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Abstract 

This thesis proposes the use of a probabilistic state-space model with mixed-linear 

dynamics for learning to predict a robot's experiences. It is motivated by a desire to bridge 

the gap between traditional models with predefined objective semantics on the one hand, 

and the biologically-inspired "black box" behavioural paradigm on the other. 

A novel EM-type training algorithm for the model is presented, which is less 

computationally demanding than the Monte Carlo techniques recently developed for use in 

(for example) visual tracking applications. The algorithm's E-step is slightly approximative, 

but an extension is described which would in principle make it asymptotically correct. 

Investigation using synthetically sampled data shows that the uncorrected E-step can in any 

case make correct inferences about quite complicated systems. 

Results collected from two simulated mobile robot environments support the claim that 

mixed-linear models can capture both discontinuous and continuous structure in the world in 

an intuitively natural manner; while they proved to perform only slightly better than simpler 

autoregressive hidden Markov models on these simple tasks, it is possible to claim tentatively 

that they might scale more effectively to environments in which trends over time played 

a larger role. Bayesian confidence regions-easily supported by the mixed-linear model- 

proved to be an effective guard for preventing it from making over-confident predictions 

outside its area of competence. 

A section on future extensions discusses how the model's easy invertibility could be 

harnessed to the ultimate aim of choosing actions, from a continuous space of possibilities, 

which maximise the robot's expected payoff over several steps into the future. 
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Chapter 1 

Introduction 

One of the great arguments in contemporary robotics, still continuing a decade after 

it was initiated by Brooksl, concerns the nature and role of representation: whether a 

robot should strive to maintain an objective model of its environment, extracting from its 

sensorium a picture of how the world really is; or on the other hand shun any such notion as 

a delusion born of our human tendency to reification, relying instead on superficial and as 

far as possible memoryless rules to get by; or perhaps call its world a complex dynamical 

system, and deploy neural networks or evolutionary algorithms to develop a "black box" 

oracle, which is capable of predicting its experiences, or of recommending what action it 

should take, but whose internal semantics are deliberately left obscure. 

Cogent arguments can be marshalled for and against each of these positions. It is 

certainly true that explicit, objective representations, in terms familiar from the way we 

talk about the world ourselves, are very difficult to construct, and in any case often turn 

out to be a fragile and inconvenient basis for supporting the generation of behaviour. More 

opportunistic methods, like those advocated by Brooks, are better able to take advantage 

of untidy and shallow-but useful and robust-regularities in the environment. On the 

other hand, it is also clear that the robot's controller will often need to be furnished with 

internal state in some form or another. And, if the talk is of harnessing the subjective and 

idiosyncratic phenomena of the robot's world, it makes plausible sense to go further and 

allow the robot to learn (or evolve) a means of exploiting them for itself, by any means 

1 Brooks, Intelligence without representation 
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1 Introduction 

necessary. Yet one must at some point confront the scientific question: how are we to 

understand what is then going on in the robot? If we abandon the attempt to make robots 

know the world in the way we do, how can we make sense of the idea that they know it at 

all? 

The motivation behind the work reported here is to help narrow the gap between 

objective representations of the robot's world on the one hand, and black box dynamical 

systems models on the other. Within the framework of probabilistic modelling, it is possible 

to unify the two and understand how a robot can learn a representation and a model 

of its world in a way which is simultaneously adaptive, in that the form taken by the 

representation is driven by what is found useful in practice; open in principle to analysis 

and understanding; and, in an interesting and strong sense, rational. This is the line taken 

by, among others, the Brown University robotics group2. The present thesis describes a 

probabilistic model which aims to capture the complex, continuous environmental dynamics 

faced by real robots at the low level, making as few assumptions as possible about how 

the quantities in play (such as sensor readings) should be interpreted-but inferring in the 

process a representational scheme at once subjective and reasonably transparent. It can be 

seen as a kind of missing link between explicit models used for tasks such as map-building 

with "opaque" neural networks. 

Chapter 2 reviews three important sub-fields of robot learning: mapping, reinforcement 

learning, and neural network system identification. Chapter 3 discusses the properties which 

an environment model must have if it is to achieve the ends set out above, and introduces 

the theory of Bayesian probabilistic reasoning on which (it is argued) it must be based, with 

particular reference to model confidence regions, and to dynamical systems models including 

the hidden Markov model and Kalman filter. Chapter 4 proposes that a mixed-linear 

probabilistic state-space model has many of the required attributes, and presents a novel 

algorithm called "Samovar" for learning and performing inference with it; by drawing on the 

representational schemes and learning algorithms of both the hidden Markov model and the 

Kalman filter, Samovar is (it is claimed) positioned to inherit the strengths, and some of the 

tractability, of both. Connections are drawn between Samovar and related techniques in the 

literature-including the Condensation algorithm, which has been used to learn a similar 

class of model. Chapter 5 analyses Samovar's behaviour using synthetically generated time 

series data, before evaluating its performance on the task of predicting the experiences of 

two simulated robots. Chapter 6 points out how the model and learning algorithm could 

be improved and extended, and suggests a way in which the invertibility property of one 

variant of the mixed-linear model could be used as the basis for a reasonably efficient (albeit 

theoretically suboptimal) algorithm for planning actions to achieve the robot's goals. 

2 e.g. Basye et al., Learning Dynamics 
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A glossary of the terms and symbols used in the text, together with pointers to their 

first uses, is given in appendix A. Works cited are referenced via the formula "authors, first 

few words of title", which keys into the full list provided at the end of the thesis. Numbers 

in parentheses refer to equations, which are numbered sequentially without regard to the 

chapter in which they appear. 
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Chapter 2 

Robot Learning 

Chapter 1 outlined the goal of this thesis, namely the development of a probabilistic 

model for the low-level dynamics of a robot's environment. The general theory on which 

the model is based will be described in chapter 3; this chapter reviews the three main fields 

specific to robotics which intersect with or touch on the problem of probabilistic environment 

modelling. 

First, techniques for autonomous localisation and mapping are surveyed: some of the 

most sophisticated "explicit" models of real robot environments have been developed for 

handling this important problem. Next, a summary is given of the application of neural 

networks to the task of low-level environment modelling. If both these problems are cast in 

terms of probabilistic learning and inference, their essential similarity becomes explicit and 

space for a "missing link" between them is opened up. 

Finally, the area of robot decision-making is considered: the work presented in this 

thesis is concerned only with learning an environment model, and not directly with using 

it to guide a robot's behaviour, but the question of how this could be achieved will be 

addressed in section 6.2, for which reinforcement learning and the related Bayesian theory 

of acting under uncertainty are the essential background. 
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addressed in section 6.2, for which reinforcement learning and the related Bayesian theory

of acting under uncertainty are the essential background.



2.1.1 Unstructured environments 

2.1. Localisation 

One of the competences generally agreed to be most desirable for an autonomous robot 

is self-orientation: the ability to find its way around. Industrial robots have for many years 

been solving the problem of locating themselves on a predefined map by enlisting the help 

of external navigational aids such as radio, laser or barcode "beacons", smooth floors which 

make it feasible to move considerable distances by dead reckoning on the basis of odometry 

information, and wires laid in the floor for detection by inductive sensors. It's obviously 

interesting to look at ways of doing this in a less structured environment, and of learning 

the map so that it need not be known in advance; the latter is perhaps the single most 

intensively researched problem in robot environment modelling, so it is reviewed here as 

background for the techniques (not specific to mapping) to be introduced later. 

2.1.1. Unstructured environments 

Where the designer does not have tight control over her robot's environment, she is 

unable to engineer out two sources of uncertainty which render these brittle approaches 

ineffective: odometry readings becomes much less reliable, accumulating errors over time, 

and the unambiguously locatable beacons against which they could be corrected are replaced 

(if she is lucky) by hard-to-detect and mutually confusible landmarks. The challenge is to 

fuse the hints from all the robot's sensors into a robust estimate of its true position, using 

rough odometry data to disambiguate information about possible landmarks, and conversely 

using the conclusions thus reached to compensate for dead-reckoning drift. 

For reasons which will become clear when Bayesian inference is discussed in section 3.2, 

the most successful approaches work by interpreting the inevitable uncertainties in a 

probabilistic framework, against the background of a stochastic model specifying roughly 

how the quantities in play are believed to relate to each other. It is then easy to write down 

the right thing to do, in principle, using Bayes' rule. Adopting the following notations 

Ht random variable: the robot's position/orientation at timestep t 
rt the robot's sensor readings at timestep t 

At the robot's motor commands at timestep t 

p(rt ht) probability density: how likely readings are in each position 

p(ht+s I ht, at) prob. density: how likely new positions are after taking action in old one 

s see also appendix A 
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2.1.1.1 Kalman filtering and uncertasn geometry 

the inference one should make about one's new position Ht}1 on the basis of one's new 

sensor readings rt+1 and previous experiences a[o,t] r[o,tI consists in the probability 

distribution 

P(ht+lIrt+1 a[o°t] r[0,t])oc P(rt+lIht+r)P((ht+1Ialo'tl,r[o't]) 

=P(rt+lIht+1) J p(ht+lIht,at)P(htIrt,a[s't-1l,r[o't-I]) 
(1) It 

where first Bayes' rule (section 3.2.2.2) and then the sum (marginalisation) rule (3) 

have been invoked. Note that this rule can be applied inductively, since the term 
p(ht I rt a[o,t-i] r[o,t-1 ]) is just the analogous distribution obtained at the previous 

timestep for Ht. 

To use this "Markov localisation" formula in practice, it is necessary to find a way of 

expressing ht, the dynamical rule p(ht+1 I ht, at) and the output rule p(rt I ht) which make 

sense with respect to the robot's exact aims and the sensorium at its disposal, together with 

a way of working with them which makes the integration over ht feasible. 

2.1.1.1. Kalman filtering and uncertain geometry 

One immediately familiar scheme is to encode the robot's position in Cartesian space in 

a real vector ht, and model its movements as a linear difference equation 

Ht+1=(I A) 
At+N(O,a) 

where At is known to determine the distance and direction by which the robot moves 

between the two timesteps via the linear map A, and N(0, a) is an anonymous zero-mean 

Gaussian random variable (noise). (To extend this scheme to cases where At instead 

influences the robot's speed and bearing, it would be necessary only to augment the state Ht 

to include the current velocity.) In the (unlikely) event that the robot's sensor readings were 

more or less directly related to its position (and possibly velocity or acceleration), according 

to another linear/Gaussian mapping it 

lit = KHt + N(0, )3) 

-e.g. they were odometers and range sensors operating in a convex rectilinear arena-the 

solution to (1) would be a Gaussian and could be calculated straightforwardly using the well- 

known Kalman recursions (section 3.3.3.5). 

In more general cases, it is possible to get this approach to work by using a technique 

called "scan matching". It is assumed that the most probable position suggested by the 

odometry information is close to the truth, and the map is used to compute a first-order 
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2.1.1.2 Markov grids 

local expansion of how the values expected from the robot's sensors (range sensors or vision- 

based object detectors) would vary as the robot's position deviated from that point. This 

linearisation plays the role of it and the sensor noise model that of 0.2 The correction 

to the robot's position distribution in the light of the scan fit is calculated as above (the 

approximative framework going by the name "extended Kalman filter" or EKF), and could 

be propagated back into the past using the Rauch recursions, although the original work by 

Durrant-Whyte3 and subsequent extensions by others4 use slightly different formulations. 

The major weakness of any method which relies on a unimodal (e.g. Gaussian) 

distribution for representing its beliefs about the robot's position is that this approximation 

will only ever be remotely true when the robot is able to pin its location down pretty closely. 

It suffices for correcting small errors in odometry before they build up disastrously, but 

is inappropriate for initial localisation when the prior distribution over H° is wide, or for 

recovering after a loss of registration. However, by modelling the different ways in which 

world features such as walls and corners are likely to follow on from one another, Cox and 

Leonard are able to construct a tree of hypotheses within each of which the robot's sensor 

readings can realistically be fused using a EKF.5 

2.1.1.2. Markov grids 

Another way of encoding the robot's position (and perhaps orientation) is to quantise 

it onto a grid; the Markovian rule will then be something like "the robot may move to one 

of the blocks near to the one it is currently in, depending on the action it takes". This 

makes the dynamics density p(ht+1 I ht at) a known discrete distribution for each given at, 

so that the integral in (1) is just a summation. As long as the output distribution p(rt I W) 

is known, therefore, the solution of (1) is not in principle difficult; and the advantage of 

a grid-based method is that p(rt I ht) can take any form whatsoever: it is just a record 

of what sensor readings are to be expected in each grid square, which (as noted above) 

need not necessarily be related in any systematic way with the robot's actual position. 

So this technique can handle arbitrary "landmarks", in the most general sense of static 

environmental features giving rise to sensor readings which allow the robot to reduce 

significantly the entropy of its belief distribution over its possible locations (but which may 

2 Gutmann et al., An Experimental Comparison 

3 Durrant-Whyte, Consistent integration and propagation 

4 Lu & Milios, Globally consistent range scan alignment; Gutmann & Konolige, Incremental 

Mapping, Fusiello & Caprile, Synthesis of indoor maps 

5 Cox & Leonard, Modeling a dynamic environment; Leonard et al., Underwater Sonar Data 

Fusion; this work is interestingly related to the recursive mixed-linear models discussed in 

section 4.1 and section 4.3 
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2.1.1.3 Monte Carlo methods 

not be perfectly interdistinguishable).6 As will be shown in section 2.1.2, this is the basis of 

many successful map-learning methods in which the observation densities are conditioned 

on the robot's position through such varied models such as multi-layer perceptrons7, kernel- 

based PCA regressions, and kernel-based regression controlled by multi-layer perceptrons9, 

as well as models of the properties of various kinds of range sensor, and can be seen as a 

biologically plausible account of animal localisationio 

Crucially, the grid representation also makes it possible to entertain a multimodal belief 

distribution over the robot's position: if landmark information is currently not sufficient to 

disambiguate two regions that look the same, both hypotheses will be kept alive until some 

observation is made which one predicts well and the other does not; as was noted above, 

the Kalman filter and similar formalisms must be augmented with relatively complicated 

mechanisms for explicitly representing divergent interpretations of the world if they are to 

avoid the brittleness arising from reliance on a unimodal distribution. 

Of course, if the grid is made too fine, the summation (integral) in (1) will become too 

time-consuming, so there is a difficult tradeoff between the acuity with which it is desired to 

estimate the robot's position and the constraints of CPU time and memory, both of which 

rise exponentially with the resolution. On the other hand, Gutmann and co-workers have 

shown that if the robot is most of the time reasonably sure of its position, it is possible to 

prune the vast majority of the states out of the sum.11 

2.1.1.3. Monte Carlo methods 

Researchers at Bonn and Carnegie Mellon universities have recently introduced an 

interesting way12 of sidestepping the tradeoff between resolution and tractability which 

afflicts grid-based representations of the robot's position: abandon the attempt to perform 

the integration in (1) in closed form, and instead approximate the expectation by a weighted 

sum over a suitably-generated sample of hypothetical grid positions ht. This can be done 

6 Cf. the criterion developed in Vlassis et al., An information-theoretic localization criterion. 

Defining landmarks any other way is difficult; see e.g. the discussion of "Local Distinguished Places" 

in Kuipers & Levitt, Navigation and mapping, and footnote 1 of Thrun, Bayesian Landmark 

Learning 

7 Thrun, Bayesian Landmark Learning 

a Vlassis & Krose, Robot Environment Modeling, Krose et al., Appearance based robot 

localization 

9 Oore et al., A mobile robot that learns its place 

10 Hermann et al., Self-Localization 

11 Gutmann et al., An Experimental Comparison 

12 Dellaert et al., Using the Condensation Algorithm 
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2.1.2 Learning the environment 

by starting with a large cloud of "particles" drawn from the prior distribution p(h°), and 

then, whenever the robot moves, passing each particle through the stochastic dynamics 

several times, and resampling from the resulting set of position predictions with probabilities 

proportional to those with which each accounts for the observed data (see also section 4.3.3). 

Over time, the particles in play will become concentrated around a small number of 

high density regions (e.g. just one) as the true distribution is cut down by the data. If 
enough particles are tracked, it can be shown13 they can be used as good estimators of any 

desired statistic of p(ht+l I rt+1 a[o,tl r[o,tI) Because the Monte Carlo filtering process 

(stochastically) concentrates its attention on a relatively tiny number of the most significant 

possibilities, it is much more computationally tractable than an exact algorithm running on 

an equivalent grid size; and it was shown to perform impressively on the task of localising 

and then tracking a mobile robot equipped only with unreliable odometry and an intensity 

map of its building's roof. The method has been extended to the problem of handling 

dynamic environments in which sensor readings are affected by third parties coming between 

the robot and the fixed environment14, and most recently to the problem of learning about 

the environment discussed in section 2.1.21-'. 

2.1.1.4. Topological techniques 

If the available landmarks are scattered sparsely across the environment, then it may 

be better to connect them via a sparse, so-called topologically representation, in some 

kind of graph, rather than in a dense "metric" one: a bitmap or set of overlapping depth 

scans. Sparse methods are common in the literature on visual navigation based on high-level 

geometric recognition of fixed objects. 

2.1.2. Learning the environment 

Alongside inferring its position within a pre-described environment, the other desirable 

skill in an autonomous robot is that of mapping the world for itself. If the robot is able to 

perform a calibration run, during which it is granted accurate knowledge of its position, then 

the aim is simply to merge noisy and/or partial sensor readings covering the same areas; 

this is essentially the dual of the problem of localisation from a known map discussed in 

section 2.1.1. For instance, from sonar or other range sensors, it is relatively easy for the 

13 Isard & Blake, Condensation 

14 

15 

16 

Fox et at., Markov Localization 

Thrun et at., A real-time algorithm 

note that this term is often used of schemes which do include metric information, against one 

of its common meanings 
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13 Isard fc Blake, Condensation
14 Fox et al., Markov Localization
15 Thrun et al., A real-time algorithm
16 note that this term is often used of schemes which do include metric information, against one

of its common meanings



2.1.2.8 EM Mapping 

robot to construct a two-dimensional probabilistic representation of the distribution of open 

space as against walls and other large objects in its immediate vicinity17, and then, following 

Moravec18, use Bayes' rule to piece together a series of overlapping local maplets recorded in 

various places at different times into a global "occupancy grid" 19. 

But in general this option is not available to a robot exploring a new environment with 

complete autonomy: if it cannot leverage perfect knowledge of its position to help it in the 

map-building process, the problem of localisation using unreliable sensor information familiar 

from section 2.1.1 recurs-only this time the map itself is also uncertain, and the resulting 

chicken and egg dilemma appears unbreakable. 

2.1.2.1. Local matching 

One way to work around this is to use previously measured sections of the global map 

as a template against which to fit corresponding new local ones. Combined (albeit in a 

not obviously Bayesian way) with prior information about the relative orientations of walls 

(i.e. parallel or perpendicular), this technique has been found to give good results (by, for 

example, Thrun20). However, since estimates once integrated into the map are never revised, 

this can only counteract a part of the buildup in positional error, and there is a danger that 

the map will end up not only warped but, if the environment contains a cycle, potentially 

inconsistent.21 

2.1.2.2. Global landmark matching 

It's better to update past estimates of the robot's pose, and hence of the mapping 

inferences based on them, in the light of subsequent observations. All the localisation 

techniques outlined in section 2.1.1 can be adapted to perform this reverse inference. Many 

workers have used either scan matching or landmark-based techniques to build up networks 

of spatial relationships between robot poses at different times, which have then been globally 

optimised in the maximum likelihood sense.22 

14 although the effect of noise, sensor calibration and specular effects means that this isn't quite a 

trivial task; see Thrun, Learning Metric- Topological Maps, section 2.1 for a brief review and a 

solution using multi-layer perceptrons 

18 Moravec, Sensor fusion in certainty grids 

19 Elfes, Sonar Based Real World Mapping 

20 Thrun, Learning Metric- Topological Maps 

21 Gutmann & Konolige, Incremental Mapping; Thrun et al., A real-time algorithm 

22 Durrant-Whyte, Consistent integration and propagation; Lu & Milios, Globally consistent 

range scan alignment; Koenig & Simmons, Passive Distance Learning; F asiello & Caprile, 

Synthesis of indoor maps; Gutmann & Konolige, Incremental Mapping; Thrun et al., A real-time 

algorithm 
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2.1.2.4 Bringing together dense and sparse representatsons 

2.1.2.3. EM Mapping 

With the popularisation of the EM algorithm (section 3.3.1), it has become almost a 

reflex to consider it as the obvious best solution to chicken and egg problems; and indeed 

there are several examples in the literature of true EM learning applied to concurrent 

mapping and localisation. Here the map plays the role of the unknown model parameter and 

the robot's position that of the hidden data, and the algorithm involves alternately 

computing a distribution p(h) for the robot's position at each point in time on the 

basis of the current map estimate and the known sensor readings (E-step), and 

reestimating the map assuming that the location density history is in fact optimal 

(M-step). 

The reason why this works well is that the maximum likelihood criterion is good at 

identifying previously identified map features in a slightly unexpected place: the hypothesis 

that a known feature is responsible for the sensor readings gives them a higher likelihood 

than is obtained by postulating a previously unobserved nearby feature, even when the data 

are consistent with the latter view. 

In applications which involve estimating the positions of discrete (but not mutually 

distinguishable) landmarks, EM has been shown by Thrun et al. to work well over a grid 

representation of the robot's (and the landmarks') positions23, and by Shatkay et at to be 

equally applicable to a graph-based24 one25. In both cases the robot's location is represented 

discretely, so that the well-known forward-backward equations (section 3.3.3.3) can be used 

for the E-step. 

Oore et al.26 also use a discrete grid, and suggest that it is not necessarily critical 

to implement the backward as well as the forward pass of the standard E-step, as long 

as the M-step (in this case the training of a multi-layer perceptron) increases the overall 

likelihood27. Other authors have, however, found that failure to make inferences backwards 

in time can lead to problems in mapping cycles in the environment 28 

23 Thrun et at, A Probabilistic Approach; this is arguably best seen as a variational algorithm 

rather than an EM one, in that the M-step computes a probability distribution over the landmark 

locations rather than a maximum likelihood estimate (binary occupancy grid) 

24 topological but including metric information 

25 Shatkay & Kaelbling, Learning Topological Maps; Shatkay & Kaelbling, Heading in the 

Right Direction, which interestingly uses the von Mises' or circular normal distribution for 

expressing angular uncertainty 

26 Oore et at., A mobile robot that learns its place 

27 for the generalised view of the EM algorithm on which this assertion rests, see section 3.3.1.3 

28 e.g. Thrun et at, A real-time algorithm 
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2.1.2.5 Monte Carlo mapping 

2.1.2.4. Bringing together dense and sparse representations 

An algorithm based on applying naive EM directly to an occupancy grid would require 

a great deal of pragmatic pruning to achieve acceptable performance, and appears not to 

have been reported; but Burgard et at. obtain good results with a two-stage approach which 

first constructs a series of small local maplets, whose internal consistency is assured by the 

fact that odometry errors are bounded over short timescales, and then using EM to optimise 

their global positions 29 This can be seen either as a good way to perform occupancy 

scan matching, or as a way of obtaining a set of landmarks (the maplets) to combine in a 

maximally consistent spatial relations graph. Conversely, Thrun et al. use a graph-type map, 

learned by EM optimisation over a landmark occupancy grid, as a framework on which to 

hang a dense map constructed by Kalman filter scan matching.30 

Another point at which the graph-based and occupancy-based approaches meet is in a 

nice procedure for obtaining the former kind of map from an instance of the latter, applying 

geometric algorithms based on Voronoi diagrams to a learned occupancy grid in order to 

compute a topological representation of the connectivity of the environment31 in terms of its 

choke points (e.g. doors). This furnishes the robot with a much more efficient data structure 

for the purposes of applying standard navigation planning algorithms. 

2.1.2.5. Monte Carlo mapping 

The powerful technique of Monte Carlo localisation opens up the possibility of 

estimating the robot's pose in a continuous space, and correcting it with the help of 

information from dense sensor scans without having to resort to brittle approximations 

such as the extended Kalman filter (section 2.1.1.1). It has been applied by Thrun et at. to 

the problem of map-building, with impressive results.32 A reasonable-sized set of particles 

sampled using the motion and observation distributions according to the algorithm defined 

in section 2.1.1.3 can stand in for the true posterior distribution-however multimodal and 

non-Gaussian-when it comes to computing statistics such as the most probable pose of 

the robot at each step in time, and hence, given range scan data and the observation model 

describing what it measures, a probabilistic representation of the shape of the environment. 

29 Burgard et at, Sonar-based mapping; it proves necessary to use a technique called 

deterministic annealing which can be considered as a means of flattening out the peaks in the 

likelihood landscape temporarily so that a hill-climbing algorithm can pass over them (although this 

is not how the authors appear to understand what they have done) 

30 Thrun et at, Integrating Topological and Metric Maps 

31 Thrun, Learning Metric- Topological Maps 

32 Thrun et al., A real-time algorithm 
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2.1.2.6 Appearance-based methods 

In fact, the maximum likelihood pose could simply be approximated by the most 

probable pose in the sample set. However, the probability concerned has to be conditioned 

on sensor readings succeeding the timestep as well as on those made before; and it is 

currently a recognised weakness of particle filter techniques that they are unable to 

implement the necessary backward recursion efficiently.33 Apparently for this reason, the 

authors instead proceed by explicitly detecting the situations in which historical revision is 

necessary, i.e. when closing a loop in the environment and returning to a previously mapped 

area, but slightly out of registration with it. First, an estimate is made of the absolutely 

most probable pose for the robot before a sensor scan is taken at its new position, obtained 

by starting a hill-climbing optimiser off at every pose sample in the new set and recording 

the best answer it finds. (It is not made clear exactly on what basis the likelihood gradient 

is approximated using, presumably, the previous step's pose sample.) Next, a similar best 

estimate is made of the pose, but now conditioned also on the new scan. If the robot is re- 

observing a location in which it has found itself before, and its position estimate has drifted 

in the meantime, the scan will conflict directly with that previously recorded, and the second 

position estimate will be dragged significantly away from the first in order to bring them 

into registration. When this happens, the displacement is distributed evenly between all 

the moves the robot believes it has made since the last time it was here, and the roughly 

corrected estimates for each timestep in the loop are used as a seed for the same gradient 

ascent procedure. The eventual result is a good maximum probability estimate of the robot's 

position at each point in history. The authors acknowledge that a stricter EM algorithm 

might be even more robust but point out that their method is fast and offer as evidence for 

its efficacy an accurate 3D map of a large building interior. 

2.1.2.6. Appearance-based methods 

Some kinds of sensors, such as video cameras, provide readings which take the form of 

a vast array of numbers from which semantically useful information cannot be extracted in 

any straightforward way. Direct learning of p(rt I ht) will then be impossible, and some kind 

of preprocessing will have to be applied to reduce the dimensionality. The upside of using a 

less restricted sensorium than the usual range sensors is that in realistic environments, which 

typically contain many highly distinctive landmarks if only one can recognise them, it can 

take a lot of strain off the fusion mechanism by making perceptual aliasing much less likely. 

One interesting piece of work34 attacks this problem by deploying a battery of multi- 

layer perceptrons to act as stochastic "feature detectors". When the robot wishes to make 

33 Isard & Blake, A smoothing filter, p. 8; North et at., Learning and classification, p. 26; see 

also section 4.3.3.2 

34 Thrun, Bayesian Landmark Learning 
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2.1.2.6 Appearance-based methods 

an observation, it applies each network i to a vector of seven general properties computed 

from a camera image, and treats its output as the likelihood p(r; I ht) of feature I being 

present in the image, the required likelihood p(rt I ht) being assumed to be the product 

of these marginals. To train the networks to pick out "useful" landmarks, a calibration 

run is made during which images are collected and labelled with the robot's true position 

(on a one-dimensional grid representing places along a corridor); an iterative optimiser is 

deployed to adjust the neural networks' parameters so as to minimise the expected absolute 

error in the estimate a robot would make of its position if it were deposited at one of the 

sampled locations, shown the corresponding sensor reading, and asked to compute from it 

the probability that it was at each of them. Essentially the landmark-learning problem is 

reduced to classification, with a penalty for confusing two places proportional to the distance 

between them. 

As an aside, this arguably solves slightly the wrong problem. The authors are correct 

when they claim that the procedure will (with enough data, and subject to the practical 

effectiveness of the neural net training) learn landmarks which are optimal for the problem 

of localising a robot which has a given fixed, prior belief distribution about where it is, and 

a single sensor snapshot taken at its true position. It will tend to give priority to extracting 

features which make it unlikely that two widely separated landmarks will be confused. But 

strictly, if one wishes to target absolute localisation error, a more appropriate measure with 

respect to the goal of "lifelong localisation" might be e.g. the expected absolute localisation 

error summed over several timesteps, or something similar. And then the most common case 

will (with any luck) be one in which the robot does have a reasonably good idea where it 

is, so that it is unlikely to have any trouble distinguishing between well-spaced locations; 

the emphasis will then switch to fine-tuning the distinctions between adjacent points which 

might genuinely both seem seem plausible at once 35 

A better approach suggested by Vlassis and colleagues involves optimising the reduction 

in entropy with respect to the prior distribution over positions which will on average be 

obtained from each observation, assuming that the positions and readings obtained during 

the calibration run are representative.36 The observation model first uses PCA to reduce 

(unconditionally) the dimensionality of the images obtained from a camera-a relatively 

efficient way of extracting features from complex data-and then fits a linear model based on 

35 It might not be difficult in principle to extend the algorithm to take this objection into 

account, using the existing machinery as the M-step of an EM-type algorithm. The theoretically 

optimal measure could only be calculated using a simulation or real-world trial involving the robot's 

actual behaviour policy (c.f. Kaelbling et al., Planning and Acting). 

36 Vlassis et al., An information-theoretic localization criterion 
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2.1.2.7 Unsupemased neural networks for landmark teaming 

Gaussian kernels in pose space to model the appearance of the environment at each point 37 

By assessing separately the effect of each principal component on the expected localisation 

entropy, it is possible to select those which are most invariant with respect e.g. to changing 

light conditions.38 

It's interesting to compare these schemes for learning an array of orthogonal, but 

cooperatively deployed, feature detectors with recent work on "products of experts".39 One 

of the most interesting features of the latter framework is that the formulation implicitly 

gives rise to a tendency for the experts-actually not generative models in their own right 

but feature detectors-to diversify so that they specialise in different situations. This 

phenomenon is explained briefly in section 6.1.2.3; the rightmost term in equation 119 in 

which it is manifested has a similar function to the term P(f) in equation 34 of Thrun, 

Bayesian Landmark Learning. 

Appearance-based approaches have also been generalised to mitigate further the effects 

of perceptual aliasing by adopting techniques from active vision.40 

2.1.2.7. Unsupervised neural networks for landmark learning 

The problem of landmark learning has also been addressed through the use of neural 

networks of the "unsupervised competitive learning" type41. An appealing aspect of this 

school-the emphasis on speedy learning algorithms-is typified by Duckett & Nehmzow, 

Performance Comparison, which plots the performance of and computational resources 

required by several different methods in a realistic navigation experiment. 

The simplest unsupervised nets are essentially prototype-based classifiers: for instance, 

the Reduced Coulomb Energy network employed in Kurz, Constructing maps implements a 

nearest-neighbour rule in sensor space to extract landmarks from the robot's experiences. 

Many others are variants on the adjustable-prototype clustering paradigm; Hertz et al. point 

out that what they call the "standard competitive learning rule" is equivalent to the k- 

means algorithm (and hence similar to the EM mixture classification algorithm described 

in section 3.3.2.1). The ART2 (Adaptive Resonance Theory) network, which has been 

proposed as an engine for finding landmarks as clusters in sensor space,42 incorporates a 

37 Vlassis & Krose, Robot Environment Modeling, also Pourraz & Crowley, Continuity 
Properties and deVerdiere & Crowley, Local Appearance Space 

38 Krose et al., Appearance based robot localization 

39 Hinton, Products of experts 

40 Krose & Bunschoten, Probabilistic localization, Fox & Burgard, Active Markov Localization 

41 e.g. Hertz et al., Introduction to the theory of neural computation, chapter 9 

42 Racz & Dubrawski, Artificial neural network 
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nearest-neighbour rule in sensor space to extract landmarks from the robot's experiences.

Many others are variants on the adjustable-prototype clustering paradigm; Hertz et al. point

out that what they call the "standard competitive learning rule" is equivalent to the k-

means algorithm (and hence similar to the EM mixture classification algorithm described

in section 3.3.2.1). The ART2 (Adaptive Resonance Theory) network, which has been

proposed as an engine for finding landmarks as clusters in sensor space,42 incorporates a

37 Vlassis & Krose, Robot Environment Modeling; also Pourraz fc Crowley, Continuity

Properties and deVerdiere & Crowley, Local Appearance Space
38 Krose et al., Appearance based robot localization
39 Hinton, Products of experts
40 Krose & Bunschoten, Probabilistic localization, Fox & Burgard, Active Markov Localization
41 e.g. Hertz et al., Introduction to the theory of neural computation, chapter 9
42 Racz & Dubrawski, Artificial neural network
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2.2.1.1 Static MLPs 

mechanism for limiting the number of clusters between which the data are divided. However, 

the criterion is motivated by neurobiological rather than statistical considerations; and 

indeed it appears that ART is not "consistent" in the sense of converging, in the infinite 

limit, to a true representation of some underlying property in the data: the pattern of 

clusters it finds depends strongly on the order of presentation of the training data.43 More 

interestingly, the Self-Organising Map or Kohonen network44 implements a kind of clustering 

with topological constraints, which could be compared with the intertwined landmark 

learning and localisation algorithms discussed in section 2.1.2.2. 

2.2. Neural networks for dynamics learning 

Since connectionist models began to show some promise during the mid-1980s, a 

large literature has grown up around the subject of using neural nets for nonlinear system 

identification. Only a brief overview of this field will be given here, with a view to drawing 

connections with the work presented in this thesis. 

2.2.1. Multi-layer perceptrons 

By far the most widely used type of neural network (and not only in the process 

modelling field) is the multi-layer perceptron or MLP.45 

2.2.1.1. Static MLPs 

The inspiration behind MLPs was a (deliberately simplified) description of how nerve 

cells in animals propagate activity amongst themselves. Each unit (cell) receives signals 

telling it the activation levels of all the other units which are connected to it through a 

directed link, amplified or attenuated according to the links' "weights". The incoming 

signals are summed and passed through a softened version of a thresholding function, such 

as a logistic, and the result determines the unit's own activation level. (It's easy to see that 

this is closely related to the logistic regression model used by statisticians to describe the 

43 Sarle, Why Statisticians Should Not FART 
44 Hertz et al., Introduction to the theory of neural computation, p. 236 

45 Bishop, Neural Networks is one of the current standard texts, placing MLPs and radial basis 

functions firmly in the framework of statistical inference 
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2.2.1.1 Static MLPs 

relationship between a dichotomous response variable and a set of explanatory variables.) 

In the simplest case, the units are arranged into a series of one or more layers (typically 

three), with an activation-propagating link from every unit in each layer to every unit in 

the successor layer. Inputs, such as explanatory variables or sensor readings, are presented 

to the network in the activiation levels of the first layer of units; the activation is allowed to 

propagate through to the last layer and read off as the network's outputs. It can be shown 

that given enough units in the middle, "hidden" layer, and the freedom to adjust the weights 

parameter, it is possible to get an MLP to approximate any piecewise continuous function to 

arbitrary accuracy over a given domain. 

The process of training a neural network from example input and output vectors, 

adjusting its weights so that when presented with inputs in future, it produces an output 

which follows the same pattern, is best seen as an instance of maximum likelihood parameter 

estimation 46 First, a measure is defined of the distance between each example output and 

the network's output when presented with the corresponding input-for instance, the sum 

of the squared differences between the components of each-and summed over the whole set 

examples to form an error function. If the network is considered as a stochastic mapping, 

which generates outputs by adding diagonal symmetrical Gaussian noise samples to the 

activation levels of its final layer, the error function is proportional to the negative log 

likelihood of the weights parameter given the example data. Then, a hill-climbing optimiser 

is deployed to find aminimum of the error function by adjusting the weights; the result will 

be a maximum likelihood parameter. 

Because the activity vector of each layer depends on that of the previous one through a 

linear-logistic function, it turns out to be quite straightforward to propagate the derivatives 

of the error function backwards through the net in an efficient way, and they are on the 

whole quite well-behaved, so that iterative optimisers based on quadratic extrapolation can 

give good results quite quickly. (Because the parameter space of even a moderate-sized MLP 

is large, variants of the method of conjugate gradients are widely preferred for their modest 

memory requirements.) The most sophisticated training algorithms treat the evolution of 

the network's weights during training as a state-space model, and treat it in an extended 

Kalman filter formalism.47 

Obviously, the log of any reasonable exponential-family distribution will give rise to 

a perfectly usable error function if the Gaussian noise assumption is inappriopriate. The 

scale parameters of the noise distribution can be reestimated from the residuals; if necessary, 

46 section 3.2.4 2 

47 Puskorms & Feldkamp, Decoupled extended; for the state of the art, see deneitas et al., The 

EM Algorithm and Neural Networks 

17 

2.2.1.1 Static MLPs

relationship between a dichotomous response variable and a set of explanatory variables.)

In the simplest case, the units are arranged into a series of one or more layers (typically

three), with an activation-propagating link from every unit in each layer to every unit in

the successor layer. Inputs, such as explanatory variables or sensor readings, are presented

to the network in the activiation levels of the first layer of units; the activation is allowed to

propagate through to the last layer and read off as the network's outputs. It can be shown

that given enough units in the middle, "hidden" layer, and the freedom to adjust the weights

parameter, it is possible to get an MLP to approximate any piecewise continuous function to

arbitrary accuracy over a given domain.

The process of training a neural network from example input and output vectors,

adjusting its weights so that when presented with inputs in future, it produces an output

which follows the same pattern, is best seen as an instance of maximum likelihood parameter

estimation.46 First, a measure is defined of the distance between each example output and

the network's output when presented with the corresponding input—for instance, the sum

of the squared differences between the components of each—and summed over the whole set

examples to form an error function. If the network is considered as a stochastic mapping,

which generates outputs by adding diagonal symmetrical Gaussian noise samples to the

activation levels of its final layer, the error function is proportional to the negative log

likelihood of the weights parameter given the example data. Then, a hill-climbing optimiser

is deployed to find a.minimum of the error function by adjusting the weights; the result will

be a maximum likelihood parameter.

Because the activity vector of each layer depends on that of the previous one through a

linear-logistic function, it turns out to be quite straightforward to propagate the derivatives

of the error function backwards through the net in an efficient way, and they are on the

whole quite well-behaved, so that iterative optimisers based on quadratic extrapolation can

give good results quite quickly. (Because the parameter space of even a moderate-sized MLP

is large, variants of the method of conjugate gradients are widely preferred for their modest

memory requirements.) The most sophisticated training algorithms treat the evolution of

the network's weights during training as a state-space model, and treat it in an extended

Kalman filter formalism.47

Obviously, the log of any reasonable exponential-family distribution will give rise to

a perfectly usable error function if the Gaussian noise assumption is inappriopriate. The

scale parameters of the noise distribution can be reestimated from the residuals; if necessary,

46 section 3.2.4 2

47 Puskorius & Feldkamp, Decoupled extended; for the state of the art, see deFreitas et al., The

EM Algorithm and Neural Networks

17



2.2.2.1 Recurrent MLPs 

the network then can be retrained in the light of the adjust noise model, and so on to 

convergence. 

The main difficulty that arises with neural network learning is overfitting of the data. 

If the hidden layer is large enough to implement more or less poorly-behaved nonlinear 

mappings, and the weights are allowed to grow without limit, then it will be possible to find 

a parameter which can account perfectly for any moderately sized set of examples, but which 

fails to interpolate smoothly between the points pinned down by the training inputs. Various 

ad hoc solutions to this problem have been proposed; one of these, known as "weight decay", 

can be seen to be equivalent to placing a Gaussian Bayesian prior on the weight parameter. 

2.2.1.2. Bayesian methods 

Indeed, since full Bayesian methods avoid (in principle) the overfitting syndrome 

to which MLPs are especially prone entirely-by refraining from adopting a single best 

estimate of the parameter-a lot of effort has gone into finding ways to apply them. MacKay 

demonstrated a way of approximating a full Bayesian inference over a space of MLPs 

of fixed architecture, interleaving gradient-based parameter updates with reestimations 

of both the noise distribution and the parameter prior, and then marginalising over a 

Gaussian approximation to the parameter posterior.48 Neal applied the hybrid Markov 

chain Monte Carlo numerical integration algorithm to the same problem, representing the 

posterior parameter space by a sample 49 More recently, groups at (for example) Cambridge 

University have proposed reversible jump Monte Carlo methods for sampling from a 

posterior space covering nets with different numbers of hidden units;50 they also propose a 

hybrid of EKF training and Monte Carlo sampling importance resampling5l 

2.2.2. MLPs for modelling dynamics 

Traditionally, neural networks researchers have considered the problem of modelling 

dynamics systems in the context of "recurrent networks" of neuron-like units; but there is 

another, arguably more principled possibility available. 

2.2.2.1. Recurrent MLPs 

MLPs can be generalised to handle time series prediction and system identification 

by relaxing the restriction that activity-propagating links can only point forwards through 

48 MacKay, A Practical Bayesian Framework 

49 Neal, Bayesian Learning 

so Andrieu, Robust Full Bayesian Methods 

5' deb'eitas et at., Sequential Monte Carlo methods 
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2.2.2.2 Using MLPs in an EKE 

the net, from the input end towards the output end. The network then becomes itself a 

(discrete) nonlinear dynamical system, with feedback loops, but a maximum likelihood 

parameter can still be estimated by minimising an appropriate training error (negative 

log likelihood) over an example series of system outputs.52 At the simplest, the recurrent 

network can be "unfolded" over time to form a non-recurrent MLP which embodies the same 

dynamics, albeit over a finite sliding time window; then the usual gradient backpropagation 

will work fine. For cases in which one is interested in trying to infer temporal relationships 

over unbounded periods, Williams and Zipser53 showed how to compute the error gradients 

directly in their "Real time recurrent learning" algorithm; Narendra and Parasathy54 

introduced a scheme called "Dynamic back-propagation" which achieves faster performance 

by framing the derivatives themselves as a recursively evolving quantity. 

2.2.2.2. Using MLPs in an EKF 

The problem with using the dynamics of the net itself to stand in for those of the 

system being modelled is that there is no way of representing uncertainty about the 

current state; the only means which the net has of making uncertain predictions is via its 

output noise, which is of course constant, while the output uncertainty should ideally vary 

depending on how precisely the system state is known. In general, there are three problems 

to solve: 

1) representing and making uncertain estimates of the system's hidden state at each 

timestep from examples of its behaviour 

2) making uncertain predictions from that uncertain state estimate 

3) learning a model parameter which can handle 1 when the model is being used 

For linear/Gaussian state-space models, a precise and comprehensive solution is available 

in the shape of the Kalman filter (section 3.3.3.5); the so-called extended Kalman filter, 

in which a nonlinear model is simply linearised for the purposes of propagating Gaussian 

uncertainty, can of course be used with MLPs to achieve (2) and (3), with the usual caveats 

about the drastic approximation on which it relies. Nelson and Wan show how two EKFs 

can be run in parallel, one to estimate the state of the system during the training sequences 

and the other to optimise the network parameters by EKF training in the light of that 

state estimate;55 this is easily seen to be (an approximation to) an EM algorithm, like the 

standard one for estimating Kalman filter parameters. It is possible that techniques for 

52 For a concise application-oriented survey, see 'Ihtschku, Recurrent Multilayer Perceptrons. 

53 cited in Tutschku, Recurrent Multilayer Perceptrous 

54 cited in Tutschku, Recurrent Multilayer Perceptrons 

55 Nelson & Wan, Neural Speech Enhancement 
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2.3.1 Stochastic worlds: reinforcement learning 

avoiding the worst consequences of the EKF's assumption of model linearity and Gaussian 

state uncertainty56, or even out-and-out particle filters (section 4.3.3), could be adapted for 

use with MLPs. 

2.2.3. Robotics applications of neural networks 

MLPs are quite widely used in robotics applications, for tasks such as inverse 

kinematics of robot arms or wheeled vehicles, sensor interpretation (e.g. the navigation 

examples mentioned in section 2.1.2), trajectory planning, etc.57 It is possible to discuss 

recurrent neural nets and the environments they model or control in terms of coupled 

dynamical systems; for instance Tani has a robot learn to match its behaviour to a stable 

attractor in its task space 58 The use of neural networks as "function approximators" in 

reinforcement learning is discussed in Sutton and Barto's standard textbook.59 

2.3. The theory of acting 

Robotics theoreticians have always been interested in the general problem of how 

a robot should choose its actions. Until relatively recently, the focus tended to be on 

techniques for searching large, but deterministic state spaces, much as a chess computer 

searches for a good move. In the last decade, the complementary problem of how to choose 

actions in simple, but uncertain situations has received a lot of attention, generally from the 

standpoint of Bayesian decision theory (discussed briefly in section 3.2.6.2). 

The work presented in this thesis is not directly concerned with action selection, but 

rather with learning a more or less goal-neutral internal model of the robot's environment. 

So only a brief overview is given of the field, summarised from the standard text on 

reinforcement learning by Sutton and Barto60. The reader is referred to that text for further 

material and an extensive bibliography. 

56 for instance Juliet & Uhlmann, A General Method 

57 Narendra, Neural networks for control 

58 Tani & F ukumura, A Dynamical Systems Approach 

59 Sutton & Barto, Reinforcement Learning: An Introduction 

60 Sutton & Barto, Reinforcement Learning: An Introduction 
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2.3.1.2 Optimal policies 

2.3.1. Stochastic worlds: reinforcement learning 

Researchers into human and animal behaviour have long studied what natural 

agents actually do when faced with the task of achieving their ends in an unknown and 

unpredictable world, starting with the (now very large) literature on "conditioning". It was, 

however, from the operations research community that a framework began to emerge in the 

context of which it was possible to say what the right thing to do is. 

2.3.1.1. Markov processes 

At the heart of the modern conception of the problem is the idea of describing the 

world as a Markov decision process, i.e. a system which is, at each timestep, in one of a set 

of possible states, and moves to a new one according to an arbitrary probability distribution 

conditional only on its current one and on an input, or action, fed into it by the agent.sr 

The agent's goals are encoded by assigning a relative benefit or cost to the system's being 

in each particular state, or to the performance of each action in each state; the aim is then 

to choose at each timestep an action which is optimal as measured by, most commonly, the 

total of future net gains it will on average yield, discounted exponentially according how far 

ahead they lie. (This yardstick has obvious applications in economics and business decision- 

making.) 

