

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429709212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lightweight Speculative Support for

Aggressive Auto-Parallelisation Tools

Daniel C. Powell

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2015

Abstract

With the recent move to multi-core architectures it has become important to create the

means to exploit the performance made available to us by these architectures. Un-

fortunately parallel programming is often a difficult and time-intensive process, even

to expert programmers. Auto-parallelisation tools have aimed to fill the performance

gap this has created, but static analysis commonly employed by such tools are un-

able to provide the performance improvements required due to lack of information at

compile-time. More recent aggressive parallelisation tools use profiled-execution to

discover new parallel opportunities, but these tools are inherently unsafe. They require

either manual confirmation that their changes are safe, completely ruling out auto-

parallelisation, or they rely upon speculative execution such as software thread-level

speculation (SW-TLS) to confirm safe execution at runtime.

SW-TLS schemes are currently very heavyweight and often fail to provide speedups for

a program. Performance gains are dependent upon suitable parallel opportunities, cor-

rect selection and configuration, and appropriate execution platforms. Little research

has been completed into the automated implemention of SW-TLS programs.

This thesis presents an automated, machine-learning based technique to select and con-

figure suitable speculation schemes when appropriate. This is performed by extracting

metrics from potential parallel opportunities and using them to determine if a loop is

suitable for speculative execution and if so, which speculation policy should be used.

An extensive evaluation of this technique is presented, verifying that SW-TLS config-

uration can indeed be automated and provide reliable performance gains. This work

has shown that on an 8-core machine, up to 7.75× and a geometric mean of 1.64×
speedups can be obtained through automatic configuration, providing on average 74%

of the speedup obtainable through manual configuration.

Beyond automated configuration, this thesis explores the idea that many SW-TLS

schemes focus too heavily on recovery from detecting a dependence violation. Do-

ing so often results in worse than sequential performance for many real-world applica-

tions, therefore this work hypothesises that for many highly-likely parallel candidates,

discovered through aggressive parallelisation techniques, would benefit from a sim-

ple dependence check without the ability to roll back. Dependence violations become

extremely expensive in this scenario, however this would be incredibly rare. With a

thorough evaluation of the technique this thesis confirms the hypothesis whilst achiev-

iii

ing speedups of up to 22.53×, and a geometric mean of 2.16× on a 32-core machine.

In a competitive scheduling scenario performance loss can be restricted to at least se-

quential speeds, even when a dependence has been detected.

As a means to lower costs further this thesis explores other platforms to aid in the exe-

cution of speculative error checking. Introduced is the use of a GPU to offload some of

the costs to during execution that confirms that using an auxiliary device is a legitimate

means to obtain further speedup. Evaluation demonstrates that doing so can achieve

up to 14.74× and a geometric mean of 1.99× speedup on a 12-core hyperthreaded ma-

chine. Compared to standard CPU-only techniques this performs slightly slower with

a geometric mean of 0.96× speedup, however this is likely to improve with upcoming

GPU designs.

With the knowledge that GPU’s can be used to reduce speculation costs, this thesis

also investigates their use to speculatively improve execution times also. Presented

is a novel SW-TLS scheme that targets GPU-based execution for use with aggressive

auto-parallelisers. This scheme is executed using a competitive scheduling model, en-

suring performance is no lower than sequential execution, whilst being able to provide

speedups of up to 99× and on average 3.2× over sequential. On average this technique

outperformed static analysis alone by a factor of 7× and achieved approximately 99%

of the speedup obtained from manual parallel implementations and outperformed the

state-of-the-art in GPU SW-TLS by a factor of 1.45.

iv

Lay Summary

Recent trends in computer design have more towards using multiple processors inside

a single computer. These processors have the ability to perform several tasks at once,

in parallel, allowing for an overall increase in the number of tasks they are able to

complete in a set amount of time. Taking advantage of this is, however, a complex

and time intensive process, even for experienced programmers. The problem is that

when you perform multiple tasks at once, each task may interfere with each other,

potentially causing errors to occur.

Instead of having programmers create tasks that don’t conflict, there has been a lot of

research into automatically converting tasks such that they can be performed in

parallel, however these methods are not very good at doing so. Some automated

methods are more aggressive and instead predict when tasks can run in parallel

without conflicting, performing much better than the non-aggressive methods,

however their predictions are not always correct. When they are not correct errors can

occur. A new way of running tasks in parallel is to take the tasks suggested by the

aggressive means and run them in parallel anyway, instead keeping track of what

every task is doing. This is called running them speculatively. If two tasks interfere

with each other, they are stopped, the changes they have made a undone and the tasks

are allowed to continue one by one, ensuring that they don’t interact with each other.

These methods work relatively well, but when tasks interact they often end up taking

longer overall to be performed than if they were simply run one after the other in the

first place. Also, sometimes the checking to ensure that they do not interact also takes

longer.

This thesis investigates ways to automatically determine whether it will be faster to

run multiple tasks speculatively, or to just run them one after another. If it will be

faster to run them speculatively then this thesis also presents a method to

automatically determine which way to ensure two tasks haven’t interacted will be the

fastest.

Further to that this thesis hypothesises that some aggressive methods are very good at

detecting which tasks can be ran safely in parallel, and instead of using a speculation

technique that focuses on very quick recovery if they do interact, instead focuses on

running each task as fast as possible, possibly with the aid of extra processing

devices. This becomes extremely costly when two tasks do interact, effectively

v

meaning they have to be restarted entirely, but that is extremely rare.

Finally there are different types of processors in existence, standard style processors

found in every computer, and customised ones that used to be used solely for

displaying items on a computer screen. These customised processors have been found

to be very quick at performing hundreds of tasks at once, but only in very specific

circumstances. They also suffer from the same problems as standard processors in

that tasks could interact. This thesis investigates ways to use both the aggressive

techniques to find tasks that can run in parallel, and the speculative techniques to

ensure that errors don’t occur when tasks do interact. This is a technique that has had

wide investigation on standard processors, but very little investigation on these

customized processors.

vi

Acknowledgements
Many thanks to my supervisor and my girlfriend, for the constant support they have

provided; my tireless proofreading elves; and of course, my kettle for not breaking

down when I needed it the most.

vii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Daniel C. Powell)

ix

Publications
The following refereed conference papers (in reverse chronological order) have been

published during the course of this PhD. These form the basis for parts of this thesis

as indicated.

• Daniel C. Powell, Björn Franke. “Safety Net: Lightweight Software-TLS

Support for Probably Parallel Applications.” Currently under peer review.

— Chapter 6 is partially based on this paper.

• Zheng Wang, Daniel C. Powell, Björn Franke, Michael O’Boyle. “Exploitation

of GPUs for the Parallelisation of Probably Parallel Legacy Code.” In:

Proceedings of 23rd International Conference on Compiler Construction

(CC’14), Held as Part of the European Joint Conferences on Theory and

Practice of Software (ETAPS’14), Grenoble, France, April 2014.

— Chapter 7 is based on this paper.

• Daniel C. Powell, Björn Franke. “An Integrated Approach to Software

Thread-Level Speculation: Machine-Learning Based Policy and Parameter

Selection.” In: Proceedings of HIPEAC Compiler, Architecture and Tools

Conference (CATC’12), Haifa, Israel, November 2012.

— Chapters 4 and 5 are based on this paper.

xi

Table of Contents

1 Introduction 1

1.1 Modern Parallel Architectures . 2

1.2 Automated Parallelisation . 3

1.3 Speculative Parallelisation . 4

1.3.1 Hardware or Software . 5

1.4 Motivation . 6

1.5 Goals . 6

1.6 Hypotheses . 7

1.7 Structure . 7

2 Background: Thread Level Speculation 9

2.1 Parallelism and Dependences . 10

2.1.1 DOALL loops . 10

2.1.2 DOWHILE loops . 11

2.1.3 Thread Blocks . 12

2.1.4 Transactional Memory . 13

2.1.5 Dependence Types . 14

2.1.5.1 Safe Data Dependences 14

2.1.5.2 False Data Dependences 15

2.1.6 Other Hazards . 15

2.2 Automated Parallelism Discovery 16

2.2.1 Static Analysis . 16

2.2.2 Execution Profiling . 17

2.2.3 Performance Considerations 18

2.3 Speculative Execution . 18

2.3.1 Speculation Workflow . 19

xiii

2.3.2 When to Check . 22

2.3.2.1 Lazy Checking . 22

2.3.2.2 Eager Checking 24

2.3.2.3 Combined Checking 24

2.3.3 Trace Topologies . 25

2.3.3.1 Distributed Traces 25

2.3.3.2 Centralised Traces 26

2.3.3.3 Hybrid Topologies 27

2.3.4 Synchronisation . 27

2.3.4.1 Barriers . 28

2.3.4.2 Master Thread . 28

2.3.4.3 Overlaps . 29

2.3.5 Trace Structures and Collision Detection 29

2.3.5.1 Bitsets . 30

2.3.5.2 Counters . 31

2.3.5.3 Address Lists . 32

2.3.6 Accuracy and False Dependences 32

2.3.6.1 Addressing Size 33

2.3.6.2 Hashing Techniques 33

2.3.6.3 Single or Multiple Traces 34

2.3.7 Version Management . 35

2.3.7.1 Management Scheme 35

2.3.7.2 Versioning Schedule 36

2.3.7.3 Data Structures and Topology 37

2.3.7.4 Value Forwarding 38

2.3.7.5 Granularity . 38

2.4 Conclusions . 39

3 Related Work 41

3.1 Profile-Driven Parallelism Detection 41

3.2 CPU Schemes . 43

3.2.1 S-TLS . 43

3.2.2 POLYLIBTLS . 44

3.2.2.1 SPLSC . 44

3.2.2.2 SPLIP . 45

xiv

3.2.3 STMLITE . 47

3.2.4 DSWP & SMTX . 47

3.3 GPGPU Speculation . 49

3.3.1 PARAGON . 49

3.4 Hardware Based Speculation . 51

3.4.1 Transactional Synchronisation Extensions 51

3.5 Conclusion . 52

4 Lightweight Pipelined Speculation 55
4.1 Speculative Storage Structure . 56

4.2 Pipeline Stages and Execution Workflow 57

4.3 Supported Dependences . 58

4.4 Conflict Detection . 58

4.5 Empirical Evaluation . 60

4.5.1 Experimental Methodology 60

4.5.2 Summary of Key Results . 61

4.6 Conclusion . 63

5 Smart Speculation Policy Selection 65
5.1 Motivating Example . 65

5.2 SW-TLS Configuration . 67

5.2.1 Factors Affecting Performance 68

5.2.2 Common Speculation Parameters 68

5.3 Policy Selection Workflow . 69

5.3.1 Prediction Model Training 69

5.3.2 Policy Calculation . 70

5.4 Empirical Evaluation . 71

5.4.1 Evaluation Methodology . 71

5.4.2 Policy Selection Testing . 71

5.4.2.1 Machine Learning Techniques 72

5.5 Summary of Key Results . 73

5.6 Conclusions . 78

6 Automated Error Checking for Aggressive Parallelisation 81
6.1 Parallelisation Target . 82

6.2 Memory Trace Data Structure . 83

xv

6.2.1 Page Caching . 85

6.2.2 Structure Usage . 86

6.2.2.1 Allocation/Initialisation 86

6.2.2.2 Trace . 87

6.3 Simple Distributed Error Detection 88

6.3.1 Scalability . 90

6.4 Reduction-Tree Error Detection . 90

6.4.1 Scalability . 95

6.5 GPU Conflict Detection . 95

6.6 Automated Program Transformations 101

6.7 Empirical Evaluation . 104

6.7.1 Auto-Parallelisation Analysis 106

6.7.2 Page Table Statistics . 108

6.7.3 Simple Distributed Detection Scheme 112

6.7.4 Reduction-Tree Detection Scheme 114

6.7.4.1 Comparison to Simple Distributed Scheme 114

6.7.5 Hybrid CPU-GPU Detection Scheme 116

6.7.6 Dependence Violations . 118

6.8 Conclusion . 119

7 GPU-Based Speculation 121

7.1 Motivation . 122

7.2 Execution Workflow . 124

7.3 Speculative GPU Execution . 125

7.3.1 Speculative Data Structures 125

7.3.2 Violation Detection . 126

7.3.2.1 Speculative Load 127

7.3.2.2 Speculative Store 127

7.3.2.3 Flow Dependence 128

7.3.2.4 Anti Dependence 128

7.3.2.5 Output Dependence 128

7.3.3 Comparison to Other Approaches 128

7.4 Compilation and Code Transformations 129

7.4.1 Parallelism Detection . 129

7.4.1.1 Speculative Variables 130

xvi

7.4.2 OpenCL Code Generation 130

7.4.3 Code Merging . 131

7.5 Experimental Setup . 131

7.5.1 Platform . 131

7.5.2 Benchmarks . 131

7.5.3 Compiler and Evaluation Runs 133

7.5.4 Comparison . 133

7.6 Empirical Evaluation . 134

7.6.1 Overall Results . 134

7.6.2 Comparison with the Statically Safe Approach 135

7.6.3 Comparison with Paragon 136

7.6.4 Comparison to Manually Parallelized Code 137

7.6.5 Analysis . 138

7.6.5.1 Limitation of Static Analysis 138

7.6.5.2 Speculation Costs 139

7.6.5.2.1 Dependence Violation 140

7.7 Conclusion . 140

8 Conclusion 143
8.1 Contributions . 144

8.1.1 Automated Policy Selection 144

8.1.2 Lightweight Error Checking 144

8.1.3 GPU-Based Speculative Execution 145

8.1.4 Pipelined Speculation Scheme 146

8.2 Analysis and Future Work . 146

8.2.1 Limitations of Policy Selection 146

8.2.2 Scalable Centralised Error Detection 147

8.2.3 Block Tracing . 147

8.2.4 Combination CPU-GPU Speculation 148

Bibliography 149

xvii

Chapter 1

Introduction

Since the dawn of the computing era the demands on computing power have been ever

increasing. As time has progressed faster processors have been developed to meet

those demands, combined with newer tools, languages and techniques to support that

power. In an effort to better utilise the resources that are available many different

execution paradigms have been developed in many forms most of which are loosely

based around some form of parallel processing. This ranges from the very high level

such as shared mainframes in the 50s, allowing many distinct users to work in parallel

by sharing processing resources split into timeslices, to a lower level such as allowing

multiple processes to execute on a machine at once through scheduling, to the very

low level such as pipelining instructions so that different parts of each instruction are

executing at the same time.

