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Abstract 
 
Prognostic models have clinical appeal to aid therapeutic decision making. In the 

UK, the Nottingham Prognostic Index (NPI) has been used, for over two decades, to 

inform patient management. However, it has been commented that NPI is not 

capable of identifying a subgroup of patients with a prognosis so good that adjuvant 

therapy with potential harmful side effects can be withheld safely.  

 

Tissue Microarray Analysis (TMA) now makes possible measurement of biological 

tissue microarray features of frozen biopsies from breast cancer tumours. These give 

an insight to the biology of tumour and hence could have the potential to enhance 

prognostic modelling. I therefore wished to investigate whether biomarkers can add 

value to clinical predictors to provide improved prognostic stratification in terms of 

Recurrence Free Survival (RFS). 

 

However, there are very many biomarkers that could be measured, they usually 

exhibit skewed distribution and missing values are common. The statistical issues 

raised are thus number of variables being tested, form of the association, imputation 

of missing data, and assessment of the stability and internal validity of the model.  

 

Therefore the specific aim of this study was to develop and to demonstrate 

performance of statistical modelling techniques that will be useful in circumstances 

where there is a surfeit of explanatory variables and missing data; in particular to 

achieve useful and parsimonious models while guarding against instability and 

overfitting. I also sought to identify a subgroup of patients with a prognosis so good 



 ii

that a decision can be made to avoid adjuvant therapy. I aimed to provide statistically 

robust answers to a set of clinical question and develop strategies to be used in such 

data sets that would be useful and acceptable to clinicians. 

 

A unique data set of 401 Estrogen Receptor positive (ER+) tamoxifen treated breast 

cancer patients with measurement for a large panel of biomarkers (72 in total) was 

available. Taking a statistical approach, I applied a multi-faceted screening process to 

select a limited set of potentially informative variables and to detect the appropriate 

form of the association, followed by multiple imputations of missing data and 

bootstrapping. In comparison with the NPI, the final joint model derived assigned 

patients into more appropriate risk groups (14% of recurred and 4% of non-recurred 

cases). The actuarial 7-year RFS rate for patients in the lowest risk quartile was 95% 

(95% C.I.:  89%, 100%).  

 

To evaluate an alternative approach, biological knowledge was incorporated into the 

process of model development. Model building began with the use of biological 

expertise to divide the variables into substantive biomarker sets on the basis of 

presumed role in the pathway to cancer progression. For each biomarker family, an 

informative and parsimonious index was generated by combining family variables, to 

be offered to the final model as intermediate predictor. In comparison with NPI, 

patients into more appropriate risk groups (21% of recurred and 11% of non-recurred 

patients). This model identified a low-risk group with 7-year RFS rate at 98% (95% 

C.I.: 96%, 100%).  
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I then elaborated these methods with investigation of elements of procedure: 

screening and imputation of missing data, and appropriate form of association. 

‘Median substitution’ method provided results comparable to sophisticated multiple 

imputation technique, probably due to low rate of missing data. Furthermore, 

submission of all of the biomarkers to the model slightly changed composition of the 

final model in terms of selection of variables and resulted in inflated S.E.’s.  

 

Regarding the form of association, the superiority of data-driven techniques over pre-

specified methods was confirmed.  

 

By performing a multifaceted screening followed by multiple imputations and 

bootstrapping (to check both the stability of form of association and reliability of 

inclusion across models), I developed a methodology which has the potential for 

future application in all medical areas. Furthermore, powerful predictive biomarker 

tools have been proposed which promise to increase understanding and prevention of 

breast cancer progression and which provide a significant potential improvement 

over conventional NPI risk stratification. However, models developed warrant 

validation in a larger cohort, ideally with longer follow-up. 
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Chapter 1 GENERAL INTRODUCTION 

 

 

 

1.1 Introduction 

Clinical trials typically involve collection of patient data at entry and in so far as are 

possible these data will include variables of potential relevance to the likely cause of 

the disease under study. These data sets have been a valuable resource in identifying 

important risk factors for disease course and hence also for risk stratification of 

patients.  

 

Prognostic models combine key patient characteristics (risk factors) to predict 

clinical outcomes such as recurrence of cancer. These models are excellent tools to 

investigate the contribution of variables to disease course, to inform patients about 
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their likely outcome, to design future studies, and to select treatment paths [Altman 

DG and Lyman GH, 1998].   

 

A prognostic model, to be useful in practice, should be able to stratify in terms of 

risk: that is to identify a subset of good and poor prognosis cases that do not and do 

require further treatments such as chemotherapy [Lee AH and Ellis IO, 2008].  

 

In the case of breast cancer, multiple conventional prognostic candidate variables 

have been investigated by applying the Cox regression model to derive an index of 

risk of disease recurrence [Haybittle JL et al., 1982]. In particular, the Nottingham 

Prognostic Index (NPI) was devised to estimate the risk of recurrence and to classify 

patients into risk groups [Haybittle JL et al., 1982]. This model uses information on 

nodal status, tumour grade, and tumour size, and has been widely validated [Todd JH 

et al., 1987; Galea MH et al., 1992; Balslev I et al., 1994].   

 

The NPI is now central to the risk stratification of patients across the UK. However, 

it is not capable of identifying a subgroup of patients with a prognosis so good that a 

decision can be made to avoid treatments with potential harmful side effects [Balslev 

I et al., 1994]. It has been emphasized that further prognostic factors, besides those 

used in NPI, are needed to enhance risk stratification [Balslev I et al., 1994].   

 

Referring to the patients who do not require treatment, it has been postulated that ‘it 

is an inability to identify such patients prior to treatment, rather than an expectation 

that all patients derive benefit, which drives the treatment of significant number of 
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breast cancer patients with often aggressive chemotherapy’ [Faratian D and Bartlett 

JM, 2008]. The identification of novel prognostic markers and integration of them in 

risk prediction is key to the solution of this dilemma [Faratian D and Bartlett JM, 

2008].   

 

In recent years data on new potentially informative prognostic variables have become 

available, in particular using Tissue Microarray Analysis (TMA). The development 

of automated laboratory techniques has enabled retrospective testing of stored tissue 

samples in existing cohorts, providing a multitude of potential biological markers for 

prognostic modelling in breast cancer. Tissue microarray data usually exhibit skewed 

distributions and their analysis is hampered by missing data.  

 

These TMA variables reflect the biology of a tumour and hence could have the 

potential to enhance prognostic modelling. In this thesis I will explore the feasibility 

and methodological aspects of combining biomarker data and clinical variables to 

develop an enhanced prognostic model providing improved prognostic stratification 

in terms of Recurrence Free Survival (RFS).  



 4

1.2 Overview of the research 

The specific aim of this research is to develop and to demonstrate the performance of 

statistical methods that will be useful in circumstances where there is a surfeit of 

potential biological tissue microarray data. This is to ascertain which tissue variables 

are important for outcome so as to enhance understanding of the biology of breast 

cancer progression, and to achieve useful and parsimonious models, guarding against 

instability and overfitting.   

Other objectives related to the nature of these skewed biomarkers are to find the 

appropriate form of risk function and to minimise the loss of information due to 

missing data.  

 

Methods to tackle these challenges are explored and discussed in the process of 

analysing biological tissue microarray data in breast cancer. The original contribution 

of this thesis will be to advance understanding of the value of appropriate statistical 

methods in such circumstances. In addition, it is expected that the findings of the 

research will reveal new insights into breast cancer aetiology and treatment, and 

hence lead to better management of patients.   
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1.3 Structure of this thesis 

 The remainder of this thesis is structured as follows.  

Chapter 2 provides a background to breast cancer. In addition, details of the 

development of NPI, and its main applications in the literature, are given.  

Chapter 3 presents a literature review of the statistical techniques relevant to this 

project.  

Chapter 4 sets out the aims and objectives of this study, and design. An overview of 

statistical methods relevant to the whole thesis is presented. Specific methods applied 

are given in relevant results chapters. 

 

Results are then presented in six chapters (Chapters 5 to 10): preliminary work in 

Chapters 5 and 6, main modelling in Chapters 7 and 8, and enhancement of 

understanding of methods applied in Chapters 9 and 10. 

 

Chapter 5 describes summary statistics for the variables. 

Chapter 6 is devoted to application and also recalculation of NPI. To 

recalculate the index, new regression coefficients will be calculated with 

respect to the data set I analysed. Furthermore, effect of categorisation of 

patients into 3 and 4 risk groups on estimation of event free rates is checked. 

 

In Chapter 7, I will apply alternative screening methods to compare them in 

terms of detection of form of risk function and selection of univariate 

potentially informative biomarkers.  
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In Chapter 8, I will report the process of application of methods to develop 

multifactorial models with many skewed variables in presence of missing data.  

 

In Chapter 9, models developed in Chapter 8 are challenged by applying 

alternative approaches to handle missing data.  

In Chapter 10, the importance of selection of form of risk function on the 

composition and performance of the model is addressed. 

 

Chapter 11 provides general discussion of this thesis and suggests priorities for 

future studies. A set of recommendations for future studies is provided. 
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Chapter 2 BACKGROUND TO BREAST CANCER, ITS 

TREATMENT AND RISK PREDICTION   

 

 

 

2.1 Introduction 

In human body, genes control growth of cells. Healthy cells might become cancerous 

when abnormal changes happen in genes [Breastcancer.org, 2008f]. In general, 90% 

of cancers are caused by a genetic abnormality that happen due to aging 

[Breastcancer.org, 2008c]. Based on 2006 statistics, only 0.5% of cancers registered 

were in those aged less than 15 years while in 74% age was more than 60 years 

[Office for National Statistics, 2009].   
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Over time cancerous cells might invade healthy breast tissues and become a tumour. 

Cancerous cells can also spread to nearby tissues and enter the bloodstream affecting 

other parts of the body. Metastatic breast cancer means that the cancerous cells 

spread to other parts of the body. The extent that initial cancerous cells are spread in 

the body shows disease stage [Breastcancer.org, 2008f].   

 

Cancer is one of the most major health problems worldwide. In 2002, a quarter of the 

11 million new cases of cancer reported worldwide occurred in Europe. In the UK, 

per year, more than a quarter of a million new cases are diagnosed. Among them, the 

most prevalent carcinomas (incidence rate) were breast (16%), lung (13%), bowel or 

colorectal (13%) and prostate (12%) [Cancer Research UK, 2007].  

 

Breast carcinoma, with one million newly diagnosed cases annually, is the most 

prevalent malignancy among women worldwide, comprising 18% of all female 

cancers [McPherson K et al., 2000]. The highest rate of breast cancer occur in 

Northern Europe and North America (101.1 for US and 88.7 for Denmark per 

100,000 thousand population) and the lowest rates are in parts of Africa and Asia (19 

in Zimbabwe and 18.7 in China) [Cancer Research UK, 2008]. This indicates 

geographical variation in incidence of this disease.  

 

However, even among European countries, the UK has a high incidence rate (87.2 

per 100,000): each year more than 44,000 women are diagnosed with breast cancer 

[Cancer Research UK, 2008]. As the incidence of breast cancer is high, and five-year 

survival rates are over 75%, many women are alive who have been diagnosed with 
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breast cancer. Around 172,000 women are alive in the UK having had a diagnosis of 

breast cancer [Micheli A et al., 2002].  

 

In the UK, 12400 deaths occurs due to this malignancy per year [Cancer Research 

UK, 2006]. In Scotland the standardised mortality rate is 62.6 (per 100,000 women). 

The rate in England and Wales was lower (56.1). The rate in Japan was very low 

while in Canada very high (21.9 versus 71.1) [McPherson K et al., 2000].  

 

 

In section 2.2 construction and application of Nottingham Prognostic Index (NPI) for 

risk stratification in the literature is reviewed. In section 2.3, treatment options and 

their side effects are given. In section 2.4, the importance of integration of biology to 

optimise risk prediction and treatment selection is highlighted. An overview is given 

in 2.5. 

 

2.2 Nottingham Prognostic Index (NPI) 

2.2.1 Development of NPI  

Currently Nottingham Prognostic Index (NPI) is the gold standard in prognostic 

method for cases diagnosed with breast cancer. The NPI is considered in conjunction 

with additional factors such as age and hormonal receptor status to inform 

management of breast cancer patients across the UK.  
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The NPI was developed with follow-up data collected from 500 cases with invasive 

carcinoma treated by simple mastectomy and triple-node biopsy at the Nottingham 

City Hospital [Haybittle JL et al., 1982]. At the time of analysis, the range of follow-

up times was between 1 and 6 years. Of 500 cases recruited, 113 cases were excluded 

for one or more of the following reasons: 69 cases with lack of data on Estrogen 

Receptor (ER); 10 cases with no cell reaction score; 11 cases with non-invasive 

cancer; and 23 cases for a variety of reasons such as operation not being mastectomy 

or no follow-up possible. The remaining 387 cases were analysed to create the index.  

 

Not all patients were treatment free. After the first 250 cases had been recruited, the 

publication of Blamey et al. caused a change in clinical practice, such that cases 

judged by Blamey’s research to have poor prognosis (those with tumour in either of 

apical or internal mammary nodes (stage 3), tumour size> 2cm, and grade 2 or 3) 

should receive chemotherapy [Blamey RW et al., 1979]. This policy was applied to 

120 of the patients recruited to the NPI study, the 251st to 370th. However, this policy 

was then discontinued for the remaining patients up to 500th.  

 

To develop the index, 9 variables were submitted to the multifactorial Cox regression 

and a full model was fitted: age, menopausal status, tumour size, lymph-node 

involvement, tumour grade, cellular reaction, presence of sinus histiocytosis in 

lymph nodes, estrogen receptor (ER), and a binary variable indicating whether 

adjuvant chemotherapy therapy had been given. This last variable was included 

because fifteen cases had received chemotherapy.  
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 The only variables making significant contributions to the multifactorial prognostic 

model were tumour size, lymph-node stage, and grade. Histological grade and stage 

had 3 levels. In the multifactorial analysis, lymph-node stage showed the strongest 

association, with a Z-value of 5.29, followed by grade, and tumour size (Z-values 

4.56 and 2.92 respectively).  

 

Although nodal status, grade, and tumour size were the only significant variables, no 

additional regression model was fitted with only these 3 variables. Nevertheless, the 

risk score was calculated for each patient using only the 3 significant variables in the 

formula where the multiplier for each variable is the corresponding regression 

coefficients for the model:  

0.17 x Size (cm) + 0.76 x Node {1, 2, 3} + 0.82 x Grade {1, 2, 3}   

 

The authors then applied the risk score in subsets of 298 cases with data on all 

prognostic factors. Subjects were selected from patients 1-250 and 371-500 thus 

excluding cases recruited during the period in which poor prognostic cases1 received 

chemotherapy.  

 

On the basis that lymph-node stage was the strongest predictor, the index derived 

was compared with this predictor alone. In the subset studied, the number of patients 

classified by node stages as 1, 2, and 3 were 154, 95, and 49 respectively. Kaplan-

Meier (K-M) survival curves for these node groups were plotted. Cut points were 

then applied to the index scores derived so as to define three risk groups containing 

                                                 
1 Poor prognostic cases were defined as having Stage C, size > 2cm, and Grade 2 or 3 
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the same number of patients (154, 95, and 49), which in their sample was equivalent 

to 3.65 and 4.5. Comparing K-M survival curves, for these groups compared to 

lymph node alone, it was seen that the survival of the lowest risk group detected by 

the index and node stage alone were fairly similar in event free survival. However, 

the index gave a marginally better discrimination between low and high risk patients.  

 

A second comparison was made between the index and criteria used to define high 

risk patients, based on Blamey’s study [Blamey RW et al., 1979]. Only 25 cases 

formed the high risk group.  The survival curve of these patients was compared with 

that of 65 patients with the highest index value (≥4.4). Curves were almost identical. 

However, the index identified a larger number of cases as poor prognosis (65 for 

index versus 25 based on Blamey’s study). Finally, the K-M survival curve of 64 

cases with index values below 2.8, were compared with that of the expected survival 

in a normal population of the same age distribution. The normal population had 

slightly better survival but very similar. The authors concluded that the risk groups 

derived were able to define very good low and high risk patients [Haybittle JL et al., 

1982].  

 

To improve the ease of application of index, regression coefficients for tumour size, 

nodal status, and grade were rounded up from 0.17, 0.76, and 0.82 to 0.2, 1, and 1 

respectively. The NPI therefore becomes: 

 

NPI = 0.2 x Size (cm) + Nodal status {1, 2, 3} + Grade {1, 2, 3} 
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In order to produce the same risk groups and similar survival curves, the cut points 

then had to be shifted in line with the rounding, from 2.8 and 4.4 to 3.4 and 5.4 

respectively.  

 

Some years later, the original NPI which was developed on short-term follow-up 

data, was calculated for all of the 387 cases which had a longer follow-up period and 

for a new prospective sample containing 320 cases followed-up for 1.7 to 6.5 years 

(707 cases in total) [Todd JH et al., 1987]. K-M survival curves for original sample 

(387 cases) and prospective sample (320 cases) were plotted and compared. Survival 

curves in the corresponding risk groups were fairly similar. Also, combining the two 

samples together, actuarial 5-years survival of low, intermediate and high risk groups 

were 88%, 69%, and 22% respectively indicating the ability of NPI to stratify 

patients into divergent risk groups. 

 

2.2.2 Literature review of applications of NPI 

NPI was then validated in several independent samples, as summarised in Tables 2.1 

and 2.2. Using Pubmed database, the keyword ‘Nottingham’ in the title of the paper 

was searched. This resulted in 470 papers, the majority of them were not relevant to 

NPI and breast cancer.  

 

Only papers which reported the application of the NPI to stratify patients into risk 

groups were considered (18 papers in total). Estimated event-free rates in risk groups 

are summarised in Tables 2.1 and 2.2. Comparison of results is not straightforward as 

different patient subtypes receiving a variety of treatment regimes were analysed. My 
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main purpose was to investigate the ability of NPI in identification of low risk 

patients. Therefore, I reported estimated event-free rate in the lowest risk groups 

(those with NPI lower than 3.4). For the sake of comparison, estimates in 

intermediate, and high risk patients are also presented. 

 

Not all papers provided detailed information about number of patients and 

recurrences in risk groups, follow-up time, and estimated event-free rates. In the case 

of no report of event-free rates, if survival curves were presented, then figures were 

judged by that. Furthermore, none of the studies provided information on confidence 

interval of reported survival rates.  

 

The main findings were as follows. My especial focus is on estimated long-term 

event free rates (10 years or more) in the low risk groups. However, 6 studies 

reported short-term rates at 5 years (Table 2.1). Actuarial 5-year survival rate derived 

from original NPI was 88%. This rate varied from 82% [Sauerbrei W et al., 1997; 

Coradini D et al., 2001] to 96% [Okugawa H et al., 2005]. Furthermore, 3 studies 

were performed on node negative breast cancer patients and therefore no patient was 

assigned into high risk group, so that there were only 2 risk groups [Sauerbrei W et 

al., 1997; Coradini D et al., 2001; Ring BZ et al., 2006].  

 

Focusing on long-term survival rates (Table 2.2), in the largest studies, nearly 25000 

and 10000 patients were recruited [Lundin J et al., 2006; Balslev I et al., 1994]. In 

both studies, estimated 10-year survival rate was about 80%. Some other studies 

reported a similar rate [Galea MH et al., 1992; Lundin J et al., 2006]. On the other 
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hand, in the smallest studies, (n= 82 and 97), a marginally higher survival rate at 10 

years (83%) was reported [Sidoni A et al., 2004; Eden P et al., 2004].  

 

Applying the NPI on patients with small primary breast cancer the highest 10-year 

event-free rate was reported at 88% [Kollias J et al., 1999] which was also reported 

in the longest follow-up study [D'Eredita' G et al., 2001]. Estimated event-free rate 

for high-risk cases in the latter study was also higher than most of the other studies.  

 

The poorest 10-year survival rate was only 66% [Brown J et al., 1993]. Sample size 

and duration of follow-up was not reported. Callagy et al. reported an estimate only 

slightly better (73%) [Callagy GM et al., 2006].  

 

Two studies split each of three risk groups into two, thus dividing the patients into 6 

risk groups [Blamey RW et al., 2007a; Blamey RW et al., 2007b]. Results of these 2 

studies could not be compared with other studies. That is because different cut offs 

were applied. Two cohorts were analysed in which the lowest-risk patients were 

defined as those with NPI≤ 2.4. The cohort with longer follow-up data gave 10-year 

survival rate of 88%. The corresponding rate for the other cohort was 96%. 

 

Survival rate in the lowest risk groups at 10-years varied from 66% [Brown J et al., 

1993] to 88% [Kollias J et al., 1999; D'Eredita' G et al., 2001]. However, even 88% 

might not be good enough to avoid treatments such as radiotherapy. Hence, there is 

need for new risk factors to be able to detect low risk patients with even better 

survival [Kirkegaard T and Bartlett JM, 2006]. 
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Table 2.1: Comparison of 5-year event frees rates across studies in the subset of patients identified as being low risk by NPI  

Lowest-risk group (L) Intermediate-risk group (I) Highest-risk group (H) Study Cohort 
size 

Follow-up 
(years) Number 

(%) of cases 
Event-free 
rate 

Number 
(%) of cases 

Event-free 
rate 

Number 
(%) of cases 

Event-free 
rate 

Haybittle 
(1982) 

387 1- 6   64 (21%) 88% 169 (57%) 69%  65 (22%) 21% 

Todd  
(1987) 

3872+ 
320 

6-11.5  
1.7- 6.5  

192 (27%) 88% 381 (54%) 69% 134 (19%) 22% 

Okugawa 
(2005) 

311   97 (31%) 96% 142 (46%) 85%  72 (23%) 45% 

Sauerbrei 
(1997) 

603 5  163 (27%) 82% 440 (73%) 70% No case  

Coradini 
(2001)  

226 0.3- 8.17 
Median 6.25 

 82%*  72%* No case 

Ring  
(2006) 

195   90%  90% No case 

 
 
 
 
 
 
 
 
 
 

                                                 
2 These 387 patients were those used to devise the NPI index 
*inexact read off from graph 
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Table 2.2: Comparison of long-term event free rates (10 years or more) across studies in the subset of low risk patients identified as being 
low risk by NPI 

Lowest-risk group (L) Intermediate-risk group (I) Highest-risk group (H) Study Cohort 
size 

Follow-up 
(years) Number 

(%) of cases 
Event-free 
rate 

Number 
(%) of cases 

Event-free 
rate 

Number 
(%) of cases 

Event-free 
rate 

Brown 
(1993) 

   66%  50%  34% 

Balslev 
(1994) 

9149 2.3- 13.9  
median 7.1 

2494 (27%) 79% 5245 (57%) 56% 1410 (16%) 25% 

Kollias 
(1999) 

2684   894 (33%) 88%* 1374 (52%) 58%*  416 (15%) 17%* 

Sidoni  
(2004) 

82 Min 5    27 (33%) 83%*    39 (48%) 60%*   16  (19%) 42%* 

Eden  
(2004) 

97   83%*    43%* 

Callagy 
(2006) 

557 0.4- 39.4 
Median 8.7 

  34 (6%) 73%*  236 (42%) 60%*  287  (52%) 38%* 

Lundin 
(2006) 

2923 Median 9.5  79%*  70%*  29%* 

Lundin 
(2006) 

25752 Median 9.7   80%*  70%*  29%* 

D’Eredita 
(2001) 

402 11-19   
median 15 

 110 (27%) 88%*  198 (49%) 70%*   94  (23%) 40%* 

Galea 3 
(1992) 

1629   470 (29%) 80%*  879 (54%) 42%*  280  (17%) 13%* 

                                                 
3 Galea et al. reported 15-year event-free rates 
* inexact read off from graph 



 18

2.2.3 Reflection on NPI  

As summarised in Tables 2.1 and 2.2, NPI has been validated in several studies and 

its ability to distinguish low and high risk groups had been confirmed. Performance 

of the index in identification of low risk patients has already been discussed (see 

2.2.2). However, there are methodological concerns about development of the index:  

 

i) Cut points of risk groups 

The decision about the choice of cut offs was unclear. To define low and high risk 

groups, 64 and 65 patients with the lowest and highest index value were selected 

respectively [Haybittle JL et al., 1982]. It was not revealed how the target sizes of 

these extreme groups were chosen. Furthermore, to form the low and risk group, 

including 64 and 65 patients, the split was specified as 3.4 and 5.4 respectively. 

However, it was not clear whether patients with an index value of exactly 3.4 and 5.4 

belongs to the risk group below or above the cut off.   

 

The nature of the NPI formula means that patients will get a score of 3.4 when 

tumour size is 2cm and grade and nodal status are 1 and 2 or 2 and 1. Two of the 

papers listed in Table 6.1, defined low risk group as those with NPI < 3.4 [Galea MH 

et al., 1992; Balslev I et al., 1994]. The rest of papers applied NPI ≤ 3.4 rule.  

In my opinion, correct assignment into risk group is of importance. This is because 

wrong allocation of patients into risk groups might affect estimated event free rates. 

In particular, when number of patients at risk is not high, wrong risk group 

assignment might overestimate or underestimate the performance of model in terms 

of risk stratification. 
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ii) Missing data 

My literature review showed that NPI was able to categorise patients into 3 diverged 

risk groups (see Table 2.2). In development of NPI, although the initial number of 

participants was 500 cases, a total of 79 cases with missing value were excluded 

(16% of data). The disadvantages of exclusion of cases with missing data and main 

statistical approaches to impute missing values are discussed in section 3.5.  

 

Although exclusion of missing data in certain situations might not affect 

generalisability of results, in general it leads to imprecise results, and can lead to 

biased estimates [Altman DG and Bland JM., 2007].  

 

2.3 Strategy in treating breast cancer  

An important aim of clinical care is to maximise the survival but to avoid harsh 

treatments which are not needed, by optimising treatment selection in relation to 

prognosis. Therefore, the ability to identify a low risk group with minimal risk of 

recurrence is likely to have clinical appeal. That is because low risk patients could 

potentially avoid systemic treatment and its unwanted side effects. 

 

Currently treatment selection for breast cancer is guided predominantly by patient 

prognosis, using classical pathological assessment of tumours to measure risk (i.e. 

NPI).  In this section, treatments and side effects are given. The importance of 

integration of new risk factors which can improve risk stratification of patients is 

highlighted in section 2.4. 
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Ductal Carcinoma In Situ (DCIS) is the most common kind of pre-invasive breast 

carcinoma [Breastcancer.org, 2008a]. Some important risk factors for DCIS are age, 

early menarche, late menopause, older age at first pregnancy, positive family history, 

high fat diet, alcohol intake, smoking, weight, history of previous benign breast 

disease, and exposure to dioxins and ionising radiation [McPherson K et al., 2000].   

 

In about 80% of all breast cancers, DCIS spreads into the breast tissue surrounding 

the ducts. It is then known as Invasive Ductal Carcinoma (IDC) which is the main 

focus of this section. There are two types of treatment for invasive carcinoma: local 

and systemic.  

 

2.3.1 Local treatments 

Local treatments treat the tumour and the surrounding area such as chest and lymph 

nodes and are categorised into 2 wide groups: surgery and radiation therapy. 

 

i) Surgery 

In most cases, surgery is the first line treatment. When the cancerous area is small, 

only the area of breast containing the cancer will be removed (known as lumpectomy 

or Breast Conserving Surgery (BCS)) [Breastcancer.org, 2008a].  

When it is more serious, the breast, and sometimes the lining of the chest wall 

muscle, and some of the lymph nodes under the arm are removed (known as 

Mastectomy).  

Side effects of lumpectomy include temporary swelling of breast, breast tenderness, 

and hardness due to scar tissue in the surgical site. Side effects of mastectomy 
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include pain and tightness in the breast area and arms, and fluid collection and 

infection around the operated site [Breastcancer.org, 2008a].  

 

ii) Radiation therapy 

Radiation therapy is usually recommended after lumpectomy. In this method high-

energy rays are directed at the breast, chest area, and under the arms to destroy any 

invasive carcinoma that might be left behind [Breastcancer.org, 2008b]. Side effects 

of radiation involve skin reactions such as redness, itching, burning, sore and 

peeling. 

  

2.3.2 Systemic treatments 

Systemic treatments travel through the body to destroy any cancer cell so as to 

reduce the risk of recurrence or metastasis [Breastcancer.org, 2008e]. The main 

systemic treatments are reviewed below. 

 

i) Chemotherapy  

This method is recommended when the carcinoma is larger than 1centimetre (cm) or 

has spread to the lymph nodes. When chemotherapy is given after surgery, it is called 

adjuvant therapy. Sometimes when the tumour is large, or cancer cells have travelled 

to lots of lymph nodes or other parts of the body, chemotherapy might be given 

before surgery (known as neoadjuvant therapy) [Breastcancer.org, 2008d]. 

Chemotherapy has the disadvantage that, in addition to likely cancerous cells, it 

might also damage healthy cells in particular bone marrow, the digestive tract, the 

reproductive system and hair follicles. 
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ii) Hormonal therapy (endocrine therapy)  

Hormonal therapy might be recommended when cancer cells have hormone receptors 

[Web of Medicine, 2008b]. The main types of hormonal therapy which are reviewed 

here are tamoxifen and aromatase inhibitors [Web of Medicine, 2008b].  

 

Tamoxifen  

Tamoxifen works as an anti-estrogen and blocks estrogen from attaching to estrogen 

receptors at cancerous cells. It decreases the chance of recurrence of early-stage 

breast cancers, prevents cancer development in the unaffected breast, and slows the 

growth of cancer cells present in the body. Tamoxifen is usually given as treatment 

of pre-invasive carcinoma (along with mastectomy), as adjuvant treatment of ER+ 

metastatic cases, as treatment of recurrent breast cancer, and as preventative 

treatment of women who are at high risk of developing breast cancer [Fisher B et al., 

1998; Fisher B et al., 2005].  

 

Common side effects of tamoxifen are hot flushes, vaginal discharge, irregular 

menstrual periods, headache, nausea and vomiting, skin rash, fatigue, fluid retention, 

and weight gain [Web of Medicine, 2008b]. It might also increase risk of endometrial 

cancer, blood clots in lung, and ovarian cysts [Web of Medicine, 2008a]. Venous 

Thromboembolic Events (VTEs) were increased to two-fold and endometrial cancer 

was increased more than two-fold in females receiving tamoxifen [Houssami N et al., 

2006].  
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Aromatase inhibitors  

This medicine blocks the effect of an enzyme that produces estrogen. Aromatase 

inhibitors delay the progression of breast cancer longer than tamoxifen. Side effects 

of these treatments are nausea, fluid retention, weight gain, and headache.   

Aromatase inhibitors reduce bone density and increase fracture rates relative to 

tamoxifen, but they have fewer of the other side effects [Houssami N et al., 2006].  

 

2.4 Can additional biological predictors improve risk 

prediction?  

There is clear evidence that breast cancer is a heterogeneous disease which includes 

different subtypes. As an example, Estrogen and Progesterone hormonal Receptors 

(ER and PR), which promote growth of cancer cells, are present in nearly two thirds 

of breast cancer specimens [Martin M, 2006]. To evaluate the benefit from tamoxifen 

treatment, a series of 228 patients with median follow up of 5.8 years were analysed 

[Colomer R et al., 2005]. Estimated 3 and 6-year Disease Free Survival (DFS), which 

are summarised in Table 2.3, indicates noticeable survival difference between (ER+, 

PR+) and (ER-, PR-) cases. 

 

Table 2.3: Estimated Disease Free Survival (DFS) rates in Colomer et al. study 
(2005) 
Group 3-year DFS 6-year DFS 

ER+ PR+ 90% 85% 

ER- PR+ 82% 74% 

ER+ PR- 77% 72% 

ER- PR- 76% 72% 
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Furthermore, HER2 is a gene that controls the growth, the division, and the repair of 

cells. HER2 gene alteration is present in nearly 20% of tumours [Martin M, 2006]. 

HER2+ indicates that a protein is overproduced and therefore cells grow rapidly 

creating the cancer [Stephan P, 2008].   

 

The increasing knowledge of biology, and subsequent understanding of the 

underlying biology of breast cancers, challenges current management of patients in 

which molecular difference between patients are not taken into account (i.e. NPI) 

[Kirkegaard T and Bartlett JM, 2006].  

 

Molecular differences support treating different molecular sub-types based on their 

biology and pathology rather than pathology alone. That is because different 

molecular types have the potential to respond to different treatment [Kirkegaard T 

and Bartlett JM, 2006]. Therefore, there is a need to identify novel predictive 

markers and to optimise treatment selection to ensure that patients receive a 

treatment to which they are most likely to respond.  

 

The NPI model has already been superseded, to some extent, by ‘Adjuvant Online’ a 

tool which integrates novel risk factors, for example ER and HER2 expression, with 

clinical trial data to select appropriate therapies for patients. The ‘Adjuvant Online’ 

model was developed while reviewing effectiveness of adjuvant therapy with that of 

tamoxifen (with or without chemotherapy) [Ravdin P, 2005] and is used across 

Europe and US.  
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It has been commented that over the next 3 to 5 years biomarkers will be 

incorporated as part of clinical diagnostic decision making [Faratian D and Bartlett 

JM, 2008]. However, many of the biomarkers measured do not yet have a clearly 

characterised role.     

 

Over the past few years, the biological collaborators in this PhD research, have 

explored carefully the role of a large number of candidate predictive biomarkers in a 

selected cohort of tamoxifen treated ER+ breast cancers [Kirkegaard T et al., 2005; 

Cannings E et al., 2007; Kirkegaard T et al., 2007; Tovey SM et al., 2005; McGlynn 

LM et al., 2009]. A summary of the main results with emphasis on biomarkers which 

predict the outcome are presented here and summarised in Table 2.4. In each study, 

the focus of the authors was on a set of biomarkers which are located in the same 

pathway based on cancer progression. Primary outcomes studied were Recurrence 

Free while on Tamoxifen treatment (RFoT), Recurrence Free Survival (RFS), and 

Overall Survival (OS). Furthermore, a dichotomised version of biomarkers were 

modelled (Table 2.4) and for each univariate test patients with missing data on that 

variable were excluded. 

 

Association of AKT family biomarkers with OS  

Research was undertaken to investigate whether any of the 10 biomarkers grouped 

into the AKT family can predict OS [Kirkegaard T et al., 2005]. Authors found that, 

based on univariate analyses, high values of cytoplasmic Akt2 expression (n=392, P-

values=0.01) and low values of cytoplasmic Pakt2 expression (n=392, P-value=0.04) 

were associated with higher survival. These two biomarkers were then combined to 
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create 3 risk groups as given below. Patients with missing value on either of these 

two biomarkers were excluded. The authors concluded that there is potential that 

tumour profiling might improve patient selection for endocrine therapies.  

 

• Low risk group:                  High cytoplasmic Akt2 and low Pakt2 (n=95) 

• Intermediate risk group:      Both high or low (n= 185) 

• High risk group:                  Low cytoplasmic Akt2 and high Pakt2 (n=99) 

 

Association of BAD family biomarkers with RFS  

The association between 5 biomarkers from the BAD family and RFS was assessed 

in univariate analysis [Cannings E et al., 2007]. Patients with high cytoplasmic Bad 

expression values (n=182) had better survival than those with low values (n=175), 

differently at a marginal P-value of 0.049.  

 

Association between HER family biomarkers and RFoT 

The association between HER1 to 4 and RFoT was assessed [Tovey SM et al., 2005]. 

These biomarkers were dichotomised as below. HER1 positive (HER1+) patients 

were those with any membranous HER1 staining (6 out of 393). For HER2, HER3, 

and HER4, patients were considered as being positive when at least 10% of tumour 

cells scored as being moderately positive (51 out of 397 for HER2, 56 of 353 for 

HER3, and 46 of 341 for HER4).  

Plotting survival curves, HER2+ and HER3+ patients exhibited poorer survival. 

Furthermore, patients who were positive on any of HER1 to 3 (HER1-3+), in 

comparison with the remainder (98 versus 251), exhibited poorer survival.   
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Combination of AIB1 with HER family biomarkers to predict RFoT, RFS and OS 

While no association between AIB1 and outcomes studied was seen, HER2+ patients 

with high level of AIB1 (n=20) have lower RFoT and OS curve than the remainder 

of patients (P=0.04) [Kirkegaard T et al., 2007]. A similar conclusion was drawn 

when AIB1 was combined with HER3. In addition, overexpression of AIB1 in 

HER1-3+ patients was associated with a poorer RFoT, RFS, and OS.  

 

Association between RAS and MAPK family biomarkers and outcome (RFS and OS)  

The association between the RAS and the MAPK biomarkers and cancer progression 

was assessed [McGlynn LM et al., 2009]. Plotting survival curves, high expression 

of 2 biomarkers in the MAPK family (cytoplasmic and nuclear pRaf338) were 

associated with worst RFS and OS. No association between the RAS family 

biomarkers and the rest of the biomarkers formed the MAPK family and outcomes 

were seen. 