In principle, no loss of generality is implied by this representation, and its simplicity 

makes it ideal as a test bed for theoretical analysis. It can be applied directly to nontrivial 

robot control problems provided that the state space has been rendered discrete and 

reasonably small by adding an abstraction layer to shield the decision-maker from the full 

complexity of the world as perceived through the robot's sensors. Large and even continuous 

spaces can be made somewhat manageable if some extra structure is introduced, as in the 

engineering literature on optimal control. 

2.3.1.2. Optimal policies 

Given a decision process of known character, the simplest algorithms for computing 

optimal policies, i.e. assignments of recommended actions to states, work by starting with 

an arbitrary policy and iteratively increasing its effectiveness as follows: 

"policy evaluation": work out the worth of being in each state (or taking 

each action in each state) in terms of its net discounted future reward, on the 

assumption that the policy is already optimal 

61 strictly, this is a first order Markov decision process 
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2.3.2 Partially observable worlds 

"policy improvement": adopt a new policy which chooses the action achieving the 

best net discounted future reward from each state, according to those state value 

assessments 

It can be shown that this bootstrapping process (reminiscent of the EM algorithm discussed 

in section 3.3.1) will converge to an optimal policy. The policy evaluation step can be carried 

out with an iterated dynamic programming technique using the dynamics of the decision 

process to bring about local consistency, or simply by the Monte Carlo method of recording 

the payoffs obtained in practice after visiting each state; it turns out that this step need not 

be carried to full convergence (c.f. EM with partial E-steps, section 3.3.1.3). 

2.3.1.3. Unknown environments 

Because the dynamics of the decision process are not used in Monte Carlo policy 

evaluation, the method can be applied when no model of the environment is available 

(although they still require that the agent be able to distinguish reliably between different 

world states). However, they suffer from disadvantages arising from the requirement that 

estimators of the state values under the current policy must be collected over an extended 

period before the policy is improved. A class of "temporal difference" algorithms avoids this 

by using the difference between the rewards predicted and those observed empirically over 

some window following a visit to a step to drive improvements to the state value table. The 

most sophisticated of these, called TD(A), uses "eligibility traces" to enable it to take into 

account reward differences extended indefinitely into the future, discounting by a factor A. 

2.3.1.4. Model-based learning 

It is also possible to obtain an optimal policy for an unknown decision process by 

interleaving the learning of an explicit model with the optimisation of a state value table 

and policy conditioned on it. A policy-neutral model has the advantage that it can, if the 

agent's aims change, help estimate a policy which is optimal with respect to the new state- 

reinforcement assignments without the need for a further extended period of exploration. 

2.3.2. Partially observable worlds 

If the agent does not know directly what state the world is in, but can only observe 

evidence for it in the form of outputs produced according to a state-dependent probability 

distribution, the problem of choosing optimal actions becomes much more difficult. It is no 

longer sufficient to construct a policy from a state or state-action value table; projections 

must also be made of the effect of actions and likely observations on the agent's belief state: 

for instance, it is preferable to end up in a known, moderately good state than to be in 
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2.4 Summary 

either a very good or very bad one and not be sure which. Of course, this situation, known 

as "perceptual aliasing" in the reinforcement learning community, is endemic in robotics, 

since robot sensors are rarely all-seeing. 

What to do about partially observable Markov decision processes has been studied in 

the context of robotics by Whitehead and Ballard62, and more recently by a group at Brown 

university63; the latter have demonstrated exact algorithms for planning in the discrete 

case.64 Essentially, the idea is to treat the agent's belief distribution about which state 

it is in (which is uniquely determined by the Bayesian laws of uncertain reasoning) as a 

continuous Markov variable.65 A cheaper solution is to include a general penalty for actions 

which result in nonspecific (high-entropy) belief distributions; this is much easier to assess, 

and is related to the use of entropy as a guide in deciding which sensor readings to take 

or which features to extract from sensor data.66 It's possible that a Monte Carlo approach 

could be adopted, at least for planning over relatively short timescales (section 6.2.2.2). 

2.4. Summary 

The aim of the work presented in this thesis is to develop a probabilistic model 

which can be used in a similar way to the neural networks described in section 2.2-for 

learning the low-level, continuous dynamics of a robot's environment in a semantically 

neutral manner-but which is as open to scientific understanding and as well-founded in 

its handling of uncertainty as the high-level, localisation-specific techniques described in 

section 2.1. The common link will turn out to be the EM framework for coming to an 

understanding simultaneously of the world's dynamics and of its hidden state, which, it has 

been suggested,67 underlies the most satisfactory methods in both localisation and neural net 

"system identification". This important concept will be treated in detail in section 3.3, and 

will appear in section 4.2.2.1 at the heart of the Samovar model. 

62 Whitehead & Ballard, Active Perception; Whitehead & Ballard, Learning to Perceive and 

Act 

83 Basye et al., A Decision-Theoretic Approach; Cassandra et al., Acting under Uncertainty; 

see also Fusiello & Caprile, Synthesis of indoor maps and Kristensen, Sensor planning 

64 

65 

66 

67 

Kaelbling et al., Planning and Acting 

see also Chrisman, Reinforcement learning 

Krose & Bunschoten, Probabilistic localization 

section 2.2.2.2; section 2.1.2.3 
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2.4 Summary 

Once the Samovar model has been demonstrated, section 6.2 will discuss how the 

theory of robotic decision-making surveyed in section 2.3 might be applied to using it as a 

basis for behaviour. 
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Chapter 3 

Background 

The character of the experiences of an autonomous robot places strenuous demands on 

the model which is asked to predict them. Partly this is a matter of the sheer complexity of 

any realistic environment. Another, related, problem is the environment's unpredictability, 

at least on the basis of the information available to the robot, which can (arguably) only 

be treated successfully within the framework of Bayesian inference. This chapter expands 

on the problems the model has to overcome and provides an introduction to the Bayesian 

theory of how to deal with them. 

3.1. Requirements for the model 

3.1.1. Why the robot's world is complex 

Robot environments are complicated in at least three ways at once. 

3.1.1.1. Arbitranness 

A robot starting with no specific knowledge about its world is going to discover many 

facts about it which must be treated as unconnected. For instance, the layout of the space 

25 

Chapter 3

Background

The character of the experiences of an autonomous robot places strenuous demands on

the model which is asked to predict them. Partly this is a matter of the sheer complexity of

any realistic environment. Another, related, problem is the environment's unpredictability,

at least on the basis of the information available to the robot, which can (arguably) only

be treated successfully within the framework of Bayesian inference. This chapter expands

on the problems the model has to overcome and provides an introduction to the Bayesian

theory of how to deal with them.

3.1. Requirements for the model

3.1.1. Why the robot's world is complex

Robot environments are complicated in at least three ways at once.

3.1.1.1. Arbitrariness

A robot starting with no specific knowledge about its world is going to discover many

facts about it which must be treated as unconnected. For instance, the layout of the space

25



3.1.2.1 Noose and nondetermin,sm 

in which a mobile robot operates will have a decisive influence on the robot's experience 

as it moves around. Although these effects will be deterministic, there is no way they 

can be modelled as other than brute facts; generalising from them will tend not to work. 

This requirement favours the choice of a model which explicitly makes room for arbitrary 

phenomena, rather than one (such as a multi-layer perceptron) which treats all learning as a 

problem in interpolation. 

3.1.1.2. Heterogeneous regularity 

Most environments will also exhibit strong quantitative relationships between some 

of the variables in play, from which it is appropriate to generalise by interpolation. The 

model should be able to capture these dependencies. But they will not remain the same 

in all situations; they may change or break down. For instance, the way the readings from 

a mobile robot's range sensor changes over time might often vary linearly with its speed, 

but the coefficient might change when the robot reaches a bend in the surface of a nearby 

object; or something entirely different might happen if it moves into a very cluttered area. 

So again, the model should not be predisposed to shoehorn all its experiences into a single 

continuously varying mapping. 

3.1.1.3. Partial observability 

The model will generally not be able to make good predictions based purely on 

information from its current sensor readings (and motor commands). Instead, it will have 

to maintain an estimate of some quantities representing that part of the state of the world 

which is causally efficient with respect to its future experiences and which it cannot observe 

directly, based on past data as well as present observations. In the case of a mobile robot 

this might involve recognising a feature marking an area it has previously explored, or 

inferring the relative orientation of a nearby surface from successive measurements of its 

distance. 

3.1.2. Why the robot's world is unpredictable 

Uncertainty is, if anything, an even more troublesome aspect of the environment's 

general capriciousness than complexity. There are several reasons why the information 

available to the model in a certain situation might not warrant its offering a precise 

prediction of what will happen next; intuitively, one feels that the prediction should carry 

some health warning or be vague, and that the robot should therefore choose a cautious 

action. The model has to draw together all the sources of uncertainty outlined below- 

incommensurable as they may seem-so that they have a quantitatively correct influence on 

its prediction and on the robot's behaviour. 
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3.1.2.4 Model failure 

3.1.2.1. Noise and nondeterminism 

When unpredictability is mentioned, we most commonly think of randomness. A 

process is random if it is impossible in principle to make exact predictions about its 

evolution, based on the available evidence: no observer, however closely they approached the 

ideal of perfect rationality, could foresee precisely how it was going to behave. Clearly the 

model should be able to recognise randomness in the environment and adjust its predictions 

appropriately. 

In fact, it should be able to distinguish between two kinds of randomness, which could 

be called "noise" and "nondeterminism". The former term denotes the unpredictable 

perturbation of some quantity away from its "true" value, larger disturbances being less 

likely than smaller ones-the effect, for example, which electrical noise might have on the 

readings from a robot's sensor. The latter refers to situations in which the system can 

develop in two or more qualitatively different ways, each yielding a distinct and numerically 

separate outcome, as might be the case if a robot's sensor were faulty and sometimes read 

zero instead of a meaningful number. Attempts to model nondeterminism as an instance of 

noise will necessarily result in misleading predictions: in the case of the broken sensor, the 

conclusions will be that a low value intermediate between zero and the "working" range is 

the most likely reading, even though it may in fact be impossible. 

3.1.2.2. Lack of experience 

The fact that the model is attempting to generalise from a finite amount of experience 

in the environment should also be grounds for a measure of scepticism as to the reliability of 

its predictions. If the robot finds itself in a situation whose consequences are to a greater 

or lesser extent random, and which it has only had a few opportunities to observe in the 

past, then it cannot be sure that it has seen all the possible outcomes. Of course, if it gets 

into some position which it has never previously experienced, its uncertainty will be even 

more acute. In the most extreme case the whole character of the world might change, so 

that every situation is effectively a new one: for instance, a sensor which has previously 

functioned correctly might go wrong. The model should be able to make allowances for the 

finite nature of its knowledge, incorporating the right degree of confidence or tentativeness 

into its predictions. 

3.1.2.3. Ignorance of the state of the world 

If the model's predictions are based on estimates of quantities in the world which are 

not directly observable (section 3.1.1.3), then it needs to make allowance for how errors in 

those estimates would affect the accuracy of its predictions. 
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3.2.1 The idea behind Bayesian inference 

3.1.2.4. Model failure 

Even if the environment is entirely deterministic, and the model has had plenty of 

experience and knows exactly what is current state of the world is, its predictions may still 

be unreliable if the assumptions built into the model by its designers are untrue. In this case 

the model's performance should degrade gracefully, and it should perhaps also signal that a 

mistake has perhaps been made. 

3.1.3. Pragmatic considerations 

To the wish lists above, which lay out the expressive power desired of the model, must 

be added the further requirement that it should be implementable in a form which uses 

as few computational resources as possible. An autonomous robot is continually making 

decisions' about what to do next, so a system which takes a long time over learning, or- 
worse-one from which it takes a long time to extract a recommended action is going to be 

inconvenient. 

3.2. Bayesian modelling 

Of the requirements for the robot's environment model discussed in section 3.1, it 

is the ones relating to the handling of uncertainty which appear to be the most difficult 

to meet in principle. How can uncertainty be represented? How can the various kinds of 

uncertainty, apparently so essentially different from each other, be brought together in a 

unified framework? How can the effect which uncertainty should have on the robot's choice 

of action-intuitively, "cautiousness"-be quantified? In this section a brief introduction is 

given to a reasoning system which is increasingly popular across a range of disciplines and 

provides answers to all these questions: Bayesian inference2. 

3.2.1. The idea behind Bayesian inference 

The long-established science of logic offers an account of what absolutely certain 

consequences a rational being could draw from a given set of absolutely certain facts. 

1 explicit or implicit 

2 Lee, Bayesian Statistics; Box & Tiao, Bayesian Inference in Statistical Analysis; Jaynes, 

Probability Theory, Bishop, Neural Networks 
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8.2.1.1 The laws of rationality 

Bayesian inference is an extension of logic to more realistic cases in which the reasoner's 

beliefs, and hence the conclusions she can draw, are not necessarily certain. It works by 

replacing the binary truth value of Boolean logic, which, when predicated of a proposition, 

indicates whether a subject ought to assent to it or not, with a real value which denotes 

instead the degree of certainty with which she should credit it. 

8.2.1.1. The laws of rationality 

Obviously this move only makes sense if the semantics of the new continuous scale 

of truth values, and the axioms by which they are combined, can be given a rigorous and 

justifiable definition. Modern Bayes theory does this by demonstrating, from remarkably 

simple and uncontroversial desiderata, that there is only one possible set of axioms for the 

system, and that they determine the truth values up to isomorphism3. The axioms obtained 

are identical with the familiar basic rules of probability theory; and as one might expect, the 

extremal truth values can be fixed by convention so that unity means "definitely true", zero 

means "definitely untrue", and the axioms of logic drop out as special cases. 

Since the foundation of the theory-the proof that the laws of probability are so clearly 

the only possible ones that they can reasonably be given normative status as the axioms of 

rationality-can sound counterintuitive, it's perhaps worth quoting the premises in full here:4 

1) Degrees of plausibility are represented by real numbers. 

2) If p(A I D) > p(A I C), then p(-AID) < p(-A I C); 

3) ... and if additionally p(B I A, D) = p(B I A, C), then p(A, BID) > p(A, B I C). 

4) If a conclusion can be reasoned out in more than one way, then every possible way 

must lead to the same result. 

5) The robot always takes into account all of the evidence it has relevant to a 

question. It does not arbitrarily ignore some of the information, basing its 

conclusions only on what remains. 

6) The robot always represents equivalent states of knowledge by equivalent 

plausibility assignments. That is, if in two problems the robot's state of knowledge 

is the same (except perhaps for the labelling of the propositions), then it must 

assign the same plausibilities in both. 

3 t. e. uniquely given the choice of 0 and 1 as extremal values 

4 adapted from Jaynes, Probability Theory, chapter 1, equations 1-17 and 1-20 to 1-23 (eliding 

in the interests of brevity the distinction between "probabilities" and "plausibilities") 
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3.2.1.3 The controversy surrounding Bayessan methods 

The mathematics involved in getting from these apparently innocuous inequalities and 

principles to the product rule 

p(A, B I C) = p(A I B, C) p(B I C) = p(B I 
A, C) p(A I C) (2) 

and sum rule 

p(A I B) + p(-A I B) = 1 

is not trivial, but it is rigorous .5 The rest of the apparatus of probability theory follows 

from those results, and its applicability to the standard population-sampling problems is 

established using the symmetry principle (item 6 above).6 

3.2.1.2. Condittonality and subjectivity 

(3) 

The most important thing to understand about Bayesian theory is the emphasis it 

places on conditional probability. In fact, almost all (non-tautological) Bayesian probabilities 

are conditional, just as all (non-tautological) logical truths are conditional on a set of 

hypotheses. Unlike in some other theories which consider probabilities to be inherent 

properties of physical systems, there is no notion of an "objectively true" answer to the 

question "What is the probability/degree of certainty that the random variable X will take 

the value x?". Instead, Bayes offers an answer which is "uniquely rational", given one's 

state of knowledge. The talk is in principle always of p(X = x I ), never of p(X = x). 

In this sense Bayesian inference is openly subjective. Probabilities are all in the mind, and 

two reasoners whose beliefs differ can come to different conclusions when presented with the 

same evidence7. 

This does not mean that in accepting Bayesian theory, one is adopting a philosophical 

stance which relativises truth. One can talk in the third person about the true state of 

affairs in the world, reasoners' differing experiences of the world, the subjective conclusions 

they each come to on the basis of that experience, and the objective accuracy of those 

conclusions. The subjectivity of Bayesian inference is akin to that of logical inference. 

3.2.1.3. The controversy surrounding Bayesian methods 

Until the 20th century, most writers on probability theory (from the Bernoullis to 

Maxwell) conceived of the field very much in terms of a search for laws of rationality, 

with the normative status of logical axioms-what would now be called a Bayesian 

5 Jaynes, Probability Theory, chapter 2; Cox, Probability 

6 Jaynes, Probability Theory, chapter 3 

7 For a striking example, see Jaynes, Probability Theory, chapter 3, p. 507. 
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stance which relativises truth. One can talk in the third person about the true state of

affairs in the world, reasoners' differing experiences of the world, the subjective conclusions

they each come to on the basis of that experience, and the objective accuracy of those

conclusions. The subjectivity of Bayesian inference is akin to that of logical inference.

3.2.1.3. The controversy surrounding Bayesian methods

Until the 20th century, most writers on probability theory (from the Bernoullis to

Maxwell) conceived of the field very much in terms of a search for laws of rationality,

with the normative status of logical axioms—what would now be called a Bayesian

5 Jaynes, Probability Theory, chapter 2; Cox, Probability
6 Jaynes, Probability Theory, chapter 3
7 For a striking example, see Jaynes, Probability Theory, chapter 3, p. 507.
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3.2.2 Bayesian inference using models 

programme .8 But from the early 1900s on, with the foundation of modern statistics in the 

shape of the "frequentist" and related theories by Neyman, Pearson, Fisher, and others, 

the Bayesian account came to be considered extremely controversial. In part this was a 

consequence of a natural desire to avoid bringing "metaphysical" considerations about the 

nature of rationality into the solution of the very down-to-earth problems which drove the 

development of the field. Other criticisms focused on the element of subjectivity in Bayesian 

theory noted in section 3.2.1.2: surely a system which claimed that two rational people could 

draw different conclusions from the same statistical data was at best suboptimal, at worst 

absurd. And of course before Cox, Probability the foundations of Bayes theory did not seem 

as solid as they do now, while on the other hand the "adhockeries" and paradoxes of classical 

statistics pointed out by the Bayesians were not yet widely recognised. 

In recent years the Bayesian approach to statistics has once again become fashionable, 

its popularity resting mainly on the very practical consideration that the answers obtained 

from frequentist methods in many problems of interest to industry seem too conservative, 

and only obliquely related to the questions asked. But whatever one's position on the 

admissibility of Bayesian methods in traditional applications of statistics, as a set of 

principles for programming a machine to reason and learn in an uncertain world, the theory 

is very compelling; and indeed many successful commercial applications ranging from speech 

recognition and expert systems to knowledge management, as well as recent advances in 

robotics, are or can be seen as essentially Bayesian. 

3.2.2. Bayesian inference using models 

Bayesian inference is well suited to the kind of application, common in engineering, 

in which the reasoner has a model of some process in the world, and wishes to use it in 

conjunction with her measurements of some observable quantities to make inferences or 

predictions about the values of other quantities. 

As a trivial example, she might have a machine which, at each timestep t, picks at 

random from a bin containing several different kinds of object, and then says as the value rt 

of its output Rt which kind it chose. The reasoner's knowledge O about the machine is 

enough for her to be able to tabulate the distribution 

p(Rt = rt I O) = proportion of rt-type objects in bin (4) 

Or, if the machine instead has several trays, and the value at of its input At tells it which to 

use, she can tabulate the conditional density 

p(Rt = I At = at O) = proportion of rt-type objects in bin at (5) 

a Jaynes, Probability Theory, passim 
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8 Jaynes, Probability Theory, passim
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8.2.2.2 Bayes'rule 

which says what her degrees of certainty about the different possible outputs should be, 

if the machine is given a particular input. (As was noted in section 3.2.1.1, this equality 

between Bayesian probabilities and population proportions follows from considerations of 

symmetry.) If she knows At precisely then she can just read off the implied density of Rt. 

This distribution is in a sense her "estimate" of Rt, since it includes all the information she 

has about it-but it will not in general take the form of a single best estimate, or a range 

around some central value; it could be any legal probability density. 

3.2.2.1. Marginalisation 

If she does not know for sure what At is-%.e. her belief-density over its possible values 

is non-zero at more than one point-then she can still estimate Rt by performing what is 

called a "marginalisation". Representing all the knowledge she has which is relevant to the 

value of At by .A, she should compute 

p(Rt = rt I E), A) = 
J 

p(Rt = rt, At = at I E), A) by sum rule 
it 

= 
J 

p(Rt = rt I At = at, e) p(At = at I A) by product rule L 
-the expectation of (5) over the degree of certainty she attaches to each possible value 

of A. (Note that A has been dropped when a particular At = at is asserted on the right 

hand side of a conditional probability, since a firm hypothesis about the input renders 

irrelevant previous information about what it might otherwise have been.) 

This is not the same as calculating an averaged "single best estimate" value for Rt: it is 

the whole distribution whose expectation is taken, so much more information is preserved. If 

the variables are discrete, and the distribution (5) takes the form of a table, the integration 

is a summation and the marginalisation is essentially a matrix multiplication. (Discussion of 

the case of continuous distributions is deferred until the big picture has been sketched in.) 

3.2.2.2. Bayes' rule 

Suppose, on the other hand, the modeller can measure the output Rt precisely and is 

interested in sharpening up her idea of what the input At must have been. She wants to 

know p(At = at I Rt = rt, 0, A), but her model tells her p(Rt = rt I At = at, e)-she needs to 

reverse the direction of conditionality, and to do that she has to use Bayes' rule9: 

p(At=atlRt=rt,e,A)=p(Rt r'IAt_a,0)p(At=at 
IA) = r e, A) 

9 Bayes' rule is a straightforward consequence of the product rule (equation 2). 
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n(f}t — rt I At _ nt ft}
- nt I & - rt & A\- H-" - r I A —a,v) (At _ t\ A\- a |tf -r,U,A)- t t P(A-a\A)

9 Bayes' rule is a straightforward consequence of the product rule (equation 2).
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3.2.3.1 Learning as Inference 

In this formula p(At = at I A) is called the "prior", p(Rt = rt I At = at, 0) the "likelihood" 

and p(Rt = rt 10, A) the "normaliser". The resulting density p(At = at I Rt = rt, O, A) is 

called the "posterior". 

The denominator can also be expanded by marginalising over At, 

P(Rt = rt I At = at, O) At at 

fa, p(Rt=rt IAt=at, 0)p(At=at'IA)P A) 

whence it can be seen that the posterior is obtained by simply adjusting the prior up for ats 

which make the observed rt more likely than the other ats do on average, and down for those 

that make it less likely. The coefficient involved (likelihood = normaliser) is sometimes called 

the "Bayes factor". 

3.2.2.3. Cause and effect? 

It is often convenient to call At the "cause" and Rt the "effect" it has by means of a 

process described by O. But nothing in the theory says that the relationship is really one 

of physical causation-it's only necessary that the reasoner's beliefs O should be such as to 

make her beliefs about the value of Rt depend on her beliefs about the value of At, and that 

allows for Os specifying reverse causation (Rt causing At) or joint causation, or making no 

judgment about causation at all. So the terms should be seen as a useful shorthand. 

3.2.3. Bayesian model learning 

Section 3.2.2 showed how Bayesian methods can be used to predict effects from causes 

given a model, or conversely to infer causes from effects given a model using Bayes' rule. 

The Bayesian theory of learning simply involves applying Bayes' rule in a slightly different 

way to fill in the third side of the triangle and estimate the model from observed effects and 

causes. 

3.2.3.1. Learning as inference 

The idea is to treat the model as just another quantity which needs to be estimated, 

and write down what the estimate should be: 

p(O=BI Atat,Rt=rt,R)= p(Rt=rtIAt=at,B=0) 
B 7l 

fop(Rt=rtIAt=at,O=0)P(O=IIR)P(0 
- - I ) 

Here O = B denotes the proposition that the process by which At causes Rt is as 

described by the specification B; the observations at and rt together comprise an example 

of the process in action; and IL represents the prior knowledge the reasoner had before 

the observations came in which was relevant to B. Bayes' rule says what her posterior 
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3.2.4.1 Model spaces 

belief-density for B should be: what credence she should now give to each of the possible 

alternative models. 

In practice, of course, she will want to base her estimate of 0 on more than one At, Rt 

observation. Suppose she has a set d of readings at, rt taken at different times t, and part of 

her background knowledge g{ is that they are independent. Then-adopting now the usual 

space-saving convention that the elided "proposition" at means At = at-she will conclude 

that 

p(O I d, Ili) = 
IIt p(rt I at, 0) 

p(B I W) f (IItp(rt Iat,sb))p(tbI N) 

3.2.3.2. Making predictions 

(6) 

How is the learner to use her estimate of B, based on the observations d = al o,T) rl 0,T) 

to predict what the output of the process will be if it is given a new input aT? If the 

information provided by d has enabled her to pin 0 down precisely, she can just read off 

p(rT I aT, 0). Otherwise, she must marginalise over the model (cf. section 3.2.2.1), making 

use of the posterior distribution for 0 derived in (6): 

p(rTIa',d,gt) = L T laT,0)p(BId,7) (7) 

What's so impressive about this formula is that it makes quantitative allowance both for 

the learner's remaining uncertainty about the model (since she has learned it from a finite 

number of experiences-recall section 3.1.2.2), and for any element of randomness in the 

models themselves (section 3.1.2.1). If in addition she marginalises over aT, 

p(rTIA,d,fl)= f p(rTIa',0)p(aTIA)p(BId,1L) 
a aT 

then she can also cope with situations in which she doesn't know the precise value of the 

model input (section 3.1.2.3). 

3.2.4. Practical implementation of the approach 

The importance of the Bayesian framework lies not only in the elegant answer it offers 

to the question of what learning is-i.e. a kind of inference-and the ease with which 

it draws together different kinds of uncertainty, but also in the context it provides for 

understanding the difficulties which the learner must confront when she comes to apply the 

theory in practice. 

3.2.4.1. Model spaces 

Chief among these is the requirement when performing the marginalisation (7) that she 

must consider every possible model 0. There is no way she can really do that-the space 
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3.2.4.2 (Local) maximum likelihood learning 

of all conceivable models for processes being hopelessly large and complicated-unless her 

background knowledge 7{ rules all but a tractable subset of them out as entirely doubtful. 

This subset is called the model space. 

The most convenient situation is when the model space comprises a small finite number 

of possibilities. Then the posterior distribution (6) is discrete and the marginalisation can be 

performed by enumeration. 

If the space of possible models is large or continuous, but it and the prior distribution 

over its members (p(O J?{) in (6)) can be represented in a well-behaved parameterised form, 

then learning and the making of predictions can still be tractable. To take a trivial example, 

if the learner knows that the process being modelled generates the outputs from some 

Gaussian distribution (and just ignores the inputs), she can adopt "all Gaussians" as her 

model space, parameterised by their means and variances.10 In very simple cases, it turns 

out that the marginalisation can be performed symbolically. Otherwise the integral involved 

will not have a closed form solution, and she will have to deploy a suitable numerical 

integration algorithm. (As the model space and prior are made more complicated, the 

posterior can become so badly behaved, by the normal standards of numerical analysis, 

that marginalisation is only possible using the more sophisticated Monte Carlo integration 

techniques, and tends to take a long time.11) 

3.2.4.2. (Local) maximum likelihood learning 

However, the integration is not necessary if the uncertainty in the estimate of the model 

is negligible (section 3.2.3.2); and if the estimate has been made from a large number of 

observations, the learner is often able to establish that this is indeed the case. Then the 

whole posterior distribution is concentrated close to a single, "maximum a posteriori" 

(MAP) model, the full marginalisation is clearly overkill, and it is sufficient to consider the 

predictive distribution conditioned on the MAP model: 

p(rT I aT, d, 71) p(rT I 
aT, 9*) 

where B" = argmax p(O I d,71) 
s 

In this case it will often also be true that the prior distribution p(B I7L) of the model 

has little influence on the posterior maximum, so that the MAP model is close to the one 

10 see also section 3.2.5.2 

11 Neal, Probabilistic inference 

(8) 
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3.2.4.3 Approzzmation using simple models 

which maximises the "likelihood" term: 

B` = argmax P(9 I d, f) 
0 

= argmax p(d 9) 
p(9 I fl) see (6) 

e p(d l'H) 
s:ts argmax p(d 19) 

s 

= argmax fJp(rt 

I at, 9) 
B t 

Then the likelihood is said to "dominate" the prior-the latter will be approximately 

constant across the narrow range in which the former is not effectively zero. This is the 

Bayesian justification for the method of "maximum likelihood estimation". Because the 

maximisation involves finding a root of the derivative of the likelihood with respect to the 

parameter, it is convenient to look at the log of the likelihood 

= argmax T log p(rt at, 9) since log is convex 
t 

(9) 

If the model distribution p(rt I at, 9) is a member of the exponential family (all the obvious 

ones are), then its log will tend to have a friendly derivative which can then be summed over 

the whole training set to produce the overall value. 

However, the maximisation may be very difficult to perform perfectly if the space is 

badly behaved, having many modes and making it impossible to find the globally best model 

using gradient-based search algorithms. So reasoning the Bayesianly correct way will often 

turn out to be impractical, or at least inconvenient. Then all the learner can do is take the 

single most probable model she has been able to find, and adopt it as a hypothesis. Given 

the constraints on her ability to entertain and draw the consequences from the much more 

complex beliefs which she ought ideally to be holding, this is the most rational way for her 

to proceed. 

What if there is some residual uncertainty in the model-the observations were not 

sufficient to narrow the posterior down to a tiny part of the model space-but the learner 

does not wish to attempt a full marginalisation over the posterior? The distribution will 

take the form not of sharp peaks, dominated by that of the globally MAP model, but of 

finitely wide "islands" of probability mass. Sometimes she may be able to obtain a good 

local approximation to the posterior, and therefore of the shape of the island around each 

locally MAP model; and that may enable her to proceed by finding the best (point) model 

she can and performing a kind of local marginalisation around it.12 

12 MacKay, A Practical Bayesian Framework 
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3.2.4.4 Rationally suboptimal reasoning 

3.2.4.3. Approximation using simple models 

The learner still has to confront a problem deferred from section 3.2.4.1: what if she 

is not sure a priori that the process can be represented correctly by a model drawn from 

some known parameterised space-if very little is known about the the true model, except 

that it is likely to be rather complicated, and the one formalism for powerful models with 

which the analysis goes through cleanly, namely Gaussian process, is inappropriate? This is 

the situation that must be faced when designing a learning engine for an autonomous robot 

(section 3.1.1); and the only way forward is to adopt a space of models which are known to 

be too simple, but allow them to "paper over the cracks" by describing some phenomena 

in the environment as unpredictable when in fact a more powerful model would be able to 

capture their behaviour deterministically. 

The reason this is an intuitively reasonable thing to do is that it appears to result in 

a "conservative" approximation, in the sense that it works by making the predictions more 

vague where necessary, rather than letting them be precise but inaccurate. It's possible 

that this feeling could be tightened up by some kind of variational argument akin to the 

maximum entropy principle,13 but in any case, the evident efficacy of Bayesian methods 

which rely on it, such as the well-known Kalman filter and hidden Markov model which will 

be introduced shortly, suggests that in practice it proves to be correct: the performance of 

an over-simple model will degrade gracefully, as long as it is allowed to "learn" an element of 

random slop. Cf. section 3.1.2.4. 

3.2.4.4. Rationally suboptimal reasoning 

Overall it seems that learning, if it is to be perfectly rational, must throw a huge and 

frequently unsustainable weight back on the learner's knowledge of which models should be 

taken seriously as candidates, and how plausible each is a priori, as well as on her ability to 

work through uncooperative integrations or at least optimisations. 

That Bayesian theory leads to this conclusion should not be counted against it as 

a failing. After all, it is a commonplace that no learner can absolutely guarantee the 

correctness of a specific prediction she makes on the basis of a generalisation from a finite 

number of previous examples. Inductive reasoning is acknowledged to be very difficult. 

Arguably, the Bayesian formulation succeeds both in expressing what the learner could 

13 Jaynes, Probability Theory, chapter 11 
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3.2.5 Simple examples of models 

warrantably say-i.e. it actually solves the "problem of induction", in principle14-and also 

in explaining why what she can say is inevitably going to fall short of that ideal. 

It also provides a context and motivation for the ad hoc way in which difficult tasks in 

machine learning are almost always tackled, namely by performing a fallible optimisation 

of a single model over a restrictive model space. The theory provides reassurance that 

the point hypothesis the machine ends up with is the best it can do given the real- 

world constraints on its algorithms, while also exposing the reasons why it is in principal 

suboptimal.15 

3.2.4.5. Assessing model truth 

Furthermore, it suggests a way of ameliorating the worst case consequences of the 

constraints on the learner's hypothesis space, by introducing a fallback hypothesis to the 

effect that something has gone wrong: the model optimisation did not work, or the training 

examples were unrepresentative, or the world has changed, or whatever. If these failure 

modes are real possibilities, then Bayes says the learner must keep them "in the back of 

her mind", and if at any point they seem likely to have occurred, she should respond by 

tempering the predictions from her model with the much vaguer prediction she must make 

if she concludes the model is useless-e.g. she may just predict nothing more specific than 

that the process outputs will lie in their legal range. This monitoring mechanism involves 

computing the posterior probability that the model is working versus the probability that 

a catastrophic failure has happened, from the respective prior probabilities and likelihoods, 

using Bayes' rule: 

p(e. r[T,T+t), 
) = p(r[T,T+t) I0*)p(O IIt) I+p(r[T.T t) I0)p(e* IN) 

where 0* = argmaxp(B I r[O,T) IL) 
0 

and B1 = fallback model 

... and then adopting as her predictive distribution a linear combination ("mixture") of the 

predictive distributions implied by each possibility, weighted by her assessment that each 

holds: 

p(rT+tIr[O,T+t),It)Pt p(rT+t10*)p(9*Ir[T,T+t),I)+p(rT+t Is) (1_p(g*Ir[T,T+t),7j)) 

14 Bayesian theory even provides a quantitative justification for the principle of inductive 

reasoning known as Occam's Razor: that simpler models should be preferred over complex ones 

where both account equally well for the evidence This is ultimately because a class of complex 

models is necessarily going to be bigger than a class of simple ones, so that the prior probability of 

each member must be lower See for instance MacKay, Bayesian Interpolation. 

15 Cf. Neal & Hinton, A New View of the EM Algorithm 
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3.2.5.1 Multsnomials 

The model's predictions should be believed only to the extent that they have proved 

empirically to be better than those made from a position of ignorance. Cf. section 3.1.2.4. 

3.2.5. Simple examples of models 

Up to this point in the discussion, the question of thesemantics/algebraic forms which 

Bayesian models can in practice take has been avoided or finessed. This section introduces 

the simple models which serve as building blocks for the more sophisticated constructions 

introduced later on. 

3.2.5.1. Multinomials 

It was noted in section 3.2.2.1 that inference using discrete models defined by a 

table or matrix is in principle not difficult (though the computation required can become 

prohibitively long-winded if the variables concerned can take a large number of distinct 

values). But how are these models to be learned in the first place? 

Consider, as the simplest possible case, a single-bin selecting machine as in (4) but 

for which the modeller does not know the contents of the bin. Her model of the process 

can be parameterised by the proportions of the different kinds of object, say w, for type 

(and therefore output) i. Supposing that she has plenty of example outputs rt available, 

so that the likelihood dominates the prior, (9) says that she should find the point w in the 

parameter space to maximise the likelihood with which the process described by the model 

would produce the observed outputs: 

w` = argmax E log p(rt 
I 
w) 

W t 

argmax L.: E (S,,re log W, 
w t 

(10) 

The derivative of the log likelihood is of course extremely simple, but its root must be 

found subject to the constraint that the proportions/probabilities must sum to unity. This 

can conveniently be achieved using a Lagrange multiplier.'6 The appropriate Lagrangian 

function is 

L(w,A)=Eb,,,,logw,+A(Ew,-11 (11) 

Setting its derivatives with respect to A and the w,s to zero yields the equations 

w, = 1 (12) 

Vi. 6" _ 
t w, 

16 Bishop, Neural Networks, appendix C 
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3.2.5.2 Gausasans 

whence 

Et bast 
-A 

and, solving for A by substituting that into the constraint equation (12), 

A=-b,rt 
t t 

the estimation rule is 

ws - Et &,,r' 

Et1 

Of course this is just the proportion of the output i observed in the training data (as it 

clearly has to be); but the method applies to less obvious cases considered later on. 

If the process being modelled responds to an input at, like the multi-bin selecting 

machine of (5), then the corresponding estimation rule is 

Et b,,rt82,at 

57t 1 

where w,r = p(R = i A = j, O) 

(13) 

This model is the simplest way of parameterising the relationship between two discrete 

variables; indeed according to the principle of maximum entropy (discussed briefly 

section 3.2.6.1) it is the model which should be adopted if nothing is known a priori about 

how the process actually works-though this doesn't absolve the learner from her (ideal) 

rational responsibility to consider more specialised models if the data displays some clear 

pattern. 

Instead of pursuing the maximum likelihood policy adopted here, it is in fact possible to 

perform a MAP optimisation as in (8) if a prior p(O I 3{) of a certain kind is adopted. This 

distribution (the Dirichlet) is of the same functional form with respect to the parameter 

as that of the likelihood, which means that the algebra above goes through undisturbed; it 

also yields a closed form for the full marginalisation over the model as in (7). Such a prior is 

called "conjugate" to its model.17 

3.2.5.2. Gaussians 

As the simplest illustration of a continuous model, suppose the learner knows that the 

process under consideration generates its outputs in such a way that she can represent her 

17 Lee, Bayestan Statistics, p. 59 
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3.2.5.2 Gausssans 

expectations about their values as a Gaussian distribution of unknown mean and variance- 

or, more likely, she has very limited computing resources and wishes to make the best 

inferences she can while constraining her model to lie in that space18, which is, as will now 

be shown, very tractable. Writing the model parameter as 9 = p, p, where p is the unknown 

mean and ,Q the precision (inverse (co)variance matrix) of the Gaussian, and noting that the 

input is ignored, the probability of each output rt is 

p(rt 19) = p(rt I p, 0) = 
1 

27r 
I/ 

\I z 

exp \- 
2 

(rt - u), Q (rt - u) / 

and the likelihood of the whole training set d is 

p(d I u, R) _ 11 p(rt I u, P) 
t 

This means that the maximum likelihood approximation to the MAP parameter 

(section 3.2.4.2) is given by 

9" = u*, argmaxElogp(rt 11)"M 
µ'R t 

The terms in the sum have nice derivatives: 

1 
log p(rt Iu, /d) = 2 log -L 

27r 

au 
logp(rt I is, 0) = $(p - rt) 

6 logp(rt I u, Q) = 2 d 1 2 

so the optimisation (setting those to zero) reduces to 

2(rt-uOW -u) 

- u)(rt - u)' 

Et1 
a. = (Et (rt - A*) (rt - A* Y 

EtI J 

(14) 

(15) 

(16) 

(17) 

(18) 

As in the case of the discrete distribution of section 3.2.5.1, one can define a conjugate 

prior (here the normal/x2 distribution, or normal/Wishart in the multivariate case) which 

makes it easy to find the MAP parameter rather than the maximum likelihood one, or even 

carry out a full marginalisation. 

It is easy to generalise (17) and (18) to model a process whose output is known to be 

sampled from one of several available Gaussians, the choice being determined by a discrete 

is In fact there are often good reasons for modelling an unknown continuous distribution as a 

Gaussian: it is the vaguest distribution with a given mean and variance, in the "maximum entropy" 

sense of vagueness (Jaynes, Probability Theory, chapter 11)- 
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3.2.5.3 Confidence regions for continuous inputs 

input analogously with (5). The overall log likelihood in terms of the parameters Iti and p, 

of all the Gaussians i is 

logp(dI9) = L E6,,a' logp(rt 
I # ,Q=) (19) 

t 2 

and the estimation rules take the form of selective averages: 

Et6,,m,r t 
N - (20) 

e Et aa,al 

( 
l_r 

(re-µ})l EtS+,°`(r 
21) Ni = ( 

Lrt bQ / 

This is the simplest (and the maximum entropy) model of the relationship between a 

discrete input and a continuous output. 

3.2.5.3. Confidence regions for continuous inputs 

Recall from section 3.2.4.5 that the learner can use the empirically observed 

performance of the model to decide (quantitatively) how confident that she is that data she 

is applying it to are similar in character to those from which she learned it. A finer-grained 

question of model trust comes up if the learner is not sure that the training set provided 

examples which covered every part of the input space, so that future inputs different from 

those on which the model was trained might provoke unexpected behaviour in the process 

under consideration. 

Suppose the process under consideration takes a continuous input and produces a 

continuous output. The learner notes that it appears to be generating its outputs from 

a single Gaussian, as in section 3.2.5.2; but also that all the inputs she has been able to 

observe have fallen in roughly the same area. One way she can account for her worry that 

the process might respond to a different kind of input by producing a different kind of 

output would be to make her model treat the input and output together as being generated 

by a larger process, including whatever agency is responsible for providing the former as 

well as the machine (or whatever) which maps them to the latter. Then she could express 

the possibility that the input-output pairs, while mostly following the pattern manifested 

in the training data, will sometimes do something completely different. What she needs to 

do is model the distribution of the inputs seen in the training data as well as that of the 

outputs. At the simplest, she could treat the training outputs as being generated from a 

Gaussian N(p, 9), as in section 3.2.5.2, and the inputs symmetrically as being generated 

from a Gaussian N(v, y). From timestep T (the end of the training data) onwards, there are 

always two scenarios, represented by a variable Qt: 

At Rt= JN(v,y),N(I.yf) ift<T orQt=1 l something random if t > T and Qt = 0 
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3.2.5.4 Lanear/Gaussaan regression 

Obviously the estimation rules for this model would just be two copies of (17) and (18). To 

make a prediction of what the output corresponding to a given input at will be, the learner 

need only see how well at fits with each of the two possible input-generating processes in 

play. The result is a weighted sum ("mixture") of Gaussians: 

p(rt 10, N, at) = p(rt, Qt = O 18, at) +p(rt, Qt = 110, at) 

where 

and 

= p(Qt = O 1 at, v, 7, ?l) p(rt I Qt = O, µ, Q)+ 

p(Qt = I Iat,v,7,7)p(rt I Qt = 1,7i) 

p(Qt =1 at, v, 7, fl) = 
p(at I Qt =1, v,7) p(Qt =1 I fl) 

p(atIQt=1,v,7)p(Qt=111)+p(atlQt=0,71)p(Qt=01fl) 
p(Qt = 0 at,v,7,fl) = 1 -p(Qt = 1l at,v,7,4l) 

If at falls far from the centre of the confidence region N(v, ry), the density p(at I Qt = 1, v, 7) 

will be very low; the learner will naturally conclude that the unknown input-output process 

was responsible, and end up with a mixture whose only significant component is the very 

broad output distribution p(rt I Qt = 0). If, on the other hand, at lies in amongst the 

inputs previously seen in the training set, the mixture will be heavily biased towards the 

output distribution learned from the training data. Finally, in marginal cases the mixture 

will contain both components, the informative output being tempered by an element of 

uninformative noise. The exact proportions will depend to a degree on the learner's prior 

assessment p(Qt = 0 1 W) of how often the unknown process occurs. 

3.2.5.4. Linear/Gaussian regression 

Section 3.2.5.3 discussed a model which described the distribution to be expected of 

the outputs given the training data, and that of the inputs, using the latter to assess the 

reliability of the former. What if instead the model goes after the joint distribution of the 

inputs and outputs together, instead of considering them independently? Since rt and at 

are being treated symmetrically as if they were both outputs, the model can be learned 

simply by a version of (17) and (18) in which they have been concatenated. The mean of 

the resulting distribution is the concatenation of the means p* and v*, while its variance 

is made up of blocks comprising the variances )3*-1 and 7*-1 along with the observed 

covariance between the inputs and outputs. Writing the blocks of its precision-which are 

not in general the inverses of the corresponding blocks in the variance-as 

ORR ORA 

OAR OAA 

it turns out after a little algebra that the predictive distribution of the model 

p(rt I at, 8) = 
p(rt, at 10) 

p(a 

= N (rt I It - 4GR 1 RA(at - v), ORR) 
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3.2.5.4 Linear/Gaussian regression
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simply by a version of (17) and (18) in which they have been concatenated. The mean of

the resulting distribution is the concatenation of the means n* and v* , while its variance

is made up of blocks comprising the variances fi*~l and 7*"1 along with the observed

covariance between the inputs and outputs. Writing the blocks of its precision — which are

not in general the inverses of the corresponding blocks in the variance — as

( <t>RR <t>RA \
V <J>AR 4>AA )

it turns out after a little algebra that the predictive distribution of the model

~ p(at\9)

= N(rt\p,- (t>
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3.2.5.4 Linear/Gaussaan regression 

is another Gaussian, with precision ORR and mean IC-(ORR)-'ORA(at-v). The mean of the 

output prediction will vary linearly with the input. 

Indeed this Gaussian joint input-output model is clearly equivalent to one in which 

the inputs are modelled as coming from a Gaussian, and being passed through a linear 

transformation rc before having zero-mean Gaussian noise added to produce the outputs: 

At = N(v,7) 

Rt = iAt + N(0, /3) 

It is convenient to stipulate that every input at is supplemented with an element set to 

unity, thus providing the linear transformation with an intercept (i.e. p) as well as a slope 

(t.e. -(cRR)-1cRA) folded up in the one parameter iv. In terms of the parameterisation 

B = rc, /3, the predictive distribution is then 

P(rt I at, B) = exp \- 2 (rt - >cat)' /3 
(rt - rcat) I 

a 

This is a particular example of a "linear regressive" model (there is in general no need 

to assume, as is done here, that the output noise is Gaussian, or that the inputs are drawn 

from a Gaussian). It will be appropriate if the learner knows that the process's outputs do 

in fact vary smoothly with its inputs, and that the variation is linear-or she is prepared to 

restrict her model space to a first-order approximation of the trends she believes are present, 

in exchange for an efficient algorithm. 

If she does not consider it necessary to obtain a confidence region (does not care about 

the distribution of the inputs) , and is thus happy with a conditional model of p(rt 
I 
at) as 

opposed to a joint model of p(rt,at), she can avoid some work by learning k and /3 directly. 

The derivatives with respect to those parameters of each term in the log likelihood can be 

calculated as shown:19 

logp(rt 
I at, k, a) = log 

2tr - (rt - nat)r/3(rt - iat) 

a' logp(rt I at, k, a) = 
2 i316y 

ak rckl$1mrtn + 
2 aa 

rlt,/3klKlmatn 
1 

aaij 
ak kkl/3lmKmnan 

= 
at$,mrtn+ 

rI/3kiat - 1 t atknkl(3[mlmna;tt 
2 2 2 8r.,. 