Each of these styles of execution have a very clear limitation, the single threaded-

execution model [42]. For many years however that limitation has been overcome by

relying upon the development of faster, more complex processing architectures to in-

crease the performance of applications. This is such a well known and relied upon

trend that it was developed into a law deciding the abilities of future architectures,

Moore’s Law [39]. Moore’s Law surmised that over time the density of components

that could fit on a single die would increase and the cost per component would con-

tinue to fall. In 1975 the rule became more formalised in that the circuit density would

double roughly every 24-months [46]. The effects of this law is demonstrated in Fig-

ure 1.1. This density of components translated into a direct performance increase for

processors with adaptations of the law stating that the performance of such processors

1

2 Chapter 1. Introduction

Figure 1.1: Processor trends for 1970-2012. The graph shows consistent exponential

growth of the number of elements on a die (Moore’s Law) and the introduction of multi-

core designs due to flattening of performance, frequency and power growth trends.

Source: C.Moore [27]

would double approximately every 18 months, a trend that was able to be maintained

into the mid-2000s. Beyond that however it became apparent that processor designers

had started to reach the physical limits of a single-threaded processor causing exorbi-

tant power consumption and thermal output requirements [5]. Ultimately this required

a complete shift in architectural design, a move towards parallel processing and multi-

core designs.

1.1 Modern Parallel Architectures

Despite the long history of development that parallel processing and architectures have

had [4] their widespread use has only taken off within the last decade. Before that

single-threaded microprocessors were good enough and continued to provide perfor-

mance increases year over year, demonstrated by Figure 1.1. Since that decline multi-

core architectures have found their way into virtually all modern computing devices

ranging from mobile phones, games consoles, personal computers, laptops all the way

to today’s large-scale data centres and supercomputers. Producing parallel programs

targetting these processors is one of today’s grand challenges in computer systems re-

search [38]. Despite the progress in parallel programming languages and systems [8],

programming of multicore platforms still remains a skilled activity in the hands of a

few expert programmers [17].

1.2. Automated Parallelisation 3

Further complexity exists due to the range of different architectural designs avail-

able ranging from the more common chip multiprocessors, to more heterogeneous

designs with differently designed processing units for specific tasks. The designs

of heterogeneous processors are wide in variety, for example the Cell [18] multi-

processor that has additional units designed for specific powerful computations, to

devices with power consumption considerations, such as ARM’s big.LITTLE proces-

sor, one core for slower low-power processing and another for faster, power inten-

sive processing [20]. Rapidly becoming a viable programming platform is the use

of general purpose GPUs [11] whose memory architecture and processing unit de-

signs require extremely different programming considerations to obtain useful perfor-

mance [6]. This adds further difficulty to well performing parallel programming and

makes auto-parallelisation techniques a very desirable solution.

1.2 Automated Parallelisation

As with parallel architectures, automated parallelisation has undergone decades of re-

search [22]. Initially these were based around the automated vectorisation of pro-

grams to speed up single-threaded programs that were then translated into parallelising

techniques. More explicit parallel languages have been developed to aid in the auto-

parallelisation process [8], however these languages require a large investment to learn

a new programming paradigm. This approach also does not aid in the parallelisation

of the vast quantities of legacy code that exist [23].

The applicability of much research into auto-parallelisers is often restricted to niche

settings such as array-based numerical computations [41]. Outside these specialist do-

mains the performance of even state-of-the-art auto-parallelisers on real-world codes is

highly disappointing [44]. One of the key reasons for this dramatic failure is that com-

pilers are notoriously weak at raising the abstraction level [31]. This includes inference

of dependence patterns from sequential applications, where such information is not ex-

plicitly expressed by the programmer, yet it is essential for successful parallelisation.

In fact, solutions to the general data dependence problem are not computable [7].

A large number of static dependence analyses, which compute approximations of the

actual dependence information, have been developed [33]. These analyses are neces-

sarily conservative, i.e. they may report the presence of a so-called may dependence

4 Chapter 1. Introduction

even if this dependence does not materialise for any of the legal program inputs, but no

actual dependence will remain undetected. Unfortunately, most static analyses report

may dependences overly frequently and this, in turn, prevents parallelisation. Such

may dependences can also be triggered through the use of many common program-

ming techniques, such as pointer aliasing and indirect addressing.

A recent approach to capturing dependence information more precisely is based on

profiled execution [44]. For this technique a program is instrumented and then exe-

cuted. The resulting profile is analysed and checked for dependences. Such profile-

guided parallelisation schemes are effective at uncovering non-statically analysable

parallel loops, however it lacks a correctness guarantees for all inputs different to the

ones used during profiling allowing for undetected dependences to exist in the pro-

gram, ultimately making it unsafe to execute without further manual analysis or run-

time checking.

1.3 Speculative Parallelisation

Thread-level speculation (TLS) has attracted the attention of a number of researchers,

e.g. [32, 9, 43], as a means of adding safety to potentially unsafely parallelised pro-

grams. This is performed by speculatively executing possibly independent work items

such as loop iterations or function calls on multiple processor cores. Through the use

of TLS a program is executed with additional memory-access tracking code. For each

potentially unsafe region of code the memory accesses performed are recorded and

then at relevant intervals they are analysed to detect any data dependences that may

have occurred. Prior to executing any potentially unsafe regions of code a checkpoint

is made which, if a dependence is detected the program rolls back to and re-executes

safely.

Most TLS frameworks are geared towards the case when the majority of work items are

independent and can be executed in parallel, but every so often dependence violations

require work items in flight to be squashed. In fact, almost all work has focused on

TLS for when there is a realistic chance of serialising dependences, i.e. discarding of

non-committed memory writes and rollback to safe state is needed. This, for example,

may happen in loops that are sometimes parallel and sometimes not, depending on the

actual data inputs provided to the program.

1.3. Speculative Parallelisation 5

1.3.1 Hardware or Software

To support TLS various hardware [19, 10] and software schemes [29, 28, 24, 25, 36, 30]

have been developed for the provision and management of buffers and dependence

detection mechanisms.

Hardware supported TLS (HW-TLS) includes the use of specifically tasked hardware-

based buffers for memory tracing and recovery. These schemes are generally very

reliable and provide significant speedups to a given program whilst being very accu-

rate at detecting dependences that occur. The implementation of speculative execution

of a program can also happen completely automatically in the hardware making it a

very desirable feature. However, HW-TLS requires customised hardware to support

its execution. Designing and implementing such hardware can be very costly and re-

quires large regions of a CPU die to perform correctly. This makes the process very

expensive for hardware designers when there exist easier targets for optimisation, that

provide more demonstratable speedup and consume less of the available resources on

chip. Hardware-based speculation also suffers from fixed limits on the size of memory

buffers restricting the ability to speculate over large sections of code. As such, there

are currently no full commercially available implementations of HW-TLS. Instead

there is one architecture that supports a subset of TLS features, Intel’s Haswell [15].

Haswell uses Transactional Synchronisation Extensions (TSX) to provide hardware

transactional support that, with additional software support, could be extended to im-

plement a full TLS system. Haswell’s architecture is discussed further in Section 3.4.

In contrast, software-based TLS (SW-TLS) is much more flexible. The size of buffers

used can be customised to the needs of a given program and the methods of storing

traces, detecting dependences and even performing rollbacks/commits of speculative

state can be changed to suit the needs of both the program and the platform it is ex-

ecuted on. SW-TLS is also very cheap to implement, requiring no customised hard-

ware. SW-TLS can be executed on any multi-core machine. The specific designs of

SW-TLS can also be explored cheaply requiring no simulators or additional hardware.

However, SW-TLS is very unreliable at providing a respectable speedup and generally

slower than its hardware equivalent. The flexibility that it provides results in perfor-

mance varying based on the program that is being speculated on, the hardware used

to execute the program and the specific type of speculation being performed. In many

cases the use of SW-TLS can result in a slowdown of the original sequential program,

6 Chapter 1. Introduction

but, given the correct circumstances and configuration SW-TLS can provide significant

speedups. As such it is essential that an appropriate SW-TLS configuration be selected

for a given program.

1.4 Motivation

To further the state of auto-parallelising technologies it is desirable to add safety to

some of the more aggressive auto-parallelisers that currently exist. TLS appears to

be suitable for this but due to the costly nature and unavailability of HW-TLS it is

impractical to consider it as an option and SW-TLS is currently too unreliable at pro-

viding speedup to truly be considered. No research has as yet been performed into the

automated use of SW-TLS.

Through profiled execution it is clear that there are many missed opportunities when

it comes to parallel execution. Profiling can also provide a high-confidence predic-

tion that a loop is probably parallel and, as such, does not require some of the more

heavyweight techniques such as those geared towards recovering from a dependence

violation that many SW-TLS focus on. There are also additional platforms, such as

GPUs that have not yet been widely targetted by SW-TLS methods.

1.5 Goals

The goal of this thesis is to extend the existing knowledge and technologies surround-

ing software-based thread-level speculation. It intends to do this by:

• Describing research into automating the speculative process by:

– Creating a means to select which loops will profit from speculative execu-

tion,

– Automating the process of inserting speculative parallel markup into exist-

ing sequential programs,

– Developing a means for automatically selecting an appropriate speculation

scheme, and tune it so that significant, reliable speedup can be obtained.

1.6. Hypotheses 7

• Investigating the hypothesis that standard heavyweight SW-TLS methods are un-

necessary by:

– Creating a very lightweight speculation scheme that prioritises fast execu-

tion over rollback.

– Attempting to offload part of the speculative process to an auxiliary pro-

cessing device such as a GPU.

• Attempting to create a useful lightweight speculation scheme for use on a general

purpose GPU.

1.6 Hypotheses

It is the hope that this thesis can prove that additional performance can be obtained

completely automatically and safely through the use of code profiling and speculative

execution. As such it is desirable to prove that SW-TLS can be configured completely

automatically to provide a near-optimal solution that provides consistent performance

increases over sequential code.

This thesis also argues that in many circumstances it can be predicted with enough con-

fidence that a given, potentially unsafely parallelised region of code does not contain

any data dependences, and as such can execute with very little support for safety and

rollbacks. Instead it is theorised that any version control normally used by SW-TLS

schemes can be discarded in favour of an extremely lightweight dependence detection

scheme that merely confirms that no dependence has occurred.

Finally, it is hypothesised that the GPU is both an appropriate target for SW-TLS and

that it can be a useful tool to provide further speedup of standard CPU based SW-TLS

schemes.

1.7 Structure

The rest of this thesis is structured as follows:

• Chapter 2 provides a thorough investigation into the principles of parallel ex-

ecution and speculative execution, with a detailed analysis of the benefits and

disadvantages of each method.

8 Chapter 1. Introduction

• Chapter 3 provides a look at already existing auto-parallelisation schemes and

SW-TLS schemes with an evaluation of how well they perform and their limita-

tions.

• Chapter 4 provides an alternative speculation scheme that attempts to address

some niche scenarios that existing schemes perform poorly at.

• Chapter 5 introduces an automated loop selection process that identifies loops

that will benefit from speculative execution and selects a suitable speculation

policy that will provide improved performance.

• Chapter 6 investigates the hypothesis that heavy-weight speculative schemes are

often not necessary and instead programs can execute only with simple confir-

mation that dependence violations have not occurred. This chapter also inves-

tigates the use of a GPU as an auxiliary unit to offload some of the speculative

processing to.

• Chapter 7 introduces a new, automated scheme to take sequential programs and

execute them speculatively on a GPU.

• Chapter 8 summarises the final discoveries and conclusions of this work, along

with a look at possible future work beyond this thesis..

Chapter 2

Background: Thread Level

Speculation

As a way to progress beyond the end of Moore’s law and continue increasing per-

formance beyond the physical limitations of single-threaded execution, commercial

processor architects have adopted the multi-core processor design as the de-facto stan-

dard in modern, general purpose computing systems. There is also a rapidly growing

trend of using lower-power multi-core architectures in mobile platforms such as mobile

phones and tablets, improving user interaction and increasing performance on these

platforms. As such it is essential that the applications executed on these platforms are

designed to exploit these parallel architectures and utilise their resources effectively.

Manual parallelisation is a difficult, time-intensive task [23], and automatic paralleli-

sation techniques using static analysis, while achieving some performance increases,

have left much to be desired in more complex real-world applications [44]. Software

thread-level speculation is intended to address these limitations.

Prior to addressing the designs of modern SW-TLS techniques, this chapter provides a

brief background on frequently encountered types of parallel execution and the hazards

that they can introduce in Section 2.1. This chapter then discusses static analysis and

the automated parallelism discovery and mapping methods that this work targets in

Section 2.2. An in-depth description of common speculation techniques is provided in

Section 2.3 with final conclusions provided in Section 2.4.

9

10 Chapter 2. Background: Thread Level Speculation

1 f o r (i n t i = 0 ; i < n ; i ++) {
2 a [i] = b [i] + c [i] ;

3 }

Figure 2.1: A simple DOALL based loop that would benefit from parallelisation.

2.1 Parallelism and Dependences

Application-level parallelism is a diverse and complex subject with many different

styles of implementation. Application-level parallelism also creates the possibility of

various hazards that can occur causing the incorrect execution of a program. This sec-

tion first lists several different parallel programming paradigms that commonly employ

TLS, then goes on to list several hazards that TLS must account for.

2.1.1 DOALL loops

One of the simplest ways to implement parallelism is to split the processing of in-

dividual iterations of a standard DOALL loop between multiple threads [22]. Such

loops include DOALL loops in Fortran, and for and foreach loops as implemented

in C/C++/Java and many other imperative languages. An example loop that would ben-

efit from parallelisation can be found in Figure 2.1. This style of parallelism can also

be extended to more functional programming constructs such as list comprehensions.

