

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Robot environment learning

with a mixed-linear probabilistic

state-space model

William Robert Chesters

Thesis submitted for the degree of Doctor of Philosophy

University of Edinburgh, 1999

Robot environment learning

with a mixed-linear probabilistic

state-space model

William Robert Chesters

Thesis submitted for the degree of Doctor of Philosophy

University of Edinburgh, 1999

^fVT^s
•"-y %o 'i'

c

Abstract

This thesis proposes the use of a probabilistic state-space model with mixed-linear

dynamics for learning to predict a robot's experiences. It is motivated by a desire to bridge

the gap between traditional models with predefined objective semantics on the one hand,

and the biologically-inspired "black box" behavioural paradigm on the other.

A novel EM-type training algorithm for the model is presented, which is less

computationally demanding than the Monte Carlo techniques recently developed for use in

(for example) visual tracking applications. The algorithm's E-step is slightly approximative,

but an extension is described which would in principle make it asymptotically correct.

Investigation using synthetically sampled data shows that the uncorrected E-step can in any

case make correct inferences about quite complicated systems.

Results collected from two simulated mobile robot environments support the claim that

mixed-linear models can capture both discontinuous and continuous structure in the world in

an intuitively natural manner; while they proved to perform only slightly better than simpler

autoregressive hidden Markov models on these simple tasks, it is possible to claim tentatively

that they might scale more effectively to environments in which trends over time played

a larger role. Bayesian confidence regions-easily supported by the mixed-linear model-

proved to be an effective guard for preventing it from making over-confident predictions

outside its area of competence.

A section on future extensions discusses how the model's easy invertibility could be

harnessed to the ultimate aim of choosing actions, from a continuous space of possibilities,

which maximise the robot's expected payoff over several steps into the future.

Abstract

This thesis proposes the use of a probabilistic state-space model with mixed-linear

dynamics for learning to predict a robot's experiences. It is motivated by a desire to bridge

the gap between traditional models with predefined objective semantics on the one hand,

and the biologically-inspired "black box" behavioural paradigm on the other.

A novel .EM-type training algorithm for the model is presented, which is less

computationally demanding than the Monte Carlo techniques recently developed for use in

(for example) visual tracking applications. The algorithm's E-step is slightly approximative,

but an extension is described which would in principle make it asymptotically correct.

Investigation using synthetically sampled data shows that the uncorrected E'-step can in any

case make correct inferences about quite complicated systems.

Results collected from two simulated mobile robot environments support the claim that

mixed-linear models can capture both discontinuous and continuous structure in the world in

an intuitively natural manner; while they proved to perform only slightly better than simpler

autoregressive hidden Markov models on these simple tasks, it is possible to claim tentatively

that they might scale more effectively to environments in which trends over time played

a larger role. Bayesian confidence regions—easily supported by the mixed-linear model—

proved to be an effective guard for preventing it from making over-confident predictions

outside its area of competence.

A section on future extensions discusses how the model's easy invertibility could be

harnessed to the ultimate aim of choosing actions, from a continuous space of possibilities,

which maximise the robot's expected payoff over several steps into the future.

Acknowledgements

I owe a large debt of thanks to my supervisor Gillian Hayes, both for her advice, and

for her patience and support. In addition the work has benefited greatly from discussion

with Chris Williams, and the thesis itself from the thoughtful comments of its examiners

Peter Ross and Ben Krose.

Finally, I'm grateful to EPSRC for an Advanced Studentship grant which enabled me to

follow the Ph.D. programme of which this thesis is the outcome.

Acknowledgements

I owe a large debt of thanks to my supervisor Gillian Hayes, both for her advice, and

for her patience and support. In addition the work has benefited greatly from discussion

with Chris Williams, and the thesis itself from the thoughtful comments of its examiners

Peter Ross and Ben Krose.

Finally, I'm grateful to EPSRC for an Advanced Studentship grant which enabled me to

follow the Ph.D. programme of which this thesis is the outcome.

Table of Contents

1 Introduction .. 1

2 Robot Learning ... 4

2.1 Localisation .. 5

2.1.1 Unstructured environments ... 5

2.1.1.1 Kalman filtering and uncertain geometry 6

2.1.1.2 Markov grids ... 7

2.1.1.3 Monte Carlo methods .. 8

2.1.1.4 Topological techniques .. 9

2.1.2 Learning the environment .. 9

2.1.2.1 Local matching .. 10

2.1.2.2 Global landmark matching ... 10

2.1.2.3 EM Mapping ... 11

2.1.2.4 Bringing together dense and sparse representations 12

2.1.2.5 Monte Carlo mapping ... 12

2.1.2.6 Appearance-based methods ... 13

2.1.2.7 Unsupervised neural networks for landmark learning 15

2.2 Neural networks for dynamics learning 16

2.2.1 Multi-layer perceptrons ... 16

2.2.1.1 Static MLPs .. 16

Table of Contents

1 Introduction i

2 Robot Learning 4

2.1 Localisation 5

2.1.1 Unstructured environments 5

2.1.1.1 Kalman filtering and uncertain geometry 6

2.1.1.2 Markov grids 7

2.1.1.3 Monte Carlo methods 8

2.1.1.4 Topological techniques 9

2.1.2 Learning the environment 9

2.1.2.1 Local matching 10

2.1.2.2 Global landmark matching 10

2.1.2.3 EM Mapping 11

2.1.2-4 Bringing together dense and sparse representations 12

2.1.2.5 Monte Carlo mapping 12

2.1.2.6 Appearance-based methods 13

2.1.2.7 Unsupervised neural networks for landmark learning 15

2.2 Neural networks for dynamics learning 16

2.2.1 Multi-layer perceptrons 16

2.2.1.1 Static MLPs 16

2.2.1.2 Bayesian methods ... 18

2.2.2 MLPs for modelling dynamics ... 18

2.2.2.1 Recurrent MLPs .. 18

2.2.2.2 Using MLPs in an EKF ... 19

2.2.3 Robotics applications of neural networks 20

2.3 The theory of acting ... 20

2.3.1 Stochastic worlds: reinforcement learning 21

2.3.1.1 Markov processes ... 21

2.3.1.2 Optimal polacies ... 21
2.3.1.3 Unknown environments ... 22

2.3.1.4 Model-based learning .. 22

2.3.2 Partially observable worlds .. 22

2.4 Summary ... 23

3 Background .. 25

3.1 Requirements for the model ... 25

3.1.1 Why the robot's world is complex ... 25

3.1.1.1 Arbitrariness ... 25

3.1.1.2 Heterogeneous regularity .. 26

3.1.1.3 Partial observability ... 26

3.1.2 Why the robot's world is unpredictable 26

3.1.2.1 Noise and nondetermmism .. 27

3.1.2.2 Lack of experience .. 27

3.1.2.3 Ignorance of the state of the world 27

3.1.2.4 Model failure .. 28

3.1.3 Pragmatic considerations .. 28

3.2 Bayesian modelling .. 28

3.2.1 The idea behind Bayesian inference .. 28

3.2.1.1 The laws of rationality .. 29

3.2.1.2 Condationality and subjectivity .. 30

3.2.1.3 The controversy surrounding Bayesian methods 30

3.2.2 Bayesian inference using models ... 31

3.2.2.1 Marginalisataon ... 32
3.2.2.2 Bayes' rude ... 32
3.2.2.3 Cause and effect? .. 33

3.2.3 Bayesian model learning ... 33

3.2.3.1 Learning as inference ... 33

2.2.1.2 Bayesian methods 18

2.2.2 MLPs for modelling dynamics 18

2.2.2.1 Recurrent MLPs 18

2.2.2.2 Using MLPs in an EKF 19

2.2.3 Robotics applications of neural networks 20

2.3 The theory of acting 20

2.3.1 Stochastic worlds: reinforcement learning 21

2.3.1.1 Markov processes 21

2.3.1.2 Optimal policies 21

2.3.1.3 Unknown environments 22

2.3.1.4 Model-based learning 22

2.3.2 Partially observable worlds 22

2.4 Summary 23

3 Background 25

3.1 Requirements for the model 25

3.1.1 Why the robot's world is complex 25

3.1.1.1 Arbitrariness 25

3.1.1.2 Heterogeneous regularity 26

3.1.1.3 Partial observability 26

3.1.2 Why the robot's world is unpredictable 26

3.1.2.1 Noise and nondeterminism 27

3.1.2.2 Lack of experience 27

3.1.2.3 Ignorance of the state of the world 27

3.1.2.4 Model failure 28

3.1.3 Pragmatic considerations 28

3.2 Bayesian modelling 28

3.2.1 The idea behind Bayesian inference 28

3.2.1.1 The laws of rationality 29

3.2.1.2 Conditionally and subjectivity 30

3.2.1.3 The controversy surrounding Bayesian methods 30

3.2.2 Bayesian inference using models 31

3.2.2.1 Marginalisation 32

3.2.2.2 Bayes' rule 32

3.2.2.3 Cause and effect? 33

3.2.3 Bayesian model learning 33

3.2.3.1 Learning as inference 33

3.2.3.2 Making predictions .. 34
3.2.4 Practical implementation of the approach 34

3.2.4.1 Model spaces .. 34

3.2.4.2 (Local) maximum likelihood learning 35

3.2.4.3 Approximation using simple models 37

3.2.4.4 Rationally suboptimal reasoning ... 37

3.2.4.5 Assessing model truth ... 38

3.2.5 Simple examples of models .. 39

3.2.5.1 Multinomials ... 39

3.2.5.2 Gaussians .. 40

3.2.5.3 Confidence regions for continuous inputs 42

3.2.5.4 Linear/Gaussian regression ... 43

3.2.6 How Bayesian inference can influence behaviour 45

3.2.6.1 Breaking into the system .. 45

3.2.6.2 Breaking out of the system: decision theory 47

3.3 EM modelling .. 48

3.3.1 The EM algorithm .. 48

3.3.1.1 The procedure ... 48

3.3.1.2 Correctness of the algorithm ... 49

3.3.1.3 Generalisations of the EM algorithm 50

3.3.1.4 Ensemble learning .. 51

3.3.2 Mixture models ... 52

3.3.2.1 Unconditional Gaussian mixtures .. 52

3.3.2.2 Gaussian mixture confidence regions 54

3.3.2.3 Input-output Gaussian mixtures ... 54

3.3.2.4 Joint mixtures of experts .. 55

3.3.2.5 Conditional gating rules ... 56

3.3.2.6 Confidence regions for conditional mixture models 59

3.3.3 Bayesian modelling of dynamical systems 60

3.3.3.1 Graphical model of a dynamical system; the Markov property 60

3.3.3.2 EM learning of dynamical systems 61

3.3.3.3 The hidden Markov model ... 63

3.3.3.4 Input-output HMMs ... 65

3.3.3.5 The Kalman filter ... 67

3.3.3.6 Kalman filters with inputs ... 69

4 The Samovar model .. 70

4.1 Motivation .. 70

3.2.3.2 Making predictions 34

3.2.4 Practical implementation of the approach 34

3.2.4.1 Model spaces 34

3.2.4.2 (Local) maximum likelihood learning 35

3.2-4-3 Approximation using simple models 37

3.2.4.4 Rationally suboptimal reasoning 37

3.2.4.5 Assessing model truth 38

3.2.5 Simple examples of models 39

3.2.5.1 Multinomials 39

3.2.5.2 Gaussians 40

3.2.5.3 Confidence regions for continuous inputs 42

3.2.5.4 Linear/Gaussian regression 43

3.2.6 How Bayesian inference can influence behaviour 45

3.2.6.1 Breaking into the system 45

3.2.6.2 Breaking out of the system: decision theory 47

3.3 EM modelling 48

3.3.1 The EM algorithm 48

3.3.1.1 The procedure 48

3.3.1.2 Correctness of the algorithm 49

3.3.1.3 Generalisations of the EM algorithm 50

3.3.1-4 Ensemble learning 51

3.3.2 Mixture models 52

3.3.2.1 Unconditional Gaussian mixtures 52

3.3.2.2 Gaussian mixture confidence regions 54

3.3.2.3 Input-output Gaussian mixtures 54

3.3.2.4 Joint mixtures of experts 55

3.3.2.5 Conditional gating rules 56

3.3.2.6 Confidence regions for conditional mixture models 59

3.3.3 Bayesian modelling of dynamical systems 60

3.3.3.1 Graphical model of a dynamical system; the Markov property 60

3.3.3.2 EM learning of dynamical systems 61

3.3.3.3 The hidden Markov model 63

3.3.3.4 Input-output HMMs 65

3.3.3.5 The Kalman filter 67

3.3.3.6 Kalman filters with inputs 69

4 The Samovar model 70

4.1 Motivation 70

4.1.1 A recursive mixed-linear model .. 70

4.1.1.1 The architecture space ... 71

4.1.1.2 The possibilities ... 75

4.2 A solution .. 76

4.2.1 The conditional Samovar model ... 77

4.2.1.1 Assimilating the dynamics and the output function 78

4.2.1.2 The probability model ... 79

4.2.2 A learning algorithm for Samovar ... 80

4.2.2.1 Nested EM ... 80

4.2.2.2 The log likelihood ... 81

4.2.2.3 The inner expectation ... 83

4.2.2.4 The outer expectation ... 84

4.2.2.5 Approximating the outer expectation 84

4.2.2.6 V-matching ... 87

4.2.2.7 Initial conditions .. 88

4.2.2.8 Visualising the algorithm ... 88

4.2.2.9 The algorithm in pseudocode .. 90

4.2.2.10 Making predictions ... 95

4.2.3 The joint Samovar model .. 96

4.2.3.1

4.2.3.2

4.2.3.3

4.2.3.4

Merging inputs and outputs ... 97

Semantics .. 98

Learning algorithm .. 99

Predictions .. 100

4.3 Other approaches to mixed-linear modelling 101

4.3.1 An aggressive variational approximation 101

4.3.2 Switching state space models ... 102

4.3.3 Monte Carlo methods .. 103

4.3.3.1 E-step by random sampling ... 103

4.3.3.2 Comparison with Samovar ... 104

4.3.4 Dynamic Bayes nets ... 105

4.3.5 Geometrical hypothesis tracking .. 106

5 Evaluation ... 107

5.1 Synthetic data ... 107

5.1.1 The framework .. 107

5.1.1.1 Situation structure ... 108

5.1.1.2 Intra-situation characteristics .. 108

4.1.1 A recursive mixed-linear model 70

4-1.1.1 The architecture space 71

4-1.1.2 The possibilities 75

4.2 A solution 76

4.2.1 The conditional Samovar model 77

4-2.1.1 Assimilating the dynamics and the output function 78

4.2.1.2 The probability model 79

4.2.2 A learning algorithm for Samovar 80

4.2.2.1 Nested EM 80

4.2.2.2 The log likelihood 81

4-2.2.3 The inner expectation 83

4.2.2.4 The outer expectation 84

4-2.2.5 Approximating the outer expectation 84

4.2.2.6 V-matching 87

4-2.2.7 Initial conditions 88

4-2.2.8 Visualising the algorithm 88

4-2.2.9 The algorithm in pseudocode 90

4-2.2.10 Making predictions 95

4.2.3 The joint Samovar model 96

4-2.3.1 Merging inputs and outputs 97

4.2.3.2 Semantics 98

4-2.3.3 Learning algorithm 99

4.2.3.4 Predictions 100

4.3 Other approaches to mixed-linear modelling 101

4.3.1 An aggressive variational approximation 101

4.3.2 Switching state space models 102

4.3.3 Monte Carlo methods 103

4-3.3.1 E-step by random sampling 103

4-3.3.2 Comparison with Samovar 104

4.3.4 Dynamic Bayes nets 105

4.3.5 Geometrical hypothesis tracking • 106

5 Evaluation 10?

5.1 Synthetic data 107

5.1.1 The framework 107

5.1.1.1 Situation structure 108

5.1.1.2 Intra-situation characteristics 108

5.1.2 Experimental results ... 109

5.2 Simulations ... 115

5.2.1 Environment 1 ... 115

5.2.1.1 The robot .. 116

5.2.1.2 The world ... 117

5.2.1.3 The data .. 117

5.2.1.4 The model's task ... 119

5.2.2 Environment 2 ... 120

5.2.2.1 The robot .. 121

5.2.2.2 The world ... 121

5.2.2.3 The data .. 122

5.2.2.4 The model's task ... 124

5.3 Models evaluated ... 124

5.3.1 Training the conditional models .. 125

5.3.1.1 Regularisation ... 125

5.3.1.2 Structural adaptation .. 127

5.3.1.3 Training procedure ... 129

5.3.1.4 Optimisation of the gating receptive fields 131

5.3.2 Training the joint models .. 132

5.4 Observations .. 133

5.4.1 Procedure ... 134

5.4.1.1 Criteria: `food" sensor .. 134

5.4.1.2 Criteria: range sensors .. 135

5.4.1.3 Summary of the protocol ... 136

5.4.2 Environment 1 ... 136

5.4.2.1 Nonfood ... 137

5.4.2.2 Food ... 145

5.4.2.3 Qualitative .. 153

5.4.3 Environment 2 ... 156

5.4.3.1 Nonfood ... 156

5.4.3.2 Food ... 163

5.4.3.3 Qualitative .. 169

5.4.4 Computational resources required .. 172

5.4.5 Summary .. 173

6 Future Work .. 174

6.1 Improving the model ... 174

5.1.2 Experimental results 109

5.2 Simulations 115

5.2.1 Environment 1 115

5.2.1.1 The robot 116

5.2.1.2 The world 117

5.2.1.3 The data 117

5.2.1.4 The model's task 119

5.2.2 Environment 2 120

5.2.2.1 The robot 121

5.2.2.2 The world 121

5.2.2.3 The data 122

5.2.2.4 The model's task 124

5.3 Models evaluated 124

5.3.1 Training the conditional models 125

5.3.1.1 Regularisation 125

5.3.1.2 Structural adaptation 127

5.3.1.3 Training procedure 129

5.3.1.4 Optimisation of the gating receptive fields 131

5.3.2 Training the joint models 132

5.4 Observations 133

5.4.1 Procedure 134

5.4.1.1 Criteria: "food" sensor 134

5.4-1-2 Criteria: range sensors 135

5.4.1.3 Summary of the protocol 136

5.4.2 Environment 1 136

5.4.2.1 Nonfood 137

5.4.2.2 Food 145

5.4.2.3 Qualitative 153

5.4.3 Environment 2 156

5.4.3.1 Nonfood 156

5.4.3.2 Food 163

5.^.5.5 Qualitative 169

5.4.4 Computational resources required 172

5.4.5 Summary 173

6 Future Work 174

6.1 Improving the model 174

6.1.1 Better training algorithms .. 174

6.1.1.1 Alternatives to Baum-Welch ... 174

6.1.1.2 Statistical correctness .. 175

6.1.2 The character of the model ... 176

6.1.2.1 Discrete and non-Gaussian outputs 176

6.1.2.2 Grouping outputs .. 177

6.1.2.3 Products of experts ... 177

6.1.3 Selecting the right structure .. 179

6.2 Action selection ... 180

6.2.1 The theory .. 181

6.2.1.1 Planning .. 181

6.2.1.2 Planning as inference .. 181

6.2.1.3 A possible algorithm ... 182

6.2.2 Taking account of the robot's belief state 183

6.2.2.1 Ballistic actions ... 183

6.2.2.2 Monte Carlo planning .. 184

7 Conclusions ... 185

A Notation

A.1 Greek symbols .. 189

A.2 Roman symbols .. 193

References .. 201

6.1.1 Better training algorithms 174

6.1.1.1 Alternatives to Baum-Welch 174

6.1.1.2 Statistical correctness 175

6.1.2 The character of the model 176

6.1.2.1 Discrete and non-Gaussian outputs 176

6.1.2.2 Grouping outputs 177

6.1.2.3 Products of experts 177

6.1.3 Selecting the right structure 179

6.2 Action selection 180

6.2.1 The theory 181

6.2.1.1 Planning 181

6.2.1.2 Planning as inference 181

6.2.1.3 A possible algorithm 182

6.2.2 Taking account of the robot's belief state 183

6.2.2.1 Ballistic actions 183

6.2.2.2 Monte Carlo planning 184

7 Conclusions iss

A Notation

A.I Greek symbols 189

A.2 Roman symbols 193

References 201

Chapter 1

Introduction

One of the great arguments in contemporary robotics, still continuing a decade after

it was initiated by Brooksl, concerns the nature and role of representation: whether a

robot should strive to maintain an objective model of its environment, extracting from its

sensorium a picture of how the world really is; or on the other hand shun any such notion as

a delusion born of our human tendency to reification, relying instead on superficial and as

far as possible memoryless rules to get by; or perhaps call its world a complex dynamical

system, and deploy neural networks or evolutionary algorithms to develop a "black box"

oracle, which is capable of predicting its experiences, or of recommending what action it

should take, but whose internal semantics are deliberately left obscure.

Cogent arguments can be marshalled for and against each of these positions. It is

certainly true that explicit, objective representations, in terms familiar from the way we

talk about the world ourselves, are very difficult to construct, and in any case often turn

out to be a fragile and inconvenient basis for supporting the generation of behaviour. More

opportunistic methods, like those advocated by Brooks, are better able to take advantage

of untidy and shallow-but useful and robust-regularities in the environment. On the

other hand, it is also clear that the robot's controller will often need to be furnished with

internal state in some form or another. And, if the talk is of harnessing the subjective and

idiosyncratic phenomena of the robot's world, it makes plausible sense to go further and

allow the robot to learn (or evolve) a means of exploiting them for itself, by any means

1 Brooks, Intelligence without representation

1

Chapter 1

Introduction

One of the great arguments in contemporary robotics, still continuing a decade after

it was initiated by Brooks1, concerns the nature and role of representation: whether a

robot should strive to maintain an objective model of its environment, extracting from its

sensorium a picture of how the world really is; or on the other hand shun any such notion as

a delusion born of our human tendency to reification, relying instead on superficial and as

far as possible memoryless rules to get by; or perhaps call its world a complex dynamical

system, and deploy neural networks or evolutionary algorithms to develop a "black box"

oracle, which is capable of predicting its experiences, or of recommending what action it

should take, but whose internal semantics are deliberately left obscure.

Cogent arguments can be marshalled for and against each of these positions. It is

certainly true that explicit, objective representations, in terms familiar from the way we

talk about the world ourselves, are very difficult to construct, and in any case often turn

out to be a fragile and inconvenient basis for supporting the generation of behaviour. More

opportunistic methods, like those advocated by Brooks, are better able to take advantage

of untidy and shallow—but useful and robust—regularities in the environment. On the

other hand, it is also clear that the robot's controller will often need to be furnished with

internal state in some form or another. And, if the talk is of harnessing the subjective and

idiosyncratic phenomena of the robot's world, it makes plausible sense to go further and

allow the robot to learn (or evolve) a means of exploiting them for itself, by any means

1 Brooks, Intelligence without representation

1 Introduction

necessary. Yet one must at some point confront the scientific question: how are we to

understand what is then going on in the robot? If we abandon the attempt to make robots

know the world in the way we do, how can we make sense of the idea that they know it at

all?

The motivation behind the work reported here is to help narrow the gap between

objective representations of the robot's world on the one hand, and black box dynamical

systems models on the other. Within the framework of probabilistic modelling, it is possible

to unify the two and understand how a robot can learn a representation and a model

of its world in a way which is simultaneously adaptive, in that the form taken by the

representation is driven by what is found useful in practice; open in principle to analysis

and understanding; and, in an interesting and strong sense, rational. This is the line taken

by, among others, the Brown University robotics group2. The present thesis describes a

probabilistic model which aims to capture the complex, continuous environmental dynamics

faced by real robots at the low level, making as few assumptions as possible about how

the quantities in play (such as sensor readings) should be interpreted-but inferring in the

process a representational scheme at once subjective and reasonably transparent. It can be

seen as a kind of missing link between explicit models used for tasks such as map-building

with "opaque" neural networks.

Chapter 2 reviews three important sub-fields of robot learning: mapping, reinforcement

learning, and neural network system identification. Chapter 3 discusses the properties which

an environment model must have if it is to achieve the ends set out above, and introduces

the theory of Bayesian probabilistic reasoning on which (it is argued) it must be based, with

particular reference to model confidence regions, and to dynamical systems models including

the hidden Markov model and Kalman filter. Chapter 4 proposes that a mixed-linear

probabilistic state-space model has many of the required attributes, and presents a novel

algorithm called "Samovar" for learning and performing inference with it; by drawing on the

representational schemes and learning algorithms of both the hidden Markov model and the

Kalman filter, Samovar is (it is claimed) positioned to inherit the strengths, and some of the

tractability, of both. Connections are drawn between Samovar and related techniques in the

literature-including the Condensation algorithm, which has been used to learn a similar

class of model. Chapter 5 analyses Samovar's behaviour using synthetically generated time

series data, before evaluating its performance on the task of predicting the experiences of

two simulated robots. Chapter 6 points out how the model and learning algorithm could

be improved and extended, and suggests a way in which the invertibility property of one

variant of the mixed-linear model could be used as the basis for a reasonably efficient (albeit

theoretically suboptimal) algorithm for planning actions to achieve the robot's goals.

2 e.g. Basye et al., Learning Dynamics

2

1 Introduction

necessary. Yet one must at some point confront the scientific question: how are we to

understand what is then going on in the robot? If we abandon the attempt to make robots

know the world in the way we do, how can we make sense of the idea that they know it at

all?

The motivation behind the work reported here is to help narrow the gap between

objective representations of the robot's world on the one hand, and black box dynamical

systems models on the other. Within the framework of probabilistic modelling, it is possible

to unify the two and understand how a robot can learn a representation and a model

of its world in a way which is simultaneously adaptive, in that the form taken by the

representation is driven by what is found useful in practice; open in principle to analysis

and understanding; and, in an interesting and strong sense, rational. This is the line taken

by, among others, the Brown University robotics group2. The present thesis describes a

probabilistic model which aims to capture the complex, continuous environmental dynamics

faced by real robots at the low level, making as few assumptions as possible about how

the quantities in play (such as sensor readings) should be interpreted—but inferring in the

process a representational scheme at once subjective and reasonably transparent. It can be

seen as a kind of missing link between explicit models used for tasks such as map-building

with "opaque" neural networks.

Chapter 2 reviews three important sub-fields of robot learning: mapping, reinforcement

learning, and neural network system identification. Chapter 3 discusses the properties which

an environment model must have if it is to achieve the ends set out above, and introduces

the theory of Bayesian probabilistic reasoning on which (it is argued) it must be based, with

particular reference to model confidence regions, and to dynamical systems models including

the hidden Markov model and Kalman filter. Chapter 4 proposes that a mixed-linear

probabilistic state-space model has many of the required attributes, and presents a novel

algorithm called "Samovar" for learning and performing inference with it; by drawing on the

representational schemes and learning algorithms of both the hidden Markov model and the

Kalman filter, Samovar is (it is claimed) positioned to inherit the strengths, and some of the

tractability, of both. Connections are drawn between Samovar and related techniques in the

literature—including the Condensation algorithm, which has been used to learn a similar

class of model. Chapter 5 analyses Samovar's behaviour using synthetically generated time

series data, before evaluating its performance on the task of predicting the experiences of

two simulated robots. Chapter 6 points out how the model and learning algorithm could

be improved and extended, and suggests a way in which the invertibility property of one

variant of the mixed-linear model could be used as the basis for a reasonably efficient (albeit

theoretically suboptimal) algorithm for planning actions to achieve the robot's goals.

2 e.g. Basye et al, Learning Dynamics

I Introduction

A glossary of the terms and symbols used in the text, together with pointers to their

first uses, is given in appendix A. Works cited are referenced via the formula "authors, first

few words of title", which keys into the full list provided at the end of the thesis. Numbers

in parentheses refer to equations, which are numbered sequentially without regard to the

chapter in which they appear.

3

1 Introduction

A glossary of the terms and symbols used in the text, together with pointers to their

first uses, is given in appendix A. Works cited are referenced via the formula "authors, first

few words of title", which keys into the full list provided at the end of the thesis. Numbers

in parentheses refer to equations, which are numbered sequentially without regard to the

chapter in which they appear.

Chapter 2

Robot Learning

Chapter 1 outlined the goal of this thesis, namely the development of a probabilistic

model for the low-level dynamics of a robot's environment. The general theory on which

the model is based will be described in chapter 3; this chapter reviews the three main fields

specific to robotics which intersect with or touch on the problem of probabilistic environment

modelling.

First, techniques for autonomous localisation and mapping are surveyed: some of the

most sophisticated "explicit" models of real robot environments have been developed for

handling this important problem. Next, a summary is given of the application of neural

networks to the task of low-level environment modelling. If both these problems are cast in

terms of probabilistic learning and inference, their essential similarity becomes explicit and

space for a "missing link" between them is opened up.

Finally, the area of robot decision-making is considered: the work presented in this

thesis is concerned only with learning an environment model, and not directly with using

it to guide a robot's behaviour, but the question of how this could be achieved will be

addressed in section 6.2, for which reinforcement learning and the related Bayesian theory

of acting under uncertainty are the essential background.

4

Chapter 2

Robot Learning

Chapter 1 outlined the goal of this thesis, namely the development of a probabilistic

model for the low-level dynamics of a robot's environment. The general theory on which

the model is based will be described in chapter 3; this chapter reviews the three main fields

specific to robotics which intersect with or touch on the problem of probabilistic environment

modelling.

First, techniques for autonomous localisation and mapping are surveyed: some of the

most sophisticated "explicit" models of real robot environments have been developed for

handling this important problem. Next, a summary is given of the application of neural

networks to the task of low-level environment modelling. If both these problems are cast in

terms of probabilistic learning and inference, their essential similarity becomes explicit and

space for a "missing link" between them is opened up.

Finally, the area of robot decision-making is considered: the work presented in this

thesis is concerned only with learning an environment model, and not directly with using

it to guide a robot's behaviour, but the question of how this could be achieved will be

addressed in section 6.2, for which reinforcement learning and the related Bayesian theory

of acting under uncertainty are the essential background.

2.1.1 Unstructured environments

2.1. Localisation

One of the competences generally agreed to be most desirable for an autonomous robot

is self-orientation: the ability to find its way around. Industrial robots have for many years

been solving the problem of locating themselves on a predefined map by enlisting the help

of external navigational aids such as radio, laser or barcode "beacons", smooth floors which

make it feasible to move considerable distances by dead reckoning on the basis of odometry

information, and wires laid in the floor for detection by inductive sensors. It's obviously

interesting to look at ways of doing this in a less structured environment, and of learning

the map so that it need not be known in advance; the latter is perhaps the single most

intensively researched problem in robot environment modelling, so it is reviewed here as

background for the techniques (not specific to mapping) to be introduced later.

2.1.1. Unstructured environments

Where the designer does not have tight control over her robot's environment, she is

unable to engineer out two sources of uncertainty which render these brittle approaches

ineffective: odometry readings becomes much less reliable, accumulating errors over time,

and the unambiguously locatable beacons against which they could be corrected are replaced

(if she is lucky) by hard-to-detect and mutually confusible landmarks. The challenge is to

fuse the hints from all the robot's sensors into a robust estimate of its true position, using

rough odometry data to disambiguate information about possible landmarks, and conversely

using the conclusions thus reached to compensate for dead-reckoning drift.

For reasons which will become clear when Bayesian inference is discussed in section 3.2,

the most successful approaches work by interpreting the inevitable uncertainties in a

probabilistic framework, against the background of a stochastic model specifying roughly

how the quantities in play are believed to relate to each other. It is then easy to write down

the right thing to do, in principle, using Bayes' rule. Adopting the following notations

Ht random variable: the robot's position/orientation at timestep t
rt the robot's sensor readings at timestep t

At the robot's motor commands at timestep t

p(rt ht) probability density: how likely readings are in each position

p(ht+s I ht, at) prob. density: how likely new positions are after taking action in old one

s see also appendix A

5

2.1.1 Unstructured environments

2.1. Localisation

One of the competences generally agreed to be most desirable for an autonomous robot

is self-orientation: the ability to find its way around. Industrial robots have for many years

been solving the problem of locating themselves on a predefined map by enlisting the help

of external navigational aids such as radio, laser or barcode "beacons", smooth floors which

make it feasible to move considerable distances by dead reckoning on the basis of odometry

information, and wires laid in the floor for detection by inductive sensors. It's obviously

interesting to look at ways of doing this in a less structured environment, and of learning

the map so that it need not be known in advance; the latter is perhaps the single most

intensively researched problem in robot environment modelling, so it is reviewed here as

background for the techniques (not specific to mapping) to be introduced later.

2.1.1. Unstructured environments

Where the designer does not have tight control over her robot's environment, she is

unable to engineer out two sources of uncertainty which render these brittle approaches

ineffective: odometry readings becomes much less reliable, accumulating errors over time,

and the unambiguously locatable beacons against which they could be corrected are replaced

(if she is lucky) by hard-to-detect and mutually confusible landmarks. The challenge is to

fuse the hints from all the robot's sensors into a robust estimate of its true position, using

rough odometry data to disambiguate information about possible landmarks, and conversely

using the conclusions thus reached to compensate for dead-reckoning drift.

For reasons which will become clear when Bayesian inference is discussed in section 3.2,

the most successful approaches work by interpreting the inevitable uncertainties in a

probabilistic framework, against the background of a stochastic model specifying roughly

how the quantities in play are believed to relate to each other. It is then easy to write down

the right thing to do, in principle, using Bayes' rule. Adopting the following notation1

Ei random variable: the robot's position/orientation at timestep t

r* the robot's sensor readings at timestep t

A* the robot's motor commands at timestep t

p(r* | /i*) probability density: how likely readings are in each position

p(ht+11 hf, a*) prob. density: how likely new positions are after taking action in old one

see also appendix A

2.1.1.1 Kalman filtering and uncertasn geometry

the inference one should make about one's new position Ht}1 on the basis of one's new

sensor readings rt+1 and previous experiences a[o,t] r[o,tI consists in the probability

distribution

P(ht+lIrt+1 a[o°t] r[0,t])oc P(rt+lIht+r)P((ht+1Ialo'tl,r[o't])

=P(rt+lIht+1) J p(ht+lIht,at)P(htIrt,a[s't-1l,r[o't-I])
(1) It

where first Bayes' rule (section 3.2.2.2) and then the sum (marginalisation) rule (3)

have been invoked. Note that this rule can be applied inductively, since the term
p(ht I rt a[o,t-i] r[o,t-1]) is just the analogous distribution obtained at the previous

timestep for Ht.

To use this "Markov localisation" formula in practice, it is necessary to find a way of

expressing ht, the dynamical rule p(ht+1 I ht, at) and the output rule p(rt I ht) which make

sense with respect to the robot's exact aims and the sensorium at its disposal, together with

a way of working with them which makes the integration over ht feasible.

2.1.1.1. Kalman filtering and uncertain geometry

One immediately familiar scheme is to encode the robot's position in Cartesian space in

a real vector ht, and model its movements as a linear difference equation

Ht+1=(I A)
At+N(O,a)

where At is known to determine the distance and direction by which the robot moves

between the two timesteps via the linear map A, and N(0, a) is an anonymous zero-mean

Gaussian random variable (noise). (To extend this scheme to cases where At instead

influences the robot's speed and bearing, it would be necessary only to augment the state Ht

to include the current velocity.) In the (unlikely) event that the robot's sensor readings were

more or less directly related to its position (and possibly velocity or acceleration), according

to another linear/Gaussian mapping it

lit = KHt + N(0,)3)

-e.g. they were odometers and range sensors operating in a convex rectilinear arena-the

solution to (1) would be a Gaussian and could be calculated straightforwardly using the well-

known Kalman recursions (section 3.3.3.5).

In more general cases, it is possible to get this approach to work by using a technique

called "scan matching". It is assumed that the most probable position suggested by the

odometry information is close to the truth, and the map is used to compute a first-order

6

2.1.1.1 Kalman filtering and uncertain geometry

the inference one should make about one's new position H i+l on the basis of one's new

sensor readings rt+1 and previous experiences at0 '*],?-'0 '*] consists in the probability

distribution

t , a 0 ' t - 1 , r ° ' 4 - 1) (1)
h*

where first Bayes' rule (section 3.2.2.2) and then the sum (marginalisation) rule (3)

have been invoked. Note that this rule can be applied inductively, since the term

p(/i* \rt,a^°'t~1\r^-°'t~1^) is just the analogous distribution obtained at the previous

timestep for Ht.

To use this "Markov localisation" formula in practice, it is necessary to find a way of

expressing /i*, the dynamical rule p(ht+l h*, a*) and the output rule j?(r* | /&*) which make

sense with respect to the robot's exact aims and the sensorium at its disposal, together with

a way of working with them which makes the integration over h* feasible.

2.1.1.1. Kalman filtering and uncertain geometry

One immediately familiar scheme is to encode the robot's position in Cartesian space in

a real vector h*, and model its movements as a linear difference equation

where A* is known to determine the distance and direction by which the robot moves

between the two timesteps via the linear map A, and N(Q, a) is an anonymous zero-mean

Gaussian random variable (noise). (To extend this scheme to cases where A* instead

influences the robot's speed and bearing, it would be necessary only to augment the state H*

to include the current velocity.) In the (unlikely) event that the robot's sensor readings were

more or less directly related to its position (and possibly velocity or acceleration), according

to another linear/Gaussian mapping K

Rt = K#* + N(Q, /3)

— e.g. they were odometers and range sensors operating in a convex rectilinear arena — the

solution to (1) would be a Gaussian and could be calculated straightforwardly using the well-

known Kalman recursions (section 3.3.3.5).

In more general cases, it is possible to get this approach to work by using a technique

called "scan matching" . It is assumed that the most probable position suggested by the

odometry information is close to the truth, and the map is used to compute a first-order

2.1.1.2 Markov grids

local expansion of how the values expected from the robot's sensors (range sensors or vision-

based object detectors) would vary as the robot's position deviated from that point. This

linearisation plays the role of it and the sensor noise model that of 0.2 The correction

to the robot's position distribution in the light of the scan fit is calculated as above (the

approximative framework going by the name "extended Kalman filter" or EKF), and could

be propagated back into the past using the Rauch recursions, although the original work by

Durrant-Whyte3 and subsequent extensions by others4 use slightly different formulations.

The major weakness of any method which relies on a unimodal (e.g. Gaussian)

distribution for representing its beliefs about the robot's position is that this approximation

will only ever be remotely true when the robot is able to pin its location down pretty closely.

It suffices for correcting small errors in odometry before they build up disastrously, but

is inappropriate for initial localisation when the prior distribution over H° is wide, or for

recovering after a loss of registration. However, by modelling the different ways in which

world features such as walls and corners are likely to follow on from one another, Cox and

Leonard are able to construct a tree of hypotheses within each of which the robot's sensor

readings can realistically be fused using a EKF.5

2.1.1.2. Markov grids

Another way of encoding the robot's position (and perhaps orientation) is to quantise

it onto a grid; the Markovian rule will then be something like "the robot may move to one

of the blocks near to the one it is currently in, depending on the action it takes". This

makes the dynamics density p(ht+1 I ht at) a known discrete distribution for each given at,

so that the integral in (1) is just a summation. As long as the output distribution p(rt I W)

is known, therefore, the solution of (1) is not in principle difficult; and the advantage of

a grid-based method is that p(rt I ht) can take any form whatsoever: it is just a record

of what sensor readings are to be expected in each grid square, which (as noted above)

need not necessarily be related in any systematic way with the robot's actual position.

So this technique can handle arbitrary "landmarks", in the most general sense of static

environmental features giving rise to sensor readings which allow the robot to reduce

significantly the entropy of its belief distribution over its possible locations (but which may

2 Gutmann et al., An Experimental Comparison

3 Durrant-Whyte, Consistent integration and propagation

4 Lu & Milios, Globally consistent range scan alignment; Gutmann & Konolige, Incremental

Mapping, Fusiello & Caprile, Synthesis of indoor maps

5 Cox & Leonard, Modeling a dynamic environment; Leonard et al., Underwater Sonar Data

Fusion; this work is interestingly related to the recursive mixed-linear models discussed in

section 4.1 and section 4.3

7

2.1.1.2 Markov gnds

local expansion of how the values expected from the robot's sensors (range sensors or vision-

based object detectors) would vary as the robot's position deviated from that point. This

linearisation plays the role of K and the sensor noise model that of ft.2 The correction

to the robot's position distribution in the light of the scan fit is calculated as above (the

approximative framework going by the name "extended Kalman filter" or EKF), and could

be propagated back into the past using the Rauch recursions, although the original work by

Durrant-Whyte3 and subsequent extensions by others4 use slightly different formulations.

The major weakness of any method which relies on a unimodal (e.g. Gaussian)

distribution for representing its beliefs about the robot's position is that this approximation

will only ever be remotely true when the robot is able to pin its location down pretty closely.

It suffices for correcting small errors in odometry before they build up disastrously, but

is inappropriate for initial localisation when the prior distribution over H° is wide, or for

recovering after a loss of registration. However, by modelling the different ways in which

world features such as walls and corners are likely to follow on from one another, Cox and

Leonard are able to construct a tree of hypotheses within each of which the robot's sensor

readings can realistically be fused using a EKF.5

2.1.1.2. Markov grids

Another way of encoding the robot's position (and perhaps orientation) is to quantise

it onto a grid; the Markovian rule will then be something like "the robot may move to one

of the blocks near to the one it is currently in, depending on the action it takes". This

makes the dynamics density p(ht+l \ /if,a*) a known discrete distribution for each given a*,

so that the integral in (1) is just a summation. As long as the output distribution p(rl \ /i*)

is known, therefore, the solution of (1) is not in principle difficult; and the advantage of

a grid-based method is that p(r* | /i*) can take any form whatsoever: it is just a record

of what sensor readings are to be expected in each grid square, which (as noted above)

need not necessarily be related in any systematic way with the robot's actual position.

So this technique can handle arbitrary "landmarks", in the most general sense of static

environmental features giving rise to sensor readings which allow the robot to reduce

significantly the entropy of its belief distribution over its possible locations (but which may

2 Gutmann et al., An Experimental Comparison
3 Durrant-Whyte, Consistent integration and propagation
4 Lu & Milios, Globally consistent range scan alignment; Gutmann & Konolige, Incremental

Mapping; Pusiello & Caprile, Synthesis of indoor maps
5 Cox & Leonard, Modeling a dynamic environment; Leonard et al, Underwater Sonar Data

Fusion; this work is interestingly related to the recursive mixed-linear models discussed in

section 4.1 and section 4.3

2.1.1.3 Monte Carlo methods

not be perfectly interdistinguishable).6 As will be shown in section 2.1.2, this is the basis of

many successful map-learning methods in which the observation densities are conditioned

on the robot's position through such varied models such as multi-layer perceptrons7, kernel-

based PCA regressions, and kernel-based regression controlled by multi-layer perceptrons9,

as well as models of the properties of various kinds of range sensor, and can be seen as a

biologically plausible account of animal localisationio

Crucially, the grid representation also makes it possible to entertain a multimodal belief

distribution over the robot's position: if landmark information is currently not sufficient to

disambiguate two regions that look the same, both hypotheses will be kept alive until some

observation is made which one predicts well and the other does not; as was noted above,

the Kalman filter and similar formalisms must be augmented with relatively complicated

mechanisms for explicitly representing divergent interpretations of the world if they are to

avoid the brittleness arising from reliance on a unimodal distribution.

Of course, if the grid is made too fine, the summation (integral) in (1) will become too

time-consuming, so there is a difficult tradeoff between the acuity with which it is desired to

estimate the robot's position and the constraints of CPU time and memory, both of which

rise exponentially with the resolution. On the other hand, Gutmann and co-workers have

shown that if the robot is most of the time reasonably sure of its position, it is possible to

prune the vast majority of the states out of the sum.11

2.1.1.3. Monte Carlo methods

Researchers at Bonn and Carnegie Mellon universities have recently introduced an

interesting way12 of sidestepping the tradeoff between resolution and tractability which

afflicts grid-based representations of the robot's position: abandon the attempt to perform

the integration in (1) in closed form, and instead approximate the expectation by a weighted

sum over a suitably-generated sample of hypothetical grid positions ht. This can be done

6 Cf. the criterion developed in Vlassis et al., An information-theoretic localization criterion.

Defining landmarks any other way is difficult; see e.g. the discussion of "Local Distinguished Places"

in Kuipers & Levitt, Navigation and mapping, and footnote 1 of Thrun, Bayesian Landmark

Learning

7 Thrun, Bayesian Landmark Learning

a Vlassis & Krose, Robot Environment Modeling, Krose et al., Appearance based robot

localization

9 Oore et al., A mobile robot that learns its place

10 Hermann et al., Self-Localization

11 Gutmann et al., An Experimental Comparison

12 Dellaert et al., Using the Condensation Algorithm

8

2.1.1.3 Monte Carlo methods

not be perfectly interdistinguishable).6 As will be shown in section 2.1.2, this is the basis of

many successful map-learning methods in which the observation densities are conditioned

on the robot's position through such varied models such as multi-layer perceptrons7, kernel-

based PGA regression8, and kernel-based regression controlled by multi-layer perceptrons9,

as well as models of the properties of various kinds of range sensor, and can be seen as a

biologically plausible account of animal localisation10.

Crucially, the grid representation also makes it possible to entertain a multimodal belief

distribution over the robot's position: if landmark information is currently not sufficient to

disambiguate two regions that look the same, both hypotheses will be kept alive until some

observation is made which one predicts well and the other does not; as was noted above,

the Kalman filter and similar formalisms must be augmented with relatively complicated

mechanisms for explicitly representing divergent interpretations of the world if they are to

avoid the brittleness arising from reliance on a unimodal distribution.

Of course, if the grid is made too fine, the summation (integral) in (1) will become too

time-consuming, so there is a difficult tradeoff between the acuity with which it is desired to

estimate the robot's position and the constraints of CPU time and memory, both of which

rise exponentially with the resolution. On the other hand, Gutmann and co-workers have

shown that if the robot is most of the time reasonably sure of its position, it is possible to

prune the vast majority of the states out of the sum.11

2.1.1.3. Monte Carlo methods

Researchers at Bonn and Carnegie Mellon universities have recently introduced an

interesting way12 of sidestepping the tradeoff between resolution and tractability which

afflicts grid-based representations of the robot's position: abandon the attempt to perform

the integration in (1) in closed form, and instead approximate the expectation by a weighted

sum over a suitably-generated sample of hypothetical grid positions /i*. This can be done

6 Cf. the criterion developed in Vlassis et al., An information-theoretic localization criterion.

Defining landmarks any other way is difficult; see e.g. the discussion of "Local Distinguished Places"

in Kuipers fe Levitt, Navigation and mapping, and footnote 1 of Thrun, Bayesian Landmark

Learning
7 Thrun, Bayesian Landmark Learning
8 Vlassis & Krose, Robot Environment Modeling, Krose et al, Appearance based robot

localization

9 Core et al., A mobile robot that learns its place
10 Hermann et al., Self-Localization
11 Gutmann et al., An Experimental Comparison
12 Dellaert et al., Using the Condensation Algorithm

2.1.2 Learning the environment

by starting with a large cloud of "particles" drawn from the prior distribution p(h°), and

then, whenever the robot moves, passing each particle through the stochastic dynamics

several times, and resampling from the resulting set of position predictions with probabilities

proportional to those with which each accounts for the observed data (see also section 4.3.3).

Over time, the particles in play will become concentrated around a small number of

high density regions (e.g. just one) as the true distribution is cut down by the data. If
enough particles are tracked, it can be shown13 they can be used as good estimators of any

desired statistic of p(ht+l I rt+1 a[o,tl r[o,tI) Because the Monte Carlo filtering process

(stochastically) concentrates its attention on a relatively tiny number of the most significant

possibilities, it is much more computationally tractable than an exact algorithm running on

an equivalent grid size; and it was shown to perform impressively on the task of localising

and then tracking a mobile robot equipped only with unreliable odometry and an intensity

map of its building's roof. The method has been extended to the problem of handling

dynamic environments in which sensor readings are affected by third parties coming between

the robot and the fixed environment14, and most recently to the problem of learning about

the environment discussed in section 2.1.21-'.

2.1.1.4. Topological techniques

If the available landmarks are scattered sparsely across the environment, then it may

be better to connect them via a sparse, so-called topologically representation, in some

kind of graph, rather than in a dense "metric" one: a bitmap or set of overlapping depth

scans. Sparse methods are common in the literature on visual navigation based on high-level

geometric recognition of fixed objects.

2.1.2. Learning the environment

Alongside inferring its position within a pre-described environment, the other desirable

skill in an autonomous robot is that of mapping the world for itself. If the robot is able to

perform a calibration run, during which it is granted accurate knowledge of its position, then

the aim is simply to merge noisy and/or partial sensor readings covering the same areas;

this is essentially the dual of the problem of localisation from a known map discussed in

section 2.1.1. For instance, from sonar or other range sensors, it is relatively easy for the

13 Isard & Blake, Condensation

14

15

16

Fox et at., Markov Localization

Thrun et at., A real-time algorithm

note that this term is often used of schemes which do include metric information, against one

of its common meanings

9

2.1.2 Learning the environment

by starting with a large cloud of "particles" drawn from the prior distribution p(h°), and

then, whenever the robot moves, passing each particle through the stochastic dynamics

several times, and resampling from the resulting set of position predictions with probabilities

proportional to those with which each accounts for the observed data (see also section 4.3.3).

Over time, the particles in play will become concentrated around a small number of

high density regions (e.g. just one) as the true distribution is cut down by the data. If

enough particles are tracked, it can be shown13 they can be used as good estimators of any

desired statistic of p(ht+l \rt+l,a^°'t^,r^°'t^). Because the Monte Carlo filtering process

(stochastically) concentrates its attention on a relatively tiny number of the most significant

possibilities, it is much more computationally tractable than an exact algorithm running on

an equivalent grid size; and it was shown to perform impressively on the task of localising

and then tracking a mobile robot equipped only with unreliable odometry and an intensity

map of its building's roof. The method has been extended to the problem of handling

dynamic environments in which sensor readings are affected by third parties coming between

the robot and the fixed environment14, and most recently to the problem of learning about

the environment discussed in section 2.1.215.

2.I.I.4. Topological techniques

If the available landmarks are scattered sparsely across the environment, then it may

be better to connect them via a sparse, so-called topological16 representation, in some

kind of graph, rather than in a dense "metric" one: a bitmap or set of overlapping depth

scans. Sparse methods are common in the literature on visual navigation based on high-level

geometric recognition of fixed objects.

2.1.2. Learning the environment

Alongside inferring its position within a pre-described environment, the other desirable

skill in an autonomous robot is that of mapping the world for itself. If the robot is able to

perform a calibration run, during which it is granted accurate knowledge of its position, then

the aim is simply to merge noisy and/or partial sensor readings covering the same areas;

this is essentially the dual of the problem of localisation from a known map discussed in

section 2.1.1. For instance, from sonar or other range sensors, it is relatively easy for the

13 Isard fc Blake, Condensation
14 Fox et al., Markov Localization
15 Thrun et al., A real-time algorithm
16 note that this term is often used of schemes which do include metric information, against one

of its common meanings

2.1.2.8 EM Mapping

robot to construct a two-dimensional probabilistic representation of the distribution of open

space as against walls and other large objects in its immediate vicinity17, and then, following

Moravec18, use Bayes' rule to piece together a series of overlapping local maplets recorded in

various places at different times into a global "occupancy grid" 19.

But in general this option is not available to a robot exploring a new environment with

complete autonomy: if it cannot leverage perfect knowledge of its position to help it in the

map-building process, the problem of localisation using unreliable sensor information familiar

from section 2.1.1 recurs-only this time the map itself is also uncertain, and the resulting

chicken and egg dilemma appears unbreakable.

2.1.2.1. Local matching

One way to work around this is to use previously measured sections of the global map

as a template against which to fit corresponding new local ones. Combined (albeit in a

not obviously Bayesian way) with prior information about the relative orientations of walls

(i.e. parallel or perpendicular), this technique has been found to give good results (by, for

example, Thrun20). However, since estimates once integrated into the map are never revised,

this can only counteract a part of the buildup in positional error, and there is a danger that

the map will end up not only warped but, if the environment contains a cycle, potentially

inconsistent.21

2.1.2.2. Global landmark matching

It's better to update past estimates of the robot's pose, and hence of the mapping

inferences based on them, in the light of subsequent observations. All the localisation

techniques outlined in section 2.1.1 can be adapted to perform this reverse inference. Many

workers have used either scan matching or landmark-based techniques to build up networks

of spatial relationships between robot poses at different times, which have then been globally

optimised in the maximum likelihood sense.22

14 although the effect of noise, sensor calibration and specular effects means that this isn't quite a

trivial task; see Thrun, Learning Metric- Topological Maps, section 2.1 for a brief review and a

solution using multi-layer perceptrons

18 Moravec, Sensor fusion in certainty grids

19 Elfes, Sonar Based Real World Mapping

20 Thrun, Learning Metric- Topological Maps

21 Gutmann & Konolige, Incremental Mapping; Thrun et al., A real-time algorithm

22 Durrant-Whyte, Consistent integration and propagation; Lu & Milios, Globally consistent

range scan alignment; Koenig & Simmons, Passive Distance Learning; F asiello & Caprile,

Synthesis of indoor maps; Gutmann & Konolige, Incremental Mapping; Thrun et al., A real-time

algorithm

10

2.1.2.3 EM Mapping

robot to construct a two-dimensional probabilistic representation of the distribution of open

space as against walls and other large objects in its immediate vicinity17, and then, following

Moravec18, use Bayes' rule to piece together a series of overlapping local maplets recorded in

various places at different times into a global "occupancy grid"19.

But in general this option is not available to a robot exploring a new environment with

complete autonomy: if it cannot leverage perfect knowledge of its position to help it in the

map-building process, the problem of localisation using unreliable sensor information familiar

from section 2.1.1 recurs—only this time the map itself is also uncertain, and the resulting

chicken and egg dilemma appears unbreakable.

2.1.2.1. Local matching

One way to work around this is to use previously measured sections of the global map

as a template against which to fit corresponding new local ones. Combined (albeit in a

not obviously Bayesian way) with prior information about the relative orientations of walls

(i.e. parallel or perpendicular), this technique has been found to give good results (by, for

example, Thrun20). However, since estimates once integrated into the map are never revised,

this can only counteract a part of the buildup in positional error, and there is a danger that

the map will end up not only warped but, if the environment contains a cycle, potentially

inconsistent.21

2.1.2.2. Global landmark matching

It's better to update past estimates of the robot's pose, and hence of the mapping

inferences based on them, in the light of subsequent observations. All the localisation

techniques outlined in section 2.1.1 can be adapted to perform this reverse inference. Many

workers have used either scan matching or landmark-based techniques to build up networks

of spatial relationships between robot poses at different times, which have then been globally

optimised in the maximum likelihood sense.22

17 although the effect of noise, sensor calibration and specular effects means that this isn't quite a

trivial task; see Thrun, Learning Metric-Topological Maps, section 2.1 for a brief review and a

solution using multi-layer perceptrons
18 Moravec, Sensor fusion in certainty grids
19 Elfes, Sonar Based Real World Mapping
20 Thrun, Learning Metric-Topological Maps
21 Gutmann & Konolige, Incremental Mapping; Thrun et al., A real-time algorithm
22 Durrant-Whyte, Consistent integration and propagation; Lu & Milios, Globally consistent

range scan alignment; Koenig & Simmons, Passive Distance Learning; Fusiello & Caprile,

Synthesis of indoor maps; Gutmann & Konolige, Incremental Mapping; Thrun et al., A real-time

algorithm

10

2.1.2.4 Bringing together dense and sparse representatsons

2.1.2.3. EM Mapping

With the popularisation of the EM algorithm (section 3.3.1), it has become almost a

reflex to consider it as the obvious best solution to chicken and egg problems; and indeed

there are several examples in the literature of true EM learning applied to concurrent

mapping and localisation. Here the map plays the role of the unknown model parameter and

the robot's position that of the hidden data, and the algorithm involves alternately

computing a distribution p(h) for the robot's position at each point in time on the

basis of the current map estimate and the known sensor readings (E-step), and

reestimating the map assuming that the location density history is in fact optimal

(M-step).

The reason why this works well is that the maximum likelihood criterion is good at

identifying previously identified map features in a slightly unexpected place: the hypothesis

that a known feature is responsible for the sensor readings gives them a higher likelihood

than is obtained by postulating a previously unobserved nearby feature, even when the data

are consistent with the latter view.

In applications which involve estimating the positions of discrete (but not mutually

distinguishable) landmarks, EM has been shown by Thrun et al. to work well over a grid

representation of the robot's (and the landmarks') positions23, and by Shatkay et at to be

equally applicable to a graph-based24 one25. In both cases the robot's location is represented

discretely, so that the well-known forward-backward equations (section 3.3.3.3) can be used

for the E-step.

Oore et al.26 also use a discrete grid, and suggest that it is not necessarily critical

to implement the backward as well as the forward pass of the standard E-step, as long

as the M-step (in this case the training of a multi-layer perceptron) increases the overall

likelihood27. Other authors have, however, found that failure to make inferences backwards

in time can lead to problems in mapping cycles in the environment 28

23 Thrun et at, A Probabilistic Approach; this is arguably best seen as a variational algorithm

rather than an EM one, in that the M-step computes a probability distribution over the landmark

locations rather than a maximum likelihood estimate (binary occupancy grid)

24 topological but including metric information

25 Shatkay & Kaelbling, Learning Topological Maps; Shatkay & Kaelbling, Heading in the

Right Direction, which interestingly uses the von Mises' or circular normal distribution for

expressing angular uncertainty

26 Oore et at., A mobile robot that learns its place

27 for the generalised view of the EM algorithm on which this assertion rests, see section 3.3.1.3

28 e.g. Thrun et at, A real-time algorithm

11

2.1.2.4 Bringing together dense and sparse representations

2.1.2.3. EM Mapping

With the popularisation of the EM algorithm (section 3.3.1), it has become almost a

reflex to consider it as the obvious best solution to chicken and egg problems; and indeed

there are several examples in the literature of true EM learning applied to concurrent

mapping and localisation. Here the map plays the role of the unknown model parameter and

the robot's position that of the hidden data, and the algorithm involves alternately

• computing a distribution p(h) for the robot's position at each point in time on the

basis of the current map estimate and the known sensor readings (E-step), and

• reestimating the map assuming that the location density history is in fact optimal

(M-step).

The reason why this works well is that the maximum likelihood criterion is good at

identifying previously identified map features in a slightly unexpected place: the hypothesis

that a known feature is responsible for the sensor readings gives them a higher likelihood

than is obtained by postulating a previously unobserved nearby feature, even when the data

are consistent with the latter view.

In applications which involve estimating the positions of discrete (but not mutually

distinguishable) landmarks, EM has been shown by Thrun et al. to work well over a grid

representation of the robot's (and the landmarks') positions23, and by Shatkay et al. to be

equally applicable to a graph-based24 one25. In both cases the robot's location is represented

discretely, so that the well-known forward-backward equations (section 3.3.3.3) can be used

for the E-step.

Oore et a/.26 also use a discrete grid, and suggest that it is not necessarily critical

to implement the backward as well as the forward pass of the standard jB-step, as long

as the M-step (in this case the training of a multi-layer perceptron) increases the overall

likelihood27. Other authors have, however, found that failure to make inferences backwards

in time can lead to problems in mapping cycles in the environment.28

23 Thrun et al., A Probabilistic Approach; this is arguably best seen as a variational algorithm

rather than an EM one, in that the M-step computes a probability distribution over the landmark

locations rather than a maximum likelihood estimate (binary occupancy grid)

24 topological but including metric information

25 Shatkay & Kaelbling, Learning Topological Maps; Shatkay & Kaelbling, Heading in the

Right Direction, which interestingly uses the von Mises' or circular normal distribution for

expressing angular uncertainty
26 Oore et al., A mobile robot that learns its place
27 for the generalised view of the EM algorithm on which this assertion rests, see section 3.3.1.3
28 e.g. Thrun et al., A real-time algorithm

11

2.1.2.5 Monte Carlo mapping

2.1.2.4. Bringing together dense and sparse representations

An algorithm based on applying naive EM directly to an occupancy grid would require

a great deal of pragmatic pruning to achieve acceptable performance, and appears not to

have been reported; but Burgard et at. obtain good results with a two-stage approach which

first constructs a series of small local maplets, whose internal consistency is assured by the

fact that odometry errors are bounded over short timescales, and then using EM to optimise

their global positions 29 This can be seen either as a good way to perform occupancy

scan matching, or as a way of obtaining a set of landmarks (the maplets) to combine in a

maximally consistent spatial relations graph. Conversely, Thrun et al. use a graph-type map,

learned by EM optimisation over a landmark occupancy grid, as a framework on which to

hang a dense map constructed by Kalman filter scan matching.30

Another point at which the graph-based and occupancy-based approaches meet is in a

nice procedure for obtaining the former kind of map from an instance of the latter, applying

geometric algorithms based on Voronoi diagrams to a learned occupancy grid in order to

compute a topological representation of the connectivity of the environment31 in terms of its

choke points (e.g. doors). This furnishes the robot with a much more efficient data structure

for the purposes of applying standard navigation planning algorithms.

2.1.2.5. Monte Carlo mapping

The powerful technique of Monte Carlo localisation opens up the possibility of

estimating the robot's pose in a continuous space, and correcting it with the help of

information from dense sensor scans without having to resort to brittle approximations

such as the extended Kalman filter (section 2.1.1.1). It has been applied by Thrun et at. to

the problem of map-building, with impressive results.32 A reasonable-sized set of particles

sampled using the motion and observation distributions according to the algorithm defined

in section 2.1.1.3 can stand in for the true posterior distribution-however multimodal and

non-Gaussian-when it comes to computing statistics such as the most probable pose of

the robot at each step in time, and hence, given range scan data and the observation model

describing what it measures, a probabilistic representation of the shape of the environment.

29 Burgard et at, Sonar-based mapping; it proves necessary to use a technique called

deterministic annealing which can be considered as a means of flattening out the peaks in the

likelihood landscape temporarily so that a hill-climbing algorithm can pass over them (although this

is not how the authors appear to understand what they have done)

30 Thrun et at, Integrating Topological and Metric Maps

31 Thrun, Learning Metric- Topological Maps

32 Thrun et al., A real-time algorithm

12

2.1.2.5 Monte Carlo mapping

2.1.2.4. Bringing together dense and sparse representations

An algorithm based on applying naive EM directly to an occupancy grid would require

a great deal of pragmatic pruning to achieve acceptable performance, and appears not to

have been reported; but Burgard et al. obtain good results with a two-stage approach which

first constructs a series of small local maplets, whose internal consistency is assured by the

fact that odometry errors are bounded over short timescales, and then using EM to optimise

their global positions.29 This can be seen either as a good way to perform occupancy

scan matching, or as a way of obtaining a set of landmarks (the maplets) to combine in a

maximally consistent spatial relations graph. Conversely, Thrun et al. use a graph-type map,

learned by EM optimisation over a landmark occupancy grid, as a framework on which to

hang a dense map constructed by Kalman filter scan matching.30

Another point at which the graph-based and occupancy-based approaches meet is in a

nice procedure for obtaining the former kind of map from an instance of the latter, applying

geometric algorithms based on Voronoi diagrams to a learned occupancy grid in order to

compute a topological representation of the connectivity of the environment31 in terms of its

choke points (e.g. doors). This furnishes the robot with a much more efficient data structure

for the purposes of applying standard navigation planning algorithms.

2.1.2.5. Monte Carlo mapping

The powerful technique of Monte Carlo localisation opens up the possibility of

estimating the robot's pose in a continuous space, and correcting it with the help of

information from dense sensor scans without having to resort to brittle approximations

such as the extended Kalman filter (section 2.1.1.1). It has been applied by Thrun et al. to

the problem of map-building, with impressive results.32 A reasonable-sized set of particles

sampled using the motion and observation distributions according to the algorithm defined

in section 2.1.1.3 can stand in for the true posterior distribution—however multimodal and

non-Gaussian—when it comes to computing statistics such as the most probable pose of

the robot at each step in time, and hence, given range scan data and the observation model

describing what it measures, a probabilistic representation of the shape of the environment.

29 Burgard et al., Sonar-based mapping; it proves necessary to use a technique called

deterministic annealing which can be considered as a means of flattening out the peaks in the

likelihood landscape temporarily so that a hill-climbing algorithm can pass over them (although this

is not how the authors appear to understand what they have done)

30 Thrun et al., Integrating Topological and Metnc Maps
31 Thrun, Learning Metric-Topological Maps
32 Thrun et al., A real-time algorithm

12

2.1.2.6 Appearance-based methods

In fact, the maximum likelihood pose could simply be approximated by the most

probable pose in the sample set. However, the probability concerned has to be conditioned

on sensor readings succeeding the timestep as well as on those made before; and it is

currently a recognised weakness of particle filter techniques that they are unable to

implement the necessary backward recursion efficiently.33 Apparently for this reason, the

authors instead proceed by explicitly detecting the situations in which historical revision is

necessary, i.e. when closing a loop in the environment and returning to a previously mapped

area, but slightly out of registration with it. First, an estimate is made of the absolutely

most probable pose for the robot before a sensor scan is taken at its new position, obtained

by starting a hill-climbing optimiser off at every pose sample in the new set and recording

the best answer it finds. (It is not made clear exactly on what basis the likelihood gradient

is approximated using, presumably, the previous step's pose sample.) Next, a similar best

estimate is made of the pose, but now conditioned also on the new scan. If the robot is re-

observing a location in which it has found itself before, and its position estimate has drifted

in the meantime, the scan will conflict directly with that previously recorded, and the second

position estimate will be dragged significantly away from the first in order to bring them

into registration. When this happens, the displacement is distributed evenly between all

the moves the robot believes it has made since the last time it was here, and the roughly

corrected estimates for each timestep in the loop are used as a seed for the same gradient

ascent procedure. The eventual result is a good maximum probability estimate of the robot's

position at each point in history. The authors acknowledge that a stricter EM algorithm

might be even more robust but point out that their method is fast and offer as evidence for

its efficacy an accurate 3D map of a large building interior.

2.1.2.6. Appearance-based methods

Some kinds of sensors, such as video cameras, provide readings which take the form of

a vast array of numbers from which semantically useful information cannot be extracted in

any straightforward way. Direct learning of p(rt I ht) will then be impossible, and some kind

of preprocessing will have to be applied to reduce the dimensionality. The upside of using a

less restricted sensorium than the usual range sensors is that in realistic environments, which

typically contain many highly distinctive landmarks if only one can recognise them, it can

take a lot of strain off the fusion mechanism by making perceptual aliasing much less likely.

One interesting piece of work34 attacks this problem by deploying a battery of multi-

layer perceptrons to act as stochastic "feature detectors". When the robot wishes to make

33 Isard & Blake, A smoothing filter, p. 8; North et at., Learning and classification, p. 26; see

also section 4.3.3.2

34 Thrun, Bayesian Landmark Learning

13

2.1.2.6 Appearance-based methods

In fact, the maximum likelihood pose could simply be approximated by the most

probable pose in the sample set. However, the probability concerned has to be conditioned

on sensor readings succeeding the timestep as well as on those made before; and it is

currently a recognised weakness of particle filter techniques that they are unable to

implement the necessary backward recursion efficiently.33 Apparently for this reason, the

authors instead proceed by explicitly detecting the situations in which historical revision is

necessary, i.e. when closing a loop in the environment and returning to a previously mapped

area, but slightly out of registration with it. First, an estimate is made of the absolutely

most probable pose for the robot before a sensor scan is taken at its new position, obtained

by starting a hill-climbing optimiser off at every pose sample in the new set and recording

the best answer it finds. (It is not made clear exactly on what basis the likelihood gradient

is approximated using, presumably, the previous step's pose sample.) Next, a similar best

estimate is made of the pose, but now conditioned also on the new scan. If the robot is re-

observing a location in which it has found itself before, and its position estimate has drifted

in the meantime, the scan will conflict directly with that previously recorded, and the second

position estimate will be dragged significantly away from the first in order to bring them

into registration. When this happens, the displacement is distributed evenly between all

the moves the robot believes it has made since the last time it was here, and the roughly

corrected estimates for each timestep in the loop are used as a seed for the same gradient

ascent procedure. The eventual result is a good maximum probability estimate of the robot's

position at each point in history. The authors acknowledge that a stricter EM algorithm

might be even more robust but point out that their method is fast and offer as evidence for

its efficacy an accurate 3D map of a large building interior.

2.1.2.6. Appearance-based methods

Some kinds of sensors, such as video cameras, provide readings which take the form of

a vast array of numbers from which semantically useful information cannot be extracted in

any straightforward way. Direct learning of p(r* \ h*) will then be impossible, and some kind

of preprocessing will have to be applied to reduce the dimensionality. The upside of using a

less restricted sensorium than the usual range sensors is that in realistic environments, which

typically contain many highly distinctive landmarks if only one can recognise them, it can

take a lot of strain off the fusion mechanism by making perceptual aliasing much less likely.

One interesting piece of work34 attacks this problem by deploying a battery of multi-

layer perceptrons to act as stochastic "feature detectors". When the robot wishes to make

33 Isard & Blake, A smoothing filter, p. 8; North et al., Learning and classification, p. 26; see
also section 4.3.3.2

34 Thrun, Bayesian Landmark Learning

13

2.1.2.6 Appearance-based methods

an observation, it applies each network i to a vector of seven general properties computed

from a camera image, and treats its output as the likelihood p(r; I ht) of feature I being

present in the image, the required likelihood p(rt I ht) being assumed to be the product

of these marginals. To train the networks to pick out "useful" landmarks, a calibration

run is made during which images are collected and labelled with the robot's true position

(on a one-dimensional grid representing places along a corridor); an iterative optimiser is

deployed to adjust the neural networks' parameters so as to minimise the expected absolute

error in the estimate a robot would make of its position if it were deposited at one of the

sampled locations, shown the corresponding sensor reading, and asked to compute from it

the probability that it was at each of them. Essentially the landmark-learning problem is

reduced to classification, with a penalty for confusing two places proportional to the distance

between them.

As an aside, this arguably solves slightly the wrong problem. The authors are correct

when they claim that the procedure will (with enough data, and subject to the practical

effectiveness of the neural net training) learn landmarks which are optimal for the problem

of localising a robot which has a given fixed, prior belief distribution about where it is, and

a single sensor snapshot taken at its true position. It will tend to give priority to extracting

features which make it unlikely that two widely separated landmarks will be confused. But

strictly, if one wishes to target absolute localisation error, a more appropriate measure with

respect to the goal of "lifelong localisation" might be e.g. the expected absolute localisation

error summed over several timesteps, or something similar. And then the most common case

will (with any luck) be one in which the robot does have a reasonably good idea where it

is, so that it is unlikely to have any trouble distinguishing between well-spaced locations;

the emphasis will then switch to fine-tuning the distinctions between adjacent points which

might genuinely both seem seem plausible at once 35

A better approach suggested by Vlassis and colleagues involves optimising the reduction

in entropy with respect to the prior distribution over positions which will on average be

obtained from each observation, assuming that the positions and readings obtained during

the calibration run are representative.36 The observation model first uses PCA to reduce

(unconditionally) the dimensionality of the images obtained from a camera-a relatively

efficient way of extracting features from complex data-and then fits a linear model based on

35 It might not be difficult in principle to extend the algorithm to take this objection into

account, using the existing machinery as the M-step of an EM-type algorithm. The theoretically

optimal measure could only be calculated using a simulation or real-world trial involving the robot's

actual behaviour policy (c.f. Kaelbling et al., Planning and Acting).

36 Vlassis et al., An information-theoretic localization criterion

14

2.1.2.6 Appearance-based methods

an observation, it applies each network i to a vector of seven general properties computed

from a camera image, and treats its output as the likelihood p(r\ | /i*) of feature i being

present in the image, the required likelihood p(r*) hl) being assumed to be the product

of these marginals. To train the networks to pick out "useful" landmarks, a calibration

run is made during which images are collected and labelled with the robot's true position

(on a one-dimensional grid representing places along a corridor); an iterative optimiser is

deployed to adjust the neural networks' parameters so as to minimise the expected absolute

error in the estimate a robot would make of its position if it were deposited at one of the

sampled locations, shown the corresponding sensor reading, and asked to compute from it

the probability that it was at each of them. Essentially the landmark-learning problem is

reduced to classification, with a penalty for confusing two places proportional to the distance

between them.

As an aside, this arguably solves slightly the wrong problem. The authors are correct

when they claim that the procedure will (with enough data, and subject to the practical

effectiveness of the neural net training) learn landmarks which are optimal for the problem

of localising a robot which has a given fixed, prior belief distribution about where it is, and

a single sensor snapshot taken at its true position. It will tend to give priority to extracting

features which make it unlikely that two widely separated landmarks will be confused. But

strictly, if one wishes to target absolute localisation error, a more appropriate measure with

respect to the goal of "lifelong localisation" might be e.g. the expected absolute localisation

error summed over several timesteps, or something similar. And then the most common case

will (with any luck) be one in which the robot does have a reasonably good idea where it

is, so that it is unlikely to have any trouble distinguishing between well-spaced locations;

the emphasis will then switch to fine-tuning the distinctions between adjacent points which

might genuinely both seem seem plausible at once.35

A better approach suggested by Vlassis and colleagues involves optimising the reduction

in entropy with respect to the prior distribution over positions which will on average be

obtained from each observation, assuming that the positions and readings obtained during

the calibration run are representative.36 The observation model first uses PCA to reduce

(unconditionally) the dimensionality of the images obtained from a camera—a relatively

efficient way of extracting features from complex data—and then fits a linear model based on

35 It might not be difficult in principle to extend the algorithm to take this objection into

account, using the existing machinery as the Af-step of an EM-type algorithm. The theoretically

optimal measure could only be calculated using a simulation or real-world trial involving the robot's

actual behaviour policy (c.f. Kaelbling et al., Planning and Acting).

36 Vlassis et al., An information-theoretic localization criterion

14

2.1.2.7 Unsupemased neural networks for landmark teaming

Gaussian kernels in pose space to model the appearance of the environment at each point 37

By assessing separately the effect of each principal component on the expected localisation

entropy, it is possible to select those which are most invariant with respect e.g. to changing

light conditions.38

It's interesting to compare these schemes for learning an array of orthogonal, but

cooperatively deployed, feature detectors with recent work on "products of experts".39 One

of the most interesting features of the latter framework is that the formulation implicitly

gives rise to a tendency for the experts-actually not generative models in their own right

but feature detectors-to diversify so that they specialise in different situations. This

phenomenon is explained briefly in section 6.1.2.3; the rightmost term in equation 119 in

which it is manifested has a similar function to the term P(f) in equation 34 of Thrun,

Bayesian Landmark Learning.

Appearance-based approaches have also been generalised to mitigate further the effects

of perceptual aliasing by adopting techniques from active vision.40

2.1.2.7. Unsupervised neural networks for landmark learning

The problem of landmark learning has also been addressed through the use of neural

networks of the "unsupervised competitive learning" type41. An appealing aspect of this

school-the emphasis on speedy learning algorithms-is typified by Duckett & Nehmzow,

Performance Comparison, which plots the performance of and computational resources

required by several different methods in a realistic navigation experiment.

The simplest unsupervised nets are essentially prototype-based classifiers: for instance,

the Reduced Coulomb Energy network employed in Kurz, Constructing maps implements a

nearest-neighbour rule in sensor space to extract landmarks from the robot's experiences.

Many others are variants on the adjustable-prototype clustering paradigm; Hertz et al. point

out that what they call the "standard competitive learning rule" is equivalent to the k-

means algorithm (and hence similar to the EM mixture classification algorithm described

in section 3.3.2.1). The ART2 (Adaptive Resonance Theory) network, which has been

proposed as an engine for finding landmarks as clusters in sensor space,42 incorporates a

37 Vlassis & Krose, Robot Environment Modeling, also Pourraz & Crowley, Continuity
Properties and deVerdiere & Crowley, Local Appearance Space

38 Krose et al., Appearance based robot localization

39 Hinton, Products of experts

40 Krose & Bunschoten, Probabilistic localization, Fox & Burgard, Active Markov Localization

41 e.g. Hertz et al., Introduction to the theory of neural computation, chapter 9

42 Racz & Dubrawski, Artificial neural network

15

2.1.2.7 Unsupervised neural networks for landmark learning

Gaussian kernels in pose space to model the appearance of the environment at each point.37

By assessing separately the effect of each principal component on the expected localisation

entropy, it is possible to select those which are most invariant with respect e.g. to changing

light conditions.38

It's interesting to compare these schemes for learning an array of orthogonal, but

cooperatively deployed, feature detectors with recent work on "products of experts" ,39 One

of the most interesting features of the latter framework is that the formulation implicitly

gives rise to a tendency for the experts—actually not generative models in their own right

but feature detectors—to diversify so that they specialise in different situations. This

phenomenon is explained briefly in section 6.1.2.3; the rightmost term in equation 119 in

which it is manifested has a similar function to the term P(f) in equation 34 of Thrun,

Bayesian Landmark Learning.

Appearance-based approaches have also been generalised to mitigate further the effects

of perceptual aliasing by adopting techniques from active vision.40

2.1.2.7. Unsupervised neural networks for landmark learning

The problem of landmark learning has also been addressed through the use of neural

networks of the "unsupervised competitive learning" type41. An appealing aspect of this

school—the emphasis on speedy learning algorithms—is typified by Duckett & Nehmzow,

Performance Comparison, which plots the performance of and computational resources

required by several different methods in a realistic navigation experiment.

The simplest unsupervised nets are essentially prototype-based classifiers: for instance,

the Reduced Coulomb Energy network employed in Kurz, Constructing maps implements a

nearest-neighbour rule in sensor space to extract landmarks from the robot's experiences.

Many others are variants on the adjustable-prototype clustering paradigm; Hertz et al. point

out that what they call the "standard competitive learning rule" is equivalent to the k-

means algorithm (and hence similar to the EM mixture classification algorithm described

in section 3.3.2.1). The ART2 (Adaptive Resonance Theory) network, which has been

proposed as an engine for finding landmarks as clusters in sensor space,42 incorporates a

37 Vlassis & Krose, Robot Environment Modeling; also Pourraz fc Crowley, Continuity

Properties and deVerdiere & Crowley, Local Appearance Space
38 Krose et al., Appearance based robot localization
39 Hinton, Products of experts
40 Krose & Bunschoten, Probabilistic localization, Fox & Burgard, Active Markov Localization
41 e.g. Hertz et al., Introduction to the theory of neural computation, chapter 9
42 Racz & Dubrawski, Artificial neural network

15

2.2.1.1 Static MLPs

mechanism for limiting the number of clusters between which the data are divided. However,

the criterion is motivated by neurobiological rather than statistical considerations; and

indeed it appears that ART is not "consistent" in the sense of converging, in the infinite

limit, to a true representation of some underlying property in the data: the pattern of

clusters it finds depends strongly on the order of presentation of the training data.43 More

interestingly, the Self-Organising Map or Kohonen network44 implements a kind of clustering

with topological constraints, which could be compared with the intertwined landmark

learning and localisation algorithms discussed in section 2.1.2.2.

2.2. Neural networks for dynamics learning

Since connectionist models began to show some promise during the mid-1980s, a

large literature has grown up around the subject of using neural nets for nonlinear system

identification. Only a brief overview of this field will be given here, with a view to drawing

connections with the work presented in this thesis.

2.2.1. Multi-layer perceptrons

By far the most widely used type of neural network (and not only in the process

modelling field) is the multi-layer perceptron or MLP.45

2.2.1.1. Static MLPs

The inspiration behind MLPs was a (deliberately simplified) description of how nerve

cells in animals propagate activity amongst themselves. Each unit (cell) receives signals

telling it the activation levels of all the other units which are connected to it through a

directed link, amplified or attenuated according to the links' "weights". The incoming

signals are summed and passed through a softened version of a thresholding function, such

as a logistic, and the result determines the unit's own activation level. (It's easy to see that

this is closely related to the logistic regression model used by statisticians to describe the

43 Sarle, Why Statisticians Should Not FART
44 Hertz et al., Introduction to the theory of neural computation, p. 236

45 Bishop, Neural Networks is one of the current standard texts, placing MLPs and radial basis

functions firmly in the framework of statistical inference

16

8.2.1.1 Static MLPs

mechanism for limiting the number of clusters between which the data are divided. However,

the criterion is motivated by neurobiological rather than statistical considerations; and

indeed it appears that ART is not "consistent" in the sense of converging, in the infinite

limit, to a true representation of some underlying property in the data: the pattern of

clusters it finds depends strongly on the order of presentation of the training data.43 More

interestingly, the Self-Organising Map or Kohonen network44 implements a kind of clustering

with topological constraints, which could be compared with the intertwined landmark

learning and localisation algorithms discussed in section 2.1.2.2.

2.2. Neural networks for dynamics learning

Since connectionist models began to show some promise during the mid-1980s, a

large literature has grown up around the subject of using neural nets for nonlinear system

identification. Only a brief overview of this field will be given here, with a view to drawing

connections with the work presented in this thesis.

2.2.1. Multi-layer perceptrons

By far the most widely used type of neural network (and not only in the process

modelling field) is the multi-layer perceptron or MLP.45

2.2.1.1. Static MLPs

The inspiration behind MLPs was a (deliberately simplified) description of how nerve

cells in animals propagate activity amongst themselves. Each unit (cell) receives signals

telling it the activation levels of all the other units which are connected to it through a

directed link, amplified or attenuated according to the links' "weights". The incoming

signals are summed and passed through a softened version of a thresholding function, such

as a logistic, and the result determines the unit's own activation level. (It's easy to see that

this is closely related to the logistic regression model used by statisticians to describe the

43 Sarle, Why Statisticians Should Not FART
44 Hertz et al., Introduction to the theory of neural computation, p. 236
45 Bishop, Neural Networks is one of the current standard texts, placing MLPs and radial basis

functions firmly in the framework of statistical inference

16

2.2.1.1 Static MLPs

relationship between a dichotomous response variable and a set of explanatory variables.)

In the simplest case, the units are arranged into a series of one or more layers (typically

three), with an activation-propagating link from every unit in each layer to every unit in

the successor layer. Inputs, such as explanatory variables or sensor readings, are presented

to the network in the activiation levels of the first layer of units; the activation is allowed to

propagate through to the last layer and read off as the network's outputs. It can be shown

that given enough units in the middle, "hidden" layer, and the freedom to adjust the weights

parameter, it is possible to get an MLP to approximate any piecewise continuous function to

arbitrary accuracy over a given domain.

The process of training a neural network from example input and output vectors,

adjusting its weights so that when presented with inputs in future, it produces an output

which follows the same pattern, is best seen as an instance of maximum likelihood parameter

estimation 46 First, a measure is defined of the distance between each example output and

the network's output when presented with the corresponding input-for instance, the sum

of the squared differences between the components of each-and summed over the whole set

examples to form an error function. If the network is considered as a stochastic mapping,

which generates outputs by adding diagonal symmetrical Gaussian noise samples to the

activation levels of its final layer, the error function is proportional to the negative log

likelihood of the weights parameter given the example data. Then, a hill-climbing optimiser

is deployed to find aminimum of the error function by adjusting the weights; the result will

be a maximum likelihood parameter.

Because the activity vector of each layer depends on that of the previous one through a

linear-logistic function, it turns out to be quite straightforward to propagate the derivatives

of the error function backwards through the net in an efficient way, and they are on the

whole quite well-behaved, so that iterative optimisers based on quadratic extrapolation can

give good results quite quickly. (Because the parameter space of even a moderate-sized MLP

is large, variants of the method of conjugate gradients are widely preferred for their modest

memory requirements.) The most sophisticated training algorithms treat the evolution of

the network's weights during training as a state-space model, and treat it in an extended

Kalman filter formalism.47

Obviously, the log of any reasonable exponential-family distribution will give rise to

a perfectly usable error function if the Gaussian noise assumption is inappriopriate. The

scale parameters of the noise distribution can be reestimated from the residuals; if necessary,

46 section 3.2.4 2

47 Puskorms & Feldkamp, Decoupled extended; for the state of the art, see deneitas et al., The

EM Algorithm and Neural Networks

17

2.2.1.1 Static MLPs

relationship between a dichotomous response variable and a set of explanatory variables.)

In the simplest case, the units are arranged into a series of one or more layers (typically

three), with an activation-propagating link from every unit in each layer to every unit in

the successor layer. Inputs, such as explanatory variables or sensor readings, are presented

to the network in the activiation levels of the first layer of units; the activation is allowed to

propagate through to the last layer and read off as the network's outputs. It can be shown

that given enough units in the middle, "hidden" layer, and the freedom to adjust the weights

parameter, it is possible to get an MLP to approximate any piecewise continuous function to

arbitrary accuracy over a given domain.