= 
ti - /3 scat at'),, 

logP(rt 
I at, c, /3) = 0-1 - (rt - cat)(rt - cat)r 

a/ 

(22) 

(23) 

19 In (22), the usual convention of summation over unbound subscripts m the same additive term 

is adopted, as the most convenient notation The subscripts t3 k 1 m n temporarily lose their usual 

meanings. 
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logp(r41 o4, K, ft] - - log — - -(r4 - KO4)'/3(r* - Ka*)
/ ZTT i

d I d t 1 d t l d
-—\ogp(r \ a t , K , , p ) = -^—alKki/3imrm + 5 ~—rk/3kiKimam - --—
OKjj i OKij & OKt:1 A OKij

1 to t 1 to t 1 9 t a t
— —CL LinmT ~r~ — T t UlxiQi — "•» K.t*i iii~~ /C.™*, ft,

2 a"Jill ' ' in ' n K""'1' j o2 Z

= (/W - /J«a*a*')y (22)

| a*, K, /3) = /T * - (r4 - /ca*)(r* - /«**)' (23)
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3.2.6.1 Breakcng mto the system 

and the optimal solution is 

rc* = 
C rtat// \F 

a l (24) 

X Et(rtrt -n*atri 

)\ Et1 (25) 

Just like the output-only Gaussian model of section 3.2.5.2, the regressive model can 

easily be generalised to select one of several available mappings according to one, discrete 

(part of the) input, before passing another, continuous (part of the) input through that 

chosen. The estimation rules for each parameter pair r.* ,)3, are copies of (24) and (25), with 

the sums weighted by the same mask Jj,mt as in (20) and (21). 

3.2.6. How Bayesian inference can influence behaviour 

In section 3.2.1.1, it was explained that the semantics of Bayesian probabilities (levels 

of certainty) are grounded in the consistency and uniqueness of the axioms according to 

which they are manipulated. The only points at which they explicitly make contact with 

concepts expressible independently of the system are at the extremes: the propositions to 

which the reasoner assigns the probabilities zero and one are those she knows definitely are 

false and true respectively. But the whole purpose of the theory is to enable her to reason 

with propositions in which she has an intermediate degree of belief. So where are they to 

come from and how is she to going to use them? How is the reasoner's inference system 

embedded in her real life? 

3.2.6.1. Breaking into the system 

Consider first the question of where Bayesian probabilities have their ultimate roots. 

There are seven ways in which these numbers can meaningfully be assigned: 

Most straightforwardly, direct observations lead the reasoner to assign sharp 

zero/one probabilities to corresponding propositions. 

Where the reasoner knows the (discrete) outcomes a process might have, but has 

no information which leads her to expect one more than the others, considerations 

of symmetry (item 6 in section 3.2.1.1) require that she entertain each possibility 

with the same degree of certainty-with equal probability. For example, as was 

mentioned in section 3.2.1.1, this principle suffices to establish the connection 

between Bayesian probabilities and long-run frequencies in population-sampling 

experiments. 
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3.2.6.2 Breaking out of the system: decision theory 

If she does have further information about the process, she will want to factor 

it into her distribution over the outcomes while leaving the distribution as 

vague as possible in other respects. It can be shown that the only definition of 

"vagueness" which can be consistent with some clearly necessary constraints is the 

distribution's entropy, and that is the motivation for the principle of maximum 

entropy: set the probabilities so as to make up the distribution which has 

maximum entropy consistent with the known facts.20 

The trickiest probabilities to resolve unambiguously, but at the same time the 

ones with the least impact on the learner's judgements, are the prior probabilities 

assigned to the possible models (p(9 31) in (6)). Before she has any observations, 

the learner can very often to be said to be in a state of great ignorance with 

respect to the value of the model parameters (where in the model space the right 

model is to be found), but it turns out to be unexpectedly difficult to derive a 

unique distribution which best represents that fact. However, this does not often 

matter, since the whole point of such a "noninformative prior" is that it should 

step aside and let the data-induced likelihood be the overwhelming influence on 

the posterior; the minor differences between the different conceivable priors will 

typically have a negligible effect on her conclusions.21 

It is often possible to represent the notion of the general character expected of the 

model parameters using what is called a "hierarchical" model 22 The model prior 

is defined conditionally on a "hyperprior" or "regulariser" which determines the 

probability of (say) large parameters versus small ones, or the overall smoothness 

of the mapping implemented by the model. The hyperparameter is given its 

own prior, but to a greater or lesser extent is left to be determined from the 

observations. This approach can work well even with complicated models.23 

Some probabilities are implicitly "zeroed out" by practical constraints placed on 

the mechanisms used by the learner (section 3.2.4.4). 

Finally, intermediate results and the inferential conclusions which are the learner's 

goal are obtained by combining existing numbers according to the usual laws of 

probability. This is where the posterior distribution (6) of the model comes from. 

20 Jaynes, Probability Theory, chapter 11; in fact this principle subsumes the previous one 

21 Box & Tiao, Bayesian Inference in Statistical Analysis, section 1.3, priors can, however, 

become important when it comes to performing Bayesian model selection in the absence of a large 

supply of data 
22 Lee, Bayesian Statistics, p. 223 

23 MacKay, A Practical Bayesian Framework 
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3.3.1 The EM algorithm 

3.2.6.2. Breaking out of the system: decision theory 

The corresponding issue at the other end of the framework is how the learner can use 

her model and its predictions to help her make decisions. The principle of Bayesian decision 

theory is very simple: she must define a "gain function" g, which says how relatively good 

the outcome will be of performing each of the actions at in its repertoire if the state of the 

world is yt. Then the action she should take is 

at, = argmax 
J 

g(at, yt) p(yt I K) (26) 

where K represents all her knowledge relevant to yt. a; is the action which maximises her 

expected gain, where the expectation is taken over her degree of certainty that the world is 

in each possible state. 

This rule has many powerful properties.20 Most importantly, it captures perfectly the 

notion of "cautiousness" in the face of uncertainty which was established as a requirement 

for the behaviour of an autonomous robot in section 3.1.2. Suppose some action generally 

gains a small reward for the agent, but in certain circumstances yi it provokes a large 

penalty. Then she will avoid the action whenever she suspects even slightly that those 

circumstances might obtain, since the product of the penalty with the small probability 

p(yj I K) will be sufficient to offset the product of the reward with the larger probability 

p(yf I )Q. If she is completely unsure what the state of the world is perhaps because 

she does not trust her model at all-she will choose an action which is reliably safe in all 

situations. 

Note that at in (26) is not itself an average: the rule does not choose compromise, 

intermediate actions, but rather actions which balance the consequences across the agent's 

beliefs about the world. 

If the agent has to plan ahead for more than one action into the future, a more general 

criterion will be appropriate, such as the greatest expected gain she could achieve up to 

some time horizon. This issue has been studied intensively within the field of reinforcement 

learning (section 2.3.1), and will be returned to in section 6.2. 

20 Berger, Statistical Decision Theory; Jaynes, Probability Theory, chapter 13 
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8.3.1.2 Correctness of the algorithm 

3.3. EM modelling 

3.3.1. The EM algorithm 

Many models used in the Bayesian learning of dynamical systems, such as the ones 

introduced in section 3.3.3, are particularly well suited to an optimisation technique 

called the EM or expectation-maximisation algorithm. This is really a meta-algorithm or 

algorithm schema, which can help find a maximum a posteriori model parameter even if 

some of the quantities on which the distribution depends are unknown-for instance, if they 

represent state in a dynamical system which is not directly observable. 

3.3.1.1. The procedure 

Call the known values d, the hidden quantities H, and the model O. The goal is to find 

a 9* to maximise p(9 I d); a direct approach involves marginalisation over h, which is (it is 

supposed) hard; yet the more straightforward optimisation of p(O, h I d) with respect to h 

as well as 9 does not give the right answer-it just ignores the uncertainty in h. Happily, 

it turns out that given an estimate of the model, one can reliably generate a better one by 

maximising the expected log of p(O, h I d), where the expectation is taken over the distribution 

of H implied by the old estimate. Writing the old parameter estimate as On and the new one 

as 9"+1 

9"}1 = argmaxEh[logp(9,hid)10",d] 
e 

= argmax p(h l9", d) logp(9, h i d) (27) 
B J 

The difficult marginalisation has been reduced to an integration which is often much easier, 

because it is conditioned on a fixed 9" and involves the log of p(O, h I d) rather than the 

distribution itself21. This yields an iterative algorithm which, if it converges at all, will 

always return the (or a locally) most probable 9*. 

Each iteration can notionally be divided into an "E-step", in which the distribution 

p(h I on, d) is computed and a representation for Eh[logp(9, It I d)] as a function of 0 is 

obtained, and an "M-step", in which this function is maximised. (In simple cases these 

stages can sometimes be symbolically conflated to a greater or lesser extent.) 

21 Many "exponential family" distnbutions have logs which are well behaved for this purpose 
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3.3.1.3 Generalisations of the EM algor2thm 

3.3.1.2. Correctness of the algorithm 

To prove that the algorithm returns a (locally) MAP parameter, it is sufficient to show 

that each iteration finds a parameter which increases p(9I d) as well as Eh[logp(9, h 
I 
d) ], 

and that if it converges, the limiting parameter is a stationary point of p(9I d). Then it 

follows that the limit is a posterior mode (or, conceivably, a saddle point) 22 

How does p(9 I d) relate to p(9, h d), and its expected log which is maximised in the M- 

step? By the product rule, 

p(9,hid) =p(h19,d)p(9Id) 

and log p(9 i d) = log p(9, It I d) - logp(h 19, d) 

Taking the same expectation over the unknowns as in the pE-step (see (27)), 

logp(9Id) = f p(hI9",d)logp(9,hld) - J p(h19^,d)logp(hI0,d) 
h h 

U(9) W (O) 

(28) 

The M-step always moves 9 from 9° to some 9n+' chosen to increase U(9). So p(9 I d) can 

only fail to go up if W (O) is also increased. But that cannot happen, since 

- (W (9n}') - W (O-)) = f p(h l 9", d) logp(h 19", d) - f p(h 19", d) logp(h 19n+1 d) 
h h 

n 

= f p(h8n, log p(hI9n+tdd 

is the Kullback-Leibler divergence23 of p(h 10'+1, d) from p(h 19°, d), and is therefore 

nonnegative. 

When (if) the algorithm has converged-so that On is arbitrarily close to a fixed 

point 9*-the derivative of U at 9* is clearly zero, since otherwise U could be further 

maximised. And the derivative of W is given by 

a -L 

TO 
W (O) _ f p(h l e*, d) ep(h 

h 
19, 

d) 

10, d) 

so that 

89W (B*) = L p(h 9*, d) aq* 

= 
a9 
f p(h 9*, d) 

=0 

22 The proof sketch given here is adapted from Lee, Bayesian Statistics, p. 252. 

23 Bishop, Neural Networks, p. 59 
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3.3.1.3 Generalisations of the EM algonthm 

as well. Since 

aB logp(0 I d) = BU(0) + LBW B 

it follows that B" is a stationary point of the posterior, as required. 

3.3.1.3. Generalisations of the EM algorithm 

The EM algorithm was introduced in Dempster et al., Maximum likelihood from 

incomplete data (in a maximum likelihood context, with a remark that it applies equally 

well under a Bayesian interpretation). The authors also point out that the M-step need not 

optimise B"+r all the way to a maximum in order to guarantee an increase in the posterior 

(although the proof in section 3.3.1.2 that the algorithm will converge to a posterior mode 

does not then go through). Procedures which exploit this fact are called generalised EM 

(GEM) algorithms. 

Neal and Hinton give an interesting perspective on EM, in which the distribution over 

which the expectation is taken in the E-step is treated as a parameter z?-instead of being 

inferred as p(h I On, d)-and the algorithm as a procedure for maximising a quantity called 

the "variational free energy" 

r 
F(0,w)= 

J 
u7(h)logp(hIB,d) - f w(h)logw(h) 

h h 

IT (B, w) W(w) 

with respect to w as well as the model parameter 8.24 Maximising F with respect to w at 

iteration n, keeping On fixed, does actually turn out to mean setting 

w"(h)=p(h IOn d) 

and then it can be seen from (28) that 

U(0,w") = U(0) 

Thus what the EM algorithm does (repeatedly maximise U) is equivalent to alternately 

maximising F with respect to w and 0. Since additionally 

W(B", w") = W (On) 

it is clear that 

fl on, w") = log p(B" I d) 

and it is not hard to show that approaching a maximum of F by any means whatsoever will 

yield a maximum of log p(0 I d). This result assures the correctness of many variant EM-style 

24 Neal & Hinton, A New View of the EM Algorithm 

50 

3.3.1.3 Generalisations of the "EM algorithm

as well. Since

it follows that 9* is a stationary point of the posterior, as required.
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F(9,w)= f w(h)\ogp(h\9,d) - f w(K)\ogw(h)
Jh. _ _ / A _ _ _

17(0,07) W(w)
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3.3.1.4 Ensemble learning 

algorithms in which only part of the distribution w is updated at each E-step, or several M- 

steps are performed in between each E-step. 

The variational free energy account also motivates algorithms in which the 

distribution w is constrained to take some computationally convenient form,25 and so- 

called "GEM" algorithms in which the M-step consists in increasing, but not necessarily 

maximising, U. 

3.3.1.4. Ensemble learning 

Taking this idea further, Hinton & vanCamp, Keeping neural networks simple and 

Waterhouse et al., Bayesian Methods for Mixtures of Experts suggest a procedure called 

"ensemble learning" in which the whole posterior distribution of B is approximated, not 

just its MAP value, thereby perhaps making it possible to carry out a full marginalisation 

(section 3.2.2.1). The strategy is to approximate the intractable joint posterior p(O, h I d) by 

a separable distribution 

w(9, h) = WO (0) tVh(h) 

and then minimise the Kullback-Leibler divergence of the true posterior from the 

approximating distribution 

ea = argmin i uu(B, h) log 
w(9,h) 

I ) 
W e,h p(B, h d) 

By exploiting the separability of vu, the overall divergence can easily be reduced to the sum 

of divergences 

where 

Iw(B)logEh[logp(B hId)] +Jnw(h)IogE0[logp(O,hId)] o 

EB[... oc fp(s)... 
a 

Eh[...] a f w(h)... 
h 

This leads to an iterative algorithm in which repeated use of the updates 

w"}1(0) oc exp En [ log p(B, h I d) ] 

ron+1(h) cc exp Eq [ log p(B, h I d) ] 

minimises the overall divergence error and gives an approximation to the posteriors of B 

and h. If Wn(B) is constrained to be a (Dirac) delta function 6(0', B), an EM-style algorithm 

drops out as a special case. 

25 For instance, it explains the way in which the "k-means" clustering algorithm approximates the 

EM algorithm given in section 3.3.2 
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3.3.2.1 Uncondataonal Gausstan mixtures 

Clearly the method generalises to any number of parameters/unknown variables26, and 

will be useful as long as the resulting update rules turn out tractable and the separability 

approximation does not break down too badly. 

3.3.2. Mixture models 

In section 3.2.5, various scenarios were considered in which the learner believed, 

or chose to believe, that the process she wished to model produced each of its outputs 

according to one of several possible methods, the choice being determined by a discrete 

input. The EM algorithm provides a neat solution to the problem of learning a "mixture" 

model, in which the output method is selected stochastically, either entirely at random or 

conditionally on a discrete or continuous input. Mixture models are useful for approximating 

the behaviour of systems whose behaviour exhibits clear, but not smooth (e.g. linear) 

patterns. 

3.3.2.1. Unconditional Gaussian maxtures 

Consider first an extension of the multi-Gaussian model of (20) and (21) to the case 

where the choice of output Gaussian is random, or invisible to the learner (or depends on 

an input which she cannot observe). Writing µ, and 0, for the mean and precision of the 

Gaussian "component" i, Qt for the choice of component used to generate rt, and w, for the 

probability with which component i is chosen each time, the density of the outputs is given 

by 

p(rt 10) = > p(rt, Qt = i I µ, 3, w) 

= E p(rt I Qt = i, p,, fi) p(Qt = i I w) (29) 
I 

a 

22r exp 
(- 

1 

(rt {4a Aa (rt µa 

(As usual 0 denotes the overall model parameter, in this case comprising p, 0, w.) The log 

likelihood of the training set d 

logp(d10) = log Hp(rtIa',0) 
t 

= log II w, 
I 

. 

27r t 
exp (- 

2 
(rt - go, 0. 

(rt - µa) ) 

26 Waterhouse et at, Bayesian Methods for Mixtures of Experts uses it to infer the values of 

Bayesian hyperparameters, as well as the actual model parameters 
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3.3.2.1 Uncond2tsonal Gaussian msxtures 

is clearly differentiable, but the E, - - - inside the product prevents the quadraticness of 

the Gaussian components' log likelihoods from bubbling to the top (cf. (14)), making it 
necessary to use an iterative algorithm for the optimisation of p, 0. 

Of course any general purpose nonlinear maximiser will do the job, but there is also an 

elegant EM alternative, in which the set Q of the process's choices of Gaussian components 

over all the timesteps t is treated as an unknown variable (H in section 3.3.1.1), and 

the expected log posterior is repeatedly maximised with respect to the parameter 0 = 

p, /3, w. In fact, if the training set d is big enough that the likelihood dominates the prior 

(section 3.2.4.2), then it is sufficient to work with the expected log likelihood; with this 

adjustment, the EM reestimation rule (27) becomes 

Bn+1 = argmax I: P(q I On, d) logp(d, q 10) 
q 

Note that the E, . has moved outside the log to become the Eq As one might expect, 

the loops over the training set inside the log likelihood can now be distributed through the 

EM expectation: 

EP(q I B", d) logp(d, q 10) = 
n 

(II P(gt I 
On, rt) ) (E logp(rt, qt I9)) 

q 9. t t 

= E Elogp(rt,gtle)fp(g7len,r1) 
g0..gT-1 t T 

_ E E logp(rt, qt I B) P(qt 16n, rt) 57 11 P(qT 19", r7) 

t qt 
qo tigT-1r#t 

_ E log P(rt, Qt = t 9) P(Qt 
= i I 

B", rt ) 
t,t 

_ EP(Qt = i I an, rt) log (P(rt I Qt = i, 9)P(Qt =i 19)) 
t,t 

_ L P(Qt = i Ion, rt) (logp(rt 
I Qt = i, Pt, 0,) + logw,) (30) 

t,t 

By analogy with the way (19) leads to (20) and (21), it should be clear that the reestimation 

formulas for for pn+1 and )3n }1 are just weighted averages: 

n+1 ', P(Qt = i I on,rt)rt 
(31) At 

Etp(Qt = i I9n,rt) 

qqn+1 _ Et P(Qt = i I9", rt) (rt - p*)(rt - ,s)t -1 

N2 - \ Et P(Qt=i IOn,rt) 

where the coefficients are given by 

P(rt t = i, On) 
p(Qt t I 

On, rt) pQt 
an 

n(Qt = i. 19n) 

Jn a 

oc w" 27exp (rt - W:) t /3; 
(rt - µ, ) 

(32) 
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3.3.2.3 Input-output Gaussian mixtures 

(normalised so as to sum to unity). Each output rt contributes to the new means and 

variances of each component i in proportion to the old estimate of how probable it was that 

i was responsible for generating rt. Again, by analogy with (10) and (13), the reestimation 

rule is easily seen to be 
wn+1 t P(Qt = i I 

On, rt) 
EtI 

(33) 

-the average of the posterior probabilities that i was responsible for each output. 

Gaussian mixture models have been employed to good effect in "classification" or 

"clustering" applications27, in which ellipsoidal clusters are discovered in the set of points rt, 

and each point is classified according to the clusters which it is believed may have generated 

it. The well-established k-means algorithm can be seen as an approximation to this method 

(and can be justified by the arguments of section 

3.3.2.2. Gaussian mixture confidence regions 

It's also possible to use a mixture in just the same way on the other side to map out a 

confidence region for the model which is more flexible than that obtained in section 3.2.5.3. 

The procedure is simply to model the distribution of process inputs as a mixture of Gaussian 

(or whatever) components i, and then add another one, say component 0, to the mixture 

which merely says the input will lie somewhere in its legal range. 

Furthermore, the learner can adjust the value of the frequency wo with which she 

expects the model to break down in the light of its performance by using the EM update 

rule (33) with the other elements of w clamped at their learned values. (Of course if she has 

the computing time to spare, she can keep on tweaking all her other model parameters as 

well.) 

3.3.2.3. Input-output Gaussian mixtures 

If the mixing is done over both the input and the output at the same time, then a very 

powerful model begins to emerge. Suppose the process is taken to be deciding at random 

between a number of rules i according to probabilities w each of which generates at and rt 

from its own Gaussians N(v7i) and N(pQ,). Then the joint distribution is 

P(rt, at 10) _ w, P(at I Qt = t> v,, 7i) P(rt I Qt I-ta, 

27 The "AutoClass" system (Cheeseman et at, Autoclass) is particularly interesting because it 
tries to take a fairly complete Bayesian approach to the problem It uses a rough but effective 

approximation to help find the best number of mixture components to use, as well as employing the 

EM algorithm given here to decide where each should be placed. 

28 Neal & Hinton, A New View of the EM Algorithm 
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3.3.2.4 Jo,nt nurtures of experts 

The EM update rules will obviously take the form of two copies of (31) and (32), one for 

each pair of Gaussian parameters, plus the usual (33). The predictive distribution will be the 

Gaussian mixture 

p(rt 10, at) = E p(Qt = i I v,'Y, at) p(rt I Qt = i, l Q1) 
i 

where p(Qt = i I v,-y, at) = 
wip(at I Qt = vi, -t.) 

E,, u,p(at I Qt =.7,va,ryy) 

-which means that the placement of at will affect the probabilities with which rt 

is predicted to lie in each of the "regions", loosely speaking, defined by the 

distributions N(µ1, O,). With enough components, this model is capable of capturing 

arbitrary input-output relationships. 

3.3.2.4. Joint mixtures of experts 

The input Gaussian/output Gaussian model of section 3.3.2.3 results in a predictive 

distribution which could be called "stochastically piecewise constant": given an input, one 

can infer one or more fixed points around which the corresponding output is likely to be 

found. If the joint input/output distribution of each mixture component is modelled as 

a single Gaussian, as in section 3.2.5.4, the outcome is a "stochastically piecewise linear" 

model: the points around which one expects to find the output move around linearly with 

the input, at the same time as their relative probabilities also change. This model can be 

seen as a member of the"mixture of experts" family: a different output-generating rule 

comes into play depending on the placing of the input 29 

Like the unmixed joint-Gaussian model, each component i of the mixture of 

experts can also be parameterised in a slightly different way, with an input-generating 

distribution N(vry,), a linear transformation ic,, and an output noise distribution N(00,). 

Under this alternative formulation, the EM reestimation rules for ic, and f, are weighted 

versions of (24) and (25): 

= (Ep(Qt=iIOn,rt,at)rtat I 
(pt=iir,rt,at)aatt, 

/ t 

"+1 = I Etp(Q` = i 
I 
B", r`, at) (r`rt' - ,c *`atrt') 

p1 l Etp(Qt=ile",rt,at) 

where p(Qt = i Ion, rt, at) cc p(rt I Qt = Z, K', #,, at) p(Qt = t, at I w', v", ry") 

n 
and p(rt I Qt = P . " , t) = 2 exp (-2 (rt - n at) (rt -K,"at)) 

and p(Qt = i, at I w", v",7") = w; 
27r 

exp (at - vi )/ 7s 
(at - i) 

29 Xu et at., An Alternative Model 
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, ,^t - i t\ ^ip(at |<24 = i,f»,7»)where p(Q4 = t i/, 7, a4) = ^v ' J .*' 'l>
t
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can infer one or more fixed points around which the corresponding output is likely to be
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comes into play depending on the placing of the input.29

Like the unmixed joint-Gaussian model, each component i of the mixture of

experts can also be parameterised in a slightly different way, with an input-generating

distribution N(vt,%), a linear transformation KS, and an output noise distribution N(0,/3t).

Under this alternative formulation, the EM reestimation rules for Kt and & are weighted

versions of (24) and (25):

where p(Qt = i\en,rt,at)<xp(rt\Qt = i,t^,^,at)p(Qi = 1,0* | wn,z/",7n

and p(rt\Qt = i,<,/34",a4) - ^

and p(Q* = i, a* \ wn, vn, 7") = ̂

exp _ r _

2sl
27T

29 Xu et al., An Alternative Model
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3.3.2.5 Conditional gating rules 

The update rules for the input parameters v, ,y are of course similar to (31) and (32) 

n+1 = Et P(Qt = i I Bn, rt, at) at 
v, 

Et p(Qt = i I on, rt, at) 

y,n+l (Et P(Qt = i 19",rt, at) (at - v1`+1)(at Vn+1), -1 

Etp(Qt=iIon,rt, at) 

while that for w is as (33). The predictive distribution is 

p(rt 10, at) = E p(Qt = i I w, v, y, at) p(rt I Qt = t, k., Qi, at) 

where p(Qt = t w, v, y, at) a p(Qt = i, at I w, v, y, at) 

(34) 

(35) 

Like the other mixture of experts variants, the joint-Gaussian model can be seen as 

bringing together classification and regression30: it first classifies the inputs into Gaussian 

clusters, and then applies a different linear mapping to members of each class. 

3.8.2.5. Conditional gating rules 

It is also possible to define another kind of mixture of experts algorithm, in which no 

attempt is made to model the distribution of the inputs: instead of at being conditional 

(jointly with rt) on the mixture component choice qt, the latter is made conditional on the 

former. Although this "conditional mixture of experts" sounds semantically less ambitious 

than the joint mixture of experts of section 3.3.2.4, it turns out to be computationally more 

expensive. 

In one possible parameterisation, the "gating rule" by which an expert i is chosen to 

map the input to the output is similar in form to a Gaussian mixture classification: 

p(Qt = i 10, at) _ 
[mow:9(at I 

v,, y,) 
(36) 

L3 w, g (a, 

II 

Vj "0 
where 9(at I V.,'Y.) = I27r I 

z 
exp \ 2 (at v4) 

y. 
(at - v*) 

This is the degree to which each Gaussian "receptive field" N(vy,) will "claim" the 

input at for its expert i, weighted by w, and normalised to sum to unity. Note that the 

Gaussians are being used here purely for their formal properties: there is no suggestion 

in this conditional mixture model that they express the actual distribution of the inputs 

(they don't). The M-step of the learning algorithm, in which the (conditional) expected log 

likelihood is maximised, takes the form 

Bn+i = argmax p(Qt = i I Bn, rt, at) logp(rt, Qt = i 
I B, at) 

t,. 

U(O) 

(37) 

31) Jordan & Jacobs, Hierarchical mixtures of experts mentions similar, existing models in the 

statistical literature such as CART and MARS 
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j± lr\ty — t | 17 j / ; Ui J ^t* — Is J \1Jti
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*
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in this conditional mixture model that they express the actual distribution of the inputs

(they don't). The M-step of the learning algorithm, in which the (conditional) expected log

likelihood is maximised, takes the form

0n+1= argmax ^p(Q4 = i \9n,rt,ai)logp(rt,Qt = i |0,a4)

' «. _ . _ . (37)
C7(0)

30 Jordan & Jacobs, Hierarchical mixtures of experts mentions similar, existing models in the

statistical literature such as CART and MARS
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3.3.2.5 Conditional gating rules 

Writing the logged term as 

logP(r-t 
I Qt = i, lc,, P., a) + logp(Qt = i I w, v,7, at) 

and expanding 

logP(Qt=iJw,v,7,at)=log w1 9(a'Iv7,) 
E, w3 9(a' I v3,73) 

(38) 

it can be seen that the quadraticness of the Gaussian patches' exponents will be blocked by 

the log E from being exposed at the top level of the expected log likelihood. This means 

that its derivative with respect to the parameters v and y will not be very nice, and some 

sort of iterative optimiser will have to be deployed once per iteration of the EM algorithm to 

find a root of the derivative. The model of section 3.3.2.4 avoids this cost; one way of seeing 

why is to note that the troublesome denominator of 38, which is just like p(at 10), is made 

part of the likelihood in the joint model and simply "cancels out". 

However, the derivative is at least not hard to calculate: the identity 

a 
Bk 

log 
E, f(93) &0k 

logf(B,) - 
kk 

log f(93) 

a log f(0,) - B+1(0k) 
a9k E, f(e7) 

otk - f(Bk) logf(9k) 
( E3 f(03) aek 

(for any 0 and differentiable f) implies that 

(39) 

a U(9)=EP(Qt=il9",rt,at)(6:k-p(Qt=kJw,v,7,at)) a9 log (wk9(atIvk,7k)) 
a9k k 

_ L (p(Qt 
= k 10", rt, at) - P(Qt = k I w, v,7, at)) 

aBk 
log (wk 9(at I vk, 7k)) 

t 

The Gaussian log-derivatives (15) and (16) then lead immediately to 

a U(e) Y' eea7,(v, at) 
e 

87: 
U(0) _ E el, (7a 1 - (at vt)(at v=) ) 

t 

where etto, = P(Qt = i 19n, rt, at) - P(Qt = i 1 w, v,7, at) 

(40) 

(41) 

(42) 

An alternative parameterisation in terms not of the 7,s but of their square roots tG: yields 

a slightly different form of the derivative, which looks to be a little closer to linear and 
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3.3.2.5 Cond,ttonal gat,ng rules 

hence better matched with quadratic-approximation (conjugate gradients, quasi-Newton) 

optimisation methods: 

a7, 
U(0) = E EB, & 1 - 0,(at - v,)(at - v,)' (43) 

where = ry, 

Finally, the derivatives with respect to the weightings wi are 

L a Bs 

aw, 
U(9) = E E 

t w, (44) 

One obvious way to perform the M-step is to clamp one of the weightings at some arbitrary 

value, for instance setting wo = 1, and feed all the rest jointly to a conjugate gradients 

optimiser along with the derivatives given above. 

The qualitative difference between a Gaussian-based gating rule and the Gaussian- 

mixture input distribution of section 3.3.2.4 can be appreciated most easily by considering 

the effect of the "extra" term - - p(Qt = i 10, at) in the derivatives (40) and (41). In the 

joint-distribution model, the input-generating patches of the experts i are "influenced by" 

each input at in the training set precisely to the extent p(Qt = i I on, rt, at) that they are 

judged responsible for having generated it (taking into account the accuracy with which the 

corresponding linear/Gaussian map predicts the output rt). In the conditional-distribution 

model, the receptive fields of expert i are influenced by each input to an "extent" et i (42) 

which is positive if they appear to have been activated by it but are not currently "claiming" 

it, negative if the converse is true, and zero if there is agreement. At the fixed point of 

the training algorithm, this will mean that it is only the inputs around the margins of 

each receptive field, and those lying unexpectedly in the "wrong" field, which influence the 

placement and size of the fields, The precise positions of those inputs which are comfortably 

inside the "right" fields will not have a significant effect. 

Another form of the conditional mixture of experts uses a simpler "softmax-on-linear" 

function to parameterise the gating probabilities:31 

p(Qt =t B, at) = 
w, exp r7at 

E, wjexprl, at 
(45) 

This model's log likelihood has an 27 derivative which is quicker to calculate than (40) 

and (41), although its root must still be found by iterative methods.32 However, its gating 

31 Jacobs et at, Adaptive mixtures of local experts; the Gaussian receptive field gating scheme 

can be interpreted as a softmax-on-quadratic 

32 Jacobs et'al., Adaptive mixtures of local experts uses the technique of iteratively reweighted 

least squares. 
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3.3.2.6 Confidence regions for conditional mixture models 

rule is quite crude, effectively dividing the input space into regions divided by hyperplanes, 

with stochastically smooth transitions between expert choices at the boundaries-i.e., if at 

is near a boundary, the decision could go either way. A more discriminating rule than the 

soft-hyperplane separator can be obtained by using a hierarchy of such classifiers33, but the 

Gaussian-like scheme of (36) arguably gives locality properties at least as "sensible", in a 

simpler form. 

3.3.2.6. Confidence regions for conditional mixture models 

Just as one can use the input side of a joint-or joint mixture, or joint mixture of 

experts-model as a confidence region, mapping out the region of the input space for which 

it has seen example outputs during training (section 3.2.5.3), so it is possible to use the 

gating rule as a confidence region for a conditional mixture of experts model. However, the 

semantics will be subtly different. 

In former case, the learner supposed that from time to time, a process quite different 

from that observed during training was brought into play, and both the input and the output 

would be unpredictable. Thus if an observed input was known from the confidence region 

to be very different from any seen in the training data, she would not want to make any 

certain prediction about the output; but even if the input was similar to previous ones, she 

would still have to bear in mind the possibility that it and the output were produced by the 

unknown process. 

In the case of a conditional mixture of experts, the provision for model failure 

is expressed instead by including an expert in the mix which "sweeps up" inputs not 

claimed by the others, and has a completely uninformative output. For instance, it could 

conveniently be added to the Gaussian receptive field-based model of section 3.3.2.5 as an 

expert like the others but with a large receptive field and noisy output. Because the learner 

assumes during training that none of the example inputs trigger the uninformative expert, 

the other experts' receptive fields are forced to grow so that they exactly map out the region 

of the input space on which the model has been trained. When this assumption is relaxed, 

the model automatically takes account of this confidence region in its predictions-but 

inputs falling inside it can never trigger the uninformative expert, meaning that the model's 

corresponding output predictions will be less conservative than those of the joint mixture 

of experts. (It's interesting to note that as the weighting ws of the uninformative expert is 

raised, the denominator in (38) which makes the difference becomes more nearly constant 

over the input space, and the remaining receptive fields become more like generating 

patches.) 

33 Jordan & Jacobs, Hierarchical mixtures of experts 
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3.3.3.1 Graphical model of a dynamscal system; the Markov property 

Which of these kinds of confidence region is more appropriate will of course depend on 

the learner's knowledge about the likely ways in which the validity of the training set may in 

future break down. 

3.3.3. Bayesian modelling of dynamical systems 

The environment in which an autonomous robot exists (section 3.1) can be modelled, 

without loss of generality, as a stochastic discrete dynamical system (or Markov chain) of 

order one. Such a process has the defining characteristic that the probability of the system 

being in a particular state at each discrete timestep depends only the state it was in at the 

previous step. If the state cannot be directly measured, but must instead be inferred from 

the (probabilistic) effect it has on some other quantities such as sensor readings, the process 

is said to be partially observable. 

3.3.3.1. Graphical model of a dynamical system; the Markov property 

This situation can be summarised in the following diagram: 

(46) 

Here He is the system's state at time t and Rt its output (given a double border to indicate 

that it is directly observable). The dynamics of the system, according to which H evolves 

from step to step, are expressed in the distribution p(ht+l I ht, 6), and the effect it has on R 

in the distribution p(rt I ht, p). 

"Graphical models" of this kind are convenient because they express the structure of 

the joint distribution of all the quantities involved in a way at once precise and visually 

intuitive. The graph may contain no directed cycles, so one can employ the obvious "family 

tree" terminology, and the assertion it embodies can be captured concisely (if somewhat 

cryptically) by saying that each node is conditionally independent of its non-descendents 

given its parents 34 For example, because Hl is the only node from which there is a link 

to H2, p(h2 I h', x) is equal to p(h2 I h') for any X among H2 IS other non-descendents (H°, 

R° and RI). This means that the joint distribution can be written in a form which factors it 

into separate terms for each timestep: 

P(h°,r°,h',r' h2,...) =P(h' 1 h°,r°,r')P(h21 h') ... 

= P(h°)P(r° I h°) P(h' I h°) p(r' I h') p(h2 I h') ... 

34 Jordan, Learning in Graphical Models 
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3.3.3.2 EM Beaming of dynamccal systems 

or, writing this "Markov property" more formally, 

p(h, r I 
t, 6, p) = p(h° It) JI p(ht I ht-l, 6) p(rt I P) (47) 

t 

where c denotes beliefs about the initial state H°. (Obviously in this case the conditionality 

structure of the posterior arises from the causal directionality of the dynamical system, 

although the diagrammatic formalism can equally well be used for models in which causation 

plays no role.) 

3.3.3.2. EM learning of dynamical systems 

The Markov property is what makes dynamical systems models good subjects for the 

application of EM learning algorithms35, with the parameters t, 6 and p jointly playing the 

role of 0 and the system state over time H that of the unobserved quantity (also called H in 

section 3.3.1 above). 

For a start, the temporal locality expressed in the Markov property can easily be seen 

to carry over into a convenient factorisation of the update rule. First expand the posterior 

p(9, h I r) in (27) using the identity 

p(B, h I r, H) = 
p(h, r 19) p(9 I H) 

p(r I H) 

where 3l includes prior beliefs about t, S and p (this simply in order to get the r on the left 

hand side of the conditioning bar). Then the reestimation rule becomes 

Bn+1 = argmax Eh [ logp(h, r 19) + log p(9 17{) 19n, r ] 
B 

And from (47) 

logp(h, r 19) = logp(h° I t) + L (logp(ht I h'1, d) + logp(rt 
I ht, p)) 

t 

So the rule decomposes into separate subrules for each part of the parameter; and none of 

them use more than two temporally adjacent h values at once: 

to+l = argmax (logp(h° I t) +logp(t I9-1)) (48) 
t 

an+1 = argmax 
(E 

Eht,ht-1 [ logp(ht 
I ht-1, 6) 19t, r ] + logp(S 

I 
n)/ (49) 

(EEhL = argmax [ logp(rI ht, p) r ] + logp(p 
I H)) (56) 

t 

ss Ghahramani, Learning Dynamic Bayessan Networks for an overview 

61 

3.3.3.2 EM learning of dynamical systems

or, writing this "Markov property" more formally,

p(h,r\t,8,p)=P(h

where i denotes beliefs about the initial state H°. (Obviously in this case the conditionality

structure of the posterior arises from the causal directionality of the dynamical system,

although the diagrammatic formalism can equally well be used for models in which causation

plays no role.)

3.3.3.2. EM learning of dynamical systems

The Markov property is what makes dynamical systems models good subjects for the

application of EM learning algorithms35, with the parameters i, 6 and p jointly playing the

role of 0 and the system state over time H that of the unobserved quantity (also called H in

section 3.3.1 above).

For a start, the temporal locality expressed in the Markov property can easily be seen

to carry over into a convenient factorisation of the update rule. First expand the posterior

P(9, h | r) in (27) using the identity

p(9,h\r,W = «h>y$M

where ft includes prior beliefs about i, S and p (this simply in order to get the r on the left

hand side of the conditioning bar). Then the reestimation rule becomes

0n+1 = argmax Eh [ \ogp(h, r 10) + logp(0 | ft) I 0", r ]
8

And from (47)

logp(h,r\9)=logP(h°\i)-

So the rule decomposes into separate subrules for each part of the parameter; and none of

them use more than two temporally adjacent h values at once:

= argmax (logP(h° \ i) 4- logp(t | ft)) (48)
i

( _ \
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s \t J
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" V t J

35 Ghahramani, Learning Dynamic Bayesian Networks for an overview
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3.3.3.2 EM learning of dynamical systems 

Furthermore, the Markov property also suggests a convenient way of computing the 

pairwise distributions p(ht, ht-11 r, 0) over which the expectations in (49) are taken. Note 

first that 

P(ht, h t+' r, e) = 
P(h° ht+1 rI9) 

Ar 10) 

the denominator p(r 10) being a constant of no interest (at this stage); and further that 
p(ht,ht+1 r10) = p(rl0t` ,ham p(ht+lIht,6) P(ht+r r)16) 

f(ht) b(ht+1) (51) 

or, in words, the probability the system ends up in state ht having output rl°,t 1, then 

transitions to ht+1 and goes on to output rl t+1,T) By exploiting the conditionality 

structure of the posterior, f and b can be defined inductively by 

f(ht+1) = p(rlo,t+1] 
ht+1I0) 

= p(rt}1 
I ht+1, p) I ht 

I ht, 8) p(rl 0't 1, ht 10) 
h' 

= p(rt+1 I ht+1 p) f ht 
I ht, 6) f (ht) (52) 

h 
with f(h°) = p(h°It) 

b(ht-1) = p(ht-1,rlt-1'T)I0) 

= 
p(rt-1 

I 

ht-1 
p) f p(ht l It'-1, 6) p(rl t,T) ht 16) L 

= p(rt-1 
I ht-1, P) I ht 

I p(ht ht-1, 6) b(ht) (53) 

with b(hT-1) = P(hT_l,rl0'T)10) = f(hT-1) 

These equations are special cases of those used for belief propagation in more general 

graphical models.36 

The upshot is that if the distributions defining the model are well-behaved, an elegant 

and efficient algorithm drops out. Specifically: 

1) If the functional form of p(ht+1 I ht, b) (the system dynamics) is closed under 

convolution with itself, 

2) and with p(rt I ht, p) (the output likelihood) and p(h° I t) (the initial state), then f 
and b will have that functional form as well, and so will the pairwise distribution 

used in (49)'s expectation. 

3) If the functional form of p(ht+1 I It, 6) is also closed under marginalisation, 

it will cover the distribution used in (50)'s expectation, since p(ht I r, 0) _ 

fht+1 p(ht, ht+1 I 
r, 0). 

4) If, finally, the distributions p(ht}1 I ht 6) and p(rt I ht, p) are drawn from the 

common "exponential" family37, the expectations in (50) and (49) may go through 

36 Lauritzen & Spiegelhalter, Local computations 

37 Lee, Bayesian Statistics, p. 63 
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3.3.3.3 The hidden Markov model 

cleanly and give rise to a simple optimisation. 

Making predictions for observations rT not yet made will also be easy, since the density 

required is 

p(rT 10, r[ o,T) ) (54) 

and this can be obtained from fT, as defined in (52) by marginalising over hT. 

There are two classes of model which meet these requirements completely, namely the 

"hidden Markov model" and the "Kalman filter". 

3.3.3.3. The hidden Markov model 

In a hidden Markov model (HMM)37, the hidden state Ht is instantiated as a discrete 

quantity, say Qt, and the dynamics parameter 6 as an arbitrary transition matrix w, so that 

P(Qt+l = i I Qt = j, w) = WtJ (55) 

trivially satisfies the conditions 1 and 3 given in section 3.3.3.2 for p(ht+l I he, 6). The output 

distribution p(rt I qt, p) is a mixture, where the choice of mixing component is determined by 

the state qt. Symbolically, 

p(rt I qt = i, p) = p(rt I qt = i, p,) 

Clearly this arrangement also satisfies condition 2. The components p(rt I Qt = i, P,) 

which are mixed to form the output distribution are typically either discrete or Gaussian. 

In the latter case, the HMM is just a recursive (i.e. time-series) version of the Gaussian 

mixture model described in section 3.3.2, the only difference being that the unconditional 

probabilities w, with which each component i was chosen to generate the output are replaced 

by the Markov-conditional probabilities wj. 

Substituting this simple model into the framework of section 3.3.3.2, the equations (52) 

and (53) implementing the E-step at iteration n of the EM algorithm become the so-called 
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f0 
a -tb 

fy+1 = p(rt l p. n) 

bT-1 T-1 
9 f7 

bj 1=p(rtlp),w b: 

37 Rabiner, A Tutorial on Hidden Markov Models 
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cleanly and give rise to a simple optimisation.
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3.3.3.3 The hcdden Markov model 

It is convenient to define also 

t p(Qt = j Qt+i = i, r 10') which is few b;+1 

(cf. (51)). 

The update rule (49) for the dynamics parameter (transition matrix) becomes 

w +i = p(qt - j qt+i = i I gn r) _ E t 
t t 

while the rule (48) for the initial state becomes 

,,n+1 = TP(g0 = 3 I B^, r) 
t 

(58) 

(59) 

(60) 

Both are easily established using Lagrange multipliers in exactly the same way as for (13). 

The priors p(w I74) and p(t I N) are ignored (assumed to be dominated by the likelihood).38 

If, as is commonly the case, the components p(rt I p,) of the output distribution are 

Gaussians, with means µ, and precisions p then their update rules are 

n+1 Etp(gt = i) rt 
61 Wt Et p(qt = t) 

( ) 

n+1 Etp(gt= i) (rt-p'x+l)(rt-tti} 
p, 

EtP(gt = t) ) 
(62) 

-cf. the similar weighted averages (31) and (32). (Again, the priors are treated as 

irrelevant.) The combination of the forward-backward equations with these or similar 

updates in an EM iteration sequence is called the Baum-Welch algorithm, after its 

discoverers. 

The HMM's prediction for an observation rT not yet made can, as was pointed out 

for (54), be evaluated by marginalising qT out of fT: 

p(rT I 
rl o'T), 

8) = L P(rT I 

QT = i, p,) p(QT = t I rl 0,T), 
0) (63) 

Hidden Markov models have been applied successfully to problems in operations 

research39, reinforcement learning40 and many other fields including most saliently speech 

recognition41. One of their most useful properties is that they make no assumptions about 

the way successive outputs generated by the system are related to each other. This means 

38 although one can adopt a Dirichlet prior with little extra complication: see e.g. Koenig & 
Simmons, Unsupervised learning for a robotics application of this idea 

39 cited in Kaelbhng et at., Planning and Acting 

40 Kaelbling et al., Planning and Acting 

41 Rabiner, A Tutorial on Hidden Markov Models 
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3.3.3.4 Input-output HMMs 

that they are well suited to capturing patterns of underlying temporal structure which 

express themselves in characteristic, but arbitrary, readings. HMMs can cope particularly 

well with the sort of randomness termed "nondeterminism" in section 3.1.2.1: if there 

are situations in which the process being modelled can follow any of several trajectories 

for a certain period, during which time the available observations are not sufficient to 

disambiguate them, the model can in effect maintain all the possible trajectories as 

hypotheses. In this case its "mixed" predictions will present the outcomes corresponding to 

each trajectory hypothesis, along with their assessed probabilities and their extra, localised 

"noise" uncertainty (p, in the case of an HMM with Gaussian output densities). The 

model is not constrained to output any single best guess or compromise estimate, and its 

mixture predictions are ideal for feeding into the Bayesian "greatest expected gain" decision 

rule (26). 

3.3.3.4. Input-output HMMs 

Just as the Gaussian mixture model of section 3.3.2 simply discards its inputs, so in 

its recursive analogue, the HMM, there is no way for external agencies to influence the 

trajectory of the dynamical system. In order to make a model suitable for use in control 

tasks (like robotics), the conditionality graph must be extended to include an input at for 

each timestep, thus: 

Q° 3 Q1 6 Q2 6 Q3 

P P P P 

O 
In this "input-output hidden Markov model" or IOHMM42, the dynamics are made 

conditional on the ats as well as the qts, in some form p(qt+1 I 
qt a, S) more complicated 

than the simple transition matrix of (55); the overall likelihood becomes 

p(q, r I a, t, 6, p) = p(q° I t) [ p(gt I qt-', at-', 8) p(rt gt, P) 
t 

-cf. (47). The dynamics distribution can, for instance, be adapted from the Gaussian 

receptive field "gating rule" (36):43 

p(Qt = . Qt-1 = 9, 9, at) = s'=3 g(at 1 v"7+) 
L.k Wsk g(at I vk, 7k) 

a \I 
where g(at 

I v1, 7+) = 12- I 

z 
exp 

y 2 (at - v,) 7a (at - v,) 

42 Bengio & Ptasconi, An Input Output HMM Architecture, alternatively called a partially 

observable Markov decision process or POMDP (Kaelbling et al., Planning and Acting) 

43 alternatively, Bengio & &asconi, An Input Output HMM Architecture represents the 

dynamics distribution using an MLP neural network 

(64) 
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3.3.3.4 Input-output HMMs 

In this minimal generalisation of the static gating rule, each component i still has a single 

receptive field of its own which competes to "claim" the inputs at, but the components' bids 

are weighted differently according to the component j which was active at t - 1 (hence w,, in 

place of w,). 