 

 

Table 2.4: Summary of main results of some of papers published using the data set 
available for this thesis  
Family  Primary outcome Split applied Univariately informative biomarkers 

AKT OS Median Expressions of cytoplasmic Akt2 and 

Pakt2  

BAD RFS Median Expression of cytoplasmic Bad  

HER RFoT See text HER2 and HER3 

RAS RFS and OS Top quartile ---- 

MAPK RFS and OS Top quartile Expressions of cytoplasmic and 

nuclear pRaf338  
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2.5 Overview 

Results presented indicated that the NPI was not able to identify a subset of low risk 

patients with very good prognosis. On the other hand, informativeness of new 

biomarkers has been confirmed. Therefore, there is scope to investigate whether 

incorporation of both biological and clinical variables improves risk prediction. 
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Chapter 3 LITERATURE REVIEW OF STATISTICAL 

METHODS FOR PROGNOSTIC MODELLING  

 

 

 

3.1 Introduction  

Multifactorial regression models are frequently used in medicine to develop 

prediction tools. The Framingham Coronary Heart Disease Risk Score (FCHDRS) is 

an example of a widely used risk score. Coronary Heart Disease (CHD) is a major 

cause of death and disability. The Framingham Heart Study is started in 1948 by 

recruiting a cohort of 5209 participants without symptoms of cardiovascular disease 

or heart attack [National Heart Long and Blood institute, 2009]. Since 1948, different 

cohorts were added to the project. In nearly 60 years, many major discoveries have 

been produced that enhanced the understanding of the development and progression 

of heart disease, stroke, and other cardiovascular disease. 
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The FCHDRS is a prediction tool which was developed to enable clinicians to 

estimate risk of CHD events for individual patients. Applying multivariate Cox PH 

model, classic risk factors which contribute to this model are sex, age, blood 

pressure, total cholesterol, low density lipoprotein cholesterol (LDL-C), high density 

lipoprotein cholesterol (HDL-C), smoking behaviour, and diabetes status [Wilson 

PW et al., 1998].  

 

If in development of model, one ignores model assumptions and limitations the 

models obtained might give false and misleading results, or might not be 

generalisable [Concato J et al., 1993; Wyatt JC and Altman DG, 1995].  

 

Regression risk modelling techniques perform best when there are relatively large 

numbers of events and complete data for all variables [Peduzzi P et al., 1995]. 

However, the number of events in the cohort to be examined in this thesis is not 

large. Furthermore, by their nature biomarker variables are prone to missing values, 

and it tends to be the case that the distribution of biomarker expression is positively 

skewed. Therefore, the main practical challenges in prognostic modelling are to: 

 

• Reduce the number of variables being offered to a model  

• Select the appropriate form of association for variables  

• Deal with the missing data  

• Assess the internal validity (reproducibility) of the final model  
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This chapter reviews common methods proposed in the statistical literature to deal 

with the issues listed above. Each problem is discussed separately. The material 

presented here does not represent all possible solutions to these problems but it 

addresses those methods most frequently applied in the literature.   

 

Review of statistical methods in the literature is difficult because useful 

methodological keywords are not common and any less specific keyword search 

might find far too many publications, many of these of scant relevance. The search 

strategy I used for this literature review was therefore as follows. First of all, I read 

some key textbooks in the field of survival analyses, as listed below. Furthermore, a 

reference textbook for analysis of missing data is ‘Analysis of Incomplete 

Multivariate Data’ [Schafer JL, 1997].  

 

1. Modelling Survival Data in Medical Research [Collett D, 2003] 

2. Regression modelling strategies with application to linear models, logistic 

regression, and survival analysis [Harrell FE, 2001]  

3. Multivariable Model Building A pragmatic approach to regression analysis 

based on fractional polynomials for modelling continuous variables [Royston 

P and Sauerbrei W, 2008]  

4. Survival Analysis: Techniques for Censored and Truncated Data [Klein JP 

and Moeschberger ML, 2003] 

5. Modeling Survival Data: Extending the Cox Model [Therneau TM and 

Grambsch PM, 2000] 
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6. Survival Analysis Using S: Analysis of Time-to-Event Data [Tableman M 

and Kim JS, 2003] 

7. Analysis of Incomplete Multivariate Data [Schafer JL, 1997] 

 

Important papers cited in the books listed above were then read. When necessary, 

there was follow-up reading of papers cited in these papers. Papers found to be 

important were followed up by searching in Pubmed to check for other papers by the 

same authors.  

 

Regarding missing value and imputation methods, literature review using the key 

words ‘multiple imputation’ and ‘missing data’ was undertaken in Pubmed. 

Furthermore, some technical papers and documents were found in websites such as 

http://multiple-imputation.com/ and http://missingdata.org.uk/.  

To avoid an over long chapter, methods are reviewed with a focus on the techniques 

which will be used in this thesis. Furthermore, the emphasis is on methodological 

issues rather than mathematical details. The remainder of this literature review is 

structured as follows: 

 

Section 3.2: Types of prognostic study 

Section 3.3: Modelling with many variables  

Section 3.4: Exploration of functional form of association  

Section 3.5: Imputation of missing data 

Section 3.6: Assessment of internal validity  

 

http://multiple-imputation.com/
http://missingdata.org.uk/
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Examples of the application of the methods reviewed are also given. These will be 

distinguished from the main text and methodological review by presenting the 

examples in boxes.  

 

3.2 Prognostic studies 

In general, prognosis studies are divided into 2 main categories: outcome prediction 

and explanatory studies [Hayden JA et al., 2008]. In outcome prediction studies, the 

aim is to combine variables which are associated with outcome in order to stratify 

patients into risk groups. On the other hand, the particular aim of explanatory studies 

is to investigate the causal association between prognostic factors and the outcome of 

study [Hayden JA et al., 2008]. 

 

Explanatory studies comprise 3 main phases. In phase 1 or the exploratory phase, the 

aim is to identify the presence of a prognostic relationship between one or more of a 

set of explanatory variables and the outcome. In this phase, the aim is to describe the 

associations as best as possible and to generate questions about the biology of the 

disease. In phase 2 (confirmation phase) the aim is to confirm associations identified 

in the exploration step. Finally in phase 3 (understanding phase), the aim is to 

understand the prognostic pathway. 

 

If the authors do not state the purpose of their study, it is very difficult to judge 

whether the aim of a published paper is outcome prediction or exploration (phase 1 

of an explanatory study). This is because in either case, researches begin by 
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investigating whether there is association between a set of variables and an outcome. 

Subsequently, variables which are associated with the outcome are used to develop a 

multifactorial prediction model. Furthermore, in my opinion, some statistical issues 

such as multiple comparisons, might not be a serious problem in a phase 1 study, but 

are of concern in outcome prediction studies. Therefore it is important to carefully 

decide the aim and step of study. 

  

3.3 Modelling with many variables 

3.3.1 Background 

The easiest solution to deal with many variables is to fit all variables in a 

multifactorial model (full model). In this case, there is no attempt to find a 

parsimonious model since all variables are in the model. To apply the model in 

future, information on all variables is required. However, it is often the case that the 

model prediction is applied using only data on variables in the model that contributed 

significantly, at 5% or 10% level, to the multifactorial model.   

Alternatively, a more parsimonious model can be sought by utilising a stepwise 

variable selection procedure, such as Backward Elimination (B.E.) method. 

Application of stepwise methods has the advantage that to use the final model in 

practice, only information on a subset of key variables (those reached significance 

level in the multifactorial model) is required.  

 

A problem with full fit or B.E. methods is that when many variables are offered to 

the multifactorial model or when the number of Events Per Variable (EPV) is low, 
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the full model might fail to converge to a solution. As an example, in a simulations 

study, at EPV of 5, in about 3% of samples convergence of Cox regression models 

did not occur [Steyerberg EW et al., 1999].   

 

A more important issue is estimation of true regression coefficients. When EPV is 

low, estimated regression coefficients might be biased [Steyerberg EW et al., 1999; 

Peduzzi P et al., 1995].  However, in prognostic models the aim is to stratify patients 

into well diverged risk groups and therefore interpretation of regression coefficients 

might not be relevant.  

 

Analysing a data set of 673 cases including 252 deaths, in the field of survival 

analysis, impact of EPV on estimation of regression coefficients was investigated 

[Peduzzi P et al., 1995]. Information on 6 binary and 1 ordinal variable were 

available, giving an initial EPV of 36. In the multifactorial model, fitting full model, 

all 7 variables were significant at a 0.10 significance level.  

A series of simulation studies were then conducted with EPV of 25, 20, 15, 10, 5, 

and 2. In all scenarios all 7 predictors were analysed and sample size was changed. 

Relative bias was defined as ( ) /b β β−  where b  and β  indicates estimated and 

true regression coefficients.  

At EPV of 10 or more, average bias was within ± 10%. When EVP was less than 10, 

the regression coefficient was overestimated by more than 20% for two variables and 

underestimated by 30% for one variable. Therefore, it has been commented that, as a 

rule of thumb, 10 Events Per Variable is advisable although 5 is the absolute 

minimum that is considered safe [Peduzzi P et al., 1995]. 
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In another study, in the filed of binary outcome, a total of 40830 patients with acute 

myocardial infarction including 2851 deaths were analysed [Steyerberg EW et al., 

1999]. Then random samples were drawn that included 3, 5, 10, 20, or 40 Events Per 

variable. Full model was fitted and then Backward Elimination (B.E.) variable 

selection method was applied. Amount of bias decreased when EPV increased (Table 

3.1).  

 

The nature of simulation studies conducted by Peduzzi et al. and Steyerberg et al. 

had some limitations. In neither of them was overfitting evaluated since no non-

significant variable was included in the model. Furthermore, since sample size but 

not number of variables were changed the question remains whether results would be 

similar if the number of independent variables varies. 

 

 

Table3.1: Range of relative bias at different EPV’s for full model and B.E. variable 
selection methods in Steyerberg et al. study (1999) 
 

EPV Full model B.E. variable selection method 

3 -20%, 15% 14%, 206% 

5 -12%, 8% 4%, 159% 

10 -7.5%, 4.2% 2%, 110% 
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Recently a large simulation study was conducted, for both binary outcomes and time-

to-event data, focusing on a primary predictor (either continuous or binary) and 

regarding the covariates as adjustment variables [Vittinghoff E and McCulloch CE, 

2007]. Different combinations were considered: EPV (2, 4, 6, 8, 10, 12, 14, 16), 

sample size (128, 256, 512, 1024), value of the regression coefficient (0, log (1.5), 

log (2), log (4)), and models with a total of 2, 4, 8, and 16 predictors. Relative bias 

higher than 15% was considered as a major problem. For the Cox model with 

continuous predictor, when EPV varied from 2 to 4, relative bias was higher than 

15% in 17.2% of analyses. The corresponding figure for EPV 5 to 9 was higher than 

15% only 2%. It has been commented that, to control for effect of confounding, the 

EPV rule could be relaxed [Vittinghoff E and McCulloch CE, 2007]. Results should 

be compared with models in which weak predictors are not offered to the model.  

 

 

As an alternative to traditional Cox regression model, Tree-based Survival Model 

(TSM) can be applied which begins with all variables in contention but avoids the 

problem of convergence of regression models. TSM involves successive binary 

partitioning, classifying subjects into smaller groups. At each step, every possible cut 

point for each prognostic variable will be examined to select the split which best 

discriminates patients, based on patients’ outcome. Typically the resulting model is 

presented graphically as a decision tree. 

 

While traditional multifactorial regression tools (such as Cox without interaction 

term), for the whole sample suppose a uniform effect of the variable, TSM can reveal 
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factors with different effects in different subgroups. This is biologically plausible 

that a variable be important for only a subset of patients. From that perspective, TSM  

is a complement for Cox regression model and hence has potential benefits in terms 

of therapeutic management [Banerjee M et al., 2004].  

 

It has been claimed that TSM provides a readily interpretable picture, results in 

easier clinical decision making, and aids future studies [Harrell FE et al., 1998; 

Banerjee M et al., 2004; Banerjee M et al., 2004; Ciampi A et al., 1988; Ture et al., 

2009].  

 

In my opinion, a tree structure is not always simple to interpret and to be used in 

practice. That is because sometimes patients in the different nodes have similar 

survival curves and therefore amalgamation of such groups are required. This cannot 

be detected by simply looking at a tree but after plotting Kaplan-Meier curves and 

comparing event-free rates in final groups.   

 

In TSM, there is no limit on the number of variables involved [Therneau TM and 

Atkinson EJ, 1997]. However, a disadvantage is that TSM might lead to unstable 

results due to the extensive cut point search [Hukkelhoven CW et al., 2006]. 
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3.3.2 Methods to reduce number of variables prior to 

modelling 

As an alternative to methods which begin with all variables (see section 3.3.1), one 

could apply a data reduction step prior to modelling. In this section, I will review 

common data-reduction approaches and their advantages and potential 

disadvantages. A summary of the methods reviewed is provided in Table 3.3 at the 

end of this section. 

 

i) Univariate screening  

The standard statistical approach is to use a pre-specified univariate screening 

process to select a reduced subset of variables to be offered to the multifactorial 

modelling stage. This reduction in the number of variables is however at the cost 

multiple comparisons. Furthermore, in the case that confounding is present, 

important predictors might be missed at the univariate screening stage [Hosmer DW 

and Lemeshow S, 2000; Sun GW et al., 1996].  

This issue is illustrated by analysis of a hypothetical data set of 4207 patients to 

investigate the effect of sex on occurrence of Coronary Heart Disease (CHD). In 

univariate logistic regression, no association was found (P=0.20). Authors explained 

that physical activity is a known risk factor for CHD and therefore stratified analysis 

was performed. In univariate logistic regressions, significant association between sex 

and CHD was seen in both inactive and active groups (P-value =0.028 and 0.026 

respectively). Furthermore, both variables were retained in the multifactorial logistic 

regression model. Relationship was detected either by controlling of confounder or 

by performing multifactorial regression model. 
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ii) Principal Component Analysis (PCA)  

Use of Principal Components Analysis (PCA) allows the original variables to be 

replaced to a smaller number of components where these components explain the 

majority of variation in original variables. Each component is a linear combination of 

the original variables [D'Agostino RB et al., 1995]. Components derived then can be 

used in regression modelling [Harrell FE et al., 1985; D'Agostino RB et al., 1995; 

Marshall G et al., 1994].   

 

 

 

Application of PCA means that fewer variables are tested in the model. However, 

since each component is a combination of original variables, estimated Hazard 

Ratio’s (HR) are not simple to interpret. Furthermore, to be used in practice, one has 

to measure all covariates (or at least all those with high contribution to components) 

[Harrell FE et al., 1985; Weber G et al., 2004]. In addition, components derived, 

despite capturing dimensions of variance in the potential explanatory variables, 

might not be optimally informative with respect to the outcome of study. 

 

Example: 

A predictive model for patients undergoing coronary artery surgery was 

developed [Marshall G et al., 1994]. A total of 6317 participants including 285 

events formed the sample.  

PCA was applied to 33 variables [Marshall G et al., 1994]. These were reduced to 

5 components which were offered to the modelling.  
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iii) Biologically informed data reduction method  

In biologically guided approaches, external knowledge guides model building. 

Variable selection involves two steps [D'Agostino RB et al., 1995]. The first step is 

to divide the variables into substantive sets based on biological knowledge (e.g. 

tumour progression pathway). In the second step, a composite score (also known as 

sickness score) will be calculated for each family set. The resulting reduced number 

of composite scores derived will then be offered as intermediate predictors to the 

multifactorial model. This approach is inherently Bayesian since prior knowledge 

guides model development, although no formal Bayesian analysis would be 

undertaken. 

  

Alternative approaches to calculate a composite score are to sum the variables with 

or without weighting. With binary or categorical data, the simplest approach is to 

count the number of positive characteristics (e.g. for a group of symptoms, the score 

is the number of symptoms presented) [Harrell FE et al., 1984].  
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Summation of features of binary or categorical data is straightforward to implement 

but is not possible for continuous data. As an example, 25 variables were used to 

predict complete remission from treatment of 334 patients with non-Hodgkin’s 

lymphoma [Harrell FE et al., 1985].  However, only 14 binary variables were used to 

define a sickness score [Harrell FE et al., 1985]. Another problem with counting of 

binary data variables is that this method gives equal weight to each variable 

involved, regardless of relative importance. 

 

An alternative method is to give a weight for each variable where weights reflect the 

relative biological importance [Harrell FE et al., 1984; Marshall G et al., 1994; 

Marshall G et al., 1995].  

 

Specification of weights based on key relevant biological knowledge is attractive. 

However, it is often the case that the biological knowledge to do this is unknown. 

Example: 

This approach is used to address whether multiple Single Nucleotide 

Polymorphisms (SNP) can add value to that of traditional risk factors in prediction 

of Coronary Heart Disease (CHD) [Morrison AC et al., 2007]. A total of 1452 

participants were genotyped for 116 SNPs. Only 22 SNPs with univariate P-value 

less than 0.10 were candidates for the final model. Each SNP was a categorical 

variable (1: risk homozygote, 0: heterozygote, -1: non-risk homozygote). SNPs 

were summed together. The score derived was significantly associated with CHD. 
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Furthermore, no parsimonious index can be found in the case lots of variables 

contributed to it.  In addition, this method does not reduce number of variables that 

needs to be measured. 

 

3.3.3 Research comparing data reduction techniques 

Four papers compared performance of alternative data reduction techniques in terms 

of discrimination ability, or C-index (Table 3.2). This statistics varies from 0.50 to 1. 

The higher the C-index, the higher the discrimination ability is. Further detail of this 

statistic (C-index) is explained in section 4.4.7 (i).  

 

Marshal et al. showed that the B.E. stepwise regression model had the highest 

discrimination ability, followed by TSM. Biologically informed approach had the 

poorest performance [Marshall G et al., 1994]. This might indicate that weights given 

to calculate the sickness score were not appropriate. 

 

Harrell et al. (1984) showed that performance of logistic regression and PCA were 

the same and much better than tree-based method. At EPV of 2, performance of the 

tree-based method was superior to regression model. Furthermore, PCA showed the 

best performance [Harrell FE et al., 1985]. This might indicate that, at very low 

EPVs, regression models might not work well. 

 

In another paper, analysing 2113 patients including 208 deaths, a total of 30 variables 

were used to predict artery disease (EPV=6.9) [Harrell FE et al., 1984]. Different 

training samples were then drawn corresponding to EPV’s 3.4, 1.8, and 1. In all 
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scenarios, performance of stepwise logistic regression was marginally superior to 

PCA [Harrell FE et al., 1984]. In my opinion, components derived might not 

necessarily always be optimally informative to the outcome and explain poorer 

performance of PCA. 

 

Using 50 variables to predict myocardial infarction in 482 patients with chest pain, 

stepwise logistic regression and tree-based methods were applied [Cook EF and 

Goldman L, 1984].  Tree based method worked better than regression model. As 

EPV was not reported it might not be simple to judge whether that was due to small 

EPV or structure of their data set. 

 

In general logistic regression models showed higher discrimination ability than PCA 

and tree-based methods. However, when EPV was very low performance of tree-

based methods was superior to the regression model.  

 

Table 3.2: Discrimination ability (C-index) of standard method versus alternative 
methods to deal with many variables 

C-index  Study # events  
(variables) 

EPV 

Regression 
model (B.E.) 

PCA Biologically 
informed  

Tree-
based  

Marshall et 
al. (1994) 

285 (33) 8.6 0.74 0.70 0.67 0.72 

102 (25) 4.1 0.67 0.68  0.56 Harrell et al. 
(1985) 50 (25) 2 0.58 0.67  0.61 

208 (30) 6.9 0.85 0.81   
101 (30) 3.4 0.84 0.83   
55 (30) 1.8 0.85 0.84   

Harrell et al. 
(1984) 

30 (30) 1 0.88 0.86   
Cook et al. 
(1984) 

Not Given 
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3.3.4 Summary  

A summary of main approaches to deal with many variables and their features are 

given in Table 3.3. Each of methods reviewed has its own limitations and therefore it 

is not simple to judge which technique is the best method in all data sets.  
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Table 3.3: Commonly used approaches for dealing with many variables 

Method For future applications, 
information on only a 
reduced set of variables is 
required 

Interpretation of 
results is simple 

Minimal statistical 
work required prior 
to modelling   

Other potential problem 

Methods involving no data reduction 
 
Fit model offering all variables (in 
conjunction with B.E. variable selection 
method) 

 
Tree-Based Survival Methods 
 

 

 
 
Yes 
 
 
 
Yes 

 
 
Yes 
 
 
 
Yes 

 
 
Yes 
 
 
 
Yes 
 

 
 
Might not converge 
Regression coefficients might be 
biased 
 
Instability  

Prior reduction of number of variables 
 
Screen for informative variables  

 
 
Principal Component Analysis (PCA)  
 
 
Define substantive sets, based on biological 
knowledge, and calculate an index for each 
set to be used in regression model 

 

 
 
Yes 
 
 
No 
 
 
 
No 
 
 
 

 
 
Yes 
 
 
No 
 
 
 
No 
 
 
 

 
 
No 
 
 
No 
 
 
 
No 
 
 
 

 
Requires multiple comparisons. 
Confounder effects might not be 
simple to check 
 
Components might not be 
informative 
 
 
Inadequate knowledge 
Confounding between variables in 
different families are missed 
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3.4 Methods to ascertain the appropriate form for 

continuous variables 

3.4.1 Background 

The Cox regression model is frequently used to analyse follow-up data. One of the 

most important assumptions for this model is the linearity of effects. This means that 

the effect of a variable is monotonic increasing or decreasing. As an example, for age 

this requires that the hazard ratio between a 45 and a 50-year old must be the same as 

that between an 80 and 85 year-old [Therneau TM and Grambsch PM, 2000].  

 

Yet, a recent review of 99 articles published in 2 major epidemiology journals 

(Journal of Clinical Epidemiology and American Journal of Epidemiology) showed 

that fewer than 20% of papers using multifactorial logistic regression described 

conformity for linearity gradient [Ottenbacher KJ et al., 2004].  

 

In the case of laboratory measurements, there is a considerable chance that the 

linearity assumption might not be justified [Hastie T et al., 1992]. Furthermore, when 

the relationship is J or U shape, a linear risk function will be unlikely to capture the 

relationship in a way helpful to model fit. Therefore, when evaluating the 

contribution of covariates on disease course, it is of importance to establish the 

correct functional form of any continuous covariates [Hastie T et al., 1992].  

 

In a recent study, the performance of different statistical techniques in terms of 

estimation of functional form was compared by carrying out a simulation study 
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[Hollander N and Schumacher M, 2006]. I firstly shall review methods available to 

ascertain the appropriate form for continuous variables and after that, I will review 

the results of the simulation study conducted by Hollander et al. 

 

 In this chapter, I classify the nature of association as either ‘linear or polynomial’, or 

‘threshold’ effects (where values at or above a specified level predicts outcome). 

 

3.4.2 Linear or polynomial forms 

The most common approaches used to estimate linear or polynomial effects are 

polynomial regression models, General Additive Models (GAM), and Fractional 

Polynomial (FP). These methods are reviewed and advantages and disadvantages are 

described.  

 

i) Polynomial regression modelling 

One extension to a standard Cox model is to allow for a polynomial relationship by 

adding a polynomial term such as quadratic to the model [Therneau TM and 

Grambsch PM, 2000; Harrell FE, 2001].  

 

Example: 

Analysing 477 participants, quadratic association between diet factors (such as 

protein, oleic acid, cholesterol, and percentage of calories from fat and 

carbohydrates) and breast cancer was reported [Goodwin PJ et al., 2003].  
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ii) Generalised Additive Modelling (GAM) 

With polynomial regression the fit is global, so a localised pattern might be obscured 

[Hastie T et al., 1992]. GAM models (regression splines and smoothing splines) are 

flexible techniques that allow the detection of polynomial associations that vary 

along the range of the covariate. Spline functions are piecewise polynomials within 

pre-determined intervals of the covariate. The general form of GAM model is [Hastie 

T et al., 1992]:      

1 2 0
1

( , , ... ) ( ) exp{ ( )}
p

i p j j
j

h t x x x h t s x
=

= ∑  

 

Here, the fitted curve only depends at each point on observations at that point, and 

within a pre-specified neighbourhood. In a regression spline model, the researcher 

decides the form of the function.  

 

Regression splines such as Restricted Cubic Splines (RCS) allow detection of highly 

curved associations [Harrell FE, 2001]. RCS uses a linear fit in the tails (before the 

first and after the last knot, where knots are the points at which the X axis is divided 

into intervals, and which are also parameters of the model that must be pre-

specified).  

 

Regarding the position of knots, a well-accepted approach is to put the knots at 

quartiles. This makes a trade-off between flexibility and loss of precision due to 

overfitting a small sample. However, it has been reported that when the sample size 

is large, use of five knots is a good choice [Stone JC, 1986].   
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iii) Fractional Polynomial modelling (FP) 

Fractional Polynomial (FP) modelling is a powerful tool to detect non-linear 

associations [Royston P and Altman DG, 1994]. Prior to availability of FP 

modelling, researchers would usually apply logarithmic transformation to the skewed 

data. Other commonly used transformations are the square, cubic, or reciprocal. All 

of these transformations are embedded in FP method. FP selects the optimum power 

transformation by testing a range of values (see technical details in section 4.4.2). 

Examples: 

1) GAM was used by  in a series of 265 post-menopausal breast cancer patients 

with 6.86 year median follow-up [Hastie T et al., 1992]. A non-linear effect of 

number of nodes, age and body mass index on Disease Free Survival (DFS) was 

reported. Age showed an inverse U-shape association where the death hazard 

remained constant for those aged 50 to 60 years old. Furthermore the curvature 

association for number of nodes and Body Mass Index (BMI) suggested a 

threshold effect at 16 for number of nodes examined, and at 32 for BMI [Hastie T 

et al., 1992].  

 

2) Modelling the effect of age in 83804 breast cancer patients, a biphasic 

association with all cause mortality was found, suggesting two age components: a 

linear component (corresponds to a natural increase of mortality with each year of 

age) and a quasi-quadratic component reflecting an increased risk of mortality for 

patients older than 50 years old [Tai P et al., 2005].  
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While FP is flexible in its ability to detect polynomial effects, extreme values in the 

covariate might result in unstable transformations [Royston P and Sauerbrei W, 

2007]. As an example, analysing 252 men, a polynomial relationship between 

percentage body fat and abdominal circumference was seen [Royston P and 

Sauerbrei W, 2007]. Since extreme values have high leverage, one case with very 

high value was excluded from analysis. Linear model was then adequate (P=0.70 for 

polynomial versus linear).  

 

3.4.3 Threshold forms 

In medical applications researchers often dichotomise continuous covariates prior to 

modelling analyses. From a statistical point of view, dichotomisation eliminates the 

need for the linearity assumption, makes data summarisation more efficient, and 

allows for simple interpretation of results [Williams BA et al., 2006]. In the 

regression setting, for instance, interpretation of the impact of a binary covariate on 

Example: 

FP method was used to detect the best functional form for age and progesterone 

receptor in a series of 686 node-positive breast cancer patients [Sauerbrei W et al., 

2006]. It was revealed that patients aged less than 40 had a markedly increased 

risk of recurrence, followed by a fairly constant plateau for those aged 40 to 55, 

with a slight increase again after 55. Furthermore, a logarithmic transformation 

was proposed for progesterone receptor.  
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outcome is easier than that for a change of 1 unit in a continuous covariate [Therneau 

TM and Grambsch PM, 2000; Harrell FE, 2001].    

 

Furthermore, it has been claimed that, from the clinical point of view, binary 

covariates might be preferred because they offer a simple risk classification into high 

versus low, assist in making treatment recommendations, and in setting diagnostic 

criteria [Mazumdar M and Glassman JR, 2000; Williams BA et al., 2006].  

 

On the other hand, dichotomisation can result in the loss of information and power, if 

a linear rather than threshold association pertains, and non-linear relationships such 

as U-shape associations will not be detected [Altman DG and Royston P, 2006; 

MacCallum RC et al., 2002].  

 

This issue has been illustrated in an analysis of 207 patients with primary biliary 

cirrhosis [Royston P et al., 2006]. The association between 2 continuous and 2 binary 

variables, and treatment was evaluated. Different multifactorial models were 

developed in which continuous variables were modelled in continuous and binary 

form. The model in which continuous data were treated as being continuous had 

highest discrimination ability and model goodness of fit [Royston P et al., 2006].  

 

It has been emphasized that dichotomisation is appropriate only when a threshold 

effect value truly exists. That is, if we can assume some binary split of the 

continuous covariate creates two relatively distinct but homogeneous groups with 

respect to a particular outcome  [Abdolell M et al., 2002]. Due to the widespread use 
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of dichotomised variables in medical literature, common methods to dichotomise 

continuous variables with their advantages and disadvantages are reviewed below 

and summarised in Table 3.6.  

 

i) Dichotomisation based on biological knowledge 

Dichotomisation based on biological evidence is the most attractive method. As an 

example, researchers sometimes dichotomise age of women at 50 years to be a 

surrogate for approximate menopausal status. However, for the majority of variables 

the biological knowledge needed is not available.    

 

ii) Dichotomisation at a pre-specified point 

Another method commonly used is to categorise the covariate at a pre-determined 

split such as the median [Linderholm B et al., 2000]. In this way an equal proportion 

of patients (50%) are assigned to each group. 

 

However, dichotomisation at median leads to different threshold values from one 

study to another, and creates difficulties in comparing findings across different 

studies [MacCallum RC et al., 2002]. As an example, in a meta analysis of eleven 

studies on the role of cathespin D on Disease Free Survival (DFS) of breast cancer 

patients, the cut points used to define high/low cathespin D concentration ranged 

from 20 to 78 [Ferrandina G et al., 1997].  
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iii) Dichotomisation based on Martingale residuals 

The Martingale residual for an individual is the difference between the observed 

event status and the expected value predicted with the Cox model. Plotting 

Martingale residuals against the value of a covariate provides pictorial evidence to 

investigate a threshold effect [Bradburn MJ et al., 2003]. If there is a threshold effect, 

the plot should display an S-shape curve. A linear plot implies adequacy of linear fit 

[Klein JP and Moeschberger ML, 2003].  

 

 

 

iv) Minimum P-value method and ‘Classification And Regression Trees’ 

(CART) 

When there is no biologic evidence or priori information regarding the underlying 

relationship between the covariate and the outcome, it is possible to seek the cut 

point which gives us the largest difference between individual outcomes in the 

resulting two groups [Klein JP and Moeschberger ML, 2003].  

 

Example: 

Martingale residuals were plotted  to study the functional form for number of 

involved and uninvolved axillary nodes in early breast cancer mortality [Vinh-

Hung V et al., 2003]. For the number of uninvolved nodes, death hazard 

decreased but stabilized beyond 5-10 uninvolved nodes. For the number of 

involved nodes, no clear cut off was apparent as hazard mortality continued to 

increase with each involved node. 
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In the minimum P-value approach, after a systematic search across all possible 

values, the value chosen as the cut point will be that with the smallest corresponding 

P-value in a Log-Rank test, when comparing the survival curve of two groups 

formed [Lausen B and Schumacher M, 1992]. However, Heinzl et al. warned that 

‘without any biological or clinical indications for the actual existence of a cut point 

or dangerous segment even the correct application of the minimum P-value approach 

has to be considered methodologically inferior’ [Heinzl H and Tempfer C, 2001].   

 

 

 

Classification And Regression Tree (CART) is simply the extension of minimum P-

value method to multiple covariates using a tree structure. In this approach, after 

creation of two groups, the process will be continued in a branching system to 

categorise patients on the basis of further covariates or a previously used covariate at 

a new cut point. These approaches (minimum P-value and CART) require multiple 

testing and hence might give unstable cut points [Clark TG et al., 2003]. Alternative 

methods to improve the stability and to correct for multiple testing are reviewed 

below.  

Example: 

S-Phase Fraction (SPF) refers to the proportion of cells in the S phase of the cell 

cycle which reflects rate of tumour proliferation. Analysing 169 node-negative 

breast cancer patients, minimum P-value method was used to find a cut point for 

S-phase fraction. The outcome of study was Recurrence Free Survival (RFS). A 

split at 10% was identified [O'Reilly SM et al., 1990].  
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Improving stability of minimum P-value method 

The evidence of stability of a cut point model is required by performing with 

graphical (minimum P-value graph) and numerical methods (bootstrap study) 

[Mazumdar M and Glassman JR, 2000]. In addition, to avoid groups with very small/ 

high number of patients, it has been recommended not to apply any split at the outer 

20% of the covariate distribution [Lausen B and Schumacher M, 1992; Altman DG 

et al., 1994].  

 

A minimum P-value graph plots all cut point values of covariate against 

corresponding P-values to assess whether any other cut off(s) exists with P-value 

similar to that of minimum P-value [Dannegger F, 2000]. Furthermore, to reduce 

instability, the median of optimum splits across bootstrap samples can be used as the 

split. However, in the case that competing cut offs are far from each other, the use of 

a modal statistic is preferable [Dannegger F, 2000].  

 

Multiple testing 

Multiple testing is a regrettable consequence of minimum P-value method. Use of 

this method might result in a type one error as high as 40% [Altman DG, 1998]. This 

rate might be inflated to 50% if examining 50 cut points [Hilsenbeck SG et al., 

1992]. Therefore, a cut point P-value should be adjusted to reflect multiple testing, 

and to reach a decision regarding whether or not to adopt the cut point.  

Alternative methods to deal with multiple testing are to apply two-fold cross-

validation, to perform sample-split techniques, and to correct the P-value obtained 

[Hilsenbeck SG and Clark GM, 1996]. These methods are reviewed below. 
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In a two-fold cross-validation approach the data is divided into two equally sized 

subsets. Minimum P-value method is applied separately in each subset to find the 

optimal cut points (say C1 for first subset, C2 for second subset). Cut points derived 

are applied to the other subset. The subgroups of patients with low values for the 

covariate is a combination of the below cut point patients in each subset. High risk 

patients are defined in a similar way. The P-value of the covariate is estimated using 

a Log-Rank or Cox model [Mazumdar M et al., 2003]. Simulation studies show that 

the type one error for this method is approximately correct [Faraggi D and Simon R, 

1996].  

 

In the sample-split method, the data will be divided into training and test samples. 

The optimal cut point derived in the training set will be applied in the test set to find 

the correct P-value.  
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It might be that neither two-fold cross-validation nor two-sample statistics are 

feasible when sample size and number of events is low. On the other hand, P-value 

correction methods and nomograms have been developed to correct a P-value 

obtained [Hilsenbeck SG and Clark GM, 1996]. If l o wε  and h i g hε  show the 

proportion of the observations at the bottom and top of the highest cut point value 

considered, derivations below were proposed for 0.05low highε ε= =  and 

0.10low highε ε= =  [Altman DG et al., 1994].  

5 min min3.13 (1 1.65 ( ))altP P Ln P= − +   

10 min min1.63 (1 2.35 ( ))altP P Ln P= − +  

Example: 

The danger of using an optimal cut point without adjustment of P-value has been 

stressed [Hollander N and Schumacher M, 2001]. A series of 686 node-positive 

breast cancer patients was divided into two equally sized samples (training and 

test samples). A Minimum P-value method was applied to the training sample. An 

optimal split for age at 43 years old was proposed in the training set (unadjusted 

P-value= 0.02). On the other hand, if the adjusted P-value had been calculated for 

the training sample, it would have been 0.31, far from significant and preventing a 

misleading impression of association with age younger or older than 43. 

Applying this cut point to the test sample gave a P-value of 0.23. Furthermore, 

application of this split to another independent sample (n=139) resulted in P-value 

of 0.38 [Hollander N and Schumacher M, 2001]. 
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3.4.4 Comparison of methods to estimate form of 

association 

A comprehensive simulation study was conducted to compare the ability of 

alternative statistical methods to estimate the correct form of risk function [Hollander 

N and Schumacher M, 2006]. Techniques compared were  

 

• Linear Cox model 

• Polynomial regression model (linear plus quadratic terms) 

• Generalised Additive Models (Restricted Cubic Splines (RCS)) 

• Fractional Polynomials (FP) 

• Categorisation at fixed points 

• Minimum P-value method and its extension CART 

 

A continuous variable X which was uniformly distributed on the interval [1, 2] was 

simulated. The survival time T from an exponential distribution was generated by 

using the transformation 1( ) log( )T Uλ
−= , where U  was uniformly distributed on 

[0, 1] and 0( ) ( ) exp( ( , ))ih t h t g x β=  with baseline hazard 0 ( ) 1h t =  was chosen 

according to one out of 4 different risk functions g : 

 

• Null model:                 ( , ) 0g x β =  

• Cut-point model:         { }( , ) * xg x I μβ β >=         with μ =1.5, β =0.5 

• Linear effect model:    ( , )g x xβ β=                  with β =0.5 

• V-type effect model:    ( , ) 2g x xβ β μ= −     with μ =1.5, β =0.5 
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Simulation study was performed with 100 observations and 1000 replications. 

Methods were compared in terms of Mean Absolute Error (MAE) which was the 

absolute difference between the standardised estimated and simulated risk functions.  

1

1 ˆ ( , ) ( , )
n

i i
i

M A E h x g x
n

β β
=

= −∑  

 

The 95th percentile of the empirical distribution of MAE are summarised in Table 

3.4. When there was no real association (null model) and when association was 

linear, FP produced a MAE of 0.19. This rate slightly increased to 0.22 and 0.23 

when the true form was cut point or V-shape. Comparing methods which are 

particularly designed to detect polynomial associations (polynomial regression, 

GAM (RCS), and FP), FP and GAM produced lowest and highest MAE respectively 

(Table 3.4).  

 

Between methods which are devised to detect threshold effects (dichotomisation at 

fixed point, Minimum P-value, and CART), dichotomisation at a fixed point showed 

the lowest MAE. Furthermore, when the P-value obtained was not corrected, 

Minimum P-value and CART methods had a very poor performance. The MAE was 

higher than 0.35 for all simulated forms. Type one error increased to more than 0.40 

(data not shown). Therefore, use of CART and the minimum P-value method without 

adjustment of P-values obtained has been criticised, on account of its tendency for 

overfitting [Hollander N and Schumacher M, 2006]. These techniques, when there 

was no association at all, detected a false effect in 43% of replications (data not 

shown).  
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However, considerable reduction in MAE was seen once P-values obtained were 

corrected for multiple comparisons undertaken.  