The process of training a neural network from example input and output vectors,

adjusting its weights so that when presented with inputs in future, it produces an output

which follows the same pattern, is best seen as an instance of maximum likelihood parameter

estimation.46 First, a measure is defined of the distance between each example output and

the network's output when presented with the corresponding input—for instance, the sum

of the squared differences between the components of each—and summed over the whole set

examples to form an error function. If the network is considered as a stochastic mapping,

which generates outputs by adding diagonal symmetrical Gaussian noise samples to the

activation levels of its final layer, the error function is proportional to the negative log

likelihood of the weights parameter given the example data. Then, a hill-climbing optimiser

is deployed to find a.minimum of the error function by adjusting the weights; the result will

be a maximum likelihood parameter.

Because the activity vector of each layer depends on that of the previous one through a

linear-logistic function, it turns out to be quite straightforward to propagate the derivatives

of the error function backwards through the net in an efficient way, and they are on the

whole quite well-behaved, so that iterative optimisers based on quadratic extrapolation can

give good results quite quickly. (Because the parameter space of even a moderate-sized MLP

is large, variants of the method of conjugate gradients are widely preferred for their modest

memory requirements.) The most sophisticated training algorithms treat the evolution of

the network's weights during training as a state-space model, and treat it in an extended

Kalman filter formalism.47

Obviously, the log of any reasonable exponential-family distribution will give rise to

a perfectly usable error function if the Gaussian noise assumption is inappriopriate. The

scale parameters of the noise distribution can be reestimated from the residuals; if necessary,

46 section 3.2.4 2

47 Puskorius & Feldkamp, Decoupled extended; for the state of the art, see deFreitas et al., The

EM Algorithm and Neural Networks

17

2.2.2.1 Recurrent MLPs

the network then can be retrained in the light of the adjust noise model, and so on to

convergence.

The main difficulty that arises with neural network learning is overfitting of the data.

If the hidden layer is large enough to implement more or less poorly-behaved nonlinear

mappings, and the weights are allowed to grow without limit, then it will be possible to find

a parameter which can account perfectly for any moderately sized set of examples, but which

fails to interpolate smoothly between the points pinned down by the training inputs. Various

ad hoc solutions to this problem have been proposed; one of these, known as "weight decay",

can be seen to be equivalent to placing a Gaussian Bayesian prior on the weight parameter.

2.2.1.2. Bayesian methods

Indeed, since full Bayesian methods avoid (in principle) the overfitting syndrome

to which MLPs are especially prone entirely-by refraining from adopting a single best

estimate of the parameter-a lot of effort has gone into finding ways to apply them. MacKay

demonstrated a way of approximating a full Bayesian inference over a space of MLPs

of fixed architecture, interleaving gradient-based parameter updates with reestimations

of both the noise distribution and the parameter prior, and then marginalising over a

Gaussian approximation to the parameter posterior.48 Neal applied the hybrid Markov

chain Monte Carlo numerical integration algorithm to the same problem, representing the

posterior parameter space by a sample 49 More recently, groups at (for example) Cambridge

University have proposed reversible jump Monte Carlo methods for sampling from a

posterior space covering nets with different numbers of hidden units;50 they also propose a

hybrid of EKF training and Monte Carlo sampling importance resampling5l

2.2.2. MLPs for modelling dynamics

Traditionally, neural networks researchers have considered the problem of modelling

dynamics systems in the context of "recurrent networks" of neuron-like units; but there is

another, arguably more principled possibility available.

2.2.2.1. Recurrent MLPs

MLPs can be generalised to handle time series prediction and system identification

by relaxing the restriction that activity-propagating links can only point forwards through

48 MacKay, A Practical Bayesian Framework

49 Neal, Bayesian Learning

so Andrieu, Robust Full Bayesian Methods

5' deb'eitas et at., Sequential Monte Carlo methods

18

2.2.2.1 Recurrent MLPs

the network then can be retrained in the light of the adjust noise model, and so on to

convergence.

The main difficulty that arises with neural network learning is overfitting of the data.

If the hidden layer is large enough to implement more or less poorly-behaved nonlinear

mappings, and the weights are allowed to grow without limit, then it will be possible to find

a parameter which can account perfectly for any moderately sized set of examples, but which

fails to interpolate smoothly between the points pinned down by the training inputs. Various

ad hoc solutions to this problem have been proposed; one of these, known as "weight decay",

can be seen to be equivalent to placing a Gaussian Bayesian prior on the weight parameter.

2.2.1.2. Bayesian methods

Indeed, since full Bayesian methods avoid (in principle) the overfitting syndrome

to which MLPs are especially prone entirely—by refraining from adopting a single best

estimate of the parameter—a lot of effort has gone into finding ways to apply them. MacKay

demonstrated a way of approximating a full Bayesian inference over a space of MLPs

of fixed architecture, interleaving gradient-based parameter updates with reestimations

of both the noise distribution and the parameter prior, and then marginalising over a

Gaussian approximation to the parameter posterior.48 Neal applied the hybrid Markov

chain Monte Carlo numerical integration algorithm to the same problem, representing the

posterior parameter space by a sample.49 More recently, groups at (for example) Cambridge

University have proposed reversible jump Monte Carlo methods for sampling from a

posterior space covering nets with different numbers of hidden units;50 they also propose a

hybrid of EKF training and Monte Carlo sampling importance resampling51.

2.2.2. MLPs for modelling dynamics

Traditionally, neural networks researchers have considered the problem of modelling

dynamics systems in the context of "recurrent networks" of neuron-like units; but there is

another, arguably more principled possibility available.

2.2.2.1. Recurrent MLPs

MLPs can be generalised to handle time series prediction and system identification

by relaxing the restriction that activity-propagating links can only point forwards through

48 MacKay, A Practical Bayesian Framework
49 Neal, Bayesian Learning
50 Andrieu, Robust Full Bayesian Methods
51 deFreitas et al., Sequential Monte Carlo methods

18

2.2.2.2 Using MLPs in an EKE

the net, from the input end towards the output end. The network then becomes itself a

(discrete) nonlinear dynamical system, with feedback loops, but a maximum likelihood

parameter can still be estimated by minimising an appropriate training error (negative

log likelihood) over an example series of system outputs.52 At the simplest, the recurrent

network can be "unfolded" over time to form a non-recurrent MLP which embodies the same

dynamics, albeit over a finite sliding time window; then the usual gradient backpropagation

will work fine. For cases in which one is interested in trying to infer temporal relationships

over unbounded periods, Williams and Zipser53 showed how to compute the error gradients

directly in their "Real time recurrent learning" algorithm; Narendra and Parasathy54

introduced a scheme called "Dynamic back-propagation" which achieves faster performance

by framing the derivatives themselves as a recursively evolving quantity.

2.2.2.2. Using MLPs in an EKF

The problem with using the dynamics of the net itself to stand in for those of the

system being modelled is that there is no way of representing uncertainty about the

current state; the only means which the net has of making uncertain predictions is via its

output noise, which is of course constant, while the output uncertainty should ideally vary

depending on how precisely the system state is known. In general, there are three problems

to solve:

1) representing and making uncertain estimates of the system's hidden state at each

timestep from examples of its behaviour

2) making uncertain predictions from that uncertain state estimate

3) learning a model parameter which can handle 1 when the model is being used

For linear/Gaussian state-space models, a precise and comprehensive solution is available

in the shape of the Kalman filter (section 3.3.3.5); the so-called extended Kalman filter,

in which a nonlinear model is simply linearised for the purposes of propagating Gaussian

uncertainty, can of course be used with MLPs to achieve (2) and (3), with the usual caveats

about the drastic approximation on which it relies. Nelson and Wan show how two EKFs

can be run in parallel, one to estimate the state of the system during the training sequences

and the other to optimise the network parameters by EKF training in the light of that

state estimate;55 this is easily seen to be (an approximation to) an EM algorithm, like the

standard one for estimating Kalman filter parameters. It is possible that techniques for

52 For a concise application-oriented survey, see 'Ihtschku, Recurrent Multilayer Perceptrons.

53 cited in Tutschku, Recurrent Multilayer Perceptrous

54 cited in Tutschku, Recurrent Multilayer Perceptrons

55 Nelson & Wan, Neural Speech Enhancement

19

2.2.2.2 Using MLPs in an EKF

the net, from the input end towards the output end. The network then becomes itself a

(discrete) nonlinear dynamical system, with feedback loops, but a maximum likelihood

parameter can still be estimated by minimising an appropriate training error (negative

log likelihood) over an example series of system outputs.52 At the simplest, the recurrent

network can be "unfolded" over time to form a non-recurrent MLP which embodies the same

dynamics, albeit over a finite sliding time window; then the usual gradient backpropagation

will work fine. For cases in which one is interested in trying to infer temporal relationships

over unbounded periods, Williams and Zipser53 showed how to compute the error gradients

directly in their "Real time recurrent learning" algorithm; Narendra and Parasathy54

introduced a scheme called "Dynamic back-propagation" which achieves faster performance

by framing the derivatives themselves as a recursively evolving quantity.

2.2.2.2. Using MLPs in an EKF

The problem with using the dynamics of the net itself to stand in for those of the

system being modelled is that there is no way of representing uncertainty about the

current state; the only means which the net has of making uncertain predictions is via its

output noise, which is of course constant, while the output uncertainty should ideally vary

depending on how precisely the system state is known. In general, there are three problems

to solve:

1) representing and making uncertain estimates of the system's hidden state at each

timestep from examples of its behaviour

2) making uncertain predictions from that uncertain state estimate

3) learning a model parameter which can handle 1 when the model is being used

For linear/Gaussian state-space models, a precise and comprehensive solution is available

in the shape of the Kalman filter (section 3.3.3.5); the so-called extended Kalman filter,

in which a nonlinear model is simply linearised for the purposes of propagating Gaussian

uncertainty, can of course be used with MLPs to achieve (2) and (3), with the usual caveats

about the drastic approximation on which it relies. Nelson and Wan show how two EKFs

can be run in parallel, one to estimate the state of the system during the training sequences

and the other to optimise the network parameters by EKF training in the light of that

state estimate;55 this is easily seen to be (an approximation to) an EM algorithm, like the

standard one for estimating Kalman filter parameters. It is possible that techniques for

52 For a concise application-oriented survey, see Tutschku, Recurrent Multilayer Perceptrons.

53 cited in Tutschku, Recurrent Multilayer Perceptrons
54 cited in Tutschku, Recurrent Multilayer Perceptrons
55 Nelson & Wan, Neural Speech Enhancement

19

2.3.1 Stochastic worlds: reinforcement learning

avoiding the worst consequences of the EKF's assumption of model linearity and Gaussian

state uncertainty56, or even out-and-out particle filters (section 4.3.3), could be adapted for

use with MLPs.

2.2.3. Robotics applications of neural networks

MLPs are quite widely used in robotics applications, for tasks such as inverse

kinematics of robot arms or wheeled vehicles, sensor interpretation (e.g. the navigation

examples mentioned in section 2.1.2), trajectory planning, etc.57 It is possible to discuss

recurrent neural nets and the environments they model or control in terms of coupled

dynamical systems; for instance Tani has a robot learn to match its behaviour to a stable

attractor in its task space 58 The use of neural networks as "function approximators" in

reinforcement learning is discussed in Sutton and Barto's standard textbook.59

2.3. The theory of acting

Robotics theoreticians have always been interested in the general problem of how

a robot should choose its actions. Until relatively recently, the focus tended to be on

techniques for searching large, but deterministic state spaces, much as a chess computer

searches for a good move. In the last decade, the complementary problem of how to choose

actions in simple, but uncertain situations has received a lot of attention, generally from the

standpoint of Bayesian decision theory (discussed briefly in section 3.2.6.2).

The work presented in this thesis is not directly concerned with action selection, but

rather with learning a more or less goal-neutral internal model of the robot's environment.

So only a brief overview is given of the field, summarised from the standard text on

reinforcement learning by Sutton and Barto60. The reader is referred to that text for further

material and an extensive bibliography.

56 for instance Juliet & Uhlmann, A General Method

57 Narendra, Neural networks for control

58 Tani & F ukumura, A Dynamical Systems Approach

59 Sutton & Barto, Reinforcement Learning: An Introduction

60 Sutton & Barto, Reinforcement Learning: An Introduction

20

2.3.1 Stochastic worlds: reinforcement learning

avoiding the worst consequences of the EKF's assumption of model linearity and Gaussian

state uncertainty56, or even out-and-out particle filters (section 4.3.3), could be adapted for

use with MLPs.

2.2.3. Robotics applications of neural networks

MLPs are quite widely used in robotics applications, for tasks such as inverse

kinematics of robot arms or wheeled vehicles, sensor interpretation (e.g. the navigation

examples mentioned in section 2.1.2), trajectory planning, etc.57 It is possible to discuss

recurrent neural nets and the environments they model or control in terms of coupled

dynamical systems; for instance Tani has a robot learn to match its behaviour to a stable

attractor in its task space.58 The use of neural networks as "function approximators" in

reinforcement learning is discussed in Sutton and Barto's standard textbook.59

2.3. The theory of acting

Robotics theoreticians have always been interested in the general problem of how

a robot should choose its actions. Until relatively recently, the focus tended to be on

techniques for searching large, but deterministic state spaces, much as a chess computer

searches for a good move. In the last decade, the complementary problem of how to choose

actions in simple, but uncertain situations has received a lot of attention, generally from the

standpoint of Bayesian decision theory (discussed briefly in section 3.2.6.2).

The work presented in this thesis is not directly concerned with action selection, but

rather with learning a more or less goal-neutral internal model of the robot's environment.

So only a brief overview is given of the field, summarised from the standard text on

reinforcement learning by Sutton and Barto60. The reader is referred to that text for further

material and an extensive bibliography.

56 for instance Julier & Uhlmann, A General Method
57 Narendra, Neural networks for control
58 Tani & Fukumura, A Dynamical Systems Approach
59 Sutton & Barto, Reinforcement Learning: An Introduction
60 Sutton & Barto, Reinforcement Learning: An Introduction

20

2.3.1.2 Optimal policies

2.3.1. Stochastic worlds: reinforcement learning

Researchers into human and animal behaviour have long studied what natural

agents actually do when faced with the task of achieving their ends in an unknown and

unpredictable world, starting with the (now very large) literature on "conditioning". It was,

however, from the operations research community that a framework began to emerge in the

context of which it was possible to say what the right thing to do is.

2.3.1.1. Markov processes

At the heart of the modern conception of the problem is the idea of describing the

world as a Markov decision process, i.e. a system which is, at each timestep, in one of a set

of possible states, and moves to a new one according to an arbitrary probability distribution

conditional only on its current one and on an input, or action, fed into it by the agent.sr

The agent's goals are encoded by assigning a relative benefit or cost to the system's being

in each particular state, or to the performance of each action in each state; the aim is then

to choose at each timestep an action which is optimal as measured by, most commonly, the

total of future net gains it will on average yield, discounted exponentially according how far

ahead they lie. (This yardstick has obvious applications in economics and business decision-

making.)

In principle, no loss of generality is implied by this representation, and its simplicity

makes it ideal as a test bed for theoretical analysis. It can be applied directly to nontrivial

robot control problems provided that the state space has been rendered discrete and

reasonably small by adding an abstraction layer to shield the decision-maker from the full

complexity of the world as perceived through the robot's sensors. Large and even continuous

spaces can be made somewhat manageable if some extra structure is introduced, as in the

engineering literature on optimal control.

2.3.1.2. Optimal policies

Given a decision process of known character, the simplest algorithms for computing

optimal policies, i.e. assignments of recommended actions to states, work by starting with

an arbitrary policy and iteratively increasing its effectiveness as follows:

"policy evaluation": work out the worth of being in each state (or taking

each action in each state) in terms of its net discounted future reward, on the

assumption that the policy is already optimal

61 strictly, this is a first order Markov decision process

21

2.3.1.2 Optimal policies

2.3.1. Stochastic worlds: reinforcement learning

Researchers into human and animal behaviour have long studied what natural

agents actually do when faced with the task of achieving their ends in an unknown and

unpredictable world, starting with the (now very large) literature on "conditioning". It was,

however, from the operations research community that a framework began to emerge in the

context of which it was possible to say what the right thing to do is.

2.3.1.1. Markov processes

At the heart of the modern conception of the problem is the idea of describing the

world as a Markov decision process, i.e. a system which is, at each timestep, in one of a set

of possible states, and moves to a new one according to an arbitrary probability distribution

conditional only on its current one and on an input, or action, fed into it by the agent.61

The agent's goals are encoded by assigning a relative benefit or cost to the system's being

in each particular state, or to the performance of each action in each state; the aim is then

to choose at each timestep an action which is optimal as measured by, most commonly, the

total of future net gains it will on average yield, discounted exponentially according how far

ahead they lie. (This yardstick has obvious applications in economics and business decision-

making.)

In principle, no loss of generality is implied by this representation, and its simplicity

makes it ideal as a test bed for theoretical analysis. It can be applied directly to nontrivial

robot control problems provided that the state space has been rendered discrete and

reasonably small by adding an abstraction layer to shield the decision-maker from the full

complexity of the world as perceived through the robot's sensors. Large and even continuous

spaces can be made somewhat manageable if some extra structure is introduced, as in the

engineering literature on optimal control.

2.3.1.2. Optimal policies

Given a decision process of known character, the simplest algorithms for computing

optimal policies, i.e. assignments of recommended actions to states, work by starting with

an arbitrary policy and iteratively increasing its effectiveness as follows:

• "policy evaluation": work out the worth of being in each state (or taking

each action in each state) in terms of its net discounted future reward, on the

assumption that the policy is already optimal

61 strictly, this is a first order Markov decision process

21

2.3.2 Partially observable worlds

"policy improvement": adopt a new policy which chooses the action achieving the

best net discounted future reward from each state, according to those state value

assessments

It can be shown that this bootstrapping process (reminiscent of the EM algorithm discussed

in section 3.3.1) will converge to an optimal policy. The policy evaluation step can be carried

out with an iterated dynamic programming technique using the dynamics of the decision

process to bring about local consistency, or simply by the Monte Carlo method of recording

the payoffs obtained in practice after visiting each state; it turns out that this step need not

be carried to full convergence (c.f. EM with partial E-steps, section 3.3.1.3).

2.3.1.3. Unknown environments

Because the dynamics of the decision process are not used in Monte Carlo policy

evaluation, the method can be applied when no model of the environment is available

(although they still require that the agent be able to distinguish reliably between different

world states). However, they suffer from disadvantages arising from the requirement that

estimators of the state values under the current policy must be collected over an extended

period before the policy is improved. A class of "temporal difference" algorithms avoids this

by using the difference between the rewards predicted and those observed empirically over

some window following a visit to a step to drive improvements to the state value table. The

most sophisticated of these, called TD(A), uses "eligibility traces" to enable it to take into

account reward differences extended indefinitely into the future, discounting by a factor A.

2.3.1.4. Model-based learning

It is also possible to obtain an optimal policy for an unknown decision process by

interleaving the learning of an explicit model with the optimisation of a state value table

and policy conditioned on it. A policy-neutral model has the advantage that it can, if the

agent's aims change, help estimate a policy which is optimal with respect to the new state-

reinforcement assignments without the need for a further extended period of exploration.

2.3.2. Partially observable worlds

If the agent does not know directly what state the world is in, but can only observe

evidence for it in the form of outputs produced according to a state-dependent probability

distribution, the problem of choosing optimal actions becomes much more difficult. It is no

longer sufficient to construct a policy from a state or state-action value table; projections

must also be made of the effect of actions and likely observations on the agent's belief state:

for instance, it is preferable to end up in a known, moderately good state than to be in

22

2.3.2 Partially observable worlds

• "policy improvement": adopt a new policy which chooses the action achieving the

best net discounted future reward from each state, according to those state value

assessments

It can be shown that this bootstrapping process (reminiscent of the EM algorithm discussed

in section 3.3.1) will converge to an optimal policy. The policy evaluation step can be carried

out with an iterated dynamic programming technique using the dynamics of the decision

process to bring about local consistency, or simply by the Monte Carlo method of recording

the payoffs obtained in practice after visiting each state; it turns out that this step need not

be carried to full convergence (c.f. EM with partial E-steps, section 3.3.1.3).

2.3.1.3. Unknown environments

Because the dynamics of the decision process are not used in Monte Carlo policy

evaluation, the method can be applied when no model of the environment is available

(although they still require that the agent be able to distinguish reliably between different

world states). However, they suffer from disadvantages arising from the requirement that

estimators of the state values under the current policy must be collected over an extended

period before the policy is improved. A class of "temporal difference" algorithms avoids this

by using the difference between the rewards predicted and those observed empirically over

some window following a visit to a step to drive improvements to the state value table. The

most sophisticated of these, called TD(\), uses "eligibility traces" to enable it to take into

account reward differences extended indefinitely into the future, discounting by a factor A.

2.3.1.4. Model-based learning

It is also possible to obtain an optimal policy for an unknown decision process by

interleaving the learning of an explicit model with the optimisation of a state value table

and policy conditioned on it. A policy-neutral model has the advantage that it can, if the

agent's aims change, help estimate a policy which is optimal with respect to the new state-

reinforcement assignments without the need for a further extended period of exploration.

2.3.2. Partially observable worlds

If the agent does not know directly what state the world is in, but can only observe

evidence for it in the form of outputs produced according to a state-dependent probability

distribution, the problem of choosing optimal actions becomes much more difficult. It is no

longer sufficient to construct a policy from a state or state-action value table; projections

must also be made of the effect of actions and likely observations on the agent's belief state:

for instance, it is preferable to end up in a known, moderately good state than to be in

22

2.4 Summary

either a very good or very bad one and not be sure which. Of course, this situation, known

as "perceptual aliasing" in the reinforcement learning community, is endemic in robotics,

since robot sensors are rarely all-seeing.

What to do about partially observable Markov decision processes has been studied in

the context of robotics by Whitehead and Ballard62, and more recently by a group at Brown

university63; the latter have demonstrated exact algorithms for planning in the discrete

case.64 Essentially, the idea is to treat the agent's belief distribution about which state

it is in (which is uniquely determined by the Bayesian laws of uncertain reasoning) as a

continuous Markov variable.65 A cheaper solution is to include a general penalty for actions

which result in nonspecific (high-entropy) belief distributions; this is much easier to assess,

and is related to the use of entropy as a guide in deciding which sensor readings to take

or which features to extract from sensor data.66 It's possible that a Monte Carlo approach

could be adopted, at least for planning over relatively short timescales (section 6.2.2.2).

2.4. Summary

The aim of the work presented in this thesis is to develop a probabilistic model

which can be used in a similar way to the neural networks described in section 2.2-for

learning the low-level, continuous dynamics of a robot's environment in a semantically

neutral manner-but which is as open to scientific understanding and as well-founded in

its handling of uncertainty as the high-level, localisation-specific techniques described in

section 2.1. The common link will turn out to be the EM framework for coming to an

understanding simultaneously of the world's dynamics and of its hidden state, which, it has

been suggested,67 underlies the most satisfactory methods in both localisation and neural net

"system identification". This important concept will be treated in detail in section 3.3, and

will appear in section 4.2.2.1 at the heart of the Samovar model.

62 Whitehead & Ballard, Active Perception; Whitehead & Ballard, Learning to Perceive and

Act

83 Basye et al., A Decision-Theoretic Approach; Cassandra et al., Acting under Uncertainty;

see also Fusiello & Caprile, Synthesis of indoor maps and Kristensen, Sensor planning

64

65

66

67

Kaelbling et al., Planning and Acting

see also Chrisman, Reinforcement learning

Krose & Bunschoten, Probabilistic localization

section 2.2.2.2; section 2.1.2.3

23

2.4 Summary

either a very good or very bad one and not be sure which. Of course, this situation, known

as "perceptual aliasing" in the reinforcement learning community, is endemic in robotics,

since robot sensors are rarely all-seeing.

What to do about partially observable Markov decision processes has been studied in

the context of robotics by Whitehead and Ballard62, and more recently by a group at Brown

university63; the latter have demonstrated exact algorithms for planning in the discrete

case.64 Essentially, the idea is to treat the agent's belief distribution about which state

it is in (which is uniquely determined by the Bayesian laws of uncertain reasoning) as a

continuous Markov variable.65 A cheaper solution is to include a general penalty for actions

which result in nonspecific (high-entropy) belief distributions; this is much easier to assess,

and is related to the use of entropy as a guide in deciding which sensor readings to take

or which features to extract from sensor data.66 It's possible that a Monte Carlo approach

could be adopted, at least for planning over relatively short timescales (section 6.2.2.2).

2.4. Summary

The aim of the work presented in this thesis is to develop a probabilistic model

which can be used in a similar way to the neural networks described in section 2.2—for

learning the low-level, continuous dynamics of a robot's environment in a semantically

neutral manner—but which is as open to scientific understanding and as well-founded in

its handling of uncertainty as the high-level, localisation-specific techniques described in

section 2.1. The common link will turn out to be the EM framework for coming to an

understanding simultaneously of the world's dynamics and of its hidden state, which, it has

been suggested,67 underlies the most satisfactory methods in both localisation and neural net

"system identification". This important concept will be treated in detail in section 3.3, and

will appear in section 4.2.2.1 at the heart of the Samovar model.

62 Whitehead & Ballard, Active Perception; Whitehead & Ballard, Learning to Perceive and

Act
63 Basye et al., A Decision-Theoretic Approach; Cassandra et al., Acting under Uncertainty;

see also Fusiello & Capnle, Synthesis of indoor maps and Kristensen, Sensor planning
64 Kaelbling et al., Planning and Acting
65 see also Chrisman, Reinforcement learning
66 Krose & Bunschoten, Probabilistic localization
67 section 2.2.2.2; section 2.1.2.3

23

2.4 Summary

Once the Samovar model has been demonstrated, section 6.2 will discuss how the

theory of robotic decision-making surveyed in section 2.3 might be applied to using it as a

basis for behaviour.

24

2-4 Summary

Once the Samovar model has been demonstrated, section 6.2 will discuss how the

theory of robotic decision-making surveyed in section 2.3 might be applied to using it as a

basis for behaviour.

24

Chapter 3

Background

The character of the experiences of an autonomous robot places strenuous demands on

the model which is asked to predict them. Partly this is a matter of the sheer complexity of

any realistic environment. Another, related, problem is the environment's unpredictability,

at least on the basis of the information available to the robot, which can (arguably) only

be treated successfully within the framework of Bayesian inference. This chapter expands

on the problems the model has to overcome and provides an introduction to the Bayesian

theory of how to deal with them.

3.1. Requirements for the model

3.1.1. Why the robot's world is complex

Robot environments are complicated in at least three ways at once.

3.1.1.1. Arbitranness

A robot starting with no specific knowledge about its world is going to discover many

facts about it which must be treated as unconnected. For instance, the layout of the space

25

Chapter 3

Background

The character of the experiences of an autonomous robot places strenuous demands on

the model which is asked to predict them. Partly this is a matter of the sheer complexity of

any realistic environment. Another, related, problem is the environment's unpredictability,

at least on the basis of the information available to the robot, which can (arguably) only

be treated successfully within the framework of Bayesian inference. This chapter expands

on the problems the model has to overcome and provides an introduction to the Bayesian

theory of how to deal with them.

3.1. Requirements for the model

3.1.1. Why the robot's world is complex

Robot environments are complicated in at least three ways at once.

3.1.1.1. Arbitrariness

A robot starting with no specific knowledge about its world is going to discover many

facts about it which must be treated as unconnected. For instance, the layout of the space

25

3.1.2.1 Noose and nondetermin,sm

in which a mobile robot operates will have a decisive influence on the robot's experience

as it moves around. Although these effects will be deterministic, there is no way they

can be modelled as other than brute facts; generalising from them will tend not to work.

This requirement favours the choice of a model which explicitly makes room for arbitrary

phenomena, rather than one (such as a multi-layer perceptron) which treats all learning as a

problem in interpolation.

3.1.1.2. Heterogeneous regularity

Most environments will also exhibit strong quantitative relationships between some

of the variables in play, from which it is appropriate to generalise by interpolation. The

model should be able to capture these dependencies. But they will not remain the same

in all situations; they may change or break down. For instance, the way the readings from

a mobile robot's range sensor changes over time might often vary linearly with its speed,

but the coefficient might change when the robot reaches a bend in the surface of a nearby

object; or something entirely different might happen if it moves into a very cluttered area.

So again, the model should not be predisposed to shoehorn all its experiences into a single

continuously varying mapping.

3.1.1.3. Partial observability

The model will generally not be able to make good predictions based purely on

information from its current sensor readings (and motor commands). Instead, it will have

to maintain an estimate of some quantities representing that part of the state of the world

which is causally efficient with respect to its future experiences and which it cannot observe

directly, based on past data as well as present observations. In the case of a mobile robot

this might involve recognising a feature marking an area it has previously explored, or

inferring the relative orientation of a nearby surface from successive measurements of its

distance.

3.1.2. Why the robot's world is unpredictable

Uncertainty is, if anything, an even more troublesome aspect of the environment's

general capriciousness than complexity. There are several reasons why the information

available to the model in a certain situation might not warrant its offering a precise

prediction of what will happen next; intuitively, one feels that the prediction should carry

some health warning or be vague, and that the robot should therefore choose a cautious

action. The model has to draw together all the sources of uncertainty outlined below-

incommensurable as they may seem-so that they have a quantitatively correct influence on

its prediction and on the robot's behaviour.

26

3.1.2.1 Noise and nondeterminism

in which a mobile robot operates will have a decisive influence on the robot's experience

as it moves around. Although these effects will be deterministic, there is no way they

can be modelled as other than brute facts; generalising from them will tend not to work.

This requirement favours the choice of a model which explicitly makes room for arbitrary

phenomena, rather than one (such as a multi-layer perceptron) which treats all learning as a

problem in interpolation.

3.1.1.2. Heterogeneous regularity

Most environments will also exhibit strong quantitative relationships between some

of the variables in play, from which it is appropriate to generalise by interpolation. The

model should be able to capture these dependencies. But they will not remain the same

in all situations; they may change or break down. For instance, the way the readings from

a mobile robot's range sensor changes over time might often vary linearly with its speed,

but the coefficient might change when the robot reaches a bend in the surface of a nearby

object; or something entirely different might happen if it moves into a very cluttered area.

So again, the model should not be predisposed to shoehorn all its experiences into a single

continuously varying mapping.

3.1.1.3. Partial observability

The model will generally not be able to make good predictions based purely on

information from its current sensor readings (and motor commands). Instead, it will have

to maintain an estimate of some quantities representing that part of the state of the world

which is causally efficient with respect to its future experiences and which it cannot observe

directly, based on past data as well as present observations. In the case of a mobile robot

this might involve recognising a feature marking an area it has previously explored, or

inferring the relative orientation of a nearby surface from successive measurements of its

distance.

3.1.2. Why the robot's world is unpredictable

Uncertainty is, if anything, an even more troublesome aspect of the environment's

general capriciousness than complexity. There are several reasons why the information

available to the model in a certain situation might not warrant its offering a precise

prediction of what will happen next; intuitively, one feels that the prediction should carry

some health warning or be vague, and that the robot should therefore choose a cautious

action. The model has to draw together all the sources of uncertainty outlined below—

incommensurable as they may seem—so that they have a quantitatively correct influence on

its prediction and on the robot's behaviour.

26

3.1.2.4 Model failure

3.1.2.1. Noise and nondeterminism

When unpredictability is mentioned, we most commonly think of randomness. A

process is random if it is impossible in principle to make exact predictions about its

evolution, based on the available evidence: no observer, however closely they approached the

ideal of perfect rationality, could foresee precisely how it was going to behave. Clearly the

model should be able to recognise randomness in the environment and adjust its predictions

appropriately.

In fact, it should be able to distinguish between two kinds of randomness, which could

be called "noise" and "nondeterminism". The former term denotes the unpredictable

perturbation of some quantity away from its "true" value, larger disturbances being less

likely than smaller ones-the effect, for example, which electrical noise might have on the

readings from a robot's sensor. The latter refers to situations in which the system can

develop in two or more qualitatively different ways, each yielding a distinct and numerically

separate outcome, as might be the case if a robot's sensor were faulty and sometimes read

zero instead of a meaningful number. Attempts to model nondeterminism as an instance of

noise will necessarily result in misleading predictions: in the case of the broken sensor, the

conclusions will be that a low value intermediate between zero and the "working" range is

the most likely reading, even though it may in fact be impossible.

3.1.2.2. Lack of experience

The fact that the model is attempting to generalise from a finite amount of experience

in the environment should also be grounds for a measure of scepticism as to the reliability of

its predictions. If the robot finds itself in a situation whose consequences are to a greater

or lesser extent random, and which it has only had a few opportunities to observe in the

past, then it cannot be sure that it has seen all the possible outcomes. Of course, if it gets

into some position which it has never previously experienced, its uncertainty will be even

more acute. In the most extreme case the whole character of the world might change, so

that every situation is effectively a new one: for instance, a sensor which has previously

functioned correctly might go wrong. The model should be able to make allowances for the

finite nature of its knowledge, incorporating the right degree of confidence or tentativeness

into its predictions.

3.1.2.3. Ignorance of the state of the world

If the model's predictions are based on estimates of quantities in the world which are

not directly observable (section 3.1.1.3), then it needs to make allowance for how errors in

those estimates would affect the accuracy of its predictions.

27

3.1.2-4 Model failure

3.1.2.1. Noise and nondeterminism

When unpredictability is mentioned, we most commonly think of randomness. A

process is random if it is impossible in principle to make exact predictions about its

evolution, based on the available evidence: no observer, however closely they approached the

ideal of perfect rationality, could foresee precisely how it was going to behave. Clearly the

model should be able to recognise randomness in the environment and adjust its predictions

appropriately.

In fact, it should be able to distinguish between two kinds of randomness, which could

be called "noise" and "nondeterminism". The former term denotes the unpredictable

perturbation of some quantity away from its "true" value, larger disturbances being less

likely than smaller ones—the effect, for example, which electrical noise might have on the

readings from a robot's sensor. The latter refers to situations in which the system can

develop in two or more qualitatively different ways, each yielding a distinct and numerically

separate outcome, as might be the case if a robot's sensor were faulty and sometimes read

zero instead of a meaningful number. Attempts to model nondeterminism as an instance of

noise will necessarily result in misleading predictions: in the case of the broken sensor, the

conclusions will be that a low value intermediate between zero and the "working" range is

the most likely reading, even though it may in fact be impossible.

3.1.2.2. Lack of experience

The fact that the model is attempting to generalise from a finite amount of experience

in the environment should also be grounds for a measure of scepticism as to the reliability of

its predictions. If the robot finds itself in a situation whose consequences are to a greater

or lesser extent random, and which it has only had a few opportunities to observe in the

past, then it cannot be sure that it has seen all the possible outcomes. Of course, if it gets

into some position which it has never previously experienced, its uncertainty will be even

more acute. In the most extreme case the whole character of the world might change, so

that every situation is effectively a new one: for instance, a sensor which has previously

functioned correctly might go wrong. The model should be able to make allowances for the

finite nature of its knowledge, incorporating the right degree of confidence or tentativeness

into its predictions.

3.1.2.3. Ignorance of the state of the world

If the model's predictions are based on estimates of quantities in the world which are

not directly observable (section 3.1.1.3), then it needs to make allowance for how errors in

those estimates would affect the accuracy of its predictions.

27

3.2.1 The idea behind Bayesian inference

3.1.2.4. Model failure

Even if the environment is entirely deterministic, and the model has had plenty of

experience and knows exactly what is current state of the world is, its predictions may still

be unreliable if the assumptions built into the model by its designers are untrue. In this case

the model's performance should degrade gracefully, and it should perhaps also signal that a

mistake has perhaps been made.

3.1.3. Pragmatic considerations

To the wish lists above, which lay out the expressive power desired of the model, must

be added the further requirement that it should be implementable in a form which uses

as few computational resources as possible. An autonomous robot is continually making

decisions' about what to do next, so a system which takes a long time over learning, or-
worse-one from which it takes a long time to extract a recommended action is going to be

inconvenient.

3.2. Bayesian modelling

Of the requirements for the robot's environment model discussed in section 3.1, it

is the ones relating to the handling of uncertainty which appear to be the most difficult

to meet in principle. How can uncertainty be represented? How can the various kinds of

uncertainty, apparently so essentially different from each other, be brought together in a

unified framework? How can the effect which uncertainty should have on the robot's choice

of action-intuitively, "cautiousness"-be quantified? In this section a brief introduction is

given to a reasoning system which is increasingly popular across a range of disciplines and

provides answers to all these questions: Bayesian inference2.

3.2.1. The idea behind Bayesian inference

The long-established science of logic offers an account of what absolutely certain

consequences a rational being could draw from a given set of absolutely certain facts.

1 explicit or implicit

2 Lee, Bayesian Statistics; Box & Tiao, Bayesian Inference in Statistical Analysis; Jaynes,

Probability Theory, Bishop, Neural Networks

28

3.2.1 The idea behind Bayesian inference

3.1.2.4. Model failure

Even if the environment is entirely deterministic, and the model has had plenty of

experience and knows exactly what is current state of the world is, its predictions may still

be unreliable if the assumptions built into the model by its designers are untrue. In this case

the model's performance should degrade gracefully, and it should perhaps also signal that a

mistake has perhaps been made.

3.1.3. Pragmatic considerations

To the wish lists above, which lay out the expressive power desired of the model, must

be added the further requirement that it should be implementable in a form which uses

as few computational resources as possible. An autonomous robot is continually making

decisions1 about what to do next, so a system which takes a long time over learning, or—

worse—one from which it takes a long time to extract a recommended action is going to be

inconvenient.

3.2. Bayesian modelling

Of the requirements for the robot's environment model discussed in section 3.1, it

is the ones relating to the handling of uncertainty which appear to be the most difficult

to meet in principle. How can uncertainty be represented? How can the various kinds of

uncertainty, apparently so essentially different from each other, be brought together in a

unified framework? How can the effect which uncertainty should have on the robot's choice

of action—intuitively, "cautiousness"—be quantified? In this section a brief introduction is

given to a reasoning system which is increasingly popular across a range of disciplines and

provides answers to all these questions: Bayesian inference2,

3.2.1. The idea behind Bayesian inference

The long-established science of logic offers an account of what absolutely certain

consequences a rational being could draw from a given set of absolutely certain facts.

1 explicit or implicit
2 Lee, Bayesian Statistics; Box fe Tiao, Bayesian Inference in Statistical Analysis; Jaynes,

Probability Theory, Bishop, Neural Networks

28

8.2.1.1 The laws of rationality

Bayesian inference is an extension of logic to more realistic cases in which the reasoner's

beliefs, and hence the conclusions she can draw, are not necessarily certain. It works by

replacing the binary truth value of Boolean logic, which, when predicated of a proposition,

indicates whether a subject ought to assent to it or not, with a real value which denotes

instead the degree of certainty with which she should credit it.

8.2.1.1. The laws of rationality

Obviously this move only makes sense if the semantics of the new continuous scale

of truth values, and the axioms by which they are combined, can be given a rigorous and

justifiable definition. Modern Bayes theory does this by demonstrating, from remarkably

simple and uncontroversial desiderata, that there is only one possible set of axioms for the

system, and that they determine the truth values up to isomorphism3. The axioms obtained

are identical with the familiar basic rules of probability theory; and as one might expect, the

extremal truth values can be fixed by convention so that unity means "definitely true", zero

means "definitely untrue", and the axioms of logic drop out as special cases.

Since the foundation of the theory-the proof that the laws of probability are so clearly

the only possible ones that they can reasonably be given normative status as the axioms of

rationality-can sound counterintuitive, it's perhaps worth quoting the premises in full here:4

1) Degrees of plausibility are represented by real numbers.

2) If p(A I D) > p(A I C), then p(-AID) < p(-A I C);

3) ... and if additionally p(B I A, D) = p(B I A, C), then p(A, BID) > p(A, B I C).

4) If a conclusion can be reasoned out in more than one way, then every possible way

must lead to the same result.

5) The robot always takes into account all of the evidence it has relevant to a

question. It does not arbitrarily ignore some of the information, basing its

conclusions only on what remains.

6) The robot always represents equivalent states of knowledge by equivalent

plausibility assignments. That is, if in two problems the robot's state of knowledge

is the same (except perhaps for the labelling of the propositions), then it must

assign the same plausibilities in both.

3 t. e. uniquely given the choice of 0 and 1 as extremal values

4 adapted from Jaynes, Probability Theory, chapter 1, equations 1-17 and 1-20 to 1-23 (eliding

in the interests of brevity the distinction between "probabilities" and "plausibilities")

29

3.2.1.1 The laws of rationality

Bayesian inference is an extension of logic to more realistic cases in which the reasoner's

beliefs, and hence the conclusions she can draw, are not necessarily certain. It works by

replacing the binary truth value of Boolean logic, which, when predicated of a proposition,

indicates whether a subject ought to assent to it or not, with a real value which denotes

instead the degree of certainty with which she should credit it.

3.2.1.1. The laws of rationality

Obviously this move only makes sense if the semantics of the new continuous scale

of truth values, and the axioms by which they are combined, can be given a rigorous and

justifiable definition. Modern Bayes theory does this by demonstrating, from remarkably

simple and uncontroversial desiderata, that there is only one possible set of axioms for the

system, and that they determine the truth values up to isomorphism3. The axioms obtained

are identical with the familiar basic rules of probability theory; and as one might expect, the

extremal truth values can be fixed by convention so that unity means "definitely true", zero

means "definitely untrue", and the axioms of logic drop out as special cases.

Since the foundation of the theory—the proof that the laws of probability are so clearly

the only possible ones that they can reasonably be given normative status as the axioms of

rationality—can sound counterintuitive, it's perhaps worth quoting the premises in full here:4

1) Degrees of plausibility are represented by real numbers.

2) If p(A | D) > p(A | C), then p(-.A | D) < p(-ul | C);

3) ... and if additionally p(B \A,D)= p(B \A,C), then p(A, B\D}> p(A, B\C).

4) If a conclusion can be reasoned out in more than one way, then every possible way

must lead to the same result.

5) The robot always takes into account all of the evidence it has relevant to a

question. It does not arbitrarily ignore some of the information, basing its

conclusions only on what remains.

6) The robot always represents equivalent states of knowledge by equivalent

plausibility assignments. That is, if in two problems the robot's state of knowledge

is the same (except perhaps for the labelling of the propositions), then it must

assign the same plausibilities in both.

3 i.e. uniquely given the choice of 0 and 1 as extremal values

4 adapted from Jaynes, Probability Theory, chapter 1, equations 1-17 and 1-20 to 1-23 (eliding

in the interests of brevity the distinction between "probabilities" and "plausibilities")

29

3.2.1.3 The controversy surrounding Bayessan methods

The mathematics involved in getting from these apparently innocuous inequalities and

principles to the product rule

p(A, B I C) = p(A I B, C) p(B I C) = p(B I
A, C) p(A I C) (2)

and sum rule

p(A I B) + p(-A I B) = 1

is not trivial, but it is rigorous .5 The rest of the apparatus of probability theory follows

from those results, and its applicability to the standard population-sampling problems is

established using the symmetry principle (item 6 above).6

3.2.1.2. Condittonality and subjectivity

(3)

The most important thing to understand about Bayesian theory is the emphasis it

places on conditional probability. In fact, almost all (non-tautological) Bayesian probabilities

are conditional, just as all (non-tautological) logical truths are conditional on a set of

hypotheses. Unlike in some other theories which consider probabilities to be inherent

properties of physical systems, there is no notion of an "objectively true" answer to the

question "What is the probability/degree of certainty that the random variable X will take

the value x?". Instead, Bayes offers an answer which is "uniquely rational", given one's

state of knowledge. The talk is in principle always of p(X = x I), never of p(X = x).

In this sense Bayesian inference is openly subjective. Probabilities are all in the mind, and

two reasoners whose beliefs differ can come to different conclusions when presented with the

same evidence7.

This does not mean that in accepting Bayesian theory, one is adopting a philosophical

stance which relativises truth. One can talk in the third person about the true state of

affairs in the world, reasoners' differing experiences of the world, the subjective conclusions

they each come to on the basis of that experience, and the objective accuracy of those

conclusions. The subjectivity of Bayesian inference is akin to that of logical inference.

3.2.1.3. The controversy surrounding Bayesian methods

Until the 20th century, most writers on probability theory (from the Bernoullis to

Maxwell) conceived of the field very much in terms of a search for laws of rationality,

with the normative status of logical axioms-what would now be called a Bayesian

5 Jaynes, Probability Theory, chapter 2; Cox, Probability

6 Jaynes, Probability Theory, chapter 3

7 For a striking example, see Jaynes, Probability Theory, chapter 3, p. 507.

30

3.2.1.3 The controversy surrounding Bayesian methods

The mathematics involved in getting from these apparently innocuous inequalities and

principles to the product rule

p(A, B\C)=p(A\ B, C) p(B | C) = p(B \ A, C) p(A \ C) (2)

and sum rule

p(A\B)+p(^A\B) = l (3)

is not trivial, but it is rigorous.5 The rest of the apparatus of probability theory follows

from those results, and its applicability to the standard population-sampling problems is

established using the symmetry principle (item 6 above).6

3.2.1.2. Conditionality and subjectivity

The most important thing to understand about Bayesian theory is the emphasis it

places on conditional probability. In fact, almost all (non-tautological) Bayesian probabilities

are conditional, just as all (non-tautological) logical truths are conditional on a set of

hypotheses. Unlike in some other theories which consider probabilities to be inherent

properties of physical systems, there is no notion of an "objectively true" answer to the

question "What is the probability/degree of certainty that the random variable X will take

the value x?". Instead, Bayes offers an answer which is "uniquely rational", given one's

state of knowledge. The talk is in principle always of p(X = x\ • • •), never of p(X = x).

In this sense Bayesian inference is openly subjective. Probabilities are all in the mind, and

two reasoners whose beliefs differ can come to different conclusions when presented with the

same evidence7.

This does not mean that in accepting Bayesian theory, one is adopting a philosophical

stance which relativises truth. One can talk in the third person about the true state of

affairs in the world, reasoners' differing experiences of the world, the subjective conclusions

they each come to on the basis of that experience, and the objective accuracy of those

conclusions. The subjectivity of Bayesian inference is akin to that of logical inference.

3.2.1.3. The controversy surrounding Bayesian methods

Until the 20th century, most writers on probability theory (from the Bernoullis to

Maxwell) conceived of the field very much in terms of a search for laws of rationality,

with the normative status of logical axioms—what would now be called a Bayesian

5 Jaynes, Probability Theory, chapter 2; Cox, Probability
6 Jaynes, Probability Theory, chapter 3
7 For a striking example, see Jaynes, Probability Theory, chapter 3, p. 507.

30

3.2.2 Bayesian inference using models

programme .8 But from the early 1900s on, with the foundation of modern statistics in the

shape of the "frequentist" and related theories by Neyman, Pearson, Fisher, and others,

the Bayesian account came to be considered extremely controversial. In part this was a

consequence of a natural desire to avoid bringing "metaphysical" considerations about the

nature of rationality into the solution of the very down-to-earth problems which drove the

development of the field. Other criticisms focused on the element of subjectivity in Bayesian

theory noted in section 3.2.1.2: surely a system which claimed that two rational people could

draw different conclusions from the same statistical data was at best suboptimal, at worst

absurd. And of course before Cox, Probability the foundations of Bayes theory did not seem

as solid as they do now, while on the other hand the "adhockeries" and paradoxes of classical

statistics pointed out by the Bayesians were not yet widely recognised.

In recent years the Bayesian approach to statistics has once again become fashionable,

its popularity resting mainly on the very practical consideration that the answers obtained

from frequentist methods in many problems of interest to industry seem too conservative,

and only obliquely related to the questions asked. But whatever one's position on the

admissibility of Bayesian methods in traditional applications of statistics, as a set of

principles for programming a machine to reason and learn in an uncertain world, the theory

is very compelling; and indeed many successful commercial applications ranging from speech

recognition and expert systems to knowledge management, as well as recent advances in

robotics, are or can be seen as essentially Bayesian.

3.2.2. Bayesian inference using models

Bayesian inference is well suited to the kind of application, common in engineering,

in which the reasoner has a model of some process in the world, and wishes to use it in

conjunction with her measurements of some observable quantities to make inferences or

predictions about the values of other quantities.

As a trivial example, she might have a machine which, at each timestep t, picks at

random from a bin containing several different kinds of object, and then says as the value rt

of its output Rt which kind it chose. The reasoner's knowledge O about the machine is

enough for her to be able to tabulate the distribution

p(Rt = rt I O) = proportion of rt-type objects in bin (4)

Or, if the machine instead has several trays, and the value at of its input At tells it which to

use, she can tabulate the conditional density

p(Rt = I At = at O) = proportion of rt-type objects in bin at (5)

a Jaynes, Probability Theory, passim

31

3.2.2 Bayesian inference using models

programme.8 But from the early 1900s on, with the foundation of modern statistics in the

shape of the "frequentist" and related theories by Neyman, Pearson, Fisher, and others,

the Bayesian account came to be considered extremely controversial. In part this was a

consequence of a natural desire to avoid bringing "metaphysical" considerations about the

nature of rationality into the solution of the very down-to-earth problems which drove the

development of the field. Other criticisms focused on the element of subjectivity in Bayesian

theory noted in section 3.2.1.2: surely a system which claimed that two rational people could

draw different conclusions from the same statistical data was at best suboptimal, at worst

absurd. And of course before Cox, Probability the foundations of Bayes theory did not seem

as solid as they do now, while on the other hand the "adhockeries" and paradoxes of classical

statistics pointed out by the Bayesians were not yet widely recognised.

In recent years the Bayesian approach to statistics has once again become fashionable,

its popularity resting mainly on the very practical consideration that the answers obtained

from frequentist methods in many problems of interest to industry seem too conservative,

and only obliquely related to the questions asked. But whatever one's position on the

admissibility of Bayesian methods in traditional applications of statistics, as a set of

principles for programming a machine to reason and learn in an uncertain world, the theory

is very compelling; and indeed many successful commercial applications ranging from speech

recognition and expert systems to knowledge management, as well as recent advances in

robotics, are or can be seen as essentially Bayesian.

3.2.2. Bayesian inference using models

Bayesian inference is well suited to the kind of application, common in engineering,

in which the reasoner has a model of some process in the world, and wishes to use it in

conjunction with her measurements of some observable quantities to make inferences or

predictions about the values of other quantities.

As a trivial example, she might have a machine which, at each timestep t, picks at

random from a bin containing several different kinds of object, and then says as the value r*

of its output R* which kind it chose. The reasoner's knowledge 0 about the machine is

enough for her to be able to tabulate the distribution

p(Rl = r* | 0) = proportion of r*-type objects in bin (4)

Or, if the machine instead has several trays, and the value o* of its input A* tells it which to

use, she can tabulate the conditional density

p(R* = r* | A* = a*, 0) = proportion of retype objects in bin a* (5)

8 Jaynes, Probability Theory, passim

31

8.2.2.2 Bayes'rule

which says what her degrees of certainty about the different possible outputs should be,

if the machine is given a particular input. (As was noted in section 3.2.1.1, this equality

between Bayesian probabilities and population proportions follows from considerations of

symmetry.) If she knows At precisely then she can just read off the implied density of Rt.

This distribution is in a sense her "estimate" of Rt, since it includes all the information she

has about it-but it will not in general take the form of a single best estimate, or a range

around some central value; it could be any legal probability density.

3.2.2.1. Marginalisation

If she does not know for sure what At is-%.e. her belief-density over its possible values

is non-zero at more than one point-then she can still estimate Rt by performing what is

called a "marginalisation". Representing all the knowledge she has which is relevant to the

value of At by .A, she should compute

p(Rt = rt I E), A) =
J

p(Rt = rt, At = at I E), A) by sum rule
it

=
J

p(Rt = rt I At = at, e) p(At = at I A) by product rule L
-the expectation of (5) over the degree of certainty she attaches to each possible value

of A. (Note that A has been dropped when a particular At = at is asserted on the right

hand side of a conditional probability, since a firm hypothesis about the input renders

irrelevant previous information about what it might otherwise have been.)

This is not the same as calculating an averaged "single best estimate" value for Rt: it is

the whole distribution whose expectation is taken, so much more information is preserved. If

the variables are discrete, and the distribution (5) takes the form of a table, the integration

is a summation and the marginalisation is essentially a matrix multiplication. (Discussion of

the case of continuous distributions is deferred until the big picture has been sketched in.)

3.2.2.2. Bayes' rule

Suppose, on the other hand, the modeller can measure the output Rt precisely and is

interested in sharpening up her idea of what the input At must have been. She wants to

know p(At = at I Rt = rt, 0, A), but her model tells her p(Rt = rt I At = at, e)-she needs to

reverse the direction of conditionality, and to do that she has to use Bayes' rule9:

p(At=atlRt=rt,e,A)=p(Rt r'IAt_a,0)p(At=at
IA) = r e, A)

9 Bayes' rule is a straightforward consequence of the product rule (equation 2).

32

3.2.2.2 Bayes'rule

which says what her degrees of certainty about the different possible outputs should be,

if the machine is given a particular input. (As was noted in section 3.2.1.1, this equality

between Bayesian probabilities and population proportions follows from considerations of

symmetry.) If she knows Ai precisely then she can just read off the implied density of R*.

This distribution is in a sense her "estimate" of R*, since it includes all the information she

has about it—but it will not in general take the form of a single best estimate, or a range

around some central value; it could be any legal probability density.

3.2.2.1. Marginalisation

If she does not know for sure what A* is—i. e. her belief-density over its possible values

is non-zero at more than one point—then she can still estimate /?* by performing what is

called a "marginalisation". Representing all the knowledge she has which is relevant to the

value of A1 by A, she should compute

p(Ri = r* | 0, A) = I p(Ri = r*, A* = a* | 0, A) by sum rule
Ja*

= I p(R
t = r* | A1 = a*, 0) p(A* = a* | A) by product rule

Ja*

—the expectation of (5) over the degree of certainty she attaches to each possible value

of A*. (Note that A has been dropped when a particular A* = a* is asserted on the right

hand side of a conditional probability, since a firm hypothesis about the input renders

irrelevant previous information about what it might otherwise have been.)

This is not the same as calculating an averaged "single best estimate" value for Rl: it is

the whole distribution whose expectation is taken, so much more information is preserved. If

the variables are discrete, and the distribution (5) takes the form of a table, the integration

is a summation and the marginalisation is essentially a matrix multiplication. (Discussion of

the case of continuous distributions is deferred until the big picture has been sketched in.)

3.2.2.2. Bay es'rule

Suppose, on the other hand, the modeller can measure the output R* precisely and is

interested in sharpening up her idea of what the input A* must have been. She wants to

know p(A* — a1 \ R* = r*, 0, A), but her model tells her p(R* = r* \ A1 = a*, 0)—she needs to

reverse the direction of conditionality, and to do that she has to use Bayes' rule9:

n(f}t — rt I At _ nt ft}
- nt I & - rt & A\- H-" - r I A —a,v) (At _ t\ A\- a |tf -r,U,A)- t t P(A-a\A)

9 Bayes' rule is a straightforward consequence of the product rule (equation 2).

32

3.2.3.1 Learning as Inference

In this formula p(At = at I A) is called the "prior", p(Rt = rt I At = at, 0) the "likelihood"

and p(Rt = rt 10, A) the "normaliser". The resulting density p(At = at I Rt = rt, O, A) is

called the "posterior".

The denominator can also be expanded by marginalising over At,

P(Rt = rt I At = at, O) At at

fa, p(Rt=rt IAt=at, 0)p(At=at'IA)P A)

whence it can be seen that the posterior is obtained by simply adjusting the prior up for ats

which make the observed rt more likely than the other ats do on average, and down for those

that make it less likely. The coefficient involved (likelihood = normaliser) is sometimes called

the "Bayes factor".

3.2.2.3. Cause and effect?

It is often convenient to call At the "cause" and Rt the "effect" it has by means of a

process described by O. But nothing in the theory says that the relationship is really one

of physical causation-it's only necessary that the reasoner's beliefs O should be such as to

make her beliefs about the value of Rt depend on her beliefs about the value of At, and that

allows for Os specifying reverse causation (Rt causing At) or joint causation, or making no

judgment about causation at all. So the terms should be seen as a useful shorthand.

3.2.3. Bayesian model learning

Section 3.2.2 showed how Bayesian methods can be used to predict effects from causes

given a model, or conversely to infer causes from effects given a model using Bayes' rule.

The Bayesian theory of learning simply involves applying Bayes' rule in a slightly different

way to fill in the third side of the triangle and estimate the model from observed effects and

causes.

3.2.3.1. Learning as inference

The idea is to treat the model as just another quantity which needs to be estimated,

and write down what the estimate should be:

p(O=BI Atat,Rt=rt,R)= p(Rt=rtIAt=at,B=0)
B 7l

fop(Rt=rtIAt=at,O=0)P(O=IIR)P(0
- - I)

Here O = B denotes the proposition that the process by which At causes Rt is as

described by the specification B; the observations at and rt together comprise an example

of the process in action; and IL represents the prior knowledge the reasoner had before

the observations came in which was relevant to B. Bayes' rule says what her posterior

33

3.2.3.1 Learning as inference

In this formula p(A* = a f \ A) is called the "prior", p(Rt = r* \ At = a*, 0) the "likelihood"

&ndp(Rt = r* | 0,^4) the "normaliser" . The resulting density p(A* = at\Rt = r*,Q,A) is

called the "posterior" .

The denominator can also be expanded by marginalising over A*,

= a*, . t_ t
P(~ ° ' '

whence it can be seen that the posterior is obtained by simply adjusting the prior up for o*s

which make the observed r1 more likely than the other a*s do on average, and down for those

that make it less likely. The coefficient involved (likelihood -r normaliser) is sometimes called

the "Bayes factor".

3.2.2.3. Cause and effect?

It is often convenient to call A* the "cause" and R* the "effect" it has by means of a

process described by 0. But nothing in the theory says that the relationship is really one

of physical causation — it's only necessary that the reasoner's beliefs 0 should be such as to

make her beliefs about the value of R* depend on her beliefs about the value of A*, and that

allows for 0s specifying reverse causation (R* causing A*) or joint causation, or making no

judgment about causation at all. So the terms should be seen as a useful shorthand.

3.2.3. Bayesian model learning

Section 3.2.2 showed how Bayesian methods can be used to predict effects from causes

given a model, or conversely to infer causes from effects given a model using Bayes' rule.

The Bayesian theory of learning simply involves applying Bayes' rule in a slightly different

way to fill in the third side of the triangle and estimate the model from observed effects and

causes.

3.2.3.1. Learning as inference

The idea is to treat the model as just another quantity which needs to be estimated,

and write down what the estimate should be:

Here 0 = 9 denotes the proposition that the process by which A* causes JZ* is as

described by the specification 9; the observations a* and r* together comprise an example

of the process in action; and "H represents the prior knowledge the reasoner had before

the observations came in which was relevant to 0. Bayes' rule says what her posterior

33

3.2.4.1 Model spaces

belief-density for B should be: what credence she should now give to each of the possible

alternative models.

In practice, of course, she will want to base her estimate of 0 on more than one At, Rt

observation. Suppose she has a set d of readings at, rt taken at different times t, and part of

her background knowledge g{ is that they are independent. Then-adopting now the usual

space-saving convention that the elided "proposition" at means At = at-she will conclude

that

p(O I d, Ili) =
IIt p(rt I at, 0)

p(B I W) f (IItp(rt Iat,sb))p(tbI N)

3.2.3.2. Making predictions

(6)

How is the learner to use her estimate of B, based on the observations d = al o,T) rl 0,T)

to predict what the output of the process will be if it is given a new input aT? If the

information provided by d has enabled her to pin 0 down precisely, she can just read off

p(rT I aT, 0). Otherwise, she must marginalise over the model (cf. section 3.2.2.1), making

use of the posterior distribution for 0 derived in (6):

p(rTIa',d,gt) = L T laT,0)p(BId,7) (7)

What's so impressive about this formula is that it makes quantitative allowance both for

the learner's remaining uncertainty about the model (since she has learned it from a finite

number of experiences-recall section 3.1.2.2), and for any element of randomness in the

models themselves (section 3.1.2.1). If in addition she marginalises over aT,

p(rTIA,d,fl)= f p(rTIa',0)p(aTIA)p(BId,1L)
a aT

then she can also cope with situations in which she doesn't know the precise value of the

model input (section 3.1.2.3).

3.2.4. Practical implementation of the approach

The importance of the Bayesian framework lies not only in the elegant answer it offers

to the question of what learning is-i.e. a kind of inference-and the ease with which

it draws together different kinds of uncertainty, but also in the context it provides for

understanding the difficulties which the learner must confront when she comes to apply the

theory in practice.

3.2.4.1. Model spaces

Chief among these is the requirement when performing the marginalisation (7) that she

must consider every possible model 0. There is no way she can really do that-the space

34

3.2.4-1 Model spaces

belief-density for 9 should be: what credence she should now give to each of the possible

alternative models.

In practice, of course, she will want to base her estimate of 9 on more than one A*, R*

observation. Suppose she has a set d of readings a*,r* taken at different times t, and part of

her background knowledge T-L is that they are independent. Then — adopting now the usual

space-saving convention that the elided "proposition" a* means A* = o* — she will conclude

that

3.2.3.2. Making predictions

How is the learner to use her estimate of 9, based on the observations d = a^-°'T^,r^°'T^

to predict what the output of the process will be if it is given a new input OT? If the

information provided by d has enabled her to pin 6 down precisely, she can just read off

p(rT \aT,6). Otherwise, she must marginalise over the model (cf. section 3.2.2.1), making

use of the posterior distribution for 9 derived in (6):

P(rT\aT,d,H)= [P(rT\aT,9)p(9\d,'H) (7)
Jo

What's so impressive about this formula is that it makes quantitative allowance both for

the learner's remaining uncertainty about the model (since she has learned it from a finite

number of experiences — recall section 3.1.2.2), and for any element of randomness in the

models themselves (section 3.1.2.1). If in addition she marginalises over ar,

p(rT | A, d, U] = / p(rT | aT, 0) p(aT \ A) P(9 \ d, ft)
Je,aT

then she can also cope with situations in which she doesn't know the precise value of the

model input (section 3.1.2.3).

3.2.4. Practical implementation of the approach

The importance of the Bayesian framework lies not only in the elegant answer it offers

to the question of what learning is — i.e. a kind of inference — and the ease with which

it draws together different kinds of uncertainty, but also in the context it provides for

understanding the difficulties which the learner must confront when she comes to apply the

theory in practice.

3.2.4.I. Model spaces

Chief among these is the requirement when performing the marginalisation (7) that she

must consider every possible model 9. There is no way she can really do that — the space

34

3.2.4.2 (Local) maximum likelihood learning

of all conceivable models for processes being hopelessly large and complicated-unless her

background knowledge 7{ rules all but a tractable subset of them out as entirely doubtful.

This subset is called the model space.

The most convenient situation is when the model space comprises a small finite number

of possibilities. Then the posterior distribution (6) is discrete and the marginalisation can be

performed by enumeration.

If the space of possible models is large or continuous, but it and the prior distribution

over its members (p(O J?{) in (6)) can be represented in a well-behaved parameterised form,

then learning and the making of predictions can still be tractable. To take a trivial example,

if the learner knows that the process being modelled generates the outputs from some

Gaussian distribution (and just ignores the inputs), she can adopt "all Gaussians" as her

model space, parameterised by their means and variances.10 In very simple cases, it turns

out that the marginalisation can be performed symbolically. Otherwise the integral involved

will not have a closed form solution, and she will have to deploy a suitable numerical

integration algorithm. (As the model space and prior are made more complicated, the

posterior can become so badly behaved, by the normal standards of numerical analysis,

that marginalisation is only possible using the more sophisticated Monte Carlo integration

techniques, and tends to take a long time.11)

3.2.4.2. (Local) maximum likelihood learning

However, the integration is not necessary if the uncertainty in the estimate of the model

is negligible (section 3.2.3.2); and if the estimate has been made from a large number of

observations, the learner is often able to establish that this is indeed the case. Then the

whole posterior distribution is concentrated close to a single, "maximum a posteriori"

(MAP) model, the full marginalisation is clearly overkill, and it is sufficient to consider the

predictive distribution conditioned on the MAP model:

p(rT I aT, d, 71) p(rT I
aT, 9*)

where B" = argmax p(O I d,71)
s

In this case it will often also be true that the prior distribution p(B I7L) of the model

has little influence on the posterior maximum, so that the MAP model is close to the one

10 see also section 3.2.5.2

11 Neal, Probabilistic inference

(8)

35

3.2.4-2 (Local) maximum likelihood learning

of all conceivable models for processes being hopelessly large and complicated—unless her

background knowledge ft rules all but a tractable subset of them out as entirely doubtful.

This subset is called the model space.

The most convenient situation is when the model space comprises a small finite number

of possibilities. Then the posterior distribution (6) is discrete and the marginalisation can be

performed by enumeration.

If the space of possible models is large or continuous, but it and the prior distribution

over its members (p(9 |ft) in (6)) can be represented in a well-behaved parameterised form,

then learning and the making of predictions can still be tractable. To take a trivial example,

if the learner knows that the process being modelled generates the outputs from some

Gaussian distribution (and just ignores the inputs), she can adopt "all Gaussians" as her

model space, parameterised by their means and variances.10 In very simple cases, it turns

out that the marginalisation can be performed symbolically. Otherwise the integral involved

will not have a closed form solution, and she will have to deploy a suitable numerical

integration algorithm. (As the model space and prior are made more complicated, the

posterior can become so badly behaved, by the normal standards of numerical analysis,

that marginalisation is only possible using the more sophisticated Monte Carlo integration

techniques, and tends to take a long time.11)

3.2.4.2. (Local) maximum likelihood learning

However, the integration is not necessary if the uncertainty in the estimate of the model

is negligible (section 3.2.3.2); and if the estimate has been made from a large number of

observations, the learner is often able to establish that this is indeed the case. Then the

whole posterior distribution is concentrated close to a single, "maximum a posteriori"

(MAP) model, the full marginalisation is clearly overkill, and it is sufficient to consider the

predictive distribution conditioned on the MAP model:

P(rT\aT,d,n)Kp(rT\aT,9*)

where 9* = argmax p(Q \ d, ft) (8)
6

In this case it will often also be true that the prior distribution p(9 \ ft) of the model

has little influence on the posterior maximum, so that the MAP model is close to the one

10 see also section 3.2.5.2

11 Neal, Probabilistic inference

35

3.2.4.3 Approzzmation using simple models

which maximises the "likelihood" term:

B` = argmax P(9 I d, f)
0

= argmax p(d 9)
p(9 I fl) see (6)

e p(d l'H)
s:ts argmax p(d 19)

s

= argmax fJp(rt

I at, 9)
B t

Then the likelihood is said to "dominate" the prior-the latter will be approximately

constant across the narrow range in which the former is not effectively zero. This is the

Bayesian justification for the method of "maximum likelihood estimation". Because the

maximisation involves finding a root of the derivative of the likelihood with respect to the

parameter, it is convenient to look at the log of the likelihood

= argmax T log p(rt at, 9) since log is convex
t

(9)

If the model distribution p(rt I at, 9) is a member of the exponential family (all the obvious

ones are), then its log will tend to have a friendly derivative which can then be summed over

the whole training set to produce the overall value.

However, the maximisation may be very difficult to perform perfectly if the space is

badly behaved, having many modes and making it impossible to find the globally best model

using gradient-based search algorithms. So reasoning the Bayesianly correct way will often

turn out to be impractical, or at least inconvenient. Then all the learner can do is take the

single most probable model she has been able to find, and adopt it as a hypothesis. Given

the constraints on her ability to entertain and draw the consequences from the much more

complex beliefs which she ought ideally to be holding, this is the most rational way for her

to proceed.

What if there is some residual uncertainty in the model-the observations were not

sufficient to narrow the posterior down to a tiny part of the model space-but the learner

does not wish to attempt a full marginalisation over the posterior? The distribution will

take the form not of sharp peaks, dominated by that of the globally MAP model, but of

finitely wide "islands" of probability mass. Sometimes she may be able to obtain a good

local approximation to the posterior, and therefore of the shape of the island around each

locally MAP model; and that may enable her to proceed by finding the best (point) model

she can and performing a kind of local marginalisation around it.12

12 MacKay, A Practical Bayesian Framework

36

3.2.4-3 Approximation using simple models

which maximises the "likelihood" term:

9* = argmaxp(0|d,ft)
8

see(6)

w argmax p(d \ 9)
e

= argmax TTp(r* I a1, 9)
o t

Then the likelihood is said to "dominate" the prior — the latter will be approximately

constant across the narrow range in which the former is not effectively zero. This is the

Bayesian justification for the method of "maximum likelihood estimation" . Because the

maximisation involves finding a root of the derivative of the likelihood with respect to the

parameter, it is convenient to look at the log of the likelihood

• • • = argmax V^ logp(r* | a*, 9) since log is convex (9)
0 t

If the model distribution p(r* | a*, 9) is a member of the exponential family (all the obvious

ones are), then its log will tend to have a friendly derivative which can then be summed over

the whole training set to produce the overall value.

However, the maximisation may be very difficult to perform perfectly if the space is

badly behaved, having many modes and making it impossible to find the globally best model

using gradient-based search algorithms. So reasoning the Bayesianly correct way will often

turn out to be impractical, or at least inconvenient. Then all the learner can do is take the

single most probable model she has been able to find, and adopt it as a hypothesis. Given

the constraints on her ability to entertain and draw the consequences from the much more

complex beliefs which she ought ideally to be holding, this is the most rational way for her

to proceed.

What if there is some residual uncertainty in the model — the observations were not

sufficient to narrow the posterior down to a tiny part of the model space — but the learner

does not wish to attempt a full marginalisation over the posterior? The distribution will

take the form not of sharp peaks, dominated by that of the globally MAP model, but of

finitely wide "islands" of probability mass. Sometimes she may be able to obtain a good

local approximation to the posterior, and therefore of the shape of the island around each

locally MAP model; and that may enable her to proceed by finding the best (point) model

she can and performing a kind of local marginalisation around it.12

12 MacKay, A Practical Bayesian Framework

36

3.2.4.4 Rationally suboptimal reasoning

3.2.4.3. Approximation using simple models

The learner still has to confront a problem deferred from section 3.2.4.1: what if she

is not sure a priori that the process can be represented correctly by a model drawn from

some known parameterised space-if very little is known about the the true model, except

that it is likely to be rather complicated, and the one formalism for powerful models with

which the analysis goes through cleanly, namely Gaussian process, is inappropriate? This is

the situation that must be faced when designing a learning engine for an autonomous robot

(section 3.1.1); and the only way forward is to adopt a space of models which are known to

be too simple, but allow them to "paper over the cracks" by describing some phenomena

in the environment as unpredictable when in fact a more powerful model would be able to

capture their behaviour deterministically.

The reason this is an intuitively reasonable thing to do is that it appears to result in

a "conservative" approximation, in the sense that it works by making the predictions more

vague where necessary, rather than letting them be precise but inaccurate. It's possible

that this feeling could be tightened up by some kind of variational argument akin to the

maximum entropy principle,13 but in any case, the evident efficacy of Bayesian methods

which rely on it, such as the well-known Kalman filter and hidden Markov model which will

be introduced shortly, suggests that in practice it proves to be correct: the performance of

an over-simple model will degrade gracefully, as long as it is allowed to "learn" an element of

random slop. Cf. section 3.1.2.4.

3.2.4.4. Rationally suboptimal reasoning

Overall it seems that learning, if it is to be perfectly rational, must throw a huge and

frequently unsustainable weight back on the learner's knowledge of which models should be

taken seriously as candidates, and how plausible each is a priori, as well as on her ability to

work through uncooperative integrations or at least optimisations.

That Bayesian theory leads to this conclusion should not be counted against it as

a failing. After all, it is a commonplace that no learner can absolutely guarantee the

correctness of a specific prediction she makes on the basis of a generalisation from a finite

number of previous examples. Inductive reasoning is acknowledged to be very difficult.

Arguably, the Bayesian formulation succeeds both in expressing what the learner could

13 Jaynes, Probability Theory, chapter 11

37

3.2-4-4 Rationally suboptimal reasoning

3.2.4.3. Approximation using simple models

The learner still has to confront a problem deferred from section 3.2.4.1: what if she

is not sure a priori that the process can be represented correctly by a model drawn from

some known parameterised space—if very little is known about the the true model, except

that it is likely to be rather complicated, and the one formalism for powerful models with

which the analysis goes through cleanly, namely Gaussian process, is inappropriate? This is

the situation that must be faced when designing a learning engine for an autonomous robot

(section 3.1.1); and the only way forward is to adopt a space of models which are known to

be too simple, but allow them to "paper over the cracks" by describing some phenomena

in the environment as unpredictable when in fact a more powerful model would be able to

capture their behaviour deterministically.

The reason this is an intuitively reasonable thing to do is that it appears to result in

a "conservative" approximation, in the sense that it works by making the predictions more

vague where necessary, rather than letting them be precise but inaccurate. It's possible

that this feeling could be tightened up by some kind of variational argument akin to the

maximum entropy principle,13 but in any case, the evident efficacy of Bayesian methods

which rely on it, such as the well-known Kalman filter and hidden Markov model which will

be introduced shortly, suggests that in practice it proves to be correct: the performance of

an over-simple model will degrade gracefully, as long as it is allowed to "learn" an element of

random slop. Cf. section 3.1.2.4.

3.2.4-4- Rationally suboptimal reasoning

Overall it seems that learning, if it is to be perfectly rational, must throw a huge and

frequently unsustainable weight back on the learner's knowledge of which models should be

taken seriously as candidates, and how plausible each is a priori, as well as on her ability to

work through uncooperative integrations or at least optimisations.

That Bayesian theory leads to this conclusion should not be counted against it as

a failing. After all, it is a commonplace that no learner can absolutely guarantee the

correctness of a specific prediction she makes on the basis of a generalisation from a finite

number of previous examples. Inductive reasoning is acknowledged to be very difficult.

Arguably, the Bayesian formulation succeeds both in expressing what the learner could

13 Jaynes, Probability Theory, chapter 11

37

3.2.5 Simple examples of models

warrantably say-i.e. it actually solves the "problem of induction", in principle14-and also

in explaining why what she can say is inevitably going to fall short of that ideal.

It also provides a context and motivation for the ad hoc way in which difficult tasks in

machine learning are almost always tackled, namely by performing a fallible optimisation

of a single model over a restrictive model space. The theory provides reassurance that

the point hypothesis the machine ends up with is the best it can do given the real-

world constraints on its algorithms, while also exposing the reasons why it is in principal

suboptimal.15

3.2.4.5. Assessing model truth

Furthermore, it suggests a way of ameliorating the worst case consequences of the

constraints on the learner's hypothesis space, by introducing a fallback hypothesis to the

effect that something has gone wrong: the model optimisation did not work, or the training

examples were unrepresentative, or the world has changed, or whatever. If these failure

modes are real possibilities, then Bayes says the learner must keep them "in the back of

her mind", and if at any point they seem likely to have occurred, she should respond by

tempering the predictions from her model with the much vaguer prediction she must make

if she concludes the model is useless-e.g. she may just predict nothing more specific than

that the process outputs will lie in their legal range. This monitoring mechanism involves

computing the posterior probability that the model is working versus the probability that

a catastrophic failure has happened, from the respective prior probabilities and likelihoods,

using Bayes' rule:

p(e. r[T,T+t),
) = p(r[T,T+t) I0*)p(O IIt) I+p(r[T.T t) I0)p(e* IN)

where 0* = argmaxp(B I r[O,T) IL)
0

and B1 = fallback model

... and then adopting as her predictive distribution a linear combination ("mixture") of the

predictive distributions implied by each possibility, weighted by her assessment that each

holds:

p(rT+tIr[O,T+t),It)Pt p(rT+t10*)p(9*Ir[T,T+t),I)+p(rT+t Is) (1_p(g*Ir[T,T+t),7j))

14 Bayesian theory even provides a quantitative justification for the principle of inductive

reasoning known as Occam's Razor: that simpler models should be preferred over complex ones

where both account equally well for the evidence This is ultimately because a class of complex

models is necessarily going to be bigger than a class of simple ones, so that the prior probability of

each member must be lower See for instance MacKay, Bayesian Interpolation.

15 Cf. Neal & Hinton, A New View of the EM Algorithm

38

3.2.5 Simple examples of models

warrantably say—i.e. it actually solves the "problem of induction", in principle14—and also

in explaining why what she can say is inevitably going to fall short of that ideal.

It also provides a context and motivation for the ad hoc way in which difficult tasks in

machine learning are almost always tackled, namely by performing a fallible optimisation

of a single model over a restrictive model space. The theory provides reassurance that

the point hypothesis the machine ends up with is the best it can do given the real-

world constraints on its algorithms, while also exposing the reasons why it is in principal

suboptimal.15

3.2.4.5. Assessing model truth

Furthermore, it suggests a way of ameliorating the worst case consequences of the

constraints on the learner's hypothesis space, by introducing a fallback hypothesis to the

effect that something has gone wrong: the model optimisation did not work, or the training

examples were unrepresentative, or the world has changed, or whatever. If these failure

modes are real possibilities, then Bayes says the learner must keep them "in the back of

her mind", and if at any point they seem likely to have occurred, she should respond by

tempering the predictions from her model with the much vaguer prediction she must make

if she concludes the model is useless—e.g. she may just predict nothing more specific than

that the process outputs will lie in their legal range. This monitoring mechanism involves

computing the posterior probability that the model is working versus the probability that

a catastrophic failure has happened, from the respective prior probabilities and likelihoods,

using Bayes' rule:

where 9* = argmaxp(0 | r[°'T) , ft)
e

and 9' = fallback model

. . . and then adopting as her predictive distribution a linear combination ("mixture") of the

predictive distributions implied by each possibility, weighted by her assessment that each

holds:

p(rT+t | r[0,T+t) j ̂ K p(rT+t | . , [T,T+t) T+t ' l _ * [T,T+t)

14 Bayesian theory even provides a quantitative justification for the principle of inductive

reasoning known as Occam's Razor: that simpler models should be preferred over complex ones

where both account equally well for the evidence This is ultimately because a class of complex

models is necessarily going to be bigger than a class of simple ones, so that the prior probability of

each member must be lower See for instance MacKay, Bayesian Interpolation.
15 Of. Neal & Hinton, A New View of the EM Algorithm

38

3.2.5.1 Multsnomials

The model's predictions should be believed only to the extent that they have proved

empirically to be better than those made from a position of ignorance. Cf. section 3.1.2.4.

3.2.5. Simple examples of models

Up to this point in the discussion, the question of thesemantics/algebraic forms which

Bayesian models can in practice take has been avoided or finessed. This section introduces

the simple models which serve as building blocks for the more sophisticated constructions

introduced later on.

3.2.5.1. Multinomials

It was noted in section 3.2.2.1 that inference using discrete models defined by a

table or matrix is in principle not difficult (though the computation required can become

prohibitively long-winded if the variables concerned can take a large number of distinct

values). But how are these models to be learned in the first place?

Consider, as the simplest possible case, a single-bin selecting machine as in (4) but

for which the modeller does not know the contents of the bin. Her model of the process

can be parameterised by the proportions of the different kinds of object, say w, for type

(and therefore output) i. Supposing that she has plenty of example outputs rt available,

so that the likelihood dominates the prior, (9) says that she should find the point w in the

parameter space to maximise the likelihood with which the process described by the model

would produce the observed outputs:

w` = argmax E log p(rt
I
w)

W t

argmax L.: E (S,,re log W,
w t

(10)

The derivative of the log likelihood is of course extremely simple, but its root must be

found subject to the constraint that the proportions/probabilities must sum to unity. This

can conveniently be achieved using a Lagrange multiplier.'6 The appropriate Lagrangian

function is

L(w,A)=Eb,,,,logw,+A(Ew,-11 (11)

Setting its derivatives with respect to A and the w,s to zero yields the equations

w, = 1 (12)

Vi. 6" _
t w,

16 Bishop, Neural Networks, appendix C

39

3.2.5.1 Multinomials

The model's predictions should be believed only to the extent that they have proved

empirically to be better than those made from a position of ignorance. Cf. section 3.1.2.4.

3.2.5. Simple examples of models

Up to this point in the discussion, the question of thersemantics/algebraic forms which

Bayesian models can in practice take has been avoided or finessed. This section introduces

the simple models which serve as building blocks for the more sophisticated constructions

introduced later on.

3.2.5.1. Multinomials

It was noted in section 3.2.2.1 that inference using discrete models defined by a

table or matrix is in principle not difficult (though the computation required can become

prohibitively long-winded if the variables concerned can take a large number of distinct

values). But how are these models to be learned in the first place?

Consider, as the simplest possible case, a single-bin selecting machine as in (4) but

for which the modeller does not know the contents of the bin. Her model of the process

can be parameterised by the proportions of the different kinds of object, say wl for type

(and therefore output) i. Supposing that she has plenty of example outputs r* available,

so that the likelihood dominates the prior, (9) says that she should find the point ui in the

parameter space to maximise the likelihood with which the process described by the model

would produce the observed outputs:

u>* ~ argmax

= argmax V V" 6^rt log wt (10)

The derivative of the log likelihood is of course extremely simple, but its root must be

found subject to the constraint that the proportions/probabilities must sum to unity. This

can conveniently be achieved using a Lagrange multiplier.16 The appropriate Lagrangian

function is

4,4 \ t /

Setting its derivatives with respect to A and the o;8s to zero yields the equations

16 Bishop, Neural Networks, appendix C

39

3.2.5.2 Gausasans

whence

Et bast
-A

and, solving for A by substituting that into the constraint equation (12),

A=-b,rt
t t

the estimation rule is

ws - Et &,,r'

Et1

Of course this is just the proportion of the output i observed in the training data (as it

clearly has to be); but the method applies to less obvious cases considered later on.

If the process being modelled responds to an input at, like the multi-bin selecting

machine of (5), then the corresponding estimation rule is

Et b,,rt82,at

57t 1

where w,r = p(R = i A = j, O)

(13)

This model is the simplest way of parameterising the relationship between two discrete

variables; indeed according to the principle of maximum entropy (discussed briefly

section 3.2.6.1) it is the model which should be adopted if nothing is known a priori about

how the process actually works-though this doesn't absolve the learner from her (ideal)

rational responsibility to consider more specialised models if the data displays some clear

pattern.

Instead of pursuing the maximum likelihood policy adopted here, it is in fact possible to

perform a MAP optimisation as in (8) if a prior p(O I 3{) of a certain kind is adopted. This

distribution (the Dirichlet) is of the same functional form with respect to the parameter

as that of the likelihood, which means that the algebra above goes through undisturbed; it

also yields a closed form for the full marginalisation over the model as in (7). Such a prior is

called "conjugate" to its model.17

3.2.5.2. Gaussians

As the simplest illustration of a continuous model, suppose the learner knows that the

process under consideration generates its outputs in such a way that she can represent her

17 Lee, Bayestan Statistics, p. 59

40

3.2.5.2 Gaussians

whence

and, solving for A by substituting that into the constraint equation (12),

, -A

= -£'

the estimation rule is

Of course this is just the proportion of the output i observed in the training data (as it

clearly has to be); but the method applies to less obvious cases considered later on.

If the process being modelled responds to an input a*, like the multi-bin selecting

machine of (5), then the corresponding estimation rule is

Et i
where wt3 = p(R = i \ A — j, 9)

This model is the simplest way of parameterising the relationship between two discrete

variables; indeed according to the principle of maximum entropy (discussed briefly

section 3.2.6.1) it is the model which should be adopted if nothing is known a priori about

how the process actually works—though this doesn't absolve the learner from her (ideal)

rational responsibility to consider more specialised models if the data displays some clear

pattern.

Instead of pursuing the maximum likelihood policy adopted here, it is in fact possible to

perform a MAP optimisation as in (8) if a prior p(91 ft) of a certain kind is adopted. This

distribution (the Dirichlet) is of the same functional form with respect to the parameter

as that of the likelihood, which means that the algebra above goes through undisturbed; it

also yields a closed form for the full marginalisation over the model as in (7). Such a prior is

called "conjugate" to its model.17

3.2.5.2. Gaussians

As the simplest illustration of a continuous model, suppose the learner knows that the

process under consideration generates its outputs in such a way that she can represent her

17 Lee, Bayesian Statistics, p. 59

40

3.2.5.2 Gausssans

expectations about their values as a Gaussian distribution of unknown mean and variance-

or, more likely, she has very limited computing resources and wishes to make the best

inferences she can while constraining her model to lie in that space18, which is, as will now

be shown, very tractable. Writing the model parameter as 9 = p, p, where p is the unknown

mean and ,Q the precision (inverse (co)variance matrix) of the Gaussian, and noting that the

input is ignored, the probability of each output rt is

p(rt 19) = p(rt I p, 0) =
1

27r
I/

\I z

exp \-
2

(rt - u), Q (rt - u) /

and the likelihood of the whole training set d is

p(d I u, R) _ 11 p(rt I u, P)
t

This means that the maximum likelihood approximation to the MAP parameter

(section 3.2.4.2) is given by

9" = u*, argmaxElogp(rt 11)"M
µ'R t

The terms in the sum have nice derivatives:

1
log p(rt Iu, /d) = 2 log -L

27r

au
logp(rt I is, 0) = $(p - rt)

6 logp(rt I u, Q) = 2 d 1 2

so the optimisation (setting those to zero) reduces to

2(rt-uOW -u)

- u)(rt - u)'

Et1
a. = (Et (rt - A*) (rt - A* Y

EtI J

(14)

(15)

(16)

(17)

(18)

As in the case of the discrete distribution of section 3.2.5.1, one can define a conjugate

prior (here the normal/x2 distribution, or normal/Wishart in the multivariate case) which

makes it easy to find the MAP parameter rather than the maximum likelihood one, or even

carry out a full marginalisation.