The extension of the HMM model to a-conditional dynamics essentially preserves 

the forward-backward equations (56) and (57)-the only difference being that the 

transition probabilities are no longer just constant parameters w,, but rather a-dependent 

probabilities (64) which have to be evaluated-so the update rules for the initial state (60), 

output means (61) and output precisions (62) remain efficient. However, if A is a continuous 

variable, the update rule for S inevitably becomes much more expensive, because of the 

requirement that the transition probabilities from each state at any given time must sum to 

unity: there is no function at qt i qt+1 which satisfies that constraint and has a log whose 

derivative is linear (cf. the discussion around equation (38)). Therefore the update rule (49) 

(w, v,'y)"+1 = argmax Eq [ E logp(gt 
I qt-1, w, v,7, dt) I d, 9" ] (65) 

w,v,7 t 

has to be implemented with an iterative optimiser, just like the M-step for the gating 

parameters of the (static) mixture of experts described in section 3.3.2.5. 

Deploying the same arguments as for (40) and (41), the derivatives to be passed to the 

optimiser can be inferred from the template 

aa. U(O) _ P(Qt = i, Qt-1 = j I B" d) (Sak P(Qt = k I Q'-' = j, w, v,7, dt)) 

so that 

t,%,2 d 

aak 
log (wki g(dt I Vk,7k)) 

(P(Qt = k, Qt-1 
= j I On, d) - P(Qt-1 = .7 I On, d) P(Qt = k I Qt-1 w, v,7, dt)) 

t,3 a 
50k 

log (wk 9(d' Uk>7k)) 

av, 
U(O) = Efe,7=(v, - dt) 

t 

a7a 
U(O) = E 4. (7= 1 - (dt - vt)(dt - v,)') 

where 

(66) 

(67) 

FBi = P(Qt = i 19", d) P(Qt-1 = i 19", d) P(Qt = i I 

Qt-1 
= j, w, v,7, dt) (68) 

J 

Since the wtls are attached to specific "previous" mixing states j, the derivative with respect 

to them lacks the summation over j: 
t a E, 

where et =P(Q1 =t,Qt-1 =j I9",d)-P(Qt-1 =j I B",d)P(Qt =iI Qt-1 =j,w,v,7,dt) 
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3.3.3.5 The Kalman filter 

As with a static gating rule, there is also the option of parameterising the derivative by the 

square root of y rather than by -y itself, if it helps the optimiser. 

IOHMM-like models are used extensively in high-level robot learning (under the name 

of Markov decision processes; see section 2.3.1), and have proved useful for low-level tasks 

as well-for instance, Meila and Jordan learn a model for the development of the state of 

contact between a compliant robot arm and the objects it handles44. 

3.3.3.5. The Kalman filter 

In a Kalman filter (KF)45, the hidden state H is instantiated as a continuous quantity, 

say V, and the both the dynamics and output generation are linear with Gaussian noise: 

Vt+1 = .Wt + N(0, a) 

Rt = tcVt+N(0,0) 

so that 

P(vt+1 vt A, a) = 1T I' exp ( 2 
(vt+1 - avt)' a (vt+1 - avt 

( 1 
exp - 

2 W - vt) 0 (rt - cvt) J P(rt vt, , ' 
a) = 

27r 

(70) 

Because Gaussians are closed under convolution and marginalisation (as can be shown 

by combining/factorising their quadratic exponenents), as well as addition and linear 

transformation, the KF's linear/Gaussian model satisfies conditions 1 and 3 in section 3.3.3.2 

just as the HMM does. 

However the equations for computing f and b ((52) and (53)), known as the Kalman- 

Rauch recursions46, are less straightforward than the corresponding "forward-backward 

equations" for the HMM (cf. (56) and (57)). Adopting the following notation 

vr=E[vtI rl0''l,On] 

yr = Var[vt I rl0,r1,0n 

-1 = Cov[ vt, vt-1 I rl o,r 1, on 
] 

T= E[v°Itn] 

1 = Var[ v° I to ] 

44 Meil & Jordan, Learning Fine Motion 
45 Ghahramani & Hinton, Parameter Estimation 
46 Rauch, Solutions to the linear smoothing problem; Shumway & Stoffer, An approach 

(71) 
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3.3.3.5 The Katman fitter 

(all the distributions being Gaussian), the forward pass begins 

v0 1 =E 

and continues 

The backward pass begins 

t t-1 
t-1 - ait 

vt_i = avt-1 A' + a-1 

Kt = vt_1k (tcv't_1k +/3-1)-1 

vt = vi _1 + Kt (rt - tcvt-i) 

t t t t vt = ft - K cvt_1 

vT-1,T-2 I -K T 1r vT-2 
T-1 - ( ) T-2 

and continues (noting that OT-1 has been computed at the end of the forward pass) 

-1 Jt-1 = vt1nI M-1) L-1 

,vt-1 ,Lt-1 1 + T-1 
it-1(VT-i - vt-1) 

vL-1 
vt-1 

+ it-1 vt ,vt Jt_i' 
T-1 = t 1 (T-1 - t 1) 

v T lit-2 = Vt_iJt-2 +Jt 1(vtTt 
11 - 'wt-1) 

The expected log posteriors in the update rule schemas for 5 = A, a (49) and p = re., Q 

(50) are both quadratic in the KF, because every distribution involved is Gaussian. Setting 

all their derivatives to zero (using the same algebra as for (24) and (25)) yields the KF- 

specific update rules 

An+1 = PB-1 

an+1-1 1 (C-An+lp') 
1 - 

/ 
I/ Kn+i = 
\Lrtvt, (LBt t ) t 

on+1-1 vt 11 T t 

the sufficient statistics used in these formulas (which are given names here for later 

reference) being given by 

B= E Bt 

tE[ 0,T-1 ) 

where 

where 

C = E Bt+l 
tE[0,T-1) 

Be = E[vtvt' I 
r] = 4_1t1T-1' +'UT_i 

P = C pt+r,t 
tE[ oT-i ) 

pt+1,t E[ vt+1vt' I r 1 
= vtT 11 VT-i +'UT lit 

(72) 

(73) 

(74) 

(75) 

(76) 
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3.3.3.6 Kalman filters with inputs 

The update rule (48) fort simply sets the new estimate of the initial state to what it was 

computed to be at the end of the Kalman-Rauch recursions: 

in = ,po r 
L = v0 

T 

As in the case of the HMM (see equation 63), the prediction made by a KF for the 

incoming observation rT can be obtained by marginalising vT out of fT, giving 

p(rT I 

r[o,T),0) = 
J 

p(rT I VT, P,)p(vT I r[0T),9) 
IT 

which is a Gaussian with mean ILVT_1 and variance 0-1 + tcvT-ltv' 

Kalman filters are used widely in engineering for tasks in which the character of 

the data can be described accurately as "trends" linking variables and extending over 

time. They are particularly suitable for applications like tracking moving objects in 

which position/velocity/acceleration estimates play an important role (including robot 

localisation-section 2.1.1.1). 

3.3.3.6. Kalman filters with inputs 

If the model is augmented to include inputs at, as was done for the hidden Markov 

model in section 3.3.3.4, the KF can be used for process control tasks as well. Indeed, the 

extension causes much less disruption to the KF than it does to the HMM: making the 

dynamics linear in at as well as vt still leaves the v distribution Gaussian, and the update 

rules retain their one-shot solutions. 
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Chapter 4 

The Samovar model 

4.1. Motivation 

The hidden Markov model (section 3.3.3.3) and Kalman filter (section 3.3.3.5) can work 

very effectively in some domains, but the expressive power of both models falls short of that 

required for the robot environment modelling task. The "Samovar" model presented in this 

section is a hybrid which exploits the complementary strengths of each to obtain greater 

generality, while still inheriting some of their elegance and tractability. 

4.1.1. A recursive mixed-linear model 

The mixture of experts algorithm and its relatives show how linear regression, with its 

ability to capture trends, can be combined with cluster-classification, with its robustness in 

the face of "arbitrary" patterns, to make a piecewise linear model which has both desirable 

properties and can be learned reasonably quickly using a simple EM algorithm. It is natural 

to ask whether their time-series analogues, the Kalman filter and the hidden Markov model, 

can also be brought together in a similar way. 
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4.1.1.1 The architecture space 

4.1.1.1. The architecture space 

The basic idea can be expressed in the following table: 

Mapping type Static version Recursive version 

Constant Gaussian (Gaussian) 

Linear Linear regressive model KF 

Piecewise constant Gaussian mixture model HMM 

Piecewise linear Mixture of experts 

To get a more detailed appreciation of the possibilities, and to put the models developed 

previously in perspective, it helps to consider them all as variants of the same graphical 

model, and characterise them according to which of its possible links (conditional 

dependencies) they incorporate and which they exclude. The quantities in play 

are 

At the process input; other quantities may be conditioned on this or 

modelled jointly to create a "confidence region" (section 3.2.5.3) 

Rt the process output 

Qt hidden "mixing" variable: a discrete quantity, not directly observable, 

which determines the choice between possible mixing components in 

generating Rt; if Rt is not dependent on Qt, then its distribution is not 

a mixture 

Vt hidden "linear" variable: a continuous quantity, not directly observable, 

on which Rt may depend linearly 

In addition, recursive models such as the HMM and KF (section 3.3.3) can be expressed 

by introducing dependencies between hidden variables at successive timesteps. Some of the 

schemes mentioned previously are shown below: 

Gaussian (section 3.2.5.2). (Rt is independent of all other variables, but a stub dependency 

are is included to draw attention to the distribution being modelled.) 

A4 As 

... 
V5 V6 

... 
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4.1.1.1 The architecture space 

Input and output Gaussians (section 3.2.5.3). A simple Gaussian with a confidence 

region. Both Rt and At are modelled. 

Qb Q6 

V S VB 

O O 
Linear/Gaussian mapping (section 3.2.5.4). 

Joint Gaussian (section 3.2.5.4). Equivalent to a Linear/Gaussian mapping with a 

confidence region. 

Unconditional Gaussian mixture (section 3.3.2.1). 
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Input and output Gaussians (section 3.2.5.3). A simple Gaussian with a confidence

region. Both R1 and A4 are modelled.

(&

(v*)

Linear /Gaussian mapping (section 3.2.5.4).

Joint Gaussian (section 3.2.5.4). Equivalent to a Linear/Gaussian mapping with a

confidence region.

Unconditional Gaussian mixture (section 3.3.2.1).

(A4) ff)
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4.1.1.1 The architecture space 

Joint input-output Gaussian mixture (section 3.3.2.3). This can be seen as a "piecewise 

constant" mixture of experts with a confidence region. 

Conditional mixture of experts (section 3.3.2.5). The standard, "piecewise linear" 

mixture of experts. 

Joint mixture of experts (section 3.3.2.4). This can be seen as a (piecewise linear) 

mixture of experts with a confidence region. 

Kalman filter (section 3.3.3.5). 

A4 A5 

n5 /8 

73 
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Joint input-output Gaussian mixture (section 3.3.2.3). This can be seen as a "piecewise

constant" mixture of experts with a confidence region.

Conditional mixture of experts (section 3.3.2.5). The standard, "piecewise linear"

mixture of experts.

Joint mixture of experts (section 3.3.2.4). This can be seen as a (piecewise linear)

mixture of experts with a confidence region.

Kalman filter (section 3.3.3.5).

ff)
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4.1.1.1 The architecture space 

Kalman filter with input (section 3.3.3.6). 

Hidden Markov model (section 3.3.3.3). 

Input-output hidden Markov model (section 3.3.3.4). 

Many other variations are possible.1 For instance, the method of factor analysis could 

be represented like this: 

1 Note that this architecture space only provides for continuous inputs, not a discrete one which 

could control a mixing process directly. However, it would be easy to include a discrete input in any 

of the models discussed below. 
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Kalman filter with input (section 3.3.3.6).

Hidden Markov model (section 3.3.3.3).

(A4) (A5)

Input-output hidden Markov model (section 3.3.3.4).

Many other variations are possible.1 For instance, the method of factor analysis could

be represented like this:

1 Note that this architecture space only provides for continuous inputs, not a discrete one which

could control a mixing process directly. However, it would be easy to include a discrete input in any

of the models discussed below.
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4.1.1.2 The possebilst,es 

Or one could imagine a Kalman filter with a mixture output: 

or an IOHMM with a confidence region for its inputs: 

(77) 

(which would have the added advantage of yielding a highly efficient reestimation rule for the 

"gating" parameters-cf. section 3.3.2.5). 

.4.1.1.2. The possibilities 

In the context of the robot environment modelling task, the most interesting option is 

clearly something which could be called a "recursive mixture of experts"-a piecewise linear 

time-series model. But that term could be applied to any of a number of possible models, 

each of which makes a different tradeoff between the completeness of its conditionality 

structure and the cleanness of its learning algorithm. At the simplest, one could take a static 

mixture of experts and make its mixing probabilities (alone) recursive: 

This is really an IOHMM with linear outputs; the corresponding EM algorithm is of 

essentially similar character to that of the IOHMM. At the other extreme, one could make 
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4.2.1 The condstsonal Samovar model 

the linear component of the model recursive as well, and even have the mixing probabilities 

depend on the linear hidden state: 

(78) 

This "denser" model is powerful-its state Qt, Vt evolves according to a piecewise linear 

dynamics, with which it is easy to approximate a wide range of nonlinear systems-but 

it inherits none of the tractability of the HMM or KF, because the conditions defined in 

section 3.3.3.2 for the existence of a nice EM algorithm are not even approximately met: the 

mixing and linear processes are too closely intertwined: 

1) V-mixing problem. The linear hidden state Vt will be rendered non-Gaussian by 

its mixed-linear relationship with V'-1 and Vt+'. 

2) V-normalising problem. The distribution of Vt will also be disturbed by its 

role in determining the mixing hidden state Qt+i-recall from section 3.3.2.5 

that conditioning a multinomial variable on a continuous one will always lead to 

problems stemming from the need to normalise the distribution to sum to unity. 

3) Q-dynamics problem. The relationships between the mixing hidden states Qt 

will be made much more complicated by indirect influences via the Vts, which 

will disturb their joint distribution and make the reestimation rule for the gating 

parameters somewhat problematic. 

Consequently, nothing like the forward-backward equations (section 3.3.3.3) or the Kalman- 

Rauch recursions (section 3.3.3.5) will be available for computing the distribution of the 

hidden state variables V and Q. 

4.2. A solution 

To get past these difficulties, the Samovar model sacrifices a little of the "dense" 

model's expressiveness, either omitting or modifying the link Vt -> Qt which gives rise to 

the thorny V-normalising problem and Q-dynamics problem, and approximates the effect of 
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4.2.1.1 Assimilating the dynamics and the output function 

the counterpart link Qt -+ Vt+1 in such a way that an accommodation can be made with the 

V-mixing problem. It is then able to deploy the fast KF and HMM learning algorithms as 

subroutines to obtain a reasonably efficient procedure for learning a mixed-linear model. 

4.2.1. The conditional Samovar model 

The "conditional" variant (see section 4.2.3 for the "joint" variant) of the Samovar 

model looks like this: 

(79) 

The linear hidden state V evolves according to mixed-linear (piecewise linear) dynamics, but 

the link Vt -r Qt has not been included: V does not in its turn affect the sequence Q of 

mixture components. As a result, V and Q remain sufficiently decoupled that the product- 

rule factorisation of the likelihood 

p(r, v, q I a) = p(r I v, q, a) p(v 14, a) p(q I a) 

can be treated as a Kalman filter likelihood inside a hidden Markov model likelihood, leading 

(section 4.2.2) to a nested EM algorithm based on their respective recursions. 

Of course, the simplification makes the model a little less expressive: there is no 

provision for Kalman filter-style inferences, made on the basis of a series of inputs and 

outputs and expressed in the linear hidden state, to influence the judgment as to. which 

mapping component is active at each timestep. For instance, it might in principle be 

possible for the robot to judge its velocity from successive readings from a range sensor; 

and it might be the case that the model dynamics should be qualititatively different (using 

a different mapping) at different velocities; but there would not necessarily be any way in 

the simplified model for VI to have the required effect on Qt in a timely manner. Certainly, 

once the model has made a vague or incorrect prediction by failing to deploy the linear 

mapping component appropriate to the current velocity, it will be able to recognise post 

hoc that its Qt estimate was poor, and thereafter use the discrete part of the dynamics 

(i.e. the transition matrix to) to "remember" that it is in a certain qualitative velocity 

regime. However, there will be no avoiding that first, corrective mistake, because there is 

no other channel by which information can flow from the Vt estimate to the Qt estimate. 
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4.2.1.1 Assamslat,ng the dynamics and the output function 

4.2.1.1. Assimilating the dynamics and the output function 

Before the exposition of a training algorithm for the Samovar model gets under way, a 

slight simplification will be made which reduces the number of model parameters in play. 

Up to now, the discussion of dynamical systems models has taken for granted a schema 

in which the observations available to the learner are obtained via an output function 

from a hidden state which evolves according to a dynamics function (p and 6 in (46)). 

However, for the purposes of the robot environment modelling task-in which the model 

is openly approximative2 and no claim is made about the true ontology and conditionality 

structure of the process under consideration, i.e. the environment-the output function is 

redundant. The point of a piecewise linear model is that it can match a very wide range 

of dynamics functions; it should, therefore, be able to adapt itself during training to fit 

in with a fixed, simple output function. Indeed the natural "output function" to adopt 

is simply an identity projection of some elements of the hidden state, Rt being thereby 

assimilated directly into H. Then the model dynamics can be considered as approximating 

the mapping between one "world state" Xt and the next, each world state comprising a 

hidden part Vt and a visible part Dt = Rt, At. With this adjustment, the graphical model 

for the conditional Samovar model could be written thus: 

_7 MA5 n ® (80) 

Y5 VS Y6 v8 Y7 V7 

(In the notation of section 3.3.3.5, c, and /ii are fixed as follows: 

V R A 

3,=e0 i =(0fo) (81) 

where the label V marks the columns of tc, which operate on the linear hidden state, and 

R and A those which operate on the sensor readings and actions respectively.) Arranging 

the conditionality structure this way makes it easier to exploit obvious relationships between 

the known parts of adjacent world states, since they do not have to be mediated through 

a supposedly unknown value W. Indeed this model can be seen as a mixture of static 

linear mappings, augmented with just enough hidden linear state to capture longer-term 

dependencies; a model which followed the pattern of (46), in which all the linear state was 

2 in the sense of section 3.2.4.3 
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4.2.1.2 The probability model 

unobserved, would have to make more expensive inferences over a higher-dimensional V, as 

well as learning an output function to go with it. 

The values rt are those the robot can observe directly-i.e. the readings coming out 

of the back of its sensors, including the effects of noise, sensor failure or whatever. They 

are not supposed to correspond directly to whatever physical quantities the sensors are 

presumed to measure, and they cannot be considered to play a direct causal role in the 

future evolution of the robot's world. But this is not a problem, because the robot is not 

claiming to have learned a physical model of its environment, but only what it actually 

needs, according to Bayesian decision theory (section 3.2.6.2), for guiding its behaviour: a 

representation of how its knowledge of past sensor readings and actions should influence its 

beliefs about future readings, or, in other words, the probability distribution of the latter 

conditional on the former. This is all the model, within the constraints placed on the form of 

its representation, attempts to provide. 

4.2.1.2. The probability model 

Adopting a Gaussian receptive field-based mixing dynamics and confidence region for Q 

(section 3.3.2.5), the likelihood corresponding to the graphical model (80) is 

p(v, 4, r 10, a) = p(v° I t) p(q° I 
t) 

1111 

77p(vt+1 
, 
rt+rlvt, gt,0,rt,at)p(4tI4t-1,0,rt,at) 

t 

= p(v° 10 p(4° 10 (82) 

J (yt+i Ixt,4t,0)p(gt 
I qt-1,0,dt) 

t 
b / 

where p(yt+r I 

Qt 
= i, xt, 0) = 12tr 12 

exp I - 2 (yt+i - Agxt)' a, (yt+i A xt)) 

s: 

83) 

and ( ) 4) (8 

t 

and yt = rt (85) 

d W%19(dt I v'Y,) 
9 dt (Qt = i Qt-t 7 86 an , p , ) = I = 

t 
( ) 

Ek W,k9(d (I Vk,'Yk) 

and 9(dt vi,?,) = I2jr I2 
exp I -2 (dt - v,)t'Y, (at - v+)) 

/rt 
and dt = I 

at 

(The initial state estimates p(v° I t) and p(q° I t) will be discussed in section 4.2.2.7.) 

Note that if the block of A, defining the slope of the relationship between V and R'+' 

is zero, the model degenerates into a mixture of static experts3; if additionally the block 

3 "autoregressive HMM" in the terminology of Rabiner, A Tutorial on Hidden Markov Models 
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l[p(yt+l\xt,qt,9)P(qt\qt-l,9,dt)
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(84)
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4.2.2.2 The log likelihood 

defining the slope of the relationship between Dt and Rt+' is zero, then only the bottom 

"intercept" row remains and the model becomes the Gaussian HMM of section 3.3.3.3. If, 

on the other hand, the number of components i is reduced to one, then the model is simply a 

Kalman filter. 

4.2.2. A learning algorithm for Samovar 

The strategy followed in developing a learning algorithm for the conditional Samovar 

model can be summarised as follows: 

exploit a nice factorisation of the likelihood to define an "EEM" algorithm with 

two nested expectation-steps 

perform the inner expectation using equations similar to the Kalman-Rauch 

recursions 

approximate the outer expectation, with the help of the HMM forward-backward 

equations, by leveraging some known properties of the distribution of Q 

4.2.2.1. Nested EM 

The reestimation rule for any EM algorithm with two unknown variables, such as V 

and Q, is 

9n+1 = argmax E,,,q [ log p(v, q, r I a, 9) I r, a, 9" ] 

U(9) 

(9 being the parameter to be optimised and the outputs and inputs r, a jointly comprising 

the known data d of section 3.3.1). The double expectation can be rewritten as a nested pair 

of expectations: 

U(9) = E,,,q [ logp(v, q, r a, 9) I r, a, 9" ] 

p(v,qJr,a,9")logp(v,q,rJa,9) 

= 
J 

p(q I 
r, a, 9") f p(v I q, r, a, 9") logp(v, q, r I 

a, 9) (87) 
q v 

= Eq [Ev [ log p(v, q, r I a, 0) I q, r, a, 9" ] I r, a, 9", (88) 

and the resulting procedure could be called an EEM algorithm. In the case of the Samovar 

model, this rearrangement is helpful, because the likelihood (82) comes ready-factored into 

almost exactly the terms p(q I r, a, 9) and p(v I q, r, a, 9) arising in (87) in such a way that the 

inner, v expectation is continuous, but can be carried out precisely using a version of the 

Kalman-Rauch recursions, while the outer, q expectation must be approximated, but is at 
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4.2.2.2 The log hkehhood 

least discrete. The following sections explain how this works, starting with the log likelihood 

at the heart of (88) and moving outwards. 

4.2.2.2. The log likelihood 

The likelihood (82) comprises two terms per timestep (plus two for the initial conditions 

which will be discussed later on). The first term p(yt+l I qt xt a), arising from the links 

Xt --r yt+t and Qt i yt+l in (80), expresses the continuous dynamics of the model, 

while the corresponding term p(qt I qt-r, w, v, ,y, dt) arises from the mixing dynamics links 

Qt-r -, Qt and Dt -+ Qt. The log likelihood thus falls into two parts, one involving the 

linear parameters A, a and the other the mixing parameters w, v, ry: 

U(9) = U(A, a) + U(w, v, ry) (89) 

where U(A, a) = Eq [ E E [ log p(yt+r I qt xt, ),a) I q, d, on ] I d, 0 - 
t 

and U(w, v,'Y) = Eq [ E E [ logp(gt 
I qt-r , w, v,'Y) I q, d, B'] I d, Bn ] 

t J 

The reestimation rule for A, a involves only the first part: 

(A, a)n+r = argmax U(A, a) 
A,a 

But this breaks down further into separate rules for each component i, because A, and a; 

feature only in those terms corresponding to timesteps t for which qt = is 

(A,, a,)"+1 = argmax E. [ Evt+i v' [ logp(yt+1 
I Qt = i, xt, A,, a,) I q, d, Bn 

] I d, Bn 
](90) 

A"a' 

Comparing (90) with (49), and (83) with (70), the only differences between this update rule 

and that of the Kalman filter are the appearance of x and y in place of v (section 4.2.1.1), 

the selective t-summation, and the extra outer expectation over q. The necessary 

computations are correspondingly similar to those performed for the KF M-step: 

,\+i=PBii 
n+r = 1 

(C_ 
A 
. P. +1 Pt 

N \ 

-cf. (72) and (73)-with the sufficient statistics obtained by taking the outer, q- 

expectation ... 

P. = Eq [Ptlq r, a, O"] 

B, = Eq [B,lq I 
r, a, on] 

Ci = Eq 
[C'Iq 

r, ,on] 

N, = Eq [Nalq I 
r, a, B"] 

where N,lq = E 1 

t:q^=i 

(91) 

(92) 

(93) 
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d,0"j
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and that of the Kalman filter are the appearance of x and y in place of v (section 4.2.1.1),

the selective t-summation, and the extra outer expectation over q. The necessary

computations are correspondingly similar to those performed for the KF M-step:

(91)

(92)

— cf. (72) and (73) — with the sufficient statistics obtained by taking the outer, q-

expectation . . .

Pt = Eq[Pilq\r,a,9n]

Bt = Eq[Btlq\r,a,9n]

Ci = Eq[CAq\r,a,en] (93)

where Nt q =
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4.2.2.8 The inner expectation 

... of the statistics (76) used in the KF algorithm, made t-selective and applied to xly 
rather than h: 

B,lq = E Btlq 

tq'=, 

where Btlq = E[xtxt' l q,,r,a] 
\ =xtt'+l vT 
) TX T \ Q 

C'Iq = E Ct}1lq 
t q'=i 

where Ct+1Iq = E[ yt+lyt+1' I 

g r, a ] 

I/ 
\1 

= yT 1gtT 1' v 
t+1 

+ 1 T 1 

A19 = Pt+i,tlq 
t:qt=i 

where Pt+1,tlq = E[ yt+lxt' I 

q r, a ] 
/ t+1,t 

4+1 xtT+I vT 
0) 

The expectations and variances required are like (71): 

vT 
rt 

xT = 
at I 

1 

vt t T gT= rt 

v, = E[vt q, dI 0,T I , On] 

vtr = Var[ vt I q, dl o'' 1, on ] 

t-1 = Cov[vt vt 1Iq,d[Orl gn] 

(94) 

and they can be calculated in a similar way (see section 4.2.2.3). 

Turning to the second, mixing part of the expected log likelihood (89), a reestimation 

rule is obtained which appears simpler, since the inner, v-expectation is irrevelant to the 

mixing dynamics (86), which was designed deliberately not to involve v. 

(w, v, -Y)' = argmax Eq [ E log p(gt I qt-', w, v,,y, dt) I d, On ] 
W,V,^f t 

However, this is exactly the update rule (65) for the dynamics of an IOHMM-which, it 

turned out, had to be implemented using an iterative optimiser. 

The M-step for the linear dynamics parameters (equations 91 and 92) and the mixing 

dynamics parameters (equations 66, 67 and 69) are now in place; it remains to work out how 

the Q and VIQ distributions on which they depend are to be computed, i.e., how to perform 

the E-step. 
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— 2/r" WT" +

where P4+1'4|<z = E[2/4+1z4 ' |g,r,a]
H-M
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4.2.2.3 The inner expectation 

4.2.2.3. The inner expectation 

The expectation E [. ] over the linear hidden state in (88) is taken conditional on 

a fixed value of Q, the sequence of mixing hidden states. And given a particular sequence 

of linear component choices qt, the model looks very like a Kalman filter, albeit one with 

a degenerate output function, and in which a different (known) dynamics function is 

used at each timestep. Since nothing in the derivation of the Kalman-Rauch recursions 

(section 3.3.3.5) relies on A and a remaining constant over time, they can be used with 

minor modifications to infer the familiar Gaussian distributions-but now conditional on 

for the pairs vt, vt}1. 

In laying out these adapted formulas it is convenient to define a subscripted V to pick 

out those rows of a vector which correspond to the position of the hidden state v in the 

overall state x, as defined in (84); R similarly picks out is rows. Thus, AV = vt and 

xR = rt. A subscripted Y is used for the concatenation of v's rows and is rows-cf. (85). 

A pair of these subscripts defines a subblock of the matrix to which they are applied. 

Combined with the usual matrix notation, this convention brings out both the relationship 

with the standard Kahnan-Rauch recursions and the low dimensionality of most of the 

matrix arithmetic involved in the implementation. 

The forward recursions begin 

-separate estimates of the initial linear state being made for each q (see section 4.2.2.7)- 

and continue 

t- r 
ytt-1 = Aqt-1 at-1 

1 

yL-1 = 
(Aqi-0YH//v((t-1 1 -OHY + a- i 

Kt = lyt-1HR 
11e-ORR,)-1 

vE _ /(tiff + Kt(rt 
`9L-1)R) 

yt = \yt-1)HH - Kt lit-1)RH 

The backward iterations begin 

VT 
T-1 

= ((AqT-i) HH-KT )RH) (fl _i)HH 

83 

4-S.2.3 The inner expectation

4-2.2.3. The inner expectation

The expectation Ev[- ••} over the linear hidden state in (88) is taken conditional on
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—separate estimates of the initial linear state being made for each q (see section 4.2.2.7)—

and continue

* 1

The backward iterations begin
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4.2.2.5 Approxsmatsng the outer expectatson 

and continue 

it = vt 
t (a,,)HY 1yt+1) 

1 

vT = vt + J \ X rt+1) 1./t+1 

t+1 
Jt rrvt+1 

6 - yt+l) it 

f,t l,t = (.1 }1+I) \\v 
t+l 

T 0) - (Aqt+1)YHvt+1) .Jt+i1 

4.2.2.4. The outer expectation 

(95) 

(96) 

(97) 

In theory, the outer expectation over q-which carries over from (88) into (93) and, in 

a slightly different form, into (68)-presents no great difficulty. The sequence-probabilities 

p(q I r, a, 8) by which the expectations are weighted can be obtained by multiplying the 

transition probabilities involved in the discrete evolution of q and the expected observation 

likelihoods conditioned on q 

p(gIO,r,a) ocp(rIq,a,8)p(gIa,9) 

_ Et [p(rt+1 I vt, rL, at, gt, e) 1 g, e, 
r[l,t] 

t 

11 p(qt+l I qt, 9, rt, at) 
t 

(98) 

Taking the expectation in the first term is easy, since the distribution p(vt I q, r[ l,t] a[ r,t] 0) 

is computed as an auxiliary value by the modified Kalman-Rauch iterations (95)-(97): 

Evt [p(rt+1 
I vt, qt, rt, at) I q, r, a ] = 

where 

2 exp 
2 

(rt+1 2t)t 0 (rt+l attt) 
(99) 

0-1 = (As)RH vt (A' )HR + as 1 

and 

and 

vt 

Gt 

1 

The second term is just the gating rule (86). 

4.2.2.5. Approximating the outer expectation 

However, it is in practice impossible to perform a summation over all the possible 

sequences q, because their number rises exponentially with their length T. Luckily, this q- 

space into which the intractability of the model has been concentrated is at least discrete; 
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and continue

(95)

f (96)

~ , \
VT 1 ("\ \ ~*+l 1 rt+l' /n7^

-lV+1)yff%H J (97)

4.2.2.4. The outer expectation

In theory, the outer expectation over q — which carries over from (88) into (93) and, in

a slightly different form, into (68) — presents no great difficulty. The sequence-probabilities

p(q | r, o, 0) by which the expectations are weighted can be obtained by multiplying the

transition probabilities involved in the discrete evolution of q and the expected observation

likelihoods conditioned on q

P(q\9,r,a) oc p(r q,a,9)P(q\a,9)

l[p(qt+1\qt,0,rt,at) (98)
t

Taking the expectation in the first term is easy, since the distribution P(vf \ q, rt1'4!,^1'4!^)

is computed as an auxiliary value by the modified Kalman-Rauch iterations (95)-(97):

(99)

1

The second term is just the gating rule (86).

4-2.2.5. Approximating the outer expectation

However, it is in practice impossible to perform a summation over all the possible

sequences q, because their number rises exponentially with their length T. Luckily, this q-

space into which the intractability of the model has been concentrated is at least discrete;

84



4.2.2.5 Approximating the outer expectation 

and it is known to have some properties which can guide a greedy search towards its 

important regions: 

1) Sparseness. Nearly all of the possible sequences will be of negligible probability, 

and will therefore contribute nothing to the expectation. 

2) Local consistency. The most probable sequences are likely to be made up of 

locally near-optimal subsequences. If a section is taken out of a good assignment 

sequence, and considered in isolation, under minimal assumptions about what 

happens before and after it, it is hard to imagine that it will not fit the data at 

least tolerably well. Indeed, local consistency can be seen as a requirement placed 

on the kind of models which will be considered as acceptable. 

3) Finiteness of horizon. Although the model is capable in principle of capturing the 

dynamics of a world in which events have consequences over a long timescale, there 

are good theoretical and empirical grounds to believe that such effects are unlikely 

either to arise in the target domain or, if they do, to be learned reliably by any 

timestep-based algorithm. So little will be lost if contiguous subsequences of the 

training data are considered in isolation, as long as they are not too short. 

Put another way, it will normally be possible to tell with some certainty which component 

was active at a given timestep by considering the sensor readings and actions in its near 

temporal neighbourhood: most sub-sequences can be seen to be unlikely on the basis of 

local evidence. Knowledge of what happened further into the future/past may be needed 

to squeeze out all the ambiguity. But already the great bulk of the space of sequences can be 

pruned away, leaving one or more distinct (and narrow) islands of plausible hypotheses. (In 

fact, the learner will wish to reject models relative to which this assumption does not hold, 

so any bias introduced by it is benign.) 

These considerations point towards a kind of heuristic dynamic programming procedure 

for generating a pragmatically adequate (though not statistically valid) "sample" of probable 

sequences. To begin with, short subsequences are evaluated separately from each other, 

using (98) restricted to the range covered by each; all but the most likely ones are rejected; 

and candidate sequences are made up by joining pairs of temporally adjacent survivors. 

Those longer sequences are in turn evaluated, pruned and joined, and so on until the horizon 

length of item 3 is reached. The number of candidate sequences in play is relatively large 

to start with-but they are short, and hence cheap to evaluate; as their length grows, 

their numbers fall. Item 1 says that the restriction on the number of full-length sequences 

remaining at the end does not necessarily weaken the approximation disastrously, while 

item 2 says that the early pruning decisions based on local considerations will mostly be 

correct. 
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4.2.2.5 Approximating the outer expectation 

In fact, it is possible to do better by selecting subsequences for joining on the basis 

not only of their respective local likelihoods, but also of the plausibility with which they fit 

together. Part of this inter-subsequence consistency can be assessed immediately by looking 

at the probability with which the gating rule (86) would in fact follow the final component 

choice in the first subsequence with the initial choice in the second. Since that probability 

is conditioned only on the known data rt, at, and does not depend on the linear hidden 

state vt, there is no difficulty in evaluating it as part of the outer expectation. Then the 

algorithm has at its disposal both local estimates of the likelihood of each subsequence, and 

estimates of the transition probabilities between them-so it can use the HMM forward- 

backward equations (56) and (57) to convert those local estimates into a globally informed 

estimate of the probability of each possible pair-up between subsequences. The table below 

shows the correspondence between the equations' original form in the HMM framework of 

section 3.3.3.3 and the way they are used here: 

HMM value 

timestep 

HMM state 

state likelihood 

state transition prob. 

global state pair prob. 

Symbol 

t 
Qt=iorj 

p(rt I Qt = j, pp ) 

WIJ 

Sequence-joining value 

range of timesteps 

subsequence candidate 

cand. local likelihood 

cand. follow-on prob. est. 

global cand. pair prob. est. 

Cu 
2Iam 

"im 

The equations are iterated not over individual timesteps t, but over ranges it of timesteps of 

a given length L, so that subsection it covers the timesteps [ Lu, Lu + L ). In place of the 

HMM states Qt, the random variables of interest are the subsequences Su, which denote the 

Samovar component choices within each range u: 

$+u,0 = QLu 

S.u,1 QLu+1 

(100) 

Su,L-a = QL(u+l)-2 

S.u,L-1 = QL(u+1)-1 

Where the HMM states at each timestep have a likelihood p(rt I p2) at which they predict 

each output, the component choice subsequences have a "local likelihood" 

ca = p(r[ Lu,Lu+L) Su = l 
I 
a[ Lu,Lu+L) O) (101) 

that they describe correctly the outputs and component choices within their range, under no 

assumptions about what happens before and after them, obtained from running (98) with t 

ranging over [ Lu, Lu + L). The place of the state transition probabilities 

W%J = p(Qt = j I Qt-1 = i, 0) 
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4.2.2.6 V-matching 

is taken by estimates of the probabilities with which temporally adjacent subsequences look 

like they might have followed on from each other: 

p(transition from S"_1 = l to S' = m) : zi," 

= 
p(QL" = MO 

I 

QL"-1 = lL_1 
B 

rL" aLu) (102) 

which is (86) with t = Lu, i = m°, j = 1L-1. Instead of the output 

?;sr = p(Qt = 7, Qt+1 = i, r 10) 

-cf. (58)-the forward-backward equations yield 

Sam F p(Su = m, S"+1 = l r 10a) 

ocp(S" = m, S'+1 = I10,r,a) (103) 

This is the Bayesianly correct estimate of the probability that the component choices in 

the range [Lu, Lu + 2L) are as described by 1, m, given of course the restriction that the 

distribution of the linear hidden state v is computed on the basis of local evidence inside 

each L-long subsequence, and is ignored in estimating the follow-on probabilities. 

If the linear hidden state is actually irrelevant-if the blocks of the dynamics 

matrices a; which define the coefficients through which Vt affects Yt are zero-then the 

first, L = 1 pass of the algorithm reduces, as it should, to the HMM's forward-backward 

computation. Subsequent passes have the effect of selecting a small, but (in this case) 

correctly distributed, sample of sequences. On the other hand, if the model comprises only 

a single component, then the algorithm reduces to the KF's Kalman-Rauch recursions. 

In other, non-degenerate cases, it is clear that the algorithm will not in general produce 

an unbiased sample of mixing state sequences. The number of candidate subsequences it 

maintains at each stage must necessarily be limited in order to contain its consumption of 

resources, and this means that it will often have to reject large classes of possibilities on 

a heuristic basis at a relatively early stage. The issues of how the bias thereby introduced 

into the sample might be corrected, and indeed whether it matters much, are addressed in 

section 6.1.1.2. 

4.2.2.6. V-matching 

In principle, the candidate follow-on probability estimates (102) can be tightened up 

by taking into account the implications which the subsequences s"-' and s" each have for 

the hidden linear state VL". The terminal V', v' produced by the modified Kalman-Rauch 

recursions running inside su-1, and the initial v°, v° produced by those running inside s", 

are both estimates of this same quantity, so that the agreement between the two provides 
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resources, and this means that it will often have to reject large classes of possibilities on

a heuristic basis at a relatively early stage. The issues of how the bias thereby introduced

into the sample might be corrected, and indeed whether it matters much, are addressed in

section 6.1.1.2.

4.2.2.6. V-matching

In principle, the candidate follow-on probability estimates (102) can be tightened up

by taking into account the implications which the subsequences s""1 and su each have for

the hidden linear state VLu. The terminal VL,VL produced by the modified Kalman-Rauch

recursions running inside s""1, and the initial v°,v° produced by those running inside su,

are both estimates of this same quantity, so that the agreement between the two provides
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4.2.2.8 Visualising the algorithm 

additional information about how well the sequences fit together. Turning the overlap into a 

probability is, however, not straightforward; the estimate would have to be calculated as 

p(Su = 9n I 
Su-1 = 1) ' / p(S" = m I qL" vL") p(qL", vLU I Su-1 = l) 

JgLi VLY 

f' 
p(Su = m I VLu) p(vLu 

I 

Su-1 
= 1) 

p(QLu 

= Tn° 
I 

QLu-1 = IL-1, 9) =Jv Lu 

where the term 

p(Su 
= .m IVLu) AVLu I S° = m) 

Em p(vLu I Su = m) 

gives rise to a normalisation inside the integral, the resulting expression being not a 

Gaussian convolution but something far less easy to evaluate. In practice, however, all that 

is required is a comparison which causes really improbable couplings to be rejected. That 

can be achieved by considering the convolution of the two versions, or their cross-entropy. 

4.2.2.7. Initial conditions 

What, finally, of (82)'s initial conditions p(v° I t) and p(q° I t), discussion of which 

has so far been deferred? Since it only really makes sense to apply the Samovar 

algorithm to longish training sequences, the effect of the latter will be negligible, and 

it is not implemented (although it easily could be). The former, however, plays a more 

important role, since the subsequences over which the modified Kalman-Rauch recursions 

(section 4.2.2.3) are run are, by design, of at most moderate length. Each subsequence I 

is given its own initial linear hidden state estimate it, Zl, so that the recursions can be 

run more than once, each time tightening it, Zi up, and therefore also the estimate of the 

subsequent Vts. 

4.2.2.8. V2sualising the algorithm 

The diagrams following are visualisations of the process by which short Q-subsequences 

are evaluated and joined to produce longer ones. They were obtained by running the 

algorithm on the test data of section 5.1.2. V-matching (section 4.2.2.6) was disabled, and 

the number of subsequence candidates maintained by the algorithm as possibilities for each 

section (candsMax of section 4.2.2.9) was limited to 10 to save space on the page; both these 

settings are suboptimal for the problem, but the fact that the algorithm takes longer to 

settle on the right answer actually makes its workings clearer. 

We join the algorithm when it is evaluating the candidates for the eight two-step 

subsections of a sixteen-step data series; the list of candidates su for each section u 

is represented by a column of boxed pairs of mixing state numbers su,t, the first 

column/section covering timesteps 0 and 1, the second timesteps 2 and 3, and so on. 
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additional information about how well the sequences fit together. Turning the overlap into a

probability is, however, not straightforward; the estimate would have to be calculated as

P(SU = m | S"-1 = /) w f P(Su = m\qLu,vLu)P(qLu,vLu\Su-l=l)
J qLu^vLu

= f P(SU = m | vLu) p(vLu | S"-1 = 0 p(QLu = m° \ QLu~l = 1L~1,9)
JvLu

where the term

gives rise to a normalisation inside the integral, the resulting expression being not a

Gaussian convolution but something far less easy to evaluate. In practice, however, all that

is required is a comparison which causes really improbable couplings to be rejected. That

can be achieved by considering the convolution of the two versions, or their cross-entropy.

4-2.2.7. Initial conditions

What, finally, of (82)'s initial conditions P(v° \ i) and P(q° \ i), discussion of which

has so far been deferred? Since it only really makes sense to apply the Samovar

algorithm to longish training sequences, the effect of the latter will be negligible, and

it is not implemented (although it easily could be). The former, however, plays a more

important role, since the subsequences over which the modified Kalman-Rauch recursions

(section 4.2.2.3) are run are, by design, of at most moderate length. Each subsequence I

is given its own initial linear hidden state estimate li,~n, so that the recursions can be

run more than once, each time tightening LI, l\ up, and therefore also the estimate of the

subsequent Vts.

4-2.2.8. Visualising the algorithm

The diagrams following are visualisations of the process by which short Q-subsequences

are evaluated and joined to produce longer ones. They were obtained by running the

algorithm on the test data of section 5.1.2. V-matching (section 4.2.2.6) was disabled, and

the number of subsequence candidates maintained by the algorithm as possibilities for each

section (candsMax of section 4.2.2.9) was limited to 10 to save space on the page; both these

settings are suboptimal for the problem, but the fact that the algorithm takes longer to

settle on the right answer actually makes its workings clearer.

We join the algorithm when it is evaluating the candidates for the eight two-step

subsections of a sixteen-step data series; the list of candidates su for each section u

is represented by a column of boxed pairs of mixing state numbers su<i, the first

column/section covering timesteps 0 and 1, the second timesteps 2 and 3, and so on.



4.2.2.8 Vzsualissng the atgonthm 

The candidate subsequences are listed vertically in order of estimated probability, as 

determined by equation 103 during the previous round of the algorithm. Thus the box "20" 

at the top of the third column represents the working hypothesis that the most probable 

mixing states at timesteps 4 and 5 were numbers 2 and 0. 

The black lines joining adjacent candidates represent pairings which look globally 

plausible on the basis of the candidates' local likelihoods and transition probabilities: the 

thickness of the line between candidate l in section it and candidate m in section it + 1 

is proportional to S1,,, (equation 103), except that the lines indicating (s below a cutoff 

threshold are omitted for clarity. At this stage, there are quite a few such lines present, 

indicating that many pairings have significant probability-the two-step sequences are short 

enough that almost any can be made consistent with the observable outputs by postulating 

an appropriate hidden linear state V. 

Next, the algorithm takes a sample of the most probable-looking pairings, and 

obtains four-step candidates for the sections 0-3, 4-7, 8-11 and 12-15. At this stage, the 

picture is becoming clearer, with fewer serious pairing possibilities. Note the existence 

of an independent trajectory 4444, 5670, 0012, 0120 alongside a more ramified group of 

alternatives. 
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obtains four-step candidates for the sections 0-3, 4-7, 8-11 and 12-15. At this stage, the

picture is becoming clearer, with fewer serious pairing possibilities. Note the existence

of an independent trajectory 4444, 5670, 0012, 0120 alongside a more ramified group of

alternatives.

89



4.2.2.9 The algorithm in pseudocode 

By the time the algorithm turns to considering the consequent eight-step subsequences, there 

are only two serious pairings to consider. 