In general, FP produced the lowest MAE, and was the only method which holds the 

correct type one error (data not shown) [Hollander N and Schumacher M, 2006]. 

Performance of polynomial regression and dichotomisation at a fixed value was 

approximately the same and marginally better than GAM.  

 

Some of the limitations of this study are that only univariate analyses were 

undertaken, and in simulated threshold and v-shape associations only a moderate 

change in risk was simulated. Furthermore, no polynomial form was simulated. 
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Table 3.4: The 95th percentile of the empirical distribution of the difference between the true and estimated form of association across 
techniques applied in the simulation study by Hollander et al. (2006) 
 

Techniques used to ascertain form  True 
Association Polynomial 

regression  
GAM 
(RCS) 

FP Dichotomisation 
at fixed point 

Minimum P-value (and CART)
(without P-value correction) 

Minimum P-value 
(with P-value correction) 

Null model 0.21 0.25 0.19 0.21 0.36 0.23 

Linear model 0.21 0.24 0.19 0.19 0.37 0.27 

Cut-point 

model 

0.23 0.25 0.22 0.23 0.37 0.29 

V-shape 

model 

0.23 0.26 0.23 0.22 0.35 0.27 
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3.4.5 Summary 

Advantages and disadvantages of methods reviewed to estimate linear or polynomial 

effects are summarised in Table 3.5. FP, in comparison with other methods, makes 

the most use of data and optimises power transformation. This method maintains 

correct type one error. Furthermore, in comparison with GAM, results are easier to 

communicate [Sauerbrei W et al., 2007]. 

 

 

 

Table 3.5: Advantages and disadvantages of methods to detect polynomial effects 

Method Advantage(s) Disadvantage(s) 

Polynomial 
regression modelling 

Easily understood 

Simple to implement 

Selection of polynomial 
degree is subjective 

Prevent selection of 
optimum power 

Generalised Additive 
Modelling (GAM) 

Able to detect highly curved 
associations  

Results difficult to 
communicate 

Might slightly increase type 
one error 

Curves can be difficult to 
interpret  

Fractional 
polynomial (FP) 
modelling 

Makes the most use of data while 
maintains correct type one error 
for each variable 

Good approximate for threshold 
and V-shape effects 

 

Powers selected will be 
sensitive to extreme values 
so confirmation of stability 
of transformation is 
required 
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Dichotomisation of continuous data is a contentious issue. That is because although it 

has biological appeal, it might lead to waste of information. However, in exploratory 

studies of biological variables, it can be worthwhile to explore the data to investigate 

this sort of association. This helps to extract more information from the data which 

might be useful in understanding of biological mechanisms of disease. Main 

advantages and disadvantages of methods reviewed are summarised in Table 3.6. 

 

 

 

Table 3.6: Advantages and disadvantages of methods to detect threshold effects 

Method Advantage(s) Disadvantage(s) 

Use of biological 
knowledge 

Simple and attractive Knowledge in most cases 
inadequate 

Use of median 
(pre-specified) 

Avoids accusation of data 
dredging 

Provides balanced distribution 
of data in to two groups 

Findings across studies might not 
be comparable  

 

Martingale 
residuals 

A simple and informative 
graphical tool  

Choice of split is subjective  

Minimum P-
value method 

Optimises place of split      
Useful in exploratory studies 

Might find false associations 

Requires p-value correction and 
check for stability 

P-value can be corrected 
using Altman formulas or 
nomograms available           
Stability can be improved 
using median or mode of 
optimal split across 
bootstrap samples  
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3.5 Handling missing data 

3.5.1 Background 

In a recent review of 100 papers reporting survival analysis, published in 2002, only 

15 papers involved no missing data [Burton A and Altman DG, 2004]. A total of 81 

papers had data with missing covariates and 4 papers did not provide sufficient 

information to determine whether there was missing data [Burton A and Altman DG, 

2004]. In this section, mechanisms for missing data and main approaches to deal with 

missing data are reviewed. 

 

3.5.2 Missing data mechanisms 

Since the mechanism of missing data is an important issue in comparison of methods 

used frequently to deal with missing data, possible mechanisms are reviewed. 

Missing data are divided into three types: Missing Completely At Random (MCAR), 

Missing Not At Random (MNAR), and Missing At Random (MAR) [Altman DG and 

Bland JM., 2007]. 

 

Missing data are categorised as MCAR when subjects with missing data are a 

random sample of data [Donders AR et al., 2006]. For example, MCAR occurs when 

a blood sample tube is broken or when a questionnaire is accidentally lost. 

 

Categorisation of missing data as MNAR applies when the probability that an 

observation is missing is related to unobserved information, such as the actual 
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(missing) value of the variable [Rubin DB, 1976]. This can happen, for example, 

when a patient is so sick that a medical procedure cannot be applied to measure a 

study variable.   

 

However, missing data are usually neither MCAR nor MNAR but MAR [Schafer JL, 

1997]. MAR applies when the probability that an observation is missing is related to 

other observed patient characteristics. For example, in multicentre studies some 

centres might not collect data on a particular variable [Altman DG and Bland JM., 

2007]. 

 

3.5.3 Approaches to deal with missing data 

The main methods to deal with missing data are to exclude patients with missing data 

on any variable (Complete-Case analysis), to replace them with a fixed value such as 

mean or median, to apply the Expectation Maximum (EM) algorithm, or to use a 

multiple imputation technique. These methods with their advantages and 

disadvantages are summarised in Table 3.7. 

 

i) Complete-Case (C-C) analysis 

Complete-case analysis, which is the exclusion of cases with missing data on any of 

variables under study, is the simplest way to proceed. A review of 100 papers found 

that complete-case analysis was the method most frequently used [Burton A and 

Altman DG, 2004]. 
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Under the MCAR assumption, subjects with complete data are a random sample of 

data and therefore if a small proportion of entire data set, less than 5%, is missing, 

case deletion is a reasonable approach [Fairclough DL, 2004]. However, when 

missing rate is high, exclusion of missing data will diminish precision of estimates.  

 

To explain effect of exclusion of missing data on precision of estimates, a total of 

2800 cases with complete data on Pre-Hospital Index (PHI) were analysed [Joseph L 

et al., 2004]. PHI is used in the evaluation of trauma care. Data were then omitted 

randomly under MCAR mechanism.   

The 95% C.I. for mean of PHI, in original and reduced data (N=2800 versus 956) 

were (3.40, 3.96) and (3.15, 4.11) respectively. Exclusion of cases with missing data 

resulted in the loss of precision and a wider confidence interval. 

 

In another study, a cohort of 300 subjects was simulated using 500 computer 

replications. Simulated data sets consisted of a dichotomous outcome and 3 

variables: a binary exposure, a continuous confounder, and a binary confounder. 

True OR was 3 for binary exposure variable. Missing data were generated by MCAR 

mechanisms at attrition (missing) rates 10%, 25%, and 40% [Kristman VL et al., 

2005].  

Estimated OR’s (S.D.) at various attrition rates were 2.98 (1.85) at 10% attrition, 

2.81 (2.54) at 25% attrition and 3.05 (2.84) at 40% attrition. The higher the missing 

rate, the larger the estimated SD was. 
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ii) Replacement of missing values with mean or median of observed values 

A method frequently used in the literature is to substitute missing data by the mean 

or, in the case of skewed data, by median of observed values. This might artificially 

reduce the variance and affect the strength of relationships with other variables 

[Donner A, 1982; Croy CD and Novins DK, 2005].  

 

Using a data set of a study on substance use among American Indian adolescents, out 

of 209 patients, only 161 participants (76%) with available data were analysed 

[Novins DK et al., 2001]. This gave mean age at first use of 14.66 (SD 2.5). 

corresponding figures after substitution of missing data by mean was 14.59 (SD 2.3) 

respectively [Croy CD and Novins DK, 2005].   

 

Furthermore, in case-control studies, replacement of missing data with a fixed value 

increases the overlap between cases and controls and will hence tend to 

underestimate the true association. This has been demonstrated by simulating 1000 

samples of 500 subjects, consisting of equal numbers of diseased and non-diseased 

subjects and a continuous diagnostic test [Donders AR et al., 2006]. The true Odds 

Ratio (OR) between diagnostic test and disease status was 2.7.  

Following a MCAR mechanism, the diagnostic test values for 20% of diseased and 

20% of non-diseased subjects were omitted. When these missing data were replaced 

with overall mean, the estimated OR was reduced by 36% to 1.73.  
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iii) Expectation Maximum (EM) algorithm 

Expectation-maximum (EM) algorithm is a likelihood based method. The philosophy 

behind the EM method is that if values for missing data are known, then estimation 

of model parameters is straightforward. Similarly, if the parameters of the model are 

known, then it is possible to replace missing data with unbiased values. EM works by 

combining these two steps. It first estimates the parameters on the basis of the data 

available, and then estimates the missing data on the basis of those parameters, with 

these two steps continuing iteratively.  

 

In the case of skewed data, to avoid out of range values, a log-transformation of the 

predictors might be applied before imputation of missing data [Schafer JL, 1997]. 

However, after the imputation process an anti-log transformation has to be employed 

to bring values back to the original scale. For binary and categorical data, a rounding 

approach to the nearest possible value, might work well in practice [Schafer JL, 

1997]. 

 

The EM algorithm preserves the characteristics of data (such as mean, correlation, 

and variance). This issue is illustrated analysing a sample of 492 patients, from a 

longitudinal study on the stress and health of elderly adults [Musil CM et al., 2002]. 

Mean for all cases (n=492) was 7.34 (SD 7.28). Data on a single variable for 96 cases 

(20%) was dropped out under MAR. Replacement of missing data by mean 

underestimated true SD, in that the estimated mean was 6.38 (SD 6.12). Applying 

EM algorithms gave estimates of 6.79 (SD 6.23) and correlation between variable 

under focus and rest of variables was fairly similar to that of original data.  
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iv) Multivariable Imputation via Chain Equations (MICE) 

The MICE method is a powerful tool to tackle the missing values. In this method the 

aim is to preserve data features (mean, variance, correlation) while taking into 

account the uncertainty regarding what the unknown missing value would have been 

if not missing.   

 

The MICE method replaces each missing value by multiple imputed values, resulting 

in multiply imputed data sets. This is a probabilistic approach which reflects the 

uncertainty about the true values of the missing data [Schafer JL, 1997]. It has been 

shown that 3 imputed data sets are sufficient when 20 per cent of values are missing. 

In general, there might be little or no practical benefit to create more than 5 to 10 

imputed data set [Schafer JL, 1999].   

 

It has been suggested that, for the best imputation the outcome variable should be 

included in the imputation model [Moons KG et al., 2006]. Data from 364 subjects in 

a prospective diagnostic study on pulmonary embolism were used. Five predictors 

without missing value were selected and estimated regression coefficients were 

considered as true values. Between 10% and 15% of values were omitted under 

MCAR and MAR mechanisms. MAR mechanism was created by assigning missing 

value to predictors that was related to other predictors and outcome. The MICE 

method was then applied to impute missing data. This was done with and without use 

of an outcome variable in the imputation model. Results were presented graphically. 

It has been seen that, the amount of bias in the estimated regression coefficients and 

intercept were much lower when outcome was included in the imputation model.  
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However, presence or absence of outcome did not affect estimated S.E. Estimated 

coefficients and intercept from complete-case analysis were comparable to that of the 

MICE without using the outcome in the imputation model but S.E.’s were larger.  

 

3.5.4 Comparison of methods to tackle missing data 

In general the MICE method is the best approach to impute missing data. However, it 

has been suggested that, in both binary and time-to-event outcomes, when missing 

rate is low (about 10%), replacement of missing data by median or mean is a 

reasonable approximation for the MICE. Some examples are as follows. 

 

With binary outcomes, the ability of mean replacement, MI techniques, and complete 

case analysis were compared [Ambler G et al., 2007]. The data set of Society of 

Cardiothoracic Surgeons of Great Britain and Ireland was used. The original data 

included 20378 cases of which 1404 patients had died. Nine variables, out of 14 

variables studied involved less than 15% missing values. The missing rate for 3 

variables was higher than 20%. Actual missing rates were 20.2%, 42.7%, and 53.4%. 

In total, 32% had complete data on all variables studied.  

 

Authors found that, under MAR and MCAR mechanisms, performance of the MICE 

and mean substitution were comparable and much better than complete-case analysis 

in terms of the proportion of patients classified into the correct risk group and the 

estimated spearman rank correlation between true and fitted probabilities. Estimated 

root mean square error (which quantified difference between fitted and true 

probabilities) for the mean substitution method was marginally higher than that of 



 72

the MICE but better than complete-case analysis. Comparing estimated regression 

coefficients, it has been shown that the MICE produced the lowest level of bias 

[Ambler G et al., 2007].  

 

In another study, performance of the mean replacement and the MICE, in terms of 

magnitude of estimated coefficients and Standard Error (S.E.), and discrimination 

ability were compared [Van Der Heijden GJ et al., 2006].  

Data for 398 cases with suspected pulmonary embolism were available of which 246 

participants (62%) had complete information on all 26 variables studied. The rates of 

missing values were as follows: 0% for12 variables, <10% for 11 variables 14% for 1 

variable and 21% for 2 variables. The number of variables which contributed to 

models was 9 for the MICE and 10 for mean replacement. Corresponding figures for 

discrimination ability was 78.7% and 77.5% respectively. Furthermore, replacement 

of missing data by mean yielded smaller S.E.’s for 3 variables whereas for 4 

variables estimated S.E.’s were the same.  

 

Asia Pacific Cohort Studies Collaborators (APCSC) collects data to identify 

Coronary Heart Disease (CHD) risk factors. The ability of mean replacement and MI 

techniques to handle the missing data on a single variable (cholesterol) were 

compared in 22 studies [Barzi F and Woodward M, 2004]. The cholesterol rate of 

missing date varied from 0% to 9.1%. Both methods gave similar results in terms of 

the mean and standard deviation of cholesterol and the estimated coronary mortality 

hazard ratio. This indicated that when missing rate is low, then application of simpler 
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methods such as mean replacement might be a very good approximation for complex 

and sophisticated imputation methods such as the MICE.   

 

3.5.5 Imputation of MNAR data 

It has been stressed that ‘If missing data are MNAR, valuable information is lost 

from the data and, there is no universal method of handling the missing data 

properly’ [Donders AR et al., 2006]. It has been noted that by including enough 

variables in the imputation model the MAR assumption would be more plausible 

[Van Buuren S et al., 1999]. Furthermore, efficient estimation with MNAR to a great 

extent depends on prior knowledge about the missing data mechanism [Harel O and 

Zhou XH, 2007].  

When missing data are MNAR, the reason for missingness should be understood and 

considered into the process of imputation of missing data. As an example, consider a 

situation in which due to technical problems it is not simple to measure histoscore 

values below a threshold value such as 5. In this case, it is clear that cases with 

missing data had a value varies from 0 to 5. Therefore, to impute plausible values, 

the observed data and the missingness mechanism should be modelled 

simultaneously.  

Another ad hoc approach is to categorise the variable and consider cases with 

missing data as a single category. This method is simple to implement but lead to 

loss in information.  
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3.5.6  Summary  

My literature review showed that the MICE method is the best method to impute 

missing data. However, when missing rate is low application of other methods might 

produce results comparable to the MICE. Features of this method are compared with 

other easier approaches (Table 3.7).   

 

 

 

Table 3.7: Advantages and disadvantages of methods to tackle missing data 

Feature Complete-case Median 

substitution 

EM MICE 

No special software is 

needed 
Yes Yes Yes No 

Easy to communicate with 

clinical audience 
Yes Yes Yes No 

Do not require 

distributional assumption 
Yes Yes No Yes 

Preserve data 

characteristics 
No No Yes Yes 

Convergence of imputation 

model is not an issue 
Yes Yes No No 

Takes imputation 

uncertainty into account  
No No No Yes 

Any particular problem Diminishes the power 

Gives biased estimated 

if not MCAR 

Artificially 

reduces the 

variance 

Might give 

out of range 

estimates 

Requires 

aggregation 

of estimates  
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3.6 Assessing the internal validity of models  

3.6.1 Background 

Ultimately, the most important issue for a model is its external validity, the extent to 

which it provides good predictions for similar patients who were not involved in the 

development of the model. However, before external validity can be checked, it is a 

prerequisite that there is adequate internal validity. Internal validation refers to the 

performance in patients from a similar population to those comprising the sample on 

which the model was developed. Therefore, internal validity is in contrast to external 

validity, where different populations are used to develop and test the model [Justice 

AC et al., 1999].  

 

If performance is assessed on the same sample as used for model development, then 

performance will be overestimated. Internal validation provides an accurate estimate 

of the upper limit of performance that might be expected for other populations 

(external validity). 

 

Internal validity can be investigated by splitting the data into training and test 

samples, doing cross-validation, using Akaike’s Information Criterion (AIC), or 

performing a bootstrap resampling procedure [Harrell FE et al., 1985; Harrell FE et 

al., 1996].  

 

Data-splitting and cross-validation methods are not appropriate when sample size is 

low [Steyerberg EW et al., 2001]. Akaike’s Information Criterion (AIC) is another 
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method to tackle overfitting [Collett D, 2003]. A model with higher number of 

variables provides a better fit than a model with small number of variables. AIC is a 

trade off between goodness of fit and model complexity. This statistics is defined as 

below. The lower the AIC, the better the fit is:   

AIC= -2log (maximum likelihood) + 3 x (number of parameters)  

AIC is asymptotically equivalent to cross-validation but is much faster to implement.  

Although use of AIC is straightforward, this approach does not test the stability of 

the form of association. Since in the cohort I am going to analyse EPV is low and 

one of the aims is to explore possible non-linear effects, I will focus this review on 

the bootstrap procedure.  

 

3.6.2 Bootstrap procedure 

Stepwise variable selection procedures are frequently used in the literature but are 

not stable as the inclusion or exclusion of a few cases can affect the variables 

selected for the model and resulting parameter estimates [Sauerbrei W and 

Schumacher M, 1992; Austin PC and Tu JV, 2004a; Derksen S and Keselman J, 

1992].  

 

This issue has been addressed in the development of a prediction model for acute 

myocardial infraction mortality. In 1000 bootstrap samples, B.E. produced 940 

unique models [Austin PC and Tu JV, 2004a]. Out of 29 variables, only 3 variables 

were significant in all the bootstrap samples, 18 variables were selected in fewer than 

half of the bootstrap samples, and 6 variables in less than 10%. This demonstrates the 

sensitivity of B.E. to small differences between bootstrap samples. It has therefore 
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been recommended to use B.E. in conjunction with bootstrap procedure [Altman DG 

and Andersen PK, 1989; Harrell FE et al., 1996; Steyerberg EW et al., 2003]. That is, 

to apply B.E. to a number of bootstrap samples (typically 100) and then to check 

selection of variables across samples (known as inclusion frequency or percentage).  

 

When modelling across bootstrap samples, the prognostic variables that truly are 

important should be retained in most models fitted. This is because each bootstrap 

replication is a random sample that should therefore reflect and mimic the underlying 

structure of the data, and it is this should drive the variables needed in the majority of 

models fitted [Altman DG and Andersen PK, 1989; Harrell FE et al., 1996; 

Steyerberg EW et al., 2003]. Therefore, a measure of inclusion frequency can be 

used to screen for the selection of the variables [Sauerbrei W and Schumacher M, 

1992; Austin PC and Tu JV, 2004b].  

 

The question is what criterion threshold to use for variables to be retained in a 

model? When the aim is to fit a parsimony model, then only variables with very high 

inclusion frequency should be retained. On the other hand, when adjustment for 

covariates is the aim, selection of variables with low inclusion frequency is necessary 

and therefore, a low value for percentage of inclusion frequency should be selected 

[Sauerbrei W and Schumacher M, 1992]. The inclusion of a variable in the model at 

selection levels of 1% and 5% in the original data can be checked against a cut of 

value for the bootstrap inclusion fraction of 73% and 50% respectively [Sauerbrei W 

and Schumacher M, 1992].   
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3.7 Combining methods to develop a prognostic 

model 

3.7.1 Research on combination of methods 

In a recent study explored the issue of combining methods in prognostic studies 

[Heymans MW et al., 2007]. The study population consisted of 628 patients and the 

clinical aim of the study was to determine prognostic variables for low back pain. 

The numbers of variables and events were 31 and 135 respectively (EPV=4.4). 

Missing data rate per variable ranged from 0% (for 2 variables) to 48.1%.  

 

In total 4 aspects were explored, fitting 20000 models. To develop the multifactorial 

model, a B.E. procedure with the probability to remove of 0.50 was applied to:  

 

• 100 imputed data sets ( 1 100toMI ) 

• 200 bootstrap samples drawn from the first imputed data set ( 1MI  x B) 

• 20000 samples (200 bootstrap samples from each of 100 imputed data sets) 

( ( 1,..,100 )j jM I =  x B) 

• 2000 samples (200 bootstrap samples from each of first 10 imputed data sets) 

( ( 1,..,10 )j jMI =  x B) 

 

To impute the data, all 31 variables were offered to the imputation program, but the 

underlying model failed to converge due to multicollinearity and computational 

problems. Therefore, imputation was undertaken separately for each variable. To 



 79

impute missing data for a variable, only other ‘complete-data’ variables and variables 

which had correlation higher than 20% with the variable to be imputed were included 

in the imputation run. Thus, a series of imputation runs were undertaken, consisting 

of 10 to 25 variables per run. No further information was given about number of 

variables used for each variable to impute missing data. Although it has been advised 

that imputation of 10 data sets is enough [Schafer JL, 1999], missing data were 

imputed 100 times to be able to estimate inclusion frequency per variable precisely. 

 

The number of times that any of the 31 variables appeared in the multifactorial 

model was recorded. For each of the four scenarios, the number of variables selected 

in at least 60% of models was reported (Table 3.8).  

As summarised in Table 3.8, for 1 1 0 0toM I inclusion frequency varied from 27% to 

100% whereas for the 1MI  x B (200 bootstrap samples from first imputed data set) 

the range was 51.8% to 100%. Authors concluded that 1 100toM I  was more specific 

in distinguishing variables with very high and very low inclusion frequency 

[Heymans MW et al., 2007].   

 

However, this conclusion might not be right in all situations. As explained above the 

first imputed data set was selected to draw 200 bootstrap samples. Authors did not 

reveal the selection of variables in that particular imputed data set. In the case where 

all variables were important in that data case, it might not be surprising for the 

inclusion frequency to be large across the bootstrap samples. In my opinion, since the 

rate of missing values was high, imputed data sets were more likely to vary than 

bootstrap samples drawn from one imputed data set. Results might be different if 
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another imputed data set had been selected at the start. Furthermore, in development 

of the model, a large P-value of 0.50 was used which might result in numerous 

covariates and unstable models. Results were not compared with of a more 

conventional P-value of 0.05. 

 

Authors noted that combined models, which consider both imputation and sampling 

variations, ( ( 1,..,100 )j jM I =  x B and ( 1,..,10 )j jMI =  x B) were similar to 1 100toM I  in 

terms of order of selection of variables (data not shown) but were similar to 1MI  x B 

in terms of range of inclusion frequency. Therefore, it was concluded that missing 

data variation had a larger impact on inclusion frequency than sampling variation.  

 

This conclusion might also be in doubt. As explained above, comparison of 

combined models with 1MI  x B might lead to a different conclusion if another 

imputed data set had been selected. Comparisons with 1MI  x B might be very 

sensitive to the imputed data set selected.  

 

Finally, a combination of bootstrap with 10 imputed data sets worked as well as with 

100 imputed data sets. They have found that using 10 and 100 imputed data sets 

resulted in similar selection of the variables and therefore imputation of 10 data sets 

should be adequate [Heymans MW et al., 2007]. 

 

As a sensitivity analysis, only ( 1,..,10 )j jMI =  x B was repeated with a moderate P-value 

of 0.157. This P-value (0.157) was chosen since Sauerbrei et al. argued that 

Backward Elimination (B.E.) variable selection approach at a 0.157 level is a good 
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approximation for all subset regression with Akaike’s Information Criterion (AIC) 

[Sauerbrei W, 1999].  

Applying this P-value (0.157), results were markedly different. The range of 

selection of variables varied from 19.2% to 99.1% indicating a very high sensitivity 

of aspects in relation to a nominal P-value set (Table 3.8). With a P-value of 0.157, 

only 4 variables were retained in more than 60% of samples. The range of selection 

of variables was similar to 1 100toM I  where sampling variation was not taken into 

account.  
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Table 3.8: Range of selection of variables and number of variables retained in more than 60% of samples in Heymans et al. study (2007) 

Model Number 
of samples 

P-value to 
remove 

Aspect investigated Range of selection of 31 
variables across models 
 

Number of variables selected 
in > 60% of samples 

1 1 0 0toM I  100  0.50 Imputation variation  
with high P-value 

27.0%, 100% 13 

1MI  x B 200  0.50 Sampling variation  
with high P-value 

51.8%, 100% 18 

( 1,..,100 )j jM I =  x B 20000  0.50 Both high P-value and large 
number of imputations  

57.1%, 99.4% 27 

( 1,..,10 )j jMI =  x B 2000  0.50 Both high P-value and small 
number of imputations  

55.1%, 99.5% 26 

( 1,..,10 )j jMI =  x B 2000 0.157 Both moderate P-value and small 
number of imputations  

19.2%, 99.1%  4 
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3.7.2 Overview 

Heymans et al. fitted 20000 B.E. logistic regression models to explore 4 different  

aspects: only taking into account imputation uncertainty, only taking into account 

imputation variation, or allowing for both [Heymans MW et al., 2007]. Although 

their experiment had several limitations, it has the advantage that it allows for two 

sources of variation: variation due to imputation of missing data and sampling 

variation. 

 

However, in my opinion, the most important limitations of the study was that authors 

assumed that effect of continuous variables was linear. Attempt was not made to 

check whether data comply with this important assumption, nor whether modelling 

would be better if a different form was used. Application of traditional linear 

regression models might result in loss of useful predictors which has non-linear 

association with the outcome.  
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Chapter 4 DESIGN AND METHODS 

 

 

 

4.1 Aims and objectives 

The key problems in prognostic modelling are to restrict number of variables being 

offered to the multifactorial model, to assess the optimum form of association, to 

avoid attrition in the sample size, and to assess the internal validity of the model.  

 

The main aim of this project is to develop statistical methods for modelling an 

outcome in a survival analysis when there are many potential variables. This requires 

a reduction in the number of variables, sufficient to allow model fitting that involves 

all potentially informative variables, while guarding against overfitting and 

instability in the model. 
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The main statistical objectives are given below, together with an indication of where 

in the thesis corresponding results are reported.  

 

i) Preliminary work prior to the main modelling  

1. Describe the distribution of variables in the data set (Chapter 5) 

2. Calculate standard Nottingham Prognostic Index (NPI) for the patients, 

categorise patients into risk groups by applying a range of cut offs to these 

index scores, and refit NPI using the data set for this research (Chapter 6)  

 

ii) Main modelling                                                                             

1. Compare methods for detecting form of association (Chapter 7) 

2. Develop pragmatic strategies for fitting of multifactorial models for data sets 

comprising many skewed variables and missing values (Chapter 8) 

 

iii) Additional analyses to enhance understanding 

Explore details of methods applied by means of further investigations of elements of 

the procedure:        

• Imputation of missing data in Chapter 9  

• Selection of form of association in Chapter 10 

 

In addition, the clinical objectives of this thesis are: to identify biomarkers with 

potential to inform prognosis, to develop a prognostic model for risk stratification of 

breast cancer patients, and to detect a low-risk group for clinicians to aid a treatment 

strategy that avoids harsh treatments.  
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4.2 Overall study design 

The research is based on a secondary analysis of an existing cohort of Estrogen 

Receptor positive (ER+) tamoxifen treated breast cancer patients.  

 

4.3 Data set 

John Bartlett is a professor of biology with special interest in molecular profiling of 

tamoxifen resistance in breast cancer. While he was working in Glasgow University, 

he and his colleagues began to develop a data set to study the pathway of tumour 

progression. They utilised Tissue Microarray Analysis (TMA) of tumour tissues to 

collect data on a large number of biomarkers, so as to identify biomarkers which can 

provide additional risk factors for breast cancer. His collaborators were Tove 

Kirkegaard, Liane McGlynn, Sian Tovey, and Timothy Cooke. 

 

TMA has been taken up by research institutions around the world, in particular those 

involved in cancer research [Chen W and Foran DJ, 2006]. In TMA, tissue is 

embedded in paraffin. Then using a hollow needle tissue cores are removed from the 

region of interest, a process similar to clinical biopsies. The diameter of tumours 

removed is as small as 6 millimetres. Tissue cores are then inserted into a paraffin 

block. Microtome, which is a mechanical instrument, is used to cut sections from 

blocks for microscope examination. Staining is frequently used in biology to enhance 

contrast in the microscopic image. Staining is scored according to the cellular 

distribution of expression of individual markers and each core is analysed separately 

for membrane, cytoplasmic and nuclear localisation of biomarkers. Incorporating the 
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intensity and percentage of positive staining, histoscore values are calculated which 

usually range from 0 to 300 and units are on the whole arbitrary. 

 

i) Patients and number of events 

The sample was comprised 401 ER+ women diagnosed during 1983 and 1999 at 

Glasgow Royal Infirmary formed the sample. Median follow-up time was 6.16 years 

and all patients received tamoxifen for some of the follow-up time (median of 5 

years).  

At the end of follow-up there had been 112 recurrences, and in 84 of these cases the 

patient was still was on tamoxifen treatment at the time of recurrence. A total of 74 

of the patients with a recurrence died during the follow up period. 

 

ii) Outcomes studied 

The primary outcome for the study is Recurrence Free Survival (RFS) and secondary 

outcomes are Recurrence Free on Tamoxifen treatment (RFoT) and Overall Survival 

(OS). Prognostic models are developed only to predict RFS, but Kaplan-Meier (K-

M) curves are presented for all end points in relation to risk groups obtained from the 

models developed for RFS.  

 

iii) Variables 

Data for 72 tissue microarray variables describing 41 protein biomarkers were 

available. In addition, there are three clinical variables (nodal status with 3 levels, 

Grade with 3 levels, and pathological tumour size) and age at diagnosis. The clinical 

variables were measured as follows. Tumour size was based on measurement of the 
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mastectomy specimen. Histological grade (1 to 3) was determined based on criteria 

of Bloom and Richardson [Bloom HJ and Richardson WW, 1957]. The Bloom-

Richardson grading method is based on three features of invasive breast cancers: the 

percentage cancer composed of tubular structures, the rate of cell division, and the 

nuclear pleomorphism of tumor cells (nuclear grade, change in cell size and 

uniformity). Each of these 3 features is rated from 1 to 3. Summation of these scores, 

which give a total score that ranges from 3 to 9, is used to grade the tumours as 

follows: 

• Grade 1 tumor (well-differentiated): scores 3 to 5  

• Grade 2 tumor (moderately-differentiated): scores 6 to 7  

• Grade 3 tumor (poorly-differentiated): scores 8 to 9  

Lymph node involvement was determined based on biopsy of a lower axillary node, 

an apical axillary node, and a node from the internal mammary chain. Patients were 

staged into 3 groups in terms of lymph node findings:  

 

• Stage 1:  Tumour absent from all 3 nodes sampled 

• Stage 2: Tumour in low axillary node only.  

• Stage 3: Tumour in either of apical or internal mammary nodes  
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4.4 Overview of general methods of analyses 

General methods which are relevant to the whole thesis are presented here and an 

outline of methods used in one or another chapter. More detail of methods specific to 

a single results chapter is given in that chapter. These are: 

• Ascertain form of association (Chapter 7)  

• Bootstrap sampling and investigation of stability of forms (Chapter 8) 

• Median replacement of missing data (Chapter 9) 

• Use of dichotomised biomarkers in the multifactorial model (Chapter 10) 

 

Methods relevant to more than one chapter, and described here are: 

• Cox regression model and check for Proportionality of Hazard assumption 

(4.4.1) 

• Fractional Polynomial modelling (4.4.2)  

• Minimum P-value method (4.4.3)  

• Multiple imputation of missing data (4.4.4), including: 

o Aggregate model results across imputed data sets and calculate a 

single risk score 

o Apply Backward Elimination (B.E.) variable selection method in the 

case of multiply imputed data sets 

o Calculate Hazard Ratios and Confidence Intervals (C.I.) in the case of 

multiply imputed data sets 

• Stratification of patients into risk groups by means of risk scores (4.4.5) 

• Graphical display of survival for risk groups (4.4.6)  

• Comparison of performance of models (4.4.7) 
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4.4.1 Cox regression model and Proportional Hazard (PH) 

assumption 

The application of the linear Cox model is considered the basic and standard tool in 

the field of time-to-event data analysis [Cox DR, 1972]. The model requires 

Proportionality of Hazards (PH) which means that the survival advantage is constant 

across time, from the first months through to the last years of follow-up [Sposto R, 

2002]. To check whether  data holds with the PH assumption, I will plot the  

Schoenfeld residual versus survival time [Hess KR, 1995].  

 

Another option to deal with time-to-event data is to apply parametric survival models 

such as Weibull or log-logistic regression model  [Orbe J et al., 2002; Carroll KJ, 

2003].Parametric survival models allow for a wider set of inferences to be made and 

provide insight into the shape of the baseline hazard [Nardi A and Schemper M, 

2003]. However, evidence for the merit of a chosen parametric model is needed 

[Therneau TM and Grambsch PM, 2000]. Given the relative lack of interest in these 

models among the clinical collaborators I have decided not to apply parametric 

survival models.  

 

4.4.2 Fractional Polynomial Modelling 

Fractional Polynomial (FP) modelling is a univariate technique that explores the data 

to find optimum power transformation for a variable [Royston P and Sauerbrei W, 

2008]. There are two classes of FP: first degree (FP1), and second degree (FP2) 

fractional polynomials. 



 91

The first degree Fractional Polynomial technique (FP1), performing 8 tests, checks 

whether fit is improved by a power transformation of the variable X, pX , where p is 

chosen from S= {-2,-1,-0.5, 0, 0.5, 1, 2, 3}. FP with value of p=1 is synonymous 

with a linear regression and p=0 indicates that a logarithmic transformation is needed 

for optimum linear modelling of a risk factor.  

 

A polynomial model of degree 2 (FP2) is an extension to 1 2
1 2

p pX Xβ β+  

which compares 36 different power combinations. It can be seen that ( 1 1p = , 2 2p = ) 

is equivalent to quadratic regression. The case 1 2p p=  is known as a repeated power 

model and has been defined as 1 2
ppX X LnXβ β+  [Royston P and Altman DG, 

1994].  The power selection procedure has been chosen empirically as that which 

maintains approximately the correct type one error, as has been shown in a 

simulation study [Ambler G and Royston P, 2001]. For each variable separately, the 

following steps are carried out:  

 

i) Is the variable is needed at all? 

Fit the best FP2 model and test it versus null model using 4 degrees of freedom (d.f.). 

If it is not significant drop the variable and stop. If it is significant go to the next step. 

ii) Simplification 

• Test best FP2 versus a linear fit using 3 d.f. If it is not significant declare the 

final model to be a straight line and stop. If it is significant go to next step. 

• Test best FP2 versus best FP1 (p≠1) using 2 d.f. If the test is significant 

declare the final model to be FP2. Otherwise, the best model would be the 

best FP1.  
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Multifactorial Fractional Polynomial (MFP) modelling is an extension of FP to check 

whether power transformation is required in the multifactorial model. MFP, after 

fitting of linear factors, ascertains whether model fit would be improved by using a 

polynomial form for any of the linear variables. 

 

4.4.3 Minimum P-value method 

Minimum P-value method is a univariate technique which is used to detect threshold 

effects. This method explores the data to find the optimal split for a continuous 

variable. After a systematic search across all possible values, the value chosen as the 

cut point will be that with the smallest corresponding P-value in a Log-Rank test, 

when comparing the survival curve of the two groups formed [Lausen B and 

Schumacher M, 1992].  

 

To avoid groups with small numbers of patients, no split at the outer 20% of 

distribution of variables will be applied (lowest and highest 10%). Furthermore, the 

Altman formula will be applied to correct for multiple comparisons undertaken 

[Altman DG et al., 1994]. The adjusted P-value will be calculated applying formula 

below:  

10 min min1.63 (1 2.35 ( ))altP P Ln P= − +  
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4.4.4 Imputation of missing data 

My literature review showed that Multivariable Imputations by Chained Equations 

(MICE) method is the best approach to impute missing data. Furthermore, median 

substitution is a good approximation for the MICE method when missing rate is 

about 10%. Although the rate of missing values in the current data set is not high, I 

will use the MICE method to impute 10 data sets [Schafer JL, 1999]. 

 

Specification of the imputation model is the first steps. Predictive Mean Matching 

(PMM), polytomous regression, and logistic regression will be used to impute 

missing data for continuous, categorical, and binary data respectively. In the PMM 

method, the complete-case whose value is closest to the imputed value is chosen. It 

takes the observation from the complete-case as the imputed value.  

 

The second step is to select a set of variables to enter into the imputation model. 

Using all available information make the MAR assumption more plausible. 

However, in presence of a dozen of covariates, it is not feasible nor necessary, due to 

multicollinearity and computational problems [Van Buuren S et al., 1999]. I will use 

a reduced set of informative variables or family sets of biomarkers in the imputation 

model (see Chapter 8). This will then be challenged by including a large number of 

variables in the imputation model (see Chapter 9). Furthermore, outcome is included 

[Moons KG et al., 2006].   