To parallelise a DOALL loop it is essential to be able to calculate the number of iter-

ations and the values of their loop condition variables, be it a simple counter such as

in for loop, or a collection of objects as in foreach loops and list comprehensions.

These values must be determinable prior to the start of execution so that each itera-

tion can be distributed evenly among the available worker threads. Additionally these

loops must not contain break statements as these can prevent some iterations from

executing. If they do then additional support is required to prevent future iterations

from executing. These conditions provide a guarantee that all iterations of the loop

will execute allowing them to be distributed evenly between all worker threads. They

also provide a guarantee that the loop execution condition does not contain any data

dependences, however the iteration body of the loop may contain data dependences

that must be handled appropriately.

2.1. Parallelism and Dependences 11

1 whi le (h a s n e x t (i t em)) {
2 i t em = g e t n e x t (i t em) ;

3 . . .

4 }

Figure 2.2: A simple DOWHILE based loop that could benefit from parallelisation.

In TLS these loops are the simplest to implement allowing for a flexible tracking and

dependence detection scheme. The guarantee that all iterations will execute allows for

dependence checks to be deferred until a point after the loop has executed, and the

explicit order in which each iteration is executed allows for simple rollback methods

ensuring a deterministic output.

2.1.2 DOWHILE loops

A more complex construct to parallelise is the DOWHILE loop. Traditional DO-

WHILE loops continue to execute each iteration whilst a certain condition remains

true. This condition is normally updated within the iteration body itself. An example

of a loop doing so can be seen in Figure 2.2. This makes it more difficult to determine

how many iterations the loop will execute and hence makes it harder to parallelise by

distributing iterations between each thread. Additional static or runtime analysis is re-

quired to determine how many iterations and the runtime state of each iteration before

parallel execution can begin.

Many other loops can fit into this category such as DOALL loops that contain break

statements, or DOALL loops whose run condition relies upon functions or on variables

other than those in the initialisation stage.

In TLS these loops are complex to implement as they are likely to require speculation

across their execution condition. For more eager parallelisation schemes one or more

iterations may execute beyond the final run condition making it important to allow for

the side effects of these iterations to be rolled back individually. This also restricts

when dependence checks can be performed as they may have to occur at the end of

every iteration instead of allowing them to be delayed until after the loop has finished.

However, as with simple DOALL loops the order in which each iteration is executed

is very strict ensuring a deterministic output.

12 Chapter 2. Background: Thread Level Speculation

1 f o r (i n t i = 0 ; i < n ; i ++) {
2 a += b [i] ;

3 }
4 f o r (i n t j = 0 ; j < n ; j ++) {
5 c += d [i] ;

6 }

Figure 2.3: A simple two-stage process that could be split into two thread blocks.

2.1.3 Thread Blocks

Beyond loops is the concept of threading, where each thread executes code based upon

the specific task assigned to it. Whilst each thread is often contributing towards the

same goal, each executes different instructions to achieve their assigned task, often

working in tandem with the other threads through the use of barriers and synchroni-

sation and communication between threads using shared memory or message passing.

Figure 2.3 provides a simple example of a region of code that can be easily split into

two threads. Many parallel programming paradigms have been devised to make use

of this concept such as producer-consumer models [21], where one thread generates

an object (the producer), which is then passed on to another thread which processes it

and generates the required output (the consumer). A more complex version of this is

pipelined processing, where each thread is assigned a particular stage of the processing

with the result of each passed to the next thread to complete their stage. Costs asso-

ciated with this form of processing are based on the setup and destroy times taken to

fill each stage of the pipeline. However, once full the pipeline can process in parallel a

number of items equal to its depth.

Alternately, threads can be working on completely separate tasks using shared re-

sources, producing their own individual output. Examples of this are databases and

web servers where each client request is performed in a separate thread. These threads

are less likely to require direct communication, but may require locks and other syn-

chronisation based on access to shared resources.

In TLS pipelined processing and parallel tasks are complex to handle. Pipelined pro-

cessing ensures the order in which tasks are tasks completed but does not necessarily

guarantee the consistent ordering of access to shared resources. Dependence checks

2.1. Parallelism and Dependences 13

1 void addAmount (index , amount) {
2 e n t r y = d a t a b a s e . g e t (i n d e x) ;

3 e n t r y += amount ;

4 d a t a b a s e . p u t (index , e n t r y) ;

5 }

Figure 2.4: A simple database process that could use transactional support.

must be performed at any synchronisation points, but the type of synchronisation re-

stricts how these checks can be performed, often with a thread having to compare its

progress to every other executing thread before being allowed to continue. This makes

checking more costly as each thread is unable to share the checking costs between the

other threads as with loops. Similarly with parallel tasks there is no concept of order-

ing for each thread to access or update shared resources, forcing checks and rollbacks

to be performed on a first-come-first-served basis.

2.1.4 Transactional Memory

A concept similar to TLS in thread blocks is often employed, for example, in database

systems [45]. This is transactional memory where, on each access to the database, a

thread will start a transaction. Figure 2.4 provides a simple database process that may

benefit from the use of transactional memory. The thread will request the information

it requires to continue, process them and generate the results to be committed back to

the database. Once this has been done the transaction will attempt to commit itself, first

checking if other threads have accessed the same resources. If they have, the process

will have to be repeated until the thread is able to perform the required actions without

interference from other threads or clients. This process can lead to hazards such as

live-lock where the thread is constantly prevented from performing its required tasks

as other threads block it from doing so. Additionally, as with thread blocks, there is no

easily defined ordering for each transaction, again resulting in a first-come-first-served

processing basis.

14 Chapter 2. Background: Thread Level Speculation

2.1.5 Dependence Types

During access to shared resources by parallel threads there are several similar but dis-

tinct data dependences that can occur, resulting in incorrect output. In each of these

cases if the access was performed sequentially by a single thread an error would not

occur and the resulting output would be deterministic and correct; however, as parallel

threads can access data in any order each dependence can also be performed in any or-

der, resulting in a non-deterministic program and potentially an error in the final output

of a program.

Read-After-Write Dependences When one thread reads an element of shared data

followed by another thread writing to that same element there is a flow or read-

after-write (RAW) dependence on that element.

Write-After-Read Dependences When one thread writes an element of shared data

followed by another thread reading that same element there is an anti or write-

after-read (WAR) dependence on that element.

Write-After-Write Dependences When one thread writes an element of shared data

followed by another thread also writing that same element there is an output or

write-after-write (WAW) dependence on that element.

2.1.5.1 Safe Data Dependences

A safe data dependence is one that occurs during execution between iterations but the

specific order in which it was executed does not cause an error in the final output.

Specifically if the ordering in which the dependence is executed is the same as that of

a sequential version of the program this would result in a safe data dependence. For

instance, if a write by a programmatically earlier iteration by a parallel thread occurs

before the read or write of a later iteration then there is a data dependence between the

two iterations, but the order in which the dependence executed is the same as it would

be if it were executed sequentially, hence it is a safe dependence. By not being able

to distinguish between standard dependences and safe dependences, deferred detection

would trigger an unnecessary rollback.

2.1. Parallelism and Dependences 15

2.1.5.2 False Data Dependences

A false data dependence is one that is detected by speculative tracking schemes that did

not actually occur in a program. This is frequently triggered by schemes that employ

memory reduction methods such as memory address hashing or larger than byte size

addressing. These methods are described in more detail in Section 2.3.6. False data

dependences often trigger unnecessary rollbacks or other version control techniques

resulting in additional processing and longer execution times, potentially much longer

than the original sequential version of a program.

2.1.6 Other Hazards

By allowing code that potentially contains data dependences to execute can also trigger

several other hazards. In particular these include:

Inifinite Loops
If the execution condition of a loop is the subject of a data dependence, or derived

from any variable that may contain a data dependence could result in an incon-

sistently executed loop. This can include the execution of additional iteration,

missing iterations and possibly even an inifinite loop. The simplest solution to

this is to ensure the loop condition is not derived from an unsafe variable, how-

ever this a potentially difficult task to ensure automatically. Worse still, many

speculation schemes may never detect this error as dependence checks occur

after the loop has finished executing.

Segfaults
In cases of indirect memory addressing and pointer arithmetic it is possible for

a memory access to be performed outside of its expected address range. For

instance an access of an array may cross the boundaries of the array itself into

the memory of other variables. This can be handled as the value causing the

erroneous access would be detected as a dependence violation. A special case

of this is to access memory outside of the program itself, triggering a segfault.

This is easily recoverable by speculative execution by overriding the segfault

handler and treating the fault as a failed speculation. An extreme example would

be to override a loop varible resulting in an infinite loop, or an access to non-

speculative memory that cannot be restored. These are difficult issues that have

not been widely investigated by speculative research.

16 Chapter 2. Background: Thread Level Speculation

Irreversible I/O
Many programs perform I/O during their standard operation. Should any occur

during speculative execution it may be impossible to reverse the consequences

should a dependence be detected. This can be handled through buffering of both

input and output during speculative regions.

2.2 Automated Parallelism Discovery

This section reviews several methods and their limitations for performing automated

parallelism detection. The simplest form of parallel execution to detect and implement

automatically is that of DOALL loops, as described in the previous section. Hence,

most auto-parallelising compilers and tools focus heavily on these loops [14]. As this

dissertation is intended to be an extension on top of existing auto-parallelising tools it

will focus mainly on these same loops.

2.2.1 Static Analysis

The primary method for detecting parallelism in sequentially executing code is static

analysis [14]. During this stage compilers/parallelising tools generate a model of a

program and analyse the data dependences that may exist. The ordering of every read

and write performed on an array/variable is analysed to extract whether or not a flow,

anti or output dependence exists on that variable. The program is then split into basic

blocks that can or cannot be parallelised and rewritten into separate threads based on

various performance metrics embedded into the tool. A common case is the paralleli-

sation of loops where static analysis is used to detect cross-iteration data dependences

that would prevent the parallel execution of individual iterations.

In many circumstances sequential code may re-use a variable to calculate new data

that is independent of prior uses of that variable, for instance a piece of data calculated

during each iteration of a loop. In the sequential program this re-use would not cause

an error, but during parallel execution this variable must be privatised such that each

thread has its own copy, which may be used without interfering with other threads.

Many existing parallelising tools will automatically detect these variables and privatise

them correctly.

2.2. Automated Parallelism Discovery 17

Similarly, in many circumstances a reduction on a variable will occur, for instance the

summing of a value across iterations of a loop. Due to the inherent data dependence

that exists on such a reduction variable, many compilers will determine this case as

unparallelisable. However, such cases are simple to parallelise by creating a thread-

private copy of the reduction variable and, at the end of parallel execution, adding

additional code to perform the reduce operation across the privatised copies to the final

output variable.

Dependence detection, privatisation and reduction are relatively simple exercises on

individual variables, but each of these phases become significantly more difficult when

programs involve the use of arrays or pointer manipulation, a very common circum-

stance. When a program uses arrays a tool must pre-calculate every index into the

array, or identify a common access pattern to the array to determine whether no data

dependences exist for each access of the array. Similarly a compiler must be able to

determine which piece of data a pointer is accessing to be able to provide a guarantee

that no data dependences exist. These are significant tasks for a parallelisation tool to

perform, relying upon advanced knowledge of the program being executed that simply

cannot be represented by many intermediate representations used during static analy-

sis. The problem becomes even worse in circumstances of pointer aliasing or the use

of indirect array indexing that prevent the compiler from determining any array access

patterns. In these circumstances many parallelising tools and compilers are necessar-

ily conservative and determine these sections of code to be unparallelisable to prevent

possible errors in the program from occurring. However, in doing so they miss many

possible opportunities for obtaining faster programs through parallel execution.

2.2.2 Execution Profiling

To extract further parallel opportunities from sequential code, static analysis can be

augmented with profiled execution analysis [44, 48]. To perform profiled execution a

sequential program is instrumented with additional code to allow it to generate traces

of all memory operations that a program will execute. Such traces include pointers

into the original high-level code that indicate which section is being executed: for

instance the start and finish of each iteration of a loop. These logs containing additional

program structure can then be analysed to determine if a data dependence occurred

during execution.

18 Chapter 2. Background: Thread Level Speculation

This technique is meant to be used as an addition to static analysis. In many cases

static analysis can prove with absolute certainty that no data dependence exists, and

also in many cases that a dependence definitely exists. This technique is for use in

circumstances where static analysis cannot prove either.

The analysis of memory trace logs can provide absolute certainty for cases where a

dependence exists but where static analysis has failed. In cases where no dependence

is detected profiling can provide no guarantee that a dependence does not exist due to

alternative execution scenarios, such as different input data sets to the program. Many

tools leave the final decision of whether a loop can be parallelised to the programmer

using the tool, delegating the consequences of incorrectly identified parallelism to the

programmer. In fully automated parallelisation tools this situation is untenable, partly

because programmers themselves are fallible.

2.2.3 Performance Considerations

Modifying a program to execute in parallel can provide significant speedups, but the

process also introduces additional overheads related to thread creation and manage-

ment, thread communication and synchronisation. These overheads can easily out-

weigh any benefits that parallel execution may present. During parallelisation many

tools include various metric analyses to determine if a speedup will be obtained. These

metrics are not precise but are a useful indicator of the possible performance benefits

of parallelisation. Similar tools exist for profiled execution, with the added benefit that

performance can be measured during profiling. The possible speed estimated by these

metrics can also vary depending on the configuration of the program, input data sets

and the platform performing the execution. As yet, no such metrics exist for specula-

tive execution.

2.3 Speculative Execution

This section provides an in-depth description of many common speculation techniques,

with analysis of their suitability in various scenarios and their effects on the perfor-

mance and resource utilisation of a program.

This section begins with a description of the standard workflow of S-TLS systems in

2.3. Speculative Execution 19

Dependence
Check

Work
Completed

Setup

Execute

Commit

Rollback

Re-Execute

Teardown

Figure 2.5: Generalised Workflow of Common Speculative Execution Schemes

Section 2.3.1, before analysing the effects on the ordering of that workflow in Sec-

tion 2.3.2. A description of storage layouts used for speculative data is provided in

Section 2.3.3 and then the various methods of synchronisation commonly used by S-

TLS in Section 2.3.4. Next a description of the data structures used to store memory

traces is given in Section 2.3.5 with an analysis of the techniques used to reduce the

size of those structures and the hazards that can occur by doing so in Section 2.3.6. Fi-

nally a description of the version management methods used to provide the underlying

safety of S-TLS is provided in Section 2.3.7.