20100344 

20100034 

20034544 

4444567 

20100000 

67034544 

54445567 

54444560 

54445560 

0120120 

00120110 

And these are the ones which are returned as hypotheses about the whole sixteen-step 

sequence: 

4444454454444560 

4444567000120120 

4.2.2.9. The algorithm in pseudocode 

In the following pseudocode summary of the whole conditional Samovar learning 

algorithm, maths italic letters such as r and a are used in the same way as in the text; other 

program variables are written in slanted sans serif characters, and control words in upright 

sans serif characters. 

let learn r, a = 

Start with an initial parameter containing a number of components, all set to the 

same default values. (The symmetry will be broken by the random element in the 

E-step.) 

for i E [0, componentsNum) 

A,0 
a, f I 
Pi t-0 
7,f-I 

E-step: get a sample of component choice subsequences from the dynamic 

programming-style subsequence joining algorithm (see below). 

let subsections = sequenceSample r, a, 0 

Compute the sufficient statistics (93) for the linear dynamics parameter updates, 

averaged over all the subsequences found for each L-long range is. 
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4-S.2.9 The algorithm in pseudocode

By the time the algorithm turns to considering the consequent eight-step subsequences, there

are only two serious pairings to consider.

1201003441

|20100034|

|67034544|

And these are the ones which are returned as hypotheses about the whole sixteen-step

sequence:

[4444454454444560
4444567000120120

4-2.2.9. The algorithm in pseudocode

In the following pseudocode summary of the whole conditional Samovar learning

algorithm, maths italic letters such as r and a are used in the same way as in the text; other

program variables are written in slanted sans serif characters, and control words in upright

sans serif characters.

let learn r, a =

• Start with an initial parameter containing a number of components, all set to the

same default values. (The symmetry will be broken by the random element in the

£-step.)

for i £ [0, components/Von?)

• E-step: get a sample of component choice subsequences from the dynamic

programming-style subsequence joining algorithm (see below).

let subsections — sequenceSample r, a, 9

• Compute the sufficient statistics (93) for the linear dynamics parameter updates,

averaged over all the subsequences found for each L-long range u.
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4.2.2.9 The algorithm an pseudocode 

foriE[0,101) 

B,FO;C,FO;PiFO;N,FO 
for u E [0, 1 subsections)) 

for seq E subsections".segs 

for t E [ 0, seq.q ) 

let i = se 

let x 

q.qt 

seq.vt 
rL+t 
aLutt 

1 

(seq.gt+r 
let y = l Lu+t+i 

\ 
B, i+- seq.prob x xx' + seq.v"t 

0 

Ci f seq.prob x yy' + 
t+i seq'u \ 

P, t+ seq.prob x yx' + seq.v t+r,t 

Na E+ seq.prob 

0 

M-step: update the linear dynamics parameters from their sufficient statistics (see 

equations 91 and 92), and invoke a root finder on the derivative of the expected log 

likelihood with respect to the mixing dynamics parameters. 

for i E [0,181) 

A, F P;Bq ' 
C;-a,P'1-r IX,FI 

J Ni 
w, v, ry - scgRoot (w, v, ry -3 mixingErrorDeriv w, v, ry, sequences) 

scgRoot is a standard nonlinear root-finder, such as a scaled conjugate gradients routine4. 

The pseudocode for the function mixingErrorDeriv passed to it as an argument is given 

below; but first, the dynamic programming-style procedure described in section 4.2.2.4 for 

performing the approximate B-step: 

let sequenceSample r, a, 0 = 

Start with every possible sub-sequence of length one. 

L -1 
foruE[0,T) 

foriE[0,101) 

4 Moller, A scaled conjugate gradient algorithm 

91 

4-2.2.9 The algorithm in pseudocode

for i€[0, |0| )

B, i- 0; Ct <- 0; P» <- 0; JV, 4- 0

for M 6 [0, |subsections])

for see/ € subsections"1 .seqs

fo r te [0,se<7.g)

let i = sec/.g4

seq.prob

M-step: update the linear dynamics parameters from their sufficient statistics (see

equations 91 and 92), and invoke a root finder on the derivative of the expected log

likelihood with respect to the mixing dynamics parameters.

f o r i e [0,|0|)

At <- PiB-1

LJ, v, 7 <- scgRoot (u, v, 7 -» mixingErrorDeriv u, v, 7, sequences)

scgRoot is a standard nonlinear root-finder, such as a scaled conjugate gradients routine4.

The pseudocode for the function mixingErrorDeriv passed to it as an argument is given

below; but first, the dynamic programming-style procedure described in section 4.2.2.4 for

performing the approximate .E-step:

let sequenceSample r, a, 0 =

• Start with every possible sub-sequence of length one.

forue [0,T)

fort€[0,|0|)

4 Moller, A scaled conjugate gradient algorithm
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4.2.2.9 The algonthm in pseudocode 

subsectionsu.segs,.q <- (i) 

Run the modified Kalman-Rauch recursions "inside" each candidate subsequence 

one or more times, to compute the distribution of v (equations 95-97) over the 

range covered by it, under no assumptions about what happens before and after 

it. 

join: 

for it E [0,IsubsectionsI) 

for cand E subsectionsu.segs 

c, t"F0,1 

repeat a few times (see section 4.2.2.7) 

cand.v,1,11 <- kalmanRauch from Lu to L(u+1)-1 given cand.q, r, 1, t, 0 

Compute each candidate sequence's local likelihood. 

for it E [ 0, I subsections) ) 

for l E [ 0, Isubsectionsu.segsl ) 

Cr F 1 

let cand = subsections°.segst 

fort [0,L) 
let i = cand.gt 

let 0 _ ((A )RH cand.v"t (A ,)HR +a, 1) 

cand.vt 
r,Lu+t 

let x = aLu+t 

1 

Cr 4- 
I 
jI' exp (-2 (rLu+t+l A,x)' cb 

(rLu+t+1 - a,X)) 

Estimate the probability with which each pair of temporally adjacent candidates 

fits together. 

for it E [0, Isubsectionsl - 1) 

ford E [0,subsections°.segsl) 

form E [0,Isubsections".segsl 

let candPrev = Isubsectionsu.segsll 

let j = candPrev.gL-1 

let candNext = I subsectionsu.segsl m 

let i = candNext.q° 

Z i m 4_ W it 1 

1, exp (- z 
(dLu - vq)' y, (dLu v,)1 
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subsections™.seqst.q «- (i)

• Run the modified Kalman-Rauch recursions "inside" each candidate subsequence

one or more times, to compute the distribution of v (equations 95-97) over the

range covered by it, under no assumptions about what happens before and after

it.

join:

for u 6 [0, \subsections\)

for cand € subsectionsu .seqs

1,1 i-0,1

repeat a few times (see section 4.2.2.7)

cand.v,T,l4- kalmanRauch from Lu to L(u+l)-l given cand.q,r,l,l,9

• Compute each candidate sequence's local likelihood.

for u € [0, \subsections\)

for / € [0, \subsectionsu.seqs\)

let cand = subsections™ .seqsi

fo r t€ [0 ,L)

let i = cand.q*

/ cand.v1'
/ rLu+t

aLu+t
r

1

exp -

• Estimate the probability with which each pair of temporally adjacent candidates

fits together.

for u e [0, \subsections\ - I )

for / 6 [0, |sofcsect/bns".sec/s| )

for m e [0, |st/6sect/o/7s".se<7s| )

let candPrev — \subsectionsu '.seqs\i

let j = candPrev .qL~l

let candNext = \subsectionsu .seqs\m

let i = candNext.q0

(-1 (dLu ' "OS. (^" -
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4.2.2.9 The algorithm m pseudocode 

form E [0,Isubsections".segsl 

Zim E. zdm 

Run the HMM forward-backward equations to obtain global estimates of the 

probability of each pair of temporally adjacent candidates. 

let C = forwardBackward from 0 to Isubsectionsl - 1 given c, z 

for u E [ 0, I subsections) -1) 
for l E [0,Isubsections".segsl 

for m E [0,1 subsections".segsl) 

Cm l,m Sum 

If a sample of long-enough sequences has been obtained, return them along with 

their estimated probabilities. 

if L > sensible length 

for u E [ 0, Isubsectionsl - 1) 

ford E [0,1 subsections".segsl) 

subsections".segsl. prob - E. Sim 

return subsections 

Otherwise, select up to candsMax (depending on available time/storage) of the 

most probable-seeming pairs, discarding the rest. 

let subsectionsPaired = () 

for u E [ 0, Isubsectionsl - 2 ) 

let candsPrev = subsections2u.segs 

let candsNext = subsections 2u+i Begs 

subsectionsPaired".segs = 

{ candsPrevl.q @ candsNextm.q : 

1, m E sample of size at most candsMax with p(1, m) = (J,n } 

Repeat. 

subsections +- subsectionsPaired 

L -' 2 

goto join 
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for m 6 [0, |su6sect/ons".segs|)

2« £ y zu*lm ~ <L-<m Im

• Run the HMM forward-backward equations to obtain global estimates of the

probability of each pair of temporally adjacent candidates.

let C = forward Backward from 0 to | subsections] - 1 given c,z

for u E [0, |subsect/ons| - 1)

for I € [0, | subsections", seqs |)

for m G [0, | subsections".sec/s|)

Mm ^ ^-//,m Mm

• If a sample of long-enough sequences has been obtained, return them along with

their estimated probabilities.

if L > sensible length

for u e [0, |subsect/ons| - 1)

for / € [0, |su/>secr/ons".seqs|)

subsections'".seqs^prob <- ^TO C,fm

return subsections

• Otherwise, select up to candsMax (depending on available time/storage) of the

most probable-seeming pairs, discarding the rest.

let subsectionsPaired = ()

for u € [0, |subsections ~ 2)

let candsPrev = subsections2™.seqs

let candsNext = subsections2u+1 .seqs

subsectionsPaired™ .seqs =

{ candsPrevi.q © candsNextm.q :

l,m£ sample of size at most candsMax with P(l,m) = £?% }

• Repeat.

subsections -f- subsectionsPaired

goto join
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4.2.2.9 The algorithm in pseudocode 

The output of this algorithm is, for each subsection of the timesteps [ 0, T), a sample of 

likely mixing states sequences covering it. kalmanRauch is the routine implementing the 

modified Kalman-Rauch recursions of section 4.2.2.3, and forwardBackward the standard 

HMM forward-backward algorithm of section 3.3.3.3. 

Finally, the derivative whose root is found to reestimate the mixing dynamics 

parameters; 

let mixingErrorDeriv w, v, -y, sections = 

Initialise the derivatives. 

foriE[0,101) 

forje[0,101) 

dByWeights,, +- 0 

dByCentres, F- 0 

dBySizesi t- 0 

Sum over time. 

for t E [ 1,T) 

Find how probable the old parameter estimates made each pair of mixing 

states Qt = i Qt-1 = j. 

letu= 
for seq E sections".segs 

let i = seq.gtmodL 

let j = seq.qt-1 mod L 

pOld F seq.prob 

Find how likely the new parameter estimates make them. 

foriE[0,101) 

for jE[0,10) 

pNew, e- w,j z ' exp (-z (dt - v.)'-y, (dt - va)) 

let norm = E, pNew,, 

forjE[0,191) 

pNew1, it norm 

Compute the derivative contributions and add them in (see equations 66, 

67 and 69). 
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The output of this algorithm is, for each subsection of the timesteps [0, T), a sample of

likely mixing states sequences covering it. kalmanRauch is the routine implementing the

modified Kalman-Rauch recursions of section 4.2.2.3, and forwardBackward the standard

HMM forward-backward algorithm of section 3.3.3.3.

Finally, the derivative whose root is found to reestimate the mixing dynamics

parameters:

let mixingErrorDeriv u, v, 7, sections —

• Initialise the derivatives.

fbr ie[0, |0|)

for je[0, |0|)

dByWeights^ <- 0

dfiyCentres, 4- 0

- 0

• Sum over time.

fort€[l,T)

• Find how probable the old parameter estimates made each pair of mixing

states Q* = i,Q*~l =j.

let u = £

for seq £ sections™ .seqs

let? = seq.qtmodL

let j = se<7.g4~lmodL

£- seq. prob

Find how likely the new parameter estimates make them.

forie[0,|0|)

fo r j€ [0 , |0 | )

pNewt, <- o;̂  |£|* exp (-^d4 - i/t)'7. (# ~ ".

let norm = ̂  pNewt]

for je[0, |0|)

pWew/ £^ norm

• Compute the derivative contributions and add them in (see equations 66,

67 and 69).
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4.2.2.10 Making predictions 

foriE[0,101) 

forjE[0,101) 

let Et = pOld,3 - pOldpNewij 

dByWeights,, F e., 

let e' 
; 

4 
dByCentres, F- EB, (i(v, - dt) 

dBySizesi F EB, (7: 
1 - (de - vi)(dt 

. Return the overall derivative. 

return dByWeights @ dByCentres @ dBySizes 

In practice, of course, the ordering of the algorithm and its storage requirements can 

be optimised, defensive measures need to be taken against numerical loss of significance 

(e.g. working in log space), and various boundary cases need to be taken into account. 

4.2.2.10. Making predictions 

The predictive distribution of the conditional Samovar model is4 

P(rT 10, dl O,T)) = Ev,q [P(rT I 

qT-1, 
0, dT-1) I d, 0 

= E P(q 19,dl O,T)) i P(VT 1Iq,dt 0,T)) P(rT I VT-1,qT-1,0,f-1) 
q IT-1 

Conditioned on each sequence q, and supposing without loss of generality that T = 7, the 

situation is as follows: 

Y5 

4 Note the slight difference in the form of this expression as compared with that of the general 

rule (54) for the predictive distribution of a Bayesian dynamical systems model: it is a consequence 

of the switch from the usual graphical model (79) to the (80), in which the readings and actions have 

been brought into the world state. 
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4-2.2.10 Making predictions

forie[0,|0|)

forje[0,|0|)

let e\3 =

dByWeightst]

dByCentres, £- 4,7<(i/, - d*)

dSyS/zes, t- 4 (7^ - (d4 - „,)(<? - i/,)')

• Return the overall derivative.

return dByWeights @ dByCentres @ dBySizes

In practice, of course, the ordering of the algorithm and its storage requirements can

be optimised, defensive measures need to be taken against numerical loss of significance

(e.g. working in log space), and various boundary cases need to be taken into account.

4-2.2.10. Making predictions

The predictive distribution of the conditional Samovar model is4

P(rT\9,S°'T^)=Ev,q[P(rT\vT-l,qT-i,9,dT-1)\d,9]

Conditioned on each sequence q, and supposing without loss of generality that T = 7, the

situation is as follows:

4 Note the slight difference in the form of this expression as compared with that of the general

rule (54) for the predictive distribution of a Bayesian dynamical systems model: it is a consequence

of the switch from the usual graphical model (79) to the (80), in which the readings and actions have

been brought into the world state.
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4.2.3.1 Mergang anputs and outputs 

Each sequence q gives rise to a Gaussian component in the overall mixture prediction, 

obtained by applying the dynamics function of q's terminal component q8 to X61 q, and 

projecting the resultant distribution over Y' down to R7 alone: 

p(rT 19, dte'T 1) = Lp(q 19, dlo'T )) 
27 

exp ( 
2 

(rT (aa)RX xq 1 a (rT - (aa)RX q 1) 
\ 

where (( 1 i = l(rya 
1RR 

+ (aa)RV 7Jq -1 (a)VR) 

and i = qT-1 

roT-1 
q 

T-1 rT-1 

and Sq - aT-1 

1 

The expectation over q can be approximated by invoking the subsequence-joining algorithm 

of (4.2.2.5) to produce candidates l for the mixing state sequence over some reasonable time 

period leading up to T - 2 = 5 (inclusive-Q5 determines the component used to generate 

rs, the last known sensor reading). Part of its output will be estimates vs,v of what the 

linear hidden state implicated in the generation of R7 would be, conditional on each of the 

sample Is. It remains only to compute the probability of each possible continuation to Q7 of 

each of the sample sequences, conditional on the last known gating data ds, and what each 

Q7 would do with X7 11 to produce its output Rs. If desired, a confidence region along the 

lines of section 3.3.2.6 can be included with very little extra overhead. 

This simple procedure could obviously be optimised if a whole series of predictions is 

required (e.g. for a robot in a sense-think-act cycle): the set of subsequence candidates for 

the section [0,3] does not depend on the readings and actions from timestep 4 onwards, 

so there is no point in computing it for the timestep 4 prediction, only to forget it and 

recompute it at timesteps 5, 6, and 7-it could be cached. For instance, at timestep 7, the 

subsequence-joining algorithm can be started using cached candidate sets for the sections 

[ 0,31, [ 4,5 ] and the singleton [ 6,6 ]. 

4.2.3. The joint Samovar model 

Just as the joint mixture of experts described in section 3.3.2.4 is closely related to 

the conditional mixture of experts of section 3.3.2.5, so the conditional Samovar model of 

section 4.2.1 has a "joint" counterpart with the broader aim of estimating the distribution 

of the robot's actions (process inputs) At, as they were seen in the training data, as well 

as that of its sensor readings (process outputs) Rt. As well as furnishing the model with an 

arguably more meaningful confidence region, the shift of perspective turns out to have other 

computational and semantic spin-offs. 
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Each sequence q gives rise to a Gaussian component in the overall mixture prediction,

obtained by applying the dynamics function of q's terminal component q6 to X6 | q, and

projecting the resultant distribution over Y7 down to R7 alone:

and _
a
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42.3.1 Merging inputs and outputs 

4.2.3.1. Merging inputs and outputs 

One possible variation on this scheme would be to treat At-1 and Rt symmetrically, as 

independent "outputs" with separate mixed linear/Gaussian distributions conditional on Qt 

and Vt: 

(104) 

Compare (104) with (79): the only difference is that the sense of the links At-1 _y Qt and 

At-1 -4 Vt has been reversed. In fact, there is some advantage to be gained from making Rt 

depend also linearly on At-1: 

-or, equivalently (cf. section 3.2.5.4), handling At-1 and Rt not only symmetrically, but 

actually as subvectors of the same quantity: 

(105) 

00 00 
Here At-1 and Rt are shown as jointly conditional on Vt and Qt-through a linear (input- 

)output mapping chosen by the mixing state 

/ At-1 
I Rt = k,Vt + N(0Q,) where i = Qt 

-rather than Vt and Qt being conditional on At-1, as in the conditional model. Since this 

arrangement is both simpler and more general than (104), it will be adopted henceforth as 

"the joint Samovar model". As usual the mixed-linear dynamics are 

Vt+1 = a: (it) + N(0, a.) 
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4.2.3.2 Semantics 

(note the extra constant element appended to each Vt in order to support a nonzero 

intercept), while the mixing dynamics are discretely Markovian, according to a transition 

matrix w. The joint Samovar model's likelihood is therefore 

p(v,q,r,aIO) = p(v°It)p(q°It) 

where p 

Jp(at-1,rtIvt,qt,9)p(vtlvt-r,qt-l,9)p(gtlgt-1,9) 
t 

12- (_1 
9 

21r 
eXp 2 

t- -a'(1Q (dtt-11 
rt 

and dt,t-i _ 

2 (vt - a, (vtl 1 

J J 
a, vt - vt r 

I/ 

/I 
) and p(vt 

I 
vt-1, 

Qt-1 = Q, B) = 
121r l e ° (-I 

and p(Qt =.1 I Qt-1 = i) = wig 

4.2.3.2. Semantics 

The role of the joint model's hidden state Qt,Vt in apparently determining the 

action At-1 may perhaps require some explanation: are the actions not, then, generated by 

the robot, or even by some human agency? They are; but that does not mean that it is not 

possible or useful to approximate their distribution and draw inferences from it. Indeed, a 

fully responsible approach to the problem of model trust must surely take this distribution 

into account: if the model is asked to predict the consequences of an action which is clearly 

different from those it has previously had a chance to observe, or to observe in a situation 

similar to the current one, it is reasonable to expect it to express a suitable degree of caution 

in its answer. Certainly, the mixed linear/Gaussian generative model may be something of 

a travesty of the process by which the actions are really selected; but the same is after all 

true of the outputs-the justification of any finite and/or imperfectly optimised environment 

model must rest on an appeal to the approximative principle discussed in section 3.2.4.3. 

And the important thing from a Bayesian point of view is that it is a reasonable way of 

generalising from the training data to a density expressing what future actions (taken in 

each situation) are expected to be like. The semantics of the joint model could be glossed 

thus: "The processes responsible for generating the actions and readings in the training data 

behave differently in different situations. In each situation, we expect that the action which 

will be performed is like this and the corresponding reading like that. Unexpected actions 

(or readings) are evidence that some previously unseen process is at work." 

One particularly interesting feature of the joint model is that the input-generating 

"noise" distribution associated with each component (represented by a block of $ 1) can 

be very tight, and was in fact observed to be so in practice during the simulated robot 
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4.2.3.4 Predsctions 

experiments reported in section 5.4. The reason for this is that the action At-r is modelled 

conditionally on Vt as well as Qt, so that if the effect of the action on the linear hidden 

state is sufficiently deterministic, it may be possible to infer what the action must have 

been with some precision-relative to a candidate mixing state sequence and linear hidden 

state. And if each Qt-choice in a candidate sequence has quite specific implications for At-r 
in the light of what is known about Vt, the observed at-1 may provide strong evidence for 

distinguishing between them. What is especially significant is that the estimate of Vt can 

play a role in the model's judgement as to which mixing state was active, by modulating the 

corresponding At-1: in other words, the model can effectively perform "gating" on V. In 

section 4.2.1, it was noted that this was beyond the capability of the conditional Samovar 

model for reasons of tractability. 

On the other hand, there is no possibility of folding the known data Rt, At directly 

into the continuous world state, as suggested in section 4.2.1.1 for the conditional model, 

and allowing the model direct access to linear relationships between successive actions and 

readings: in the joint model, all distributions must be mediated through the hidden linear 

state V. This may make it less trivial for the model to get a handle on the most robust and 

obvious phenomena in its environment. (Of course, if the dimensionality of Rt, At is large, 

mediation via a projection onto a lower-dimensional V will always be preferable if only for 

reasons computational tractability.5) 

Potentially the most important difference between the two models will become clear 

when the job for which they are ultimately intended-recommending good actions to the 

robot-is discussed. It will turn out to be very much easier in principle to obtain actions 

from the joint model (section 6.2). 

4.2.3.3. Learning algorithm 

As usual, the joint model including a generative "confidence region" will, in fact, 

be quicker and easier to learn than the conditional model (79): the gating receptive 

fields of (82), which must be optimised using a general-purpose iterative maximiser 

(section 3.3.2.5), have effectively disappeared, replaced by extra blocks in the better-behaved 

output-generating mappings n,, 0j. In their absence, the weightings w revert to being a 

transition matrix, with a one-shot reestimation inherited from that for the transition matrix 

of an HMM (59). In other respects, the learning algorithm for the joint Samovar model is 

essentially similar to that for the conditional Samovar model (section 4.2.2.9), and it will not 

be specified in detail. 

5 cf. Vlassis & Kr8se, Robot Environment Modeling 
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4.3 Other approaches to msxed-Isnear modelling 

4.2.3.4. Predictions 

Making predictions using the joint Samovar model is slightly simpler than with the 

conditional model in which the readings and actions have been folded into the world state 

(cf. section 4.2.2.10). The predictive distribution is just a specialisation of the general 

rule (54): 

p(rT 10, dl e,T l) = Ev,s [p(rT I yT, J, 0) I d, B ] 

p(g10,d10'T)) f p(vTIq,dl0'Tl)p(rTIVT'J,0) 
q 

vT 

Conditioned on each sequence q, and supposing without loss of generality that T = 6, the 

situation is as follows: 

The inference of Vs and the assessment of p(q) must be made without knowledge of 

the targetted R6, but this merely requires a minor tweak to the formula by which the 

Kalman recursions incorporate the evidence. Each sequence q then gives rise to a Gaussian 

component in the overall mixture prediction, obtained by applying the output function of q's 

terminal component to V6 I q, and projecting the resultant distribution over A5 and R6 down 

to R6 alone while shifting it to take account of the known value a5: 

p(rT 10,dl0'T)) = Ep(gI0,dl0'T)) 
q 

(M 
2rr 

exp (- 2 (rT - P X (O{)RR (rT - µa) ) 

1 
2 

where /ti = ('")RV vq + (0 )RR (0i)RA 
(aT 1 _ 

(r$)AV vq ) 

and -1 

l 

and i=qT 

As usual, the outer summation over q can be approximated by running the subsequence- 

joining algorithm (section 4.2.2.5) to produce a sample of candidates for the mixing state 

sequence over some reasonable time period leading up, in this case, to T (inclusive). 
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4.3.2 Switching state space models 

4.3. Other approaches to mixed-linear modelling 

The learning algorithm set out above, which could be summarised as a KF nested inside 

an approximated HMM, is not the only way to handle the basic intractability of recursive 

mixed-linear models. 

4.3.1. An aggressive variational approximation 

One might, for example, observe that the mixing choice sequence Q is often known 

more or less exactly, a posteriori and given the true model. In that case, the posterior 

distribution of the linear hidden state sequence V is, like that of the hidden state of a 

Kalman filter, pairwise Gaussian (cf. section 4.2.2.3). So the question arises of a whether 

a cheap and dirty variational approximation can be made, along the lines of section 3.3.1.4, 

in which the w takes the form 

w(9, h) = G's (0) 11 net (gt) ww vt+ (v° vt+r) 
t 

where the Qts are treated as if they were independent. This allows the expectation over q 

in (88), which makes it necessary to resort to some relatively expensive approximation such 

as Samovar's subsequence-joining algorithm of section 4.2.2.5, to be replaced by individual 

expectation over the separate qts. 

Unfortunately, it turns out in practice that although the process does tend to settle 

on parameter values which make the approximation true (i.e. the p(Qt = i 10, d)s become 

indicator variables), the linear hidden state V is inevitably driven close to zero, so that the 

end result is merely a wastefully implemented recursive mixture of static linear maps6. The 

reason this happens is that the distributions w(vt,vt+1) are reestimated using 

pn+1 (v) oc exp EQ [logp(q, v 19)] 

oc expEEWQ,(t)P(Vt+1 rt 
I 
vt,B) 

t t 

11 
Tf T7 P(vt+l rt I vt 0)mQt (*) = 11 
t i 

Instead of keeping the q-relative Kalman filter distributions separate so that the parameters 

can be updated on the basis of statistics derived from those q-sequences in which they 

are likely to have participated, as the Samovar's learning is careful to do, this procedure 

combines them by taking their product (an "and" rather than an "or"). The resulting mean 

is naturally near zero, and the variance very small. 

6 like the "autoregressive HMM" mentioned in Rabiner, A Tutorial on Hidden Markov Models 
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4.3.2 Switching state space models 

4.3.2. Switching state space models 

Another variational approach works by considering a slightly different graphical model 

than (79), namely 

where Qt selects both a linear/Gaussian output function and a linear hidden state V,t to 

which it is applied 

Rt = sc,V,t + N(0, /3,) where Qt = i 

while each of the Vs evolves according to its own dedicated linear/Gaussian dynamics 

Vgt+r = 
A: 

Vit 
+ N(0, a.) 

The likelihood is8 

p(v, 4, r, a 10) = 11p(rt 

I 

Qt = i, v,, 1u,, lie) p(Qt =i 14t-') HAV" I vq ', A3, a.) 

This can best be described as a "recursive mixture of recursive linear models"-a bank of 

Kalman filters-as opposed to the "recursively mixed recursive linear model" of (79).9 

Because each component of the model has a whole Kalman filter to itself, rather than 

sharing the same linear hidden state with the others, a variational approximation in which 

the Qts are treated as independent does not have the crippling effect it has on the Samovar 

model (section 4.3.1). The consequent learning algorithm takes the form of applications in 

turn (or in some order or other) of 

for each filter i in the bank, the standard Kalman-Rauch recursions 

(section 3.3.3.5), weighted at each timestep t by the current estimate of the 

T Ghahramani & Hinton, Variational Learning for Switching State-Space Models 

8 omitting the terms for the initial conditions 

g Ghahramani & Hinton, Variational Learning for Switching State-Space Models points out 

that similar models have been described in the engineering and econometrics literatures 
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4.3.3.1 E-step by random samptmg 

probability Aq, (i) that i was responsible for generating the output rt, yielding 

distributions as"(v) 

for each filter i in the bank, the standard Kalman filter M-step (72)/(73) and 

(74)/(75), the latter also being weighted by the "responsibilities" wqt (i) 

the standard HMM forward-backward recursions (section 3.3.3.3) to make fresh 

"responsibility" estimates -we±1(i) making use of the likelihoods 

Evp(rt I ht,Qt = i,kt,Q,) 

This is clearly much more efficient than the Samovar learning algorithm, since there 

is no need for the expensive expectation over longish q-subsequences (section 4.2.2.5), but 

it is only appropriate for applications in which the system being modelled can be relied on 

to stay in the same KF regime for a significant period, rather than potentially choosing 

a different rule at each timestep. There is no way for inferences, made on the basis of 

observations, about the Kalman state V,t of one filter in the bank to influence the estimate 

of the subsequent state Vt+1 of another-and indeed if a filter is (believed to be) unused for 

any length of time, the variance of the estimate of its Kalman state will rapidly become such 

as to make it effectively useless. If, therefore, the motivation behind adopting a mixed linear 

model is to be able to approximate the rapidly changing dynamics of a robot's environment, 

the extra separability of the switching state-space model, from which it gains its superior 

efficiency, comes at a considerable price paid in the expressiveness thereby foregone. 

4.3.3. Monte Carlo methods 

There is an entirely different way to approach the problem of learning and using 

dynamical systems models which go beyond the small class of those with a tractable, closed 

form hidden state distribution p(H). The overall form of the learning algorithms is still the 

same-they could still be called EM algorithms. But the way the E-step is implemented is 

fundamentally different. 

4.3.3.1. E-step by random sampling 

Variational learning algorithms, and the Samovar algorithm of section 4.2.2.9, work by 

building up an explicit (if approximate) representation of p(H), and computing the sufficient 

statistics-generally, moments of that distribution-required for the M-step from that 

distribution. Monte Carlo methods, on the other hand, maintain a set of particular possible 

hidden states, simulating the dynamics of the model in such a way that their sampling 
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form hidden state distribution p(H). The overall form of the learning algorithms is still the

same — they could still be called EM algorithms. But the way the E-step is implemented is

fundamentally different.

4-3.3.1. E-step by random sampling

Variational learning algorithms, and the Samovar algorithm of section 4.2.2.9, work by

building up an explicit (if approximate) representation of P(H), and computing the sufficient

statistics — generally, moments of that distribution — required for the M-step from that

distribution. Monte Carlo methods, on the other hand, maintain a set of particular possible

hidden states, simulating the dynamics of the model in such a way that their sampling
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distribution is p(H).10 If enough point hypotheses are tracked, they can be used to compute 

sample-based versions of the moments (or whatever other statistics the M-step wants) which 

will be good estimators of the true values.11 The best known such technique in the robotics 

community is the "condensation" algorithm12, developed for use in visual tracking problems 

and since applied to robot localisationl3 

The forward part of the Condensation algorithm proceeds as follows: 

generate a sample {h°} of "particles" from the initial state distribution p(h° I t) 

repeat for each timestep t 

compute the likelihood p(rt I h;, p) of each particle (possible hidden state) 

h; in the current sample 

choose a subsample {h;,} using the (normalised) likelihoods as sampling 

probabilities 

generate the successor sample set {h;+1} by applying the stochastic 

model dynamics to each h;,, i.e. sample from the distribution 

p(ht+1 I h:,, b) 

It can be shown that the moments computed from the sets h, weighting each particle by its 

likelihood, converge stochastically to the moments of the distributions p(ht I rl 03)). Early 

versions of the algorithm based their parameter updates on statistics estimated from this 

approximation. With the addition of a smoothing backward pass14 similar to the Rauch 

recursions and the HMM backward equations, it is possible to reweight the particles so as 

to obtain estimators of the moments of p(ht I r[ °,T) )-conditioned on the future as well as 

the past. As one might expect, this extension is reported to improve the effectiveness of the 

learning algorithm considerably. 

4.3.3.2. Comparison with Samovar 

Apart from its simplicity, the great benefit of the Monte Carlo approach is that it 

relies on no special properties of the distribution p(H); this means, for instance, that 

the V-normalising problem which arises in the design of the conditional Samovar model 

(section 4.1.1.2), and is very hard to solve within a closed-form framework, becomes 

10 Doucet, On sequential simulation-based methods for a general review 

u From a strictly Bayesian point of view, it would perhaps be possible to account quantitatively 

for the uncertainty in the model parameters introduced by the finiteness of the sample. 

12 

13 

14 

Isard & Blake, Condensation 

see section 2.1.1.3 

Isard & Blake, A smoothing filter 
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irrelevant, so that it would be possible to use a condensation-type algorithm to learn a very 

"intertwined" model like that shown in (78). Indeed, the form of the model becomes within 

reason irrelevant; one interesting line of work even uses a "density tree" representation of 

the dynamics, borrowed from nonparametric statistics.15 For the kind of tasks on which 

Samovar is intended to be useful, the most intriguing possibility thus opened up is perhaps 

a recursive Gaussian process model, or mixture of Gaussian processes. 

On the other hand, for many applications one is likely to feel that slightly separable 

mixed-linear models like (79) remain a reasonable way of expressing one's ignorance, in a 

maximum entropy sense, about the true dynamics of the system-and within this class, 

the Samovar algorithm appears to offer a substantial advantage in terms of computational 

complexity. Blake16 points out that the complexity of the condensation algorithm rises 

quadratically with the size of the sample set of particles if, as has been found necessary in 

practice, a smoothing version of the particle filtering E-step is employed. If the hidden state 

space is at all large, with a high-dimensional linear part or a large number of discrete mixing 

states, a large set of particles will be required to cover it adequately, and the running time 

will rapidly become prohibitive. The Samovar algorithm, which folds all the sampling at 

the V level into closed-form, Kalman filter-like recursions, and uses hidden Markov model- 

like recursions at the Q level to direct its sample generation, takes time quadratic in the 

much smaller number of mixing states (because of the HMM forward-backward equations) 

and cubic in the dimensionality of the linear hidden state (because of the Kalman-Rauch 

recursions). It has been found to perform acceptably on quite complicated problems. 

There is no reason in principle why a Monte Carlo-based method could not be used for 

making predictions with a model learned with the Samovar algorithm, since there is then 

(obviously) no need to condition on future data. However, although a particle filter could 

probably be made to infer (a sample of) good actions in much the same way as the Samovar 

model (section 6.2), it would then be subject to the same rapid increase in computational 

complexity as in the essentially similar E-step inference. 

4.3.4. Dynamic Bayes nets 

The whole field of Bayesian time-repeated models with more or less sparse 

conditionality graphs (dynamic Bayes nets or DBNs) is a open research area. Among the 

most interesting recent results is Boyen & Koller, Tractable Inference, which investigates 

the extent of the error introduced when approximating assumptions are made about the 

hidden state distribution. This work reinforces the intuitively reasonable hope that the 

is Thrun & Langford, Monte Carlo Hidden Markov Models 

16 Isard & Blake, A smoothing filter, p. 8; North et al., Learning and classification, p. 26 
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15 Thrun & Langford, Monte Carlo Hidden Markov Models
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4.3.5 Geometrical hypothesis tracking 

perturbing effect of an imperfect representation at a particular timestep does not persist for 

all timesteps thereafter, or get magnified, but instead decays exponentially: the errors do not 

build up and render the H estimate useless. 

4.3.5. Geometrical hypothesis tracking 

Cox and Leonard's navigational method17 of constructing a tree of hypotheses about 

the structure of the world around the robot, and using an extended Kalman filter to 

estimate the robot's position conditional on each branch of the tree, is a way of getting 

around the KF's representational limitations strikingly similar to that adopted by the 

Samovar model and algorithm. Note that because they are only interested in generalising 

the KF's forward-in-time fusion ability to a mixed-hypothesis distribution, they need 

only store the leaves of the tree; the Samovar algorithm, on the other hand, has to make 

inferences backwards to states which are still relevant for its purposes because it needs to 

use them for 

17 see section 2.1.1.1 
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Chapter 5 

Evaluation 

5.1. Synthetic data 

Before assessing the performance of the Samovar model on a mobile robot environment 

modelling task, it is interesting to investigate its properties by running it against a controlled 

dataset. 

5.1.1. The framework 

The Samovar model is intended to be useful for applications where the system being 

modelled exhibits significant temporal structure of both "trend-like" and "qualitative" kinds, 

handled respectively by the model's Kalman filter and hidden Markov model elements. 

Different "situations" can succeed each other in an arbitrary order; the process dynamics in 

each situation is taken to be (approximately) linear/Gaussian, and the possibility of trend 

continuity between situations is left open by the incorporation of the linear hidden state. 

The synthetic data which helps elucidate the basic behaviour of the model is sampled from 

a process which genuinely does have the mixed-linear dynamics (82), separating the question 
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5.1.1.2 Intm-sstuatson charactenstus 

of the model's effectiveness on its own terms from the issue of how useful this scheme proves 

to be as an approximation of more realistic dynamical systems. 

5.1.1.1. Situation structure 

One of the capabilities which it is most desirable that the model should possess is that 

of recognising the existence of two whole categories of situations, which appear the same but 

in fact form separate complexes within the temporal structure of the system. For instance, 

there might be two parts of a robot's environment between which it cannot distinguish 

using directly available sensory information, but border on detectibly different neighbouring 

regions. A simple example of this phenomenon can be defined using the following transition 

diagram: 
10 

A' _. B' ° P' 

(106) 

0.4 
2 - t 0 . P G A. 

0.4 4 

Note that this is not a graphical model, like other similar-looking figures in previous 

chapters, but a depiction of a finite state-machine, the arcs representing permissible 

transitions between states, and the numbers transition probabilities. (Arcs from A, B, A', B' 

back to themselves are omitted for clarity.) 

Here, the mixing states (situations) A', B', P' have the same linear dynamics as their 

counterparts A, B, P, and the transition probabilities between A, B are the same as those 

between A', B'. The only differences are that from the "true prompt" situation P it is 

possible sometimes to reach a "goal" situation G, while from the "false prompt" situation P 
the only destination is A'; and that a transition into the A, B, P complex is always signalled 

by a "landmark" L. Because of the aliasing of the linear dynamics between the two groups 

of mixing states, it is impossible to resolve the ambiguity between them without making 

long-range inferences from the relatively rare L and G occurrences. 

5.1.1.2. Intra-situation characteristics 

The most difficult kind of data sequence which the algorithm could be asked to 

segment' is one in which the linear state is more hidden than visible. For instance, suppose 

that there are no process inputs-A is zero-dimensional-and the outputs R have smaller 

1 in the terminology of Ghahramani & Hinton, Variational Learning for Switching State-Space 

Models 
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5.1.2 Experimental results 

dimensionality than the linear hidden states V. Then, other things being equal, the model 

will not be able to tell which component i was used at a given timestep t merely by checking 

how accurately each would map rt to rt+l through its dynamics matrix A , because, 

unless A, is degenerate, different values of the linear hidden state Ht could produce any rt+i 

whatsoever. Instead, it will be forced to use non-local information, i.e. the way the readings 

behave over several timesteps either side of t. For these experiments, the outputs R were 

made one-dimensional and the linear states V two-dimensional. 

On top of that, the difficulty of finding the true segmentation will rise as the 

precisions a, of the components' mappings fall, or their dynamics matrices A, become more 

similar. For this experiment, the dynamics matrices were sampled from an elementwise 

uniform distribution in the range (-z, 2), which effectively guarantees that the hidden linear 

state will not diverge towards infinity and cause the program to abort. 

(A,)kl = Uniform (107) 

The noise variances (inverse precisions) were generated by drawing their square roots from 

an elementwise uniform distribution of variable width: 

a, = (° a)-r 

where (a) kl = Uniform (-E, E) 

By adjusting 6, it is possible to control the solubility of the segmentation task. 

5.1.2. Experimental results 

(108) 

The experiments performed with data sets generated from synthetic environments 

are directed towards answering the key question: does the subsequence-joining procedure 

implementing the E-step of the Samovar model's learning algorithm (section 4.2.2.5) work? 

Given the true values of the parameters of the model from which a data sequence was drawn, 

does the small set of proposed mixing states sequences Q match the true sequence in which 

the components were used? 

In assessing the performance of the Q-inference algorithm, there are two measures 

which seem worth considering. One is the probability p(r I q?, 0.) of the observed outputs 

conditional on the sequence q? which it recommends as the single most likely one2, compared 

2 The maximum likelihood mixing state sequence can, given the assumptions made by the 

subsequence-joining procedure, be obtained using the standard Viterbi algorithm in a way analogous 

to how the forward-backward equations were employed in section 4.2.2.5. 
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5.1.2 Expenmental results 

with their probability given the true sequence q.. This can conveniently be expressed on a 

log scale as 

AL = 
1 
7, E (logP(rt I q?, B.) - log p(rt I 9. B)) 

t 

Another statistic which drops naturally out of the problem setup is the probability with 

which the algorithm suggests the system was in the discrete state complex A, B, P when in 

fact it was in A', B', P, or vice versa. 

palg(gt E {A',B',P'}) if q: E {A,B,P} 
M=Y Spas(gtE{A,B,P}) if qtE{A',B',P'} 

t 1 0 otherwise 

This is a reasonable measure of its success in inferring the overall temporal structure of the 

data; in order to score well, the algorithm must correctly identify occurrences of the states 

L, G and P-which can only be achieved by a careful analysis of contextual clues-and use 

them as "punctuation marks" in conjunction with the structure of the transition matrix to 

resolve the ambiguity of what happens in between. 

The following graphs show how these two statistics M and AL vary with the noise 

level £, with V-matching (section 4.2.2.6) enabled and disabled. Their data points were 

obtained as follows: 

Create a model 0. with 

the mixing state structure of (106) 

random linear dynamics, as defined in (107) 

random Gaussian noise terms depending on the setting of 6, as defined 

in (108); 

sample for 1000 timesteps from this model, recording the true mixing state 

sequence q. and readings r.3 

ask the algorithm of section 4.2.2.5 to reconstruct a sample of hypothetical mixing 

state sequences, given knowledge of r. and 0. (but not, of course, q.); 

compute the statistic of interest (SC or M). 

Repeat 60 times, and report the overall average of the statistic .4 

3 Note that 1000 is not a model parameter, but simply a large enough number of example 

timesteps to get a low-variance estimate of each model's performance. 

a Again, the repetitions are simply there to help estimate the model class's performance 

precisely; they do not affect the inference process itself. 
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5.1.2 Experimental results 

The maximum number of candidate subsequences which the algorithm was allowed to 

maintain for each subsection (candsMax of section 4.2.2.9) was set at 30. Other settings of 

this parameter were not explored formally; as will be demonstrated shortly, the setting was 

high enough for the algorithm to achieve good results with V-matching enabled. 

(For a visualisation of the subsequence-joining algorithm in action on this data set- 
albeit with a smaller candsMax setting-refer to section 4.2.2.8. Numerals 0-7 in the 

diagrams correspond to mixing states A', B', P, L, A, B, P, G respectively.) 

Turning first to the measure M, it turns out as expected that the algorithm's inferences 

as to which group of mixing states (A, B, P or A', B', P) was active at each timestep 

improve as its horizon for linear state estimation is lengthened. This graph shows its 

performance when V-matching (section 4.2.2.6) is disabled: 
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The abcissa denotes the noise-determining E and the ordinate M. When the horizon length 

is one, the algorithm is attempting to infer the linear state at each timestep only from its 

immediate influence on a single observable output; since that is impossible, there is no way 

for it to get any grip on what is going on, and its classification can only be random. Because 

the L and G states are not subject to misclassification under the scoring scheme, this means 

that M evens out at around 41% (rather than 50%) irrespective of the noise in the system. 

As the horizon is lengthened, the algorithm's resolving power improves and the proportion of 

misclassified states falls at all noise levels. Of course, in a really noisy system it is ultimately 

impossible to infer the mixing state sequence effectively; at E = I the error rate has climbed 

to 35%. 
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is one, the algorithm is attempting to infer the linear state at each timestep only from its

immediate influence on a single observable output; since that is impossible, there is no way

for it to get any grip on what is going on, and its classification can only be random. Because

the L and G states are not subject to misclassification under the scoring scheme, this means

that M evens out at around 41% (rather than 50%) irrespective of the noise in the system.

As the horizon is lengthened, the algorithm's resolving power improves and the proportion of

misclassified states falls at all noise levels. Of course, in a really noisy system it is ultimately

impossible to infer the mixing state sequence effectively; at £ = 1 the error rate has climbed

to 35%.
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5.1.2 Experimental results 

Note that even in the best case, the average misclassification probability is still 

nontrivial at 15%, because of "possibility lossage". The candsMax = 30 memory slots 

available are sufficient to keep alive as hypotheses all the 16 two-step subsequences permitted 

by the transition matrix-the number of links in the diagram (106), including the omitted 

self-links of A, B, A' and V. But, as the graph above makes clear, this horizon is still 

too short to support accurate Q-inferences, so the selection of 30 of the possible 625 

candidates for covering each four-step section is necessarily somewhat arbitrary. Many of 

the right answers will be thrown away at this point, so that they are simply not available for 

consideration as part of the longer subsequences which would demonstrate their value. 

With V-matching enabled, the algorithm performs much better: 

0 032 01 032 
Noise standard deviation (log scale) 

1 

V-matching allows inferences about the linear hidden state made on the basis of a single 

observation in isolation to propagate forwards and backwards sufficiently well that in the 

absence of serious disturbing noise, the algorithm is immediately able to achieve an average 

misclassification probability around 6%. This in turn means that it is able to concentrate its 

hypothesis space on the most likely subsequences well before combinatorial explosion sets in 

and forces it to start pruning blindly. By the time it has raised its horizon to four timesteps, 

M has fallen below 0.3%3. As the noise level is increased, the estimates of V-and therefore 

the V-matching judgments-made on the basis of short sections become less precise; once E 

reaches 0.32, the longer horizons (eight and up) have a clear advantage. 

3 With a 32-timestep horizon, this is further reduced to 0.14% 
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5.1.2 Experimental results 

The story told by the other measure AL is similar. Here it is plotted against E with 

V-matching disabled: 

100, 
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8 

-1000 - 
001 0032 01 

Noise standard deviation (log scale) 
0 32 i 

With a horizon length of one, the suggested best sequence q? turns out always to consist of 

repetitions of the single state A', the unconditionally most probable state in the Markov 

process defined by (106)-a fair choice, given that consideration of the individual process 

outputs does not give the algorithm any other information to work on, but one which is 

necessarily going to yield an essentially arbitrary prediction of the process outputs. It is to 

be expected that the log probability of those predictions relative to those made conditional 

on q, will simply depend on the variance of the process output noise, as determined 

by E; and indeed the graph shows AL at horizon length one evening out around -1000, 

-100 and -10 as E2 increases from loooo via logo to loo. Given longer horizons, the 

algorithm does better, but "possibility lossage" means that the fit between q? and r, is still 

somewhat strained: even a relatively small number of wrong mixing state choices can make 

it impossible to find a linear state trajectory which accounts satisfactorily for the observed 

outputs. It is only at higher noise levels that q?'s likelihood reaches and exceeds that of q 
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With a horizon length of one, the suggested best sequence <?? turns out always to consist of

repetitions of the single state A', the unconditionally most probable state in the Markov

process defined by (106)—a fair choice, given that consideration of the individual process

outputs does not give the algorithm any other information to work on, but one which is

necessarily going to yield an essentially arbitrary prediction of the process outputs. It is to

be expected that the log probability of those predictions relative to those made conditional

on q* will simply depend on the variance of the process output noise, as determined

by £; and indeed the graph shows A£ at horizon length one evening out around —1000,

-100 and -10 as £2 increases from ^^ via j^ to J^Q. Given longer horizons, the

algorithm does better, but "possibility lossage" means that the fit between q-> and r* is still

somewhat strained: even a relatively small number of wrong mixing state choices can make

it impossible to find a linear state trajectory which accounts satisfactorily for the observed

outputs. It is only at higher noise levels that q-r's likelihood reaches and exceeds that of q*,
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5.1.2 Experimental results 

as an expanded view of the graph shows: 
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But this is no great achievement; under these conditions, little hard information can be 

gleaned from the outputs, so that the main determinant of the likelihood of a mixing 

sequence is the unconditional probability of its state transitions, and even the sequence 

A', A', A' ... (with an unbeatable average transition probability of 0.4) comes to seem more 

probable than the truth. 