 

The third step is to draw the imputation values. To impute the missing value of jX , a 

regression model relates jX  to other variables in the imputation model. This 
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regression model is then used to create imputed values by drawing from the posterior 

predictive distribution. Each predictor with missing values is considered in turn using 

the current imputed values for each of the other predictors [Van Buuren S et al., 

1999]. This iteration process ends when all variables have been updated [Clark TG 

and Altman DG, 2003].  If 1 2( , ,..., )kX X X X=  are k random variables where each 

variable contains missing data and t represents the iteration number, missing data are 

imputed from the following sequence of Gibbs sampler iterations, as explained 

below [Van Buuren S and Oudshoorn K, 2000]:  

 

For 1X draw imputations 1
1
tX + from 1 2 3( , ,..., )t t t

kP X X X X  

For 2X draw imputations 1
2
tX + from 1

2 1 3( , ,..., )t t t
kP X X X X+  

….. 
For kX  draw imputations 1t

kX + from 1 1 1
1 2 1( , ,..., )t t t

k kP X X X X+ + +
−  

 

This entire process is repeated and the imputed values which are created at the 5th 

round will be used as the first imputed data set. The whole process explained will be 

repeated 10 times to replace each missing data by 10 values, thus creating 10 data 

sets [Van Buuren S et al., 1999]. 

 

i) Aggregation of estimates across imputed data sets  

The creation of 10 data sets means there is a requirement for 10 modelling analyses, 

one for each data set, and there will therefore be 10 different estimates for each 

parameter. Estimates derived from imputed data sets therefore need to be combined 

and this will be achieved applying Rubin’s rule [Rubin DB, 1978]. The coefficients 

and standard errors will be aggregated across the imputed data sets by Rubin’s 
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formulae [Rubin DB, 1978], where ˆ
iβ  is the estimated regression coefficient and β̂  

is the aggregated coefficient (M=10 for my application).  

1

1ˆ ˆ
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β β
=

= ∑
       

2

1 1
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ii) Backward Elimination (B.E.) variable selection method with multiply 

imputed data sets 

If a single multifactorial model is being developed then application of B.E. is 

straightforward. However, when there are 10 imputed data sets, B.E. will not directly 

be feasible. The 10 models developed are likely to retain different variables and 

aggregation of estimates (as per 4.4.4 (i)) will not be possible. 

 

To simplify the full model, by B.E. of imputed data sets, a series of iterative steps is 

required. At each step, the results are aggregated across the 10 data sets, and the 

variable with the highest P-value (exceeding 0.05) is removed. Another set of 10 

models is fitted with remaining variables, results are aggregated, and P-value 

assessed for a variable to drop (if P-value >0.05). The whole process continues until 

all variables remain significant in more than 5 data sets [Van Buuren S et al., 1999; 

Clark TG and Altman DG, 2003].  

 

iii) Calculation of Hazard Ratios (HR) and Confidence Intervals (C.I.) 

Hazard Ratios (HR) and corresponding 95% Confidence Intervals (C.I.) will be 

calculated from regression coefficients and standard errors that have been imputed 

across multiply imputed data sets. 
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iv) Calculation of a risk score 

A risk score will be calculated for each of 10 imputed data sets. For each patient a 

single averaged risk score will be calculated by averaging her estimated risk scores 

from each of the 10 imputed data sets. 

 

4.4.5 Formation of risk groups 

When wishing to categorise a prognostic risk score into risk groups, the important 

issues are to create reasonable number of risk groups, each containing an adequate 

number of patients from each risk group, and to select appropriate cut offs. 

 

In development of NPI, cut points were chosen that created 3 risk groups and as 

summarised in Table 2.2, this generally creates risk groups containing unequal 

numbers of patients. However, for the biomarker models I was to develop, I decided 

to create 4 risk groups from risk scores obtained. This is because one of the clinical 

ambitions of this study was to identify a subset of very low risk patients. Such a low 

risk group is unlikely to be identified unless the group is a relatively small proportion 

of the population of breast cancer patients.  

Selection of a very low cut off might guarantee detection of a risk group with 

sufficiently low risk of recurrence. However, the cost is that the estimated rates 

might not be robust due to low sample size in the risk group. Therefore, I will selet 

the cut off so as to create a low risk group containing 25% of the whole data. 

 

One way to define 4 groups would be to plot the distribution of risk score and select 

cut offs which guarantee the most diverged risk groups. However, this data-
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dependent approach reduced the generalisability of estimates obtained to other data 

sets. Instead, I will created a categorised 4-level variable by using as cut offs the 

three quartiles of risk score. This makes the place of split blind to the distribution of 

risk score. Furthermore, each group will contain roughly 100 patients (25% of data) 

which is a reasonable figure.  

 

4.4.6 Graphical display of risk groups and calculation of 

survival rates 

For graphical display of performance of risk groups derived in risk stratification, 

Kaplan Meier (K-M) curves corresponding to risk groups created will be plotted. 

Number of patients at start and followed for 3, 5, 7, 9, and 10 years are reported 

below each graph.  

 

Furthermore, 5, 7, and 10-year RFS rates in the lowest and highest risk groups are 

reported. Details for calculation of 7-year RFS are given. Corresponding figures for 5 

and 10 years are calculated in a similar fashion. 

 

Based on the definition the survival function, S (7), is the probability of being alive 

at least till the 7th year of follow up. Therefore, survival at the 7th year depends on 

survival at first, second…and 6th year which implies that (7) ( 7)S P T= ≥ . In the 

actuarial life-table procedure, the whole follow-up duration will be split into intervals 

(an example of 1 year intervals is (0, 1], (1, 2], (2, 3]… and (6, 7]).  If in  and id  

show number of patients at risk just before the i-th interval and the number of events 
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at i-th interval, then the probability of surviving to 7th year is given by 

7

1

( 7 ) (1 )i

i i

dS
n=

= −∏  

 

4.4.7 Comparison of models 

The ongoing discovery of new risk factors poses new questions on how best to 

quantify the contribution of added risk factor(s) to improving risk prediction 

[Pencina MJ et al., 2008]. However, Altman et al. noted that the appropriate 

definition of prognostic performance is open to debate [Altman DG and Royston P, 

2000].  

 

The Area Under Curve (C-index), Nagelkerke R-square (predictive ability), and 

Likelihood Ratio Test (LRT) are the most frequently used statistics in the literature, 

for comparing the performance of different models or to quantify the improvement in 

model accuracy when adding a new risk factor to set of standard predictors [Hanley 

JA and McNeil BJ, 1982; Pencina MJ and D'Agostino RB, 2004]. In this thesis I will 

use these 3 statistically-oriented statistics.  

 

However, one important limitation with C-index is that a very large independent 

association of a new marker with an outcome is required to result in an incrementally 

larger AUC [Pepe MS et al., 2004; Greenland P and O'Malley PG, 2005; Ware JH, 

2006]. It has been shown that an OR as large as 3 may have little impact on C-index 

[Pepe MS et al., 2004]. Furthermore, these statistics are not necessarily informative 

in clinical practice. Therefore, I also will report clinically-oriented statistics: Net 
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Reclassification Index (NR Index), estimated RFS rates in the lowest and highest risk 

groups, and Prognostic SEParation (PSEP).  

 

i) Statistically oriented statistics 

Predictive ability (R-square) 

Predictive ability is addressed by Nagelkerke R-square. This statistic, which varies 

between (0, 1), describes the ability of a model to an predict outcome. Values of 0 

and 1 indicates very poor and very high predictive ability respectively [Harrell FE, 

2001].  

 

Discrimination ability (C-index) 

Discrimination refers to the ability to separate patients with different responses  

[Justice AC et al., 1999]. Discrimination is measured using Harrell’s C-index 

(concordance index) which is a generalisation of Area Under Curve (AUC). This 

statistic varies between 0.5 and 1 where values near 1 indicate high discriminatory 

power.  

 

Goodness of fit (Likelihood Ratio Test) 

For all models, I will report Likelihood Ratio Test (LRT) which indicates how well 

the model fits the data. 

 

Calibration 

Calibration quantifies the extent to which predicted probabilities match observed 

probabilities. Such statistics show the ability of the model to make unbiased 
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estimates of outcome [Clark TG and Altman DG, 2003]. In addition there are other 

statistics that can be used to compare the performance of models such as D statistics 

[Royston P and Sauerbrei W, 2004] and Brier score which quantifies the mean 

square error of prediction [Graf E et al., 1999].  

I will not calculate the calibration of models. This is because one of my particular 

aims is to detect a subgroup of patients with sufficiently low risk of recurrence and 

therefore the calibration of the model over the entire range of the prognostic risk is 

not directly relevant. Furthermore, Harrell et al. noted that discrimination of a model 

is of primary concern [Harrell FE et al., 1996]. Per discussions with clinical 

collaborators of this study, I will only report C-index, R-square, and LRT. 

 

ii) Clinically oriented statistics 

Net Reclassification Index (NR Index) 

A recent paper suggested the use of Net Reclassification Index (NR Index) as a tool 

to assess usefulness of a new risk factor [Pencina MJ et al., 2008]. NR Index is much 

more sensitive to the addition of a new risk factor than other statistics described.  

 

This statistic checks the extent to which the addition of new variables to a standard 

model reclassifies patients into more appropriate risk groups. This method considers 

the joint distribution of patients into risk groups, by the two risk grouping schemes 

being compared. For patients who did and did not experience the event, it quantifies 

the ‘correct’ movement in the risk group classifications i.e. upwards for patients who 

did experience the event and downwards for patients who did not [Pencina MJ et al., 

2008].  
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Net gain in cases with event has been defined as the difference in proportion of 

subjects who moved into a higher or lower risk group. The reverse calculations will 

be made for event free cases. NR Index is defined as summation of net gains 

[Pencina MJ et al., 2008]. Statistical significance of net gains can be checked 

following logic for McNemar’s test in correlated proportions [Pencina MJ et al., 

2008]. Simple tests are developed to ascertain the significance of net gain in recurred 

and non-recurred cases and also NR Index. To calculate the NR Index, risk groups 

derived from NPI by applying quartiles as cut offs will be used as the risk grouping 

scheme. 

 

RFS rate in the lowest and highest risk groups 

Model performance will be also assessed in terms of RFS rate in lowest risk group, 

calculated as explained in section 4.4.6. Prior to the start of the research, I discussed 

this issue with the clinical collaborators of this study. A minimum 10-year RFS of 

95% was proposed. Detection of the high risk patients is also clinically important 

because they are deemed to need aggressive therapy. Therefore, RFS rates for 

highest risk groups will also be reported. 

Since the number of patients in the cohort who have been followed for 10 years or 

more is very low (about 11%), an estimate at this time point might not be robust. 

Therefore, to compare the ability of model to identify low risk patients, actuarial 7-

year RFS (with 40% follow-up data) will be used.  
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Prognostic SEParation (PSEP) 

Prognostic SEParation is a general concept, with the precise definition depends on 

context [Altman DG and Royston P, 2000]. For the purpose of this research, I will 

use PSEP to describe the separation between low and high risk groups. I specify 

Prognostic SEParation (PSEP) as the difference at 7-year RFS of lowest and highest 

risk groups. I also will report corresponding figures at 5 and 10 years.  

 

4.5  Software 

Bar charts will be plotted using Microsoft EXCEL software. K-M curves and life-

table analysis (to estimate actuarial event free rates) are produced using Statistical 

Package for Social Science (SPSS version 14). 

A series of packages which work under R software (version 2.5.1) will be used [R 

Development Core Team, 2007]. To detect polynomial effects and to develop 

Multivariate Fractional Polynomial models, MFP package will be used [Ambler G 

and Benner, 2008]. Maxstat  routines will be used to run minimum P-value method 

process so as to detect threshold effects [Horton T, 2007]. Missing data will be 

imputed using the MICE package [Van Buuren S and Oudshoorn C.G.M., 2007]. 

Estimated regression coefficients and standard errors will be combined across 

imputed data sets using Mitools library [Lumley.T., 2008]. Tree-based Survival 

Models will be applied using rpart package [Therneau TM and Atkinson B, 2009]. 

Performance of models (discrimination and predictive ability) will be assessed using 

Design [Harrell FE, 2008] library. NR Index will be calculated manually.  
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Chapter 5 DESCRIPTION OF BIOMARKERS AND 

CLINICAL VARIABLES 

 

 

 

5.1 Introduction 

The Glasgow data set is a typical example of a data set with a large number of 

biomarkers. In this Chapter descriptive statistics for all of the 72 biological variables 

is reported.  

 

5.2 Methods 

For each biomarker, descriptive statistics (minimum (Min), maximum (Max), and 

quartiles (Q1, Q2, and Q3)) plus number and percentage of missing data (Missing) 
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are reported. For additional insight to distribution, histograms of some biomarkers 

are plotted. Biomarkers with skewed distribution are flagged with * sign. 

 

Professor John Bartlett, using biological expertise on the basis of presumed role in 

the pathway to cancer progression, divided biomarkers into seven substantive 

biomarker family sets; AKT, BAD, PgR, RAS, MTOR, MAPK, HER. Biomarkers 

not included in these families formed an eighth group, named ‘Non-family’ set. 

Statistics for each biomarker set and also for clinical predictors are summarised 

separately. For each biomarker, an abbreviation is selected to be used throughout this 

thesis.  
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5.3 Results 

A list of all 72 biomarkers and clinical variables, in alphabetic order, and the section 

in which each summarised is given in Table 5.1. 

 
Table 5.1: List of all biomarkers and section statistics are given 

Abbreviation in thesis Family Section Abbreviation in thesis Family Section 
Aib1  HER 5.3.7 P118cy PgR 5.3.6
Aibfis1 HER 5.3.7 P118me PgR 5.3.6
Aibfis2 HER 5.3.7 P118nu PgR 5.3.6
Akt1cy AKT 5.3.1 P167cy PgR 5.3.6
Akt1nu  AKT 5.3.1 P167me PgR 5.3.6
Akt2cy AKT 5.3.1 P167nu PgR 5.3.6
Akt3cy AKT 5.3.1 Pakt1cy AKT 5.3.1
Badcy  BAD 5.3.2 Pakt1nu AKT 5.3.1
Baxcy  BAD 5.3.2 Pakt2cy AKT 5.3.1
Bcl2  BAD 5.3.2 Pakt2nu AKT 5.3.1
Bclxl  BAD 5.3.2 Panaktcy AKT 5.3.1
Egfrmax HER 5.3.7 Panaktnu AKT 5.3.1
Erbcy  PgR 5.3.6 Pbad112c BAD 5.3.2
Erbnu  PgR 5.3.6 Pher2cy HER 5.3.7
Ercy  PgR 5.3.6 Pher2me HER 5.3.7
Erhisto  PgR 5.3.6 Pher2nu HER 5.3.7
H4hfr1cy  HER 5.3.7 Pmapkcy MAPK 5.3.5
H4hfr1me  HER 5.3.7 Pmapknu MAPK 5.3.5
H4hfr1nu  HER 5.3.7 Pmtor MTOR 5.3.4
H4jrcy  HER 5.3.7 Pp70s6k3 MTOR 5.3.4
H4jrme  HER 5.3.7 Praf259cyy MAPK 5.3.5
H4jrnu  HER 5.3.7 Praf259nu MAPK 5.3.5
Her2fish  HER 5.3.7 Praf338cy MAPK 5.3.5
Her2me  HER 5.3.7 Praf338nu MAPK 5.3.5
Hrascy RAS 5.3.3 Prhisto PgR 5.3.6
Hrasnu  RAS 5.3.3 Ptency MTOR 5.3.4
Jrh3cy HER 5.3.7 Ptennu MTOR 5.3.4
Jrh3me HER 5.3.7 Raf1cy MAPK 5.3.5
Jrh3nu  HER 5.3.7 Raf1nu MAPK 5.3.5
Krascy RAS 5.3.3 Rkipcy Non-family 5.3.8
Krasnu RAS 5.3.3 Rkipnu Non-family 5.3.8
Mtor MTOR 5.3.4 Tace Non-family 5.3.8
Mapkcy MAPK 5.3.5 Tacep Non-family 5.3.8
Mapknu MAPK 5.3.5 Tescy Non-family 5.3.8
Nrascy  RAS 5.3.3 Tesnu Non-family 5.3.8
Nrasnu  RAS 5.3.3 Tunel Non-family 5.3.8
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5.3.1 AKT family 

Ten biomarkers forms this family set. Akt1cy and Akt1nu had the lowest missing 

rate (1 per cent) while data was not available for 4.7% of patients on Panaktcy and 

Panaktnu (Table 5.2). A total of 356 patients (89%) had data available on all 10 

biomarkers.  

 

 

 

 

Table 5.2: Distributional statistics and rate of missing values for AKT family set  

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

Cytoplasmic Akt1cy 0 80 112 133 225 1%AKT1 

Nuclear Akt1nu * 0 31 67 102 250 1%

AKT2 Cytoplasmic Akt2cy 0 125 158 188 275 4%

AKT3 Cytoplasmic Akt3cy 0 65 92 113 180 5%

Cytoplasmic Pakt1cy 0 47 78 100 190 2%Phospho 

AKT 308 Nuclear Pakt1nu * 0 8 20 38 140 2%

Cytoplasmic Pakt2cy 0 37 73 110 200 3%Phospho 

AKT 473 Nuclear Pakt2nu * 0 13 27 53 180 3%

Cytoplasmic Panaktcy 0 60 85 109 210 5%Pan AKT 

Nuclear Panaktnu * 0 15 35 64 160 5%
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 While the distributions of nuclear expression histoscores (4 biomarkers) were highly 

skewed, the distributions of cytoplasmic histoscores (6 biomarkers) were not far 

from normal distribution. Histograms of Akt2cy and Akt1nu are given as an example 

(Figure 5.1).  

 

 

 

Figure 5.1: Examples of distribution of biomarkers in AKT family (Akt2cy top panel 
and Pakt2cy bottom panel) 
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5.3.2 BAD family 

Five biomarkers forms this family set. Only cytoplasmic expression histoscores were 

available. All of these biomarkers had 7% or higher missing rate, where the highest 

missing rate was 14% (Table 5.3). A total of 294 patients (73%) had data available 

on all 5 biomarkers. The distributions of all biomarkers were skewed (see examples 

of negative and positive skewed distributions in Figure 5.2).  

 

 

Table 5.3: Distributional statistics and rate of missing values for BAD family set 

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

BAD Cytoplasmic Badcy * 0 37 67 100 202 12%

BAX Cytoplasmic Baxcy * 0 7 27 50 153 13%

Bcl-2 Cytoplasmic Bcl2cy * 0 20 53 105 200 7%

Bcl-xl Cytoplasmic Bclxlcy * 0 104 143 175 220 11%

Phospho 

BAD 112 

Cytoplasmic Pbad112cy * 0 0 7 34 122 14%
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Figure 5.2: Examples of distribution of biomarkers in BAD family (Bclxlcy top panel 
and Pbad112cy bottom panel) 
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5.3.3 RAS family 

The RAS family comprised 6 biomarkers none of them had a missing rate higher 

than 4% (Table 5.4). In total, 372 patients (93%) had data available on all 6 

biomarkers. The distribution of Hrascy, Nrascy, and Nrasnu was not far from normal. 

Distributions of other 3 biomarkers were positively skewed. Examples are given in 

Figure 5.3.  

 

 

 

 

Table 5.4: Distributional statistics and rate of missing values for RAS family set 

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

Cytoplasmic Hrascy 0 90 125 157 232 3%H-Ras 

Nuclear Hrasnu * 0 20 40 70 150 3%

Cytoplasmic Krascy 0 27 53 85 162 4%K-Ras 

Nuclear Krasnu 0 8 23 50 130 4%

Cytoplasmic Nrascy * 28 113 146 180 250 4%N-Ras 

Nuclear Nrasnu * 5 80 100 117 200 4%
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Figure 5.3: Examples of distribution of biomarkers in RAS family (Krascy top panel 
and Nrasnu bottom panel) 
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5.3.4 MTOR family 

The MTOR family comprised 5 biomarkers. Missing value rate varied from 3% to 

15% (Table 5.5). In total, 304 patients (76%) had data available on all 5 biomarkers. 

The distribution of Mtor was not far from normal but distributions for the other 4 

biomarkers were positively skewed. Examples are given in Figure 5.4.  

 

 

 

Table 5.5: Distributional statistics and rate of missing values for MTOR family set 

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

mTOR Cytoplasmic Mtor 0 40 65 105 190 6%

Phospho 

mTOR 

Cytoplasmic Pmtor * 0 20 50 70 90 3%

Phospho 

p70S6K 

(398) 

Cytoplasmic Pp70s6k3 * 0 0 13 85 43 15%

Cytoplasmic Ptency * 0 13 33 50 63 15%PTEN 

Nuclear Ptennu * 0 5 25 53 200 7%
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Figure 5.4: Examples of distribution of biomarkers in MTOR family (Mtor top panel, 
Pmtor middle panel, and Ptennu bottom panel) 
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5.3.5 MAPK family 

The MAPK family comprised 10 biomarkers. Raf1cy and -nu and Praf338cy and -nu 

had the highest missing rate at about 11% missing rate (Table 5.6). Distributions of 

Pmapkcy and -nu and Praf259cy and -nu were skewed while rest of biomarkers 

exhibited approximately normal distributions. Some examples are given in Figure 

5.5. 

 

Table 5.6: Distributional statistics and rate of missing values for MAPK family set  

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

Cytoplasmic Mapkcy 

 
0 70 110 147 260 6%Mapk 

p42/44 

Nuclear Mapknu 

 
0 57 80 107 180 6%

Cytoplasmic Pmapkcy * 

 

0 10 40 70 185 8%Phospho 

MAPK 

IHC Nuclear 

 
Pmapknu * 0 45 72 95 180 8%

Cytoplasmic 

 

Praf259cyy 0 23 70 127 280 9%Phospho 

Rat  

(ser 259) Nuclear 

 

Praf256nu 0 0 2 10 93 9%

Cytoplasmic 

 
Praf338cy * 58 136 167 190 275 11%Phospho 

Rat 

(ser 338) Nuclear 

 
Praf338nu * 5 113 135 158 220 11%

Cytoplasmic 

 

Raf1cy 0 83 123 153 280 12%Raf-1 

Nuclear 

 

Raf1nu 0 92 108 123 200 12%
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Figure 5.5: Examples of distribution of biomarkers in MAPK family (Pmapknu top 
panel and Praf338cy bottom panel) 
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5.3.6 PgR family 

PgR family comprised 11 biomarkers, of which 3 had no missing data (Table 5.7). 

The missing value rate for the rest of biomarkers was less than 10%. The 

distributions of the majority of biomarkers were skewed. Some examples are given in 

Figure 5.6.  

 

 

Table 5.7: Distributional statistics and rate of missing values for PgR family set 

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

Cytoplasmic Ercy * 0 15 50 80 150 0% Estrogen 

receptor Nuclear Erhisto  10 112 153 197 300 0% 

Cytoplasmic Erbcy * 0 0 50 100 300 9% Estrogen 

receptor beta Nuclear Erbnu  0 100 125 163 275 9% 

Progesterone 

receptor 

Nuclear Prhisto * 0 0 35 140 300 4% 

Cytoplasmic P118cy * 

 

0 100 175 225 300 5% 

Nuclear P118nu  

 

0 113 145 175 270 5% 

Phospho 118 

ER 

Membrane P118me * 

 

0 0 0 0 133 0% 

Cytoplasmic P167cy * 

 

0 0 50 100 250 10% 

Nuclear P167me * 

 

0 0 0 0 165 9% 

Phospho 167 

ER 

Membrane P167nu  

 

0 63 100 140 250 5% 
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Figure 5.6: Examples of distribution of biomarkers in PgR family (Prhisto top panel 
and Erhisto bottom panel) 
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5.3.7 HER family 

Eighteen biomarkers formed the HER family. One biomarker had more than 40% 

missing rate (Table 5.8). In comparison with other families, majority of HER 

biomarkers had a fairly high missing rate. Figure 5.7 gives the distribution of HER2. 

 

 

 

 

Figure 5.7: Example of distribution of a biomarker in HER family (Her2) 
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Table 5.8: Distributional statistics and rate of missing values for HER family set 

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

Cytoplasmic Pher2cy * 0 60 100 143 300 6%

Nuclear Pher2nu * 0 25 43 65 100 6%

Phospho 

HER2 

Membrane Pher2me * 0 60 100 143 300 6%

HER2 Membrane Her2 * 0 0 0 7 292 1%

HER2 FISH 

gene/ 

chromosome 

17 ratio  

 Her2fish * 0.9 1.1 1.1 1.2 8 12%

AIB1 Nuclear Aib1 * 0 30 58 100 205 6%

Cytoplasmic Jrh3cy * 0 50 83 140 265 12%

Nuclear Jrh3nu * 0 30 58 90 250 12%

JR HER3 

Membrane Jrh3me * 0 0 0 0 180 41%

Cytoplasmic H4hfr1cy * 0 26 75 125 253 11%

Nuclear H4hfr1nu * 0 35 63 93 200 11%

HER4 

HFR1 

 
Membrane H4hfr1me * 0 0 0 20 150 11%

Cytoplasmic H4jrcy * 0 0 37 79 250 15%

Nuclear H4jrnu * 0 0 0 25 200 15%

HER4 

H4.77.16 

Membrane H4jrme * 0 0 0 23 200 15%

Categorical variables                                      value (frequency) 
  Egfrmax 0 (386)      1 (1)        2 (2)   3 ( 3) 2%

  Aib1fis1 0 (337)    24 (1) 10%

  Aib1fis2 0 (334)      9 (1)      18 (2) 10%
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5.3.8 ‘Non-family’ biomarkers 

Seven biomarkers were not assigned to any of the biomarker families. The rate of 

missing value was less than 10% for all biomarkers (Table 5.9). The distributions of 

Tescy and -nu were approximately normal while the remaining biomarkers exhibited 

skewed distributions (Figure 5.8). 

 

 

Table 5.9: Distributional statistics and rate of missing values for non-family 
biomarkers 
 

Biomarker Expression Abbreviation 

in thesis 

Min Q1 Q2 Q3 Max Missing 

(%) 

Tace Cytoplasmic Tace * 0 3 10 20 135 5%

Tacep Cytoplasmic Tacep * 0 3 10 20 90 5%

Tunel  ----- Tunel * 0 0 0 72 400 10%

Cytoplasmic Tescy 0 75 112 170 275 7%TES 

Nuclear Tesnu 0 87 117 150 223 7%

Cytoplasmic Rkipcy * 0 47 85 117 230 7%rKIP 

Nuclear Rkipnu * 0 12 28 50 150 3%
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Figure 5.8: Examples of distribution of biomarkers in non-family set (Rkipnu top 
panel and Tunel bottom panel) 
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5.3.9 Clinical variables 

Distributional statistics for tumour size are given. In addition, frequency distribution 

of patients based on tumour grade and stage is presented. 

 

 

 

Table 5.10: Distributional statistics and rate of missing values for clinical variables 

Tumour size (cm) Stage Grade 

Statistic Value Value Frequency Value Frequency 

Min 0.2 1 192 1 99 

Q1 1.5 2 107 2 192 

Q2 2 3 69 3 99 

Q3 3     

Max 11     

Miss 6% Miss 8% Miss 3% 
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5.3.10 Pattern of missing data 

The number of biomarkers in each set with number (percentage) of patients with 

available data on all variables within that set is reported in Table 5.11. Only 51% of 

patients had complete data for HER family biomarkers whereas approximately 90% 

of patients had data available on all biomarkers in each of RAS and AKT family. 

Only 126 patients (31%) had complete data on all 72 biomarkers and 3 clinical 

variables.  

 

The biomarkers with more than 10% missing value are listed in Table 5.12. They 

belonged to just 3 families: HER, BAD, and MAPK. The highest missing rate 41% 

but the remaining had missing value between 11% and 15.5%.  

Indeed all 5 biomarkers of the BAD family had more than 10% missing value.   
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Table 5.11: Number of patients with available data in family sets of biomarkers 

Family/ set Number of 
variables 

Number (percentage) of patients 
with data available on all variables 

RAS   6 372 (93%) 
AKT 10 356 (89%) 
PgR 11 334 (83%) 
MAPK 10 325 (81%) 
Non-family set  7 326 (81%) 
MTOR   5 304 (76%) 
BAD   5 294 (73%) 
HER 16 203 (51%)  

 

 

Table 5.12: Biomarkers with more than 10% missing value  

Family Variable Number (percentage) of patients 
with missing value 

Jrh3me 166 (41%) 
H4jrcy  61 (15%) 
H4jrmem  61 (15%) 
H4jrnu  61 (15%) 
Jrh3cy  49 (12%) 
Jrh3nu  49 (12%) 
Her2fish  47 (12%) 
H4hfr1me  43 (11%) 
H4hfr1nu  43 (11%) 

HER  

H4hfr1cy  43 (11%) 
Pp70s6k3  62 (15%) 
Pbad112c  56 (14%) 
Baxcy  53 (13%) 
Badcy  49 (12%) 

BAD  

Bclxl  45 (11%) 
Raf1cy  47 (12%) 
Raf1nu  46 (11%) 
Praf338cy  44 (11%) 

MAPK  

Praf338nu  44 (11%) 
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5.4 Summary 

The distribution of majority of biomarkers was far from being normal. However, 

some of the distributions were hugely skewed (for examples see HER and PgR 

families) in which histoscore value for 50% or even 75% of patients were zero. This 

indicates that those biomarkers might not be helpful for modelling unless a very large 

threshold effect exists.  

 

In addition presence of outliers in biomarkers, for example see histogram of Ptennu, 

in the case such biomarkers predict the outcome, might hugely depend to the data.  

Small changes in the data might affect predictive ability of such biomarkers.   
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Chapter 6 NOTTINGHAM PROGNOSTIC INDEX FOR 

BREAST CANCER  

 

 

 

6.1 Introduction  

In later chapters I will need to compare the biomarker models I developed with the 

Nottingham Prognostic Index (NPI). Details of the original development of the NPI 

[Haybittle JL et al., 1982] have been given in Chapter 2.  

 

Comparison of performance of models requires similar approach to categorise 

patients into the risk groups. The standard NPI categorised patients into 3 risk 

groups. However, for the biomarker models developed, patients will be categorised 

into 4 risk groups by applying as cut offs the quartiles of the distribution of the risk 

score (see section 4.4.5). Therefore, to perform a fairer comparison, and to check the 
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effect of stratification into 4 groups relative to 3, I need to categorise patients into 4 

risk groups based on NPI risk scores. 

 

However, a further issue is that, in comparison with NPI, biomarker models are 

optimised for the data set used in this research, since by definition they give the best 

fit to the data. Furthermore, the data set used to develop biomarker models and to 

quantify the performance are the same. The Glasgow data set is the training sample 

for biomarker models but the validation sample for NPI. Therefore to ensure the 

fairest possible NPI comparator, I recalculated the new NPI risk scores using the 

current data set and then categorised patients into 4 risk groups using new risk 

scores.  

 

 

6.2 Aims 

The aims of this part of the research are to: 

 

1. Categorise patients into 4 risk groups on the basis on NPI risk scores and 

check effect of categorisation to 4 relative to 3 groups on risk stratification 

 

2. Refit NPI using the current data set as training set, and to check whether in 

comparison with standard NPI, it gives greater discrimination between risk 

groups  
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6.3 Methods 

6.3.1 Calculation of standard NPI and categorisation of 

patients into 3 risk groups 

Multivariable Imputations by Chained Equations (MICE) [Van Buuren S et al., 1999; 

Van Buuren S and Oudshoorn K, 2000] method was applied to create 10 imputed 

data sets (section 4.4.4). In each data set, standard NPI (0.2 x size (cm) + stage + 

grade) was calculated [Haybittle JL et al., 1982]. For each patient, the final NPI score 

was calculated by averaging her scores across the 10 imputed data sets. Using final 

scores, standard cut offs were applied at 3.4 and 5.4 to categorise patients into 3 risk 

groups (NPIstd3) (Table 6.1 row 1).  

 

6.3.2 Calculation of standard NPI and categorisation of 

patients into 4 risk groups   

To categorise the patients into 4 risk groups, cut offs were applied at quartiles of the 

NPI derived from imputed data sets (NPIq4) (Table 6.1 row 2). As an alternative, I 

applied the published cut offs (2.4, 3.4, and 5.4), that is with one lower cut off to 

subdivide the lowest risk group into two (NPIstd4) (Table 6.1 row 3) [Galea MH et al., 

1992].  
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6.3.3 Recalculation of NPI using the current data set 

(recNPI) 

For each of 10 imputed data sets, a risk score was recalculated by multiplying nodal 

status, grade, and tumour size values for each patient to the estimated specific 

regression coefficient corresponding to that data set. The average of recalculated 

scores across the 10 imputed data sets was used as final index (recNPI). Using 

recalculated risk scores patients were assigned into 4 risk groups applying the cut 

offs at quartiles (recNPIq4) (see Table 6.1 row 4).  

I also compared standard NPI with published cut offs with recalculated NPI. 

Therefore, I applied cut offs to recalculated risk scores so as to create risk group 

containing similar patients to that of NPIstd4 (recNPIstd4) (see Table 6.1 row 5).  

 

All models were compared as explained in section 4.4.7. Plotting Kaplan Meier (K-

M) curves, the numbers of patients at start and followed for 3, 5, 7, and 10 years is 

reported below each plot.  

 

 

Table 6.1: Description of NPIs calculated and cut offs applied to assign patients into 
risk groups 
Row Label Index calculation Risk groups Cut offs 
1 NPIstd3   

 
Standard formula Standard 3 risk group  (3.4, 5.4) 

2 NPIq4   Standard formula 4 equal sized risk group  quartiles 

3 NPIstd4   Standard formula Published 4 risk groups 2.4, 3.4, 5.4 

4 recNPIq4  Recalculated formula 4 equal sized risk group  quartiles 

5 recNPIstd4  Recalculated formula Mirror of NPIstd4    



 130

6.4 Results 

6.4.1 Standard NPI with 3 risk groups 

The numbers of patients with missing values on node, grade, and tumour size were 

33, 11, and 22 respectively. Nodal status had the highest missing rate (about 8%). In 

total, 343 patients (86%) had data available on all 3 variables of which, 88 had 

experienced recurrence.  

 

Discrimination (C-index) and predictive ability of index was 72% and 14% 

respectively. Estimated Recurrence Free Survival (RFS) rates, in the lowest and 

highest risk groups are given in Table 6.2. Estimated 7-year RFS rate in the lowest 

risk group was 89% which was 6 percentage points smaller than the target (95%). K-

M survival curves are given in Figure 6.1 (left panel).  

 

6.4.2 Standard NPI with 4 risk groups 

The conventional cut offs for NPI create 3 risk groups which, in the current data set, 

resulted in a large low risk group (n=133, 33% of patients) and a smaller high risk 

group (69, 17%). Applying quartiles as cut offs (3.3, 4.24, and 4.8), patients were 

categorised into 4 equal size risk groups (Table 6.2). Creation of 4 risk groups rather 

than 3 gave a smaller low risk group (102 versus 133) containing fewer number of 

recurrences (10 versus 15). However, this had a marginal impact on estimated RFS 

rates in the lowest-risk group (91% for 4 and 89% for 3 risk groups). K-M curves 

comparing these risk stratifications are given in Figure 6.1 (left and middle panels).   
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I then created 4 risk groups applying published cut offs at 2.4, 3.4, and 5.4 (NPIstd4). 

This resulted into a very small risk group (n=43, 11% of patients) and very big 

higher-intermediate risk group (n=212, 53%) (Table 6.2). In comparison with 4 equal 

size risk grouping, estimated RFS rates of lowest-risk group was increased to 95%, 

from 91%. In the lowest risk group of NPIstd4 only 2 early recurrences at 2.26 and 

2.52 years of follow-up were observed. That is why RFS rate at 5 years remained 

constant up to 10th year of follow-up. The biological collaborators for this research 

hoped to detect a low risk group with 7-year RFS of 95%, which was achieved by the 

published 4 risk groups of NPI. However, only about one-tenth of patients were 

categorised into the low risk group.  K-M survival curves are given in Figure 6.1 

(right panel). 

 

Table 6.2: RFS rates in the lowest and highest risk groups of NPI: standard 3 versus 
4-level categorisations  
 

Risk 
group 

Index N at 
stat 

5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event free 
(95% C.I.) 

NPIstd3 133 94% (90%, 98%) 89% (83%, 95%) 79% (65%, 93%) 

NPIq4 102 95% (91%, 99%) 91% (85%, 97%) 84% (72%, 96%) Lo
w

es
t 

NPIstd4 43 95% (89%, 100%) 95% (89%, 100%) 95% (89%, 100%) 

NPIstd3 69 44% (32%, 56%) 42% (30%, 54%) 36% (20%, 52%) 

NPIq4 100 54% (44%, 64%) 49% (39%, 59%) 41% (27%, 55%) H
ig

he
st

 

NPIstd4 72 47% (35%, 59%) 45% (33%, 57%) 39% (23%, 55%) 
PSEP for NPIstd3  risk 
groups 50% 47% 43% 
PSEP for  NPIq4 risk 
groups 41% 42% 43% 
PSEP for NPIstd4   
risk groups 48% 50% 56% 
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Figure 6.1: K-M curves for standard NPI: traditional 3 risk groups (left panel) versus 4 risk group schemes (middle and right panels)  

 

 

 

 

 

 

 

  

 

 
 
 
 
 
 
 
 

 102            94        80         47        27    13 
  99            90        73         45         24     13  
 100           84        69         38         22     12 
100 66 47 31 16 7

NPIq4   NPIstd3   

 133            121      103       63      38   19 
 199            171      138       79      42   23  
   69             42        28        19       9     3 

43              41        35        19       15     5 
 74              65        55        34       18    10  
212             83       148       86        48   27 

72            45        31       22        11     3 

NPIstd4  
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6.4.3 Recalculation of NPI (recNPI) 

Recalculating the index, a slight improvement in the discrimination (C-index 73.5% 

versus 72%) and predictive ability (R-square 16% versus 14%) was seen. However, 

using quartile risk groups, no noticeable difference to estimated RFS rates was seen 

for recalculated and standard NPI (Table 6.3). K-M curves are given in Figure 6.2.  

