

There is a powerful problem solving technique known as resolution which can be 

applied to knowledge represented in predicate calculus form. Unfortunately, 

everything has to be converted to clause form which, although not difficult, means that 

everything looks the same and is not easy for a human to interpret. This makes it 

difficult for us to interact with a resolution based system. Another difficulty with 

predicate calculus is that a great deal of formulae are required to describe even simple 

situations; and since search is an integral part of any knowledge system, it is clear that 
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information retrieval from a large system representing data in predicate calculus form 

would be slow; 

Another drawback with predicate calculus is its inability to represent beliefs. For 

example, how would we represent the following information? 

'1 think that Liverpool are the best football team in the world, but Calum 

thinks that Forfar Athletic are." 

There are two major logic techniques which have been developed to handle uncertain 

logic: 

• 	nonmonotonic logic 

• 	probabilistic reasoning 

2.3.2.2. Nonmonotonic Logic. 

Predicate calculus based systems are traditionally monotonic. This means that all 

statements in the database are true and any new fact added will not change the status 

of any previously inserted fact. This system has the advantages that no checks need be 

made on the database as new information is added and no record need be kept of the 

statements which support any new deduced statements. However, in the real world, 

we do not always have complete information and so we often have to make 

assumptions to support. deductions. Also, the real world is not static and new 

situations provide new information and disprove some assumptions. Default reasoning 

is an example of nonmonotOnic reasoning and is based on making assumptions about 

situations which are deleted if conflicting evidence is found. Since monotonic systems 

are a lot easier to deal with, it would be useful to be able to modify them to deal with 

nonmonotonic reasoning. 
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The Truth Maintenance System (TMS) developed by Doyle [23] allows 

monotonic systems to support nonmonotonic reasoning. Each statement in the TMS 

can be either IN or OUT. That is; either currently believed to be true or currently 

believed to be untrue. The validity of statements depends on a list of attached 

justifications. This system, therefore ensures that the database remains consistent. 

Untrue statements are retained since new information at a later date may cause us to 

believe them to be true after all. 

2.3.2.3. Probabilistic Reasoning. 

Often, in the real world, we do not have complete information describing the 

situation with which we are dealing. An example is medical diagnosis since nobody 

has a complete understanding of how our bodies function. Mathematics provides us 

with many theories for dealing with the random world and these theories can be 

incorporated into the heuristics of our reasoning system. MYCIN [10] is a medical 

diagnosis expert system which is based on probabilistic reasoning. Generally, however, 

probabilistic methods are avoided if possible. A number of such techniques are 

described by Hunt [24]. 

2.3.3. Structured Representations Of Knowledge. 

2.3.3.1. Introduction. 

As we have seen above, knowledge can be represented by several different logical 

forms which can be combined with reasoning techniques such as resolution to provide 

a variety of powerful intelligent systems. Unfortunately, it is very difficult to represent 

the complex st:'tctured and relational information that occurs a great deal in the real 

world. Structured knowledge representations have been developed to deal with this 

problem. Such structures must be able to represent all of the knowledge that we 

require; they must provide the ability to infer new information from the old; derive 
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structures to deal with new knowledge; and retrieval of the information must be easy. 

Knowledge structures can represent patterns in information and as such are often 

termed objects or schemas. Generally, objects comprise a set of properties (or slots) 

which each have one or more values (or fillers), which themselves can be objects. 

Each object/property/value triple is known as a relation, or fact. For example: 

Steve(object) plays(property) squash(value). 

Several schemas exist such as 

• frames 

• 	scripts 

• 	stereotypes 

• 	rule models 

• 	semantic nets 

JFURNITURE I 
ISA 

PERSON 	I 	I CHAIR 	k ISPART1 SEAT 

L----k

SA 	 lISA___
MOWNER I MY—CHAIR 1 COLOUR 	TAN 

COVERING 	 SA 

LEATHER I 	I BROWN 

(From Rich [1]) 

Figure 2.3: A Semantic Network 
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Frames are used to describe properties that objects possess. For example, a chair 

has a seat, a back and four legs. Scripts are used to describe the sequence of events 

that would take place in a typical situation such as registering with the Social Security. 

Stereotypes are used to describe typical characteristics of people, and rule models 

describe typical rule characteristics in rule sets. 

Semantic Nets were developed to represent English words [24]. In a semantic net, 

relations are represented by sets of nodes connected by arcs. In this way, both objects 

and events can be described; figure 2.3 (from Rich [1]) is an illustration. Frames, 

scripts and semantic nets have been used widely in Al systems. 

2.3.3.2. Relationships Between Objects. 

It is clear that all the structures mentioned above involve relationships between 

objects. There are two major relationships that are required and these are: 

ISA relations 	which describe the relations between classes and instances of 

objects. In this way, set information can be stored. 

ISPART relations 	which describe the relations between objects and their 

constituents. 

ISA and ISPART are known as primitives and are useful links between objects in 

many knowledge systems. Figure 2.4 (from Rich [1]) illustrates the ISA and ISPART 

relationships. 
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Inheritance is the term used to describe how information can be attributed to an 

object by passing it down from its super-class (ie hierarchically). For example if we 

know that a poodle is a dog and that a dog is a pet, then we also know that a poodle is 

a pet. We also know from the ISPART relations of the dog that a poodle has a head 

and a tail etc. Remember that in predicate calculus, we required separate statements 

for all of these facts. Note that it would be possible in such a system to represent 

complex relations; for example the script describing a typical meeting implied by the 

verb "met', in the relation "John met Mary" We may also want to define the set of 

operators, or rules, which can be used to alter information within a particular object. 

Software based on such structures is often termed object oriented programming. It is 

also possible to trigger procedures if certain properties associated with objects are 

accessed. This is known as access oriented programming. The LISP Object Oriented 

Programming System (LOOPS) [29] is an Al software tool which employs both of the 

above methods. 

2.3.4. Summary. 

We have seen that there are two major types of knowledge representation. 

Predicate Calculus seems to be a convenient formalism, which is easy to understand. It 

is also relatively easy to map such well defined representations onto hardware in the 

form of lists. Unfortunately, we have also seen that predicate calculus requires a great 

many well formed formulae to be defined to describe even simple situations. 

Structured formalisms, however, are able to describe very complex situations and 

relations quite easily. Unfortunately, because schemas must describe general and 

changing situations and must be able to cope as new information is added then they 

cannot be predefined standard structures. This means that mapping onto hardware is 

difficult. 
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As application requirements have become increasingly large and complex, much 

of the research into knowledge based systems has been concerned with decreasing the 

amount of time spent in searching. Software systems have concentrated on the 

advantages of inheritance lattices and set classification of structured techniques to 

increase speed, whereas research into intelligent hardware systems has tended to 

concentrate on calculus based techniques, since they are easier to define. 

2.4. Al Software 

2.4.1. Al Languages 

The features of Al problems and their representations described above, have led 

to the development of Al languages to implement them. An important consideration 

in their design is the belief that intelligent behaviour can be represented by the 

manipulation of symbols. First order predicate calculus, described above, is an 

example of symbolic representation, and techniques such as resolution manipulate these 

symbolic expressions (well formed formulae). Most Al programs will need to create 

complex data structures to represent intermediate system states, such as partial solutions 

to a mathematical or game-playing problem, or parse trees for natural language 

understanding. Since these states cannot be predicted, then neither can the form nor 

number of the resulting intermediate data structures. To be able to solve complex 

problems, we need to have a great deal of background knowledge (knowledge base), 

and our Al programs need to be able to manipulate this knowledge; ie: interrogate, 

insert, modify and delete it. Generally, search techniques are based on pattern 

matching of information in the knowledge base; to check the validity of conditions 

prior to the execution of a rule (IF condition THEN action), for example. Corlett [25] 

presents a list of Al language characteristics required for Al systems. These are 

summarised below: 
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Symbolic manipulation should be easy 

We need to create intermediate data structures, which are both arbitrary and 

complex. Linked lists are very useful for this purpose and so list manipulation 

primitives should be supported; 

Since such intermediate structures are being created continually during problem 

solving, space must be allocated for them, and deallocated when they are no 

longer required. This operation should be transparent to the programmer and 

automatic storage allocation and reclamation (garbage collection) should be an 

integral part of any Al language. 

We cannot predict the size of intermediate data structures or the type of symbols 

until they are created (at execution time). Consequently, dynamic binding of 

types and sizes should be supported. Generally, this must be performed 

sequentially, and is therefore slow, and architectures have been developed to 

implement dynamic binding (described below). 

Pattern matching facilities should be supported to identify symbols and control the 

execution of the problem solution. Logic programming (ci: production systems) 

is such a mechanism, and is of the form: 

IF condition THEN action. 

Both the condition and action could be a group of symbolic expressions. The 

condition would describe characteristics of the current state of the solution state-

space, while the action would manipulate the state-space to cause changes, 

hopefully leading to a solution. A search strategy known as forward chaining 

simply starts at the initial state and fires rules u.'til the solution is found. 

Another search strategy starts with the desired solution and the goal is to derive 

the initial state. Intermediate conditions are known as subgoals, and this form of 

reasoning is known as backward chaining. Intelligent search techniques and 
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heuristics would be employed to control the search path, and a combination of 

forward and backward chaining would be used. 

(vi) Since we need to create new procedures at run time to control the flow of the 

solution through the intermediate (partial solution) states, we must be able to pass 

procedures as data. Furthermore, it is desirable to pass procedures and data 

associated with a particular entity as a single object (object oriented programming). 

Although there are several Al languages currently in use, no one language 

exhibits all of the above described features. The two most popular are LISP [26,271 

and Prolog [28]. 

LISP was developed at MIT by John McCarthy in 1960 and has since been 

modified into several different dialects, although the trend recently has been to move 

towards a common standard known as CommonLlSP. The name LISP is derived from 

its description: LIST Processing, and is a language for manipulating symbolic 

expressions. Symbolic expressions are made up of two data types; namely, atoms and 

lists. Atoms are the basic symbolic entity and can be numbers, characters or character 

strings. Lists are composed of atoms, and expressions are built up from combinations 

of atoms and lists. Functional operators (primitives) manipulate expressions. For 

example: (SETQ L '(A B C)) creates a symbol called L and assigns as its value the list 

(A B Q. The expression (CAR L)returnsthe first element of the list; namely, A. The 

expression (CDR L) returns everything except the first element; namely, the list (B Q. 

The LISP Object Oriented Programming System (LOOPS) is an example of a LISP 

based expert shell utilising a structured knowledge formalism, and is described below. 

Prolog (Programming in logic) was originally developed by Alain Colmerauer at 

the University of Marseilles, in about 1970. It is based on first order predicate logic, 

and so its form is akin to the well formed formulae described above, although it is not 

as expressive as first order predicate calculus. Prolog. has rapidly gained in popularity 
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over the last five years, partly due to the decision by the Japanese to adopt a modified 

version of DEC-10 Prolog as the core language for their Fifth Generation Computer 

Project. 

Other applications include: 

• Automatic Theorem Proving 

• 	Planning 

• 	Compiler. Writing 

• 	Intelligent Knowledge Based Systems 

• 	Natural Language Processing 

• 	Expert Systems 

Expressions are translated into predicates and their arguments in a similar form to 

the well formed formulae. For example: 

"A man is happy if he is rich and famous" translates to: 

happy(Person):- 

man (Person), 

rich(Person), 

famous(Person). 

Prolog is also able to perform list processing in a manner similar to the LISP 

primitives. In prolog, the method is to cut a list, which is analogous to CAR and CDR 

in LISP. 

[XIY] = [s,t,e,v,e] will result in X = s and Y = [t,e,v,e] 

The first element of the list is known as the head and the list formed by deleting the 

head is the tail. Rules are of the form: 

GOAL is true_if (SUBGOAL_i and SUB —GOAL -2  are true) 

The goal is the solution to the particular problem, and the rule is evaluated by 

attempting to satisfy the sub-goals by pattern matching techniques. If a sub-goal is 
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unknown, then backward searching is performed to find another rule which can be 

evaluated to satisfy that sub-goal, and so on. 

2.4.2. Expert Shells 

These tools have been designed for developing expert systems. Corlett [25] 

describes several desirable expert shell features which include the provision of a smooth 

man machine interface in the form of a window based interactive environment (which 

is controlled by a "mouse" and keyboard), an integrated editor, debugging aids, pretty 

printing, automatic filing, programming explanations and safeguards against program 

crashing. 

LOOPS [29] was developed because Al systems are large and complicated and 

require different powerful techniques which may be applied to different parts of a 

problem. It supports several programming paradigms: 

• 	procedure oriented programming. 

• 	object oriented programming. 

• 	access oriented programming. 

• 	constraint oriented programming. 

Figure 2.5: Example of an Inheritance Lattice (LOOPS) 
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Constraint oriented programming is really an application of access oriented 

programming which, along with object oriented programming, are the most widely 

used aspects of LOOPS. Knowledge is represented in the form of "objects" which are 

related to each other in class inheritance lattices. Figure 2.5 is an example of such a 

lattice. Objects have methods and variables associated with them. Class variables hold 

information shared by all instances of a class while instance variables contain 

information specific to a particular instance. Methods can be thought of as functions 

and can be sent messages to which they respond. Additionally, active values can be 

assigned to an object. If these are accessed, then some action is initiated (access 

oriented programming). 

KEE t (Knowledge Engineering Environment) [30] is a similar system which is 

designed to facilitate fast prototyping of expert systems. Applications are chiefly 

diagnosis, simulation and planning. It provides object and access oriented 

programming paradigms and also a rule based programming paradigm for reasoning 

techniques. The basic knowledge structure is the frame; ie a slot and filler system. 

The slot is a property associated with a frame and can have  value (which may be a 

default value) or a method (procedure which is executed if the slot is accessed in a 

pre-determined manner). The environment is based on a class and subclass structure 

and slots are inherited from superclasses. New slots can also be created at any level of 

an inheritance lattice; these are then inherited by subclasses. 

The KEEworlds (cf. contexts) facility is provided which is of particular use in 

planning applications. This facility allows multiple situations to be supported which 

can be thought of as hypothetical situations, states in problem solutions or the time 

dimension to a problem which is time dependent. The root world is the world of facts 

which are true in all situations. A truth maintenance facility is provided which checks 

for inconsistencies within worlds. 

KEE is a product of IntdlliCorp. 
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Inference ART t [31] (Automated Reasoning Tool) is very similar to KEE. It is 

a rule based system and the user is allowed to define an environment (knowledge base) 

and a set of rules which manipulate the environment to produce a behavioural pattern 

which describes the desired situation (either the scheduling of taxis in a city or the 

modelling of some electronic circuit, say). Rules are applied to the environment in 

order of priority and this priority or salience is defined by the user. ART also 

incorporates a truth maintenance system based on logical dependencies defined by the 

user. Objects, concepts and relations which make up the environment are described 

using a set of schemata of a slot and filler type. These schemata are used to create an 

inheritance lattice similar to KEE. ART also supports a context mechanism known as 

viewpoints. 

Knowledge Craft t [32] incorporates several ways of both representing and 

reasoning with knowledge in an attempt to make it a tool which can be used. to 

develop expert systems in different problem domains. These are (from [321): 

• 	A schema-based representation of knowledge, which permits inheritance of values 

between linked schemata. 

• 	Object-oriented programming, using Common Lisp as the language for writing 

procedures which, are called by objects.  

I 	Rule-based programming using a forward chaining reasoning strategy. This is 

available via CRL-OPS, which is an extension of the rule based language OPS5. 

• 	CRL-Prolog, which permits rule-based programming using a backward chaining 

reasoning strategy, and also provides most of the other facilities of DEC-10 

Prolog. 

Inference is a trademark of Inference Corporation of Los Angeles. 

t Knowledge Craft is marketed by the Carnegie Group, Pittsburgh, Pennsylvania. 
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• 	A context mechanism for hypothetical reasoning etc. 

2.5. Al Hardware 

2.5.1. Introduction 

There have been many attempts to provide hardware support for Al systems; 

including advanced Von Neumann processors [36,37,38,39,40,41], VLSI processors 

[33,34,35] which support an Al language such as LISP, content addressable memories 

and processors [45,46,47] and specialised graph reduction engines utilising parallel 

networks of transputers [48,49,50]. This section provides an overview of the current 

state of Al Hardware technology, and summarises the advantages and disadvantages of 

various approaches with respect to this project. - 

2.5.2. Processors for Al 

There have been two different trends in processor architecture development. 

(i) architectures which support Al languages 

Some manufacturers have produced processors which support high level Al 

languages - generally LISP. Since Al languages do not differentiate between functions 

and data, but refer to them as symbols, types have to be evaluated at run time. This 

would normally be a slow sequential operation. Tagged architectures allow the 

exploitation of parallelism, since dynamic type checking is performed at run time by 

using a few bits of each word for type identification. Associative memories, which are 

accessible by content rather than address, can be used to support the unification 

process in Prolog (ie: pattern matching during the rule evaluation process). These 

features have facilitated the development of lower cost Al workstations such as the 

Symbolics range of LISP machines [32,33]. 
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(ii) enhanced Von Neumann architectures (RISC and CISC) 

Most computers have been based on the Von Neumann architecture, and have 

employed complex instruction sets, coupled with simple compilers with basic memory-

to-memory operational models. Since memory was slow and expensive, designers tried 

to replace groups of instructions with single, more complicated ones, thereby creating 

Complex Instruction Set Computers (CISC). Unfortunately, the decoding of such 

complex instructions into internal microcode not only added an extra layer of software 

to the system, but required several machine cycles to be executed. The introduction of 

pipelines and large numbers of internal registers have made possible the execution of 

many of these operations within a machine cycle. 

Several major processor manufacturers such as Advanced Micro Devices and Intel 

have developed such processors; culminating in the release of the Am29000 

Streamlined Instruction Set Processor [38] and the Intel 80386 [36,37]; which have 

been incorporated into advanced LmRrkstations. -  They are 

characterised by their large physical address spaces (approximately 4 gigabytes), and 

their very large logical address spaces (64 terabytes for the 80386). The main feature 

is to use VLSI techniques to pack as many of the normally external devices as possible 

onto a single IC. Examples are the Memory Management Unit on the Am29000, and 

on-chip storage for object code on the 80386. The Am29000 has 192 internal 32-bit 

general purpose registers, which can contain data or addresses, and can be accessed by 

any instruction. This drastically reduces the amount of time spent waiting for external 

data. A four stage pipeline is used to implement single cycle instructions, and an on-

chip Branch Target Cache can be used to allow single cycle branches for program 

loops. 

An alternative approach was to develop processors which executed a small, but 

well chosen instruction set, some of which could be mapped directly into hardware. 
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Consequently, programs are longer, but are executed very quickly. Such an 

architecture has become practical as a result of the development of large, high-speed 

memories. As a result, the philosophy of the Reduced Instruction Set Computer, 

RISC, was introduced [39]. The RISC architecture includes several features which aim 

to increase system performance. '  The reduced instruction set comprises simple, fixed-

length instructions, which can be decoded quickly. Except for off-chip LOAD and 

STORE operations, all instructions are register-to-register. This shortens cycle time 

and simplifies virtual memory management. Single cycle execution is possible, since all 

operations, except off-chip communication, are internal. A delayed pipelined 

architecture allows the RISC to fetch the next instruction during the current one even 

for branch instructions. Examples of RISC based systems are the Acorn R140 (which 

is a UNIX based 4 MIPS RISC workstation) and the SUN SPARCstation (the 

SPARCstation 300 is a 16 MIPS UNIX machine) [40,41]. 

2.5.3. REKURSIV Processor 

The disadvantage of RISCs is the need for compilers to produce large pieces of 

code to get round the limitations caused by the instruction set. The designers of the 

REKURSIV processor [43,44] have therefore moved in the opposite direction and 

have designed an enhanced instruction set, providing uttra high level data-driven 

primitives, such as tree-copying. Although this approach is akin to the enhanced CISC 

architectures, the REKURSIV is recursively microcodable and comprises a tightly 

coupled cluster of processing elements, each working on separate functions, such as 

type checking and range checking. The REKURSIV is controlled by a 160-bit control 

word. 

"
...a sensible microcode language not only removes the fetch overheads, it 

actually enables much of the 'algorithmic linkage' that exists at the start and 

end of classical instructions to be completely removed, then that which is left, 

the essence of the algorithm, can often be squeezed up in parallel in different 

parts of the processor..." from Harland [43]. 
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2.5.4. Associative Processors 

This field of research has been active since the early 1960's and encompasses 

Content Addressable Memories, Content Addressable Processors, Associative 

Memories and Associative Processors. Effectively, a content addressable machine 

comprises memory cells, each of which has enough processing power to determine 

whether it contains the required data requested by some central controller. An 

appropriate analogy might be to say (Foster [45]): 

"Will all cells containing the number 1234 please hold up their hands" 

Unfortunately, since each memory cell requires extra processing circuitry, such 

devices are large and expensive. Consequently, they are still very much special 

purpose devices for small applications. Research is being stimulated, however, by the 

improvement in VLSI techniques and the prospect of WSI (Wafer Scale Integration), 

and several projects such as WASP (WSI Associative String Processor [46]), and GAM 

(Generic Associative Memory [47]) are in progress in the UK. Application areas 

include set processing (eg: class information in an information network), string 

processing and relational data processing (eg: expert and intelligent knowledge based 

systems). 

2.5.5. The Transputer 

This is a VLSI device which contains a 32-bit processor, local memory and 

communications links for direct connection to other transputers [48]. The internal 

memory reduces the requirement for slower off-chip memory accesses, therefore 

increasing runtime speed. The ability to interconnect :o up to four other transputers 

makes feasible the development of a connection machine, or Boltzmann machine (MIMD 

- Multiple Instruction Multiple Data machine) [58], where each node in a semantic net 
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is represented by a processing element. Another possible application is in the field of 

parallel graph reduction. 

2.5.6. Graph Reduction Engines 

The representation of problems in search trees, or graphs, was discussed earlier in 

this chapter. Graph Reduction is a technique which splits the problem graph into 

separate, decomposable parts and attempts to find solutions to these sub-parts. The 

sub-parts themselves are repeatedly sub-divided until a solution is found. The sub-parts 

would normally be distributed over a parallel processing system. There are two major 

projects involving graph reduction in progress in the UK. 

• GRIP [50] 

S 	Flagship [49] 

GRIP (Graph Reduction In Parallel) is, as its name suggests, a parallel graph 

reduction machine and is under development at University College, London. The 

system comprises a group of loosely coupled Processing Elements (PEs) connected via a 

wide bandwidth bus (IEEE P896 Futurebus), under the control of a bus interface 

processor. In this case, the processing elements are Motorola 68020 microprocessors, 

with floating point co-processors, each with 128k bytes of local memory. One PE, the 

System Manager, communicates directly with a UNIX host and controls resource 

allocation. The graph (state space representation) is distributed over the PEs, which 

then perform the problem reduction and solution. 

The Flagship project is being carried out by the University of Manchester, in 

conjunction with International Computers Ltd., and Imperial College, London. The 

Flagship architecture comprises several closely-coupled Processing Elements 

interconnected via a communication network. Sub-tasks are distributed over the 
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network and are evaluated in parallel. In this respect there are many similarities 

between the GRIP and Flagship projects. 

2.6. Other Systems 

There are three Knowledge Based hardware systems which have moved beyond 

the concept stage into commercial products. For this reason, they are presented in a 

separate section, and are used as standards against which the SKMS prototype may be 

compared (see Chapter 5). 

2.6.1. The Intelligent File Store. 

The Intelligent File Store (IFS) provides hardware support for large knowledge 

bases [52,53,54,55]. It is aimed at applications including deductive databases, expert 

systems and cognitive modelling. The system uses first order predicate logic (FOPC - 

discussed above) to represent knowledge. The Qualified Binary Relationship Model 

(QBRM) [55] has been developed by the group as a means of decomposing semantic 

networks into FOPC form which are used by special purpose hardware for fast pattern 

directed searches. This hardware, at the lowest level, takes the form of a five field 

associative predicate store (APS [741). Some sample entries might be, taken from [55]: 

#3 John Likes Mary UNDEF. 

#4 David Thinks #3 TRUE. 

#12 ri IS.A RULE UNDEF. 

#23 Fred Lives in Didsbury PROB. 

#24 #23 HAS.PROBABILITY 0.8 TRUE. 

#11 #12 HAS.CONDITION #14 TRUE. 

-34- 



A Lexical Token Converter (LTC) [54] converts each character string to a unique 

internal identifier. Note that each well formed formula is assigned a unique label so 

that multiple order information can be built up by referencing these labels in other wffs 

(eg. statement #4). Boolean values are also assigned to each wif to augment uncertain 

knowledge, such as beliefs (probabilities). 

2.6.2. Generic Associative Memory. 

Generic Associative Memory was developed at the University of Strathclyde and 

is concerned with parallel network architectures for large knowledge based systems 

[47,56]. The knowledge representation formalism is similar to that used in the IFS; 

however, no boolean value is included. In this case the formalism is constructed of 4-

place relations known as facts. Each fact comprises a name (similar to the identifier in 

IFS), a subject, a relation and an object. Again, the fact name could be referenced 

within other facts to increase the order. Some typical facts might be: 

Name Subject Relation Object 

"First" "John Smith" "works on" 'bridges" 

"Fifth" "bridges" "carry" "traffic" 

"Ninth" "First" "Occurs" "Tuesdays" 

Note that set membership information can be represented in fact form also and so 

generic operations are possible in such a system. The Generic Associative Memory 

(GAM) is an associative processor which operates on classes, their members and sets. 