With V-matching enabled, on the other hand, the algorithm can produce q?s which are 

at least comparable in likelihood with q, for all horizons longer than a single step: 
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But this is no great achievement; under these conditions, little hard information can be

gleaned from the outputs, so that the main determinant of the likelihood of a mixing

sequence is the unconditional probability of its state transitions, and even the sequence

A', A', A' . . . (with an unbeatable average transition probability of 0.4) comes to seem more

probable than the truth.

With V-matching enabled, on the other hand, the algorithm can produce g?s which are

at least comparable in likelihood with g* for all horizons longer than a single step:
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5.2.1 Envarvnment 1 

The improvement in AC gained by considering longer subsequences is marginal but 

consistent4; here is a detail from the same graph: 

0 25 

0032 01 032 
Noise standard deviation (log scale) 

5.2. Simulations 

In order to provide a means of assessing the effectiveness of the Samovar model on 

a reasonably realistic, but still well-controlled, learning task, two simple simulated robot 

environments were constructed which exemplify some of the phenomena which the model 

was designed to handle. 

5.2.1. Environment 1 

As is traditional in autonomous robotics, the setup is a two-dimensional navigation task 

for a robot equipped with range sensors. In the following diagram, the robot is represented 

4 -except that it is reversed at the highest noise levels, with horizon lengths 4, 8, 16 yielding 

very slightly better likelihoods than 32. This effect was found to be repeatable but no clear 

explanation for it could be found. 
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5.2. Simulations

In order to provide a means of assessing the effectiveness of the Samovar model on

a reasonably realistic, but still well-controlled, learning task, two simple simulated robot

environments were constructed which exemplify some of the phenomena which the model

was designed to handle.
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As is traditional in autonomous robotics, the setup is a two-dimensional navigation task

for a robot equipped with range sensors. In the following diagram, the robot is represented

4 —except that it is reversed at the highest noise levels, with horizon lengths 4, 8, 16 yielding

very slightly better likelihoods than 32. This effect was found to be repeatable but no clear

explanation for it could be found.
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5.2.1.2 The world 

by a circle; the irregular outer rectangle delineates the boundary of its enclosure, and the 

rectangle labelled `food' marks a "target" region which is of special interest to the robot. 

5.2.1.1. The robot 

For simplicity, the robot is modelled as being perfectly round. It has two range sensors, 

one pointing forwards and one to the right-the minimum which could reasonably be 

required for modelling its anticlockwise wall-following behaviour. These sensors provide 

accurate measurements Rahea<! and Rright, on a [0, 1] scale, of the distance to the nearest 

obstacle in their respective directions up to a range of 80 pixels, which (as can be seen 

from (110)) is quite small compared with the overall size of the enclosure. An additional 

sensor is provided which outputs Rfood = 1 if the centre of the robot is positioned inside 

the `food', and zero otherwise. 

Action commands to the robot take the form of two variables Ao and Al , both E [0, 1 

which determine the distance and bearing in which the robot travels between timesteps t 

and t + 1: 

pos.xt+r = pos.xt + distt cos bearings+r 

pos.ys+r = pos.yt + distt sin bearings+l 
t s 

where distt = 40 pixels x 
ao + a' 

and bearings+' = bearing' + 70° x (ao - at ) 

The maximum distance the robot can move is therefore 40 pixels, or half the reach of of its 

range sensors. (This is intended to be reminiscent of how a tracked vehicle might respond to 

commands to move its left and right tracks foward by given amounts.5) 

s c.f. Pierce & Kuipers, Map learning 
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5.x.1.3 The data 

5.2.1.2. The world 

Most of the enclosure consists of straight or gently curving sections of wall. In these 

areas, the readings from the range sensors will exhibit trend-like relationships with the 

previous readings and the robot's actions, as the wall approaches and recedes at a rate 

dependent on the lengths of the steps made by the robot and its relative orientation. There 

is a (limited) legitimate role for hidden linear quantities, for instance where the curvature of 

the wall could be measured by comparing successive range measurements. These phenomena 

are probably best modelled using linear rules. 

Other aspects of the environment are of a, more qualitative and less smoothly regular 

nature, which could be captured using mixture rules. The abrupt changes in the direction of 

the wall at the corners of the arena fall into this category, as do the placements of the "food" 

area and the large notch in the wall positioned a little way clockwise from it. 

5.2.1.3. The data 

The training set on which the model is trained, and the test set against which its 

performance is evaluated, were generated by steering the robot by hand around its enclosure 

in an anticlockwise direction, its distance from the wall varying from near zero up to about 

the limit of its range sensors. The trained model is expected to be able to predict the range 

sensor readings with fair accuracy. 

Each time the robot passed through the bottom right-hand corner of the arena, one of 

several behavioural variations was chosen, according to which it either did or does not at 

some point move into the "food" area and hence trigger the food-detecting sensor. When 

it reached the notch in the outer wall, which is designed to be a reliable landmark for the 

region near the food, it was always moved more or less directly forwards by the maximum 

distance for the next two steps. It could then be caused to make a sharp turn to the left, 

and-if not too close to the lower edge of the enclosure-would then find itself on the "food" 

area. Or it would simply be moved forwards, missing the "food" altogether. The possible 

scenarios are represented in the following diagrams: 

The robot turns and encounters 
the food (situation 1) 
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5.2.1.3 The data 

The robot turns back parallel 
to the wall, still on the food 
(situation 2) 

The robot misses the food 
because it does not turn 
(situation 3) 

The robot turns, but misses the 
food because it was too close too 

the wall (situation 4) 

Similar sequences were played out when the robot passed through the opposite corner of the 

arena, except of course that the robot did not encounter the food since was in the wrong 

place. 

The robot turns, but it is not in 
the right place to find the food 
(situation 6) 

The robot is in the wrong place 

and does not turn (situation 7) 
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5.2.1./ The model's task 

The robot would be too close to 
the wall even if it were in the 
right place (situation 8) 

[--77M 1 

To these were added situation 5, covering a single timestep in the training data at which the 

robot was driven onto the food in a way which never otherwise happened (in the test data or 

in the training data), and situation 0, covering all otherwise unclassified timesteps. Over the 

22 circuits of the arena which were made as the training data was being collected, and the 

30 (separate) circuits from which the evaluation data was gathered, several examples of each 

combination of possibilities were included: 

Situation N° in training set _N° in test set 

0 522 705 

1 11 10 

2 11 10 

3 6 10 

4 6 10 

5 1 0 

6 6 10 

7 16 10 

8 4 10 

Overall, the training circuits took 583 timesteps to complete and the test circuits 775. No 

great effort was expended on making the test data identical in character to the training 

data on measures such as the robot's average distance from the wall; part of the point of a 

probabilistic model is that it should degrade more or less gracefully in the face of this kind of 

variability. 

5.2.1.4. The model's task 

Each of the robot's three sensors presents the model with a different kind of problem. 

Because of the (manually generated) behaviour patterns from which the training 

and test data sets resulted-mostly, wall-following of a reasonably smooth boundary- 

the readings from the right-pointing range sensor could be predicted quite successfully 

by approximating linearly their relationship with their predecessor(s) and the robot's 

actions. However, the applicability of the linear rule (or rules) will vary depending on 

the context. There is also, potentially, scope for the model to learn the detailed shapes of 
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Overall, the training circuits took 583 timesteps to complete and the test circuits 775. No

great effort was expended on making the test data identical in character to the training

data on measures such as the robot's average distance from the wall; part of the point of a

probabilistic model is that it should degrade more or less gracefully in the face of this kind of

variability.

5.2.1.4- The model's task

Each of the robot's three sensors presents the model with a different kind of problem.

Because of the (manually generated) behaviour patterns from which the training

and test data sets resulted—mostly, wall-following of a reasonably smooth boundary—

the readings from the right-pointing range sensor could be predicted quite successfully

by approximating linearly their relationship with their predecessor (s) and the robot's

actions. However, the applicability of the linear rule (or rules) will vary depending on

the context. There is also, potentially, scope for the model to learn the detailed shapes of
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5.2.2.1 The robot 

characteristically irregular sections of the wall, and make sharper predictions than it would if 

it had to treat their effects as "noise". 

Except when the robot comes to a corner, the forward-pointing range sensor will 

always read unity, to indicate that the way ahead is clear for more than 80 pixels. The 

general lack of obvious landmarks will perhaps make it difficult for the model to predict 

when these corners are going to occur, but the immediate successor to a non-unity reading 

should be easy to guess, since it will depend strongly and smoothly on the robot's current 

action. 

The environment is, of course, carefully set up so that the model cannot predict 

accurately when the food sensor will read high unless it has taken on board some fairly 

subtle temporal phenomena. If it is to tell the food area in the lower right hand corner from 

the otherwise similar upper part of the arena, it needs to recognise the "notch" landmark, 

and remember it for three timesteps (by moving into a specific chain or subnet of mixing 

states Q). Then it has to judge whether the robot is sufficiently far from the wall to be able 

to reach the food, and has made a move which will actually take it there. If it fails to take 

all three factors into account, it will necessarily make either false positive or false negative 

predictions for the reading at several timesteps in the test data.6 

5.2.2. Environment 2 

Complementing the navigation task of section 5.2.1, a second environment was 

constructed with the aim of comparing the performance of the Samovar model on two 

problems involving different dynamics. As before, the robot exists in a two-dimensional 

enclosure in which is situated a designated "food" region. 

(112) 

6 Note too that on top of this intrinsic difficulty, the model is not told that the food sensor's 

reading is a discrete rather than a continuous variable. 
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5.2.2.2 The world 

5.2.2.1. The robot 

This time, the robot has three range sensors, providing accurate measurements on a 

[0, 1] scale of the distance to the nearest obstacle straight ahead and 30° to either side, up to 

a maximum of 160 pixels (more than half of the internal width of the enclosure). The sensor 

indicating by means of a 0/1 output whether the robot is positioned inside the `food' region 

is retained. 

In the new environment, the robot's actions determine not its speed as before but its 

acceleration, via a (rough) simulation of momentum. However, the robot's angular motion is 

damped. In terms of the variables Ao and At, both E [-2, 2 ], 

pos.xt+1 = pos.xt + distt cos bearings + 
2 

turns 

pos.yt+l = pos.yt + dish sin bearings + 
2 

turns 

speeds+r = speedt + accelt 

bearings+r = bearingt + turnt 

where distt = 40 pixels x (speedt + 
2accelt) 

and accelt = 
ao ±4 

2 

and turn' = 70° x (ao - a') 

These responses are intended to mirror roughly the effect of sending commands to 

lateral propellors fitted to a submersible robot (with a stabilising fin). An action (0, 0) leaves 

the robot's speed and orientation unchanged, so that it coasts forward for a distance of 40 

pixels times its previous speed. Turns can be accomplished via an asymmetric pair of motor 

commands, and the robot can speed up or slow down by issuing net positive or net negative 

pairs. 

Environment 1 exhibits phenomena which are dynamic, but discrete, and linear, but 

static; the point of bringing momentum effects into environment 2 is to bring dynamic-linear 

phenomena into the picture as well-the kind of relationship which cannot be handled by the 

standard models, and which motivated the development of Samovar in section 4.1. 

5.2.2.2. The world 

As before, the enclosure is mostly quite regular in shape, so that there should be clear, 

near-linear relationships to be discovered between the range sensor readings and actions. 

However, they will depend critically on the robot's speed; if the action at particular time 

is the no-op (0, 0), the distance by which the obstacles the robot is facing approach it, and 

hence the amount by which its range sensor readings decrease, will be determined entirely by 
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phenomena into the picture as well—the kind of relationship which cannot be handled by the

standard models, and which motivated the development of Samovar in section 4.1.

5.2.2.2. The world

As before, the enclosure is mostly quite regular in shape, so that there should be clear,

near-linear relationships to be discovered between the range sensor readings and actions.

However, they will depend critically on the robot's speed; if the action at particular time

is the no-op (0,0), the distance by which the obstacles the robot is facing approach it, and

hence the amount by which its range sensor readings decrease, will be determined entirely by
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5.2.2.3 The data 

its prior speed (as well as on their relative orientation). Of course, this is precisely the kind 

of situation for which Kalrnan filters were designed, and the model should be able to cope 

well by using the linear hidden state V t to represent the robot's speed-along with whatever 

else it finds useful. 

In addition, the environment does have some discrete features, including the food and 

the characteristic bulge in the outer wall, which will be best modelled by deploying different 

mixture components. 

5.2.2.3. The data 

A slightly different strategy was adopted in the generation of the training and test 

data sets for this environment. In the previous experiment, the robot was steered around 

the walls of the enclosure (110), performing a characteristic "food-encounter" manoeuvre in 

two similar places, one of which actually gave access to the food and was signalled (earlier 

in the circuit) by a landmark notch. Here, the robot is simply steered onto the food, or 

not, each time it passes anticlockwise past the landmark bulge. However, during half these 

passes, the state of the enclosure is changed from that shown in (112) so that the food and 

the landmark both disappear: 

(113) 

Both the training and test runs contained five instances with the enclosure in state (112), 

and five with it in state (113), of each of the following scenarios: 

The robot turns and encounters the food 

(situation 1) 
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5.2.2.3 The data 

The robot is still on the food 
(situation 2) 

food 

The robot misses the food because it does 

not turn enough (situation 3) 

The robot turns, but misses the food 
because it was too far away (situation 4) 

Situations 6-8 are, for this environment, labels for the same parts of the robot's 

anticlockwise cycle through the environment, but with the landmark bulge closed off and the 

food absent. Situation 5 is, as before, a category for timesteps at which the robot encounters 

the food in an unusual way, which happened once in the test data for this environment but 

not in the training data, and situation 0 covers all the otherwise unlabelled timesteps. 

The robot was driven at a variety of speeds ranging from below ten pixels per step 

to above fifty, sometimes moving at a steady speed for a number of steps and sometimes 

accelerating or decelerating. This, and the food's large size and circular shape, made it 

quite difficult to predict how long the food sensor was going to remain high once triggered 

(situation 2); in environment 1, the robot in practice always stayed on the food for precisely 

two steps. Distinguishing between situations 1 and 4 was also made more difficult, because 

the range of trajectories which the robot followed through the food area was considerably 

greater. 
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5.3.1 Dunning the conditsonal models 

Overall, the training run comprised 645 timesteps and the test run 698, broken down as 

follows: 

Sstuation No in training set NO in test set 

0 598 659 

1 6 5 

2 16 8 

3 5 5 

4 5 5 

5 1 1 

6 5 5 

7 5 5 

8 4 5 

5.2.2.4. The model's task 

(114) 

If the model is to predict the range sensor readings accurately, it must learn how 

they depend on their predecessors and the robot's speed & direction, and how to estimate 

its speed by comparing successive readings, taking the accelerating effect of its actions in 

account, and so on. It could achieve reasonable results by representing its speed discretely, 

in the mixing hidden state Q, with separate linear components coming into play in different, 

quantised speed ranges; but it would appear to be easier and more effective for it to use 

instead the linear hidden state V. However, V may not be sufficient on its own as a means 

of addressing the structural differences between different parts of the enclosure: between, 

for instance, the corner with the landmark bulge and the smooth surface down the left hand 

side. 

As before, the environment has been carefully arranged so that the food sensor 

readings cannot be predicted correctly without noting, and then remembering, a landmark 

characteristic for the presence of the food, and subsequently monitoring the robot's readings 

and actions to determine whether it is close enough and carrying out the right procedure for 

ending up in the designated region. 

5.3. Models evaluated 

This section details the pragmatic answers developed to the questions left open by the 

theoretical framework of section 4 and those which arose while running the experiments. 
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5.3.1.1 Regularnsation 

5.3.1. Training the conditional models 

Most of the issues will be discussed in the context of the conditional Samovar models, 

which include as a special case the hidden Markov and linear (or autoregressive) hidden 

Markov models used as references against which to judge the behaviour of the models 

proposed here. 

5.3.1.1. Regularisation 

The question of how to control the complexity of the model falls outside the scope of 

the work reported here (see section 6.1.3). However, the issue of regularisation, which is 

(or is treated in the Bayesian theory as) an aspect of this problem, cannot in practice be 

ignored. 

If any of the model's components are judged to have been used only at a few timesteps, 

it is possible that the maximum likelihood solution for its dynamics matrix A to become 

degenerate or nearly so, with a value or subspace of values capable of accounting very 

accurately for all the readings the component is supposed to have been responsible for. 

A straightforward maximum likelihood learning algorithm will naturally seek to exploit 

this phenomenon in order to obtain a likelihood which is very high or even unbounded, 

by increasing the component's noise precision a; the theory that there is no noise in the 

process modelled by the component will be logically consistent with the data. But then 

the program may encounter a numerical singularity and fail; and even if it does not, the 

solution will most likely account poorly for future instances of the same situation, since in all 

probability there will in fact be unpredictable variations in the precise values of the readings, 

which will be given a very low probability by the over-precise predictive distribution. The 

same phenomenon can happen on the input side if a component's gating patches are made 

very small. 

To avoid this problem, it's necessary to add some terms to the objective function 

targeted by the optimiser which penalises over-specificity when there is little data to go 

on. In the Bayesian formulation, these terms are nicely interpreted as priors expressing a 

more or less strong belief that there is some noise to be taken into account; they achieve the 

desired effect of bringing the maximum a posteriori parameters back from the degenerate 

maximum likelihood point, while fading into the background if there is more data available. 

For practical reasons, it's obviously desirable to choose the form of the prior in such a way 

as to avoid upsetting the tractability of the update rules. One possibility is to put a gamma 

distribution on the determinant of the noise precisions a, and patch precisions y,: it turns 

out that the extra terms introduced slip unobtrusively into the likelihood (82). Even more 
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5.3.1.1 Regulansation 

straightforward is a conjugate prior taking the form of offsets to the sufficient statistics, with 

an effect equivalent to that of some previously observed data with particular characteristics. 

However, when the system was tried out on the simulated robot data, a serious problem 

was uncovered in the way either of these kinds of regularisers interacted with the procedure 

for making predictions (section 4.2.2.10). One way in which the model can account for the 

temporal structure of the environment between the landmark notch and the "food" is 

X... 

l r---------- 

(115) 

This is a transition diagram like (106), showing possible trajectories of the mixing state Q 

over the timesteps following the one at which is encounters the landmark notch. The state L 

is specialised for the situation where the robot is next to the notch; from L, Q can evolve 

either through a similarly specialised complex A, B, G of states, leading to one in which the 

"food" sensor reads high, or through more normal states, X say, which account generically 

for the typical situation in which the "food" sensor stays low. Of course, there is a more 

economical structure available; 

l r-`------- 

Nevertheless, the model does generally converge on the solution (115), and there is no 

obvious reason of principle why it should not work adequately. Indeed, when the model 

considers its experiences retrospectively, it can easily tell which branch Q must have taken 

(L, A, B, G or L, X, X, X), because the "food" sensor reading of state G is immediately 

recognisable and otherwise very unusual. The problem comes when the model wants to make 

a prediction for what is about to happen three steps after it has seen the notch, i.e. when it 

has to decide whether it is going to encounter the food or not. One would hope that it will 

consider both branches as possibilities, so that its prediction can take the form of a mixture, 

one component arising from the L, A, B, (G) possibility, and the other from the L, X, X, (X) 

hypothesis; the former will postulate a "food" sensor reading of 1.0 and the latter one of 0.0. 
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5.3.1.2 Structural adaptation 

What happens in practice, however, is that the former theory is entertained with a very 

low probability or not at all. The problem is simply that the state(s) X are just as good 

as A, B at accounting for the generic, but very consistent and predictable, situation in which 

the robot is merely moving along a roughly straight wall. In fact, they can always account 

perfectly for the readings of both the forward-pointing range sensor (one) and the "food" 

sensor (zero); and this means that if the regulariser is based on a prior subject to domination 

by the likelihood, their output noise variances will tend asymptotically to zero with the 

number of timesteps at which they are considered to have been active. And since they are 

used very commonly in similar situations all over the arena, while the alternatives A, B 

are deployed only occasionally, this means that their predictions will necessarily be much 

more precise-whatever the setting of the prior's parameters. This is what accounts for the 

model's preference for the L, X, X, (X) branch: it really does look more likely. 

At root, it is a mismatch between the model and reality that underlies the phenomenon. 

To model the "food" sensor output as a continuous variable is, of course, asking for trouble, 

and the model could easily enough be extended to handle discrete outputs in a more 

informed way (section 6.1.2.1). However, the problem would remain with regard to the 

range sensor outputs, which are sometimes perfectly predictable and other times subject to 

considerable and uncertain variation. 

The solution adopted was simply to add a fixed offset to the model's output variances 

themselves, effectively capping the precision with which any reading can be predicted. 

A, B and the X states are thereby placed on the same footing and the prediction goes 

through successfully. Offsetting the output variances is not equivalent to supposing some 

fixed number of previously seen training examples (the number would have to be variably 

equal to the amount of actual data); it is more like blurring all the data points with some 

fixed Gaussian uncertainty, or indeed adding Gaussian sensor noise-which makes the 

environment closer in character to how the model assumes it will be, at the cost of losing 

some information. For the experiments reported here, this artificial variance was set to a 

diagonal 0.0001. No further regularisation-related difficulties were encountered. 

5.3.1.2. Structural adaptation 

The other major task associated with complexity control is deciding the number 

of components in the model. Like the standard Baum-Welch HMM learning procedure 

(section 3.3.3.3), the Samovar learning algorithm as presented in section 4.2.2.9 focusses 

entirely on the problem of training a model with a previously fixed number of mixing 

states. Bayesian theory does in principle also give a formula for the estimate of the "right" 

number tr of states, but actually implementing it is another matter. The issue will be 

discussed in section 6.1.3. For now, its most trouble manifestation-namely, the phenomenon 
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5.3.1.2 Structural adaptation 

whereby a model with a large number of states can "overfit" the noise in the training data 

in the way described in section 5.3.1.1, and perform poorly on further data drawn from 

the same distribution-will be sidestepped. The number of components will be limited to 

a level which is known to be sufficient but not wildly excessive, and likelihoods quoted in 

test results will be computed using an independently generated data sequence, not with the 

sequence used for training the model. Depending on the character of the application, such 

a pragmatic approach can prove effective in practice, especially since many mixture models 

are to some extent self-regulating: they do not always find "work" for all their components 

merely because they are there, instead allowing the weighting given to "unnecessary" ones to 

decay to zero. 

Indeed, when working with a mixture of experts model (static or recursive), it is 

not uncommon to encounter the opposite difficulty. This is because the chief challenge 

in training such models is overcoming a kind of bootstrapping problem. Given the true 

parameters according to which expert generates its outputs, an EM algorithm can reliably 

infer the gating parameters which determine the probabilities of each expert being chosen 

given a certain input (and vice versa). However, before the algorithm has worked out 

what experts are in play, it is liable to underestimate the number of classes into which the 

inputs may need to be divided: if the trigger ranges of two components in the true model 

overlap, but the learned model does not yet handle either case accurately, then there is no 

likelihood-increasing "incentive" for it to make what appears to be a distinction without a 

difference by placing two receptive fields in the same part of the input space; and, overfitting 

notwithstanding, it will often settle on a solution where one expert deals poorly with both 

kinds of input. 

One way to work around this is 

start with a small number of components (e.g. one) 

train them for a while using the EM algorithm 

remove the ones which are judged to have been active at a very small (expected) 

number of timesteps: 

S is Ep(g10, d) E,a(gt,i) «11 
l 4 t 

-the numbers p(q 10, d) being calculated as seq.prob by section 4.2.2.9 

duplicate the remaining ones 

repeat a few times, until there are "enough" components 
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5.3.1.3 T'rasning procedure 

There are several obvious free parameters involved in this procedure, which have no inherent 

semantic importance but may nevertheless influence the nature of the solution on which the 

model eventually settles as well the time it takes to do so. Furthermore, the "duplication" 

step can be implemented in a variety of ways: as a copy with a random perturbation of fixed 

magnitude; or by going back to the posterior distribution of the component's parameters 

and constructing two replacements from either end of its major axis; or with a straight copy, 

relying on the random element of the sequence-joining algorithm to break the symmetry. 

5.3.1.3. Raining procedure 

The training regime used for the simulation experiments was chosen after a little trial 

and error development as one that seemed to work reasonably well: 

1) start with a single component, with regularisers fixed to bias it towards a constant 

output 

2) Map out where the outputs fall 

do once or twice 

E-step 

M-step outputs 

duplicate the components 

do five times 

E-step 

M-step outputs 

3) Get a rough idea of the discrete temporal relationships between the different parts of 

the space 

do once or twice 

duplicate the components (to allow for a degree of aliasing) 

do ten times 

prune unused components 

E-step 

M-step outputs and background weightings 
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5.3.1.3 Raining procedure 

4) Bring linear mappings into play where there is a demand for them 

relax regularisers to allow linear mappings 

do 20 times 

prune unused components 

E-step 

M-step outputs and background weightings 

5) Finalise the discrete temporal relationships 

duplicate the components 

do 20 times 

prune unused components 

E-step 

M-step background weightings 

at last, 

E-step 

M-step gating patches 

6) Settle down 

do 20 times 

prune unused components 

F-step 

M-step outputs and background weightings 

The pattern followed is one of increasing model sophistication: the training script 

moves from a single Gaussian (step 1), via an unconditional mixture (step 2) and a hidden 

Markov model (step 3), to a recursively mixed recursive linear model (step 4), before finally 

throwing in the gating conditionality. It helps to reserve this last step to the end, because 

a naive implementation of the conjugate gradients-based optimisation (section 3.3.2.5) is 

necessarily rather slow; it is possible, however, that the number of discrete states left at the 

end of training is larger than it would be if the gating parameters were optimised at various 

earlier points as well. If the steps before step 4 are omitted, so that the model is allowed 

to introduce temporal linear relationships early on in training, it immediately tries to use 

these to account for all the phenomena in its world-even those which are much better 

explained in terms of the discrete dynamics, such as its regular encounters with the food or 

with the corners of the arena, both of which are essentially discontinuous in their effects on 

the robot's sensor readings. 
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5.3.1.4 Opttmssatson of the gating receptive fields 

By varying the number of times the model's components are duplicated in steps 2 

and 3, different sizes of model can be created. For instance, a model of size 32 can be 

obtained by performing two duplications each time, and one of size 8 by performing them 

just once. In step 2, where the aim was to get good coverage of the data, each component i 
was duplicated by computing the posterior of its mapping A, (a matrix-variate Gaussian) 

and substituting two components with mappings drawn from the opposite 0.5 standard 

deviation points of that distribution's major axis. In later steps, where the aim was to create 

possible aliases for situations, the components were simply duplicated precisely (though they 

were allowed to diverge thereafter). When a component was split, the transition probabilities 

to and from it were divided approximately equally between its offspring, creating a 2 x 2 

square block in w. In fact, it would be better to spread the probability more widely, allowing 

the new states to be plugged in in more flexible ways: the present implementation was 

observed to settle on quite wasteful structures such as (115). 

5.3.1.4. Optimisation of the gating receptive fields 

When the Gaussian receptive field-based gating rule was introduced in section 3.3.2.5, 

it was suggested that the parameters for the rule could be optimised by applying a conjugate 

gradients minimiser to the derivative with respect to them of the log likelihood. However, no 

suggestion was made as to how a good starting point (seed) could be found; and in practice, 

it turns out that the quality of the initial seed has a big influence on the rate at which the 

algorithm is able to converge and on the optimality of the solution it finds: the space seems 

to be quite a difficult one in which to search, with a strange shape and many local minima. 

Good results were obtained by initialising the components' receptive fields as if they 

were actually a generative model of the readings and actions which were supposed by the 

model to have triggered them, and shrinking them by a small constant factor. (Recall from 

section 3.3.2.5 that the receptive fields of a conditional model are not intended to represent a 

mixture probability density, as those of a joint model do; here, the density is being used as a 

convenient starting point.) The conjugate gradients algorithm is then able to move the fields 

around and reduce the initial error (negative log likelihood) by a factor of two or so. 

However, it turns out that it almost never manages to change the size of the fields 

significantly: they stay very close to the size to which they were initialised. In consequence, 

the confidence region semantics are somewhat compromised. A closer investigation of the 

shape of the error landscape, the way it depends on the parameterisation of the receptive 

fields, and the workings of the optimiser would be needed to explain exactly why. The 

conjugate gradients optimiser was found to work much better on synthetic test data, which 

differed from the simulated robot data most obviously in that it was uniformly and relatively 

densely distributed. 
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5.3.2 Trasning the yosnt models 

Because the conjugate gradients optimiser tended to leave the gating fields' sizes alone, 

the regulariser adopted to avoid them becoming too small was rendered irrelevant. In 

principle, however, any differentiable regulariser could be used with negligible cost, since the 

parameter optimisation is already being performed iteratively. During the seeding phase, 

which in practice determined the fields' size, 0.0001 was added to the diagonal of the inferred 

field "variances" in order to work around the problems mentioned in section 5.3.1.1. 

5.3.2. Training the joint models 

Most of the pragmatic issues raised in section 5.3.1 carry over from the conditional 

variant of the Samovar model to the joint one. The training regime described in 

section 5.3.1.3 needs a little adaptation, however, since the joint model, being unable 

to represent immediate linear relationships between readings and actions at successive 

timesteps, is not prone to over-eager use of linear interpolation, and also requires no 

expensive iterative optimisation of a conditional gating rule. Steps 4 and 5 are thereby 

vitiated. On the other hand, the joint model was from time to time observed to settle 

quickly on large output variances, which would decay only very slowly. In order to avoid 

that, the variances in question were clamped during the first part of training. The procedure 

adopted was, therefore, patterned after but not identical to that for the conditional model: 

1) start with a single component, with output noise variance clamped to 0.0025 

2) Map out where the outputs fall 

do once or twice 

E-step 

M-step everything, except for output noise 

duplicate the components 

do five times 

E-step 

M-step output matrix, but not output noise 

3) Get a rough idea of the discrete temporal relationships between the different parts of 

the space 

do once or twice 

duplicate the components 
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quickly on large output variances, which would decay only very slowly. In order to avoid

that, the variances in question were clamped during the first part of training. The procedure

adopted was, therefore, patterned after but not identical to that for the conditional model:

1) start with a single component, with output noise variance clamped to 0.0025

2) Map out where the outputs fall

• do once or twice

• .E-step
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5.4.1 Procedure 

do eight times 

E-step 

M-step everything, except for output noise 

4) Release the output noise 

do thity times 

E-step 

M-step 

prune unused components 

5) Finalise the temporal relationships 

duplicate the components 

do 10 times 

E-step 

M-step transition matrix 

prune unused components 

do 30 times 

E-step 

M-step 

prune unused components 

5.4. Observations 

Each of the models described in section 5.3 was evaluated on each of the two tasks, with 

a view to investigating the following issues: 

How well do the Samovar models perform compared with baseline HMMs and 

linear HMMs, with respect to 

predicting when the robot will encounter the "food", and 

predicting range sensor readings? 
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5.4.1.1 Criteria: "food" sensor 

Is it possible to extrapolate from performance on the training data to performance 

on the test data? 

Does the introduction of a confidence region improve the models' effectiveness? 

How does the Samovar model use the mixing and linear states available to it? 

5.4.1. Procedure 

The evaluation covered conditionally gated HMM and linear HMM, and conditional and 

joint Samovar, models with 8, 16, and 32 mixing (Q) states; the dimensionality of the linear 

state (V) was varied between 1 and 3 with the conditional Samovar models, and between 2 

and 4 with the joint ones (which need more since they cannot directly exploit relationships 

between temporally adjacent actions and sensor readings-see section 4.2.3.1). Instances of 

each model were first trained on one set of data, and then evaluated both against that and 

against a separate training series; this process was repeated twenty times for each of the two 

simulation environments, in order to get a reasonable idea of the variability in the results. 

Furthermore, separate models were trained and tested with the model failure probability set 

to zero (in which case the confidence region is wholly disabled) and 0.1. Models trained with 

a confidence region were also re-run against the training and test data sets with the model 

failure probability set to 0.5. Note that these probabilities did not reflect the frequency with 

which the fallback component was actually judged to have been the most probable, because 

of the mismatch between its static Gaussian predictive distribution and the bounded [0, 1] 

range of the sensor and action spaces. 

5.4.1.1. Criteria: "food" sensor 

Each model's success at predicting whether it was going to encounter the "food" at a 

given timestep was measured by considering the probability with which it suggested that the 

food sensor reading would exceed 0.5. Ideally this should be unity in situations 1 and 2 (as 

defined in section 5.2.1.3 and section 5.2.2.3 for the first and second simulated environments 

respectively), and zero in situations 0 and 3-8. 

For simplicity, the predictions were obtained by running the algorithm of 

section 4.2.2.10 from scratch using the preceding eight experiences as raw material, rather 

than using the "candidate set cache" optimisation suggested in that section. Extending the 

"history" window more than eight steps into the past was not found to affect the predictions 

significantly, which is as it should be given the way the environments were designed. 
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5.4.1.8 Cntersa: range sensors 

The criterion was extended to the whole of the model's training or test run by 

averaging over all the timesteps in each situation category: the average predicted food 

probability for situation i is 

F,(6Ir,a)= 1 EP(4ood>0.5Ir[t-s,t),a[t-s.t1,0) 

Isit, I 
tEsit, 

where sit; = {t : is situation category is i} 

From these quantities it is possible to compute the robot's gains given any reward 

matrix covering the cases of true positive, false positive, true negative and false negative 

predictions; the point of separating out the different situations is to show whether there are 

any in which it consistently makes mistakes (e.g. the deliberately difficult situation 6). 

The experimental food prediction results will be presented in the form of graphs 

showing at a glance how each of the twenty models in each class promised to do-how it 

performed during the pass over the training set-and how well it actually did on the test 

set. 

5.4.1.2. Criteria: range sensors 

When it comes to assessing the models' performance at predicting the range sensor 

data, the natural measure of how well the actual measurements agree with what the models 

say they should be is 

p(rt I r[ e't ), a[ o't 1, 0) 

-the predictive pdf implied by the model 0 for the sensor readings Rt, evaluated at the 

actually measured point rt. Loosely, this could be called the "predicted likelihood" of the 

sensor readings, but because the pdf is continuous, the numbers can range from zero up 

to arbitrarily high levels, so to avoid confusion the term "nonfood predictive pdf value (or 

NF)" is adopted. 

Note that an accuracy measure based on, say, the difference between the mean of the 

model's prediction on the one hand, and the observed value on the other, would unfairly 

penalise multimodal predictive pdfs. 

To obtain a summary performance measure for a class of models, the predictive pdf is 

geometrically averaged over t in the whole test run, with the predictions based on a window 

of the preceding eight experiences, and geometrically averaged again over 0 in the class: 

NF(models) = exp 20 37 log NF(0 I test data) 
( BEmodels 

where NF(0 
I 
r, a) = exp 

( 
T 

> log p(rt I r[ t-s,t) 
a1 

t-s,t ] 0) 

t 
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5.4-1.2 Criteria: range sensors
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V 0Smodels /
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5.4.2.1 Nonfood 

Note that this is not a decision-theoretic measure, but rather a predictive analogue of the 

objective targetted during training. 

Again, the experimental food prediction results will be presented in the form of graphs 

showing a sample of the performance, and, just as importantly, the generalisation success of 

each model class. 

5.4.1.3. Summary of the protocol 

repeat for each model class in the list: conditionally-gated HMM; conditionally- 

gated linear ("autoregressive") HMM; conditional Samovar with 1, 2, 3 dimensions 

of linear hidden state; joint Samovar with 2, 3, 4 dimensions of linear hidden state 

repeat with instances of the model class with 8, 16, 32 mixing states 

repeat for model failure probability = 0.0, 0.1 

repeat twenty times 

repeat for each of the two environments 

train the model on the training 

data for the environment 

get the model to predict each 

experience in the training set 

from its eight predecessors, and 

record its performance according 

to the criteria of section 5.4.1.1 

in the same way, evaluate the 

model's predictions over the test 

data for the environment 

plot the numbers obtained from all twenty trained 

models on the scatter plots presented below, to show 

both performance and generalisation chacteristics 

5.4.2. Environment 1 

The observations made from the experiments are broken down by task-those collected 

from environment 1 being reported here and those from environment 2 in section 5.4.3-and 

subgrouped according to sensor class (range or food), model variant (conditional or joint) 

and model size (number of components). For conciseness, the model types are abbreviated 
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5.4.2.1 Nonfood 

e.g. HMM/8 for an eight-component hidden Markov model or Samovar/3/16 for a sixteen- 

component Samovar model with three-dimensional linear hidden state. 

5.4.2.1. Nonfood 

Turning first to the quality of the models' range sensor predictions, it will be convenient 

to present the results not through summary statistics, but in scatter graphs of the 

performance of all twenty of the trained models in each batch on both the training data and 

the test data. Showing all the data at a glance in this way makes it possible to judge the 

intra-class variability, and, crucially, the degree to which the potential shown by each model 

translates into success on unseen data. Each marker on the graph corresponds to one of the 

twenty models trained from each class; the model's NF predictive pdf values7 on the training 

set becomes the abcissa of the marker, and its NF predictive pdf value on the test set the 

ordinate. By using differently shaped markers, a single diagram can be used to compare 

several different model classes. 

One important reason for showing several classes of model on the same plot is that it's 

hard to give a simple interpretation of "how good" a (geometric) mean predictive pdf value 

of, say, 25 actually is, in absolute rather than comparative terms. As a rough indication of 

the general accuracy of the models, one can bear in mind that 25 is the best predictive pdf 

value theoretically achievable by a model which quantised the two sensor readings onto a 

five-by-five histogram. 

The first scatter graph presents the training and test NF values for the HMM, linear 

HMM and Samovar models with eight discrete states, with the model failure probability 

7 See section 5.4.1.1 
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5.4.2.1 Nonfood 

controlling the confidence region set to zero both during training and during testing: 

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0) 
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The linear Hl\11\Mls are clustered in the top right hand corner (right for most promising on 

training data, top for most successful on test data). The plain HMMs are clustered further 

down and to the left. Many of the Samovar models perform better on the training data 

than the linear MINN but only one of the Samovar/8/ls and a few of the Samovar/8/2s 

fulfil this promise when evaluated against the test data: the others differ wildly, and 

unpredictably in the their training data predictive pdf values correlate poorly with their test 

data predictive pdf values. 

The reason why the the Samovars mostly find it difficult to beat the linear HMMs on 

the NF measure in this environment is simply that there is quite little useful role for linear 

hidden state here. Note, though, that the NF success of the linear HMMs is achieved at 

some cost in reduced accuracy in predicting the "food" sensor readings: see section 5.4.2.2. 

One surprising feature of the plot above is that two of the models score better on the 

test, data than on the training data (the Samovar/8/2 with NFtrain = 11.9 and NFtest -- 

14.81 and the Samovar/8/1 with NFtrain = 13.7 and NFtest = 22.7). On investigation, 

this turned out to be due to a single extremely poor prediction which both models made 

at the saine point in the training run, contributing a log pdf hit of -381 in the first place 

and -514 in the second and depressing their overall NFtrain score enough, given that no 

corresponding "prediction disasters" occurred in the test run, to produce this anomaly. 

The models' mistake is an extremely surprising one: starting from a position in which the 

robot's forward-pointing range sensor is reading 0.81, and the robot moves directly forwards, 
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fulfil this promise when evaluated against the test data: the others differ wildly, and 

unpredictably in the their training data predictive pdf values correlate poorly with their test 

data predictive pdf values. 

The reason why the the Samovars mostly find it difficult to beat the linear HMMs on 

the NF measure in this environment is simply that there is quite little useful role for linear 

hidden state here. Note, though, that the NF success of the linear HMMs is achieved at 

some cost in reduced accuracy in predicting the "food" sensor readings: see section 5.4.2.2. 

One surprising feature of the plot above is that two of the models score better on the 

test, data than on the training data (the Samovar/8/2 with NFtrain = 11.9 and NFtest -- 

14.8, and the Samovar/8/1 with NFtrain = 13.7 and NFtest = 22.7). On investigation, 

this turned out to be due to a single extremely poor prediction which both models made 

at the same point in the training run, contributing a log pdf hit of -381 in the first place 

and -514 in the second and depressing their overall NFtrain score enough, given that no 

corresponding "prediction disasters" occurred in the test run, to produce this anomaly. 

The models' mistake is an extremely surprising one: starting from a position in which the 

robot's forward-pointing range sensor is reading 0.81, and the robot moves directly forwards, 
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they predict that the new reading will be very close to 1.0, whereas in fact of course it falls 

],umber (to 0.60). Underlyiiig this failure is an incorrect choice of mixing component 

Dtiritig training, the mixing component probabilities are computed using information 

(rout the future as well as from the past, while when making predictions they are perforce 

conditioned only on the past; normally, the learning algorithm ensures that the foresight 

(/)-estiu1a.tes are consistent with the hindsight ones by adjusting the transition matrix and 

gating pa,tclhes. But the situation in question appears to be sufficiently uncommon that the 

algorithm cats sometimes get stuck in a local maximum in which this does not happen: the 

rea.dittg/action combination falls well outside any of the available gating patches, and the 

least distant one, which is activated faute de mieux, is attached to an expert which yields a 

pool- prediction. This is in fact the kind of problem which the confidence region alleviates, 

although it is of course motivated by the issue of novel data rather than of known data 

which the training algorithm fails to handle effectively. 

Indeed, the anomaly just discussed does not appear in the following plot, which shows 

the test and traits NF scores for the same model classes but with the confidence region 

enabled (model failure probability = 0.1): 
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The train-test correlation has improved for all the model classes, but the test data predictive 

pdf values have fallen somewhat (note the change in y scale). Increasing the model failure 

probability to 0.5 (not shown) reduces them still further. This comes about because each 

component of an eight-component model must cover quite a broad range of situations, so its 

gating field trust be significantly large compared with that of the fallback "model failure" 
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they predict that the new reading will be very close to 1.0, whereas in fact of course it falls 

further (to 0.60). Underlying this failure is an incorrect choice of mixing component 

During training, the mixing component probabilities are computed using information 

from the future as well as from the past, while when making predictions they are perforce 

conditioned only oil the past; normally, the learning algorithm ensures that the foresight 

estiuirtes are consistent with the hindsight ones by adjusting the transition matrix and 

gating patches. But, the situation in question appears to be sufficiently uncommon that the 

algorithitn cart sornetirnes get stuck in a local maximum in which this does not happen: the 

reading/action coriibination falls well outside any of the available gating patches, and the 

least distant one, which is activated farete de nnieux, is attached to an expert which yields a 
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although it is of course motivated by the issue of novel data rather than of known data 

wlricli the training algorithm fails to handle effectively. 

Indeed, the anomaly just discussed does not appear in the following plot, which shows 

the test and train NF scores for the same model classes but with the confidence region 

enabled (model failure probability = 0.1): 
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The train-test correlation has improved for all the model classes, but the test data predictive 

pdf values have fallen somewhat (note the change in y scale). Increasing the model failure 

probability to 0.5 (not shown) reduces them still further. This comes about because each 

component of an eight-component model must cover quite a broad range of situations, so its 

gating field must be significantly large compared with that of the fallback "model failure" 
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component,; hence the lather will often be judged to be active with a finite probability, and 

the definiteness of the predictive pdf will be tempered with its broad "don't know" output. 

With sixteen mixing states available, the Samovar model achieves some good test 

predictive pdf values, but they are not at all correlated with the training predictive pdf 

values: 
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considerably, yielding the best nonfood predictions of any class of model: 
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It is even (just) the case that the five most promising Samovar/16/1 models do better than 

the five most promising linear HMM/16 models. 

The reason why the confidence region is an unmitigated plus here is that the 16- 

component models' experts are more situation-specific. One consequence of this is that their 

predictions outside the narrow areas on which they have been trained are more "precisely 

misleading", so that tempering them with a "don't know" predictive distribution is more 

of a gain; another is that their gating patches are smaller, so that the "model failure" 

component's broad patch interferes with them less. Increasing the model failure probability 

to 0.5 (not shown) lifts some of the remaining poor predictive pdf values somewhat, but 

otherwise has little effect. 

Some insight into the effect of the confidence region can be gained by considering 

the profile of nonfood predictive pdf values obtained across all the timesteps in a run. 

The following diagram shows, simply, all the NF predictive pdf values from the best 

Samovar/ 1 / 16 model without a confidence region, arranged in descending order, together 
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It is ever). (just) the case that the five most promising Samovar/16/1 models do better than 

the five most promising linear HMM/16 models. 

The reason why the confidence region is an unmitigated plus here is that the 16- 

component models' experts are more situation-specific. One consequence of this is that their 

predictions outside the narrow areas on which they have been trained are more "precisely 

misleading", so that tempering them with a "don't know" predictive distribution is more 

of a gain; another is that their gating patches are smaller, so that the "model failure" 

component's broad patch interferes with them less. Increasing the model failure probability 

to 0.5 (not shown) lifts some of the remaining poor predictive pdf values somewhat, but 

otherwise has little effect. 

Some insight into the effect of the confidence region can be gained by considering 

the profile of nonfood predictive pdf values obtained across all the timesteps in a run. 

The following diagram shows, simply, all the NF predictive pdf values from the best 

Samovar/1/16 model without a confidence region, arranged in descending order, together 
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with the corresponding predictive pdf values from the same model at the same timesteps, 

but with p(Q1 = 0) set to 0.1: 
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Mostly, the two predictive pdf values are identical (which is why there is no green showing in 

the graph-the blue has covered it up almost everywhere). Sometimes, the confidence region 

makes a good prediction more cautious, thereby reducing the achievable predictive pdf value 

(the blue dots below the main line); occasionally the effect is to improve it (the dots above 

the line). Note that either way, at most of the timesteps the predictive pdf value exceeds 9, 

which would be the maximum theoretically obtainable from a 3 x 3 quantising model over the 

[0, 1] legal range of the sensors, and only 10% of the time are they very poor in the sense of 

falling below unity (which would be the predictive pdf value of a uniform "model" over that 

range). However, some of those 10% are really terrible, as can be read off the y-axis of this 
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(the blue dots below the main line); occasionally the effect is to improve it (the dots above 

the line). Note that either way, at most of the timesteps the predictive pdf value exceeds 9, 

which would be the maximum theoretically obtainable from a 3 x 3 quantising model over the 

[0, 1] legal range of the sensors, and only 10% of the time are they very poor in the sense of 

falling below unity (which would be the predictive pdf value of a uniform "model" over that 

range). However, some of those 10% are really terrible, as can be read off the y-axis of this 
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detail of the missing bottom right hand corner of the graph,8 
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and it is here that the confidence region has its beneficial effect, detecting situations 

different from any in the training data, so that the fallback component cuts in with its vague 

"predictions" and caps the badness of all but one of the model's overall, mixed predictions. 