 

 

Table 6.3: Estimated RFS rates in the lowest and highest risk groups of 4 risk group 
stratifications based on standard and recalculated NPI 
 

Risk 
group 

Index N at 
stat 

5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event 
free 

(95% C.I.) 
recNPIq4   

 101 94% (90%, 98%) 90% (82%, 98%) 77% (61%, 93%) 
Lowest 

NPIq4   
 102 95% (91%, 99%) 91% (85%, 97%) 84% (72%, 96%) 
recNPIq4   

 98 52% (42%, 62%) 50% (40%, 60%) 41% (27%, 55%) 
Highest 

NPIq4   
 100 54% (44%, 64%) 49% (39%, 59%) 41% (27%, 55%) 

PSEP for recNPIq4   
risk groups 

 
42% 

 
40% 

 
36% 

PSEP for NPIq4   
risk groups 41% 42% 43% 

 

 

Applying cut offs at quartiles of standard and recalculated NPI, the distribution of 

patients into risk groups was such that risk groups derived from recalculated index, 

relative to standard index, classified 13 recurred patients into a more appropriate risk 

group and the same number into a less appropriate risk group, giving a net gain of 

zero. Corresponding figures for non-recurred patients were 31 and 27 respectively. 

This gave a net gain of 1.4 percentage points which was not significant (P=0.30). 
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Thus in this data set recalculation of index, and reclassification of patients, did not 

make a significant difference to discrimination in recurrence across risk groups. 

 

I also created 4 risk groups with unequal number of patients by applying the cut offs 

to create 4 risk groups containing 43, 74, 212, and 72 patients (the same as risk 

groups derived by applying published cut offs at standard NPI (NPIstd4)). Cut offs 

applied were 1.35, 1.71, and 2.8. Estimated RFS rates were fairly similar (Table 6.4). 

K-M survival curves are given in Figure 6.2.  

 
 
 
 
 
Table 6.4: Estimated RFS rates in the lowest and highest risk groups of two 4 risk 
group stratifications based on recalculated NPI 
 

Risk 
group 

Index N at 
stat 

5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event free 
(95% C.I.) 

recNPIstd4 43 95% (89%, 100%) 95% (89%, 100%) 95% (89%, 100%) 

Lo
w

es
t 

 
NPIstd4  43 95% (89%, 100%) 95% (89%, 100%) 95% (89%, 100%) 

recNPIstd4 72 43% (31%, 55%) 43% (31%, 55%) 36% (20%, 52%) 

H
ig

he
st

 

 
NPIstd4  72 47% (35%, 59%) 45% (33%, 57%) 39% (23%, 55%) 

PSEP for recNPIstd4   
risk groups 52% 52% 49% 
PSEP for NPIstd4   
risk groups 48% 50% 56% 
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Figure 6.2: K-M survival curves for standard (top panels) and recalculated NPI 
(bottom panels)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 102              94          80         47        27    13 
  99               90          73         45       24     13  
 100              84          69         38       22     12 
100               66          47         31       16       7 

NPIq4   

 43                 41         35         19         15     5 
 74                 65         55         34         18    10  
212                83       148         86          48   27 
  72                45         31         22          11     3 

NPIstd4  

 101               93          79         50          30   16 
 100               89          72         42          23   12  
 102               90          72         39          21   11 
   98               62          46         30         15     6 

recNPIstd4  recNPIq4  

  43                41          35          19         12    5  
  74                66          56          39         24  13 
212              184         150         84         43  24 
  72                43           28         19         10    3   
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6.5 Discussion  

6.5.1 Creation of 4 groups instead of 3 

As mentioned in Chapter 4, in development of biomarker models cut offs will be 

applied at quartiles to assign patients into 4 risk groups. To find a fairer comparator 

to biomarker models, I did the same for NPI risk scores. Applying the cut offs at 

quartiles, in comparison with standard 3 risk groups, no noticeable difference in RFS 

rate of lowest-risk group was seen. On the other hand, once published 4-group cut 

offs were applied (2.4, 3.4, and 5.4), number of patients formed the lowest risk group 

were 43 including 2 early recurrences. Therefore RFS rates were slightly improved. 

However, only 11% of patients fell into the lowest risk group.  

 

6.5.2 Recalculation of index 

I refitted the NPI and categorised the patients into 4 groups. However, I did not have 

information on all 9 variables used in calculation of NPI. I therefore only used the 3 

clinical variables in a Cox regression model. A slight improvement in C-index and 

R-square was seen. However, in terms of risk stratification, K-M curves were 

comparable.  

 

This was consistent with results of other studies advocating standard use of NPI 

[Okugawa H et al., 2005; D'Eredita' G et al., 2001]. The advantage of application of 

standard index and risk groups is that results of different studies will be comparable. 
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6.5.3 Ability to detect low-risk patients 

Results summarised in Chapter 2 (Table 2.2) suggested that NPI was not able to 

detect a specific lowest-risk group with sufficiently low risk of recurrence. However, 

it has been commented that ‘a subgroup of women within the good prognostic group 

with NPI scores ≤2.4 has an excellent prognosis with a 15-year survival of 94%, thus 

representing a group of patients potentially cured by locoregional treatment alone’ 

[Kollias J et al., 1999].  

 

Any patient with nodal status and grade score of 1 and tumour size of ≤ 2 cm, have 

NPI risk score ≤ 2.4. Although application of split at 2.4 can detect patients with 

excellent prognosis, only a small proportion of patients might meet these criteria (43 

patients (11%) in the Glasgow data set). 

 

Results presented in this chapter showed that while, at 5 years, the short-term 

recurrence free rate of the lowest-risk group defined by NPI was around 95%, a 

gentle decreasing trend was seen in K-M curves after fifth year of follow up. As an 

example, actuarial 5 and 10-year RFS rates in the lowest risk group of standard NPI 

were 94% and 79% respectively. Only for best prognosis risk group (with NPI≤ 2.4) 

were short-term RFS at 5 years and long-term RFS at 10 years the same, because no 

recurrences were observed after fifth year.  
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6.6 Overview 

Results presented showed that recalculation of NPI did not improve risk prediction 

and therefore I am reassured with respect to using standard NPI as the comparator for 

biomarkers which I will develop. Furthermore, in terms of estimates RFS rates in the 

risk groups, there was a slight difference between standard 3 and 4 equal risk group 

schemes. In development of biomarker models, I will use quartiles for risk grouping. 

Therefore, to estimate Net Reclassification Index (NR Index), and to compare RFS 

rates in the lowest and highest risk groups, I will use NPI with 4 equal risk groups 

(NPIq4) as the basic risk grouping scheme. 

 

6.7 Chapter summary 

• Creation of 4 equal sized risk groups did not improve ability of NPI to detect 

low-risk patients. Applying standard cut offs at 2.4, 3.4, and 5.4, the goal of 

detection of a subset of patients with 7-year RFS of 95% was achieved. 

However, small proportion of patients had NPI as low as 2.4. 

 

• Comparison of recalculation and standard NPI risk groupings, no noticeable 

difference in estimated RFS rates was seen. On the other hand, use of 

standard NPI ensures results of different studies are comparable. Therefore, 

standard NPI with cut offs at quartiles will be used as comparator in latter 

chapters. 
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Chapter 7 SCREENING AND UNIVARIATE 

FUNCTIONAL FORM OF ASSOCIATION FOR 

BIOMARKERS  

 

 

 

7.1 Introduction 

The majority of biomarkers in the data set exhibited a skewed distribution (see 

Chapter 5 for details). When data is skewed, it is common in prognostic modelling to 

apply a pre-specified transformation such as logarithmic, prior to analysis, to make a 

linearity assumption plausible (even if not optimal). An alternative method 

frequently used is to dichotomise the continuous variables so as to simplify the 

analysis.  
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However, the answer to the question ‘Is there an effect?’ depends to a great extent on 

the choice of risk function [Hollander N and Schumacher M, 2006]. Therefore, 

appropriate methods should be applied to reveal the optimum form of risk function 

for continuous variables. This raises the issue of how to find the optimum form of 

association for each biomarker. 

 

When the ability of different statistical techniques to detect the right form of risk 

function for continuous variable have been compared, it has been seen that Fractional 

Polynomial (FP) is the best technique to deal with ‘linear and polynomial’ effects. FP 

was also a good approximation for threshold or V shape effects [Hollander N and 

Schumacher M, 2006] (see Chapter 3 section 3.4.4 for details). Furthermore, and 

importantly, FP does not inflate type one error [Ambler G and Royston P, 2001].  

 

I wished to apply a range of different procedures to all 72 biomarkers, in order to 

compare the performance of alternative statistical methods in terms of detection of 

form of association and also to select a set of univariately potential informative 

biomarkers. Biomarkers associated with Recurrence Free Survival (RFS) with P-

value <0.10 (corrected for multiple testing) were considered to be univariately 

informative. From here on in this thesis, these biomarkers are denoted as univariately 

informative biomarkers.  
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7.2 Aims 

The Event Per Variable rule [Peduzzi P et al., 1995] would require over 720 

recurrences to deal with 72 biological variables available in the data set. However, 

only 112 recurrences were observed out of 401 patients recruited. The screening 

process applied in this chapter lays the foundation for the methods chosen to be 

applied in the later chapters. The main aims of this part of the research are as to: 

 

1. Apply a range of screening methods to detect univariate form of association 

for biomarkers and to compare selection of biomarkers by different methods 

 

2. Select a reduced set of potentially informative biomarkers based on univariate 

analysis of association with outcome, to be used in the next chapters in 

development of the multifactorial models 
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7.3 Methods 

7.3.1 Detection of form of association 

Out of 72 biomarkers only 3 ones were categorical (see Chapter 5, Table 5.8 for 

details). Five methods were applied to all 69 continuous biomarkers so as to detect a 

range of functional forms of associations: 2 methods to detect linear or polynomial 

effects, 2 methods to detect threshold effects, and 1 method to detect non-ordinal 

effects (Table 7.1). For each univariate test, patients with missing data on that 

biomarker were excluded.  

 

i) Detection of linear or polynomial effects 

Fractional Polynomial modelling 

Two approaches were applied to detect linear or polynomial effects. Firstly, 

Fractional Polynomial (FP) was applied to each continuous biomarker [Royston P 

and Altman DG, 1994] (section 4.4.2). FP is a data-driven (data-dependent) 

technique which works with continuous variables.  

 

Since Sauerbrei et al. recommended the use of FP to detect linear and polynomial 

effects [Sauerbrei W et al., 2007] and Hollander et al. showed that FP is a good 

approximation for threshold and V shape effects [Hollander N and Schumacher M, 

2006] results of other methods were compared with FP.  
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Linear Cox model 

Secondly, I assume that a pre-specified liner form was adequate. Therefore, variables 

were kept in the continuous form and linear Cox model (special case of FP1 when 

power is equal to 1) was applied.  

 

ii) Detection of threshold effects 

Two approaches were then applied to dichotomise biomarkers and to detect threshold 

effects: minimum P-value method and dichotomisation at quartiles: 

  

Minimum P-value method 

Optimal split for biomarkers were found applying minimum P-value method (section 

4.4.3) [Williams BA et al., 2006]. To correct for multiple testing, biomarkers with P-

value < 0.005 were taken as informative (equivalent to 0.10 in linear Cox model) 

[Altman DG et al., 1994]. This technique is data-driven. 

 

Dichotomisation at quartile(s) 

Secondly, all 69 biomarkers were dichotomised, in turn, only at lower quartile (Q1), 

median (Q2), and upper quartile (Q3) (3 comparisons for each biomarker). This 

approach is named ‘quartile dichotomisation’. Biomarkers with P-value < 0.033 at 

any of quartiles were declared as informative. This is a less extreme data-dependent 

method. 
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iii) Detection of non-ordinal effects 

In order to check for non-ordinal effects, as shown in Figure 7.1, I made 4 

comparisons for each biomarker. In each case, patients in the shadowed quartile were 

compared with unshadowed quartiles. Variables with P-value <0.025 were declared 

as informative. This approach was named ‘non-ordinal quartile dichotomisation’. 

This is a data-dependent method. 

 

 

 

 

 

Figure 7.1: Comparisons made to detect non-ordinal effects 
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quartile

 2nd 
quartile 

 3rd 
quartile 

 4th 
quartile 
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rest 

        

         
3rd quartile versus 
rest 
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1st and 3rd  
quartiles versus 
rest 
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Table 7.1: Screening methods applied to estimate form of risk function of 69 continuous biomarkers 
 

Purpose: to capture 
effects which are of 

form 

Method Nature of method The type of 
variable will be 

Number of tests applied 
(per biomarker) 

Threshold P-value used to 
declare biomarker is 

informative 
Linear or Polynomial  FP Data driven Continuous 36 FP2 plus 8 FP1 0.10 

Linear  Linear Cox 
 

Pre-specified Continuous 1 0.10 

Threshold  Minimum  
P-value 

Data driven Binary All values excluding  
the outer 20% in the 

distribution  

0.005 

Threshold Quartile 
dichotomisation 

Pre-specified but 
partly data driven 

Binary 3 0.033 

Non-ordinal  Non-ordinal quartile 
dichotomisation  

Data dependent Binary 4 0.025 
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7.3.2 Selection of informative biomarkers and their 

form 

In order to select a reduced set of informative biomarkers, I restricted methods 

applied to only 3 screening methods, one for each of 3 associations described above, 

which optimised the form or place of split and predicted RFS at a 0.10 significance 

level: Fractional Polynomial (FP) to select ‘linear or polynomial’ effects at 0.10 level 

(section 4.4.2), minimum P-value to select threshold effects at 0.005 level (section 

4.4.3), and non-ordinal quartile dichotomisation to select non-ordinal effects at 0.025 

level.  

 

When FP and another screening method selected a biomarker to be informative, the 

form which was indicated by FP was taken to apply. That is because FP does not 

dichotomise the data and avoids loss of information [Royston P et al., 2006]. In the 

case of overlap between minimum P-value and ‘non-ordinal quartile 

dichotomisation’ the more complex association (non-ordinal) was taken to apply.  

 

To check the informativeness of 3 categorical biomarkers (see Table 5.8), patients 

with non-zero values were grouped together thus creating 3 binary variables. This is 

because small number of patients had a non-zero histoscore value. A univariate 

binary Cox model was applied and those significant at a 0.10 level were selected. 
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7.4 Results 

7.4.1 Application of methods to detect form and compare 

selection of biomarkers  

i) Application of FP method  

Applying FP2 method, 12 biomarkers were identified as informative (Table 7.2) and 

for 3 of these biomarkers the association was polynomial. The shapes of the risk 

function for biomarkers with polynomial effects are plotted in Figure 7.2. For two of 

them (Krascy and Rkipnu) the best functional form was expressed by FP2 (which 

means two powers are required to explain their effect). Corresponding powers were 

(3, 3) for Krascy and (1, 0.5) for Rkipnu respectively. In addition, a reciprocal square 

transformation (an FP1 with power (-2)) was necessary to capture the association of 

Ptennu with RFS.  

 

ii) Application of linear Cox model  

Applying univariate Cox model, a total of 9 variables were selected as informative. 

Polynomial associations detected by FP method were missed. 

 

iii) Application of minimum P-value method  

Minimum P-value selected 10 biomarkers as potentially informative. The number of 

recurrences/ patients in low/ high risk groups is given in Table 7.2. The only 

informative biomarker missed by FP but selected by minimum P-value method was 

Pmapknu. For this biomarker, a threshold effect was found at 104 with unadjusted P-

value of 0.003. The P-value for this biomarker in FP method was 0.92.  



 148 

Table 7.2: Univariate P-values and Hazard Ratios (HR)4 for biomarkers which are selected as informative  

FP Linear Cox Minimum P-value method Variable 

P-value HR (95% C.I.) P-value HR (95% C.I.) Optimal split  P-value # events/ patients in risk groups HR (95% C.I.) 

Praf338cy 0.01  2.17 (1.19, 3.94) 0.01  2.17 (1.19, 3.94) 192  0.001 69/ 300 29/ 57 2.72 (1.76, 4.2) 

Praf338nu 0.002  2.56 (1.40, 4.68) 0.002  2.56 (1.40, 4.68) 123  0.001 23/ 125 75/ 232 2.11 (1.32, 3.37) 

Mapkcy 0.01  1.56 (1.09, 2.22) 0.01  1.56 (1.09, 2.22) 128  0.003 52/ 239 51/ 137 1.78 (1.21, 2.62) 

Prhisto 0.007  0.72 (0.56, 0.91) 0.007  0.72 (0.56, 0.91)  20  0.001 67/ 179 43/ 208 0.48 (0.33, 0.70) 

Akt2cy 0.06  0.73 (0.52, 1.02) 0.06  0.73 (0.52, 1.02) 190  0.005 96/ 306 12/ 81 0.44 (0.24, 0.80) 

Pmtor 0.02  0.59 (0.38, 0.93) 0.02  0.59 (0.38, 0.93) 100  0.001 96/ 318 10/ 72 0.32 (0.17, 0.62) 

Tunel 0.07  1.21 (0.99, 1.48) 0.07  1.21 (0.99, 1.48) 105  0.003 73/ 300 31/ 62 1.90 (1.24, 2.91) 

Pher2nu 0.07  1.90 (0.95, 3.78) 0.07  1.90 (0.95, 3.78)  80  0.005 85/ 336 19/ 40 2.01 (1.22, 3.31) 

Mtor 0.06  1.53 (0.98, 2.39) 0.06  1.53 (0.98, 2.39) 127  0.01 80/ 327 24/ 52 1.78 (1.13, 2.82) 

Krascy  <0.001  3.43 (1.94, 6.08) 0.59  0.86 (0.49, 1.49)    7  0.01 21/ 45 89/ 342 0.55(0.34, 0.88) 

Rkipnu  <0.001  0.66 (0.52, 0.84) 0.65  1.16 (0.61, 2.24)    8  0.001 30/ 73 79/ 314 0.49 (0.32, 0.75) 

Ptennu  0.02  1.13 (1.02, 1.26) 0.83  0.94 (0.51, 1.71) 2.5  0.01 31/ 84 72/ 289 0.61 (0.40, 0.93) 

Pmapknu 0.92  1.03 (0.58, 1.83) 0.92  1.03 (0.58, 1.83) 104  0.003 75/ 312 25/ 56 1.98 (1.26, 3.12) 

Akt1nu 0.44 0.86 (0.57, 1.27) 0.44 0.86 (0.57, 1.27) 107 0.05 94/ 312 17/ 84 0.60 (0.36, 1.01) 

 

 
                                                 
4 For biomarkers which are selected by FP and Cox methods, but not for Rkipnu and Ptennu, HR shows the amount of increase in risk per 100 unit change in biomarker 
value 
P-value thresholds used for FP, linear Cox, and Minimum P-value were 0.10, 0.10, and 0.005 respectively 
For each of 3 methods, grey cells are uninformative biomarkers 
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Figure 7.2: Shapes of risk function for biomarkers with univariate polynomial effects 
(Krascy (top panel), Rkipnu (middle panel), and Ptennu (bottom panel) 
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iv) Application of ‘quartile dichotomisation’ 

Dichotomisation at lower quartile (Q1) 

Just 2 biomarkers were informative at Q1 (Praf338nu and Prhisto). These two 

biomarkers were also informative at Q2 and Q3 (Table 7.3).  

 

Dichotomisation at median (Q2) 

Informativeness of 4 biomarkers was revealed applying the split at median, and all of 

them were also informative at Q3 (Table 7.3).  

 

Dichotomisation at upper quartile (Q3) 

Applying the split at Q3, informativeness of 8 biomarkers was revealed (Table 7.3). 

Only number of patients in the risk groups and HR corresponding to this split is 

given (Table 7.3). 

 

v) Application of ‘non-ordinal quartile dichotomisation’ 

Having performed 4 comparisons for each variable, and therefore a total of 276 tests, 

only one biomarker was selected as informative. For Akt1nu, patients with values in 

the third quartile exhibited different relapse risk when compared with the remaining 

patients who had Akt1nu values above or below this range.  

In the third quartile of Akt1nu, 38 events in 102 patients were observed. In the 

remainder (those who had Akt1nu lower than median or higher than third quartile) 73 

recurrences in 294 patients were seen. The risk of recurrence for patients in the third 

quartile, in comparison with other patients, was 1.81 (95% C.I.: 1.22, 2.69) with 

unadjusted P-value of 0.003.  
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Table 7.3: Quartiles and univariate P-values for biomarkers which are selected as informative and univariate Hazard Ratio (HR) for top 
quartile (threshold P-value 0.033) 
 
Variable Q1  P-value Q2      P-value Q3  P-value # events/ patients in risk groups HR (95% C.I.) for Q3 

Praf338cy 136  0.12 167  0.01 190  0.001 59/ 264 39/ 93 2.03 (1.34, 3.05) 

Praf338nu 113  0.01 135  0.01 158  0.01 65/ 271 33/ 86 1.78 (1.17, 2.71) 

Mapkcy 70  0.17 110  0.11 147.7  0.03 68/ 282 35/ 94 1.55 (1.03, 2.33) 

Prhisto 0  0.01 35  0.001 140  0.02 92/ 294 18/ 93 0.56 (0.34, 0.92) 

Akt2cy 125  0.37 158  0.03 188  0.01 93/ 294 15/ 93 0.47 (0.27, 0.81) 

Pmtor 20  0.40 50  0.40 90  0.02 87/ 301 19/ 89 0.54 (0.33, 0.90) 

Tunel 0  0.54 0  0.54 72.5  0.02 65/ 272 39/ 90 1.60 (1.06, 2.40) 

Pher2nu 25  0.19 43.3  0.07 65  0.33 75/ 291 29/ 85 1.24 (0.81, 1.91) 

Mtor 40  0.41 65  0.17 105  0.024 68/ 287 36/ 92 1.59 (1.06, 2.38) 

Krascy  27  0.40 53  0.72 85  0.53 90/ 299 20/ 88 0.86 (0.53, 1.39) 

Rkipnu  12  0.16 28  0.65 50  0.59 80/ 293 29/ 94 1.12 (0.73, 1.72) 

Ptennu  5  0.06 25  0.80 53.3  0.66 78/ 276 25/ 97 0.90 (0.58, 1.42) 

Pmapknu 45  0.11 72  0.99 95  0.15 68/ 279 32/ 89 1.37 (0.89, 2.09) 

Akt1nu 30.5 0.57 67.5  0.30 102  0.09 90/ 300 21/ 96 0.67 (0.41, 1.08) 

For each of 3 splits, grey cells are uninformative biomarkers 
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vi) Comparison of selection of biomarkers by different methods 

Table 7.4 summarises the selection of biomarkers as potentially informative by 

different univariate screening methods applied. The FP method was the most 

inclusive technique and selected the highest number of biomarkers as potentially 

informative (12 biomarkers), and was the only method captures the association of 

Rkipnu and Ptennu with RFS (both polynomial). Therefore, selection of biomarkers 

by other methods was compared to FP. Main finding were as follows: 

 

The linear Cox model selected 9 biomarkers as being informative. 

Application of this technique resulted in loss of 3 biomarkers with 

polynomial association.  

 

The minimum P-value method selected a total of 10 biomarkers as being 

informative. This technique missed to select Mtor (which showed linear) and 

Krascy and Ptennu (which showed polynomial effect). This was the only 

method identified effect of Pmapknu 

 

Number of biomarkers significant at Q1 and Q2 were 2 and 4 respectively, all 

of them were also significant at Q3. Applying the split at Q3, a total of 8 

biomarkers were selected. In comparison with FP, 4 biomarkers (Pher2nu and 

3 biomarkers with polynomial effects) were not screened in. 

 

‘Non-ordinal quartile dichotomisation’ suggested only the informativeness of 

Akt1nu.  All other methods missed informativeness of this biomarker.  
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Table 7.4: Selection of biomarkers, as potentially informative, by different univariate 
screening methods  
 

Row Biomarker FP Cox Minimum 
P-value 

Ordinal quartiles 
(number max 3) 

Non-ordinal 
quartiles  
(number max 4) 

Selection 
frequency 

1 Praf338cy Yes Yes Yes Yes (2)  5 
2 Praf338nu Yes Yes Yes Yes (3)  6 
3 Mapkcy Yes Yes Yes Yes (1)  4 
4 Prhisto Yes Yes Yes Yes (3)  6 
5 Akt2cy Yes Yes Yes Yes (2)  5 
6 Pmtor Yes Yes Yes Yes (1)  4 
7 Tunel Yes Yes Yes Yes (1)  4 
8 Pher2nu Yes Yes Yes   3 
9 Mtor Yes Yes  Yes (1)  3 

10 Krascy Yes*     1 
11 Rkipnu Yes*  Yes   2 
12 Ptennu  Yes*     1 
13 Pmapknu   Yes   1 
14 Akt1nu     Yes (1) 1 

 # of 
detected 
informative 
biomarkers 

12 9 10 8 1  

* Polynomial form 

 

 

7.4.2 Selection of informative biomarkers and form of 

association 

As summarised in Table 7.4, the first 7 biomarkers (rows 1 to 7) were selected by 4 

techniques. Following the methods explained in section 7.3.2, I will keep them in the 

continuous form and adopt the linear risk function.  

Two biomarkers (rows 8 and 9) were selected by 3 techniques. These two biomarkers 

will also be used in continuous form with linear risk function. 

Rkipnu (row 11) was selected by FP and minimum P-value methods. I will use form 

selected by FP. The rest of biomarkers (rows 10, 11, and 14) were selected by only 

one method and will be included in the selected form. 
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None of 3 categorical biomarkers were selected as being informative. Table 7.5 lists 

functional form for each variable which univariately predicted RFS. Number of 

missing values for each variable and statistics for distribution are also given. The rate 

of missing value for selected variables varied from 1.2% (Akt1nu) to 11% 

(Praf338cy & Praf338nu).  

 

 

Table 7.5: Distributional statistics and rate of missing value for the biomarkers 
selected as potentially informative 
 
Thesis 
abbreviation 

Form of risk 
function 

Min Q1 Q2 Q3 Max Missing 
(%) 

Praf338cy 
 

Linear 58 136 167 190 275 11% 

Praf338nu 
 

Linear 5 113 135 158 220 11% 

Mapkcy 
 

Linear 0 70 110 147 260 6.2% 

Prhisto 
 

Linear 0 0 35 140 300 3.5% 

Akt2cy 
 

Linear 0 125 158 188 275 3.5% 

Pmtor 
 

Linear 0 20 50 70 90 2.7% 

Tunel 
 

Linear 0 0 0 72 400 9.7% 

Pher2nu 
 

Linear 0 25 43 65 100 6.2% 

Mtor 
 

Linear 0 40 65 105 190 5.5% 

Krascy 
 

Polynomial 0 27 53 85 162 3.5% 

Rkipnu 
 

Polynomial 0 12 28 50 150 3% 

Ptennu 
 

Polynomial 0 5 25 53 200 7% 

Pmapknu 
 

Threshold 0 45 72 95 180 8.2% 

Akt1nu 
 

Non-ordinal 0 31 67 102 250 1.2% 
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7.5 Discussion 

7.5.1 Comparison of screening methods 

The reason I applied a range of statistical methods and explored form of association 

was that, in this work, my aim was to supply information to a cancer biologist. This 

might help him to generate new hypotheses about the role of biological variables on 

the course of breast cancer disease and to enhance the understanding of aetiology of 

breast cancer.  

 

In total 14 biomarkers are selected as being informative. Applying 5 screening 

methods, FP was the most inclusive approach. This approach missed selecting only 

Pmapknu (with a threshold effect) and Akt1nu (with a non-ordinal effect).  

Since FP explores a wide range of power transformations, it might be over-inclusive 

by finding artificial and/ or unstable associations. Furthermore, form a biological 

perspective, results must be interpretable (see below).  

 

Another interesting finding was that when I dichotomised biomarkers at bottom, 

middle, and top quartiles, I saw that the quartile at which biomarkers were 

dichotomised played an important role in informativeness of biomarkers. Upper 

quartile was the most inclusive method, possibly due to positively skewed 

distribution of biomarkers. 
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7.5.2 Biological interpretability of detected non-linear 

forms  

For modelling, 3 biomarkers were selected with polynomial risk function (Krascy, 

Rkipnu, and Ptennu).  

The association between Krascy and RFS was best captured by cubic transformation. 

When the association between Rkipnu and RFS was discussed with the biological 

collaborators, they explained that the shape of association might be interpreted in two 

ways: a surrogate effect (left-hand side of Figure 7.2) and also the specific effect of 

the covariate (right-hand side of Figure 7.2). By surrogate effect they meant an 

indicator of the effect of another variable also important to RFS. Given that this 

screening step was univariate, the information of this variable might disappear in the 

multifactorial analysis, when other biomarkers are included in the model. 

I explained the biological collaborators that the corresponding graph for Ptennu 

suggested a threshold effect at very low histoscore level. Professor John Bartlett 

confirmed that it is plausible. Furthermore, from biological perspective, threshold 

effect of Pmapknu and non-ordinal effect of Akt1nu are plausible. It is plausible that 

after a threshold value, biomarker predicts the outcome. It is also biologically 

possible that patients in one of quartiles, in comparison with the remainder, show 

different survival curve and therefore predict outcome.  

 

7.5.3 Informative biomarkers 

One important aim of screening procedures applied was to select a reduced number 

of informative biomarkers to offer to a subsequent multifactorial model (see Chapters 
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8 and 10 for details). However, I was also concerned not to miss biomarkers that 

might be important and therefore a range of screening methods were applied to select 

biomarkers and form together.  

 

I was aware that the FP can fairly accommodate threshold and even complex v-shape 

associations. The reason why the biological collaborators of this research asked me 

to check for complex non-ordinal associations, was that Tovey et al. showed that ‘the 

frequency distribution for the levels of HER2 expression demonstrates the bimodal 

expression pattern, with a nadir at ten times the normal expression level’ [Tovey SM 

et al., 2006]. Patients with 1-10 times normal tissue had the best survival while those 

with low normal tissue and high values (> 10 times normal) together had the worst 

survival [Tovey SM et al., 2006]. This suggests that it is possible to find a subgroup 

of patients in the middle of the distribution with different survival experience. In the 

data set I analysed, HER2 was not associated with RFS. One explanation might be 

the fact that this cohort comprised only ER+ patients.  

 

No one of the 5 techniques applied was able to select all 14 univariately informative 

biomarkers. Therefore, application of all techniques might be required when the aim 

is to select potentially informative biomarkers which had complex associations with 

outcome, to describe the sample as best as possible, and to understand more about 

biology of disease.  

At this stage, multiple testing (due to multiple comparisons undertaken) is not an 

issue since I wanted to be inclusive and give variables every chance to unscreened 

variables to be selected for modelling. However, in development of models 
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reproducibility of non-linear effects detected will be checked and unstable 

associations will be excluded from analyses (see Chapter 8 for details). I will develop 

multifactorial model with and without use of biomarkers missed by FP, to address 

their contribution to the performance of the models. 

 

7.5.4 Selection of informative biomarkers and form for 

multifactorial modelling 

As explained in section 7.3.2, one of the aims of screening procedures applied was to 

select a reduced set of biomarkers for modelling (see Tables 7.2 and 7.3). However, 

majority of biomarkers were selected by more than 1 screening technique (see Table 

7.4). Therefore, a decision abut form is also required. In models developed in 

Chapter 8, I will focus on techniques which optimise the form. This is because my 

aim is to describe the sample as best as possible. However, models developed will be 

challenged in Chapter 10 to investigate whether selection of simpler forms was 

adequate. 
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7.6 Chapter summary  

 

• Fractional Polynomial was the most inclusive technique in terms of selection 

of informative biomarkers. Only 1 threshold and 1 non-ordinal association 

were missed by FP.  

 

• Non-FP methods might extract information on risk curves more complicated 

than those available within FP family. Application of such methods might 

generate new questions about biology of disease. 

 

• Multi-faceted screening process is required to ensure that all potentially 

informative variables are selected for modelling. 
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Chapter 8 PROGNOSTIC MODELLING OF MANY 

SKEWED VARIABLES WITH MISSING DATA 

 

 

 

8.1 Introduction 

As noted in Chapter 4 (section 4.1), the main 4 practical challenges in the 

development of prognostic models are to deal with many variables, to detect 

appropriate form of association, to impute missing data, and to assess internal 

validity of model guarding against instability and overfitting.  

 

The aim of this chapter is to fit the best possible multifactorial models, by combining 

suitable data reduction techniques, risk function detection methods, and missing 

value imputation approaches, followed by a stability checking procedure to tackle 

overfitting.  
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8.2 Aim 

The main aim of this part of the research is to develop pragmatic strategies to be used 

in modelling when large number of skewed variables with missing data is available. 

 

The main objectives are to:  

 

1. Develop a multifactorial regression model without use of biological 

knowledge 

 

2. Make the use of biological knowledge in model development of the 

regression model and to address its role on model performance 

 

3. Construct a graphical decision tree  
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8.3 Methods 

In development of the multifactorial models presented in this chapter, I took two 

overall approaches: regression modelling (without and with incorporation of 

biological knowledge) and Tree-based Survival Methods (TSM). 

 

Two regression-based models were developed. The overall process of model 

development is shown in Figure 8.1. The main difference between 2 approaches was 

the mechanism applied to restrict number of variables being offered to the 

multifactorial model. I applied 2 selection strategies: a statistically approach which I 

called Univariately Informative Variable Selection (UIVS) and Biologically Guided 

Variable Selection. These will be now in more details (Figures 8.2 and 8.3).   

 

 

Figure 8.1: Overall approach in development of two regression models 

Data reduction  

Model fitting  

Assessing form of 
association for each variable 

Aggregation of estimates  
Kaplan-Meier (K-M) curves 

Recurrence Free Survival (RFS) rates 
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8.3.1 Univariately Informative Variable Selection (UIVS) 

Model 

This is an extension of the conventional screening method, involving also detection 

of appropriate form of association, preceded by imputation of missing data, and 

followed by bootstrapping (Figure 8.2). 

 

i) Assessment of form 

Details of detection of form of association are explained in section 7.3.1.   

 

ii) Data reduction    

Details of selection of univariately informative biomarkers and appropriate form are 

explained in sections 7.3.2. Biomarkers and forms which are listed in Table 7.5 were 

candidate for the UIVS Model. Clinical variables (tumour size, grade (1, 2, 3), and 

nodal stage (1, 2, 3)) were also submitted to the model. Although tumour size had a 

continuous distribution to attempt was made to optimise form of association. 

Furthermore, this variable was not dichotomised. This is because in original 

development of NPI, no transformation was applied to tumour size and I wanted to 

investigate whether biomarkers would retain in the multifactorial models in presence 

of clinical variables used in NPI. 
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iii) Model fitting 

Data imputation  

Set of reduced biomarkers, clinical variables, and RFS outcome were submitted to 

the imputation model. Applying the MICE method [Van Buuren S et al., 1999], 

missing were imputed 10 times (section 4.4.4). Transformations derived in screening 

phase (Chapter 7) were applied to all 10 imputed data sets.  

 

Bootstrap samples 

To circumvent the risk of an over-fitted model, I have employed bootstrap sampling 

to refine the models by excluding variables with unstable form, or unreliably 

included as necessary for prediction. A total of 100 bootstrap samples were drawn 

from each of 10 imputed data sets, leading to 1000 data sets in total. 

 

Elimination of unstable predictors with threshold or non-ordinal effects 

Since there was no multifactorial procedure to the link 3 screening methods applied 

in ‘assessment of form’ step (FP for linear or polynomial effects (section 4.4.2), 

minimum P-value for threshold effects (section 4.4.3), and non-ordinal 

dichotomisation for non-ordinal effects), stability of threshold effects and non-

ordinal effects were assessed across 1000 samples univariately.  Biomarkers were 

dropped if form was replicated in < 50% of samples.  

 

Elimination of predictors with unstable polynomial effects 

Optimum form for biomarkers with univariate polynomial association was 

ascertained applying Multivariate Fractional Polynomial (MFP) [Royston P and 
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Sauerbrei W, 2008] to 1000 samples. A variable with univariate polynomial 

association might show different forms of association in bootstrap samples. If 

optimum risk function (linear, FP1, FP2) was replicated in < 50% of samples, the 

biomarker was dropped from further consideration.  

 

Elimination of unreliable predictors with low inclusion frequency  

Besides predictors with unreliable polynomial association; clinical variables, 

transformed version of biomarkers with stable threshold or non-ordinal effects, and 

biomarkers with univariate linear association were removed if retained in < 50% of 

samples.  