2.3.1 Speculation Workflow

Thanks to the nature of speculative execution most schemes follow a similar pattern

of execution. This general workflow can be seen in Figure 2.5. Execution of a pro-

gram is split up into sequential, parallel and speculative sections based on the analysis

performed on the program. When a speculative region of code is encountered the fol-

lowing stages are performed:

20 Chapter 2. Background: Thread Level Speculation

(i) Set-up. At the start of speculative execution, or at some point prior, the struc-

tures necessary to store the speculative state are created and reset. These struc-

tures include, for example, memory trace logs and rollback/restore logs.

(ii) Execution. Once ready, threads are created/assigned individual blocks of code

and execution commences. During execution of the parallel section, each thread

maintains a trace of the accesses to memory it performs. The number of accesses

recorded can vary greatly dependent on the amount of analysis that can be per-

formed statically, ranging from every access to only those of specific variables

or even lines of code. Reads and writes are normally tracked separately so that

they can be used to detect each different type of data dependence. Each thread

often also maintains its own rollback or commit logs to be used in case a data

dependence is detected, storing their own private copy of a memory location, or

the original copy that they are modifying for use during the commit or rollback

stages.

(iii) Dependence Check. After execution, or at suitable intervals during execution,

the memory traces for each thread are analysed to detect data dependences.

(iv) Commit. After the dependence check has been performed and no data depen-

dences have been discovered each thread’s state has to be commited. Depending

on how version control has been implemented this can involve writing back a

thread’s private copy of each memory location it modified, or it can simply in-

volve discarding any rollback logs. After commit, each thread can be assigned

more blocks to be executed speculatively, or if there is no more work to be exe-

cuted then standard sequential or parallel execution continues.

(v) Rollback. Should a dependence be detected during the check then a rollback

will be triggered allowing the program to return to a previous state of execution

before the dependence occurred. Being able to rollback to a prior state is the

primary means of ensuring that every speculative section executes correctly and

produces correct results. Rollback methods also depend upon how rollback or

commit logs are created, and can involve simply discarding a thread’s private

copy of a memory location, or something more complex such as replaying all

memory accesses between threads in reverse to restore them to their original

values.

2.3. Speculative Execution 21

(vi) Re-execution. After a rollback has been performed part or all of the speculative

section is re-executed. Depending on the scheme this can be a safe, sequen-

tial execution, or an attempt at executing in parallel speculatively again. For

instance, an iteration of a loop where a dependence was triggered by an ear-

lier iteration that has now been committed may re-execute the current iteration

again sequentially, or simply retry speculatively now that the earlier dependence

triggering iteration has been committed.

(vii) Teardown. Finally once the speculative section has finished executing correctly

with no data dependences speculative structures are often reset ready for the next

speculative execution. Occasionally these structures can be destroyed however

this tends to be inefficient in cases where more than one speculative section may

exist.

As mentioned, most speculation schemes follow this same pattern; however, they can

involve more complex operations allowing stages to be merged. For example, execu-

tion and dependence detection can be merged allowing for dependences to be detected

on-the-fly. This can be beneficial if dependences are likely as it restricts the amount

of wasted execution, however it also makes each thread’s execution more complex and

slower. Similarly dependence detection, commit and rollback stages can be merged

however this requires specifically designed trace and version control structures to al-

low this.

The inter-thread ordering of each stage can also vary for each speculative model with

the use of synchronisation to enforce ordering for each. There are two main types that

exist, block-based execution, and pipelining. In block-based execution every thread

executes the same stage or set of stages at the same time. If a thread reaches the end of

its block before the other threads it must wait until they have before progressing. Alter-

natively, each thread could be pipelined with synchronisation preventing later threads

to get ahead of earlier threads. For example, several threads could be executing, whilst

another thread is performing its dependence check and another thread is commiting

back to memory.

22 Chapter 2. Background: Thread Level Speculation

2.3.2 When to Check

The most important design aspect of a speculative scheme is the timing of the de-

pendence check. This aspect influences every other aspect of the scheme, including

the type and layout of the memory traces, the synchronisation methods used, version

control types chosen and even how accurate the tracing needs to be.

This aspect is largely influenced by the type and requirements of the code being par-

allelised and the machine that the program is being executed on. For instance a loop

that has a very low chance of containing a data dependence would likely benefit from

a delayed and optimised or lazy dependence check, however using a delayed check re-

quires that memory traces need to be stored for longer and are likely to consume more

memory. In contrast, a loop with a higher chance of containing a dependence may

benefit from on-the-fly or eager checking so that the dependence is discovered more

quickly, however this requires more computation on each access restricting possible

performance gains.

This section describes each method and analyses how they are likely to influence the

other design aspects and performance of a speculative scheme.

2.3.2.1 Lazy Checking

For many loops and programs lazy checking is a suitable choice for when to perform

a dependence check. In lazy checking each speculative memory access is logged and

stored into memory until it is ready to be used to scan for data dependences. Then, at

some later point during execution the traces generated are analysed to detect if a data

dependence has occurred and, if so, handle the situation appropriately.

Isolating the memory-trace and dependence-detection stages tends to create a scheme

that is simpler to implement. Each speculative access is often cheaper as it is less

likely to interact with or share data with other threads thereby reducing the amount

of expensive synchronisation required. With lower synchronisation costs the scheme

will scale to higher thread counts more easily. Lazy schemes are also more versatile as

the delay between tracing and detection can be fine-tuned to suit a given program and

architecture. Additionally, the delayed dependence check can be optimised to perform

as a batch scan of all logged accesses.

2.3. Speculative Execution 23

However, overall lazy detection is more taxing on memory. The size of the delay in-

fluences the size of memory access trace logs. Not only does a larger delay result in

more accesses being recorded, but the structures used must also be more accurate in

recording the address of each access to prevent false dependences from being detected.

Longer time before a check also generates longer commit or rollback logs further in-

creasing memory usage.

Besides higher memory usage, lazy detection also increases the cost of version control.

For instance a longer rollback log increases the amount of memory that has to be

restored if a dependence were to be found. Or it will increase the amount of time

spent committing an execution back to non-speculative memory. Lazy detection is

often unable to account for safe data dependences as the order in which accesses have

occurred has not been recorded.

The added versatility and flexibility of lazy checking also adds complexity to the con-

figuration of a scheme. Most notably is the selection of a suitable checking interval.

Common intervals can include:

(i) Iteration Based. The dependence check is performed at the end of every itera-

tion. This interval is used when a dependence is more likely to exist in a loop.

It uses the least amount of memory for traces and version control and minimizes

the amount of wasted computation in both execution and rollback should a de-

pendence occur. It is, however, the most expensive interval in terms of synchro-

nisation required between threads. It is also unsuitable to use during pipelined

schemes as a way to hide critical sections in a scheme.

(ii) Chunk Execution. This interval, sometimes called a sliding window, performs

the dependence check after a set quantity or chunk of iterations. This interval

increases the amount of memory required, however is a good compromise be-

tween memory, synchronisation and version control costs. It is also suitable for

pipelined schemes that use critical sections as the cost of a critial section can be

hidden amongst the execution of each chunk.

(iii) Extreme Laziness. The dependence check can be left until the end of specula-

tive execution, or until synchronisation points that are already inherently present

in the parallel code. This method requires the least amount of additional synchro-

nisation allowing for the fastest execution times. However, by leaving the depen-

dence check until the last possible moment this method requires the largest mem-

24 Chapter 2. Background: Thread Level Speculation

ory traces, the longest dependence checks and the most expensive re-execution

times. As an additional benefit, the complete isolation of the dependence check

from speculative execution can allow for it to be performed independently of the

rest of the program or even to be passed off to an auxiliary processing unit.

2.3.2.2 Eager Checking

For some loops or schemes it may be necessary to perform the dependence check on

every memory access. This may be due to a higher risk of a dependence existing, or

memory limitations such as being too small or slow to access. This is called eager

checking.

On most architectures the use of eager checking is more expensive as it places the

dependence check directly on the critical path of execution, increasing the amount of

computation required for each memory access. Additional pressure is also added to

memory by increasing the amount of information that is shared between each thread,

limiting scalability. Additional synchronisation is required in the form of atomic oper-

ations or memory fences to ensure correct operation, further limiting scalability.

The memory usage of eager checking is often much smaller than that of lazy check-

ing. Instant detection means fewer accesses must be stored in each trace, and shorter

commit and rollback logs are generated. Similarly, the detection of a dependence is

overall less costly than with lazy detection as less memory must be restored, and fewer

iterations must be re-executed. Smaller traces may also be less accurate when storing

the address accessed without detecting a false dependence. Eager checking can also

correctly detect safe data dependences.

The main issue with eager checking is the limited scalability that it provides, but it

has a smaller memory footprint, and with lower thread counts can provide a significant

performance increase over sequential execution. However, due to the higher synchro-

nisation and sharing costs, many schemes do not use a purely eager checking method.

2.3.2.3 Combined Checking

In some schemes the use of both eager and lazy checking is employed. This is normally

performed as a compromise between computation required per access, the amount

2.3. Speculative Execution 25

of data shared between threads, the cost of rollbacks if a dependence occurs and the

likelihood of safe data dependences.

2.3.3 Trace Topologies

The trace topology specifies the layout of each thread’s memory traces and how they

are stored and shared between threads. The topology influences the elemental type of

the data structures used to store each trace and how the dependence checks are actually

executed. The trace topology can also influence version control as rollback or commit

logs can be stored in the same structure as memory traces. The specific topology for a

scheme is heavily dependent on the timing of dependence checks.

Most, if not all, schemes record traces of reads and writes separately. This is due

to the type of data dependences that can occur. If all accesses were stored in the

same trace all dependences would still be detectable, however if two threads were to

read from the same location then a false dependence would be detected, causing an

unnecessary rollback. The positioning and type of each trace are not required to be the

same allowing for more flexibility in the design of TLS schemes.

A possible alternative to using a read trace is using an access trace. The access trace

logs all accesses, both reads and writes, allowing for the detection of RAW, WAR and

WAW dependences in one comparison with another thread’s write trace. This is a more

efficient check, but requires the update of both the access and the write traces on every

write performed.

This section describes the three main styles of topology of memory trace used in TLS,

and analyse the conditions under which they are most frequently used.

2.3.3.1 Distributed Traces

Distributed, or single-writer traces, are ones that are assigned to individual threads and

are only allowed to be modified by the thread that owns them. Each thread maintains

its own trace with little or no communication with the other executing threads. Dur-

ing the dependence check distributed traces are exposed to the other threads to allow

comparison with their own traces, detecting any dependences that may have occurred.

The single-writer model is one that minimizes the use of synchronisation whilst traces

26 Chapter 2. Background: Thread Level Speculation

are being generated. This allows faster recording of accesses during execution, hence

an overall faster execution time. There is also no contention between each thread’s

traces allowing distributed traces to scale better than those that are shared.

Individual traces are generally smaller than shared ones as they are only required to

store information about the thread that owns them; however, the use of distributed

traces can significantly increase memory usage as every thread must maintain its own

private copy. In general the memory usage of distributed traces tends to grow linearly

with respect to the number of threads executing.

Due to the lack of sharing, distributed traces are normally associated with lazy de-

pendence checking. During dependence checks it is likely that an individual thread’s

trace must be compared with that of all other threads causing quadratic growth in the

overall number of traces to be compared. However, in certain schemes it is possible to

distribute these traces amongst the threads or to use an alternative method of detection

reducing this to only linear or logarithmic growth in number of traces to be compared

per thread.

2.3.3.2 Centralised Traces

Centralised traces are those that are shared between some or all of the speculative

threads. These traces can be read from or written to by any thread during execution

and as such require explicit synchronisation to ensure each access is recorded cor-

rectly. Synchronisation can take many forms, but commonly it involves the use of

locks, atomic operations or memory fences.

The overall memory footprint of centralised traces can be much smaller than that of

distributed ones as there is only one trace that has to be stored. Increasing the num-

ber of threads does not increase the number of traces stored. The elemental unit of

the trace may be larger in size to be able to distinguish between the accesses of each

thread, whilst a distributed counterpart may need only a single bit to represent an ac-

cess. However, centralised traces are most often used with eager checking, lowering

the accuracy required before detecting false dependences, and lowering the length of

the trace. This can counterbalance the larger element size by lowering the amount of

elements stored, resulting in a lower overall trace size. Unfortunately as the number

of threads grows, so must the accuracy of the trace, thereby increasing the number of

elements stored, and resulting in a larger overall trace.

2.3. Speculative Execution 27

Centralised traces are often more complex due to the synchronisation methods they

require. Their correct use also depends on the order in which they are read and up-

dated and when the memory access is performed. Conveniently, when used with an

eager checking method, the addition of extra speculative threads does not increase the

amount of computation required for a dependence check. Instead, this complexity al-

lows the check to be performed as part of the update to the trace. However, this benefit

is rapidly negated at higher thread counts due to contention of the trace between each

thread, severely restricting scalability.

2.3.3.3 Hybrid Topologies

Many schemes choose the use of a hybrid topology over purely distributed or cen-

tralised ones. In these schemes part of the memory accesses are recorded in a cen-

tralised trace, with other parts recorded using a distributed trace. For instance a scheme

could use a centralised trace for recording each read access, and a distributed trace to

record each write access. This method reduces contention on centralised traces al-

lowing them to scale better, whilst maintaining a lower memory footprint than purely

distributed structures. They can also allow for combined eager and lazy detection tim-

ings.

2.3.4 Synchronisation

To be able to correctly record and detect if a data dependence has occurred most

schemes require explicit synchronisation at some stage during speculative execution.

Most commonly this is done to ensure that each thread has finished generating its

memory traces before it is used to scan for dependences, and also that each trace is not

discarded before all other threads have performed their dependence check.