The Generic Associative Array Processor (GAAP [56]) is an array of 64 by 64 GAM 

devices each of which can perform fetch, insert, delete, join, union, intersection, 

difference, and division operations on the knowledge base (FACT store). 
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2.6.3. Ferranti Relational Processor 

The Ferranti Relational Processor (FRP [721) comprises a two-card VME/VSB 

bus compatible module, incorporating 8 Mbytes of RAM. It is targeted as a relational 

query system for real-time applications - for example, Ferranti quote highly flexible 

demand-driven applications for sensor-derived data systems such as Threat Evaluation 

and Weapon Assignment or interactive Captain's Combat Aid facilities. The FRP uses 

an automatic indexing technique to allow access of information by single or multiple 

key attributes, thereby simulating content addressable memory with conventional 

RAM. Information is stored in memory as tuples (well formed formulae). It 

implements all of the content-addressable memory operations, and supports all six 

comparison operations (<, <=, =, >=, >, !=). As a consequence, the system 

supports between bounds and nearest to searching. Hence, the following query type 

may be supported: 

"Yield (specified) data on all targets within a (specified) bearing sector and a 

(specified) height band in descending order of threat" [72]. 

2.7. Summary 

As a consequence of the greatly increased interest in information technology (IT), 

the market share of data manipulation system applications is far in excess of that of 

numeric applications. Knowledge based manipulation systems and associated Al 

techniques are beginning to displace basic databases as the core of the IT system, and 

providing - subsequent increases in power. This arises from the ability to store complex 

information and to perform inferential tasks, which lead to the evolution of new 

information. Structured knowledge a. -epresentations reduce the amount of time spent 

searching the knowledge base, and in particular, facilitate the performance of set (or 

class-based) operations. These knowledge based systems have, for the most part, 

comprised highly complex software which has remained unnecessarily complicated 
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since conventional, ie: Von Neumann, architectures have been unable cope with the 

functional demands that are required. 

It has been estimated that, by 1992, knowledge based systems will account for 

about 13% of the annual UK computer market, which amounts to approximately £300 

million of hardware and software sales [57]. Consequently, there has been an increase 

in research activity to develop new architectures able to support such systems. 

All research into new architectures must take account of the hardware, software 

and theoretical issues; which include knowledge representation and manipulation 

mechanisms. This section has attempted to describe, albeit superficially, a cross-section 

of the developments which have arisen from current architectural research projects: 

• 	record searching engines (content addressable memories) 

• 	knowledge manipulation engines (IFS, GAM) 

• 	graph reduction engines (Flagship, GRIP) 

• 	cognitive modelling machines (connection machine) 

The first two architectures are effectively backend (ie: memory dominated) 

systems, whereas the latter two are front-end (ie: processor dominated) systems. Each 

type of architecture has its advantages and disadvantages, which tend not to overlap 

(see Table 2.1 adapted from Lavington [57]). It is perhaps understandable, then, why 

no one system has emerged, which provides the all round (memory and processor) 

support required by knowledge based systems. 
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Limitation content 
addressable 

memory 

knowledge 
manipulation 

engines 

graph 
reduction 
engines 

connection 
machine 

unit of storage x 

search capability x 

functionality (x) (x) 

data capacity x x 

cost performance (x) x 

systems integration x x x 

portability x (x) x 

Table 2.1 limitations of existing architectures for knowledge based applications 

Lavington [57] has suggested twelve topics of research in this area which he feels 

are likely to contribute to architectures for large knowledge based systems. 

Memory structures for large concurrent systems involving objects. 

Efficient strategies for integrity maintenancet in deductive databases. 

Alternatives to depth-first, entity-at-a-time proof-mechanisation strategies. The 

emphasis would be an methods such as set-based resolution, graph paradigms, 

etc., which are capable of being supported by parallel knowledge manipulation 

engines (KMEs). 

Knowledge representation formalisms which combine efficiency with expressive 

power. 

The formal definition of a procedural interface from which compact user-level 

software can be constructed. This would aid inter-project collaboration by 

bridging the gap between advanced knowledge representations and practical 

t cf: truth maintenance 
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Intelligent Knowledge Based System (IKBS) implementation languages. 

The integration of logic programming and functional programming paradigms in 

an application driven approach to the design of large knowledge based systems. 

Memory organisation for very large functional programs applied to non-numeric 

problems. 

A parameterised synthetic knowledge base generator for use in an analytical 

approach to benchmarking. 

Hardware assistance for concurrent-user control. 

A knowledge base server for a graph reduction machine. 

The design of a highly parallel KME. 

Custom VLSI for relational algebraic processing. 

This thesis addresses some Of the issues raised by Lavington. A structured 

knowledge representation has been developed, involving objects which comprise 

relations constructed from properties and values,, supporting multiple contexts. Status 

words are able to support relation confidences such as true, false, probable and 

undefined, which support a truth maintenance system. The structure can be used to 

build iSA links between objects, for use in set-based (relational algebraic) operations. 

Software simulation, described in Chapter 3, confirmed that the structured knowledge 

formalism is both expressive and can be supported by special purpose hardware. 

Moreover, set operations may be supported directly by hardware. A proposal for the 

development of a parallel KME (Parallel Relational Processor System) which performs 

breadth-first search (each processor performs depth-first search), involving several VLSI 

Relational Processors based on the architecture described herein, is discussed in 

Chapter 6. 
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CHAPTER 3 

System Specification and Design 

3.1. Introduction 

The preceding chapters have concentrated on various aspects of artificial 

intelligence - knowledge representation and manipulation techniques. Several 

intelligent systems, both software and hardware oriented, have attempted to solve or 

ameliorate the problems associated with the heavy searching workload. Software 

solutions have concentrated on structured knowledge representations which allow the 

user to home into a particular piece of information by way of inheritance lattices, and 

to facilitate reasoning about the complex situations which arise in the real world. 

Hardware solutions have been varied, but are generally based on First Order Predicate 

Calculus (FOPC) methods. 	Such approaches are inherently slower than structured 

formalisms but easier to manipulate. 	Hence, hardware support for a structured 

knowledge-based system offers an attractive alternative solution, and the development 

of an. expressive yet easily manipulated lcnowledge structure is an important feature of 

the Structured Knowledge Manipulation System (SKMS) described in this thesis. 

This chapter describes the development of the knowledge representation 

formalism and a functional specification describing the desired manipulation facilities 

for a knowledge-based system. Software designed to investigate the structure is 

discussed, and oortunities for hardware support, consequent performance 

improvement, and various alternative architectural approaches, are presented. 
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The selection of an appropriate structured formalism is not a trivial task. A 

knowledge representation which has rigidly imposed structural components is easy to 

manipulate in hardware, but is restrictive for many "real world" applications. Whereas 

a flexible representation, able to grow and mutate with its knowledge environment, is 

generally difficult to support in hardware. Before defining a suitable structure, it was 

necessary to decide what information it should contain, and which operators should be 

allowed to manipulate it. 

Another important consideration is the choice of memory technology. Content 

Addressable Memory (CAM) was investigated, but suffered from two major 

drawbacks. Firstly, it is very expensive. Secondly, it is difficult to integrate large 

quantities of memory onto a single chip with current technology. Consequently, this 

option was discarded, and it was decided to make use of standard, "off the shelf', 

components which would involve no special construction techniques and would keep 

down the cost. As a result, any structuring of information, by way of links between 

objects, has to be supported by linked-list type constructs. The pointers used to 

construct the lists are analogous to the identifier tags used in the IFS and FACT 

projects (see Chapter 2). In this case, however, the lists are used to build up 

knowledge structures instead of first order logical formulae (well formed formulae). 

3.1.1. The Knowledge Structure 

A data structure which provides maximum flexibility for evolving objects with 

associated general and class-based relationships, is the general (n-ary) tree [59,65]. The 

solution graph of a breadth first search (figure 2.2) and the ISA and ISPART 

relationships (figure 2.4) illustrated in Chapter 2 are botn examples of a general tree. 

The easiest way of implementing a tree in standard Random Access Memory 

(RAM) is by way of linked lists. 	The root of the tree would be connected to its 
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children by way of pointers. Each of these children (or siblings) might be connected 

to its own children by pointers. (If the children also point back up to their parents, 

then the list is doubly-linked.) So, each node or cell of a singly-linked tree comprises a 

name and a set of pointers to its children. This is illustrated in Figure 3.1. 

Figure 3.1: The linked list representation of a general tree 

Unfortunately, if each node has a different number of children, then in the worst 

case, every node in the tree will have a different structure. One solution would be to 

allow variable size nodes, but assign each node a header field which keeps track of the 

number of links. This is fine if the only task is to search through existing information, 

but creates difficulties if we want to modify the information; ie: by adding or removing 

links. Another solution would be to allow a maximum number of children and reserve 

enough space to store all the required pointers. This option is wasteful of space if we 
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decide to go for a very large number of children, but inflexible if we choose to allow a 

restricted number of children. A better solution is to represent our general tree in the 

form of a binary tree. A binary tree node comprises the node information and links to 

two other nodes. The first link is to its first child and the second link is to the next 

sibling. If there is no sibling, then the pointer will be NULL. Figure 3.2 is an 

example of a binary representation of a general tree. Such a tree is easy to build and 

easy to modify. 

In = Information 	0= Pointer / = Nutt Pointer 

Figure 3.2: The binary representation of a general tree 

This technique was adapted to create a general tree structure relating blocks of 

objects, properties and values, which provides the necessary flexibility, while 

maintaining a regular structural framework. Objects have properties (or slots) whose 
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values (fillers) depend on the particular context being considered. These constructs are 

known as relations. The value can be either an atom, an object, or a link to another 

relation; either within the same object or within another. Each relation has a 

confidence associated with it, which can be TRUE, FALSE, UNDEFINED or 

PROBABLE (this information is stored in a status word). Status information is also 

included for tagging, marking and masking purposes. Objects can have any number of 

properties, which in turn, can have any number of value/context pairs. Thus, objects 

of any form can be developed. Each object, property and value block uses its address 

as a unique ID. Each relation associated with an object is analogous to the tuples 

developed for the Intelligent File Store, or the facts of the Generic Associative Memory 

project. The essential difference is that these relations are connected physically (by 

links) within a structure so that search algorithms can home in quickly to specific 

subjects of information. 

The price of descriptive flexibility within strict structural constraints is the extra 

memory requirement for these pointers. However, the linked-list format can also be 

used to connect unused memory blocks, and a concurrent, free-list garbage collection 

algorithm with no memory overheads and very little speed penalty can be implemented. 

This approach, therefore, is very attractive. The knowledge structure, with its 

conceptual and physical links, is illustrated in figure 3.3. 
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(a) Knowledge Structure - PhysicaL Links 

Object 

Property I 

Value Value Value 
Context Contex Lontex 

Property I 	IProperty 

Value 11 Value I I Value 11 Value 

Context I IContex 1d IContextJ I Context 

(b) Knowledge Structure - Conceptual Links 

Figure 3.3: The SKMS knowledge structure 
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3.1;2. Knowledge Manipulation 

The term knowledge manipulation is usually used to describe fast pattern-directed 

search of a knowledge base. However, there are several other operations that must be 

supported. Clearly, before we can search a knowledge base, we must be able to create 

it. The basic production system algorithm described in Chapter 2 shows that to solve a 

problem, we must be able to infer new information from our present state. Therefore, 

we must also be able to append to the knowledge base, at any time. Additionally, we 

may find that information needs to be altered, either by modifying existing values, or 

by deleting them from the knowledge base. If a' truth maintenance system is to be 

implemented, we need to be able to support confidences in our information (TRUE, 

FALSE, UNDEFINED, PROBABLE), and be able to modify them. 

It may be that the knowledge base user does not have a full specification for the 

relation in which they are interested, but only part. Consequently,, the system must be 

able to support wildcard values and so act upon either the first successful match, or all 

of them. In certain circumstances, it may be desirable to match against a situation 

rather than a single relation (set operations); for example: 

DO 	 ... and... 	 DO 

operation 	 operation 

IF 	 IF 

fact_] is TRUE 	 fact— ] is TRUE 

AND 	 OR 

fact-2 is TRUE 	 fact-2 is TRUE 

etc... 	 etc... 

Situations are constructed from logical connections between relations, and search 

based on such requests should also be supported. This ability is particularly important 

for performing set operations where the relation property is "ISA'. 
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3.1.3. Garbage Collection 

The ideas of creation, modification and deletion of linked-list based information, 

expressed in the previous section, require that we allocate memory space dynamically. 

Some applications of the knowledge system may only require moderate modification of 

the knowledge base. Others, such as hypothetical reasoning, may require the 

temporary creation of new contexts, such as the circuit design example of Section 

2.2.6, which would mean that large sections of memory would be allocated and then 

discarded. In this case, even very large storage media would soon be exhausted. A 

solution is to employ regeneration algorithms which will identify discarded memory 

cells (garbage), and re-allocate them in future operations. This technique is known as 

garbage collection. 

Garbage collection solves our memory exhaustion problem, but unfortunately, 

introduces others. Firstly, such operations take time to execute and so reduce system 

performance. Systems, such as the Expert Shells described in Chapter 2, often employ 

- two different garbage collectors. The first is usually a concurrent algorithm which can 

do a small amount of collection in idle times between operations. The problem occurs 

during long, complicated, memory-intensive operations, when the amount of free 

memory space becomes critically low, and a second garbage collector stops the system 

and recovers all of the unused space. These interruptions to processing are 

unpredictable and would be disastrous in terms of performance for real-time 

engineering applications. 

Several garbage collection algorithms have been proposed, and Cohen [60] 

provides a good overview of the subject, although for our purposes, they can be 

divided into two main types: 

• 	free-lists 

• 	copying 
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Free-lists, as one would expect, are simply lists of unused memory cells connected 

together, and available for allocation. A basic example of a free-list method is the 

Reference Count method [60], which utilises tag bits in each cell which keep a count 

of how many other cells are linked to it. When the tag value is zero, then it is no 

longer required, and may be returned to the free-list. This algorithm is simple to 

understand and to implement, and so is very common in many systems. There are-. 

several variants of the copying type of garbage collection algorithm, but Baker's [61] is 

probably the most popular in use today. In this case, there is no free-list of unused 

cells. The memory space is divided into two halves. Normal dynamic memory 

allocation is employed in one half until all the space has been exhausted. At this 

point, the root cells, and all cells which are linked to them, are copied into the other 

half, and the unused cells left behind. Normal processing now utilises the second half, 

and so on. Wong [62] describes an Intelligent Cell Memory System for real time 

engineering applications, which employs a variant of Baker's method. The main 

drawback with such algorithms is the requirement for twice the amount of usable 

memory to be incorporated within the system, although compaction techniques can be 

used to alleviate this problem. 

The algorithm used for the SKMS is based on a free-list. Two special pointers 

are maintained: memjtr and freeptr. mem_ptr initially points to the start of memory 

and is incremented when the first cell is allocated. free....ptr is initially NULL and the 

address of the first cell to be deleted is copied into it. If any subsequent cell is deleted, 

then it is set to point to the current cell in freeptr, and becomes the new value of 

free_ptr itself. If any subsequent cells are created, then free_ptr is tested; if it is not 

NULL, then the first cell in the free—list is allocated. Otherwise, the cell pointed to by 

mem_ptr is used, and mem_pti incremented. If mem_ptr points to the end of 

memory, then we have no free space left and the operation will fail. Since the garbage 
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collection algorithm is such that the free-list is updated concurrently, then system 

performance can be predicted. This is an important ability, since it ensures that no 

unpredicted bursts of garbage collection will occur, which would otherwise rule out 

operation as a real-time system. 

3.2. Functional Specification 

The SKMS functional specification (presented below) was specified in 

consultation with the Artificial Intelligence Applications Institute (AIAI - University 

of Edinburgh [171). It defines the operations which manipulate the knowledge base, 

using the structure described above. These operations, therefore, are design 

requirements for the hardware implementation of the Knowledge Based system. Note 

that it incorporates the concept of contexts, discussed in Chapter 2. The knowledge 

base can notionally be accessed using a functional statement of the form: 

funcrion(argument 1, argument 2, ...) 

for KB manipulations or: 

?function(argument 1, argument 2, ...) 

for information retrieval. 

In the following specification, a functional syntax is used to illustrate the sort of 

commands which would be input to the knowledge system. Basically, these commands 

consist of a function name (such as create) followed by a series of arguments, which 

may be either a full or partial specification of a relation (object, property, value, 

context, status information), individual components of a relation, or new components to 

be substituted i place of existing ones. The mnemonics chosen to describe the 

arguments are easily interpreted. The delete, modify and retrieve functions may all be 

partially defined. In these cases, a wildcard (*) would be entered in the appropriate 

argument position. Arguments which have default values need not be entered (unless 
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a value other than the default is desired). These are denoted by including them 

between square brackets. The context facility is incorporated to support hypothetical 

and temporal reasoning (see Chapter 2), and the current context is stored to keep a 

record of the context in which we are working. 

3.2.1. Manipulation Of The KB 

Objects and object slots can be created at any time. If a slot is given no value, 

then it is either inherited from a parent (see Inheritance below) or it is given the 

value "undefined" (not to be confused with the boolean value). A mask flag may 

be set to prevent slots from being inherited by their sub-classes, if so desired. 

Unless stated otherwise, the confidence associated with a relation is true and the 

context is the current context (see below). 

creare(Obj Name, Prop_Name, Value, [Confidence], [Context], [mask]) 

Objects and slots can be deleted from the KB at any time. If it is required to 

delete an entire object, despite the fact that other objects may be related to it, 

then the appropriate relations (links) are deleted from the other objects also. 

Again, unless stated otherwise, the context is assumed to be the current context. 

If the context field is a wildcard (*), then the slot is deleted for ALL contexts. 

delete(ObjNaine, Prop Name, Value, [Context]) 

It is possible to modify the values of slots either in the current context or a 

specified one. 

mod ify(Obj Name, Prop_Name, New —Value, [Context]) 

Similarly, boolean values of relations (confidences) can be modified. 

modzi4y conf(Obj Name, Prop Name, Confidence, [Context]) 

New contexts can be created at any time. These will be children of the current 

context. 

create _ctxt(New_Con text) 
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It is possible to change from one context to another. 

set curr ctxt(New Context) 

Contexts can be deleted. If the particular context has any children, these are also 

deleted. 

delete ctxr(Context) 

The Root context, can be overwritten by another context. All the contexts in 

between are deleted. See figure 3.4. 

root ctxt(Context) 

Two contexts can be merged to form a third context which is a child of each of 

them. To avoid conflict where a slot might have different values in each of the 

contexts, the value is taken to be the one supplied by the context which is placed 

first in the argument list. 

merge ctxt(Context_1, Context 2, New Context) 

Root..Ctxtl 	 IRoot_Ctxtl 

-T 
Context_i 	 IContext_51 I Context_6 . 

I Context 2 I 

Context_4I IContext_5 I I Conte 

(o.) 	 (b) 

egu root_ctxt(Context_.3) 

Figure 3.4: An example of a root_ctxt operation 
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3.2.2. Higher Order Relations 

Consider the following information. 

"John thinks that Steve is sometimes lazy" 

We cannot represent this information using a simple, first order 3-place relation, since 

"John thinks something" and "Steve is lazy" require two separate first order relations to 

describe them. It is necessary to use a higher order representation instead (in this case 

second order). It is possible to build up higher order relations using the knowledge 

structure described above, since the value of a property may be a link to another 

relation; achieved using tag and status bits and a pointer mechanism inherent within 

the structure, but invisible to the user. How the layout would look to a user is 

illustrated in figure 3.5. 

'John thinks that Steve is sometimes Lazy' 

r ------------- 
I 	 I 
I 	 I 

IJohnI 	I 

ISOL IThinksI I 

i Man 
Root-Ctxt   

I 	 I 

L------------- 

1 
I 	 I 
 
St

NHas-Personatity 

 

I   
I

I

I 

 

Lazy I  ~ 'Ma n7—  Fooi_Ctxt 	Sometimes I 

L---------------I 

Figure 3.5: An example of a higher order relation 
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3.2.3. Inheritance 

When a new object is created, it inherits all of the unmasked slots from its parent 

in the particular context. Values are inherited by an object from a parent only if they 

are not specified already by the user, or they have not been inherited from another 

parent. Consider the following functional statements made to the system: 

create(My_Chair, Instance Of, Stool, NIL,,) 

create(My_Chair, Instance Of, Chair, NIL,,) 

If we suppose that both of the parents contain the property Has Legs, then 

My_Chair will inherit the value supplied by the object Stool (namely, three). Clearly, 

the user can take advantage of this by defining the more specific parents first. 

3.2.4. Retrieval 

It is possible to retrieve any relation(s) from the KB. A "*" in the place of one of 

the arguments is treated as a wildcard. 	- 

?(Obj Name, Prop_Name, Value, Confidence, Context) 

Note that ?(*,*,*,*,*) will return all relations in the KB. 

It is possible to return all the objects which meet the following specifications: 

?not(Prop_Na,ne, Value, Confidence, Context) 

?or((Prop_Namel, Value], Confidence], Context]), 

(Prop Name2, Value2, Confidence2, Context2) .... ) 

?and((Prop Name], Value], Confidence], Context]), 

(Prop Name2, Value2, Confidence2, Context2) .... ) 

Wildcards (*) may be substituted in place of any of the arguments. 
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3.3. Software Simulation 

3.3.1. Introduction 

Having defined a functional specification for the system, a software package was 

written, which would simulate the proposed ideas, and highlight any operations which 

could be executed directly by, or supported by, special purpose hardware. The 

simulation package was written in C [79] in a UNIX [80] environment, since C 

provides an excellent hardware interface. 

The UNIX profiling facility was used to determine what percentage of CPU time 

was spent in performing specific operations, and how many times each operation was 

performed. This information was then used to pinpoint those operations which impair 

system performance, and hence require particular investigation. 

3.3.2. Design Considerations 

Since the primary objective was to produce a low-cost plug-in enhancement 

system for either a SUN workstation or Personal Computer, a decision had to be made 

quite early as to what development tools and equipment should be used. Due to the 

availability of several SUN workstations and mainframe systems (all running UNIX), it 

was decided to target the system as a co-processor to a SUN, interfaced via a VMEbus. 

In view of this, the software was constructed in two independent units. The first unit, 

known as the HOST program, simply interfaced with a user, parsing manipulation 

commands and retrieval requests (as described in the functional specification), and 

maintaining a hash-table of the input strings. The second unit, the MANIPULATOR 

program, performed the manipulation and retrieval operations on an area of memory 

known as the Knowledge Base. The interface between the two units was implemented 

via a communications mailbox, which simulated an area of dual-ported RAM (an area 

of RAM which can be accessed independently by two different processors via two sets 
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of data and address buses). The HOST program wrote the command and the 

appropriate coded arguments into the mailbox, and then set a poll bit. The 

MANIPULATOR program was divided into several sub-units; each responsible for a 

different operation defined in the functional specification. A central control routine 

polled the HOST program, and then assigned the task to the appropriate sub-unit. 

Any returned data and status information was written into the mailbox by the 

MANIPULATOR controller and then the poll bit cleared to alert the HOST program. 

The programs were written in a modular fashion to facilitate modification, and 

interpretation of the UNIX profile information. This methodology had the added 

advantage of reducing compilation time, and hence speeding up the development time. 

Global variables were used to store parameters where it was felt that a dedicated 

hardware register would be of value. A block of memory (512 kbytes) was reserved 

for the knowledge base, and cells were allocated by the MANIPULATOR program as 

required. The free-list based garbage collection algorithm, described above, was also 

implemented. 

3.3.3. Performance Limitations 

All of the operations defined in the functional specification can be described in 

terms of four basic primitives. 

create (or insert) a specified relation 

modify a specified relation 

delete a specified relation 

retrieve a specified relation 

Therefore, to simplify matters, a less complex version of the simulation package 

was written, which performed just these operations. The first three primitives tend to 

be interactive with the user, and so speed of operation is not generally critical. The 

retrieval operations, however, are usually the crux of a knowledge based system, and 
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so should execute as quickly as possible. With this in mind, detailed timing 

calculations were performed on the retrieval operations only. The UNIX profiling 

information was used to determine how many times each routine was called, so that an 

overall picture of the time spent at each task could be derived. Having located the 

problem areas, more specific timing calculations were performed to determine how 

long a 680X0 family processor would take to execute particular areas of code. This - 

involved the (optimised) - cross-compilation of the manipulation software from C into 

Motorola format 68010 assembly code to calculate the number of machine cycles 

required to perform the retrieval algorithms (calculated using the Motorola 68000 

Reference Manual [63]). 

As anticipated, a large percentage of this time was spent in traversing the linked-

lists (approximately 1% increase in search time per link traversed). A second 

limitation was also identified - an average of 50% of total cpu time was spent 

performing hashing related instructions. However, the more complicated the search, 

the lower the proportional amount of time spent hashing. The projected simulation 

performances are presented and discussed in detail in Chapter 5, however, the 

limitations encountered by these calculations have great relevance with respect to the 

hardware design considerations. 