 

iv) Aggregation of results 

For variables retained, estimated regression coefficients and Standard Errors (S.E.’s) 

were aggregated across 10 imputed data sets (as described in methods section 4.4.4 

part i). In the case power(s) selected for variables with stable polynomial effect were 

not the same across 1000 samples, the most frequent power seen were applied. A 

final risk score was calculated (section 4.4.4 part iv) and patients were categorised 

into 4 risk groups (section 4.4.5). 
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Figure 8.2: Process of development of the UIVS Model 

 

Univariate selection of form  
(N=72 biomarkers)  

Apply FP to detect ‘linear or polynomial’ associations 
Apply minimum P-value to detect threshold effects 
Categorise at quartiles to reveal non-ordinal effects  

Data preparation  

Submit selected variables, clinical variables, and RFS outcome 
to imputation model to create 10 data sets 
Apply the transformations needed and then draw 100 bootstrap 
samples from each data set, giving 1000 data sets   

Give all remaining of variables to MFP analysis with B.E.  
For biomarkers with univariate polynomial effect the form 
(linear, FP1, FP2) is replicated in > 50% of samples 
 

Using retained variables, develop a multifactorial model on 
each of 10 imputed data sets and aggregate the estimates  
Apply cut offs at quartiles of final risk score to plot the K-M 
curves  

For each biomarker with threshold/ non-ordinal effect, by 
means of univariate analysis across bootstrap samples, the form 
is replicated in > 50% of samples 

Other variables are retained in more than 50% of samples 

Final modelling, Aggregation of results, and RFS 
rates  

Initial data reduction  

Select variables selected by FP (at 0.10 level) and threshold (at 
0.005 level) and non-ordinal effects (at 0.025 level) missed by 
FP 

If not, drop the 
biomarker  

If not, drop the 
biomarker  

If not, drop the 
variable 

Model fitting and refinement  
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8.3.2 Biologically Guided Variable Selection (BGVS) 

model 

In the Biologically Guided Variable Selection (BGVS) approach, modelling was 

performed within family sets created by Professor John Bartlett. The process 

continued as follows (Figure 8.3). 

 

i) Families 

Seven families were formed on the basis of presumed pathway to tumor progression. 

Remainder of biomarkers comprised the eighth set (‘Non-family’ biomarker set).  

 

ii) Assessment of form 

Regarding the form of association, there was scant biological knowledge as the 

appropriate form. Therefore, preliminary used form selection in screening phase 

(Chapter 7) and used in the UIVS Model were taken. 

 

iii) Dimension reduction  

Since family sets were specified by Professor John Bartlett, instead of working with 

72 biomarkers, I worked on substantive sets of biomarkers, each with reasonably 

smaller number of biomarkers. For each biomarker set I was therefore able to 

develop a multifactorial model. I then established for each biomarker family a 

combination of the family variables that constituted an informative and parsimonious 

index (risk score) to predict Recurrence Free Survival (RFS), as explained below.  
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iv) Development of multifactorial models and estimation of family risk scores  

For each of 7 biomarker family sets, missing data were imputed 10 times [Van 

Buuren S et al., 1999] (section 4.4.4). Then, within each family set, multifactorial 

models in conjunction with B.E. variable selection method were developed as 

explained below.  

 

1) For family sets in which none of biomarkers predicted RFS univariately or only 

univariate linear forms detected, multifactorial Cox model was used (BAD, PgR, and 

HER families).  

 

2) For family sets in which univariate polynomial and/ or linear effects were 

detected, MFP was applied (RAS, MTOR families) [Royston P and Sauerbrei W, 

2008]. In the case optimum form was replicated in > 5 samples but power(s) was not 

consistent across data sets, I applied the power replicated in the majority of samples.  

 

3) In family sets with either of threshold or non-ordinal effects, and linear effects 

detected, multifactorial Cox model was applied (AKT and MAPK families).  

 

Estimates were aggregated as explained in section 4.4.4 parts i and ii. Stability of the 

form and inclusion frequency was checked across 10 imputed data sets and only 

those replicated in > 5 samples (50%) were applied. Risk scores were derived as 

explained in section 4.4.4 part iv.  
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v) Model fitting 

In the second stage the averaged risk scores were offered to the model, plus the 

clinical predictors (grade, tumour size and nodes) and non-family TMA variables. 

However, missing data for non-family TMA biomarkers and clinical variables were 

not imputed in the first round which was restricted to the family.  

At the second stage, again, 10 data sets were imputed, for the non-family and clinical 

variables [Van Buuren S et al., 1999] (section 4.4.4). The family indices being 

offered were already averaged across data sets, so in each of the modelling runs their 

values were constant across the 10 data sets. Since one of the single variables 

(Rkipnu) had univariate polynomial association with outcome, MFP was applied 

[Royston P and Sauerbrei W, 2008].  

 

vi) Aggregation of results 

Risk scores, clinical variables, and non-family biomarker sets were candidate for the 

multifactorial model. A multifactorial model was fitted to each of 10 imputed data 

sets and results were aggregated as explained in 4.4.4 part i. Variables retained in 

more than 5 samples were selected for the final model.  
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Figure 8.3: Process of development of the BGVS Model 

 

Univariate form selection  
(N=72 biomarkers)  

As for UIVS (see Chapter 7)  

For each family set separately, give biomarkers and RFS 
outcome to imputation model and create 10 data sets  

For each family set, calculate a single risk score  

Aggregation of results 
 

Offer the averaged family risk scores, non-family 
biomarkers, clinical variables, and RFS to the 
imputation model and create 10 data sets 

Aggregate estimates across 10 data sets 
Apply cut offs at quartiles of risk score, 
Plot the K-M curves 
Create risk groups and estimate the RFS rates 

Dimension reduction and within family 
imputation of missing data 

Based on biological knowledge of tumour progression, 
divide biomarkers into substantive sets 

Model fitting  

Apply MFP and retain biomarkers and forms replicated 
in more than 5 (50%) imputed data sets  
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8.3.3 Tree-based Survival Method (TSM) 

The approaches proposed so far require preliminary steps to impute the missing data 

and to reduce the number of variables. This makes the process of model building 

very complex and time consuming. A far easier approach would be to construct a 

decision tree. The main steps for this model were follows.  

 

i) Form of association and dimension reduction  

In this approach variables are routinely transformed into binary versions and so no 

decision was required on the issue of form.  

Furthermore, in TSM there is no limitation about number of variables so no 

preliminary step was needed to tackle issue of many candidate variables.  

 

ii) Construction of decision tree and dealing with missing data 

TSM is an extension to minimum P-value method, which was explained in 4.4.3. 

Log-Rank test was applied to every possible cut point for each prognostic variable    

(but not the outer 20% values in distributions) so as to select the split with the most 

difference in outcome between two groups [Williams BA et al., 2006].  

To allocate patients with missing data into the appropriate group, the ‘surrogate 

variable’ approach was used by re-applying the partitioning algorithm. If the 

surrogate variable has the missing value on the same subject, then a second surrogate 

variable was used and so on [Therneau TM and Atkinson EJ, 1997]. 

The whole process was continued creating a tree structure until final subgroups 

(terminal nodes) with a minimum size of at least 30 patients were achieved.  
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iii) Refinement of tree 

To tackle potential overfitting, due to multiple testing undertaken, branches with P-

value higher than 0.002 (corresponding to 0.05 if one single test applies) [Altman 

DG et al., 1994] was omitted [Radespiel-Troger M et al., 2003; Dannegger F, 2000]. 

 

iv) Amalgamation of groups with similar survival curve  

Although TSM ensures that the two terminal nodes within a branch are significantly 

different, it remains possible that terminal subgroups from distinct branches might 

have very similar survival curves. In addition, number of patients in some of the final 

nodes might be low leading to un-robust estimation of event free rates. Therefore, 

further examination is required of survival curves and event-free rates of terminal 

nodes, followed by amalgamation of subgroups with similar curves [Segal MR and 

Bloch, 1989; Banerjee M et al., 2004]. 

 

8.3.4 Comparison of approaches 

Models developed were compared as explained in section 4.4.7. In addition, 

concordance between the UIVS and BGVS indices was checked by plotting of 

Bland-Altman graph.  

 

If a new prognostic model were to be used in clinical management of breast cancer, 

then it is likely that initially at least it would be used in parallel to Nottingham 

Prognostic Index (NPI), which is the established gold standard prognostic index in 

UK. Therefore when NPI designated a patient as ‘high risk’, management would be 

unlikely to neglect this, even if the new model indicated the patient was not high risk. 
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Therefore, initially the models would be used only for risk stratification of those 

patients who were not deemed high risk by NPI.  

To ascertain performance in this regard, I excluded the patients who are classified as 

high risk based on standard NPI (NPI>5.4). New quartiles for the UIVS and BGVS 

risk score were calculated and applied as cut points to investigate whether it was still 

possible to stratify patients into well diverged risk groups.  

 

I also checked ability of the risk groups derived from the UIVS and BGVS indices to 

predict other end points, in particular Recurrence Free while on Tamoxifen treatment 

(RFoT) and Overall Survival (OS). K-M survival curves and event free rates are 

given in Appendix 1. 

 



 174

8.4 Results  

8.4.1 The Univariately Informative Variable Selection 

(UIVS) Model 

In total 14 biomarkers (9 linear, 3 polynomial, 1 threshold, and 1 non-ordinal) and 3 

clinical variables were candidates for the UISV Model. Investigation of the threshold 

effect of Pmapknu found that in about 55% of bootstrap samples the optimal split 

was around 104. Additionally, the median and mode of selected optimal thresholds 

was 104. Investigation of the non-ordinal effect of Akt1nu found that in 80% of 

replications, the patients in the third quartile of Akt1nu significantly differed with the 

remainder. Therefore these two biomarkers were selected for the multifactorial 

model in the transformed version, and both were retained in > 50% of the samples 

(Table 8.1).  

 

When MFP was applied, 2 biomarkers (Rkipnu and Ptennu) had unstable forms of 

risk function (the optimum form was replicated in < 50% of samples), and were 

therefore excluded (Table 8.1). There were 7 other clinical variables with inclusion 

frequencies of <50%, which were also excluded (Table 8.1). Prhisto was retained in 

about 45% of replications, suggesting borderline effect of this variable. Grade was 

retained in the model in only 20% of replications. 

 

The final model was therefore developed using information on 6 biomarkers and 2 

clinical variables. For biomarkers the Hazard Ratios (HR) shows the amount of 

increase in risk of recurrence per 100 unit change in the biomarker histoscore.  
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Table 8.1: Estimated hazard ratios and inclusion frequency of variables in the UIVS 
Model 
 

Variable (Family) HR (95% C.I.) P-value Inclusion 
frequency 

Nodal stage (clinical) 1.82  (1.38, 2.40) <0.001 98.0% 
Size (cm) (clinical) 1.21  (1.10, 1.31) 0.001 95.2% 
Pmtor (MTOR) 0.33  (0.19, 0.59) <0.001 79.1% 
Tunel (Non-family) 1.49 (1.23, 1.81) <0.001 85.1% 
Praf338cy (MAPK) 2.12  (1.07, 4.02) 0.03 70.8% 
Pmapknu (MAPK) 2.8  (1.72, 4.57) <0.001 79.0% 
Krascy (RAS) 6.05 (2.23, 16.44) <0.001 71.5% FP2 

8.1% FP1 
2.0% Linear 

Akt1nu (AKT) 0.54  (0.36, 0.82) <0.001 92.3% 
Prhisto (PgR) a.  44.0% 
Praf338nu (MAPK) a.  15.6% 
Grade (clinical) a.  22.0% 
Mtor (MTOR) a.  18.4% 
Mapkcy (MAPK) a.  8.6% 
Akt2cy (AKT)  a.  10.5% 
Pher2nu (PgR) a.  10.0% 
Rkipnu (Non-family) b.  30.4% FP2 

13.6% FP1 
11.6% Linear 

Ptennu (MTOR) b.  27.2% FP2 
19.9% FP1 
13.4% Linear 

Performance 
C-index 79% 
R-square 28% 
Chi-square  126.5 
NR Index in 
comparison with NPIq4 

18.3% (0.02) 

 

 

 

 

 

a. Excluded as inclusion frequency was <50% 
b. Excluded as inclusion frequency of form was <50% 
NPIq4: Standard NPI risks score categorised into 4 risk 
groups by applying quartiles as cut offs  
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8.4.2 The Biologically Guided Variable Selection (BGVS) 

Model 

Out of 7 families, 2 did not find any variables to be statistically significant in 

predicting recurrence (BAD, HER). In the PgR and RAS families, only a single 

biomarker predicted the outcome, these were: Prhisto with linear form in PgR, and 

Krascy with FP2 in RAS. These 2 biomarkers were retained in all 10 imputed data 

sets. The FP2 variable captured the effect of Krascy in all 10 data sets where 

optimum powers were (3, 3) (Table 8.2).  

 

In the MTOR family, both Mtor and Pmtor were retained in the multifactorial model 

and contributed to the “mTOR” biomarker set risk score. Ptennu showed a 

univariately polynomial effect, but lost this polynomial effect in the multifactorial 

model and was not used in the family’s risk score.  

 

In the AKT family, the non-ordinal effect of Akt1nu was stable and replicated in all 

10 imputed data sets, and therefore a non-ordinal transformation was applied. Akt2cy 

and Akt1nu were retained in the multifactorial model and contributed to the derived 

risk score (Table 8.2). 

 

In the MAPK family, the threshold effect of Pmapknu was the same in all 10 

imputed data sets, and therefore the binary version of this biomarker was used. 

Praf338cy and binary version of Pmapknu were elements of the risk score for the 

MAPK biomarker set.  
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The BGVS Model was derived using: the final risk scores, the single biomarkers 

identified as potentially informative (Prhisto, Krascy), the clinical variables, and the 

TMA biomarkers that were not included in any set. This resulted in AKT, MTOR, 

and MAPK biomarker indices, as well as Tunel, Krascy, nodal status, and tumour 

size being retained in the final model.  

 

 

 

Table 8.2: Variables which contributed to the estimate of the risk of recurrence, 
separately by biomarker family, and corresponding hazard ratios 
 
Family Estimated risk score/ individual variables  HR (95% C.I.) 

BAD -------------------- ----------- 

HER -------------------- ----------- 

PgR Prhisto ----------- 

RAS -0.006 x {(Krascy/10) ^ 3} -0.002 x  

{(Krascy/10) ^ 3} x { Ln (Krascy+10) /10} 

2.74 (1.71, 4.38) 

AKT -0.64 x Akt1nu* - 0.003 x Akt2cy 1.95 (1.07, 3.59) 

MAPK 0.62 x Pmapknu* + 0.007 x Praf338cy  3.01 (1.71, 5.32) 

MTOR 0.006 x Mtor - 0.006 x Pmtor  3 (1.88, 4.81) 

Non-family Tunel** 1.35 (1.09, 1.67) 

Clinical Nodal stage 

Tumour size (cm) 

1.92 (1.46, 2.52) 

1.14 (1.10, 1.20) 

* binary form 
** For tunel, HR per 100 unit change is given
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8.4.3 Tree-based Survival Model (TSM) 

The constructed tree is shown in Figure 8.4, with ovals showing the terminal nodes. 

The numbers in each node represent the number of recurrences and patients in that 

node. For each split, the P-value corresponding to that of the Log-Rank test is given.  

 

A total of 5 variables were used to construct the tree. The first two variables, which 

best separated the patients, were nodal status and tumour size. The three biological 

variables Tunel, Prhisto, and Krascy were also required.   

 

The absolute difference between estimated 7 RFS rates, those of nodes 3 and 4, was 

20% (Table 8.3). When comparing nodes 1 with 2, and 4 with 6, the corresponding 

rates were much lower (6% for each comparisons). Furthermore, the number of 

patients that formed nodes 1 and 2, and nodes 5 and 6, was less than those that 

formed nodes 3 and 4. Therefore, to have more robust estimates, nodes 1 and 2 were 

combined to create the lowest risk group; and nodes 5 and 6 were grouped to create 

the highest risk groups.  
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Figure 8.4: Classification tree using biomarkers and clinical predictors 
 

 

 

Table 8.3: Estimated RFS rates in each of tree nodes  

Node 
number 

N at 
stat 

5-year RFS  7-year RFS 
 

1 36 100% 100% 

2 48 94% 94% 

3 82 93% 87% 

4 119 74% 67% 

5 45  
64% 54% 

6 71  
48% 48% 

 

P<0.001 

P<0.001 

Total 
112, 401 

Nodal status=3 
37, 71 

Nodal status< 3 
75, 330 

Size < 12mm 
0, 36 

Size >12mm 
75, 294 

Tunel< 107 
51, 250 

Tunel> 107 
24, 45 

Prhisto> 172 
3, 48 

P<0.001 

P=0.001 

Prhisto< 172 
48, 201 

Krascy> 61 
10, 82 

Krascy< 61 
38, 119 

P=0.002 

Node 1 

Node 2 

Node 3 

Node 4

Node 5

Node 6



 180

8.4.4 Comparison of the multifactorial models with NPI 

Estimated RFS rates in the lowest and highest risk groups are summarised in Table 

8.4. Statistics for all models developed are summarised in Table 8.5. K-M curves 

indicating the risk stratification ability of all the developed models is plotted in 

Figure 8.5. 

 

i) Comparison between the UIVS with NPI Models 

The UIVS Model contained 8 variables. The 7-year RFS rate in the lowest risk group 

of NPIq4 was 91%. Only 4 recurrences were observed among patients in the lowest 

quartile of the UIVS index, giving a 7-year RFS of 95% (95% CI: 89%, 100%) 

(Table 8.4). All observed recurrences happened within the first 7 years of follow-up, 

and therefore the RFS rate remained constant up to the tenth year.  

 

Furthermore, a noticeable improvement in PSEP was seen (55% for UIVS risk 

grouping versus 42% for NPIq4), indicating that in the UIVS model the lowest and 

highest risk groups were better distinguished than in the NPIq4 model (Table 8.4). 

 

As expected, discrimination, predictive ability, and goodness of fit of the UIVS index 

was higher than NPI (C-index: 79% versus 72%; R-square: 28% versus 14%; Chi-

square 126.5 versus 59.8) (Table 8.5).  

 

The UIVS risk groups, relative to NPI which had 4 equal size risk groups (NPIq4), 

shifted 16 of 112 recurred patients (30%) into a higher risk group, and 12 non-

recurred patients (16%) into a lower risk group (see Appendix 2). This gave a net 
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gain of 14 percentage points. Among 289 non-recurred patients, 31% were moved 

into a more appropriate risk group, and 27% were moved into less appropriate risk 

group, giving a net gain of 4 percentage points. The NR Index (section 4.4.7 part ii) 

was estimated at 18% (P-value=0.02) (Table 8.5). 

 

Finally I applied the cut offs of the UIVS risk score to create risk groups containing 

133, 199, and 69 patients representing low, intermediate, and high risk groups. This 

is the same as standard NPI with 3 unequal risk groups (NPIstd3). Estimated 7-year 

RFS in the lowest risk group remained at 95% (95% C.I.: 91%, 99%), the 

corresponding figure at 10-years was 92% (95% C.I.: 86%, 98%). This indicated that 

33% of patients had sufficiently low risk of recurrence of breast cancer at 7 years.  

 
 
ii) Comparison between the BGVS and NPI Models 

In total, 10 variables (8 biomarkers and 2 clinical variables) contributed to the BGVS 

model. A very specific low risk group was detected with only 3 recurrences, all of 

which happened within the first 3 years of follow-up. Among patients in the lowest 

risk quartile of the BGVS index, the estimated 7-year RFS rate was 98% (95% CI.: 

96%- 100%). This was 7 percentage points higher than that of NPIq4 (Table 8.4), and 

grew to 19% at 10-years. Additionally, a greater than 15% improvement in PSEP 

was seen (58% for BGVS versus 42% for NPIq4) (Table 8.4).  

 

The discrimination ability of BGVS index was noticeably higher than NPI (79% 

versus 72%) (Table 8.5), this was also found for predictive ability (27% versus 14%) 

and goodness of fit (120.3 versus 59.8).   
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The proportion of recurred patients that moved into more appropriate and less 

appropriate risk groups were 33% and 12%, respectively (see Appendix 2). The 

corresponding figures for non-recurred patients were 36% and 25% (Table 8.5). The 

net gain in the proportion of patients that were reclassified was 21% for those that 

recurred and 11% for those that did not recur. The NR Index was estimated at 32 % 

(P-value= 0.001). 

 

When cut offs were applied at the BGVS risk score to create risk groups similar to 

NPIstd3, the estimated 7 and 10-year RFS in the lowest risk group was 96% (95% CI: 

92%, 100%) suggesting that 33% of subjects had sufficiently low risk of disease 

recurrence at 7 years.  

 

iii) Comparison of the TSM and NPI Models 

In the lowest risk group identified by TSM, only 3 recurrences out of 84 patients 

occurred. This gave a 7-year RFS of 96% (95% C.I.: 92%, 100%). The separation 

ability of TSM and NPI was the same (C-index 72%), however the predictive ability 

of TSM was marginally higher (R-square 16% for TSM versus 14% for NPI). 

The separation ability between the groups depends to a considerable extent on the 

size of the risk groups. In TSM analysis, the numbers of patients in each of the 4 risk 

groups were 85, 82, 119, and 115 (lowest to highest risk), whereas NPI had 4 equal 

size risk groups. Therefore no further comparison between models was made. 
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Table 8.4: Comparison of estimated RFS rates in the lowest and highest risk groups 
of models developed and NPI 
 

Risk 
group 

Index N at 
stat 

5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event free 
(95% C.I.) 

NPI 102 95% (91%, 99%) 91% (85%, 97%) 84% (72%, 96%) 

UIVS 103 98% (97%, 100%) 95% (89%, 100%) 95% (89%, 100%) 

BGVS 101 98% (96%, 100%) 98% (96%, 100%) 98% (96%, 100%) 

Low 

TSM 85 96% (92%, 100%) 96% (92%, 100%) 96% (92%, 100%) 

NPI 100 54% (44%, 64%) 49% (39%, 59%) 41% (27%, 55%) 

UIVS 100 46% (36%, 56%) 40% (30%, 50%) 31% (17%, 45%) 

BGVS 100 45% (35%, 55%) 40% (30%, 50%) 27% (15%, 39%) 

High 

TSM 115 53% (43%, 63%) 50% (40%, 60%) 45% (35%, 55%) 
PSEP for NPIq4 

 41% 42% 43% 
PSEP for UIVS risk 
groups 52% 55% 64% 
PSEP for BGVS risk 
groups 

 53% 58% 71% 
PSEP for TSM risk 
groups 

 43% 46% 51% 
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Table 8.5: Comparison of performance of approaches applied to stratify patients into risk groups 

Net Reclassification Improvement (NR Index) relative to NPI 

Recurred patients Non-recurred patients NR Index 

Approach C- 

index 

R-

square 

Chi-

square 

 

≠recurrences 

in the lowest-

risk group Number (%) Z P-value Number (%) Z P-value % Z P-value 

UIVS  

 

79.0% 28% 123.6  4 16 (14%) 2.23 0.02 12 (4%) 0.90 0.36 18% 2.37 0.02 

BGVS  

 

79.0% 27% 120.3  3  23 (21%) 3.42 0.006 30 (11%) 2.26 0.02 32% 4.01 0.001 

NPI 

 

72.0% 14% 59.8  10          
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Figure 8.5: K-M survival curves for the UIVS (top left), BGVS (top right), TSM 
(bottom left), and NPI risk groups (bottom right) 
 

 

 102            94        80         47        27    13 
  99            90        73         45         24     13  
 100           84        69         38         22     12 
100 66 47 31 16 7

NPIq4   

 UIVS  

103                101       96        63          37   21 
  98                 88        70        32          23   14  
100                 84        63        32         16    7 
100                 61       40         24          13    3 

 BGVS  

101                97          85          50          30    18 
102                92          76          43          24    14 
  98                84          64          37          18      7  
100                61          44          31           17     6

  85              82          68         38         23   11 
  82              74          59         31         16     7 
119            101          82       53         26   14 
115              77          60       39        24   13

 TSM  
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8.4.5 Comparison of the BGVS and UIVS approaches 

i) Concordance between the BGVS and UIVS risk scores 

Figure 8.6 plotted the mean of the BGVS and UIVS risk scores for each patient 

versus their difference with the 95% limits of agreement. There are no extreme 

outliers and no obvious patterns.  

 

Figure 8.6: Assessing the agreement between the BGVS and UIVS risk scores 

 

 

 

 

 

 

 

 

 

ii) Detection of low risk patients and estimated PSEP 

As summarised in Table 8.4, there was a slight improvement in estimated RFS rates 

in the lowest risk group, this seen by integrating biological knowledge in the process 

of the model development. At 7-years the PSEPs were comparable (58% for the 

BGVS versus 55% for the UIVS) (Table 8.4), though at 10 years the BGVS risk 

groups gave better diverged risk groups (PSEP 71% versus 64%).  
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iii) Ability of the models to predict RFS in subset of low-risk patients  

When excluding patients with NPI > 5.4, the sample size was reduced to 332. New 

quartiles for the BGVS and UIVS risk scores were calculated and applied to 

categorise patients into 4 risk groups. Actuarial 7-year RFS rate in the new BGVS 

and UIVS lowest risk groups was 99% and 95% respectively (Table 8.6). Since high 

risk patients were excluded, the ability to detect low risk group might not be 

interesting. However, new high risk groups with 7-year RFS around 50% were 

detected.  

 

Both the new BGVS and UIVS risk groups divided the patients into four separate 

risk groups. PSEPs were 45% and 46%, respectively (Table 8.6 and Figure 8.7). 

When cut offs were applied at quartiles of NPI to categorise patients equally into 4 

risk groups, estimated PSEP was only 26%. 

 

Table 8.6: Ability of the BGVS and UIVS RFS risk groups to predict RFS in patients 
with NPI≤5.4 
Risk 

group 

Index 5-year event free 

(95% C.I.) 

7-year event free 

(95% C.I.) 

10-year event free 

(95% C.I.) 

BGVS 99% (97%, 100%) 99% (97%, 100%) 99% (97%, 100%) 
Lowest 

UIVS 97% (93%, 100%) 95% (89%, 100%) 95% (89%, 100%) 

BGVS 63% (51%, 75%) 54% (42%, 66%) 40% (26%, 54%) 
Highest 

UIVS 60% (48%, 72%) 49% (37%, 61%) 40% (24%, 56%) 

PSEP for BGVS risk 

groups 

36% 45% 59% 

PSEP for UIVS risk 

groups 

37% 46% 55% 
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Figure 8.7: K-M curves applying the BGVS (top panel) and UIVS RFS risk groups 
(bottom panel) to predict RFS in subset of patients with NPI<= 5.4

83                      80                71              38               24     14 
83                      77                65              43               23     15  
84                      73                58              30               15      8 
82                      62                47              31               18      5     

83                         81               76              50                28      16 
86                         79               66              38                27      16  
80                         72               53              29                13        7 
83                         60               46              25                12       3     

 BGVS  

 UIVS  
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8.5 Discussion 

8.5.1 Form of association 

In development of UIVS and BGVS Model, I retained maximum information by 

allowing for non-linear effects. In situations when external knowledge cannot guide 

the process of model development, as was the case here, application of data-driven 

model building strategies are required [Knorr KL et al., 1992; Harrell FE, 2001]. 

This is emphasized even when sample size is low [Marshall G et al., 1995].   

 

In terms of the selection of an appropriate form and the predictive ability of the 

biomarkers, the current biological knowledge did not guide the process of model 

building. That is why a multi-faceted screening procedure was applied. There was 

therefore a risk of overfitting and chance influencing the models, these were then 

tackled via bootstrapping.   

 

8.5.2 Imputation of missing data 

Analysis of multiple biomarkers can be hampered by missing data, where samples 

are un-interpretable due to assay failure. Even a random loss of 1% of samples per 

assay could result in >30% of samples having missing data when 40 markers are 

evaluated, such as in the data set analysed for this research.  

Even a low rate of missing data on each variable might cause serious problems in 

multivariate modelling when patients with missing data on different variables are not 

the same. This might substantially reduce the number of complete cases available for 
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analysis, and increase the chance of bias due to excluded cases. In order to protect 

against chance effects due to imputation I imputed 10 data sets, so that reliability 

across data sets (imputations) could be checked. This protection was felt to be worth 

the inconvenience of having to average risk scores across 10 final models. 

 

As specified in Chapter 4 (section 4.4.4), in order to impute missing data for 

continuous biomarkers a Predictive Mean Matching Method was applied. Linear 

regression was not used to impute missing data for continuous variables as this 

method might produce out of range values. Although it would be possible to round 

the out of range values to the nearest boundary, this might result in a large proportion 

of imputed values being replaced by a single value (minimum or maximum)  [Heitjan 

DF and Little RJA, 1991; Zhou XH et al., 2001].  

 

8.5.3 The UIVS Model 

A key step in the development of models when a large number of variables are 

available is to select a reduced set of variables prior to modelling. In development of 

the UIVS Model, in order to select informative biomarkers I allowed for non-linear 

effects, but then challenged the model obtained via bootstrapping to check both the 

stability of form, and reliability of inclusion across the variables. However, the UIVS 

Model required multiple comparisons, due to the application of statistical procedures 

to 72 TMA predictors. 

The developed UIVS model, in comparison with NPI, found a noticeable 

improvement in model C-index and R-square. The actuarial 7-year RFS rate for the 

lowest risk group of NPI with 4 equal risk groups, and NPI with 3 risk groups, were 
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91% and 89%, respectively, while the corresponding figure for the UIVS was 95%. 

To detect a subset of low risk patients that do not require further treatments, such as 

adjuvant therapy, there is a need to shift a small number of recurred patients who are 

classified as low risk based on NPI, into intermediate or high risk groups. Therefore, 

these marginal improvements that were obtained might be very important in clinical 

practice. Furthermore, the UIVS risk groups were better diverged, yielding a 13 

percentage point improvement in PSEP. 

 

In a similar study, the ability of 126 antibodies to predict recurrence of breast cancer 

were assessed to develop a biomarker prognostic tool [Ring BZ et al., 2006]. In this 

the scoring of tissues was ordinal, and associations between each antibody and 

recurrence were assessed by applying a univariate Log-Rank test. In total, 20 

biomarkers associated with outcome at a 0.10 significance level were used in a 

multifactorial Cox regression model.  The final model comprised 5 biomarkers. 

Estimated 5-year non-recurrence rate in the lowest risk groups corresponding to NPI 

and biomarker models were 90% and 95%, respectively. The corresponding figures 

for the intermediate risk group were around 90% and 75%, respectively. This 

indicated that the biomarker model had better ability to select low risk patients, and 

also to stratify patients into better diverged risk groups. However, I feel that 

antibodies have a continuous nature, the authors applied an ordinal scaling but have 

not described the nature of initial distribution and rationale of categorisation. No 

attempt was made to optimise the form of association for each biomarker.  
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8.5.4 Check of stability of transformations 

In development of the UIVS Model, 5 biomarkers with univariate non-linear risk 

functions (3 polynomials, 1 threshold, and 1 non-ordinal) were offered to the 

multifactorial model. The stability of transformations found in screening phase was 

checked across 1000 bootstrap samples. There was no contribution of polynomial 

effects of Rkipnu and Ptennu in the UIVS Model, this is because the form of 

association was not consistent across 1000 bootstrap samples (see Chapter 8 for 

details).  

 

Although the stability was checked across 1000 samples, to reduce the burden of 

model building the results were aggregated across 10 imputed data sets. Therefore, I 

also investigated whether it was enough to check the stability of transformations 

across only 10 imputed data sets. By chance results were exactly the same as before.  

 

As a third and much easier option, I simply applied the transformations to the 

biomarkers and applied the transformed versions to the multifactorial model. In this 

case, both of Rkipnu and Ptennu were forced into the multifactorial model (data not 

shown). This highlighted the importance of investigating the stability of forms, and 

refining the models by exclusion of unreliable predictors, in order to avoid unstable 

prognostic models.   
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8.5.5 The BGVS Model 

When many variables are available, incorporation of biological knowledge in the 

process of model development is very important, and it plays an important role in 

reduction of variables. It has been noted that predictors already reported as 

prognostic factors should normally be candidates for a multifactorial model. 

Furthermore, predictors which are highly correlated with other variables should be 

omitted as they likely contain little extra prognostic information [Harrell FE, 2001].  

 

Biomarkers were evaluated by analysis of the cell cytoplasm, nuclei, and membranes 

from each sample, there were therefore correlations between expression of 

biomarkers from each these three sources. Reported correlations were higher than 

50%, so I explained this issue to the biologists and asked them to exclude one of 

biomarkers which they think might be more difficult to measure or does not have 

prognostic value. However, they explained that 50% correlation is not high from a 

biological perspective. In addition, they collected data from all 3 cell components to 

understand better the biological process of cancer recurrence, they therefore did not 

exclude any biomarkers. 

 

In development of the BGVS Model Bayesian methods were used implicitly, as the 

biological knowledge available about tumour progression pathways was used to 

define substantive family sets. Using biological knowledge, family risk scores were 

used in the development of the prognostic model. I decided to calculate an index that 

was representative of that set in the multifactorial model (risk score). One approach 

was to give weight to variables reflecting their biological importance, however 
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information on appropriate weighting was not available. There would be scope for 

further enhancement of the BGVS Model as knowledge of the role of individual 

proteins within families develops. 

 

For the BGVS model, in comparison with NPI, a noticeable improvement in C-index 

(79% versus 72%, respectively) was seen, and R-square was doubled. For the 25% of 

patients with the lowest prognostic risk scores the estimated 7-year RFS rate was 

98% with BGVS, this is much higher than the 79% with the conventional NPIstd3 

classification. The BGVS risk grouping significantly reclassified nearly 21% of 

recurred and 11% of non-recurred subjects into a more appropriate risk group. 

 

The BGVS Model might suffer overfitting since the model was developed by 

applying the MFP on composite scores preceding the multifactorial Cox or MFP 

models.  

 

8.5.6 Ability of the UIVS and BGVS Models to predict 

other end points 

One of the clinical questions posed by Professor John Bartlett was whether the UIVS 

and BGVS Models developed to predict RFS can predict other end points. From a 

statistical point of view it might be strange to develop a model for RFS, and to then 

investigate whether it can stratify patients into risk groups with respect to another 

outcome. However, Professor John Bartlett explained that whilst the primary end 
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point is RFS, the clinical community will want to see whether it can be used to 

predict OS, as changes in RFS do not always translate into changes in OS.  

Results presented in Appendix 1 indicate the ability of both the UIVS and BGVS 

Models to stratify patients into risk groups with respect to Recurrence Free on 

Tamoxifen (RFoT) and Overall Survival (OS). 

 

A separate model was not developed for OS as there were only 74 deaths and 

therefore the results would not be robust. However, applying the methods explained 

in this section, prognostic models were developed using RFoT as the outcome. Those 

models are not reported in this thesis but are given in a manuscript for publication.  

 

One of the interesting differences between the RFS and RFoT models, in terms of 

biomarkers retained in the model, was that HER2 contributed only to the RFoT 

model. On the other hand, the biomarkers Akt1nu and Tunel were predictors for RFS 

but not RFoT. Neither of these variables (Akt1nu and Tunel) was selected in the 

screening phase to be applied to RFoT model. For the RFoT model a smaller number 

of events were analysed (n=84) so the power was lower than in the RFS model. 

Despite the model refinement techniques employed, this lower power might explain 

some of difference in terms of biomarkers included in the final model.  

 

8.5.7 Tree-based Survival Model (TSM)  

Although there is no evidence that TSM produce better models than standard 

regression methods, this model is frequently used due to its novelty and simplicity. 

TSM, in contrast with the UIVS and BGVS approaches, was very simple as neither 
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data-reduction nor missing value imputation was required. Assessment of form was 

also irrelevant since this method dichotomises the biomarkers into low versus high 

risk groups. TSM found a low risk group of 84 patients with 3 recurrences. Since this 

method created risk groups with different sizes, in comparison with other methods, 

no further exploration was done.  

 

The main weaknesses of the techniques used are multiple testing and overfitting 

[Clark TG et al., 2003]. It has been discussed that trees are sensitive to even small 

changes in the sample [Lausen B et al., 2004]. Tree-based methods usually find 

prediction rules that validate poorly, due to exhaustive searching to select covariates 

and their cut points [Harrell FE et al., 1998; Clark TG et al., 2003]. However, TSM 

analysis involves no preliminary steps and can be used as a good approximation for a 

complex model.  

 

To improve the prediction of probability of survival, bagging of survival trees is 

proposed. In this approach, by re-sampling from the original data a large number of 

trees is constructed. The aggregated Kaplan-Meier curve for a new patient is defined 

as the Kaplan-Meier curve of all observations identified by the M leaves containing 

the new patient [Hothorn T et al., 2004]. Therefore, no single tree can be reported 

and communication of results is not simple. 

 



 197

8.6 Overview 

The performance of biomarker models was found to be superior to NPI in terms of 

risk classification, and selection of low and high risk patients. This was determined 

by performing 3 modelling procedures to detect the form of association, followed by 

imputation of missing data, and checking the stability of the models. The number of 

biomarkers that contributed significantly in the UIVS and BGVS Models were 6 and 

8, respectively. On the other hand, only 3 biomarkers contributed to the decision tree. 

Two clinical variables (tumour size and nodal stage) were retained in all 3 models. 

Prhisto was in the TSM but was not retain in regression models. In the coming 

chapters I will enhance the understanding of these processes with investigation of 

elements of the procedures. 

 

8.7 Chapter summary  

• When I allowed for non-linear effects (UIVS Model), significant improvement 

over NPI was seen. Risk groups were better diverged, a significant proportion of 

patients were allocated into a more appropriate risk group, and a considerable 

reduction in number of events observed in the lowest risk group was seen. 

 

• Incorporation of biological knowledge slightly enhanced model performance in 

terms of selection of low-risk patients, classification of patients into more 

appropriate risk groups, and ability to predict other end points. 