There are two main styles of synchronisation between threads: simply waiting for each

thread to reach a joint stage of execution before performing a check, or pipelining each

stage of execution and detection such that checks can be performed whilst other threads

are still executing. Each of these methods can be implemented in a number of ways.

28 Chapter 2. Background: Thread Level Speculation

2.3.4.1 Barriers

The simplest form of synchronisation is to use a barrier to ensure all threads have

reached a specific stage before they are allowed to perform a dependence check. This

method does not allow for pipelining of each stage between threads and so is partic-

ularly useful when every thread has similar execution patterns. It is also particularly

useful when the dependence check can be performed in parallel as sequential depen-

dence checks would waste available processing resources and not be able to be hidden

among other stages through pipelining. Too many barriers within code limit scalabil-

ity, but when used sparingly these can produce significant speedup. The barriers may

already be inherently present in the parallel code making them a suitable choice to

trigger a dependence check.

2.3.4.2 Master Thread

A common way to implement pipelined synchronisation is the use of a master thread.

During execution one thread, usually the lowest currently executing iteration, is as-

signed to be master thread. The master thread executes normally maintaining its mem-

ory trace. Once it finishes executing, its dependence check is performed. Assuming

no data dependences are found, the master thread commits its changes back to main

memory. Once completed the master thread status is passed to the next lowest iteration

and the thread is assigned more work.

Meanwhile, all other threads are allowed to execute normally, maintaining their mem-

ory traces, but they are not allowed to progress on to their dependence check until they

become the master thread. This method ensures that all prior threads to the master

thread have finished executing, committed their results back to non-speculative mem-

ory and are guaranteed to be correct. Should the master thread discover a dependence,

future threads are easily squashed, with any necessary rollback being performed fol-

lowed by safe re-execution. However, this method introduces a critical section by only

allowing one thread at a time to perform its dependence check and commit phases.

This critical section can be hidden amongst other threads’ execution stages, but this

can severely limit scalability.

This may be partially alleviated by removing the critical section, and only using the

master thread status as a barrier to ensure ordering between the threads. With a scheme

2.3. Speculative Execution 29

that allows for a parallel check and commit stage, ordering is enforced with two master

statuses, the check master and commit master. Once a thread is ready to perform its

check it must wait until it becomes check master. When it does, it immediately passes

the check master status on to the next iteration. If a thread has not finished executing

when it becomes check master, it waits until it has done so before passing the status

on to the next iteration. Once the status has been passed the check is performed in

parallel with any other threads at the same stage. The commit master status works in the

same fashion, preventing a thread from committing until previous threads have finished

their dependence check. This method effectively pipelines each stage of speculative

execution, but can still suffer from scalability issues.

2.3.4.3 Overlaps

An alternative method is to keep track of which threads overlap without the use of

locks or barriers. The most common way to do this is to record the wall-clock start

and finish times of each iteration/block in a list and to perform the dependence check

on any threads that have already finished executing that were executing or started ex-

ecuting during the current thread’s life. This method is good for unordered commits

as it does not require much in the way of locks or barriers, but for larger numbers of

threads the maintenance of past and present memory traces can become unwieldy. Ad-

ditionally, for ordered commits, such as loops, extra support is required to ensure they

are committed in the correct order.

2.3.5 Trace Structures and Collision Detection

At the core of every TLS scheme are the data structures used to record memory traces.

Each different data structure has different properties affecting, among other things,

how easy they are to update, the amount of information each element is able to store

and how they can be used to detect dependences. Which data structure is most suit-

able for a given scheme is dependent on whether they are to be used eagerly or lazily,

whether they are going to be centralised or distributed, and what forms of synchroni-

sation are going to be used to protect them.

This section lists some common data structures used to store memory access traces,

analysing how they affect computation and memory usage. Some common ways to

detect dependences using them are also discussed.

30 Chapter 2. Background: Thread Level Speculation

2.3.5.1 Bitsets

A common structure used to record a memory trace is a bitset or bitvector. Each bit

in the vector can represent one specific memory address (or region) with 0 or unset

repesenting an address that has not been accessed, and 1 or set representing an address

that has been accessed.

Due to their simplicity bitsets are a dense data structure keeping their memory usage

low. Despite their compactness, bitsets can still grow to an unweildy size if they are

used to track larger memory regions without additional support.

Bitsets are relatively simple to update through the use of a shift and bitwise-or op-

eration and can be used to highlight multiple locations in one operation simply. On

most architectures each element is generally smaller than the elemental unit that can

be accessed (e.g. char) therefore if they are used in a centralised topology explicit syn-

chronisation would be required. However, due to the lack of information storable for

each address they are not well suited for centralised use, instead being more suited as

a distributed trace.

To most efficiently use bitsets to detect dependences is to directly compare them to

other bitsets. To detect if two bitset traces contain conflicting accesses is to perform

a bitwise-and operation on them. If any bits are set in the resulting bitset then a de-

pendence has occurred. This method makes them well suited for batch scanning in a

lazy fashion, as extracting individual bits is much less efficient. This makes them most

suited for lazy detection schemes.

A less common use of bitsets is to use them to in a centralised structure per location

to record which threads have read to or written from that location. Each bitset would

be the length of the threads currently executing with each bit representing a single

thread. This technique can be useful as it records a precise log of which threads have

accessed which location providing an efficient method of finding the most recent or

relevant copy of a location, for instance during value-forwarding techniques described

in Section 2.3.7.4. This method is not suitable for lazy detection as the comparison of

multiple locations requires the analysis of every individual location, rapidly becoming

expensive on large regions. Additionally on large regions the number of of individual

bitsets can become unweildy.

2.3. Speculative Execution 31

2.3.5.2 Counters

Larger elements are a frequently used structure in memory traces. Instead of using

a single bit to represent each memory location, larger elements instead use, for ex-

ample, an array of integers or chars to represent memory locations. This allows for

a greater flexibility in how they are used, however this generally also adds additional

computation and memory requirements.

Having larger elements allows the use of booleans as an alternative to bitsets, removing

the need of shift and other bitwise operations to update each location. Instead they can

be directly addressed in the array, allowing for use as a centralised trace without the

need for explicit synchronisation on every access. However, as with bitsets, the lack

of information provided by booleans make them generally unsuitable for centralised

traces.

Instead, the use of counters is more common. Frequently each element is used to store

the highest iteration ID to access the location or region represented by the individual

counter. On subsequent accesses, or during commit, the value stored is used to deter-

mine if a later iteration has already accessed that location. For a read log a dependence

violation occurres if a higher iteration has already written to that location, and for a

write log a dependence violation occurs if a higher iteration has already accessed the

location at all. This method is only useful when used as a centralised trace, however

can be used with both eager and lazy checking schemes. The eager use of this method

can also be used to distinguish between safe and unsafe data dependences.

Another use is to count how many threads have accessed a location in a centralised

trace. If multiple iterations have read from a location, and at least one thread has

written to it then a dependence has occurred. Similarly if multiple threads have written

to a location then a dependence has occurred. This use is conceptually simple, however

it requires extra support, possibly in the form of distributed traces, to allow for the same

thread performing multiple reads or writes of the same location, or some combination

of the two.

Using each element as a counter increases the complexity of accessing them, as they

are frequently required to use minimum or maximum operations, or other arithmetic

operations to update them. A centralised counter must also use explicit synchronisation

such as atomic operations or memory fences to ensure their correct operation. Finally

they are also not well suited for updating a range of elements, nor are they optimised

32 Chapter 2. Background: Thread Level Speculation

for bulk scanning as they all must be accessed and updated individually.

Counters are occasionally also used for version control to identify and order backup

copies of memory locations, incrementing their counter every time a location is pre-

served.

2.3.5.3 Address Lists

One of the simpler structures used to track memory accesses is to create a list of all

the addresses that are accessed. To update such structures you simply add the address

accessed to the back of the list making it very lightweight in terms of computation per

access. However due to the sheer quantity of accesses performed in most speculative

code they are likely to grow in size quickly and become unwieldy. They are also more

commonly sorted in order of access making them difficult to compare to each other

directly.

Alternatively, when used in combination with other data structures, address lists can

become more useful. For example, a centralised counter-based read log can be used

to compare against a write-address list. Each element in the list is examined for the

current iteration and compared to the read log. If a higher iteration has read a location

in the list then a dependence has occurred. Using the list can decrease the amount

of computation and synchronisation required per write during execution. However,

traversing the entire list can be expensive if the number of writes is large and writes to

the same address will cause wasted computation.

2.3.6 Accuracy and False Dependences

Another factor affecting speculation is the granularity of memory traces. In efforts

to reduce memory usage and increase speed various techniques such as reducing the

access addressing size or by hashing individual accesses have been developed. Using

these methods can affect the accuracy of the dependence detection often triggering

false dependences thereby reducing performance. In an effort to restrict this effect the

use of per-variable structures can also sometimes be used. This sections discusses each

method for reducing memory usage and ways to alleviate the effects of doing so.

2.3. Speculative Execution 33

2.3.6.1 Addressing Size

To lower memory usage required for memory traces the base addressing size for track-

ing can be modified. In some circumstances every bit modifiable would be able to be

tracked however this is frequently not required. Ideally the base unit tracked would be

the same as the smallest addressable unit of the CPU or memory system being used,

allowing for every write performed to be scanned for dependences. However, doing so

results in large data structures being required and selecting a larger unit can shrink this.

For example tracking at a word level would result in a trace structure that can be either

four or eight times smaller, dependent on the machine, over that of byte level track-

ing. However if each thread performs accesses on a byte level instead of a word level,

tracking only the word address could easily cause the detection a false dependence

and trigger an unnecessary rollback. Going further than that, tracking at the page level

would result in a tracking structure of over 4000 times smaller, assuming 4 KiB pages,

however this would almost certainly result in the detection of false dependences.

The guaranteed minimum size of tracking can be determined easily at compile time

based on the minimum size of all speculative accesses. However, the use of static

analysis may be able to improve on that by proving that a thread will perform a series

of access to subsequent memory addresses.

2.3.6.2 Hashing Techniques

An additional method of reducing the size of trace structures is to store only the hash of

the address being accessed. For example, a program using 32-bit byte-level addressing

on a 1 KiB array does not need to store the entire 32-bit address. Doing so would re-

quire a trace structure capable of storing/distinguising between over 4 billion different

entries. Instead, to detect dependences for just the array only 1024 entries are required.

A simple hashing scheme for this would be to record only the least significant 10 bits

of the address and discard the rest.

The example given above is a rather simplistic one. Frequently the sizes of the memory

ranges being tracked are unknown at compile time, are much greater than 1 KiB arrays

and are required to cover multiple different arrays during execution. Hashing can be

a very useful tool to reduce the size of the trace structures however the ideal sizes of

these can be difficult to determine. Hashing to too many items creates a large, wasteful

and inefficient structure that can harm performance. Hashing to too few creates a

34 Chapter 2. Background: Thread Level Speculation

small and efficient trace, however significantly increasing the chance of a detecting

false dependence.

2.3.6.3 Single or Multiple Traces

As mentioned in the previous section, most speculative tracking is performed on more

than one memory range, be it a individual variables, multiple arrays, pointers or simply

some random block of memory that the compiler cannot determine what it is being used

for. There are multiple ways of handling these situations, namely the use of single or

multiple traces.

Single traces record all speculative accesses into the same trace. Note this does not

mean a centralised trace as mentioned in Section 2.3.3.2, but instead a single structure

covering the entire address space of the program. Conversely multiple traces record

speculative accesses into a separate trace for each memory range they are accessing.

For multiple traces, in a centralised scheme there would be multiple centralised traces,

one for each range, and for distributed traces each thread would have multiple traces

of its own for each memory range.

The use of single traces is generally the most simple to implement and most convenient

for detecting dependences. When using single traces every speculative access is auto-

matically tracked correctly and any dependences that can occur will be detected. For

instance if pointer aliasing is possible in the program a single trace would still detect

dependences when these variables were accessed. Similarly single traces would have

no issue if arrays were to overlap or some other similar issue. However the use of sin-

gle traces complicates the required hashing techniques. For example instead of dealing

with a single 1 KiB array, two 1 KiB arrays could be being tracked. If the arrays were

stored in adjacent memory this would not be an issue, simply set the hash function to

allow for 2048 addresses. However if they are stored in non-adjacent locations, poten-

tially far away from each other then the hash function must account for this to prevent

the detection of false dependences.

To ease the issue of hashing, instead multiple traces can be used with independent

hash functions. Each function is only required to distinguish between 1024 entries

no matter how far apart the two arrays are. However, this method is more complex

as it requires all tracking methods to know which trace to use. Additionally aliased

pointers must also know which trace to use, which might not be the same on each

2.3. Speculative Execution 35

access. If the incorrect trace is used then existing data dependences may go unnoticed

defeating the purpose of speculative execution. Similar issues occur for overlapping

arrays. Finally, the use of multiple traces also means that all traces must be scanned

for data dependences increasing the number of checks required.

2.3.7 Version Management

Version management is the underlying protection provided by TLS that allows for cor-

rect execution. During execution and most importantly after dependences have been

detected it is version management that allows the program to roll back to an earlier

state and re-execute in a safe manner.

Often the version management is relatively separate from the memory traces and de-

pendence detection. Backup or restore mechanisms often use their own structures for

keeping track of what has been backed up and store commit or rollback state in their

own private buffers. However, occasionally memory traces and version management

are combined such that commit or rollback values are stored inside memory trace struc-

tures. A prime example of this would be using an address list and to store the rollback

or commit value in the same list.

Whether they are combined or not, the timing of the dependence check is intrinsically

linked to how much and for how long rollback or commit information is stored for.

For example a purely eager scheme would be able to discard of rollback information

or perform a commit as soon as all previous iterations have completed, whereas an

extremely lazy scheme would have to maintain a rollback or commit log for the entire

speculative execution.

The type and granularity of version management used has a large impact on the per-

formance of a speculative loop. This section lists several methods, and analyses how

they impact the overall performance of speculative execution.