Note that the second-worst prediction is turned into quite a success, with a predictive pdf 

value above 56. This falls at a timestep whose immediate predecessors are handled very 

poorly; if the model tries to assign them its learned components, it remains confused for 

several timesteps, while if it can write them off as unpredictable, it recovers in time to make 

the good prediction noted here. 

Finally, here are the promised and achieved NF predictive pdf values for models with 

8 The four worst predictive pdf values (not shown) made in the absence of a confidence region 

range from around io-' down to around 

1 e-06 
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and it is here that the confidence region has its beneficial effect, detecting situations 

different from any in the training data, so that the fallback component cuts in with its vague 

"predictions" and caps the badness of all but one of the model's overall, mixed predictions. 

Note that the second-worst prediction is turned into quite a success, with a predictive pdf 

value above 56. This falls at a timestep whose immediate predecessors are handled very 

poorly; if the model tries to assign them its learned components, it remains confused for 

several tiniesteps, while if it can write them off as unpredictable, it recovers in time to make 

the good prediction noted here. 

Finally, here are the promised and achieved NF predictive pdf values for models with 

H The four worst predictive pdf values (not shown) made in the absence of a confidence region 

range from around 1o-' down to around 10-33 

143 



5.4.2.2 Food 

32 fluxing states: 

n 
a) 

20 
E 

a`) 

25 

0 

a) 

0 

a) 
> 

z 

0 

in 

Nonfood performance/generalisation in environment 1 (model failure probability = 0.0) 

HMM/32 0 
Linear HMM/32 + 

Cond. Samovar/32/1 
20 x 

$o 
0 

O 0 

o $ 

008 
0 

O 

O 

O 

0 

+ 

x 

x 

. Fu X y x 4 
100 120 140 

NF predictive pdf value of training data, per timestep 

It's clear that overfitting has set in badly even amongst the plain HMM models-their 

predictive pdf values over the training set (x-axis) are poorly correlated with those over 

the test set (y-axis). The confidence region helps, but still, both the models' predictive pdf 

values and the correlation between what they promise and what they deliver are lower than 

they are when sixteen states are used: 
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5.4.2.2. Food 

Of the seven scenarios defined in section 5.2.1.3, the ones that gave the models the 

most trouble were, as expected, numbers 1 and 6-the true and false food situations. A few 

models were also persistently inaccurate in number 4, where the robot misses the food after 

starting from too close to the wall. All the others were handled correctly,9 so it is on 1, 4 

and 6 that the analysis presented here concentrates. 

The first group of scatterplots displays the food-prediction accuracy of all the 

conditional, eight-component models generated during the experiments. (Corresponding 

graphs for the 16- and 32-state models, and for the joint-variant Samovar models, will be 

given later on.) The left hand column contains the plots for models trained and tested with 

the model failure probability p(Qt = 0), or MFP, set to zero, which effectively disables 

the confidence region (section 3.3.2.6); for the right hand column, the confidence region 

is enabled with p(QL = 0) set to 0.1. Each row holds the plots for models of a different 

class, in increasing order of complexity from plain HMMs at the top to Samovars with two- 

dimensional linear hidden state at the bottom. 

For each of the 20 individual models 6 in each class/MFP combination, a marker is 

placed in the appropriate scatterplot to indicate what the model's mean food prediction was 

in each of the scenarios under consideration, during the training run and during the test run. 

The colour and shape of the marker indicate a situation i E 1, 4, 6, as shown in the key in the 

top left-hand plot, and its coordinates are 

(F; (B I training data), F, (B I test data) ) 

in the notation of section 5.4.1.1. Points further to the right denote higher mean food 

probabilities during the training run, while points further to the top denote the same during 

the test run. Ideally all the red +s, corresponding to scenario 1 in which the robot finds the 

food, should be in the top right-hand corner, while all the green xs and blue *s, denoting 

mean food probabilities for situations in which in which the robot misses the food because it 

is in the wrong corner of the arena or starts too close to the wall, should be in the bottom 

left-hand corner. 

Finally, a fourth marker (purple box) is added to summarise the model's overall 

accuracy on these three scenarios: the probability with which it predicted the right 

food reading in situation 1, 4 or 6, averaged over the training run (abcissa) and test run 

(ordinate). This measure is called F}1_4_8 since the true reading is high (1.0) in situation 1 

and low (0.0) in 4 and 6. The target position for its markers is the top right-hand corner, 

9 Except by the Samovar/2/32 when overfitting sets in (see below). 
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starting from too close to the wall. All the others were handled correctly,9 so it is on 1, 4
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graphs for the 16- and 32-state models, and for the joint-variant Samovar models, will be

given later on.) The left hand column contains the plots for models trained and tested with

the model failure probability p(Q* = 0), or MFP, set to zero, which effectively disables

the confidence region (section 3.3.2.6); for the right hand column, the confidence region

is enabled with p(Qt = 0) set to 0.1. Each row holds the plots for models of a different

class, in increasing order of complexity from plain HMMs at the top to Samovars with two-
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placed in the appropriate scatterplot to indicate what the model's mean food prediction was

in each of the scenarios under consideration, during the training run and during the test run.

The colour and shape of the marker indicate a situation j 6 1,4,6, as shown in the key in the

top left-hand plot, and its coordinates are

(Fi(01 training data) , F;(01 test data))

in the notation of section 5.4.1.1. Points further to the right denote higher mean food

probabilities during the training run, while points further to the top denote the same during

the test run. Ideally all the red +s, corresponding to scenario 1 in which the robot finds the

food, should be in the top right-hand corner, while all the green xs and blue *s, denoting

mean food probabilities for situations in which in which the robot misses the food because it

is in the wrong corner of the arena or starts too close to the wall, should be in the bottom

left-hand corner.

Finally, a fourth marker (purple box) is added to summarise the model's overall

accuracy on these three scenarios: the probability with which it predicted the right

food reading in situation 1, 4 or 6, averaged over the training run (abcissa) and test run

(ordinate). This measure is called F+i_4_e since the true reading is high (1.0) in situation 1

and low (0.0) in 4 and 6. The target position for its markers is the top right-hand corner,

9 Except by the Samovar/2/32 when overfitting sets in (see below).
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detloting perfect accuracy on both runs; but when interpreting the absolute value of the 

sununary F+I_4_(;, it should be born in mind (a) that only the most "difficult" situations 

are being considered, and (b) that the proportions in which these situations occur differ 

between the two runs, so that there is no a priori reason why the value should be the same 

in each case. 

Mean p(rfoocz > 0.5) and accuracy in environment 1 
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5.4.2.2 Food 

PRom the top left-hand plot, showing results for the reference conditionally-gated hidden 

Markov model 'Cond. HMM/8' without a confidence region, it can be seen that many of 

these simple models are able to predict food occurrences quite effectively. All the F1 markers 

are clustered in the extreme top right-hand corner: the models all predict food occurrences 

with probability near unity every time. All the F4 markers are clustered in the opposite 

corner: the models all predict, with similar accuracy, non-occurrence of the food due to 

the robot starting its turn from too close to the wall. However, none of the F6 markers 

are correctly placed in the lower-left corner. This is because the HMM/8s are not powerful 

enough to handle every situation with complete success; their food sensor predictions around 

the "true food" situation are good, but those around the "false food" scenario 6 are not 

so good. As a result, their "hard case" food sensor accuracies F}1_9_8 mostly do not 

exceed 85% on the test data (y-axis). Recall too that their range sensor predictions are less 

informative than those of the more complex models-see section 5.4.2.1. 

HMM/8s with a confidence region are often better at refraining from predicting a 

food event in the "false food" case, especially during the test run (in the top right-hand 

plot, the blue *s are lower down than they are in the top left-hand plot). This is partly 

an artifact of the phenomenon, already noted in section 5.4.2.1, of the confidence region 

cutting in frequently when applied to this class of model: the food sensor component of the 

"don't know" prediction is deliberately biased towards zero to reflect the general rarity of 

food events, so that any activation of the confidence region tends to depress the predicted 

food probabilities-and indeed the scenario 1 mean probabilities are also lower with the 

confidence region than without. Nevertheless, the effect is an overall improvement in 

accuracy which is quite pronounced in the test run (the purple boxes are higher up), which 

suggests that the confidence region may actually be playing a positive role. Increasing the 

model failure probability further (not shown) reduces the predicted food probabilities again, 

and this time also the net accuracy. 

As an aside, note that the scenario 6 predictions of the HMM/8s are on average more 

accurate (i.e. lower) in the test run than in the training run. The reason for this that the 

test run happens to include three steps, out of the 10 assigned to scenario 6, which fall on 

the borderline between scenarios 6 and 8: the robot would in fact have turned onto the food 

if the food was there, but only just. The training run only includes two such steps out of 

16. Since in these marginal cases the model has an immediately obvious reason (the distance 

to the wall) to discount somewhat the possibility of encountering the food, it will tend to 

handle them better than more central scenario 6 steps-albeit for the wrong reason. The 

net effect is that the food prediction accuracy on the test run is biased upwards relative to 

that on the training run. Similar effects can be seen in some other plots presented in this 

section, although there is no dear pattern: in general, different models behave in surprisingly 
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5.4.2.2 Food 

different ways on the two data sets, probably because they have found fundamentally 

different representations for solving the prediction problem. 

Turning now to the second row of the graph, it can be seen that the linear HMM/8s 

perform much less well on the food prediction task than the plain HMMs. For instance, they 

fail to produce unequivocal predictions of food encounters in scenario 1 (the red crosses are 

not in the top right hand corner); and the confidence region does not help. It seems that 

these models are concentrating on predicting the range sensors accurately-a task which 

they can perform well in this environment (section 5.4.2.1)-to the detriment of their food 

sensor predictions. 

Some of the Samovar/1/8s (third row) are able to predict the food occurrences almost 

perfectly (some purple boxes in the extreme top right-hand corner). The reason they can do 

better than the plain HMMs turns out to be that each of their mixing states can account for 

a wider range of range-sensory phenomena, leaving more for mapping out the approach to 

the food area. It turns out that the average NF range sensor predictive pdf value achieved 

by the five best Samovar/1/8s, chosen according to food prediction accuracy, is, at 17.2, also 

better than that achieved by the plain HMMs (section 5.4.2.1): some of these models are 

able to perform both prediction tasks at once. 

However, the intra-class variability is considerable, and some are actually worse than 

the plain HMMs; in order to obtain a single Samovar/1/8 which predicts the food sensor 

readings well, it is necessary to train several and choose the best. At least the correlation 

between the models' performance on the training data and their performance on the test 

data is strong, so that the choice can be made with some confidence. 

The Samovar/2/8s, and the Samovar/3/8s (not shown), do not yield such good results 

as the Samovar/1/8s: they are powerful enough to be prone to overfitting. 

Turning now to the 16-component models, the main feature to emerge from the 

scatterplots is that their food predictions are generally better than those of the eight- 

component models; they have enough states to map out the entire coarse structure of the 
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5.4.2.2 Food 

(Ilvlr011111ent: 
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The Samovar/l/16s suffer from a slightly higher intra-class variability than the simpler 

models. But with the confidence region enabled, they may again have a slight edge when it 

comes to combining good food predictions with good range sensor predictions: the five food- 

best Samovars with a confidence region return an average NF score of 26.83, against 23.79 

for the linear HMMs. 
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The Samovar/1/16s suffer from a slightly higher intra-class variability than the simpler 

models. But with the confidence region enabled, they may again have a slight edge when it 

conies to combining good food predictions with good range sensor predictions: the five food- 

best Samovars with a confidence region return an average NF score of 26.83, against 23.79 

for the linear HMMs. 
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5.4.2.2 Food 

Interestingly, the even greater intra-class variability of the Samovar/2/16s is not helped 

by the confidence region but rather made worse: from the bottom right-hand plot it can be 

seen that more of them make false positive food predictions in scenario 6. This apparently 

comes about when the confidence region intervenes to prevent a model from making an over- 

precise range sensor prediction, and effectively resets its hidden state-including its memory 

of where it is in the arena. 

Just as in the NF scatterplots (section 5.4.2.1), although to a lesser extent, there 

is evidence of overfitting in the food-prediction plots for the 32-component models: the 

hitherto tight relationship between F+1_4_6 performance on the training and test data sets 
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5.4.2.2 Food 

has weakened, especially in the case of the Samovar/1/32: 

Mean p(rfood > 0.5) and accuracy in environment 1 

x-axis: training run; y-axis: test run 
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In fact some of the Samovar/2/32s and Samovar/3/32s even make unusual false positive 

predictions for scenario 3 (riot shown). 

The ,joint Samovar model was unable to get as good a grip on the food occurrences as 

the conditional models with fewer than 32 mixing components at its disposal. In fact it's 
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easy to see tllat, the "off by one" nature which the conditional model acquires when the 

0111,1)111 11111ctloll is assllllllate(1 into the dyIliulllcs (section 4.2.1.1)-with the mixing state at 

tlllie t directly (lel,erII11I11ng the sensor readings at time t + 1-is advantageous when it comes 

to storing a fact over several timesteps. Effectively, the conditional models only have to learn 

to relnenlber the landlnark notch of 110 for three timesteps, while the joint models have to 

renieniber it, for four. Sixteen components do not, therefore, seem to be enough to get the 

true positive food probabilities up in situation 1 and the false positives down in situations 4 

and 6: 
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5.4.2.3 Qualitative 

finally to achieve a few F+1 _4_6 scores above 90%: 
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It's interesting to look at the way each class of model categorises the situations it 

encounters in the simulated robot environment (i.e. the way it distributes them between 

its components). The diagrams that follow show by mean of colour codingl0 the component 

judged most probably to have been active at each position the robot occupied, in retrospect 

10 apologies to those reading in black and white 
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(condit.ioiied on the whole data set). Here is the best sixteen-component HMM, measured by 

NP: 

:And for coiiiparisoii the NF-best conditional Samovar/16/1 ... 

.+ 

(116) 

r r rti . 

Both models classify the steps covering the "notch" landmark uniquely or almost so. 

Flowever, the Samovar is able to expend fewer states on handling the more uniform parts 

of the arena-for iiistarice, it doesn't have to devote separate components to the situations 

where it is near and far froth a flat wall-leaving it enough left over to mark out uniquely 

the region between the notch and the "food" 11. The HMM shown here can't, in fact, predict 

it's utiiug the 4ructure showii in c.f. (115) 
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die food sensor readings accurately (although others of the same size, selected by their 

promise on this task, could-see section 5.4.2.2). Corners are also treated more or less 

regularly: note the sequence grey-bhie, purple, orange, < ells in (116). The NF-best linear 

IIMM showed a similar pattern, though not quite as clean. 

Although environment 1 offered no opportunity for the Samovar models to employ their 

linear hidden state for Kaltnan-style speed estimation, they did manage to discover some 

useful things to do with it. For example, in the following scenario ... 

it is obviously advantageous for the robot to remember how far away from the wall it was 

before it turned onto the food and lost contact with it, so that it knows what the right- 

pointing range sensor reading will be when it turns back. Analysis of the way the V- 

related blocks of the dynamics matrices stacked up (given, of course, the ordering of the 

components used in the most probable Q-sequences), followed by empirical testing, showed 

that a Sattiovar/ 1 / 16 model was indeed making this inference: changing the initial wall- 

distance sensor reading over the range 0.4-0.7 yielded an exactly matching variation in 

the (highly confident) reading predicted two steps later. A similar encoding was used to 

remember the distance from the wall while the robot passed through the landmark "notch" 

(at which point the right-pointing sensor was generally returning an uninformative 1.0). 

Various other apparently significant relationships were apparent, especially in the approach 

to the top right-hand corner of the arena, but it was not possible to interpret them with any 

confidence. 

The models' predictions were found sometimes to be significantly multi-modal; for 

instance, the following graph shows the predictive density obtained at a particularly 
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5.4.3.1 Nonfood 

cotafusing timestep from a Sainovar/1/16 model: 

0 I ' 0.5 
Right-pointing sensor reading 

The peaks in the graph indicate several well-separated hypotheses about which combination 

of forward- and right-pointing range sensor readings seem plausible on the basis of the 

experiences leading up to this timestep. Each mode corresponds to a possible mixing state 

of the model. 

5.4.3. Environment 2 

The story is fairly similar in the other environment (section 5.2.2), except that, as 

expected, the element of momentum in the robot's dynamics gives an advantage to the 

Samovar models which are able to represent it more or less exactly. 

5.4.3.1. Nonfood 

Surprisingly, the NF predictive pdf values achieved by the conditional models in 

environment 2 are very different on the test as against the training data even with as few 
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as eiglit components: 

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0) 
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(117) 

This applies even to the linear HMMs, which promise an NF of around 140 and deliver 

around 35. One possible reason for this is that they have relied (as they must) on piecewise 

approximation to capture the effect of the robot's speed on the development of its sensor 

readings, and therefore fail to generalise naturally to the test run in which the robot's 

trajectory is sometimes novel. When the confidence region is enabled, the test predictive pdf 

values of the linear HMMs and Samovars improve: 
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5.4.3.1 Nonfood 

Note that the plain HMMs react very badly to the confidence region: there is no way 

for there to understand this more complicated environment, so their components hardly 

specialise, their gating patches are large, the confidence region takes over too often, and the 

resulting predictive pdf values are low. 

The absolutely highest nonfood predictive pdf value for environment 2 is obtained from 

a Samovar/16/1. However, these models depend heavily on an aggressive confidence region; 

with the confidence region disabled, most of their predictive pdf values are very low: 

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0) 
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and even with a model failure probability of 0.1, their training-set predictive pdf values 

correlate poorly with their test-set predictive pdf values, which are in any case no better 
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thaii those of the linear 11MMs: 
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It is only when p(Q1 = 0) is raised to 0.5 that the Samovar/1/16s do well .. . 
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... and even then the NF predictive pdf value of the five most promising Samovar/16/1s is 

only slightly higher, at 58.35, than that of the five most promising linear HMM/16s (with 
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p(Q' = 0) = 0.1), at 53.75; it's clear from the graphs that this difference is unlikely to be 

robust. A plot of the profile of all predictive pdf values obtained over a single run by each of 

three different models ... 
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... shows the Samovar achieving even higher predictive pdf values than the linear HMM 

at the top end (left), and also producing fewer poor predictions with predictive pdf values 

in the range 0.1-1 (right), but losing out in the middle. The vanilla HMM, shown for 

comparison as the lowest curve, produces the fewest high predictive pdf value predictions 

and also the fewest very low predictive pdf value ones. (The models used to produce this 

plot were the NF-best in their respective classes.) 

32 states seem to be too many; generalisation fails completely in the absence of a 

confidence region, with models of all classes except the plain HMMs reporting very high 
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predictive i>df values on the training set and very low ones on the test set ... 
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and even with an aggressive model failure hypothesis, nearly all the models turn out to 

be mediocre: 
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As in environment 1, the joint models achieve considerably lower NF predictive pdf 

values than the conditional ones, and require a higher-dimensional linear hidden state. 
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As in environment 1, the joint models achieve considerably lower NF predictive pdf 

values than the conditional ones, and require a higher-dimensional linear hidden state. 
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However, they are not subject to the same degree of generalisation failure with eight 

conponents (cf. (117)), perhaps because the reading/action density modelling by which the 

cotnponeuts' activation probabilities is judged leaves less room for poor optimisation than 

the conditional models' gating rule (section 5.3.1.4): 

Nonfood performance/generalisation in environment 2 (model failure probability = 0.0) 
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Adding a confidence region (not shown) improves both the train/test correlation and the 

test predictive pdf values. When more components are added, the models achieve higher 

predictive pdf values at some steps, but this gain is more than offset by an increase the 

number of steps at which poor predictions are made. 

Comparison of the predictive pdf value profiles for conditional Samovar/8/1 and joint 

Samovar/8/4 shows that the latter produces if anything a slightly larger number of genuinely 
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informative predictions, but fewer very precise ones and more extremely poor ones: 
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The model failure probability was fixed here at 0.1, but the same general pattern holds for 

different p(Qt = 0) and different numbers of mixing states. It's easy to account for the 

lower cap on the joint model's best predictive pdf values as a side-effect of the fact that all 

of its inferences must be channelled through a linear dynamics noise process as well as an 

output noise process, both with nonzero (and indeed regularised) variance. The joint model's 

increased propensity to make very misleading predictions arises from a relative inability of 

its confidence region to truncate them-the predictive pdf values grouped in an obvious 

ledge around 0.25 in the data from the conditional model reflect timesteps at which the 

prediction comes purely from its fallback component, and the data from the joint model 

lacks this feature. What the joint model appears to be doing is exploiting the actions' and 

readings' dependence on the linear hidden state (section 4.2.3.1) to make one of its learned 

components fit the former by adjusting the latter; the noise variances provide sufficient 

flexibility for this mostly to seem preferable to the alternative of invoking the model failure 

hypothesis. 

5.4.3.2. Food 

Although the number of timesteps over which the models have to remember the 

landmark "tongue" in environment 2 is smaller than the time distance between the "notch" 

and the food in environment 1, the less regular shape of the enclosure in the area around the 
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food alld greater variability in the trajectories with which the robot approaches it makes it 

very difficult to achieve the near-perfect food predictioaas of section 5.4.2.2: 
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Some of the HMM/8s account well for the food sensor readings, but (as was seen in 

section 5.4.3.1) their range sensor predictions are very poor, whereas when the confidence 
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5..3.2 Food 

region was enabled, the five best Samovar/2/8s as measured by food prediction accuracy 

achieved au average NF score of 41.35. 

Wheii the models are given sixteen components, many of them achieve food sensor 

accturacies above 90%. Note that the confidence region (right hand column) helps all the 

models cut down on false positives in scenario 6 and distinctly improves the net F+1_4_6 

accuracy of all except the plain HMMs: 
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5.4.3.2 Food 

With 32 coinponeiits, overlittinig has set in, with most of the models promising near- 

per(cct predictions oil the traiiiing data and delivering relatively poor ones on the test data: 

Mean p(rroo<i > 0.5) and accuracy in environment -9 
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Food prediction in environment 2 proves less challenging for the joint Samovar models 

than it does in environment 1, but most of the joint models of whatever size suffer from 

generally low food predictions in scenario 1, and false positives in scenario 4: this appears 
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5.1.3.2 Food 

to be because their ga,tiilg rule is less cliscriltlina.ting that that of the conditional models, so 

that they are ui<ahle to use range sensor reacliligs to ,judge precisely whether they will land 

oii the Ibod. Nevertheless, the best models in each class offer reasonable accuracy, and a few 

ad i ieve F+ -rates above 00 /o: 

Mean p(rfoocl > 0.5) and accuracy in environment 2 

x-axis: training run; y-axis: test run 

Joint Samovar/218 MFP = 0.0 

0.8 

0.6 

0.4 

0.2 
* 

0 
0 0.2 

x 
x 

0.4 

+ 

I I 
0.6 

Joint Samovar/3/8 MFP = 0.0 

0.8 

0.6- 
x 

+ + 

0.4 + + 
X 

a 

1 

x + 

0.2 x * * 
X 

X X I 

0 
0 0.2 0.4 0.6 0.8 1 

Joint Samovar/4/8 MFP = 0.0 

0.8 

0.6 

0.4 

0.2 4* 

+ 
+ 

+ 

0 0.2 0.4 0.6 0.8 

0.8 - "n 0.8 

04- x x t+ + --y 0.4 

0.2- - 0.2 

0.2 0.4 0.6 

0.8 

0.8 1 

Joint Samovar/218 MFP = 0.1 

Joint Samovar/3/8 MFP = 0.1 

0 0 o 
X l+ 

X+ d + 
X o+ + 

Joint Samovar/4/8 MFP = 0.1 

0.2 0.4 0.6 0.8 1 

167 

5.4.3.2 Food 

to be because their gating rule is less discriminating that that of the conditional models, so 

that they are aanable to use range sensor readings to judge precisely whether they will land 

on the food. Nevertheless, the best, models in each class offer reasonable accuracy, and a few 

achieve T'+1-4-(; rates above 90%: 

Mean V(7foo(i > 0.5) and accuracy in environment 2 

x-axis: training run; y-axis: test, run 

Joint Samovar/2/8 MFP = 0.0 

Joint Samovar/3/8 MFP = 0.0 

0.8 

0.6 

0.4 

0.2 

0m 
0 

Joint Samovar/2/8 MFP = 0.1 

x 

0.2 0.4 0.6 0.8 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 

0IAI+ I I I 

0 0.2 0.4 0.6 0.8 

Joint Samovar/4/8 MFP = 0.0 Joint Samovar/4/8 MFP = 0.1 

Joint Samovar/3/8 MFP = 0.1 

167 



5.4. 3.2 Food 
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5.3.2 Food 
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5.4.3.3 Qualitative 

Mean p(rrood > 0.5) and accuracy in environment 2 
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5.4.3.3 Qualitative 

NF-best, joint Samovar/8/4, for example, segments its experiences like this:12 

In fact, when the landmark hole in the bottom right-hand corner is open, the component 

represented by the I iw1 (lots is the only one used. When it is closed, it triggers a separate 

sequence of mixing states which end, potentially, in the "food" area. The NF-best eight- 

component HMM doesn't really try to predict the range sensor readings, using mostly the 

same fixed Gaussian magenta, or, when it is either very close to the wall or far away from it, 

the even vaguer green: 

The NF-best linear HMM is inclined to use up some of its components on discretising the 

state information which the Samovar can represent numerically (though this turns out not 

12 see section 5.4.2.3 for a description of what these diagrams mean 
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5.4.3.3 Qualitative 

to be a matter simply of associating different states with different speeds), leaving it without 

enough to throw at the region around the food: 

In the case of a Samovar model with one element of linear hidden state, it is possible to 

plot Z o' to verify that it really is being used by at least some of the components to represent 

the robot's speed. Here is a graph showing vo (judged a posteriori) against the speed at 

timestep t for those is at which the most probable component (out of this model's 16, also 

judged a posteriori) is one of a group for which the two quantities were found to be strongly 

correlated: 
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5.j .j Computational resources required 

TIie states outside tlis group do not so obviously use the linear hidden state to represent the 

rohot,'s speed: 
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5.4.4. Computational resources required 

The time taken to train a Samovar model on a 360MHz U1traSPARC-II varied from 

around 25 minutes for Samovar/1/8 to around 90 minutes for Samovar/4/32. Little effort 

was nade to optimise the training regime of section 5.3.1.3, the program used to implement 

it (a native-code executable written in the ocaml language), or indeed the quantity of 

training data it was asked to process, so there seems to be no reason why larger models 

could not be learned in an acceptable amount of time. The limiting factor turned out to be 

the amount of memory required for caching the transition matrix once per timestep-recall 

that in the conditional models, it varies depending on the sensor readings and actions-but 

this could easily be circumvented by imposing a time horizon on mixing state inferences as 

well as for those over the linear hidden state. 

For comparison, training times for linear HMMs varied from around five minutes for 

a linear HMM/8 to around 40 for a linear HMM/32-substantially less, of course, than 

that of the Samovars. Furthermore, it be seen from the scatterplots in sections 5.4.2.1 

and 5.4.3.1 that the performance of the linear HMMs produced by different runs of the 

iraiuing algoritliini is much more consistent than that of the Samovar HMMs: to produce 
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5.4.5 Summary 

a single good Samovar model requires more applications of the training algorithm than are 

required to produce a single good linear HMM model. 

Training a plain HMM/8 took around five minutes and an HMM/32 about 25, and the 

HMM/8s and HMM/16s were both very consistent from run to run. 

5.4.5. Summary 

The Samovar models learned to deploy their linear hidden state effectively, both to 

represent the robot's speed in environment 2 and for various other less obvious purposes. 

They also generated interesting and natural-seeming classifications of the coarse structure of 

their environments. 

Conditional Samovar/1/16 models produced the best nonfood predictive pdf values in 

both environments, although their advantage over similar-sized linear HMMs was slight (and 

their computational demands considerably greater). 

In environment 2 especially, the conditional Samovar required only eight components to 

do a good job both at predicting the food sensor readings and at predicting the range sensor 

readings, while the other models required sixteen components. 

The nonfood predictive pdf values achieved by the joint Samovars were considerably 

lower than those obtained from the conditional models-because of their longer and more 

uncertain information path-although the number of basically informative predictions they 

made was at least as great. They required 32 components to be able to learn to predict the 

food sensor readings in environment 1, while the conditional models could manage with 8. 

Successful generalisation from the training data to the test series was possible, for all 

but the smallest models of each class, only with the help of the confidence region, which was 

found to do a fair job of selectively allowing the fallback component to cut in and produce a 

vague prediction in areas outside the learned components' competence. 
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The nonfood predictive pdf values achieved by the joint Samovars were considerably

lower than those obtained from the conditional models—because of their longer and more

uncertain information path—although the number of basically informative predictions they

made was at least as great. They required 32 components to be able to learn to predict the

food sensor readings in environment 1, while the conditional models could manage with 8.

Successful generalisation from the training data to the test series was possible, for all

but the smallest models of each class, only with the help of the confidence region, which was

found to do a fair job of selectively allowing the fallback component to cut in and produce a

vague prediction in areas outside the learned components' competence.
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Chapter 6 

Future Work 

6.1. Improving the model 

In this section, ways are identified in which the Samovar model and algorithm could be 

improved. 

6.1.1. Better training algorithms 

For a start, there are some obvious problems with the training algorithm described in 

section 4.2.2. 

6.1.1.1. Alternatives to Baum-Welch 

One of the most significant bottlenecks encountered in the application of the Samovar 

learning algorithm to the robot environment learning problem (section 5) was the memory 

cost of the Baum-Welch algorithm (section 3.3.3.3) for inferring the discrete structure of the 

system being modelled. Baum-Welch is simple and effective on moderate-sized problems, 

and hence widely used, but it does (in a naive implementation) involve computation time 
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6.1.1.2 Statistical correctness 

quadratic in the number of the model's discrete states. The situation is made worse in 

the conditional Samovar model by the fact that the transition matrix is not constant, and 

must be either stored or repeatedly calculated, at relatively high cost either way, for each 

timestep. This means that there is a fairly hard limit on the number of mixing states 

which the Samovar learning algorithm can keep in play at any one time. Since the way it 

discovers significant chains or sparse networks of states, such as the sequence leading up to 

the encounters with the "food" region in the simulation, is by experimenting with doubling 

(or quadrupling) all the states up and then thinning out the resulting transition matrix, a 

serious constraint is placed on the length of the alternate mixing state trajectories which it 

can learn. Most of the doubled states will eventually disappear, but in the mean time the 

algorithm is forced to consume large amounts of time and/or memory. More discriminating 

ways of encoding the variable transition matrix would help with the latter but compound the 

former.1 

Since the same problem has of course been encountered by researchers into speech 

recognition and indeed robotics, there are a variety of promising techniques available for 

uncovering the structure of discrete dynamical systems more efficiently. These work by 

making structural adaptations in a more directed way, for instance greedily pruning down 

an initially huge model .2 Heuristics for deciding when to split components of static mixture 

models and when to merge them may also be of use .3 

6.1.1.2. Statistical correctness 

In the description of the subsequence-joining procedure which comprises the E-step 

of the Samovar learning algorithm (section 4.2.2.5), it was noted that it is possible for 

the number of possible-seeming candidate sequences to overwhelm the buffers available 

for storing them, in which case whole classes of overall sequences-all those including the 

subsequences discarded on the basis of estimates of their probability made on the basis of 

inadequate local information-would be pruned out and lost to later consideration. Indeed, 

even if the probability assessments used in making the early sampling decisions are correct, 

the fact that large blocks of similar solutions are being rejected means that the eventual 

sample is bound to be rather lumpy and still won't have the right distribution. 

1 In fact a cheaper representation using eight bits to encode each entry in matrix against a 

row-specific baseline was found not to degrade the effectiveness of the algorithm significantly, and 

since the forward-backward equations were in any case programmed in log space, the extra running 

time required was not great. 

2 Stolcke & Omohundro, Hidden Markov model induction 

3 Ueda et al., SMEM Algorithm for Mixture Models 
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6.1.2.1 Discrete and non- Gaussian outputs 

One response to this is to argue, with Hinton4, that the correctness of the E-step is 

secondary in importance to its adequacy as a platform for raising the complete data log 

likelihood. In the specific case of the Samovar algorithm, provided that the early M-steps 

are successful in finding increasingly probable model parameters, the number of plausible 

short subsequences (which is a reflection of the sparsity of the transition matrix and the 

tightness of the linear dynamics uncertainty) will fall quite rapidly, so that subsequent E- 

steps will have fewer blind guesses to make. In the course of testing the algorithm on the 

fairly sparse FSM of section 5.1.1.1, it was found that the true model parameters were 

close to being fixed points; although, as is to be expected when learning from finite data, a 

slight drift was sometimes observed, this was invariably accompanied by an increase in the 

likelihood.5 

If, however, it was reckoned to be desirable to obtain a correctly distributed set of state 

sequences from the algorithm, it could in principle be obtained by importance sampling. 

The procedure would involve running the algorithm many times-which would progressively 

eliminate the effect of the blockiness due to early pruning-and correcting the probabilities 

it assigned to each of the sample sequences it produced by comparing their true likelihoods 

with their probability under whatever the algorithm's sampling distribution turns out to 

be. (The tree of decisions made by the algorithm provides a kind of audit trail for assessing 

how probable each of its eventual outputs was a priori.) Ghahramani applies this idea to his 

variational algorithm for inference over mixtures of factor analyserss; of course the feasibility 

of an importance sampling approach to correcting the Samovar E-step would depend on how 

close the subsequence-joining algorithm already was to producing the right answers. 

6.1.2. The character of the model 

Although the mixed-linear/Gaussian form of the Samovar model is quite general and 

has some desirable properties, it also has a number of limitations. 

6.1.2.1. Discrete and non-Gaussian outputs 

In section 5.3.1.1, it was noted that the recursive mixed-linear Samovar model was, with 

its continuous outputs, structurally a poor choice for predicting the plainly discrete "food" 

sensor readings of the simulated robot tasks; and indeed this mismatch put some obstacles in 

the way of the model's successful application, although the performance ultimately obtained 

was not unacceptably compromised. It would, in fact, be very easy to extend the model so 

4 Hinton, Products of experts; section 3.3.1.3 

5 unless the priors/regularisers were set in a way inconsistent with the true system 

6 Ghahramani & Beal, Variational inference ... factor analysers 

176 

S.I.2.1 Discrete and non-Gaussian outputs

One response to this is to argue, with Hinton4, that the correctness of the E-step is

secondary in importance to its adequacy as a platform for raising the complete data log

likelihood. In the specific case of the Samovar algorithm, provided that the early M-steps

are successful in finding increasingly probable model parameters, the number of plausible

short subsequences (which is a reflection of the sparsity of the transition matrix and the

tightness of the linear dynamics uncertainty) will fall quite rapidly, so that subsequent E-

steps will have fewer blind guesses to make. In the course of testing the algorithm on the

fairly sparse FSM of section 5.1.1.1, it was found that the true model parameters were

close to being fixed points; although, as is to be expected when learning from finite data, a

slight drift was sometimes observed, this was invariably accompanied by an increase in the

likelihood.5

If, however, it was reckoned to be desirable to obtain a correctly distributed set of state

sequences from the algorithm, it could in principle be obtained by importance sampling.

The procedure would involve running the algorithm many times—which would progressively

eliminate the effect of the blockiness due to early pruning—and correcting the probabilities

it assigned to each of the sample sequences it produced by comparing their true likelihoods

with their probability under whatever the algorithm's sampling distribution turns out to

be. (The tree of decisions made by the algorithm provides a kind of audit trail for assessing

how probable each of its eventual outputs was a priori.) Ghahramani applies this idea to his

variational algorithm for inference over mixtures of factor analysers6; of course the feasibility

of an importance sampling approach to correcting the Samovar E-step would depend on how

close the subsequence-joining algorithm already was to producing the right answers.

6.1.2. The character of the model

Although the mixed-linear/Gaussian form of the Samovar model is quite general and

has some desirable properties, it also has a number of limitations.

6.1.2.1. Discrete and non-Gaussian outputs

In section 5.3.1.1, it was noted that the recursive mixed-linear Samovar model was, with

its continuous outputs, structurally a poor choice for predicting the plainly discrete "food"

sensor readings of the simulated robot tasks; and indeed this mismatch put some obstacles in

the way of the model's successful application, although the performance ultimately obtained

was not unacceptably compromised. It would, in fact, be very easy to extend the model so

4 Hinton, Products of experts; section 3.3.1.3
5 unless the priors/regularisers were set in a way inconsistent with the true system
6 Ghahramani fe Beal, Variational inference ... factor analysers

176



6.1.2.3 Products of experts 

as to cope more correctly with outputs (and inputs) which it was told were discrete in nature 

and were conditional only on the discrete hidden state Qt. The Samovar model's likelihood 

would of course have to be extended with new terms to express the extra dependencies, but 

they would figure in the learning and prediction algorithms only at the level of the outer, 

Q expectation (section 4.2.2.4), as an unproblematic extra factor in (99). It would also be 

straightforward to extend Q with extra values whose role was not to determine the model's 

current outputs but to influence the future development of Q (a practice widely adopted in 

the speech recognition community under the name "tying"). 

Even if the outputs are continuous, it may not be appropriate to model their Qt- 

conditional distribution using an unconstrained mean and Gaussian variance. Any of 

the exponential family distributions commonly used for the outputs of discrete HMMs 

could be employed. Of course, the reliance placed by the Samovar model on the Kalman 

filter formalism means that it can only capture continuous, VI-conditional trends via a 

linear/Gaussian output distribution. 

6.1.2.2. Grouping outputs 

The Samovar model is also suboptimal in the way it assumes that when the situation 

changes (i.e. a different Qt cuts in), the linear rules for all the sensor outputs change along 

with it. For an example of a situation in which some sensor characteristics change but others 

do not, consider the robot simulation of section 5: around the "food" area, the range sensors 

behave as they always did, but because the mixing state is different (in order to bring about 

the correct food sensor reading), the model must learn that pattern all over again. It would 

not be difficult to specify a model in which the mixing state was grouped so that several 

linear (or whatever-see section 6.1.2.1) mappings could be asked to predict different sensor 

readings at each timestep. But it is not obvious how such a model could be learned. The 

issue is discussed briefly in section 6.1.3; note also that Pierce has addressed a similar issue 

of grouping uninterpreted sensors in his work on mobile robot localisation and mapbuilding7. 

6.1.2.3. Products of experts 

Hinton and colleagues have recently drawn attention8 to a generic failing of mixture 

models, namely that they scale poorly to high dimensional spaces. The root of the problem 

is this: mixture models proceed from the assumption that the features observed in each data 

point can all be traced back to the parameters of a single generator. Considerable effort is 

expended in using EM or similar techniques to identify the component responsible. But in 

7 Pierce & Kuipers, Map learning 

8 Hinton, Products of experts 
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6.1.2.3 Products of experts 

fact, most multidimensional densities are more structured than that, in ways that we tend to 

express linguistically using words like `and' and `but': "The readings are always arranged in 

this region, and also fit this other pattern, but in that situation this part is impossible." As 

a result, the distribution's highest density region can be at the same time small in overall 

volume, but impossible to represent using a tractable number of generically shaped fixed 

or movable generators (kernels or mixture components); in a high dimensional space, the 

cardinality of the mixture may have to be multiplied until it approaches that of the data set 

in order of magnitude. 

The suggested solution is to model the distribution not as a sum of local sub- 

distributions, but as a product of expert distributions specialised in detecting features 

(and not necessarily localised in feature space). Where the values of these densities are 

simultaneously high ('and'), the combined, product probability will be high as well; where 

one or more of them is close to zero ('but'), the probability will be low. This gives rise to the 

generative model 

p(rt 10) _ 
fr11 1. 

Pr(' 

rt 0t).) 
(118) 

where the product is scaled to enforce the constraint that it integrate to unity. Actually, it 

is not clear that the expert "distributions" are really best viewed as probability densities 

at all; the whole point of the model is that they cannot be used individually to predict 

anything, but only collectively (which is why they have been written using the bold p( ) 
above). Note that there is no requirement that they should themselves be normalised; in fact 

it seems plausible that they are closely related to the "potentials" of undirected graphical 

models 9. 

At first sight it appears impossible to learn a product of experts model efficiently, 

because the normaliser in (118) gives rise to an awkward extra term in the derivative of the 

log likelihood: 

49 
logp(rt 10) = B; logP(rt 100 - Ir: p(rt 

19) 870, 
logp(rt 10.) (119) 

The "purpose" of subtracting the expected derivative of all the possible data with respect 

to each expert's parameter could be seen as encouraging the experts to diversify: it should 

actively avoid agreeing with other experts where its voice would be redundant in order 

to concentrate on its own speciality. Computing the expectation exactly is impossible, 

and indeed it would seem to demand the use of a heavyweight Markov chain Monte Carlo 

method. However, the authors present good results obtained with derivatives calculated 

on the basis of a very short chain of Gibbs samples-quick to simulate, but much too short 

9 Jordan, Learning in Graphical Models; indeed Hinton, Products of experts explicitly 

compares the product model with a Boltzmann machine (a variety of undirected graphical model) 
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6.1.3 Selecting the right structure 

to yield a genuinely independent sample. The most plausible reason they suggest for this 

felicitous phenomenon is that the diversification term is simply not critically important; it 

does not much matter whether the experts specialise as much as they optimally might. 

One might speculate that some kind of product of experts would be the ideal resolution 

of the issues of sensor grouping raised in section 6.1.2.2. 

6.1.3. Selecting the right structure 

Like the standard Baum-Welch HMM learning procedure (section 3.3.3.3), the Samovar 

learning algorithm as presented in section 4.2.2.9 focusses entirely on the problem of training 

a model with a previously fixed number of mixing states. The question of how many such 

states there really ought to be is left unaddressed. Bayesian theory does, in fact, provide 

an extremely compelling answer, which is simply that one should construct a posterior 

distribution which includes mixtures of all (conceivably relevant) sizes in exactly the usual 

way: specifying a prior density which expresses one's beliefs about how plausible all the 

different possible models, with various different numbers of states, are, and then applying 

Bayes' rule in the light of the observed data. What makes this idea so attractive is that it 

naturally embodies an "Occam's razor" filter which automatically rejects large mixtures, 

unless the data furnish strong evidence in their favour. The reason is simply that mixtures 

with more components have a higher-dimensional parameter space; and the prior over 

that space must integrate to unity; so the prior probability available to be spread over 

each possible mixture model falls off exponentially with their size. Even if the reasoner 

thinks a priori that a big model is a real possibility, and just isn't quite sure which one, 

the attenuation of the prior density means that all of them will start off with a substantial 

penalty-which nicely balances the large likelihoods which some of them may give rise 

to by just happening to (over)fit the data very closely. This notion of complexity control 

by prior attenuation is perhaps the deepest contribution Bayesian thinking has made to 

understanding of ideal rationality; it applies not only to mixture models10, but also to model 

structure and "power" generallyll 

The problem is that adding models with different structures makes the task of doing 

inference with the posterior; already intractable in general when a single structure is 

considered, even more difficult. One approach is to enumerate all the structures which are 

considered at all plausible, and attempt to assess their probabilities by marginalising out the 

10 Cheeseman et at, Autoclass 

11 MacKay, Bayesian Interpolation; Dellaportas et al., On Bayesian Model and Variable 

Selection 
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6.2 Action selection 

remaining parameters. For instance, if one is looking for an estimate of the "right" number or 

of states for a mixture: 

p(aIr,a,?)ocp(rIa,a,7L)p(a 71) 

p(r 10, a) p(8 191) p(a 13{) 

It is sometimes possible to find usable approximations to the inevitable integral over 

Ghahramani has recently given attention to the problem of performing full Bayesian 

inference over mixtures of factor analysers;13 since Kalman filtering can be seen as the 

recursive analogue of the method of factor analyis, and Samovar is a recursively mixed linear 

model (with output mappings akin to the "factor loading" matrix), it may be possible to 

extend his variational algorithm to Samovar-type dynamical models as well. Otherwise, 

there may be no simple and reliable alternative to the time-consuming process of generating 

a sample of model parameters drawn from the posterior p(B I d) using (probably) the hybrid 

Markov chain Monte Carlo method.14 

Alternatively, it is possible to follow a Markov Chain through the space of model 

structures. Because this technique can, with ingenuity15, be used to sample from the 

space of model structures even if it is more complicated than just a chain of possible 

"sizes", it would perhaps help with the problem of learning which output distributions were 

appropriate for each sensor (section 6.1.2.1). Similarly, Boyen has recently demonstrated16 

a "structural EM" algorithm for exploring a space of conditionality graphs by incremental 

adjustment; it could potentially be applied to the problem of factorising the Samovar 

model's discrete hidden state and grouping its outputs. 

6.2. Action selection 

The purpose of constructing a model of the robot's environment is to provide it with a 

flexible way of deciding which actions it ought to perform in order to further its ends. 

12 see for instance Cheeseman et al., Autoclass (mixture models), MacKay, A Practical 
Bayesian Framework (MLPs) 

is Ghahramani & Beal, Variational inference ... factor analysers 

14 Neal, Probabilistic inference 

15 Dellaportas et at., On Bayesian Model and Variable Selection 

16 Boyen et at., Discovering the Hidden Structure 

One 
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space of model structures even if it is more complicated than just a chain of possible

"sizes" , it would perhaps help with the problem of learning which output distributions were

appropriate for each sensor (section 6.1.2.1). Similarly, Boyen has recently demonstrated16

a "structural EM" algorithm for exploring a space of conditionality graphs by incremental

adjustment; it could potentially be applied to the problem of factorising the Samovar

model's discrete hidden state and grouping its outputs.

6.2. Action selection

The purpose of constructing a model of the robot's environment is to provide it with a

flexible way of deciding which actions it ought to perform in order to further its ends. One

12 see for instance Cheeseman et al., Autoclass (mixture models), MacKay, A Practical

Bayesian Framework (MLPs)
13 Ghahramani & Beal, Variational inference ... factor analysers
14 Neal, Probabilistic inference
15 Dellaportas et al., On Bayesian Model and Variable Selection
16 Boyen et al., Discovering the Hidden Structure
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6.2.1.2 Planning as snference 

of the attractive aspects of a recursive mixed-linear model is that, in its joint variant (though 

not in its conditional one), it is sufficiently invertible to permit something reasonably close to 

optimal planning to be performed over a continuous space of actions. 