 

• TSM was a good approximation for complex regression models 
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Chapter 9    EXAMINATION OF METHODS APPLIED: 

RELAXING THRESHOLD FOR INCLUSION OF VARIABLES 

IN THE MULTIFACTORIAL MODEL AND COMPARING 

IMPUTATION METHODS   

 

 

 

9.1 Introduction                    

In the screening for the univariately informative biomarkers (Chapter 7), the P-value 

threshold to declare a biomarker as being informative was set at 0.10. This was 

selected to reduce the number of variables to be applied to the model, in order to 

avoid convergence problems, but at the same time avoid missing any biomarkers that 

might be important in predicting the outcome. 
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 In this chapter, I explored the effect of relaxing the 0.10 P-value threshold used to 

select informative variables, both in terms of whether it might cause convergence 

problems for the MICE method (to impute missing values) [Heymans MW et al., 

2007], and also to explore the composition of the multifactorial model when 

univariately insignificant biomarkers are submitted to the model. One solution to 

such a situation would be to substitute the MICE imputation with replacing missing 

data with median values, since this runs no risk of lack of convergence. Furthermore, 

it has been reported that, this method is a good approximation for the MICE when 

there are few missing values [Shrive FM et al., 2006; Musil CM et al., 2002; Barzi F 

and Woodward M, 2004].  

 

9.2 Aim 

The main aims of this part of the research are to:  

 

1. Assess the impact of replacing missing data with median values on 

performance of the UIVS Model 

 

2. Compare the ability of the MICE and ‘Median Substitution’ imputation 

techniques to impute the missing data when many potential variables are 

available 
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9.3 Methods 

All models presented in this chapter were developed in conjunction with Backward 

Elimination (B.E.) variable selection method, and no bootstrap resampling procedure 

was applied. 

 

9.3.1 Replacement of missing data by median in the UIVS 

Model 

The UIVS Model presented in Chapter 8 was redeveloped, in this case instead of 

using the MICE method [Van Buuren S et al., 1999], missing data were replaced by 

the median of observed values. The UIVS Model (presented in Chapter 8) and a new 

model, which is called the UIVS* Model, were compared in terms of selection of 

variables and estimated S.E.’s, and statistics explained in section 4.4.7.  

 

9.3.2 Process of development of the multifactorial 

models 

In total 6 models were developed, this was done by using different P-values to 

declare biomarkers as being informative in the screening phase (3 different P-values) 

and by applying alternative imputation methods (2 methods). Standard Errors (S.E.) 

derived from the UIVS Model (see Chapter 8) were taken as gold standard. I 

recorded S.E. of variables retained in the UIVS Model under 6 different scenarios. 

Estimates were presented graphically.  
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i) Relaxation of the 0.10 P-value threshold to declare a biomarker as being 

informative  

First biomarkers with a univariate P-value of less than 30% were offered to the 

multifactorial model. Then, this threshold was further relaxed to 50%. Finally, all 

biomarkers, regardless of their univariate P-value, were used. Clinical variables were 

used in all scenarios.   

 

ii) Imputation of missing data 

Missing data were replaced by 10 imputed values applying the MICE method. 

Alternatively missing values were substituted by the median of observed values. 

 

iii) Development of multifactorial models 

When the MICE method was used to impute missing data (section 4.4.4), the 

stability of the threshold effect of Pmapknu, and the non-ordinal effect of Akt1nu, 

was checked across 10 imputed data sets. Transformation was applied if replicated in 

more than 5 samples. Then, Multivariate Fractional Polynomial (MFP) was applied 

(section 4.4.2) to each of the 10 data sets to check whether power transformation of 

the biomarkers showing univariate polynomial association (Krascy, Rkipnu, and 

Ptennu) with outcome (Recurrence Free Survival (RFS)) improves the fit. 

Transformation was applied if optimum form (FP2, FP1, linear) was replicated in 

more than 5 samples. Estimates were aggregated as explained in section 4.4.4 parts i 

and ii. When missing data were replaced by the median of observed values, the 

threshold effect of Pmapknu, and non-ordinal effect of Akt1nu was applied. This is 
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because only 1 data set was imputed. To develop the multifactorial model, MFP was 

applied.  

 

9.4 Results 

9.4.1 Impact of the imputation method on performance of 

the UIVS Model 

The estimated 95% confidence intervals of the Hazard Ratios (HR) are summarised 

in Table 9.1. Variables retained in the multifactorial models were the same. Omitting 

bootstrap procedure, by chance, and none of the biomarkers with unstable form were 

retained in the multifactorial model. The resulting estimated HR’s and S.E.’s were 

comparable (Table 9.1). In terms of performance, replacement of missing data by 

median resulted in a 2 percentage point reduction in C-index (Table 9.1), as well as a 

slight reduction in predictive ability and goodness of fit.  

 

Risk groups derived from two imputation methods applied were compared with NPI 

with 4 equal risk groups (NPIq4). A slight reduction in estimated Net Reclassification 

Index (NR Index) was seen (18% for the MICE versus 16% for the median 

substitution). On the other hand, estimated RFS rates in the lowest and highest 

quartiles of the MICE and median substitution methods and PSEPs were similar 

(55% versus 53%) (Table 9.2). K-M curves corresponding to risk groups derived are 

given in Figure 9.1. It can be seen that while the lowest and highest risk groups 

remained fairly similar, middle risk groups corresponding to the MICE method were 

better diverged.  
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I also checked the distribution of patients into risk groups based on the risk groups 

that were derived (see Appendix 2). The percentage of recurred and non-recurred 

patients that were located in the same risk group was 72% and 69%, respectively. 

Out of 112 recurred patients, risk groups derived applying the MICE method, relative 

to the median substitution method, shifted 16 into a more appropriate, and 13 patients 

into a less appropriate risk group. The corresponding figures for 289 non-recurred 

patients were 48 and 42, respectively. This indicated that there were no significant 

differences between models in terms of assignment of patients into risk groups. 

 

 

Table 9.1: Comparison between the MICE and median substitution methods on 
estimated HR’s and S.E.’s in the UIVS Model 
 

MICE method (Chapter 8) Median substitution method Variable 

HR (95% C.I.) P-value S.E. HR (95% C.I.) P-value S.E. 

Nodal 1.82  (1.38, 2.40) <0.001 0.14 1.61 (1.25, 2.06) <0.001 0.13 

Size (cm) 1.21  (1.10, 1.31) 0.001 0.05 1.22 (1.11, 1.32) <0.001 0.05 

Pmtor 0.33  (0.19, 0.59) <0.001 0.28 0.33 (0.20, 0.61) <0.001 0.28 

Tunel 1.49 (1.23, 1.81) <0.001 0.11 1.49 (1.22, 1.82) <0.001 0.11 

Praf338cy 2.12  (1.07, 4.02) 0.03 0.34 2.45 (1.22, 4.89) 0.01 0.33 

Pmapknu 2.80  (1.72, 4.57) <0.001 0.25 2.77 (1.72, 4.47) <0.001 0.24 

Krascy 6.05  (2.23, 16.44) <0.001 0.51 7.84 (2.78, 22.17) <0.001 0.53 

Akt1nu 0.54  (0.36, 0.82) <0.001 0.21 0.53 (0.35, 0.79) 0.002 0.21 

Performance 

C-index 79% 77% 

R-square 28% 25% 

Chi-square  123.6  108.8 
NR Index*  

(P-value)   
18% (0.02) 16% (0.04) 

*Relative to NPI with 4 equal risk groups   
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Table 9.2: RFS rates in the lowest and highest quartiles of the UIVS risk scores 
applying alternative imputation methods  
 
Risk group Imputation 

method 
5-year event free  

(95% C.I.) 
7-year event free 

(95% C.I.) 

MICE 98% (97%, 100%) 95% (89%, 100%) 
Lowest Median 

substitution 98% (96%, 100%) 94% (88%, 100%) 
MICE 

46% (36%, 56%) 40% (30%, 50%) 
Highest Median 

substitution 48% (38%, 58%) 41% (31%, 51%) 

PSEP for MICE method 
52% 55% 

PSEP for Median substitution 
method 

50% 53% 

 
 
 
 
 
Figure 9.1: K-M curves for the UIVS risk groups applying MICE (left panel) and 
Median substitution imputation methods (right panel) 

MICE  Median substitution 

103              101         96         63         37    21 
  98               88          70         32         23    14  
100               84          63         32         16      7 
100               61          40         24         13      3 

101                98          90         60        35    20 
  99                86          73         40        21    13  
101                86          63         36        19      9 
100                64          43         25        14      3 
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9.4.2 Impact of relaxation of the 10% P-value threshold 

and imputation method on the composition of the UIVS Model 

i) Modelling variables with univariate P-value less than 30% 

A list of all 72 biomarkers with univariate P-values in univariate Fractional 

Polynomial (FP) analysis is given in Appendix 3. Thirty two variables (about 45% of 

variables) were candidates for this phase of analysis. This means the EPV is 3.5. 

 

While overall only 6.8% of values of all variables were missing, only 168 patients 

had complete data on all 32 variables. In the multifactorial analysis, applying the 

MICE method, the only difference with the UIVS Model (presented in Chapter 8), 

was the inclusion of Praf259cy instead of Praf338cy (Table 9.3). Replacement of 

missing data by median values gave similar results, except that Jrh3me (with 40% 

missing values) was retained in the model with a P-value of 0.02.  

 

ii) Modelling variables with univariate P-value less than 50% 

A total of 47 variables (65% of available covariates) were candidates to be applied to 

the multifactorial models, this gave an EPV of 2.4. In total, 238 patients had at least 

one missing datum on any of 47 variables. Overall only 6.6% of values of all 

variables were missing.  

In the multifactorial analysis, regardless of the imputation method used, the results 

were either the same and similar to that of 30% threshold value. None of the 

biomarkers with a univariate P-value between 30% and 50% were retained in the 

multifactorial model.   
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iii) Modelling all variables 

Applying all 72 variables to the model gave an EPV of 1.6. Only 126 patients had 

complete data on all variables, and the proportion of missing value for the all values 

of all variables was as low as 7.4%. 

 

When the MICE method was used, results were either the same and similar to that of 

30% threshold value. However, when missing data were replaced with median 

values, Akt1nu was removed, while Jrh3me was retained in the model (with P-value 

of 0.02) (Table 9.3).  

 

 

Table 9.3: Modelling variables with univariate P-value < 30%: inclusion of variables 
in the multifactorial models applying different imputation methods  
 
Variable Number of patients 

with missing data 
Univariate 
 P-value 

MICE Median 
replacement 

Nodal  33 <0.001 Yes Yes 

Size  22 <0.001 Yes Yes 

Krascy  14 <0.001 Yes Yes 

Akt1nu  5 0.003 Yes Yes 

Pmapknu  33 0.003 Yes Yes 

Pmtor  11 0.02 Yes Yes 

Tunel   39 0.07 Yes Yes 

Praf259cy  35 0.20 Yes Yes 

Jrh3me  166 0.27  Yes 

 
 
 
 

When P-value relaxed to 50% results were exactly the same 
When all variables were submitted to the model, in median substitution method 
Akt1nu lost its effect 
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9.4.3 Investigation of inflation of S.E.s 

The S.E.’s for variables contributing to the UIVS Model when different variables 

were applied to the multifactorial models, and alternative imputation methods were 

used, are plotted in Figure 9.2. S.E.’s reported are those from the first step of 

modelling because with application of the B.E. variable selection method Praf338cy 

was not retained in the models.  

 

For continuous biomarkers, the S.E. of regression coefficients corresponding to a 100 

unit change in the biomarker is reported. As the P-value threshold increased (as EPV 

therefore decreased) the S.E.s increased. Estimated S.E.’s in the MICE model was 

slightly larger than in the ‘Median Substitution’ model. The differences between 

estimated S.E.’s when alternative imputation methods were used are plotted in Figure 

9.3. It can be seen that as EPV decreased, the difference between S.E.’s became 

larger. 
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Figure 9.2: Estimated S.E.’s for variables retained in the UIVS Model at different 
threshold P-values by applying MICE method 
 

 

 

 

 

 

 

 

 

 

 

Figure 9.3: Difference of estimated S.E.’s for variables retained in the UIVS Model, 
at different threshold P-values, applying MICE and Median substitution imputation 
methods 
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9.5 Discussion 

The results presented show that when applying the MICE imputation method, 

inclusion of univariately non-significant variables made a slight change in the 

composition of the UIVS Model. Only praf259cy was retained instead of Praf338cy.  

 

An important issue is that applying many variables to the MICE imputation methods 

might cause convergence problems. This happened in Heymans study, in that the 

imputation model did not converge when 31 variables were applied to MICE 

[Heymans MW et al., 2007]. I did not have a convergence problem with this dataset 

but it might happen in other data sets.    

 

Replacement of missing data by the median of observed values artificially reduces 

the variance of the variables containing missing data [Croy CD and Novins DK, 

2005]. However, it is a good approximation for sophisticated methods such as the 

MICE [Van Der Heijden GJ et al., 2006; Barzi F and Woodward M, 2004; Kristman 

VL et al., 2005]. When I used this approach and compared UIVS and UIVS* Models, 

I saw that the variables that were retained in the models were the same, but 

performance of the UIVS Model was slightly better. Furthermore, when I submitted 

univariately non-significant variables to the model, slight differences in composition 

of the UIVS Model was seen, in that Praf259cy and Jrh3me were then retained in the 

models (see Table 9.3 for details).  

 

‘The optimal method should balance validity, ease of interpretability for readers, and 

analysis expertise of the research team’ [Shrive FM et al., 2006]. The MICE method 
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does not provide unique estimates [Kneipp SM and McIntosh M, 2001]. 

Furthermore, to apply the technique, special software is required and communication 

of results with clinical audiences is not simple. ‘Median Substitution’, on the other 

hand, is an easy and fast method which can be applied simply and communicated 

with clinicians. Furthermore, this method is deterministic and gives unique results 

but artificially reduces the variance.  

 

In my opinion, median substitution is a reasonable approach when both the missing 

rate for an individual variable, and number of cells with missing values in the whole 

data set is low. As an example, consider a data set containing 8 predictors, survival 

time, and outcome, with sample size 400 (4000 cells in total). If the value of one of 

the variables is missing for 200 patients, then the missing rate for that specific 

variable is 50% while the proportion of cells with missing values is low at 0.05% 

(200 / (8+2) x 400). Having a low proportion of cells with missing data in the whole 

data set might not guarantee suitability of replacement by the median method. 

Although approaches such as mean or median imputation might give results 

comparable to the MICE, in terms of variables contribute to the multifactorial model, 

a gold standard (MICE) is required to compare results from other simpler methods 

[Greenland and Finkle, 1995].  
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9.6 Chapter summary 

 

• Modelling informative variables, the ‘Median Substitution’ imputation 

method gave results comparable to the MICE. In our data set this might be 

due to a low rate of missing data. However, substitution of missing data by a 

single value artificially reduces the variance of the variable. 

 

• When I relaxed the 10% P-value threshold and included univariately non-

significant biomarkers into the model, the structure of the UIVS Models was 

very slightly changed in particular when missing data were replaced by 

median. 
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Chapter 10 EXAMINATION OF METHODS APPLIED: 

EXPLORING FORM SCREENING METHODS 

 

 

 

10.1 Introduction and the background 

The methodology applied in Chapter 8 (to develop the UIVS Model) was not easy to 

apply nor is it straightforward to communicate the results with clinical audiences. In 

Chapter 9, to reduce the complexity the bootstrap step was omitted and missing data 

were replace by the median of observed values (the UIVS* Model). Omission of the 

bootstrap step and substitution of missing data by median of observed values hugely 

simplified the process of model building, and none of the biomarkers with unstable 

non-linear effect (Rkipnu and Ptennu, see Chapter 8 for more details) were retained 

in the model by chance.  
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However, the approach utilised still has a complicated screening stage. This involved 

the application of many univariate tests which might increase the possibility of false 

positives due to the multiple comparisons undertaken. My approach also differed 

from the usual model building practice where the researcher generally  applies only a 

single method, usually linear Cox model, due to the availability of user friendly 

software such as SPSS.  

I demonstrated that the UIVS Model had considerably better performance than 

Nottingham Prognostic Index (NPI). I wished to investigate whether the better 

performance seen was attributed to the exhaustive screening procedure applied.  

 

Another issue is that, in development of the UIVS Model, my priority was to keep 

the biomarkers in continuous form. That was because Royston et al. showed that 

dichotomisation of continuous data, and the inevitable loss of information ensuing, 

might affect the performance by diminishing the goodness of fit, discrimination, and 

predictive ability [Royston P et al., 2006]. I therefore, by applying both data-driven 

and pre-specified methods of variable selection, wished to investigate whether the 

same conclusion was true in highly skewed data, such as the current breast cancer 

data set I analysed. 
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10.2 Aim 

The main aims of this part of the research are to: 

 

1. Compare the performance of multifactorial models in which biomarkers were 

kept in continuous form or transformed into dichotomised form 

 

2. Compare the performance of data-driven and pre-specified screening methods 

(to select informative biomarkers and their form) on performance of the 

models 

 

3. Compare the performance of all models with UIVS, in order to address 

whether the better performance seen over NPI was due to complex screening 

procedure applied 
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10.3 Methods 

The results of screening methods to select the biomarkers and their form were used, 

these are presented in Chapter 7 (see section 7.3 for details of methods, and Tables 

7.2 and 7.3 for results). Clinical variables (nodal status, grade, tumour size) were 

used in development of all models, and the MICE method was applied to impute 

missing data (section 4.4.4). Multifactorial models were developed in conjunction 

with B.E., aggregation of the results and a comparison of models was performed as 

explained in section 4.4.4 part ii and section 4.4.7.  

 

10.3.1 Keeping the biomarkers in continuous form 

i) Data-driven selection by Fractional Polynomial (FP) model followed by 

multifactorial modelling using MFP model 

FP was applied to select biomarkers with univariate P-value < 0.10, followed by 

application of Multivariate Fractional Polynomial (MFP) (section 4.4.2). FP explores 

a range of power transformation to estimate optimised power(s). Through this 

chapter, this model was named MFP model (Table 10.1). 

 

ii) Pre-specified selection by linear Cox model followed by multifactorial 

modelling using linear Cox model 

To develop this model, I assumed that a prior linear form was adequate to represent 

the effect of skewed biomarkers. Univariate Cox was applied to select biomarkers 

which were significant at a 0.10 levels. Multifactorial linear Cox model was then 

fitted. This model was named ‘linear Cox model’.  
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10.3.2 Dichotomisation of biomarkers 

Three methods were applied to dichotomise the biomarkers, and the resulting binary 

version of biomarkers selected was used in the multifactorial binary Cox model 

(Table 10.1). 

 

i) Data-driven split selection by Minimum P-value method  

Minimum P-value method was applied to find the split optimised for data (section 

4.4.3). To avoid groups with small number of patients, I did not apply split at the 

outer 20% of distribution of biomarkers. Biomarkers with P-value < 0.005 were 

candidate for this model (equivalent to a 0.10 in a linear Cox model) [Altman DG et 

al., 1994]. This model was named ‘Optimal split model’.  

 

ii) Data-driven split selection by dichotomisation at one of the quartiles  

A second less extreme data-driven model was developed. To choose the appropriate 

split, I decided to apply the split in turn at first, second, and third quartiles and then 

selected the split to be used at which the highest number of biomarkers were 

significant at a 0.033 level (equivalent to a 0.10 in a linear Cox model). This model 

was named ‘Quartile model’.  

 

iii) Pre-specified split selection (median)  

By pre-specifying the split at median, I made the place of split blind to the data. 

Biomarker variables with univariate P-value < 0.10 were selected. This model was 

named ‘Median model’.  
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Table 10.1: Methods used to screen biomarkers and to detect the appropriate form of risk function 

Type of 

biomarker 

How form/ place of split was selected Nature of univariate 

screening method applied 

Multifactorial 

analysis 

Model name through 

this Chapter 

Optimised power transformation Data-dependent  MFP MFP model  

Continuous 

 

Linear form Pre-specified  Linear Cox model Linear Cox model 

Optimal split Data-dependent  Binary Cox model Optimal split model 

Quartile at which higher number of 

biomarkers are significant  

Data-dependent  Binary Cox model Quartile model 
Dichotomised 

Split at median Pre-specified  Binary Cox model Median model 
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10.4 Results 

10.4.1 Biomarkers candidate for multifactorial models 

The biomarkers and forms selected to be used in the multifactorial models are listed 

in Table 10.2. To develop each of the models described, the biomarkers with bold P-

values plus clinical variables were used. 

 

By applying the optimal split method the cut point selected for Rkipnu was 8, with P-

value of 0.001. However, Professor John Bartlett explained that it would be very 

difficult in practice to distinguish patients by applying this low histoscore value. 

Therefore, this biomarker was not offered to the Optimal split model (Table 10.2).  

 

Following results reported in Chapter 7, to develop the Quartile model the split was 

applied at the upper quartile, this was because 8 biomarkers were significant at this 

split. The number of significant biomarkers when applying the split at lower quartile 

and median was 2 and 4, respectively. These biomarkers were also selected by 

applying the split at top quartile (see details in chapter 7). 

 

Akt1nu was used in development of UIVS Model but was not used in development 

of models presented here, this is because none of methods considered here selected 

this biomarker as informative. 
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Table 10.2: Biomarkers screened with different methods  

Continuous form Binary form by dichotomisation at Screening 
method 

FP Linear 
Cox 

Optimal split Upper quartile Median 

Row 

Biomarkers P-value P-value Optimal split 
(P-value) 

Upper quartile  
(P-value) 

Median 
(P-value ) 

1 Praf338cy 0.01 0.01 192 (0.001) 190 (0.001) 167 (0.01) 
2 Praf338nu 0.002 0.002 123 (0.001) 158 (0.01) 135 (0.01) 

3 Prhisto 0.007 0.007 20 (0.001) 140 (0.02) 35 (0.001) 

4 Akt2cy 0.06 0.06 190 (0.005) 188 (0.01) 158 (0.03) 

5 Mapkcy 0.01 0.01 128 (0.003) 147 (0.03) 110 (0.11) 

6 Pmtor 0.02 0.02 100 (0.001) 90 (0.02) 50 (0.40) 

7 Tunel 0.07 0.07 105 (0.003) 72 (0.02) 0 (0.54) 

8 Pher2nu 0.07 0.07 80 (0.005) 65 (0.33) 43 (0.07) 

9 Mtor 0.06 0.06 127 (0.01) 105 (0.024) 65 (0.17) 

10 Krascy  <0.001* 0.59 7 (0.01) 85 (0.53) 53 (0.72) 

11 Rkipnu  <0.001* 0.65 8 (0.001) 50 (0.59) 28 (0.65) 

12 Ptennu  0.02* 0.83 2.5 (0.01) 53 (0.66) 25 (0.80) 

13 Pmapknu 0.92 0.92 104 (0.003) 95 (0.15) 72 (0.99) 

14 Tescy 0.12 0.12 120 (0.03) 170 (0.10) 112 (0.08) 

Threshold P-values for selection of informative biomarkers were: 0.10 in FP, 
linear Cox, and median models, 0.005 in minimum P-value to detect optimal 
split, and 0.033 in quartile dichotomisation methods  
* Polynomial form 
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10.4.2 Continuous biomarker models 

i) Comparison between data-driven MFP and pre-specified linear Cox models 

The number of biomarkers used in development of MFP and linear Cox models was 

12 and 9, respectively (Table 10.2), of which 6 and 5 variables, respectively, 

significantly contributed to the multifactorial models (Table 10.3).  

 

The main difference between the MFP and linear Cox models was the contribution of 

Krascy, which had a polynomial effect in the MFP model. An FP2 transformation 

captured the effect of this biomarker, with the best powers across all 10 data sets 

being (3, 3). Inclusion of Krascy resulted in an increase in discrimination ability (C-

index), from 73.5% to 75.5% (Table 10.3). In addition, an improvement was 

observed in estimated 7-year RFS in the lowest-risk group (94% versus 90%) and 

estimated PSEP (54% versus 45%), indicating greater ability of MFP index to 

distinguish low and high risk patients (Table 10.4).   

 

It appears that performance of the MFP model was superior to linear Cox model. K-

M survival curves corresponding to risk groups derived from MFP and linear Cox 

indices are given in Figure 10.1. High risk patients detected by MFP exhibited a 

worse recurrence free experience than high risk patients detected by linear Cox 

model.  

 

ii) Comparison of continuous biomarker models (MFP and linear Cox) with NPI 

Figure 10.2 (bottom panel) showed that the linear Cox risk groups and NPIq4 

classified 53% and 44% of recurred and non-recurred patients into the same risk 
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groups. Corresponding rates for MFP risk groups were 54.4% and 45.3% 

respectively (top panel). Linear Cox and MFP risk groups tended to be less likely to 

classify recurrence patients into the lower risk group than NPIq4. It also was more 

likely to classify non-recurred patients into lower risk groups than NPIq4.  

 

Estimated 7-year RFS of lowest risk groups corresponding to MFP and NPI risk 

models were 94% and 91%, respectively (Table 10.4). MFP risk groups, in 

comparison with NPIq4, shifted 29% of recurred patients into a more appropriate and 

17% into a less appropriate risk group (see Appendix 2). This gave a net gain of 12 

percentage points. Corresponding figures for non-recurred patients were 30% and 

25%, respectively, with net gain of 5 percentage points. Estimated Net 

Reclassification Index (NR Index) was 17% (P-value=0.02).  

 

Comparing linear Cox risk groups with NPIq4, the estimated 7-year RFS rates were 

similar (Table 10.4). In total, 26% of recurred patients were allocated into a higher 

risk group while 21% into a lower risk group giving net gain of 5 percentage points 

(see Appendix 2). Corresponding figures for non-recurred patients were 26% and 

29%, respectively, giving improvement of 3 percentage points. NR Index was 8% 

which was not significant (P-value=0.34).  

 

Therefore, it appears that integration of biomarkers with a linear risk function (linear 

Cox model) did not improve the ability of NPI in terms of detection of low risk 

patients, or risk group assignment. On the other hand, application of data-driven FP 

and optimisation of power transformation improve both features. 



 222

Table 10.3: MFP versus linear Cox model: comparison of hazard ratios, and 
performance of indices 
 

MFP model Linear Cox model Model 
HR (95% C.I.) P-value HR (95% C.I.) P-value 

Nodal 1.78 (1.35, 2.37) <0.001 1.90 (1.45, 2.48) <0.001 
Size (cm) 1.20 (1.10, 1.30) 0.001 1.20 (1.10, 1.30) <0.001 
Pmtor 0.37 (0.20, 0.66) <0.001 0.43 (0.26, 0.72) <0.001 
Tunel 1.49 (1.23, 1.81) <0.001 1.36 (1.09, 1.68) 0.006 
Praf338cy 2.22 (1.06, 4.69) 0.03 1.88 (1.08, 3.23) 0.04 
Krascy 7.10 (2.37, 21.27) <0.001 Not screened in  
Performance 
C-index 75.5% 73.5% 
R-square 21% 18% 
Chi-square  88.6  78  
NR Index (P-
value) 

17% (0.02) 8% (0.34) 

 

 

 
 
 
Table 10.4: Estimated RFS rates in the lowest and highest quartiles of MFP and 
linear Cox indices 
 
Risk 
group 

Index 5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event free 
(95% C.I.) 

MFP 97% (93%, 100%) 94% (88%, 100%) 80% (62%, 98%) 

Linear Cox 93% (87%, 99%) 90% (84%, 96%) 82% (70%, 94%) Lowest 

NPI 95% (91%, 99%) 91% (85%, 97%) 84% (72%, 96%) 

MFP 44% (34%, 54%) 40% (30%, 50%) 30% (18%, 24%) 

Linear Cox 47% (37%, 57%) 45% (35%, 55%) 35% (19%, 51%) Highest 

NPI 54% (44%, 64%) 49% (39%, 59%) 41% (27%, 55%) 
PSEP for MFP risk 
groups 53% 54% 50% 

PSEP for linear Cox 
risk groups 46% 45% 47% 

PSEP for NPIq4 risk 
groups 41% 42% 43% 

For biomarkers, HR shows amount of increase in risk of recurrence per 100 unit change in 
the value of the predictors 
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Figure 10.1: K-M survival curves for MFP (top panel) and linear Cox risk groups 
(bottom panel) 
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Linear Cox  
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Figure 10.2: Cross-classification of models separately for MFP (top panel) and linear 
Cox (bottom panel) risk groups against NPIq4, for patients that did and did not recur 
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10.4.3 Dichotomised biomarker models 

i) Comparison between data driven Optimal split and Quartile, and pre-

specified Median models 

The number of variables retained in the multifactorial Optimal split, Quartile, and 

Median models was 6, 6, and 4 respectively. The only variables contributed to all 3 

models were nodal status and tumour size (Table 10.5). Grade was retained only in 

Median model. 

 

The optimal split index showed higher C-index, R-square, and goodness of fit, 

followed by the Quartile index (Table 10.5). On the other hand, the estimated PSEP 

(see section 4.4.7) for Quartile risk groups was 61%, the corresponding figures for 

Optimal split and Median risk groups were 55% and 42%, respectively (Table 10.6). 

Furthermore, estimated 7-year RFS in the lowest quartile of Quartile index was 97%, 

which was 4 percentage points better than that of Optimal split and 7 percentage 

points better than that of Median models (Table 10.6). 

 

The results presented suggested superiority of performance for models developed in 

which a data-driven method was used to dichotomise the biomarkers. K-M curves 

corresponding to all 3 models are given in Figure 10.3. The middle 2 risk groups 

derived from Quartile index were very similar, but it gives the best low risk subset.  
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ii) Comparison of dichotomised biomarkers risk groups with NPIq4 

Risk group assignment by dichotomised biomarker models relative to NPIq4 is 

plotted in Figure 10.4. Similar to continuous model risk groups (Figure 10.2), 

performance of dichotomised biomarkers was better than NPIq4.  

Based on Optimal split risk groups, in comparison with NPIq4, the proportion of 

recurred patients that moved into a more appropriate risk group was 30% and a less 

appropriate group was 15% (Appendix 2). Corresponding figures for non-recurred 

subjects were 35% and 27%, respectively. Net gain for recurred and non-recurred 

patients were 15 and 8 percentage points, giving NR Index of 23% (P-value=0.002).   

 

Quartile risk groups gave comparable results with Optimal split. For subjects who 

had a recurrence, the risk group assignment was improved for 31% and became 

worse for 19% (see Appendix 2). Figures for those who did not experience the a 

recurrence event were 30% and 21%, respectively. Net gains were estimated at 12 

and 9 percentage points, giving a NR Index of 21% (P-value=0.01).  

 

For Median risk groups, net gain in classification improvement of recurred and non-

recurred subjects were 5 and 4 percentage points, respectively (see Appendix 2) 

giving a NR Index of 9%, which was far from being significant (P-value=0.20).  

 

In terms of the ability to identify low risk patients, 25% of patients in the lowest 

quartile of Quartile index exhibited 7-year RFS rate of 97% which was 6 percentage 

points higher than NPI (which had 4 equal risk groups), and 2 percentage points 

higher than the biological collaborators of this study expected to find. 
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Table 10.5: Comparison of models which deal with dichotomised data: Optimal split, Quartile, and Median models 

Optimal split model Quartile model Median model Model 
HR (95% C.I.) P-value HR (95% C.I.) P-value HR (95% C.I.) P-value 

Nodal 1.89 (1.47, 2.43) <0.001 1.96 (1.5, 2.56) <0.001 1.89 (1.46, 2.46) <0.001 
Size (cm) 1.20 (1.10, 1.30) <0.001 1.20 (1.10, 1.30) <0.001 1.22 (1.10, 1.35) <0.001 
Pmtor 0.32 (0.16, 0.62) <0.001 0.47 (0.28, 0.80) 0.006 Not screened in  
Tunel 1.97 (1.28, 3.02) <0.001 1.93 (1.28, 2.92) <0.001 Not screened in  
Praf338cy 1.95 (1.24, 3.07) 0.004 1.97 (1.28, 3.03) <0.001 N.S.  
Pmapknu 2.23 (1.41, 3.54) <0.001 Not screened in  Not screened in  
Akt2cy N.S.  0.53 (0.31, 0.92) 0.025 N.S.  
Prhisto N.S.  N.S.  0.62 (0.42, 0.92) 0.02 
Grade N.S.  N.S.  1.34 (1.01, 1.76) 0.04 
Performance 
C-index 78.5% 76.5% 74.5% 
R-square 26% 22% 18% 
Chi-square  117  96.5  77.4  
NR Index relative 
to NPIq4 

23% 21% 9% 

 

N.S. Not significant 
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Table 10.6: Estimated RFS rates in the lowest and highest quartiles of indices 
derived from dichotomised biomarker models 
 
Risk 
group 

Index 5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event free 
(95% C.I.) 

Optimal split 98% (96%- 100%) 93% (87%- 99%) 83% (67%- 99%) 

Quartile 97% (93%-100%)  97% (93%-100%) 84% (66%- 100%) 

Median 96% (92% -100%) 90% (82%- 98%) 79% (61%- 97%) 

Lowest 

NPI 95% (91%, 99%) 91% (85%, 97%) 84% (72%, 96%) 

Optimal split 43% (33%- 53%) 38% (28%- 48%) 30% (16%- 44%) 

Quartile 43% (33%- 53%) 36% (26%- 46%) 26% (12%- 40%) 

Median 50% (40%- 60%) 48% (38%- 58%) 35% (21%- 49%) 

Highest 

NPI 54% (44%, 64%) 49% (39%, 59%) 41% (27%, 55%) 
PSEP for Optimal split 
risk groups 55% 55% 53% 

PSEP for Quartile risk 
groups 54% 61% 58% 

PSEP for Median risk 
groups 46% 42% 44% 

PSEP for NPIq4 risk 
groups 41% 42% 43% 
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Figure 10.3: K-M curves for Optimal split (left panel), Quartile (middle panel), and Median risk groups (right panel) 
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Figure 10.4: Cross-classification of models separately for Optimal split (top panel), 
Quartile (middle panel), and Median risk groups (bottom panel) against NPIq4 for 
patients who did and did not recur 
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10.4.4 Comparison of models developed with the UIVS 

Model 

Performance of the UIVS Model was superior to NPI (Chapter 8). Among models 

developed in this chapter, the risk groups derived from the linear Cox and Median 

indices, relative to NPIq4, did not improved classification of patients (Table 10.7 

rows 3 and 6). This also indicates their weaker performance in comparison with the 

UIVS Model. Therefore, no further attention was given to these two models. 

 

i) Comparison between the MFP and UIVS Models 

The MFP model, in comparison with the UIVS Model, used information on 2 fewer 

biomarkers. In the MFP model there were no contributions from the threshold effect 

of Pmapknu, or the non-ordinal effect of Akt1nu. Loss of these two biomarkers 

resulted in a 3.5 percentage point decrease in the C-index (Table 10.7 rows 2 and 7). 

 

In terms of detection of low-risk patients, the number of recurrences in the lowest 

quartile of the MFP index was twice as large as that of UIVS (8 versus 4), but it did 

not affect estimated 7-year RFS rate (94% for MFP versus 95% for UIVS). This is 

because approximately half of those 8 recurrences happened after 7 years of follow-

up, whereas all 4 recurrences observed in the bottom quartile of the UIVS index 

happened before the 7th year. Therefore, 10-year RFS for UIVS was 95% (95% C.I.: 

89%, 100%), as high as the 7-year rate, but the corresponding figure at 10 years for 

MFP was 80% (95% C.I.: 62%, 98%). 
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ii) Comparison between the Optimal split and UIVS Models 

The discrimination and separation ability of indices were comparable (Table 10.7 

rows 4 and 7). The 7-year RFS rate in the UIVS lowest risk group was 2 percentage 

points higher than Optimal split (95% versus 93%), but for both models the 

estimated PSEPs at 7 years were 55%. On the other hand, NR Index for Optimal 

split, relative to NPIq4, was 5 percentage points higher than that of UIVS (Table 10.7 

rows 4 and 7).  

 

iii) Comparison between the Quartile and UIVS Models 

The discrimination and separation ability, as well as goodness of fit, of the UIVS 

index was greater that of the Quartile index (Table 10.7 rows 5 and 6). However, the 

Quartile index created better diverged low and high risk patients (PSEP 61% for 

Quartile versus 55% for UIVS risk groups). Furthermore, estimated 7-year RFS rate 

for patients in the bottom quartile of the Quartile and UIVS indices were 97% and 

95%, respectively.  