It is easy to generalise (17) and (18) to model a process whose output is known to be

sampled from one of several available Gaussians, the choice being determined by a discrete

is In fact there are often good reasons for modelling an unknown continuous distribution as a

Gaussian: it is the vaguest distribution with a given mean and variance, in the "maximum entropy"

sense of vagueness (Jaynes, Probability Theory, chapter 11)-

41

3.2.5.2 Gaussians

expectations about their values as a Gaussian distribution of unknown mean and variance—

or, more likely, she has very limited computing resources and wishes to make the best

inferences she can while constraining her model to lie in that space18, which is, as will now

be shown, very tractable. Writing the model parameter as 9 = n, /?, where fj, is the unknown

mean and /3 the precision (inverse (co)variance matrix) of the Gaussian, and noting that the

input is ignored, the probability of each output r* is

i

P(rt\9)=p(rt\»,(3)= ^

and the likelihood of the whole training set d is

This means that the maximum likelihood approximation to the MAP parameter

(section 3.2.4.2) is given by

9* = /u*,/9* — argmax E 1°S JP(r* I M><$) (14)

The terms in the sum have nice derivatives:

logp(r*|jU,/3) = -log ^

so the optimisation (setting those to zero) reduces to

(15)

(16)

T r*
-

(is)

As in the case of the discrete distribution of section 3.2.5.1, one can define a conjugate

prior (here the normal/x2 distribution, or normal/Wishart in the multivariate case) which

makes it easy to find the MAP parameter rather than the maximum likelihood one, or even

carry out a full marginalisation.

It is easy to generalise (17) and (18) to model a process whose output is known to be

sampled from one of several available Gaussians, the choice being determined by a discrete

18 In fact there are often good reasons for modelling an unknown continuous distribution as a

Gaussian: it is the vaguest distribution with a given mean and variance, in the "maximum entropy"

sense of vagueness (Jaynes, Probability Theory, chapter 11).

41

3.2.5.3 Confidence regions for continuous inputs

input analogously with (5). The overall log likelihood in terms of the parameters Iti and p,

of all the Gaussians i is

logp(dI9) = L E6,,a' logp(rt
I # ,Q=) (19)

t 2

and the estimation rules take the form of selective averages:

Et6,,m,r t
N - (20)

e Et aa,al

(
l_r

(re-µ})l EtS+,°`(r
21) Ni = (

Lrt bQ /

This is the simplest (and the maximum entropy) model of the relationship between a

discrete input and a continuous output.

3.2.5.3. Confidence regions for continuous inputs

Recall from section 3.2.4.5 that the learner can use the empirically observed

performance of the model to decide (quantitatively) how confident that she is that data she

is applying it to are similar in character to those from which she learned it. A finer-grained

question of model trust comes up if the learner is not sure that the training set provided

examples which covered every part of the input space, so that future inputs different from

those on which the model was trained might provoke unexpected behaviour in the process

under consideration.

Suppose the process under consideration takes a continuous input and produces a

continuous output. The learner notes that it appears to be generating its outputs from

a single Gaussian, as in section 3.2.5.2; but also that all the inputs she has been able to

observe have fallen in roughly the same area. One way she can account for her worry that

the process might respond to a different kind of input by producing a different kind of

output would be to make her model treat the input and output together as being generated

by a larger process, including whatever agency is responsible for providing the former as

well as the machine (or whatever) which maps them to the latter. Then she could express

the possibility that the input-output pairs, while mostly following the pattern manifested

in the training data, will sometimes do something completely different. What she needs to

do is model the distribution of the inputs seen in the training data as well as that of the

outputs. At the simplest, she could treat the training outputs as being generated from a

Gaussian N(p, 9), as in section 3.2.5.2, and the inputs symmetrically as being generated

from a Gaussian N(v, y). From timestep T (the end of the training data) onwards, there are

always two scenarios, represented by a variable Qt:

At Rt= JN(v,y),N(I.yf) ift<T orQt=1 l something random if t > T and Qt = 0

42

3.2.5.3 Confidence regions for continuous inputs

input analogously with (5). The overall log likelihood in terms of the parameters fa and /3,

of all the Gaussians i is

_ ,,a'logp(r*|p,,/3,) (19)
t i

and the estimation rules take the form of selective averages:

tf = ̂ f^ (20)

This is the simplest (and the maximum entropy) model of the relationship between a

discrete input and a continuous output.

3.2.5.3. Confidence regions for continuous inputs

Recall from section 3.2.4.5 that the learner can use the empirically observed

performance of the model to decide (quantitatively) how confident that she is that data she

is applying it to are similar in character to those from which she learned it. A finer-grained

question of model trust comes up if the learner is not sure that the training set provided

examples which covered every part of the input space, so that future inputs different from

those on which the model was trained might provoke unexpected behaviour in the process

under consideration.

Suppose the process under consideration takes a continuous input and produces a

continuous output. The learner notes that it appears to be generating its outputs from

a single Gaussian, as in section 3.2.5.2; but also that all the inputs she has been able to

observe have fallen in roughly the same area. One way she can account for her worry that

the process might respond to a different kind of input by producing a different kind of

output would be to make her model treat the input and output together as being generated

by a larger process, including whatever agency is responsible for providing the former as

well as the machine (or whatever) which maps them to the latter. Then she could express

the possibility that the input-output pairs, while mostly following the pattern manifested

in the training data, will sometimes do something completely different. What she needs to

do is model the distribution of the inputs seen in the training data as well as that of the

outputs. At the simplest, she could treat the training outputs as being generated from a

Gaussian N(p,,/3), as in section 3.2.5.2, and the inputs symmetrically as being generated

from a Gaussian N(i/,i). From timestep T (the end of the training data) onwards, there are

always two scenarios, represented by a variable Q*:

i f t < T o r Q * = l
\ something random if t > T and Q* = 0

At tf =
'

42

3.2.5.4 Lanear/Gaussaan regression

Obviously the estimation rules for this model would just be two copies of (17) and (18). To

make a prediction of what the output corresponding to a given input at will be, the learner

need only see how well at fits with each of the two possible input-generating processes in

play. The result is a weighted sum ("mixture") of Gaussians:

p(rt 10, N, at) = p(rt, Qt = O 18, at) +p(rt, Qt = 110, at)

where

and

= p(Qt = O 1 at, v, 7, ?l) p(rt I Qt = O, µ, Q)+

p(Qt = I Iat,v,7,7)p(rt I Qt = 1,7i)

p(Qt =1 at, v, 7, fl) =
p(at I Qt =1, v,7) p(Qt =1 I fl)

p(atIQt=1,v,7)p(Qt=111)+p(atlQt=0,71)p(Qt=01fl)
p(Qt = 0 at,v,7,fl) = 1 -p(Qt = 1l at,v,7,4l)

If at falls far from the centre of the confidence region N(v, ry), the density p(at I Qt = 1, v, 7)

will be very low; the learner will naturally conclude that the unknown input-output process

was responsible, and end up with a mixture whose only significant component is the very

broad output distribution p(rt I Qt = 0). If, on the other hand, at lies in amongst the

inputs previously seen in the training set, the mixture will be heavily biased towards the

output distribution learned from the training data. Finally, in marginal cases the mixture

will contain both components, the informative output being tempered by an element of

uninformative noise. The exact proportions will depend to a degree on the learner's prior

assessment p(Qt = 0 1 W) of how often the unknown process occurs.

3.2.5.4. Linear/Gaussian regression

Section 3.2.5.3 discussed a model which described the distribution to be expected of

the outputs given the training data, and that of the inputs, using the latter to assess the

reliability of the former. What if instead the model goes after the joint distribution of the

inputs and outputs together, instead of considering them independently? Since rt and at

are being treated symmetrically as if they were both outputs, the model can be learned

simply by a version of (17) and (18) in which they have been concatenated. The mean of

the resulting distribution is the concatenation of the means p* and v*, while its variance

is made up of blocks comprising the variances)3*-1 and 7*-1 along with the observed

covariance between the inputs and outputs. Writing the blocks of its precision-which are

not in general the inverses of the corresponding blocks in the variance-as

ORR ORA

OAR OAA

it turns out after a little algebra that the predictive distribution of the model

p(rt I at, 8) =
p(rt, at 10)

p(a

= N (rt I It - 4GR 1 RA(at - v), ORR)

43

3.2.5.4 Linear/Gaussian regression

Obviously the estimation rules for this model would just be two copies of (17) and (18). To

make a prediction of what the output corresponding to a given input o* will be, the learner

need only see how well a* fits with each of the two possible input-generating processes in

play. The result is a weighted sum ("mixture") of Gaussians:

p(r« 18,ft , a*) = p(r*, Q* = 019 , a*) + p(r*, Q* = 119, a4)

where p(Q* = 1 |a*,,,7,ft) = ̂ , Qt = ̂ ^ = 1 ̂ +p(fli, Qt = ̂ }p(Qt = Q|^

and

If a* falls far from the centre of the confidence region N (i / , j) , the density p(ai \Qt = 1, ̂ ,7)

will be very low; the learner will naturally conclude that the unknown input-output process

was responsible, and end up with a mixture whose only significant component is the very

broad output distribution p(r* | Q* = 0). If, on the other hand, a* lies in amongst the

inputs previously seen in the training set, the mixture will be heavily biased towards the

output distribution learned from the training data. Finally, in marginal cases the mixture

will contain both components, the informative output being tempered by an element of

uninformative noise. The exact proportions will depend to a degree on the learner's prior

assessment p(Qt = 0 | ft) of how often the unknown process occurs.

3.2.6.4. Linear/Gaussian regression

Section 3.2.5.3 discussed a model which described the distribution to be expected of

the outputs given the training data, and that of the inputs, using the latter to assess the

reliability of the former. What if instead the model goes after the joint distribution of the

inputs and outputs together, instead of considering them independently? Since r* and of

are being treated symmetrically as if they were both outputs, the model can be learned

simply by a version of (17) and (18) in which they have been concatenated. The mean of

the resulting distribution is the concatenation of the means n* and v* , while its variance

is made up of blocks comprising the variances fi*~l and 7*"1 along with the observed

covariance between the inputs and outputs. Writing the blocks of its precision — which are

not in general the inverses of the corresponding blocks in the variance — as

(<t>RR <t>RA \
V <J>AR 4>AA)

it turns out after a little algebra that the predictive distribution of the model

~ p(at\9)

= N(rt\p,- (t>

43

3.2.5.4 Linear/Gaussaan regression

is another Gaussian, with precision ORR and mean IC-(ORR)-'ORA(at-v). The mean of the

output prediction will vary linearly with the input.

Indeed this Gaussian joint input-output model is clearly equivalent to one in which

the inputs are modelled as coming from a Gaussian, and being passed through a linear

transformation rc before having zero-mean Gaussian noise added to produce the outputs:

At = N(v,7)

Rt = iAt + N(0, /3)

It is convenient to stipulate that every input at is supplemented with an element set to

unity, thus providing the linear transformation with an intercept (i.e. p) as well as a slope

(t.e. -(cRR)-1cRA) folded up in the one parameter iv. In terms of the parameterisation

B = rc, /3, the predictive distribution is then

P(rt I at, B) = exp \- 2 (rt - >cat)' /3
(rt - rcat) I

a

This is a particular example of a "linear regressive" model (there is in general no need

to assume, as is done here, that the output noise is Gaussian, or that the inputs are drawn

from a Gaussian). It will be appropriate if the learner knows that the process's outputs do

in fact vary smoothly with its inputs, and that the variation is linear-or she is prepared to

restrict her model space to a first-order approximation of the trends she believes are present,

in exchange for an efficient algorithm.

If she does not consider it necessary to obtain a confidence region (does not care about

the distribution of the inputs) , and is thus happy with a conditional model of p(rt
I
at) as

opposed to a joint model of p(rt,at), she can avoid some work by learning k and /3 directly.

The derivatives with respect to those parameters of each term in the log likelihood can be

calculated as shown:19

logp(rt
I at, k, a) = log

2tr - (rt - nat)r/3(rt - iat)

a' logp(rt I at, k, a) =
2 i316y

ak rckl$1mrtn +
2 aa

rlt,/3klKlmatn
1

aaij
ak kkl/3lmKmnan

=
at$,mrtn+

rI/3kiat - 1 t atknkl(3[mlmna;tt
2 2 2 8r.,.

=
ti - /3 scat at'),,

logP(rt
I at, c, /3) = 0-1 - (rt - cat)(rt - cat)r

a/

(22)

(23)

19 In (22), the usual convention of summation over unbound subscripts m the same additive term

is adopted, as the most convenient notation The subscripts t3 k 1 m n temporarily lose their usual

meanings.

44

3.2.5-4 Linear/Gaussian regression

is another Gaussian, with precision (J)RR and mean fj, — (^RR^^RA^ — v). The mean of the

output prediction will vary linearly with the input.

Indeed this Gaussian joint input-output model is clearly equivalent to one in which

the inputs are modelled as coming from a Gaussian, and being passed through a linear

transformation K before having zero-mean Gaussian noise added to produce the outputs:

It is convenient to stipulate that every input o* is supplemented with an element set to

unity, thus providing the linear transformation with an intercept (i.e. fi) as well as a slope

(i.e. —(<j>RR)~l(t>RA] folded up in the one parameter K. In terms of the parameterisation

9 = K, ft, the predictive distribution is then

- *p(r4 |a4 ,0) =

This is a particular example of a "linear regressive" model (there is in general no need

to assume, as is done here, that the output noise is Gaussian, or that the inputs are drawn

from a Gaussian). It will be appropriate if the learner knows that the process's outputs do

in fact vary smoothly with its inputs, and that the variation is linear—or she is prepared to

restrict her model space to a first-order approximation of the trends she believes are present,

in exchange for an efficient algorithm.

If she does not consider it necessary to obtain a confidence region (does not care about

the distribution of the inputs) , and is thus happy with a conditional model of p(r* \ o4) as

opposed to a joint model of p(r4,a4), she can avoid some work by learning K and /3 directly.

The derivatives with respect to those parameters of each term in the log likelihood can be

calculated as shown:19

logp(r41 o4, K, ft] - - log — - -(r4 - KO4)'/3(r* - Ka*)
/ ZTT i

d I d t 1 d t l d
-—\ogp(r \ a t , K , , p) = -^—alKki/3imrm + 5 ~—rk/3kiKimam - --—
OKjj i OKij & OKt:1 A OKij

1 to t 1 to t 1 9 t a t
— —CL LinmT ~r~ — T t UlxiQi — "•» K.t*i iii~~ /C.™*, ft,

2 a"Jill ' ' in ' n K""'1' j o2 Z

= (/W - /J«a*a*')y (22)

| a*, K, /3) = /T * - (r4 - /ca*)(r* - /«**)' (23)

19 In (22), the usual convention of summation over unbound subscripts in the same additive term

is adopted, as the most convenient notation The subscripts 13 k I m n temporarily lose their usual

meanings.

44

3.2.6.1 Breakcng mto the system

and the optimal solution is

rc* =
C rtat// \F

a l (24)

X Et(rtrt -n*atri

)\ Et1 (25)

Just like the output-only Gaussian model of section 3.2.5.2, the regressive model can

easily be generalised to select one of several available mappings according to one, discrete

(part of the) input, before passing another, continuous (part of the) input through that

chosen. The estimation rules for each parameter pair r.* ,)3, are copies of (24) and (25), with

the sums weighted by the same mask Jj,mt as in (20) and (21).

3.2.6. How Bayesian inference can influence behaviour

In section 3.2.1.1, it was explained that the semantics of Bayesian probabilities (levels

of certainty) are grounded in the consistency and uniqueness of the axioms according to

which they are manipulated. The only points at which they explicitly make contact with

concepts expressible independently of the system are at the extremes: the propositions to

which the reasoner assigns the probabilities zero and one are those she knows definitely are

false and true respectively. But the whole purpose of the theory is to enable her to reason

with propositions in which she has an intermediate degree of belief. So where are they to

come from and how is she to going to use them? How is the reasoner's inference system

embedded in her real life?

3.2.6.1. Breaking into the system

Consider first the question of where Bayesian probabilities have their ultimate roots.

There are seven ways in which these numbers can meaningfully be assigned:

Most straightforwardly, direct observations lead the reasoner to assign sharp

zero/one probabilities to corresponding propositions.

Where the reasoner knows the (discrete) outcomes a process might have, but has

no information which leads her to expect one more than the others, considerations

of symmetry (item 6 in section 3.2.1.1) require that she entertain each possibility

with the same degree of certainty-with equal probability. For example, as was

mentioned in section 3.2.1.1, this principle suffices to establish the connection

between Bayesian probabilities and long-run frequencies in population-sampling

experiments.

45

3.2.6.1 Breaking into the system

and the optimal solution is

(25)

Just like the output-only Gaussian model of section 3.2.5.2, the regressive model can

easily be generalised to select one of several available mappings according to one, discrete

(part of the) input, before passing another, continuous (part of the) input through that

chosen. The estimation rules for each parameter pair «*,/?* are copies of (24) and (25), with

the sums weighted by the same mask 5itat as in (20) and (21).

3.2.6. How Bayesian inference can influence behaviour

In section 3.2.1.1, it was explained that the semantics of Bayesian probabilities (levels

of certainty) are grounded in the consistency and uniqueness of the axioms according to

which they are manipulated. The only points at which they explicitly make contact with

concepts expressible independently of the system are at the extremes: the propositions to

which the reasoner assigns the probabilities zero and one are those she knows definitely are

false and true respectively. But the whole purpose of the theory is to enable her to reason

with propositions in which she has an intermediate degree of belief. So where are they to

come from and how is she to going to use them? How is the reasoner's inference system

embedded in her real life?

3.2.6.1. Breaking into the system

Consider first the question of where Bayesian probabilities have their ultimate roots.

There are seven ways in which these numbers can meaningfully be assigned:

• Most straightforwardly, direct observations lead the reasoner to assign sharp

zero/one probabilities to corresponding propositions.

• Where the reasoner knows the (discrete) outcomes a process might have, but has

no information which leads her to expect one more than the others, considerations

of symmetry (item 6 in section 3.2.1.1) require that she entertain each possibility

with the same degree of certainty—with equal probability. For example, as was

mentioned in section 3.2.1.1, this principle suffices to establish the connection

between Bayesian probabilities and long-run frequencies in population-sampling

experiments.

45

3.2.6.2 Breaking out of the system: decision theory

If she does have further information about the process, she will want to factor

it into her distribution over the outcomes while leaving the distribution as

vague as possible in other respects. It can be shown that the only definition of

"vagueness" which can be consistent with some clearly necessary constraints is the

distribution's entropy, and that is the motivation for the principle of maximum

entropy: set the probabilities so as to make up the distribution which has

maximum entropy consistent with the known facts.20

The trickiest probabilities to resolve unambiguously, but at the same time the

ones with the least impact on the learner's judgements, are the prior probabilities

assigned to the possible models (p(9 31) in (6)). Before she has any observations,

the learner can very often to be said to be in a state of great ignorance with

respect to the value of the model parameters (where in the model space the right

model is to be found), but it turns out to be unexpectedly difficult to derive a

unique distribution which best represents that fact. However, this does not often

matter, since the whole point of such a "noninformative prior" is that it should

step aside and let the data-induced likelihood be the overwhelming influence on

the posterior; the minor differences between the different conceivable priors will

typically have a negligible effect on her conclusions.21

It is often possible to represent the notion of the general character expected of the

model parameters using what is called a "hierarchical" model 22 The model prior

is defined conditionally on a "hyperprior" or "regulariser" which determines the

probability of (say) large parameters versus small ones, or the overall smoothness

of the mapping implemented by the model. The hyperparameter is given its

own prior, but to a greater or lesser extent is left to be determined from the

observations. This approach can work well even with complicated models.23

Some probabilities are implicitly "zeroed out" by practical constraints placed on

the mechanisms used by the learner (section 3.2.4.4).

Finally, intermediate results and the inferential conclusions which are the learner's

goal are obtained by combining existing numbers according to the usual laws of

probability. This is where the posterior distribution (6) of the model comes from.

20 Jaynes, Probability Theory, chapter 11; in fact this principle subsumes the previous one

21 Box & Tiao, Bayesian Inference in Statistical Analysis, section 1.3, priors can, however,

become important when it comes to performing Bayesian model selection in the absence of a large

supply of data
22 Lee, Bayesian Statistics, p. 223

23 MacKay, A Practical Bayesian Framework

46

3.2.6.2 Breaking out of the system: decision theory

• If she does have further information about the process, she will want to factor

it into her distribution over the outcomes while leaving the distribution as

vague as possible in other respects. It can be shown that the only definition of

"vagueness" which can be consistent with some clearly necessary constraints is the

distribution's entropy, and that is the motivation for the principle of maximum

entropy: set the probabilities so as to make up the distribution which has

maximum entropy consistent with the known facts.20

• The trickiest probabilities to resolve unambiguously, but at the same time the

ones with the least impact on the learner's judgements, are the prior probabilities

assigned to the possible models (P(9 \ ft) in (6)). Before she has any observations,

the learner can very often to be said to be in a state of great ignorance with

respect to the value of the model parameters (where in the model space the right

model is to be found), but it turns out to be unexpectedly difficult to derive a

unique distribution which best represents that fact. However, this does not often

matter, since the whole point of such a "noninformative prior" is that it should

step aside and let the data-induced likelihood be the overwhelming influence on

the posterior; the minor differences between the different conceivable priors will

typically have a negligible effect on her conclusions.21

• It is often possible to represent the notion of the general character expected of the

model parameters using what is called a "hierarchical" model.22 The model prior

is defined conditionally on a "hyperprior" or "regulariser" which determines the

probability of (say) large parameters versus small ones, or the overall smoothness

of the mapping implemented by the model. The hyperparameter is given its

own prior, but to a greater or lesser extent is left to be determined from the

observations. This approach can work well even with complicated models.23

• Some probabilities are implicitly "zeroed out" by practical constraints placed on

the mechanisms used by the learner (section 3.2.4.4).

• Finally, intermediate results and the inferential conclusions which are the learner's

goal are obtained by combining existing numbers according to the usual laws of

probability. This is where the posterior distribution (6) of the model comes from.

20 Jaynes, Probability Theory, chapter 11; in fact this principle subsumes the previous one
21 Box & Tiao, Bayesian Inference in Statistical Analysis, section 1.3, priors can, however,

become important when it comes to performing Bayesian model selection in the absence of a large

supply of data
22 Lee, Bayesian Statistics, p. 223
23 MacKay, A Practical Bayesian Framework

46

3.3.1 The EM algorithm

3.2.6.2. Breaking out of the system: decision theory

The corresponding issue at the other end of the framework is how the learner can use

her model and its predictions to help her make decisions. The principle of Bayesian decision

theory is very simple: she must define a "gain function" g, which says how relatively good

the outcome will be of performing each of the actions at in its repertoire if the state of the

world is yt. Then the action she should take is

at, = argmax
J

g(at, yt) p(yt I K) (26)

where K represents all her knowledge relevant to yt. a; is the action which maximises her

expected gain, where the expectation is taken over her degree of certainty that the world is

in each possible state.

This rule has many powerful properties.20 Most importantly, it captures perfectly the

notion of "cautiousness" in the face of uncertainty which was established as a requirement

for the behaviour of an autonomous robot in section 3.1.2. Suppose some action generally

gains a small reward for the agent, but in certain circumstances yi it provokes a large

penalty. Then she will avoid the action whenever she suspects even slightly that those

circumstances might obtain, since the product of the penalty with the small probability

p(yj I K) will be sufficient to offset the product of the reward with the larger probability

p(yf I)Q. If she is completely unsure what the state of the world is perhaps because

she does not trust her model at all-she will choose an action which is reliably safe in all

situations.

Note that at in (26) is not itself an average: the rule does not choose compromise,

intermediate actions, but rather actions which balance the consequences across the agent's

beliefs about the world.

If the agent has to plan ahead for more than one action into the future, a more general

criterion will be appropriate, such as the greatest expected gain she could achieve up to

some time horizon. This issue has been studied intensively within the field of reinforcement

learning (section 2.3.1), and will be returned to in section 6.2.

20 Berger, Statistical Decision Theory; Jaynes, Probability Theory, chapter 13

47

3.3.1 The EM algorithm

3.2.6.2. Breaking out of the system: decision theory

The corresponding issue at the other end of the framework is how the learner can use

her model and its predictions to help her make decisions. The principle of Bayesian decision

theory is very simple: she must define a "gain function" g, which says how relatively good

the outcome will be of performing each of the actions a* in its repertoire if the state of the

world is yi. Then the action she should take is

a\ = argmax / g(at,yt)P(yt \ 1C) (26)
a' Jy*

where /C represents all her knowledge relevant to yl. a4 is the action which maximises her

expected gain, where the expectation is taken over her degree of certainty that the world is

in each possible state.

This rule has many powerful properties.20 Most importantly, it captures perfectly the

notion of "cautiousness" in the face of uncertainty which was established as a requirement

for the behaviour of an autonomous robot in section 3.1.2. Suppose some action generally

gains a small reward for the agent, but in certain circumstances y\ it provokes a large

penalty. Then she will avoid the action whenever she suspects even slightly that those

circumstances might obtain, since the product of the penalty with the small probability

p(y\ | /C) will be sufficient to offset the product of the reward with the larger probability

p(~y\ I £)• If srie is completely unsure what the state of the world is—perhaps because

she does not trust her model at all—she will choose an action which is reliably safe in all

situations.

Note that of, in (26) is not itself an average: the rule does not choose compromise,

intermediate actions, but rather actions which balance the consequences across the agent's

beliefs about the world.

If the agent has to plan ahead for more than one action into the future, a more general

criterion will be appropriate, such as the greatest expected gain she could achieve up to

some time horizon. This issue has been studied intensively within the field of reinforcement

learning (section 2.3.1), and will be returned to in section 6.2.

20 Berger, Statistical Decision Theory; Jaynes, Probability Theory, chapter 13

47

8.3.1.2 Correctness of the algorithm

3.3. EM modelling

3.3.1. The EM algorithm

Many models used in the Bayesian learning of dynamical systems, such as the ones

introduced in section 3.3.3, are particularly well suited to an optimisation technique

called the EM or expectation-maximisation algorithm. This is really a meta-algorithm or

algorithm schema, which can help find a maximum a posteriori model parameter even if

some of the quantities on which the distribution depends are unknown-for instance, if they

represent state in a dynamical system which is not directly observable.

3.3.1.1. The procedure

Call the known values d, the hidden quantities H, and the model O. The goal is to find

a 9* to maximise p(9 I d); a direct approach involves marginalisation over h, which is (it is

supposed) hard; yet the more straightforward optimisation of p(O, h I d) with respect to h

as well as 9 does not give the right answer-it just ignores the uncertainty in h. Happily,

it turns out that given an estimate of the model, one can reliably generate a better one by

maximising the expected log of p(O, h I d), where the expectation is taken over the distribution

of H implied by the old estimate. Writing the old parameter estimate as On and the new one

as 9"+1

9"}1 = argmaxEh[logp(9,hid)10",d]
e

= argmax p(h l9", d) logp(9, h i d) (27)
B J

The difficult marginalisation has been reduced to an integration which is often much easier,

because it is conditioned on a fixed 9" and involves the log of p(O, h I d) rather than the

distribution itself21. This yields an iterative algorithm which, if it converges at all, will

always return the (or a locally) most probable 9*.

Each iteration can notionally be divided into an "E-step", in which the distribution

p(h I on, d) is computed and a representation for Eh[logp(9, It I d)] as a function of 0 is

obtained, and an "M-step", in which this function is maximised. (In simple cases these

stages can sometimes be symbolically conflated to a greater or lesser extent.)

21 Many "exponential family" distnbutions have logs which are well behaved for this purpose

48

3.3.1.2 Correctness of the algorithm

3.3. EM modelling

3.3.1. The EM algorithm

Many models used in the Bayesian learning of dynamical systems, such as the ones

introduced in section 3.3.3, are particularly well suited to an optimisation technique

called the EM or expectation-maximisation algorithm. This is really a meta-algorithm or

algorithm schema, which can help find a maximum a posteriori model parameter even if

some of the quantities on which the distribution depends are unknown — for instance, if they

represent state in a dynamical system which is not directly observable.

3.3.1.1. The procedure

Call the known values d, the hidden quantities H, and the model 0. The goal is to find

a 9* to maximise p(9 \ d); a direct approach involves marginalisation over h, which is (it is

supposed) hard; yet the more straightforward optimisation of p(9, h \ d) with respect to h

as well as 9 does not give the right answer — it just ignores the uncertainty in h. Happily,

it turns out that given an estimate of the model, one can reliably generate a better one by

maximising the expected log of p(9, h \ d) , where the expectation is taken over the distribution

of H implied by the old estimate. Writing the old parameter estimate as 9n and the new one

as0n+1,

9n+l = argmaxEh [logp(0, h \ d) \ 9n, d]
9

= argmax / p(h \ 9n, d) logp(0, h \ d) (27)
o Jh

The difficult marginalisation has been reduced to an integration which is often much easier,

because it is conditioned on a fixed 9n and involves the log of p(9, h \ d) rather than the

distribution itself21. This yields an iterative algorithm which, if it converges at all, will

always return the (or a locally) most probable 9*.

Each iteration can notionally be divided into an "E-step" , in which the distribution

p(h 1 9n, d) is computed and a representation for Eh[logp(9, h \ d)] as a function of 9 is

obtained, and an "M-step" , in which this function is maximised. (In simple cases these

stages can sometimes be symbolically conflated to a greater or lesser extent.)

21 Many "exponential family" distributions have logs which are well behaved for this purpose

48

3.3.1.3 Generalisations of the EM algor2thm

3.3.1.2. Correctness of the algorithm

To prove that the algorithm returns a (locally) MAP parameter, it is sufficient to show

that each iteration finds a parameter which increases p(9I d) as well as Eh[logp(9, h
I
d)],

and that if it converges, the limiting parameter is a stationary point of p(9I d). Then it

follows that the limit is a posterior mode (or, conceivably, a saddle point) 22

How does p(9 I d) relate to p(9, h d), and its expected log which is maximised in the M-

step? By the product rule,

p(9,hid) =p(h19,d)p(9Id)

and log p(9 i d) = log p(9, It I d) - logp(h 19, d)

Taking the same expectation over the unknowns as in the pE-step (see (27)),

logp(9Id) = f p(hI9",d)logp(9,hld) - J p(h19^,d)logp(hI0,d)
h h

U(9) W (O)

(28)

The M-step always moves 9 from 9° to some 9n+' chosen to increase U(9). So p(9 I d) can

only fail to go up if W (O) is also increased. But that cannot happen, since

- (W (9n}') - W (O-)) = f p(h l 9", d) logp(h 19", d) - f p(h 19", d) logp(h 19n+1 d)
h h

n

= f p(h8n, log p(hI9n+tdd

is the Kullback-Leibler divergence23 of p(h 10'+1, d) from p(h 19°, d), and is therefore

nonnegative.

When (if) the algorithm has converged-so that On is arbitrarily close to a fixed

point 9*-the derivative of U at 9* is clearly zero, since otherwise U could be further

maximised. And the derivative of W is given by

a -L

TO
W (O) _ f p(h l e*, d) ep(h

h
19,

d)

10, d)

so that

89W (B*) = L p(h 9*, d) aq*

=
a9
f p(h 9*, d)

=0

22 The proof sketch given here is adapted from Lee, Bayesian Statistics, p. 252.

23 Bishop, Neural Networks, p. 59

49

3.3.1.3 Generalisations of the EM algorithm

3.3.1.2. Correctness of the algorithm

To prove that the algorithm returns a (locally) MAP parameter, it is sufficient to show

that each iteration finds a parameter which increases p(9 \ d) as well as Eh[logp(0, h \ d)],

and that if it converges, the limiting parameter is a stationary point of p(9 \ d). Then it

follows that the limit is a posterior mode (or, conceivably, a saddle point) .22

How does p(9 \ d) relate to p(9, h\d), and its expected log which is maximised in the M-

step? By the product rule,

p(o,h\d)=p(h\o,d)P(e\d)
and \ogp(91 d) = logp(0, h \ d) - logp(h \ 9, d)

Taking the same expectation over the unknowns as in the .E-step (see (27)),

logp(0|d)= f P(h\9n,d)logp(9,h\d) - [p(h\9n,d)logp(h\9,d)
Jh Jh (28)

U(9) W(9)

The M-step always moves 9 from 9n to some Bn+l chosen to increase U(9). So p(9 \ d) can

only fail to go up if W(9) is also increased. But that cannot happen, since

-(W(9n+1)-W(9n))= Jp(h\9n,d)lvgp(h\9n,d)- ^p(h\9n,d)logp(h\9n+1,d)

'

is the Kullback-Leibler divergence23 of P(h\9n+1,d) from p(h\0n,d), and is therefore

nonnegative.

When (if) the algorithm has converged — so that 9n is arbitrarily close to a fixed

point 9* — the derivative of U at 9* is clearly zero, since otherwise U could be further

maximised. And the derivative of W is given by

' ' P (h \ 9 , d)

so that

89*
= 0

22 The proof sketch given here is adapted from Lee, Bayesian Statistics, p. 252.
23 Bishop, Neural Networks, p. 59

49

3.3.1.3 Generalisations of the EM algonthm

as well. Since

aB logp(0 I d) = BU(0) + LBW B

it follows that B" is a stationary point of the posterior, as required.

3.3.1.3. Generalisations of the EM algorithm

The EM algorithm was introduced in Dempster et al., Maximum likelihood from

incomplete data (in a maximum likelihood context, with a remark that it applies equally

well under a Bayesian interpretation). The authors also point out that the M-step need not

optimise B"+r all the way to a maximum in order to guarantee an increase in the posterior

(although the proof in section 3.3.1.2 that the algorithm will converge to a posterior mode

does not then go through). Procedures which exploit this fact are called generalised EM

(GEM) algorithms.

Neal and Hinton give an interesting perspective on EM, in which the distribution over

which the expectation is taken in the E-step is treated as a parameter z?-instead of being

inferred as p(h I On, d)-and the algorithm as a procedure for maximising a quantity called

the "variational free energy"

r
F(0,w)=

J
u7(h)logp(hIB,d) - f w(h)logw(h)

h h

IT (B, w) W(w)

with respect to w as well as the model parameter 8.24 Maximising F with respect to w at

iteration n, keeping On fixed, does actually turn out to mean setting

w"(h)=p(h IOn d)

and then it can be seen from (28) that

U(0,w") = U(0)

Thus what the EM algorithm does (repeatedly maximise U) is equivalent to alternately

maximising F with respect to w and 0. Since additionally

W(B", w") = W (On)

it is clear that

fl on, w") = log p(B" I d)

and it is not hard to show that approaching a maximum of F by any means whatsoever will

yield a maximum of log p(0 I d). This result assures the correctness of many variant EM-style

24 Neal & Hinton, A New View of the EM Algorithm

50

3.3.1.3 Generalisations of the "EM algorithm

as well. Since

it follows that 9* is a stationary point of the posterior, as required.

3.3.1.3. Generalisations of the EM algorithm

The EM algorithm was introduced in Dempster et al., Maximum likelihood from

incomplete data (in a maximum likelihood context, with a remark that it applies equally

well under a Bayesian interpretation). The authors also point out that the M-step need not

optimise 9n+1 all the way to a maximum in order to guarantee an increase in the posterior

(although the proof in section 3.3.1.2 that the algorithm will converge to a posterior mode

does not then go through). Procedures which exploit this fact are called generalised EM

(GEM) algorithms.

Neal and Hinton give an interesting perspective on EM, in which the distribution over

which the expectation is taken in the .E-step is treated as a parameter w — instead of being

inferred as p(h \ 9n, d) — and the algorithm as a procedure for maximising a quantity called

the "variational free energy"

F(9,w)= f w(h)\ogp(h\9,d) - f w(K)\ogw(h)
Jh. _ _ / A _ _ _

17(0,07) W(w)

with respect to w as well as the model parameter 0.24 Maximising F with respect to w at

iteration n, keeping 9n fixed, does actually turn out to mean setting

wn(h)=p(h\en,d)

and then it can be seen from (28) that

U(9,wn) =

Thus what the EM algorithm does (repeatedly maximise U) is equivalent to alternately

maximising F with respect to w and 9. Since additionally

W(6n,wn) =

it is clear that

and it is not hard to show that approaching a maximum of F by any means whatsoever will

yield a maximum of logp(9 \ d). This result assures the correctness of many variant .EM-style

24 Neal & Hinton, A New View of the EM Algorithm

50

3.3.1.4 Ensemble learning

algorithms in which only part of the distribution w is updated at each E-step, or several M-

steps are performed in between each E-step.

The variational free energy account also motivates algorithms in which the

distribution w is constrained to take some computationally convenient form,25 and so-

called "GEM" algorithms in which the M-step consists in increasing, but not necessarily

maximising, U.

3.3.1.4. Ensemble learning

Taking this idea further, Hinton & vanCamp, Keeping neural networks simple and

Waterhouse et al., Bayesian Methods for Mixtures of Experts suggest a procedure called

"ensemble learning" in which the whole posterior distribution of B is approximated, not

just its MAP value, thereby perhaps making it possible to carry out a full marginalisation

(section 3.2.2.1). The strategy is to approximate the intractable joint posterior p(O, h I d) by

a separable distribution

w(9, h) = WO (0) tVh(h)

and then minimise the Kullback-Leibler divergence of the true posterior from the

approximating distribution

ea = argmin i uu(B, h) log
w(9,h)

I)
W e,h p(B, h d)

By exploiting the separability of vu, the overall divergence can easily be reduced to the sum

of divergences

where

Iw(B)logEh[logp(B hId)] +Jnw(h)IogE0[logp(O,hId)] o

EB[... oc fp(s)...
a

Eh[...] a f w(h)...
h

This leads to an iterative algorithm in which repeated use of the updates

w"}1(0) oc exp En [log p(B, h I d)]

ron+1(h) cc exp Eq [log p(B, h I d)]

minimises the overall divergence error and gives an approximation to the posteriors of B

and h. If Wn(B) is constrained to be a (Dirac) delta function 6(0', B), an EM-style algorithm

drops out as a special case.

25 For instance, it explains the way in which the "k-means" clustering algorithm approximates the

EM algorithm given in section 3.3.2

3.3.1.4 Ensemble learning

algorithms in which only part of the distribution w is updated at each E'-step, or several M-

steps are performed in between each E-step.

The variational free energy account also motivates algorithms in which the

distribution w is constrained to take some computationally convenient form,25 and so-

called "GEM" algorithms in which the M-step consists in increasing, but not necessarily

maximising, U.

3.3.I.4. Ensemble learning

Taking this idea further, Hinton & vanCamp, Keeping neural networks simple and

Waterhouse et al., Bayesian Methods for Mixtures of Experts suggest a procedure called

"ensemble learning" in which the whole posterior distribution of 9 is approximated, not

just its MAP value, thereby perhaps making it possible to carry out a full marginalisation

(section 3.2.2.1). The strategy is to approximate the intractable joint posterior p(9, h\d) by

a separable distribution

w(e,h)=we(6)wh(h}

and then minimise the Kullback-Leibler divergence of the true posterior from the

approximating distribution

™(9,h)* • f fa LM ™(* = argmm / 07(0, h) log ^
w Je,h P(0,

w
e,h

By exploiting the separability of w, the overall divergence can easily be reduced to the sum

of divergences

f

JhEh(logp(9,h\d)} h E9(logp(9,h\d)]

where

fw(9)-
J0

[w(h)-
Jh

This leads to an iterative algorithm in which repeated use of the updates

wn+1(h) oc

minimises the overall divergence error and gives an approximation to the posteriors of 0

and h. If 07" (0) is constrained to be a (Dirac) delta function 6(9n,9), an EM-style algorithm

drops out as a special case.

25 For instance, it explains the way in which the "k-means" clustering algorithm approximates the

EM algorithm given in section 3.3.2

3.3.2.1 Uncondataonal Gausstan mixtures

Clearly the method generalises to any number of parameters/unknown variables26, and

will be useful as long as the resulting update rules turn out tractable and the separability

approximation does not break down too badly.

3.3.2. Mixture models

In section 3.2.5, various scenarios were considered in which the learner believed,

or chose to believe, that the process she wished to model produced each of its outputs

according to one of several possible methods, the choice being determined by a discrete

input. The EM algorithm provides a neat solution to the problem of learning a "mixture"

model, in which the output method is selected stochastically, either entirely at random or

conditionally on a discrete or continuous input. Mixture models are useful for approximating

the behaviour of systems whose behaviour exhibits clear, but not smooth (e.g. linear)

patterns.

3.3.2.1. Unconditional Gaussian maxtures

Consider first an extension of the multi-Gaussian model of (20) and (21) to the case

where the choice of output Gaussian is random, or invisible to the learner (or depends on

an input which she cannot observe). Writing µ, and 0, for the mean and precision of the

Gaussian "component" i, Qt for the choice of component used to generate rt, and w, for the

probability with which component i is chosen each time, the density of the outputs is given

by

p(rt 10) = > p(rt, Qt = i I µ, 3, w)

= E p(rt I Qt = i, p,, fi) p(Qt = i I w) (29)
I

a

22r exp
(-

1

(rt {4a Aa (rt µa

(As usual 0 denotes the overall model parameter, in this case comprising p, 0, w.) The log

likelihood of the training set d

logp(d10) = log Hp(rtIa',0)
t

= log II w,
I

.

27r t
exp (-

2
(rt - go, 0.

(rt - µa))

26 Waterhouse et at, Bayesian Methods for Mixtures of Experts uses it to infer the values of

Bayesian hyperparameters, as well as the actual model parameters

52

3.3.2.1 Unconditional Gaussian mixtures

Clearly the method generalises to any number of parameters/unknown variables26, and

will be useful as long as the resulting update rules turn out tractable and the separability

approximation does not break down too badly.

3.3.2. Mixture models

In section 3.2.5, various scenarios were considered in which the learner believed,

or chose to believe, that the process she wished to model produced each of its outputs

according to one of several possible methods, the choice being determined by a discrete

input. The EM algorithm provides a neat solution to the problem of learning a "mixture"

model, in which the output method is selected stochastically, either entirely at random or

conditionally on a discrete or continuous input. Mixture models are useful for approximating

the behaviour of systems whose behaviour exhibits clear, but not smooth (e.g. linear)

patterns.

3.3.2.1. Unconditional Gaussian mixtures

Consider first an extension of the multi-Gaussian model of (20) and (21) to the case

where the choice of output Gaussian is random, or invisible to the learner (or depends on

an input which she cannot observe). Writing fj,t and /3t for the mean and precision of the

Gaussian "component" i, Q* for the choice of component used to generate r*, and wl for the

probability with which component i is chosen each time, the density of the outputs is given

by

= i|o,) (29)

A 'i / i \
exp f - - (r*-/^)'/^ (r*-/z,)J

(As usual 0 denotes the overall model parameter, in this case comprising jU,/3,w.) The log

likelihood of the training set d

= io§ n E ,-^(r i- 't t

26 Waterhouse et al., Bayesian Methods for Mixtures of Experts uses it to infer the values of

Bayesian hyperparameters, as well as the actual model parameters

52

3.3.2.1 Uncond2tsonal Gaussian msxtures

is clearly differentiable, but the E, - - - inside the product prevents the quadraticness of

the Gaussian components' log likelihoods from bubbling to the top (cf. (14)), making it
necessary to use an iterative algorithm for the optimisation of p, 0.

Of course any general purpose nonlinear maximiser will do the job, but there is also an

elegant EM alternative, in which the set Q of the process's choices of Gaussian components

over all the timesteps t is treated as an unknown variable (H in section 3.3.1.1), and

the expected log posterior is repeatedly maximised with respect to the parameter 0 =

p, /3, w. In fact, if the training set d is big enough that the likelihood dominates the prior

(section 3.2.4.2), then it is sufficient to work with the expected log likelihood; with this

adjustment, the EM reestimation rule (27) becomes

Bn+1 = argmax I: P(q I On, d) logp(d, q 10)
q

Note that the E, . has moved outside the log to become the Eq As one might expect,

the loops over the training set inside the log likelihood can now be distributed through the

EM expectation:

EP(q I B", d) logp(d, q 10) =
n

(II P(gt I
On, rt)) (E logp(rt, qt I9))

q 9. t t

= E Elogp(rt,gtle)fp(g7len,r1)
g0..gT-1 t T

_ E E logp(rt, qt I B) P(qt 16n, rt) 57 11 P(qT 19", r7)

t qt
qo tigT-1r#t

_ E log P(rt, Qt = t 9) P(Qt
= i I

B", rt)
t,t

_ EP(Qt = i I an, rt) log (P(rt I Qt = i, 9)P(Qt =i 19))
t,t

_ L P(Qt = i Ion, rt) (logp(rt
I Qt = i, Pt, 0,) + logw,) (30)

t,t

By analogy with the way (19) leads to (20) and (21), it should be clear that the reestimation

formulas for for pn+1 and)3n }1 are just weighted averages:

n+1 ', P(Qt = i I on,rt)rt
(31) At

Etp(Qt = i I9n,rt)

qqn+1 _ Et P(Qt = i I9", rt) (rt - p*)(rt - ,s)t -1

N2 - \ Et P(Qt=i IOn,rt)

where the coefficients are given by

P(rt t = i, On)
p(Qt t I

On, rt) pQt
an

n(Qt = i. 19n)

Jn a

oc w" 27exp (rt - W:) t /3;
(rt - µ,)

(32)

53

3.3.2.1 Unconditional Gaussian mixtures

is clearly differentiable, but the £t • • • inside the product prevents the quadraticness of

the Gaussian components' log likelihoods from bubbling to the top (cf. (14)), making it

necessary to use an iterative algorithm for the optimisation of fj,, /3.

Of course any general purpose nonlinear maxirniser will do the job, but there is also an

elegant EM alternative, in which the set Q of the process's choices of Gaussian components

over all the timesteps t is treated as an unknown variable (H in section 3.3.1.1), and

the expected log posterior is repeatedly maximised with respect to the parameter 6 =

/j,,/3,ui. In fact, if the training set d is big enough that the likelihood dominates the prior

(section 3.2.4.2), then it is sufficient to work with the expected log likelihood; with this

adjustment, the EM reestimation rule (27) becomes

9n+1 = argmax £>(<? I On, d) logp(d, q \ 9)

Note that the E» " * nas moved outside the log to become the £) • • •• As one might expect,

the loops over the training set inside the log likelihood can now be distributed through the

EM expectation:

X>(?|0n,d)logp(d,g|0) =

", r4) log (p(r4 1 Qt = i, 0)p(Q4 = i \ 0))

IQ* = i,^,/3.) + logw,) (30)

By analogy with the way (19) leads to (20) and (21), it should be clear that the reestimation

formulas for for ̂ n+l and /3n+1 are just weighted averages:

(31)

(32)

where the coefficients are given by

53

3.3.2.3 Input-output Gaussian mixtures

(normalised so as to sum to unity). Each output rt contributes to the new means and

variances of each component i in proportion to the old estimate of how probable it was that

i was responsible for generating rt. Again, by analogy with (10) and (13), the reestimation

rule is easily seen to be
wn+1 t P(Qt = i I

On, rt)
EtI

(33)

-the average of the posterior probabilities that i was responsible for each output.

Gaussian mixture models have been employed to good effect in "classification" or

"clustering" applications27, in which ellipsoidal clusters are discovered in the set of points rt,

and each point is classified according to the clusters which it is believed may have generated

it. The well-established k-means algorithm can be seen as an approximation to this method

(and can be justified by the arguments of section

3.3.2.2. Gaussian mixture confidence regions

It's also possible to use a mixture in just the same way on the other side to map out a

confidence region for the model which is more flexible than that obtained in section 3.2.5.3.

The procedure is simply to model the distribution of process inputs as a mixture of Gaussian

(or whatever) components i, and then add another one, say component 0, to the mixture

which merely says the input will lie somewhere in its legal range.

Furthermore, the learner can adjust the value of the frequency wo with which she

expects the model to break down in the light of its performance by using the EM update

rule (33) with the other elements of w clamped at their learned values. (Of course if she has

the computing time to spare, she can keep on tweaking all her other model parameters as

well.)

3.3.2.3. Input-output Gaussian mixtures

If the mixing is done over both the input and the output at the same time, then a very

powerful model begins to emerge. Suppose the process is taken to be deciding at random

between a number of rules i according to probabilities w each of which generates at and rt

from its own Gaussians N(v7i) and N(pQ,). Then the joint distribution is

P(rt, at 10) _ w, P(at I Qt = t> v,, 7i) P(rt I Qt I-ta,

27 The "AutoClass" system (Cheeseman et at, Autoclass) is particularly interesting because it
tries to take a fairly complete Bayesian approach to the problem It uses a rough but effective

approximation to help find the best number of mixture components to use, as well as employing the

EM algorithm given here to decide where each should be placed.

28 Neal & Hinton, A New View of the EM Algorithm

54

3.3.2.3 Input-output Gaussian mixtures

(normalised so as to sum to unity). Each output r4 contributes to the new means and

variances of each component i in proportion to the old estimate of how probable it was that

i was responsible for generating r4. Again, by analogy with (10) and (13), the reestimation

rule is easily seen to be

» - v
L^it •"•

— the average of the posterior probabilities that i was responsible for each output.

Gaussian mixture models have been employed to good effect in "classification" or

"clustering" applications27, in which ellipsoidal clusters are discovered in the set of points r4,

and each point is classified according to the clusters which it is believed may have generated

it. The well-established k-means algorithm can be seen as an approximation to this method

(and can be justified by the arguments of section 3.3.1.328).

3.3.2.2. Gaussian mixture confidence regions

It's also possible to use a mixture in just the same way on the other side to map out a

confidence region for the model which is more flexible than that obtained in section 3.2.5.3.

The procedure is simply to model the distribution of process inputs as a mixture of Gaussian

(or whatever) components i, and then add another one, say component 0, to the mixture

which merely says the input will lie somewhere in its legal range.

Furthermore, the learner can adjust the value of the frequency UQ with which she

expects the model to break down in the light of its performance by using the EM update

rule (33) with the other elements of w clamped at their learned values. (Of course if she has

the computing time to spare, she can keep on tweaking all her other model parameters as

well.)

3.3.2.3. Input-output Gaussian mixtures

If the mixing is done over both the input and the output at the same time, then a very

powerful model begins to emerge. Suppose the process is taken to be deciding at random

between a number of rules i according to probabilities w,, each of which generates o4 and r4

from its own Gaussians N(vt,ji) and N^,^). Then the joint distribution is

27 The "AutoClass" system (Cheeseman et al., Autoclass) is particularly interesting because it

tries to take a fairly complete Bayesian approach to the problem It uses a rough but effective

approximation to help find the best number of mixture components to use, as well as employing the

EM algorithm given here to decide where each should be placed.

28 Neal fc Hinton, A New View of the EM Algorithm

54

3.3.2.4 Jo,nt nurtures of experts

The EM update rules will obviously take the form of two copies of (31) and (32), one for

each pair of Gaussian parameters, plus the usual (33). The predictive distribution will be the

Gaussian mixture

p(rt 10, at) = E p(Qt = i I v,'Y, at) p(rt I Qt = i, l Q1)
i

where p(Qt = i I v,-y, at) =
wip(at I Qt = vi, -t.)

E,, u,p(at I Qt =.7,va,ryy)

-which means that the placement of at will affect the probabilities with which rt

is predicted to lie in each of the "regions", loosely speaking, defined by the

distributions N(µ1, O,). With enough components, this model is capable of capturing

arbitrary input-output relationships.

3.3.2.4. Joint mixtures of experts

The input Gaussian/output Gaussian model of section 3.3.2.3 results in a predictive

distribution which could be called "stochastically piecewise constant": given an input, one

can infer one or more fixed points around which the corresponding output is likely to be

found. If the joint input/output distribution of each mixture component is modelled as

a single Gaussian, as in section 3.2.5.4, the outcome is a "stochastically piecewise linear"

model: the points around which one expects to find the output move around linearly with

the input, at the same time as their relative probabilities also change. This model can be

seen as a member of the"mixture of experts" family: a different output-generating rule

comes into play depending on the placing of the input 29

Like the unmixed joint-Gaussian model, each component i of the mixture of

experts can also be parameterised in a slightly different way, with an input-generating

distribution N(vry,), a linear transformation ic,, and an output noise distribution N(00,).

Under this alternative formulation, the EM reestimation rules for ic, and f, are weighted

versions of (24) and (25):

= (Ep(Qt=iIOn,rt,at)rtat I
(pt=iir,rt,at)aatt,

/ t

"+1 = I Etp(Q` = i
I
B", r`, at) (r`rt' - ,c *`atrt')

p1 l Etp(Qt=ile",rt,at)

where p(Qt = i Ion, rt, at) cc p(rt I Qt = Z, K', #,, at) p(Qt = t, at I w', v", ry")

n
and p(rt I Qt = P . " , t) = 2 exp (-2 (rt - n at) (rt -K,"at))

and p(Qt = i, at I w", v",7") = w;
27r

exp (at - vi)/ 7s
(at - i)

29 Xu et at., An Alternative Model

55

3.3.2.4 Joint mixtures of experts

The EM update rules will obviously take the form of two copies of (31) and (32), one for

each pair of Gaussian parameters, plus the usual (33). The predictive distribution will be the

Gaussian mixture

p(r4 |0,a4) =]>>(£* = i |*/,7,af)p(r4 1 Q4 - i,
i

, ,^t - i t\ ^ip(at |<24 = i,f»,7»)where p(Q4 = t i/, 7, a4) = ^v ' J .*' 'l>
t

— which means that the placement of a4 will affect the probabilities with which r*

is predicted to lie in each of the "regions" , loosely speaking, defined by the

distributions JV(/j,,/3t). With enough components, this model is capable of capturing

arbitrary input-output relationships.

3.3.2.4. Joint mixtures of experts

The input Gaussian/output Gaussian model of section 3.3.2.3 results in a predictive

distribution which could be called "stochastically piecewise constant": given an input, one

can infer one or more fixed points around which the corresponding output is likely to be

found. If the joint input/output distribution of each mixture component is modelled as

a single Gaussian, as in section 3.2.5.4, the outcome is a "stochastically piecewise linear"

model: the points around which one expects to find the output move around linearly with

the input, at the same time as their relative probabilities also change. This model can be

seen as a member of the "mixture of experts" family: a different output-generating rule

comes into play depending on the placing of the input.29

Like the unmixed joint-Gaussian model, each component i of the mixture of

experts can also be parameterised in a slightly different way, with an input-generating

distribution N(vt,%), a linear transformation KS, and an output noise distribution N(0,/3t).

Under this alternative formulation, the EM reestimation rules for Kt and & are weighted

versions of (24) and (25):

where p(Qt = i\en,rt,at)<xp(rt\Qt = i,t^,^,at)p(Qi = 1,0* | wn,z/",7n

and p(rt\Qt = i,<,/34",a4) - ^

and p(Q* = i, a* \ wn, vn, 7") = ̂

exp _ r _

2sl
27T

29 Xu et al., An Alternative Model

55

3.3.2.5 Conditional gating rules

The update rules for the input parameters v, ,y are of course similar to (31) and (32)

n+1 = Et P(Qt = i I Bn, rt, at) at
v,

Et p(Qt = i I on, rt, at)

y,n+l (Et P(Qt = i 19",rt, at) (at - v1`+1)(at Vn+1), -1

Etp(Qt=iIon,rt, at)

while that for w is as (33). The predictive distribution is

p(rt 10, at) = E p(Qt = i I w, v, y, at) p(rt I Qt = t, k., Qi, at)

where p(Qt = t w, v, y, at) a p(Qt = i, at I w, v, y, at)

(34)

(35)

Like the other mixture of experts variants, the joint-Gaussian model can be seen as

bringing together classification and regression30: it first classifies the inputs into Gaussian

clusters, and then applies a different linear mapping to members of each class.

3.8.2.5. Conditional gating rules

It is also possible to define another kind of mixture of experts algorithm, in which no

attempt is made to model the distribution of the inputs: instead of at being conditional

(jointly with rt) on the mixture component choice qt, the latter is made conditional on the

former. Although this "conditional mixture of experts" sounds semantically less ambitious

than the joint mixture of experts of section 3.3.2.4, it turns out to be computationally more

expensive.

In one possible parameterisation, the "gating rule" by which an expert i is chosen to

map the input to the output is similar in form to a Gaussian mixture classification:

p(Qt = i 10, at) _
[mow:9(at I

v,, y,)
(36)

L3 w, g (a,

II

Vj "0
where 9(at I V.,'Y.) = I27r I

z
exp \ 2 (at v4)

y.
(at - v*)

This is the degree to which each Gaussian "receptive field" N(vy,) will "claim" the

input at for its expert i, weighted by w, and normalised to sum to unity. Note that the

Gaussians are being used here purely for their formal properties: there is no suggestion

in this conditional mixture model that they express the actual distribution of the inputs

(they don't). The M-step of the learning algorithm, in which the (conditional) expected log

likelihood is maximised, takes the form

Bn+i = argmax p(Qt = i I Bn, rt, at) logp(rt, Qt = i
I B, at)

t,.

U(O)

(37)

31) Jordan & Jacobs, Hierarchical mixtures of experts mentions similar, existing models in the

statistical literature such as CART and MARS

56

3.3.2.5 Conditional gating rules

The update rules for the input parameters v, 7 are of course similar to (31) and (32)

»?+i=^p^rjiy^y (34)
^ n(nt _ ?' I an rt nt\ (nt __ j,n+l\(nt _
j± lr\ty — t | 17 j / ; Ui J ^t* — Is J \1Jti

while that for w is as (33). The predictive distribution is

p(rl 1 0, a4) = £ p(Q4 = i | w, j/, 7, a4) p(r* \Q
i

where p(Q4 = i | us, v, 7, a4) oc p(Q* = i,at\ us, v, 7, a4)

Like the other mixture of experts variants, the joint-Gaussian model can be seen as

bringing together classification and regression30: it first classifies the inputs into Gaussian

clusters, and then applies a different linear mapping to members of each class.

3.3.2.5. Conditional gating rules

It is also possible to define another kind of mixture of experts algorithm, in which no

attempt is made to model the distribution of the inputs: instead of a4 being conditional

(jointly with r*) on the mixture component choice g4, the latter is made conditional on the

former. Although this "conditional mixture of experts" sounds semantically less ambitious

than the joint mixture of experts of section 3.3.2.4, it turns out to be computationally more

expensive.

In one possible parameterisation, the "gating rule" by which an expert i is chosen to

map the input to the output is similar in form to a Gaussian mixture classification:

i\9,a^ = 9(at. (36)
*

where g(at \ v% , 7,) = ^ 2 exp f - - (a4 - vt) ' 7* (a4 -vt)\

This is the degree to which each Gaussian "receptive field" -/V(z/j,74) will "claim" the

input o4 for its expert i, weighted by w4 and normalised to sum to unity. Note that the

Gaussians are being used here purely for their formal properties: there is no suggestion

in this conditional mixture model that they express the actual distribution of the inputs

(they don't). The M-step of the learning algorithm, in which the (conditional) expected log

likelihood is maximised, takes the form

0n+1= argmax ^p(Q4 = i \9n,rt,ai)logp(rt,Qt = i |0,a4)

' «. _ . _ . (37)
C7(0)

30 Jordan & Jacobs, Hierarchical mixtures of experts mentions similar, existing models in the

statistical literature such as CART and MARS

56

3.3.2.5 Conditional gating rules

Writing the logged term as

logP(r-t
I Qt = i, lc,, P., a) + logp(Qt = i I w, v,7, at)

and expanding

logP(Qt=iJw,v,7,at)=log w1 9(a'Iv7,)
E, w3 9(a' I v3,73)

(38)

it can be seen that the quadraticness of the Gaussian patches' exponents will be blocked by

the log E from being exposed at the top level of the expected log likelihood. This means

that its derivative with respect to the parameters v and y will not be very nice, and some

sort of iterative optimiser will have to be deployed once per iteration of the EM algorithm to

find a root of the derivative. The model of section 3.3.2.4 avoids this cost; one way of seeing

why is to note that the troublesome denominator of 38, which is just like p(at 10), is made

part of the likelihood in the joint model and simply "cancels out".

However, the derivative is at least not hard to calculate: the identity

a
Bk

log
E, f(93) &0k

logf(B,) -
kk

log f(93)

a log f(0,) - B+1(0k)
a9k E, f(e7)

otk - f(Bk) logf(9k)
(E3 f(03) aek

(for any 0 and differentiable f) implies that

(39)

a U(9)=EP(Qt=il9",rt,at)(6:k-p(Qt=kJw,v,7,at)) a9 log (wk9(atIvk,7k))
a9k k

_ L (p(Qt
= k 10", rt, at) - P(Qt = k I w, v,7, at))

aBk
log (wk 9(at I vk, 7k))

t

The Gaussian log-derivatives (15) and (16) then lead immediately to

a U(e) Y' eea7,(v, at)
e

87:
U(0) _ E el, (7a 1 - (at vt)(at v=))

t

where etto, = P(Qt = i 19n, rt, at) - P(Qt = i 1 w, v,7, at)

(40)

(41)

(42)

An alternative parameterisation in terms not of the 7,s but of their square roots tG: yields

a slightly different form of the derivative, which looks to be a little closer to linear and

57

3.3.2.5 Conditional gating rules

Writing the logged term as

logp(r4 1 Q* = i, Kt, A, a*) + logp(Q4 = i u,v, 7, a4)

and expanding

logp(Q4 = i\u, v, 7, a4) = log J*g(«*K7.) (38)
E,<",fl(a*|i/,,7,)

it can be seen that the quadraticness of the Gaussian patches' exponents will be blocked by

the log £ • • • from being exposed at the top level of the expected log likelihood. This means

that its derivative with respect to the parameters v and 7 will not be very nice, and some

sort of iterative optimiser will have to be deployed once per iteration of the EM algorithm to

find a root of the derivative. The model of section 3.3.2.4 avoids this cost; one way of seeing

why is to note that the troublesome denominator of 38, which is just like p(at \ 0), is made

part of the likelihood in the joint model and simply "cancels out" .

However, the derivative is at least not hard to calculate: the identity

(39)

(for any 0 and differentiable /) implies that

The Gaussian log-derivatives (15) and (16) then lead immediately to

7.(".-o*) (40)

[7(0) = £4 (ir1 - (a* - "<Xa4 - ".)') (4D

where ej, =p(Q* = i |0n
>r*,o t) -p(Q* = »|w,i />7,o*) (42)

An alternative parameterisation in terms not of the 78s but of their square roots $i yields

a slightly different form of the derivative, which looks to be a little closer to linear and

57

3.3.2.5 Cond,ttonal gat,ng rules

hence better matched with quadratic-approximation (conjugate gradients, quasi-Newton)

optimisation methods:

a7,
U(0) = E EB, & 1 - 0,(at - v,)(at - v,)' (43)

where = ry,

Finally, the derivatives with respect to the weightings wi are

L a Bs

aw,
U(9) = E E

t w, (44)

One obvious way to perform the M-step is to clamp one of the weightings at some arbitrary

value, for instance setting wo = 1, and feed all the rest jointly to a conjugate gradients

optimiser along with the derivatives given above.

The qualitative difference between a Gaussian-based gating rule and the Gaussian-

mixture input distribution of section 3.3.2.4 can be appreciated most easily by considering

the effect of the "extra" term - - p(Qt = i 10, at) in the derivatives (40) and (41). In the

joint-distribution model, the input-generating patches of the experts i are "influenced by"

each input at in the training set precisely to the extent p(Qt = i I on, rt, at) that they are

judged responsible for having generated it (taking into account the accuracy with which the

corresponding linear/Gaussian map predicts the output rt). In the conditional-distribution

model, the receptive fields of expert i are influenced by each input to an "extent" et i (42)

which is positive if they appear to have been activated by it but are not currently "claiming"

it, negative if the converse is true, and zero if there is agreement. At the fixed point of

the training algorithm, this will mean that it is only the inputs around the margins of

each receptive field, and those lying unexpectedly in the "wrong" field, which influence the

placement and size of the fields, The precise positions of those inputs which are comfortably

inside the "right" fields will not have a significant effect.

Another form of the conditional mixture of experts uses a simpler "softmax-on-linear"

function to parameterise the gating probabilities:31

p(Qt =t B, at) =
w, exp r7at

E, wjexprl, at
(45)

This model's log likelihood has an 27 derivative which is quicker to calculate than (40)

and (41), although its root must still be found by iterative methods.32 However, its gating

31 Jacobs et at, Adaptive mixtures of local experts; the Gaussian receptive field gating scheme

can be interpreted as a softmax-on-quadratic

32 Jacobs et'al., Adaptive mixtures of local experts uses the technique of iteratively reweighted

least squares.

58

3.3.2.5 Conditional gating rules

hence better matched with quadratic-approximation (conjugate gradients, quasi-Newton)

optimisation methods:

d 4 / _1/ t t ,\
d% ~^£et\ l *a -vt a -vj)

where tp'^ = ̂

Finally, the derivatives with respect to the weightings Wj are

~ (44)

One obvious way to perform the M-step is to clamp one of the weightings at some arbitrary

value, for instance setting w0 = 1, and feed all the rest jointly to a conjugate gradients

optimiser along with the derivatives given above.

The qualitative difference between a Gaussian-based gating rule and the Gaussian-

mixture input distribution of section 3.3.2.4 can be appreciated most easily by considering

the effect of the "extra" term • • • - p(Qt = i\9, a4) in the derivatives (40) and (41). In the

joint-distribution model, the input-generating patches of the experts i are "influenced by"

each input a4 in the training set precisely to the extent p(Q* = i\9n,r4, a4) that they are

judged responsible for having generated it (taking into account the accuracy with which the

corresponding linear/Gaussian map predicts the output r4). In the conditional-distribution

model, the receptive fields of expert i are influenced by each input to an "extent" e^ (42)

which is positive if they appear to have been activated by it but are not currently "claiming"

it, negative if the converse is true, and zero if there is agreement. At the fixed point of

the training algorithm, this will mean that it is only the inputs around the margins of

each receptive field, and those lying unexpectedly in the "wrong" field, which influence the

placement and size of the fields. The precise positions of those inputs which are comfortably

inside the "right" fields will not have a significant effect.

Another form of the conditional mixture of experts uses a simpler "softmax-on-linear"

function to parameterise the gating probabilities:31

t (45)

This model's log likelihood has an r] derivative which is quicker to calculate than (40)

and (41), although its root must still be found by iterative methods.32 However, its gating

31 Jacobs et al., Adaptive mixtures of local experts; the Gaussian receptive field gating scheme

can be interpreted as a softmax-on-quadratic
32 Jacobs et'al, Adaptive mixtures of local experts uses the technique of iteratively reweighted

least squares.

58

3.3.2.6 Confidence regions for conditional mixture models

rule is quite crude, effectively dividing the input space into regions divided by hyperplanes,

with stochastically smooth transitions between expert choices at the boundaries-i.e., if at

is near a boundary, the decision could go either way. A more discriminating rule than the

soft-hyperplane separator can be obtained by using a hierarchy of such classifiers33, but the

Gaussian-like scheme of (36) arguably gives locality properties at least as "sensible", in a

simpler form.

3.3.2.6. Confidence regions for conditional mixture models

Just as one can use the input side of a joint-or joint mixture, or joint mixture of

experts-model as a confidence region, mapping out the region of the input space for which

it has seen example outputs during training (section 3.2.5.3), so it is possible to use the

gating rule as a confidence region for a conditional mixture of experts model. However, the

semantics will be subtly different.

In former case, the learner supposed that from time to time, a process quite different

from that observed during training was brought into play, and both the input and the output

would be unpredictable. Thus if an observed input was known from the confidence region

to be very different from any seen in the training data, she would not want to make any

certain prediction about the output; but even if the input was similar to previous ones, she

would still have to bear in mind the possibility that it and the output were produced by the

unknown process.

In the case of a conditional mixture of experts, the provision for model failure

is expressed instead by including an expert in the mix which "sweeps up" inputs not

claimed by the others, and has a completely uninformative output. For instance, it could

conveniently be added to the Gaussian receptive field-based model of section 3.3.2.5 as an

expert like the others but with a large receptive field and noisy output. Because the learner

assumes during training that none of the example inputs trigger the uninformative expert,

the other experts' receptive fields are forced to grow so that they exactly map out the region

of the input space on which the model has been trained. When this assumption is relaxed,

the model automatically takes account of this confidence region in its predictions-but

inputs falling inside it can never trigger the uninformative expert, meaning that the model's

corresponding output predictions will be less conservative than those of the joint mixture

of experts. (It's interesting to note that as the weighting ws of the uninformative expert is

raised, the denominator in (38) which makes the difference becomes more nearly constant

over the input space, and the remaining receptive fields become more like generating

patches.)

33 Jordan & Jacobs, Hierarchical mixtures of experts

59

3.3.2.6 Confidence regions for conditional mixture models

rule is quite crude, effectively dividing the input space into regions divided by hyperplanes,

with stochastically smooth transitions between expert choices at the boundaries—i.e., if a4

is near a boundary, the decision could go either way. A more discriminating rule than the

soft-hyperplane separator can be obtained by using a hierarchy of such classifiers33, but the

Gaussian-like scheme of (36) arguably gives locality properties at least as "sensible", in a

simpler form.

3.3.2.6. Confidence regions for conditional mixture models

Just as one can use the input side of a joint—or joint mixture, or joint mixture of

experts—model as a confidence region, mapping out the region of the input space for which

it has seen example outputs during training (section 3.2.5.3), so it is possible to use the

gating rule as a confidence region for a conditional mixture of experts model. However, the

semantics will be subtly different.

In former case, the learner supposed that from time to time, a process quite different

from that observed during training was brought into play, and both the input and the output

would be unpredictable. Thus if an observed input was known from the confidence region

to be very different from any seen in the training data, she would not want to make any

certain prediction about the output; but even if the input was similar to previous ones, she

would still have to bear in mind the possibility that it and the output were produced by the

unknown process.

In the case of a conditional mixture of experts, the provision for model failure

is expressed instead by including an expert in the mix which "sweeps up" inputs not

claimed by the others, and has a completely uninformative output. For instance, it could

conveniently be added to the Gaussian receptive field-based model of section 3.3.2.5 as an

expert like the others but with a large receptive field and noisy output. Because the learner

assumes during training that none of the example inputs trigger the uninformative expert,

the other experts' receptive fields are forced to grow so that they exactly map out the region

of the input space on which the model has been trained. When this assumption is relaxed,

the model automatically takes account of this confidence region in its predictions—but

inputs falling inside it can never trigger the uninformative expert, meaning that the model's

corresponding output predictions will be less conservative than those of the joint mixture

of experts. (It's interesting to note that as the weighting UJQ of the uninformative expert is

raised, the denominator in (38) which makes the difference becomes more nearly constant

over the input space, and the remaining receptive fields become more like generating

patches.)

33 Jordan & Jacobs, Hierarchical mixtures of experts

59

3.3.3.1 Graphical model of a dynamscal system; the Markov property

Which of these kinds of confidence region is more appropriate will of course depend on

the learner's knowledge about the likely ways in which the validity of the training set may in

future break down.

3.3.3. Bayesian modelling of dynamical systems

The environment in which an autonomous robot exists (section 3.1) can be modelled,

without loss of generality, as a stochastic discrete dynamical system (or Markov chain) of

order one. Such a process has the defining characteristic that the probability of the system

being in a particular state at each discrete timestep depends only the state it was in at the

previous step. If the state cannot be directly measured, but must instead be inferred from

the (probabilistic) effect it has on some other quantities such as sensor readings, the process

is said to be partially observable.

3.3.3.1. Graphical model of a dynamical system; the Markov property

This situation can be summarised in the following diagram:

(46)

Here He is the system's state at time t and Rt its output (given a double border to indicate

that it is directly observable). The dynamics of the system, according to which H evolves

from step to step, are expressed in the distribution p(ht+l I ht, 6), and the effect it has on R

in the distribution p(rt I ht, p).

"Graphical models" of this kind are convenient because they express the structure of

the joint distribution of all the quantities involved in a way at once precise and visually

intuitive. The graph may contain no directed cycles, so one can employ the obvious "family

tree" terminology, and the assertion it embodies can be captured concisely (if somewhat

cryptically) by saying that each node is conditionally independent of its non-descendents

given its parents 34 For example, because Hl is the only node from which there is a link

to H2, p(h2 I h', x) is equal to p(h2 I h') for any X among H2 IS other non-descendents (H°,

R° and RI). This means that the joint distribution can be written in a form which factors it

into separate terms for each timestep:

P(h°,r°,h',r' h2,...) =P(h' 1 h°,r°,r')P(h21 h') ...

= P(h°)P(r° I h°) P(h' I h°) p(r' I h') p(h2 I h') ...

34 Jordan, Learning in Graphical Models

60

3.3.3.1 Graphical model of a dynamical system; the Markov property

Which of these kinds of confidence region is more appropriate will of course depend on

the learner's knowledge about the likely ways in which the validity of the training set may in

future break down.

3.3.3. Bayesian modelling of dynamical systems

The environment in which an autonomous robot exists (section 3.1) can be modelled,

without loss of generality, as a stochastic discrete dynamical system (or Markov chain) of

order one. Such a process has the defining characteristic that the probability of the system

being in a particular state at each discrete timestep depends only the state it was in at the

previous step. If the state cannot be directly measured, but must instead be inferred from

the (probabilistic) effect it has on some other quantities such as sensor readings, the process

is said to be partially observable.

3.3.3.1. Graphical model of a dynamical system; the Markov property

This situation can be summarised in the following diagram:

s

Here H* is the system's state at time t and R* its output (given a double border to indicate

that it is directly observable). The dynamics of the system, according to which If evolves

from step to step, are expressed in the distribution P(ht+l 1 7i4,<5), and the effect it has on R

in the distribution p(r4 1 tf, p).

"Graphical models" of this kind are convenient because they express the structure of

the joint distribution of all the quantities involved in a way at once precise and visually

intuitive. The graph may contain no directed cycles, so one can employ the obvious "family

tree" terminology, and the assertion it embodies can be captured concisely (if somewhat

cryptically) by saying that each node is conditionally independent of its non-descendents

given its parents.34 For example, because H1 is the only node from which there is a link

to H2, P(h? | hl,x) is equal to p(h2 \ h1) for any X among H2's other non-descendents (H°,

R° and R1). This means that the joint distribution can be written in a form which factors it

into separate terms for each timestep:

= P(h°)P(r°

34 Jordan, Learning in Graphical Models

60

3.3.3.2 EM Beaming of dynamccal systems

or, writing this "Markov property" more formally,

p(h, r I
t, 6, p) = p(h° It) JI p(ht I ht-l, 6) p(rt I P) (47)

t

where c denotes beliefs about the initial state H°. (Obviously in this case the conditionality

structure of the posterior arises from the causal directionality of the dynamical system,

although the diagrammatic formalism can equally well be used for models in which causation

plays no role.)

3.3.3.2. EM learning of dynamical systems

The Markov property is what makes dynamical systems models good subjects for the

application of EM learning algorithms35, with the parameters t, 6 and p jointly playing the

role of 0 and the system state over time H that of the unobserved quantity (also called H in

section 3.3.1 above).

For a start, the temporal locality expressed in the Markov property can easily be seen

to carry over into a convenient factorisation of the update rule. First expand the posterior

p(9, h I r) in (27) using the identity

p(B, h I r, H) =
p(h, r 19) p(9 I H)

p(r I H)

where 3l includes prior beliefs about t, S and p (this simply in order to get the r on the left

hand side of the conditioning bar). Then the reestimation rule becomes

Bn+1 = argmax Eh [logp(h, r 19) + log p(9 17{) 19n, r]
B

And from (47)

logp(h, r 19) = logp(h° I t) + L (logp(ht I h'1, d) + logp(rt
I ht, p))

t

So the rule decomposes into separate subrules for each part of the parameter; and none of

them use more than two temporally adjacent h values at once:

to+l = argmax (logp(h° I t) +logp(t I9-1)) (48)
t

an+1 = argmax
(E

Eht,ht-1 [logp(ht
I ht-1, 6) 19t, r] + logp(S

I
n)/ (49)

(EEhL = argmax [logp(rI ht, p) r] + logp(p
I H)) (56)

t

ss Ghahramani, Learning Dynamic Bayessan Networks for an overview

61

3.3.3.2 EM learning of dynamical systems

or, writing this "Markov property" more formally,

p(h,r\t,8,p)=P(h

where i denotes beliefs about the initial state H°. (Obviously in this case the conditionality

structure of the posterior arises from the causal directionality of the dynamical system,

although the diagrammatic formalism can equally well be used for models in which causation

plays no role.)

3.3.3.2. EM learning of dynamical systems

The Markov property is what makes dynamical systems models good subjects for the

application of EM learning algorithms35, with the parameters i, 6 and p jointly playing the

role of 0 and the system state over time H that of the unobserved quantity (also called H in

section 3.3.1 above).

For a start, the temporal locality expressed in the Markov property can easily be seen

to carry over into a convenient factorisation of the update rule. First expand the posterior

P(9, h | r) in (27) using the identity

p(9,h\r,W = «h>y$M

where ft includes prior beliefs about i, S and p (this simply in order to get the r on the left

hand side of the conditioning bar). Then the reestimation rule becomes

0n+1 = argmax Eh [\ogp(h, r 10) + logp(0 | ft) I 0", r]
8

And from (47)

logp(h,r\9)=logP(h°\i)-

So the rule decomposes into separate subrules for each part of the parameter; and none of

them use more than two temporally adjacent h values at once:

= argmax (logP(h° \ i) 4- logp(t | ft)) (48)
i

(_ \
= argmax } Eht ht-i [logp(/i41 h ,6}\9t,r]+logp(6\H)] (49)

s \t J

P
n+1 = argmax ^Eht [logp(r41 h^p) \ 04 , r] +logp(p|ft)) (50)

" V t J

35 Ghahramani, Learning Dynamic Bayesian Networks for an overview

61

3.3.3.2 EM learning of dynamical systems

Furthermore, the Markov property also suggests a convenient way of computing the

pairwise distributions p(ht, ht-11 r, 0) over which the expectations in (49) are taken. Note

first that

P(ht, h t+' r, e) =
P(h° ht+1 rI9)

Ar 10)

the denominator p(r 10) being a constant of no interest (at this stage); and further that
p(ht,ht+1 r10) = p(rl0t` ,ham p(ht+lIht,6) P(ht+r r)16)

f(ht) b(ht+1) (51)

or, in words, the probability the system ends up in state ht having output rl°,t 1, then

transitions to ht+1 and goes on to output rl t+1,T) By exploiting the conditionality

structure of the posterior, f and b can be defined inductively by

f(ht+1) = p(rlo,t+1]
ht+1I0)

= p(rt}1
I ht+1, p) I ht

I ht, 8) p(rl 0't 1, ht 10)
h'

= p(rt+1 I ht+1 p) f ht
I ht, 6) f (ht) (52)

h
with f(h°) = p(h°It)

b(ht-1) = p(ht-1,rlt-1'T)I0)

=
p(rt-1

I

ht-1
p) f p(ht l It'-1, 6) p(rl t,T) ht 16) L

= p(rt-1
I ht-1, P) I ht

I p(ht ht-1, 6) b(ht) (53)

with b(hT-1) = P(hT_l,rl0'T)10) = f(hT-1)

These equations are special cases of those used for belief propagation in more general

graphical models.36

The upshot is that if the distributions defining the model are well-behaved, an elegant

and efficient algorithm drops out. Specifically:

1) If the functional form of p(ht+1 I ht, b) (the system dynamics) is closed under

convolution with itself,

2) and with p(rt I ht, p) (the output likelihood) and p(h° I t) (the initial state), then f
and b will have that functional form as well, and so will the pairwise distribution

used in (49)'s expectation.

3) If the functional form of p(ht+1 I It, 6) is also closed under marginalisation,

it will cover the distribution used in (50)'s expectation, since p(ht I r, 0) _

fht+1 p(ht, ht+1 I
r, 0).

4) If, finally, the distributions p(ht}1 I ht 6) and p(rt I ht, p) are drawn from the

common "exponential" family37, the expectations in (50) and (49) may go through

36 Lauritzen & Spiegelhalter, Local computations

37 Lee, Bayesian Statistics, p. 63

62

3.3.3.2 EM learning of dynamical systems

Furthermore, the Markov property also suggests a convenient way of computing the

pairwise distributions P(h*, hl~l \ r, 0) over which the expectations in (49) are taken. Note

first that

the denominator p(r \ 0) being a constant of no interest (at this stage); and further that

P(ht,ht+1,r\9)= Xrf-'U'lfl)

or, in words, the probability the system ends up in state h1 having output r^0>i\ then

transitions to ht+1 and goes on to output r[
4+1>T). By exploiting the conditionality

structure of the posterior, / and b can be defined inductively by

f(ht+1)=p(rl°'t+1\ht+1\9)

f
Jh*

= p(rt+1\ht+1,p) p(tf+1 | tf,<*)/(tf) (52)

with f(h°) = p(h° 1 1)

1|tf-1,p) f
Jh*

= Xr4-1 | /i4-1 , p) f p(h* 1 h1-1 , 6) b(hf) (53)
Jh*

with b(hT~1)=p(hT-1,r^'T^\0) =

These equations are special cases of those used for belief propagation in more general

graphical models.36

The upshot is that if the distributions defining the model are well-behaved, an elegant

and efficient algorithm drops out. Specifically:

1) If the functional form of P(ht+1 \ht,5) (the system dynamics) is closed under

convolution with itself,

2) and with p(r4 1 h*, p) (the output likelihood) and P(h° \ i) (the initial state), then /

and b will have that functional form as well, and so will the pairwise distribution

used in (49) 's expectation.

3) If the functional form of p(ht+1 \ht,S) is also closed under marginalisation,

it will cover the distribution used in (50) 's expectation, since p(/i4 1 r, 0) =

4) If, finally, the distributions P(ht+1 \ h*, S) and P(r* \ht,p) are drawn from the

common "exponential" family37, the expectations in (50) and (49) may go through

36 Lauritzen &; Spiegelhalter, Local computations
37 Lee, Bayesian Statistics, p. 63

62

3.3.3.3 The hidden Markov model

cleanly and give rise to a simple optimisation.

Making predictions for observations rT not yet made will also be easy, since the density

required is

p(rT 10, r[o,T)) (54)

and this can be obtained from fT, as defined in (52) by marginalising over hT.

There are two classes of model which meet these requirements completely, namely the

"hidden Markov model" and the "Kalman filter".

3.3.3.3. The hidden Markov model

In a hidden Markov model (HMM)37, the hidden state Ht is instantiated as a discrete

quantity, say Qt, and the dynamics parameter 6 as an arbitrary transition matrix w, so that

P(Qt+l = i I Qt = j, w) = WtJ (55)

trivially satisfies the conditions 1 and 3 given in section 3.3.3.2 for p(ht+l I he, 6). The output

distribution p(rt I qt, p) is a mixture, where the choice of mixing component is determined by

the state qt. Symbolically,

p(rt I qt = i, p) = p(rt I qt = i, p,)

Clearly this arrangement also satisfies condition 2. The components p(rt I Qt = i, P,)

which are mixed to form the output distribution are typically either discrete or Gaussian.

In the latter case, the HMM is just a recursive (i.e. time-series) version of the Gaussian

mixture model described in section 3.3.2, the only difference being that the unconditional

probabilities w, with which each component i was chosen to generate the output are replaced

by the Markov-conditional probabilities wj.

Substituting this simple model into the framework of section 3.3.3.2, the equations (52)

and (53) implementing the E-step at iteration n of the EM algorithm become the so-called

"forward-backward" equations

f0
a -tb

fy+1 = p(rt l p. n)

bT-1 T-1
9 f7

bj 1=p(rtlp),w b:

37 Rabiner, A Tutorial on Hidden Markov Models

(56)

(57)

63

3.3.3.3 The hidden Markov model

cleanly and give rise to a simple optimisation.

Making predictions for observations rT not yet made will also be easy, since the density

required is

p(rT |0,r[°'T)) (54)

and this can be obtained from /T, as defined in (52) by marginalising over hT.

There are two classes of model which meet these requirements completely, namely the

"hidden Markov model" and the "Kalman filter".