- - 
	In conclusion, therefore, there are two major performance bottlenecks associated 

with this system. Namely, linked list traversal and hashing. The next two sections 

examine these limitations and attempt to discover means to circumvent them. This 

leads to a discussion of the hardware design considerations arising from a review of the 

material so far amassed. 

3.3.4. Hash Coding 

Any user interactive system must include a string to look-up-code conversion 

mechanism to interface between the real world and the internal knowledge 

-56- 



representation. Hash coding of strings is such a technique [64,65,66,67,68,69]. 

Unfortunately, hashing was found to be a severe limitation on the performance of the 

simulation package, and it was hoped that suitable hardware support could be designed 

to provide speed improvements. Consequently, a brief study was made of various 

hashing, or data conversion techniques. 

The most common string to code conversion methods are based on mathematical 

functions which take as input a string (key) and output a unique code within a specific 

range. Unfortunately, it is very difficult to guarantee the uniqueness of a code since it 

is often necessary to encode large keys within fixed size conversion tables. Therefore, 

the function must spread the key codes as much as possible within the range available 

to avoid giving different keys the same code; a problem known as collision. This 

technique of randomisation is known as hashing and the key code is known as the 

hash-code. Unfortunately, it is impossible to avoid collisions for a large number of 

strings (the birthday paradox [64]) and so we must develop methods of safeguarding 

our data. 

Hash-coding is a problem which is really associated with the user interface. Since 

this is a common limitation, and not specific to this project, then it is safe to ignore for 

the present, as long as the hashing algorithms are not integrated to such an extent that 

it is too difficult to modify them. To this end, the hash-coder has been designed as an 

independent module, which accepts a string and returns the appropriate code, and vice 

versa. A number of techniques have been developed to alleviate the problems, and 

could be employed successfully within the SKMS. Appendix A summarises the more 

common hashing techniques in existence, and the method used for the purposes of this 

thesis. 
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3.3.5. List Traversal 

Unlike hashing, list traversal is a problem which is inherent in the functional 

primitives which comprise the system. It is towards this problem, that any hardware 

improvements should be directed. To attain an insight into the problem, it is first 

necessary to examine the tree search algorithm used in the MANIPULATOR program. 

Retrieve the first property block of the current object from the KB at address 

*1st_Prop. This address is stored in the HOST hash table and is supplied via the 

communications mailbox. The property block contains the property name (hash-

code), status information, a pointer to the next property in this list, *next_prop, 

(which is the next branch, or sibling, in a general tree representation), and a 

pointer to the first value block, *lst_val, (which is the first daughter in a general 

tree representation) associated with this property. 

REPEAT 

Compare the property code and status with the HOST specifications. 

IF (codes match) 

Retrieve the first value block from.the address *lst_Val (supplied by 

the property block). The value block contains the value name (hash-

code), status information, a pointer to the next value in this list, 

*next_val, (which is the next branch in a general tree representation), 

and the context name (hash-code). 

REPEAT 

Compare the value code, context code and status with the HOST 

specifications. 

IF (codes match) 
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Set a success flag in the mailbox to inform the HOST of a 

successful search. 

EXIT 

ELSE 

a) Retrieve the next value block from *next_val (supplied by 

the value block). 

ENDIF 

[iii] UNTIL (*next_val is nil) 

ENDIF 

Retrieve the next property block from address *next_prop (supplied by the 

property block). 

UNTIL (*next_prop is nil) 

Set a failure flag in the mailbox to inform the HOST of an unsuccessful search. 

EXIT 

The search algorithm, above, illustrates the basic principle that: 

A code is compared with the specification; if the match fails, then get the next 

code along this list; if the match passes get the first code in the "daughter list" 

and match that against the appropriate specification, etc. The search fails 

when no match has been found by the time we reach the end of a list (ie: the 

link pointer is NULL). 

Clearly, there are two matches being attem:d: 

• 	does the code match the specification? 

• 	is the link pointer NULL? 
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Here we have an obvious opportunity to reduce search time, by performing both 

of these matches simultaneously. Another possible improvement follows from a less 

clear observation. In general, if we search a knowledge base for a particular relation, 

no matter how it is structured, probability theory dictates that we will find more failures 

than successes. Consider, then, that we are attempting to match a particular property 

with the specification property. If we are processing the codes and pointers in parallel,. 

then (referring to figure 3.3) we will have at our disposal either the property-name or 

status information, and either the pointer to the next property or the pointer to the first 

value in the daughter list; depending on which we decide to process. If we take the 

pessimistic view that the match, in most cases; will fail, then it would be advantageous 

to be holding the pointer to the next property, so that we could already be retrieving it 

while the match is taking place. If it turns out that the match was successful, then we 

can discard the next property and retrieve the first associated value. These ideas, 

possible architectures to support them, and the advantages and disadvantages which 

follow on from them, are discussed in the next section. 

3.4. Hardware Design Considerations 

The previous section pinpointed two major limitations in the system. The first, 

hashing, is a common problem associated with the HOST Man Machine Interface 

(MMI), and does not come under the scope of this project, although a possible 

improvement is described in Chapter 6. The second limitation is related to linked-list 

traversal of the tree-based knowledge structure, and some improvements were 

discussed, briefly, above. Since tree-traversal forms the main part of the four 

functional primitives (create, modify, delete and retrieve), then only those primitives 

need be supported by special purpose hardware. All higher level ccmmands and 

interpretations can be executed by a HOST processor, as any speed gains would be 

comparatively small and not worth the development cost. 
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The special purpose manipulation hardware has to fulfill several demands if it is 

to be a viable alternative to standard Von Neumann processing by, say, an MC680X0 

processor: 

• 	low cost 

• 	exploit parallelism increased speed 

• 	support large knowledge base 

• 	easy to program 

Several design approaches were examined. The first option would involve the use 

of an advanced Von Neumann type processor as a co-processing element to our host 

system. The Am29000 was considered (its features were discussed in Section 2.5.2.) 

The main drawbacks with such a design are the cost and the design complexity. It is 

also difficult to exploit the opportunities for parallelism, which are inherent within the 

knowledge structure. Another option worth considering is to retrieve all of the codes 

and pointers, associated with either a property or value block, simultaneously (eg: 

prop—name, *next_prop, prop—status, and *lst_val - [figure 3.3]). Four processing 

elements could then deal with all our information in parallel. The advantage of this 

method lies in its high functionality, since the scope to introduce more complex 

primitives into the support system is great. Again, the major drawback with this 

method is the expense, and design and construction difficulties involved with the 

complexity of that amount of parallel processing. In particular, the management 

problems of a parallel read/write of all four entities in a property or value block, or the 

timing control of interleaved memory access of two by two entities, was thought too 

complex and expensive to merit the modest projected improvement in performance. 

This follows from the premise, discussed earlier, that more failed matches will be 

retrieved and examined than successful ones, and so it is only really worth retrieving 

the pointer to the next sibling in an object tree, rather then any more information 

regarding the current entity or any of its children (if it is a property). Thus, we could 

design a system with only two processing elements - one for list codes, and another for 
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list pointers. Such a design, involving bit-slice processors, would seem to be an 

attractive development option, since they are fast, expandable and easy to program. 

Figure 3.6 illustrates an appropriate architecture, comprising two processing elements 

(eg. Am2901), under the control of a sequencer (eg. Am2910A). 

MAP ADDRESS 
FROM RUST rMUX SEQUENCER 

ADDRESS 

MICROPROGRAM 
MEMORY 

DATA 

PIPELINE 
REGISTER 

HOST 

CLUCK 

; 

B  BUS 
US INTERFACE 	KB 

REGISTER 

BIT-SLICE I-4 BIT-SLICE 

STATUS" 
REGISTERREGISTER 

Figure 3.6: Typical bit-slice architecture. 

The drawback becomes clear when we try to interface with a large knowledge 

base. To maintain a large number of different strings and be able to address a large 

enough storage space, we require large codes and pointers (eg. 32 bits). This would 

involve several processing elements and associated peripherals, which would entail a 

fair amount of expense and design complexity. Although this is not a major 

impediment, and certainly not as great a problem as that associated with an Am29000 

based design, it should be borne in mind. The Am29300 32-bit processor family [70] 

is based around the Am2900 bit-slice family, and reduces the design complexity for 
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large applications. However; the cost of these devices far outweighs the advantage of 

increased functionality. Furthermore, the system is restricted to the instruction set 

specified by the processor incorporated into the architecture. 

Since the basic operation is the. search-and-match and the retrieval algorithms are 

data-dependent, a system could be designed comprising ICs performing low-level 

functions, such as comparators and multiplexers, but no processing elements.. This 

design would certainly pose complexity problems, but there are several advantages: 

S 	almost total design freedom encourages exploitation of inherent opportunities for 

parallelism 

S 	extremely low cost in comparison to previous proposals 

S 	easy to fabricate thus further reducing the cost 

S 	fabrication opens the door for further parallelism at the system level 

For these reasons, this design option was selected and figure 3.7 illustrates the general 

design concept. Sequencing of the architecture is performed in the same way -as a 

typical bit-slice processor application. The difference lies in the substitution of the 

processors by low-level functional blocks designed to manipulate the knowledge 

structure in the most efficient manner and exploit the opportunities for parallelism. 

Moreover, since the design is not restricted by the instruction set of the bit-slice (or 

other) processor, additional features may be supported, such as dedicated hardware to 

implement relational algebraic (set) operations on the knowledge base. 
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Figure 3.7: The Structured Knowledge Manipulation System Architecture. 

The next phase in the design stage related to the construction of a prototype. 

There are two main considerations at this stage, which ar in fact related. 

What word and pointer sizes do we use (8, 16 or 32-bit)? 

What type of memory do we use for the Knowledge Base (static or dynamic)? 

) 

MUX 
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There are certain criteria to be considered when deciding what form the memory 

design should take; some are general points, others are specific to the whole system in 

question. 

0 	General Points: 

• cost 

• power considerations 

• physical dimensions 

• memory-support device requirements 

• -ease of construction 

• chip availability 

0 	Specific Points: 

f data bus size 

• access time 

• number of "words" required 

Designs involving dynamic RAMs have the main advantage of being cheaper and 

much smaller per byte than static RAMs; dynamic devices are available as 256k x 8bit 

modules for approximately £30 whereas static RAMs of 128k x 8bit modules cost 

about £90t. They also draw much less current than static RAMs while in the 

unselected state. 

Unfortunately, since dynamic RAMs need to be constantly refreshed; this 

increases the number of support devices required and so adds complexity to the design. 

Moreover, no address decoding is provided on dynamic RAMs, and must be done off 

chip. This introduces further complexity into the timing, since the memory cells are 

organised in a row and column lattice which require to be accessed first by row and 

then by column. This explains why cycle times for static RAMs are generally much 

faster than for dynamic devices. Address decoding and memory refreshing can be 

t Prices quoted by Hitachi suppliers in January 1989 
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simplified by the inclusion of DRAM controllers and timers. Such controllers have a 

maximum drive capability and so several may be required to support very wide data. 

This leads us to the question of word size. Again, there are several 

considerations. The most important one is the dependence on the desired size of the 

Knowledge Base. Table 3.1 illustrates the relationship. 

Word Size No. Of Strings 

Supported 

Maximum Memory 

Supported 

8 bits 256 256 words 

16 bits 65536 64 kilowords 

32 bits > 4 X 109  4 Gigawords 

Table 3.1: Relationship between word size, string support capability 

and memory support capability. 

Referring to figure 3.3, each property and value block comprises 4 words. 

Therefore, a relation with one property and one value would require 8 words to define 

itt. On average, the number of words required per relation would be lower. We can 

see from the table that an 8 bit system would clearly be inappropriate, since our 

knowledge system would be able to support only 256 different strings in a memory 

space of only 256 words (32 relations in the worst case). Although a 16 bit system 

could support an adequate number of strings, the memory space may too small to be 

an effective Knowledge Base (8k relations). Clearly, a 32 bit system is very attractive. 

However, due ta cost, complexity and time constraints, it was decided to build a 16 bit 

prototype with a static RAM Knowledge Base. Moreover, a 16 bit word size proved 

convenient, since the Am29334 4-port dual-access Register File (64 words by 18 bits 

wide) can be used to implement the communications mailbox simulated between the 

t Note, however, that 8 words per relation is the worst case situation, which would occur only if no relations 

in the knowledge base were related to each other at all! 
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HOST and MANIPULATOR programs. 

Although the memory size of a 16 bit system severely limits the applicability, it 

was felt that it was adequate for prototype demonstration purposes. A 32 bit 

enhancement, based on DRAM, would not create any major difficulties other than 

some increase in complexity and cost, although this upgrade would best be introduced 

during a fabrication design phase. 

A more detailed discussion of specific hardware design considerations, 

construction and operation is presented in the next chapter. 
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CHAPTER 4 

Hardware Design And Construction 

4.1. Introduction 

Chapter 3 discussed the software simulation of the Structured Knowledge 

Manipulation System (SKMS), and various proposals for hardware support. This 

chapter describes the design of an SKMS hardware prototype, and the development of 

the control software. Figure 4.1 is a block diagram of the entire system, illustrating 

the functional blocks and their interfaces. The prototype system consists of a terminal 

and host CPU (HOST), which performs the user interface and maintains the hash 

table, and is interfaced to each module of the SKMS via a VME bus. The hardware 

support comprises a Knowledge Base (KB), interfaced to a Relational Processing Unit 

(RPU) via a LOCAL bus, and programmed through a Microprogram Store (MPS). 

The RPU functions as a 16 bit co-processing unit to the HOST, and manipulates 

information in the KB using the knowledge structure defined in Chapter 3. This 

structure is invisible to the HOST. An area of four-ported, dual access RAM in the 

RPU acts as a communications mailbox for parameter passing. 

As far as possible, the mnemonics chosen for data, address and control lines in 

the following circuit descriptions are self-explanatory, and remain consistent. For 

example, VME address lines are of the form VA 1 , and the Microprogram Store 

addresses are of the form A 1 . Signals which are active low, or are complemented, are 

"bar-ed", for example DTACK and P = Q. Appendix B provides a list of all signals 

used in the design - their mnemonics and a brief description. 
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Figure 4.1: The Structured Knowledge Manipulation System - Block Diagram 
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4.2. The VME Interface 

There are three communications paths from the HOST to the support system: 

The Microprogram Store may be written to and read by the HOST. Since we 

want the Relational Processing Unit to be fast, this store consists of 45ns access 

static RAM chips. 

To allow the HOST to make functional calls to the Relational Processing Unit, a 

communications mailbox is incorporated into the manipulation hardware, which 

may be written to and read by the HOST. Again, fast manipulation hardware 

requires a fast access mailbox (-30ns). 

The Knowledge Base must be accessible by the HOST; both for debugging during 

development, and to enable the saving and loading of data. Since it is intended 

to demonstrate that the system performance is based on architectural features, 

and not memory speed, and to facilitate performance comparisons with the 

simulation software running on contemporary systems (see Chapter 5), standard 

static RAM chips with access times of 150ns were utilised. 

The VME Interface circuit must be able to support all such communications. In the 

following discussion, a working knowledge of the VME bus is assumed (see Fischer 

[71]). 

The first thing to note is that each area of RAM has a different minimum access 

time. Secondly, each area has a different set of dimensions. Since a 16 bit prototype 

architecture has been adopted-,the maximum space addressable by a pointer in the 

knowledge structure is'64k-wqrds, and a property or value block, comprising 4 words 

(see figure 3.3), is 64 bits wide. Consequently, the Knowledge Base is viewed by the 

RPU as being 64k words by 64 bits wide. Referring to Section 3.4, a design decision 

was made to retrieve only 32 bits at a time, since, for the majority of the search time, 
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the system will be retrieving unsuccessful matches. Therefore, a microprogram control 

bit would be required to select between the least significant and most significant 32 bit 

segments (see Section 4.3). The Microprogram Store is viewed by the Relational 

Processing Unit as being 2k words long and 80 bits wide, and the communications 

mailbox is 64 words long and 16 bits wide. The latter consideration does not pose any 

major problems. Since the HOST is a 16 bit machine, and the three memory spaces 

are all multiples of 16 bits in width, it is possible to design an interface which is also 16 

bits wide. So, five 16 bit VME transactions are required to write a word to (or read a 

word from) the Microprogram Store, four for the Knowledge Base, and one for the 

mailbox. Furthermore, if 8 bit transactions are disallowed, then the circuit design is 

simplified, since it is no longer necessary to include the UDS and LDS signals in the 

address decoding hardware. The former consideration, however, is not so 

straightforward, since the DTACK signal associated with different speed memory spaces 

would have to be activated at different times. This would require a separate DTACK 

circuit for each memory space. Therefore, it was decided to construct only one such 

circuit, which assumes that all memory addressed by the HOST has an access time of 

150ns (ie: the slowest of the three). The only drawback with this decision is that the 

communication between HOST and RPU is slower than would otherwise be possible. 

Since this is only a prototype system, and the interface could be upgraded at a later 

date, the advantage of simplified construction - was considered to outweigh this 

disadvantage. Moreover, the effect of such a change can be accounted for easily in 

any timing calculations. 

Before designing the circuit, it was necessary to define when the HOST would be 

allowed to access each memory space, and when the RPU would. Table 4.1 

summarises the desired allowable accesses. 
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MEMORY 

SPACE 

Setup System Normal Operation Debugging 

HOST RPU HOST RPU HOST RPU 

K.Base V x V V V V 

Microstore V x x V V X 

Mailbox V x V V V V 

requires access 

x ... don't care 

Table 4.1: Allowable memory accesses within the SKMS 

Figure 4.2 is a schematic diagram of the VME Interface circuit. Consider the 

KB first. Except during setup (ie: initialise memory spaces, load microcode etc), both 

the HOST and the RPU require access. However, the HOST would only require 

access for loading a saved state, saving the current state, or reading values during 

debugging. By far the greatest use is made of the KB by the RPU. Consequently, the 

RPU has control of the KB (via the LOCAL bus) until the HOST (via the VME bus) 

requires control, whereupon the RPU's operation is suspended. Three control outputs 

are supplied by the interface circuit: HALT is used to suspend RPU operation (see 

Section 4.5.1) while the HOST accesses the KB. V/B controls the HOST.---.KB data 

bus transceivers and address bus buffers, and BAE controls the RPU---.KB data 

transceivers and address bus buffers. The HOST address buffering is provided for 

within the VME Interface circuit, whereas the RPU addresses are buffered via the 

tristate outputs of a dual input multiplexer (see figure 4.12). Note that the different 

ways the HOST and RPU view the KB means that HOST address VA 2 . 18  correspond to 

RPU addresses BA 0 1, (compare figures 4.2 and 4.12). Since 8 bit transactions are 

illegal, VME address line 1 (VA 1 ) is used to determine whether the odd or even 

address is accessed, and address lines VA 2  and VA,g are used in the KB chip select 

decoder (see Section 4.3). Address lines VA 3  to VA 17  then map directly to the 15 
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address lines of the 32k RAM chips (MAO to MA 14 - see Section 4.3), which make up 

the KB. 

Since the HOST does not need to access the MPS during normal operation, both 

the MPS and Mailbox are mapped into the same logical space and a toggle switch is 

used to swap between the connections to the VME bus. VME. address lines VA 19  to 

VA 23  are decoded by the interface circuit to define the logical memory spaces occupied 

by the KB, MPS and Mailbox. Since the' prototype contains only one CPU, which is 

always the master, the address modifiers (AM 0  to AM 5) are ignored. The address 

assignments of the KB, MPS and Mailbox are illustrated in figure 4.3. 

A shift register, clocked from the VME syscik, is used to delay the memory select 

line (board sel) which is derived from the HOST address strobe (AS), and return it to 

the HOST as the DTACK. 
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4.3. The Knowledge Base 

Figure 4.4 is a schematic diagram of the Knowledge Base (KB). The KB is 

constructed from standard 32k by 8 bit static RAM chips (D43256C-15L). The 

manipulation hardware (RPU) views the KB as 64k by 64 bits, and supplies 15 address 

lines to BA which map onto the MA  to MA 14  KB address lines. BA  is a 

microprogram control bit used to determine whether the odd or even 32 bit word is 

being accessed, and BA 16  is used to differentiate between the 2 banks of 32k memory 

devices which make up the 64k words. The HOST views the KB as 256k by 16 bits, 

and supplies the appropriate address lines (VA 3  to VA 17) which  map onto MA O  to MA 14 

VA 2  determines whether the odd or even 32 bit word is accessed, VA, determines 

whether the odd or even 16 bit word is accessed, and VA 13  determines which bank of 

the 32k memory devices is being addressed. 

The RPU--.KB (LOCAL bus) data path is maintained by four 8 bit Input/Output 

Ports (Am2952A), which are controlled by signals from the RPU. Note that the BAE 

signal from the VME Interface circuit is used to disable this path when the HOST 

assumes control of the KB. The HOST—KB data path is maintained by four 8 bit bus 

transceivers (74LS645-1), which are controlled by the VA 1 , VA, and V/B lines. A 

quad 1-of-2 multiplexer (74ALS157), controlled by BAE, is used to switch between the 

HOST and RPU memory control signals. Memory select decoding is performed by a 

dual 2-to-4 line decoder (74ALS139), under the control of VA  and BAE. 
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4.4. The Microprogram Store 

The Microprogram Store (MPS) is constructed from 2k by 8 bit static RAM chips 

(CYC128-45PC) and is shown in schematic form in figure 4.5. Since the RPU 

sequencer has an addressing facility of 4k words, only 11 of the 12 sequencer address 

lines are utilised. However, these ICs were chosen since preliminary hand-coding 

studies projected microprogram sizes of less than 512 words, and so the full 4k range 

was unnecessary. Access times of 45ns were chosen since the fundamental clock period 

of the Clock Generator (see Section 4.5.1) is 50ns. The memory is grouped into 5 

banks of 2 ICs, and associated with each bank are two octal bus transceivers 

(74LS645-1), which form the 16 bit data interface with the HOST. A toggle switch 

disables the HOST.--.MPS interface and enables the 80 bit data interface with the 

RPU. A 3-to-8 decoder (74ALS138) generates the appropriate chip select ((5S) signals 

derived from the HOST address lines VA 1  to VA 3 , and 3 quad 2-to-1 multiplexers 

(74ALS157) are used to switch between the HOST and RPU addresses. Note, that 

since only five of the CS signals are used, corresponding to the five 16 bit memory 

blocks forming the 80 bit micro-control word, the last three 16 bit words in every eight 

are not accessible by the HOST. 
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4.5. The Relational Processing Unit 

Figure 4.6 is a block diagram of the Relational Processing Unit (RPU). Control 

of operation is performed by the Sequencer - a toggle switch performs a RESET on 

the Sequencer, which resets its stack pointer and sets the program counter to zero. 

The Register File, in conjunction with a Control and Status Register (CSR), forms the 

HOST---.RPU communications mailbox. Knowledge structures are created in and 

retrieved from the KB via the LOCAL bus Interface (described in Section 4.3, above). 

Linked-list pointers and the garbage collection free-list pointers are stored and 

manipulated by the Pointer Store Circuit, and the Parallel Comparator Circuit 

performs a dual matching operation - the list codes are compared with the 

specifications, supplied by the HOST via the Register File, and (simultaneously) the 

list pointers are compared with zero. The Status Control Circuit filters out non-

relevant information from status words within the knowledge structure before 

comparison with a specification. It also sets or clears a mark bit in the status words to 

support set operations. The Condition Code Selector decides which test signal is to be 

used by the Sequencer for, conditional operations. The timing of execution of the 

various sub-components of each operation associated with the different functional 

blocks which compose the RPU is critical, and a Clock Generator Circuit is used to 

generate the necessary clock signals. - 

-80- 



plil 
VC INTERFACE 

 

C 

eD 

(D 

•1 

tz 
0 

I CLOCK GENERATOR I 

Cl C2 C3 

REGISTER FILE (MAILBOX) 

IN_DATA2 

DATA1 	 OUT_DATA2 

DDR1 	 RD_ADDR 
IThTRflI 	VTADBRE 

 

00 

SEQWIER 

) cLK 

I 
2.9 

COMPARATORS 

>cLK 	P 
CONTROL. 
TEST-OUT 

0-IN 

" 	1I. 
STATUS CTRL 

0-OUT 	B_IN 

CONDITION CODE SEL 

bcLK 
1 
	

TEST-IN f I 
I POINTER STORE 	I 

I ADDR 	 B-IN I 
I CONTROL. 	0-OUT 



4.5.1. The Clock Generator Circuit 

The Clock Generator Circuit, shown in schematic form in figure 4.7, is designed 

around the Am2925 Microprogrammable Clock Generator and Microcycle Length 

Controller. A 20 MHz crystal is used to create a fundamental clock (F0) with period 

SOns. This is converted into 4 different output waveforms (C l , C 2 , C 3  and C 4), which 

are used within the RPU. L 1 , L 2  and L 3  are supplied by the microprogram to define 

the cycle length for the next microcycle. Figure 4.8 summarises the different clock 

waveforms available from this circuit. The Am2925 also incorporates two sets of 

switch debounced inputs to maintain manual RUN/HALT and single-step 

(SSNC/SSNO) toggle switches. The HALT input from the VME Interface Circuit is 

used, with the wait state control circuit within the Am2925, to suspend operation of 

the RPU (by "stretching" the clocks) while the HOST is accessing the KB. A shift 

register, clocked by F0 , is used to delay C4 by increments of 50ns, since C4+ SOns and 

C4+ lOOns are both required within the RPU. For the same reason, Cl and C2 

complemented signals (Cl* and C2*) are also supplied. 