2.3.7.1 Management Scheme

The type of version control used to protect speculative memory regions varies greatly

in terms of how it is implemented, with additional options for when to perform ver-

sion control, where it is to be stored and how to store it. Each different option affects

36 Chapter 2. Background: Thread Level Speculation

the performance, memory footprint, checkpointing ability and scalability of specula-

tive execution. There are two main categories of implementing version control for

speculative execution: rollback or commit.

Rollback. Speculative memory regions are backed up as necessary to another part

of main memory. When a dependence is detected the backup copies are then

restored to their original location to allow for safe re-execution. If no dependence

is found then the backups are simply discarded as they are no longer needed.

Commit. Any modifications to speculative memory regions are stored in a private

buffer during execution. After the dependence check, if no dependences have

been detected then the privatised buffer is commited over the original speculative

memory regions ready to continue with the rest of the program. If a dependence

is found then the private buffers are discarded and re-executed.

It is intrinsically clear that the rollback management scheme favours execution that is

unlikely to contain data dependences as there is no additional commit phase required.

The commit management scheme instead favours execution that is more likely to con-

tain a dependence as re-execution does not require an expensive rollback stage.

2.3.7.2 Versioning Schedule

After the overall scheme for version control is decided a versioning schedule must be

chosen. The versioning schedule affects how large version-management data structures

become and how they are to be interacted with. Again, two main choices exist for

versioning schedules: preemptive and just-in-time.

Preemptive. At the start of a speculative stage backups or private copies of all spec-

ulative regions are created. This can be costly to do so as each region may be

large and the speculative execution may only touch a small part of each, however

this is a one-time cost at the start of a speculative section. There is no additional

version control required during the execution stage of speculation. This method

is also restricted in that it only maintains the single checkpoint at the start of

the speculative section significantly increasing rollback and re-execution times

if a dependence is detected. If used with a commit based scheme, preemptive

scheduling may require additional support to track which locations in the specu-

lative region must be committed.

2.3. Speculative Execution 37

Just-in-time. On every access, particularly on writes, the location accessed is backed

up or privatised. This has the benefit that version control is only used on lo-

cations that are actually touched, however involves additional computation on

every speculative access. Extra support must also be integrated to keep track of

which locations have already been backed up or privatised, which must also be

checked on every speculative access. However, JIT scheduling has finer grained

control on when checkpointing occurs, allowing for shorter rollbacks and re-

execution.

2.3.7.3 Data Structures and Topology

Besides the scheme and schedule, version control also has a variety of options for

what kind of data structure to use to store rollback or commit logs. Through its nature

schemes using preemptive version control only has the option of copying the entire

speculative region to another section of memory, thereby creating a shadow array that

is filled from the start. In constrast JIT scheduling schemes are much more flexible,

and generally have the option of using a shadow array, a hash map or a list to store

rollback or commit logs.

Shadow Array. By using a shadow array, backups and privatisation can be performed

in a low constant time, making them a reliable option for performance. However

they have the largest memory footprint of all models as they have to account for

all possible locations being accessed.

Hash Map. To reduce the memory footprint of version control a hash map can be

used. The access times of a hash map are similarly constant however involve

more computation on every access. They also have the risk of collisions occur-

ring in the hash function which must be handled correctly.

List. The fastest structure for insertion is to use a list, implemented as an array, a

linked list or some other form. Each new item is simply added to the end of

the list, stored as an {address, value} pair. Extracting values on subsequent

reads or writes are more complex as the list must be traversed to find the relevant

item. This can be fast if it was accessed recently, or slow if not. The size of lists

can also be unpredictable as they grow based on the number of accesses.

Process Isolation. To mitigate the overheads associated with accessing speculative

38 Chapter 2. Background: Thread Level Speculation

structures some schemes use process isolation as the primary means of version

control. By forking the main thread version control is delegated to standard OS

operation, implementing copy-on-write semantics for any page modified. This

removes any costs associated with the lookup of values already in speculative

structures, beyond the cost of the OS creating a new copy of the page. This is

normally used in conjunction with write lists or some other structure to allow

simple transfer of speculative state back to the main process.

The topology of each data structure is similarly important, but is generally based upon

the scheme and schedule of version control. Specifically, backups or privatised ver-

sions can be stored centrally or distributed between each thread.

Central data structures make the most sense for preemptive schemes as only one check-

point needs to exist. Distributed data structures are more appropriate for schemes when

multiple checkpoints exist simulataneously as each thread can maintain its own state.

2.3.7.4 Value Forwarding

For some schemes it is possible to employ the use of value forwarding to mitigate the

cost of some types of data dependences. When each thread maintains its own private

copy of a variable that it has written to, a later thread or iteration can directly access

that private copy for their own use converting some RAW dependences into safe data

dependences. The ordering during access is important to ensure that further writes by

the earlier trigger a dependence violation correctly, hence this technique can only be

used by eager checking schemes. Additionally the support code required to perform

such forwarding adds additional computation complexity and requires customised data

structures to enable the discovery of the correct version of a variable.

2.3.7.5 Granularity

Finally, similar to the granularity of memory traces, version control can be handled

on different data sizes. This is most relevant for JIT schemes as preemptive schemes

work on the entire speculative region. The most common choices are word-based and

page-based version control.

Word-based version control allows for fine accuracy between each thread, allowing

for very controlled rollbacks. However they require the most amount of computation

2.4. Conclusions 39

for each access and backups or privatisation is common. Alternatively, page-based

version control involve less frequent backups and can be optimised better due to the

larger amount of data stored each time. Using page-based version control lowers the

accuracy thereby restricting checkpointing.

2.4 Conclusions

This chapter has provided an overview of the common techniques required for parallel

execution. Listed was a summary of standard parallel execution schemes, followed by

an analysis into the ways to automatically implement some of those schemes. Finally

an in-depth analysis of common speculative execution techniques was provided with

analysis into their performance and resource-utilisation influences.

As these are only descriptions of commonly used methods the next chapter will provide

a look at some existing tools that use the techniques described here.

Chapter 3

Related Work

Due to the poor performance of static analysis alone [7], modern research has focused

on using profiling techniques to discover parallelism within programs [44]. As this

technique is inherently unsafe, many processes have relied upon user verification as

a final guarantee that a section of code is safe to run in parallel. This verification

completely rules out use in a fully automated parallelisation system; therefore much

research [29, 28, 24, 25, 36, 30] has already been performed into speculative execution

schemes which can facilitate fully automated parallelisation.

This chapter presents an overview of previous research into the field, first with an anal-

ysis of an existing profile-based parallelism detection in Section 3.1 and then a selec-

tion of existing speculation schemes. First, purely CPU-based schemes are presented

in Section 3.2, followed by a purely GPU-based speculation scheme in Section 3.3.

Final conclusions are presented in Section 3.5.

3.1 Profile-Driven Parallelism Detection

In 2009 Tournavitis and O’Boyle [44] presented an aggressive method for discover-

ing and exploiting parallelism in sequential programs. Their method uses a two-stage

approach that uses profiling techniques, to discover unexploited parallelism and then

a machine learning (ML) technique to identify which of these targets would provide

increased performance when executed in parallel.

The first stage of parallelisation involves instrumenting sequential programs at the in-

41

42 Chapter 3. Related Work

termediate representation (IR) level of the CoSy compiler framework [1]. This in-

strumented code is then executed using one or more sample input data sets, with the

memory access traces of the program recorded to a separate log. Performing this intru-

mentation at the IR level allowed them to maintain more structure about the program

being executed than would otherwise be possible using standard profiling tools, such

as start and finish of loops and their individual iterations or the start and finish points

of calls to functions and methods.

Once a memory trace has been collected their approach then performs a series of static

and dynamic analyses on the code and logs to identify definitely parallel, probably

parallel and definitely sequential sections of code, focussing mainly on loop paral-

lelisation. The analysis performed also identifies variables that require privatisation,

reduction operations that may occur and critical sections and synchronisation points

that may be required during parallel execution. Privatisation and reduction identifica-

tion is able to be performed beyond individual variables up to complete arrays. Parallel

code for each loop is then generated automatically for each of the stages.

Stage two of their approach uses ML techniques to identify profitable loops of those

that have been targetted. The ML technique uses an offline supervised learning scheme

whereby a number of loops are executed both sequentially and in parallel with their

execution times recorded. Next, loop features are extracted both statically from the

code and dynamically from the profiled execution log which are combined with some

features regarding the hardware used to execute the loop. This data is then used to train

the ML-based predictor. Targetted loops have the same features extracted from them

which are then used by the predictor to determine if a loop is likely to be profitable.

Likely profitable loops are then presented to the user for the final decision over if a

loop is safe and profitable to execute in parallel and those selected are incorporated

into the parallel version of the program.

This technique presents highly likely and profitable candidates for parallel execution

however, due to the inherent nature of the profiling stage, it is unsafe for use in an auto-

paralleliser. The only suitable way to use this technique in completely automatic par-

allelisation scenarios is to employ the use of speculative execution over each probably

parallel loop. Additionally the ML-based profitability predictor must also be extended

to account for the costs of speculative execution.

3.2. CPU Schemes 43

3.2 CPU Schemes

3.2.1 S-TLS

In 2001 Rundberg and Strenström [36] presented one of the first fully capable purely

software based speculative schemes, S-TLS. This scheme was based very closely to

existing hardware techniques by including a speculative data structure for every mem-

ory location covered by speculative support. Each memory location came with an

associated load vector, store vector, a local shadow copy of the variable per thread and

a lock used for every access of the location.

The load and store vectors for each location were implemented as a bitset the length of

the number of the executing threads. On each load the load vector bit belonging to that

thread was set, and then the entire store vector was compared to determine if a lower

thread had already written to that location. If so, the most recent local shadow copy of

that location belonging to a thread lower than the current was used allowing execution

to continue, otherwise the value in non-speculative memory location was used. On a

store, the appropriate store vector bit was set, then a local copy of the written value

was stored in the shadow variable for that {location, thread ID} pair. A check

was then performed to identify if a higher thread had already read from the location

and if the higher thread had obtained its value from a shadow variable higher than that

of the current thread. If not, a rollback was triggered by clearing the shadow copies

and resetting the vectors, followed by sequential execution of the speculative section.

At the end of speculative execution, the shadow copy belonging to the highest thread

of each location written to was commited back to non-speculative memory.

This scheme provided an eager check allowing unsafe dependences to be detected

when they occurred. However, every access was performed using an expensive lock-

ing scheme, completely blocking all other threads from accessing variables simultane-

ously. The use of value forwarding described above also mitigated the possibility of

WAR and WAW dependences from causing speculation to fail. The use of a structure

for every location tracked also created completely accurate detection, disallowing the

possibility of false dependences. However, all of these features combined caused an

extremely high memory footprint associated with the model, and the commit process

required every speculative location to be checked to determine if it required commit-

ting. While this could be performed in parallel, it could be extremely time consuming

44 Chapter 3. Related Work

if there was a large memory region covered by speculative protection.

3.2.2 POLYLIBTLS

Between 2007 and 2009 Oancea and Mycroft released several speculative execution

schemes, along with a related library, to aid implementation of speculative execution in

loops. The library was geared towards a new method for programmers to write possibly

parallel loops, rather than automatically detected parallelism. However, with static

analysis and various code transformations this feature could be introduced relatively

easily. Of particular interest were the speculative schemes proposed and evaluated

along with the library: SPLSC, a commit-based model described in Section 3.2.2.1,

and SPLIP, a rollback-based model described in Section 3.2.2.2.

3.2.2.1 SPLSC

SPLSC [28] is a Serial Commit speculation scheme using a lazy detection checking

schedule. Their scheme introduced the use of hashing to reduce the memory over-

heads associated with memory tracking structures, and the use of a transferrable master

thread to aid synchronisation.

In SPLSC each thread maintains its own commit log, implemented as a series of

{address, value} pairs stored as a simple array. During execution this log is filled

and then committed back to non-speculative memory one thread at a time. To alle-

viate the sequential nature of this commit sequence, it is performed in a round-robin

pipelined fashion every n iterations by the master thread, whilst the other threads con-

tinue to execute the loop, filling their own logs. During optimal configuration and

performance this method effectively hides the commit cost amongst the execution of

all other iterations (with the exception of a setup and destroy cost per loop). However

misconfiguration or inconsistent iteration execution times can cause this commit time

to become apparent and to become a detriment to execution times. Its serial nature also

limits this scheme’s scalability.

As a tracking structure, SPLSC uses a single, centralised vector to record which

threads have read a given memory location. Elements within the vector are counters

that contain the highest thread to read a given variable at any given moment, updated

using atomic instructions or lock-free based accesses. Each element corresponds to a

3.2. CPU Schemes 45

hashed memory address, allowing multiple addresses to use the same element. This

drastically reduces the required size of the vector, but opens up the possibility of false

dependences should the user-specified hash function have unfortunate collisions. Ad-

ditionally, each thread maintains a local bitset to record if it has written to a given

location, used during reads to determine whether the read must come from the commit

log or directly from memory, avoiding thread-local RAW dependences.

During commit, all writes in the commit log are written back to non-speculative mem-

ory in the order which they were performed, avoiding all WAW dependences. On each

commit, the address is re-hashed and the load vector for that location is examined. If

a higher thread than the master has already read from the location being committed

to, then a dependence has occurred, all higher threads’ commit logs are discarded and

re-execution commences. This method ensures that only work performed by threads

after they pass on the master status must be re-executed.

This scheme has a low memory footprint when configured correctly and can provide

a sizeable speedup. However if it is misconfigured there is a high risk of false de-

pendences. There is also the risk of slowdowns compared to sequential speed if the

commit phase is not hidden by iteration execution times. Similarly, the scalability of

this scheme is severely limited by the bottleneck introduced by the sequential commit

stage and also by the use of the centralised load vector.

3.2.2.2 SPLIP

SPLIP [30] is an in-place speculation scheme using an eager dependence detection

schedule. This scheme was developed with the aim of prioritising fast execution over

quicker rollbacks, and to alleviate some of the scalability issues presented by SPLSC.

This scheme also uses the master thread for synchronisation, and hashing techniques

on the speculative structures to minimise their memory footprint.