3.3.3.3. The hidden Markov model

In a hidden Markov model (HMM)37, the hidden state H* is instantiated as a discrete

quantity, say Qi, and the dynamics parameter 6 as an arbitrary transition matrix u, so that

trivially satisfies the conditions 1 and 3 given in section 3.3.3.2 for p(ht+l \ /i4,<5). The output

distribution p(r* \ q*,p) is a mixture, where the choice of mixing component is determined by

the state g4. Symbolically,

p(r4 |g4 = i,p)=p(ri\qt =i,pt)

Clearly this arrangement also satisfies condition 2. The components p(rl | Q4 = i, PI)

which are mixed to form the output distribution are typically either discrete or Gaussian.

In the latter case, the HMM is just a recursive (i.e. time-series) version of the Gaussian

mixture model described in section 3.3.2, the only difference being that the unconditional

probabilities uil with which each component i was chosen to generate the output are replaced

by the Markov-conditional probabilities wy.

Substituting this simple model into the framework of section 3.3.3.2, the equations (52)

and (53) implementing the E-step at iteration n of the EM algorithm become the so-called

"forward-backward" equations

fO _ ,nJi - <•»

0
.T-l fT-1
i h

37 Rabiner, A Tutorial on Hidden Markov Models

63

3.3.3.3 The hcdden Markov model

It is convenient to define also

t p(Qt = j Qt+i = i, r 10') which is few b;+1

(cf. (51)).

The update rule (49) for the dynamics parameter (transition matrix) becomes

w +i = p(qt - j qt+i = i I gn r) _ E t
t t

while the rule (48) for the initial state becomes

,,n+1 = TP(g0 = 3 I B^, r)
t

(58)

(59)

(60)

Both are easily established using Lagrange multipliers in exactly the same way as for (13).

The priors p(w I74) and p(t I N) are ignored (assumed to be dominated by the likelihood).38

If, as is commonly the case, the components p(rt I p,) of the output distribution are

Gaussians, with means µ, and precisions p then their update rules are

n+1 Etp(gt = i) rt
61 Wt Et p(qt = t)

()

n+1 Etp(gt= i) (rt-p'x+l)(rt-tti}
p,

EtP(gt = t))
(62)

-cf. the similar weighted averages (31) and (32). (Again, the priors are treated as

irrelevant.) The combination of the forward-backward equations with these or similar

updates in an EM iteration sequence is called the Baum-Welch algorithm, after its

discoverers.

The HMM's prediction for an observation rT not yet made can, as was pointed out

for (54), be evaluated by marginalising qT out of fT:

p(rT I
rl o'T),

8) = L P(rT I

QT = i, p,) p(QT = t I rl 0,T),
0) (63)

Hidden Markov models have been applied successfully to problems in operations

research39, reinforcement learning40 and many other fields including most saliently speech

recognition41. One of their most useful properties is that they make no assumptions about

the way successive outputs generated by the system are related to each other. This means

38 although one can adopt a Dirichlet prior with little extra complication: see e.g. Koenig &
Simmons, Unsupervised learning for a robotics application of this idea

39 cited in Kaelbhng et at., Planning and Acting

40 Kaelbling et al., Planning and Acting

41 Rabiner, A Tutorial on Hidden Markov Models

64

3.3.3.3 The hidden Markov model

It is convenient to define also

&=p(Qt=J,Qt+l=i,r\9n) which is /XX+1 (58)

(cf. (51)).

The update rule (49) for the dynamics parameter (transition matrix) becomes

= 3, Qt+1 = i\9n,r) = . £ (59)
t

while the rule (48) for the initial state becomes

Both are easily established using Lagrange multipliers in exactly the same way as for (13).

The priors p(w \ ft) and p(i \ ft) are ignored (assumed to be dominated by the likelihood).38

If, as is commonly the case, the components p(r4 1 pt) of the output distribution are

Gaussians, with means pt and precisions /3t, then their update rules are

-1

— cf. the similar weighted averages (31) and (32). (Again, the priors are treated as

irrelevant.) The combination of the forward-backward equations with these or similar

updates in an EM iteration sequence is called the Baum- Welch algorithm, after its

discoverers.

The HMM's prediction for an observation rT not yet made can, as was pointed out

for (54), be evaluated by marginalising qT out of fr:

(63)

Hidden Markov models have been applied successfully to problems in operations

research39, reinforcement learning40 and many other fields including most saliently speech

recognition41. One of their most useful properties is that they make no assumptions about

the way successive outputs generated by the system are related to each other. This means

38 although one can adopt a Dirichlet prior with little extra complication: see e.g. Koenig &

Simmons, Unsupervised learning for a robotics application of this idea
39 cited in Kaelbling et al., Planning and Acting
40 Kaelbling et al., Planning and Acting
41 Rabiner, A Tutorial on Hidden Markov Models

64

3.3.3.4 Input-output HMMs

that they are well suited to capturing patterns of underlying temporal structure which

express themselves in characteristic, but arbitrary, readings. HMMs can cope particularly

well with the sort of randomness termed "nondeterminism" in section 3.1.2.1: if there

are situations in which the process being modelled can follow any of several trajectories

for a certain period, during which time the available observations are not sufficient to

disambiguate them, the model can in effect maintain all the possible trajectories as

hypotheses. In this case its "mixed" predictions will present the outcomes corresponding to

each trajectory hypothesis, along with their assessed probabilities and their extra, localised

"noise" uncertainty (p, in the case of an HMM with Gaussian output densities). The

model is not constrained to output any single best guess or compromise estimate, and its

mixture predictions are ideal for feeding into the Bayesian "greatest expected gain" decision

rule (26).

3.3.3.4. Input-output HMMs

Just as the Gaussian mixture model of section 3.3.2 simply discards its inputs, so in

its recursive analogue, the HMM, there is no way for external agencies to influence the

trajectory of the dynamical system. In order to make a model suitable for use in control

tasks (like robotics), the conditionality graph must be extended to include an input at for

each timestep, thus:

Q° 3 Q1 6 Q2 6 Q3

P P P P

O
In this "input-output hidden Markov model" or IOHMM42, the dynamics are made

conditional on the ats as well as the qts, in some form p(qt+1 I
qt a, S) more complicated

than the simple transition matrix of (55); the overall likelihood becomes

p(q, r I a, t, 6, p) = p(q° I t) [p(gt I qt-', at-', 8) p(rt gt, P)
t

-cf. (47). The dynamics distribution can, for instance, be adapted from the Gaussian

receptive field "gating rule" (36):43

p(Qt = . Qt-1 = 9, 9, at) = s'=3 g(at 1 v"7+)
L.k Wsk g(at I vk, 7k)

a \I
where g(at

I v1, 7+) = 12- I

z
exp

y 2 (at - v,) 7a (at - v,)

42 Bengio & Ptasconi, An Input Output HMM Architecture, alternatively called a partially

observable Markov decision process or POMDP (Kaelbling et al., Planning and Acting)

43 alternatively, Bengio & &asconi, An Input Output HMM Architecture represents the

dynamics distribution using an MLP neural network

(64)

65

3.3.3.4 Input-output HMMs

that they are well suited to capturing patterns of underlying temporal structure which

express themselves in characteristic, but arbitrary, readings. HMMs can cope particularly

well with the sort of randomness termed "nondeterminism" in section 3.1.2.1: if there

are situations in which the process being modelled can follow any of several trajectories

for a certain period, during which time the available observations are not sufficient to

disambiguate them, the model can in effect maintain all the possible trajectories as

hypotheses. In this case its "mixed" predictions will present the outcomes corresponding to

each trajectory hypothesis, along with their assessed probabilities and their extra, localised

"noise" uncertainty ((3, in the case of an HMM with Gaussian output densities). The

model is not constrained to output any single best guess or compromise estimate, and its

mixture predictions are ideal for feeding into the Bayesian "greatest expected gain" decision

rule (26).

3.3.3.4. Input-output HMMs

Just as the Gaussian mixture model of section 3.3.2 simply discards its inputs, so in

its recursive analogue, the HMM, there is no way for external agencies to influence the

trajectory of the dynamical system. In order to make a model suitable for use in control

tasks (like robotics), the conditionality graph must be extended to include an input a4 for

each timestep, thus:

In this "input-output hidden Markov model" or IOHMM42, the dynamics are made

conditional on the a4s as well as the Q4s, in some form p(qt+1 \ q*, a4, 6) more complicated

than the simple transition matrix of (55) ; the overall likelihood becomes

— cf. (47). The dynamics distribution can, for instance, be adapted from the Gaussian

receptive field "gating rule" (36) :43

(64)

where g(al | z>t,7») = IT * exP (~o (a* ~ "«)' 7» (a* - z>t) J
Z7T \ 2 /

42 Bengio & Prasconi, An Input Output HMM Architecture, alternatively called a partially

observable Markov decision process or POMDP (Kaelbling et al., Planning and Acting)
43 alternatively, Bengio & Prasconi, An Input Output HMM Architecture represents the

dynamics distribution using an MLP neural network

65

3.3.3.4 Input-output HMMs

In this minimal generalisation of the static gating rule, each component i still has a single

receptive field of its own which competes to "claim" the inputs at, but the components' bids

are weighted differently according to the component j which was active at t - 1 (hence w,, in

place of w,).

The extension of the HMM model to a-conditional dynamics essentially preserves

the forward-backward equations (56) and (57)-the only difference being that the

transition probabilities are no longer just constant parameters w,, but rather a-dependent

probabilities (64) which have to be evaluated-so the update rules for the initial state (60),

output means (61) and output precisions (62) remain efficient. However, if A is a continuous

variable, the update rule for S inevitably becomes much more expensive, because of the

requirement that the transition probabilities from each state at any given time must sum to

unity: there is no function at qt i qt+1 which satisfies that constraint and has a log whose

derivative is linear (cf. the discussion around equation (38)). Therefore the update rule (49)

(w, v,'y)"+1 = argmax Eq [E logp(gt
I qt-1, w, v,7, dt) I d, 9"] (65)

w,v,7 t

has to be implemented with an iterative optimiser, just like the M-step for the gating

parameters of the (static) mixture of experts described in section 3.3.2.5.

Deploying the same arguments as for (40) and (41), the derivatives to be passed to the

optimiser can be inferred from the template

aa. U(O) _ P(Qt = i, Qt-1 = j I B" d) (Sak P(Qt = k I Q'-' = j, w, v,7, dt))

so that

t,%,2 d

aak
log (wki g(dt I Vk,7k))

(P(Qt = k, Qt-1
= j I On, d) - P(Qt-1 = .7 I On, d) P(Qt = k I Qt-1 w, v,7, dt))

t,3 a
50k

log (wk 9(d' Uk>7k))

av,
U(O) = Efe,7=(v, - dt)

t

a7a
U(O) = E 4. (7= 1 - (dt - vt)(dt - v,)')

where

(66)

(67)

FBi = P(Qt = i 19", d) P(Qt-1 = i 19", d) P(Qt = i I

Qt-1
= j, w, v,7, dt) (68)

J

Since the wtls are attached to specific "previous" mixing states j, the derivative with respect

to them lacks the summation over j:
t a E,

where et =P(Q1 =t,Qt-1 =j I9",d)-P(Qt-1 =j I B",d)P(Qt =iI Qt-1 =j,w,v,7,dt)

66

3.3.3.̂ Input-output HMMs

In this minimal generalisation of the static gating rule, each component i still has a single

receptive field of its own which competes to "claim" the inputs a4, but the components' bids

are weighted differently according to the component j which was active at t — 1 (hence u>l} in

place of w,).

The extension of the HMM model to o-conditional dynamics essentially preserves

the forward-backward equations (56) and (57) — the only difference being that the

transition probabilities are no longer just constant parameters wy but rather a-dependent

probabilities (64) which have to be evaluated — so the update rules for the initial state (60),

output means (61) and output precisions (62) remain efficient. However, if A is a continuous

variable, the update rule for d inevitably becomes much more expensive, because of the

requirement that the transition probabilities from each state at any given time must sum to

unity: there is no function at,qi -> qt+l which satisfies that constraint and has a log whose

derivative is linear (cf. the discussion around equation (38)). Therefore the update rule (49)

(w, i/, 7)
n+1 = argmax E9 \ £ logp(<z4 1 q*'1 , u, v, 7, cf) d, 9n] (65)

u,v,y L ^"^ J

has to be implemented with an iterative optimiser, just like the M-step for the gating

parameters of the (static) mixture of experts described in section 3.3.2.5.

Deploying the same arguments as for (40) and (41), the derivatives to be passed to the

optimiser can be inferred from the template

= £ P(Qt = i,Qt~1 = j\6n,d) (6* -p(Qt =

—

t,j Q
—

so that

•j^U(9) = ̂ £
i
g^(vi-d

t) (66)

-j- 17(0) = £4 (%-' - (<? ~ "<)(* - i/,)') (67)
7* t

where 4 = p(Q* = i\9n,d)-~ (Q*-1 = j\9n,d)p(Qt = i \ Ql~l = j.w.i/.^d*) (68)

Since the wys are attached to specific "previous" mixing states j, the derivative with respect

to them lacks the summation over j:

where e|,, = p(Qt = i, Ql~l = j \ 9n , d) ~ p(Qt~1 =j\9n,d) p(Ql =i\Qt~i= j, u, v, 7, d4)

66

3.3.3.5 The Kalman filter

As with a static gating rule, there is also the option of parameterising the derivative by the

square root of y rather than by -y itself, if it helps the optimiser.

IOHMM-like models are used extensively in high-level robot learning (under the name

of Markov decision processes; see section 2.3.1), and have proved useful for low-level tasks

as well-for instance, Meila and Jordan learn a model for the development of the state of

contact between a compliant robot arm and the objects it handles44.

3.3.3.5. The Kalman filter

In a Kalman filter (KF)45, the hidden state H is instantiated as a continuous quantity,

say V, and the both the dynamics and output generation are linear with Gaussian noise:

Vt+1 = .Wt + N(0, a)

Rt = tcVt+N(0,0)

so that

P(vt+1 vt A, a) = 1T I' exp (2
(vt+1 - avt)' a (vt+1 - avt

(1
exp -

2 W - vt) 0 (rt - cvt) J P(rt vt, , '
a) =

27r

(70)

Because Gaussians are closed under convolution and marginalisation (as can be shown

by combining/factorising their quadratic exponenents), as well as addition and linear

transformation, the KF's linear/Gaussian model satisfies conditions 1 and 3 in section 3.3.3.2

just as the HMM does.

However the equations for computing f and b ((52) and (53)), known as the Kalman-

Rauch recursions46, are less straightforward than the corresponding "forward-backward

equations" for the HMM (cf. (56) and (57)). Adopting the following notation

vr=E[vtI rl0''l,On]

yr = Var[vt I rl0,r1,0n

-1 = Cov[vt, vt-1 I rl o,r 1, on
]

T= E[v°Itn]

1 = Var[v° I to]

44 Meil & Jordan, Learning Fine Motion
45 Ghahramani & Hinton, Parameter Estimation
46 Rauch, Solutions to the linear smoothing problem; Shumway & Stoffer, An approach

(71)

67

3.3.3.5 The Kalman filter

As with a static gating rule, there is also the option of parameterising the derivative by the

square root of 7 rather than by 7 itself, if it helps the optimiser.

lOHMM-like models are used extensively in high-level robot learning (under the name

of Markov decision processes; see section 2.3.1), and have proved useful for low-level tasks

as well—for instance, Meila and Jordan learn a model for the development of the state of

contact between a compliant robot arm and the objects it handles44.

3.3.3.5. The Kalman filter

In a Kalman filter (KF)45, the hidden state H is instantiated as a continuous quantity,

say V, and the both the dynamics and output generation are linear with Gaussian noise:

so that

p(vt+11 v\ A,a) = £- 5 exp (~ (vt+l - Xv*)'a (vt+1 - Xv*)} (70)
<w7T \ ^ /\ /

P(r4 |v4 ,K ,^) =

Because Gaussians are closed under convolution and marginalisation (as can be shown

by combining/factorising their quadratic exponenents) , as well as addition and linear

transformation, the KF's linear/Gaussian model satisfies conditions 1 and 3 in section 3.3.3.2

just as the HMM does.

However the equations for computing / and b ((52) and (53)), known as the Kalman-

Rauch recursions46, are less straightforward than the corresponding "forward-backward

equations" for the HMM (cf. (56) and (57)). Adopting the following notation

64'4-1 = Cov[v*y-1 |»<[0>Tl,0n] (71)

i = E [v ° \ i n]

44 Meila fe Jordan, Learning Fine Motion
45 Ghahramani fe Hinton, Parameter Estimation

46 Rauch, Solutions to the linear smoothing problem; Shumway & Stoffer, An approach

67

3.3.3.5 The Katman fitter

(all the distributions being Gaussian), the forward pass begins

v0 1 =E

and continues

The backward pass begins

t t-1
t-1 - ait

vt_i = avt-1 A' + a-1

Kt = vt_1k (tcv't_1k +/3-1)-1

vt = vi _1 + Kt (rt - tcvt-i)

t t t t vt = ft - K cvt_1

vT-1,T-2 I -K T 1r vT-2
T-1 - () T-2

and continues (noting that OT-1 has been computed at the end of the forward pass)

-1 Jt-1 = vt1nI M-1) L-1

,vt-1 ,Lt-1 1 + T-1
it-1(VT-i - vt-1)

vL-1
vt-1

+ it-1 vt ,vt Jt_i'
T-1 = t 1 (T-1 - t 1)

v T lit-2 = Vt_iJt-2 +Jt 1(vtTt
11 - 'wt-1)

The expected log posteriors in the update rule schemas for 5 = A, a (49) and p = re., Q

(50) are both quadratic in the KF, because every distribution involved is Gaussian. Setting

all their derivatives to zero (using the same algebra as for (24) and (25)) yields the KF-

specific update rules

An+1 = PB-1

an+1-1 1 (C-An+lp')
1 -

/
I/ Kn+i =
\Lrtvt, (LBt t) t

on+1-1 vt 11 T t

the sufficient statistics used in these formulas (which are given names here for later

reference) being given by

B= E Bt

tE[0,T-1)

where

where

C = E Bt+l
tE[0,T-1)

Be = E[vtvt' I
r] = 4_1t1T-1' +'UT_i

P = C pt+r,t
tE[oT-i)

pt+1,t E[vt+1vt' I r 1
= vtT 11 VT-i +'UT lit

(72)

(73)

(74)

(75)

(76)

68

3.3.3.5 The Kalman filter

(all the distributions being Gaussian), the forward pass begins

and continues

The backward pass begins

and continues (noting that v^-l nas keen computed at the end of the forward pass)

t-i _ -,*-! \ ' , * \-i

The expected log posteriors in the update rule schemas for 6 = X, a (49) and p = K, (3

(50) are both quadratic in the KF, because every distribution involved is Gaussian. Setting

all their derivatives to zero (using the same algebra as for (24) and (25)) yields the KF-

specific update rules

An+l _ pB-l (72)

(73)

/S^1"1 = E(rV/ - «"+14-i^') (75)

the sufficient statistics used in these formulas (which are given names here for later

reference) being given by

B=
te[o,T-i)

c=
t€[0,T-l)

where B4 = E^v1' \r] = VT-IV^-I + VT-I (76)

p= ^2 pt+1>*
t€[0,T-l)

where P4+1'4 = E[vt+lvtr \r] = w^t;^/ + w$tV

68

3.3.3.6 Kalman filters with inputs

The update rule (48) fort simply sets the new estimate of the initial state to what it was

computed to be at the end of the Kalman-Rauch recursions:

in = ,po r
L = v0

T

As in the case of the HMM (see equation 63), the prediction made by a KF for the

incoming observation rT can be obtained by marginalising vT out of fT, giving

p(rT I

r[o,T),0) =
J

p(rT I VT, P,)p(vT I r[0T),9)
IT

which is a Gaussian with mean ILVT_1 and variance 0-1 + tcvT-ltv'

Kalman filters are used widely in engineering for tasks in which the character of

the data can be described accurately as "trends" linking variables and extending over

time. They are particularly suitable for applications like tracking moving objects in

which position/velocity/acceleration estimates play an important role (including robot

localisation-section 2.1.1.1).

3.3.3.6. Kalman filters with inputs

If the model is augmented to include inputs at, as was done for the hidden Markov

model in section 3.3.3.4, the KF can be used for process control tasks as well. Indeed, the

extension causes much less disruption to the KF than it does to the HMM: making the

dynamics linear in at as well as vt still leaves the v distribution Gaussian, and the update

rules retain their one-shot solutions.

69

3.3.3.6 Kalman filters with mputs

The update rule (48) for i simply sets the new estimate of the initial state to what it was

computed to be at the end of the Kalman-Rauch recursions:

As in the case of the HMM (see equation 63), the prediction made by a KF for the

incoming observation rT can be obtained by marginalising VT out of /T, giving

P(rT \r^<T\6) = f P(rT\vT,Pt)p(vT\r^'T\9)

which is a Gaussian with mean KV'^_I and variance f3~l + KV^_IK! .

Kalman filters are used widely in engineering for tasks in which the character of

the data can be described accurately as "trends" linking variables and extending over

time. They are particularly suitable for applications like tracking moving objects in

which position/velocity/acceleration estimates play an important role (including robot

localisation—section 2.1.1.1).

3.3.3.6. Kalman filters with inputs

If the model is augmented to include inputs o4, as was done for the hidden Markov

model in section 3.3.3.4, the KF can be used for process control tasks as well. Indeed, the

extension causes much less disruption to the KF than it does to the HMM: making the

dynamics linear in a4 as well as w4 still leaves the v distribution Gaussian, and the update

rules retain their one-shot solutions.

69

Chapter 4

The Samovar model

4.1. Motivation

The hidden Markov model (section 3.3.3.3) and Kalman filter (section 3.3.3.5) can work

very effectively in some domains, but the expressive power of both models falls short of that

required for the robot environment modelling task. The "Samovar" model presented in this

section is a hybrid which exploits the complementary strengths of each to obtain greater

generality, while still inheriting some of their elegance and tractability.

4.1.1. A recursive mixed-linear model

The mixture of experts algorithm and its relatives show how linear regression, with its

ability to capture trends, can be combined with cluster-classification, with its robustness in

the face of "arbitrary" patterns, to make a piecewise linear model which has both desirable

properties and can be learned reasonably quickly using a simple EM algorithm. It is natural

to ask whether their time-series analogues, the Kalman filter and the hidden Markov model,

can also be brought together in a similar way.

70

Chapter 4

The Samovar model

4.1. Motivation

The hidden Markov model (section 3.3.3.3) and Kalman filter (section 3.3.3.5) can work

very effectively in some domains, but the expressive power of both models falls short of that

required for the robot environment modelling task. The "Samovar" model presented in this

section is a hybrid which exploits the complementary strengths of each to obtain greater

generality, while still inheriting some of their elegance and tractability.

4.1.1. A recursive mixed-linear model

The mixture of experts algorithm and its relatives show how linear regression, with its

ability to capture trends, can be combined with cluster-classification, with its robustness in

the face of "arbitrary" patterns, to make a piecewise linear model which has both desirable

properties and can be learned reasonably quickly using a simple EM algorithm. It is natural

to ask whether their time-series analogues, the Kalman filter and the hidden Markov model,

can also be brought together in a similar way.

70

4.1.1.1 The architecture space

4.1.1.1. The architecture space

The basic idea can be expressed in the following table:

Mapping type Static version Recursive version

Constant Gaussian (Gaussian)

Linear Linear regressive model KF

Piecewise constant Gaussian mixture model HMM

Piecewise linear Mixture of experts

To get a more detailed appreciation of the possibilities, and to put the models developed

previously in perspective, it helps to consider them all as variants of the same graphical

model, and characterise them according to which of its possible links (conditional

dependencies) they incorporate and which they exclude. The quantities in play

are

At the process input; other quantities may be conditioned on this or

modelled jointly to create a "confidence region" (section 3.2.5.3)

Rt the process output

Qt hidden "mixing" variable: a discrete quantity, not directly observable,

which determines the choice between possible mixing components in

generating Rt; if Rt is not dependent on Qt, then its distribution is not

a mixture

Vt hidden "linear" variable: a continuous quantity, not directly observable,

on which Rt may depend linearly

In addition, recursive models such as the HMM and KF (section 3.3.3) can be expressed

by introducing dependencies between hidden variables at successive timesteps. Some of the

schemes mentioned previously are shown below:

Gaussian (section 3.2.5.2). (Rt is independent of all other variables, but a stub dependency

are is included to draw attention to the distribution being modelled.)

A4 As

...
V5 V6

...

71

4.1.1.1 The architecture space

4-1.1.1. The architecture space

The basic idea can be expressed in the following table:

Mapping type

Constant

Linear

Piecewise constant

Piecewise linear

Static version

Gaussian

Linear regressive model

Gaussian mixture model

Mixture of experts

Recursive version

(Gaussian)

KF

HMM

9

To get a more detailed appreciation of the possibilities, and to put the models developed

previously in perspective, it helps to consider them all as variants of the same graphical

model, and characterise them according to which of its possible links (conditional

dependencies) they incorporate and which they exclude. The quantities in play

are

A4 the process input; other quantities may be conditioned on this or

modelled jointly to create a "confidence region" (section 3.2.5.3)

R1 the process output

Q4 hidden "mixing" variable: a discrete quantity, not directly observable,

which determines the choice between possible mixing components in

generating jR4; if R* is not dependent on Q*, then its distribution is not

a mixture

V4 hidden "linear" variable: a continuous quantity, not directly observable,

on which R1 may depend linearly

In addition, recursive models such as the HMM and KF (section 3.3.3) can be expressed

by introducing dependencies between hidden variables at successive timesteps. Some of the

schemes mentioned previously are shown below:

Gaussian (section 3.2.5.2). (.R4 is independent of all other variables, but a stub dependency

arc is included to draw attention to the distribution being modelled.)

71

4.1.1.1 The architecture space

Input and output Gaussians (section 3.2.5.3). A simple Gaussian with a confidence

region. Both Rt and At are modelled.

Qb Q6

V S VB

O O
Linear/Gaussian mapping (section 3.2.5.4).

Joint Gaussian (section 3.2.5.4). Equivalent to a Linear/Gaussian mapping with a

confidence region.

Unconditional Gaussian mixture (section 3.3.2.1).

72

4.1.1.1 The architecture space

Input and output Gaussians (section 3.2.5.3). A simple Gaussian with a confidence

region. Both R1 and A4 are modelled.

(&

(v*)

Linear /Gaussian mapping (section 3.2.5.4).

Joint Gaussian (section 3.2.5.4). Equivalent to a Linear/Gaussian mapping with a

confidence region.

Unconditional Gaussian mixture (section 3.3.2.1).

(A4) ff)

72

4.1.1.1 The architecture space

Joint input-output Gaussian mixture (section 3.3.2.3). This can be seen as a "piecewise

constant" mixture of experts with a confidence region.

Conditional mixture of experts (section 3.3.2.5). The standard, "piecewise linear"

mixture of experts.

Joint mixture of experts (section 3.3.2.4). This can be seen as a (piecewise linear)

mixture of experts with a confidence region.

Kalman filter (section 3.3.3.5).

A4 A5

n5 /8

73

4-1.1.1 The architecture space

Joint input-output Gaussian mixture (section 3.3.2.3). This can be seen as a "piecewise

constant" mixture of experts with a confidence region.

Conditional mixture of experts (section 3.3.2.5). The standard, "piecewise linear"

mixture of experts.

Joint mixture of experts (section 3.3.2.4). This can be seen as a (piecewise linear)

mixture of experts with a confidence region.

Kalman filter (section 3.3.3.5).

ff)

73

4.1.1.1 The architecture space

Kalman filter with input (section 3.3.3.6).

Hidden Markov model (section 3.3.3.3).

Input-output hidden Markov model (section 3.3.3.4).

Many other variations are possible.1 For instance, the method of factor analysis could

be represented like this:

1 Note that this architecture space only provides for continuous inputs, not a discrete one which

could control a mixing process directly. However, it would be easy to include a discrete input in any

of the models discussed below.

74

4-1.1.1 The architecture space

Kalman filter with input (section 3.3.3.6).

Hidden Markov model (section 3.3.3.3).

(A4) (A5)

Input-output hidden Markov model (section 3.3.3.4).

Many other variations are possible.1 For instance, the method of factor analysis could

be represented like this:

1 Note that this architecture space only provides for continuous inputs, not a discrete one which

could control a mixing process directly. However, it would be easy to include a discrete input in any

of the models discussed below.

74

4.1.1.2 The possebilst,es

Or one could imagine a Kalman filter with a mixture output:

or an IOHMM with a confidence region for its inputs:

(77)

(which would have the added advantage of yielding a highly efficient reestimation rule for the

"gating" parameters-cf. section 3.3.2.5).

.4.1.1.2. The possibilities

In the context of the robot environment modelling task, the most interesting option is

clearly something which could be called a "recursive mixture of experts"-a piecewise linear

time-series model. But that term could be applied to any of a number of possible models,

each of which makes a different tradeoff between the completeness of its conditionality

structure and the cleanness of its learning algorithm. At the simplest, one could take a static

mixture of experts and make its mixing probabilities (alone) recursive:

This is really an IOHMM with linear outputs; the corresponding EM algorithm is of

essentially similar character to that of the IOHMM. At the other extreme, one could make

75

4.1.1.2 The possibilities

Or one could imagine a Kalman filter with a mixture output:

(A4) ff)

or an IOHMM with a confidence region for its inputs:

(77)

(which would have the added advantage of yielding a highly efficient reestimation rule for the

"gating" parameters—cf. section 3.3.2.5).

4-1.1-2. The possibilities

In the context of the robot environment modelling task, the most interesting option is

clearly something which could be called a "recursive mixture of experts"—a piecewise linear

time-series model. But that term could be applied to any of a number of possible models,

each of which makes a different tradeoff between the completeness of its conditionality

structure and the cleanness of its learning algorithm. At the simplest, one could take a static

mixture of experts and make its mixing probabilities (alone) recursive:

This is really an IOHMM with linear outputs; the corresponding EM algorithm is of

essentially similar character to that of the IOHMM. At the other extreme, one could make

75

4.2.1 The condstsonal Samovar model

the linear component of the model recursive as well, and even have the mixing probabilities

depend on the linear hidden state:

(78)

This "denser" model is powerful-its state Qt, Vt evolves according to a piecewise linear

dynamics, with which it is easy to approximate a wide range of nonlinear systems-but

it inherits none of the tractability of the HMM or KF, because the conditions defined in

section 3.3.3.2 for the existence of a nice EM algorithm are not even approximately met: the

mixing and linear processes are too closely intertwined:

1) V-mixing problem. The linear hidden state Vt will be rendered non-Gaussian by

its mixed-linear relationship with V'-1 and Vt+'.

2) V-normalising problem. The distribution of Vt will also be disturbed by its

role in determining the mixing hidden state Qt+i-recall from section 3.3.2.5

that conditioning a multinomial variable on a continuous one will always lead to

problems stemming from the need to normalise the distribution to sum to unity.

3) Q-dynamics problem. The relationships between the mixing hidden states Qt

will be made much more complicated by indirect influences via the Vts, which

will disturb their joint distribution and make the reestimation rule for the gating

parameters somewhat problematic.

Consequently, nothing like the forward-backward equations (section 3.3.3.3) or the Kalman-

Rauch recursions (section 3.3.3.5) will be available for computing the distribution of the

hidden state variables V and Q.

4.2. A solution

To get past these difficulties, the Samovar model sacrifices a little of the "dense"

model's expressiveness, either omitting or modifying the link Vt -> Qt which gives rise to

the thorny V-normalising problem and Q-dynamics problem, and approximates the effect of

76

4-2.1 The conditional Samovar model

the linear component of the model recursive as well, and even have the mixing probabilities

depend on the linear hidden state:

(78)

This "denser" model is powerful—its state <24,F4 evolves according to a piecewise linear

dynamics, with which it is easy to approximate a wide range of nonlinear systems—but

it inherits none of the tractability of the HMM or KF, because the conditions defined in

section 3.3.3.2 for the existence of a nice EM algorithm are not even approximately met: the

mixing and linear processes are too closely intertwined:

1) F-mixing problem. The linear hidden state V* will be rendered non-Gaussian by

its mixed-linear relationship with y4"1 and Vt+1.

2) F-normalising problem. The distribution of Vi will also be disturbed by its

role in determining the mixing hidden state Qt+l—recall from section 3.3.2.5

that conditioning a multinomial variable on a continuous one will always lead to

problems stemming from the need to normalise the distribution to sum to unity.

3) Q-dynamics problem. The relationships between the mixing hidden states Qf

will be made much more complicated by indirect influences via the Vts, which

will disturb their joint distribution and make the reestimation rule for the gating

parameters somewhat problematic.

Consequently, nothing like the forward-backward equations (section 3.3.3.3) or the Kalman-

Rauch recursions (section 3.3.3.5) will be available for computing the distribution of the

hidden state variables V and Q.

4.2. A solution

To get past these difficulties, the Samovar model sacrifices a little of the "dense"

model's expressiveness, either omitting or modifying the link V4 -4 Qt which gives rise to

the thorny V-normalising problem and Q-dynamics problem, and approximates the effect of

76

4.2.1.1 Assimilating the dynamics and the output function

the counterpart link Qt -+ Vt+1 in such a way that an accommodation can be made with the

V-mixing problem. It is then able to deploy the fast KF and HMM learning algorithms as

subroutines to obtain a reasonably efficient procedure for learning a mixed-linear model.

4.2.1. The conditional Samovar model

The "conditional" variant (see section 4.2.3 for the "joint" variant) of the Samovar

model looks like this:

(79)

The linear hidden state V evolves according to mixed-linear (piecewise linear) dynamics, but

the link Vt -r Qt has not been included: V does not in its turn affect the sequence Q of

mixture components. As a result, V and Q remain sufficiently decoupled that the product-

rule factorisation of the likelihood

p(r, v, q I a) = p(r I v, q, a) p(v 14, a) p(q I a)

can be treated as a Kalman filter likelihood inside a hidden Markov model likelihood, leading

(section 4.2.2) to a nested EM algorithm based on their respective recursions.

Of course, the simplification makes the model a little less expressive: there is no

provision for Kalman filter-style inferences, made on the basis of a series of inputs and

outputs and expressed in the linear hidden state, to influence the judgment as to. which

mapping component is active at each timestep. For instance, it might in principle be

possible for the robot to judge its velocity from successive readings from a range sensor;

and it might be the case that the model dynamics should be qualititatively different (using

a different mapping) at different velocities; but there would not necessarily be any way in

the simplified model for VI to have the required effect on Qt in a timely manner. Certainly,

once the model has made a vague or incorrect prediction by failing to deploy the linear

mapping component appropriate to the current velocity, it will be able to recognise post

hoc that its Qt estimate was poor, and thereafter use the discrete part of the dynamics

(i.e. the transition matrix to) to "remember" that it is in a certain qualitative velocity

regime. However, there will be no avoiding that first, corrective mistake, because there is

no other channel by which information can flow from the Vt estimate to the Qt estimate.

77

4-2.1.1 Assimilating the dynamics and the output function

the counterpart link Q4 ->• Vt+l in such a way that an accommodation can be made with the

F-mixing problem. It is then able to deploy the fast KF and HMM learning algorithms as

subroutines to obtain a reasonably efficient procedure for learning a mixed-linear model.

4.2.1. The conditional Samovar model

The "conditional" variant (see section 4.2.3 for the "joint" variant) of the Samovar

model looks like this:

(79)

The linear hidden state V evolves according to mixed-linear (piecewise linear) dynamics, but

the link V4 -> Q4 has not been included: V does not in its turn affect the sequence Q of

mixture components. As a result, V and Q remain sufficiently decoupled that the product-

rule factorisation of the likelihood

p(r,v,q\a)- p(r \ v,q,a)p(v \q,a)p(q\ a)

can be treated as a Kalman filter likelihood inside a hidden Markov model likelihood, leading

(section 4.2.2) to a nested EM algorithm based on their respective recursions.

Of course, the simplification makes the model a little less expressive: there is no

provision for Kalman filter-style inferences, made on the basis of a series of inputs and

outputs and expressed in the linear hidden state, to influence the judgment as to. which

mapping component is active at each timestep. For instance, it might in principle be

possible for the robot to judge its velocity from successive readings from a range sensor;

and it might be the case that the model dynamics should be quantitatively different (using

a different mapping) at different velocities; but there would not necessarily be any way in

the simplified model for Vt to have the required effect on Q* in a timely manner. Certainly,

once the model has made a vague or incorrect prediction by failing to deploy the linear

mapping component appropriate to the current velocity, it will be able to recognise post

hoc that its Q* estimate was poor, and thereafter use the discrete part of the dynamics

(i.e. the transition matrix w) to "remember" that it is in a certain qualitative velocity

regime. However, there will be no avoiding that first, corrective mistake, because there is

no other channel by which information can flow from the V4 estimate to the Q1 estimate.

77

4.2.1.1 Assamslat,ng the dynamics and the output function

4.2.1.1. Assimilating the dynamics and the output function

Before the exposition of a training algorithm for the Samovar model gets under way, a

slight simplification will be made which reduces the number of model parameters in play.

Up to now, the discussion of dynamical systems models has taken for granted a schema

in which the observations available to the learner are obtained via an output function

from a hidden state which evolves according to a dynamics function (p and 6 in (46)).

However, for the purposes of the robot environment modelling task-in which the model

is openly approximative2 and no claim is made about the true ontology and conditionality

structure of the process under consideration, i.e. the environment-the output function is

redundant. The point of a piecewise linear model is that it can match a very wide range

of dynamics functions; it should, therefore, be able to adapt itself during training to fit

in with a fixed, simple output function. Indeed the natural "output function" to adopt

is simply an identity projection of some elements of the hidden state, Rt being thereby

assimilated directly into H. Then the model dynamics can be considered as approximating

the mapping between one "world state" Xt and the next, each world state comprising a

hidden part Vt and a visible part Dt = Rt, At. With this adjustment, the graphical model

for the conditional Samovar model could be written thus:

_7 MA5 n ® (80)

Y5 VS Y6 v8 Y7 V7

(In the notation of section 3.3.3.5, c, and /ii are fixed as follows:

V R A

3,=e0 i =(0fo) (81)

where the label V marks the columns of tc, which operate on the linear hidden state, and

R and A those which operate on the sensor readings and actions respectively.) Arranging

the conditionality structure this way makes it easier to exploit obvious relationships between

the known parts of adjacent world states, since they do not have to be mediated through

a supposedly unknown value W. Indeed this model can be seen as a mixture of static

linear mappings, augmented with just enough hidden linear state to capture longer-term

dependencies; a model which followed the pattern of (46), in which all the linear state was

2 in the sense of section 3.2.4.3

78

4-2.1.1 Assimilating the dynamics and the output function

4-2.1.1. Assimilating the dynamics and the output function

Before the exposition of a training algorithm for the Samovar model gets under way, a

slight simplification will be made which reduces the number of model parameters in play.

Up to now, the discussion of dynamical systems models has taken for granted a schema

in which the observations available to the learner are obtained via an output function

from a hidden state which evolves according to a dynamics function (p and 6 in (46)).

However, for the purposes of the robot environment modelling task—in which the model

is openly approximative2 and no claim is made about the true ontology and conditionality

structure of the process under consideration, i.e. the environment—the output function is

redundant. The point of a piecewise linear model is that it can match a very wide range

of dynamics functions; it should, therefore, be able to adapt itself during training to fit

in with a fixed, simple output function. Indeed the natural "output function" to adopt

is simply an identity projection of some elements of the hidden state, R* being thereby

assimilated directly into H*. Then the model dynamics can be considered as approximating

the mapping between one "world state" X* and the next, each world state comprising a

hidden part V4 and a visible part £>4 = Rt,At. With this adjustment, the graphical model

for the conditional Samovar model could be written thus:

(80)

(In the notation of section 3.3.3.5, Kt and ft are fixed as follows:

V R A

ft = 00 K» = (0 / 0)
(81)

where the label V marks the columns of nt which operate on the linear hidden state, and

R and A those which operate on the sensor readings and actions respectively.) Arranging

the conditionality structure this way makes it easier to exploit obvious relationships between

the known parts of adjacent world states, since they do not have to be mediated through

a supposedly unknown value V f . Indeed this model can be seen as a mixture of static

linear mappings, augmented with just enough hidden linear state to capture longer-term

dependencies; a model which followed the pattern of (46), in which all the linear state was

2 in the sense of section 3.2.4.3

78

4.2.1.2 The probability model

unobserved, would have to make more expensive inferences over a higher-dimensional V, as

well as learning an output function to go with it.

The values rt are those the robot can observe directly-i.e. the readings coming out

of the back of its sensors, including the effects of noise, sensor failure or whatever. They

are not supposed to correspond directly to whatever physical quantities the sensors are

presumed to measure, and they cannot be considered to play a direct causal role in the

future evolution of the robot's world. But this is not a problem, because the robot is not

claiming to have learned a physical model of its environment, but only what it actually

needs, according to Bayesian decision theory (section 3.2.6.2), for guiding its behaviour: a

representation of how its knowledge of past sensor readings and actions should influence its

beliefs about future readings, or, in other words, the probability distribution of the latter

conditional on the former. This is all the model, within the constraints placed on the form of

its representation, attempts to provide.

4.2.1.2. The probability model

Adopting a Gaussian receptive field-based mixing dynamics and confidence region for Q

(section 3.3.2.5), the likelihood corresponding to the graphical model (80) is

p(v, 4, r 10, a) = p(v° I t) p(q° I
t)

1111

77p(vt+1
,
rt+rlvt, gt,0,rt,at)p(4tI4t-1,0,rt,at)

t

= p(v° 10 p(4° 10 (82)

J (yt+i Ixt,4t,0)p(gt
I qt-1,0,dt)

t
b /

where p(yt+r I

Qt
= i, xt, 0) = 12tr 12

exp I - 2 (yt+i - Agxt)' a, (yt+i A xt))

s:

83)

and () 4) (8

t

and yt = rt (85)

d W%19(dt I v'Y,)
9 dt (Qt = i Qt-t 7 86 an , p ,) = I =

t
()

Ek W,k9(d (I Vk,'Yk)

and 9(dt vi,?,) = I2jr I2
exp I -2 (dt - v,)t'Y, (at - v+))

/rt
and dt = I

at

(The initial state estimates p(v° I t) and p(q° I t) will be discussed in section 4.2.2.7.)

Note that if the block of A, defining the slope of the relationship between V and R'+'

is zero, the model degenerates into a mixture of static experts3; if additionally the block

3 "autoregressive HMM" in the terminology of Rabiner, A Tutorial on Hidden Markov Models

79

4.2.1.2 The probability model

unobserved, would have to make more expensive inferences over a higher-dimensional V, as

well as learning an output function to go with it.

The values r4 are those the robot can observe directly — i.e. the readings coming out

of the back of its sensors, including the effects of noise, sensor failure or whatever. They

are not supposed to correspond directly to whatever physical quantities the sensors are

presumed to measure, and they cannot be considered to play a direct causal role in the

future evolution of the robot's world. But this is not a problem, because the robot is not

claiming to have learned a physical model of its environment, but only what it actually

needs, according to Bayesian decision theory (section 3.2.6.2), for guiding its behaviour: a

representation of how its knowledge of past sensor readings and actions should influence its

beliefs about future readings, or, in other words, the probability distribution of the latter

conditional on the former. This is all the model, within the constraints placed on the form of

its representation, attempts to provide.

4-2.1.2. The probability model

Adopting a Gaussian receptive field-based mixing dynamics and confidence region for Q

(section 3.3.2.5), the likelihood corresponding to the graphical model (80) is

p(v, q,r\9,a) = p(v° \ i) P(q° \ i)

^\vt,q\e,ri,ai}p(qi\q
i-l,e,rt,at}

IO (82)

l[p(yt+l\xt,qt,9)P(qt\qt-l,9,dt)
t

where p(y^1 \ Qt = i,x\9) = £- * exp (-\ (y^ - A^4)' a, (yt+1 - A^4) (83)

(84)

and »*=(£) (85)

and p(Qt = i \ Qt-l — j, 9, d4) = *J ̂ I "7W— (gg)

7, i / 1 / \
and #(d4 \ i/*, 7,) = ^ exP (~ 2 ̂ "" "̂ 7l ̂ ~ ^^)

\ /

and d4 = I t J
\ /

(The initial state estimates p(v° \ t) and p(q° \ t) will be discussed in section 4.2.2.7.)

Note that if the block of A, defining the slope of the relationship between V* and Rt+l

is zero, the model degenerates into a mixture of static experts3; if additionally the block

3 "autoregressive HMM" in the terminology of Rabiner, A Tutorial on Hidden Markov Models

79

4.2.2.2 The log likelihood

defining the slope of the relationship between Dt and Rt+' is zero, then only the bottom

"intercept" row remains and the model becomes the Gaussian HMM of section 3.3.3.3. If,

on the other hand, the number of components i is reduced to one, then the model is simply a

Kalman filter.

4.2.2. A learning algorithm for Samovar

The strategy followed in developing a learning algorithm for the conditional Samovar

model can be summarised as follows:

exploit a nice factorisation of the likelihood to define an "EEM" algorithm with

two nested expectation-steps

perform the inner expectation using equations similar to the Kalman-Rauch

recursions

approximate the outer expectation, with the help of the HMM forward-backward

equations, by leveraging some known properties of the distribution of Q

4.2.2.1. Nested EM

The reestimation rule for any EM algorithm with two unknown variables, such as V

and Q, is

9n+1 = argmax E,,,q [log p(v, q, r I a, 9) I r, a, 9"]

U(9)

(9 being the parameter to be optimised and the outputs and inputs r, a jointly comprising

the known data d of section 3.3.1). The double expectation can be rewritten as a nested pair

of expectations:

U(9) = E,,,q [logp(v, q, r a, 9) I r, a, 9"]

p(v,qJr,a,9")logp(v,q,rJa,9)

=
J

p(q I
r, a, 9") f p(v I q, r, a, 9") logp(v, q, r I

a, 9) (87)
q v

= Eq [Ev [log p(v, q, r I a, 0) I q, r, a, 9"] I r, a, 9", (88)

and the resulting procedure could be called an EEM algorithm. In the case of the Samovar

model, this rearrangement is helpful, because the likelihood (82) comes ready-factored into

almost exactly the terms p(q I r, a, 9) and p(v I q, r, a, 9) arising in (87) in such a way that the

inner, v expectation is continuous, but can be carried out precisely using a version of the

Kalman-Rauch recursions, while the outer, q expectation must be approximated, but is at

80

4-2.2.2 The log likelihood

defining the slope of the relationship between D4 and Rt+l is zero, then only the bottom

"intercept" row remains and the model becomes the Gaussian HMM of section 3.3.3.3. If,

on the other hand, the number of components i is reduced to one, then the model is simply a

Kalman filter.

4.2.2. A learning algorithm for Samovar

The strategy followed in developing a learning algorithm for the conditional Samovar

model can be summarised as follows:

• exploit a nice factorisation of the likelihood to define an "EEM" algorithm with

two nested expectation-steps

• perform the inner expectation using equations similar to the Kalman-Rauch

recursions

• approximate the outer expectation, with the help of the HMM forward-backward

equations, by leveraging some known properties of the distribution of Q

4.2.2.1. NestedEM

The reestimation rule for any EM algorithm with two unknown variables, such as V

and Q, is

0n+1 = argmax Ev<q [logp(v, q, r \ a, 9) \ r, a, 0"]

17(0)

(0 being the parameter to be optimised and the outputs and inputs r, a jointly comprising

the known data d of section 3.3.1). The double expectation can be rewritten as a nested pair

of expectations:

£7(0) = Ev,q [logP(v, q, r \ a, 0) | r, a, 9n]

= I P(v,q\r,a,9n)logP(v,q,r\a,6)
Jv,q

= fP(q\r,a,9n) f p(v \ q,r,a,9n)\ogP(v,q,r \ a,0) (87)
J q J v

= Eq^Ev[logp(v,q,r\a,9)\q,r,a,9n] r,a,0n] (88)

and the resulting procedure could be called an EEM algorithm. In the case of the Samovar

model, this rearrangement is helpful, because the likelihood (82) comes ready-factored into

almost exactly the terms p(q \ r, a, 9) and p(v \ q, r, a, 9) arising in (87) in such a way that the

inner, v expectation is continuous, but can be carried out precisely using a version of the

Kalman-Rauch recursions, while the outer, q expectation must be approximated, but is at

80

4.2.2.2 The log hkehhood

least discrete. The following sections explain how this works, starting with the log likelihood

at the heart of (88) and moving outwards.

4.2.2.2. The log likelihood

The likelihood (82) comprises two terms per timestep (plus two for the initial conditions

which will be discussed later on). The first term p(yt+l I qt xt a), arising from the links

Xt --r yt+t and Qt i yt+l in (80), expresses the continuous dynamics of the model,

while the corresponding term p(qt I qt-r, w, v, ,y, dt) arises from the mixing dynamics links

Qt-r -, Qt and Dt -+ Qt. The log likelihood thus falls into two parts, one involving the

linear parameters A, a and the other the mixing parameters w, v, ry:

U(9) = U(A, a) + U(w, v, ry) (89)

where U(A, a) = Eq [E E [log p(yt+r I qt xt,),a) I q, d, on] I d, 0 -
t

and U(w, v,'Y) = Eq [E E [logp(gt
I qt-r , w, v,'Y) I q, d, B'] I d, Bn]

t J

The reestimation rule for A, a involves only the first part:

(A, a)n+r = argmax U(A, a)
A,a

But this breaks down further into separate rules for each component i, because A, and a;

feature only in those terms corresponding to timesteps t for which qt = is

(A,, a,)"+1 = argmax E. [Evt+i v' [logp(yt+1
I Qt = i, xt, A,, a,) I q, d, Bn

] I d, Bn
](90)

A"a'

Comparing (90) with (49), and (83) with (70), the only differences between this update rule

and that of the Kalman filter are the appearance of x and y in place of v (section 4.2.1.1),

the selective t-summation, and the extra outer expectation over q. The necessary

computations are correspondingly similar to those performed for the KF M-step:

,\+i=PBii
n+r = 1

(C_
A
. P. +1 Pt

N \

-cf. (72) and (73)-with the sufficient statistics obtained by taking the outer, q-

expectation ...

P. = Eq [Ptlq r, a, O"]

B, = Eq [B,lq I
r, a, on]

Ci = Eq
[C'Iq

r, ,on]

N, = Eq [Nalq I
r, a, B"]

where N,lq = E 1

t:q^=i

(91)

(92)

(93)

81

4-2.2.2 The log likelihood

least discrete. The following sections explain how this works, starting with the log likelihood

at the heart of (88) and moving outwards.

4.2.2.2. The log likelihood

The likelihood (82) comprises two terms per timestep (plus two for the initial conditions

which will be discussed later on). The first term P(yt+l \ q*, x*, A, a), arising from the links

X1 -> Yt+1 and Q4 -> Yt+1 in (80), expresses the continuous dynamics of the model,

while the corresponding term p(qi \ ql~l,ui, i/,7, d4) arises from the mixing dynamics links

Q1'1 -4 Q* and D* -> Q*. The log likelihood thus falls into two parts, one involving the

linear parameters A, a and the other the mixing parameters w, j/,7:

) + C7(w,i/,7) (89)

where U(X,a) = Eq[^Ev[logp(yt+1 \q\x\ A, a) q,d,9n] d,0n]

and
t

d,0"j

The reestimation rule for A, a involves only the first part:

(A,a)n+1 = argmax [/(A, a)
\,a

But this breaks down further into separate rules for each component i, because A, and a*

feature only in those terms corresponding to timesteps t for which qt = i:

(A,, a,)n+l= argmax E,\ £ £„«+!,„« [\ogP(yt+l \ Q4 = i,x\ \,a,) \ q,d,9n] d,0nl(90)
A"a- *.,«=,

Comparing (90) with (49), and (83) with (70), the only differences between this update rule

and that of the Kalman filter are the appearance of x and y in place of v (section 4.2.1.1),

the selective t-summation, and the extra outer expectation over q. The necessary

computations are correspondingly similar to those performed for the KF M-step:

(91)

(92)

— cf. (72) and (73) — with the sufficient statistics obtained by taking the outer, q-

expectation . . .

Pt = Eq[Pilq\r,a,9n]

Bt = Eq[Btlq\r,a,9n]

Ci = Eq[CAq\r,a,en] (93)

where Nt q =

81

4.2.2.8 The inner expectation

... of the statistics (76) used in the KF algorithm, made t-selective and applied to xly
rather than h:

B,lq = E Btlq

tq'=,

where Btlq = E[xtxt' l q,,r,a]
\ =xtt'+l vT
) TX T \ Q

C'Iq = E Ct}1lq
t q'=i

where Ct+1Iq = E[yt+lyt+1' I

g r, a]

I/
\1

= yT 1gtT 1' v
t+1

+ 1 T 1

A19 = Pt+i,tlq
t:qt=i

where Pt+1,tlq = E[yt+lxt' I

q r, a]
/ t+1,t

4+1 xtT+I vT
0)

The expectations and variances required are like (71):

vT
rt

xT =
at I

1

vt t T gT= rt

v, = E[vt q, dI 0,T I , On]

vtr = Var[vt I q, dl o'' 1, on]

t-1 = Cov[vt vt 1Iq,d[Orl gn]

(94)

and they can be calculated in a similar way (see section 4.2.2.3).

Turning to the second, mixing part of the expected log likelihood (89), a reestimation

rule is obtained which appears simpler, since the inner, v-expectation is irrevelant to the

mixing dynamics (86), which was designed deliberately not to involve v.

(w, v, -Y)' = argmax Eq [E log p(gt I qt-', w, v,,y, dt) I d, On]
W,V,^f t

However, this is exactly the update rule (65) for the dynamics of an IOHMM-which, it

turned out, had to be implemented using an iterative optimiser.

The M-step for the linear dynamics parameters (equations 91 and 92) and the mixing

dynamics parameters (equations 66, 67 and 69) are now in place; it remains to work out how

the Q and VIQ distributions on which they depend are to be computed, i.e., how to perform

the E-step.

82

4-2.2.3 The inner expectation

... of the statistics (76) used in the KF algorithm, made i-selective and applied to x/y

rather than h:

where £4|<? = E[zV \ q , r , a]

t q'=i

where C4+1|« = E[yt+lyt+l' \ q , r , a]

— 2/r" WT" +

where P4+1'4|<z = E[2/4+1z4 ' |g,r,a]
H-M

The expectations and variances required are like (71):

(94)

and they can be calculated in a similar way (see section 4.2.2.3).

Turning to the second, mixing part of the expected log likelihood (89), a reestimation

rule is obtained which appears simpler, since the inner, u-expectation is irrevelant to the

mixing dynamics (86), which was designed deliberately not to involve v.

(w, «/, 7)
n+1 = argmax Eq d, 9n

However, this is exactly the update rule (65) for the dynamics of an IOHMM — which, it

turned out, had to be implemented using an iterative optimiser.

The M-step for the linear dynamics parameters (equations 91 and 92) and the mixing

dynamics parameters (equations 66, 67 and 69) are now in place; it remains to work out how

the Q and V\Q distributions on which they depend are to be computed, i.e., how to perform

the J?-step.

82

4.2.2.3 The inner expectation

4.2.2.3. The inner expectation

The expectation E [.] over the linear hidden state in (88) is taken conditional on

a fixed value of Q, the sequence of mixing hidden states. And given a particular sequence

of linear component choices qt, the model looks very like a Kalman filter, albeit one with

a degenerate output function, and in which a different (known) dynamics function is

used at each timestep. Since nothing in the derivation of the Kalman-Rauch recursions

(section 3.3.3.5) relies on A and a remaining constant over time, they can be used with

minor modifications to infer the familiar Gaussian distributions-but now conditional on

for the pairs vt, vt}1.

In laying out these adapted formulas it is convenient to define a subscripted V to pick

out those rows of a vector which correspond to the position of the hidden state v in the

overall state x, as defined in (84); R similarly picks out is rows. Thus, AV = vt and

xR = rt. A subscripted Y is used for the concatenation of v's rows and is rows-cf. (85).

A pair of these subscripts defines a subblock of the matrix to which they are applied.

Combined with the usual matrix notation, this convention brings out both the relationship

with the standard Kahnan-Rauch recursions and the low dimensionality of most of the

matrix arithmetic involved in the implementation.

The forward recursions begin

-separate estimates of the initial linear state being made for each q (see section 4.2.2.7)-

and continue

t- r
ytt-1 = Aqt-1 at-1

1

yL-1 =
(Aqi-0YH//v((t-1 1 -OHY + a- i

Kt = lyt-1HR
11e-ORR,)-1

vE _ /(tiff + Kt(rt
`9L-1)R)

yt = \yt-1)HH - Kt lit-1)RH

The backward iterations begin

VT
T-1

= ((AqT-i) HH-KT)RH) (fl _i)HH

83

4-S.2.3 The inner expectation

4-2.2.3. The inner expectation

The expectation Ev[- ••} over the linear hidden state in (88) is taken conditional on

a fixed value of Q, the sequence of mixing hidden states. And given a particular sequence

of linear component choices q1, the model looks very like a Kalman filter, albeit one with

a degenerate output function, and in which a different (known) dynamics function is

used at each timestep. Since nothing in the derivation of the Kalman-Rauch recursions

(section 3.3.3.5) relies on A and a remaining constant over time, they can be used with

minor modifications to infer the familiar Gaussian distributions—but now conditional on q—

for the pairs vl,vt+1.

In laying out these adapted formulas it is convenient to define a subscripted V to pick

out those rows of a vector which correspond to the position of the hidden state v in the

overall state x, as defined in (84); R similarly picks out r's rows. Thus, Xy = v4 and

z^ = r4. A subscripted Y is used for the concatenation of u's rows and r's rows—cf. (85).

A pair of these subscripts defines a subblock of the matrix to which they are applied.

Combined with the usual matrix notation, this convention brings out both the relationship

with the standard Kalman-Rauch recursions and the low dimensionality of most of the

matrix arithmetic involved in the implementation.

The forward recursions begin

= to"q

—separate estimates of the initial linear state being made for each q (see section 4.2.2.7)—

and continue

* 1

The backward iterations begin

83

4.2.2.5 Approxsmatsng the outer expectatson

and continue

it = vt
t (a,,)HY 1yt+1)

1

vT = vt + J \ X rt+1) 1./t+1

t+1
Jt rrvt+1

6 - yt+l) it

f,t l,t = (.1 }1+I) \\v
t+l

T 0) - (Aqt+1)YHvt+1) .Jt+i1

4.2.2.4. The outer expectation

(95)

(96)

(97)

In theory, the outer expectation over q-which carries over from (88) into (93) and, in

a slightly different form, into (68)-presents no great difficulty. The sequence-probabilities

p(q I r, a, 8) by which the expectations are weighted can be obtained by multiplying the

transition probabilities involved in the discrete evolution of q and the expected observation

likelihoods conditioned on q

p(gIO,r,a) ocp(rIq,a,8)p(gIa,9)

_ Et [p(rt+1 I vt, rL, at, gt, e) 1 g, e,
r[l,t]

t

11 p(qt+l I qt, 9, rt, at)
t

(98)

Taking the expectation in the first term is easy, since the distribution p(vt I q, r[l,t] a[r,t] 0)

is computed as an auxiliary value by the modified Kalman-Rauch iterations (95)-(97):

Evt [p(rt+1
I vt, qt, rt, at) I q, r, a] =

where

2 exp
2

(rt+1 2t)t 0 (rt+l attt)
(99)

0-1 = (As)RH vt (A')HR + as 1

and

and

vt

Gt

1

The second term is just the gating rule (86).

4.2.2.5. Approximating the outer expectation

However, it is in practice impossible to perform a summation over all the possible

sequences q, because their number rises exponentially with their length T. Luckily, this q-

space into which the intractability of the model has been concentrated is at least discrete;

84

4.2.2.5 Approximating the outer expectation

and continue

(95)

f (96)

~ , \
VT 1 ("\ \ ~*+l 1 rt+l' /n7^

-lV+1)yff%H J (97)

4.2.2.4. The outer expectation

In theory, the outer expectation over q — which carries over from (88) into (93) and, in

a slightly different form, into (68) — presents no great difficulty. The sequence-probabilities

p(q | r, o, 0) by which the expectations are weighted can be obtained by multiplying the

transition probabilities involved in the discrete evolution of q and the expected observation

likelihoods conditioned on q

P(q\9,r,a) oc p(r q,a,9)P(q\a,9)

l[p(qt+1\qt,0,rt,at) (98)
t

Taking the expectation in the first term is easy, since the distribution P(vf \ q, rt1'4!,^1'4!^)

is computed as an auxiliary value by the modified Kalman-Rauch iterations (95)-(97):

(99)

1

The second term is just the gating rule (86).

4-2.2.5. Approximating the outer expectation

However, it is in practice impossible to perform a summation over all the possible

sequences q, because their number rises exponentially with their length T. Luckily, this q-

space into which the intractability of the model has been concentrated is at least discrete;

84

4.2.2.5 Approximating the outer expectation

and it is known to have some properties which can guide a greedy search towards its

important regions:

1) Sparseness. Nearly all of the possible sequences will be of negligible probability,

and will therefore contribute nothing to the expectation.

2) Local consistency. The most probable sequences are likely to be made up of

locally near-optimal subsequences. If a section is taken out of a good assignment

sequence, and considered in isolation, under minimal assumptions about what

happens before and after it, it is hard to imagine that it will not fit the data at

least tolerably well. Indeed, local consistency can be seen as a requirement placed

on the kind of models which will be considered as acceptable.

3) Finiteness of horizon. Although the model is capable in principle of capturing the

dynamics of a world in which events have consequences over a long timescale, there

are good theoretical and empirical grounds to believe that such effects are unlikely

either to arise in the target domain or, if they do, to be learned reliably by any

timestep-based algorithm. So little will be lost if contiguous subsequences of the

training data are considered in isolation, as long as they are not too short.

Put another way, it will normally be possible to tell with some certainty which component

was active at a given timestep by considering the sensor readings and actions in its near

temporal neighbourhood: most sub-sequences can be seen to be unlikely on the basis of

local evidence. Knowledge of what happened further into the future/past may be needed

to squeeze out all the ambiguity. But already the great bulk of the space of sequences can be

pruned away, leaving one or more distinct (and narrow) islands of plausible hypotheses. (In

fact, the learner will wish to reject models relative to which this assumption does not hold,

so any bias introduced by it is benign.)

These considerations point towards a kind of heuristic dynamic programming procedure

for generating a pragmatically adequate (though not statistically valid) "sample" of probable

sequences. To begin with, short subsequences are evaluated separately from each other,

using (98) restricted to the range covered by each; all but the most likely ones are rejected;

and candidate sequences are made up by joining pairs of temporally adjacent survivors.

Those longer sequences are in turn evaluated, pruned and joined, and so on until the horizon

length of item 3 is reached. The number of candidate sequences in play is relatively large

to start with-but they are short, and hence cheap to evaluate; as their length grows,

their numbers fall. Item 1 says that the restriction on the number of full-length sequences

remaining at the end does not necessarily weaken the approximation disastrously, while

item 2 says that the early pruning decisions based on local considerations will mostly be

correct.

85

4-2.2.5 Approximating the outer expectation

and it is known to have some properties which can guide a greedy search towards its

important regions:

1) Sparseness. Nearly all of the possible sequences will be of negligible probability,

and will therefore contribute nothing to the expectation.

2) Local consistency. The most probable sequences are likely to be made up of

locally near-optimal subsequences. If a section is taken out of a good assignment

sequence, and considered in isolation, under minimal assumptions about what

happens before and after it, it is hard to imagine that it will not fit the data at

least tolerably well. Indeed, local consistency can be seen as a requirement placed

on the kind of models which will be considered as acceptable.

3) Finiteness of horizon. Although the model is capable in principle of capturing the

dynamics of a world in which events have consequences over a long timescale, there

are good theoretical and empirical grounds to believe that such effects are unlikely

either to arise in the target domain or, if they do, to be learned reliably by any

timestep-based algorithm. So little will be lost if contiguous subsequences of the

training data are considered in isolation, as long as they are not too short.

Put another way, it will normally be possible to tell with some certainty which component

was active at a given timestep by considering the sensor readings and actions in its near

temporal neighbourhood: most sub-sequences can be seen to be unlikely on the basis of

local evidence. Knowledge of what happened further into the future/past may be needed

to squeeze out all the ambiguity. But already the great bulk of the space of sequences can be

pruned away, leaving one or more distinct (and narrow) islands of plausible hypotheses. (In

fact, the learner will wish to reject models relative to which this assumption does not hold,

so any bias introduced by it is benign.)

These considerations point towards a kind of heuristic dynamic programming procedure

for generating a pragmatically adequate (though not statistically valid) "sample" of probable

sequences. To begin with, short subsequences are evaluated separately from each other,

using (98) restricted to the range covered by each; all but the most likely ones are rejected;

and candidate sequences are made up by joining pairs of temporally adjacent survivors.

Those longer sequences are in turn evaluated, pruned and joined, and so on until the horizon

length of item 3 is reached. The number of candidate sequences in play is relatively large

to start with—but they are short, and hence cheap to evaluate; as their length grows,

their numbers fall. Item 1 says that the restriction on the number of full-length sequences

remaining at the end does not necessarily weaken the approximation disastrously, while

item 2 says that the early pruning decisions based on local considerations will mostly be

correct.

85

4.2.2.5 Approximating the outer expectation

In fact, it is possible to do better by selecting subsequences for joining on the basis

not only of their respective local likelihoods, but also of the plausibility with which they fit

together. Part of this inter-subsequence consistency can be assessed immediately by looking

at the probability with which the gating rule (86) would in fact follow the final component

choice in the first subsequence with the initial choice in the second. Since that probability

is conditioned only on the known data rt, at, and does not depend on the linear hidden

state vt, there is no difficulty in evaluating it as part of the outer expectation. Then the

algorithm has at its disposal both local estimates of the likelihood of each subsequence, and

estimates of the transition probabilities between them-so it can use the HMM forward-

backward equations (56) and (57) to convert those local estimates into a globally informed

estimate of the probability of each possible pair-up between subsequences. The table below

shows the correspondence between the equations' original form in the HMM framework of

section 3.3.3.3 and the way they are used here:

HMM value

timestep

HMM state

state likelihood

state transition prob.

global state pair prob.

Symbol

t
Qt=iorj

p(rt I Qt = j, pp)

WIJ

Sequence-joining value

range of timesteps

subsequence candidate

cand. local likelihood

cand. follow-on prob. est.

global cand. pair prob. est.

Cu
2Iam

"im

The equations are iterated not over individual timesteps t, but over ranges it of timesteps of

a given length L, so that subsection it covers the timesteps [Lu, Lu + L). In place of the

HMM states Qt, the random variables of interest are the subsequences Su, which denote the

Samovar component choices within each range u:

$+u,0 = QLu

S.u,1 QLu+1

(100)

Su,L-a = QL(u+l)-2

S.u,L-1 = QL(u+1)-1

Where the HMM states at each timestep have a likelihood p(rt I p2) at which they predict

each output, the component choice subsequences have a "local likelihood"

ca = p(r[Lu,Lu+L) Su = l
I
a[Lu,Lu+L) O) (101)

that they describe correctly the outputs and component choices within their range, under no

assumptions about what happens before and after them, obtained from running (98) with t

ranging over [Lu, Lu + L). The place of the state transition probabilities

W%J = p(Qt = j I Qt-1 = i, 0)

86

4.2.2.5 Approximating the outer expectation

In fact, it is possible to do better by selecting subsequences for joining on the basis

not only of their respective local likelihoods, but also of the plausibility with which they fit

together. Part of this inter-subsequence consistency can be assessed immediately by looking

at the probability with which the gating rule (86) would in fact follow the final component

choice in the first subsequence with the initial choice in the second. Since that probability

is conditioned only on the known data r4,a4, and does not depend on the linear hidden

state v*, there is no difficulty in evaluating it as part of the outer expectation. Then the

algorithm has at its disposal both local estimates of the likelihood of each subsequence, and

estimates of the transition probabilities between them—so it can use the HMM forward-

backward equations (56) and (57) to convert those local estimates into a globally informed

estimate of the probability of each possible pair-up between subsequences. The table below

shows the correspondence between the equations' original form in the HMM framework of

section 3.3.3.3 and the way they are used here:

HMM value Symbol Sequence-joining value Symbol

timestep

HMM state

state likelihood

state transition prob.

global state pair prob.

(J4 = i or j

range of timesteps u

subsequence candidate Su = I or m

cand. local likelihood

cand. follow-on prob. est.

global cand. pair prob. est. ^"

C t*
i

~u

m

The equations are iterated not over individual timesteps i, but over ranges u of timesteps of

a given length L, so that subsection u covers the timesteps [Lu, Lu + L) . In place of the

HMM states Q4, the random variables of interest are the subsequences Su, which denote the

Samovar component choices within each range u:

gu,0 _ QLu

Su,l = QLu+l

(100)

Where the HMM states at each timestep have a likelihood p(rl \pj) at which they predict

each output, the component choice subsequences have a "local likelihood"

cf = p(rt
 Lu'Lu+L) , Su = 1 1 a[Lu>Lu+L) , 0) (101)

that they describe correctly the outputs and component choices within their range, under no

assumptions about what happens before and after them, obtained from running (98) with t

ranging over [Lu,Lu + L). The place of the state transition probabilities

86

4.2.2.6 V-matching

is taken by estimates of the probabilities with which temporally adjacent subsequences look

like they might have followed on from each other:

p(transition from S"_1 = l to S' = m) : zi,"

=
p(QL" = MO

I

QL"-1 = lL_1
B

rL" aLu) (102)

which is (86) with t = Lu, i = m°, j = 1L-1. Instead of the output

?;sr = p(Qt = 7, Qt+1 = i, r 10)

-cf. (58)-the forward-backward equations yield

Sam F p(Su = m, S"+1 = l r 10a)

ocp(S" = m, S'+1 = I10,r,a) (103)

This is the Bayesianly correct estimate of the probability that the component choices in

the range [Lu, Lu + 2L) are as described by 1, m, given of course the restriction that the

distribution of the linear hidden state v is computed on the basis of local evidence inside

each L-long subsequence, and is ignored in estimating the follow-on probabilities.

If the linear hidden state is actually irrelevant-if the blocks of the dynamics

matrices a; which define the coefficients through which Vt affects Yt are zero-then the

first, L = 1 pass of the algorithm reduces, as it should, to the HMM's forward-backward

computation. Subsequent passes have the effect of selecting a small, but (in this case)

correctly distributed, sample of sequences. On the other hand, if the model comprises only

a single component, then the algorithm reduces to the KF's Kalman-Rauch recursions.

In other, non-degenerate cases, it is clear that the algorithm will not in general produce

an unbiased sample of mixing state sequences. The number of candidate subsequences it

maintains at each stage must necessarily be limited in order to contain its consumption of

resources, and this means that it will often have to reject large classes of possibilities on

a heuristic basis at a relatively early stage. The issues of how the bias thereby introduced

into the sample might be corrected, and indeed whether it matters much, are addressed in

section 6.1.1.2.

4.2.2.6. V-matching

In principle, the candidate follow-on probability estimates (102) can be tightened up

by taking into account the implications which the subsequences s"-' and s" each have for

the hidden linear state VL". The terminal V', v' produced by the modified Kalman-Rauch

recursions running inside su-1, and the initial v°, v° produced by those running inside s",

are both estimates of this same quantity, so that the agreement between the two provides

87

4.2.2.6 V -matching

is taken by estimates of the probabilities with which temporally adjacent subsequences look

like they might have followed on from each other:

p(transition from S""1 = / to Su = m) sa z?m

= P(QLu = m°\QLu-1 = lL-l,8,rLu,aLu) (102)

which is (86) with t = Lu,i — m°, j = 1L~1. Instead of the output

— cf. (58) — the forward-backward equations yield

= m,Su+1 =l\9,r,a) (103)

This is the Bayesianly correct estimate of the probability that the component choices in

the range [Lu,Lu + 2L) are as described by l,m, given of course the restriction that the

distribution of the linear hidden state v is computed on the basis of local evidence inside

each L-long subsequence, and is ignored in estimating the follow-on probabilities.

If the linear hidden state is actually irrelevant — if the blocks of the dynamics

matrices A, which define the coefficients through which Vi affects Y4 are zero — then the

first, L = 1 pass of the algorithm reduces, as it should, to the HMM's forward-backward

computation. Subsequent passes have the effect of selecting a small, but (in this case)

correctly distributed, sample of sequences. On the other hand, if the model comprises only

a single component, then the algorithm reduces to the KF's Kalman-Rauch recursions.

In other, non-degenerate cases, it is clear that the algorithm will not in general produce

an unbiased sample of mixing state sequences. The number of candidate subsequences it

maintains at each stage must necessarily be limited in order to contain its consumption of

resources, and this means that it will often have to reject large classes of possibilities on

a heuristic basis at a relatively early stage. The issues of how the bias thereby introduced

into the sample might be corrected, and indeed whether it matters much, are addressed in

section 6.1.1.2.

4.2.2.6. V-matching

In principle, the candidate follow-on probability estimates (102) can be tightened up

by taking into account the implications which the subsequences s""1 and su each have for

the hidden linear state VLu. The terminal VL,VL produced by the modified Kalman-Rauch

recursions running inside s""1, and the initial v°,v° produced by those running inside su,

are both estimates of this same quantity, so that the agreement between the two provides

87

4.2.2.8 Visualising the algorithm

additional information about how well the sequences fit together. Turning the overlap into a

probability is, however, not straightforward; the estimate would have to be calculated as

p(Su = 9n I
Su-1 = 1) ' / p(S" = m I qL" vL") p(qL", vLU I Su-1 = l)

JgLi VLY

f'
p(Su = m I VLu) p(vLu

I

Su-1
= 1)

p(QLu

= Tn°
I

QLu-1 = IL-1, 9) =Jv Lu

where the term

p(Su
= .m IVLu) AVLu I S° = m)

Em p(vLu I Su = m)

gives rise to a normalisation inside the integral, the resulting expression being not a

Gaussian convolution but something far less easy to evaluate. In practice, however, all that

is required is a comparison which causes really improbable couplings to be rejected. That

can be achieved by considering the convolution of the two versions, or their cross-entropy.

4.2.2.7. Initial conditions

What, finally, of (82)'s initial conditions p(v° I t) and p(q° I t), discussion of which

has so far been deferred? Since it only really makes sense to apply the Samovar

algorithm to longish training sequences, the effect of the latter will be negligible, and

it is not implemented (although it easily could be). The former, however, plays a more

important role, since the subsequences over which the modified Kalman-Rauch recursions

(section 4.2.2.3) are run are, by design, of at most moderate length. Each subsequence I

is given its own initial linear hidden state estimate it, Zl, so that the recursions can be

run more than once, each time tightening it, Zi up, and therefore also the estimate of the

subsequent Vts.

4.2.2.8. V2sualising the algorithm

The diagrams following are visualisations of the process by which short Q-subsequences

are evaluated and joined to produce longer ones. They were obtained by running the

algorithm on the test data of section 5.1.2. V-matching (section 4.2.2.6) was disabled, and

the number of subsequence candidates maintained by the algorithm as possibilities for each

section (candsMax of section 4.2.2.9) was limited to 10 to save space on the page; both these

settings are suboptimal for the problem, but the fact that the algorithm takes longer to

settle on the right answer actually makes its workings clearer.

We join the algorithm when it is evaluating the candidates for the eight two-step

subsections of a sixteen-step data series; the list of candidates su for each section u

is represented by a column of boxed pairs of mixing state numbers su,t, the first

column/section covering timesteps 0 and 1, the second timesteps 2 and 3, and so on.

88

4.2.2.8 Visualising the algorithm

additional information about how well the sequences fit together. Turning the overlap into a

probability is, however, not straightforward; the estimate would have to be calculated as

P(SU = m | S"-1 = /) w f P(Su = m\qLu,vLu)P(qLu,vLu\Su-l=l)
J qLu^vLu

= f P(SU = m | vLu) p(vLu | S"-1 = 0 p(QLu = m° \ QLu~l = 1L~1,9)
JvLu

where the term

gives rise to a normalisation inside the integral, the resulting expression being not a

Gaussian convolution but something far less easy to evaluate. In practice, however, all that

is required is a comparison which causes really improbable couplings to be rejected. That

can be achieved by considering the convolution of the two versions, or their cross-entropy.

4-2.2.7. Initial conditions

What, finally, of (82)'s initial conditions P(v° \ i) and P(q° \ i), discussion of which

has so far been deferred? Since it only really makes sense to apply the Samovar

algorithm to longish training sequences, the effect of the latter will be negligible, and

it is not implemented (although it easily could be). The former, however, plays a more

important role, since the subsequences over which the modified Kalman-Rauch recursions

(section 4.2.2.3) are run are, by design, of at most moderate length. Each subsequence I

is given its own initial linear hidden state estimate li,~n, so that the recursions can be

run more than once, each time tightening LI, l\ up, and therefore also the estimate of the

subsequent Vts.

4-2.2.8. Visualising the algorithm

The diagrams following are visualisations of the process by which short Q-subsequences

are evaluated and joined to produce longer ones. They were obtained by running the

algorithm on the test data of section 5.1.2. V-matching (section 4.2.2.6) was disabled, and

the number of subsequence candidates maintained by the algorithm as possibilities for each

section (candsMax of section 4.2.2.9) was limited to 10 to save space on the page; both these

settings are suboptimal for the problem, but the fact that the algorithm takes longer to

settle on the right answer actually makes its workings clearer.

We join the algorithm when it is evaluating the candidates for the eight two-step

subsections of a sixteen-step data series; the list of candidates su for each section u

is represented by a column of boxed pairs of mixing state numbers su<i, the first

column/section covering timesteps 0 and 1, the second timesteps 2 and 3, and so on.

4.2.2.8 Vzsualissng the atgonthm

The candidate subsequences are listed vertically in order of estimated probability, as

determined by equation 103 during the previous round of the algorithm. Thus the box "20"

at the top of the third column represents the working hypothesis that the most probable

mixing states at timesteps 4 and 5 were numbers 2 and 0.

The black lines joining adjacent candidates represent pairings which look globally

plausible on the basis of the candidates' local likelihoods and transition probabilities: the

thickness of the line between candidate l in section it and candidate m in section it + 1

is proportional to S1,,, (equation 103), except that the lines indicating (s below a cutoff

threshold are omitted for clarity. At this stage, there are quite a few such lines present,

indicating that many pairings have significant probability-the two-step sequences are short

enough that almost any can be made consistent with the observable outputs by postulating

an appropriate hidden linear state V.

Next, the algorithm takes a sample of the most probable-looking pairings, and

obtains four-step candidates for the sections 0-3, 4-7, 8-11 and 12-15. At this stage, the

picture is becoming clearer, with fewer serious pairing possibilities. Note the existence

of an independent trajectory 4444, 5670, 0012, 0120 alongside a more ramified group of

alternatives.

89

4-2.2.8 Visualising the algorithm

The candidate subsequences are listed vertically in order of estimated probability, as

determined by equation 103 during the previous round of the algorithm. Thus the box "20"

at the top of the third column represents the working hypothesis that the most probable

mixing states at timesteps 4 and 5 were numbers 2 and 0.

The black lines joining adjacent candidates represent pairings which look globally

plausible on the basis of the candidates' local likelihoods and transition probabilities: the

thickness of the line between candidate / in section u and candidate m in section u + I

is proportional to Q^ (equation 103), except that the lines indicating £s below a cutoff

threshold are omitted for clarity. At this stage, there are quite a few such lines present,

indicating that many pairings have significant probability—the two-step sequences are short

enough that almost any can be made consistent with the observable outputs by postulating

an appropriate hidden linear state V.

Next, the algorithm takes a sample of the most probable-looking pairings, and

obtains four-step candidates for the sections 0-3, 4-7, 8-11 and 12-15. At this stage, the

picture is becoming clearer, with fewer serious pairing possibilities. Note the existence

of an independent trajectory 4444, 5670, 0012, 0120 alongside a more ramified group of

alternatives.

89

4.2.2.9 The algorithm in pseudocode

By the time the algorithm turns to considering the consequent eight-step subsequences, there

are only two serious pairings to consider.

20100344

20100034

20034544

4444567

20100000

67034544

54445567

54444560

54445560

0120120

00120110

And these are the ones which are returned as hypotheses about the whole sixteen-step

sequence:

4444454454444560

4444567000120120

4.2.2.9. The algorithm in pseudocode

In the following pseudocode summary of the whole conditional Samovar learning

algorithm, maths italic letters such as r and a are used in the same way as in the text; other

program variables are written in slanted sans serif characters, and control words in upright

sans serif characters.

let learn r, a =

Start with an initial parameter containing a number of components, all set to the

same default values. (The symmetry will be broken by the random element in the

E-step.)

for i E [0, componentsNum)

A,0
a, f I
Pi t-0
7,f-I

E-step: get a sample of component choice subsequences from the dynamic

programming-style subsequence joining algorithm (see below).

let subsections = sequenceSample r, a, 0

Compute the sufficient statistics (93) for the linear dynamics parameter updates,

averaged over all the subsequences found for each L-long range is.

90

4-S.2.9 The algorithm in pseudocode

By the time the algorithm turns to considering the consequent eight-step subsequences, there

are only two serious pairings to consider.

1201003441

|20100034|

|67034544|

And these are the ones which are returned as hypotheses about the whole sixteen-step

sequence:

[4444454454444560
4444567000120120

4-2.2.9. The algorithm in pseudocode

In the following pseudocode summary of the whole conditional Samovar learning

algorithm, maths italic letters such as r and a are used in the same way as in the text; other

program variables are written in slanted sans serif characters, and control words in upright

sans serif characters.

let learn r, a =

• Start with an initial parameter containing a number of components, all set to the

same default values. (The symmetry will be broken by the random element in the

£-step.)

for i £ [0, components/Von?)

• E-step: get a sample of component choice subsequences from the dynamic

programming-style subsequence joining algorithm (see below).

let subsections — sequenceSample r, a, 9

• Compute the sufficient statistics (93) for the linear dynamics parameter updates,

averaged over all the subsequences found for each L-long range u.

90

4.2.2.9 The algorithm an pseudocode

foriE[0,101)

B,FO;C,FO;PiFO;N,FO
for u E [0, 1 subsections))

for seq E subsections".segs

for t E [0, seq.q)

let i = se

let x

q.qt

seq.vt
rL+t
aLutt

1

(seq.gt+r
let y = l Lu+t+i

\
B, i+- seq.prob x xx' + seq.v"t

0

Ci f seq.prob x yy' +
t+i seq'u \

P, t+ seq.prob x yx' + seq.v t+r,t

Na E+ seq.prob

0

M-step: update the linear dynamics parameters from their sufficient statistics (see

equations 91 and 92), and invoke a root finder on the derivative of the expected log

likelihood with respect to the mixing dynamics parameters.

for i E [0,181)

A, F P;Bq '
C;-a,P'1-r IX,FI

J Ni
w, v, ry - scgRoot (w, v, ry -3 mixingErrorDeriv w, v, ry, sequences)

scgRoot is a standard nonlinear root-finder, such as a scaled conjugate gradients routine4.

The pseudocode for the function mixingErrorDeriv passed to it as an argument is given

below; but first, the dynamic programming-style procedure described in section 4.2.2.4 for

performing the approximate B-step:

let sequenceSample r, a, 0 =

Start with every possible sub-sequence of length one.

L -1
foruE[0,T)

foriE[0,101)

4 Moller, A scaled conjugate gradient algorithm

91

4-2.2.9 The algorithm in pseudocode

for i€[0, |0|)

B, i- 0; Ct <- 0; P» <- 0; JV, 4- 0

for M 6 [0, |subsections])

for see/ € subsections"1 .seqs

fo r te [0,se<7.g)

let i = sec/.g4

seq.prob

M-step: update the linear dynamics parameters from their sufficient statistics (see

equations 91 and 92), and invoke a root finder on the derivative of the expected log

likelihood with respect to the mixing dynamics parameters.

f o r i e [0,|0|)

At <- PiB-1

LJ, v, 7 <- scgRoot (u, v, 7 -» mixingErrorDeriv u, v, 7, sequences)

scgRoot is a standard nonlinear root-finder, such as a scaled conjugate gradients routine4.