The clocks are buffered by a 74LS77 dual 2-bit transparent latch, to provide extra 

drive (and hence fan out). The latch is not used to disable the clocks to suspend RPU 

operation, since it would not be possible to guarantee the relative state of the clocks at 

the latch output once it was re-enabled. This mistake was made at an early stage in 

the design and corrected by including the wait-state circuit shown in the figure. 
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Figure 4.8: The Am2925 Clock Waveforms (adapted from [81]) 
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4.5.2. The Sequencer 

The Sequencer Circuit, illustrated in figure 4.9, is based around the Am2910A 

Microprogram Controller, which accepts a data input at D 0  to D 11 , and outputs an 

address for a microprogram store at Y 0  to Y 11 . It is reset by an external toggle switch 

(RESET), and can normally execute 1 of 16 instructions, depending on the state of the 

instruction inputs I o  to 13 . A control bit from the microprogram word, and feedback 

from the Comparator Circuit (see Section 4.5.4), is used to multiplex between two 

alternative jump addresses (PLAddrA and PLAddrB) fed through the Pipeline Register 

from the microprogram control word. Additionally, by permanently disabling the 

VECT input and connecting the CCEN input to 1 3  only 6 of the defined Am2910A 

instructions, plus the addressing enhancement, are necessary for the purposes of the 

SKMS. The PL and MAP outputs are used to enable the Pipeline Register inputs and 

the Control and Status Register MAP inputs respectively. The Pipeline feeds jump 

addresses from the microprogram to the sequencer, and the MAP inputs provide 

microprogram start addresses (see Section 4.6) from the HOST, via the Mailbox. The 

microinstructions used to control the sequencer are described in detail in Section 4.6. 

The Control and Status Register (CSR) comprises two 74ALS874 octal latches, 

which accept data from the Register File (Mailbox - see Section 4.5.3), and output to 

the Sequencer and Condition Code Selector circuits. The least significant 4 bits form 

the MAP address and are connected to D 0  to D 3  and are enabled by the MAP signal 

from the sequencer. The remaining bits are used within the Condition Code Selector 

(see Section 4.5.7), and are enabled by a microprogram control bit. 

The Pipeline Register is built from ten Am25LS2520 octal latches and is used to 

latch each control word from the Microprogram Store. Appendix C provides a 

description of the microprogram control word. Since the operation of the sequencer is 

asynchronous, except for the Program Counter (PC) and Stack Pointer, the Y outputs 
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generated from the microinstruction inputs must be latched before the sequencer is 

clocked. There were several problems associated with this part of the design before the 

correct relative timings were established - it is essential that the Y output from the 

Sequencer, generated as a consequence of the pipelined input at D, be latched before 

the Sequencer is clocked, otherwise an incorrect address will be presented to the MPS 

following a CONT (increment program counter) or RTN (return from subroutine) 

operation. Furthermore, due to the MPS access time, and propagation delays within 

the circuit, a minimum clock period of 200ns is required. This restraint, however, 

could be improved if faster (more expensive!) MPS memory was used, and if a 

fundamental clock frequency of greater than 20 MHz chosen. The Sequencer Circuit 

timing specifications are illustrated in figure 4.10 and the Control and Status Register 

in figure 4.11. 
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Figure 4.10: Sequencer Circuit Timing Specifications 

Control And Status Register (CSR) 

Bit No. Name Description 

0 -. 3 JMAP Provides the 4 bit JMAP address (op–code) 

4 Poll The poll bit input to the CC MUX 

5 1st The first reLIall* input to the CCMUX 

6-7  VCmp The select Up for the val-cmp MUX interface 
between the comparator outputs and the CC MUX 
val-cmp input. 	(6=0,7= O)-.Lj.  (6=0,7= 1)-.GT; 
(6=1,7=0)-.EQ; (6=1,7 	1)–EQ 

8 CCmp - The select input for the ctxt-cmp MUX interface; 
O-.EQ,1--EQ. 

9 PCmp The select input for the prop-cmp MUX interface; 
0-.EQ,1-.EQ. 

10 PWild The prop-wild (wildcard) input to the CC FAIL 
MUX 

11 Wild The val-wild input -  to the CC FAIL MUX 

12 CWild The ctxt-wild input to the CC FAIL MUX 

13- 15 unused These bits are unused, but could support further 
development 

Figure 4.11: Control and Status Register 
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4.5.3. The Register File (Mailbox) 

The Register File (RF) forms the RPU.--HOST interface, and is illustrated 

schematically in figure 4.12. The core component of the circuit is an Am29C334 

Four-Port, Dual-Access Register File, which provides high speed storage for both the 

HOST and the RPU. The hardware design choices associated with this part of the 

circuit proved complex, since it was essential that the RPU.---.HOST interface be as fast 

as possible, due to the functional requirement to return all of the relations which 

match a partly defined specification, or belong to a specified set. This ruled out the 

"cheap and easy" option of a shared single access RAM, since this would be slow, and 

therefore impair performance to such an extent that it is unlikely that the system would 

be viable in comparison to others available. The Am29C334 is part of the Advanced 

Micro Devices 29300 family of very high performance ALU and peripherals. With 64 

words by 16 bits (plus 2 parity bits, which are unused in this application), relatively 

low cost, an access time of —30ns, and an architecture which allows any combination 

of dual access (two reads, two writes or a read-write), it is ideal for use as a mailbox 

between the HOST and the RPU. The main drawback lies with the complexity of the 

pin-out (120 pins) and the consequent circuit construction problems. 

The HOST gains access to the File via the VME Interface Circuit - VA  to VA  

select the appropriate address, and RFSEL enables the two octal bus transceivers 

(74LS645-1). The microprogram control word supplies two addresses to the File; the 

read address (BADDR1) and the write address (BADDR2). The corresponding data 

input lines (RF_Din 0  to RF_Din ) are multiplexed between the least significant 16 bits 

of the 32 bit data from the KB (BD 0  to BD 5) and the most significant 16 bits (BD 16 to 

BD 31).  The Register File data outputs (RF Dour o  to RF Dout 15 ) are connected to five 

functional parts of the circuit (Status Control Circuit, Parallel Comparator Circuit, 

Pointer Store, LOCAL bus 110 Port and the Control and Status Register in the 

Sequencer) and also to the LOCAL address bus via a multiplexer. The use of the 

Register File during system programming is described in more detail in Section 4.6. 
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4.5.4. The Parallel Comparator Circuit 

The Parallel Comparator Circuit (PCC) is shown in figure 4.13 and performs two 

comparisons in parallel. Referring to figure 3.3 in Chapter 3, for each 32 bit word in 

a property block, and for the least significant 32 bit word in a value block, BD  to 

BD 15  will contain either a string hash-code or a status word, and BD 16  to BD 31  will 

contain a list pointer. The most significant 32 bits of a value block will contain no 

pointers, but will contain the hash-code of the context string. Consequently, two octal 

comparators (74AS866) are used to compare codes or status words with a specification. 

P is a specification code or status word supplied by the Register File, Q is multiplexed 

between the least significant 110 Port input word (via the Status Control Circuit) and 

the most significant input word. The comparator P = Q, P > Q and P <Q outputs are 

fed back to the Sequencer via the Condition Code Selector circuit (CCS), via a latch. 

The complement of P = Q (P = Q) is also supplied. 

The second comparator comprises a series of NOR (7425) and NAND (7420) 

gates which return a logical zero to the Sequencer via the CCS if the address supplied 

by the Pointer Store is NULL. This facility has a dual purpose. Firstly, it is used to 

test whether we are at the end of a linked-list (ie: the list pointer is zero), and 

secondly, it is used test whether the free-list pointer is NULL during garbage collection 

(see Section 4.6) 

The test signals are fed back to the CCS via a latch, which ensures that the results 

of a particular test performed in one clock cycle are available (at the sequencer CC 

input) in time for interpretation in the next. 
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4.5.5. The Pointer Store 

The Pointer Store is illustrated in figure 4.14, and is used to store linked-list 

pointers, and maintain the garbage collection free-list. The store itself comprises two 

fast access 2k by 8 bit static RAMs (20ns access SSM6116) and is interfaced to a 16 bit 

counter (2 x 74AS867). Only 16 locations are used, requiring 4 address bits from the 

microprogram word. The counter is used to increment the "end of used memory 

pointer" (memprr) as information is added to the KB (see Section 4.6), and to keep a 

count of the number of relations which match a particular specification (if requested). 

The input to the store can be sourced from three places; either the Register File or 

BD 16-31 
via a 2-to-1 multiplexer, or from the store itself, via the counter. Note that 

the counter is connected such that it can either increment data as it passes through, or 

leave it unchanged. The output can be directed to the Comparator Circuit (for 

comparison with zero), the LOCAL address bus (to access the next property or wilue 

in a list), or BD 1631  (to modify list pointers while inserting or deleting information in 

the KB). Octal bus buffers (74ALS541), controlled from the microprogram word, are 

used to perform "wired-OR" connections between the Pointer Store and its related 

functional blocks. 
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4.5.6. The Status Control Circuit 

The Status Control Circuit performs two operations. Each 16 bit status word is 

divided into two halves; 8 bits are available for future development, and pass through 

the Status Control Circuit unchanged; the other 8 bits are reserved for status 

information, including a mark bit for book-keeping during set operations. The first 

operation is to set or clear the mark bit, and control bits are provided by the 

microprogram to do this (SET MARK and CLR_MARK). The mark bit can be cleared 

when read from the KB into the Register File (to perform a reset at the start of a set 

operation), and either set or cleared when a status word is being written from the RF 

to the KB (either to mark a relation as being part of the specified set, or to remove an 

ineligible relation from the set, respectively). The second operation (masking) involves 

the logical ANDing of the 7 remaining status bits with those in the specification word, 

so that only the relevant ones are compared. This function is enabled or disabled by a 

control bit from the microprogram (TST_STAT). 

Two octal buffers (74ALS541) are used to disable the output path from the 

Register File to the least significant I/O Port when data is being input, otherwise 

contention would occur as the File attempted to output a specification to the P input of 

the code comparator, while information was being placed by the 110 Port at the Q 

input of the comparator. The Status Control Circuit is illustrated in figure 4.15. 
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4.5.7. The Condition Code Selector 

The Condition Code Selector circuit comprises a series of 2-to-1 and 4-to-1 

multiplexers and an Am2922 8 input Multiplexer with Control Register The circuit is 

used to direct either the P = Q, P = Q, P <Q or P > Q test signals to the Sequencer 

condition code input, depending on which information is being compared (property, 

value, context or status words). Status bits from the CSR (including the Poll bit) and 

the output from the pointer comparator (PTR_ZERO) are also directed in this manner. 

A OV input to the Sequencer CC can be used to force tests to pass. This facility is 

particularly useful for generating unconditional jumps or jumps to sub-routines. 

A 4-to-1 multiplexer is used to force a fail input to the Sequencer Circuit 

depending on the value of the wildcard bits in the CSR. This is because a failed test 

indicates a successful match as far as the search algorithm is concerned (see Section 

4.6). The circuit is illustrated in figure 4.16. 
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46. SKMS Control and Operation 

This section describes the control of the SKMS through the sequencing of 

microinstructions, and the interpretation of the outputs of functional components by 

the Condition Code Selector. This is followed by a discussion of the basic operation of 

the system, which is the hardware implementation of the software algorithms described 

in Chapter 3. 

4.6.1. System Control 

The SKMS operation is controlled directly via the microprogram in the MPS, and 

indirectly by the HOST via the Mailbox. The microprogram comprises a series of 

functional routines (create, delete, modify and retrieve relations) preceded by a startup 

routine of the form: 

REPEAT 

no operation 

UNTIL (CSR Poll bit is set (see figure 4.11)) 

Jump to address given by MAP in CSR (JMAP) 

Thus, the MAP address, which is used to set the sequencer program counter to the 

- start of the desired routine, is effectively an SKMS op-code, set by the HOST. 

The operation of the Am2910A sequencer has been modified by external 

connections (see Section 4.5.2) to execute a reduced instruction set. Table 4.2 

summarises these instructions. 
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TABLE OF INSTRUCTIONS 

1310 Mnemonic Fail Test Pass Test Enable 

Y STACK Y STACK 

0 JZ 0 clear 0 clear PL 

1 CJSR 

C2JSRt 

PC hold D push PL 

2 JMAP D hold D hold MAP 

3 CJPA 

c2JMPt 

PC hold D hold FL 

10 RTN PC hold stack pop PL 

14 CONT PC hold PC hold FL 

t These instructions are differentiated by a microprogram control bit (PLAIB_SeLOr - see Section 4.5.2). 

Note 1: Instructions 4-9, 11-43 and 15 are unused. 

Note 2: Test passes if CCEN* = H0rCC* = L and test fails if CCEN* = L and CC* = H 

Table 4.2: SKMS Sequencer Instruction Set 

The sequencer commands define the next value of the program counter (PC). 

The user stack (US) allows the nesting of sub-routine calls up to eight levels deep; [US] 

denotes the contents of the User Stack in the following description. 

JZ 	 PC=0;US0. 

This instruction specifies that the address output (ie: the address of the next 

microinstruction) is zero and resets the stack pointer. The RPU RESET switch forces 

this condition to ensure the correct startup state occu. JZ is also used at the end of 

each microprogram function (as a "jump to start" command) to effect a soft RESET as 

a safety precaution. 
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CJSR 	If CC* is low: [US] = PC + 1; Pc = address; us = us -hi: 

Else PC = PC + 1. 

This instruction is a conditional jump to a subroutine, whose address is supplied by the 

Pipeline Register (PL). The PL output is activated to enable the PL input to the 

Sequencer. The jump occurs if the condition code input to the Sequencer (CC) is low, 

otherwise, the program counter is simply incremented. The stack stores the old value 

of the program counter in preparation for a return at the end of the subroutine. If 

CJSR is specified, then the jump address is supplied by PLAddrA. If, however, C2JSR 

is specified, then the address is PLAddrA if PTR_ZERO is low and PLAddrB if 

PTR ZERO is high, where PTR ZERO is the output from the Pointer comparator (see 

figure 4.13). 

JMAP 	PC = CSR(b3 - bO) 

The program counter takes its value from the least significant 4 bits of the control and 

Status Register. The MAP output is activated to enable the CSR input to the 

Sequencer. As described above, this facility enables the HOST to supply the RPU 

with an op-code. 

CJMP 	If CC* is low: PC = address; stack (US) unchanged. 

Else PC = c + 1. 

This instruction is a conditional jump to the address supplied by the Pipeline Register. 

The program counter is not stored on the stack, so a return would result in an 

unknown state and is therefore illegal. In all other respects, CJMP and C2JMP act like 

JSR and C2JSR. 

RTN 	US = US - 1; PC = [US] 

This instruction is used to branch back to the instruction following the last subrouti:i. 

call, and takes the value of the program counter from the stack. 

CONT 	pc=pc+i 
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This instruction simply causes the program counter to be incremented, and the next 

sequential microprogram control word is executed. 

To initiate a microprogram routine, the HOST writes the specification 

information into the Register File, and the appropriate op-code (MAP address) and 

status information into the CSR (see fig. 4.11). For each specification code in the 

Register File, there is a corresponding match code field - the address allocations are 

presented in figure 4.17. If wildcard matches are desired, then the HOST must set the 

appropriate fields in the CSR. Similarly, to define the type of comparison performed 

on the property, value and context codes (equal to, not equal to, greater than or less 

than), the appropriate bits must be set in the CSR. 

As is shown in figure 4.9, there are 8 possible inputs to the sequencer CC input. 

One of these is simply connected to OV so that it is possible to force a test to pass. 

This is particularly useful for generating unconditional jumps within the program. The 

microcode has been written such that a successful match equates to a failed conditional 

code test. Consequently, the wildcard fields in the CSR, if set, cause the CC tests to 

fail at the appropriate times. 
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MNEMONICS £ CODE M N 
ADDRESS 

FROM HOST 
ADDRESS 
FROM RPU 

SPECIFIED NEW VALUE (S....NEWV) OxC00000 OxO 

SPECIFIED PROPERTY (S_PROP) OxC00002 Oxi 

SPECIFIED PROP STATUS (S_PSTAT) OxC00004 0x2 

SPECIFIED VALUE (S_VAL) OxC00006 0x3 

SPECIFIED CONTEXT (S_CTXT) OxC00008 0x4 

SPECIFIED VAL STATUS (S_VSTAT) OxC0000A 0x5 

UNUSED OxC0000C 0x6 

MATCHING PROPERTY (B_PROP) OxC0000E 0x7 

MATCHING PROP STATUS (B_PSTAT) OxC00010 0x8 

MATCHING VALUE (B_VAL) OxC00012 0x9 

MATCHING CONTEXT (B_CTXT) OxC00014 OxlO 

MATCHING VAL STATUS (B_VSTAT) OxC00016 Oxil 

UNUSED 
OxC00018 

4,  
OxC00070 

042 

4,  
0x38 

MEM_PTR OxC00072 0x39 

RF_ERROR OxC00074 Ox3A 

CLEAR—PS OxC00076 Ox3B 

FIRST—PROP OxC00078 Ox3C 

PROP_PTR OxC0007A Ox3D 

KB—ADDRESS OxC0007C Ox3E 

CONTROL & STATUS REGISTER (CSR) OxC0007E Ox3F 

Figure 4.17: Register File Address Allocations. 
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4.6.2. Construction Details 

The SKMS prototype was constructed in a VME development Euro-card frame 

(Plate 4.1). Two cooling fans were added to maintain a temperature within the 

commercial IC specification (0°C - 70°C). This was necessary, due to hot spots 

created by the close proximity of the circuit boards. Two switched mode power 

supplies provided the 5V, 12V and Ground lines. Each PSU was rated at 5V/10A and 

12V/2A, and were doubled up to ensure that they were never overloaded. The power 

dissipated in the entire SKMS system is —50W (this is divided into 5V/8.25A and 

5V/2.09A over the two PSUs). At one time during the debugging stage, power supply 

problems were suspected as a cause of a temperature dependent marginal timing 

problem, which caused corrupted data to be written to the Knowledge Base. This 

suspiscion was supported by the fact that the original single PSU was marginally 

overloaded. Although the inclusion of a second PSU lessened the occurence of the 

fault, it did not eliminate it. The fault manifested itself very rarely, and is almost 

certainly due to propagation delays created by the large amounts of wire wrapped data 

buses in the system becoming significant in a high speed environment. One possible 

solution would have been to employ a custom designed multi-layer printed circuit 

board. However, the cost of this approach was not considered justified for a 

prototype. 

The VME Interface and Knowledge Base were constructed on an extended 

double Euro-card circuit board (Plate 4.2). An extended double Euro-card was also 

used to construct the Microprogram Store (Plate 4.3). The Relational Processing Unit, 

however, was much more complex and required an extended double Euro-card with an 

extended single Euro-card daughter hoard (Plate 4.4). Since no processing elements 

were used in the RPU design, a great many discrete devices were required. The 

resulting component density caused many problems with regards to heat dissipation and 

device layout. Nevertheless, the advantage that lies with this approach is the possibility 
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of implementation on an IC or IC set, which would solve the timing problems 

associated with the large amounts of wiring required in the prototype, and support a 

faster RPU cycle time. 

The circuit descriptions, above, illustrate the complexity of control, and an 80 bit 

wide micro-control word was required to co-ordinate the system operation and 

communication - both between the functional modules comprising the RPU, and 

between the RPU itself and the MPS, KB and HOST. A microprogram language and 

micro-assembler were developed and are described in Section 4.7 

4.6.3. System Operation 

Prior to normal operation of the SKMS, the system must be set up correctly. The 

user must initialise all HOST accessible memory spacest before downloading the 

microprogram. Care must be taken to ensure that the toggle switches are correctly set 

for the Mailbox and Microprogram Store. 

The search and match algorithm described in Section 3.3.5 was translated into the 

following RPU implementation. 

The address of the 1st property block (*1st_prop) is written to the Register File 

from the HOST, and then into the Pointer Store. The address is simultaneously 

placed onto the LOCAL address bus and the least significant 32 bits of the 1st 

property block is loaded into the LOCAL bus I/O Port. 

The property ID code is copied into the Register File and placed at the Q input 

to the 74AS866 comparator, while the pointer to the next operty (*pnext) is 

copied into the Pointer Store. The specified property code is placed at the P 

input of the comparator, in parallel to the above two operations. 

t This includes the PME012D RAM board used for the hash and symbol tables. 
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(c) If the codes match, the most significant 32 bits of the property block are retrieved 

and compared in the same way. This time, however, the code is the property 

status word and the pointer is to the 1st value block associated with this property 

(*lst_val). If the status codes match... 

[i] Retrieve the least significant 32 bits of the 1st value block into the LOCAL 

bus 110 Port from the address *lst_Val, which is supplied by the Pointer 

Store: 

[ii] The value, status and context codes are stored in the Register File, and 

compared with the specified ones, in the same way as the property block. 

The pointer to the next value (*vnext) is also stored in the Pointer Store, as 

before. 

[iii] If all of the codes match... 

The Poll Bit in the CSR is cleared, which alerts the HOST that a 

successful match has been found. 

The microprogram counter is reset to zero (JZ). 

[iv] If any of the matches fail... 

*vnext is compared with zero simultaneously to the code comparisons. 

If it is NULL (ie: at the end of a list), then *pnext is compared with 

zero. if this, too, is NULL, then the search has failed, and a failure 

flag is set in the Register File. The poll bit is then cleared to alert the 

HOST. if it is not NULL, then *pnext is used to retrieve the next 

property block and then the program counter jumps to (b). 

If, however, *vnext was not NULL, then it is used to retrieve the next 

value block. 

Go to (c)[ii] 
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(d) Else... 

*pnext is compared with zero simultaneously to the code comparisons. If it 

is NULL (ie: at the end of a list), then the search has failed, and a failure 

flag is set in the Register File. The poll bit is then cleared to alert the 

HOST. 

Else retrieve the next property block from address *pnext in the Pointer 

Store. 

Go to (b) 

Clearly, this is a basic interpretation, and the contribution of the Status Control Circuit 

and wildcard facility have not been discussed. More detailed information can be 

elicited from the microprogram listing in Appendix F. 

4.7. Programming 

Since the RPU is composed of several inter-dependent modules, construction was 

by degrees. The first circuit to be built was the Clock Generator Circuit, since all 

others depend upon its outputs. Next was the Sequencer, then the Condition Code 

Selector, etc. Each time a new section of the circuit was added, new control bits were 

required to test it. Consequently, as the hardware developed in a structured fashion, 

so too did the micro-software. 

The choice of microprogram language for an environment such as the SKMS is 

extremely important. Ideally, it should possess the following features: 

• 	flexibility - to support different system designs or design alterations 

• 	minimal encoding - each microinstruction bit is responsible for a different 

function, thereby maximising system parallelism and hence speed. Unfortunately, 

the result is often a very large control word, and some bits are generally encoded. 
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• 	easy to use - since microinstructions are often large, a microprogram language 

should support the definition of high-level macros and sub-routines, which can be 

assembled into the appropriate microcode. 

Since the SKMS is composed of several functional modules operating 

independently (each requiring control by the microprogram), instead of a single 

processor, whose operations are easily defined and controlled through its instruction 

set, it was not possible to define single mnemonics for each operation of the system. 

Instead, several sub-instructions were required - one for each functional module. 

Consequently, there were no suitable microprogram languages or development tools 

available and a microprogram language and micro-assembler (p..aJOA) were developed 

specifically for the SKMS. As one might expect, due to the complicated nature of the 

circuit, 1i.alOA is also complex, and each control word is of the form: 

<IN> 	defines sequencer 10.3  inputs. 

<CC> 	controls the Condition Code Selector. 

<CL> 	defines the clock speed (Li, L2, and L3). 

<CM> 	controls the Parallel Comparator Circuit. 

<KB> 	controls the KB and 110 Port. 

<PS> 	controls the Pointer Store Circuit. 	 - 

<RF> 	controls the Register File. 

<ST> 	controls the Status Control Circuit. 

<WD> 	defines the inputs to the Wildcard MUX. 

Writing programs in this format would be tedious and almost impossible to 

debug. Therefore, pa10A macros and sub-routines, defining all the operations 
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required by a system programmer, were compiled and stored in libraries, and a macro 

pre-processor (rnp) and high level assembler (ksma) were written to enable the user to 

develop easily understandable programs. ksma, mp, a1OA and their relationships are 

described more fully in Appendix E. UNIX shell scripts are used to perform the 

downloading of code into the Microprogram Store and the HOST - they are listed in 

Appendix D. 

To test the performance of the SKMS, a basic C interface was written, which 

would allow the USER to manipulate the Knowledge Base via the HOST and RPU. 