In SPLIP all writes to speculative memory are performed in-place, with each thread

maintaining a rollback log for the writes that it has performed as a series of {address,
value, version} triples stored in a simple array. As with SPLSC each thread ex-

ecutes n iterations, filling the rollback log before waiting to become master. Once a

thread receives this status and has not detected any dependences, then all of its writes

have been proven to be dependence free and as such the thread can discard its rollback

log, proceeding to execute the next n iterations. If a dependence is detected by a thread,

46 Chapter 3. Related Work

it waits to become master, then triggers a rollback of writes of its own and subsequent

threads.

To implement the in-place writes and rollback features, the speculative structures used

are more complex than those of SPLSC. In addition to an identical load vector, there

is a functionally equivalent write vector, a stamp vector used to versioning of stored

elements and a sync vectors used to alleviate the need for atomic instructions. On

a read the load vector is set to the maximum of the current value or the accessing

thread, the read is performed and then the store vector for that location is compared

to identify if any higher thread has written to the location. If so a dependence has

occurred. On a write the store vector is set to the maximum of itself or the current

thread ID and examined to determine if a higher thread has already written. Again, if

so a dependence has occurred. The current value is backed up to the rollback log along

with a version ID for the write taken from the stamp vector, which is also incremented.

Finally the write is performed and the load vector for that location is examined. If a

higher thread has read from that location then a dependence has occurred.

Rollbacks in SPLIP are complex and expensive. As each write can be performed in

any order the original value of the location can be stored in any thread’s rollback log.

Additionally, as the versioning system relies upon a hashed location every write must

be replayed in reverse to ensure that all locations are restored to their original value.

This process must be performed sequentially whilst no other threads are executing.

This scheme presents an effective way of minimising the sequential phase that limited

scalability in SPLSC, allowing the scheme to scale to higher thread counts before

performance degrades. Unfortunately, the use of the transferrable master status still

introduces a serial bottleneck between threads, limiting scalability. The structures used

to store speculative state are much larger than that of SPLSC and are still subject to

the possibility of false data dependences when misconfigured. Additionally the large

use of centralised data structures introduces a lot of pressure on the memory system

with large quantities of data being shared constantly between each thread, limiting

scalability further.

3.2. CPU Schemes 47

3.2.3 STMLITE

In 2009 Mehrara and Mahlke released STMLITE [25], mainly for use in transactional

memory systems such as databases. However, despite this their work included and

evaluated an extension to support loop writeback ordering to allow its use for loop-

based parallelism. STMLITE is a lazy, hybrid decentralised detection scheme.

In contrast to previous schemes, all dependence detection is performed in a separate

thread and checks are performed based on overlapping execution of individual work-

loads. For loop-based parallelism, a workload corresponds to a block of n iterations.

Speculative storage for each workload is stored within a transaction log that stores the

start and finish times of the execution, along with read and write signatures, a page-

based commit log and other minor state values. At the end of execution, the transaction

log is passed back to the commit management thread, which maintains a list of previ-

ous and uncommitted transactions. The read and write signatures of the submitted log

are compared to the write signatures of any uncommitted logs and any previous logs

that overlap in execution. If there is a collision, the log including any waiting commits

are discarded and re-executed, otherwise the thread is allowed to write back any com-

mits that are waiting and the log is added to the previous list. Loop support is added by

ensuring checks cannot be performed until the workloads of previous iterations have

finished their checks.

Read and write signatures are implemented as hashed bitsets. Every address is hashed

to a particular bit within the bitset, with a set bit indicating that an address hashing

to that location has been accessed. By having each thread maintain its own private

copy of a read and write signature, each thread is allowed to execute with minimal

synchronisation overheads, and lower memory contention as compared to previous

schemes. The hashing of memory addresses also lowers the memory footprint of each

transaction log significantly, but again opens up the possibility of false dependences

being detected. The use of a separate thread to perform checking also introduces a

bottleneck between the threads that limits scalability.

3.2.4 DSWP & SMTX

In 2008 Raman and August proposed Decoupled Software Pipelining [35] (DSWP)

as a more complex method for extracting parallelism from sequential programs. This

48 Chapter 3. Related Work

method was proposed to allow for earlier resolution of known data dependences to al-

low additional threads to start executing their bulk work sooner. This was performed

by splitting a loop iteration down to basic blocks separated by cross-iteration depen-

dences. The initial thread would execute the first block until all dependences for the

next iteration have been resolved. The results of the first block are then passed onto

the next thread which executes the remainder of the iteration whilst the initial thread

would then repeat the process for the following iterations until there is no more work to

be done. Meanwhile, with the cross-iteration dependences already resolved, the bulk

of the iteration processing can be performed in parallel. This method is particularly

useful when executing DOWHILE loops, for instance traversing a linked list, by al-

lowing the loop conditions to be calculated early on in cases where parallel threads

would normally be delayed from executing. As an added benefit it allows for latencies

associated with forwarding the dependent values between threads to be hidden by the

pipelined execution of basic blocks.

DSWP can suffer from similar limitations to those associated with profiled parallelisa-

tion, particularly due to the limitations of static analysis where a dependence does not

exist but cannot be proven so. In cases of these potential dependences similar specula-

tion techniques can be employed to allow for parallelisation, hence in 2010 an exten-

sion to DSWP was released to allow this, Software Multi-threaded Transactions [34]

(SMTX). Notable to this form of speculation is its use for detecting dependence vi-

olations solely cross-iteration, not cross-thread as each iteration is processed across

multiple threads.

SMTX is a commit-based, lazy-detection speculative scheme using a single thread to

process conflict detection and final commit of speculative state. Each transaction, exe-

cuted across multiple threads, generates a separate write log which is passed between

each thread processing that transaction and finally to the commit thread. Each exe-

cuting thread is separated using process isolation to mitigate the costs associated with

accessing speculative memory, and must therefore replay these write logs at the start

of each basic block to update their private view of memory. Rollback is performed by

restarting processes that caused a dependence, therefore forcing them to re-obtain their

view of memory from the non-speculative thread.

SMTX does not specify a particular conflict-detection scheme, delegating that choice

to the programmer/compiler. However, the use of a single thread for conflict detec-

tion and commits ultimately limits the scalability of this scheme, and the transfer and

3.3. GPGPU Speculation 49

replaying of write logs can add significant overheads for long-running or many-stage

transactions.

3.3 GPGPU Speculation

General purpose GPUs (GPGPU) are special purpose processors with many cores, in

the range of hundreds, and likely to expand into the thousands as time progresses. They

have much more stringent restrictions on processing and access to memory that make

them much more difficult to program for even by an experienced parallel developer,

let alone a standard auto-parallelisation tool. With the advent of more and more gen-

eral purpose GPUs becoming available in all devices, ranging from phones and tablets,

to standard computers and laptops, to supercomputers and clusters it is desirable to

be able to exploit this massive processing power. Due to the difficulties associated

with programming for them it would be beneficial for this process to be automatable.

As with CPUs, limitations exist with static analysis for GPUs restricting the ability to

extract parallelism for these devices automatically. Therefore, more aggressive paral-

lisation techniques must be used and hence, speculative execution on a GPU.

Most research on speculative execution has focused specifically on executing parallel

programs on the CPU. To date only one viable scheme has been proposed that effec-

tively utilises speculative execution on a GPU.

3.3.1 PARAGON

In 2012 Samadi and Mahlke released a collaborative CPU- and GPU-based paral-

lelisation scheme, named PARAGON [37], that utilises both the CPU and GPU simul-

taneously. The inherent limitations of GPU execution makes on-device rollback and

re-execution illogical, as the cost of doing so just once would likely make the entire

program execute slower than doing so sequentially. As an alternative, PARAGON splits

a program into three types of blocks: sequential, parallel and speculative. Sequential

blocks are executed solely on the CPU, suitable parallel blocks on the GPU and suit-

able speculative blocks on both. If the GPU version executes faster than the sequential

CPU version and does not encounter any data dependences during execution then the

CPU thread is stopped and the results from the GPU are used. Should the GPU version

50 Chapter 3. Related Work

take longer or encounter a dependence then the CPU version is allowed to finish and

its results are used for the rest of the program.

Version control does not require additional processing on the GPU, as it is inherently

handled by maintaining two versions of memory during all speculative execution: one

on the CPU and one on the GPU. The CPU version is considered non-speculative,

whereas the GPU version is speculative. On a successful GPU execution, specula-

tive memory is copied back to non-speculative memory, overwriting any work per-

formed by the CPU. On a failed execution, speculative memory is recovered from

non-speculative memory at the start of any GPU based execution.

Conflict detection is performed by the GPU code by maintaining two vectors, a read

vector and a write vector. Each element of these vectors represents an address ac-

cessed and stores a count of how many writes were performed to that address, updated

efficiently using an atomic increment function, or a simple boolean of whether a read

has occurred. Address hashing is not used by PARAGON. At the end of speculative

execution the entirety of these vectors are processed using a separate kernel. During

processing, if an element has multiple writes or has been read and written to then a

dependence is triggered.

The run scheduling of this parallelisation scheme is efficient and well designed, en-

suring at worst a sequential runtime of the program plus minor overheads associated

with GPU management. However, the conflict detection scheme used is naive, and

has a very high probability of triggering false dependences, since iteration-private de-

pendences are detected as errors but only cross-iteration dependences would cause an

actual error in the final output. In many speculative execution scenarios a thread reads

a value from an array, performs an operation on the value and then restores the value

back to the original array (iteration-private WAR dependence). With PARAGON this

would be detected as an unsafe dependence, when no such error occurred. Similar false

dependences would be detected for iteration-private RAW and WAW dependences. The

use of a delayed vector-processing kernel also causes the execution times to become

worse as the entirety of each vector must be processed, not just the elements accessed.

For small vectors this is likely not an issue, however larger vectors would have a sig-

nificant impact on processing. Should address hashing be used in an attempt to shrink

the size of these vectors the risk of false dependences would only become worse.

3.4. Hardware Based Speculation 51

3.4 Hardware Based Speculation

Purely hardware based speculation schemes can reliably provide significant speedups

to a given program. With some designs this speedup can also be provided automati-

cally in hardware increasing further increasing its appeal. However due to its nature

HW-TLS requires customised hardware to support exectution, increasing the difficulty

and cost of development. As such there are no feature complete versions of HW-TLS

commercially available. The nearest implementation is Intel’s Haswell [15] architec-

ture through the use of Transactional Synchronisation Extensions (TSX).

3.4.1 Transactional Synchronisation Extensions

As can be inferred from the name, TSX applies a more Transactional Memory based

approach by extending existing cache coherence protocols to record whether or not

a cache line has been accessed during a transaction. Naturally this provides a detec-

tion granularity size of a single cache line. TSX also provides two new programming

interfaces:

Hardware Lock Elision (HLE)
HLE exploits the idea that mutex lock and unlock operations are implicit trans-

action boundaries and that the granularity of locking is often larger than that

of available parallelism due to tradeoffs of code complexity and locking costs.

Instead of locking a region of code HLE records the address of the lock and at-

tempts to perform all instructions within the locked region as a transaction. If

the transaction fails then the lock is actually aquired and the code is rexecuted.

Restricted Transactional Memory (RTM)
RTM provides additional processor instructions to denote the start and end of

transactional regions. Traditional transactional memory simply discards failed

transactions and reattempts them, however this can introduce livelock, priority

inversion and starvation issues. Intead RTM takes an address at the start of each

transaction for the program to jump to should a transaction fail, delegating the

consequences of transaction failure to the programmer.

Haswell and TSX have some inherent limitations. As with all hardware schemes there

are physical limits on the quantity of speculative state that can be stored, beyond which

52 Chapter 3. Related Work

the transaction will fail. In the case of Haswell’s implementation this is the 32KiB

L1 Cache. The granularity of speculation is also fixed at the length of a cache line,

64 bytes. It is also transactional in nature restricting the automated parallelisation

of loops without additional software support. Such support would include restricting

the committal of later iterations until transactions containing earlier iterations have

succeeded.

3.5 Conclusion

This chapter has reviewed an aggressive method for auto-parallelisation and various

existing schemes for implementing software-based thread level speculation on both

the CPU and GPU, as well as a hardware based transactional memory system.

Tournavitis’ aggressive auto-parallelisation technique is a reliable method to extract

parallelism from sequential programs however its use relies upon user interation to

add safety, hence the need for TLS. Their machine-learning-based profitability and

mapping scheme is useful for determining when to parallelise a loop, however its use

is fine tuned towards standard parallelism and not to SW-TLS therefore it would be de-

sirable to have a similar scheme extended to select and configure a speculation scheme

for each parallel region when it is suitable to do so, taking into account the many costs

incurred by executing a program speculatively.

Many existing speculation schemes focus heavily on the ability to rollback but in many

circumstances doing so causes a program to perform worse than the original sequen-

tial version. When using the profiling techniques described it is possible to be virtually

certain that a loop is safe to execute in parallel. With the knowledge that a single roll-

back would ultimately defeat the purpose of parallel execution and with such reliable

parallel candidates available it is desirable for a scheme to exist that does not focus

so heavily on the ability to rollback and can instead optimise purely for parallel exe-

cution performance, with the potential for an extremely expensive but highly unlikely

rollback cost.

Additionally, GPU speculation schemes are currently in their infancy and whilst in-

creased performance has been proven to be possible the current detection scheme are

naive and inaccurate. It is highly desirable for new GPU schemes to be developed that

incorporate some of the methods and features of CPU schemes to add more reliability

3.5. Conclusion 53

and flexibility to GPU based software speculation.

Finally the hardware scheme is limited in nature with respect to speculative state and

requires additional support for loop based software speculation.

With a clear understanding of the techniques commonly used in SW-TLS, the next

chapter presents a new SW-TLS scheme that attempts to fill the gap where other

schemes perform poorly.

Chapter 4

Lightweight Pipelined Speculation

During testing of several speculation schemes implemented using POLYLIBTLS [29]

several performance limitations and bottlenecks of the schemes became apparent. This

chapter proposes and evaluates a new lightweight pipelined speculation scheme (SPLPC)

to supplement the existing schemes SPLSC and SPLIP.