The pseudocode for the function mixingErrorDeriv passed to it as an argument is given

below; but first, the dynamic programming-style procedure described in section 4.2.2.4 for

performing the approximate .E-step:

let sequenceSample r, a, 0 =

• Start with every possible sub-sequence of length one.

forue [0,T)

fort€[0,|0|)

4 Moller, A scaled conjugate gradient algorithm

91

4.2.2.9 The algonthm in pseudocode

subsectionsu.segs,.q <- (i)

Run the modified Kalman-Rauch recursions "inside" each candidate subsequence

one or more times, to compute the distribution of v (equations 95-97) over the

range covered by it, under no assumptions about what happens before and after

it.

join:

for it E [0,IsubsectionsI)

for cand E subsectionsu.segs

c, t"F0,1

repeat a few times (see section 4.2.2.7)

cand.v,1,11 <- kalmanRauch from Lu to L(u+1)-1 given cand.q, r, 1, t, 0

Compute each candidate sequence's local likelihood.

for it E [0, I subsections))

for l E [0, Isubsectionsu.segsl)

Cr F 1

let cand = subsections°.segst

fort [0,L)
let i = cand.gt

let 0 _ ((A)RH cand.v"t (A ,)HR +a, 1)

cand.vt
r,Lu+t

let x = aLu+t

1

Cr 4-
I
jI' exp (-2 (rLu+t+l A,x)' cb

(rLu+t+1 - a,X))

Estimate the probability with which each pair of temporally adjacent candidates

fits together.

for it E [0, Isubsectionsl - 1)

ford E [0,subsections°.segsl)

form E [0,Isubsections".segsl

let candPrev = Isubsectionsu.segsll

let j = candPrev.gL-1

let candNext = I subsectionsu.segsl m

let i = candNext.q°

Z i m 4_ W it 1

1, exp (- z
(dLu - vq)' y, (dLu v,)1

92

4-2.2.9 The algorithm in pseudocode

subsections™.seqst.q «- (i)

• Run the modified Kalman-Rauch recursions "inside" each candidate subsequence

one or more times, to compute the distribution of v (equations 95-97) over the

range covered by it, under no assumptions about what happens before and after

it.

join:

for u 6 [0, \subsections\)

for cand € subsectionsu .seqs

1,1 i-0,1

repeat a few times (see section 4.2.2.7)

cand.v,T,l4- kalmanRauch from Lu to L(u+l)-l given cand.q,r,l,l,9

• Compute each candidate sequence's local likelihood.

for u € [0, \subsections\)

for / € [0, \subsectionsu.seqs\)

let cand = subsections™ .seqsi

fo r t€ [0 ,L)

let i = cand.q*

/ cand.v1'
/ rLu+t

aLu+t
r

1

exp -

• Estimate the probability with which each pair of temporally adjacent candidates

fits together.

for u e [0, \subsections\ - I)

for / 6 [0, |sofcsect/bns".sec/s|)

for m e [0, |st/6sect/o/7s".se<7s|)

let candPrev — \subsectionsu '.seqs\i

let j = candPrev .qL~l

let candNext = \subsectionsu .seqs\m

let i = candNext.q0

(-1 (dLu ' "OS. (^" -

92

4.2.2.9 The algorithm m pseudocode

form E [0,Isubsections".segsl

Zim E. zdm

Run the HMM forward-backward equations to obtain global estimates of the

probability of each pair of temporally adjacent candidates.

let C = forwardBackward from 0 to Isubsectionsl - 1 given c, z

for u E [0, I subsections) -1)
for l E [0,Isubsections".segsl

for m E [0,1 subsections".segsl)

Cm l,m Sum

If a sample of long-enough sequences has been obtained, return them along with

their estimated probabilities.

if L > sensible length

for u E [0, Isubsectionsl - 1)

ford E [0,1 subsections".segsl)

subsections".segsl. prob - E. Sim

return subsections

Otherwise, select up to candsMax (depending on available time/storage) of the

most probable-seeming pairs, discarding the rest.

let subsectionsPaired = ()

for u E [0, Isubsectionsl - 2)

let candsPrev = subsections2u.segs

let candsNext = subsections 2u+i Begs

subsectionsPaired".segs =

{ candsPrevl.q @ candsNextm.q :

1, m E sample of size at most candsMax with p(1, m) = (J,n }

Repeat.

subsections +- subsectionsPaired

L -' 2

goto join

93

4-2.2.9 The algorithm in pseudocode

for m 6 [0, |su6sect/ons".segs|)

2« £ y zu*lm ~ <L-<m Im

• Run the HMM forward-backward equations to obtain global estimates of the

probability of each pair of temporally adjacent candidates.

let C = forward Backward from 0 to | subsections] - 1 given c,z

for u E [0, |subsect/ons| - 1)

for I € [0, | subsections", seqs |)

for m G [0, | subsections".sec/s|)

Mm ^ ^-//,m Mm

• If a sample of long-enough sequences has been obtained, return them along with

their estimated probabilities.

if L > sensible length

for u e [0, |subsect/ons| - 1)

for / € [0, |su/>secr/ons".seqs|)

subsections'".seqs^prob <- ^TO C,fm

return subsections

• Otherwise, select up to candsMax (depending on available time/storage) of the

most probable-seeming pairs, discarding the rest.

let subsectionsPaired = ()

for u € [0, |subsections ~ 2)

let candsPrev = subsections2™.seqs

let candsNext = subsections2u+1 .seqs

subsectionsPaired™ .seqs =

{ candsPrevi.q © candsNextm.q :

l,m£ sample of size at most candsMax with P(l,m) = £?% }

• Repeat.

subsections -f- subsectionsPaired

goto join

93

4.2.2.9 The algorithm in pseudocode

The output of this algorithm is, for each subsection of the timesteps [0, T), a sample of

likely mixing states sequences covering it. kalmanRauch is the routine implementing the

modified Kalman-Rauch recursions of section 4.2.2.3, and forwardBackward the standard

HMM forward-backward algorithm of section 3.3.3.3.

Finally, the derivative whose root is found to reestimate the mixing dynamics

parameters;

let mixingErrorDeriv w, v, -y, sections =

Initialise the derivatives.

foriE[0,101)

forje[0,101)

dByWeights,, +- 0

dByCentres, F- 0

dBySizesi t- 0

Sum over time.

for t E [1,T)

Find how probable the old parameter estimates made each pair of mixing

states Qt = i Qt-1 = j.

letu=
for seq E sections".segs

let i = seq.gtmodL

let j = seq.qt-1 mod L

pOld F seq.prob

Find how likely the new parameter estimates make them.

foriE[0,101)

for jE[0,10)

pNew, e- w,j z ' exp (-z (dt - v.)'-y, (dt - va))

let norm = E, pNew,,

forjE[0,191)

pNew1, it norm

Compute the derivative contributions and add them in (see equations 66,

67 and 69).

94

4-2.2.9 The algorithm in pseudocode

The output of this algorithm is, for each subsection of the timesteps [0, T), a sample of

likely mixing states sequences covering it. kalmanRauch is the routine implementing the

modified Kalman-Rauch recursions of section 4.2.2.3, and forwardBackward the standard

HMM forward-backward algorithm of section 3.3.3.3.

Finally, the derivative whose root is found to reestimate the mixing dynamics

parameters:

let mixingErrorDeriv u, v, 7, sections —

• Initialise the derivatives.

fbr ie[0, |0|)

for je[0, |0|)

dByWeights^ <- 0

dfiyCentres, 4- 0

- 0

• Sum over time.

fort€[l,T)

• Find how probable the old parameter estimates made each pair of mixing

states Q* = i,Q*~l =j.

let u = £

for seq £ sections™ .seqs

let? = seq.qtmodL

let j = se<7.g4~lmodL

£- seq. prob

Find how likely the new parameter estimates make them.

forie[0,|0|)

fo r j€ [0 , |0 |)

pNewt, <- o;̂ |£|* exp (-^d4 - i/t)'7. (# ~ ".

let norm = ̂ pNewt]

for je[0, |0|)

pWew/ £^ norm

• Compute the derivative contributions and add them in (see equations 66,

67 and 69).

94

4.2.2.10 Making predictions

foriE[0,101)

forjE[0,101)

let Et = pOld,3 - pOldpNewij

dByWeights,, F e.,

let e'
;

4
dByCentres, F- EB, (i(v, - dt)

dBySizesi F EB, (7:
1 - (de - vi)(dt

. Return the overall derivative.

return dByWeights @ dByCentres @ dBySizes

In practice, of course, the ordering of the algorithm and its storage requirements can

be optimised, defensive measures need to be taken against numerical loss of significance

(e.g. working in log space), and various boundary cases need to be taken into account.

4.2.2.10. Making predictions

The predictive distribution of the conditional Samovar model is4

P(rT 10, dl O,T)) = Ev,q [P(rT I

qT-1,
0, dT-1) I d, 0

= E P(q 19,dl O,T)) i P(VT 1Iq,dt 0,T)) P(rT I VT-1,qT-1,0,f-1)
q IT-1

Conditioned on each sequence q, and supposing without loss of generality that T = 7, the

situation is as follows:

Y5

4 Note the slight difference in the form of this expression as compared with that of the general

rule (54) for the predictive distribution of a Bayesian dynamical systems model: it is a consequence

of the switch from the usual graphical model (79) to the (80), in which the readings and actions have

been brought into the world state.

95

4-2.2.10 Making predictions

forie[0,|0|)

forje[0,|0|)

let e\3 =

dByWeightst]

dByCentres, £- 4,7<(i/, - d*)

dSyS/zes, t- 4 (7^ - (d4 - „,)(<? - i/,)')

• Return the overall derivative.

return dByWeights @ dByCentres @ dBySizes

In practice, of course, the ordering of the algorithm and its storage requirements can

be optimised, defensive measures need to be taken against numerical loss of significance

(e.g. working in log space), and various boundary cases need to be taken into account.

4-2.2.10. Making predictions

The predictive distribution of the conditional Samovar model is4

P(rT\9,S°'T^)=Ev,q[P(rT\vT-l,qT-i,9,dT-1)\d,9]

Conditioned on each sequence q, and supposing without loss of generality that T = 7, the

situation is as follows:

4 Note the slight difference in the form of this expression as compared with that of the general

rule (54) for the predictive distribution of a Bayesian dynamical systems model: it is a consequence

of the switch from the usual graphical model (79) to the (80), in which the readings and actions have

been brought into the world state.

95

4.2.3.1 Mergang anputs and outputs

Each sequence q gives rise to a Gaussian component in the overall mixture prediction,

obtained by applying the dynamics function of q's terminal component q8 to X61 q, and

projecting the resultant distribution over Y' down to R7 alone:

p(rT 19, dte'T 1) = Lp(q 19, dlo'T))
27

exp (
2

(rT (aa)RX xq 1 a (rT - (aa)RX q 1)
\

where ((1 i = l(rya
1RR

+ (aa)RV 7Jq -1 (a)VR)

and i = qT-1

roT-1
q

T-1 rT-1

and Sq - aT-1

1

The expectation over q can be approximated by invoking the subsequence-joining algorithm

of (4.2.2.5) to produce candidates l for the mixing state sequence over some reasonable time

period leading up to T - 2 = 5 (inclusive-Q5 determines the component used to generate

rs, the last known sensor reading). Part of its output will be estimates vs,v of what the

linear hidden state implicated in the generation of R7 would be, conditional on each of the

sample Is. It remains only to compute the probability of each possible continuation to Q7 of

each of the sample sequences, conditional on the last known gating data ds, and what each

Q7 would do with X7 11 to produce its output Rs. If desired, a confidence region along the

lines of section 3.3.2.6 can be included with very little extra overhead.

This simple procedure could obviously be optimised if a whole series of predictions is

required (e.g. for a robot in a sense-think-act cycle): the set of subsequence candidates for

the section [0,3] does not depend on the readings and actions from timestep 4 onwards,

so there is no point in computing it for the timestep 4 prediction, only to forget it and

recompute it at timesteps 5, 6, and 7-it could be cached. For instance, at timestep 7, the

subsequence-joining algorithm can be started using cached candidate sets for the sections

[0,31, [4,5] and the singleton [6,6].

4.2.3. The joint Samovar model

Just as the joint mixture of experts described in section 3.3.2.4 is closely related to

the conditional mixture of experts of section 3.3.2.5, so the conditional Samovar model of

section 4.2.1 has a "joint" counterpart with the broader aim of estimating the distribution

of the robot's actions (process inputs) At, as they were seen in the training data, as well

as that of its sensor readings (process outputs) Rt. As well as furnishing the model with an

arguably more meaningful confidence region, the shift of perspective turns out to have other

computational and semantic spin-offs.

96

4-2.3.1 Merging inputs and outputs

Each sequence q gives rise to a Gaussian component in the overall mixture prediction,

obtained by applying the dynamics function of q's terminal component q6 to X6 | q, and

projecting the resultant distribution over Y7 down to R7 alone:

and _
a

The expectation over q can be approximated by invoking the subsequence-joining algorithm

of (4.2.2.5) to produce candidates / for the mixing state sequence over some reasonable time

period leading up to T — 2 = 5 (inclusive — Q5 determines the component used to generate

r6, the last known sensor reading). Part of its output will be estimates vf ,vf of what the

linear hidden state implicated in the generation of R7 would be, conditional on each of the

sample Is. It remains only to compute the probability of each possible continuation to Q7 of

each of the sample sequences, conditional on the last known gating data d6 , and what each

Q7 would do with X7 \ I to produce its output Rs. If desired, a confidence region along the

lines of section 3.3.2.6 can be included with very little extra overhead.

This simple procedure could obviously be optimised if a whole series of predictions is

required (e.g. for a robot in a sense-think- act cycle): the set of subsequence candidates for

the section [0,3] does not depend on the readings and actions from timestep 4 onwards,

so there is no point in computing it for the timestep 4 prediction, only to forget it and

recompute it at timesteps 5, 6, and 7 — it could be cached. For instance, at timestep 7, the

subsequence-joining algorithm can be started using cached candidate sets for the sections

[0,3], [4,5] and the singleton [6,6].

4.2.3. The joint Samovar model

Just as the joint mixture of experts described in section 3.3.2.4 is closely related to

the conditional mixture of experts of section 3.3.2.5, so the conditional Samovar model of

section 4.2.1 has a "joint" counterpart with the broader aim of estimating the distribution

of the robot's actions (process inputs) A4, as they were seen in the training data, as well

as that of its sensor readings (process outputs) R*. As well as furnishing the model with an

arguably more meaningful confidence region, the shift of perspective turns out to have other

computational and semantic spin-offs.

96

42.3.1 Merging inputs and outputs

4.2.3.1. Merging inputs and outputs

One possible variation on this scheme would be to treat At-1 and Rt symmetrically, as

independent "outputs" with separate mixed linear/Gaussian distributions conditional on Qt

and Vt:

(104)

Compare (104) with (79): the only difference is that the sense of the links At-1 _y Qt and

At-1 -4 Vt has been reversed. In fact, there is some advantage to be gained from making Rt

depend also linearly on At-1:

-or, equivalently (cf. section 3.2.5.4), handling At-1 and Rt not only symmetrically, but

actually as subvectors of the same quantity:

(105)

00 00
Here At-1 and Rt are shown as jointly conditional on Vt and Qt-through a linear (input-

)output mapping chosen by the mixing state

/ At-1
I Rt = k,Vt + N(0Q,) where i = Qt

-rather than Vt and Qt being conditional on At-1, as in the conditional model. Since this

arrangement is both simpler and more general than (104), it will be adopted henceforth as

"the joint Samovar model". As usual the mixed-linear dynamics are

Vt+1 = a: (it) + N(0, a.)

97

4-2.3.1 Merging inputs and outputs

4-2.3.1. Merging inputs and outputs

One possible variation on this scheme would be to treat A*""1 and R* symmetrically, as

independent "outputs" with separate mixed linear/Gaussian distributions conditional on Q*

and V4:

(104)

Compare (104) with (79): the only difference is that the sense of the links A4"1 -> Qt and

A4"1 ->• F4 has been reversed. In fact, there is some advantage to be gained from making R1

depend also linearly on A4"1:

—or, equivalently (cf. section 3.2.5.4), handling A4 x and R* not only symmetrically, but

actually as subvectors of the same quantity:

(105)

Here A4"1 and R1 are shown as jointly conditional on V4 and Q1—through a linear (input-

)output mapping chosen by the mixing state

'A4-1'
Dt i = Kt V* + N(0, ft) where i = Q*
a,

—rather than F4 and Q4 being conditional on A4"1, as in the conditional model. Since this

arrangement is both simpler and more general than (104), it will be adopted henceforth as

"the joint Samovar model". As usual the mixed-linear dynamics are

'F*'
Vt+l = A, 1

97

N(0,at)

4.2.3.2 Semantics

(note the extra constant element appended to each Vt in order to support a nonzero

intercept), while the mixing dynamics are discretely Markovian, according to a transition

matrix w. The joint Samovar model's likelihood is therefore

p(v,q,r,aIO) = p(v°It)p(q°It)

where p

Jp(at-1,rtIvt,qt,9)p(vtlvt-r,qt-l,9)p(gtlgt-1,9)
t

12- (_1
9

21r
eXp 2

t- -a'(1Q (dtt-11
rt

and dt,t-i _

2 (vt - a, (vtl 1

J J
a, vt - vt r

I/

/I
) and p(vt

I
vt-1,

Qt-1 = Q, B) =
121r l e ° (-I

and p(Qt =.1 I Qt-1 = i) = wig

4.2.3.2. Semantics

The role of the joint model's hidden state Qt,Vt in apparently determining the

action At-1 may perhaps require some explanation: are the actions not, then, generated by

the robot, or even by some human agency? They are; but that does not mean that it is not

possible or useful to approximate their distribution and draw inferences from it. Indeed, a

fully responsible approach to the problem of model trust must surely take this distribution

into account: if the model is asked to predict the consequences of an action which is clearly

different from those it has previously had a chance to observe, or to observe in a situation

similar to the current one, it is reasonable to expect it to express a suitable degree of caution

in its answer. Certainly, the mixed linear/Gaussian generative model may be something of

a travesty of the process by which the actions are really selected; but the same is after all

true of the outputs-the justification of any finite and/or imperfectly optimised environment

model must rest on an appeal to the approximative principle discussed in section 3.2.4.3.

And the important thing from a Bayesian point of view is that it is a reasonable way of

generalising from the training data to a density expressing what future actions (taken in

each situation) are expected to be like. The semantics of the joint model could be glossed

thus: "The processes responsible for generating the actions and readings in the training data

behave differently in different situations. In each situation, we expect that the action which

will be performed is like this and the corresponding reading like that. Unexpected actions

(or readings) are evidence that some previously unseen process is at work."

One particularly interesting feature of the joint model is that the input-generating

"noise" distribution associated with each component (represented by a block of $ 1) can

be very tight, and was in fact observed to be so in practice during the simulated robot

98

4-2.3.2 Semantics

(note the extra constant element appended to each V4 in order to support a nonzero

intercept), while the mixing dynamics are discretely Markovian, according to a transition

matrix w. The joint Samovar model's likelihood is therefore

where p(at~1 ,rt\v,Qt = j , 9) =
Z7T

and d4'4""1 =

and p(v*\vt-\Q*-i=i,9)= %- %xp -\ (V - Xt ("*'')Yo, (V - A
Z7T \ V - 1 / / \

and

4-2.3.2. Semantics

The role of the joint model's hidden state Q4, V4 in apparently determining the

action A4"1 may perhaps require some explanation: are the actions not, then, generated by

the robot, or even by some human agency? They are; but that does not mean that it is not

possible or useful to approximate their distribution and draw inferences from it. Indeed, a

fully responsible approach to the problem of model trust must surely take this distribution

into account: if the model is asked to predict the consequences of an action which is clearly

different from those it has previously had a chance to observe, or to observe in a situation

similar to the current one, it is reasonable to expect it to express a suitable degree of caution

in its answer. Certainly, the mixed linear/Gaussian generative model may be something of

a travesty of the process by which the actions are really selected; but the same is after all

true of the outputs—the justification of any finite and/or imperfectly optimised environment

model must rest on an appeal to the approximative principle discussed in section 3.2.4.3.

And the important thing from a Bayesian point of view is that it is a reasonable way of

generalising from the training data to a density expressing what future actions (taken in

each situation) are expected to be like. The semantics of the joint model could be glossed

thus: "The processes responsible for generating the actions and readings in the training data

behave differently in different situations. In each situation, we expect that the action which

will be performed is like this and the corresponding reading like that. Unexpected actions

(or readings) are evidence that some previously unseen process is at work."

One particularly interesting feature of the joint model is that the input-generating

"noise" distribution associated with each component (represented by a block of /3~l) can

be very tight, and was in fact observed to be so in practice during the simulated robot

98

4.2.3.4 Predsctions

experiments reported in section 5.4. The reason for this is that the action At-r is modelled

conditionally on Vt as well as Qt, so that if the effect of the action on the linear hidden

state is sufficiently deterministic, it may be possible to infer what the action must have

been with some precision-relative to a candidate mixing state sequence and linear hidden

state. And if each Qt-choice in a candidate sequence has quite specific implications for At-r
in the light of what is known about Vt, the observed at-1 may provide strong evidence for

distinguishing between them. What is especially significant is that the estimate of Vt can

play a role in the model's judgement as to which mixing state was active, by modulating the

corresponding At-1: in other words, the model can effectively perform "gating" on V. In

section 4.2.1, it was noted that this was beyond the capability of the conditional Samovar

model for reasons of tractability.

On the other hand, there is no possibility of folding the known data Rt, At directly

into the continuous world state, as suggested in section 4.2.1.1 for the conditional model,

and allowing the model direct access to linear relationships between successive actions and

readings: in the joint model, all distributions must be mediated through the hidden linear

state V. This may make it less trivial for the model to get a handle on the most robust and

obvious phenomena in its environment. (Of course, if the dimensionality of Rt, At is large,

mediation via a projection onto a lower-dimensional V will always be preferable if only for

reasons computational tractability.5)

Potentially the most important difference between the two models will become clear

when the job for which they are ultimately intended-recommending good actions to the

robot-is discussed. It will turn out to be very much easier in principle to obtain actions

from the joint model (section 6.2).

4.2.3.3. Learning algorithm

As usual, the joint model including a generative "confidence region" will, in fact,

be quicker and easier to learn than the conditional model (79): the gating receptive

fields of (82), which must be optimised using a general-purpose iterative maximiser

(section 3.3.2.5), have effectively disappeared, replaced by extra blocks in the better-behaved

output-generating mappings n,, 0j. In their absence, the weightings w revert to being a

transition matrix, with a one-shot reestimation inherited from that for the transition matrix

of an HMM (59). In other respects, the learning algorithm for the joint Samovar model is

essentially similar to that for the conditional Samovar model (section 4.2.2.9), and it will not

be specified in detail.

5 cf. Vlassis & Kr8se, Robot Environment Modeling

99

4.2.3.4 Predictions

experiments reported in section 5.4. The reason for this is that the action A4""1 is modelled

conditionally on V* as well as Q4, so that if the effect of the action on the linear hidden

state is sufficiently deterministic, it may be possible to infer what the action must have

been with some precision—relative to a candidate mixing state sequence and linear hidden

state. And if each Q4-choice in a candidate sequence has quite specific implications for A4""1

in the light of what is known about V4, the observed a4"1 may provide strong evidence for

distinguishing between them. What is especially significant is that the estimate of V* can

play a role in the model's judgement as to which mixing state was active, by modulating the

corresponding A4"1: in other words, the model can effectively perform "gating" on V4. In

section 4.2.1, it was noted that this was beyond the capability of the conditional Samovar

model for reasons of tractability.

On the other hand, there is no possibility of folding the known data Ri,At directly

into the continuous world state, as suggested in section 4.2.1.1 for the conditional model,

and allowing the model direct access to linear relationships between successive actions and

readings: in the joint model, all distributions must be mediated through the hidden linear

state V. This may make it less trivial for the model to get a handle on the most robust and

obvious phenomena in its environment. (Of course, if the dimensionality of R*, A* is large,

mediation via a projection onto a lower-dimensional V will always be preferable if only for

reasons computational tractability.5)

Potentially the most important difference between the two models will become clear

when the job for which they are ultimately intended—recommending good actions to the

robot—is discussed. It will turn out to be very much easier in principle to obtain actions

from the joint model (section 6.2).

4-2.3.3. Learning algorithm

As usual, the joint model including a generative "confidence region" will, in fact,

be quicker and easier to learn than the conditional model (79): the gating receptive

fields of (82), which must be optimised using a general-purpose iterative maximiser

(section 3.3.2.5), have effectively disappeared, replaced by extra blocks in the better-behaved

output-generating mappings K,,ft. In their absence, the weightings w revert to being a

transition matrix, with a one-shot reestimation inherited from that for the transition matrix

of an HMM (59). In other respects, the learning algorithm for the joint Samovar model is

essentially similar to that for the conditional Samovar model (section 4.2.2.9), and it will not

be specified in detail.

5 cf. Vlassis &; Krose, Robot Environment Modeling

99

4.3 Other approaches to msxed-Isnear modelling

4.2.3.4. Predictions

Making predictions using the joint Samovar model is slightly simpler than with the

conditional model in which the readings and actions have been folded into the world state

(cf. section 4.2.2.10). The predictive distribution is just a specialisation of the general

rule (54):

p(rT 10, dl e,T l) = Ev,s [p(rT I yT, J, 0) I d, B]

p(g10,d10'T)) f p(vTIq,dl0'Tl)p(rTIVT'J,0)
q

vT

Conditioned on each sequence q, and supposing without loss of generality that T = 6, the

situation is as follows:

The inference of Vs and the assessment of p(q) must be made without knowledge of

the targetted R6, but this merely requires a minor tweak to the formula by which the

Kalman recursions incorporate the evidence. Each sequence q then gives rise to a Gaussian

component in the overall mixture prediction, obtained by applying the output function of q's

terminal component to V6 I q, and projecting the resultant distribution over A5 and R6 down

to R6 alone while shifting it to take account of the known value a5:

p(rT 10,dl0'T)) = Ep(gI0,dl0'T))
q

(M
2rr

exp (- 2 (rT - P X (O{)RR (rT - µa))

1
2

where /ti = ('")RV vq + (0)RR (0i)RA
(aT 1 _

(r$)AV vq)

and -1

l

and i=qT

As usual, the outer summation over q can be approximated by running the subsequence-

joining algorithm (section 4.2.2.5) to produce a sample of candidates for the mixing state

sequence over some reasonable time period leading up, in this case, to T (inclusive).

100

4.3 Other approaches to mixed-linear modelling

4-2.3.4- Predictions

Making predictions using the joint Samovar model is slightly simpler than with the

conditional model in which the readings and actions have been folded into the world state

(cf. section 4.2.2.10). The predictive distribution is just a specialisation of the general

rule (54):

P(rT\9,d^)=Ev,q[p(rT\vT,qT,9)\d,9]

P(vT\q,d^)P(rT\vT,qT,9)

Conditioned on each sequence q, and supposing without loss of generality that T = 6, the

situation is as follows:

The inference of V6 and the assessment of p(q) must be made without knowledge of

the targetted RQ, but this merely requires a minor tweak to the formula by which the

Kalman recursions incorporate the evidence. Each sequence q then gives rise to a Gaussian

component in the overall mixture prediction, obtained by applying the output function of q's

terminal component to V6 \ q, and projecting the resultant distribution over A5 and R6 down

to R6 alone while shifting it to take account of the known value a5:

where m = (K%)RV vT
q + (&)^ (&)JRA (a?'1 - («*W tf)

and </>i = (j'1 + Kjt^X)

and i = qT

As usual, the outer summation over q can be approximated by running the subsequence-

joining algorithm (section 4.2.2.5) to produce a sample of candidates for the mixing state

sequence over some reasonable time period leading up, in this case, to T (inclusive).

100

4.3.2 Switching state space models

4.3. Other approaches to mixed-linear modelling

The learning algorithm set out above, which could be summarised as a KF nested inside

an approximated HMM, is not the only way to handle the basic intractability of recursive

mixed-linear models.

4.3.1. An aggressive variational approximation

One might, for example, observe that the mixing choice sequence Q is often known

more or less exactly, a posteriori and given the true model. In that case, the posterior

distribution of the linear hidden state sequence V is, like that of the hidden state of a

Kalman filter, pairwise Gaussian (cf. section 4.2.2.3). So the question arises of a whether

a cheap and dirty variational approximation can be made, along the lines of section 3.3.1.4,

in which the w takes the form

w(9, h) = G's (0) 11 net (gt) ww vt+ (v° vt+r)
t

where the Qts are treated as if they were independent. This allows the expectation over q

in (88), which makes it necessary to resort to some relatively expensive approximation such

as Samovar's subsequence-joining algorithm of section 4.2.2.5, to be replaced by individual

expectation over the separate qts.

Unfortunately, it turns out in practice that although the process does tend to settle

on parameter values which make the approximation true (i.e. the p(Qt = i 10, d)s become

indicator variables), the linear hidden state V is inevitably driven close to zero, so that the

end result is merely a wastefully implemented recursive mixture of static linear maps6. The

reason this happens is that the distributions w(vt,vt+1) are reestimated using

pn+1 (v) oc exp EQ [logp(q, v 19)]

oc expEEWQ,(t)P(Vt+1 rt
I
vt,B)

t t

11
Tf T7 P(vt+l rt I vt 0)mQt (*) = 11
t i

Instead of keeping the q-relative Kalman filter distributions separate so that the parameters

can be updated on the basis of statistics derived from those q-sequences in which they

are likely to have participated, as the Samovar's learning is careful to do, this procedure

combines them by taking their product (an "and" rather than an "or"). The resulting mean

is naturally near zero, and the variance very small.

6 like the "autoregressive HMM" mentioned in Rabiner, A Tutorial on Hidden Markov Models

101

4-3.2 Switching state space models

4.3. Other approaches to mixed-linear modelling

The learning algorithm set out above, which could be summarised as a KF nested inside

an approximated HMM, is not the only way to handle the basic intractability of recursive

mixed-linear models.

4.3.1. An aggressive variational approximation

One might, for example, observe that the mixing choice sequence Q is often known

more or less exactly, a posteriori and given the true model. In that case, the posterior

distribution of the linear hidden state sequence V is, like that of the hidden state of a

Kalman filter, pairwise Gaussian (cf. section 4.2.2.3). So the question arises of a whether

a cheap and dirty variational approximation can be made, along the lines of section 3.3.1.4,

in which the w takes the form

ro(0, h) = we(6) U wQt (g4) B7V,>v,+i (v1, vt+l)
t

where the <34s are treated as if they were independent. This allows the expectation over q

in (88), which makes it necessary to resort to some relatively expensive approximation such

as Samovar's subsequence-joining algorithm of section 4.2.2.5, to be replaced by individual

expectation over the separate qts.

Unfortunately, it turns out in practice that although the process does tend to settle

on parameter values which make the approximation true (i.e. the P(Qf = i \ 9, d)s become

indicator variables), the linear hidden state V is inevitably driven close to zero, so that the

end result is merely a wastefully implemented recursive mixture of static linear maps6. The

reason this happens is that the distributions ro(v4,u*+1) are reestimated using

oc exp
t ^

Instead of keeping the (/-relative Kalman filter distributions separate so that the parameters

can be updated on the basis of statistics derived from those (^-sequences in which they

are likely to have participated, as the Samovar's learning is careful to do, this procedure

combines them by taking their product (an "and" rather than an "or") . The resulting mean

is naturally near zero, and the variance very small.

6 like the "autoregressive HMM" mentioned in Rabiner, A Tutorial on Hidden Markov Models

101

4.3.2 Switching state space models

4.3.2. Switching state space models

Another variational approach works by considering a slightly different graphical model

than (79), namely

where Qt selects both a linear/Gaussian output function and a linear hidden state V,t to

which it is applied

Rt = sc,V,t + N(0, /3,) where Qt = i

while each of the Vs evolves according to its own dedicated linear/Gaussian dynamics

Vgt+r =
A:

Vit
+ N(0, a.)

The likelihood is8

p(v, 4, r, a 10) = 11p(rt

I

Qt = i, v,, 1u,, lie) p(Qt =i 14t-') HAV" I vq ', A3, a.)

This can best be described as a "recursive mixture of recursive linear models"-a bank of

Kalman filters-as opposed to the "recursively mixed recursive linear model" of (79).9

Because each component of the model has a whole Kalman filter to itself, rather than

sharing the same linear hidden state with the others, a variational approximation in which

the Qts are treated as independent does not have the crippling effect it has on the Samovar

model (section 4.3.1). The consequent learning algorithm takes the form of applications in

turn (or in some order or other) of

for each filter i in the bank, the standard Kalman-Rauch recursions

(section 3.3.3.5), weighted at each timestep t by the current estimate of the

T Ghahramani & Hinton, Variational Learning for Switching State-Space Models

8 omitting the terms for the initial conditions

g Ghahramani & Hinton, Variational Learning for Switching State-Space Models points out

that similar models have been described in the engineering and econometrics literatures

102

4-3.2 Switching state space models

4.3.2. Switching state space models

Another variational approach7 works by considering a slightly different graphical model

than (79), namely

where Q4 selects both a linear/Gaussian output function and a linear hidden state V* to

which it is applied

Rt = Kjf* + N(0, ft) where Q4 = i

while each of the V^s evolves according to its own dedicated linear/Gaussian dynamics

The likelihood is8

This can best be described as a "recursive mixture of recursive linear models"—a bank of

Kalman filters—as opposed to the "recursively mixed recursive linear model" of (79).9

Because each component of the model has a whole Kalman filter to itself, rather than

sharing the same linear hidden state with the others, a variational approximation in which

the Q4s are treated as independent does not have the crippling effect it has on the Samovar

model (section 4.3.1). The consequent learning algorithm takes the form of applications in

turn (or in some order or other) of

• for each filter i in the bank, the standard Kalman-Rauch recursions

(section 3.3.3.5), weighted at each timestep t by the current estimate of the

7 Ghahramani & Hinton, Variational Learning for Switching State-Space Models
8 omitting the terms for the initial conditions
9 Ghahramani & Hinton, Variational Learning for Switching State-Space Models points out

that similar models have been described in the engineering and econometrics literatures

102

4.3.3.1 E-step by random samptmg

probability Aq, (i) that i was responsible for generating the output rt, yielding

distributions as"(v)

for each filter i in the bank, the standard Kalman filter M-step (72)/(73) and

(74)/(75), the latter also being weighted by the "responsibilities" wqt (i)

the standard HMM forward-backward recursions (section 3.3.3.3) to make fresh

"responsibility" estimates -we±1(i) making use of the likelihoods

Evp(rt I ht,Qt = i,kt,Q,)

This is clearly much more efficient than the Samovar learning algorithm, since there

is no need for the expensive expectation over longish q-subsequences (section 4.2.2.5), but

it is only appropriate for applications in which the system being modelled can be relied on

to stay in the same KF regime for a significant period, rather than potentially choosing

a different rule at each timestep. There is no way for inferences, made on the basis of

observations, about the Kalman state V,t of one filter in the bank to influence the estimate

of the subsequent state Vt+1 of another-and indeed if a filter is (believed to be) unused for

any length of time, the variance of the estimate of its Kalman state will rapidly become such

as to make it effectively useless. If, therefore, the motivation behind adopting a mixed linear

model is to be able to approximate the rapidly changing dynamics of a robot's environment,

the extra separability of the switching state-space model, from which it gains its superior

efficiency, comes at a considerable price paid in the expressiveness thereby foregone.

4.3.3. Monte Carlo methods

There is an entirely different way to approach the problem of learning and using

dynamical systems models which go beyond the small class of those with a tractable, closed

form hidden state distribution p(H). The overall form of the learning algorithms is still the

same-they could still be called EM algorithms. But the way the E-step is implemented is

fundamentally different.

4.3.3.1. E-step by random sampling

Variational learning algorithms, and the Samovar algorithm of section 4.2.2.9, work by

building up an explicit (if approximate) representation of p(H), and computing the sufficient

statistics-generally, moments of that distribution-required for the M-step from that

distribution. Monte Carlo methods, on the other hand, maintain a set of particular possible

hidden states, simulating the dynamics of the model in such a way that their sampling

103

4-3.3.1 E-step by random sampling

probability wqt(i) that i was responsible for generating the output r4, yielding

distributions wn(v)

• for each filter i in the bank, the standard Kalman filter M-step (72)/(73) and

(74)/(75), the latter also being weighted by the "responsibilities" wqt(i)

• the standard HMM forward-backward recursions (section 3.3.3.3) to make fresh

"responsibility" estimates w^l(i), making use of the likelihoods

This is clearly much more efficient than the Samovar learning algorithm, since there

is no need for the expensive expectation over longish g-subsequences (section 4.2.2.5), but

it is only appropriate for applications in which the system being modelled can be relied on

to stay in the same KF regime for a significant period, rather than potentially choosing

a different rule at each timestep. There is no way for inferences, made on the basis of

observations, about the Kalman state V* of one filter in the bank to influence the estimate

of the subsequent state V*+l of another — and indeed if a filter is (believed to be) unused for

any length of time, the variance of the estimate of its Kalman state will rapidly become such

as to make it effectively useless. If, therefore, the motivation behind adopting a mixed linear

model is to be able to approximate the rapidly changing dynamics of a robot's environment,

the extra separability of the switching state-space model, from which it gains its superior

efficiency, comes at a considerable price paid in the expressiveness thereby foregone.

4.3.3. Monte Carlo methods

There is an entirely different way to approach the problem of learning and using

dynamical systems models which go beyond the small class of those with a tractable, closed

form hidden state distribution p(H). The overall form of the learning algorithms is still the

same — they could still be called EM algorithms. But the way the E-step is implemented is

fundamentally different.

4-3.3.1. E-step by random sampling

Variational learning algorithms, and the Samovar algorithm of section 4.2.2.9, work by

building up an explicit (if approximate) representation of P(H), and computing the sufficient

statistics — generally, moments of that distribution — required for the M-step from that

distribution. Monte Carlo methods, on the other hand, maintain a set of particular possible

hidden states, simulating the dynamics of the model in such a way that their sampling

103

4.3.3.2 Comparison wzth Samovar

distribution is p(H).10 If enough point hypotheses are tracked, they can be used to compute

sample-based versions of the moments (or whatever other statistics the M-step wants) which

will be good estimators of the true values.11 The best known such technique in the robotics

community is the "condensation" algorithm12, developed for use in visual tracking problems

and since applied to robot localisationl3

The forward part of the Condensation algorithm proceeds as follows:

generate a sample {h°} of "particles" from the initial state distribution p(h° I t)

repeat for each timestep t

compute the likelihood p(rt I h;, p) of each particle (possible hidden state)

h; in the current sample

choose a subsample {h;,} using the (normalised) likelihoods as sampling

probabilities

generate the successor sample set {h;+1} by applying the stochastic

model dynamics to each h;,, i.e. sample from the distribution

p(ht+1 I h:,, b)

It can be shown that the moments computed from the sets h, weighting each particle by its

likelihood, converge stochastically to the moments of the distributions p(ht I rl 03)). Early

versions of the algorithm based their parameter updates on statistics estimated from this

approximation. With the addition of a smoothing backward pass14 similar to the Rauch

recursions and the HMM backward equations, it is possible to reweight the particles so as

to obtain estimators of the moments of p(ht I r[°,T))-conditioned on the future as well as

the past. As one might expect, this extension is reported to improve the effectiveness of the

learning algorithm considerably.

4.3.3.2. Comparison with Samovar

Apart from its simplicity, the great benefit of the Monte Carlo approach is that it

relies on no special properties of the distribution p(H); this means, for instance, that

the V-normalising problem which arises in the design of the conditional Samovar model

(section 4.1.1.2), and is very hard to solve within a closed-form framework, becomes

10 Doucet, On sequential simulation-based methods for a general review

u From a strictly Bayesian point of view, it would perhaps be possible to account quantitatively

for the uncertainty in the model parameters introduced by the finiteness of the sample.

12

13

14

Isard & Blake, Condensation

see section 2.1.1.3

Isard & Blake, A smoothing filter

104

4-3.3.2 Comparison with Samovar

distribution is P(H).W If enough point hypotheses are tracked, they can be used to compute

sample-based versions of the moments (or whatever other statistics the M-step wants) which

will be good estimators of the true values.11 The best known such technique in the robotics

community is the "condensation" algorithm12, developed for use in visual tracking problems

and since applied to robot localisation13.

The forward part of the Condensation algorithm proceeds as follows:

• generate a sample {/i°} of "particles" from the initial state distribution p(/i° | L)

• repeat for each timestep t

• compute the likelihood p(r* \ht
l,p) of each particle (possible hidden state)

h\ in the current sample

• choose a subsample {/i4,} using the (normalised) likelihoods as sampling

probabilities

• generate the successor sample set {/i4+1} by applying the stochastic

model dynamics to each /i4
t, i.e. sample from the distribution

P(ht+l\hlt,6)

It can be shown that the moments computed from the sets h\, weighting each particle by its

likelihood, converge stochastically to the moments of the distributions p(/i41 rt° '4)) . Early

versions of the algorithm based their parameter updates on statistics estimated from this

approximation. With the addition of a smoothing backward pass14 similar to the Rauch

recursions and the HMM backward equations, it is possible to reweight the particles so as

to obtain estimators of the moments of p(/i41 rt °'T')—conditioned on the future as well as

the past. As one might expect, this extension is reported to improve the effectiveness of the

learning algorithm considerably.

4-3.3.2. Comparison with Samovar

Apart from its simplicity, the great benefit of the Monte Carlo approach is that it

relies on no special properties of the distribution p(H); this means, for instance, that

the V-normalising problem which arises in the design of the conditional Samovar model

(section 4.1.1.2), and is very hard to solve within a closed-form framework, becomes

10 Doucet, On sequential simulation-based methods for a general review
11 From a strictly Bayesian point of view, it would perhaps be possible to account quantitatively

for the uncertainty in the model parameters introduced by the fimteness of the sample.

12 Isard & Blake, Condensation
13 see section 2.1.1.3

14 Isard & Blake, A smoothing filter

104

4.3.4 Dynamic Bayes nets

irrelevant, so that it would be possible to use a condensation-type algorithm to learn a very

"intertwined" model like that shown in (78). Indeed, the form of the model becomes within

reason irrelevant; one interesting line of work even uses a "density tree" representation of

the dynamics, borrowed from nonparametric statistics.15 For the kind of tasks on which

Samovar is intended to be useful, the most intriguing possibility thus opened up is perhaps

a recursive Gaussian process model, or mixture of Gaussian processes.

On the other hand, for many applications one is likely to feel that slightly separable

mixed-linear models like (79) remain a reasonable way of expressing one's ignorance, in a

maximum entropy sense, about the true dynamics of the system-and within this class,

the Samovar algorithm appears to offer a substantial advantage in terms of computational

complexity. Blake16 points out that the complexity of the condensation algorithm rises

quadratically with the size of the sample set of particles if, as has been found necessary in

practice, a smoothing version of the particle filtering E-step is employed. If the hidden state

space is at all large, with a high-dimensional linear part or a large number of discrete mixing

states, a large set of particles will be required to cover it adequately, and the running time

will rapidly become prohibitive. The Samovar algorithm, which folds all the sampling at

the V level into closed-form, Kalman filter-like recursions, and uses hidden Markov model-

like recursions at the Q level to direct its sample generation, takes time quadratic in the

much smaller number of mixing states (because of the HMM forward-backward equations)

and cubic in the dimensionality of the linear hidden state (because of the Kalman-Rauch

recursions). It has been found to perform acceptably on quite complicated problems.

There is no reason in principle why a Monte Carlo-based method could not be used for

making predictions with a model learned with the Samovar algorithm, since there is then

(obviously) no need to condition on future data. However, although a particle filter could

probably be made to infer (a sample of) good actions in much the same way as the Samovar

model (section 6.2), it would then be subject to the same rapid increase in computational

complexity as in the essentially similar E-step inference.

4.3.4. Dynamic Bayes nets

The whole field of Bayesian time-repeated models with more or less sparse

conditionality graphs (dynamic Bayes nets or DBNs) is a open research area. Among the

most interesting recent results is Boyen & Koller, Tractable Inference, which investigates

the extent of the error introduced when approximating assumptions are made about the

hidden state distribution. This work reinforces the intuitively reasonable hope that the

is Thrun & Langford, Monte Carlo Hidden Markov Models

16 Isard & Blake, A smoothing filter, p. 8; North et al., Learning and classification, p. 26

105

4-3-4 Dynamic Bayes nets

irrelevant, so that it would be possible to use a condensation-type algorithm to learn a very

"intertwined" model like that shown in (78). Indeed, the form of the model becomes within

reason irrelevant; one interesting line of work even uses a "density tree" representation of

the dynamics, borrowed from nonparametric statistics.15 For the kind of tasks on which

Samovar is intended to be useful, the most intriguing possibility thus opened up is perhaps

a recursive Gaussian process model, or mixture of Gaussian processes.

On the other hand, for many applications one is likely to feel that slightly separable

mixed-linear models like (79) remain a reasonable way of expressing one's ignorance, in a

maximum entropy sense, about the true dynamics of the system—and within this class,

the Samovar algorithm appears to offer a substantial advantage in terms of computational

complexity. Blake16 points out that the complexity of the condensation algorithm rises

quadratically with the size of the sample set of particles if, as has been found necessary in

practice, a smoothing version of the particle filtering E-step is employed. If the hidden state

space is at all large, with a high-dimensional linear part or a large number of discrete mixing

states, a large set of particles will be required to cover it adequately, and the running time

will rapidly become prohibitive. The Samovar algorithm, which folds all the sampling at

the V level into closed-form, Kalman filter-like recursions, and uses hidden Markov model-

like recursions at the Q level to direct its sample generation, takes time quadratic in the

much smaller number of mixing states (because of the HMM forward-backward equations)

and cubic in the dimensionality of the linear hidden state (because of the Kalman-Rauch

recursions). It has been found to perform acceptably on quite complicated problems.

There is no reason in principle why a Monte Carlo-based method could not be used for

making predictions with a model learned with the Samovar algorithm, since there is then

(obviously) no need to condition on future data. However, although a particle filter could

probably be made to infer (a sample of) good actions in much the same way as the Samovar

model (section 6.2), it would then be subject to the same rapid increase in computational

complexity as in the essentially similar .E-step inference.

4.3.4. Dynamic Bayes nets

The whole field of Bayesian time-repeated models with more or less sparse

conditionality graphs (dynamic Bayes nets or DBNs) is a open research area. Among the

most interesting recent results is Boyen & Koller, Tractable Inference, which investigates

the extent of the error introduced when approximating assumptions are made about the

hidden state distribution. This work reinforces the intuitively reasonable hope that the

15 Thrun & Langford, Monte Carlo Hidden Markov Models
16 Isard & Blake, A smoothing filter, p. 8; North et al., Learning and classification, p. 26

105

4.3.5 Geometrical hypothesis tracking

perturbing effect of an imperfect representation at a particular timestep does not persist for

all timesteps thereafter, or get magnified, but instead decays exponentially: the errors do not

build up and render the H estimate useless.

4.3.5. Geometrical hypothesis tracking

Cox and Leonard's navigational method17 of constructing a tree of hypotheses about

the structure of the world around the robot, and using an extended Kalman filter to

estimate the robot's position conditional on each branch of the tree, is a way of getting

around the KF's representational limitations strikingly similar to that adopted by the

Samovar model and algorithm. Note that because they are only interested in generalising

the KF's forward-in-time fusion ability to a mixed-hypothesis distribution, they need

only store the leaves of the tree; the Samovar algorithm, on the other hand, has to make

inferences backwards to states which are still relevant for its purposes because it needs to

use them for

17 see section 2.1.1.1

106

4.3.5 Geometrical hypothesis tracking

perturbing effect of an imperfect representation at a particular timestep does not persist for

all timesteps thereafter, or get magnified, but instead decays exponentially: the errors do not

build up and render the H estimate useless.

4.3.5. Geometrical hypothesis tracking

Cox and Leonard's navigational method17 of constructing a tree of hypotheses about

the structure of the world around the robot, and using an extended Kalman filter to

estimate the robot's position conditional on each branch of the tree, is a way of getting

around the KF's representational limitations strikingly similar to that adopted by the

Samovar model and algorithm. Note that because they are only interested in generalising

the KF's forward-in-time fusion ability to a mixed-hypothesis distribution, they need

only store the leaves of the tree; the Samovar algorithm, on the other hand, has to make

inferences backwards to states which are still relevant for its purposes because it needs to

use them for

1T see section 2.1.1.1

106

Chapter 5

Evaluation

5.1. Synthetic data

Before assessing the performance of the Samovar model on a mobile robot environment

modelling task, it is interesting to investigate its properties by running it against a controlled

dataset.

5.1.1. The framework

The Samovar model is intended to be useful for applications where the system being

modelled exhibits significant temporal structure of both "trend-like" and "qualitative" kinds,

handled respectively by the model's Kalman filter and hidden Markov model elements.

Different "situations" can succeed each other in an arbitrary order; the process dynamics in

each situation is taken to be (approximately) linear/Gaussian, and the possibility of trend

continuity between situations is left open by the incorporation of the linear hidden state.

The synthetic data which helps elucidate the basic behaviour of the model is sampled from

a process which genuinely does have the mixed-linear dynamics (82), separating the question

107

Chapter 5

Evaluation

5.1. Synthetic data

Before assessing the performance of the Samovar model on a mobile robot environment

modelling task, it is interesting to investigate its properties by running it against a controlled

dataset.

5.1.1. The framework

The Samovar model is intended to be useful for applications where the system being

modelled exhibits significant temporal structure of both "trend-like" and "qualitative" kinds,

handled respectively by the model's Kalman filter and hidden Markov model elements.

Different "situations" can succeed each other in an arbitrary order; the process dynamics in

each situation is taken to be (approximately) linear/Gaussian, and the possibility of trend

continuity between situations is left open by the incorporation of the linear hidden state.

The synthetic data which helps elucidate the basic behaviour of the model is sampled from

a process which genuinely does have the mixed-linear dynamics (82), separating the question

107

5.1.1.2 Intm-sstuatson charactenstus

of the model's effectiveness on its own terms from the issue of how useful this scheme proves

to be as an approximation of more realistic dynamical systems.

5.1.1.1. Situation structure

One of the capabilities which it is most desirable that the model should possess is that

of recognising the existence of two whole categories of situations, which appear the same but

in fact form separate complexes within the temporal structure of the system. For instance,

there might be two parts of a robot's environment between which it cannot distinguish

using directly available sensory information, but border on detectibly different neighbouring

regions. A simple example of this phenomenon can be defined using the following transition

diagram:
10

A' _. B' ° P'

(106)

0.4
2 - t 0 . P G A.

0.4 4

Note that this is not a graphical model, like other similar-looking figures in previous

chapters, but a depiction of a finite state-machine, the arcs representing permissible

transitions between states, and the numbers transition probabilities. (Arcs from A, B, A', B'

back to themselves are omitted for clarity.)

Here, the mixing states (situations) A', B', P' have the same linear dynamics as their

counterparts A, B, P, and the transition probabilities between A, B are the same as those

between A', B'. The only differences are that from the "true prompt" situation P it is

possible sometimes to reach a "goal" situation G, while from the "false prompt" situation P
the only destination is A'; and that a transition into the A, B, P complex is always signalled

by a "landmark" L. Because of the aliasing of the linear dynamics between the two groups

of mixing states, it is impossible to resolve the ambiguity between them without making

long-range inferences from the relatively rare L and G occurrences.

5.1.1.2. Intra-situation characteristics

The most difficult kind of data sequence which the algorithm could be asked to

segment' is one in which the linear state is more hidden than visible. For instance, suppose

that there are no process inputs-A is zero-dimensional-and the outputs R have smaller

1 in the terminology of Ghahramani & Hinton, Variational Learning for Switching State-Space

Models

108

5.1.1.2 Intra-situation characteristics

of the model's effectiveness on its own terms from the issue of how useful this scheme proves

to be as an approximation of more realistic dynamical systems.

5.1.1.1. Situation structure

One of the capabilities which it is most desirable that the model should possess is that

of recognising the existence of two whole categories of situations, which appear the same but

in fact form separate complexes within the temporal structure of the system. For instance,

there might be two parts of a robot's environment between which it cannot distinguish

using directly available sensory information, but border on detectibly different neighbouring

regions. A simple example of this phenomenon can be defined using the following transition

diagram:

(106)

0.4

Note that this is not a graphical model, like other similar-looking figures in previous

chapters, but a depiction of a finite state-machine, the arcs representing permissible

transitions between states, and the numbers transition probabilities. (Arcs from A,B,A',B'

back to themselves are omitted for clarity.)

Here, the mixing states (situations) A',B',P' have the same linear dynamics as their

counterparts A, B, P, and the transition probabilities between A, B are the same as those

between A',B'. The only differences are that from the "true prompt" situation P it is

possible sometimes to reach a "goal" situation G, while from the "false prompt" situation P1

the only destination is A'; and that a transition into the A, B,P complex is always signalled

by a "landmark" L. Because of the aliasing of the linear dynamics between the two groups

of mixing states, it is impossible to resolve the ambiguity between them without making

long-range inferences from the relatively rare L and G occurrences.

5.1.1.2. Intro,-situation characteristics

The most difficult kind of data sequence which the algorithm could be asked to

segment1 is one in which the linear state is more hidden than visible. For instance, suppose

that there are no process inputs—A is zero-dimensional—and the outputs R have smaller

1 in the terminology of Ghahramani &; Hinton, Variational Learning for Switching State-Space

Models

108

5.1.2 Experimental results

dimensionality than the linear hidden states V. Then, other things being equal, the model

will not be able to tell which component i was used at a given timestep t merely by checking

how accurately each would map rt to rt+l through its dynamics matrix A , because,

unless A, is degenerate, different values of the linear hidden state Ht could produce any rt+i

whatsoever. Instead, it will be forced to use non-local information, i.e. the way the readings

behave over several timesteps either side of t. For these experiments, the outputs R were

made one-dimensional and the linear states V two-dimensional.

On top of that, the difficulty of finding the true segmentation will rise as the

precisions a, of the components' mappings fall, or their dynamics matrices A, become more

similar. For this experiment, the dynamics matrices were sampled from an elementwise

uniform distribution in the range (-z, 2), which effectively guarantees that the hidden linear

state will not diverge towards infinity and cause the program to abort.

(A,)kl = Uniform (107)

The noise variances (inverse precisions) were generated by drawing their square roots from

an elementwise uniform distribution of variable width:

a, = (° a)-r

where (a) kl = Uniform (-E, E)

By adjusting 6, it is possible to control the solubility of the segmentation task.

5.1.2. Experimental results

(108)

The experiments performed with data sets generated from synthetic environments

are directed towards answering the key question: does the subsequence-joining procedure

implementing the E-step of the Samovar model's learning algorithm (section 4.2.2.5) work?

Given the true values of the parameters of the model from which a data sequence was drawn,

does the small set of proposed mixing states sequences Q match the true sequence in which

the components were used?

In assessing the performance of the Q-inference algorithm, there are two measures

which seem worth considering. One is the probability p(r I q?, 0.) of the observed outputs

conditional on the sequence q? which it recommends as the single most likely one2, compared

2 The maximum likelihood mixing state sequence can, given the assumptions made by the

subsequence-joining procedure, be obtained using the standard Viterbi algorithm in a way analogous

to how the forward-backward equations were employed in section 4.2.2.5.

109

5.1.2 Experimental results

dimensionality than the linear hidden states V. Then, other things being equal, the model

will not be able to tell which component i was used at a given timestep t merely by checking

how accurately each would map r4 to r*+1 through its dynamics matrix Aj, because,

unless A, is degenerate, different values of the linear hidden state H* could produce any r4+1

whatsoever. Instead, it will be forced to use non-local information, i.e. the way the readings

behave over several timesteps either side of t. For these experiments, the outputs R were

made one-dimensional and the linear states V two-dimensional.

On top of that, the difficulty of finding the true segmentation will rise as the

precisions a, of the components' mappings fall, or their dynamics matrices A, become more

similar. For this experiment, the dynamics matrices were sampled from an elementwise

uniform distribution in the range (—|, |), which effectively guarantees that the hidden linear

state will not diverge towards infinity and cause the program to abort.

(A,)w = Uniform (~^) (107)

The noise variances (inverse precisions) were generated by drawing their square roots from

an elementwise uniform distribution of variable width:

at = (o-'o-y1 (108)

where (<r)fci = Uniform (-£, £)

By adjusting £, it is possible to control the solubility of the segmentation task.

5,1.2. Experimental results

The experiments performed with data sets generated from synthetic environments

are directed towards answering the key question: does the subsequence-joining procedure

implementing the E-step of the Samovar model's learning algorithm (section 4.2.2.5) work?

Given the true values of the parameters of the model from which a data sequence was drawn,

does the small set of proposed mixing states sequences Q match the true sequence in which

the components were used?

In assessing the performance of the Q-inference algorithm, there are two measures

which seem worth considering. One is the probability p(r | g?,0») of the observed outputs

conditional on the sequence q-> which it recommends as the single most likely one2, compared

2 The maximum likelihood mixing state sequence can, given the assumptions made by the

subsequence-joining procedure, be obtained using the standard Viterbi algorithm in a way analogous

to how the forward-backward equations were employed in section 4.2.2.5.

109

5.1.2 Expenmental results

with their probability given the true sequence q.. This can conveniently be expressed on a

log scale as

AL =
1
7, E (logP(rt I q?, B.) - log p(rt I 9. B))

t

Another statistic which drops naturally out of the problem setup is the probability with

which the algorithm suggests the system was in the discrete state complex A, B, P when in

fact it was in A', B', P, or vice versa.

palg(gt E {A',B',P'}) if q: E {A,B,P}
M=Y Spas(gtE{A,B,P}) if qtE{A',B',P'}

t 1 0 otherwise

This is a reasonable measure of its success in inferring the overall temporal structure of the

data; in order to score well, the algorithm must correctly identify occurrences of the states

L, G and P-which can only be achieved by a careful analysis of contextual clues-and use

them as "punctuation marks" in conjunction with the structure of the transition matrix to

resolve the ambiguity of what happens in between.

The following graphs show how these two statistics M and AL vary with the noise

level £, with V-matching (section 4.2.2.6) enabled and disabled. Their data points were

obtained as follows:

Create a model 0. with

the mixing state structure of (106)

random linear dynamics, as defined in (107)

random Gaussian noise terms depending on the setting of 6, as defined

in (108);

sample for 1000 timesteps from this model, recording the true mixing state

sequence q. and readings r.3

ask the algorithm of section 4.2.2.5 to reconstruct a sample of hypothetical mixing

state sequences, given knowledge of r. and 0. (but not, of course, q.);

compute the statistic of interest (SC or M).

Repeat 60 times, and report the overall average of the statistic .4

3 Note that 1000 is not a model parameter, but simply a large enough number of example

timesteps to get a low-variance estimate of each model's performance.

a Again, the repetitions are simply there to help estimate the model class's performance

precisely; they do not affect the inference process itself.

110

5.1.2 Experimental results

with their probability given the true sequence q* . This can conveniently be expressed on a

log scale as

I «• A))

Another statistic which drops naturally out of the problem setup is the probability with

which the algorithm suggests the system was in the discrete state complex A, B, P when in

fact it was in A',B',P', or vice versa.

1 ̂ f Palg(<7* 6 {A1, B', P'}) if qi & {A, B, P}
M = yE Palg(<Zf € {A,B,P}) if g4 € {A',B',P'}

t {Q otherwise

This is a reasonable measure of its success in inferring the overall temporal structure of the

data; in order to score well, the algorithm must correctly identify occurrences of the states

L, G and P — which can only be achieved by a careful analysis of contextual clues — and use

them as "punctuation marks" in conjunction with the structure of the transition matrix to

resolve the ambiguity of what happens in between.

The following graphs show how these two statistics M. and A£ vary with the noise

level £, with ^-matching (section 4.2.2.6) enabled and disabled. Their data points were

obtained as follows:

• Create a model 0* with

• the mixing state structure of (106)

• random linear dynamics, as defined in (107)

• random Gaussian noise terms depending on the setting of £ , as defined

in (108);

• sample for 1000 timesteps from this model, recording the true mixing state

sequence g* and readings r*3

• ask the algorithm of section 4.2.2.5 to reconstruct a sample of hypothetical mixing

state sequences, given knowledge of r* and 0* (but not, of course, #*);

• compute the statistic of interest (A£ or M.).

• Repeat 60 times, and report the overall average of the statistic.4

3 Note that 1000 is not a model parameter, but simply a large enough number of example

timesteps to get a low-variance estimate of each model's performance.
4 Again, the repetitions are simply there to help estimate the model class's performance

precisely; they do not affect the inference process itself.

110

5.1.2 Experimental results

The maximum number of candidate subsequences which the algorithm was allowed to

maintain for each subsection (candsMax of section 4.2.2.9) was set at 30. Other settings of

this parameter were not explored formally; as will be demonstrated shortly, the setting was

high enough for the algorithm to achieve good results with V-matching enabled.

(For a visualisation of the subsequence-joining algorithm in action on this data set-
albeit with a smaller candsMax setting-refer to section 4.2.2.8. Numerals 0-7 in the

diagrams correspond to mixing states A', B', P, L, A, B, P, G respectively.)

Turning first to the measure M, it turns out as expected that the algorithm's inferences

as to which group of mixing states (A, B, P or A', B', P) was active at each timestep

improve as its horizon for linear state estimation is lengthened. This graph shows its

performance when V-matching (section 4.2.2.6) is disabled:

0 45

04

0.35

0.3

0 25

02

015

01

0 05

----------------------------------1 ---

001
0

0 032 01 0 32
Noise standard deviation (log scale)

1

The abcissa denotes the noise-determining E and the ordinate M. When the horizon length

is one, the algorithm is attempting to infer the linear state at each timestep only from its

immediate influence on a single observable output; since that is impossible, there is no way

for it to get any grip on what is going on, and its classification can only be random. Because

the L and G states are not subject to misclassification under the scoring scheme, this means

that M evens out at around 41% (rather than 50%) irrespective of the noise in the system.

As the horizon is lengthened, the algorithm's resolving power improves and the proportion of

misclassified states falls at all noise levels. Of course, in a really noisy system it is ultimately

impossible to infer the mixing state sequence effectively; at E = I the error rate has climbed

to 35%.

111

5.1.2 Experimental results

The maximum number of candidate subsequences which the algorithm was allowed to

maintain for each subsection (candsMax of section 4.2.2.9) was set at 30. Other settings of

this parameter were not explored formally; as will be demonstrated shortly, the setting was

high enough for the algorithm to achieve good results with ^-matching enabled.

(For a visualisation of the subsequence-joining algorithm in action on this data set—

albeit with a smaller candsMax setting—refer to section 4.2.2.8. Numerals 0-7 in the

diagrams correspond to mixing states A', B',P', L, A, B, P, G respectively.)

Turning first to the measure M, it turns out as expected that the algorithm's inferences

as to which group of mixing states (A, B, P or A',B', P') was active at each timestep

improve as its horizon for linear state estimation is lengthened. This graph shows its

performance when V-matching (section 4.2.2.6) is disabled:

E
•5
c

£a.

045

04

0.35

0.3

025

02

015

01

005

Horizon = 1
2
4
8

16
32

001 0 032 01 0 32
Noise standard deviation (log scale)

The abcissa denotes the noise-determining B and the ordinate M. When the horizon length

is one, the algorithm is attempting to infer the linear state at each timestep only from its

immediate influence on a single observable output; since that is impossible, there is no way

for it to get any grip on what is going on, and its classification can only be random. Because

the L and G states are not subject to misclassification under the scoring scheme, this means

that M evens out at around 41% (rather than 50%) irrespective of the noise in the system.

As the horizon is lengthened, the algorithm's resolving power improves and the proportion of

misclassified states falls at all noise levels. Of course, in a really noisy system it is ultimately

impossible to infer the mixing state sequence effectively; at £ = 1 the error rate has climbed

to 35%.

Ill

5.1.2 Experimental results

Note that even in the best case, the average misclassification probability is still

nontrivial at 15%, because of "possibility lossage". The candsMax = 30 memory slots

available are sufficient to keep alive as hypotheses all the 16 two-step subsequences permitted

by the transition matrix-the number of links in the diagram (106), including the omitted

self-links of A, B, A' and V. But, as the graph above makes clear, this horizon is still

too short to support accurate Q-inferences, so the selection of 30 of the possible 625

candidates for covering each four-step section is necessarily somewhat arbitrary. Many of

the right answers will be thrown away at this point, so that they are simply not available for

consideration as part of the longer subsequences which would demonstrate their value.

With V-matching enabled, the algorithm performs much better:

0 032 01 032
Noise standard deviation (log scale)

1

V-matching allows inferences about the linear hidden state made on the basis of a single

observation in isolation to propagate forwards and backwards sufficiently well that in the

absence of serious disturbing noise, the algorithm is immediately able to achieve an average

misclassification probability around 6%. This in turn means that it is able to concentrate its

hypothesis space on the most likely subsequences well before combinatorial explosion sets in

and forces it to start pruning blindly. By the time it has raised its horizon to four timesteps,

M has fallen below 0.3%3. As the noise level is increased, the estimates of V-and therefore

the V-matching judgments-made on the basis of short sections become less precise; once E

reaches 0.32, the longer horizons (eight and up) have a clear advantage.

3 With a 32-timestep horizon, this is further reduced to 0.14%

112

5.1.2 Experimental results

Note that even in the best case, the average misclassification probability is still

nontrivial at 15%, because of "possibility lossage". The candsMax — 30 memory slots

available are sufficient to keep alive as hypotheses all the 16 two-step subsequences permitted

by the transition matrix—the number of links in the diagram (106), including the omitted

self-links of A, B, A' and B'. But, as the graph above makes clear, this horizon is still

too short to support accurate Q-inferences, so the selection of 30 of the possible 625

candidates for covering each four-step section is necessarily somewhat arbitrary. Many of

the right answers will be thrown away at this point, so that they are simply not available for

consideration as part of the longer subsequences which would demonstrate their value.

With ^-matching enabled, the algorithm performs much better:

04

E
o

035

03

0.25

02

0.15

01

005

001 0 032 01 0 32
Noise standard deviation (log scale)

F-matching allows inferences about the linear hidden state made on the basis of a single

observation in isolation to propagate forwards and backwards sufficiently well that in the

absence of serious disturbing noise, the algorithm is immediately able to achieve an average

misclassification probability around 6%. This in turn means that it is able to concentrate its

hypothesis space on the most likely subsequences well before combinatorial explosion sets in

and forces it to start pruning blindly. By the time it has raised its horizon to four timesteps,

M. has fallen below 0.3%3. As the noise level is increased, the estimates of V—and therefore

the V-matching judgments—made on the basis of short sections become less precise; once £

reaches 0.32, the longer horizons (eight and up) have a clear advantage.

3 With a 32-timestep horizon, this is further reduced to 0.14%

112

5.1.2 Experimental results

The story told by the other measure AL is similar. Here it is plotted against E with

V-matching disabled:

100,

Horizon = 1 -
2 ----
4
8

-1000 -
001 0032 01

Noise standard deviation (log scale)
0 32 i

With a horizon length of one, the suggested best sequence q? turns out always to consist of

repetitions of the single state A', the unconditionally most probable state in the Markov

process defined by (106)-a fair choice, given that consideration of the individual process

outputs does not give the algorithm any other information to work on, but one which is

necessarily going to yield an essentially arbitrary prediction of the process outputs. It is to

be expected that the log probability of those predictions relative to those made conditional

on q, will simply depend on the variance of the process output noise, as determined

by E; and indeed the graph shows AL at horizon length one evening out around -1000,

-100 and -10 as E2 increases from loooo via logo to loo. Given longer horizons, the

algorithm does better, but "possibility lossage" means that the fit between q? and r, is still

somewhat strained: even a relatively small number of wrong mixing state choices can make

it impossible to find a linear state trajectory which accounts satisfactorily for the observed

outputs. It is only at higher noise levels that q?'s likelihood reaches and exceeds that of q

113

5.1.2 Experimental results

The story told by the other measure A£ is similar. Here it is plotted against £ with

^-matching disabled:

100

0

-100

<fi -200
in

-SOD

-400

-500

-600

-700

-800

-900

-1000

Horizon = 1
2 —-
4
8

16 ---
32 ---

001 0 032 01 0 32
Noise standard deviation (log scale)

With a horizon length of one, the suggested best sequence <?? turns out always to consist of

repetitions of the single state A', the unconditionally most probable state in the Markov

process defined by (106)—a fair choice, given that consideration of the individual process

outputs does not give the algorithm any other information to work on, but one which is

necessarily going to yield an essentially arbitrary prediction of the process outputs. It is to

be expected that the log probability of those predictions relative to those made conditional

on q* will simply depend on the variance of the process output noise, as determined

by £; and indeed the graph shows A£ at horizon length one evening out around —1000,

-100 and -10 as £2 increases from ^^ via j^ to J^Q. Given longer horizons, the

algorithm does better, but "possibility lossage" means that the fit between q-> and r* is still

somewhat strained: even a relatively small number of wrong mixing state choices can make

it impossible to find a linear state trajectory which accounts satisfactorily for the observed

outputs. It is only at higher noise levels that q-r's likelihood reaches and exceeds that of q*,

113

5.1.2 Experimental results

as an expanded view of the graph shows:

0 32
Noise standard deviation (log scale)

1

But this is no great achievement; under these conditions, little hard information can be

gleaned from the outputs, so that the main determinant of the likelihood of a mixing

sequence is the unconditional probability of its state transitions, and even the sequence

A', A', A' ... (with an unbeatable average transition probability of 0.4) comes to seem more

probable than the truth.

With V-matching enabled, on the other hand, the algorithm can produce q?s which are

at least comparable in likelihood with q, for all horizons longer than a single step:

051

-05

-15

-25

-35 1-
001 0032 01 032

Noise standard deviation (log scale)

114

5.1.2 Experimental results

as an expanded view of the graph shows:

f
-05

-1 5

-2
01 032

Noise standard deviation (log scale)

But this is no great achievement; under these conditions, little hard information can be

gleaned from the outputs, so that the main determinant of the likelihood of a mixing

sequence is the unconditional probability of its state transitions, and even the sequence

A', A', A' . . . (with an unbeatable average transition probability of 0.4) comes to seem more

probable than the truth.

With V-matching enabled, on the other hand, the algorithm can produce g?s which are

at least comparable in likelihood with g* for all horizons longer than a single step:

05

0 032 01
Noise standard deviation (log scale)

032
(109)

114

5.2.1 Envarvnment 1

The improvement in AC gained by considering longer subsequences is marginal but

consistent4; here is a detail from the same graph:

0 25

0032 01 032
Noise standard deviation (log scale)

5.2. Simulations

In order to provide a means of assessing the effectiveness of the Samovar model on

a reasonably realistic, but still well-controlled, learning task, two simple simulated robot

environments were constructed which exemplify some of the phenomena which the model

was designed to handle.

5.2.1. Environment 1

As is traditional in autonomous robotics, the setup is a two-dimensional navigation task

for a robot equipped with range sensors. In the following diagram, the robot is represented

4 -except that it is reversed at the highest noise levels, with horizon lengths 4, 8, 16 yielding

very slightly better likelihoods than 32. This effect was found to be repeatable but no clear

explanation for it could be found.

115

5.2.1 Environment 1

The improvement in A£ gained by considering longer subsequences is marginal but

consistent4; here is a detail from the same graph:

025

02

E 015
•

01

I 005

9

-0.05

Horizon = 1
2
4
8

16
32

001 0 032 01 0 32
Noise standard deviation (log scale)

5.2. Simulations

In order to provide a means of assessing the effectiveness of the Samovar model on

a reasonably realistic, but still well-controlled, learning task, two simple simulated robot

environments were constructed which exemplify some of the phenomena which the model

was designed to handle.

5.2.1. Environment 1

As is traditional in autonomous robotics, the setup is a two-dimensional navigation task

for a robot equipped with range sensors. In the following diagram, the robot is represented

4 —except that it is reversed at the highest noise levels, with horizon lengths 4, 8, 16 yielding

very slightly better likelihoods than 32. This effect was found to be repeatable but no clear

explanation for it could be found.

115

5.2.1.2 The world

by a circle; the irregular outer rectangle delineates the boundary of its enclosure, and the

rectangle labelled `food' marks a "target" region which is of special interest to the robot.

5.2.1.1. The robot

For simplicity, the robot is modelled as being perfectly round. It has two range sensors,

one pointing forwards and one to the right-the minimum which could reasonably be

required for modelling its anticlockwise wall-following behaviour. These sensors provide

accurate measurements Rahea<! and Rright, on a [0, 1] scale, of the distance to the nearest

obstacle in their respective directions up to a range of 80 pixels, which (as can be seen

from (110)) is quite small compared with the overall size of the enclosure. An additional

sensor is provided which outputs Rfood = 1 if the centre of the robot is positioned inside

the `food', and zero otherwise.

Action commands to the robot take the form of two variables Ao and Al , both E [0, 1

which determine the distance and bearing in which the robot travels between timesteps t

and t + 1:

pos.xt+r = pos.xt + distt cos bearings+r

pos.ys+r = pos.yt + distt sin bearings+l
t s

where distt = 40 pixels x
ao + a'

and bearings+' = bearing' + 70° x (ao - at)

The maximum distance the robot can move is therefore 40 pixels, or half the reach of of its

range sensors. (This is intended to be reminiscent of how a tracked vehicle might respond to

commands to move its left and right tracks foward by given amounts.5)

s c.f. Pierce & Kuipers, Map learning

116

5.2.1.2 The world

by a circle; the irregular outer rectangle delineates the boundary of its enclosure, and the

rectangle labelled 'food' marks a "target" region which is of special interest to the robot.

(110)

5.2.1.1. The robot

For simplicity, the robot is modelled as being perfectly round. It has two range sensors,

one pointing forwards and one to the right—the minimum which could reasonably be

required for modelling its anticlockwise wall-following behaviour. These sensors provide

accurate measurements -Rahead and -R*jght, on a [0,1] scale, of the distance to the nearest

obstacle in their respective directions up to a range of 80 pixels, which (as can be seen

from (110)) is quite small compared with the overall size of the enclosure. An additional

sensor is provided which outputs .Rfood = 1 if the centre of the robot is positioned inside

the 'food', and zero otherwise.

Action commands to the robot take the form of two variables AQ and A\, both e [0,1] ,

which determine the distance and bearing in which the robot travels between timesteps t

and t + 1:

pos.xi+l — pos.x1 + dist1 cos bearing t+i

pos.yt+1 = pos.y4 + dist1 sin bearing.4+1

where cf/st* = 40 pixels x
On + Ol

and bearing**1 = bearing* + 70° x (a0 - a 4)

The maximum distance the robot can move is therefore 40 pixels, or half the reach of of its

range sensors. (This is intended to be reminiscent of how a tracked vehicle might respond to

commands to move its left and right tracks foward by given amounts.5)

c.f. Pierce & Kuipers, Map learning

116

5.x.1.3 The data

5.2.1.2. The world

Most of the enclosure consists of straight or gently curving sections of wall. In these

areas, the readings from the range sensors will exhibit trend-like relationships with the

previous readings and the robot's actions, as the wall approaches and recedes at a rate

dependent on the lengths of the steps made by the robot and its relative orientation. There

is a (limited) legitimate role for hidden linear quantities, for instance where the curvature of

the wall could be measured by comparing successive range measurements. These phenomena

are probably best modelled using linear rules.

Other aspects of the environment are of a, more qualitative and less smoothly regular

nature, which could be captured using mixture rules. The abrupt changes in the direction of

the wall at the corners of the arena fall into this category, as do the placements of the "food"

area and the large notch in the wall positioned a little way clockwise from it.

5.2.1.3. The data

The training set on which the model is trained, and the test set against which its

performance is evaluated, were generated by steering the robot by hand around its enclosure

in an anticlockwise direction, its distance from the wall varying from near zero up to about

the limit of its range sensors. The trained model is expected to be able to predict the range

sensor readings with fair accuracy.

Each time the robot passed through the bottom right-hand corner of the arena, one of

several behavioural variations was chosen, according to which it either did or does not at

some point move into the "food" area and hence trigger the food-detecting sensor. When

it reached the notch in the outer wall, which is designed to be a reliable landmark for the

region near the food, it was always moved more or less directly forwards by the maximum

distance for the next two steps. It could then be caused to make a sharp turn to the left,

and-if not too close to the lower edge of the enclosure-would then find itself on the "food"

area. Or it would simply be moved forwards, missing the "food" altogether. The possible

scenarios are represented in the following diagrams:

The robot turns and encounters
the food (situation 1)

117

5.2.1.3 The data

5.2.1.2. The world

Most of the enclosure consists of straight or gently curving sections of wall. In these

areas, the readings from the range sensors will exhibit trend-like relationships with the

previous readings and the robot's actions, as the wall approaches and recedes at a rate

dependent on the lengths of the steps made by the robot and its relative orientation. There

is a (limited) legitimate role for hidden linear quantities, for instance where the curvature of

the wall could be measured by comparing successive range measurements. These phenomena

are probably best modelled using linear rules.

Other aspects of the environment are of a more qualitative and less smoothly regular

nature, which could be captured using mixture rules. The abrupt changes in the direction of

the wall at the corners of the arena fall into this category, as do the placements of the "food"

area and the large notch in the wall positioned a little way clockwise from it.

5.2.1.3. The data

The training set on which the model is trained, and the test set against which its

performance is evaluated, were generated by steering the robot by hand around its enclosure

in an anticlockwise direction, its distance from the wall varying from near zero up to about

the limit of its range sensors. The trained model is expected to be able to predict the range

sensor readings with fair accuracy.

Each time the robot passed through the bottom right-hand corner of the arena, one of

several behavioural variations was chosen, according to which it either did or does not at

some point move into the "food" area and hence trigger the food-detecting sensor. When

it reached the notch in the outer wall, which is designed to be a reliable landmark for the

region near the food, it was always moved more or less directly forwards by the maximum

distance for the next two steps. It could then be caused to make a sharp turn to the left,

and—if not too close to the lower edge of the enclosure—would then find itself on the "food"

area. Or it would simply be moved forwards, missing the "food" altogether. The possible

scenarios are represented in the following diagrams:

The robot turns and encounters
the food (situation 1)

117

5.2.1.3 The data

The robot turns back parallel
to the wall, still on the food
(situation 2)

The robot misses the food
because it does not turn
(situation 3)

The robot turns, but misses the
food because it was too close too

the wall (situation 4)

Similar sequences were played out when the robot passed through the opposite corner of the

arena, except of course that the robot did not encounter the food since was in the wrong

place.

The robot turns, but it is not in
the right place to find the food
(situation 6)

The robot is in the wrong place

and does not turn (situation 7)

118

5.2.1.3 The data

The robot turns back parallel
to the wall, still on the food
(situation 2)

The robot misses the food
because it does not turn
(situation 3)

The robot turns, but misses the
food because it was too close too
the wall (situation 4)

Similar sequences were played out when the robot passed through the opposite corner of the

arena, except of course that the robot did not encounter the food since was in the wrong

place.

The robot turns, but it is not in
the right place to find the food
(situation 6)

The robot is in the wrong place
and does not turn (situation 7)

118

5.2.1./ The model's task

The robot would be too close to
the wall even if it were in the
right place (situation 8)

[--77M 1

To these were added situation 5, covering a single timestep in the training data at which the

robot was driven onto the food in a way which never otherwise happened (in the test data or

in the training data), and situation 0, covering all otherwise unclassified timesteps. Over the

22 circuits of the arena which were made as the training data was being collected, and the

30 (separate) circuits from which the evaluation data was gathered, several examples of each

combination of possibilities were included:

Situation N° in training set _N° in test set

0 522 705

1 11 10

2 11 10

3 6 10

4 6 10

5 1 0

6 6 10

7 16 10

8 4 10

Overall, the training circuits took 583 timesteps to complete and the test circuits 775. No

great effort was expended on making the test data identical in character to the training

data on measures such as the robot's average distance from the wall; part of the point of a

probabilistic model is that it should degrade more or less gracefully in the face of this kind of

variability.

5.2.1.4. The model's task

Each of the robot's three sensors presents the model with a different kind of problem.

Because of the (manually generated) behaviour patterns from which the training

and test data sets resulted-mostly, wall-following of a reasonably smooth boundary-

the readings from the right-pointing range sensor could be predicted quite successfully

by approximating linearly their relationship with their predecessor(s) and the robot's

actions. However, the applicability of the linear rule (or rules) will vary depending on

the context. There is also, potentially, scope for the model to learn the detailed shapes of

119

5.2.1.4 The model's task

The robot would be too close to
the wall even if it were in the
right place (situation 8)

To these were added situation 5, covering a single timestep in the training data at which the

robot was driven onto the food in a way which never otherwise happened (in the test data or

in the training data), and situation 0, covering all otherwise unclassified timesteps. Over the

22 circuits of the arena which were made as the training data was being collected, and the

30 (separate) circuits from which the evaluation data was gathered, several examples of each

combination of possibilities were included:

Situation

0

1

2

3

4

5

6

7

8

N° in training set

522

11

11

6

6

1

6

16

4

N° in test set

705

10

10

10

10

0

10

10

10

(111)

Overall, the training circuits took 583 timesteps to complete and the test circuits 775. No

great effort was expended on making the test data identical in character to the training

data on measures such as the robot's average distance from the wall; part of the point of a

probabilistic model is that it should degrade more or less gracefully in the face of this kind of

variability.

5.2.1.4- The model's task

Each of the robot's three sensors presents the model with a different kind of problem.

Because of the (manually generated) behaviour patterns from which the training

and test data sets resulted—mostly, wall-following of a reasonably smooth boundary—

the readings from the right-pointing range sensor could be predicted quite successfully

by approximating linearly their relationship with their predecessor (s) and the robot's

actions. However, the applicability of the linear rule (or rules) will vary depending on

the context. There is also, potentially, scope for the model to learn the detailed shapes of

119

5.2.2.1 The robot

characteristically irregular sections of the wall, and make sharper predictions than it would if

it had to treat their effects as "noise".

Except when the robot comes to a corner, the forward-pointing range sensor will

always read unity, to indicate that the way ahead is clear for more than 80 pixels. The

general lack of obvious landmarks will perhaps make it difficult for the model to predict

when these corners are going to occur, but the immediate successor to a non-unity reading

should be easy to guess, since it will depend strongly and smoothly on the robot's current

action.

The environment is, of course, carefully set up so that the model cannot predict

accurately when the food sensor will read high unless it has taken on board some fairly

subtle temporal phenomena. If it is to tell the food area in the lower right hand corner from

the otherwise similar upper part of the arena, it needs to recognise the "notch" landmark,

and remember it for three timesteps (by moving into a specific chain or subnet of mixing

states Q). Then it has to judge whether the robot is sufficiently far from the wall to be able

to reach the food, and has made a move which will actually take it there. If it fails to take

all three factors into account, it will necessarily make either false positive or false negative

predictions for the reading at several timesteps in the test data.6

5.2.2. Environment 2

Complementing the navigation task of section 5.2.1, a second environment was

constructed with the aim of comparing the performance of the Samovar model on two

problems involving different dynamics. As before, the robot exists in a two-dimensional

enclosure in which is situated a designated "food" region.

(112)

6 Note too that on top of this intrinsic difficulty, the model is not told that the food sensor's

reading is a discrete rather than a continuous variable.

120

5.2.2.1 The robot

characteristically irregular sections of the wall, and make sharper predictions than it would if

it had to treat their effects as "noise".

Except when the robot comes to a corner, the forward-pointing range sensor will

always read unity, to indicate that the way ahead is clear for more than 80 pixels. The

general lack of obvious landmarks will perhaps make it difficult for the model to predict

when these corners are going to occur, but the immediate successor to a non-unity reading

should be easy to guess, since it will depend strongly and smoothly on the robot's current

action.

The environment is, of course, carefully set up so that the model cannot predict

accurately when the food sensor will read high unless it has taken on board some fairly

subtle temporal phenomena. If it is to tell the food area in the lower right hand corner from

the otherwise similar upper part of the arena, it needs to recognise the "notch" landmark,

and remember it for three timesteps (by moving into a specific chain or subnet of mixing

states Q). Then it has to judge whether the robot is sufficiently far from the wall to be able

to reach the food, and has made a move which will actually take it there. If it fails to take

all three factors into account, it will necessarily make either false positive or false negative

predictions for the reading at several timesteps in the test data.6

5.2.2. Environment 2

Complementing the navigation task of section 5.2.1, a second environment was

constructed with the aim of comparing the performance of the Samovar model on two

problems involving different dynamics. As before, the robot exists in a two-dimensional

enclosure in which is situated a designated "food" region.

(112)

6 Note too that on top of this intrinsic difficulty, the model is not told that the food sensor's

reading is a discrete rather than a continuous variable.

120

5.2.2.2 The world

5.2.2.1. The robot

This time, the robot has three range sensors, providing accurate measurements on a

[0, 1] scale of the distance to the nearest obstacle straight ahead and 30° to either side, up to

a maximum of 160 pixels (more than half of the internal width of the enclosure). The sensor

indicating by means of a 0/1 output whether the robot is positioned inside the `food' region

is retained.