Chapter 5 describes the use of a simple command line parser which calls these 

C-.SKMS functions in order to time particular operations. This could be taken a step 

further by utilising a Prolog-..0 interface which would allow communication between 

the SKMS and a standard Al Language. 
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Plate 4.1: The Structured Knowledge Manipulation System (SKMS) Prototype 
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Plate 4.2: The VME Interface Circuit and Knowledge Base (KB). 
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Plate 4.3: The Microprogram Store (MPS). 
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Plate 4.4: The Relational Processor Unit (RPU) - Mother Board. 
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Plate 4.5: The Relational Processor Unit (RPU) - Daughter Board. 
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CHAPTER 5 

Verification and Results 

5.1. Evaluation Systems and Methods 

In this chapter, performance evaluation results are presented of the Structured 

Knowledge Manipulation System (SKMS) retrieval times. Two major comparisons are 

made, serving two different purposes. Firstly, to verify that the hardware support does 

indeed provide speed improvements over the software simulation (following from the 

features discussed in Chapter 3), the SKMS performance is compared with the software 

version running on a Motorola 68010 based Single Board Computer. Secondly, to 

evaluate the suitability of the knowledge structure developed and described in this 

thesis, and the effectiveness of the SKMS as a whole, the performance of the system is 

compared with other hardware based (or supported) Knowledge Manipulation Systems. 

The software was also compiled to run on two other systems; a Personal Computer 

based on an Intel 80286 processor and a Sequent Mainframe Computer based on the 

Intel 80386 processor. Their performances are also presented here. Projected 

performances are presented for the additional times required to execute the create 

(insert), modify and delete functions once the retrieval algorithm has located the target 

relation. 

A simple command interface program was written which would parse a request 

from the user, calculate the string hash-codes and initiate the appropriate retrieval or 

manipulation routine. The same code was used to call either the software-based 

simulation routines, or the routines implemented in the SKMS hardware. In this way, 

it was possible to predict, and keep uniform, the user interface overheads. The 68010 

based routines were cross-compiled using an optimised MIT Portable C Compiler and 

- 115- 



the total number of machine cycles used by each one was recorded. Given the clock 

rate of the system, and assuming no wait states, is was possible to derive the 

approximate times taken to perform each routine. Initially, considering a single 

knowledge structure (object) comprising 20 properties, each of which consists of 20 

values (ie: 400 relations), approximate projected times were calculated, for both the 

software and hardware based systems, to retrieve the 1st, 100th, 200th and 400th 

relations for two different situations: 

The property, value and context are known (ie: a full specification). 

?(Object Name, Property Name, Value Name, Context) 

Only the value is known; the property and context are wildcards. The object 

name is supplied since, in this case, there is only one object, and it is preferable 

to reduce the effects of hash table searching as much as possible, so as not to 

cloud the issue of KB search time measurement. 

?(Object Name, *, Value Name, *) 

These two search types are at either end of the retrieval time range; (i) being the 

fastest type of search and (ii) being the slowest. These results, presented in tabular 

form below, may be compared with the actual recorded values. The next step is to 

extrapolate the results to derive the projected performance of a hypothetical parallel 

relational processor, based on the SKMS architecture. 

The evaluation system comprises five circuit boards connected via a VMEbus and 

two local buses (see Chapter 4). A FORCE Computers SYS68K CPU-3 Single Board 

Computer running at 10MHz is used both as the SKMS HOST and to run the software 

simulation system. 10MHz is the fastest clock which can most efficiently utilise the 

150ns access SRAM Knowledge Base without wait states; since a write operation 

requires a minimum access time of 2% clock cycles (250ns), and a read operation 

requires a minimum of 11/2 cycles (150ns). A Plessey Microsystems PME012D 512 



kbyte DRAM board is used to store the hash and symbol tables for the user interface 

routines. The MPS and RPU boards comprise the core of the SKMS hardware support 

(see Chapter 4), while the Knowledge Base (KB) board is used by both the hardware 

and software based systems to store relations. 

Since both the software and hardware systems utilise the same SRAM board as 

their Knowledge Base, it is possible to calculate the projected times of each system 

running at maximum capability, ensuring that the performance comparison is 

dependent not on memory speed, but on architectural differences. Approximate times 

for the user interface overheads may also be calculated. Due to the dependence of 

such information on the size of the input character strings and the hash-table collision 

rate, it was assumed that all strings were 6 characters in length, and that an average of 

3 collisions occurred per string (since a very simple hashing algorithm was selected). 

Although this overhead is important, and is discussed in more detail later, a more 

important consideration is the overhead relating to the mailbox polling-based 

communication between the 68010 host processor and the SKMS co-processing 

hardware. Again, the appropriate code was examined to determine the number of 

machine cycles involved, and hence the time taken to perform the operations. 

The control software was modified so that it was possible to execute a particular 

search a definable number of times before printing out the result. Consequently, 

timing each operation was a simple matter of measuring the time taken to execute it 

many times. Since the number of repetitions necessary to produce times of easily 

measurable values (greater then 10 seconds) was of the order of 10000, it is quite 

reasonable to ignore the effect of a single execution of the input and output overheads. 

A single command (test) was used to create the test object comprising 400 relations, 

and the faciliLy to execute only the parsing and hashing operations was included, so 

that this overhead could also be measured by timing many repetitions. 
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5.2. Performance of the Simulation System 

Having reduced the simulation retrieval routine into independent sub-units, it is 

possible to derive an equation to calculate approximate numbers of machine cycles 

required for the retrieval of various relations: 

search time = 250 + Ne,, {A + 230 + N (B + 120) + N (B + 650) + 230} 

+ NO  (A + 100) machine cycles 

where 

N1 = number of failed value/context matches 

N,, = number of passed value/context matches 

= 1, if match found; 0, if no match found 

NwJ = number of failed property matches 

= number of passed property matches 

and: 

A = 140 (wildcard property) 
	

B = 280 (wildcard value) 

A = 210 (specified property) 
	

B = 350 (specified value) 

This equation was derived by the examination of 68010 format assembly coded 

versions of the appropriate segments of the simulation software. By referring to the 

68000 family User Reference Manual [63], machine cycle totals of the code segments 

could be calculated. Due to the difficulty in calculating machine cycles on a 68010, 

and accounting for every loop or jump in the software, these figures, cannot be 

guaranteed to be exact, so should be used only to identify trends. 

Assuming the 400 relation structure described in Section 5.1, table 5.1 

summarises the expected times for a 6801 based system running the simulation 

software. Note that the times for the retrieval of the 100th, 200th and 400th relations 

given a full specification are constant, while the times when only the value is known 

increase more or less linearly. This is because the only way to find a relation given just 
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the value is to perform a sequential search of the knowledge base; whereas, the 100th, 

200th and 400th relations contain the 20th value of the 4th, 9th and 19th properties 

respectively, and so, if the properties are known, the search times are almost identical 

and, as expected, greatly reduced. 

Approximate Projected Times Of Software Simulation Package 

(based on a 68010 processor running at 10MHz) 

Matching 

Relation 

Only Value Known Full Specification 

Machine Cycles Time(p.$) Machine Cycles Time(is) 

1st 1800 180 1900 190 

100th 43800 4380 10700 1070 

200th 87200 8720 10700 1070 

400th 173900 17390 10700 1070 

Table 5.1: Projected Simulation Package Times. 

It is also possible to derive the approximate projected time taken to retrieve each 

subsequent relation for this object type. At 10 MHz this figure is 44 1i.s/relation. 

5.2.1. Overheads 

For a 6 character word and an estimated collision rate of 3, the hashing and 

symbol table manipulation algorithm requires 4270 machine cycles. Since it is called 4 

times (for object, property, value and context strings), we require approximately 17000 

machine cycles. The command parse routine requires approximately 10000 cycles, 

which gives us a total of 27000 machine cycles, which is about 2700s for a 10MHz 

system. Note that this time is of the same order as that required to retrieve a fully 

specified relation, and so the problem of hashing, although not addressed in detail in 

this thesis, requires further investigation. Table 5.2 summarises the results. 
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Approximate Projected SYS68K User Interface Overheads 

(based on a 68010 processor running at 10MHz) 

Operation Machine Cycles Time(ii..$) 

Parsing 10000 1000 

Hashingt 17000 1700 

Total User VF —27000 2700 

t assuming strings of 6 characters, and an average hash hit rate of 3 

Table 5.2: Projected User Interface Overheads 

5.2.2. Motorola 68010 based Single Board Computer 

Table 5.3 shows the actual times taken by the 68010 based software system. 

These measured times are broadly consistent with the times projected above. As 

expected, the user interface overheads are quite large in comparison to the search 

times, although their significance decreases as the search space increases. The 

measured time to retrieve each subsequent relation is 44.5 .s/relation, which agrees 

closely with the projected time of 44 is. Extra searching in the hash table would 

explain the slight increase in search time for a fully specified relation as we go 

from the 100th to the 400th relation. 
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Measured Times Of The Software Simulation Package 

(cross-compiledt onto a SYS68K CPU-3 [running at 10MHz]) 

Matching 

Relation 

Only Value Known Full Specification 

Time(jis) Time(is) 

1st 220 240 

100th 4500 1200 

200th 8900 1200 

400th 17800 1300 

Overheads 2700 2700 

t MIT Portable C Compiler 

Table 5.3: Actual Simulation Package Performance 

5.2.3. Intel 80286 and 80386 based Systems 

Tables 5 A and 5.5 summarise the results obtained for an Intel 80286 PC running 

at 20MHz, and an 80386 based mainframe. The search times for the 86286 are 

comparable to twice the projected 10 MHz 68010 based system, with a value of 

approximately 22 is/relation. The time taken by the 80386 based machine to retrieve 

each subsequent relation is 9 1is/relation. Note that the time spent executing the 

overheads on the 80386 machine is not much less than the 80286, whereas the retrieval 

times are appreciably better. This is probably due to one or more of several reasons: 

the 80386's architecture being more efficient at dealing with the iterative nature of the 

search process, different memory access times, or greater memory caching in the 

Sequent machine. 
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Measured Times Of The Software Simulation Package 

(compilédt onto a VISION ATom286 [running at 16MHz]) 

Matching 

Relation 

Only Value Known Full Specification 

Time(p..$) Tirne(s) 

1st 140 160 

100th 2200 600 

200th 4400 700 

400th 8700 800 

Overheads 900 900 

t Turbo C Compiler 

Table 5.4: Intel 80286 based PC Performance 

Measured Times Of The Software Simulation Package 

(compiledt onto a Sequent 80386 Computer) 

Matching 

Relation 

Only Value Known Full Specification 

Time(s) Time(p..$) 

1st 50 50 

100th 930 230 

200th 1840 250 

400th 3650 1 	 300 

Overheads 

Parsing 280 

Hashing 580-.620 

Total 860-.900 

t C - 80386 Compiler 

Table 5.5: Sequent 80386 Computer Performance 

5.3. Performance of the SKMS 

The projected timing information was based on the maximum clock speed for 

each instruction, assuming perfect hardware, an increased clock rate (created from a 

48MHz input to the Am2925 clock generator) and no timing problems. By examining 
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the appropriate microcode sections, an equation to calculate the time taken to find a 

relation at optimum speed may be derived: 

search time == (11 + NP  (15 + 15N)) X 0.1 ji.s 

where: 

N = number of properties examined 

N = number of value/context pairs examined 

It should be noted that three different clock speeds are involved, but the variation 

between the different microcode words is such that the average clock period is —100 ns 

(0.1 us). 

Unfortunately, due to the large amount of wiring present in a wire-wrapped 

prototype, an unresolved marginal timing problem developed, (see Chapter 4) which 

caused occasional faulty memory accesses at the desired clock rate, and necessitated a 

reduction in the clock speeds, giving: 

search time (11 + NP  (15 + 15N)) X 0.3 is 

Projected retrieval times have also been derived for this situation (table 5.6). For the 

SKMS, the projected time taken to retrieve the subsequent relation in this search tree 

is approximately 1.5 us/relation at optimum speed, and 4.5 us/relation at the reduced 

speed. The maximum memory space addressable by . a 16 bit SKMS is 512 kbytes, 

which corresponds to a maximum of 32767 relations (a single relation requires 16 

bytes). If the memory space is fully used, then the maximum time required to find a 

relation is —50 ms, at optimum performance. 
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Approximate Projected Times Of SKMS System 

Matching 

Relation 

Number 

Only Value Known Full Specification 

Machine 

Cycles 	. 

Time(s) Machine 

Cycles 

Time(p..$) 

A B A B 

1st 40 12 4 40 12 4 

100th 1586 480 160 326 100 35 

200th 3161 950 320 326 100 35 

400th 6041 1800 ::610 326 100 35 

SKMS running at reduced speed (3.3 MHz) 

SKMS running at optimum 

Table 5.6: Projected SKMS Performance 

5.3.1. Overheads 

The same user interface overheads, described for the software package above, 

apply in this case, since the same code was used to call the various functional routines. 

In this case, however, we also have to account for the time spent by the 68010 HOST 

and the SKMS co-processing system in communication , since this is an integral part of 

the architecture and hence, the search process. Since the Register File, used as the 

communications mailbox between the SKMS and the 68010, has an access time of 

30ns, it may be utilised by the fastest generally available 680X0 family processor 

(20MHz) without wait-states. This would require a separate DTACK circuit for the 

VME-.Register File interface from the all-purpose one used in the prototype (see 

Chapter 4), but this would pose no problems. 

The 68010 and SKMS communication overheads can be split into three parts. 

The 68010 host must first set up the SKMS Register File (mailbox) with the values 

appropriate to the current search and then set the poll bit. Having done this, it 
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repeatedly polls the mailbox to determine whether the search has been completed. 

Finally, the mailbox is read to verify the success of the search and collect the returned 

information. Therefore, these overheads define a minimum search time of 51 ps for a 

20MHz host, and 102 p.s at 10MHz. Note that the projected retrieval time for the 1st 

relation (12 p.s for the prototype) is a great deal lower than the projected minimum 

overhead time (102 p.5), so we should expect the actual measured time to be of the 

order of 102 p.s. Also, we should add the communications overheads to the other 

projected SKMS times before comparing them with those recorded. Table 5.7 

summarises the results. 

Approximate Projected Communications Overheads 

Operation Machine 

Cycles 

Time(p.$) 

10MHz 20MHz 

SYS68K-.SKMS 500 50 25 

Poll SKMSt 170 17 9 

SKMS-.SYS68K 350 35 17 

Total Communications 1020 102 51 

this is the figure for each examination of the SKMS poll-bit 

Table 5.7: Projected Communications Overheads 

5.3.2. SKMS Practical Results 

Table 5.8 shows the actual times taken by the SKMS. They closely match the 

times projected above; with the relation retrieval time being 4 p.s/relation, as compared 

with the 4.5 p.s/relation projection. 
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Measured Times Of The SKMS System 

([running at 3.3MHz] interfaced to the SYS68K CPU-3) 

Matching 

Relation 

Only Value Known Full Specification 

Time(p..$) Time(is) 

1st 140 160 

100th 500 240 

200th 900 300 

400th 1700 300 

Overheads 2800 2800 

Table 5.8: Actual SKMS Performance 

As predicted, the time spent retrieving the 1st matching relation was the same 

order as the minimum time required due to the communications overheads, rather than 

the projected time. Note that, for both types of search, the time to retrieve the 1st 

relation should be constant; the small discrepancy in table 5.8 is almost certainly dueto 

the difference in hashing time for the, different requests becoming significant in 

comparison to the low search times. Extra searching of the hash-table would also 

explain the slight increase in search time for a fully specified relation as the relation 

number increases from 100 to 400. Again, the user interface overheads are quite large 

in comparison to the search times, with their significance decreasing as the search 

space increases. 

The calculations summarised in table 5.6, and supported by experimental 

evidence, taking into account communication overheads, give a search time range for ,  a 

fully utilised 16 bit SKMS as: 

51 li_s 	R, 	50ms 
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Since knowledge base manipulations employ the same algorithm as the retrieve 

function, with extra code to perform the required operation once the appropriate 

relation has been found, then the times to delete, insert or modify a relation will be 

only a small percentage greater than the search times quoted above (see table 5.9). 

Thus, for a hypothetical parallel system (see Chapter 6) comprising independent SKMS 

modules, interfaced to a central controller (HOST), this time range is true for any 

number of relations (number of relations ~ 32767 X number of modules). The major 

limiting factor now becomes the user interface hashing algorithm, and it is on this area 

that more effort needs to be spent. 

A singularly clear advantage of the SKMS lies in the structured way in which it 

searches the knowledge base. Consequently, it is able to retrieve all of the relations 

which match a wildcard specification in one sweep of the search space, and so the time 

to retrieve 5 such matches, say, would be considerably less than the time required to 

retrieve 5 unrelated ones. Similarly, the deletion or modification of all of the relations 

which match a wildcard specification is performed in one sweep. However, a 

communications overhead of — SOiis is associated with each relation passed from the 

KB to the HOST (table 5.7). This overhead could be drastically reduced if a dual 

ported relation buffer was employed, which was larger than the Register File 

incorporated in the prototype. 

The status matching hardware (see Chapter 4) facilitates fast set operations such 

as the join or intersection of two different specifications. Consider the intersection 

(logical and) of several specified relations. During the first sweep of the KB, the mark 

bit in the status word of properties and values matching the first specification is set, 

and is performed within the time range (R,) given above. During each subsequent 

search, only those branches whose mark bit is set are compared with the appropriate 

specification - if a marked relation is matched successfully, the mark bit is unchanged, 

otherwise it is cleared. Thus the increase in execution time per specified relation is 

better than linear, since each pass requires less time than the last. The join (logical or) 
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operation is performed in a similar manner. The ability to search for numerical values 

which are greater than, less than, equal to, or not equal to the specification is also 

supported. Hence, along with the intersection facility, it is possible to match against 

ranges of values. These utilities, although supported in the hardware, have not yet 

been supported in the control microsoftware. 

Additional Times For KB Manipulation 

(SKMS running at optimum performance) 

Operation Machine Time % Time Garbage 

Cycles (is) Collection 1 

Insert a value and context 20 2 35 

pair into a property 

Insert a property, value and 35 3.5 40 

context into an object 

Delete a relationt 10-.50 1-.5 20-.50 

Modify a value in a relation 2 0.2 0 

t these times depend on which value and/or property in their respective lists are to be 

deleted. Garbage Collection is performed in S cycles for each value or property block 

deleted. 

Table 5.9: Additional Manipulation Times 

F 1: describes time spent in memory allocation and reclamation 

-128- 



5.4. Other Knowledge Based Systems 

5.4.1. Ferranti Relational Processor 

The Ferranti Relational Processor (FRP) is described in Chapter 2 and claims to 

support real-time interpretation of radar data. In a Ferranti test involving 34 seconds 

of radar information, comprising 4000 messages concerning 90 radar tracks (objects) - 

each of which has 18 attributes (properties), three different basic operations were 

performed [72]: 

insert a new track report into the database 

modify information in an existing track 

delete a track from the database 

Additionally, since Ferranti are interested in targeting their equipment towards radar 

in particular, which include velocities and co-ordinates, the ability to perform value 

comparisons ("between bounds" ranging) within the searching process is an important 

feature and is supported by the FRP. The commercial database ORACLE required 

over an hour to perform this test, whereas the FRP ran in real time. Other quoted 

performance results for a database comprising 500 tracks, each comprising 9 attributes, 

are summarised in table 5.10. Note, that since the FRP does not support contexts, 

there is only one value per attribute. - 
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Ferranti Relational Processor (FRP) Performance 

Operation Time(p..$) 

retrieve value given object and attribute 145 

modify value given object and attribute 225-.322 

intersection of two attribute and value pairst 978 

FRP-HOST communication overheads 100 

t a specific example is described in [72], no fundamental values are presented 

Table 5.10: FRP Performances 

Intelligent File Store Performancet 

Operation Time(p..$) 

search with no wildcards 38 

search with one wildcard 244 

search with two wildcards 2000 

insert a relation 38-76 

delete a relation 4-38 

modify a relation 

t 	Note that there are only 64 kbytes per search engine, as opposed to 512 kbytes 

for the SKMS. 

There is no IFS facility to modify values in a relation. It is necessary to perform 

a composite operation; ie: a delete followed by an insert, which would require 

42-.76ii.s. 

Table 5.11: IFS Performances 
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5.4.2. Intelligent File Store 

The Intelligent File Store (see Chapter 2) utilises hashing and multiple search 

engines to achieve associative access, and a search rate of 250 Mbytes/second [74]. 

The following times are quoted for 3-place relations (2-place predicates) with 64 search 

engines operating on a 4 Mbyte search space [73,74,75] (Table 5.11): 

Lavington also proposes a Relational Algebraic Processor (RAP [75]) as an add-

on feature to the IFS Manipulation System. Like the basic IFS, the RAP comprises a 

parallel (SIMD) arrangement of search engines. The RAP performs set operations (eg: 

member/search, intersection, join) on the knowledge base, where a set comprises those 

relations returned from a partially specified match request. Note that the member 

operation is simply a straight-forward search of the knowledge base; Operations on 

multiple sets returned from the knowledge base, such as intersection, are performed by 

loading the first set into the RAP, and streaming the second set past it. Measured 

timing performances for set intersection range from less than a millisecond for set sizes 

of under about 200, to approximately 1 second for set sizes of order 10000 [73]. For 

sets of 1000 relations, the join operation is estimated (extrapolated from the 

intersection figures) as approximately 3ms, which is claimed to be about 2 orders of 

magnitude faster than the Ferranti Relational Processor (FRP) [73]. 

5.5. Performance Comparisons 

5.5.1. SKMS with Simulation 

If we compare tables 5.1 and 5.6, the SKMS, running at optimum speed, provides 

a performance improvernt of almost 30 times. Even with the reduced clock rate of 

3.3MHz, the SKMS's performance is almost an order of magnitude better than the 

simulation package. This justifies the effort associated with the project, particularly in 

view of the opportunities available for further parallelism of SKMS modules. The 
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performance of both systems, however, is decreased by the user interface overheads, 

and, as was stated above, this area demands further attention. 

5.5.2. SKMS with Other Systems 

Ferranti Relational Processor 

The performance figures presented for the FRP are based on specific examples 

and so are difficult to interpret and compare with others. However, considering the 

figure quoted for a straight-forward retrieval of a fully specified relation (table 5.10), it 

is approximately 4 times slower than the SKMS running at optimum (table 5.6). No 

FRP times are presented for wildcard searches. 

Intelligent File Store 

From table 5.11, we see that the IFS search times are in the range 38ps R, 

2ms depending on the number of wildcards included in the specified relation. If we 

consider an SKMS interfaced to 64 kbytes instead of its maximum of 512 kbytes (for 

the 16 bit prototype), then as is illustrated in table 5.11, we have a search time range 

of 51ps R :5 6ms. Although marginally slower than the IFS at straight-forward 

searching, the SKMS has three advantages. Firstly, the knowledge structure, itself, 

supports the construction of frame based objects, with the ability to store different 

attribute values in different contexts. Secondly, the system incorporates a mark-bit. 

book-keeping circuit, which facilitates set operations such as intersection and join, 

without the need for any add-on hardware. For a set size of the order of 10000, the 

IFS Relational Algebraic Processor takes approximately 1 second to perform a set 

intersection of two relations. The SKMS, running at optimum, would take a 

maximum of 6 ms per specified relation, no matter what the set size, plus 26 p.s per 

matching relation in the intersection set for KB - HOST communication overheads 

(which, could be greatly reduced by a Relation Buffer, as described above). This 
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transforms to a maximum of about 270 ms for the example above. Thirdly, the ability 

to perform value ranging is extremely advantageous, particularly in applications such as 

radar interpretation (cf: FRP). The IFS employs a hardware hashing mechanism 

(Lexical Token Converter [54]) to help attain the fast retrieval times. A similar 

approach would prove beneficial in the SKMS. 

Timing Comparison of Hardware Supported Systems 

search type IFS SKMS 

search with no fields unknown 38s 51s 

search with one field unknown 244i.s 51s 

-. 6ms 

search with two fields unknown 2ms 51s 

-. 6ms4 

Considering a 64 kbyte search space per SKMS module (cf: IFS search engine). 

Table 5.11: Timing Comparison Of Hardware Supported KB Systems 

It is unclear how the IFS copes with garbage collection during information 

insertion or deletion, or if garbage collection has any effect on the search times quoted. 

The SKMS, however, performs garbage collection concurrently, so the time required 

for this function can be defined, and is included in the results presented. 

Unfortunately, at the time of writing this thesis, no performance figures were 

available for the FACT system, comprising Generic Associative Memory (see Chapter 

2). Since, this system was designed primarily with set-based operations in mind, it 

would be interesting to compare performances with the IFS and SKMS. Additionally, 

from the information available, it is also unclear how this system deals with the 

problem of garbage collection. 
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5.6. Summary 

The SKMS prototype hardware provides a speed improvement of more than, an 

order of magnitude over the simulation software running on a 10MHz 68010 SBC, and 

twice that of a Sequent 80386 based Computer. As discussed in Chapter 3, however, 

the SKMS is an ideal candidate for implementation on an IC, and hence further speed 

improvements above the optimum performance projected for the prototype, at low 

cost. Furthermore, faster RAM could be utilised in the Knowledge Base, to take 

advantage of the potential speed of such a Relational Processor. 

Performance figures for the SKMS are comparable with those presented for the 

IFS - one of the major UK projects involved in research into knowledge manipulation 

engines. Although marginally slower at straight-forward retrieval, the SKMS has 

several advantages. 

The knowledge structure facilitates fast traversal through objects and inheritance 

lattices. 

Set based operations are supported directly in hardware by a mark-bit book-

keeping circuit, and are therefore fast. 

Searching for values within or outwith a specified range is supported directly by 

special purpose hardware. 