6.2.1. The theory 

According to Bayesian decision theory (section 3.2.6.2), the aim when acting under 

uncertainty is to find an action which maximises the expected goodness of the future state of 

the world, where the expectation is taken conditional on the agent's belief distribution about 

each action's consequences, and the goodness is some predefined assignment of relative costs 

and benefits to each state. 

6.2.1.1. Planning 

It is easy to extend the decision rule 26 to the case where one is choosing an action with 

a view to what will happen over more than one timestep into the future, as a robot clearly 

must. By the sum rule (marginalisation), what is needed at time T is 

a; = argmax f f p(r[TT+r)IaT,hT,0) > g(rt) 
aT JhT .fTIT,T+* ) tE[ T,T+r ) 

where g(rt) is the gain from obtaining sensor readings rt. (There is no reason why g could 

not also depend on the action at if that was desired. Note that rewards not easily defined 

purely in terms of rt can be supported by adding an extra "reward" pseudo-sensor, which is 

fed manually determined values during training; the model will hopefully develop any hidden 

state necessary for predicting it just as it does with the real sensors.17) 

6.2.1.2. Planning as inference 

It is possible to consider the search for a good action as a kind of probabilistic 

inference, by encoding a goodness landscape over sensor readings as the likelihood p(G = 

0 I rt, 9) that a "goal" variable achieves some designated value, w.l.o.g. zero, as follows: 

a;, = argmax f J 
p(r[T,T+T) aT hT 0) 1 p(G 0 I rt, 9) (120) 

aT h rf T,T+r) 
T tE[T,,T+T) 

Conceptually, there is a distinction between a known, variable goodness for each outcome 

and a variable probability of a fixed goodness, but once expectations are taken, the numbers 

will work out the same. Note that weightings have been inserted in order to turn the 

summation over future gains into a legal mixture (it is only the relative gains that matter); 

17 c.f. Chrisman, Reinforcement learning 
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6.2.1.3 A possible algorithm 

time-dependent weightings such as a discount rate could also be used. The contribution 

this makes to the likelihood is precisely that obtained by extending the model to include a 

noisy measurement taken from one of the sensor readings, depending on an unknown selector 

variable; this means that (120) can be interpreted as maximum likelihood estimation of aT 

given this extra "evidence". So a good action can be chosen by projecting a scenario forward 

into the future which includes that "measurement", and then inferring a distribution for 

what the actions "must have been", or "must be going to be". The following graph shows 

the state of play when this approach is applied to the joint Samovar model (section 4.2.3): 

<- past future -4 

(121) 

00 

Here, timestep 4 is the point at which the agent is making a decision, and C, whose value is 

known to be (going to be) zero, is supposed be generated by adding a Gaussian noise sample 

to either R5 or Re, depending on the unknown value of the discrete "selector" S. 

6.2.1.3. A possible algorithm 

Setting the problem up this way makes it possible to apply inference techniques from 

the graphical models literature. In fact, conditioned on a known value of S, only one of the 

links R5 -r G and Re --> G is effectively present, so that the effect of G is merely to induce 

a Gaussian distribution over one of the readings. Inference of the hidden state Q, V, and 

hence A4, can then be performed using the usual sequence-joining E-step algorithm. It is, 

for instance, not difficult to find an action intended to yield a payoff at a single, specified 

future timestep. But of course in general S is unknown. The suggested solution is to adopt 

the variational approximation from Ghahramani and Hinton's learning algorithm for the 

switching state-space model (section 4.3.2), where the same problem of accounting for the 

effect of a selector variable is solved by a kind of mean field approximation: estimates pt 

are kept of the probability that each of the state-space models in the bank was responsible 

for generating the reading observed at time t, and they are alternately used for inference of 

the models' states and recalculated based on those state estimates. Adapting this idea, one 

might introduce variables pt as channels for information about the value of S in (121); their 
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6.2.2.1 Ballistic actions 

function in terms of the decision rule (120) would be to represent the degree to which the 

planner is attempting to achieve a nonzero gain at each timestep. The algorithm would look 

something like this: 

initialise pt to an even distribution 

repeatedly 

treat G = 0 as a noisy observation made from each sensor reading Rt 

through the Gaussian distribution representing the goodness landscape, 

with its precision scaled down by pt 

use the subsequence-joining algorithm to infer the model's hidden state 

distribution 

reset the pts in proportion to the likelihood with which each of the Rts 

accounts for G = 0, marginalised over the current estimate of the hidden 

state 

finally, read off a Gaussian mixture distribution over A4, and suggest the mode as 

the recommended action 

Note that it would not be possible to apply this procedure to the conditional Samovar 

model, because it needs to be provided with specific actions on which to condition its mixing 

state inferences; even if one were simply to neglect the effect of the actions on the mixing 

state trajectory-which would be unsound since the action-independent weightings w,, of a 

conditional gating model are not transition probabilities1s-one would still be left with the 

problem of reading off the maximum likelihood A4 at the end, and its distribution under 

the conditional model would not be a mixture of Gaussians but something much more 

complicated. 

6.2.2. Taking account of the robot's belief state 

Although the algorithm sketched above would be reasonably efficient, it has a 

theoretical weakness in that it does not take account of the way the robot's belief state will 

develop. 

6.2.2.1. Ballistic actions 

As noted in section 2.3.2, it is often useful to try and follow a trajectory through the 

world in which one is likely to receive sensor information which helps pin down what the 

world state is; but in the graph (121), nothing is presumed known about future sensor 

18 see section 3.3.3.4 
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6.2.2.2 Monte Carlo planning 

readings except their (intended) goodness. The procedure will, therefore, concentrate on 

finding actions which would work well if one were to carry them out blind-one might say 

ballistically. It's impossible to fix this problem straightforwardly, because to do so would 

mean providing the model with information about what the future readings and actions are 

going to be-and that, of course, depends on the plan the robot ultimately comes up with. 

It would, however, be possible to add a penalty term to the subsequence-joining algorithm 

which caused it to prefer sequences with low entropy. 

6.2.2.2. Monte Carlo plannang 

While exact inference of the correct "non-ballistic" action is probably impossible, one 

might perhaps work up a more principled approach to performing genuine POMDP planning 

using a Monte Carlo optimisation method. For instance, 

to plan forwards from time t, 

repeatedly 

start with an arbitrary action at,D 

repeatedly 

sample a candidate at,n+l from some proposal 

distribution conditional on a,n 

assess its expected goodness by recursively planning 

forwards from time t + 1 under the supposition that 
At = at,n+r 

adopt at,n+l or not according to a Metropolis- 

Hastings acceptance rule 

return the best at,O found 

By applying itself recursively to assess the future effect of an action, this procedure would 

automatically be employing realistic estimates of the succeeding actions and readings on the 

robot's belief state. For this reason it would, however, take a long time to run (exponential, 

in fact, in the length of the time window considered). If one wished to have the robot follow 

a policy of optimising a given sensor goodness measure over a reasonably extended period, it 

would pay to use this procedure to learn (offline) a policy oracle which would take a belief 

state as input and map it to a suggested action; however, the belief state is a very high- 

dimensional space, and it's not clear how this oracle should be parameterised. 
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Chapter 7 

Conclusions 

The present thesis has proposed the use of a mixed-linear probabilistic state-space 

model for learning the dynamics of a robot's interaction with the world. A novel algorithm 

has been presented for training and interrogating such a model, which compares favourably 

in computational complexity with existing techniques.' Results collected from two simulated 

mobile robot environments support the claim that mixed-linear models can capture both 

discontinuous and continuous structure in the world in an intuitively natural manner; while 

they were not proved to perform significantly better than simpler autoregressive hidden 

Markov models on these simple tasks, it is possible to claim tentatively that they might scale 

more effectively to environments in which trends over time played a larger role. Two types of 

probabilistic confidence region, including a generative one which as a side-effect considerably 

simplified the learning algorithm, were quite effective at preventing both HMM and mixed- 

linear models from making over-confident but wrong predictions.2 

The near-invertibility of the mixed-linear model with generative confidence region made 

it possible to suggest a reasonably efficient algorithm (not yet tried out) for planning the 

robot's future actions so as to optimise its expected reward; however, it could allow at best 

only inexactly for the effect of the robot's future experiences on its belief state. 

In placing the work presented here in the context of other approaches to similar 

problems, parallels have been drawn with probabilistic techniques for robot localisation and 

1 chapter 4 

2 chapter 5 
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7 Concduseons 

mapping, neural network system identification, and visual tracking.3 Mixed-linear dynamics 

models might find applications at the borders of these areas, subsuming several tasks often 

treated as different in kind into a single framework: 

Categorising distinguished locations in the environment, or more generally 

regions in the abstract state space of the robot-world dynamical system, and 

discovering how they connect to one another. The mixed-linear formalism provides 

a natural way of extending appearance-based methods4 to what could be called the 

"look and feel" of the environment, based on linear relationships between sensor 

readings and dynamical quantities such as the robot's speed. Note that it would 

be easy in the probabilistic framework to incorporate a known model of noisy 

odometry information, or more complicated sensor models such as those developed 

for computer vision, which the robot could learn to exploit as appropriate. 

Learning the response to actuator commands as a "black box" system, 

from the insider's point of view. A mixed-linear state-space model is a plausible 

generalisation of the hidden Markov and Kalman models previously applied to 

this problem, while being both easier to understand and work with, and no less 

powerful in principle, than the multi-layer perceptron. 

Accounting for dynamic external phenomena. Mixed-linear models are 

already used successfully for visual tracking, and they ought to be able to capture 

the effect of moving objects on, for example, a robot's range sensor readings, in a 

powerful and robust way. 

Before this last possibility in particular has a serious chance of coming to fruition, some 

more work will have to be done on introducing extra structure into the model, breaking the 

one-to-all link between the discrete state at each timestep and the linear mapping given 

the task of predicting all of that step's sensor readings .4 Otherwise, the unsophisticated, 

but in essence domain-neutral, training regime adopted for the simulation experiments5 

may plausibly provide an adequate basis for the application of mixed-linear models to other 

robots and worlds. Implementing the learning algorithm in a more memory- and time- 

efficient way than it was in the experiments reported above should allow it to handle models 

with at least 64 components and several dimensions of linear hidden state.' Some care 

3 chapter 2; section 4.3 

4 section 2.1.2.6 

4 section 6.1.2.2 

5 section 5.3.1.3; section 5.3.2 

6 section 5.4.4 

186 

7 Conclusions

mapping, neural network system identification, and visual tracking.3 Mixed-linear dynamics

models might find applications at the borders of these areas, subsuming several tasks often

treated as different in kind into a single framework:

• Categorising distinguished locations in the environment, or more generally

regions in the abstract state space of the robot-world dynamical system, and

discovering how they connect to one another. The mixed-linear formalism provides

a natural way of extending appearance-based methods4 to what could be called the

"look and feel" of the environment, based on linear relationships between sensor

readings and dynamical quantities such as the robot's speed. Note that it would

be easy in the probabilistic framework to incorporate a known model of noisy

odometry information, or more complicated sensor models such as those developed

for computer vision, which the robot could learn to exploit as appropriate.

• Learning the response to actuator commands as a "black box" system,

from the insider's point of view. A mixed-linear state-space model is a plausible

generalisation of the hidden Markov and Kalman models previously applied to

this problem, while being both easier to understand and work with, and no less

powerful in principle, than the multi-layer perceptron.

• Accounting for dynamic external phenomena. Mixed-linear models are

already used successfully for visual tracking, and they ought to be able to capture

the effect of moving objects on, for example, a robot's range sensor readings, in a

powerful and robust way.

Before this last possibility in particular has a serious chance of coming to fruition, some

more work will have to be done on introducing extra structure into the model, breaking the

one-to-all link between the discrete state at each timestep and the linear mapping given

the task of predicting all of that step's sensor readings.4 Otherwise, the unsophisticated,

but in essence domain-neutral, training regime adopted for the simulation experiments5

may plausibly provide an adequate basis for the application of mixed-linear models to other

robots and worlds. Implementing the learning algorithm in a more memory- and time-

efficient way than it was in the experiments reported above should allow it to handle models

with at least 64 components and several dimensions of linear hidden state.6 Some care

3 chapter 2; section 4.3

4 section 2.1.2.6

4 section 6.1.2.2

5 section 5.3.1.3; section 5.3.2

6 section 5.4.4

186



7 Conclusions 

certainly has to be taken in setting up roughly appropriate priors to fend off regularisation- 

related problems7, and in exploring the space of model sizes (number of mixing states 

and dimensionality of linear hidden state); since the methods presented here are based on 

maximum likelihood model estimation and not full Bayesian inference, the latter can only be 

accomplished by validating models' promise against their performance on unseen data.8 

7 section 5.3.1.1 

8 The recommended procedure for getting something working after as few experiences as possible 

is to train a fair sample of models on some test data, and then choose between them based on their 

success at predicting new data as it comes in (section 3.2.4.5). 
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Appendix A 

Notation 

All continuous quantities, such as process outputs and model parameters, are assumed 

to be vector-valued; no distinguishing notation is adopted. Transposition is denoted by ' 
and matrix inversion by . . .-1. Vector and matrix values are used freely in the standard grid 

notation to denote subblocks of larger assemblies. 

Model parameters are written using Greek letters (0). Random variables are denoted 

by capital letters (6, RI), and their values by the corresponding lower case letter (0, rt). 

The latter can also be used on their own to assert a value of the former, so that p(at) means 

p(At = at ). 

Temporal indexing is indicated by superscripts (rt, Sv). "Missing out" an indexing 

superscript or subscript can be used to mean "the whole sequence/set" (r, A). Range 

superscripts select the corresponding subsequence out of the variable they are applied to 

Values computed at a particular iteration of an EM algorithm are identified by 

superscripts involving the iteration number it (On). 

Indexing into a discrete set of simultaneous possibilities, such as mixture components, is 

indicated by subscripts (p,, ci ). Subscripts are also used to select rows and/or columns from 

vectors and matrices ((. .),t), and have a special meaning in section 3.3.3.5. 
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A.1 Greek symbols 

A.1. Greek symbols 

Symbol Usage See also First use 

a The precision (inverse variance) of the section 3.3.3.5 

Gaussian noise term in the inter-state 

dynamics of a Kalman filter. Symbolically, 

Vt+1 = AVt + N(O, a). 

ai The precision (inverse variance) of the section 4.2.1.2 

Gaussian noise term in component i of the 

inter-linear-state dynamics of a Samovar 

model. Symbolically, if Qt = i then 

Yt+l = A,Xt +N(0,ai). Note that in the 

Samovar model, the robot sensor readings 

and actions are subsumed into the world 

states X and Y. 

The precision (inverse variance) of the a section 3.2.5.2 

Gaussian noise which a model-Gaussian, 

Kalman filter, or whatever-adds to each 

output Rt. In the Samovar model, 0 is 

subsumed into a. 

The precision (inverse variance) of the K, section 3.3.2.1 

Gaussian noise which component i of a 

mixture model-Gaussian mixture, mixture 

of experts, or whatever-adds to each 

process output Rt. In the Samovar model, 

(i, is subsumed into a,. 

ry The precision (inverse variance) of the v section 3.2.5.3 

Gaussian patch from which a joint- section 3.3.2.4 

Gaussian model generates each process section 3.3.2.5 

input At. Or, the precisions of the 

Gaussian patches of all the components 

of a joint mixture of experts, or of 

the Gaussian receptive fields of all the 

components of a conditional mixture 

of experts or Samovar model-both 

symbolically U,{ryi}. 
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A.I. Greek symbols

A.I Greek symbols

Symbol Usage

a

/3

7

The precision (inverse variance) of the

Gaussian noise term in the inter-state

dynamics of a Kalman filter. Symbolically,

yt+i =

The precision (inverse variance) of the

Gaussian noise term in component i of the

inter-linear-state dynamics of a Samovar

model. Symbolically, if Q* = i then

y4+1 = \Xl + N(Q,cti). Note that in the

Samovar model, the robot sensor readings

and actions are subsumed into the world

states X and Y.

The precision (inverse variance) of the

Gaussian noise which a model — Gaussian,

Kalman filter, or whatever — adds to each

output R*. In the Samovar model, /3 is

subsumed into a.

The precision (inverse variance) of the

Gaussian noise which component i of a

mixture model — Gaussian mixture, mixture

of experts, or whatever — adds to each

process output R*. In the Samovar model,

@i is subsumed into al.

The precision (inverse variance) of the

Gaussian patch from which a joint-

Gaussian model generates each process

input A4. Or, the precisions of the

Gaussian patches of all the components

of a joint mixture of experts, or of

the Gaussian receptive fields of all the

components of a conditional mixture

of experts or Samovar model — both

symbolically U« { 7* } .

See also First use

section 3.3.3.5

section 4.2.1.2

fJ,,K section 3.2.5.2

section 3.3.2.1

section 3.2.5.3

section 3.3.2.4

section 3.3.2.5

189



A.1 Greek symbols 

ryi The precision (inverse variance) of -y, v, section 3.3.2.4 

the Gaussian patch from which the section 3.3.2.5 

component i of a joint mixture of experts 

generates each process input At, or of the 

Gaussian receptive field according to which 

the component i of a conditional mixture of 

experts claims inputs for itself. 

b,i1 Not a model parameter, but the standard 

Kronecker delta: unity if i = j, zero 

otherwise. 

b Unsubscripted, the model parameters p section 3.3.3.1 

generically governing the inter-state 

dynamics of whatever dynamical system 

model is being treated. 

I The "model parameter" expressing the section 3.3.3.1 

distribution of the initial hidden state H° 

of a dynamical systems model (= V° in 

the Kalman filter, Q° in the hidden Markov 

model). 

ti In the hidden Markov model, t, = p(Q° = section 3.3.3.3 

i) is the "model parameter" specifying 

the probability that the initial state at 

timestep t = 0 is i. 

1,1 In the Kalman filter, these "model section 3.3.3.5 

parameters" define the Gaussian 

distribution of the initial state. 

Symbolically, V° - N(T, t). 

it The output linear mapping (output matrix) section 3.2.5.4 

of a linear regressive model or Kalman section 3.3.3.5 

filter. Symbolically, Rt = ,cAt + N(0, 0), 

or Rt = icVt + N(0, fi) in the case of a KF. 

ic, The output linear mapping (output matrix) section 3.3.2.4 

of the component i of a mixture of experts 

model. Symbolically, if Qt = i then Rt = 

is,At + N(0,)0,). 
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7i The precision (inverse variance) of

the Gaussian patch from which the

component i of a joint mixture of experts

generates each process input A4, or of the

Gaussian receptive field according to which

the component i of a conditional mixture of

experts claims inputs for itself.

6t!} Not a model parameter, but the standard

Kronecker delta: unity if i = j, zero

otherwise.

S Unsubscripted, the model parameters

generically governing the inter-state

dynamics of whatever dynamical system

model is being treated.

t The "model parameter" expressing the

distribution of the initial hidden state H°

of a dynamical systems model (= V° in

the Kalman filter, Q° in the hidden Markov

model).

Li In the hidden Markov model, ^ = p(Q° =

i) is the "model parameter" specifying

the probability that the initial state at

timestep t = 0 is i.

T, I In the Kalman filter, these "model

parameters" define the Gaussian

distribution of the initial state.

Symbolically, V° ~ N(l,Z).

K The output linear mapping (output matrix)

of a linear regressive model or Kalman

filter. Symbolically, E4 = «A4 + JV(0,/3),

or R* - K,V* + N(Q,0) in the case of a KF.

KI The output linear mapping (output matrix)

of the component i of a mixture of experts

model. Symbolically, if Q4 = i then R* =

A.I Greek symbols

7, z/t section 3.3.2.4

section 3.3.2.5

section 3.3.3.1

section 3.3.3.1

section 3.3.3.3

section 3.3.3.5

section 3.2.5.4

section 3.3.3.5

section 3.3.2.4
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A.1 Greek symbols 

A The inter-state linear mapping (dynamics a section 3.3.3.5 

matrix) of a Kalman filter. Symbolically, 

Ut+i = AV' + N(0, a). 

A, The linear mapping (dynamics matrix) section 4.2.1.2 

of component i of the inter-linear- 

state dynamics of a Samovar model. 

Symbolically, if Qt = i then Yt+i = 

A,Xt + N(0, a;). Note that Xt includes 

a bias element which is always set to unity, 

enabling A, to include the intercept as well 

as the slope of the mapping. 

µ The mean around which a Gaussian model section 3.2.5.2 

generates process outputs Rt. 

The mean around which component i of a $, section 3.3.2.1 

Gaussian mixture model generates process 

outputs Rt. 

v The mean of the Gaussian patch from ry section 3.2.5.3 

which a joint-Gaussian model generates section 3.3.2.4 

each process input At. Or, the means of section 3.3.2.5 

the Gaussian patches of all the components 

of a joint mixture of experts, or the 

centres of the Gaussian receptive fields 

of all the components of a conditional 

mixture of experts or Samovar model- 

both symbolically U,{ v,}. 

Vi The mean of the Gaussian patch from v,7, section 3.3.2.4 

which the component i of a joint mixture section 3.3.2.5 

of experts generates each process input At, 

or the centre of the Gaussian receptive 

field according to which the component i 
of a conditional mixture of experts claims 

inputs for itself. 
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The inter-state linear mapping (dynamics

matrix) of a Kalman filter. Symbolically,

The linear mapping (dynamics matrix)

of component i of the inter-linear-

state dynamics of a Samovar model.

Symbolically, if Q4 = i then F4+1 =

A,X4 + N(Q,cti). Note that X4 includes

a bias element which is always set to unity,

enabling A, to include the intercept as well

as the slope of the mapping.

The mean around which a Gaussian model

generates process outputs R*.

The mean around which component i of a

Gaussian mixture model generates process

outputs R*.

The mean of the Gaussian patch from

which a joint-Gaussian model generates

each process input A*. Or, the means of

the Gaussian patches of all the components

of a joint mixture of experts, or the

centres of the Gaussian receptive fields

of all the components of a conditional

mixture of experts or Samovar model —

both symbolically U4{ vt}.

The mean of the Gaussian patch from

which the component i of a joint mixture

of experts generates each process input A4,

or the centre of the Gaussian receptive

field according to which the component i

of a conditional mixture of experts claims

inputs for itself.

A.I Greek symbols

a section 3.3.3.5

section 4.2.1.2

section 3.2.5.2

section 3.3.2.1

section 3.2.5.3

section 3.3.2.4

section 3.3.2.5

section 3.3.2.4

section 3.3.2.5
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A.1 Greek symbols 

The probability with which an section 3.2.5.1 

unconditional mixture model chooses a section 3.3.2.5 

particular component i to generate each 

output at, or with which a joint mixture 

model chooses i to generate each input- 

output pair At, Rt. Or the "background" 

weighting which a conditional mixture 

model gives to i in choosing a component 

to map At to W. 

The probability with which an HMM section 3.3.3.3 

transitions to state i from state j- section 4.2.1.2 

symbolically, p(Qt+r = i 
I 
Qt = j, 9) 

Or, the "background" weighting which the 

Samovar model gives to component i when 

choosing a component to map Xt to Yt+l 

when the previously chosen component 

was j. 
In the variational free energy/ensemble section 3.3.1.3 

learning view of the EM algorithm, a 

parameter defining a probability density 

function which is optimised so as to 

approximate the distribution of the 

quantities being estimated. 

p The model parameters generically S section 3.3.3.1 

governing the output function of whatever 

dynamical system model is being treated. 

O The reasoner's beliefs about the process section 3.2.2 

under consideration (generally a 

random variable whose values are model 

parameters 9). Strictly speaking, relative 

to the prior 9d; but the latter is mostly 

neglected. 

9 Generically, all the parameters of whatever section 3.2.3.1 

model is currently being treated. 

r Not a model parameter, but an alternative 

to t where two timestep variables are 

needed. 
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A.I Greek symbols

w, The probability with which an

unconditional mixture model chooses a

particular component i to generate each

output R*, or with which a joint mixture

model chooses i to generate each input-

output pair A4,.R4. Or the "background"

weighting which a conditional mixture

model gives to i in choosing a component

to map A4 to R*.

uitj The probability with which an HMM

transitions to state i from state j—

symbolically, p(Qt+l = i\Qt = j,8).

Or, the "background" weighting which the

Samovar model gives to component i when

choosing a component to map X1 to Yt+1

when the previously chosen component

was j.

TT In the variational free energy/ensemble

learning view of the EM algorithm, a

parameter defining a probability density

function which is optimised so as to

approximate the distribution of the

quantities being estimated.

p The model parameters generically

governing the output function of whatever

dynamical system model is being treated.

0 The reasoner's beliefs about the process

under consideration (generally a

random variable whose values are model

parameters 0). Strictly speaking, relative

to the prior 'H; but the latter is mostly

neglected.

0 Generically, all the parameters of whatever

model is currently being treated.

T Not a model parameter, but an alternative

to t where two timestep variables are

needed.

section 3.2.5.1

section 3.3.2.5

section 3.3.3.3

section 4.2.1.2

section 3.3.1.3

section 3.3.3.1

section 3.2.2

section 3.2.3.1
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A.2 Roman symbols 

'tm 

Not a model parameter, but the probability 

that a hidden Markov model generated the 

training outputs and was in states j and i 
at timesteps t and t + 1 respectively. 

Not a model parameter, but, in the 

subsequence-joining algorithm for the 

Samovar model's E-step, an estimate of the 

probability that the model generated the 

training outputs and made the component 

choices described by the subsequences m 

and I during the time ranges it and it + 1 

respectively. 

A.2. Roman symbols 

Symbol Usage 

(58) 

(103) 

See also First use 

At Random variable: the input to the process section 3.2.2 

at time t, or the robot's actions at time t. 

at A value of At, i.e. the observed process section 3.2.2 

input at time t; or (as a proposition in a 

probability) an abbreviation for At = at 

A Random variable: all the process inputs, D section 3.2.2 

or robot actions, in the training set, which 

are taken to be all those occurring before 

timestep T. Symbolically, { At : t E 

[O,T) }. 

( )A A is sometimes used as a subscript to select (- )R, ( )v 
rows and/or columns corresponding to the 

position of At in Xt. 

a A value of A. Symbolically, { at : d section 3.2.2 

t E [ 0, T) }; or (as a proposition in a 

probability) an abbreviation for A = a. 

193 

Not a model parameter, but the probability

that a hidden Markov model generated the

training outputs and was in states j and i

at timesteps t and t + 1 respectively.

Not a model parameter, but, in the

subsequence-joining algorithm for the

Samovar model's E-step, an estimate of the

probability that the model generated the

training outputs and made the component

choices described by the subsequences m

and i during the time ranges u and u + 1

respectively.

A.2 Roman symbols

(58)

(103)

A.2. Roman symbols

Symbol

A4

Usage

Random variable: the input to the process

at time t, or the robot's actions at time t.

A value of A4, i.e. the observed process

input at time t; or (as a proposition in a

probability) an abbreviation for A* = a4.

Random variable: all the process inputs,

or robot actions, in the training set, which

are taken to be all those occurring before

timestep T. Symbolically, { A4 : t £

See also First use

section 3.2.2

section 3.2.2

D section 3.2.2

A is sometimes used as a subscript to select (• • -)R, (• • -}v

rows and/or columns corresponding to the

position of A4 in X* .

A value of A. Symbolically, { a4 : d

t e [0,T) }; or (as a proposition in a

probability) an abbreviation for A = a.
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A.2 Roman symbols 

A The learner's prior information or section 3.2.2.1 

assumptions about the process input. 

B A statistic used in the (re)estimation rule C, P (76) 

for the Kalman filter and Samovar models: section 4.2.2.3 

the expected sum of the outer products of 

the bases for the inter-state linear mapping. 

b b(ht) is the probability that a dynamical f (51) 57 

process is in state ht and then produces section 3.3.3.5 

the outputs rlt,T). If the process is 

an HMM or a KF, it can be computed 

efficiently using the backward half of the 

forward-backward equations or the Rauch 

recursions, respectively. 

C A statistic used in the (re)estimation rule B, P (76) 

for the Kalman filter and Samovar models: section 4.2.2.3 

the expected sum of the outer products 

of the targets for the inter-state linear 

mapping. 

cj In the subsequence-joining algorithm S",xj," (101) 

for the Samovar model's E-step, the 

likelihood that the components of the 

mixed-linear dynamics chosen during 

the time range [ Lu, Lu + L) are those 

proposed in the subsequence 1, and that 

the outputs rILu,Lu+L) are generated. 

Dt Random variable: the observable values at 

timestep t, comprising the process input 

and output (or robot action and sensor 

reading). Symbolically, 
( 

At ) 

dt A value of Dt, i.e. the observed process 

output and input (or robot action and 

sensor reading) at time t--symbolically, 
rt 
at 

-or (as a proposition in a 

probability) an abbreviation for Dt = dt. 

section 4.2.1.1 

section 4.2.1.2 
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A The learner's prior information or

assumptions about the process input.

B A statistic used in the (re)estimation rule

for the Kalman filter and Samovar models:

the expected sum of the outer products of

the bases for the inter-state linear mapping.

b {>(&) is the probability that a dynamical

process is in state h1 and then produces

the outputs r t 4 'T) . If the process is

an HMM or a KF, it can be computed

efficiently using the backward half of the

forward-backward equations or the Rauch

recursions, respectively.

C A statistic used in the (re)estimation rule

for the Kalman filter and Samovar models:

the expected sum of the outer products

of the targets for the inter-state linear

mapping.

cf In the subsequence-joining algorithm

for the Samovar model's E-step, the

likelihood that the components of the

mixed-linear dynamics chosen during

the time range [Lu,Lu + L) are those

proposed in the subsequence /, and that

the outputs r(
Lu,Lu+L) are generated.

D4 Random variable: the observable values at

timestep t, comprising the process input

and output (or robot action and sensor

reading). Symbolically, I At
\

if A value of £>4, i.e. the observed process

output and input (or robot action and

sensor reading) at time t—symbolically,

t I —or (as a proposition in a
/

probability) an abbreviation for D* = d4.

A.2 Roman symbols

section 3.2.2.1

C, P (76)

section 4.2.2.3

/ (51) 57

section 3.3.3.5

B, P (76)

section 4.2.2.3

~U
>zlm (101)

section 4.2.1.1

section 4.2.1.2
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A.E Roman symbols 

D Random variable: the process inputs 

and outputs (or robot actions and sensor 

readings) on which the model is trained, 

which are taken to be all those occurring 

before timestep T. Symbolically, D = 

AUR={At,Rt:tE [0,T)}. 

d A value of D: the observations of process 

inputs and outputs (or robot actions and 

sensor readings) used to train the model, 

which are taken to be all those occurring 

before timestep T. Symbolically, d = aUr = 

{at,rt:tE [0,T)}. 

E[ ] E. [f (x) I y] is the expectation of f (x) 

given y: f. p(x I y) f (x). "E-step" is 

the name given to the first half of each 

iteration of the EM algorithm. 

F "Variational free energy". 

section 3.2.3.1 

section 3.2.3.1 

section 3.3.1.1 

section 3.3.1.3 

F, Average probability at which the robot's section 5.4.1.1 

"food" sensor is predicted to exceed 0.5 in 

situations of category i 

f f (ht) is the probability that a dynamical b (51) 56 

process produces the outputs rle,tl, section 3.3.3.5 

finishing in state ht. If the process is 

an HMM or a KF, it can be computed 

efficiently using the forward half of the 

forward-backward equations or the Kalman 

recursions, respectively. 

g(... I p, 8) The Gaussian pdf with mean p and section 3.3.2.5 

precision (inverse variance) 0. 

g(at, yt) Gain function defining goodness of section 3.2.6.2 

performing action at in world state yt. 
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D Random variable: the process inputs

and outputs (or robot actions and sensor

readings) on which the model is trained,

which are taken to be all those occurring

before timestep T. Symbolically, D —

A. value of D: the observations of process

inputs and outputs (or robot actions and

sensor readings) used to train the model,

which are taken to be all those occurring

before timestep T. Symbolically, d = a(Jr

E[- • •] Ex[f(x) | y] is the expectation of f(x)

given y: fx p(x \ y) f ( x ) . "E-step" is

the name given to the first half of each

iteration of the EM algorithm.

F "Variational free energy".

FI Average probability at which the robot's

"food" sensor is predicted to exceed 0.5 in

situations of category i

f /C1*) is the probability that a dynamical

process produces the outputs rt °'41,

finishing in state ht. If the process is

an HMM or a KF, it can be computed

efficiently using the forward half of the

forward-backward equations or the Kalman

recursions, respectively.

g(- • • | n, 0} The Gaussian pdf with mean /j, and

precision (inverse variance) fi.

g(at,yt) Gain function defining goodness of

performing action a4 in world state j/4.

A.2 Roman symbols

section 3.2.3.1

section 3.2.3.1

section 3.3.1.1

section 3.3.1.3

section 5.4.1.1

(51) 56

section 3.3.3.5

section 3.3.2.5

section 3.2.6.2
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A.2 Roman symbols 

Ht Random variable: the process's hidden section 3.3.3 

state at timestep t. This can comprise 

a continuous quantity Vt on which 

other quantities depend linearly, or a 

discrete quantity Qt which controls a 

choice between mixture components, or a 

combination of both. 

ht A value of ht s.e. the process's hidden vt,gt section 3.3.3 

state at time t; or (as a proposition in a 

probability) an abbreviation for Ht = ht. 

H Random variable: the process's hidden V, Q section 3.3.3 

state at every timestep over the training 

period. Symbolically, { Ht : t E [0,T) }. 

It A value of H. Symbolically, { ht : v, q section 3.3.3 

t E [ O, T) }; or (as a proposition in a 

probability) an abbreviation for H = h. 

7l The learner's prior information or O section 3.2.3.1 

assumptions about the process. 

I The identity matrix. section 3.3.3.5 

i A particular component of a mixture 

model-generally a value of Qt for some t. 

Qt = i or j or k is used instead of qt where 

the superscript would get in the way. 

it A working value used in the Kalman-Rauch 

recursions. 

j (See i.) 

Kt A working value used in the Kalman-Rauch 

recursions. 

IC Proposition: all the agent's knowledge 

relevant to her decision as to which action 

to take. 

k (See i.) 

section 3.2.5.1 

section 3.3.3.5 

section 3.3.3.5 

section 3.2.6.2 
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H

j

K*

K,

Random variable: the process's hidden

state at timestep t. This can comprise

a continuous quantity V* on which

other quantities depend linearly, or a

discrete quantity Q1 which controls a

choice between mixture components, or a

combination of both.

A value of h* i.e. the process's hidden

state at time t; or (as a proposition in a

probability) an abbreviation for H* = hi.

Random variable: the process's hidden

state at every timestep over the training

period. Symbolically, {H* : t € [0,T) }.

A value of H. Symbolically, {/i* :

t E [0,T) }; or (as a proposition in a

probability) an abbreviation for H = h.

The learner's prior information or

assumptions about the process.

The identity matrix.

A particular component of a mixture

model—generally a value of Q4 for some t.

<24 = i or j or k is used instead of q* where

the superscript would get in the way.

A working value used in the Kalman-Rauch

recursions.

(See i.)

A working value used in the Kalman-Rauch

recursions.

Proposition: all the agent's knowledge

relevant to her decision as to which action

to take.

(See i.)

A.2 Roman symbols

section 3.3.3

V,Q

v,q

0

section 3.3.3

section 3.3.3

section 3.3.3

section 3.2.3.1

section 3.3.3.5

section 3.2.5.1

section 3.3.3.5

section 3.3.3.5

section 3.2.6.2
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A.2 Roman symbols 

L In the subsequence-joining algorithm for u, S" section 4.2.2.5 

the Samovar model's E-step, the length of 

the subsequences currently being evaluated. 

Samovar models: the expected sum of the 

outer product of each base and target for 

the inter-state linear mapping. 

L(. . , A) A Lagrangian function used in a L(al, yl) section 3.2.5.1 

constrained optimisation. 

! In the subsequence-joining algorithm for section 4.2.2.5 

the Samovar model's E-step, a particular 

subsequence of mixture component choices, 

i.e. a value of S" for some u. to is the first 

and IL-1 the last. S" = I or m is used 

instead of s" where the superscript would 

get in the way. 

m (See 1.) 

N(µ,/3) Denotes the Gaussian distribution with 

mean µ and precision (inverse variance) /3. 

Also used as an anonymous Gaussian 

random variable. 

n Index of EM algorithm iterations. on is the section 3.3.1.1 

estimate of the overall model parameters at 

iteration n; the same notation is used on all 

the sub-parameters An, to etc. 

P A statistic used in the (re)estimation rule B, C (76) 

for the Kalman filter and Samovar models: section 4.2.2.3 

the expected sum of the outer product of 

each base and target for the inter-state 

linear mapping. 
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L In the subsequence-joining algorithm for

the Samovar model's E-step, the length of

the subsequences currently being evaluated.

Samovar models: the expected sum of the

outer product of each base and target for

the inter-state linear mapping.

L(- • • , A) A Lagrangian function used in a

constrained optimisation.

I In the subsequence-joining algorithm for

the Samovar model's E-step, a particular

subsequence of mixture component choices,

t. e. a value of 5" for some u. 1° is the first

and 1L~1 the last. 5" = I or m is used

instead of s" where the superscript would

get in the way.

m (See I.)

N(ft, ft) Denotes the Gaussian distribution with

mean /j, and precision (inverse variance) ft.

Also used as an anonymous Gaussian

random variable.

n Index of EM algorithm iterations. 0™ is the

estimate of the overall model parameters at

iteration n; the same notation is used on all

the sub-parameters A", in etc.

P A statistic used in the (re)estimation rule

for the Kalman filter and Samovar models:

the expected sum of the outer product of

each base and target for the inter-state

linear mapping.

A.2 Roman symbols

u, Su section 4.2.2.5

-L(a4,j/4) section 3.2.5.1

section 4.2.2.5

section 3.3.1.1

B,C (76)

section 4.2.2.3
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A.2 Roman symbols 

Random variable: the process's mixing 

hidden state at timestep t, i.e. a discrete- 

valued, unobservable quantity inside the 

process (or in the robot's environment), 

which can control the choice of mixture 

component in generating, for instance, Rt, 

and/or influence its successor Qt+l through 

a transition matrix. 

A value of Qt i.e. the process's mixing 

hidden state at time t; or (as a proposition 

in a probability) an abbreviation for Q' = 
qt 

Q Random variable: the process's mixing 

hidden state at every timestep over the 

training period. Symbolically, { Qt : t E 

(0,T) }. 

q A value of Q. Symbolically,{ qt 

t E [0,T) }; or (as a proposition in a 

probability) an abbreviation for Q = q. 

section 3.3.2.1 

section 3.3.3.3 

section 3.3.2.1 

section 3.3.3.3 

section 3.3.2.1 

section 3.3.3.3 

section 3.3.2.1 

section 3.3.3.3 

Rt Random variable: the output of the process section 3.2.2 

at time t, or the robot's sensor readings at 

time t. 

rt A value of Rt, i.e. the observed process section 3.2.2 

output at time t; or (as a proposition in 

a probability) an abbreviation for Rt = rt. 

R Random variable: all the process outputs, D section 3.2.2 

or robot sensor readings, in the training 

set, which are taken to be all those 

occurring before timestep T. Symbolically, 

{Rt:tE[0,T)}. 

)R R is sometimes used as a subscript to select )A, ( )v 

rows and/or columns corresponding to the 

position of RI in Xt. 

r A value of R. Symbolically, { rt : d section 3.2.2 

t E [ 0, T) }; or (as a proposition in a 

probability) an abbreviation for R = r. 
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Q

R

(• • -)R

Random variable: the process's mixing

hidden state at timestep t, i.e. a discrete-

valued, unobservable quantity inside the

process (or in the robot's environment),

which can control the choice of mixture

component in generating, for instance, R1,

and/or influence its successor Qt+1 through

a transition matrix.

A value of Q* i.e. the process's mixing

hidden state at time t; or (as a proposition

in a probability) an abbreviation for Qi =

9*.

Random variable: the process's mixing

hidden state at every timestep over the

training period. Symbolically, { Q* : t 6

A value of Q. Symbolically, {g4 :

t e [0,T) }; or (as a proposition in a

probability) an abbreviation for Q = q.

Random variable: the output of the process

at time t, or the robot's sensor readings at

time t.

A value of .R4, i.e. the observed process

output at time t; or (as a proposition in

a probability) an abbreviation for jR4 = r4.

Random variable: all the process outputs,

or robot sensor readings, in the training

set, which are taken to be all those

occurring before timestep T. Symbolically,

R is sometimes used as a subscript to select

rows and/or columns corresponding to the

position of R* in X*.

A value of R. Symbolically, { r4 :

t G [0, T ) }; or (as a proposition in a

probability) an abbreviation for R = r.

A.2 Roman symbols

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.3.2.1

section 3.3.3.3

section 3.2.2

section 3.2.2

section 3.2.2

section 3.2.2
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A.$ Roman symbols 

S" Random variable: the choices of mixture 100 

component made by the process during the 

time range it. Symbolically, { Qt : t e 

[ Lu, Lu + L) }. Values of S" are written 

either s" or 1. 

s" A value of S", i.e. a sequence of choices of 1 100 

mixing hidden state made by the process 

during the time range it. 

T The size of the training set D, or section 3.2.2 

equivalently the timestep at which the 

learner is asked to make a prediction using 

her model. 

t A timestep. The training set D for the section 3.2.2 

model is taken to comprise observations of 

the process made over the first T timesteps, 

in the range [ 0, T). Timestep T is taken to 

be the one at which the learner is asked to 

make a prediction using her model. 

U(9) The expected log likelihood maximised in section 3.3.1.2 

the M-step of an EM algorithm. 

it In the subsequence-joining algorithm for section 4.2.2.5 

the Samovar model's E-step, a range of 

timesteps (period) over which various 

possible mixing state subsequences s" are 

being locally evaluated. The current length 

of the subsequences is called L, so range it 

covers the steps [ Lu, Lu + L). 

V t Random variable: the process's linear A, a, k, fi section 3.3.3.5 

hidden state at timestep t, i.e. a 

continuous-valued, unobservable 

quantity inside the process (or in the 

robot's environment), on which other 

quantities, such as the output (or sensor 

readings) Rt, or Vs successor Vt+r are 

generally supposed to depend through 

a linear/Gaussian mapping, so that its 

distribution stays Gaussian. 
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Su Random variable: the choices of mixture

component made by the process during the

time range u. Symbolically, {Q4 : t €

[Lu,Lu + L) }. Values of Su are written

either su or L

su A value of 5", i.e. a sequence of choices of

mixing hidden state made by the process

during the time range u.

T The size of the training set D, or

equivalently the timestep at which the

learner is asked to make a prediction using

her model.

t A timestep. The training set D for the

model is taken to comprise observations of

the process made over the first T timesteps,

in the range [0,T). Timestep T is taken to

be the one at which the learner is asked to

make a prediction using her model.

U(6) The expected log likelihood maximised in

the M-step of an EM algorithm.

u In the subsequence-joining algorithm for

the Samovar model's E-step, a range of

timesteps (period) over which various

possible mixing state subsequences s" are

being locally evaluated. The current length

of the subsequences is called L, so range u

covers the steps [ Lu, Lu + L).

V* Random variable: the process's linear

hidden state at timestep t, i.e. a

continuous-valued, unobservable

quantity inside the process (or in the

robot's environment), on which other

quantities, such as the output (or sensor

readings) R*, or V4's successor Vt+1, are

generally supposed to depend through

a linear/Gaussian mapping, so that its

distribution stays Gaussian.

A.2 Roman symbols

100

100

section 3.2.2

section 3.2.2

section 3.3.1.2

section 4.2.2.5

A, a, K, ft section 3.3.3.5
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A.2 Roman symbols 

vt A value of Vt i.e. the process's linear section 3.3.3.5 

hidden state at time t; or (as a proposition 

in a probability) an abbreviation for Vt = 

Vt. 

V Random variable: the process's linear section 3.3.3.5 

hidden state at every timestep over the 

training period. Symbolically, { Vt : t E 

[0,T)}. 

)v V is sometimes used as a subscript to select ( )R, ( )A 

rows and/or columns corresponding to the 

position of Vt in Xt. 

v A value of V. Symbolically, { vt : section 3.3.3.5 

t E [ 0, T) }; or (as a proposition in a 

probability) an abbreviation for V = v. 

W(9) A quantity used in the proof sketch of the section 3.3.1.2 

correctness of the EM algorithm. 

Xt Random variable: in the Samovar model, A, a section 4.2.1.1 

the continuous state of the world at 

timestep t, comprising the robot's sensor 

readings, the action it takes, and the 

unknown linear hidden state, along with 

an element fixed at unity which serves as a 

bias term. Symbolically, (Ht', Rt', A", 1). 

The world also has some discrete state Qt. 

xt A value of Xt i.e. a possible continuous section 4.2.1.2 

world state at time t-symbolically, 

(ht', rt', at', 1)-or (as a proposition in a 

probability) an abbreviation for Xt = xt 

Yt Random variable: in the Samovar model, A, a section 4.2.1.1 

the non-robot-dependent continuous state 

of the world at timestep t, comprising 

the robot's sensor readings and the 

unknown linear hidden state. Symbolically, 

(Ht', Rt'). 
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A value of V* i.e. the process's linear

hidden state at time t; or (as a proposition

in a probability) an abbreviation for V* =

A.2 Roman symbols

section 3.3.3.5

W(6)

Xt

yt

Random variable: the process's linear

hidden state at every timestep over the

training period. Symbolically, { V4 : t

section 3.3.3.5

V is sometimes used as a subscript to select (•••)R,(---)A

rows and/or columns corresponding to the

position of Vt in X*.

A value of V. Symbolically, { v* :

t 6 [0,T)}; or (as a proposition in a

probability) an abbreviation for V = v.

A quantity used in the proof sketch of the

correctness of the EM algorithm.

Random variable: in the Samovar model, A, a

the continuous state of the world at

timestep t, comprising the robot's sensor

readings, the action it takes, and the

unknown linear hidden state, along with

an element fixed at unity which serves as a

bias term. Symbolically, (#4',E4/, A4',l).

The world also has some discrete state Q*.

A value of X* i.e. a possible continuous

world state at time t—symbolically,

(/I4',r4',a4', 1)—or (as a proposition in a

probability) an abbreviation for X1 — x*.

Random variable: in the Samovar model, A, a

the non-robot-dependent continuous state

of the world at timestep t, comprising

the robot's sensor readings and the

unknown linear hidden state. Symbolically,

section 3.3.3.5

section 3.3.1.2

section 4.2.1.1

section 4.2.1.2

section 4.2.1.1
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A value of Yt-symbolically, (ht rt')- 
or (as a proposition in a probability) an 

abbreviation for Yt = pt 

section 4.2.1.2 
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2/4 A value of r4—symbolically, (/i4', r4')— section 4.2.1.2 z?m

or (as a proposition in a probability) an

abbreviation for y4 = yi.
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