In the new environment, the robot's actions determine not its speed as before but its

acceleration, via a (rough) simulation of momentum. However, the robot's angular motion is

damped. In terms of the variables Ao and At, both E [-2, 2],

pos.xt+1 = pos.xt + distt cos bearings +
2

turns

pos.yt+l = pos.yt + dish sin bearings +
2

turns

speeds+r = speedt + accelt

bearings+r = bearingt + turnt

where distt = 40 pixels x (speedt +
2accelt)

and accelt =
ao ±4

2

and turn' = 70° x (ao - a')

These responses are intended to mirror roughly the effect of sending commands to

lateral propellors fitted to a submersible robot (with a stabilising fin). An action (0, 0) leaves

the robot's speed and orientation unchanged, so that it coasts forward for a distance of 40

pixels times its previous speed. Turns can be accomplished via an asymmetric pair of motor

commands, and the robot can speed up or slow down by issuing net positive or net negative

pairs.

Environment 1 exhibits phenomena which are dynamic, but discrete, and linear, but

static; the point of bringing momentum effects into environment 2 is to bring dynamic-linear

phenomena into the picture as well-the kind of relationship which cannot be handled by the

standard models, and which motivated the development of Samovar in section 4.1.

5.2.2.2. The world

As before, the enclosure is mostly quite regular in shape, so that there should be clear,

near-linear relationships to be discovered between the range sensor readings and actions.

However, they will depend critically on the robot's speed; if the action at particular time

is the no-op (0, 0), the distance by which the obstacles the robot is facing approach it, and

hence the amount by which its range sensor readings decrease, will be determined entirely by

121

5.2.2.2 The world

5.2.2.1. The robot

This time, the robot has three range sensors, providing accurate measurements on a

[0,1] scale of the distance to the nearest obstacle straight ahead and 30° to either side, up to

a maximum of 160 pixels (more than half of the internal width of the enclosure). The sensor

indicating by means of a 0/1 output whether the robot is positioned inside the 'food' region

is retained.

In the new environment, the robot's actions determine not its speed as before but its

acceleration, via a (rough) simulation of momentum. However, the robot's angular motion is

damped. In terms of the variables A0 and A\, both e [— |, |],

pos.x44"1 = pos.x* + dist* cos bearing* + - turn*
£

pos.yt+1 — pos.y* + dist* sin bearing* + -turn*
&

speedt+1 = speed* + acce/4

bearingt+1 = bearing* + turn*

where dist* = 40 pixels x (speed* + -acce/4)

and turn* = 70° x (a*0 - a{]

These responses are intended to mirror roughly the effect of sending commands to

lateral propellers fitted to a submersible robot (with a stabilising fin). An action (0,0) leaves

the robot's speed and orientation unchanged, so that it coasts forward for a distance of 40

pixels times its previous speed. Turns can be accomplished via an asymmetric pair of motor

commands, and the robot can speed up or slow down by issuing net positive or net negative

pairs.

Environment 1 exhibits phenomena which are dynamic, but discrete, and linear, but

static; the point of bringing momentum effects into environment 2 is to bring dynamic-linear

phenomena into the picture as well—the kind of relationship which cannot be handled by the

standard models, and which motivated the development of Samovar in section 4.1.

5.2.2.2. The world

As before, the enclosure is mostly quite regular in shape, so that there should be clear,

near-linear relationships to be discovered between the range sensor readings and actions.

However, they will depend critically on the robot's speed; if the action at particular time

is the no-op (0,0), the distance by which the obstacles the robot is facing approach it, and

hence the amount by which its range sensor readings decrease, will be determined entirely by

121

5.2.2.3 The data

its prior speed (as well as on their relative orientation). Of course, this is precisely the kind

of situation for which Kalrnan filters were designed, and the model should be able to cope

well by using the linear hidden state V t to represent the robot's speed-along with whatever

else it finds useful.

In addition, the environment does have some discrete features, including the food and

the characteristic bulge in the outer wall, which will be best modelled by deploying different

mixture components.

5.2.2.3. The data

A slightly different strategy was adopted in the generation of the training and test

data sets for this environment. In the previous experiment, the robot was steered around

the walls of the enclosure (110), performing a characteristic "food-encounter" manoeuvre in

two similar places, one of which actually gave access to the food and was signalled (earlier

in the circuit) by a landmark notch. Here, the robot is simply steered onto the food, or

not, each time it passes anticlockwise past the landmark bulge. However, during half these

passes, the state of the enclosure is changed from that shown in (112) so that the food and

the landmark both disappear:

(113)

Both the training and test runs contained five instances with the enclosure in state (112),

and five with it in state (113), of each of the following scenarios:

The robot turns and encounters the food

(situation 1)

122

5.2.2.3 The data

its prior speed (as well as on their relative orientation). Of course, this is precisely the kind

of situation for which Kalman filters were designed, and the model should be able to cope

well by using the linear hidden state Vi to represent the robot's speed—along with whatever

else it finds useful.

In addition, the environment does have some discrete features, including the food and

the characteristic bulge in the outer wall, which will be best modelled by deploying different

mixture components.

5.2.2.3. The data

A slightly different strategy was adopted in the generation of the training and test

data sets for this environment. In the previous experiment, the robot was steered around

the walls of the enclosure (110), performing a characteristic "food-encounter" manoeuvre in

two similar places, one of which actually gave access to the food and was signalled (earlier

in the circuit) by a landmark notch. Here, the robot is simply steered onto the food, or

not, each time it passes anticlockwise past the landmark bulge. However, during half these

passes, the state of the enclosure is changed from that shown in (112) so that the food and

the landmark both disappear:

(113)

Both the training and test runs contained five instances with the enclosure in state (112),

and five with it in state (113), of each of the following scenarios:

The robot turns and encounters the food
(situation 1)

5.2.2.3 The data

The robot is still on the food
(situation 2)

food

The robot misses the food because it does

not turn enough (situation 3)

The robot turns, but misses the food
because it was too far away (situation 4)

Situations 6-8 are, for this environment, labels for the same parts of the robot's

anticlockwise cycle through the environment, but with the landmark bulge closed off and the

food absent. Situation 5 is, as before, a category for timesteps at which the robot encounters

the food in an unusual way, which happened once in the test data for this environment but

not in the training data, and situation 0 covers all the otherwise unlabelled timesteps.

The robot was driven at a variety of speeds ranging from below ten pixels per step

to above fifty, sometimes moving at a steady speed for a number of steps and sometimes

accelerating or decelerating. This, and the food's large size and circular shape, made it

quite difficult to predict how long the food sensor was going to remain high once triggered

(situation 2); in environment 1, the robot in practice always stayed on the food for precisely

two steps. Distinguishing between situations 1 and 4 was also made more difficult, because

the range of trajectories which the robot followed through the food area was considerably

greater.

1.23

5.2.2.3 The data

The robot is still on the food
(situation 2)

The robot misses the food because it does
not turn enough (situation 3)

The robot turns, but misses the food
because it was too far away (situation 4)

Situations 6-8 are, for this environment, labels for the same parts of the robot's

anticlockwise cycle through the environment, but with the landmark bulge closed off and the

food absent. Situation 5 is, as before, a category for timesteps at which the robot encounters

the food in an unusual way, which happened once in the test data for this environment but

not in the training data, and situation 0 covers all the otherwise unlabelled timesteps.

The robot was driven at a variety of speeds ranging from below ten pixels per step

to above fifty, sometimes moving at a steady speed for a number of steps and sometimes

accelerating or decelerating. This, and the food's large size and circular shape, made it

quite difficult to predict how long the food sensor was going to remain high once triggered

(situation 2); in environment 1, the robot in practice always stayed on the food for precisely

two steps. Distinguishing between situations 1 and 4 was also made more difficult, because

the range of trajectories which the robot followed through the food area was considerably

greater.

123

5.3.1 Dunning the conditsonal models

Overall, the training run comprised 645 timesteps and the test run 698, broken down as

follows:

Sstuation No in training set NO in test set

0 598 659

1 6 5

2 16 8

3 5 5

4 5 5

5 1 1

6 5 5

7 5 5

8 4 5

5.2.2.4. The model's task

(114)

If the model is to predict the range sensor readings accurately, it must learn how

they depend on their predecessors and the robot's speed & direction, and how to estimate

its speed by comparing successive readings, taking the accelerating effect of its actions in

account, and so on. It could achieve reasonable results by representing its speed discretely,

in the mixing hidden state Q, with separate linear components coming into play in different,

quantised speed ranges; but it would appear to be easier and more effective for it to use

instead the linear hidden state V. However, V may not be sufficient on its own as a means

of addressing the structural differences between different parts of the enclosure: between,

for instance, the corner with the landmark bulge and the smooth surface down the left hand

side.

As before, the environment has been carefully arranged so that the food sensor

readings cannot be predicted correctly without noting, and then remembering, a landmark

characteristic for the presence of the food, and subsequently monitoring the robot's readings

and actions to determine whether it is close enough and carrying out the right procedure for

ending up in the designated region.

5.3. Models evaluated

This section details the pragmatic answers developed to the questions left open by the

theoretical framework of section 4 and those which arose while running the experiments.

124

5.3.1 Training the conditional models

Overall, the training run comprised 645 timesteps and the test run 698, broken down as

follows:
Situation

0

1

2

3

4

5

6

7

8

N° in training set

598

6

16

5

5

1

5

5

4

N° in test set

659

5

8

5

5

1

5

5

5

(114)

5.2.2.4. The model's task

If the model is to predict the range sensor readings accurately, it must learn how

they depend on their predecessors and the robot's speed & direction, and how to estimate

its speed by comparing successive readings, taking the accelerating effect of its actions in

account, and so on. It could achieve reasonable results by representing its speed discretely,

in the mixing hidden state Q, with separate linear components coming into play in different,

quantised speed ranges; but it would appear to be easier and more effective for it to use

instead the linear hidden state V. However, V may not be sufficient on its own as a means

of addressing the structural differences between different parts of the enclosure: between,

for instance, the corner with the landmark bulge and the smooth surface down the left hand

side.

As before, the environment has been carefully arranged so that the food sensor

readings cannot be predicted correctly without noting, and then remembering, a landmark

characteristic for the presence of the food, and subsequently monitoring the robot's readings

and actions to determine whether it is close enough and carrying out the right procedure for

ending up in the designated region.

5.3. Models evaluated

This section details the pragmatic answers developed to the questions left open by the

theoretical framework of section 4 and those which arose while running the experiments.

124

5.3.1.1 Regularnsation

5.3.1. Training the conditional models

Most of the issues will be discussed in the context of the conditional Samovar models,

which include as a special case the hidden Markov and linear (or autoregressive) hidden

Markov models used as references against which to judge the behaviour of the models

proposed here.

5.3.1.1. Regularisation

The question of how to control the complexity of the model falls outside the scope of

the work reported here (see section 6.1.3). However, the issue of regularisation, which is

(or is treated in the Bayesian theory as) an aspect of this problem, cannot in practice be

ignored.

If any of the model's components are judged to have been used only at a few timesteps,

it is possible that the maximum likelihood solution for its dynamics matrix A to become

degenerate or nearly so, with a value or subspace of values capable of accounting very

accurately for all the readings the component is supposed to have been responsible for.

A straightforward maximum likelihood learning algorithm will naturally seek to exploit

this phenomenon in order to obtain a likelihood which is very high or even unbounded,

by increasing the component's noise precision a; the theory that there is no noise in the

process modelled by the component will be logically consistent with the data. But then

the program may encounter a numerical singularity and fail; and even if it does not, the

solution will most likely account poorly for future instances of the same situation, since in all

probability there will in fact be unpredictable variations in the precise values of the readings,

which will be given a very low probability by the over-precise predictive distribution. The

same phenomenon can happen on the input side if a component's gating patches are made

very small.

To avoid this problem, it's necessary to add some terms to the objective function

targeted by the optimiser which penalises over-specificity when there is little data to go

on. In the Bayesian formulation, these terms are nicely interpreted as priors expressing a

more or less strong belief that there is some noise to be taken into account; they achieve the

desired effect of bringing the maximum a posteriori parameters back from the degenerate

maximum likelihood point, while fading into the background if there is more data available.

For practical reasons, it's obviously desirable to choose the form of the prior in such a way

as to avoid upsetting the tractability of the update rules. One possibility is to put a gamma

distribution on the determinant of the noise precisions a, and patch precisions y,: it turns

out that the extra terms introduced slip unobtrusively into the likelihood (82). Even more

125

5.3.1.1 Regularisation

5.3.1. Training the conditional models

Most of the issues will be discussed in the context of the conditional Samovar models,

which include as a special case the hidden Markov and linear (or autoregressive) hidden

Markov models used as references against which to judge the behaviour of the models

proposed here.

5.3.1.1. Regularisation

The question of how to control the complexity of the model falls outside the scope of

the work reported here (see section 6.1.3). However, the issue of regularisation, which is

(or is treated in the Bayesian theory as) an aspect of this problem, cannot in practice be

ignored.

If any of the model's components are judged to have been used only at a few timesteps,

it is possible that the maximum likelihood solution for its dynamics matrix A to become

degenerate or nearly so, with a value or subspace of values capable of accounting very

accurately for all the readings the component is supposed to have been responsible for.

A straightforward maximum likelihood learning algorithm will naturally seek to exploit

this phenomenon in order to obtain a likelihood which is very high or even unbounded,

by increasing the component's noise precision a,—the theory that there is no noise in the

process modelled by the component will be logically consistent with the data. But then

the program may encounter a numerical singularity and fail; and even if it does not, the

solution will most likely account poorly for future instances of the same situation, since in all

probability there will in fact be unpredictable variations in the precise values of the readings,

which will be given a very low probability by the over-precise predictive distribution. The

same phenomenon can happen on the input side if a component's gating patches are made

very small.

To avoid this problem, it's necessary to add some terms to the objective function

targeted by the optimiser which penalises over-specificity when there is little data to go

on. In the Bayesian formulation, these terms are nicely interpreted as priors expressing a

more or less strong belief that there is some noise to be taken into account; they achieve the

desired effect of bringing the maximum a posteriori parameters back from the degenerate

maximum likelihood point, while fading into the background if there is more data available.

For practical reasons, it's obviously desirable to choose the form of the prior in such a way

as to avoid upsetting the tractability of the update rules. One possibility is to put a gamma

distribution on the determinant of the noise precisions at and patch precisions ^t: it turns

out that the extra terms introduced slip unobtrusively into the likelihood (82). Even more

125

5.3.1.1 Regulansation

straightforward is a conjugate prior taking the form of offsets to the sufficient statistics, with

an effect equivalent to that of some previously observed data with particular characteristics.

However, when the system was tried out on the simulated robot data, a serious problem

was uncovered in the way either of these kinds of regularisers interacted with the procedure

for making predictions (section 4.2.2.10). One way in which the model can account for the

temporal structure of the environment between the landmark notch and the "food" is

X...

l r----------

(115)

This is a transition diagram like (106), showing possible trajectories of the mixing state Q

over the timesteps following the one at which is encounters the landmark notch. The state L

is specialised for the situation where the robot is next to the notch; from L, Q can evolve

either through a similarly specialised complex A, B, G of states, leading to one in which the

"food" sensor reads high, or through more normal states, X say, which account generically

for the typical situation in which the "food" sensor stays low. Of course, there is a more

economical structure available;

l r-`-------

Nevertheless, the model does generally converge on the solution (115), and there is no

obvious reason of principle why it should not work adequately. Indeed, when the model

considers its experiences retrospectively, it can easily tell which branch Q must have taken

(L, A, B, G or L, X, X, X), because the "food" sensor reading of state G is immediately

recognisable and otherwise very unusual. The problem comes when the model wants to make

a prediction for what is about to happen three steps after it has seen the notch, i.e. when it

has to decide whether it is going to encounter the food or not. One would hope that it will

consider both branches as possibilities, so that its prediction can take the form of a mixture,

one component arising from the L, A, B, (G) possibility, and the other from the L, X, X, (X)

hypothesis; the former will postulate a "food" sensor reading of 1.0 and the latter one of 0.0.

126

5.3.1.1 Regulansation

straightforward is a conjugate prior taking the form of offsets to the sufficient statistics, with

an effect equivalent to that of some previously observed data with particular characteristics.

However, when the system was tried out on the simulated robot data, a serious problem

was uncovered in the way either of these kinds of regularisers interacted with the procedure

for making predictions (section 4.2.2.10). One way in which the model can account for the

temporal structure of the environment between the landmark notch and the "food" is

(115)

This is a transition diagram like (106), showing possible trajectories of the mixing state Q

over the timesteps following the one at which is encounters the landmark notch. The state L

is specialised for the situation where the robot is next to the notch; from L, Q can evolve

either through a similarly specialised complex A, B, G of states, leading to one in which the

"food" sensor reads high, or through more normal states, X say, which account generically

for the typical situation in which the "food" sensor stays low. Of course, there is a more

economical structure available:

• A -

Nevertheless, the model does generally converge on the solution (115), and there is no

obvious reason of principle why it should not work adequately. Indeed, when the model

considers its experiences retrospectively, it can easily tell which branch Q must have taken

(L, A, B, G or L, X, X, X), because the "food" sensor reading of state G is immediately

recognisable and otherwise very unusual. The problem comes when the model wants to make

a prediction for what is about to happen three steps after it has seen the notch, i.e. when it

has to decide whether it is going to encounter the food or not. One would hope that it will

consider both branches as possibilities, so that its prediction can take the form of a mixture,

one component arising from the L,A,B, (G) possibility, and the other from the L,X,X, (X)

hypothesis; the former will postulate a "food" sensor reading of 1.0 and the latter one of 0.0.

126

5.3.1.2 Structural adaptation

What happens in practice, however, is that the former theory is entertained with a very

low probability or not at all. The problem is simply that the state(s) X are just as good

as A, B at accounting for the generic, but very consistent and predictable, situation in which

the robot is merely moving along a roughly straight wall. In fact, they can always account

perfectly for the readings of both the forward-pointing range sensor (one) and the "food"

sensor (zero); and this means that if the regulariser is based on a prior subject to domination

by the likelihood, their output noise variances will tend asymptotically to zero with the

number of timesteps at which they are considered to have been active. And since they are

used very commonly in similar situations all over the arena, while the alternatives A, B

are deployed only occasionally, this means that their predictions will necessarily be much

more precise-whatever the setting of the prior's parameters. This is what accounts for the

model's preference for the L, X, X, (X) branch: it really does look more likely.

At root, it is a mismatch between the model and reality that underlies the phenomenon.

To model the "food" sensor output as a continuous variable is, of course, asking for trouble,

and the model could easily enough be extended to handle discrete outputs in a more

informed way (section 6.1.2.1). However, the problem would remain with regard to the

range sensor outputs, which are sometimes perfectly predictable and other times subject to

considerable and uncertain variation.

The solution adopted was simply to add a fixed offset to the model's output variances

themselves, effectively capping the precision with which any reading can be predicted.

A, B and the X states are thereby placed on the same footing and the prediction goes

through successfully. Offsetting the output variances is not equivalent to supposing some

fixed number of previously seen training examples (the number would have to be variably

equal to the amount of actual data); it is more like blurring all the data points with some

fixed Gaussian uncertainty, or indeed adding Gaussian sensor noise-which makes the

environment closer in character to how the model assumes it will be, at the cost of losing

some information. For the experiments reported here, this artificial variance was set to a

diagonal 0.0001. No further regularisation-related difficulties were encountered.

5.3.1.2. Structural adaptation

The other major task associated with complexity control is deciding the number

of components in the model. Like the standard Baum-Welch HMM learning procedure

(section 3.3.3.3), the Samovar learning algorithm as presented in section 4.2.2.9 focusses

entirely on the problem of training a model with a previously fixed number of mixing

states. Bayesian theory does in principle also give a formula for the estimate of the "right"

number tr of states, but actually implementing it is another matter. The issue will be

discussed in section 6.1.3. For now, its most trouble manifestation-namely, the phenomenon

127

5.3.1.2 Structural adaptation

What happens in practice, however, is that the former theory is entertained with a very

low probability or not at all. The problem is simply that the state(s) X are just as good

as A, B at accounting for the generic, but very consistent and predictable, situation in which

the robot is merely moving along a roughly straight wall. In fact, they can always account

perfectly for the readings of both the forward-pointing range sensor (one) and the "food"

sensor (zero); and this means that if the regulariser is based on a prior subject to domination

by the likelihood, their output noise variances will tend asymptotically to zero with the

number of timesteps at which they are considered to have been active. And since they are

used very commonly in similar situations all over the arena, while the alternatives A, B

are deployed only occasionally, this means that their predictions will necessarily be much

more precise—whatever the setting of the prior's parameters. This is what accounts for the

model's preference for the L,X,X, (X) branch: it really does look more likely.

At root, it is a mismatch between the model and reality that underlies the phenomenon.

To model the "food" sensor output as a continuous variable is, of course, asking for trouble,

and the model could easily enough be extended to handle discrete outputs in a more

informed way (section 6.1.2.1). However, the problem would remain with regard to the

range sensor outputs, which are sometimes perfectly predictable and other times subject to

considerable and uncertain variation.

The solution adopted was simply to add a fixed offset to the model's output variances

themselves, effectively capping the precision with which any reading can be predicted.

A, B and the X states are thereby placed on the same footing and the prediction goes

through successfully. Offsetting the output variances is not equivalent to supposing some

fixed number of previously seen training examples (the number would have to be variably

equal to the amount of actual data); it is more like blurring all the data points with some

fixed Gaussian uncertainty, or indeed adding Gaussian sensor noise—which makes the

environment closer in character to how the model assumes it will be, at the cost of losing

some information. For the experiments reported here, this artificial variance was set to a

diagonal 0.0001. No further regularisation-related difficulties were encountered.

5.3.1.2. Structural adaptation

The other major task associated with complexity control is deciding the number

of components in the model. Like the standard Baum-Welch HMM learning procedure

(section 3.3.3.3), the Samovar learning algorithm as presented in section 4.2.2.9 focusses

entirely on the problem of training a model with a previously fixed number of mixing

states. Bayesian theory does in principle also give a formula for the estimate of the "right"

number a of states, but actually implementing it is another matter. The issue will be

discussed in section 6.1.3. For now, its most trouble manifestation—namely, the phenomenon

127

5.3.1.2 Structural adaptation

whereby a model with a large number of states can "overfit" the noise in the training data

in the way described in section 5.3.1.1, and perform poorly on further data drawn from

the same distribution-will be sidestepped. The number of components will be limited to

a level which is known to be sufficient but not wildly excessive, and likelihoods quoted in

test results will be computed using an independently generated data sequence, not with the

sequence used for training the model. Depending on the character of the application, such

a pragmatic approach can prove effective in practice, especially since many mixture models

are to some extent self-regulating: they do not always find "work" for all their components

merely because they are there, instead allowing the weighting given to "unnecessary" ones to

decay to zero.

Indeed, when working with a mixture of experts model (static or recursive), it is

not uncommon to encounter the opposite difficulty. This is because the chief challenge

in training such models is overcoming a kind of bootstrapping problem. Given the true

parameters according to which expert generates its outputs, an EM algorithm can reliably

infer the gating parameters which determine the probabilities of each expert being chosen

given a certain input (and vice versa). However, before the algorithm has worked out

what experts are in play, it is liable to underestimate the number of classes into which the

inputs may need to be divided: if the trigger ranges of two components in the true model

overlap, but the learned model does not yet handle either case accurately, then there is no

likelihood-increasing "incentive" for it to make what appears to be a distinction without a

difference by placing two receptive fields in the same part of the input space; and, overfitting

notwithstanding, it will often settle on a solution where one expert deals poorly with both

kinds of input.

One way to work around this is

start with a small number of components (e.g. one)

train them for a while using the EM algorithm

remove the ones which are judged to have been active at a very small (expected)

number of timesteps:

S is Ep(g10, d) E,a(gt,i) «11
l 4 t

-the numbers p(q 10, d) being calculated as seq.prob by section 4.2.2.9

duplicate the remaining ones

repeat a few times, until there are "enough" components

128

5.3.1.2 Structural adaptation

whereby a model with a large number of states can "overfit" the noise in the training data

in the way described in section 5.3.1.1, and perform poorly on further data drawn from

the same distribution — will be sidestepped. The number of components will be limited to

a level which is known to be sufficient but not wildly excessive, and likelihoods quoted in

test results will be computed using an independently generated data sequence, not with the

sequence used for training the model. Depending on the character of the application, such

a pragmatic approach can prove effective in practice, especially since many mixture models

are to some extent self-regulating: they do not always find "work" for all their components

merely because they are there, instead allowing the weighting given to "unnecessary" ones to

decay to zero.

Indeed, when working with a mixture of experts model (static or recursive), it is

not uncommon to encounter the opposite difficulty. This is because the chief challenge

in training such models is overcoming a kind of bootstrapping problem. Given the true

parameters according to which expert generates its outputs, an EM algorithm can reliably

infer the gating parameters which determine the probabilities of each expert being chosen

given a certain input (and vice versa). However, before the algorithm has worked out

what experts are in play, it is liable to underestimate the number of classes into which the

inputs may need to be divided: if the trigger ranges of two components in the true model

overlap, but the learned model does not yet handle either case accurately, then there is no

likelihood-increasing "incentive" for it to make what appears to be a distinction without a

difference by placing two receptive fields in the same part of the input space; and, overfitting

notwithstanding, it will often settle on a solution where one expert deals poorly with both

kinds of input.

One way to work around this is

• start with a small number of components (e.g. one)

• train them for a while using the EM algorithm

• remove the ones which are judged to have been active at a very small (expected)

number of timesteps:

q t)

— the numbers p(q \ 0, d) being calculated as seq.prob by section 4.2.2.9

• duplicate the remaining ones

• repeat a few times, until there are "enough" components

128

5.3.1.3 T'rasning procedure

There are several obvious free parameters involved in this procedure, which have no inherent

semantic importance but may nevertheless influence the nature of the solution on which the

model eventually settles as well the time it takes to do so. Furthermore, the "duplication"

step can be implemented in a variety of ways: as a copy with a random perturbation of fixed

magnitude; or by going back to the posterior distribution of the component's parameters

and constructing two replacements from either end of its major axis; or with a straight copy,

relying on the random element of the sequence-joining algorithm to break the symmetry.

5.3.1.3. Raining procedure

The training regime used for the simulation experiments was chosen after a little trial

and error development as one that seemed to work reasonably well:

1) start with a single component, with regularisers fixed to bias it towards a constant

output

2) Map out where the outputs fall

do once or twice

E-step

M-step outputs

duplicate the components

do five times

E-step

M-step outputs

3) Get a rough idea of the discrete temporal relationships between the different parts of

the space

do once or twice

duplicate the components (to allow for a degree of aliasing)

do ten times

prune unused components

E-step

M-step outputs and background weightings

129

5.3.1.3 Training procedure

There are several obvious free parameters involved in this procedure, which have no inherent

semantic importance but may nevertheless influence the nature of the solution on which the

model eventually settles as well the time it takes to do so. Furthermore, the "duplication"

step can be implemented in a variety of ways: as a copy with a random perturbation of fixed

magnitude; or by going back to the posterior distribution of the component's parameters

and constructing two replacements from either end of its major axis; or with a straight copy,

relying on the random element of the sequence-joining algorithm to break the symmetry.

5.3.1.3. Training procedure

The training regime used for the simulation experiments was chosen after a little trial

and error development as one that seemed to work reasonably well:

1) start with a single component, with regularisers fixed to bias it towards a constant

output

2) Map out where the outputs fall

• do once or twice

• .E-step

• M-step outputs

• duplicate the components

• do five times

• E-step

• Af-step outputs

3) Get a rough idea of the discrete temporal relationships between the different parts of

the space

• do once or twice

• duplicate the components (to allow for a degree of aliasing)

• do ten times

• prune unused components

• E-step

• Af-step outputs and background weightings

129

5.3.1.3 Raining procedure

4) Bring linear mappings into play where there is a demand for them

relax regularisers to allow linear mappings

do 20 times

prune unused components

E-step

M-step outputs and background weightings

5) Finalise the discrete temporal relationships

duplicate the components

do 20 times

prune unused components

E-step

M-step background weightings

at last,

E-step

M-step gating patches

6) Settle down

do 20 times

prune unused components

F-step

M-step outputs and background weightings

The pattern followed is one of increasing model sophistication: the training script

moves from a single Gaussian (step 1), via an unconditional mixture (step 2) and a hidden

Markov model (step 3), to a recursively mixed recursive linear model (step 4), before finally

throwing in the gating conditionality. It helps to reserve this last step to the end, because

a naive implementation of the conjugate gradients-based optimisation (section 3.3.2.5) is

necessarily rather slow; it is possible, however, that the number of discrete states left at the

end of training is larger than it would be if the gating parameters were optimised at various

earlier points as well. If the steps before step 4 are omitted, so that the model is allowed

to introduce temporal linear relationships early on in training, it immediately tries to use

these to account for all the phenomena in its world-even those which are much better

explained in terms of the discrete dynamics, such as its regular encounters with the food or

with the corners of the arena, both of which are essentially discontinuous in their effects on

the robot's sensor readings.

130

5.3.1.3 Training procedure

4) Bring linear mappings into play where there is a demand for them

• relax regularisers to allow linear mappings

• do 20 times

• prune unused components

• .E-step

• Af-step outputs and background weightings

5) Finalise the discrete temporal relationships

• duplicate the components

• do 20 times

• prune unused components

• E-step

• M-step background weightings

• at last,

• E-step

• M-step gating patches

6) Settle down

• do 20 times

• prune unused components

• E-step

• M-step outputs and background weightings

The pattern followed is one of increasing model sophistication: the training script

moves from a single Gaussian (step 1), via an unconditional mixture (step 2) and a hidden

Markov model (step 3), to a recursively mixed recursive linear model (step 4), before finally

throwing in the gating conditionality. It helps to reserve this last step to the end, because

a naive implementation of the conjugate gradients-based optimisation (section 3.3.2.5) is

necessarily rather slow; it is possible, however, that the number of discrete states left at the

end of training is larger than it would be if the gating parameters were optimised at various

earlier points as well. If the steps before step 4 are omitted, so that the model is allowed

to introduce temporal linear relationships early on in training, it immediately tries to use

these to account for all the phenomena in its world—even those which are much better

explained in terms of the discrete dynamics, such as its regular encounters with the food or

with the corners of the arena, both of which are essentially discontinuous in their effects on

the robot's sensor readings.

130

5.3.1.4 Opttmssatson of the gating receptive fields

By varying the number of times the model's components are duplicated in steps 2

and 3, different sizes of model can be created. For instance, a model of size 32 can be

obtained by performing two duplications each time, and one of size 8 by performing them

just once. In step 2, where the aim was to get good coverage of the data, each component i
was duplicated by computing the posterior of its mapping A, (a matrix-variate Gaussian)

and substituting two components with mappings drawn from the opposite 0.5 standard

deviation points of that distribution's major axis. In later steps, where the aim was to create

possible aliases for situations, the components were simply duplicated precisely (though they

were allowed to diverge thereafter). When a component was split, the transition probabilities

to and from it were divided approximately equally between its offspring, creating a 2 x 2

square block in w. In fact, it would be better to spread the probability more widely, allowing

the new states to be plugged in in more flexible ways: the present implementation was

observed to settle on quite wasteful structures such as (115).

5.3.1.4. Optimisation of the gating receptive fields

When the Gaussian receptive field-based gating rule was introduced in section 3.3.2.5,

it was suggested that the parameters for the rule could be optimised by applying a conjugate

gradients minimiser to the derivative with respect to them of the log likelihood. However, no

suggestion was made as to how a good starting point (seed) could be found; and in practice,

it turns out that the quality of the initial seed has a big influence on the rate at which the

algorithm is able to converge and on the optimality of the solution it finds: the space seems

to be quite a difficult one in which to search, with a strange shape and many local minima.

Good results were obtained by initialising the components' receptive fields as if they

were actually a generative model of the readings and actions which were supposed by the

model to have triggered them, and shrinking them by a small constant factor. (Recall from

section 3.3.2.5 that the receptive fields of a conditional model are not intended to represent a

mixture probability density, as those of a joint model do; here, the density is being used as a

convenient starting point.) The conjugate gradients algorithm is then able to move the fields

around and reduce the initial error (negative log likelihood) by a factor of two or so.

However, it turns out that it almost never manages to change the size of the fields

significantly: they stay very close to the size to which they were initialised. In consequence,

the confidence region semantics are somewhat compromised. A closer investigation of the

shape of the error landscape, the way it depends on the parameterisation of the receptive

fields, and the workings of the optimiser would be needed to explain exactly why. The

conjugate gradients optimiser was found to work much better on synthetic test data, which

differed from the simulated robot data most obviously in that it was uniformly and relatively

densely distributed.

131

5.3.1-4 Optimisation of the gating receptive fields

By varying the number of times the model's components are duplicated in steps 2

and 3, different sizes of model can be created. For instance, a model of size 32 can be

obtained by performing two duplications each time, and one of size 8 by performing them

just once. In step 2, where the aim was to get good coverage of the data, each component i

was duplicated by computing the posterior of its mapping Xt (a matrix-variate Gaussian)

and substituting two components with mappings drawn from the opposite 0.5 standard

deviation points of that distribution's major axis. In later steps, where the aim was to create

possible aliases for situations, the components were simply duplicated precisely (though they

were allowed to diverge thereafter). When a component was split, the transition probabilities

to and from it were divided approximately equally between its offspring, creating a 2 x 2

square block in u. In fact, it would be better to spread the probability more widely, allowing

the new states to be plugged in in more flexible ways: the present implementation was

observed to settle on quite wasteful structures such as (115).

5.3.1.4. Optimisation of the gating receptive fields

When the Gaussian receptive field-based gating rule was introduced in section 3.3.2.5,

it was suggested that the parameters for the rule could be optimised by applying a conjugate

gradients minimiser to the derivative with respect to them of the log likelihood. However, no

suggestion was made as to how a good starting point (seed) could be found; and in practice,

it turns out that the quality of the initial seed has a big influence on the rate at which the

algorithm is able to converge and on the optimality of the solution it finds: the space seems

to be quite a difficult one in which to search, with a strange shape and many local minima.

Good results were obtained by initialising the components' receptive fields as if they

were actually a generative model of the readings and actions which were supposed by the

model to have triggered them, and shrinking them by a small constant factor. (Recall from

section 3.3.2.5 that the receptive fields of a conditional model are not intended to represent a

mixture probability density, as those of a joint model do; here, the density is being used as a

convenient starting point.) The conjugate gradients algorithm is then able to move the fields

around and reduce the initial error (negative log likelihood) by a factor of two or so.

However, it turns out that it almost never manages to change the size of the fields

significantly: they stay very close to the size to which they were initialised. In consequence,

the confidence region semantics are somewhat compromised. A closer investigation of the

shape of the error landscape, the way it depends on the parameterisation of the receptive

fields, and the workings of the optimiser would be needed to explain exactly why. The

conjugate gradients optimiser was found to work much better on synthetic test data, which

differed from the simulated robot data most obviously in that it was uniformly and relatively

densely distributed.

131

5.3.2 Trasning the yosnt models

Because the conjugate gradients optimiser tended to leave the gating fields' sizes alone,

the regulariser adopted to avoid them becoming too small was rendered irrelevant. In

principle, however, any differentiable regulariser could be used with negligible cost, since the

parameter optimisation is already being performed iteratively. During the seeding phase,

which in practice determined the fields' size, 0.0001 was added to the diagonal of the inferred

field "variances" in order to work around the problems mentioned in section 5.3.1.1.

5.3.2. Training the joint models

Most of the pragmatic issues raised in section 5.3.1 carry over from the conditional

variant of the Samovar model to the joint one. The training regime described in

section 5.3.1.3 needs a little adaptation, however, since the joint model, being unable

to represent immediate linear relationships between readings and actions at successive

timesteps, is not prone to over-eager use of linear interpolation, and also requires no

expensive iterative optimisation of a conditional gating rule. Steps 4 and 5 are thereby

vitiated. On the other hand, the joint model was from time to time observed to settle

quickly on large output variances, which would decay only very slowly. In order to avoid

that, the variances in question were clamped during the first part of training. The procedure

adopted was, therefore, patterned after but not identical to that for the conditional model:

1) start with a single component, with output noise variance clamped to 0.0025

2) Map out where the outputs fall

do once or twice

E-step

M-step everything, except for output noise

duplicate the components

do five times

E-step

M-step output matrix, but not output noise

3) Get a rough idea of the discrete temporal relationships between the different parts of

the space

do once or twice

duplicate the components

132

5.3.2 Training the joint models

Because the conjugate gradients optimiser tended to leave the gating fields' sizes alone,

the regulariser adopted to avoid them becoming too small was rendered irrelevant. In

principle, however, any differentiable regulariser could be used with negligible cost, since the

parameter optimisation is already being performed iteratively. During the seeding phase,

which in practice determined the fields' size, 0.0001 was added to the diagonal of the inferred

field "variances" in order to work around the problems mentioned in section 5.3.1.1.

5.3.2. Training the joint models

Most of the pragmatic issues raised in section 5.3.1 carry over from the conditional

variant of the Samovar model to the joint one. The training regime described in

section 5.3.1.3 needs a little adaptation, however, since the joint model, being unable

to represent immediate linear relationships between readings and actions at successive

timesteps, is not prone to over-eager use of linear interpolation, and also requires no

expensive iterative optimisation of a conditional gating rule. Steps 4 and 5 are thereby

vitiated. On the other hand, the joint model was from time to time observed to settle

quickly on large output variances, which would decay only very slowly. In order to avoid

that, the variances in question were clamped during the first part of training. The procedure

adopted was, therefore, patterned after but not identical to that for the conditional model:

1) start with a single component, with output noise variance clamped to 0.0025

2) Map out where the outputs fall

• do once or twice

• .E-step

• M-step everything, except for output noise

• duplicate the components

• do five times

• .E-step

• M-step output matrix, but not output noise

3) Get a rough idea of the discrete temporal relationships between the different parts of

the space

• do once or twice

• duplicate the components

132

5.4.1 Procedure

do eight times

E-step

M-step everything, except for output noise

4) Release the output noise

do thity times

E-step

M-step

prune unused components

5) Finalise the temporal relationships

duplicate the components

do 10 times

E-step

M-step transition matrix

prune unused components

do 30 times

E-step

M-step

prune unused components

5.4. Observations

Each of the models described in section 5.3 was evaluated on each of the two tasks, with

a view to investigating the following issues:

How well do the Samovar models perform compared with baseline HMMs and

linear HMMs, with respect to

predicting when the robot will encounter the "food", and

predicting range sensor readings?

133

5.4-1 Procedure

• do eight times

• .E-step

• M-step everything, except for output noise

4) Release the output noise

• do thity times

• .E-step

• M-step

• prune unused components

5) Finalise the temporal relationships

• duplicate the components

• do 10 times

• E-step

• M-step transition matrix

• prune unused components

• do 30 times

• E-step

• M-step

• prune unused components

5.4. Observations

Each of the models described in section 5.3 was evaluated on each of the two tasks, with

a view to investigating the following issues:

• How well do the Samovar models perform compared with baseline HMMs and

linear HMMs, with respect to

• predicting when the robot will encounter the "food", and

• predicting range sensor readings?

133

5.4.1.1 Criteria: "food" sensor

Is it possible to extrapolate from performance on the training data to performance

on the test data?

Does the introduction of a confidence region improve the models' effectiveness?

How does the Samovar model use the mixing and linear states available to it?

5.4.1. Procedure

The evaluation covered conditionally gated HMM and linear HMM, and conditional and

joint Samovar, models with 8, 16, and 32 mixing (Q) states; the dimensionality of the linear

state (V) was varied between 1 and 3 with the conditional Samovar models, and between 2

and 4 with the joint ones (which need more since they cannot directly exploit relationships

between temporally adjacent actions and sensor readings-see section 4.2.3.1). Instances of

each model were first trained on one set of data, and then evaluated both against that and

against a separate training series; this process was repeated twenty times for each of the two

simulation environments, in order to get a reasonable idea of the variability in the results.

Furthermore, separate models were trained and tested with the model failure probability set

to zero (in which case the confidence region is wholly disabled) and 0.1. Models trained with

a confidence region were also re-run against the training and test data sets with the model

failure probability set to 0.5. Note that these probabilities did not reflect the frequency with

which the fallback component was actually judged to have been the most probable, because

of the mismatch between its static Gaussian predictive distribution and the bounded [0, 1]

range of the sensor and action spaces.

5.4.1.1. Criteria: "food" sensor

Each model's success at predicting whether it was going to encounter the "food" at a

given timestep was measured by considering the probability with which it suggested that the

food sensor reading would exceed 0.5. Ideally this should be unity in situations 1 and 2 (as

defined in section 5.2.1.3 and section 5.2.2.3 for the first and second simulated environments

respectively), and zero in situations 0 and 3-8.

For simplicity, the predictions were obtained by running the algorithm of

section 4.2.2.10 from scratch using the preceding eight experiences as raw material, rather

than using the "candidate set cache" optimisation suggested in that section. Extending the

"history" window more than eight steps into the past was not found to affect the predictions

significantly, which is as it should be given the way the environments were designed.

134

5.4-1.1 Criteria: "food" sensor

• Is it possible to extrapolate from performance on the training data to performance

on the test data?

• Does the introduction of a confidence region improve the models' effectiveness?

• How does the Samovar model use the mixing and linear states available to it?

5.4.1. Procedure

The evaluation covered conditionally gated HMM and linear HMM, and conditional and

joint Samovar, models with 8, 16, and 32 mixing (Q) states; the dimensionality of the linear

state (V) was varied between 1 and 3 with the conditional Samovar models, and between 2

and 4 with the joint ones (which need more since they cannot directly exploit relationships

between temporally adjacent actions and sensor readings—see section 4.2.3.1). Instances of

each model were first trained on one set of data, and then evaluated both against that and

against a separate training series; this process was repeated twenty times for each of the two

simulation environments, in order to get a reasonable idea of the variability in the results.

Furthermore, separate models were trained and tested with the model failure probability set

to zero (in which case the confidence region is wholly disabled) and 0.1. Models trained with

a confidence region were also re-run against the training and test data sets with the model

failure probability set to 0.5. Note that these probabilities did not reflect the frequency with

which the fallback component was actually judged to have been the most probable, because

of the mismatch between its static Gaussian predictive distribution and the bounded [0,1]

range of the sensor and action spaces.

5.4.I.I. Criteria: "food" sensor

Each model's success at predicting whether it was going to encounter the "food" at a

given timestep was measured by considering the probability with which it suggested that the

food sensor reading would exceed 0.5. Ideally this should be unity in situations 1 and 2 (as

defined in section 5.2.1.3 and section 5.2.2.3 for the first and second simulated environments

respectively), and zero in situations 0 and 3-8.

For simplicity, the predictions were obtained by running the algorithm of

section 4.2.2.10 from scratch using the preceding eight experiences as raw material, rather

than using the "candidate set cache" optimisation suggested in that section. Extending the

"history" window more than eight steps into the past was not found to affect the predictions

significantly, which is as it should be given the way the environments were designed.

134

5.4.1.8 Cntersa: range sensors

The criterion was extended to the whole of the model's training or test run by

averaging over all the timesteps in each situation category: the average predicted food

probability for situation i is

F,(6Ir,a)= 1 EP(4ood>0.5Ir[t-s,t),a[t-s.t1,0)

Isit, I
tEsit,

where sit; = {t : is situation category is i}

From these quantities it is possible to compute the robot's gains given any reward

matrix covering the cases of true positive, false positive, true negative and false negative

predictions; the point of separating out the different situations is to show whether there are

any in which it consistently makes mistakes (e.g. the deliberately difficult situation 6).

The experimental food prediction results will be presented in the form of graphs

showing at a glance how each of the twenty models in each class promised to do-how it

performed during the pass over the training set-and how well it actually did on the test

set.

5.4.1.2. Criteria: range sensors

When it comes to assessing the models' performance at predicting the range sensor

data, the natural measure of how well the actual measurements agree with what the models

say they should be is

p(rt I r[e't), a[o't 1, 0)

-the predictive pdf implied by the model 0 for the sensor readings Rt, evaluated at the

actually measured point rt. Loosely, this could be called the "predicted likelihood" of the

sensor readings, but because the pdf is continuous, the numbers can range from zero up

to arbitrarily high levels, so to avoid confusion the term "nonfood predictive pdf value (or

NF)" is adopted.

Note that an accuracy measure based on, say, the difference between the mean of the

model's prediction on the one hand, and the observed value on the other, would unfairly

penalise multimodal predictive pdfs.

To obtain a summary performance measure for a class of models, the predictive pdf is

geometrically averaged over t in the whole test run, with the predictions based on a window

of the preceding eight experiences, and geometrically averaged again over 0 in the class:

NF(models) = exp 20 37 log NF(0 I test data)
(BEmodels

where NF(0
I
r, a) = exp

(
T

> log p(rt I r[t-s,t)
a1

t-s,t] 0)

t

135

5.4-1.2 Criteria: range sensors

The criterion was extended to the whole of the model's training or test run by

averaging over all the timesteps in each situation category: the average predicted food

probability for situation i is

Fi(0\r,a) = p ,
|Slt'l t6.it.

where sit, = {t : t's situation category is i}

From these quantities it is possible to compute the robot's gains given any reward

matrix covering the cases of true positive, false positive, true negative and false negative

predictions; the point of separating out the different situations is to show whether there are

any in which it consistently makes mistakes (e.g. the deliberately difficult situation 6).

The experimental food prediction results will be presented in the form of graphs

showing at a glance how each of the twenty models in each class promised to do — how it

performed during the pass over the training set — and how well it actually did on the test

set.

5.4.I.2. Criteria: range sensors

When it comes to assessing the models' performance at predicting the range sensor

data, the natural measure of how well the actual measurements agree with what the models

say they should be is

— the predictive pdf implied by the model 0 for the sensor readings R*, evaluated at the

actually measured point r4. Loosely, this could be called the "predicted likelihood" of the

sensor readings, but because the pdf is continuous, the numbers can range from zero up

to arbitrarily high levels, so to avoid confusion the term "nonfood predictive pdf value (or

NFY is adopted.

Note that an accuracy measure based on, say, the difference between the mean of the

model's prediction on the one hand, and the observed value on the other, would unfairly

penalise multimodal predictive pdfs.

To obtain a summary performance measure for a class of models, the predictive pdf is

geometrically averaged over t in the whole test run, with the predictions based on a window

of the preceding eight experiences, and geometrically averaged again over 0 in the class:

-/VF(models) = exp (— E loS NF(0 I test data))
V 0Smodels /

where NF(e\r,a) = exp (̂ ^logptf |r[*-8 '*>,af*-8 '*],0))

135

5.4.2.1 Nonfood

Note that this is not a decision-theoretic measure, but rather a predictive analogue of the

objective targetted during training.

Again, the experimental food prediction results will be presented in the form of graphs

showing a sample of the performance, and, just as importantly, the generalisation success of

each model class.

5.4.1.3. Summary of the protocol

repeat for each model class in the list: conditionally-gated HMM; conditionally-

gated linear ("autoregressive") HMM; conditional Samovar with 1, 2, 3 dimensions

of linear hidden state; joint Samovar with 2, 3, 4 dimensions of linear hidden state

repeat with instances of the model class with 8, 16, 32 mixing states

repeat for model failure probability = 0.0, 0.1

repeat twenty times

repeat for each of the two environments

train the model on the training

data for the environment

get the model to predict each

experience in the training set

from its eight predecessors, and

record its performance according

to the criteria of section 5.4.1.1

in the same way, evaluate the

model's predictions over the test

data for the environment

plot the numbers obtained from all twenty trained

models on the scatter plots presented below, to show

both performance and generalisation chacteristics

5.4.2. Environment 1

The observations made from the experiments are broken down by task-those collected

from environment 1 being reported here and those from environment 2 in section 5.4.3-and

subgrouped according to sensor class (range or food), model variant (conditional or joint)

and model size (number of components). For conciseness, the model types are abbreviated

136

5.4-2.1 Nonfood

Note that this is not a decision-theoretic measure, but rather a predictive analogue of the

objective targetted during training.

Again, the experimental food prediction results will be presented in the form of graphs

showing a sample of the performance, and, just as importantly, the generalisation success of

each model class.

5.4.I.3. Summary of the protocol

• repeat for each model class in the list: conditionally-gated HMM; conditionally-

gated linear ("autoregressive") HMM; conditional Samovar with 1, 2, 3 dimensions

of linear hidden state; joint Samovar with 2, 3, 4 dimensions of linear hidden state

• repeat with instances of the model class with 8, 16, 32 mixing states

• repeat for model failure probability = 0.0, 0.1

• repeat twenty times

• repeat for each of the two environments

• train the model on the training

data for the environment

• get the model to predict each

experience in the training set

from its eight predecessors, and

record its performance according

to the criteria of section 5.4.1.1

• in the same way, evaluate the

model's predictions over the test

data for the environment

• plot the numbers obtained from all twenty trained

models on the scatter plots presented below, to show

both performance and generalisation chacteristics

5.4.2. Environment 1

The observations made from the experiments are broken down by task—those collected

from environment 1 being reported here and those from environment 2 in section 5.4.3—and

subgrouped according to sensor class (range or food), model variant (conditional or joint)

and model size (number of components). For conciseness, the model types are abbreviated

136

5.4.2.1 Nonfood

e.g. HMM/8 for an eight-component hidden Markov model or Samovar/3/16 for a sixteen-

component Samovar model with three-dimensional linear hidden state.

5.4.2.1. Nonfood

Turning first to the quality of the models' range sensor predictions, it will be convenient

to present the results not through summary statistics, but in scatter graphs of the

performance of all twenty of the trained models in each batch on both the training data and

the test data. Showing all the data at a glance in this way makes it possible to judge the

intra-class variability, and, crucially, the degree to which the potential shown by each model

translates into success on unseen data. Each marker on the graph corresponds to one of the

twenty models trained from each class; the model's NF predictive pdf values7 on the training

set becomes the abcissa of the marker, and its NF predictive pdf value on the test set the

ordinate. By using differently shaped markers, a single diagram can be used to compare

several different model classes.

One important reason for showing several classes of model on the same plot is that it's

hard to give a simple interpretation of "how good" a (geometric) mean predictive pdf value

of, say, 25 actually is, in absolute rather than comparative terms. As a rough indication of

the general accuracy of the models, one can bear in mind that 25 is the best predictive pdf

value theoretically achievable by a model which quantised the two sensor readings onto a

five-by-five histogram.

The first scatter graph presents the training and test NF values for the HMM, linear

HMM and Samovar models with eight discrete states, with the model failure probability

7 See section 5.4.1.1

137

5.4.2.1 Nonfood

e.g. HMM/8 for an eight-component hidden Markov model or Samovar/3/16 for a sixteen-

component Samovar model with three-dimensional linear hidden state.

5.4.2.1. Nonfood

Turning first to the quality of the models' range sensor predictions, it will be convenient

to present the results not through summary statistics, but in scatter graphs of the

performance of all twenty of the trained models in each batch on both the training data and

the test data. Showing all the data at a glance in this way makes it possible to judge the

intra-class variability, and, crucially, the degree to which the potential shown by each model

translates into success on unseen data. Each marker on the graph corresponds to one of the

twenty models trained from each class; the model's NF predictive pdf values7 on the training

set becomes the abcissa of the marker, and its NF predictive pdf value on the test set the

ordinate. By using differently shaped markers, a single diagram can be used to compare

several different model classes.

One important reason for showing several classes of model on the same plot is that it's

hard to give a simple interpretation of "how good" a (geometric) mean predictive pdf value

of, say, 25 actually is, in absolute rather than comparative terms. As a rough indication of

the general accuracy of the models, one can bear in mind that 25 is the best predictive pdf

value theoretically achievable by a model which quantised the two sensor readings onto a

five-by-five histogram.

The first scatter graph presents the training and test NF values for the HMM, linear

HMM and Samovar models with eight discrete states, with the model failure probability

7 See section 5.4.1.1

137

5.4.2.1 Nonfood

controlling the confidence region set to zero both during training and during testing:

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0)

35

a 30

a)
E

25
a

I
HMM/8 0

Linear HMM/8 +
Cond. Samovar/8/1

2 x

x

0

x
x

x

x
x

x

x

x

x

0

0
0 10 20 30 40 50

NF predictive pdf value of training data, per timestep

x

The linear Hl\11\Mls are clustered in the top right hand corner (right for most promising on

training data, top for most successful on test data). The plain HMMs are clustered further

down and to the left. Many of the Samovar models perform better on the training data

than the linear MINN but only one of the Samovar/8/ls and a few of the Samovar/8/2s

fulfil this promise when evaluated against the test data: the others differ wildly, and

unpredictably in the their training data predictive pdf values correlate poorly with their test

data predictive pdf values.

The reason why the the Samovars mostly find it difficult to beat the linear HMMs on

the NF measure in this environment is simply that there is quite little useful role for linear

hidden state here. Note, though, that the NF success of the linear HMMs is achieved at

some cost in reduced accuracy in predicting the "food" sensor readings: see section 5.4.2.2.

One surprising feature of the plot above is that two of the models score better on the

test, data than on the training data (the Samovar/8/2 with NFtrain = 11.9 and NFtest --

14.81 and the Samovar/8/1 with NFtrain = 13.7 and NFtest = 22.7). On investigation,

this turned out to be due to a single extremely poor prediction which both models made

at the saine point in the training run, contributing a log pdf hit of -381 in the first place

and -514 in the second and depressing their overall NFtrain score enough, given that no

corresponding "prediction disasters" occurred in the test run, to produce this anomaly.

The models' mistake is an extremely surprising one: starting from a position in which the

robot's forward-pointing range sensor is reading 0.81, and the robot moves directly forwards,

138

5.4.2.1 Nonfood

controlling the confidence region set to zero both during training and during testing:

35

a 30
a)

a)
E

25
a
ro
Cu

20
a)

0
aV I
c0 15

0-

.

Z5 10

a)

0
u.. z 5

0
0

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0)

I IM M £ i

Linear HMM/8
Cond. Samovar/8/1

2

0
x

0

0 x 0

10

0
0

x

X

x

20 30 40

NF predictive pdf value of training data, per timestep

x
0

x
x x

x x

50

The linear HM GIs are clustered in the top right hand corner (right for most promising on

training data, top for most successful on test data). The plain HMMs are clustered further

down and to the left. Many of the Samovar models perform better on the training data

than the linear HNIMs, but only one of the Samovar/8/1s and a few of the Samovar/8/2s

fulfil this promise when evaluated against the test data: the others differ wildly, and

unpredictably in the their training data predictive pdf values correlate poorly with their test

data predictive pdf values.

The reason why the the Samovars mostly find it difficult to beat the linear HMMs on

the NF measure in this environment is simply that there is quite little useful role for linear

hidden state here. Note, though, that the NF success of the linear HMMs is achieved at

some cost in reduced accuracy in predicting the "food" sensor readings: see section 5.4.2.2.

One surprising feature of the plot above is that two of the models score better on the

test, data than on the training data (the Samovar/8/2 with NFtrain = 11.9 and NFtest --

14.8, and the Samovar/8/1 with NFtrain = 13.7 and NFtest = 22.7). On investigation,

this turned out to be due to a single extremely poor prediction which both models made

at the same point in the training run, contributing a log pdf hit of -381 in the first place

and -514 in the second and depressing their overall NFtrain score enough, given that no

corresponding "prediction disasters" occurred in the test run, to produce this anomaly.

The models' mistake is an extremely surprising one: starting from a position in which the

robot's forward-pointing range sensor is reading 0.81, and the robot moves directly forwards,

138

5.4-2.1 Nonfood

they predict that the new reading will be very close to 1.0, whereas in fact of course it falls

],umber (to 0.60). Underlyiiig this failure is an incorrect choice of mixing component

Dtiritig training, the mixing component probabilities are computed using information

(rout the future as well as from the past, while when making predictions they are perforce

conditioned only on the past; normally, the learning algorithm ensures that the foresight

(/)-estiu1a.tes are consistent with the hindsight ones by adjusting the transition matrix and

gating pa,tclhes. But the situation in question appears to be sufficiently uncommon that the

algorithm cats sometimes get stuck in a local maximum in which this does not happen: the

rea.dittg/action combination falls well outside any of the available gating patches, and the

least distant one, which is activated faute de mieux, is attached to an expert which yields a

pool- prediction. This is in fact the kind of problem which the confidence region alleviates,

although it is of course motivated by the issue of novel data rather than of known data

which the training algorithm fails to handle effectively.

Indeed, the anomaly just discussed does not appear in the following plot, which shows

the test and traits NF scores for the same model classes but with the confidence region

enabled (model failure probability = 0.1):

30

E

a)

x

x

5 10 15 20 25 30 35
NF predictive pdf value of training data, per timestep

The train-test correlation has improved for all the model classes, but the test data predictive

pdf values have fallen somewhat (note the change in y scale). Increasing the model failure

probability to 0.5 (not shown) reduces them still further. This comes about because each

component of an eight-component model must cover quite a broad range of situations, so its

gating field trust be significantly large compared with that of the fallback "model failure"

Nonfood performance/generalisation in environment 1 (model failure probability = 0.1)
T

HMM/8 o
Linear HMM/8 +

Cond. Samovar/8/1 o
2 x

0

I o
x

O

+ x *+* x
+

++
VC]

x

+ d X

x o X
x%

J

x

T

139

5.4.2.1 Nonfood

they predict that the new reading will be very close to 1.0, whereas in fact of course it falls

further (to 0.60). Underlying this failure is an incorrect choice of mixing component

During training, the mixing component probabilities are computed using information

from the future as well as from the past, while when making predictions they are perforce

conditioned only oil the past; normally, the learning algorithm ensures that the foresight

estiuirtes are consistent with the hindsight ones by adjusting the transition matrix and

gating patches. But, the situation in question appears to be sufficiently uncommon that the

algorithitn cart sornetirnes get stuck in a local maximum in which this does not happen: the

reading/action coriibination falls well outside any of the available gating patches, and the

least distant one, which is activated farete de nnieux, is attached to an expert which yields a

poor prediction. This is in fact the kind of problem which the confidence region alleviates,

although it is of course motivated by the issue of novel data rather than of known data

wlricli the training algorithm fails to handle effectively.

Indeed, the anomaly just discussed does not appear in the following plot, which shows

the test and train NF scores for the same model classes but with the confidence region

enabled (model failure probability = 0.1):

Nonfood performance/generalisation in environment 1 (model failure probability = 0.1)

0 5 10 15 20 25
NF predictive pdf value of training data, per timestep

30 35

The train-test correlation has improved for all the model classes, but the test data predictive

pdf values have fallen somewhat (note the change in y scale). Increasing the model failure

probability to 0.5 (not shown) reduces them still further. This comes about because each

component of an eight-component model must cover quite a broad range of situations, so its

gating field must be significantly large compared with that of the fallback "model failure"

139

5.4.2.1 Nonfood

component,; hence the lather will often be judged to be active with a finite probability, and

the definiteness of the predictive pdf will be tempered with its broad "don't know" output.

With sixteen mixing states available, the Samovar model achieves some good test

predictive pdf values, but they are not at all correlated with the training predictive pdf

values:

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0)

30

aa? 25
U,
a)
E

a`)

20
Cv

CU

a) 2

a
5 z

0
0

HMM/16 0
Linear HMM/16 +

Cond. Samovar/16/1
2 x

0
00

00e 0 0

0

x I
10

1 -1

++ + 13 11

x x

0

x

x

x

x
x

x

x

x

0

®
11

0 x +

0
0

X

.i i n x i X ni x

20 30 40 50 60 70

NF predictive pdf value of training data, per timestep

xx x

x

x

x

XX

x

x x

x x

80 90

However, when the confidence region is enabled, their predictive pdf values all improve

140

5.4.2.1 Nonfood

conpoet; hence the latter will often be Judged to be active with a finite probability, and

the definiteness of the predictive pdf will be tempered with its broad "don't know" output.

With sixteen mixing states available, the Samovar model achieves some good test

predictive pdf values, but they are not at all correlated with the training predictive pdf

values:

30

aai 25
U,
()
E

a)
C1

20
ci
M

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0)

HMM1f;
Linear HMM/16

Cond Samovar/16/1

x

x
x

x

x

x

xx

x

x

0

x

x

x

80 90

However, when the confidence region is enabled, their predictive pdf values all improve

140

0 10

ii x

20 30 40 50 60 70

NF predictive pdf value of training data, per timestep

5.4.2.1 Nonfood

considerably, yielding the best nonfood predictions of any class of model:

35

30

ro
ro

20
a)

a)

a
IL z

Nonfood performance/generalisation in environment 1 (model failure probability = 0.1)
I T

HMM/16 0
Linear HMM/16 +

Cond. Samovar/16/1
2 x

x

x

x

U^

+- x
++ X

+ x x

x

xx

x

10 20 30 40 50 60 70
NF predictive pdf value of training data, per timestep

It is even (just) the case that the five most promising Samovar/16/1 models do better than

the five most promising linear HMM/16 models.

The reason why the confidence region is an unmitigated plus here is that the 16-

component models' experts are more situation-specific. One consequence of this is that their

predictions outside the narrow areas on which they have been trained are more "precisely

misleading", so that tempering them with a "don't know" predictive distribution is more

of a gain; another is that their gating patches are smaller, so that the "model failure"

component's broad patch interferes with them less. Increasing the model failure probability

to 0.5 (not shown) lifts some of the remaining poor predictive pdf values somewhat, but

otherwise has little effect.

Some insight into the effect of the confidence region can be gained by considering

the profile of nonfood predictive pdf values obtained across all the timesteps in a run.

The following diagram shows, simply, all the NF predictive pdf values from the best

Samovar/ 1 / 16 model without a confidence region, arranged in descending order, together

141

5.4.2.1 Nonfood

cotlsidera.bly, yielding the best, nonfood predictions of any class of model:

35

30

0
a) 7

15

n
a>

10
a>

a
IL z

5

0

Nonfood performance/generalisation in environment 1 (model failure probability = 0.1)

II MM/1(i <>

Linear HMM/16 +
Cond Samovar/16/1 0

0x

0 10

0 0

El x 0
0

0

0
x x j

20 30 40 50
NF predictive pdf value of training data, per timestep

60 70

It is ever). (just) the case that the five most promising Samovar/16/1 models do better than

the five most promising linear HMM/16 models.

The reason why the confidence region is an unmitigated plus here is that the 16-

component models' experts are more situation-specific. One consequence of this is that their

predictions outside the narrow areas on which they have been trained are more "precisely

misleading", so that tempering them with a "don't know" predictive distribution is more

of a gain; another is that their gating patches are smaller, so that the "model failure"

component's broad patch interferes with them less. Increasing the model failure probability

to 0.5 (not shown) lifts some of the remaining poor predictive pdf values somewhat, but

otherwise has little effect.

Some insight into the effect of the confidence region can be gained by considering

the profile of nonfood predictive pdf values obtained across all the timesteps in a run.

The following diagram shows, simply, all the NF predictive pdf values from the best

Samovar/1/16 model without a confidence region, arranged in descending order, together

141

5.4.2.1 Nonfood

with the corresponding predictive pdf values from the same model at the same timesteps,

but with p(Q1 = 0) set to 0.1:

1000

100

10

1

0.1

0.01

The best Samovar/1/16, model failure prob. = 0.0
0.1

0 100 200 300 400 500 600 700
Number of timesteps at which exceeded

Mostly, the two predictive pdf values are identical (which is why there is no green showing in

the graph-the blue has covered it up almost everywhere). Sometimes, the confidence region

makes a good prediction more cautious, thereby reducing the achievable predictive pdf value

(the blue dots below the main line); occasionally the effect is to improve it (the dots above

the line). Note that either way, at most of the timesteps the predictive pdf value exceeds 9,

which would be the maximum theoretically obtainable from a 3 x 3 quantising model over the

[0, 1] legal range of the sensors, and only 10% of the time are they very poor in the sense of

falling below unity (which would be the predictive pdf value of a uniform "model" over that

range). However, some of those 10% are really terrible, as can be read off the y-axis of this

142

5.4.2.1 Nonfood

with the corresponding predictive pdf values from the same model at the same timesteps,

but with p(Q' = 0) set to 0.1:

1000

100

10

1

0.1

0.01
0 100 200 300 400 500

Number of timesteps at which exceeded
600 700

Mostly, the two predictive pdf values are identical (which is why there is no green showing in

the graph-the blue has covered it up almost everywhere). Sometimes, the confidence region

makes a good prediction more cautious, thereby reducing the achievable predictive pdf value

(the blue dots below the main line); occasionally the effect is to improve it (the dots above

the line). Note that either way, at most of the timesteps the predictive pdf value exceeds 9,

which would be the maximum theoretically obtainable from a 3 x 3 quantising model over the

[0, 1] legal range of the sensors, and only 10% of the time are they very poor in the sense of

falling below unity (which would be the predictive pdf value of a uniform "model" over that

range). However, some of those 10% are really terrible, as can be read off the y-axis of this

142

5.4.2.1 Nonfood

detail of the missing bottom right hand corner of the graph,8

100

10

1

0.1

0.01

0.001

t-
4

+

+ 0 +

+

+ 0
r- t

t
0.0001

1 e-05 The best Samovar/1/16, model failure prob. = 0.0 o
0.1 +

0 +

0
0

740 745 750 755
Number of timesteps at which exceeded

+

760

and it is here that the confidence region has its beneficial effect, detecting situations

different from any in the training data, so that the fallback component cuts in with its vague

"predictions" and caps the badness of all but one of the model's overall, mixed predictions.

Note that the second-worst prediction is turned into quite a success, with a predictive pdf

value above 56. This falls at a timestep whose immediate predecessors are handled very

poorly; if the model tries to assign them its learned components, it remains confused for

several timesteps, while if it can write them off as unpredictable, it recovers in time to make

the good prediction noted here.

Finally, here are the promised and achieved NF predictive pdf values for models with

8 The four worst predictive pdf values (not shown) made in the absence of a confidence region

range from around io-' down to around

1 e-06

143

5.4.2.1 Nonfood

detail of the missing bottom right hand corner of the graph,8

100

10

1

0.1

0.01

0.001

0.0001

1 e-05

1

r

740
1 e-06

+ I

745

+

+

3uure pros) u u
0.1 +

760 750 755
Number of timesteps at which exceeded

and it is here that the confidence region has its beneficial effect, detecting situations

different from any in the training data, so that the fallback component cuts in with its vague

"predictions" and caps the badness of all but one of the model's overall, mixed predictions.

Note that the second-worst prediction is turned into quite a success, with a predictive pdf

value above 56. This falls at a timestep whose immediate predecessors are handled very

poorly; if the model tries to assign them its learned components, it remains confused for

several tiniesteps, while if it can write them off as unpredictable, it recovers in time to make

the good prediction noted here.

Finally, here are the promised and achieved NF predictive pdf values for models with

H The four worst predictive pdf values (not shown) made in the absence of a confidence region

range from around 1o-' down to around 10-33

143

5.4.2.2 Food

32 fluxing states:

n
a)

20
E

a`)

25

0

a)

0

a)
>

z

0

in

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0)

HMM/32 0
Linear HMM/32 +

Cond. Samovar/32/1
20 x

$o
0

O 0

o $

008
0

O

O

O

0

+

x

x

. Fu X y x 4
100 120 140

NF predictive pdf value of training data, per timestep

It's clear that overfitting has set in badly even amongst the plain HMM models-their

predictive pdf values over the training set (x-axis) are poorly correlated with those over

the test set (y-axis). The confidence region helps, but still, both the models' predictive pdf

values and the correlation between what they promise and what they deliver are lower than

they are when sixteen states are used:

30

+ 00
+ EP a X I p fl X Y Ira,

20 40 60 80

Nonfood performance/generalisation in environment 1 (model failure probability = 0.1)

x

HMM/32 0
Linear HMM/32 +

Cond. Samovar/32/1
2 x

J

0 15
a) 2
CO
>

O

0 0
Oo

O

0

O
0

O

00
O

O
p O

L0

0

+
++ +

+ +

+ +
+

+ ++

+ x L
El

$ + +

X + + +

x
x

x

x

x

x +
+ +x

+

x x

x

0

30 40 50 60 70 80 90 100
NF predictive pdf value of training data, per timestep

144

5.4.2.2 Food

32 mixing states:

25

a
a)

a 20

0
0

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0)

20 120 140

It's clear that overfitting has set in badly even amongst the plain HMM models-their

predictive pdf values over the training set (x-axis) are poorly correlated with those over

the test set (y-axis). The confidence region helps, but still, both the models' predictive pdf

values and the correlation between what they promise and what they deliver are lower than

they are when sixteen states are used:

30

25

20

15

Nonfood performance/generalisation in environment 1 (model failure probability = 0.1)

11

40 60 80 100

NF predictive pdf value of training data, per timestep

x

0

0

x0 +

x
0 x

Cor

0

0

4 4

X +
x

x 0

10

5

30
0

40 50 60 70 80
NF predictive pdf value of training data, per timestep

HMM/32
Linear HMM/32 +
. Samovar/32/1 0

90 100

144

5.4.2.2 Food

5.4.2.2. Food

Of the seven scenarios defined in section 5.2.1.3, the ones that gave the models the

most trouble were, as expected, numbers 1 and 6-the true and false food situations. A few

models were also persistently inaccurate in number 4, where the robot misses the food after

starting from too close to the wall. All the others were handled correctly,9 so it is on 1, 4

and 6 that the analysis presented here concentrates.

The first group of scatterplots displays the food-prediction accuracy of all the

conditional, eight-component models generated during the experiments. (Corresponding

graphs for the 16- and 32-state models, and for the joint-variant Samovar models, will be

given later on.) The left hand column contains the plots for models trained and tested with

the model failure probability p(Qt = 0), or MFP, set to zero, which effectively disables

the confidence region (section 3.3.2.6); for the right hand column, the confidence region

is enabled with p(QL = 0) set to 0.1. Each row holds the plots for models of a different

class, in increasing order of complexity from plain HMMs at the top to Samovars with two-

dimensional linear hidden state at the bottom.

For each of the 20 individual models 6 in each class/MFP combination, a marker is

placed in the appropriate scatterplot to indicate what the model's mean food prediction was

in each of the scenarios under consideration, during the training run and during the test run.

The colour and shape of the marker indicate a situation i E 1, 4, 6, as shown in the key in the

top left-hand plot, and its coordinates are

(F; (B I training data), F, (B I test data))

in the notation of section 5.4.1.1. Points further to the right denote higher mean food

probabilities during the training run, while points further to the top denote the same during

the test run. Ideally all the red +s, corresponding to scenario 1 in which the robot finds the

food, should be in the top right-hand corner, while all the green xs and blue *s, denoting

mean food probabilities for situations in which in which the robot misses the food because it

is in the wrong corner of the arena or starts too close to the wall, should be in the bottom

left-hand corner.

Finally, a fourth marker (purple box) is added to summarise the model's overall

accuracy on these three scenarios: the probability with which it predicted the right

food reading in situation 1, 4 or 6, averaged over the training run (abcissa) and test run

(ordinate). This measure is called F}1_4_8 since the true reading is high (1.0) in situation 1

and low (0.0) in 4 and 6. The target position for its markers is the top right-hand corner,

9 Except by the Samovar/2/32 when overfitting sets in (see below).

145

5.4.2.2 Food

5.4.2.2. Food

Of the seven scenarios defined in section 5.2.1.3, the ones that gave the models the

most trouble were, as expected, numbers 1 and 6—the true and false food situations. A few

models were also persistently inaccurate in number 4, where the robot misses the food after

starting from too close to the wall. All the others were handled correctly,9 so it is on 1, 4

and 6 that the analysis presented here concentrates.

The first group of scatterplots displays the food-prediction accuracy of all the

conditional, eight-component models generated during the experiments. (Corresponding

graphs for the 16- and 32-state models, and for the joint-variant Samovar models, will be

given later on.) The left hand column contains the plots for models trained and tested with

the model failure probability p(Q* = 0), or MFP, set to zero, which effectively disables

the confidence region (section 3.3.2.6); for the right hand column, the confidence region

is enabled with p(Qt = 0) set to 0.1. Each row holds the plots for models of a different

class, in increasing order of complexity from plain HMMs at the top to Samovars with two-

dimensional linear hidden state at the bottom.

For each of the 20 individual models 0 in each class/MFP combination, a marker is

placed in the appropriate scatterplot to indicate what the model's mean food prediction was

in each of the scenarios under consideration, during the training run and during the test run.

The colour and shape of the marker indicate a situation j 6 1,4,6, as shown in the key in the

top left-hand plot, and its coordinates are

(Fi(01 training data) , F;(01 test data))

in the notation of section 5.4.1.1. Points further to the right denote higher mean food

probabilities during the training run, while points further to the top denote the same during

the test run. Ideally all the red +s, corresponding to scenario 1 in which the robot finds the

food, should be in the top right-hand corner, while all the green xs and blue *s, denoting

mean food probabilities for situations in which in which the robot misses the food because it

is in the wrong corner of the arena or starts too close to the wall, should be in the bottom

left-hand corner.

Finally, a fourth marker (purple box) is added to summarise the model's overall

accuracy on these three scenarios: the probability with which it predicted the right

food reading in situation 1, 4 or 6, averaged over the training run (abcissa) and test run

(ordinate). This measure is called F+i_4_e since the true reading is high (1.0) in situation 1

and low (0.0) in 4 and 6. The target position for its markers is the top right-hand corner,

9 Except by the Samovar/2/32 when overfitting sets in (see below).

145

5.4.2.2 Food

detloting perfect accuracy on both runs; but when interpreting the absolute value of the

sununary F+I_4_(;, it should be born in mind (a) that only the most "difficult" situations

are being considered, and (b) that the proportions in which these situations occur differ

between the two runs, so that there is no a priori reason why the value should be the same

in each case.

Mean p(rfoocz > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

0.8

0.6

0.4

0.2

0-

Cond. HMM/8 MFP = 0.0

T

F1 +

F4 x
F6 W

F+1-4-6

x x

0 0.2 0.4 0.6 0.8

1

0.8

0.6

0.4

0.2

0
0

0.8

0.6

0.4
4

0.4 + x x
% xx

W

0.2 +x x xx)
0 4.

0 0.2 0.4 0.6 0.8 1

x
0.8

Cond. HMM/8 MFP = 0.1

Cond. Linear HMM/8 MFP = 0.1

Cond. Samovar/1/8 MFP = 0.1

66
0.6

Ey x
x

4J

El
+

x

0.2 I x
M S *x x

0
0 0.2 0.4 0.6 0.8

1

0.8

0.6

r"

0.4

0.2 x

+

[3 EJ8 WO +

x x

x

0 i t` I I I

0 0.2 0.4 0.6 0.8

Cond. Linear HMM/8 MFP = 0.0

I I I I

0.2 0.4 0.6

W

x

0.8

Cond. Samovar/1 /8 MFP = 0.0

Cond. Samovar/2/8 MFP = 0.0 Cond. Samovar/2/8 MFP = 0.1

146

5.4.2.2 Food

denoting perfect accuracy on both runs; but when interpreting the absolute value of the

suniinary F+1 _4_6, it should be born in mind (a) that only the most "difficult" situations

are being considered, and (b) that the proportions in which these situations occur differ

between the two runs, so that there is no a priori reason why the value should be the same

in each case.

Mean p(rfood > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

Cond. HMM/8 MFP = 0.0

Cond. Linear HMM/8 MFP = 0.0

Cond. Samovar/1/8 MFP = 0.0

Cond. Samovar/2/8 MFP = 0.0

1

0.8

0.6

0.4

0.2

0 tY

0

0.8

0.6

0.4

0

Cond. HMM/8 MFP = 0.1

3

l I I

0.2 0.4 0.6 0.8

Cond. Linear HMM/8 MFP = 0.1

Cond. Samovar/1/8 MFP = 0.1

Cond. Samovar/2/8 MFP = 0.1

O

16 0+

B
x

0.2

0 0.2 0.4 0.6 0.8

146

5.4.2.2 Food

PRom the top left-hand plot, showing results for the reference conditionally-gated hidden

Markov model 'Cond. HMM/8' without a confidence region, it can be seen that many of

these simple models are able to predict food occurrences quite effectively. All the F1 markers

are clustered in the extreme top right-hand corner: the models all predict food occurrences

with probability near unity every time. All the F4 markers are clustered in the opposite

corner: the models all predict, with similar accuracy, non-occurrence of the food due to

the robot starting its turn from too close to the wall. However, none of the F6 markers

are correctly placed in the lower-left corner. This is because the HMM/8s are not powerful

enough to handle every situation with complete success; their food sensor predictions around

the "true food" situation are good, but those around the "false food" scenario 6 are not

so good. As a result, their "hard case" food sensor accuracies F}1_9_8 mostly do not

exceed 85% on the test data (y-axis). Recall too that their range sensor predictions are less

informative than those of the more complex models-see section 5.4.2.1.

HMM/8s with a confidence region are often better at refraining from predicting a

food event in the "false food" case, especially during the test run (in the top right-hand

plot, the blue *s are lower down than they are in the top left-hand plot). This is partly

an artifact of the phenomenon, already noted in section 5.4.2.1, of the confidence region

cutting in frequently when applied to this class of model: the food sensor component of the

"don't know" prediction is deliberately biased towards zero to reflect the general rarity of

food events, so that any activation of the confidence region tends to depress the predicted

food probabilities-and indeed the scenario 1 mean probabilities are also lower with the

confidence region than without. Nevertheless, the effect is an overall improvement in

accuracy which is quite pronounced in the test run (the purple boxes are higher up), which

suggests that the confidence region may actually be playing a positive role. Increasing the

model failure probability further (not shown) reduces the predicted food probabilities again,

and this time also the net accuracy.

As an aside, note that the scenario 6 predictions of the HMM/8s are on average more

accurate (i.e. lower) in the test run than in the training run. The reason for this that the

test run happens to include three steps, out of the 10 assigned to scenario 6, which fall on

the borderline between scenarios 6 and 8: the robot would in fact have turned onto the food

if the food was there, but only just. The training run only includes two such steps out of

16. Since in these marginal cases the model has an immediately obvious reason (the distance

to the wall) to discount somewhat the possibility of encountering the food, it will tend to

handle them better than more central scenario 6 steps-albeit for the wrong reason. The

net effect is that the food prediction accuracy on the test run is biased upwards relative to

that on the training run. Similar effects can be seen in some other plots presented in this

section, although there is no dear pattern: in general, different models behave in surprisingly

147

5.4.2.2 Food

From the top left-hand plot, showing results for the reference conditionally-gated hidden

Markov model 'Cond. HMM/8' without a confidence region, it can be seen that many of

these simple models are able to predict food occurrences quite effectively. All the FI markers

are clustered in the extreme top right-hand corner: the models all predict food occurrences

with probability near unity every time. All the F^ markers are clustered in the opposite

corner: the models all predict, with similar accuracy, non-occurrence of the food due to

the robot starting its turn from too close to the wall. However, none of the Fg markers

are correctly placed in the lower-left corner. This is because the HMM/8s are not powerful

enough to handle every situation with complete success; their food sensor predictions around

the "true food" situation are good, but those around the "false food" scenario 6 are not

so good. As a result, their "hard case" food sensor accuracies F+i_4_e mostly do not

exceed 85% on the test data (j/-axis). Recall too that their range sensor predictions are less

informative than those of the more complex models—see section 5.4.2.1.

HMM/8s with a confidence region are often better at refraining from predicting a

food event in the "false food" case, especially during the test run (in the top right-hand

plot, the blue *s are lower down than they are in the top left-hand plot). This is partly

an artifact of the phenomenon, already noted in section 5.4.2.1, of the confidence region

cutting in frequently when applied to this class of model: the food sensor component of the

"don't know" prediction is deliberately biased towards zero to reflect the general rarity of

food events, so that any activation of the confidence region tends to depress the predicted

food probabilities—and indeed the scenario 1 mean probabilities are also lower with the

confidence region than without. Nevertheless, the effect is an overall improvement in

accuracy which is quite pronounced in the test run (the purple boxes are higher up), which

suggests that the confidence region may actually be playing a positive role. Increasing the

model failure probability further (not shown) reduces the predicted food probabilities again,

and this time also the net accuracy.

As an aside, note that the scenario 6 predictions of the HMM/8s are on average more

accurate (i.e. lower) in the test run than in the training run. The reason for this that the

test run happens to include three steps, out of the 10 assigned to scenario 6, which fall on

the borderline between scenarios 6 and 8: the robot would in fact have turned onto the food

if the food was there, but only just. The training run only includes two such steps out of

16. Since in these marginal cases the model has an immediately obvious reason (the distance

to the wall) to discount somewhat the possibility of encountering the food, it will tend to

handle them better than more central scenario 6 steps—albeit for the wrong reason. The

net effect is that the food prediction accuracy on the test run is biased upwards relative to

that on the training run. Similar effects can be seen in some other plots presented in this

section, although there is no clear pattern: in general, different models behave in surprisingly

147

5.4.2.2 Food

different ways on the two data sets, probably because they have found fundamentally

different representations for solving the prediction problem.

Turning now to the second row of the graph, it can be seen that the linear HMM/8s

perform much less well on the food prediction task than the plain HMMs. For instance, they

fail to produce unequivocal predictions of food encounters in scenario 1 (the red crosses are

not in the top right hand corner); and the confidence region does not help. It seems that

these models are concentrating on predicting the range sensors accurately-a task which

they can perform well in this environment (section 5.4.2.1)-to the detriment of their food

sensor predictions.

Some of the Samovar/1/8s (third row) are able to predict the food occurrences almost

perfectly (some purple boxes in the extreme top right-hand corner). The reason they can do

better than the plain HMMs turns out to be that each of their mixing states can account for

a wider range of range-sensory phenomena, leaving more for mapping out the approach to

the food area. It turns out that the average NF range sensor predictive pdf value achieved

by the five best Samovar/1/8s, chosen according to food prediction accuracy, is, at 17.2, also

better than that achieved by the plain HMMs (section 5.4.2.1): some of these models are

able to perform both prediction tasks at once.

However, the intra-class variability is considerable, and some are actually worse than

the plain HMMs; in order to obtain a single Samovar/1/8 which predicts the food sensor

readings well, it is necessary to train several and choose the best. At least the correlation

between the models' performance on the training data and their performance on the test

data is strong, so that the choice can be made with some confidence.

The Samovar/2/8s, and the Samovar/3/8s (not shown), do not yield such good results

as the Samovar/1/8s: they are powerful enough to be prone to overfitting.

Turning now to the 16-component models, the main feature to emerge from the

scatterplots is that their food predictions are generally better than those of the eight-

component models; they have enough states to map out the entire coarse structure of the

148

5.4-2.2 Food

different ways on the two data sets, probably because they have found fundamentally

different representations for solving the prediction problem.

Turning now to the second row of the graph, it can be seen that the linear HMM/8s

perform much less well on the food prediction task than the plain HMMs. For instance, they

fail to produce unequivocal predictions of food encounters in scenario 1 (the red crosses are

not in the top right hand corner); and the confidence region does not help. It seems that

these models are concentrating on predicting the range sensors accurately—a task which

they can perform well in this environment (section 5.4.2.1)—to the detriment of their food

sensor predictions.

Some of the Samovar/1/8s (third row) are able to predict the food occurrences almost

perfectly (some purple boxes in the extreme top right-hand corner). The reason they can do

better than the plain HMMs turns out to be that each of their mixing states can account for

a wider range of range-sensory phenomena, leaving more for mapping out the approach to

the food area. It turns out that the average NF range sensor predictive pdf value achieved

by the five best Samovar/l/8s, chosen according to food prediction accuracy, is, at 17.2, also

better than that achieved by the plain HMMs (section 5.4.2.1): some of these models are

able to perform both prediction tasks at once.

However, the intra-class variability is considerable, and some are actually worse than

the plain HMMs; in order to obtain a single Samovar/1/8 which predicts the food sensor

readings well, it is necessary to train several and choose the best. At least the correlation

between the models' performance on the training data and their performance on the test

data is strong, so that the choice can be made with some confidence.

The Samovar/2/8s, and the Samovar/3/8s (not shown), do not yield such good results

as the Samovar/l/8s: they are powerful enough to be prone to overfitting.

Turning now to the 16-component models, the main feature to emerge from the

scatterplots is that their food predictions are generally better than those of the eight-

component models; they have enough states to map out the entire coarse structure of the

148

5.4.2.2 Food

(Ilvlr011111ent:

Mean p(7-rood > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

Cond. HMM/1 6 MFP = 0.0 Cond. HMM/1 6 MFP = 0.1

1

0.8

0.6

0.4

0.2
WA

4W,I

01 1

OK I- 1 I I

0.8

0.6

0.4
x

0.2

0
0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Cond. Linear HMM/1 6 MFP = 0.0

0

Cond. Samovar/1/16 MFP = 0.0

o + +

0

x

0.2

x
I '` ! I I

0 0.4 0.6

+ +
0

0.8

Cond. Samovar/2/16 MFP = 0.0

1

0 0.2 0.4 0.6 0.8 1

Cond. Linear HMM/16 MFP = 0.1

0.8

0.6

0.4

0.2

Cond. Samovar/1/16 MFP = 0.1

0.2

x 0

0.4 0.6 0.8

Cond. Samovar/2/16 MFP = 0.1

0

1

The Samovar/l/16s suffer from a slightly higher intra-class variability than the simpler

models. But with the confidence region enabled, they may again have a slight edge when it

comes to combining good food predictions with good range sensor predictions: the five food-

best Samovars with a confidence region return an average NF score of 26.83, against 23.79

for the linear HMMs.