 

 

In general, a comparison of 6 statistics (explained in section 4.4.7) showed that the 

results presented found that performance of MFP, Optimal split, and Quartile Models 

were comparable with the UIVS Model.  
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Table 10.7: Comparison of performance of indices and risk groups derived from continuous and dichotomised biomarker models 

Classification improvement over NPI with 4 equal risk groups (NPIq4) 
Recurred patients Non-recurred patients NR Index 

Row5 Model  C-
index 

R-
square 

Chi-
square 

 

PSEP 

Number (%) Z P-value Number (%) Z P-value Number 
(%) 

Z P-value 

1 NPI 72% 14% 59.8            
2 MFP  

 
75.5% 21% 88.6 

 
54% 13 (12%) 1.81 0.08 16 (5%) 1.28 0.20 29 (17%) 2.22 0.02 

3 Linear 
Cox  

73.5% 18% 78 
 

45% 5 (5%) 0.69 0.50 9 (3%) 0.68 0.50 14 (8%) 0.97 0.34 

4 Optimal 
split  

78.5% 26% 117 
 

55% 17 (15%) 2.37 0.02 25 (8%) 1.87 0.06 42 (23%) 3.03 0.002 

5 Quartile 76.5% 22% 96.5  61% 14 (12%) 1.87 0.06 25 (9%) 2.05 0.04 39 (21%) 2.68 0.01 
6 Median  74.5% 18% 77.4  42% 5 (5%) 0.83 0.40 11 (4%) 1.09 0.28 16 (9%) 1.26 0.20 
7 UIVS  79% 28% 123.6  55% 16 (14%) 2.23 0.02 12 (4%) 0.90 0.36 28 (18%) 2.37 0.02 

                                                 
5 Row 1 shows performance of NPI (see Chapter 6). Rows 2 to 6 summarised performance of models developed in this chapter where a single screening method were 
applied to select the informative biomarkers and also form. Performance of the UIVS Model in which 3 screening methods were applied to select the informative 
biomarkers and form is given in row 7.  
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10.5 Discussion 

I developed five models. The nature of the linear Cox and MFP models were similar 

in that they both modelled continuous data, but were different in that the form of risk 

function was pre-specified in the former but data-dependent in the latter. Similarly, 

the Optimal split, Quartile, and Median methods were applied to dichotomise the 

biomarkers, an analogous data driven/pre-specified contrast. 

Additionally, the linear Cox and Median models were similar in that the forms of risk 

function/place of split were pre-specified in advance. For the MFP and Optimal split 

models (and to some extent Quartile model) were similar in that the form of risk 

function/ place of split were optimised for the data.  

 

10.5.1 Variables contributed to the multifactorial models 

Variables that contributed to the multifactorial models were: nodal status, tumour 

size, Pmtor, Tunel, and Praf338cy, these contributed to all models except the Median 

model. Grade and Prhisto were only retained in the Median model, while Krascy 

contributed a polynomial association only to the MFP model. Pmapknu was retained 

only in the Optimal split, while Akt2cy was only retained in the Quartile model. 
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10.5.2 Continuous data models 

The Linear Cox model was the simplest model, and it performed the same as NPI. 

On the other hand, performance of MFP was superior to NPI (NR Index 17%, and 3 

percentage points improvement in 7-year RFS of lowest risk group).  

Comparison of the MFP and linear Cox regression models allowed for the 

contribution of polynomial effects on improvement of performance of the 

multifactorial models to be addressed. It has been recommended that to make the 

most use of information, data should be explored to investigate whether 

transformation of variables can reveal more information and whether it improves the 

fit [Knorr KL et al., 1992]. Considering non-linear patterns is very important, if these 

kinds of relationships are ignored then an important variable might show a non-

significant linear effect [Hastie T et al., 1992].  Results presented indicated that MFP 

improved the performance of the model, this was not against my expectation since 

MFP detects transformations which give the best fit to the data. 

 

10.5.3 Dichotomised data models 

In Median model, the place of split was blind to the data, and performance of the 

model was similar to NPI. On the other hand, once place of split was optimised 

(Optimal split model), a noticeable improvement in the C-index and NR Index was 

seen. This might not be surprising since in the Optimal split model, each biomarker 

was dichotomised so as to separate low and high risk patients as much as possible.   
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However, interestingly the Quartile index worked much better than NPI in terms of 

risk group assignment, and the ability to distinguish low and high risk patients. The 

number of recurrences observed in the lowest quartile of the Quartile index was 5, 

while the number of relapsed patients in the lowest risk group of NPIq4 and NPIstd3 

were 10 and 15, respectively.  

 

10.5.4 Comparison of continuous versus dichotomised 

models 

Royston et al., in analysing 3 continuous and 2 binary variables criticised 

dichotomisation of continuous data [Royston P et al., 2006]. For all analyses done by 

Royston et al., 17 percent of subjects with missing data were excluded. Applying the 

MFP procedure, the final model comprised 2 continuous (one with linear form and 

one with polynomial form) and 2 binary variables, the third continuous variable did 

not remain in the MFP model. Focusing on these 4 significant variables in MFP 

model, 2 more models were developed that dichotomised continuous predictors at 

optimal split and at median. The MFP model, in which continuous variables were 

treated in continuous form, gave higher predictive and discrimination ability and 

larger model chi-square [Royston P et al., 2006].  

 

The variables that contributed to Roystons’ study were the same. However, in my 

analyses, the variables that contributed significantly to the multifactorial models 

were not the same. Comparing performance of all 5 models developed, main findings 

were as follows: 
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In terms of goodness of fit, discrimination and separation ability, and risk group 

assignment relative to NPI, the indices and risk groups derived from dichotomised 

data-driven models (Table 10.7 rows 4 and 5) showed higher performance than either 

data-driven (row 2) or pre-specified (row 3) continuous indices. Results of linear Cox 

and Median indices, in which pre-specified form/ split was applied, were the same 

and inferior to other models (rows 3 and 6). Better performance of the Optimal split 

model (row 4) might be explained by the fact that this model dichotomised each 

biomarker to separate low and high risk patients as much as possible, and therefore 

results might be overly optimistic. Furthermore, by chance, the upper quartile of 

biomarkers that contributed to the Quartile model was similar to that of the optimal 

split. That is why the Quartile model gives estimates close to the optimal split, and 

marginally better than models using continuous biomarkers. 

 

In terms of ability to identify low risk patients, 25% of patients that fell into the 

lowest quartile of the Quartile index exhibited the best 7-year survival (97%). A 

subset of low risk patients with only 5 recurrences was detected. Performance of 

lowest risk group derived from MFP and Optimal split indices were comparable. 

 

10.5.5 Role of Akt2cy in detection of low risk patients 

Lowest risk groups derived from the Quartile index exhibited the best survival. The 

main difference between this and other indices was the contribution of Akt2cy in the 

Quartile model. To check the contribution of this biomarker to the detection of good 

prognosis patients, I refit the Quartile model without use of Akt2cy. Exclusion of 

Akt2cy strongly decreased 7-year RFS in the lowest risk group (91% versus 97%). 
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The number of recurrences falling into lowest risk group in the absence and presence 

of Akt2cy was 11 and 5, respectively, indicating a substantial role for this biomarker 

in identification of low-risk patients. Furthermore, in the absence of Akt2cy, NR 

Index reduced from 21% to 15%, which was still of marginal significance (P-

value=0.04).  

 

10.5.6 Comparison of biomarkers and the UIVS Models 

Results suggest that better performance of the UIVS model, in comparison with NPI, 

was not due to application of comprehensive and complicated screening procedures. 

The MFP, Optimal split, and Quartile models also produced results comparable with 

the UIVS, however results of the Optimal split model are over-optimistic due to an 

extensive cut point search. In addition, the Quartile model was not an extreme data-

dependant model since only 3 cut points were tested to select the best split. The 

UIVS index showed higher discrimination and predictive ability, but risk groups 

derived from Quartile index were better diverged.   

 

Screening procedures depend on the aim of the study. When the aim is to generate 

new biological questions, in-depth analysis is more appropriate. On the other hand, 

when the aim is simply outcome prediction, then application of MFP might be 

enough. In this data set, dichotomisation of biomarkers at upper quartile also led to a 

model with good performance. Comparison of results of in-depth with simple 

screening methods can reveal the value and necessity of in-depth analysis.  
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10.6 Chapter summary 

 
• With biomarkers in continuous form, the MFP model showed better 

performance than the linear Cox model. The main difference between the 

models was the inclusion of Krascy with polynomial effect in the MFP.  

 

• When I dichotomised the data, the Optimal split index had higher 

discrimination and separation ability than Median index. This was 

expected since Optimal split model used the split which best separated 

subjects into 2 risk groups.  

 

• The Quartile model gave results similar to the Optimal split model. It 

appears that, by chance, for a number of biomarkers the Q3 values were 

very close to optimal split. 

 

• When modelling skewed biomarkers, data-driven dichotomised models 

worked better than continuous models. However, results are prone to be 

overoptimistic due to the nature of data-dependent minimum P-value 

method used in development of optimal split model. 

 

• Good performance of the UIVS Model was not simply due to a complex 

screening phase. MFP and Quartile models gave results comparable to the 

UIVS Model.  
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Chapter 11 OVERALL DISCUSSION 

 

 

 

11.1 Introduction 

Methodological issues presented in this thesis are applicable to a range of data set 

types, and are not specifically designed for breast cancer or for follow-up data sets. 

Estimation of the optimum form, imputation of missing data, utilisation of 

appropriate methods to deal with many variables, and assessment of internal validity 

are practical challenges in a wide range of regression settings (continuous, binary and 

time-to-event outcomes). 

 

A rich array of biomarkers with potential relevance to cancer progression was 

available. The current data set was a typical data set in the extent of biomarkers and 

follow-up it has, and follow-up is continuing. In addition, the methodological 
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developments presented in this thesis also allow modelling gains through detection of 

optimum form of association for skewed biomarkers, and provides powerful multiple 

imputation methods to salvage as much predictive information as possible from 

subjects with missing data.  

 

Professor John Bartlett had 2 main questions. He wanted to know, out of 72 

biomarkers, which had the potential to predict Recurrence Free Survival (RFS). His 

second question was that whether a combination of informative biomarkers and 

clinical variables (nodal status, grade, and tumour size), which are used in 

development of Nottingham Prognostic Index (NPI), improved the ability of NPI to 

detect patients with very low risk of recurrence. 

 

There is very scant information about the role of biological aspects in tumour 

progression. In the exploratory phase of an explanatory prognostic study, when the 

aim is to describe the associations as best as possible and to generate questions about 

biology of disease, data should be explored to extract as much information as 

possible [Hayden JA et al., 2008]. That is why I applied a range of methods to 

estimate form of association and to develop biomarker models. In Royston words 

‘Collecting data is expensive whereas fitting models is cheap. There is room in 

science for trying several approaches with a given data set and reviewing the results 

critically’ [Royston P et al., 2000]. 

 

The original statistical contribution of this thesis was to combine the MICE and 

bootstrap procedures in the presence of non-linear effects. Heymans et al. combined 
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the MICE and bootstrap but assumed that effects are linear [Heymans MW et al., 

2007]. Royston et al. emphasized the use of FP to explore potential polynomial 

effects followed by bootstrapping to avoid unstable results [Royston P and Sauerbrei 

W, 2003; Sauerbrei W and Royston P, 2007]. However, no previous study dealt with 

all 3 of these issues in one modelling process.   

 

The advantages and disadvantages of the processes developed in each chapter were 

discussed previously. This chapter is a comparative discussion of processes and other 

general issues, such as importance of investigation of stability of effects, and also 

ways to combine estimates across multiply imputed data sets. Additionally, some 

topics for future research are proposed.  

 

11.2 Statistical issues 

Two main strategies were developed. In the Univariately Informative Variable 

Selection (UIVS) approach, an in-depth screening was applied to select potentially 

informative biomarkers and form of association. In the Biologically Guided Variable 

Selection (BGVS) approach, model building was guided by biological knowledge 

where substantive sets of biomarkers were created. Performance of the BGVS Model 

was superior to the UIVS Model, highlighting the importance of use of external 

information in the process of model development. 

 

The process applied to develop the UIVS Model was explored in detail in Chapters 9 

(by applying all variables to the model and by replacing missing data with median 
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values) and 10 (by simplifying the screening process used to select informative 

biomarkers and form). However, no further exploration was performed for the BGVS 

Model. This is because one of the components of the BGVS process was to use 

biological expertise which might not be widely available. The BGVS Model was 

only developed to explore the value of close co-operation between statisticians and 

biologists in the process of model development.  

 

Results presented in Chapter 9 indicated that when informative biomarkers were 

submitted to the multifactorial model, substitution of missing data by median was a 

good approximation for the MICE method, probably due to the low missing value 

rate. However, it will not be possible to verify this fact until a range of methods is 

applied.  

 

Results presented in Chapter 10 suggested that use of Fractional Polynomial (FP) to 

select informative biomarkers and form, followed by application of Multivariable 

Fractional Model (MFP) to develop the multifactorial model, provided results 

comparable to the UIVS Model. Furthermore, in this data set, the upper quartile was 

a reasonable split to dichotomise biomarkers, providing a model which performed 

similarly to the UIVS Model. Interestingly, the Quartile model was able to detect a 

low risk group with lower risk of recurrence at 7 years than that of the UIVS. When I 

explored the Quartile model, I saw that Akt2cy had a substantial role in identification 

of low risk patients. This biomarker was not selected in any of the other models, 

except the BGVS. Therefore, when the aim is to understand underlying biological 

mechanisms, I recommend developing a complex model allowing for all possible 
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forms of association, and to compare its performance with simplified models. This 

increases understanding of risk factors that govern the disease course, which will not 

be obtained unless a range of models are developed. These all provide new questions 

to be tested in independent data sets. 

 

11.2.1 Investigation of stability of transformations 

The importance of investigation of stability of non-linear effects is highlighted in 

section 8.5.4. A simple approach would be to apply the transformations found in the 

screening phase to the imputed data sets, and to use the transformed variables in 

development of a multifactorial model. As an example, this was done in two papers 

published in STATA journal [Royston P, 2004; Royston P, 2005], I feel this is 

because in the STATA bulletin emphasis is on the practical usage of special 

packages rather than methodological issues. Royston and Sauerbrei recommended 

the use of bootstrap procedure to extract more information from the data [Royston P 

and Sauerbrei W, 2003; Sauerbrei W and Royston P, 2007].  

 

As explained in section 8.5.4, when I applied the transformations and a multifactorial 

Cox model, all of the 5 non-linear effects were retained in the model. However, 

bootstrap stability check showed that two of them were unreliable. In my experience, 

use of transformed data in a multifactorial model, without stability checking, has 

three main disadvantages:  
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1. Variables with unreliable transformation might contribute to the 

multifactorial model increasing risk of overfitting and model instability 

 

2. A variable with univariate polynomial effect might show different behaviour 

in multifactorial analysis 

 

3. If the case missing values rate is high, the form found in a univariate analysis 

(when missing data for variable being tested is excluded), might not express 

effect of variable or might not be optimum even in univariate analysis of 

imputed data sets (after imputation of missing data) 

 

 

11.2.2 Aggregation of forms and coefficients  

Multiple imputation of missing data is frequently used in the literature. However, 

when working with multiple data sets, the methods to tackle many practical issues 

are still open to discussion [Royston P and Sauerbrei W, 2008]. One of the most 

important problems is that, when working with multiply imputed data sets, the 

variables retained in each model and the appropriate form of risk function might not 

be the same across all data sets. Therefore, it is necessary to make decisions about 

the appropriate form and then to combine results from each imputation so as to give a 

single model  [Royston P and Sauerbrei W, 2008]. My work is one of the first 

movements in that direction. 
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i) Only linear forms exist 

When all forms are linear, only aggregation of parameters (regression coefficients 

and standard errors) and risk scores is required. There are 3 main ways to aggregate 

results across multiply imputed data sets.  

 

The first solution is to calculate a data set specific risk score for each of the 10 

imputed data sets. The average of 10 risk scores can be used as the final index. In this 

case, it is not possible to calculate single HR’s and to specify a prognostic formula.  

 

The second method is to aggregate parameter estimates via Rubin’s rule (section 

4.4.4 part i). These aggregated estimates then can be used to calculate Hazard Ratios 

(HR), and then applied to each imputed data set to calculate a risk score. Average of 

calculated risk scores can be used as the final prognostic formula.  

 

The third solution is to aggregate parameter estimates via Rubin’s formula (section 

4.4.4 part i), to calculate HR’s, but to use average of data set specific risk scores as 

the final index. Therefore, it would not be possible to give a prognostic formula.  

 

In my opinion, since aggregated parameter estimates do not provide the best fit to 

any of the imputed data sets, application of this method might result in the risk 

groups not having the best possible diverged curves. However, it remains possible to 

specify a prognostic formula. On the other hand, use of the average of dataset 

specific risk scores might improve risk stratification, but no single prognostic 
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formula can be given. This issue needs further exploration in future studies (see 

section 11.4.2).  

 

ii) Non-linear forms exist 

The process of aggregation of forms and parameter estimates will be more complex 

when non-linear forms exist (such as this project). This is because the form of 

association might not be the same in all bootstrap or imputed data sets. Therefore, 

aggregation of estimated coefficients for a single variable with different forms across 

samples is not possible. 

 

The algorithm I devised in the process of development of the UIVS Model was as 

follows. To aggregate the forms, I applied forms repeated in the majority of bootstrap 

samples (> 50%) to each of the 10 imputed data sets. I then estimated parameters and 

aggregated them across the 10 imputed data sets applying Rubin’s formal. 

Aggregated estimates were used to calculate HR’s. However, to present Kaplan-

Meier survival curves, I used dataset specific regression coefficients so as to 

maximise the separation between risk groups.  

The reason I used dataset specific regression coefficients, instead of aggregated 

coefficients, was that one of the clinical questions Professor John Bartlett asked was 

whether a combination of biomarkers and clinical variables improves the ability of 

NPI in terms of identification of low risk patients. Therefore, it was very important to 

apply coefficients which increase the chance of finding such a low risk group. This is 

because if the risk groups derived do not show improvement over NPI in this training 

sample, then there would be no point to assess the external validity of the model in 
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an independent sample. I feel that use of data specific coefficients is superior to 

aggregated ones in terms of risk stratification. 

 

Some alternative solutions with advantages and disadvantages are given below. If 

one applies a dataset specific form of association and dataset specific regression 

coefficients to each of the imputed or bootstrapped samples, then the variables and 

forms contributing to single risk scores are very likely to be different. In this case, 

although the average of risk scores can be used as a final index to categorise patients 

into risk groups, Hazard Ratios (HR) cannot be calculated and no single prognostic 

formula can be specified. 

 

On the other hand, to be able to calculate HR, and also to specify a single prognostic 

formula, one can apply the form repeated in the majority (> 50%) of the samples, 

plus the aggregated estimates across samples. I devised this approach to check 

whether application of aggregated coefficients affects separation of risk groups. 

Interestingly, almost no difference in estimated RFS rates in the lowest and highest 

risk groups was seen (data not shown). This can be explained by the fact that the 

missing rate was very low and therefore the dataset estimated coefficients were very 

similar to aggregated estimates. However, this might not be the case when missing 

rate is high. 

 

In my opinion, it is not simple to advise the use of any one of the approaches 

explained above for all future research and data sets. This is because statisticians 

would like to calculate CI’s and precision of parameter estimates, but clinicians are 
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more interested in a single prognostic formula. Decisions can be made by balancing 

between statistical and clinical purposes of the study.  

 

In general, following from the arguments given above, the application of a data 

specific form might not appeal to either statisticians or a clinical audience. 

Application of form repeated in the majority of samples and dataset specific 

coefficients partly solve this problem, since calculation of HR is possible but no 

single prognostic formula can be given. This can be tackled by using forms repeated 

in the majority of samples and aggregated estimates. However, there is no guarantee 

that the use of aggregated estimates will produce the best separation of risk groups. 

 

11.3 Clinical issues 

Using retrospective statistical modelling of extensive molecular pathways, I 

developed a series of prognostic models which stratified early breast cancers treated 

with tamoxifen by risk of recurrence.  

 

Individual risk scores were calculated using a simple panel of biomarkers (6 for the 

UIVS and 8 for BGVS Models, in addition to tumour size and nodal status), this has 

the potential to provide a cost effective and readily applicable platform for future 

diagnostic applications. When patients were stratified by risk into 4 quartiles, marked 

differences in group relapse rates were observed.  
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NPI is the recognised tool for risk prediction used in the UK. These findings 

demonstrate considerable potential for improved prognostic modelling by 

incorporation of biological variables into risk prediction: 

 

i) Ability to detect low risk patients 

Although at 5-years follow up, the Recurrence Free Rate (RFS) was similar for the 

lowest risk groups by NPI and the biomarker models, longer-term RFS appears better 

predicted. Among patients in the lowest risk quartile of the UIVS index (i.e. with the 

lowest risk scores) the estimated 7-year RFS rate was 95%, whereas in the highest 

risk group (top quartile) it was only 40%. Even when I applied cut offs to create risk 

groups similar to standard NPI with 3 risk groups NPI (NPIstd3), 133 were fell into 

the lowest risk group giving 7-year RFS of 95% (95% C.I.: 91%, 99%).  

Results were even better when family risk scores were modelled (the BGVS Model). 

Actuarial 7-year RFS for patients in the bottom and top risk quartiles was 98% 

(95%C.I.: 96%, 100%) and 40% (95%C.I.: 30%, 50%) respectively. When risk 

groups similar to NPIstd3 were created, estimated 7 and 10-year RFS in lowest risk 

groups was 96% (95% C.I.: 92%, 100%) at both time points. This indicated that one-

third of subjects had sufficiently low risk of disease recurrence. This offers a 

clinically reassuring recurrence free rate in the lowest risk group and has clinical 

potential, since it appears such patients might be spared harsh treatments, without 

undue risk of recurrence. However, the very small number of events and a limited 

number of patients with follow-up exceeding 8 years in this cohort means that at this 

stage interpretation of results past 7 years should be done with caution.  
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ii) Classification improvement 

Biomarker Models (UIVS and BGVS) demonstrated significantly better risk group 

classification performance than NPI. There was overall a greater number of 

improved risk group classifications than less appropriate ones, this was more 

apparent in the subgroup who went on to experience recurrence (percentage points 

difference of 14 for the UIVS and 21 for the BGVS). Corresponding NR Indices 

were 18% and 32% respectively.  

 

iii) Treatment selection 

Endocrine therapy, using either tamoxifen or aromatase inhibitors, remains the most 

successful approach to the treatment of early breast cancer. However, many women 

do not require even endocrine therapy, or might derive minimal additional benefit 

over tamoxifen treatment if treated with aromatase inhibitors and/or chemotherapy 

[Abe O et al., 2005].  

 

Powerful predictive biomarker tools have been proposed that have potential for 

future application in the selection of patients for conservative versus aggressive 

adjuvant treatment. Whilst low risk patients selected by biomarker models could 

potentially avoid systemic treatment, higher risk patients might require additional 

treatment, including chemotherapy or other adjuvant treatment options.  

 

NPI is a parsimonious model based on 3 variables. Parsimonious models, based on a 

small number of variables, are fairly stable and can easily be applied in practice [Van 

Houwelingen HC, 2000; Laupacis A et al., 1997]. Although this model is very 
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useful, it was devised using a fairly limited range of risk factors on a cohort with 

fairly short follow-up time. However, in some ways it is surprising that it has not 

already been superseded.  

 

The approaches developed have been to use markers of key molecular pathways of 

tamoxifen resistance to seek to identify a panel which can select patients who may 

either derive sufficient benefit from treatment with tamoxifen alone, or for whom 

withdrawal of even this moderately toxic adjuvant therapy might pose minimal risk.  

 

The models developed provide a significant potential improvement over 

conventional prognostic model (NPI) and needs to be validated in a larger clinical 

trial cohort. However, further validation of the statistical approaches undertaken is 

also required. With larger data sets and longer follow-up this modelling approach has 

the potential to enhance understanding of the interplay of biological characteristics, 

treatment and cancer recurrence. If biomarker modelling of other breast cancer 

cohorts can be undertaken, the statistical modelling method illustrated here promises 

to aid understanding and prevention of breast cancer progression.  
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11.4 Studies for future 

11.4.1 Assessment of external validity of the model 

I developed reliable approaches, but using a fairly small data set with limited follow-

up. The results reported here can be used to generate hypotheses about the 

mechanisms that govern breast cancer. However, what would be interesting, both to 

understanding the biology of progression and recurrence, and to improving risk 

prediction, would be to validate the models and to assess the generalisability of 

results in an independent larger data set with more extensive follow-up. Results 

presented in this thesis are tentative until a future validation set is available.  

Generalisability or external validity means how well the model works in case of 

future patients [Justice AC et al., 1999]. Altman et al. noted that a useful model is the 

one which works in practice and not the one with many zeros in the corresponding P-

values in the multifactorial model [Altman DG and Royston P, 2000].   

 

Assessment of external validity, before implementation of the model in practice, is of 

crucial importance. Hence, further validation of the models presented is planned in a 

large patient cohort. Further markers might be included, as appropriate, to extend the 

applicability of the model. An important issue to be considered in a validation study 

is the extent to which derivation and validation samples are similar. An important 

reason that a prognostic model does not work in independent samples is 

heterogeneity between the derivation and validation populations [Bleeker SE et al., 

2003].  
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The cohort used in my project had of a fairly narrow range of patient presentations 

(ER+ tamoxifen treated). This can be a strength, since a homogeneous set of patients 

was analysed, and potentially a narrower range of mechanisms and predictive 

variables needs to be included; and therefore the model has the potential to provide 

insights to cancer biologists regarding the mechanism of cancer progression in this 

patient group. Furthermore, it is likely that as medical knowledge grows, separate 

prognostic models will be sought for the main different patient subgroups, such as 

this cohort. In contrast, the fairly narrow cohort can also be a weakness, in that the 

prognostic performance might not generalise to other presentations.   

 

11.4.2 Aggregation of forms and parameter estimates 

Behaviours of aggregation methods discussed in section 11.2.2 needs to be explored 

to investigate their weaknesses and strengths. In my data set, application of forms 

repeated in the majority of samples and dataset specific coefficients gave results 

comparable to that of aggregated coefficients; the separation of risk groups was 

probably due to a low missing rate. The current data set can be used to omit some of 

the data so as to increase the missing rate and check properties of these aggregation 

schemes.  

 

11.4.3 Risk classification 

Although NR Index is sensitive to benefit of addition of new risk factors and could 

be communicated simply with a clinical audience, it can only be calculated for 

symmetric tables. As an example, NPI classifies patients into three groups but 
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biomarker models into four. Therefore the frequency distribution table is a 4 x 3 

matrix and it might not be straightforward to calculate an NR Index.  

 

Another limitation is that, the NR Index gives equal weighting to false positive and 

false negative classifications [Vickers AJ et al., 2009]. It has been commented that, 

‘a marker that results in 50 fewer biopsies of men without cancer but also 30 fewer 

biopsies of men with cancer will give a positive classification improvement. 

However, few clinicians would be prepared to miss 30 cancers in order to avoid 50 

unnecessary biopsies’.  

 

11.4.4 Comparison of screening methods for skewed 

variables  

As mentioned in Chapter 3, alternative statistical techniques were performed to 

capture different simulated risk functions [Hollander N and Schumacher M, 2006]. In 

general, the Fractional Polynomial (FP) method performed the best. Univariate 

results presented in this thesis suggested that the same is true in the case of highly 

skewed data. However, there is scope to investigate this issue through simulation 

analysis and multifactorial models.  
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11.5 Recommendations 

The aim of this thesis was not to compare and apply all possible statistical methods. I 

applied methods that are frequently used in the literate and then combined them to 

develop pragmatic strategies, which are useful for clinical purposes. In my 

experience, the following steps should be followed in development of a prognostic 

model when many continuous variables, including missing data, are available: 

 

1. Application of univariate screening methods, to select a reduced set of 

variables, is the standard method. However, application of methods such as 

Cox PH model might lead to a loss of variables that have predictive ability. 

 

2. Assessment of the appropriate form of association, by application of methods 

such as FP, enhances the understanding of biology of disease.  

 

3. In the development of the multifactorial models, assessment of the stability of 

associations and exclusion of variables with unreliable association, via 

bootstrapping, improves model stability. 

 

4. If external biological knowledge is available, close collaboration of 

statisticians and biologists should lead to models with better performance and 

higher biological interpretability.   
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5. To deal with missing data, the MICE method should be applied. Comparison 

of results with other simpler methods enriches the body of the literature and 

enhances the understanding of the value of the statistical methods.  

 

6. Using different methods assess the form of association can generate new 

biological questions to be tested in independent samples.  

 

7. When the form of association for a particular variable is different across 

imputed samples, a decision about how to combine the results across samples 

should be made by balancing between clinical and statistical aims of the 

study. 
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Appendix 1: Investigation of ability of risk groups derived from the UIVS and 

BGVS Models to predict Recurrence Free on Tamoxifen (RFoT) and Overall 

Survival (OS) 

 

Ability of the risk groups derived to predict RFoT 

Among 112 recorded recurrences, in 84 of these patients the patient was at that point 

still on tamoxifen treatment. Patients in the lowest quartile of the BGVS and UIVS 

indices (which are developed to predict RFS) exhibited 7-year RFoT rate of 98% 

(95% C.I: 96%, 100%) and 93% (95% C.I.: 83%, 100%) respectively.  

 

I plotted K-M curves for RFoT, using the RFS risk-groupings, to assess the extent to 

which the risk groups derived from BGVS and UIVS risk scores could discriminate 

patients with low and high risk of recurrences during tamoxifen treatment. K-M 

curves and estimated event-free rates indicated the ability of risk groups derived to 

stratify patients with respect to RFoT outcome. 

 

Application of the BGVS and UIVS RFS risk groups to predict RFoT 

Risk 
group 

Index 5-year event free 
(95% C.I.) 

7-year event free 
(95% C.I.) 

10-year event free 
(95% C.I.) 

BGVS 98% (96%, 100%) 98% (96%, 100%) 98% (96%, 100%) Lowest 

UIVS 97% (93%, 100%) 93% (83%, 100%) 93% (83%, 100%) 

BGVS 47% (37%, 57%) 47% (37%, 57%) 47% (37%, 57%) Highest 

UIVS 45% (33%, 57%) 45% (33%, 57%) 45% (33%, 57%) 
PSEP for BGVS risk 
groups 51% 51% 51% 
PSEP for UIVS risk 
groups 52% 48% 48% 
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K-M curves indicating ability of the BGVS (left panel) and UIVS RFS risk groups (right panel) to predict RFoT 
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Ability of the risk groups derived to predict OS 

By the end of follow-up there had been 74 deaths. Actuarial 7-year OS rate in the 

lowest risk group derived from the UIVS and BGVS indices were comparable (96% 

versus 98%). 

 

By plotting K-M curves for OS, using the RFS risk-groupings, the extent to which 

the risk groups derived can discriminate patients with low and high risk of death was 

assessed. Risk groups derived were able to stratify well diverged low and high risk 

patients (PSEP 47% for UIVS and 45% for BGVS). 

 

 

Application of the UIVS and BGVS RFS risk groups to predict OS  

Risk group Index 5-year event free 

(95% C.I.) 

7-year event free 

(95% C.I.) 

10-year event free 

(95% C.I.) 

BGVS 98% (96%, 100%) 98% (96%, 100%) 98% (96%, 100%) 
Lowest 

UIVS 98% (96%, 100%) 96% (92%, 100%) 96% (92%, 100%) 

BGVS 67% (57%, 77%) 53% (43%, 63%) 44% (32%, 56%) 
Highest 

UIVS 66% (56%, 76%) 49% (37%, 61%) 42% (28%, 56%)  

PSEP for BGVS risk 

groups 31% 45% 54% 

PSEP for UIVS risk 

groups 32% 47% 54% 
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K-M curves applying the BGVS (left panel) and UIVS RFS risk groups (right panel) to predict OS  
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Appendix 2: Risk group assignment based on models developed relative to NPI 

Risk groups assignment based on NPIq4 and the UIVS (Chapter 8) 

UIVS risk groups Status  
L LI HI H 

L 48 25 15 4 
LI 27 27 18 5 
HI 19 15 24 11 Ev

en
t-

fr
ee

 
H 5 9 15 22 
L 1 4 4 1 
LI 2 9 9 2 
HI 1 7 9 14 

N
PI

q4
 

R
ec

ur
re

nc
e 

H 0 2 6 41 

 
 
Risk groups assignment groups based on NPIq4 and the BGVS (Chapter 8) 

BGVS risk groups Status  
L LI HI H 

L 50 27 13 2 
LI 32 23 16 6 
HI 12 26 22 9 Ev

en
t-

fr
ee

 

H 4 9 20 18 
L 0 4 3 3 
LI 3 7 6 6 
HI 0 3 13 15 

N
PI

q4
 

R
ec

ur
re

nc
e 

H 0 3 5 41 

 
 
Distribution of patients into risk groups applying different imputation approaches 
(Chapter 9) 

MICE  Status  
L LI HI H 

L 15 12 0 0 
LI 15 43 20 1 
HI 0 21 40 9 Ev
en

t-
fr

ee
 

H 0 0 12 32 
L 2 3 0 0 
LI 2 11 6 1 
HI 0 8 17 6 M

ed
ia

n 
su

bs
tit

ut
io

n 
 

R
ec

ur
re

nc
e 

H 0 0 5 51 
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Distribution of patients into risk groups based on MFP and NPIq4 (Chapter 10) 

MFP  Status Risk 
group L LI HI H 

L 51 30 11 0 
LI 28 28 14 7 
HI 13 21 26 9 Ev

en
t-

fr
ee

 
H 2 6 17 26 
L 2 4 3 1 
LI 3 8 8 3 
HI 3 5 10 13 

N
PI

q4
 

R
ec

ur
re

nc
e 

H 0 1 7 41 

 

Distribution of patients into risk groups based on linear Cox and NPIq4 (Chapter 10) 

Linear Cox  Status Risk 
group L LI HI H 

L 50 32 10 0 
LI 28 26 17 6 
HI 10 27 21 11 Ev

en
t-

fr
ee

 

H 2 3 15 31 
L 2 4 4 0 
LI 7 3 9 3 
HI 2 6 14 9 

N
PI

q4
 

R
ec

ur
re

nc
e 

H 0 0 9 40 

 

Distribution of patients into risk groups based on Optimal split and NPIq4 (Chapter 
10) 

Optimal split  Status  
L LI HI H 

L 44 32 13 3 
LI 36 24 14 3 
HI 14 24 19 12 Ev

en
t-

fr
ee

 

H 2 10 16 23 
L 2 3 4 1 
LI 4 2 10 6 
HI 1 5 15 10 

N
PI

q4
 

R
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ur
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nc
e 

H 0 1 6 42 
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Distribution of patients into risk groups based on Quartile and NPIq4 (Chapter 10) 

Quartile  Status  
L LI HI H 

L 58 19 12 3 
LI 27 30 16 4 
HI 9 26 26 8 Ev

en
t-

fr
ee

 
H 2 6 17 26 
L 1 4 3 2 
LI 2 7 8 5 
HI 2 7 9 13 

N
PI

q4
 

R
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e 

H 0 2 8 39 

 

 

Distribution of patients into risk groups based on Median and NPIq4 (Chapter 10) 

Median  Status  
L LI HI H 

L 69 21 2 0 
LI 25 36 13 3 
HI 0 20 41 8 Ev

en
t-

fr
ee

 

H 0 2 11 38 
L 6 4 0 0 
LI 3 9 9 1 
HI 0 7 17 7 

N
PI

q4
 

R
ec

ur
re

nc
e 

H 0 0 6 43 
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Appendix 3: List of all biomarkers and univariate P-values in Fractional 
Polynomial (FP) analysis 
 
Thesis abbreviation Family P-value Abbreviation Family P-value  

Krascy RAS <0.001 Akt1nu  AKT 0.44 
Rkipnu  Non-family <0.001 Raf1cy MAPK 0.46 
Praf338nu  MAPK 0.002 Her2me  HER 0.46 
Prhisto  PgR 0.007 Hrascy RAS 0.49 
Praf338cy  MAPK 0.01 P118cy  PgR 0.49 
Mapkcy MAPK 0.01 Tace  Non-family 0.51 
Pmtor MTOR 0.02 Erbcy  PgR 0.54 
Ptennu  MTOR 0.02 Akt1cy AKT 0.54 
Mtor MTOR 0.06 H4hfr1me  HER 0.56 
Akt2cy AKT 0.06 Pher2cy  HER 0.57 
Pher2nu  HER 0.07 Jrh3cy HER 0.57 
Tunel  Non-family 0.07 H4jrcy  HER 0.58 
Tescy Non-family 0.12 Pbad112c  BAD 0.60 
Erbnu  PgR 0.12 Rkipcy  Non-family 0.61 
Pakt1nu  AKT 0.13 H4hfr1cy  HER 0.63 
Ptency  MTOR 0.14 Baxcy  BAD 0.63 
P167cy  PgR 0.17 Bclxl  BAD 0.68 
Ercy  PgR 0.17 Jrh3nu  HER 0.72 
Erhisto  PgR 0.17 Tacep  Non-family 0.73 
H4jrnu  HER 0.19 Pp70s6k3 MTOR 0.74 
Praf259cy MAPK 0.20 P118nu  PgR 0.76 
P167nu  PgR 0.20 Panaktcy AKT 0.76 
Pakt2cy AKT 0.23 Badcy  BAD 0.77 
Pakt1cy AKT 0.24 Pher2me HER 0.81 
Jrh3me HER 0.27 Tesnu Non-family 0.81 
Panaktnu  AKT 0.27 Bcl2  BAD 0.82 
Mapknu MAPK 0.29 P167me  PgR 0.89 
P118me  PgR 0.31 Nrascy  RAS 0.89 
H4jrme  HER 0.31 Hrasnu  RAS 0.91 
Akt3cy AKT 0.34 Pmapknu MAPK 0.92 
Krasnu RAS 0.34 H4hfr1nu  HER 0.94 
Pakt2nu  AKT 0.35 Her2fish  HER 0.97 
Raf1nu MAPK 0.37 Pmapkcy  MAPK 0.97 
Nrasnu  RAS 0.39 Aibfis1 HER (categorical) 
Praf259nu MAPK 0.43 Aibfis2 HER (categorical) 
Aib1  HER 0.44 Egfrmax HER (categorical) 
 

Krascy, Rkipnu, and Ptennu had polynomial effects 
For Pmapknu, P-value corresponding to minimum P-value method was 0.003. 
For Akt1nu, P-value corresponding to non-ordinal dichotomisation was 0.003. 
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