Garbage collection is performed concurrently, by way of a pointer book-keeping 

mechanism, whose operation is invisible to the HOST system, and hence the user. 
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CHAPTER 6 

Conclusions 

6.1. Summary 

Al systems, particularly Expert Systems, although increasing in popularity, remain 

unsuitable for many engineering applications due to poor real time response. Research 

has been concerned with faster knowledge manipulation techniques and enhanced Von 

Neumann or dedicated hardware systems, such as those described in Chapter 2. 

Software solutions have concentrated on structured knowledge representations which 

allow the user to home into a particular piece of information by way of inheritance 

lattices, and to facilitate reasoning about complex situations (eg: the real world!). 

Hardware solutions have been varied, but are generally based on First Order Predicate 

Calculus methods (IFS and FACT). Such approaches are inherently slower than 

structured formalisms but easier to manipulate. Hardware support for a structured 

knowledge manipulation system, as described in this thesis, offers an attractive 

alternative solution. 

This thesis has described the research, design, implementation and evaluation of 

special purpose hardware support for a Knowledge Based System. The Structured 

Knowledge Manipulation System (SKMS) acts as a co-processor to a VMEbus based 

HOST, and performs four primitive operators on a Knowledge Base: 

• 	create a specified relation 

• 	modify a specified relation 
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• 	delete a specified relation 

• 	retrieve a specified relation 

Additionally, the Relational Processing Unit described herein provides hardware 

support for algebraic relational (set) operations, and the retrieval of relations with 

values between specified bounds. 

The SKMS is based upon the manipulation of the binary representation of a 

general tree structure, which provides a flexible structured knowledge representation 

formalism, while maintaining a regular format, which can be exploited by dedicated 

hardware. Additionally, the binary linked-list format can be used to connect unused 

memory blocks, and a concurrent, free-list garbage collection algorithm with no 

memory overheads and very little -speed penalty has been implemented within the 

system. 

In conjunction with the Artificial Intelligence Applications Institute [17], a 

Functional Specification was developed around which a practical Knowledge Based 

System could be designed (see Chapter 3). Software simulation confirmed that a 

practical knowledge based system, supporting the knowledge operators and features 

described in the Functional Specification of Chapter 3, is a realistic proposition, and 

pinpointed performance limitations. Two limiting factors were isolated: 

• 	hashing 

• 	linked list traversal 

Hashing is a user interface problem which limits the performance of most systems 

requiring input from a user. However, partly due to time constraints, and partly since 

the user interface mechanism can remain an independent functional block, whose 

internal operation is invisible to the rest of the system, the hashing unit can be ignored 
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within the scope of this project (as long as the hashing unit - either software or 

hardware based - can be up-graded at a later date). The subject was researched 

briefly to determine whether there were any relatively simple approaches which could 

be adopted for the purposes of the prototype system, and a summary of this study is 

presented in Appendix A. In conclusion, the reliability/speed trade-offs encountered 

dictate that the only satisfactory answer would involve a high speed dedicated hashing 

engine. The IFS project incorporates a dedicated hashing engine which greatly 

improves performance. Such an approach would certainly be beneficial to the SKMS. 

The other limiting factor, as expected, was found to be linked-list-traversal, and 

the hardware design strategy, described in Chapter 3, was optimised for handling 

linked-list codes and pointers in parallel. Garbage collection has presented many 

difficulties within existing Al software tools, and in several hardware systems designed 

specifically for Intelligent Knowledge Bases. Such problems were identified in the 

GRIP project [76]. The linked-list based architecture of the SKMS, however, supports 

a concurrent garbage collection algorithm abolishing the need for random system 

interruptions which would degenerate system performance to such an extent that real-

time engineering applications would not be viable. 

6.2. Performance Evaluation 

Two conclusions may be drawn from the performance evaluation. Firstly, with a 

speed improvement of more than an order of magnitude over the software simulation, 

the limitations imposed by the knowledge structure have been overcome by the 

hardware architecture, and the design ideas developed and implemented in the system 

are proved successful. Secondly, since the retrieval times measured for the SKMS are 

faster than the Ferranti Relational Processor, and comparable with those quoted for the 

Intelligent File Store [73,74,75], the system makes an important contribution to 

research in the field of Knowledge Manipulation Engines. Moreover, the SKMS has 
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several advantages: 

Fast traversal through related objects (particularly inheritance lattices) is 

supported by the knowledge structure developed herein. 

A hardware based mark-bit book-keeping methodology ensures that set based 

operations on the Knowledge Base are fast. 

Direct hardware support is provided for searching for values within a specified 

numerical range. 

Garbage collection is performed concurrently, does not cause the system to 

suspend operation to reclaim memory as in most Expert Shells, and is invisible to 

the user. 

Other than the Am29C334 Register File, no state of the art components were 

used, and so the SKMS is a relatively low cost system. 

Since no specific processing elements are used within the design of the Relational 

Processing Unit, the design is extremely suited for silicon fabrication, and hence 

reduced system design time, power consumption and further cost reductions. 

In conclusion, the SKMS system performance, with integrated garbage collection, 

is sufficient to provide a low-cost PC/SUN enhancement as a knowledge manipulation 

engine (co-processor) for real-time engineering applications. For example, 

contemporary electronic control systems employ loop cycle times of the order of 50ms 

[721 to 250ms [73], so an up-graded SKMS (see below), if interrogated electronically, 

could certainly support such an application. Moreover, second-to-second applications 

such as that described in [67], would be particularly well suited to SKMS support. 
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6.3. The Future 

As has been discussed earlier, the Relational Processing Unit is an ideal candidate 

for implementation in silicon. Such a development would undoubtedly remove the 

timing problems associated with the present design, caused by the large amounts of 

wire-wrapped buses necessary in a data dependent system such as the SKMS. 

Moreover, future development of this project would involve a loosely coupled 

processing system performing breadth first search; employing banks of relational 

processors, since the search and manipulation algorithms, in the present design, are 

essentially depth first, although heuristic techniques are used to improve performance. 

For example, the assumption (based on probability theory) that more relations in the 

Knowledge Base will fail to match the specification than succeed, is incorporated into 

the search algorithm. An unexpected, yet practical reason for employing parallel 

banks of such processors follows from the inadequacy of the prototype SKMS memory 

space. Since 16 bit pointers are used, the maximum address space is 64k by 64 bits; ie: 

512 kbytes. If the, system were simply upgraded to 32 bits, although the address space 

would increase to 4 X 109  bytes, the search time for partially specified relations at the 

end of this space would become unacceptably long. Consequently, parallel systems of 

search engines (such as the RPU), each with a smaller address space, are more 

practical. This approach is taken by the IFS group, who have an address space of only 

64 kbytes per search engine. 

Figure 6 illustrates the design concepts behind a Parallel Relational Processing 

System. A central processing unit (HOST) would interface with a user as in the 

current system, although a dedicated hardware hashing engine would almost certainly 

be employed in any future design. Several Relational Processors would perform a 

parallel search operation and would report back to the HOST independently. Memory 

-139- 



management of dedicated magnetic storage would be provided locally, so that the 

specific details of the search operation would remain invisible to the HOST and hence 

the user. 

HASHING 

ENGINE 	 Ii 	[TERMINAL 

HOST CPU 

(CENTRAL SYSTEM CONTROL) 

31 	11] 	Iri1IIIIfr.: 	 IrTt . 	_iU__. 	uI 	•;.N. 

LOCAL KB I 	I LOCAL KB I 	I LOCAL KB I 	I LOCAL KB 

4' 	/1\ 	 / 
____ MAGNETIC STORAGE 

Figure 6: Proposed Parallel Relational Processing System. 

-140- 



APPENDIX A 

Hashing Techniques - Overview 

A.1. Introduction 

Since we don't want to spend all our time in key to code conversion, we must 

ensure that the hash algorithm is computationally fast and that collisions are kept to a 

minimum. However, the less complex a hash function is, then the less effective it 

tends to be and so we get more collisions - a balance must, of course, be struck. 

Various methods have been proposed including folding, division, mid-square and 

algebraic coding, or a combination of these (see [65,66] for a good overview); 

however, the following function (based on division) has been found to be the most 

effective: 

h(K)=K mod w 	 (A.]) 

where w is a prime number, K is the key and h(K) is the hash code of K. 

It has been noted that different choices of w give different performances. 

Another important conclusion which must be made from all the work that has gone 

into hashing techniques is that the effectiveness of the hash function depends on the 

data for which it is being used; some hash functions are very bad at differentiating 

between similar strings. 
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Fibonacci Hashing 

Fibonacci Hashing is a technique whereby we multiply the key by a fraction (0). 

The best values of 0 have been found to lie in the ranges: 

 -<o< 	 - - 	-<o<- 	<e<-. 	<0< 4I 

such that: 

	

h(K) = M(OK) mod 1 j 	 (A.2) 

where M is a power of 2 (eg. Ox10000 for a 64k entry hash table). 

An alternative is to calculate w, where w = MO and proceed as per equation 

(A.1). We should choose w to be relatively prime (above about 20) and as close as 

possible to our desired hash-table size. 

Algebraic Coding 

This is an interesting method for selecting a suitable value of w which will 

guarantee hash-code uniqueness for keys which differ by fewer than a predetermined 

number of bit positions [65,68,69]. We regard the key as a representation of a 

polynomial K(x) where: 

K(x) = k_ 1x' + 	+ kx' + k 0 	 (A.3) 

We then choose a polynomial P(x) such that: 

P(x) = xm + Pm_IXm 
l + . . . + ThX'  + Po 	 (A.4) 

and: 

h(K) = K(x) mod P(x) 	 (A.5) 

so P(x) represents (in radix 2) an appropriate value for w in equation (A.1). 

Assuming we want to convert an n-bit key into an in-bit hash-code, such that we 

can guarantee that keys differing in t or fewer bits will have different hash codes (from 
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[651), then: given n and tn and given an integer k such that 

n =2k_i 	 (A.6) 

P(x) can be found as follows. 

• 	Let S be the smallest set of integers such that {1,2,...,t} c S, and (2j) mod n E S 

for all j E S (if n = 15, k = 4, t = 6, we have S = { 1,2,3,4,5,6,8,10,12,9}), 

then: 

P 	= fl15 (x - a1 ) 	 (Al) 

where a is an element of order n in the Galois Field (GF) of 2 to the power of k: 

a E (order ,i) 
GF(2k) 	 (A.8) 

Folding 

Folding involves splitting a long key into several shorter parts of length :5 to the 

hash code length. Each sub-key is then converted into a separate hash-code. These 

can then be fused into one hash-code, using logical operations such as exclusive-or, or 

by arithmetic operations. It is clear that a combination of folding and modulus by a 

prime would be less computationally expensive than dividing by a prime only. For 

example, if we have a 16 character string, less cpu time is required to split the string 

into 4 x 4 character keys (4 x 32 bit keys) and then to perform a modulus operation on 

each of them using a prime as near to OxFFFF as possible, and finally exclusive-oring 

the results to return a 16 bit code, rather than performing a modulus operation on the 

128 bit key to return a 16 bit code! This method is attractive since it opens the way 

for parallel computation on the sub-keys, hence providing hash-time speed-up. 

Collisions 

The problem of collisions (duplications) between codes occurs in all hashing 

algorithms to varying extents. There have been many methods proposed for dealing 

with collisions. However, only the two major methods will be discussed here: 
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chaining 

open addressing 

The chaining technique is probably the simpler of the two to understand. The 

following algorithm (adapted from [65]) can be used to search an M-node table 

(symbol-table), looking for a given key K. If K is not in the table, and the table is not 

full, it is inserted. 

start 

[Hash] Set i h(K) + 1(1 	i :5 M) 

[Is this entry used?] If symbol_table[i] is empty, goto (6). (Otherwise 

symbol-table[i] is occupied and must be checked) 

[Compare] If K = symbol_table[i].key, return(found), else; 

[Advance to next] if symbol_table[i].link 	0, set i symbol_table[i].link and goto 

(3) 

[Find empty node] The search was unsuccessful, so get R (1 :s R M) and R is 

such that symbol-table[R] is empty. If R > M, then there are no empty nodes 

left and the algorithm terminates with overflow. 	Otherwise, set 

symbol_table[i].link - R and i - R 

[Insert new key] Mark symbol-table[i] as occupied with symbol_table[i].key K 

and symbol_table[i].link 0. 

end 
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The open addressing method does not use links between keys with the same 

hash value and so is less expensive in its use of memory. Entries in the table are 

searched one by one until the correct key is found. A probe sequence is any rule 

which determines which table positions should be checked when a collision occurs. An 

example of such a sequence is linear probing which uses the cyclic sequence: 

h(K), h(K)-1.....0, M-1, M-2.....h(K)+1 	 (A.9) 

Linear Probing is described in the following algorithm (from [65]). The algorithm 

searches an M-node table (symbol—table) for a key, K. If K is not found, then it is 

inserted (if the table is not full). 

start 

[Hash] Set i h(K)(O i < M) 

[Compare] If symbol_table[i].key = K, algorithm terminates successfully. 

Otherwise, if symbol—table[i] is empty, goto (4) 

[Advance to next] Set i i - i; if now i < 0, set i - i + M. Go back to (2) 

[insert] (The search was unsuccessful.) If N = M - 1 (where N = no of occupied 

nodes), the algorithm terminates with overflow. Otherwise, set N - N + 1, mark 

symbol—table[i] as occupied and set symbol_table[i].key - K. 

end 

Another similar technique uses the following probe sequence: 

h 1 (K), h 1 (K) + h 2(K), h 1 (K) + 2h 2(K),... 	 (A.10) 

The second hash (h j should be chosen to be relatively prime to the first (h 2). 
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A.6. Evaluation 

Lum et a! [66] provide several experimental results for a variety of hashing 

functions using both chained and open addressing collision resolving methods and 

conclude that open addressing is not a suitable technique for tables with fewer than 10 

collisions per key, but can be applied to larger sizes using less storage space than 

chaining but with comparable performance. 

A series of experiments was carried out to study the effectiveness of various hash 

functions. The primary objective was to discover functions which could perform their 

required task effectively, while using a minimum amount of CPU time. The secondary 

requirement was to look for opportunities for speed-ups by hardware support. Two 

different sets of data were used: 

the UNIX on-line dictionary 

a file (FIRST100.kb) containing similar strings ("Person00, PersonOl...") and also 

with a high numerical content 

It was decided to employ a chained collision resolving method since large 

numbers of collisions were neither desired nor expected and so open .addressing would 

be less efficient in terms of computation time. All of the hash functions, except for the 

UNIX spell program hash function, are based on the following algorithm. Keys are 

allowed to be up to 16 characters, ie: 128 bits, long (longer ones being truncated). 

start 

[sub-divide problem] Break the key up into four sub-keys, each four characters 

long (32 bits); denoted code l,code2,code3 and code4. 

[optional pre-coding] The modulus by a relative prime of each code is taken to 

return four 16 bit codes. 



[combine sub-codes] codel .- codel exor code2, and; code3 .- code3 exor code4, 

then either; codel .- codel exor code3, or; codel .- I (codel + code3) I. 

[optional post-coding] The modulus by a relative prime is taken of the resultant 

code (either 16 or 32 bits, depending on stage (ii)). 

end 

Almost all the hash functions derived from this algorithm gave collision counts in 

the range 16% -. 19% of the total table size when used to hash the on-line dictionary, 

and approximately 11% when used to hash FIRST100.kb. The exception was when 

OxFFFE (65534) was chosen as the modulus. In this case, collision counts of about 

26% where noted. It was also noticed that adding codes 1 and 3 in stage (iii), rather 

than exclusive-or-ing them, above made little difference to the collision count. This is 

fortunate, since addition is the more expensive operation. The collision count for the 

dictionary was at its lowest for this algorithm if stage (ii) was included with modulus 

61259. However, not a great deal of difference was made to the count if stage (ii) was 

left out and 61259 was selected as the modulus in stage (iv). 

The spell program on UNIX makes use of a very complicated hash function. 

Again, it is based on the "modulus by a prime" technique, but eleven different primes 

are used and the eleven codes are combined to return a highly unique code. When 

this function was used to hash the on-line dictionary, the collision count was found to 

be < 3%. The collision count for the data in FIRST100.kb was approximately 1%. 

The eleven primes have been specifically chosen for the application and when these 

were changed for different values, the collision count rose to almost 100%. The main 

drawback with this method is that the hash function takes a very long time to calculate 

in comparison with those described above. 

It should be clear that hashing techniques are not cut and dried in their operation 

and the performance is usually dependent on the data being hashed. It should also be 
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clear that we want to return as unique a code as possible to save on collision resolving, 

but that the time required to compute the code should be as small as possible: certainly 

a lot quicker than performing a sequential search! 

An obvious opportunity for speeding up the hashing operation is the parallel 

execution of the "modulus by a prime" calculations on the separate sub-keys. The 

performance improvement gained, from such a system is unlikely to justify the cost, 

although further investigation is warranted. 
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APPENDIX B 

SKMS Signals - Summary 

AS 	 Address Strobe, supplied by the HOST via the VME bus, to 

signal that a valid address exists on the VME address bus. 

BA 1 	 The address bus supplied by the Relational Processing Unit to 

the Knowledge Base, via the LOCAL bus. 

BA 	 RPU address line zero is supplied specifically by the 

microprogram (pD45), and selects either the least or the most 

significant 32 bits of a 64 bit knowledge structure 

property/value block. 

BD 1 	 These signals constitute the 32 bit LOCAL bus data interface 

between the Relational Processing Unit and the Knowledge 

Base. 

BADDR 1 	 This is. the 6 bit address supplied by the Microprogram 

(pD50-..55) to the Register File, specifying the location to be 

read by the Relational Processing Unit. 

BADDR 2 	 This is the 6 bit address supplied by the Microprogram 

(D56-61) to the Register File, specifying the location to be 

written to by the Relational Processing Unit. 

BAE 	 Enables 	the LOCAL bus 	address 	multiplexer for 

communications between the Relational Processing Unit and 
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the Knowledge Base. It is derived in the VME Interface 

Circuit. 

BOE 	 The Knowledge Base Output Enable signal, supplied by the 

Relational Processing Unit, derived from the Microprogram 

(jiD47). 

BWE 	 The Knowledge Base Write Enable signal, supplied by the 

Relational Processing Unit, from the Microprogram (D47). 

RFSEL) are derived from it. 

board sel 	 This is an intermediate signal (VME Interface Circuit), which 

is active if the HOST wishes to access either the Microprogram 

Store, Register File, or Knowledge Base. The other memory 

select signals (V/B, MPS_SEL and 

B_DATA_EN 	This signal enables the Register File inputs from the Knowledge 

Base via a multiplexer and the LOCAL bus - supplied by the 

Microprogram (p49). 

B_DATA _SEL 	This signal selects between BD 0_15  and BD 16 .31  from the 

LOCAL bus - supplied by the Microprogram (i48). 

BKB_IE (L) 	Relational Processing Unit - Knowledge Base (BD o15)  110 Port 

Input Enable - supplied by the Microprogram (D62) 

B_KB IE(U) 	RPU—KB (BD 16_31 ) 110 Port Input Enable - supplied by the 

Microprogram (pD66). 

B_KB —OE (L) 	RPU-.KB (BD 0_15 ) I/O Port Output Enable - supplied by the 

Microprogram (D67) 
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B_KB_OE (U) 	RPU-.KB (BD 1631)  110 Port Output Enable - supplied by the 

Microprogram (pD67). 

C 1 	 Clock output from the Clock Generator circuit. 

C 2 	 Clock output from the Clock Generator circuit. 

C 3 	 Clock output from the Clock Generator circuit. 

C 4 	 Clock output from the Clock Generator circuit. 

CCMUXA 	 Condition Code MUX Select Line - supplied by the 

Microprogram (p.D29). 

CCMUXB 	 Condition Code MUX Select Line - supplied by the 

Microprogram (pD30). 

CCMUXC 	 Condition Code MUX Select Line - supplied by the 

Microprogram (pD31). 

CCMUXPOL 	Condition Code MUX Output Polarity Control - supplied by 

the Microprogram (1iD32). 

CC 	 The Condition Code Input to the Sequencer - supplied by the 

Condition Code Select Circuit. 

CLR/UP 	 If low, this signal clears the contents of the Pointer Store 

counter (74AS867). If high, the Pointer Store counter 

increments (if enabled). It is supplied by the Microprogram 

(pD69). 

CLR MARK 	Clears BD 7 , which is the mark bit in the status word of the 

property and value blocks. 
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CMP_JLE 	 Enables the comparator (74AS866) data inputs - derived from 

C2. 

COUNT 	 Enables the Pointer Store counter (74AS867) - supplied by the 

Microprogram (i.D68). 

CSR, 	 Used to denote the Control and Status Register. The CSR is 

located in the Register File, and is loaded into a latch 

(74ALS874 - shown in the Sequencer Circuit) at a rising clock 

edge if Latch_CIk_En is active. 

DTACK 	 The Data Transfer Acknowledged signal supplied by the VME 

Interface Circuit to the HOST to report a successful VME 

access to the SKMS. 

EQ 	 The code comparator (74AS866) equal to output. 

EQ 	 The code comparator (74AS866) not equal to output. 

Fo 	 The fundamental clock frequency signal (20MHz). 

GT 	 The code comparator (74AS866) greater than output. 

HALT 	 Suspends SKMS operation if the HOST accesses the Knowledge 

Base via the VME bus. 

HI/LO 	 Selects BD 0-15  or BD 16  inputs to Code Comparator - supplied 

by the Microprogram (1LD43). 

KBBIE (L) 	Knowledge Base -. Relational Processing Unit (BD o15)  I/O Port 

Input Enable - supplied by the Microprogram (p.D64) 

KBBIE(U) 	KB-..RPU (BD 16 ...31 ) 110 Port Input Enable -- supplied by the 

Microprogram (1iD64) 
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KBBOE(L) 	KB-.RPU (BD 0 . 15 ) 110 Port Output Enable - supplied by the 

Microprogram (D70) 

KBBOE (U) 	KB-.RPU (BD 16-31)  110 Port Output Enable - supplied by the 

Microprogram (p..D65) 

KB_DAT_IN (H) 	Disables the multiplexed Register File or Pointer Store output 

to the 110 Port (BD16_31) - supplied by the Microprogram 

(pD62). 

L 1 	 Clock Generator Function Select Signal - supplied by the 

Microprogram (1iD34). 

L2 	 Clock Generator Function Select Signal - supplied by the 

Microprogram (pD35). 

L 3 	 Clock Generator Function Select Signal - supplied by the 

Microprogram (i.D36). 

LT 	 The code comparator (74AS866) less than output. 

Latch_CIk_En 	Enables the Control and Status Register Latch in the Sequencer 

Circuit - supplied by the Microprogram (pD33). 

MPS/R_W 	 Defines whether the Microprogram Store acts as a block of 

read/write RAM, accessible by the HOST, or whether it is a 

block of read-only memory, accessible only by the Relational 

Processing Unit - supplied as a debounced input from a toggle 

switch. 

MPS_SEL 	 HOST -. Microprogram Store Access Select Line - derived in 

the VME Interlace Circuit. 
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PLA/B_Sel_Or 	Selects either the A or B address from the Pipeline to the 

Sequencer - supplied by the Microprogram (j.D28), and 

works in conjunction with PTR ZERO. 

PLAddrA, 	 Sequencer jump address A - supplied by the Microprogram 

(1i.D4-45). 

PLAddrB, 	 Sequencer jump address B - supplied by the Microprogram 

(pD16-.27). 

PS IRFADDR 

PSAddr 

PS -.RFEN 

PS DATA 

PS_DAT IN EN 

PS DAT IN SEL 

PSR/W 

Selects between the Register File and Pointer Store address 

outputs to the Knowledge Base via the LOCAL Bus (BA 6 ) - 

supplied by the Microprogram (D46). 

The Pointer Store address - supplied by the Microprogram 

(D72-.75). 

Enables the Pointer Store - Register File bus buffer - supplied 

by the Microprogram (p.D78). 

Denotes the data output bus from the Pointer Store. 

Enables the multiplexed BD 16 . 31  or Register File inputs to the 

Pointer Store - supplied by the Microprogram (D79). 

Selects either the multiplexed BD 16 ..31  or Register File inputs to 

the Pointer Store - supplied by the Microprogram (D80). 

The Pointer Store read or write signal - supplied by the 

Microprogram (1i1)'f 1). 

PTR_ZERO 	 This output signifies whether or not the comparator pointer 

input was NULL. 
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RESET 	 Resets the Relational Processing Unit - the debounced output 

from a toggle switch. 

RF/PS 	 Selects between the Register File or Pointer Store output to the 

110 Port (BD16) - suplied by the Microprogram (D44). 

RF_DOUT 	 The data output from the Register File to the Relational 

Processing Unit. 

RF_SEL 	 Selects the Register File for access by the HOST via the VME 

bus. 

RF_WT 	 Register File read or write line - supplied by the 

Microprogram (p.D39). 

SET MARK 	 Sets BD 7 , which is the mark bit of the status word in a property 

or value block - supplied by the Microprogram (iD40). 

STBD 1 	 The masked data (status word) output from the Status Control 

Circuit. 

SYS_CLK 	 HOST system clock, used to clock the DTACK delay line (shift 

register) in the VME Interface Circuit. 