149

5.4.2.2 Food

eilviroIIIneIlt:

Mean p(rfoo,(I > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

Cond. HMM/16 MFP = 0.0

0.8

0.6

0.4

0.2

0
0

F6

* I I I

0.2 0.4 0.6 0.8

Cond. Linear HMM/16 MFP = 0.0

1

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2 L x

Cond. HMM/16 MFP = 0.1

0.2 0.4 0.6 0.8

Cond. Linear HMM/16 MFP = 0.1

0

0, I I I I

0 0.2 0.4 0.6 0.8

Cond. Samovar/1/16 MFP = 0.0

Cond. Samovar/2/16 MFP = 0.0

Cond. Samovar/1/16 MFP = 0.1

0.2

0.8 o +r, 0.8

0.6 * +

x
0.6

0.4 0.4
x

0.2 0.2

0 0.2 0.4 0.6 0.8 1

0

Cond. Samovar/2/16 MFP = 0.1

0.4 0.6 0.8

0

x S

0

Lt,
0 0.2 0.4 0.6 0.8

The Samovar/1/16s suffer from a slightly higher intra-class variability than the simpler

models. But with the confidence region enabled, they may again have a slight edge when it

conies to combining good food predictions with good range sensor predictions: the five food-

best Samovars with a confidence region return an average NF score of 26.83, against 23.79

for the linear HMMs.

149

5.4.2.2 Food

Interestingly, the even greater intra-class variability of the Samovar/2/16s is not helped

by the confidence region but rather made worse: from the bottom right-hand plot it can be

seen that more of them make false positive food predictions in scenario 6. This apparently

comes about when the confidence region intervenes to prevent a model from making an over-

precise range sensor prediction, and effectively resets its hidden state-including its memory

of where it is in the arena.

Just as in the NF scatterplots (section 5.4.2.1), although to a lesser extent, there

is evidence of overfitting in the food-prediction plots for the 32-component models: the

hitherto tight relationship between F+1_4_6 performance on the training and test data sets

150

5.4-2.2 Food

Interestingly, the even greater intra-class variability of the Samovar/2/16s is not helped

by the confidence region but rather made worse: from the bottom right-hand plot it can be

seen that more of them make false positive food predictions in scenario 6. This apparently

comes about when the confidence region intervenes to prevent a model from making an over-

precise range sensor prediction, and effectively resets its hidden state—including its memory

of where it is in the arena.

Just as in the NF scatterplots (section 5.4.2.1), although to a lesser extent, there

is evidence of overfitting in the food-prediction plots for the 32-component models: the

hitherto tight relationship between F+i_4_e performance on the training and test data sets

150

5.4.2.2 Food

has weakened, especially in the case of the Samovar/1/32:

Mean p(rfood > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

0.8

0.6

0.4

0.2-

Cond. HMM/32 MFP = 0.0

+0

Fi +

+ x F4 x

+7

Ou I I

0 0.2 0.4 0.6 0.8

Cond. Linear HMM/32 MFP = 0.0

x 0.4H .. - 0.4

0 0.2 0.4 0.6 1 0.8

Cond. Samovar/1/32 MFP = 0.0

0

1

0.8

0.6

1

0.8

0.6

0.4

0.2

Cond. Samovar/2/32 MFP = 0.0

xlx
0

0 0.2

x

0.4

0

F6

F+1-4-6 0

+ +

0.6 0.8 1

0.4

0.2

0
0

0.8

0.6

0.4

0.2

Cond. HMM/32 MFP = 0.1

Cond. Linear HMM/32 MFP = 0.1

0.2 0.4 0.6 0.8

Cond. Samovar/1/32 MFP = 0.1

0.2 0.4 0.6 0.8

1

1

Cond. Samovar/2/32 MFP = 0.1

In fact some of the Samovar/2/32s and Samovar/3/32s even make unusual false positive

predictions for scenario 3 (riot shown).

The ,joint Samovar model was unable to get as good a grip on the food occurrences as

the conditional models with fewer than 32 mixing components at its disposal. In fact it's

151

5.4.2.2 Food

has weakened, especially in the case of the Samovar/1/32:

Mean p(rf,,o(l > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

1

0.8

0.6

0.4

0.2

0
0

Cond. HMM/32 MFP = 0.0

Cond. Linear HMM/32 MFP = 0.0

Cond. Samovar/1/32 MFP = 0.0

1 I I

0.2 0.4 0.6 0.8

Cond. Samovar/2/32 MFP = 0.0

1

1

0.8

0.6

0.4

0.2

0
0

Cond. HMM/32 MFP = 0.1

Cond. Linear HMM/32 MFP = 0.1

Cond. Samovar/1/32 MFP = 0.1

Cond. Samovar/2/32 MFP = 0.1

0.2 0.4 0.6 0.8 1

In fact some of the Samovar/2/32s and Sarnovar/3/32s even make unusual false positive

predictions for scenario 3 (not shown).

The joint Samovar model was unable to get as good a grip on the food occurrences as

the conditional models with fewer than 32 mixing components at its disposal. In fact it's

151

easy to see tllat, the "off by one" nature which the conditional model acquires when the

0111,1)111 11111ctloll is assllllllate(1 into the dyIliulllcs (section 4.2.1.1)-with the mixing state at

tlllie t directly (lel,erII11I11ng the sensor readings at time t + 1-is advantageous when it comes

to storing a fact over several timesteps. Effectively, the conditional models only have to learn

to relnenlber the landlnark notch of 110 for three timesteps, while the joint models have to

renieniber it, for four. Sixteen components do not, therefore, seem to be enough to get the

true positive food probabilities up in situation 1 and the false positives down in situations 4

and 6:

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0
0

0#
0

0
0

Joint Samovar/2/16 MFP = 0.0

C t_+

l

X

M
+

+ X
X+

M

M
M

M -
F1 + -
F4 X

F6 M

X F+1-4-6

0.2

Joint Samovar/3/16 MFP = 0.0

FMr

M

X

X I

1 + +
+ XXX $

, '4 +

m l M

X +

Cc

X

M
M +

M

0.2

0.2

0.4

0.4

0.4

Mean p(ri,oo(i > 0.5) and accuracy in environment 1

0.6

0.6

Joint Samovar/4/16 MFP = 0.0

0.6

x-axis: training run; y-axis: test run

0.8

0.8

0.8

o° a
El + K t]

X +

X

XMI

X

L

M +

M X
X

X
M

I 1 1

M

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0IR
0

X

1

X
X

CJC] +0
X

y}X + 3KX
JIRL`

I I

++

1

M

0

0.2

0.2 %
x

0
0 0.2

152

Joint Samovar/2/16 MFP = 0.1

0.4 0.6 0.8

Joint Samovar/3/16 MFP = 0.1

1

M

M

M

M M

X

M

X

X

X f

X

+ +

x V
X

X+

+w X

X M

0.2 0.6 0.4

Joint Samovar/4/16 MFP = 0.1

1 F----l
X0 o

X EW *f D x'X
31E

lif M X
X

M

0.8

0.4 0.6 0.8

X
+

1

1

1

Even with 32 discrete states in play, three dimensions of linear hidden state are needed

5.4.2.2 Food 5.4.2.2 Food

easy to see that the "off by otie" nature which the conditional model acquires when the

ot1t,pttt hinctioti is assiitiilated into the dynamics (section 4.2.1.1) -with the mixing state at

titrne t directly determining the sensor readings at time t + 1-is advantageous when it comes

to storing a. fact over several timesteps. Effectively, the conditional models only have to learn

to retnetnber the laitdunark notch of 110 for three timesteps, while the joint models have to

remetnber it, for four. Sixteen components do not, therefore, seem to be enough to get the

true positive food probabilities up in situation 1 and the false positives down in situations 4

and 6:

Mean 1)(rfo,()(t > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

0.8

0.6

0.4

0.2

0.8

0.6

04

0.2

Joint Samovar/2/16 MFP = 0.0

0.2

I I I I

0.4 0.6 0.8

Joint Samovar/3/16 MFP = 0.0

71! + +

1 0
0 0.2

m

DCh'

P
L9

+ 11 OF

firr x

0.4

II
0.6 0.8

Joint Samovar/4/16 MFP = 0.0

1

+

1

0.8

0.6

0.4

0.2

0
0

Joint Samovar/2/16 MFP = 0.1

I I I I

0.2

x

3X +

lfk

1

Joint Samovar/3/16 MFP = 0.1

Joint Samovar/4/16 MFP = 0.1

0.4 0.6 0.8

Even wit}t 32 discrete states in play, three dimensions of linear hidden state are needed

152

5.4.2.3 Qualitative

finally to achieve a few F+1 _4_6 scores above 90%:

Mean p(reoocl > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

0.8

0.6

0.4

0.2

0
0

0.8

0.6

0.4

1

x

x
0

x

0.6

00 +o

Joint Samovar/2/32 MFP = 0.0

x +
+ 0+

x +

° +
o + 11?81 -.

x x
O

x
x

F1 +

x F4 x
+

F6 x F+1-4-6 o

I Ix I I

0.2 0.4 1 0.8

Joint Samovar/3/32 MFP = 0.0

0.2

I

0
AJOW

0 J

0.8

0.6

0.4

I I I

0

0

+

0 0.2 0.4 0.6 0.8 1

0.2

Joint Samovar/4/32 MFP = 0.0

x#

x ++w

1

0.8

0.6

0.4

0.2

x 1 1 1 1

0 - - - - 0

Joint Samovar/2/32 MFP = 0.1

0.2 0.4 0.6

Joint Samovar/3/32 MFP = 0.1

0.2 0.4 0.6

Joint Samovar/4/32 MFP = 0.1

x

x

N x

xx

0

x x

0 o+1

0.8

0.8

1

1

+ o o +

o

A I , I I I P

0 0.2 0.4 0.6 0.8 1 0

5..4.2.3. Qualitative

0.2 0.4 0.6 0.8 1

It's interesting to look at the way each class of model categorises the situations it

encounters in the simulated robot environment (i.e. the way it distributes them between

its components). The diagrams that follow show by mean of colour codingl0 the component

judged most probably to have been active at each position the robot occupied, in retrospect

10 apologies to those reading in black and white

153

5.4.2.3 Qualitative

titta.lly to achieve a few F+1_4_6 scores above 90%:

Mean p(rfoo(j > 0.5) and accuracy in environment 1

x-axis: training run; y-axis: test run

Joint Samovar/2/32 MFP = 0.0 Joint Samovar/2/32 MFP = 0.1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

1

0.8

0.6

0.4

0
0
00 +10

0)k +

I I I

0 0.2 0.4 0.6 0.8

Joint Samovar/3/32 MFP = 0.0 Joint Samovar/3/32 MFP = 0.1

1

0.8

0.6

0.4

o ++
I

13< xx +

x @* +

IN
31f X* 0

xx

l I I _J
*I

x x 0
11

p

k 0

xFh
x*

x
x

0

0.2 ". x

0
1 0 0.2 0.4 0.6 0.8 1

Joint Samovar/4/32 MFP = 0.0 Joint Samovar/4/32 MFP = 0.1

1 1
,_] 0

0.8 f 0 +Q 0.8 f-' +* x 000

0.6 + 0.6

E1*

0.4 0.4
x

+ + x

0.2 ,.. 0.2
' x

0 0 L), I

)K

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

5.4.2.3. Qualitative

It's interesting to look at the way each class of model categorises the situations it

encounters in the simulated robot environment (i.e. the way it distributes them between

its components). The diagrams that follow show by mean of colour codingl0 the component

judged most probably to have been active at each position the robot occupied, in retrospect

10 apologies to those reading in black and white

r W

153

5.11.2.3 Qualitative

(condit.ioiied on the whole data set). Here is the best sixteen-component HMM, measured by

NP:

:And for coiiiparisoii the NF-best conditional Samovar/16/1 ...

.+

(116)

r r rti .

Both models classify the steps covering the "notch" landmark uniquely or almost so.

Flowever, the Samovar is able to expend fewer states on handling the more uniform parts

of the arena-for iiistarice, it doesn't have to devote separate components to the situations

where it is near and far froth a flat wall-leaving it enough left over to mark out uniquely

the region between the notch and the "food" 11. The HMM shown here can't, in fact, predict

it's utiiug the 4ructure showii in c.f. (115)

154

5./.2.3 Qualitative

(condit.ioned on the whole data, set). Here is the best sixteen-component HMM, measured by

NP:

.fitted

:1nd for conaparisota the NF-best conditional Sarnovar/16/1 ...

(116)

Jwd

Both anodels classify the steps covering the "notch" landmark uniquely or almost so.

however, the Samovar is able to expend fewer states on handling the more uniform parts

of the arena for instance, it, doesn't have to devote separate components to the situations

where it, is near and fa.r froth a flat wall leaving it enough left over to mark out uniquely

the regio 0l between the notch and the "food" t 1. The HMM shown here can't, in fact, predict

it,'- usil g tho' 5t,r110,111-c shown iia c.f. (115)

154

5.4. ,2.3 Qualitative

die food sensor readings accurately (although others of the same size, selected by their

promise on this task, could-see section 5.4.2.2). Corners are also treated more or less

regularly: note the sequence grey-bhie, purple, orange, < ells in (116). The NF-best linear

IIMM showed a similar pattern, though not quite as clean.

Although environment 1 offered no opportunity for the Samovar models to employ their

linear hidden state for Kaltnan-style speed estimation, they did manage to discover some

useful things to do with it. For example, in the following scenario ...

it is obviously advantageous for the robot to remember how far away from the wall it was

before it turned onto the food and lost contact with it, so that it knows what the right-

pointing range sensor reading will be when it turns back. Analysis of the way the V-

related blocks of the dynamics matrices stacked up (given, of course, the ordering of the

components used in the most probable Q-sequences), followed by empirical testing, showed

that a Sattiovar/ 1 / 16 model was indeed making this inference: changing the initial wall-

distance sensor reading over the range 0.4-0.7 yielded an exactly matching variation in

the (highly confident) reading predicted two steps later. A similar encoding was used to

remember the distance from the wall while the robot passed through the landmark "notch"

(at which point the right-pointing sensor was generally returning an uninformative 1.0).

Various other apparently significant relationships were apparent, especially in the approach

to the top right-hand corner of the arena, but it was not possible to interpret them with any

confidence.

The models' predictions were found sometimes to be significantly multi-modal; for

instance, the following graph shows the predictive density obtained at a particularly

155

5.4.2.3 Qualitative

the food sensor readings accurately (although others of the same size, selected by their

pr(>>aais(' on this task, could see section 5.4.2.2). Corners are also treated more or less

regularly: note the sequence ,,wy 1)1111)1c, , in (116). The NF-best linear

11 1 1 NI showed a silailar pattern, though not quite as clean.

Although euviromnetat 1 offered no opportunity for the Samovar models to employ their

linear hiddell state for Kahnan-style speed estimation, they did manage to discover some

Useful things to do with it. For example, in the following scenario ...

it is obviously advantageous for the robot to remember how far away from the wall it was

before it, turned onto the food and lost contact with it, so that it knows what the right-

poilltillg range sensor reading will be when it turns back. Analysis of the way the V-

related blocks of the dynamics matrices stacked up (given, of course, the ordering of the

conlponellts used in the most probable Q-sequences), followed by empirical testing, showed

that a Samovar/1/16 model was indeed making this inference: changing the initial wall-

distance sensor reading over the range 0.4-0.7 yielded an exactly matching variation in

the (highly colafidelat) reading predicted two steps later. A similar encoding was used to

relnellaber the distance from the wall while the robot passed through the landmark "notch"

(at which point the right-pointing sensor was generally returning an uninformative 1.0).

Various other apparently significant relationships were apparent, especially in the approach

to the top right-hand corner of the arena, but it was not possible to interpret them with any

cd)I1fldelice.

The models' predictions were found sometimes to be significantly multi-modal; for

instance, the following graph shows the predictive density obtained at a particularly

155

5.4.3.1 Nonfood

cotafusing timestep from a Sainovar/1/16 model:

0 I ' 0.5
Right-pointing sensor reading

The peaks in the graph indicate several well-separated hypotheses about which combination

of forward- and right-pointing range sensor readings seem plausible on the basis of the

experiences leading up to this timestep. Each mode corresponds to a possible mixing state

of the model.

5.4.3. Environment 2

The story is fairly similar in the other environment (section 5.2.2), except that, as

expected, the element of momentum in the robot's dynamics gives an advantage to the

Samovar models which are able to represent it more or less exactly.

5.4.3.1. Nonfood

Surprisingly, the NF predictive pdf values achieved by the conditional models in

environment 2 are very different on the test as against the training data even with as few

156

5.4.3.1 Nonfood

conftisittg timestep froth a. Samovar/1/16 model:

The peaks in the graph indicate several well-separated hypotheses about which combination

of forward- and right-pointing range sensor readings seem plausible on the basis of the

experiences leading up to this timestep. Each mode corresponds to a possible mixing state

of tlie model.

5.4.3. Environment 2

The story is fairly similar in the other environment (section 5.2.2), except that, as

expected, the element of momentum in the robot's dynamics gives an advantage to the

Saimovar models which are able to represent it more or less exactly.

5.4.3.1. Nonfood

Surprisingly, the NF predictive pdf values achieved by the conditional models in

environment 2 are very different on the test as against the training data even with as few

156

5.4.3.1 Nonfood

as eiglit components:

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

45

40

35

30

25

20

15

10

5

0

HMM/8 0
Linear HMM/8 +

Cond. Samovar/8/1
2 x

+

+
++

0 +

0

x

x

x

x

x

x

0 50 100 150 200 250

NF predictive pdf value of training data, per timestep

300

(117)

This applies even to the linear HMMs, which promise an NF of around 140 and deliver

around 35. One possible reason for this is that they have relied (as they must) on piecewise

approximation to capture the effect of the robot's speed on the development of its sensor

readings, and therefore fail to generalise naturally to the test run in which the robot's

trajectory is sometimes novel. When the confidence region is enabled, the test predictive pdf

values of the linear HMMs and Samovars improve:

70
Nonfood performance/generalisation in environment 2 (model failure probability = 0.1)

+

XA

x

60

x

C1

0 a

10

x

HMM/8 0
Linear HMM/8 +

Cond. Samovar/8/1
2 x

x
x ++ x

X x x

x
rI<

x

+
x

x

x

xp x

0
0 20 40 60 80 100 120 140

NF predictive pdf value of training data, per timestep

x

x

157

5.4.3.1 Nonfood

as eigltt co1ttponettts:

45

40

35

30

25

20

15

10

5

0
0 50

O x
x x

ox

x

100 150 200

NF predictive pdf value of training data, per timestep

250 300

This applies even to the linear HMMs, which promise an NF of around 140 and deliver

around 35. One possible reason for this is that they have relied (as they must) on piecewise

approximation to capture the effect of the robot's speed on the development of its sensor

readings, and therefore fail to generalise naturally to the test run in which the robot's

trajectory is sometimes novel. When the confidence region is enabled, the test predictive pdf

values of the linear HMMs and Samovars improve:

70

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

Linear HMM/8
Cond Sarnovar/8/1

++

(117)

x

60

50

40

Nonfood performance/generalisation in environment 2 (model failure probability = 0.1)

x

30

x

20

10

0
0

1-1

20

HMM/8
Linear HMM/8 +

Cond. Samovar/8/1 o
2 x

40 60 80 100
NF predictive pdf value of training data, per timestep

x

120 140

157

5.4.3.1 Nonfood

Note that the plain HMMs react very badly to the confidence region: there is no way

for there to understand this more complicated environment, so their components hardly

specialise, their gating patches are large, the confidence region takes over too often, and the

resulting predictive pdf values are low.

The absolutely highest nonfood predictive pdf value for environment 2 is obtained from

a Samovar/16/1. However, these models depend heavily on an aggressive confidence region;

with the confidence region disabled, most of their predictive pdf values are very low:

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

35

a 30
2 to

a)

10
a
a)

CL

U- z

HMM/16 °
Linear HMM/16 +

Cond. Samovar/16/1
2 x +

+ +

x

0

8

+ +

a

x

x

x x
X

x x x
I i nn 1

200 300 400 500

NF predictive pdf value of training data, per timestep

x

x

600 700

and even with a model failure probability of 0.1, their training-set predictive pdf values

correlate poorly with their test-set predictive pdf values, which are in any case no better

158

5.4.3.1 Nonfood

Note that the plain HMMs react very badly to the confidence region: there is no way

for them to understand this more complicated environment, so their components hardly

specialise, their gating patches are large, the confidence region takes over too often, and the

resulting predictive pdf values are low.

The absolutely highest nonfood predictive pdf value for environment 2 is obtained from

a Samovar/16/1. However, these models depend heavily on an aggressive confidence region;

with the confidence region disabled, most of their predictive pdf values are very low:

35 1

30

25

20

15

10

5

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

fM
Linear HMM/16 +

Cond. Samovar/16/1
2 x

+

0
0 100 200 300 400 500

NF predictive pdf value of training data, per timestep

x

600 700

and even with a model failure probability of 0.1, their training-set predictive pdf values

correlate poorly with their test-set predictive pdf values, which are in any case no better

158

5.4.3.1 Nonfood

thaii those of the linear 11MMs:

70

60

E

Nonfood performance/generalisation in environment 2 (model failure probability = 0.1)

+

+

x
Cu
TJ

40

0

30

+

+
+ x

+
>5

+

+

x

x

x

x xx x

10

0`
0

Nonfood performance/generalisation in environment 2 (model failure probability = 0.5)

50

It is only when p(Q1 = 0) is raised to 0.5 that the Samovar/1/16s do well .. .

70

60

E

0

r DJ

+

11

+

+
x

x

x

x

11

HMM/16 o
Linear HMM/16 +

Cond. Samovar/16/1
2 x

100 150 200 250 300
NF predictive pdf value of training data, per timestep

x

x

x

+ W

10

0L
0

+
+

50

+

x

x 0

x

x

x

x

x
x

x

x

HMM/16 o
Linear HMM/16 +

Cond. Samovar/16/1
2 x

100 150 200 250 300
NF predictive pdf value of training data, per timestep

... and even then the NF predictive pdf value of the five most promising Samovar/16/1s is

only slightly higher, at 58.35, than that of the five most promising linear HMM/16s (with

159

5.4.3.1 Nonfood

t,h;aaI those of* the linear IIMMs:

70
Nonfood performance/generalisation in environment 2 (model failure probability = 0.1)

60

50

40 x

30

x
x

0
x

0

20

x

x

HMM,%16
Linear HMM/16 +

Cond. Samovar/16/1 0
2 x 10

0
0 50 100 150 200

NF predictive pdf value of training data, per timestep
250

It is only when pp(Q' = 0) is raised to 0.5 that the Samovar/1/16s do well ...

70

60

50

0
a) 2

30

a)

20

T a
IL z

10

0

Nonfood performance/generalisation in environment 2 (model failure probability = 0.5)

300

x

0

x
0o

x x

>QC

0

x

+ +

Ox

x
+ + x HMM/16

+ Linear HMM/16 +
+ + x Cond. Samovar/16/1 r t5 + 2

0 50 100 150 200
NF predictive pdf value of training data, per timestep

250 300

... and even theca the NF predictive pdf value of the five most promising Samovar/16/1s is

only slightly higher, at 58.35, than that of the five most promising linear HMM/16s (with

159

5.4.3.1 Nonfood

p(Q' = 0) = 0.1), at 53.75; it's clear from the graphs that this difference is unlikely to be

robust. A plot of the profile of all predictive pdf values obtained over a single run by each of

three different models ...

1000

100

10

1

0.1

1 T
Cond. Samovar/1/16 ------

Linear HMM/16
HMM/16 ----

0.01 ' --- _-- 1 1 1

0 100 200 300 400 500 600
Number of timesteps at which exceeded

... shows the Samovar achieving even higher predictive pdf values than the linear HMM

at the top end (left), and also producing fewer poor predictions with predictive pdf values

in the range 0.1-1 (right), but losing out in the middle. The vanilla HMM, shown for

comparison as the lowest curve, produces the fewest high predictive pdf value predictions

and also the fewest very low predictive pdf value ones. (The models used to produce this

plot were the NF-best in their respective classes.)

32 states seem to be too many; generalisation fails completely in the absence of a

confidence region, with models of all classes except the plain HMMs reporting very high

160

5.4.3.1 Nonfood

pp(Q' = 0) = 0.1), at 53.75; it's clear from the graphs that this difference is unlikely to be

robuist. A plot of the profile of all predictive pdf values obtained over a single run by each of

tllree different rno(lels ...

1000

100

10

1

0.1

0.01
0 100 200 300 400 500

Number of timesteps at which exceeded
600

... shows the Samovar achieving even higher predictive pdf values than the linear HMM

at the top end (left), and also producing fewer poor predictions with predictive pdf values

in the range 0.11 (right), but losing out in the middle. The vanilla HMM, shown for

comparison as the lowest curve, produces the fewest high predictive pdf value predictions

and also the fewest very low predictive pdf value ones. (The models used to produce this

plot were the NF-best in their respective classes.)

32 states seem to be too many; generalisation fails completely in the absence of a

confidence region, with models of all classes except the plain HMMs reporting very high

160

5.4.3.1 Nonfood

predictive i>df values on the training set and very low ones on the test set ...

18

a
a)

16

F o

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

0
0

aa)
14

0

0

0

cu

a 10
0

0

0 Q

2

0

0

HMM/32 o
Linear HMM/32 +

Cond. Samovar/32/1 o
2 x

0 50 100 150 200 250 300 350 400
NF predictive pdf value of training data, per timestep

o 0
o +

O nO 4 O +

1:3 P46 11 4P 4 44 4141 U W 0
450

x

500 550

and even with an aggressive model failure hypothesis, nearly all the models turn out to

be mediocre:

70

a
a)

60

U,
a)
E

Nonfood performance/generalisation in environment 2 (model failure probability = 0.5)
DI

HMM/32 0
Linear HMM/32 +

Cond. Samovar/32/1 0
2 x

+

+

+

x

Q

a)
Q
LL z

10
0

0 00
00

& 00
0

00
00

+

0

0

O X +

O

0

0

0 M

x

x

0 0

O

0

x

0
0 50

x

x x
x

x x

x

x

100 150 200 250 300 350 400 450 500 550
NF predictive pdf value of training data, per timestep

As in environment 1, the joint models achieve considerably lower NF predictive pdf

values than the conditional ones, and require a higher-dimensional linear hidden state.

161

5.4.3.1 Nonfood

predictive pdf values oil the training set and very low ones on the test set ...

18

16

LL z

0

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

HMM/32
Linear HMM/32

Cond. Samovar/32/1
2

2

0 50 100 150 200 250 300 350 400 450 500 550
NF predictive pdf value of training data, per timestep

. and even with an aggressive model failure hypothesis, nearly all the models turn out to

be tnediocre:

70

0

Nonfood performance/generalisation in environment 2 (model failure probability = 0.5)

60
Linear HMM/32

Cond Sarnovar/32/1 i_

2 x

50

40
x + +

30

+ rl
0u +

X
0 ++

0
0

20
0

10

0 50

n Lq

x

x

X + x
n `- x X

0
x

100 150 200 250 300 350 400 450
NF predictive pdf value of training data, per timestep

x

500 550

As in environment 1, the joint models achieve considerably lower NF predictive pdf

values than the conditional ones, and require a higher-dimensional linear hidden state.

161

5.4.3.1 Nonfood

However, they are not subject to the same degree of generalisation failure with eight

conponents (cf. (117)), perhaps because the reading/action density modelling by which the

cotnponeuts' activation probabilities is judged leaves less room for poor optimisation than

the conditional models' gating rule (section 5.3.1.4):

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

14

n 12

0
a>

E

a`) 10 n
Cu

ro

11 8
a?

0
a>
0

6

a>

4

CL

LL
Z 2

0

0 5 10 15 20 25 30 35

NF predictive pdf value of training data, per timestep

40 45

Adding a confidence region (not shown) improves both the train/test correlation and the

test predictive pdf values. When more components are added, the models achieve higher

predictive pdf values at some steps, but this gain is more than offset by an increase the

number of steps at which poor predictions are made.

Comparison of the predictive pdf value profiles for conditional Samovar/8/1 and joint

Samovar/8/4 shows that the latter produces if anything a slightly larger number of genuinely

162

5.4.3.1 Nonfood

However, they are not subject to the same degree of generalisation failure with eight

components (cf. (117)), perhaps because the reading/action density modelling by which the

components' activation probabilities is judged leaves less room for poor optimisation than

the conditional models' gating rule (section 5.3.1.4):

14

12

10

8

6

4

2

0
0

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0)

l)1111 .` 1111 v r f3/' C

3 +
4 1-

0

0

0 0
0

+ 0

5

0

10 15 20 25 30 35

NF predictive pdf value of training data, per timestep

0

0

40

0

45

Adding a confidence region (not shown) improves both the train/test correlation and the

test predictive pdf values. When more components are added, the models achieve higher

predictive pdf values at some steps, but this gain is more than offset by an increase the

number of steps at which poor predictions are made.

Comparison of the predictive pdf value profiles for conditional Samovar/8/1 and joint

Samovar/8/4 shows that the latter produces if anything a slightly larger number of genuinely

[7

162

5./x.3.2 Food

informative predictions, but fewer very precise ones and more extremely poor ones:

10000

1000

100

0.1

0.01

The best joint Samovar/4/8 -
The best cond. Samovar/1/8 ----

10

C

0.001 ' ' ' ' ' ' '

0 100 200 300 400 500 600
Number of timesteps at which exceeded

The model failure probability was fixed here at 0.1, but the same general pattern holds for

different p(Qt = 0) and different numbers of mixing states. It's easy to account for the

lower cap on the joint model's best predictive pdf values as a side-effect of the fact that all

of its inferences must be channelled through a linear dynamics noise process as well as an

output noise process, both with nonzero (and indeed regularised) variance. The joint model's

increased propensity to make very misleading predictions arises from a relative inability of

its confidence region to truncate them-the predictive pdf values grouped in an obvious

ledge around 0.25 in the data from the conditional model reflect timesteps at which the

prediction comes purely from its fallback component, and the data from the joint model

lacks this feature. What the joint model appears to be doing is exploiting the actions' and

readings' dependence on the linear hidden state (section 4.2.3.1) to make one of its learned

components fit the former by adjusting the latter; the noise variances provide sufficient

flexibility for this mostly to seem preferable to the alternative of invoking the model failure

hypothesis.

5.4.3.2. Food

Although the number of timesteps over which the models have to remember the

landmark "tongue" in environment 2 is smaller than the time distance between the "notch"

and the food in environment 1, the less regular shape of the enclosure in the area around the

163

5.4.3.2 Food

informative predictions, but fewer very precise ones and more extremely poor ones:

10000

1000

100

10

1

0.1

0.01

0.001
0 100

I he host pint Snrnovar/4/£3
The best cond. Samovar/1/8 ----

200 300 400 500
Number of timesteps at which exceeded

600

The model failure probability was fixed here at 0.1, but the same general pattern holds for

different p(Qt = 0) and different numbers of mixing states. It's easy to account for the

lower cap on the joint model's best predictive pdf values as a side-effect of the fact that all

of its inferences must be channelled through a linear dynamics noise process as well as an

output noise process, both with nonzero (and indeed regularised) variance. The joint model's

increased propensity to make very misleading predictions arises from a relative inability of

its confidence region to truncate them-the predictive pdf values grouped in an obvious

ledge around 0.25 in the data from the conditional model reflect timesteps at which the

prediction comes purely from its fallback component, and the data from the joint model

lacks this feature. What the joint model appears to be doing is exploiting the actions' and

readings' dependence on the linear hidden state (section 4.2.3.1) to make one of its learned

components fit the former by adjusting the latter; the noise variances provide sufficient

flexibility for this mostly to seem preferable to the alternative of invoking the model failure

hypothesis.

5.4.3.2. Food

Although the number of tirnesteps over which the models have to remember the

landmark "tongue" in environment 2 is smaller than the time distance between the "notch"

and the food in environment 1, the less regular shape of the enclosure in the area around the

163

food alld greater variability in the trajectories with which the robot approaches it makes it

very difficult to achieve the near-perfect food predictioaas of section 5.4.2.2:

0.8

0.6

0.4

0.2

0.8

0.6

x 0.4
+ U

W +4 ++
0.2 x +

x '' +++

0
0 0.2 0.4 0.6

0.8

0.6

0.4

0.2

0.8

00
0

0
0

xx

+
x

x

8W

++ +

®4+ $
+ JI
++

0

x

0.2

Cond. Linear HMM/8 MFP = 0.0

Cond. Samovar/1/8 MFP = 0.0

x

FT
x

+ a +°° ++

4 rt ' °

0.2

0.2

Cond. HMM/8 MFP = 0.0

0.4

0.4

0.4

Mean, j)(rrood > 0.5) and accuracy in environment 2

z-axis: training run; y-axis: test run

Cond. HMM/8 MFP = 0.1

0.6

0.6

0.6

0.8

0.8

0.8

1

1

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

I 0m
0.8 1 0

0.8

0.6

0.4

Cond. Samovar/2/8 MFP = 0.0

074
E) +

°+ °
0.6 A It ° - 0.6

++

0.8

0.2

0
0

164

x
x x

0.2 0.4 0.6 0.8

Cond. Linear HMM/8 MFP = 0.1

0.2

Cond. Samovar/1/8 MFP = 0.1

° °

x °
x xDb &F +

x + °
° °+

+

x
x x

0.2 x +

14111111 Ix 1 I !

0 0.2 0.4 0.6 0.8 1

Cond. Samovar/2/8 MFP = 0.1

Lx+

x
x

+ +1

+

+

0

0.2

+

0.4

0.4

+

0.6

0.6

+

0.8

0.8

+

5..4.3.2 Food

Some of the HMM/8s account well for the food sensor readings, but (as was seen in

section 5.4.3.1) their range sensor predictions are very poor, whereas when the confidence

5.43.2 Food

food a.IId greater variability in the trajectories with which the robot, approaches it makes it

very diflicltlt to achieve the near-perfect food predictions of section 5.4.2.2:

Mc(in p(rr,,,,(i > 0.5) and accuracy in environment 2

r-axis: training run; y-axis: test, run

Cond. HMM/8 MFP = 0.0 Cond. HMM/8 MFP = 0.1

0.8

06

04

02

+ ° o ni%
U

+ ..

0.8

0.6

0.4

0.2

0L* I I I I I 0

0 0.2 0.4 0.6 0.8 1 0

Cond. Linear HMM/8 MFP = 0.0

Cond. Samovar/1/8 MFP = 0.0

1

08

0.6

0.4

0.2

0m
0

Cond. Samovar/2/8 MFP = 0.0

1k

0.2

AP

I I I

0.4 0.6 0.8 1

x
+ r+ J*

)K El

+

+

I I I I

0.2 0.4 0.6 0.8

Cond. Linear HMM/8 MFP = 0.1

Cond. Samovar/1/8 MFP = 0.1

Cond. Samovar/2/8 MFP = 0.1

1

Souse of the HMM/8s account well for the food sensor readings, but (as was seen in

section 5.4.3.1) their range sensor predictions are very poor, whereas when the confidence

164

C11il)IC(I, tilO five I)CSt Saiiiovar/2

5.4.3.

I 8s as nicasured by food prediction accuracy

Food

I

(flIIICVC(I au average /VF' C SCIJIC of 41 Qr 'Ut).

\VIIPII tilO 1I1O(ICIS are given. SiXtCCii coiiipoiients, many of theni achieve food sensor

aI)OvC 90%. Note that the confidence region (right hand column) helps all the

1I1O(ICIS Cut (IOWII Oil false positives ill scenario 6 and distinctly improves the net

of all t3XCPI)t the I)I?1i11 HIVIIfVIS:

—6

Mean v(rfood > 0.5) and accuracy in environment 2

x—axis: training run; y-axis: test

1

0.8

0.6

0.4

0.2

0
0

Cond. HMM/16 MFP = 0.0

1

0.8

0

Cond. HMM/16 MFP = 0.1

1

0+8

0.6

0.4

0.2

0
0

Cond. Linear HMM/16 MFP = 0.0

1

0.8

0.6

0.4

0.2

0
0

Cond. Linear HMM/16 MFP =0.1

1

0.8

0.6

0.4

0.2

0

Cond. SamovarIlIl6 MFP =0.0
— 1

0.8

0.6

0.4

0.2

Cond. SamovarIlIl6 MFP =0.1

1

0.8

0.6

0.4

0.2

0
0

Cond. Samovar/2/16 MFP

1

0.8

0.6

0.4

042

0

Cond. Samovar/2/16 MFP

0.8

165

FCgIOfl was

2

F4

F6

run

0
F1 +

x

a 0

I a 0
0
0

U I
+ +

El

++

+

0

+

x

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1

— S
I

042 0.4 0.6 0.8 1

. — p_
I
I

— 0

0
a

* 0
—

*
x

+ 0

++ +

0 0.2 0.4 0.6 0.8 1

=0.0

0 042 0.4 0.6 0.8 1

=0.1

0.2 0.4 0.6 0.8 1 0 0.2 044 0.6 1

5..3.2 Food

region was enabled, the five best Samovar/2/8s as measured by food prediction accuracy

achieved au average NF score of 41.35.

Wheii the models are given sixteen components, many of them achieve food sensor

accturacies above 90%. Note that the confidence region (right hand column) helps all the

models cut down on false positives in scenario 6 and distinctly improves the net F+1_4_6

accuracy of all except the plain HMMs:

Mean p(r1<,i > 0.5) and accuracy in environment 2

x-axis: training run; y-axis: test run

1

08

06

04

0.2

I 0
0

1

0.8

0.6

0.4

0.2

0m
0

Cond. HMM/16 MFP = 0.0

Cond. Linear HMM/16 MFP = 0.0

*

I I I I

0.2

*

0.4 0.6 0.8

Cond. Samovar/1/16 MFP = 0.0

I T ---I
*

0.2 0.4

+ D 0+
+

+ o

1

Cond. HMM/16 MFP = 0.1

Cond. Linear HMM/16 MFP = 0.1

Cond. Samovar/1/16 MFP = 0.1

0.6 0.8 1

Cond. Samovar/2/16 MFP = 0.0 Cond. Samovar/2/16 MFP = 0.1

165

5.4.3.2 Food

With 32 coinponeiits, overlittinig has set in, with most of the models promising near-

per(cct predictions oil the traiiiing data and delivering relatively poor ones on the test data:

Mean p(rroo<i > 0.5) and accuracy in environment -9

:r-axis: training run; y-axis: test run

Cond. HMM/32 MFP = 0.0

1

0.8 F4 X
F6 r +

F o

1

0.6 H +1 46 -N 0.6

0.4 0.4

0.2 0.2

I I I I

0.2 0.4 0.6 0.8

Cond. Linear HMM/32 MFP = 0.0

1

0.8

0.6

0.4

0.2

k

-x

0- I I I 1

0 0.2 0.4 0.6 0.8

Cond. Samovar/1/32 MFP = 0.0

I I I

0.8

0.6

0.4

0.2

x

1

0.8

0.8

0.6

0.4

0.2

Cond. HMM/32 MFP = 0.1

, I I I

0.2 0.4 0.6 0.8

Cond. Linear HMM/32 MFP = 0.1

+j

0T1_I I I I

0 0.2 0.4 0.6 0.8

0.8

0 0.6 iC-

0.4

+ 0.2

F

Cond. Samovar/1/32 MFP = 0.1

+ + o0

+ o
+ +

{ I i I o I 016,
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

Cond. Samovar/2132 MFP = 0.0

0.2 0.4 0.6 0.8 1

Cond. Samovar/2132 MFP = 0.1

0.2 0.4 0.6 0.8

Food prediction in environment 2 proves less challenging for the joint Samovar models

than it does in environment 1, but most of the joint models of whatever size suffer from

generally low food predictions in scenario 1, and false positives in scenario 4: this appears

166

5.4.3.2 Food

With 32 coitponetut,s, overlitting has set in, with most of the models promising near-

predictions oft the training data, and delivering relatively poor ones on the test data:

Mean 1)(7-food > 0.5) and accuracy in environment 2

x-axis: training run; y-axis: test, run

Cond. HMM/32 MFP = 0.0 Cond. HMM/32 MFP = 0.1

1

0.8

0.6

0.4

0.2

0
0

F6 0

I I I I

0.2 0.4 0.6 0.8

1

0
0-8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8

Cond. Linear HMM/32 MFP = 0.0 Cond. Linear HMM/32 MFP = 0.1

1

0.8

0.6

0.4

0.2

o
0

0.8

0.6

0.4

0.2

I I I I

0.2 0.4 0.6 0.8

Cond. Samovar/1/32 MFP = 0.0

i

0 L j I I I -J
0 0.2 0.4 0.6 0.8

Cond. Samovar/2/32 MFP = 0.0

0.8

0.6

0.4

0.2

of I I I I

0 0.2 0.4 0.6 0.8

Cond. Samovar/1/32 MFP = 0.1

0.8

0.6

0.4

0.2

I I I I

0.2 0.4 0.6 0.8

Cond. Samovar/2/32 MFP = 0.1

0.2 0.4 0.6 0.8

Food prediction in environment 2 proves less challenging for the joint Samovar models

than it, does in environment 1, but most of the joint, models of whatever size suffer from

generally low food predictions in scenario 1, and false positives in scenario 4: this appears

166

5.1.3.2 Food

to be because their ga,tiilg rule is less cliscriltlina.ting that that of the conditional models, so

that they are ui<ahle to use range sensor reacliligs to ,judge precisely whether they will land

oii the Ibod. Nevertheless, the best models in each class offer reasonable accuracy, and a few

ad i ieve F+ -rates above 00 /o:

Mean p(rfoocl > 0.5) and accuracy in environment 2

x-axis: training run; y-axis: test run

Joint Samovar/218 MFP = 0.0

0.8

0.6

0.4

0.2
*

0
0 0.2

x
x

0.4

+

I I
0.6

Joint Samovar/3/8 MFP = 0.0

0.8

0.6-
x

+ +

0.4 + +
X

a

1

x +

0.2 x * *
X

X X I

0
0 0.2 0.4 0.6 0.8 1

Joint Samovar/4/8 MFP = 0.0

0.8

0.6

0.4

0.2 4*

+
+

+

0 0.2 0.4 0.6 0.8

0.8 - "n 0.8

04- x x t+ + --y 0.4

0.2- - 0.2

0.2 0.4 0.6

0.8

0.8 1

Joint Samovar/218 MFP = 0.1

Joint Samovar/3/8 MFP = 0.1

0 0 o
X l+

X+ d +
X o+ +

Joint Samovar/4/8 MFP = 0.1

0.2 0.4 0.6 0.8 1

167

5.4.3.2 Food

to be because their gating rule is less discriminating that that of the conditional models, so

that they are aanable to use range sensor readings to judge precisely whether they will land

on the food. Nevertheless, the best, models in each class offer reasonable accuracy, and a few

achieve T'+1-4-(; rates above 90%:

Mean V(7foo(i > 0.5) and accuracy in environment 2

x-axis: training run; y-axis: test, run

Joint Samovar/2/8 MFP = 0.0

Joint Samovar/3/8 MFP = 0.0

0.8

0.6

0.4

0.2

0m
0

Joint Samovar/2/8 MFP = 0.1

x

0.2 0.4 0.6 0.8

1

0.8

0.6

0.4

0.2

0
0

0IAI+ I I I

0 0.2 0.4 0.6 0.8

Joint Samovar/4/8 MFP = 0.0 Joint Samovar/4/8 MFP = 0.1

Joint Samovar/3/8 MFP = 0.1

167

5.4. 3.2 Food

Mean j)(rro0(i > 0.5) and accuracy in environment 2

x-axis: iraining run; y-axis: test, run

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

0

Joint Samovar/2/16 MFP = 0.0

0 Fl + o 0
F4 x
F 6 +

Ff1_4-6 0
+

+ _t
x
x

x +
+ + - x x + +

w
x

IX +

IN

Jf I I

0
U

0.2 0.4 0.6 0.8

0

Joint Samovar/3/16 MFP = 0.0

0.2 0.4 0.6 0.8 1

Joint Samovar/4/16 MFP = 0.0

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2 x

Joint Samovar/2/16 MFP = 0.1

Joint Samovar/3/16 MFP = 0.1

x

x

x +

0
o4

o 0

+

+ J
0 v,rr I l I I I

0 0.2 0.4 0.6 0.8 1

Joint Samovar/4/16 MFP = 0.1

168

5.3.2 Food

Mean /)(rr(i > 0.5) and accuracy in environment 2

X-axis: training run; y-axis: test run

1

08

0.6

0.4

0.2 t-

Joint Samovar/2/16 MFP = 0.0

Joint Samovar/3/16 MFP = 0.0

Joint Samovar/4/16 MFP = 0.0

1

0.8

0.6

0.4

0.2 x

Joint Samovar/2/16 MFP = 0.1

0.2 0.4 0.6 0.8

Joint Samovar/3/16 MFP = 0.1 I I
aa

+ o °
+

0 L* ,,,, 1 I I I

0 0.2 0.4 0.6 0.8

1

0.8

0.6

0.4

0.2

Joint Samovar/4/16 MFP = 0.1

0 'J I I I, j 0"* .I I I I

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

168

5.4.3.3 Qualitative

Mean p(rrood > 0.5) and accuracy in environment 2

x-axis: training run; y-axis: test; run

0.8

0.6

0.4 4 x

Joint Samovar/2/32 MFP = 0.0

0.8

0.6

0.4

0.2 x + +r 0.2

0 0
0 0.2 0.4 0.6 0.8 1 0

Joint Samovar/3/32 MFP = 0.0

0.8

0.6

0.4

Joint Samovar/2/32 MFP = 0.1

0.2 0.4 0.6 0.8

Joint Samovar/3/32 MFP = 0.1

1

1- T

x a
+

2xx

0.2 x x

x
x x

0

1

0.8

0.6#-

0.4

0.2

0.2

+ 11

x + +

0.4 0.6

+

0.8

Joint Samovar/4/32 MFP = 0.0

x
x

x

x

x

x x

+ 1 1. $_ 0 I I I+ 0 4L' 1 _1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

5.4-3.3. Qualitative

As one might hope, the Samovar models are able to use a single component to handle

the whole of the fairly regular area in the top and left hand parts of environment 2. The

x

Joint Samovar/4/32 MFP = 0.1

+ 0.8

0.6

+ - 0.4 x

x

+

++

+

1 0 0.2 0.4 0.6 0.8 1

169

5.4.3.3 Qualitative

Mean p(rfoo(d > 0.5) and accuracy in environment, 2

x-axis: training run; y-axis: test; run

0.8

0.6

0.4

0.2

0
0

0.8

0.6

0.4

0.2

Joint Samovar/4/32 MFP = 0.1

0 *l L
I

I
I

0 0.2 0.4 0.6 0.8

0.8

0.6

04

0.2

0
0

5.4.3.3. Qualitative

0

J
1

0.8

0.6

0.4

0.2

0
o E

A0 fi
0 +

fl,

0

0lO 1 I I 1 +

0 0.2 0.4 0.6 0.8

As one might, hope, the Samovar models are able to use a single component to handle

the whole of the fairly regular area a in the top and left hand parts of environment 2. The

169

Joint Samovar/2/32 MFP = 0.0

0.2 1

Joint Samovar/2/32 MFP = 0.1

0.8 1-

0.4

0

x y<
rr

0 0.2 0.4 0.6 0.8 1

0.2

Joint Samovar/3/32 MFP = 0.0 Joint Samovar/3/32 MFP = 0.1

0.4 0.6 0.8

Joint Samovar/4/32 MFP = 0.0

0.2 0.4 0.6

0

0

0.8

5.4.3.3 Qualitative

NF-best, joint Samovar/8/4, for example, segments its experiences like this:12

In fact, when the landmark hole in the bottom right-hand corner is open, the component

represented by the I iw1 (lots is the only one used. When it is closed, it triggers a separate

sequence of mixing states which end, potentially, in the "food" area. The NF-best eight-

component HMM doesn't really try to predict the range sensor readings, using mostly the

same fixed Gaussian magenta, or, when it is either very close to the wall or far away from it,

the even vaguer green:

The NF-best linear HMM is inclined to use up some of its components on discretising the

state information which the Samovar can represent numerically (though this turns out not

12 see section 5.4.2.3 for a description of what these diagrams mean

170

5.4.3.3 Qualitative

NF-best joint Sainovar/8/4, for example, segments its experiences like this:12

In fact, when the landmark hole in the bottom right-hand corner is open, the component

represented by the (lots is the only one used. When it is closed, it triggers a separate

sequence of mixing states which end, potentially, in the "food" area. The NF-best eight-

component HMM doesn't really try to predict the range sensor readings, using mostly the

same fixed Gaussian or, when it is either very close to the wall or far away from it,

the even vaguer r, , ii:

The NF-best linear HMM is inclined to use up some of its components on discretising the

state information which the Samovar can represent numerically (though this turns out not

12 see section 5.4.2.3 for a description of what these diagrams mean

170

5.4.3.3 Qualitative

to be a matter simply of associating different states with different speeds), leaving it without

enough to throw at the region around the food:

In the case of a Samovar model with one element of linear hidden state, it is possible to

plot Z o' to verify that it really is being used by at least some of the components to represent

the robot's speed. Here is a graph showing vo (judged a posteriori) against the speed at

timestep t for those is at which the most probable component (out of this model's 16, also

judged a posteriori) is one of a group for which the two quantities were found to be strongly

correlated:

5

4

3

2

1

0

-1

-2

0

0

0

0 0

°8 g

o8

0
8

0 0 0

O

0

0
10

0

O

10

0 0

O
0

0

0

8

0

O

O

O

O

o 0
0 0

0

0 O

0

0

0

..... .. °. _

20

0

0

0
0

0

30
Speed of robot

40 50 60

171

5.4.3.3 Qualitative

to be it, matter simply of associating different states with different speeds), leaving it without

euough to throw at the region around the food:

In the case of a Samovar model with one element of linear hidden state, it is possible to

plot I," to verify that it really is being used by at least some of the components to represent

the robot's speed. Here is a graph showing PO' (judged a posteriori) against the speed at

timestep t for those is at which the most probable component (out of this model's 16, also

judged a posteriori) is one of a group for which the two quantities were found to be strongly

correlated:

171

5.j .j Computational resources required

TIie states outside tlis group do not so obviously use the linear hidden state to represent the

rohot,'s speed:

4

3

0

O

O

2

1

0

O

0 g° 4 0@ O O
0 $ O

0 O 0 0
0

O

O

0

0
0
0

O

O
0

Q 0 O
O ° 0 0 g

0

0
0 0 0 0

p g 0

0 O $ O
0 O

0
0 0 0 O

0
@ $ o ° 0

0 *0 $ $._B...Q...0
o

..... _...........

8
0 0 0 0

0
0

0 0
O

0

Q °

0 0

0 0

0

L 1 I

10 20 30 40 50 60 70
Speed of robot

5.4.4. Computational resources required

The time taken to train a Samovar model on a 360MHz U1traSPARC-II varied from

around 25 minutes for Samovar/1/8 to around 90 minutes for Samovar/4/32. Little effort

was nade to optimise the training regime of section 5.3.1.3, the program used to implement

it (a native-code executable written in the ocaml language), or indeed the quantity of

training data it was asked to process, so there seems to be no reason why larger models

could not be learned in an acceptable amount of time. The limiting factor turned out to be

the amount of memory required for caching the transition matrix once per timestep-recall

that in the conditional models, it varies depending on the sensor readings and actions-but

this could easily be circumvented by imposing a time horizon on mixing state inferences as

well as for those over the linear hidden state.

For comparison, training times for linear HMMs varied from around five minutes for

a linear HMM/8 to around 40 for a linear HMM/32-substantially less, of course, than

that of the Samovars. Furthermore, it be seen from the scatterplots in sections 5.4.2.1

and 5.4.3.1 that the performance of the linear HMMs produced by different runs of the

iraiuing algoritliini is much more consistent than that of the Samovar HMMs: to produce

O O

8 O O O
1-1

172

5.4.4 Computational resources required

The states outside tills group (10 not so obviously use the linear hidden state to represent the

robot's speed:

5.4.4. Coniputational resources required

The tinge taken to train a Samovar model on a 360MHz U1traSPARC-II varied from

aroaand 25 iaainutes for Samovar/l/8 to around 90 minutes for Samovar/4/32. Little effort

was made to optimise the training regime of section 5.3.1.3, the program used to implement

it (a native-code executable written in the ocaml language), or indeed the quantity of

training data it was asked to process, so there seems to be no reason why larger models

(0111(1 not be learned in an acceptable amount of time. The limiting factor turned out to be

the amount of memory required for caching the transition matrix once per timestep-recall

that ill the conditional models, it varies depending on the sensor readings and actions-but

this (0111(1 easily be circumvented by imposing a time horizon on mixing state inferences as

well as for those over the linear hidden state.

For coaaaparisoaa, training tinges for linear HMMs varied from around five minutes for

a linear HMM/8 to around 40 for a linear HMM/32--substantially less, of course, than

that, of the Samovars. Furthermore, it be seen from the scatterplots in sections 5.4.2.1

and 5.4.3.1 that the performance of the linear HMMs produced by different runs of the

training algorithm is much more consistent than that of the Samovar HMMs: to produce

172

5.4.5 Summary

a single good Samovar model requires more applications of the training algorithm than are

required to produce a single good linear HMM model.

Training a plain HMM/8 took around five minutes and an HMM/32 about 25, and the

HMM/8s and HMM/16s were both very consistent from run to run.

5.4.5. Summary

The Samovar models learned to deploy their linear hidden state effectively, both to

represent the robot's speed in environment 2 and for various other less obvious purposes.

They also generated interesting and natural-seeming classifications of the coarse structure of

their environments.

Conditional Samovar/1/16 models produced the best nonfood predictive pdf values in

both environments, although their advantage over similar-sized linear HMMs was slight (and

their computational demands considerably greater).

In environment 2 especially, the conditional Samovar required only eight components to

do a good job both at predicting the food sensor readings and at predicting the range sensor

readings, while the other models required sixteen components.

The nonfood predictive pdf values achieved by the joint Samovars were considerably

lower than those obtained from the conditional models-because of their longer and more

uncertain information path-although the number of basically informative predictions they

made was at least as great. They required 32 components to be able to learn to predict the

food sensor readings in environment 1, while the conditional models could manage with 8.

Successful generalisation from the training data to the test series was possible, for all

but the smallest models of each class, only with the help of the confidence region, which was

found to do a fair job of selectively allowing the fallback component to cut in and produce a

vague prediction in areas outside the learned components' competence.

173

5.4-5 Summary

a single good Samovar model requires more applications of the training algorithm than are

required to produce a single good linear HMM model.

Training a plain HMM/8 took around five minutes and an HMM/32 about 25, and the

HMM/8s and HMM/16s were both very consistent from run to run.

5.4.5. Summary

The Samovar models learned to deploy their linear hidden state effectively, both to

represent the robot's speed in environment 2 and for various other less obvious purposes.

They also generated interesting and natural-seeming classifications of the coarse structure of

their environments.

Conditional Samovar/1/16 models produced the best nonfood predictive pdf values in

both environments, although their advantage over similar-sized linear HMMs was slight (and

their computational demands considerably greater).

In environment 2 especially, the conditional Samovar required only eight components to

do a good job both at predicting the food sensor readings and at predicting the range sensor

readings, while the other models required sixteen components.

The nonfood predictive pdf values achieved by the joint Samovars were considerably

lower than those obtained from the conditional models—because of their longer and more

uncertain information path—although the number of basically informative predictions they

made was at least as great. They required 32 components to be able to learn to predict the

food sensor readings in environment 1, while the conditional models could manage with 8.

Successful generalisation from the training data to the test series was possible, for all

but the smallest models of each class, only with the help of the confidence region, which was

found to do a fair job of selectively allowing the fallback component to cut in and produce a

vague prediction in areas outside the learned components' competence.

173

Chapter 6

Future Work

6.1. Improving the model

In this section, ways are identified in which the Samovar model and algorithm could be

improved.

6.1.1. Better training algorithms

For a start, there are some obvious problems with the training algorithm described in

section 4.2.2.

6.1.1.1. Alternatives to Baum-Welch

One of the most significant bottlenecks encountered in the application of the Samovar

learning algorithm to the robot environment learning problem (section 5) was the memory

cost of the Baum-Welch algorithm (section 3.3.3.3) for inferring the discrete structure of the

system being modelled. Baum-Welch is simple and effective on moderate-sized problems,

and hence widely used, but it does (in a naive implementation) involve computation time

174

Chapter 6

Future Work

6.1. Improving the model

In this section, ways are identified in which the Samovar model and algorithm could be

improved.

6.1.1. Better training algorithms

For a start, there are some obvious problems with the training algorithm described in

section 4.2.2.

6.1.1.1. Alternatives to Baum-Welch

One of the most significant bottlenecks encountered in the application of the Samovar

learning algorithm to the robot environment learning problem (section 5) was the memory

cost of the Baum-Welch algorithm (section 3.3.3.3) for inferring the discrete structure of the

system being modelled. Baum-Welch is simple and effective on moderate-sized problems,

and hence widely used, but it does (in a naive implementation) involve computation time

174

6.1.1.2 Statistical correctness

quadratic in the number of the model's discrete states. The situation is made worse in

the conditional Samovar model by the fact that the transition matrix is not constant, and

must be either stored or repeatedly calculated, at relatively high cost either way, for each

timestep. This means that there is a fairly hard limit on the number of mixing states

which the Samovar learning algorithm can keep in play at any one time. Since the way it

discovers significant chains or sparse networks of states, such as the sequence leading up to

the encounters with the "food" region in the simulation, is by experimenting with doubling

(or quadrupling) all the states up and then thinning out the resulting transition matrix, a

serious constraint is placed on the length of the alternate mixing state trajectories which it

can learn. Most of the doubled states will eventually disappear, but in the mean time the

algorithm is forced to consume large amounts of time and/or memory. More discriminating

ways of encoding the variable transition matrix would help with the latter but compound the

former.1

Since the same problem has of course been encountered by researchers into speech

recognition and indeed robotics, there are a variety of promising techniques available for

uncovering the structure of discrete dynamical systems more efficiently. These work by

making structural adaptations in a more directed way, for instance greedily pruning down

an initially huge model .2 Heuristics for deciding when to split components of static mixture

models and when to merge them may also be of use .3

6.1.1.2. Statistical correctness

In the description of the subsequence-joining procedure which comprises the E-step

of the Samovar learning algorithm (section 4.2.2.5), it was noted that it is possible for

the number of possible-seeming candidate sequences to overwhelm the buffers available

for storing them, in which case whole classes of overall sequences-all those including the

subsequences discarded on the basis of estimates of their probability made on the basis of

inadequate local information-would be pruned out and lost to later consideration. Indeed,

even if the probability assessments used in making the early sampling decisions are correct,

the fact that large blocks of similar solutions are being rejected means that the eventual

sample is bound to be rather lumpy and still won't have the right distribution.

1 In fact a cheaper representation using eight bits to encode each entry in matrix against a

row-specific baseline was found not to degrade the effectiveness of the algorithm significantly, and

since the forward-backward equations were in any case programmed in log space, the extra running

time required was not great.

2 Stolcke & Omohundro, Hidden Markov model induction

3 Ueda et al., SMEM Algorithm for Mixture Models

175

6.1.1.2 Statistical correctness

quadratic in the number of the model's discrete states. The situation is made worse in

the conditional Samovar model by the fact that the transition matrix is not constant, and

must be either stored or repeatedly calculated, at relatively high cost either way, for each

timestep. This means that there is a fairly hard limit on the number of mixing states

which the Samovar learning algorithm can keep in play at any one time. Since the way it

discovers significant chains or sparse networks of states, such as the sequence leading up to

the encounters with the "food" region in the simulation, is by experimenting with doubling

(or quadrupling) all the states up and then thinning out the resulting transition matrix, a

serious constraint is placed on the length of the alternate mixing state trajectories which it

can learn. Most of the doubled states will eventually disappear, but in the mean time the

algorithm is forced to consume large amounts of time and/or memory. More discriminating

ways of encoding the variable transition matrix would help with the latter but compound the

former.1

Since the same problem has of course been encountered by researchers into speech

recognition and indeed robotics, there are a variety of promising techniques available for

uncovering the structure of discrete dynamical systems more efficiently. These work by

making structural adaptations in a more directed way, for instance greedily pruning down

an initially huge model.2 Heuristics for deciding when to split components of static mixture

models and when to merge them may also be of use.3

6.1.1.2. Statistical correctness

In the description of the subsequence-joining procedure which comprises the .E-step

of the Samovar learning algorithm (section 4.2.2.5), it was noted that it is possible for

the number of possible-seeming candidate sequences to overwhelm the buffers available

for storing them, in which case whole classes of overall sequences—all those including the

subsequences discarded on the basis of estimates of their probability made on the basis of

inadequate local information—would be pruned out and lost to later consideration. Indeed,

even if the probability assessments used in making the early sampling decisions are correct,

the fact that large blocks of similar solutions are being rejected means that the eventual

sample is bound to be rather lumpy and still won't have the right distribution.

1 In fact a cheaper representation using eight bits to encode each entry in matrix against a

row-specific baseline was found not to degrade the effectiveness of the algorithm significantly, and

since the forward-backward equations were in any case programmed in log space, the extra running

time required was not great.
2 Stolcke &: Omohundro, Hidden Markov model induction
3 Ueda et al., SMEM Algorithm for Mixture Models

175

6.1.2.1 Discrete and non- Gaussian outputs

One response to this is to argue, with Hinton4, that the correctness of the E-step is

secondary in importance to its adequacy as a platform for raising the complete data log

likelihood. In the specific case of the Samovar algorithm, provided that the early M-steps

are successful in finding increasingly probable model parameters, the number of plausible

short subsequences (which is a reflection of the sparsity of the transition matrix and the

tightness of the linear dynamics uncertainty) will fall quite rapidly, so that subsequent E-

steps will have fewer blind guesses to make. In the course of testing the algorithm on the

fairly sparse FSM of section 5.1.1.1, it was found that the true model parameters were

close to being fixed points; although, as is to be expected when learning from finite data, a

slight drift was sometimes observed, this was invariably accompanied by an increase in the

likelihood.5

If, however, it was reckoned to be desirable to obtain a correctly distributed set of state

sequences from the algorithm, it could in principle be obtained by importance sampling.

The procedure would involve running the algorithm many times-which would progressively

eliminate the effect of the blockiness due to early pruning-and correcting the probabilities

it assigned to each of the sample sequences it produced by comparing their true likelihoods

with their probability under whatever the algorithm's sampling distribution turns out to

be. (The tree of decisions made by the algorithm provides a kind of audit trail for assessing

how probable each of its eventual outputs was a priori.) Ghahramani applies this idea to his

variational algorithm for inference over mixtures of factor analyserss; of course the feasibility

of an importance sampling approach to correcting the Samovar E-step would depend on how

close the subsequence-joining algorithm already was to producing the right answers.

6.1.2. The character of the model

Although the mixed-linear/Gaussian form of the Samovar model is quite general and

has some desirable properties, it also has a number of limitations.

6.1.2.1. Discrete and non-Gaussian outputs

In section 5.3.1.1, it was noted that the recursive mixed-linear Samovar model was, with

its continuous outputs, structurally a poor choice for predicting the plainly discrete "food"

sensor readings of the simulated robot tasks; and indeed this mismatch put some obstacles in

the way of the model's successful application, although the performance ultimately obtained

was not unacceptably compromised. It would, in fact, be very easy to extend the model so

4 Hinton, Products of experts; section 3.3.1.3

5 unless the priors/regularisers were set in a way inconsistent with the true system

6 Ghahramani & Beal, Variational inference ... factor analysers

176

S.I.2.1 Discrete and non-Gaussian outputs

One response to this is to argue, with Hinton4, that the correctness of the E-step is

secondary in importance to its adequacy as a platform for raising the complete data log

likelihood. In the specific case of the Samovar algorithm, provided that the early M-steps

are successful in finding increasingly probable model parameters, the number of plausible

short subsequences (which is a reflection of the sparsity of the transition matrix and the

tightness of the linear dynamics uncertainty) will fall quite rapidly, so that subsequent E-

steps will have fewer blind guesses to make. In the course of testing the algorithm on the

fairly sparse FSM of section 5.1.1.1, it was found that the true model parameters were

close to being fixed points; although, as is to be expected when learning from finite data, a

slight drift was sometimes observed, this was invariably accompanied by an increase in the

likelihood.5

If, however, it was reckoned to be desirable to obtain a correctly distributed set of state

sequences from the algorithm, it could in principle be obtained by importance sampling.

The procedure would involve running the algorithm many times—which would progressively

eliminate the effect of the blockiness due to early pruning—and correcting the probabilities

it assigned to each of the sample sequences it produced by comparing their true likelihoods

with their probability under whatever the algorithm's sampling distribution turns out to

be. (The tree of decisions made by the algorithm provides a kind of audit trail for assessing

how probable each of its eventual outputs was a priori.) Ghahramani applies this idea to his

variational algorithm for inference over mixtures of factor analysers6; of course the feasibility

of an importance sampling approach to correcting the Samovar E-step would depend on how

close the subsequence-joining algorithm already was to producing the right answers.

6.1.2. The character of the model

Although the mixed-linear/Gaussian form of the Samovar model is quite general and

has some desirable properties, it also has a number of limitations.

6.1.2.1. Discrete and non-Gaussian outputs

In section 5.3.1.1, it was noted that the recursive mixed-linear Samovar model was, with

its continuous outputs, structurally a poor choice for predicting the plainly discrete "food"

sensor readings of the simulated robot tasks; and indeed this mismatch put some obstacles in

the way of the model's successful application, although the performance ultimately obtained

was not unacceptably compromised. It would, in fact, be very easy to extend the model so

4 Hinton, Products of experts; section 3.3.1.3
5 unless the priors/regularisers were set in a way inconsistent with the true system
6 Ghahramani fe Beal, Variational inference ... factor analysers

176

6.1.2.3 Products of experts

as to cope more correctly with outputs (and inputs) which it was told were discrete in nature

and were conditional only on the discrete hidden state Qt. The Samovar model's likelihood

would of course have to be extended with new terms to express the extra dependencies, but

they would figure in the learning and prediction algorithms only at the level of the outer,

Q expectation (section 4.2.2.4), as an unproblematic extra factor in (99). It would also be

straightforward to extend Q with extra values whose role was not to determine the model's

current outputs but to influence the future development of Q (a practice widely adopted in

the speech recognition community under the name "tying").

Even if the outputs are continuous, it may not be appropriate to model their Qt-

conditional distribution using an unconstrained mean and Gaussian variance. Any of

the exponential family distributions commonly used for the outputs of discrete HMMs

could be employed. Of course, the reliance placed by the Samovar model on the Kalman

filter formalism means that it can only capture continuous, VI-conditional trends via a

linear/Gaussian output distribution.

6.1.2.2. Grouping outputs

The Samovar model is also suboptimal in the way it assumes that when the situation

changes (i.e. a different Qt cuts in), the linear rules for all the sensor outputs change along

with it. For an example of a situation in which some sensor characteristics change but others

do not, consider the robot simulation of section 5: around the "food" area, the range sensors

behave as they always did, but because the mixing state is different (in order to bring about

the correct food sensor reading), the model must learn that pattern all over again. It would

not be difficult to specify a model in which the mixing state was grouped so that several

linear (or whatever-see section 6.1.2.1) mappings could be asked to predict different sensor

readings at each timestep. But it is not obvious how such a model could be learned. The

issue is discussed briefly in section 6.1.3; note also that Pierce has addressed a similar issue

of grouping uninterpreted sensors in his work on mobile robot localisation and mapbuilding7.

6.1.2.3. Products of experts

Hinton and colleagues have recently drawn attention8 to a generic failing of mixture

models, namely that they scale poorly to high dimensional spaces. The root of the problem

is this: mixture models proceed from the assumption that the features observed in each data

point can all be traced back to the parameters of a single generator. Considerable effort is

expended in using EM or similar techniques to identify the component responsible. But in

7 Pierce & Kuipers, Map learning

8 Hinton, Products of experts

177

6.1.2.3 Products of experts

as to cope more correctly with outputs (and inputs) which it was told were discrete in nature

and were conditional only on the discrete hidden state Q1. The Samovar model's likelihood

would of course have to be extended with new terms to express the extra dependencies, but

they would figure in the learning and prediction algorithms only at the level of the outer,

Q expectation (section 4.2.2.4), as an unproblematic extra factor in (99). It would also be

straightforward to extend Q with extra values whose role was not to determine the model's

current outputs but to influence the future development of Q (a practice widely adopted in

the speech recognition community under the name "tying").

Even if the outputs are continuous, it may not be appropriate to model their Qi-

conditional distribution using an unconstrained mean and Gaussian variance. Any of

the exponential family distributions commonly used for the outputs of discrete HMMs

could be employed. Of course, the reliance placed by the Samovar model on the Kalman

filter formalism means that it can only capture continuous, V^-conditional trends via a

linear/Gaussian output distribution.

6.1.2.2. Grouping outputs

The Samovar model is also suboptimal in the way it assumes that when the situation

changes (i.e. a different Q* cuts in), the linear rules for all the sensor outputs change along

with it. For an example of a situation in which some sensor characteristics change but others

do not, consider the robot simulation of section 5: around the "food" area, the range sensors

behave as they always did, but because the mixing state is different (in order to bring about

the correct food sensor reading), the model must learn that pattern all over again. It would

not be difficult to specify a model in which the mixing state was grouped so that several

linear (or whatever—see section 6.1.2.1) mappings could be asked to predict different sensor

readings at each timestep. But it is not obvious how such a model could be learned. The

issue is discussed briefly in section 6.1.3; note also that Pierce has addressed a similar issue

of grouping uninterpreted sensors in his work on mobile robot localisation and mapbuilding7.

6.1.2.3. Products of experts

Hinton and colleagues have recently drawn attention8 to a generic failing of mixture

models, namely that they scale poorly to high dimensional spaces. The root of the problem

is this: mixture models proceed from the assumption that the features observed in each data

point can all be traced back to the parameters of a single generator. Considerable effort is

expended in using EM or similar techniques to identify the component responsible. But in

7 Pierce & Kuipers, Map learning
8 Hinton, Products of experts

177

6.1.2.3 Products of experts

fact, most multidimensional densities are more structured than that, in ways that we tend to

express linguistically using words like `and' and `but': "The readings are always arranged in

this region, and also fit this other pattern, but in that situation this part is impossible." As

a result, the distribution's highest density region can be at the same time small in overall

volume, but impossible to represent using a tractable number of generically shaped fixed

or movable generators (kernels or mixture components); in a high dimensional space, the

cardinality of the mixture may have to be multiplied until it approaches that of the data set

in order of magnitude.

The suggested solution is to model the distribution not as a sum of local sub-

distributions, but as a product of expert distributions specialised in detecting features

(and not necessarily localised in feature space). Where the values of these densities are

simultaneously high ('and'), the combined, product probability will be high as well; where

one or more of them is close to zero ('but'), the probability will be low. This gives rise to the

generative model

p(rt 10) _
fr11 1.

Pr('

rt 0t).)
(118)

where the product is scaled to enforce the constraint that it integrate to unity. Actually, it

is not clear that the expert "distributions" are really best viewed as probability densities

at all; the whole point of the model is that they cannot be used individually to predict

anything, but only collectively (which is why they have been written using the bold p()
above). Note that there is no requirement that they should themselves be normalised; in fact

it seems plausible that they are closely related to the "potentials" of undirected graphical

models 9.

At first sight it appears impossible to learn a product of experts model efficiently,

because the normaliser in (118) gives rise to an awkward extra term in the derivative of the

log likelihood:

49
logp(rt 10) = B; logP(rt 100 - Ir: p(rt

19) 870,
logp(rt 10.) (119)

The "purpose" of subtracting the expected derivative of all the possible data with respect

to each expert's parameter could be seen as encouraging the experts to diversify: it should

actively avoid agreeing with other experts where its voice would be redundant in order

to concentrate on its own speciality. Computing the expectation exactly is impossible,

and indeed it would seem to demand the use of a heavyweight Markov chain Monte Carlo

method. However, the authors present good results obtained with derivatives calculated

on the basis of a very short chain of Gibbs samples-quick to simulate, but much too short

9 Jordan, Learning in Graphical Models; indeed Hinton, Products of experts explicitly

compares the product model with a Boltzmann machine (a variety of undirected graphical model)

178

6.1.2.3 Products of experts

fact, most multidimensional densities are more structured than that, in ways that we tend to

express linguistically using words like 'and' and 'but': "The readings are always arranged in

this region, and also fit this other pattern, but in that situation this part is impossible." As

a result, the distribution's highest density region can be at the same time small in overall

volume, but impossible to represent using a tractable number of generically shaped fixed

or movable generators (kernels or mixture components); in a high dimensional space, the

cardinality of the mixture may have to be multiplied until it approaches that of the data set

in order of magnitude.

The suggested solution is to model the distribution not as a sum of local sub-

distributions, but as a product of expert distributions specialised in detecting features

(and not necessarily localised in feature space). Where the values of these densities are

simultaneously high ('and'), the combined, product probability will be high as well; where

one or more of them is close to zero ('but'), the probability will be low. This gives rise to the

generative model

""--K™
where the product is scaled to enforce the constraint that it integrate to unity. Actually, it

is not clear that the expert "distributions" are really best viewed as probability densities

at all; the whole point of the model is that they cannot be used individually to predict

anything, but only collectively (which is why they have been written using the bold p(- • •)

above). Note that there is no requirement that they should themselves be normalised; in fact

it seems plausible that they are closely related to the "potentials" of undirected graphical

models.9.

At first sight it appears impossible to learn a product of experts model efficiently,

because the normaliser in (118) gives rise to an awkward extra term in the derivative of the

log likelihood:

A logp(r410) = A logp(r4100 - ̂ p(r410) A logp(r410.) (119)

The "purpose" of subtracting the expected derivative of all the possible data with respect

to each expert's parameter could be seen as encouraging the experts to diversify: it should

actively avoid agreeing with other experts where its voice would be redundant in order

to concentrate on its own speciality. Computing the expectation exactly is impossible,

and indeed it would seem to demand the use of a heavyweight Markov chain Monte Carlo

method. However, the authors present good results obtained with derivatives calculated

on the basis of a very short chain of Gibbs samples-—quick to simulate, but much too short

9 Jordan, Learning in Graphical Models; indeed Hinton, Products of experts explicitly

compares the product model with a Boltzmann machine (a variety of undirected graphical model)

178

6.1.3 Selecting the right structure

to yield a genuinely independent sample. The most plausible reason they suggest for this

felicitous phenomenon is that the diversification term is simply not critically important; it

does not much matter whether the experts specialise as much as they optimally might.

One might speculate that some kind of product of experts would be the ideal resolution

of the issues of sensor grouping raised in section 6.1.2.2.

6.1.3. Selecting the right structure

Like the standard Baum-Welch HMM learning procedure (section 3.3.3.3), the Samovar

learning algorithm as presented in section 4.2.2.9 focusses entirely on the problem of training

a model with a previously fixed number of mixing states. The question of how many such

states there really ought to be is left unaddressed. Bayesian theory does, in fact, provide

an extremely compelling answer, which is simply that one should construct a posterior

distribution which includes mixtures of all (conceivably relevant) sizes in exactly the usual

way: specifying a prior density which expresses one's beliefs about how plausible all the

different possible models, with various different numbers of states, are, and then applying

Bayes' rule in the light of the observed data. What makes this idea so attractive is that it

naturally embodies an "Occam's razor" filter which automatically rejects large mixtures,

unless the data furnish strong evidence in their favour. The reason is simply that mixtures

with more components have a higher-dimensional parameter space; and the prior over

that space must integrate to unity; so the prior probability available to be spread over

each possible mixture model falls off exponentially with their size. Even if the reasoner

thinks a priori that a big model is a real possibility, and just isn't quite sure which one,

the attenuation of the prior density means that all of them will start off with a substantial

penalty-which nicely balances the large likelihoods which some of them may give rise

to by just happening to (over)fit the data very closely. This notion of complexity control

by prior attenuation is perhaps the deepest contribution Bayesian thinking has made to

understanding of ideal rationality; it applies not only to mixture models10, but also to model

structure and "power" generallyll

The problem is that adding models with different structures makes the task of doing

inference with the posterior; already intractable in general when a single structure is

considered, even more difficult. One approach is to enumerate all the structures which are

considered at all plausible, and attempt to assess their probabilities by marginalising out the

10 Cheeseman et at, Autoclass

11 MacKay, Bayesian Interpolation; Dellaportas et al., On Bayesian Model and Variable

Selection

179

6.1.3 Selecting the right structure

to yield a genuinely independent sample. The most plausible reason they suggest for this

felicitous phenomenon is that the diversification term is simply not critically important; it

does not much matter whether the experts specialise as much as they optimally might.

One might speculate that some kind of product of experts would be the ideal resolution

of the issues of sensor grouping raised in section 6.1.2.2.

6.1.3. Selecting the right structure

Like the standard Baum-Welch HMM learning procedure (section 3.3.3.3), the Samovar

learning algorithm as presented in section 4.2.2.9 focusses entirely on the problem of training

a model with a previously fixed number of mixing states. The question of how many such

states there really ought to be is left unaddressed. Bayesian theory does, in fact, provide

an extremely compelling answer, which is simply that one should construct a posterior

distribution which includes mixtures of all (conceivably relevant) sizes in exactly the usual

way: specifying a prior density which expresses one's beliefs about how plausible all the

different possible models, with various different numbers of states, are, and then applying

Bayes' rule in the light of the observed data. What makes this idea so attractive is that it

naturally embodies an "Occam's razor" filter which automatically rejects large mixtures,

unless the data furnish strong evidence in their favour. The reason is simply that mixtures

with more components have a higher-dimensional parameter space; and the prior over

that space must integrate to unity; so the prior probability available to be spread over

each possible mixture model falls off exponentially with their size. Even if the reasoner

thinks a priori that a big model is a real possibility, and just isn't quite sure which one,

the attenuation of the prior density means that all of them will start off with a substantial

penalty—which nicely balances the large likelihoods which some of them may give rise

to by just happening to (over)fit the data very closely. This notion of complexity control

by prior attenuation is perhaps the deepest contribution Bayesian thinking has made to

understanding of ideal rationality; it applies not only to mixture models10, but also to model

structure and "power" generally11.

The problem is that adding models with different structures makes the task of doing

inference with the posterior; already intractable in general when a single structure is

considered, even more difficult. One approach is to enumerate all the structures which are

considered at all plausible, and attempt to assess their probabilities by marginalising out the

10 Cheeseman et al., Autoclass
11 MacKay, Bayesian Interpolation; Dellaportas et al., On Bayesian Model and Variable

Selection

179

6.2 Action selection

remaining parameters. For instance, if one is looking for an estimate of the "right" number or

of states for a mixture:

p(aIr,a,?)ocp(rIa,a,7L)p(a 71)

p(r 10, a) p(8 191) p(a 13{)

It is sometimes possible to find usable approximations to the inevitable integral over

Ghahramani has recently given attention to the problem of performing full Bayesian

inference over mixtures of factor analysers;13 since Kalman filtering can be seen as the

recursive analogue of the method of factor analyis, and Samovar is a recursively mixed linear

model (with output mappings akin to the "factor loading" matrix), it may be possible to

extend his variational algorithm to Samovar-type dynamical models as well. Otherwise,

there may be no simple and reliable alternative to the time-consuming process of generating

a sample of model parameters drawn from the posterior p(B I d) using (probably) the hybrid

Markov chain Monte Carlo method.14

Alternatively, it is possible to follow a Markov Chain through the space of model

structures. Because this technique can, with ingenuity15, be used to sample from the

space of model structures even if it is more complicated than just a chain of possible

"sizes", it would perhaps help with the problem of learning which output distributions were

appropriate for each sensor (section 6.1.2.1). Similarly, Boyen has recently demonstrated16

a "structural EM" algorithm for exploring a space of conditionality graphs by incremental

adjustment; it could potentially be applied to the problem of factorising the Samovar

model's discrete hidden state and grouping its outputs.

6.2. Action selection

The purpose of constructing a model of the robot's environment is to provide it with a

flexible way of deciding which actions it ought to perform in order to further its ends.

12 see for instance Cheeseman et al., Autoclass (mixture models), MacKay, A Practical
Bayesian Framework (MLPs)

is Ghahramani & Beal, Variational inference ... factor analysers

14 Neal, Probabilistic inference

15 Dellaportas et at., On Bayesian Model and Variable Selection

16 Boyen et at., Discovering the Hidden Structure

One

180

6.2 Action selection

remaining parameters. For instance, if one is looking for an estimate of the "right" number a

of states for a mixture:

p(a | r, a, H) oc p(r \ a, a, H) p(a \ H)

p(r\e,a)p(e\n)p(a\'H)fJe-

It is sometimes possible to find usable approximations to the inevitable integral over 012.

Ghahramani has recently given attention to the problem of performing full Bayesian

inference over mixtures of factor analysers;13 since Kalman filtering can be seen as the

recursive analogue of the method of factor analyis, and Samovar is a recursively mixed linear

model (with output mappings akin to the "factor loading" matrix), it may be possible to

extend his variational algorithm to Samovar-type dynamical models as well. Otherwise,

there may be no simple and reliable alternative to the time-consuming process of generating

a sample of model parameters drawn from the posterior p(9 \ d) using (probably) the hybrid

Markov chain Monte Carlo method.14

Alternatively, it is possible to follow a Markov Chain through the space of model

structures. Because this technique can, with ingenuity15, be used to sample from the

space of model structures even if it is more complicated than just a chain of possible

"sizes" , it would perhaps help with the problem of learning which output distributions were

appropriate for each sensor (section 6.1.2.1). Similarly, Boyen has recently demonstrated16

a "structural EM" algorithm for exploring a space of conditionality graphs by incremental

adjustment; it could potentially be applied to the problem of factorising the Samovar

model's discrete hidden state and grouping its outputs.

6.2. Action selection

The purpose of constructing a model of the robot's environment is to provide it with a

flexible way of deciding which actions it ought to perform in order to further its ends. One

12 see for instance Cheeseman et al., Autoclass (mixture models), MacKay, A Practical

Bayesian Framework (MLPs)
13 Ghahramani & Beal, Variational inference ... factor analysers
14 Neal, Probabilistic inference
15 Dellaportas et al., On Bayesian Model and Variable Selection
16 Boyen et al., Discovering the Hidden Structure

180

6.2.1.2 Planning as snference

of the attractive aspects of a recursive mixed-linear model is that, in its joint variant (though

not in its conditional one), it is sufficiently invertible to permit something reasonably close to

optimal planning to be performed over a continuous space of actions.

6.2.1. The theory

According to Bayesian decision theory (section 3.2.6.2), the aim when acting under

uncertainty is to find an action which maximises the expected goodness of the future state of

the world, where the expectation is taken conditional on the agent's belief distribution about

each action's consequences, and the goodness is some predefined assignment of relative costs

and benefits to each state.

6.2.1.1. Planning

It is easy to extend the decision rule 26 to the case where one is choosing an action with

a view to what will happen over more than one timestep into the future, as a robot clearly

must. By the sum rule (marginalisation), what is needed at time T is

a; = argmax f f p(r[TT+r)IaT,hT,0) > g(rt)
aT JhT .fTIT,T+*) tE[T,T+r)

where g(rt) is the gain from obtaining sensor readings rt. (There is no reason why g could

not also depend on the action at if that was desired. Note that rewards not easily defined

purely in terms of rt can be supported by adding an extra "reward" pseudo-sensor, which is

fed manually determined values during training; the model will hopefully develop any hidden

state necessary for predicting it just as it does with the real sensors.17)

6.2.1.2. Planning as inference

It is possible to consider the search for a good action as a kind of probabilistic

inference, by encoding a goodness landscape over sensor readings as the likelihood p(G =

0 I rt, 9) that a "goal" variable achieves some designated value, w.l.o.g. zero, as follows:

a;, = argmax f J
p(r[T,T+T) aT hT 0) 1 p(G 0 I rt, 9) (120)

aT h rf T,T+r)
T tE[T,,T+T)

Conceptually, there is a distinction between a known, variable goodness for each outcome

and a variable probability of a fixed goodness, but once expectations are taken, the numbers

will work out the same. Note that weightings have been inserted in order to turn the

summation over future gains into a legal mixture (it is only the relative gains that matter);

17 c.f. Chrisman, Reinforcement learning

181

6.2.1.2 Planning as inference

of the attractive aspects of a recursive mixed-linear model is that, in its joint variant (though

not in its conditional one), it is sufficiently invertible to permit something reasonably close to

optimal planning to be performed over a continuous space of actions.

6.2.1. The theory

According to Bayesian decision theory (section 3.2,6.2), the aim when acting under

uncertainty is to find an action which maximises the expected goodness of the future state of

the world, where the expectation is taken conditional on the agent's belief distribution about

each action's consequences, and the goodness is some predefined assignment of relative costs

and benefits to each state.

6.2.1.1. Planning

It is easy to extend the decision rule 26 to the case where one is choosing an action with

a view to what will happen over more than one timestep into the future, as a robot clearly

must. By the sum rule (marginalisation), what is needed at time T is

a4, = argmax / / p(rl
 T'T+T > | aT, hT, 0)

aT JhTjrlT,T+r}

where <?(r4) is the gain from obtaining sensor readings r4. (There is no reason why g could

not also depend on the action a4 if that was desired. Note that rewards not easily defined

purely in terms of r* can be supported by adding an extra "reward" pseudo-sensor, which is

fed manually determined values during training; the model will hopefully develop any hidden

state necessary for predicting it just as it does with the real sensors.17)

6.2.1.2. Planning as inference

It is possible to consider the search for a good action as a kind of probabilistic

inference, by encoding a goodness landscape over sensor readings as the likelihood p(G =

0|r4 ,£) that a "goal" variable achieves some designated value, w.l.o.g. zero, as follows:

o*.= argmax/ / p(r^
T+^ \aT,hT,6) V -P(G = 0\rt,S) (120)

aT JhTJr(T.T+r, T

Conceptually, there is a distinction between a known, variable goodness for each outcome

and a variable probability of a fixed goodness, but once expectations are taken, the numbers

will work out the same. Note that weightings ^ have been inserted in order to turn the

summation over future gains into a legal mixture (it is only the relative gains that matter);

17 c.f. Chrisman, Reinforcement learning

181

6.2.1.3 A possible algorithm

time-dependent weightings such as a discount rate could also be used. The contribution

this makes to the likelihood is precisely that obtained by extending the model to include a

noisy measurement taken from one of the sensor readings, depending on an unknown selector

variable; this means that (120) can be interpreted as maximum likelihood estimation of aT

given this extra "evidence". So a good action can be chosen by projecting a scenario forward

into the future which includes that "measurement", and then inferring a distribution for

what the actions "must have been", or "must be going to be". The following graph shows

the state of play when this approach is applied to the joint Samovar model (section 4.2.3):

<- past future -4

(121)

00

Here, timestep 4 is the point at which the agent is making a decision, and C, whose value is

known to be (going to be) zero, is supposed be generated by adding a Gaussian noise sample

to either R5 or Re, depending on the unknown value of the discrete "selector" S.

6.2.1.3. A possible algorithm

Setting the problem up this way makes it possible to apply inference techniques from

the graphical models literature. In fact, conditioned on a known value of S, only one of the

links R5 -r G and Re --> G is effectively present, so that the effect of G is merely to induce

a Gaussian distribution over one of the readings. Inference of the hidden state Q, V, and

hence A4, can then be performed using the usual sequence-joining E-step algorithm. It is,

for instance, not difficult to find an action intended to yield a payoff at a single, specified

future timestep. But of course in general S is unknown. The suggested solution is to adopt

the variational approximation from Ghahramani and Hinton's learning algorithm for the

switching state-space model (section 4.3.2), where the same problem of accounting for the

effect of a selector variable is solved by a kind of mean field approximation: estimates pt

are kept of the probability that each of the state-space models in the bank was responsible

for generating the reading observed at time t, and they are alternately used for inference of

the models' states and recalculated based on those state estimates. Adapting this idea, one

might introduce variables pt as channels for information about the value of S in (121); their

182

6.2.1.3 A possible algorithm

time-dependent weightings such as a discount rate could also be used. The contribution

this makes to the likelihood is precisely that obtained by extending the model to include a

noisy measurement taken from one of the sensor readings, depending on an unknown selector

variable; this means that (120) can be interpreted as maximum likelihood estimation of aT

given this extra "evidence". So a good action can be chosen by projecting a scenario forward

into the future which includes that "measurement", and then inferring a distribution for

what the actions "must have been", or "must be going to be". The following graph shows

the state of play when this approach is applied to the joint Samovar model (section 4.2.3):

<- past future ->

(121)

Here, timestep 4 is the point at which the agent is making a decision, and G, whose value is

known to be (going to be) zero, is supposed be generated by adding a Gaussian noise sample

to either R5 or R6, depending on the unknown value of the discrete "selector" 5.

6.2.1.3. A possible algorithm

Setting the problem up this way makes it possible to apply inference techniques from

the graphical models literature. In fact, conditioned on a known value of 5, only one of the

links R5 ->• G and R6 -> G is effectively present, so that the effect of G is merely to induce

a Gaussian distribution over one of the readings. Inference of the hidden state Q, V, and

hence A4, can then be performed using the usual sequence-joining .E-step algorithm. It is,

for instance, not difficult to find an action intended to yield a payoff at a single, specified

future timestep. But of course in general S is unknown. The suggested solution is to adopt

the variational approximation from Ghahramani and Hinton's learning algorithm for the

switching state-space model (section 4.3.2), where the same problem of accounting for the

effect of a selector variable is solved by a kind of mean field approximation: estimates p4

are kept of the probability that each of the state-space models in the bank was responsible

for generating the reading observed at time t, and they are alternately used for inference of

the models' states and recalculated based on those state estimates. Adapting this idea, one

might introduce variables />4 as channels for information about the value of S in (121); their

182

6.2.2.1 Ballistic actions

function in terms of the decision rule (120) would be to represent the degree to which the

planner is attempting to achieve a nonzero gain at each timestep. The algorithm would look

something like this:

initialise pt to an even distribution

repeatedly

treat G = 0 as a noisy observation made from each sensor reading Rt

through the Gaussian distribution representing the goodness landscape,

with its precision scaled down by pt

use the subsequence-joining algorithm to infer the model's hidden state

distribution

reset the pts in proportion to the likelihood with which each of the Rts

accounts for G = 0, marginalised over the current estimate of the hidden

state

finally, read off a Gaussian mixture distribution over A4, and suggest the mode as

the recommended action

Note that it would not be possible to apply this procedure to the conditional Samovar

model, because it needs to be provided with specific actions on which to condition its mixing

state inferences; even if one were simply to neglect the effect of the actions on the mixing

state trajectory-which would be unsound since the action-independent weightings w,, of a

conditional gating model are not transition probabilities1s-one would still be left with the

problem of reading off the maximum likelihood A4 at the end, and its distribution under

the conditional model would not be a mixture of Gaussians but something much more

complicated.

6.2.2. Taking account of the robot's belief state

Although the algorithm sketched above would be reasonably efficient, it has a

theoretical weakness in that it does not take account of the way the robot's belief state will

develop.

6.2.2.1. Ballistic actions

As noted in section 2.3.2, it is often useful to try and follow a trajectory through the

world in which one is likely to receive sensor information which helps pin down what the

world state is; but in the graph (121), nothing is presumed known about future sensor

18 see section 3.3.3.4

183

6.2.2.1 Ballistic actions

function in terms of the decision rule (120) would be to represent the degree to which the

planner is attempting to achieve a nonzero gain at each timestep. The algorithm would look

something like this:

• initialise p4 to an even distribution

• repeatedly

• treat G = 0 as a noisy observation made from each sensor reading R*

through the Gaussian distribution representing the goodness landscape,

with its precision scaled down by p*

• use the subsequence-joining algorithm to infer the model's hidden state

distribution

• reset the /94s in proportion to the likelihood with which each of the Rts

accounts for G — 0, marginalised over the current estimate of the hidden

state

• finally, read off a Gaussian mixture distribution over A4, and suggest the mode as

the recommended action

Note that it would not be possible to apply this procedure to the conditional Samovar

model, because it needs to be provided with specific actions on which to condition its mixing

state inferences; even if one were simply to neglect the effect of the actions on the mixing

state trajectory—which would be unsound since the action-independent weightings wy of a

conditional gating model are not transition probabilities18—one would still be left with the

problem of reading off the maximum likelihood A4 at the end, and its distribution under

the conditional model would not be a mixture of Gaussians but something much more

complicated.

6.2.2. Taking account of the robot's belief state

Although the algorithm sketched above would be reasonably efficient, it has a

theoretical weakness in that it does not take account of the way the robot's belief state will

develop.

6.2.2.1. Ballistic actions

As noted in section 2.3.2, it is often useful to try and follow a trajectory through the

world in which one is likely to receive sensor information which helps pin down what the

world state is; but in the graph (121), nothing is presumed known about future sensor

18 see section 3.3.3.4

183

6.2.2.2 Monte Carlo planning

readings except their (intended) goodness. The procedure will, therefore, concentrate on

finding actions which would work well if one were to carry them out blind-one might say

ballistically. It's impossible to fix this problem straightforwardly, because to do so would

mean providing the model with information about what the future readings and actions are

going to be-and that, of course, depends on the plan the robot ultimately comes up with.

It would, however, be possible to add a penalty term to the subsequence-joining algorithm

which caused it to prefer sequences with low entropy.

6.2.2.2. Monte Carlo plannang

While exact inference of the correct "non-ballistic" action is probably impossible, one

might perhaps work up a more principled approach to performing genuine POMDP planning

using a Monte Carlo optimisation method. For instance,

to plan forwards from time t,

repeatedly

start with an arbitrary action at,D

repeatedly

sample a candidate at,n+l from some proposal

distribution conditional on a,n

assess its expected goodness by recursively planning

forwards from time t + 1 under the supposition that
At = at,n+r

adopt at,n+l or not according to a Metropolis-

Hastings acceptance rule

return the best at,O found

By applying itself recursively to assess the future effect of an action, this procedure would

automatically be employing realistic estimates of the succeeding actions and readings on the

robot's belief state. For this reason it would, however, take a long time to run (exponential,

in fact, in the length of the time window considered). If one wished to have the robot follow

a policy of optimising a given sensor goodness measure over a reasonably extended period, it

would pay to use this procedure to learn (offline) a policy oracle which would take a belief

state as input and map it to a suggested action; however, the belief state is a very high-

dimensional space, and it's not clear how this oracle should be parameterised.

184

6.2.2.2 Monte Carlo planning

readings except their (intended) goodness. The procedure will, therefore, concentrate on

finding actions which would work well if one were to carry them out blind—one might say

ballistically. It's impossible to fix this problem straightforwardly, because to do so would

mean providing the model with information about what the future readings and actions are

going to be—and that, of course, depends on the plan the robot ultimately comes up with.

It would, however, be possible to add a penalty term to the subsequence-joining algorithm

which caused it to prefer sequences with low entropy.

6.2.2.2. Monte Carlo planning

While exact inference of the correct "non-ballistic" action is probably impossible, one

might perhaps work up a more principled approach to performing genuine POMDP planning

using a Monte Carlo optimisation method. For instance,

• to plan forwards from time t,

• repeatedly

• start with an arbitrary action a4'0

• repeatedly

• sample a candidate a4>n+1 from some proposal

distribution conditional on a4'"

• assess its expected goodness by recursively planning

forwards from time t + 1 under the supposition that

A4 = o4'n+1

• adopt a*'n+1 or not according to a Metropolis-

Hastings acceptance rule

• return the best o4'0 found

By applying itself recursively to assess the future effect of an action, this procedure would

automatically be employing realistic estimates of the succeeding actions and readings on the

robot's belief state. For this reason it would, however, take a long time to run (exponential,

in fact, in the length of the time window considered). If one wished to have the robot follow

a policy of optimising a given sensor goodness measure over a reasonably extended period, it

would pay to use this procedure to learn (offline) a policy oracle which would take a belief

state as input and map it to a suggested action; however, the belief state is a very high-

dimensional space, and it's not clear how this oracle should be parameterised.

184

Chapter 7

Conclusions

The present thesis has proposed the use of a mixed-linear probabilistic state-space

model for learning the dynamics of a robot's interaction with the world. A novel algorithm

has been presented for training and interrogating such a model, which compares favourably

in computational complexity with existing techniques.' Results collected from two simulated

mobile robot environments support the claim that mixed-linear models can capture both

discontinuous and continuous structure in the world in an intuitively natural manner; while

they were not proved to perform significantly better than simpler autoregressive hidden

Markov models on these simple tasks, it is possible to claim tentatively that they might scale

more effectively to environments in which trends over time played a larger role. Two types of

probabilistic confidence region, including a generative one which as a side-effect considerably

simplified the learning algorithm, were quite effective at preventing both HMM and mixed-

linear models from making over-confident but wrong predictions.2

The near-invertibility of the mixed-linear model with generative confidence region made

it possible to suggest a reasonably efficient algorithm (not yet tried out) for planning the

robot's future actions so as to optimise its expected reward; however, it could allow at best

only inexactly for the effect of the robot's future experiences on its belief state.

In placing the work presented here in the context of other approaches to similar

problems, parallels have been drawn with probabilistic techniques for robot localisation and

1 chapter 4

2 chapter 5

185

Chapter 7

Conclusions

The present thesis has proposed the use of a mixed-linear probabilistic state-space

model for learning the dynamics of a robot's interaction with the world. A novel algorithm

has been presented for training and interrogating such a model, which compares favourably

in computational complexity with existing techniques.1 Results collected from two simulated

mobile robot environments support the claim that mixed-linear models can capture both

discontinuous and continuous structure in the world in an intuitively natural manner; while

they were not proved to perform significantly better than simpler autoregressive hidden

Markov models on these simple tasks, it is possible to claim tentatively that they might scale

more effectively to environments in which trends over time played a larger role. Two types of

probabilistic confidence region, including a generative one which as a side-effect considerably

simplified the learning algorithm, were quite effective at preventing both HMM and mixed-

linear models from making over-confident but wrong predictions.2

The near-invertibility of the mixed-linear model with generative confidence region made

it possible to suggest a reasonably efficient algorithm (not yet tried out) for planning the

robot's future actions so as to optimise its expected reward; however, it could allow at best

only inexactly for the effect of the robot's future experiences on its belief state.

In placing the work presented here in the context of other approaches to similar

problems, parallels have been drawn with probabilistic techniques for robot localisation and

1 chapter 4

2 chapter 5

185

7 Concduseons

mapping, neural network system identification, and visual tracking.3 Mixed-linear dynamics

models might find applications at the borders of these areas, subsuming several tasks often

treated as different in kind into a single framework:

Categorising distinguished locations in the environment, or more generally

regions in the abstract state space of the robot-world dynamical system, and

discovering how they connect to one another. The mixed-linear formalism provides

a natural way of extending appearance-based methods4 to what could be called the

"look and feel" of the environment, based on linear relationships between sensor

readings and dynamical quantities such as the robot's speed. Note that it would

be easy in the probabilistic framework to incorporate a known model of noisy

odometry information, or more complicated sensor models such as those developed

for computer vision, which the robot could learn to exploit as appropriate.

Learning the response to actuator commands as a "black box" system,

from the insider's point of view. A mixed-linear state-space model is a plausible

generalisation of the hidden Markov and Kalman models previously applied to

this problem, while being both easier to understand and work with, and no less

powerful in principle, than the multi-layer perceptron.

Accounting for dynamic external phenomena. Mixed-linear models are

already used successfully for visual tracking, and they ought to be able to capture

the effect of moving objects on, for example, a robot's range sensor readings, in a

powerful and robust way.

Before this last possibility in particular has a serious chance of coming to fruition, some

more work will have to be done on introducing extra structure into the model, breaking the

one-to-all link between the discrete state at each timestep and the linear mapping given

the task of predicting all of that step's sensor readings .4 Otherwise, the unsophisticated,

but in essence domain-neutral, training regime adopted for the simulation experiments5

may plausibly provide an adequate basis for the application of mixed-linear models to other

robots and worlds. Implementing the learning algorithm in a more memory- and time-

efficient way than it was in the experiments reported above should allow it to handle models

with at least 64 components and several dimensions of linear hidden state.' Some care

3 chapter 2; section 4.3

4 section 2.1.2.6

4 section 6.1.2.2

5 section 5.3.1.3; section 5.3.2

6 section 5.4.4

186

7 Conclusions

mapping, neural network system identification, and visual tracking.3 Mixed-linear dynamics

models might find applications at the borders of these areas, subsuming several tasks often

treated as different in kind into a single framework:

• Categorising distinguished locations in the environment, or more generally

regions in the abstract state space of the robot-world dynamical system, and

discovering how they connect to one another. The mixed-linear formalism provides

a natural way of extending appearance-based methods4 to what could be called the

"look and feel" of the environment, based on linear relationships between sensor

readings and dynamical quantities such as the robot's speed. Note that it would

be easy in the probabilistic framework to incorporate a known model of noisy

odometry information, or more complicated sensor models such as those developed

for computer vision, which the robot could learn to exploit as appropriate.

• Learning the response to actuator commands as a "black box" system,

from the insider's point of view. A mixed-linear state-space model is a plausible

generalisation of the hidden Markov and Kalman models previously applied to

this problem, while being both easier to understand and work with, and no less

powerful in principle, than the multi-layer perceptron.

• Accounting for dynamic external phenomena. Mixed-linear models are

already used successfully for visual tracking, and they ought to be able to capture

the effect of moving objects on, for example, a robot's range sensor readings, in a

powerful and robust way.

Before this last possibility in particular has a serious chance of coming to fruition, some

more work will have to be done on introducing extra structure into the model, breaking the

one-to-all link between the discrete state at each timestep and the linear mapping given

the task of predicting all of that step's sensor readings.4 Otherwise, the unsophisticated,

but in essence domain-neutral, training regime adopted for the simulation experiments5

may plausibly provide an adequate basis for the application of mixed-linear models to other

robots and worlds. Implementing the learning algorithm in a more memory- and time-

efficient way than it was in the experiments reported above should allow it to handle models

with at least 64 components and several dimensions of linear hidden state.6 Some care

3 chapter 2; section 4.3

4 section 2.1.2.6

4 section 6.1.2.2

5 section 5.3.1.3; section 5.3.2

6 section 5.4.4

186

7 Conclusions

certainly has to be taken in setting up roughly appropriate priors to fend off regularisation-

related problems7, and in exploring the space of model sizes (number of mixing states

and dimensionality of linear hidden state); since the methods presented here are based on

maximum likelihood model estimation and not full Bayesian inference, the latter can only be

accomplished by validating models' promise against their performance on unseen data.8

7 section 5.3.1.1

8 The recommended procedure for getting something working after as few experiences as possible

is to train a fair sample of models on some test data, and then choose between them based on their

success at predicting new data as it comes in (section 3.2.4.5).

187

7 Conclusions

certainly has to be taken in setting up roughly appropriate priors to fend off regularisation-

related problems7, and in exploring the space of model sizes (number of mixing states

and dimensionality of linear hidden state); since the methods presented here are based on

maximum likelihood model estimation and not full Bayesian inference, the latter can only be

accomplished by validating models' promise against their performance on unseen data.8

7 section 5.3.1.1

8 The recommended procedure for getting something working after as few experiences as possible

is to train a fair sample of models on some test data, and then choose between them based on their

success at predicting new data as it comes in (section 3.2.4.5).

187

Appendix A

Notation

All continuous quantities, such as process outputs and model parameters, are assumed

to be vector-valued; no distinguishing notation is adopted. Transposition is denoted by '
and matrix inversion by . . .-1. Vector and matrix values are used freely in the standard grid

notation to denote subblocks of larger assemblies.

Model parameters are written using Greek letters (0). Random variables are denoted

by capital letters (6, RI), and their values by the corresponding lower case letter (0, rt).

The latter can also be used on their own to assert a value of the former, so that p(at) means

p(At = at).

Temporal indexing is indicated by superscripts (rt, Sv). "Missing out" an indexing

superscript or subscript can be used to mean "the whole sequence/set" (r, A). Range

superscripts select the corresponding subsequence out of the variable they are applied to

Values computed at a particular iteration of an EM algorithm are identified by

superscripts involving the iteration number it (On).

Indexing into a discrete set of simultaneous possibilities, such as mixture components, is

indicated by subscripts (p,, ci). Subscripts are also used to select rows and/or columns from

vectors and matrices ((. .),t), and have a special meaning in section 3.3.3.5.

188

Appendix A

Notation

All continuous quantities, such as process outputs and model parameters, are assumed

to be vector-valued; no distinguishing notation is adopted. Transposition is denoted by • • •'

and matrix inversion by • • •~1. Vector and matrix values are used freely in the standard grid

notation to denote subblocks of larger assemblies.

Model parameters are written using Greek letters (0). Random variables are denoted

by capital letters (6, R*), and their values by the corresponding lower case letter (0, r4).

The latter can also be used on their own to assert a value of the former, so that p(at) means

p(A4 = o4).

Temporal indexing is indicated by superscripts (r4, Su). "Missing out" an indexing

superscript or subscript can be used to mean "the whole sequence/set" (r, //). Range

superscripts select the corresponding subsequence out of the variable they are applied to

(r[°.T)). Values computed at a particular iteration of an EM algorithm are identified by

superscripts involving the iteration number n (0").

Indexing into a discrete set of simultaneous possibilities, such as mixture components, is

indicated by subscripts (/j,t, c"). Subscripts are also used to select rows and/or columns from

vectors and matrices ((• • -)A), and have a special meaning in section 3.3.3.5.

188

A.1 Greek symbols

A.1. Greek symbols

Symbol Usage See also First use

a The precision (inverse variance) of the section 3.3.3.5

Gaussian noise term in the inter-state

dynamics of a Kalman filter. Symbolically,

Vt+1 = AVt + N(O, a).

ai The precision (inverse variance) of the section 4.2.1.2

Gaussian noise term in component i of the

inter-linear-state dynamics of a Samovar

model. Symbolically, if Qt = i then

Yt+l = A,Xt +N(0,ai). Note that in the

Samovar model, the robot sensor readings

and actions are subsumed into the world

states X and Y.

The precision (inverse variance) of the a section 3.2.5.2

Gaussian noise which a model-Gaussian,

Kalman filter, or whatever-adds to each

output Rt. In the Samovar model, 0 is

subsumed into a.

The precision (inverse variance) of the K, section 3.3.2.1

Gaussian noise which component i of a

mixture model-Gaussian mixture, mixture

of experts, or whatever-adds to each

process output Rt. In the Samovar model,

(i, is subsumed into a,.

ry The precision (inverse variance) of the v section 3.2.5.3

Gaussian patch from which a joint- section 3.3.2.4

Gaussian model generates each process section 3.3.2.5

input At. Or, the precisions of the

Gaussian patches of all the components

of a joint mixture of experts, or of

the Gaussian receptive fields of all the

components of a conditional mixture

of experts or Samovar model-both

symbolically U,{ryi}.

189

A.I. Greek symbols

A.I Greek symbols

Symbol Usage

a

/3

7

The precision (inverse variance) of the

Gaussian noise term in the inter-state

dynamics of a Kalman filter. Symbolically,

yt+i =

The precision (inverse variance) of the

Gaussian noise term in component i of the

inter-linear-state dynamics of a Samovar

model. Symbolically, if Q* = i then

y4+1 = \Xl + N(Q,cti). Note that in the

Samovar model, the robot sensor readings

and actions are subsumed into the world

states X and Y.

The precision (inverse variance) of the

Gaussian noise which a model — Gaussian,

Kalman filter, or whatever — adds to each

output R*. In the Samovar model, /3 is

subsumed into a.

The precision (inverse variance) of the

Gaussian noise which component i of a

mixture model — Gaussian mixture, mixture

of experts, or whatever — adds to each

process output R*. In the Samovar model,

@i is subsumed into al.

The precision (inverse variance) of the

Gaussian patch from which a joint-

Gaussian model generates each process

input A4. Or, the precisions of the

Gaussian patches of all the components

of a joint mixture of experts, or of

the Gaussian receptive fields of all the

components of a conditional mixture

of experts or Samovar model — both

symbolically U« { 7* } .

See also First use

section 3.3.3.5

section 4.2.1.2

fJ,,K section 3.2.5.2

section 3.3.2.1

section 3.2.5.3

section 3.3.2.4

section 3.3.2.5

189

A.1 Greek symbols

ryi The precision (inverse variance) of -y, v, section 3.3.2.4

the Gaussian patch from which the section 3.3.2.5

component i of a joint mixture of experts

generates each process input At, or of the

Gaussian receptive field according to which

the component i of a conditional mixture of

experts claims inputs for itself.

b,i1 Not a model parameter, but the standard

Kronecker delta: unity if i = j, zero

otherwise.

b Unsubscripted, the model parameters p section 3.3.3.1

generically governing the inter-state

dynamics of whatever dynamical system

model is being treated.

I The "model parameter" expressing the section 3.3.3.1

distribution of the initial hidden state H°

of a dynamical systems model (= V° in

the Kalman filter, Q° in the hidden Markov

model).

ti In the hidden Markov model, t, = p(Q° = section 3.3.3.3

i) is the "model parameter" specifying

the probability that the initial state at

timestep t = 0 is i.

1,1 In the Kalman filter, these "model section 3.3.3.5

parameters" define the Gaussian

distribution of the initial state.

Symbolically, V° - N(T, t).

it The output linear mapping (output matrix) section 3.2.5.4

of a linear regressive model or Kalman section 3.3.3.5

filter. Symbolically, Rt = ,cAt + N(0, 0),

or Rt = icVt + N(0, fi) in the case of a KF.

ic, The output linear mapping (output matrix) section 3.3.2.4

of the component i of a mixture of experts

model. Symbolically, if Qt = i then Rt =

is,At + N(0,)0,).

190

7i The precision (inverse variance) of

the Gaussian patch from which the

component i of a joint mixture of experts

generates each process input A4, or of the

Gaussian receptive field according to which

the component i of a conditional mixture of

experts claims inputs for itself.

6t!} Not a model parameter, but the standard

Kronecker delta: unity if i = j, zero

otherwise.

S Unsubscripted, the model parameters

generically governing the inter-state

dynamics of whatever dynamical system

model is being treated.

t The "model parameter" expressing the

distribution of the initial hidden state H°

of a dynamical systems model (= V° in

the Kalman filter, Q° in the hidden Markov

model).

Li In the hidden Markov model, ^ = p(Q° =

i) is the "model parameter" specifying

the probability that the initial state at

timestep t = 0 is i.

T, I In the Kalman filter, these "model

parameters" define the Gaussian

distribution of the initial state.

Symbolically, V° ~ N(l,Z).

K The output linear mapping (output matrix)

of a linear regressive model or Kalman

filter. Symbolically, E4 = «A4 + JV(0,/3),

or R* - K,V* + N(Q,0) in the case of a KF.

KI The output linear mapping (output matrix)

of the component i of a mixture of experts

model. Symbolically, if Q4 = i then R* =

A.I Greek symbols

7, z/t section 3.3.2.4

section 3.3.2.5

section 3.3.3.1

section 3.3.3.1

section 3.3.3.3

section 3.3.3.5

section 3.2.5.4

section 3.3.3.5

section 3.3.2.4

190

A.1 Greek symbols

A The inter-state linear mapping (dynamics a section 3.3.3.5

matrix) of a Kalman filter. Symbolically,

Ut+i = AV' + N(0, a).

A, The linear mapping (dynamics matrix) section 4.2.1.2

of component i of the inter-linear-

state dynamics of a Samovar model.

Symbolically, if Qt = i then Yt+i =

A,Xt + N(0, a;). Note that Xt includes

a bias element which is always set to unity,

enabling A, to include the intercept as well

as the slope of the mapping.

µ The mean around which a Gaussian model section 3.2.5.2

generates process outputs Rt.

The mean around which component i of a $, section 3.3.2.1

Gaussian mixture model generates process

outputs Rt.

v The mean of the Gaussian patch from ry section 3.2.5.3

which a joint-Gaussian model generates section 3.3.2.4

each process input At. Or, the means of section 3.3.2.5

the Gaussian patches of all the components

of a joint mixture of experts, or the

centres of the Gaussian receptive fields

of all the components of a conditional

mixture of experts or Samovar model-

both symbolically U,{ v,}.

Vi The mean of the Gaussian patch from v,7, section 3.3.2.4

which the component i of a joint mixture section 3.3.2.5

of experts generates each process input At,

or the centre of the Gaussian receptive

field according to which the component i
of a conditional mixture of experts claims

inputs for itself.

191

The inter-state linear mapping (dynamics

matrix) of a Kalman filter. Symbolically,

The linear mapping (dynamics matrix)

of component i of the inter-linear-

state dynamics of a Samovar model.

Symbolically, if Q4 = i then F4+1 =

A,X4 + N(Q,cti). Note that X4 includes

a bias element which is always set to unity,

enabling A, to include the intercept as well

as the slope of the mapping.

The mean around which a Gaussian model

generates process outputs R*.

The mean around which component i of a

Gaussian mixture model generates process

outputs R*.

The mean of the Gaussian patch from

which a joint-Gaussian model generates

each process input A*. Or, the means of

the Gaussian patches of all the components

of a joint mixture of experts, or the

centres of the Gaussian receptive fields

of all the components of a conditional

mixture of experts or Samovar model —

both symbolically U4{ vt}.

The mean of the Gaussian patch from

which the component i of a joint mixture

of experts generates each process input A4,

or the centre of the Gaussian receptive

field according to which the component i

of a conditional mixture of experts claims

inputs for itself.

A.I Greek symbols

a section 3.3.3.5

section 4.2.1.2

section 3.2.5.2

section 3.3.2.1

section 3.2.5.3

section 3.3.2.4

section 3.3.2.5

section 3.3.2.4

section 3.3.2.5

191

A.1 Greek symbols

The probability with which an section 3.2.5.1

unconditional mixture model chooses a section 3.3.2.5

particular component i to generate each

output at, or with which a joint mixture

model chooses i to generate each input-

output pair At, Rt. Or the "background"

weighting which a conditional mixture

model gives to i in choosing a component

to map At to W.

The probability with which an HMM section 3.3.3.3

transitions to state i from state j- section 4.2.1.2

symbolically, p(Qt+r = i
I
Qt = j, 9)

Or, the "background" weighting which the

Samovar model gives to component i when

choosing a component to map Xt to Yt+l

when the previously chosen component

was j.
In the variational free energy/ensemble section 3.3.1.3

learning view of the EM algorithm, a

parameter defining a probability density

function which is optimised so as to

approximate the distribution of the

quantities being estimated.

p The model parameters generically S section 3.3.3.1

governing the output function of whatever

dynamical system model is being treated.

O The reasoner's beliefs about the process section 3.2.2

under consideration (generally a

random variable whose values are model

parameters 9). Strictly speaking, relative

to the prior 9d; but the latter is mostly

neglected.

9 Generically, all the parameters of whatever section 3.2.3.1

model is currently being treated.

r Not a model parameter, but an alternative

to t where two timestep variables are

needed.

192

A.I Greek symbols

w, The probability with which an

unconditional mixture model chooses a

particular component i to generate each

output R*, or with which a joint mixture

model chooses i to generate each input-

output pair A4,.R4. Or the "background"

weighting which a conditional mixture

model gives to i in choosing a component

to map A4 to R*.

uitj The probability with which an HMM

transitions to state i from state j—

symbolically, p(Qt+l = i\Qt = j,8).

Or, the "background" weighting which the

Samovar model gives to component i when

choosing a component to map X1 to Yt+1

when the previously chosen component

was j.

TT In the variational free energy/ensemble

learning view of the EM algorithm, a

parameter defining a probability density

function which is optimised so as to

approximate the distribution of the

quantities being estimated.

p The model parameters generically

governing the output function of whatever

dynamical system model is being treated.

0 The reasoner's beliefs about the process

under consideration (generally a

random variable whose values are model

parameters 0). Strictly speaking, relative

to the prior 'H; but the latter is mostly

neglected.

0 Generically, all the parameters of whatever

model is currently being treated.

T Not a model parameter, but an alternative

to t where two timestep variables are

needed.

section 3.2.5.1

section 3.3.2.5

section 3.3.3.3

section 4.2.1.2

section 3.3.1.3

section 3.3.3.1

section 3.2.2

section 3.2.3.1

192

A.2 Roman symbols

'tm

Not a model parameter, but the probability

that a hidden Markov model generated the

training outputs and was in states j and i
at timesteps t and t + 1 respectively.

Not a model parameter, but, in the

subsequence-joining algorithm for the

Samovar model's E-step, an estimate of the

probability that the model generated the

training outputs and made the component

choices described by the subsequences m

and I during the time ranges it and it + 1

respectively.

A.2. Roman symbols

Symbol Usage

(58)

(103)

See also First use

At Random variable: the input to the process section 3.2.2

at time t, or the robot's actions at time t.

at A value of At, i.e. the observed process section 3.2.2

input at time t; or (as a proposition in a

probability) an abbreviation for At = at

A Random variable: all the process inputs, D section 3.2.2

or robot actions, in the training set, which

are taken to be all those occurring before

timestep T. Symbolically, { At : t E

[O,T) }.

()A A is sometimes used as a subscript to select (-)R, ()v
rows and/or columns corresponding to the

position of At in Xt.

a A value of A. Symbolically, { at : d section 3.2.2

t E [0, T) }; or (as a proposition in a

probability) an abbreviation for A = a.

193

Not a model parameter, but the probability

that a hidden Markov model generated the

training outputs and was in states j and i

at timesteps t and t + 1 respectively.

Not a model parameter, but, in the

subsequence-joining algorithm for the

Samovar model's E-step, an estimate of the

probability that the model generated the

training outputs and made the component

choices described by the subsequences m

and i during the time ranges u and u + 1

respectively.

A.2 Roman symbols

(58)

(103)

A.2. Roman symbols

Symbol

A4

Usage

Random variable: the input to the process

at time t, or the robot's actions at time t.

A value of A4, i.e. the observed process

input at time t; or (as a proposition in a

probability) an abbreviation for A* = a4.

Random variable: all the process inputs,

or robot actions, in the training set, which

are taken to be all those occurring before

timestep T. Symbolically, { A4 : t £

See also First use

section 3.2.2

section 3.2.2

D section 3.2.2

A is sometimes used as a subscript to select (• • -)R, (• • -}v

rows and/or columns corresponding to the

position of A4 in X* .

A value of A. Symbolically, { a4 : d

t e [0,T) }; or (as a proposition in a

probability) an abbreviation for A = a.

193

section 3.2.2

A.2 Roman symbols

A The learner's prior information or section 3.2.2.1

assumptions about the process input.

B A statistic used in the (re)estimation rule C, P (76)

for the Kalman filter and Samovar models: section 4.2.2.3

the expected sum of the outer products of

the bases for the inter-state linear mapping.

b b(ht) is the probability that a dynamical f (51) 57

process is in state ht and then produces section 3.3.3.5

the outputs rlt,T). If the process is

an HMM or a KF, it can be computed

efficiently using the backward half of the

forward-backward equations or the Rauch

recursions, respectively.

C A statistic used in the (re)estimation rule B, P (76)

for the Kalman filter and Samovar models: section 4.2.2.3

the expected sum of the outer products

of the targets for the inter-state linear

mapping.

cj In the subsequence-joining algorithm S",xj," (101)

for the Samovar model's E-step, the

likelihood that the components of the

mixed-linear dynamics chosen during

the time range [Lu, Lu + L) are those

proposed in the subsequence 1, and that

the outputs rILu,Lu+L) are generated.

Dt Random variable: the observable values at

timestep t, comprising the process input

and output (or robot action and sensor

reading). Symbolically,
(

At)

dt A value of Dt, i.e. the observed process

output and input (or robot action and

sensor reading) at time t--symbolically,
rt
at

-or (as a proposition in a

probability) an abbreviation for Dt = dt.

section 4.2.1.1

section 4.2.1.2

194

A The learner's prior information or

assumptions about the process input.

B A statistic used in the (re)estimation rule

for the Kalman filter and Samovar models:

the expected sum of the outer products of

the bases for the inter-state linear mapping.

b {>(&) is the probability that a dynamical

process is in state h1 and then produces

the outputs r t 4 'T) . If the process is

an HMM or a KF, it can be computed

efficiently using the backward half of the

forward-backward equations or the Rauch

recursions, respectively.

C A statistic used in the (re)estimation rule

for the Kalman filter and Samovar models:

the expected sum of the outer products

of the targets for the inter-state linear

mapping.

cf In the subsequence-joining algorithm

for the Samovar model's E-step, the

likelihood that the components of the

mixed-linear dynamics chosen during

the time range [Lu,Lu + L) are those

proposed in the subsequence /, and that

the outputs r(
Lu,Lu+L) are generated.

D4 Random variable: the observable values at

timestep t, comprising the process input

and output (or robot action and sensor

reading). Symbolically, I At
\

if A value of £>4, i.e. the observed process

output and input (or robot action and

sensor reading) at time t—symbolically,

t I —or (as a proposition in a
/

probability) an abbreviation for D* = d4.

A.2 Roman symbols

section 3.2.2.1

C, P (76)

section 4.2.2.3

/ (51) 57

section 3.3.3.5

B, P (76)

section 4.2.2.3

~U
>zlm (101)

section 4.2.1.1

section 4.2.1.2

194

A.E Roman symbols

D Random variable: the process inputs

and outputs (or robot actions and sensor

readings) on which the model is trained,

which are taken to be all those occurring

before timestep T. Symbolically, D =

AUR={At,Rt:tE [0,T)}.

d A value of D: the observations of process

inputs and outputs (or robot actions and

sensor readings) used to train the model,

which are taken to be all those occurring

before timestep T. Symbolically, d = aUr =

{at,rt:tE [0,T)}.

E[] E. [f (x) I y] is the expectation of f (x)

given y: f. p(x I y) f (x). "E-step" is

the name given to the first half of each

iteration of the EM algorithm.

F "Variational free energy".

section 3.2.3.1

section 3.2.3.1

section 3.3.1.1

section 3.3.1.3

F, Average probability at which the robot's section 5.4.1.1

"food" sensor is predicted to exceed 0.5 in

situations of category i

f f (ht) is the probability that a dynamical b (51) 56

process produces the outputs rle,tl, section 3.3.3.5

finishing in state ht. If the process is

an HMM or a KF, it can be computed

efficiently using the forward half of the

forward-backward equations or the Kalman

recursions, respectively.

g(... I p, 8) The Gaussian pdf with mean p and section 3.3.2.5

precision (inverse variance) 0.

g(at, yt) Gain function defining goodness of section 3.2.6.2

performing action at in world state yt.

195

D Random variable: the process inputs

and outputs (or robot actions and sensor

readings) on which the model is trained,

which are taken to be all those occurring

before timestep T. Symbolically, D —

A. value of D: the observations of process

inputs and outputs (or robot actions and

sensor readings) used to train the model,

which are taken to be all those occurring

before timestep T. Symbolically, d = a(Jr

E[- • •] Ex[f(x) | y] is the expectation of f(x)

given y: fx p(x \ y) f (x) . "E-step" is

the name given to the first half of each

iteration of the EM algorithm.

F "Variational free energy".

FI Average probability at which the robot's

"food" sensor is predicted to exceed 0.5 in

situations of category i

f /C1*) is the probability that a dynamical

process produces the outputs rt °'41,

finishing in state ht. If the process is

an HMM or a KF, it can be computed

efficiently using the forward half of the

forward-backward equations or the Kalman

recursions, respectively.

g(- • • | n, 0} The Gaussian pdf with mean /j, and

precision (inverse variance) fi.

g(at,yt) Gain function defining goodness of

performing action a4 in world state j/4.

A.2 Roman symbols

section 3.2.3.1

section 3.2.3.1

section 3.3.1.1

section 3.3.1.3

section 5.4.1.1

(51) 56

section 3.3.3.5

section 3.3.2.5

section 3.2.6.2

195

A.2 Roman symbols

Ht Random variable: the process's hidden section 3.3.3

state at timestep t. This can comprise

a continuous quantity Vt on which

other quantities depend linearly, or a

discrete quantity Qt which controls a

choice between mixture components, or a

combination of both.

ht A value of ht s.e. the process's hidden vt,gt section 3.3.3

state at time t; or (as a proposition in a

probability) an abbreviation for Ht = ht.

H Random variable: the process's hidden V, Q section 3.3.3

state at every timestep over the training

period. Symbolically, { Ht : t E [0,T) }.

It A value of H. Symbolically, { ht : v, q section 3.3.3

t E [O, T) }; or (as a proposition in a

probability) an abbreviation for H = h.

7l The learner's prior information or O section 3.2.3.1

assumptions about the process.

I The identity matrix. section 3.3.3.5

i A particular component of a mixture

model-generally a value of Qt for some t.

Qt = i or j or k is used instead of qt where

the superscript would get in the way.

it A working value used in the Kalman-Rauch

recursions.

j (See i.)

Kt A working value used in the Kalman-Rauch

recursions.

IC Proposition: all the agent's knowledge

relevant to her decision as to which action

to take.

k (See i.)

section 3.2.5.1

section 3.3.3.5

section 3.3.3.5

section 3.2.6.2

196

H

j

K*

K,

Random variable: the process's hidden

state at timestep t. This can comprise

a continuous quantity V* on which

other quantities depend linearly, or a

discrete quantity Q1 which controls a

choice between mixture components, or a

combination of both.

A value of h* i.e. the process's hidden

state at time t; or (as a proposition in a

probability) an abbreviation for H* = hi.

Random variable: the process's hidden

state at every timestep over the training

period. Symbolically, {H* : t € [0,T) }.

A value of H. Symbolically, {/i* :

t E [0,T) }; or (as a proposition in a

probability) an abbreviation for H = h.

The learner's prior information or

assumptions about the process.

The identity matrix.

A particular component of a mixture

model—generally a value of Q4 for some t.

<24 = i or j or k is used instead of q* where

the superscript would get in the way.

A working value used in the Kalman-Rauch

recursions.

(See i.)

A working value used in the Kalman-Rauch

recursions.

Proposition: all the agent's knowledge

relevant to her decision as to which action

to take.

(See i.)

A.2 Roman symbols

section 3.3.3

V,Q

v,q

0

section 3.3.3

section 3.3.3

section 3.3.3

section 3.2.3.1

section 3.3.3.5

section 3.2.5.1

section 3.3.3.5

section 3.3.3.5

section 3.2.6.2

196

A.2 Roman symbols

L In the subsequence-joining algorithm for u, S" section 4.2.2.5

the Samovar model's E-step, the length of

the subsequences currently being evaluated.

Samovar models: the expected sum of the

outer product of each base and target for

the inter-state linear mapping.

L(. . , A) A Lagrangian function used in a L(al, yl) section 3.2.5.1

constrained optimisation.

! In the subsequence-joining algorithm for section 4.2.2.5

the Samovar model's E-step, a particular

subsequence of mixture component choices,

i.e. a value of S" for some u. to is the first

and IL-1 the last. S" = I or m is used

instead of s" where the superscript would

get in the way.

m (See 1.)

N(µ,/3) Denotes the Gaussian distribution with

mean µ and precision (inverse variance) /3.

Also used as an anonymous Gaussian

random variable.

n Index of EM algorithm iterations. on is the section 3.3.1.1

estimate of the overall model parameters at

iteration n; the same notation is used on all

the sub-parameters An, to etc.

P A statistic used in the (re)estimation rule B, C (76)

for the Kalman filter and Samovar models: section 4.2.2.3

the expected sum of the outer product of

each base and target for the inter-state

linear mapping.

197

L In the subsequence-joining algorithm for

the Samovar model's E-step, the length of

the subsequences currently being evaluated.

Samovar models: the expected sum of the

outer product of each base and target for

the inter-state linear mapping.

L(- • • , A) A Lagrangian function used in a

constrained optimisation.

I In the subsequence-joining algorithm for

the Samovar model's E-step, a particular

subsequence of mixture component choices,

t. e. a value of 5" for some u. 1° is the first

and 1L~1 the last. 5" = I or m is used

instead of s" where the superscript would

get in the way.

m (See I.)

N(ft, ft) Denotes the Gaussian distribution with

mean /j, and precision (inverse variance) ft.

Also used as an anonymous Gaussian

random variable.

n Index of EM algorithm iterations. 0™ is the

estimate of the overall model parameters at

iteration n; the same notation is used on all

the sub-parameters A", in etc.

P A statistic used in the (re)estimation rule

for the Kalman filter and Samovar models:

the expected sum of the outer product of

each base and target for the inter-state

linear mapping.

A.2 Roman symbols

u, Su section 4.2.2.5

-L(a4,j/4) section 3.2.5.1

section 4.2.2.5

section 3.3.1.1

B,C (76)

section 4.2.2.3

197

A.2 Roman symbols

Random variable: the process's mixing

hidden state at timestep t, i.e. a discrete-

valued, unobservable quantity inside the

process (or in the robot's environment),

which can control the choice of mixture

component in generating, for instance, Rt,

and/or influence its successor Qt+l through

a transition matrix.

A value of Qt i.e. the process's mixing

hidden state at time t; or (as a proposition

in a probability) an abbreviation for Q' =
qt

Q Random variable: the process's mixing

hidden state at every timestep over the

training period. Symbolically, { Qt : t E

(0,T) }.

q A value of Q. Symbolically,{ qt

t E [0,T) }; or (as a proposition in a

probability) an abbreviation for Q = q.

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

Rt Random variable: the output of the process section 3.2.2

at time t, or the robot's sensor readings at

time t.

rt A value of Rt, i.e. the observed process section 3.2.2

output at time t; or (as a proposition in

a probability) an abbreviation for Rt = rt.

R Random variable: all the process outputs, D section 3.2.2

or robot sensor readings, in the training

set, which are taken to be all those

occurring before timestep T. Symbolically,

{Rt:tE[0,T)}.

)R R is sometimes used as a subscript to select)A, ()v

rows and/or columns corresponding to the

position of RI in Xt.

r A value of R. Symbolically, { rt : d section 3.2.2

t E [0, T) }; or (as a proposition in a

probability) an abbreviation for R = r.

198

<54

Q

R

(• • -)R

Random variable: the process's mixing

hidden state at timestep t, i.e. a discrete-

valued, unobservable quantity inside the

process (or in the robot's environment),

which can control the choice of mixture

component in generating, for instance, R1,

and/or influence its successor Qt+1 through

a transition matrix.

A value of Q* i.e. the process's mixing

hidden state at time t; or (as a proposition

in a probability) an abbreviation for Qi =

9*.

Random variable: the process's mixing

hidden state at every timestep over the

training period. Symbolically, { Q* : t 6

A value of Q. Symbolically, {g4 :

t e [0,T) }; or (as a proposition in a

probability) an abbreviation for Q = q.

Random variable: the output of the process

at time t, or the robot's sensor readings at

time t.

A value of .R4, i.e. the observed process

output at time t; or (as a proposition in

a probability) an abbreviation for jR4 = r4.

Random variable: all the process outputs,

or robot sensor readings, in the training

set, which are taken to be all those

occurring before timestep T. Symbolically,

R is sometimes used as a subscript to select

rows and/or columns corresponding to the

position of R* in X*.

A value of R. Symbolically, { r4 :

t G [0, T) }; or (as a proposition in a

probability) an abbreviation for R = r.

A.2 Roman symbols

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.2.2

section 3.2.2

section 3.2.2

section 3.2.2

198

A.$ Roman symbols

S" Random variable: the choices of mixture 100

component made by the process during the

time range it. Symbolically, { Qt : t e

[Lu, Lu + L) }. Values of S" are written

either s" or 1.

s" A value of S", i.e. a sequence of choices of 1 100

mixing hidden state made by the process

during the time range it.

T The size of the training set D, or section 3.2.2

equivalently the timestep at which the

learner is asked to make a prediction using

her model.

t A timestep. The training set D for the section 3.2.2

model is taken to comprise observations of

the process made over the first T timesteps,

in the range [0, T). Timestep T is taken to

be the one at which the learner is asked to

make a prediction using her model.

U(9) The expected log likelihood maximised in section 3.3.1.2

the M-step of an EM algorithm.

it In the subsequence-joining algorithm for section 4.2.2.5

the Samovar model's E-step, a range of

timesteps (period) over which various

possible mixing state subsequences s" are

being locally evaluated. The current length

of the subsequences is called L, so range it

covers the steps [Lu, Lu + L).

V t Random variable: the process's linear A, a, k, fi section 3.3.3.5

hidden state at timestep t, i.e. a

continuous-valued, unobservable

quantity inside the process (or in the

robot's environment), on which other

quantities, such as the output (or sensor

readings) Rt, or Vs successor Vt+r are

generally supposed to depend through

a linear/Gaussian mapping, so that its

distribution stays Gaussian.

199

Su Random variable: the choices of mixture

component made by the process during the

time range u. Symbolically, {Q4 : t €

[Lu,Lu + L) }. Values of Su are written

either su or L

su A value of 5", i.e. a sequence of choices of

mixing hidden state made by the process

during the time range u.

T The size of the training set D, or

equivalently the timestep at which the

learner is asked to make a prediction using

her model.

t A timestep. The training set D for the

model is taken to comprise observations of

the process made over the first T timesteps,

in the range [0,T). Timestep T is taken to

be the one at which the learner is asked to

make a prediction using her model.

U(6) The expected log likelihood maximised in

the M-step of an EM algorithm.

u In the subsequence-joining algorithm for

the Samovar model's E-step, a range of

timesteps (period) over which various

possible mixing state subsequences s" are

being locally evaluated. The current length

of the subsequences is called L, so range u

covers the steps [Lu, Lu + L).

V* Random variable: the process's linear

hidden state at timestep t, i.e. a

continuous-valued, unobservable

quantity inside the process (or in the

robot's environment), on which other

quantities, such as the output (or sensor

readings) R*, or V4's successor Vt+1, are

generally supposed to depend through

a linear/Gaussian mapping, so that its

distribution stays Gaussian.

A.2 Roman symbols

100

100

section 3.2.2

section 3.2.2

section 3.3.1.2

section 4.2.2.5

A, a, K, ft section 3.3.3.5

199

A.2 Roman symbols

vt A value of Vt i.e. the process's linear section 3.3.3.5

hidden state at time t; or (as a proposition

in a probability) an abbreviation for Vt =

Vt.

V Random variable: the process's linear section 3.3.3.5

hidden state at every timestep over the

training period. Symbolically, { Vt : t E

[0,T)}.

)v V is sometimes used as a subscript to select ()R, ()A

rows and/or columns corresponding to the

position of Vt in Xt.

v A value of V. Symbolically, { vt : section 3.3.3.5

t E [0, T) }; or (as a proposition in a

probability) an abbreviation for V = v.

W(9) A quantity used in the proof sketch of the section 3.3.1.2

correctness of the EM algorithm.

Xt Random variable: in the Samovar model, A, a section 4.2.1.1

the continuous state of the world at

timestep t, comprising the robot's sensor

readings, the action it takes, and the

unknown linear hidden state, along with

an element fixed at unity which serves as a

bias term. Symbolically, (Ht', Rt', A", 1).

The world also has some discrete state Qt.

xt A value of Xt i.e. a possible continuous section 4.2.1.2

world state at time t-symbolically,

(ht', rt', at', 1)-or (as a proposition in a

probability) an abbreviation for Xt = xt

Yt Random variable: in the Samovar model, A, a section 4.2.1.1

the non-robot-dependent continuous state

of the world at timestep t, comprising

the robot's sensor readings and the

unknown linear hidden state. Symbolically,

(Ht', Rt').

200

A value of V* i.e. the process's linear

hidden state at time t; or (as a proposition

in a probability) an abbreviation for V* =

A.2 Roman symbols

section 3.3.3.5

W(6)

Xt

yt

Random variable: the process's linear

hidden state at every timestep over the

training period. Symbolically, { V4 : t

section 3.3.3.5

V is sometimes used as a subscript to select (•••)R,(---)A

rows and/or columns corresponding to the

position of Vt in X*.

A value of V. Symbolically, { v* :

t 6 [0,T)}; or (as a proposition in a

probability) an abbreviation for V = v.

A quantity used in the proof sketch of the

correctness of the EM algorithm.

Random variable: in the Samovar model, A, a

the continuous state of the world at

timestep t, comprising the robot's sensor

readings, the action it takes, and the

unknown linear hidden state, along with

an element fixed at unity which serves as a

bias term. Symbolically, (#4',E4/, A4',l).

The world also has some discrete state Q*.

A value of X* i.e. a possible continuous

world state at time t—symbolically,

(/I4',r4',a4', 1)—or (as a proposition in a

probability) an abbreviation for X1 — x*.

Random variable: in the Samovar model, A, a

the non-robot-dependent continuous state

of the world at timestep t, comprising

the robot's sensor readings and the

unknown linear hidden state. Symbolically,

section 3.3.3.5

section 3.3.1.2

section 4.2.1.1

section 4.2.1.2

section 4.2.1.1

200

References

A value of Yt-symbolically, (ht rt')-
or (as a proposition in a probability) an

abbreviation for Yt = pt

section 4.2.1.2

201

References

2/4 A value of r4—symbolically, (/i4', r4')— section 4.2.1.2 z?m

or (as a proposition in a probability) an

abbreviation for y4 = yi.

201

References

Andrieu, Christophe. Robust Full Bayesian Methods for Neural Networks. In Advances an

Neural Information Processing Systems 12, 1999.

Basye, Kenneth, Kirman, Thomas Dean Jak and Lejter, Moises. A Decision-Theoretic

Approach to Planning, Perception, and Control. IEEE Expert, 7(4):58-65, 1992.

Basye, Kenneth, Dean, Thomas and Kaelbling, Leslie. Learning Dynamics: System

Identification for Perceptually Challenged Agents. Artificial Intelligence, 72:139-171,

1995.

Bengio, Y. and Flasconi, P. An Input Output HMM Architecture. In Advances in Neural

Information Processing Systems 7. MIT Press, 1995.

Berger, J. 0. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 1985.

Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

Box, George E. P. and Tiao, George C. Bayesian Inference an Statistical Analysis. Wiley

Classics Library. Wiley, 1992.

Boyen, Xavier and Koller, Daphne. Tractable Inference for Complex Stochastic Processes.

In Proceedings of the Fourteenth Annual Conference on Uncertainty in Al (UAI-98),

pages 33-42, 1998.

202

References

Andrieu, Christophe. Robust Full Bayesian Methods for Neural Networks. In Advances m

Neural Information Processing Systems 12, 1999.

Basye, Kenneth, Kirman, Thomas Dean Jak and Lejter, Moises. A Decision-Theoretic

Approach to Planning, Perception, and Control. IEEE Expert, 7(4):58-65, 1992.

Basye, Kenneth, Dean, Thomas and Kaelbling, Leslie. Learning Dynamics: System

Identification for Perceptually Challenged Agents. Artificial Intelligence, 72:139-171,

1995.

Bengio, Y. and Frasconi, P. An Input Output HMM Architecture. In Advances in Neural

Information Processing Systems 7. MIT Press, 1995.

Berger, J. 0. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 1985.

Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

Box, George E. P. and Tiao, George C. Bayesian Inference in Statistical Analysis. Wiley

Classics Library. Wiley, 1992.

Boyen, Xavier and Koller, Daphne. Tractable Inference for Complex Stochastic Processes.

In Proceedings of the Fourteenth Annual Conference on Uncertainty in Al (UAI-98),

pages 33-42, 1998.

202

References

Boyen, Xavier, Friedman, Nir and Koller, Daphne. Discovering the Hidden Structure

of Complex Dynamic Systems. In Proceedings of the 15th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-99), pages 91-100, 1999.

Brooks, Rodney A. Intelligence without representation. Artificial Intelligence, 47:139-159,

1991.

Burgard, W., Fox, Dieter, Jans, H., Matenar, C. and Thrun, Sebastian. Sonar-based

mapping of large-scale mobile robot environments using EM. In Proc. of the 16th

International Conference on Machine Learning (ICML'99), 1999.

Cassandra, Anthony R., Kaelbling, Leslie Pack and Kurien, James A. Acting under

Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W. and Freedman, D. Autoclass: A

Bayesian classification system. In Proceedings of the Fifth International Conference

on Machine Learning. Ann Arbor, MI, 1988.

Chrisman, Lonnie. Reinforcement learning with perceptual aliasing: The perceptual

distinctions approach. In Proceedangs of the Tenth National Conference on Artificial

Intelligence, pages 183-188. AAAI Press, 1992.

Cox, I. J. and Leonard, J. J. Modeling a dynamic environment using a Bayesian multiple

hypothesis approach. Artificial Intelligence, 66:311-344, 1994.

Cox, D. R. Probability, Frequency and Reasonable Expectation. Am. Jour. Phys., 14:1-13,

1946.

de Freitas, J.F.G., Niranjan, M. and Gee, A.H. The EM Algorithm and Neural Networks

for Nonlinear State Space Estimation. Technical Report CUED/F-INFENG/TR 313,

Cambridge University Department of Engineering, 1998a.

de Freitas, J.F.G., Niranjan, M., Gee, A.H. and Doucet, A. Sequential Monte Carlo

methods for optimisation of neural network models. Technical Report CUED/F-

INFENG/TR 328, Cambridge University Department of Engineering, 1998b.

Dellaert, Frank, Burgard, Wolfram, Fox, Dieter and Thrun, Sebastian. Using the

CONDENSATION Algorithm for Robust, Vision-based Mobile Robot Localization. In

Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition. IEEE, 1999.

Dellaportas, P., Forster, J. J. and Ntzoufras, I. On Bayesian Model and Variable Selection

Using MCMC. Working paper, available from http://stat-athens.aueb.gr/-ptd,

1998.

203

References

Boyen, Xavier, Friedman, Nir and Koller, Daphne. Discovering the Hidden Structure

of Complex Dynamic Systems. In Proceedings of the 15th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-99), pages 91-100, 1999.

Brooks, Rodney A. Intelligence without representation. Artificial Intelligence, 47:139-159,

1991.

Burgard, W., Fox, Dieter, Jans, H., Matenar, C. and Thrun, Sebastian. Sonar-based

mapping of large-scale mobile robot environments using EM. In Proc. of the 16th

International Conference on Machine Learning (ICML '99), 1999.

Cassandra, Anthony R., Kaelbling, Leslie Pack and Kurien, James A. Acting under

Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W. and Freedman, D. Autoclass: A

Bayesian classification system. In Proceedings of the Fifth International Conference

on Machine Learning. Ann Arbor, MI, 1988.

Chrisman, Lonnie. Reinforcement learning with perceptual aliasing: The perceptual

distinctions approach. In Proceedings of the Tenth National Conference on Artificial

Intelligence, pages 183-188. AAAI Press, 1992.

Cox, I. J. and Leonard, J. J. Modeling a dynamic environment using a Bayesian multiple

hypothesis approach. Artificial Intelligence, 66:311-344, 1994.

Cox, D. R. Probability, Frequency and Reasonable Expectation. Am. Jour. Phys., 14:1-13,

1946.

de Freitas, J.F.G., Niranjan, M. and Gee, A.H. The EM Algorithm and Neural Networks

for Nonlinear State Space Estimation. Technical Report CUED/F-INFENG/TR 313,

Cambridge University Department of Engineering, 1998a.

de Freitas, J.F.G., Niranjan, M., Gee, A.H. and Doucet, A. Sequential Monte Carlo

methods for optimisation of neural network models. Technical Report CUED/F-

INFENG/TR 328, Cambridge University Department of Engineering, 1998b.

Dellaert, Frank, Burgard, Wolfram, Fox, Dieter and Thrun, Sebastian. Using the

CONDENSATION Algorithm for Robust, Vision-based Mobile Robot Localization. In

Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition. IEEE, 1999.

Dellaportas, P., Forster, J. J. and Ntzoufras, I. On Bayesian Model and Variable Selection

Using MCMC. Working paper, available from http: //stat-athens. aueb. gr/~ptd,

1998.

203

References

Dempster, A. P., Laird, N. M. and Rubin, D. B. Maximum likelihood from incomplete data

via the EM algorithm. J. Roy. Statist. Ser., B, 39:1-38, 1977.

de Verdiere, V. C. and Crowley, J. L. Local Appearance Space for Recognition of Navigation

Landmarks. In Proceedings of the 6th International Symposium on Intelligent Robotic

Systems (SIRS'98), pages 261-269, 1998.

Doucet, A. On sequential simulation-based methods for Bayesian filtering. Technical Report

CUED/F-INFENG/TR-310, Department of Engineering, Cambridge University, 1998.

Duckett, Tom and Nehmzow, Ulrich. Performance Comparison of Landmark Recognition

Systems for Navigating Mobile Robots. In Proceedings of the Seventeenth National

Conference on Artificial Intelligence (AAAI 2000), 2000.

Durrant-Whyte, H. F. Consistent integration and propagation of disparate sensor

observations. International Journal of Robotics Research, 6(3):3-24, 1987.

Elfes, A. Sonar Based Real World Mapping and Navigation. IEEE Journal of Robotics and

Automation, 3(3):249-265, 1987.

Fox, Dieter and Burgard, Wolfram. Active Markov Localization for Mobile Robots. Robotics

and Autonomous Systems, 25:195-207, 1998.

Fox, Dieter, Burgard, Wolfram and Thrun, Sebastian. Markov Localization for Mobile

Robots in Dynamic Environments. Journal of Artificial Intelligence Research, 11:391-

427, 1999.

Fusiello, A. and Caprile, B. Synthesis of indoor maps in presence of uncertainty. Robotics

and Autonomous Systems, 22(2):103-114, 1997.

Ghahramani, Z. and Beal, M. J. Variational inference for Bayesian mixture of factor

analysers. In Advances in Neural Information Processing Systems 12, 1999. To appear;

www.gatsby.uci.ac.uk/-zoubin.

Ghahramani, Zoubin and Hinton, Geoffrey E. Parameter Estimation for Linear Dynamical

Systems. Technical Report CRG-TR-96-2, Department of Computer Science,

University of Toronto, 1996.

Ghahramani, Zoubin and Hinton, Geoffrey E. Variational Learning for Switching State-Space

Models. Neural Computation, (in press), ress. www.gatsby.ucl.ac.uk/-zoubin.

Ghahramani, Z. Learning Dynamic Bayesian Networks. In Giles, C. L. and Gori, M. (eds),

Adaptive Processing of Sequences and Data Structures, Lecture Notes in Artificial

Intelligence, pages 168-197. Springer-Verlag, 1998.

204

References

Dempster, A. P., Laird, N. M. and Rubin, D. B. Maximum likelihood from incomplete data

via the EM algorithm. J. Roy. Statist. Ser., B, 39:1-38, 1977.

de Verdiere, V. C. and Crowley, J. L. Local Appearance Space for Recognition of Navigation

Landmarks. In Proceedings of the 6th International Symposium on Intelligent Robotic

Systems (SIRS'98), pages 261-269, 1998.

Doucet, A. On sequential simulation-based methods for Bayesian filtering. Technical Report

CUED/F-INFENG/TR.310, Department of Engineering, Cambridge University, 1998.

Duckett, Tom and Nehmzow, Ulrich. Performance Comparison of Landmark Recognition

Systems for Navigating Mobile Robots. In Proceedings of the Seventeenth National

Conference on Artificial Intelligence (AAAI2000), 2000.

Durrant-Whyte, H. F. Consistent integration and propagation of disparate sensor

observations. International Journal of Robotics Research, 6(3):3-24, 1987.

Elfes, A. Sonar Based Real World Mapping and Navigation. IEEE Journal of Robotics and

Automation, 3(3):249-265, 1987.

Fox, Dieter and Burgard, Wolfram. Active Markov Localization for Mobile Robots. Robotics

and Autonomous Systems, 25:195-207, 1998.

Fox, Dieter, Burgard, Wolfram and Thrun, Sebastian. Markov Localization for Mobile

Robots in Dynamic Environments. Journal of Artificial Intelligence Research, 11:391-

427, 1999.

Fusiello, A. and Caprile, B. Synthesis of indoor maps in presence of uncertainty. Robotics

and Autonomous Systems, 22(2):103-114, 1997.

Ghahramani, Z. and Beal, M. J. Variational inference for Bayesian mixture of factor

analysers. In Advances in Neural Information Processing Systems 12, 1999. To appear;

www.gatsby.ucl.ac.uk/~zoubin.

Ghahramani, Zoubin and Hinton, Geoffrey E. Parameter Estimation for Linear Dynamical

Systems. Technical Report CRG-TR-96-2, Department of Computer Science,

University of Toronto, 1996.

Ghahramani, Zoubin and Hinton, Geoffrey E. Variational Learning for Switching State-Space

Models. Neural Computation, (in press), ress. www.gatsby.ucl.ac.uk/~zoubin.

Ghahramani, Z. Learning Dynamic Bayesian Networks. In Giles, C. L. and Gori, M. (eds),

Adaptive Processing of Sequences and Data Structures, Lecture Notes in Artificial

Intelligence, pages 168-197. Springer-Verlag, 1998.

204

References

Gutmann, J: S. and Konolige, K. Incremental Mapping of Large Cyclic Environments. In

International Symposium on Computational Intelligence in Robotics and Automation

(CIRA'99), 1999.

Gutmann, J: S., Burgard, W., Fox, D. and Konolige, K. An Experimental Comparison of

Localization Methods. In International Conference on Intelligent Robots and Systems

(IROS'98), 1998.

Hermann, Michael, Pawelzik, Klaus and Geisel, Theo. Self-Localization by Hidden

Representations. In Proceedings of the Eighth International Conference on Artificial

Neural Networks, pages 1103-1108. Springer Verlag, 1998.

Hertz, John, Krogh, Anders and Palmer, Richard G. Introduction to the theory of neural

computation. Addison Wesley, 1991.

Hinton, G. E. and van Camp, D. Keeping neural networks simple by minimizing the

description length of the weights. In Proceedings of COLT, 1993.

Hinton, G. E. Products of experts. In Proceedings of the Nmth International Conference on

Artificial Neural Networks, volume 1, pages 1-6. Springer Verlag, 1999.

Isard, M. and Blake, A. CONDENSATION-conditional density propagation for visual

tracking. International Journal of Computer Vision, 29(1):5-28, 1998a.

Isard, Michael and Blake, Andrew. A smoothing filter for CONDENSATION. In Proceedings

of the 5th European Conference on Computer Vision, pages 767-781. Springer Verlag,

1998b.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. Adaptive mixtures of local

experts. In Advances in Neural Information Processing Systems 8, pages 79-87.

Morgan Kaufman, 1991.

Jaynes, E. T. Probability Theory: The Logic of Science. Available from

ftp://bayes.wustl.edu,1995.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of experts and the EM algorithm.

In Advances in Neural Information Processing Systems 6, pages 181-214. Morgan

Kaufman, 1994.

Jordan, Michael I. (ed). Learning in Graphical Models. MIT Press, 1999.

Julier, S. J. and Uhlmann, J. K. A General Method for Approximating Nonlinear

Transformations of Probability Distributions. "Internet Publication"; see

http://www.robots.ox.ac.uk/-siju/work/work.html#UnscentedFiltering,1996.

205

References

Gutmann, J.-S. and Konolige, K. Incremental Mapping of Large Cyclic Environments. In

International Symposium on Computational Intelligence in Robotics and Automation

(CIRA '99), 1999.

Gutmann, J.-S., Burgard, W., Fox, D. and Konolige, K. An Experimental Comparison of

Localization Methods. In International Conference on Intelligent Robots and Systems

(IROS'98), 1998.

Hermann, Michael, Pawelzik, Klaus and Geisel, Theo. Self-Localization by Hidden

Representations. In Proceedings of the Eighth International Conference on Artificial

Neural Networks, pages 1103-1108. Springer Verlag, 1998.

Hertz, John, Krogh, Anders and Palmer, Richard G. Introduction to the theory of neural

computation. Addison Wesley, 1991.

Hinton, G. E. and van Camp, D. Keeping neural networks simple by minimizing the

description length of the weights. In Proceedings of COLT, 1993.

Hinton, G. E. Products of experts. In Proceedings of the Ninth International Conference on

Artificial Neural Networks, volume 1, pages 1-6. Springer Verlag, 1999.

Isard, M. and Blake, A. CONDENSATION—conditional density propagation for visual

tracking. International Journal of Computer Vision, 29(l):5-28, 1998a.

Isard, Michael and Blake, Andrew. A smoothing filter for CONDENSATION. In Proceedings

of the 5th European Conference on Computer Vision, pages 767-781. Springer Verlag,

1998b.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. Adaptive mixtures of local

experts. In Advances in Neural Information Processing Systems 3, pages 79-87.

Morgan Kaufman, 1991.

Jaynes, E. T. Probability Theory: The Logic of Science. Available from

ftp://bayes.wustl.edu,1995.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of experts and the EM algorithm.

In Advances in Neural Information Processing Systems 6, pages 181-214. Morgan

Kaufman, 1994.

Jordan, Michael I. (ed). Learning in Graphical Models. MIT Press, 1999.

Julier, S. J. and Uhlmann, J. K. A General Method for Approximating Nonlinear

Transformations of Probability Distributions. "Internet Publication"; see

http://www.robots.ox.ac.uk/~siju/work/work.htmlSUnscentedFiltering,1996.

205

References

Kaelbling, Leslie Pack, Littman, Michael L. and Cassandra, Anthony R. Planning and

Acting in Partially Observable Stochastic Domains. Artificial Intelligence, 101, 1998.

Koenig, S. and Simmons, It. G. Unsupervised learning of probabilistic models for robot

navigation. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2555-2560, 1996a.

Koenig, S. and Simmons, Reid. Passive Distance Learning for Robot Navigation. In

Proceedings of the Thirteenth International Conference on Machine Learning (ICML),

pages 266-274, 1996b.

Kristensen, S. Sensor planning with Bayesian decision theory. Robotics and Autonomous

Systems, 19(3-4):273-286, 1997.

Kr6se, B. J. A. and Bunschoten, R. Probabilistic localization by appearance models and

active vision. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2255-2260, 1999.

Krose, Ben, Bunschoten, Roland, Vlassis, Nikos and Motomura, Yoichi. Appearance

based robot localization. In IJCAI-99 Workshop Adaptive Spatial Representations of

Dynamic Environments, pages 53-58. Morgan Kaufman, 1999.

Kuipers, B. and Levitt, T. Navigation and mapping in large-scale spaces. AI Magazine,

9:25-43,1988.

Kurz, A. Constructing maps for mobile robot navigation based on ultrasonic range data.

IEEE Trans. Systems, Man and Cybernetics B, 26(2), 1996.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computations with probabilities on graphical

structures and their application to expert systems. J. Royal Statististical Society B.,

pages 157-224, 1988.

Lee, Peter M. Bayesian Statistics: An Introduction. Arnold, 1997. Second edition.

Leonard, J. J., Moran, B. A. and Cox, I. J. Underwater Sonar Data Fusion Using an

Efficient Multiple Hypothesis Algorithm. In IEEE Int. Conf. on Robotics and

Automation. IEEE, 1995.

Lu, F. and Milios, E. Globally consistent range scan alignment for environment mapping.

Autonomous Robots, 4:333-349, 1997.

MacKay, David J. C. Bayesian Interpolation. Neural Computation, 4(3):415-447, 1992a.

MacKay, David J. C. A Practical Bayesian Framework for Backpropagation Networks.

Neural Computation, 4(3), 1992b.

206

References

Kaelbling, Leslie Pack, Littman, Michael L. and Cassandra, Anthony R. Planning and

Acting in Partially Observable Stochastic Domains. Artificial Intelligence, 101, 1998.

Koenig, S. and Simmons, R. G. Unsupervised learning of probabilistic models for robot

navigation. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2555-2560, 1996a.

Koenig, S. and Simmons, Reid. Passive Distance Learning for Robot Navigation. In

Proceedings of the Thirteenth International Conference on Machine Learning (ICML),

pages 266-274, 1996b.

Kristensen, S. Sensor planning with Bayesian decision theory. Robotics and Autonomous

Systems, 19(3-4) :273-286,1997.

Krose, B. J. A. and Bunschoten, R. Probabilistic localization by appearance models and

active vision. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2255-2260, 1999.

Krose, Ben, Bunschoten, Roland, Vlassis, Nikos and Motomura, Yoichi. Appearance

based robot localization. In IJCAI-99 Workshop Adaptive Spatial Representations of

Dynamic Environments, pages 53-58. Morgan Kaufman, 1999.

Kuipers, B. and Levitt, T. Navigation and mapping in large-scale spaces. Al Magazine,

9:25-43, 1988.

Kurz, A. Constructing maps for mobile robot navigation based on ultrasonic range data.

IEEE Trans. Systems, Man and Cybernetics B, 26(2), 1996.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computations with probabilities on graphical

structures and their application to expert systems. J. Royal Statististical Society B.,

pages 157-224, 1988.

Lee, Peter M. Bayesian Statistics: An Introduction. Arnold, 1997. Second edition.

Leonard, J. J., Moran, B. A. and Cox, I. J. Underwater Sonar Data Fusion Using an

Efficient Multiple Hypothesis Algorithm. In IEEE Int. Conf. on Robotics and

Automation. IEEE, 1995.

Lu, F. and Milios, E. Globally consistent range scan alignment for environment mapping.

Autonomous Robots, 4:333-349, 1997.

MacKay, David J. C. Bayesian Interpolation. Neural Computation, 4(3):415-447, 1992a.

MacKay, David J. C. A Practical Bayesian Framework for Backpropagation Networks.

Neural Computation, 4(3), 1992b.

206

References

Meila, Marina and Jordan, Michael I. Learning Fine Motion by Markov Mixtures of Experts.

In Advances in Neural Information Processing Systems 8, pages 1003-1009. Morgan

Kaufman, 1996.

Moller, M. A scaled conjugate gradient algorithm for fast supervised learning. Neural

Networks, 6(4):535-533, 1993.

Moravec, H. P. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9:61-74,

1988.

Narendra, K. Neural networks for control: Theory and practice. Proceedings of the IEEE,

84(10):1385-1406, 1996.

Neal, Radford M. and Hinton, Geoffrey E. A New View of the EM Algorithm that Justifies

Incremental and Other Variants. In Jordan Jordan, Learning in Graphical Models.

Neal, R. M. Probabilistic inference using Markov chain Monte Carlo methods. Technical

Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

Neal, R. M. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

Nelson, Alex T. and Wan, Eric A. Neural Speech Enhancement Using Dual Extended

Kalman Filtering. In Proceedings of the Seventh International Conference on Artificial

Neural Networks, 1997.

North, B., Blake, A., Isard, M. and Rittscher, J. Learning and classification of complex

dynamics. Technical Report draft report, Department of Engineering Science,

University of Oxford, 1999.

Oore, S., Hinton, G. and Dudek, G. A mobile robot that learns its place. Neural

Computation, 9:683-699, 1997.

Pierce, David and Kuipers, Benjamin. Map learning with uninterpreted sensors and effectors.

Artificial Intelligence, 92:169-229, 1997.

Pourraz, F. and Crowley, J. L. Continuity Properties of the Appearance Manifold for Mobile

Robot Position Estimation. In Proceedings of the 6th International Symposium on

Intelligent Robotic Systems (SIRS'98), pages 251-260, 1998.

Puskorius, G. and Feldkamp, L. Decoupled extended Kalman filter training of feedforward

layered networks. In Proceedings of the Fourth International Joint Conference on

Neural Networks, pages 1-771-777, 1991.

Rabiner, Lawrence R. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proc. IEEE, 77(2):257-285, 1989.

207

References

Meila, Marina and Jordan, Michael I. Learning Fine Motion by Markov Mixtures of Experts.

In Advances in Neural Information Processing Systems 8, pages 1003-1009. Morgan

Kaufman, 1996.

Moller, M. A scaled conjugate gradient algorithm for fast supervised learning. Neural

Networks, 6(4):535-533, 1993.

Moravec, H. P. Sensor fusion in certainty grids for mobile robots. Al Magazine, 9:61-74,

1988.

Narendra, K. Neural networks for control: Theory and practice. Proceedings of the IEEE,

84(10):1385-1406,1996.

Neal, Radford M. and Hinton, Geoffrey E. A New View of the EM Algorithm that Justifies

Incremental and Other Variants. In Jordan Jordan, Learning in Graphical Models.

Neal, R. M. Probabilistic inference using Markov chain Monte Carlo methods. Technical

Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

Neal, R. M. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

Nelson, Alex T. and Wan, Eric A. Neural Speech Enhancement Using Dual Extended

Kalman Filtering. In Proceedings of the Seventh International Conference on Artificial

Neural Networks, 1997.

North, B., Blake, A., Isard, M. and Rittscher, J. Learning and classification of complex

dynamics. Technical Report draft report, Department of Engineering Science,

University of Oxford, 1999.

Oore, S., Hinton, G. and Dudek, G. A mobile robot that learns its place. Neural

Computation, 9:683-699, 1997.

Pierce, David and Kuipers, Benjamin, Map learning with uninterpreted sensors and effectors.

Artificial Intelligence, 92:169-229, 1997.

Pourraz, F. and Crowley, J. L. Continuity Properties of the Appearance Manifold for Mobile

Robot Position Estimation. In Proceedings of the 6th International Symposium on

Intelligent Robotic Systems (SIRS'98), pages 251-260, 1998.

Puskorius, G. and Feldkamp, L. Decoupled extended Kalman filter training of feedforward

layered networks. In Proceedings of the Fourth International Joint Conference on

Neural Networks, pages 1-771-777, 1991.

Rabiner, Lawrence R. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proc. IEEE, 77(2):257-285, 1989.

207

References

Racz, J. and Dubrawski, A. Artificial neural network for mobile.robot topological

localization. Robotics and Autonomous Systems, 16, 1995.

Rauch, H. E. Solutions to the linear smoothing problem. IEEE Transactions on Automatic

Control, 8:371-372, 1963.

Sarle, Warren S. Why Statisticians Should Not FART.

ftp://ftp.sas.com/pub/neural/fart.txt, 1995.

Shatlcay, Hagit and Kaelbling, Leslie Pack. Learning Topological Maps with Weak Local

Odometric Information. In Fifteenth International Joint Conference on Artificial

Intelligence. Morgan Kaufman, 1997.

Shatkay, Hagit and Kaelbling, Leslie Pack. Heading in the Right Direction. In Proceedings of

the Fifth International Conference on Machine Learning (ICML), 1998.

Shumway, R. H. and Stoffer, D. S. An approach to time series smoothing and forecasting

using the EM algorithm. J. Time Series Analysis, 3(4):253-264, 1982.

Stolcke, A. and Omohundro, S. Hidden Markov model induction by Bayesian model merging.

Technical Report TR-94-003, International Computer Science Institute, 1994.

Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Introduction. MIT

Press, 1998.

Tani, Jun and Fukumura, Naohiro. A Dynamical Systems Approach for a Learnable

Autonomous Robot. In Advances in Neural Information Processing Systems 8, pages

989-995. Morgan Kaufman, 1996.

Thrun, Sebastian and Langford, John. Monte Carlo Hidden Markov Models. Technical

Report CMU-CS-98-179, School of Computer Science, Carnegie Mellon University,

1998.

Thrun, Sebastian. Bayesian Landmark Learning for Mobile Robot Localization. Machine

Learning, 33(1), 1998a.

Thrun, Sebastian. Learning Metric-Topological Maps for Indoor Mobile Robot Navigation.

Artificial Intelligence, 99(1):21-71, 1998b.

Thrun, S., Gutmann, S., D.Fox, Burgard, W. and Kuipers, B. Integrating Topological and

Metric Maps for Mobile Robot Navigation: A Statistical Approach. In Proceedings of

the Fifteenth National Conference on Artificial Intelligence. AAAI Press, 1998a.

Thrun, Sebastian, Burgard, Wolfram and Fox, Dieter. A Probabilistic Approach to

Concurrent Mapping and Localization for Mobile Robots. Machine Learning, 31(5):1-

25,1998b.

208

References

Racz, J. and Dubrawski, A. Artificial neural network for mobile.robot topological

localization. Robotics and Autonomous Systems, 16, 1995.

Rauch, H. E. Solutions to the linear smoothing problem. IEEE Transactions on Automatic

Control, 8:371-372, 1963.

Sarle, Warren S. Why Statisticians Should Not FART.

ftp://ftp.sas.com/pub/neural/fart.txt, 1995.

Shatkay, Hagit and Kaelbling, Leslie Pack. Learning Topological Maps with Weak Local

Odometric Information. In Fifteenth International Joint Conference on Artificial

Intelligence. Morgan Kaufman, 1997.

Shatkay, Hagit and Kaelbling, Leslie Pack. Heading in the Right Direction. In Proceedings of

the Fifth International Conference on Machine Learning (ICML), 1998.

Shumway, R. H. and Stoffer, D. S. An approach to time series smoothing and forecasting

using the EM algorithm. J. Time Series Analysis, 3(4):253-264, 1982.

Stolcke, A. and Omohundro, S. Hidden Markov model induction by Bayesian model merging.

Technical Report TR-94-003, International Computer Science Institute, 1994.

Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Introduction. MIT

Press, 1998.

Tani, Jun and Fukumura, Naohiro. A Dynamical Systems Approach for a Learnable

Autonomous Robot. In Advances in Neural Information Processing Systems 8, pages

989-995. Morgan Kaufman, 1996.

Thrun, Sebastian and Langford, John. Monte Carlo Hidden Markov Models. Technical

Report CMU-CS-98-179, School of Computer Science, Carnegie Mellon University,

1998.

Thrun, Sebastian. Bayesian Landmark Learning for Mobile Robot Localization. Machine

Learning, 33(1), 1998a.

Thrun, Sebastian. Learning Metric-Topological Maps for Indoor Mobile Robot Navigation.

Artificial Intelligence, 99(1):21-71, 1998b.

Thrun, S., Gutmann, S., D.Fox, Burgard, W. and Kuipers, B. Integrating Topological and

Metric Maps for Mobile Robot Navigation: A Statistical Approach. In Proceedings of

the Fifteenth National Conference on Artificial Intelligence. AAAI Press, 1998a.

Thrun, Sebastian, Burgard, Wolfram and Fox, Dieter. A Probabilistic Approach to

Concurrent Mapping and Localization for Mobile Robots. Machine Learning, 31(5):1-

25, 1998b.

208

References

Thrun, S., Burgard, W., and Fox, D. A real-time algorithm for mobile robot mapping

with applications to multi-robot and 3D mapping. "Submitted for publication"; see

http://www.cs.cmu.edu/`thrun,1999.

Tutschku, K. Recurrent Multilayer Perceptrons for Identification and Control: The Road to

Applications. Technical Report 118, University of Wiirzburg Institute of Computer

Science, 1995.

Ueda, N., Nakano, R., Ghahramani, Z. and Hinton, G. E. SMEM Algorithm for Mixture

Models. Neural Computation, in press.

Vlassis, Nikos and Krose, Ben. Robot Environment Modeling via Principal Component

Regression. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems, 1999.

Vlassis, Nikos, Motomura, Yoichi and Krose, Ben. An information-theoretic localization

criterion for robot map building. In Proc. ACAI'99, Int. Conf on Machine Learning

and Applications, 1999.

Waterhouse, Steve, MacKay, David and Robinson, Tony. Bayesian Methods for Mixtures of

Experts. In Advances in Neural Information Processing Systems 8. Morgan Kaufman,

1996.

Whitehead, Steven D. and Ballard, Dana H. Active Perception and Reinforcement Learning.

In Proc. of the 7th International Conference on Machine Learning (ICML'90), 1990a.

Whitehead, Steven D. and Ballard, Dana H. Learning to Perceive and Act. Technical Report

Technical Report 331, Dept. of Computer Science, University of Rochester, 1990b.

Xu, Lei, Jordan, Michael I. and Hinton, Geoffrey E. An Alternative Model for Mixtures of

Experts. In Advances in Neural Information Processing Systems 7, pages 633-640.

Morgan Kaufman, 1995.

209

References

Thrun, S., Burgard, W., and Fox, D. A real-time algorithm for mobile robot mapping

with applications to multi-robot and 3D mapping. "Submitted for publication"; see

http://www.cs.emu.edu/~thrun, 1999.

Tutschku, K. Recurrent Multilayer Perceptrons for Identification and Control: The Road to

Applications. Technical Report 118, University of Wiirzburg Institute of Computer

Science, 1995.

Ueda, N., Nakano, R., Ghahramani, Z. and Hinton, G. E. SMEM Algorithm for Mixture

Models. Neural Computation, in press.

Vlassis, Nikos and Krose, Ben. Robot Environment Modeling via Principal Component

Regression. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems, 1999.

Vlassis, Nikos, Motomura, Yoichi and Krose, Ben. An information-theoretic localization

criterion for robot map building. In Proc. ACAI'99, Int. Conf. on Machine Learning

and Applications, 1999.

Waterhouse, Steve, MacKay, David and Robinson, Tony. Bayesian Methods for Mixtures of

Experts. In Advances in Neural Information Processing Systems 8. Morgan Kaufman,

1996.

Whitehead, Steven D. and Ballard, Dana H. Active Perception and Reinforcement Learning.

In Proc. of the 7th International Conference on Machine Learning (ICML '90), 1990a.

Whitehead, Steven D. and Ballard, Dana H. Learning to Perceive and Act. Technical Report

Technical Report 331, Dept. of Computer Science, University of Rochester, 1990b.

Xu, Lei, Jordan, Michael I. and Hinton, Geoffrey E. An Alternative Model for Mixtures of

Experts. In Advances in Neural Information Processing Systems 7, pages 633-640.

Morgan Kaufman, 1995.

209

	PhD coversheet April 2012
	EDI-INF-PHD-99-019.pdf