TST STAT 	 Status Control Circuit masks the LOCAL bus data input if set 

- supplied by the Microprogram (pD42). 

VA j 	 VME address bus. 

VD 1 	 VME data bus. 

V/B 	 Defines whether HOST (V) or Relational Processing Unit (B) 

has control of the Knowledge Base - derived from the VME 

Interface Circuit. 
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VOE 	 Knowledge Base -. HOST output enable signal - derived from 

VWE in the VME Interface Circuit. 

VWE 	 HOST - Knowledge Base write enable signal - supplied by the 

HOST via the VME bus. 

WJLDMUXA 	Select line for the wildcard MUX in the Condition Code 

Circuit - supplied by the Microprogram (1i.D37). 

WILDMUXB 	Select line for the wildcard MUX in the Condition Code 

Circuit - supplied by the Microprogram (i.D38). 

The Microprogram Store address bus - supplied by the 

Sequencer in the RPU. 

The Microprogram Control word. 
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APPENDIX C 

The Microprogram Control Word 

D00 10 D24 PLAddrB8 4048 B_DATA_SEL pD72 PSAddrO 

)ADM Ii 4025 PLAddrB9 

ILF= 
aD49 B_DATA_EN aD73 PSAddri 

D02 12 a026 PLAddrB10 BADDR1-0 PSAc4dr2 

D03 13 j027 PLAddrB11 jam BADDR1-1 PSAddr3 

aD04 PLAddrAO oa PLA/BSeL_Or 4052 BADOR1-2 jan PS->CTR 

aDO5 PLAddrA1 iD29 CCMUXA iD53 BADDR1-3 J4D77 PS-)RF_EN 

D06 PLAddrA2 jam CCMUXB n54 BADDR1-4 p4078 PS_DAT_IN_SEL 

40o7 
PLAdcIrA3 iD3i CCMUXC aD55 BADDR1-5 i4079 P_DAT_IN_N 

DO8 PLAddrA4 iD32 CCMUXPOL aD56 BADDR2-0 

4009 PLAddrA5 D33 LatchC(kEn iD57 BADDR2-1  

4010 PLAddrA6 4034 Li j4058 BADDR22 - 

4011 PLAddrA7 p035  L2 iD59 BADDR23  

4012 PLAddrA8 1iD36 L3 jaD6o BADDR24 - 
4013 PLAddrA9 n3i WILDMUXA iD61 BADDR2-5  

4014 PLAddrA10 p038 WILDMUXB iD62 BKBIE(H)  

ms PLAdcrA1i p4039 RF_VT iDS1 KB_DAT_IN  

D16 PLAddrBO p040 SET-MARK 4064 KBBIE 

iD17 PLAddrB1 lym CLR_MARK LFm KB-B-DE(H 

Die PLAddrB2 aDa TST_STAT iD66 B-KB-IE(L) 

yDi9 PLAddrB3 4043 HI/LU 4067 B-KB-GE  

14020 PLAddrB4 4D RE/PS 4Da COUNT  

iD21 PLAddrB5 .i045 BAO aD69 CLR/UP - 

p022 PLAddrB6 4046 PS/RF_ADDR 7o KB-B-UE(L 

D23 PLAddrB7 Di BWE .s071 psjiv  
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APPENDIX D 
UNIX Shell Scripts 

D.1. ksma - Knowledge System Micro-Assembler 

set -e 
This shell script has been written to parse the flags passed 

# 	to the uasm program and to remove any intermediate files 

# 	created during processing 

# 
echo 'KSMA ....... KNOWLEDGE-SYSTEM MICRO-ASSEMBLER" 

echo "Author: Steve Hudson" 

echo 'Date: 19th June 1989" 

echo "Version: 2.1" 

# 	check for any bad flags before passing them onto the uasm program 

# 
for iin $* 

do 

case $i in 

-T) 	tflag= 1;; 

lflag=1;;. 

-E) 	eflag 1;; 

mflag=1;; 

echo $i " Bad parameter!" 

echo "Usage:" 
echo "ksma [-T] [-L] [-E] [-M [<macrofile> .mac]] <file> .d" 

exit;; 
*d) 	infile=$i;; 
* mac) 	macfile$i;; 

echo $i " Bad filename!" 

echo "Usage:" 
echo "ksma [-T] [-L] [-E] [-M [<macrofile> .mac]] <file> .d" 

exit;; 

esac 

done 

# 
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# 
# 	run the macro preprocessor if necessary 

# 
if 

mflagl 

then 
macro ${macfile $HOME/lib/lib.mac} 

echo 
echo "MP -- MACRO-PREPROCESSOR" 

echo 

if 

mp $macro $infile 

then 

run the micro assembler 

uasm ${eflag+ -E} ${lflag+ -L} ${mflag+ -M} $infile 

else 

exit 

fi 

fi 

# 
# 	remove the input file (with specific error information, unless 

# 	the -E option is specified 

# 
if 

tflag=1 

then 
echo "## intermediate microcode written to mic.tmp ##" 

else 

rm mic.tmp 

fi 

if 

eflag=1 

then 

echo "## parsed 	microcode written to mic.out ##" 

else 

rm mic.out 

fi 
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sysld 

sysid calls two other shell scripts which load the microprogram and application 

programs into the MPS and HOST respectively. 

sHaME/TEST_CODE/LOAD 

rm. b.out SREC 

$HOME/SKMS/LOAD 

Load the Microcode. 

pmeld -R 3000 $HOME/TEST_CODE/copy.b 

stty -echo 

sleep 4 

echo BF 1000 2FFE 0 

sleep 3 

echo G 3000 

sleep 1 

stty echo 
pmeld -R 1000 $HOME/TEST_CODE/microprog.b 

stty -echo 
echo "#### Microcode has been loaded at OxC00000 ####" 

sleep 5 

echo 0 3000 

stty echo 

Load the SKMS Application Program. 

pmeld -R 4000 $HOME/SKMS/b.out 

stty -echo 
echo "#### HOST software has been loaded at 0x4000 ####" 

stty echo 

sleep 4 
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D.5. pmeld 

# 	The linked file is converted from raw object code to S-RECORD 

# 	format ready for downloading to the FORCE CPU board. 

# 	The Base address of the code may be specified by the environment 

variable CC68BASE or default to value $1000 

base= ${CC68BASE= 10001 	 # Default Base Address $1000 

1d68 -R $base $" -lsup -Ic 	# Link files and C-library 

m168 -o SREC 

stty -echo 

echo 

echo "Switch to UNIX-FORCE connection [position: 3]" 

sleep 4 

echo LOl 

cat SREC 

stty echo 
echo "#### Turn switch to position 2 ####" 

stty echo 

sleep 2 



APPENDIX E 

Microprogram Language and Assemblers 

E.1. tialOA - The Language 

The microprogram language (pa 10A) was developed in a structured fashion to 

correspond to the gradual development and construction of the Structured Knowledge 

Manipulation System (SKMS). Each microinstruction takes the following form: 

{ 

<IN> 

<CC> 

<CL> 

<CM> 

<KB> 

<PS> 

<RF> 

<ST> 

<WD> 

defines sequencer 10-3 inputs. 

controls the Condition Code Selector. 

defines the clock speed (Li, L2, and L3). 

controls the Parallel Comparator Circuit. 

controls the KB and 110 Port. 

controls the Pointer Store Circuit. 

controls the Register File. 

controls the Status Control Circuit. 

defines the inputs to the Wildcard MUX. 

E.1.1. Sequencer Commands <IN> 

ó 	cont jmap jz cjmp c2jmp cjsr c2jsr rtn 

These are the commands recognised by the sequencer and decide what the next value 

of the Program Counter (PC) will be. The User Stack (US) allows the nesting of sub-

routine calls up to eight levels deep; [US] denotes the contents of the User Stack in the 

description below. 
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<IN> cont PC = PC + 1 

<IN> jmap PC = CSR(b3 - bO) 

the program counter takes its value from the least significant nibble of 

the Control and Status Register. 

<IN>jz 	PC= 0 

<IN> cjmp addr.  

if CC bit is low: PC = addr 	stack (US) unchanged 

<IN> cjsraddr 

if CC bit is low: [US] = PC; 	PC = addr; 	US =  US + 1 

<IN> c2jmp addrl addr2 

if CC bit is low, and ptr_zero = 0, then PC = addrl 

if CC bit is low, and ptr_zero = 1, then PC = addr2 

if CC bit is high, then PC = PC + 1 

<IN> c2jsr addrl addr2 

if CC bit is low, and ptr..zero = 0, then [US] = PC; PC = addrl; US 

=US+1 

if CC bit is low, and ptr_zero = 1, then [US] = PC; PC = addr2; US 

=US+1 

if CC bit is high, then PC = PC + 1 

<IN> rtn 	US = US - 1; 	PC = [US] 
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E.1 2. Condition Code Input Select <CC> 

There are eight possible inputs to the CC input of the sequencer, and are selected 

via an 8-4 input MUX with polarity control (ccneg or ccpos). We can force a fail or a 

pass of the CC test using the commands 

force pass and force fail 

We can test the equal output of the Code Comparator (used for matching status info) 

and the prr zero output of the Pointer Comparator. The poll bit from the CSR is also 

an input to the CC MUX and can be tested: 

ccneg/ccpos equal/ptr_zero/poll_bit 

If we are matching property, value or context codes, then we can decide whether we 

want the retrieved code to be greater than, less than or equal to the specification code 

or a wildcard (ie: always matches). This is performed via an interaction between the 

CSR and a series of MUXs. The outputs from these interactions are input to the CC 

MUX as: prop_cmp, value cmp and ctxtcmp. 

• Command Summary: 

Identifier 
	 Command 

	
Argument(s) 

poll—bit 

first_rel 

ccneg ] 	
equal 

__________________________ I 	 ' ptr_zero 

<CC> 	 ccpos J 	 prop_cmp 

val_cmp 

ctxt_cmp 

pass 

force 	 I 
L fail 
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E.1.3. Clock Speed <CL> 

The clock speed can be varied by altering some bits in the microcode. The 

commands: 

<CL> fast, medium or slow 

are used to select cycle times of 200ns, 250ns and 300ns respectively for the next clock 

cycle 

E.1.4. Code Comparator Input Select <CM> 

The 0 input to the Code Comparator can come either from the least significant 16 bits 

of the data word (property, value or status words) or from the most significant 32 bits 

of the data word (context). This is controlled simply by: 

<CM> lsw or msw 

E.1.5. Knowledge Base and I/O Port Control <KB> 

This area is controlled entirely by the state of the 110 Ports. We can load the 

ports from either direction and output their contents onto the data bus in either 

direction. Either the first or second 32 bits(lsw or msw) of a data block, can be read 

from or written to the knowledge base by the 110 Port. 
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• Command Summary 

Identifier 
	 Command 

	
Arguments 

load_101 
<KB> 	 I 

L load-102 

lsw 
RF 

msw 

1  RF 

_______________ I 
<KB> 	

1L 

store— 191 

 StoreIO2j 
JKB 

Isw 
<KB> cmp_I0 	

lmsw 

E.1.6. Pointer Store <PS> 

The Pointer Store can be written to or read by the 110 Port (msw) and the 

Register File. The output is also connected to the input of the Zero Pointer 

Comparator and to the A input of the KB address MUX. A buffered, counter is 

connected between the PS input and output buses, so that the mem_ptr can be 

incremented. 

0 Command Summary: 

Identifier 	 Command 
	

Arguments 

PZ 

RF 

read 
	

ADDR 

CTR 	 <address> 

IRF 

<PS> 	 write 
TR 

clear 

inc 
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E.1.7. Register File Control <RF> 

The Register File can be written to by either the lsw or msw I/O Ports 

(write KBL and write KBH) and by the Pointer Store (write—PS). It can be read by 

the Pointer Store, Knowledge Base, Knowledge Base Address MUX, and the Parallel 

Code Comparator, simultaneously. 

• Command Summary: 

Identifier 	 Command 	 Arguments 

1'' 
write—PS 

<RF> 
write_KBL 

write-KBF  

<address> 

E.1.8. Status Control Circuit <ST> 

When the RPU is matching the status word in a property or value block, there 

are several operations which can be carried out. If TST STAT is active, then the status 

byte (bits 9 - 15) is not masked, and so are ANDed with the specification status bits 

prior to matching. This enables the system to examine only those bits which are 

considered relevant by the HOST. if TST_STAT is not active, then bits 9 - 15 are left 

unchanged. The status mark bit (bit 8) can be cleared prior to matching, or either set 

or cleared prior to writing to the KB. Alternatively, it can remain unchanged. 

• 	 Command Summary: 

Identifier 	 Command 

test 

<ST> 
	 set 

L clear 
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E.1.9. Wildcard Codes <WD> 

Bits in the Control and Status Register (CSR) can be used to ensure that a CC 

test fails (CC = 1) if a particular match is being performed - either property, value or 

context. Note that the code is written in such a way that a test fails (PC = PC + 1) if 

a match is successful. 

• 	 Command Summary: 

Identifier 	 Command 

prop 

<WD> 	 val 

L ctxt 

E.2. 1ialOA - The Micro-Assembler. 

The micro-assembler translates 	.a1OA microprograms into low-level 

microinstructions (see Appendix Q. It accepts a microprogram source (suffix .d) and 

performs two passes creating two intermediate output files (suffix .mic and .$). A 

sub-routine library file (lib.sub) is appended to the microprogram before the assembler 

passes are initiated. lib. sub is listed in Appendix G. The first pass checks the program 

for the correct syntax, and outputs any error messages. The second pass calculates 

jump and sub-routine addresses. The first intermediate file (.mic) is a list of the 

microinstructions in hexadecimal format, the second intermediate file (.$) is passed to 

68000 assembler (Motorola syntax), which creates an microprogram object file (suffix 

.b). This file is converted into S-record format by pmeld, and down-loaded to the 

Microprogram Store by sysid (UNIX shell scripts listed in Appendix D). 
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E.2.1. Invocation. 

Name: 	p..alOA 

Synopsis: 	1j..alOA [-LI [-M [<macrofile.mac>I] file.d 

Description: 

1ialOA translates file.d from the p.alOA syntax into intermediate files (file.mic, file.$). 

file.s can be assembled into 68000 object code and downloaded via a HOST CPU to a 

Microprogram Store. 

[optional] causes the symbol table, relating microprogram labels to addresses, to be 

output to srdout. 

[optional] indicates that the input has been filtered through mp, a macro pre-processor, 

and therefore accepts the intermediate file (mic.tnzp) as input instead of file.d. 

E.3. The macro-preprocessor 

The macro-preprocessor allows the programmer to define macros composed of 

a10A instructions. mp  accepts two arguments, the input file and a macro definition 

file. Iib.mac is a library of macros created specifically for the SKMS system, and are 

listed in Appendix G. Macro definitions take the form: 

#defmac 	macro—name 

{ 

I 	Optional Comments 

<IN> command 

<CC> 

<RF> 

[optional reference number] 

[.labell] 	[.label2] 
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<KB> 

<PS> 

<CM> 

<CL> 

<WD> 

<ST> 

} 

#endmac 

where .labell and .label2 accept jump addresses from the macro call (if supplied). 

The output file (mic.rmp) is normally passed to p.alOA for 

micro-assembly. 

E.4. ksma - The Knowledge System Micro-Assembler. 

ksma is a UNIX shell script (listed in Appendix D) which controls the execution 

of mp and a1OA. 

E.4.1. Invocation. 

Name: 	ksma 

Synopsis: 	ksma [-TI [-El [-U [-M [<macrofile.mac>J] file.d 

[optional] passed to pa1OA. 

-M [<macrofile.mac>]: 

[optional] causes the macro-preprocessor, mp, to be called. If a file is specified (suffix 

.mac) it is searched for the appropriate macros, otherwise, the default (lib.mac) is 

used. 
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[optional] causes the output file from mp (mic.tmp) , which is normally deleted, to be 

retained after execution. 

[optional] causes mic.out, an intermediate file containing a1OA error messages, which 

is normally retained, to be deleted after execution. 
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APPENDIX F 

Microprogram Listing 

I ##### 

I 	 KNOWLEDGE BASE SYSTEM MICROCODE 

I 	 Author: S. Hudson 

I 	 Download via the host CPU board to the WCS 

I 	 Location: OxC00000 

I 	Program startup sequence involves polling a control bit in the 

Control and Status Register (CSR) of the Register File. 

Once this is done, the Pointer Store is initialised in preparation 

for the next command. A copy of the MEM_PTR is kept by the host CPU 

I ##### 

start: 
jsr 	poll_cpu 

jsr 	mit 

I 	Jump to the start of the required procedure.... 

The address address is supplied by the least significant nibble of 

the CSR. 

jmap 

I 	C_new_obj 	location 0x0003 

jmp C_new_obj 

I 	C_new_rel 	locatio' 0x0004 

jmp C_new_rel 

I 	Retrieve_rel 	location 0x0005 

jmp 	Retrieve_rel 

I 	Modify_rel 	location 0x0006 

I 'TI 



imp Modify_re! 

Delete—re! 	location 0x0007 

imp 	Delete—re! 

I 	Retr_all 	location 0x0008 

imp Retr_all 

I 	'nit—PS 	location 0x0009 

imp mit_PS 

I #####• 
START OF PROCEDURES.... 

This routine simply initialises the free_ptr in the Pointer Store 

mit_PS: 

clear—PS free_ptr 

jsr 	clear_poll 

imp 	start 

I ##### 

This routine creates new objects with an associated 

relation (OBJECT--> PROPERTY--> VALUE+ CONTEXT) 

C new obj: 

clear—PS error_cond 

clear—PS 	viast 

clear—PS 	vthis 

clear—PS, 	vnext 

clear—PS 	plast 

clear—PS 	pthis 

clear—PS pnext 

jsr 	create _P_space 

move_pnext_pthis 

get 1st prop ptr 

jsr 	create _V_space 

move vnext_vthis 

store—prop KB_i 



store—prop—KB-2 

store val KB 1 
store val KB 2 

jsr 	clear _poll 

imp 	start 

I ##### 

I 	This routine appends new relations to existing objects 

C new rel: 
clear PS error_cond 

clear—PS 	vlast 

clear—PS 	vthis 

clear—PS 	vnext 

clear—PS 	plast 

clear—PS 	pthis 

clear—PS pnext 

get_1st_prop_1 

C_match_prop: 
match_prop_name 	new—prop C_get_next_p 

if they match, then PC = PC + 1 

I if they don't match and pnext = = 0, goto new-prop 

if they don't match and pnext ! = 0, goto C_get_next_p 

get_next_p rop_2 

retrieve the second word of the current property 

match_prop_status 	new—prop C_get_next_p 

if they match, then PC = PC + 1 

I if they don't match and pnext = = 0, goto new-prop 

I 	if they don't match and pnext ! = 0, goto C_get_next_p 

get_ist_va I_i 
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retrieve the first word of the first value in the list associated 

with the current property 

C_ma tch_val: 

match_va I_name 	new—vat 	C_get_next_v 

if they match, then PC = PC + 1 

I if they don't match and vnext = = 0, goto new_val 

if they don't match and vnext ! = 0, goto C_get_next_v 

get_next_va I_2 

I 	get the second word of the current value 

match—vat—status 	new—vat 	C_get_next_v 

I if they match, then PC = PC + 1 

if they don't match and vnext = = 0, goto new—vat 

if they don't match and vnext ! = 0, goto C_get_next_v 

match_val_ctxt 	new—vat 	C_get_next_v 

if they match, then PC = PC + 1 

if they don't match and vnext = = 0, goto new_val 

if they don't match and vnext ! = 0, goto C_get_next_v 

clear the contents of the CSR to inform the CPU of the end of the 

I 	instruction, and to prepare for the next instruction 

Cstop: 
jsr 	clear _poll 

imp 	start 

Return to the CPU Polling sequence at the start of the code 

I ##### 

This routine searches the Knowledge Base until either the 1st matching 

relation is found, or the search terminates unsuccessfully 

Wildcard values are allowed for the property, value and context 

codes. 
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Retrieve_ret: 

clear—PS 	error_cond 

get 1st prop 1 

R_match_prop: 
match_prop_name Rstop R_get_next_p 

get next prop 2 
match_prop_status Rstop R_get_next_p 

get 1st vat 1 

Rmatch_val: 

match _va I_name Rfailed R_get_next_v 

get next val 2 
match_val_status Rfa lied R_get_next_v 

match_vat_ctxt Rfailed R_get_next_v 

Rpassed: 

test—ALL—flag 	Cnt_Rel 

jsr 	clear_poll 

imp 	start 

Rfailed: 

I 	jumps to "Rstop" if prop is not a wildcard 

jmp_wild 	 Rstop 	prop 

jumps to R_get_next_p if pnext is ! = 0 

match—PS—zero 	pnext 	R_get_next_p 

Rstop: 

jsr 	ERROR 

jsr 	clear _poll 

imp 	start 

Cnt_Rel: 

jsr 	INC_REL 

Retr alt: 
match—PS—zero 	vnext 	R_get_next_v 

match—PS—zero 	p next 	R_get_next_p 

jsr 	ERROR 

jsr 	clear poll 

imp 	start 



##### 

This routine works in a similar manner to Retrieve_rel, except 

that the new value is substituted when a match is found. 

Modify_rel: 
clear PS error_cond 

get_lst_prop_1 

M_match_prop: 
match_prop_name 	Mstop 	M_get_next_p 

get next prop 2 
match prop_status 	Mstop 	M_get_n ext_p 

get 1st val 1 

Mmatch_val: 

match_val_name 	Mfailed 	M_get_next_v 

get next val 2 
match_val_status 	Mfailed 	M_get_next_v 

match_val_ctxt 	Mfailed 	M_get_next_v 

At this point "vthis" holds the address of the matching value block, 

so we can now perform the substitution. 

Mpassed: 
subst_new_val 

Now check if next relation matches the spec 

match—PS—zero 	vnext 	M_get_next_v 

match—PS—zero 	pnext 	M_get_next_p 

jsr 	clear _poll 

imp 	start 

Wailed: 
jumps to "Mstop" if prop is not a wildcard 

jmp_wild 	 Mstop 	prop 

I 	jumps to M_get_next_p if pnext is ! = 0 

match—PS—zero 	pnext 	M_get_next_p 

Mstop: 

jsr 	clear—poll 



imp 	start 

##### 

This routine works in a similar manner to Retrieve—re!, except 

that the matching relation is deleted 

Delete_ret: 
clear—PS error_cond 

clear—PS viast 

clear—PS vthis 

clear PS vnext 

clear—PS plast 

clear—PS pthis 

clear—PS pnext 

get_lst_prop_1 

D match prop: 
match_prop_name 	Dstop 	D_get_next_p 

get—next—prop-2 

match_prop_status 	Dstop 	D_get_n ext_p 

get 1st val 1 

D match vat: 
match—vat—name 	Dfaiied 	D_get_next_v 

get next vat 2 

match_val_status 	Wailed 	D_get_next_v 

match _va t_ctxt 	Dfa lied 	D_get_ next _v 

At this point "vthis" holds the address of the matching value block, 

"viast" holds the address of the previous value block, and 

"vnext" holds the address of the next value block in the search list; 

so we can now perform the deletion 

Note that if viast is NULL, then we are deleting the first value in 

the list, and so 1st_val must be updated in the property block. 

If vnext is also NULL, then we are deleting the ONLY value in the 

property block, so the property block itself must be deleted. 

Dpassed: 

I 	jumps to D_val if viast is not NULL 

match—PS—zero 	viast 	Dvai 

I jumps to D_update_prop if vnext is not NULL 



match—PS—zero 	vnext 	D_update_prop 

At this point we know that both viast and vnext are NULL, so we must 

delete the value block and look at the property list. 

jsr 	delete _V_space 

move vnext_vthis 

At this point "pthis" holds the address of the matching property block, 

"plast" holds the address of the previous property block, and 

"pnext" holds the address of the next property block in the search list; 

so we can now perform the deletion 

Note that if plast is NULL, then we are deleting the first property in 

the list, and so 1st_prop must be updated in the symbol table. 

If pnext is also NULL, then we are deleting the ONLY property in the 

list, so the symbol table must be updated accordingly. 

jumps to D_prop if plast is not NULL 

match—PS—zero. 	plast 	D_prop 

D_update_sym: 
We need to update 1st prop_ptr in the symbol table. 

delete_ist_prop 

jsr 	delete_P_space 

match—PS—zero 	pnext 	D_get_prop 

This informs the CPU that it must set the symbol table address to the 

new value contained in p_ptr 

jsr 	ERROR 

jsr 	clear_poll 

imp 	start 

Otherwise we simply delete the property block from the list 

D_prop: 
delete—prop 

jsr 	delete _P_space 

match—PS—zero 	pnext 	D_get_prop 

jsr 	clear _poll 

imp 	start 
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D_update_prop: 

I 	At this point we know that we are at the start of the list, but 

that there is at least one other value in the list, so we need to 

I 	update 1st_val in the property pointed to by pthis. 

delete_ist_value 

jsr 	delete _V_space 

match—PS—zero 	vnext 	D_get_val 

jsr 	clear_poll 

imp 	start 

Otherwise we simply delete the value block from the list 

D val: 

delete—value 

jsr 	delete_V_space 

match—PS—zero 	vnext 	D_get_val 

jsr 	clear_poll 

imp 	start 

Dfailed: 

I 	jumps to 'Dstop" if prop is not a wildcard 

jmp_wild 	 Dstop 	prop 

I 	jumps to D_get_next_p if pnext is ! = 0 

match—PS—zero 	pnext 	D_get_next_p 

Dstop: 
jsr- 	clear_poll 

imp 	start 

I ##### 
END OF MAIN CODE 

##### 

I ##### 

• 	I START OF ANCILLJARY SUBROUTINE CALLS 

I ##### 

These routines retrieve the first word of the next property in the 

current search list 

C_get_next_p: 
get_next_prop_i 



imp 	C_match_prop 

R_get_next_p: 

get—next—prop-1 
imp 	R_match_prop 

M_get_next_p: 
get_next_prop_i 

imp 	M_match_prop 

D_get_next_p: 
move_pthis_plast 

D get prop: 
get _next_prop_i 

imp 	D_match_prop 

These routines retrieve the first word of the next value in the 

current search list 

C_get_next_v: 
get_next_val_1 

imp 	C_match_va! 

R_get_next_v: 
get_next_val_1 

imp 	R_match_va! 

M_get_next_v:. 

get_next_va 1_i 

- imp 	M_match_val 

D_get_next_v: 
move vthisvlast 

D get val: 
get_next_val_i 

imp 	D_match_val 



I 	This section of code creates a new property/value pair in memory, 

connects it to the previous property in the list, 

and updates the Pointer Store contents accordingly 

new_prop: 

jsr 	create_P_space 

store_prop_ptr 

jsr 	create _V_space 

move vnext_vthis 

store prop KB —1 

store_prop_KB_2 

store val KB 1 
store vat KB 2 

jsr 	clear—poll 

imp 	start 

This section of code creates a new value block in memory, 

connects it to the previous value in the list, 

and updates the Pointer Store contents accordingly 

new val: 

jsr 	create _V_space 

store_val_ptr 

store val KB 1 

store val KB 2 

jsr 	clear _poll 

imp 	start 

I END OF MICROCODE 

I ##### 

I ##### 
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APPENDIX G 
Microprogram Libraries 

G.1. lib.mac - Macro Library 

#defmac get_1st_prop_1 M2 

{ 

<IN> cont 

<RF> read 1st—prop 

<KB> 

} 

load-101 KB 

{ 

<IN> cont 

<PS> 

} 

read 1st_prop CTR 

{ 

<IN> cont 

<PS> 

} 

write pthis CTR 

{ 

<IN> cont 

<KB> store_101 RF 

<RF> write_KBL b_prop 

<PS> write pnext KB 

} 

#endmac 

#defmac 

{ 

match—prop—name M4 

<IN> cont 

<PS> read pnext PZ 

<RF> read s.-prop 

<KB> cmp_IO lsw 

} 

{ 

<IN> 	c2jmp 

<cc> 	ccpos 

<CL> 	slow 

} 

#endmac 

.labell 	.1abel2 

prop_cmp 
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#defmac match—prop—status M5 

{ 
<IN> cont 

<PS> read pnext PZ 

<RF> read s_pstat 

<KB> 

} 

cmp_IO lsw 

{ 
<IN> c2jmp .labeli .label2 

<ST> test 

<CC> ccpos equal 

<CL> slow 

} 
# end mac 

#defmac 

{ 

get—next—prop-1 M6 

<IN> cont 

<KB> load_101 KB 

<PS> 

} 

read pnext ADDR 

{ 
<IN> cont 

<PS> 

} 

read pnext CTR 

{ 
<IN> cont 

<PS> 

} 

write pthis CTR 

{ 
<IN> cont 

<RF> write_KBL b_prop 

<KB> store_101 RF 

<PS> write pnext KB 

<CL> slow 

} 
#endmac 

#defmac 

{ 

get—next—prop-2 M6 

<IN> cont 

<KB> load-102 KB 

<PS> 

} 

read pthis ADDR 



{ 

<IN> cont 

<RF> write_KBL b_pstat 

<KB> store_101 RF 

<PS> write lst_val KB 

<CL> slow 

} 

#endmac 

#defmac get_1st_val_1 M7 

{ 

<IN> cont 

<PS> read 1st_va! ADDR 

<KB> load_101 KB 

} 

{ 

<IN> cont 

<PS> 

} 

read 1st_va! CTR 

{ 

<IN> cont 

<PS> 

} 

write vthis CTR 

{ 

<IN> cont 

<KB> store-101 RF 

<RF> write_KBL b_va! 

<PS> write vnext KB 

<CL> slow 

} 

#endmac 

#defmac matcE_vaLname M9 

{ 

<IN> cont 

• <RF> read s_val 

<PS> read vnext PZ 

<KB> 

} 

cmp_IO lsw 

{ 

<IN> c2jmp .1abe!1 .label2 

<CC> ccpos value_cmp 

<CL> 

} 

slow 

10C  



#endmac 

#defmac match_val_status M10 

{ 

<IN> cont 

<RF> read s_vstat 

<PS> read vnext PZ 

<KB> 

} 

cmp_IO lsw 

{ 

<IN> c2jmp .labell .label2 

<ST> test 

<CC> ccpos equal 

<CL> slow 

} 

#endmac 

#defmac match_val_ctxt Mil 

{ 

<IN> cont 

<RF> read s_ctxt 

<PS> read vnext PZ 

<KB> 

} 

cmp_IO msw 

{ 

<IN> c2jmp .labell .labe12 

<CC> ccpos ctxt_cmp 

<CL> slow 

} 

#endmac 

#defmac get_next_val_1 M12 

{ 

<IN>. cont 

<KB> load-101 KB 

<PS> read vnext ADDR 

} 

{ 

<IN> 	cont 

<PS> 	read 	vnext 	CTR 

} 

{ 

<IN> 	cont 

<PS> 	write 	vthis 	CTR 



} 

{ 

<IN> cont 

<RF> write_KBL b_val 

<KB> store-101 RF 

<PS> write vnext KB 

<CL> slow 

} 

#endmac 

#defmac get_next_val_2 M12 

{ 

<IN> cont 

<KB> load-102 KB 

<PS> 

} 

read vthis ADDR 

{ 

<IN> cont 

<RF> write_KBL b_vstat 

<KB> 

} 

store-102 RF 

{ 

<IN> cont 

<RF> write_KBH b_ctxt 

<KB> store-102 RF 

<CL> slow 

} 

#endmac 

#defmac store_prop_KB_i M13 

{ 

<IN> cont 

<RF> read s_prop 

<KB> load-101 RF lsw 

<PS> read pnext KB 

<CL> 

} 

slow 

{ 

<IN> cont 

<KB> store-101 KB 

<PS> read pthis ADDR 

} 

#endmac 
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#defmac store—prop—KB-2 M14 

{ 

<IN> cont 

<RF> read s_pstat 

<KB> load-102 RF lsw 

<PS> read 1st_va! KB 

<CL> slow 

} 

{ 

<IN> cont 

<KB> store_102 KB 

<PS> read pthis ADDR 

} 

#endmac 

#defmac store_val_KB_1 M15 

{ 

<IN> cont 
<RF> read s_va! 

<KB> load-101 RF lsw 

<PS> read vnext KB. 

<CL> 

} 

slow 

{ 

<IN> cont 

<KB> store-101 KB 

<PS> read vthis 	. ADDR 

} 

#endmac . . 	 . 

#defmac store_val_KB_2 M16 

{ 

<IN> cont 

<RF> read s_vstat 

<KB> load-102 RF lsw 

<CL> slow 

} 

{ 

<IN> 	cont 

<RF> 	read 	s_ctxt 

<KB> 	load-102 	RF 	msw 

<CL> 	slow 

} 
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{ 

<IN> cont 

<KB> store-102 KB 

<PS> read vthis 	ADDR 

} 

#endmac 

#defmac match_PS_zero M17 

{ 

<IN> cont 

<PS> 

} 

read .labell 	PZ 

{ 

<IN> cjmp .label2 

<CC> ccneg ptr_zero 

} 

#endmac 

#defmac clear_PS M18 

{ 

<IN> cont 

<PS> write .labell 	RF 

<RF> read clear_ps 

} 

#endmac 

#defmac jmap M19 

{ 

<IN> jmap 

<CL> slow 

} 

#endmac 

#defmac jsr M20 

{ 

<IN> cjsr .labell 

<CC> force pass 

<CL> slow 

} 

#endmac 

#defmac imp M21 

{ 

<IN> cjmp .labell 



<CC> force pass 

<CL> slow 

} 

#endmac 

#defmac write_PS_from_RF 

{ 

<IN> cont 

<PS> write .labeli 

<RF> read .labe12 

} 

#endmac 

#defmac write_RF_from_PS 

{ 

<IN> cont 

<RF> write—PS .labell 

<PS> read .Iabe12 

} 

#endmac 

#defmac 

{ 

get_lst_prop_ptr 

<IN> cont 

<RF> write _PS p_ptr 

<PS> read pthis 

} 

#endmac 

G.2. lib.sub - Sub-Routine Library 

'Si 

{ 

delete_P_space: 

<IN> 	c'mp 

<PS> 	read 

<CC> 	ccpos 

} 

{ 

<IN> 	cont 

<PS> 	read 

Si—jump 
free_ptr 	PZ 

ptr_zero 

pthis 	KB 

M23 

RF 

M24 

RF 

M25 

RF 
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<KB> load-101 KB 

} 

<CL> slow 

{ 

<IN> cont 

<PS> read free_ptr KB 

} 

<KB> load-101 PS 

{ 

<IN> cont 

<PS> read pthis KB 

} 

<KB> store—I01 KB 

{ 

51—jump: 
<IN> cont 

<PS> read pthis CTR 

} 

{ 

<IN> cont 

} 

<PS> write free_ptr CTR 

{ 

} 

<IN> rtn 

jS2 

{ 

delete_V_space: 

<IN> cjmp S2—jump 

<PS> read free_ptr PZ 

} 

<CC> ccpos ptr_zero 

{ 

<IN> cont 

<PS> read vthis KB 

<KB> load-101 KB 

} 

<CL> slow 

{ 

<IN> cont 

<PS> read free_ptr KB 

} 

<KB> load_I01 PS 



{ 

<IN> 	cont 

<PS> 	read 	vthis 	KB 

<KB> 	store-101 	KB 

} 

{ 

S2—jump: 
<IN> 	cont 

<PS> 	read 	vthis 	CTR 

} 

{ 

<IN> 	cont 

<PS> 	write 	free_ptr 	CTR 

} 

{ 

<IN> 	rtn 

} 

1S3 

{ 

create_P_space: 
<IN> 	cont 

<PS> 	read free_ptr 	PZ 

<IN> 	cjmp 
<CC> 	ccneg  

<IN> cont 

<PS> 

} 

read 

{ 

<IN> cjmp 

<CC> 

} 

ccpos 

{ 

<IN> cont 

<PS> 

} 

read 

{ 

<IN> cont 

write 

S3—jump 
ptr_zero 

mem_ptr 	PZ 

ERROR 

ptr_zero 

mem_ptr 	CTR 

pthis 	CTR 



} 

{ 

<IN> cjmp S3—end 

<CC> .  force pass 

<PS> inc mem_ptr 

} 

{ 

S3—jump: 
<IN> cont 

<PS> 

} 

read free_ptr CFR 

{ 

<IN> cont 

<PS> write pthis CTR 

<CL> 

} 

slow 

{ 

<IN> cont 

<PS> read free_ptr ADDR 

<KB> load_101 KB 

<CL> 

} 

slow 

{ 

<IN> cont 

<PS> write free_ptr KB 

<KB> 

} 

store_101 RF 

{ 

S3—end: 	<IN> 	rtn 

} 

1S4 

{ 

create_V_space: 
<IN> cont 

<PS> 

} 

read free_ptr PZ 

{ 

<IN> cjmp S4—jump 

<CC> 

} 

ccneg ptr_zero 

{ 

<IN> cont 



} 

<PS> read mem_ptr PZ 

{ 

<IN> cjmp ERROR 

<CC> ccpos ptr...zero 

} 

{ 

<IN> cont 

} 

<PS> read mem_ptr CTR 

{ 

<IN> cont 

<PS> write vthis Cf R 

} 

{ 

<IN> cjmp S4—end 

<CC> force pass 

} 

<PS> inc mem_ptr 

{ 

S4—jump: 
<IN> cont 

} 

<PS> read free_ptr CTR 

{ 

<IN> cont 

<PS> write vthis CTR 

} 

<CL> slow 

{ 

<IN> cont 

<PS> read free_ptr ADDR 

<KB> load-101 KB 

} 

<CL> slow 

{ 

<IN> cont 

<PS> write free_ptr KB 

} 

<KB> store-101 RF 

{ 

S4—end: 

} 

<IN> 	rtn 
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1S5 

{ 

ERROR: <IN> 	cont 

<PS> read error_cond CTR 

} 

{ 

<IN> cont 

} 

<PS> inc error_cond 

{ 

<IN> cont 

<PS> read error_cond RF 

<RF> write—PS error_cond 

} 

{ 

} 

<IN> rtn 

I S6 

{ 

mit: 
<IN> cont 

<RF> read clear_ps 

} 

<PS> write clear RF 

{ 

<IN> cont 

<RF> read init_mem_ptr 

} 

<PS> write mem_ptr RF 

{ 

<IN> cont 

<RF> read clear_ps 

} 

<PS> write free_ptr RF 

{ 

<IN> cont 

<RF> read clear. ps 

} 

<PS> write vlast RF 

{ 

<IN> cont 

<RF> read clear_ps 

<PS> write vthis RF 



} 

{ 

<IN> cont 

<RF> read 

<PS> 

} 

write 

{ 

<IN> cont 

<RF> read 

<PS> write 

} 

{ 

<IN> Cont 

<RF> read 

<PS>. 

} 

write 

{ 

<IN> cont 

<RF> read 

<PS> 

} 

write 

{ 

<IN> cont 

<RF> read 

<PS> 

} 

write 

{ 

<IN> cont 

<RF> read 

<PS> write 

} 

{ 

<IN> 	cont 

<RF> 	read 

<PS> 	write 

} 

{ 

<IN> 	rtn 

} 

I S7 

{ 

poll—CPU: 

<IN> 	cont 

clear_ps 

vnext 	RF 

clear_ps 

plast 	RF 

clear_ps 
pthis 	RF 

clear_ps 

pnext 	RF 

clear_ps. 
1st—prop 	RF 

clear_ps 

ist_val 	RF 

error_cond 

error_cond 	RF 



<RF> 

} 

read 

{ 

<IN> cjmp 

<cc> ccpos 

csr 

poll—CPU 

poll—bit 

} 

{ 

<IN> 

} 

I S8 

{ 

clear—poll: 
<IN> 

<RF> 

<PS> 

rtn 

cont 
write—PS 

read 

csr 
clear 
	RF 

} 

{ 

<IN> 	rtn 

} 
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HARDWARE SUPPORT FOR 

KNOWLEDGE BASE MANIPULATION 

Stephen Hudsont, John M. Hannaht, Robert Raet 

University of Edinburgh Dept. of Electrical Engineering 

King's Buildings, Mayfield Road, Edinburgh 

Abstract 

Despite the increased use and popularity of expert and A! planning and simulation systems, 

they remain unsuitable for many engineering applications due to poor real time response. 

A major contributing factor is the inability to manipulate information in a knowledge base 

quickly enough. Consequently, in conjunction with the Artificial Intelligence Applications 

Institute (AlA!), we have studied hardware support for a knowledge retrieval system. 

A knowledge structure has been developed which is suitable for manipulation by special 

purpose hardware. Having successfully implemented a basic expert shell in software using 

this structure, a prototype system is being constructed to demonstrate the concepts 

developed. A free-list garbage collection algorithm has been adopted which also makes 

use of the knowledge structure format which can be implemented within the hardware with 

little speed overhead and no memory overheads. 

Background 

A principal consideration is how the knowledge is represented. First Order Predicate Calculus 

(FOPC) appears to be a simple, convenient, formalism. It is also relatively easy to map such 

representations onto hardware. However, FOPC requires a great many "well formed formulae" to 

be defined to describe even simple situations. Structured formalisms, on the other hand, can 

describe very complex situations and relations quite easily. Unfortunately, because they must 

describe general and changing situations (ie: cope as information is changed, deleted or appended) 

they cannot be predefined standard structures. This means that mapping onto hardware is 

difficult. 

t Dept. Of Electrical Engineering 
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Much of the research into knowledge bases has been concerned with faster manipulation methods, 

and different techniques have been developed to do this. The software solution has been to 

develop structured knowledge representations which allow the user to home into a particular piece 

of information by way of inheritance lattices, and to facilitate reasoning about complex situations 

(eg: the real world!). Examples of these solutions are a series of advanced intelligent tools, such as 

LOOPS [1], KEE [21, ART [31 and Knowledge Craft [4], which were designed for fast prototyping 

of expert systems, reasoning systems etc. 

The hardware solutions have been varied, but generally based on FOPC methods. Examples 

include the development of fast disc controllers which perform serial database search [8], 

associative processors [7], the intelligent file store [5,6] and REKURSIV [9]. Hardware 

approaches which involve predicate calculus formalisms are inherently slower than structured 

formalisms but easier to manipulate. The approach taken in this project is to merge both; that is to 

develop a structure which can be predefined as a standard format while still able to support 

changing information. 

The Knowledge Structure 

We required some method of representing our information which was both versatile and amenable 

to hardware manipulation. Hence, we selected a general (n-ary) tree structure relating objects, 

slots and fillers, and represented this with a binary tree using linked lists. The structure is 

illustrated conceptually in figure 1 and physically in figure 2. 

Quite simply, objects have slots (or properties) whose fillers (values) depend on the particular 

context being considered. Each object/property/value triple is known as a relation and has a 

confidence associated with it, which can be TRUE, FALSE, UNDEFINED or PROBABLE (this 

information is stored in a status word). The contents of the value can be either an atom, an object 

or a link to another relation (either within the same object or within another object); allowing us to 

build up higher order relations. Status information is also included for tagging and masking 

purposes. As shown in figure 1, we might want to represent the information: Steve probably plays 

squash on a Monday where Steve is a man. [Note that the latter relation is always true, so the 

context Monday would be a child of Always .] 
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Object 

Steve 

Slot 

Plays 

—!Z 
Filler 	- -. Filler 	-. - 	 Filler 

Squash Man 

Confid Confid 	 Confid 

Prob True 

Context Context 	 Context 

Monday Always 

Slot 	I-•- .—.-> 
isa 	I 

- _•4 Filler 

Confid 

Context 

conceptual link (general tree) 

-. 	physical link (binary tree)' 

Figure 1: Conceptual Knowledge Structure 

Object: 	ObjCode 	*Next_Obj 	Status_Info 	*First_Prop 

Property: 	Prop—Code 	* Next_Prop 	Status_Info 	*First_Val 

Value: 	 Val_Code 	*Next_Val 	Status_Info 	Context 

(* represents a pointer) 

Figure 2: Physical Knowledge Structure - Component Blocks 
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The Manipulation Facilities 

The facilities supported have been chosen to comply with those described by Tate [11] as being 

practical for a context data base. New relations can be created which may or may not be related 

to existing information. If a property is given no value, then it is either inherited from a parent or 

it is given the value "undef" (not to be confused with the confidence). Slots can be masked so that 

they are not inherited by their sub-classes. Knowledge can also be deleted from memory. It is 

possible to delete either all or part of a structure. We can also modify any part of a structure: 

object name, property name, value name, context or confidence. The system keeps a record of the 

current context in which we are interested, which can be changed at any time, and all of the above 

operations can be performed within a specified, or the default (current), context. Contexts are 

defined in the same way as objects and so can be created, deleted or modified similarly. Any 

specified relation or partially specified relation(s) can be retrieved from the knowledge base. Mark 

bits are used to allow logical connections between relations within a specification. It is also 

possible to retrieve all of the relations which do not match a particular specification. 

The Manipulation Hardware 

The use of this knowledge structure and the manipulation techniques were initially investigated by 

computer simulation (in "C") of a basic expert shell (cf. "Knowledge Craft"), and profiling 

operations were carried out which pinpointed major bottlenecks. Since the primary limiting factor 

was found to be linked-list-traversal, a hardware design strategy was developed which dealt with 

linked-list codes and pointers in parallel; ie. code matching with specifications and linked-list 

book-keeping are performed simultaneously. The linked-list format is also used to connect unused 

memory blocks, and a free-list garbage collection algorithm is included within the microprogram 

with very little speed overhead. No special purpose hardware is used to perform the higher level 

manipulations of the knowledge base, since the speed gains would not be worth the cost or effort 

involved. Only the searching, matching, creation, deletion, modification and retrieval of a single 

specified relation (wildcard entries permitted) is performed by the support hardware. All higher 

level interpretations and control are performed by the "host" CPU. A block diagram of the 

complete system is shown in figure 3. 
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Figure 3: Knowledge Manipulation System - Block Diagram 

A prototype system is currently being built to demonstrate these ideas. This incorporates the 

special purpose retrieval hardware, 512 kbytes of knowledge base memory and a MC68010 CPU 

host, interfaced via a VMEbus. The retrieval hardware acts as a slave system to the host and 

performs particular tasks on the knowledge base when instructed. No processing elements are 

involved in the special purpose hardware; a microprogram sequencer provides local control of 

storage and data multiplexing elements, but overall control and user interfacing is performed by the 

host CPU board. This means that the design is very suitable for silicon fabrication, and hence cost 

effective spe-d improvements. 
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The retrieval hardware is illustrated in Figure 4 and has been designed to implement a basic 

search-march-operation algorithm: 

	

1. 	Retrieve 1st object block from knowledge base address 1 (0 is unused) 

	

2. 	Compare object code and status with the specification supplied by the host 

	

3. 	If they match... 

(a) Retrieve 1st property block from address *First_Prop 

(b) Compare property code and status with the spec 

(c) If they match... 

[i] Retrieve the 1st value block from the address *Fjrst_Val 

[ii] Compare the value code, context code and status with the spec 

[iii] if they match... 

Inform the CPU 

Stop after successful search 

[iv] Else... 

If *Next_Val is nil, go to (d)[i] 

Else retrieve the next value block from address *Next_Val 

Go to [ii] 

(d) Else... 

If *Next_Prop is nil go to 4 (a) 

Else retrieve the next property block from address *Next_Prop 

Go to (b) 

	

4. 	Else... 

If *Next_Obj is nil, inform the CPU and stop after unsuccessful search. 

Else retrieve the next object block from address *Next_Obj 

Go to 2. 
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Figure 4: Retrieval Hardware - Block Diagram 
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Refering back to figure 2, each of the blocks which make up our knowledge structures comprises 

- four words. During the search, the first two words are copied into the 110 Ports. Since, in 

general, we would expect there to be more non-matching than matching relations, the first pointer 

inspected is to the next entry on the same level of the tree rather than the first entry on the next 

level down the tree. The two comparator banks compare codes with the specifications (greater 

than, less than, and equal to outputs) and compare pointers with zero for end of list checking. If 

the codes match, then the next two words are copied into the 110 Ports. The Mark Bit Toggle 

circuit controls the status word mark bit when matching specification relations with logical 

connections. In the case of object and property blocks, the most significant word (MSW) now 

holds the pointer to the first entry in the next level down the tree, and the new block is read in. In 

the case of value blocks, we are at the bottom level of the tree, so there are no pointers. Instead, 

we must compare the context with the specification. Since the knowledge base input/output cycle 

times are longer than the sequencer's, the Comparator Input Select circuitry can sequentially 

inspect the results of the two comparison operations and present the appropriate pointer at the 

address bus in time for the next knowledge base access. The Comparison Input Select circuit 

comprises a group of multiplexers which select the appropriate test input to the sequencer from the 

comparators, under the control of the control and status register (written to by the host). As the 

codes and pointers are read from the knowledge base, they are stored in the Register File and 

Pointer Store respectively. The Register File is a 4 port dual access memory IC, which is also used 

to store the control and status register and the specification relation. The Pointer Store is also used 

for garbage-free-list book-keeping. The entire operation is controlled by a one level pipelined 

sequencer which communicates with the MC68010 host CPU via the Register File. 

We are implementing a demonstration expert system for evaluation purposes. Three layers of 

software are required for the system. The first layer is the microcode for the structure traversal / 

matching hardware. The second layer [10] comprises the instruction set which implements most of 

the context data-base functions described by Tate [11]. These are supplied by the MC68010 as 

macro-instructions to the first layer (via the Register File). The third layer consists of the specific 

application - in this case, a demonstration expert shell. 

Conclusion 

With the belief that object oriented knowledge bases are more suitable for use within the real world 

than FOPC based systems, a general tree based knowledge structure has been developed which is 

flexible and amenable to hardware manipulation. Having tested the structure by software 

simulation of a basic expert shell, and having pinpointed the inherently slower operations, special 
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purpose hardware has been designed which supports the desired facilities. Garbage collection, a 

recurrent problem in many intelligent systems, is performed concurrently with very little speed 

overhead and no memory overheads. The search and manipulation mechanism (Figure 4) contains 

no processing elements and so is well suited for integration. Although this design provides speed 

gains through a limited amount of parallelism, nevertheless it still performs a depth first search. It 

is envisaged, however, that maximum parallelism will be gained by utilising banks of such ICs 

under the supervision of a central controller, with each assigned to a block of memory. 
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