Upon investigation the critical checking and commit phase of SPLSC performed well

when its costs could be hidden amongst the execution of the other threads; however,

this phase frequently takes too long to execute for its costs to be hidden. In these cir-

cumstances other threads finish executing their iterations and are forced to wait for the

previous threads to finish committing. At longer commit times this problem cascades

such that every thread spends much of its time waiting to commit, and none of the

program is truly executed in parallel.

SPLIP is an in-place model that relies heavily on the use of centralised load, store

and versioning vectors to implement its dependence check and rollback functionality.

Unfortunately, as the number of threads executing rises so does the number of threads

accessing each of these vectors simultaneously. As this occurs each vector becomes

thrashed, causing each speculative access to take longer time, limiting the scheme’s

ability to scale to higher thread counts.

This chapter proposes a new SW-TLS scheme, Lightweight Pipelined Commit (SPLPC)

with the aim to:

(i) remove bottlenecks caused by sequential checking and committal,

(ii) alleviate cache thrashing by using thread local load/store vectors.

55

56 Chapter 4. Lightweight Pipelined Speculation

Memory

hashFct

Access Vector (AcVct)

Store Vector (StVct)
............................

............................

0 1 S-1
0

T-1

0

T-1

0 1 W-1. . .

. . .

0

2

{ addr, val }

wrBuff

T = number of threads
W= max writes per iteration
S = cardinal(hashFct)

Figure 4.1: Speculative Storage Structure of SPLPC

Section 4.1 presents the structures used to monitor accesses to the protected memory

areas. Section 4.2 describes the execution workflow of each iteration, with Section 4.3

describing the supported dependences. Section 4.4 describes the conflict detection

mechanism, with an empirical evaluation in Section 4.5 and final conclusions in Sec-

tion 4.6.

4.1 Speculative Storage Structure

SPLPC is implemented atop the POLYLIBTLS speculation library using SPLSC as a

base. The speculative storage structure is detailed in Figure 4.1.

Each executing thread maintains its own private access vector (AcVct) and several

store vectors (StVct). AcVct is a bitset that records the locations of all reads and

writes the iteration makes to the protected memory areas. StVct is an array of three

bitsets that records just the writes of the iteration. Each StVct array is used in a round-

robin fashion, one per executing block of iterations. As with SPLSC and SPLIP, this

new scheme employs hashing of memory addresses to track accesses to each location,

vastly reducing speculative storage size. This does however allow for false depen-

dences. The usage of AcVct and StVct is detailed further in Section 4.4.

Finally, wrBuff is a set of buffers, one per thread, recording the {address,value}
pair of each write to the speculative area, ready to be committed to memory.

4.2. Pipeline Stages and Execution Workflow 57

Execute Iteration

Wait To Become
Master

Commit1 And Check
Future Iterations

Unroll & Restart
Future Iterations

Violation
Occurred?

Pass Master

Execute Iteration

Check Against
Previous Iterations

Violation
Occurred?

Commit Writes

Yes

No

Discard Writes &
Re-Execute Iteration

Signal Future
Iteration Re-Check

Yes

No

1SpLSC only

(i) (ii)

Pipeline Stage

Figure 4.2: Speculative Workflow for (i) SPLSC and SpLIP, (ii) SPLPC

4.2 Pipeline Stages and Execution Workflow

There are two conditions that must be maintained for correct operation:

(i) Future iterations must delay checking for dependency violations until all previ-

ous iterations have finished executing, and

(ii) An iteration must not commit its writes until the current and all previous itera-

tions have successfully detected no violations.

To that end, this design executes in a pipelined fashion preventing iterations from vi-

olating these conditions. Pipeline stages are implemented using two shared variables,

each containing the index of the lowest-numbered iteration that has not finished exe-

cuting or checking respectively, instead of using a single Master variable.

The execution workflow with a comparison to SPLSC and SPLIP is displayed in Fig-

ure 4.2. Threads execute entirely in parallel, but they are not allowed to progress to the

next stage unless all previous iterations have done so. Under ideal situations pipeline

stalls do not occur, and associated overheads account for a nominal setup time only. In

the first stage, the thread executes storing any writes to wrBuff. Next, the thread checks

for violations (as detailed in Section 4.4). Assuming none are detected, the thread pro-

gresses to the next stage: committing all writes back to memory. The threads do not

58 Chapter 4. Lightweight Pipelined Speculation

have to ensure that previous iterations have finished committing before proceeding to

execute the next iteration. Should a dependence violation be detected, the iteration

discards its writes and re-executes notifying all future iterations already checking that

they must re-check for dependences. A single MFENCE instruction is used at the end

of the commit phase to ensure that the writes become visible to all other threads.

4.3 Supported Dependences

By nature of speculative execution, all dependences that can occur are accounted for.

Those that can occur and how they are managed can be split into two categories:

(i) Non–loop-carried dependences. Each thread’s local writes are handled by the

POLYLIBTLS library using the same methods as SPLSC. By performing writes

sequentially for each iteration WAR and WAW dependences are handled automat-

ically. RAW dependences are detected locally using a hashed bitset to determine

if a write has occurred, and a linear search to retrieve values. This can be con-

verted to a hash-based storage structure should RAW dependences be common.

(ii) Loop-carried dependences. Dependences that can occur between threads are

tracked by the speculation model. The pipeline described in Section 4.2 enforces

that any writes for an iteration are committed to memory only after previous

iterations have finished executing; so all WAR dependences are automatically

protected. The conflict detection mechanism described in Section 4.4 detects

all other cross-thread dependences, triggering a rollback should a conflict occur.

Correct execution is ensured, though there is a performance hit associated with

this approach.

4.4 Conflict Detection

Detection of dependence violations is performed in a lazy manner. Dependences are

detected by comparing the values of the thread-local AcVct to the StVcts of previous

overlapping iterations. Should a previous iteration write to a location in memory that

is read by the current iteration (in the case of RAW) or written to by it (in the case

of WAW), then the corresponding locations in both AcVct and StVct will have been

4.4. Conflict Detection 59

Check 0

Commit 0

Execute 3

Check 3

Commit 3

Check 1

Commit 1

Execute 4

Check 4

Commit 4

Check 2

Commit 2

Execute 5

Check 5

Commit 5

Execute 6

Execute 7

Execute 8

Check 6

Check 7

Thread 0 Thread 1 Thread 2

1. Iteration
Being
Analysed

2. In execute
stage, hence
other threads
must be at least
here

3. In execute
stage, hence
other threads
cannot be past
here

4. Overlapping
commits that
may cause
dependence
violation

Check 8

Execute / Commit Stage

Check Stage

Pipeline Stages

Figure 4.3: Possible Overlapping States At Iteration Execution.

marked, indicating a possible violation has occurred and thus triggering a rollback.

Due to the hashing of memory addresses, false sharing between vector entries may

occur causing unnecessary rollbacks; however, this conservative approach is preferred

over incorrect execution.

As demonstrated in Figure 4.3, this comparison must be performed on the StVcts

belonging to the previous two iterations from all other threads executing. Take for

example iteration 5 in thread 2. At the time of execution, thread 0 can be at any

point between committing iteration 0 and executing iteration 6. This indicates that

any writes for iterations 0 and 3 may not yet have been committed back to memory

and could interfere with the outcome of iteration 5. The same goes for thread 1, with

iterations 1 and 4, and for any other previous two iterations of a thread should more

exist.

The pipeline also enforces ordering between accesses to each thread’s StVcts. Sim-

ilar to the execution overlap discussed above, at any stage where a thread is able to

write to a particular StVct it is guaranteed that the other threads will only ever be at-

tempting to read from the other two vectors. If they need to check against the vector

60 Chapter 4. Lightweight Pipelined Speculation

being written to, the thread will block until it becomes available. This is not the case

in general use, but the pipeline must be there to enforce consistency nonetheless. Sim-

ilarly, the thread will not be able to write to the next StVct until the previous threads

have finished checking against it. To that end, StVct contains three vectors accessed

in a round-robin fashion: each has only a single writer or multiple readers, and never

both. This method also helps reduce communication overheads by removing multiple-

reader/multiple-writer volatile variables.

4.5 Empirical Evaluation

This section demonstrates that this new model works well on loops exhibiting regular

patterns, and does so with performance comparable to that of the other models. First

is a description of the testing and data-collection methodology, followed by a presen-

tation and analysis of the results. All experiments were executed on a machine with

four dual-core AMD Opteron processors, model 1218 at 2.6 GHz, with 16 GB of RAM

memory, running Red Hat Enterprise Linux 5. Each benchmark was compiled using

GCC 4.1.2 with -O3 optimisation and the pthread library.

4.5.1 Experimental Methodology

For evaluation of the speculation scheme, a number of experiments were executed us-

ing four industry-standard benchmarks selected from the NAS Parallel, Bytemark and

Scimark2 Benchmark Suites. The benchmarks were chosen due to the abundance of

parallelism available in the loop-kernels they contain. They were also selected due to

their heavy use of pointer arithmetic, which makes them difficult to parallelise using

only static information. As a baseline, only the execution times of those loops paral-

lelised have been considered, excluding any setup and teardown times associated with

the benchmarks. For benchmarks containing several suitable loops, the loops selected

are structurally very dissimilar, with each warranting individual performance analysis.

These loops were extracted and tested separately.

Additionally, each loop has been provided with a range of input data sets to show

how the performance of speculative execution can vary on identically structured loops.

This is due to varying overheads associated with speculative models, attempting to

4.5. Empirical Evaluation 61

determine under what circumstances each model will overcome these overheads. The

range of workloads provided to each loop was chosen based on reasonable limits that

the loop would encounter, varying to a different degree for each loop. With every

workload each benchmark executed in the range of a few seconds to minutes.

To allow for a direct comparison with other techniques, the benchmarks were selected

based on those used by other researchers [29]. The benchmarks used are as follows:

(i) EP (Embarrassingly Parallel) benchmark from the NAS PARALLEL BENCH-

MARK suite. The main loop of this benchmark, used for generating random

numbers, involves no communication between threads.

(ii) IDEA from the BYTEMARK suite contains two main loops, CIPHER and DE-

KEY referring to the encryption and decryption sections of the algorithm.

(iii) NEURALNET also from BYTEMARK contains many loops which can be gener-

alised into two patterns of execution: NNETFW processing the forward pass on

the output layer, and NNETBW adjusting the weights for the output layer.

(iv) SPARSEMATMULT from the SCIMARK2 suite, which implements multiplication

across a large but sparse matrix.

All experiments were performed both sequentially and speculatively using the avail-

able SPLSC, SPLIP and SPLPC models. For each model, a range of possible com-

binations of parameters were selected, with the thread count being 2, 4 or 8, and the

unroll factor tested at 30 different data points between 1 and 16384. The hashing algo-

rithm for dependency detection was fixed at a size large enough to avoid a rollback.

4.5.2 Summary of Key Results

A comparison of the best speedups for each model and workload is shown in Fig-

ure 4.4. On average the pipelined commit model performed 15% slower than the serial

commit model, but was able to execute up to 95% faster. This was due to the novel

pipelined commit phase, preventing some loops from being overwhelmed by locks and

critical sections. Due to this and the memory management it is also more scalable than

the serial model.

Compared to the in-place model the new design executed on average 28% faster, and up

to 143% faster. This is thanks to the differences in memory management and handling

62 Chapter 4. Lightweight Pipelined Speculation

0

1

2

3

4

5

6

7

8

Serial Commit In Place Parallel Commit

0

1

2

3

4

5

6

7

8

EP IDEAcipher IDEAkey

NNETBW NNETFW SparseMatMult

S
pe

ed
up

S
pe

ed
up

Figure 4.4: Speedup for each loop using the best seen speculation policy. Each result

represents a separate input provided to the loop, ascending in size of workload.

of locks and shared variables that can cause the in-place model to be bogged down by

administrative overheads.

It is notable that in the best case, speculation achieves the highest performance for

the largest data sets. This is due to the large overheads associated with setup of the

speculative data structures, and the ability to set the unroll factor high enough to hide

any overheads associated with the dependence check/commit phases.

As can be seen each model performs better for some workloads than others. In many

cases the use of the wrong model will result in a significant slowdown of execution.

For SPLPC this is generally the case with smaller workloads, where the setup and

teardown costs have more of an influence on the overall speed of execution. Addi-

4.6. Conclusion 63

tionally for some executions the added synchronisation costs associated with having

multiple pipeline stages cannot be hidden among iteration execution times. A solution

to this would be to increase the loop unroll factor further, however with a low number

of iterations this may not be possible or in doing so the rollback buffer may become

large and unweildy, bogging down performance further. This is a tradeoff that must

be accounted for and, in some situations, require the use of an alternative speculation

scheme.

4.6 Conclusion

The evaluation of the novel Pipelined Commit model found it provided consistent

speedups on par with the serial commit and in-place models tested. It is clear from

this work that there is no “one size fits all” speculation scheme, and that the Pipelined

Commit model is suitable for supplementing existing schemes to extract additional

performance.

It is also clear from the evaluation that the correct selection of a suitable speculation

scheme is extremely important to the performance that can be achieved. Additionally,

the selection of correct parameters for each model is equally important, and a diffi-

cult task to perform manually. The next chapter introduces a machine-learning–based

selector for models and policies, allowing this process to be automated.

Chapter 5

Smart Speculation Policy Selection

Analysis has shown that for SW-TLS, there is no “one size fits all” model for each

program that could be encountered [29]. Thanks to the flexibility that software im-

plementations provide, there are a large number of SW-TLS models available. The

performance of each model varies greatly depending on the structure of the code that

is being executed, in many circumstances being detrimental to the performance com-

pared to sequential speed. Therefore, it is important to choose the correct model and

model parameters to ensure a greater performance and, where necessary, run the loop

sequentially.

When considering auto-parallelisers that employ SW-TLS, it is especially important

that this decision be automatable. As such, this chapter presents and evaluates a

machine-learning-based system for automatically selecting an appropriate speculation

policy. This chapter initially discusses a motivating example in Section 5.1. A discus-

sion of various factors that can affect the performance of a given speculative loop is

in Section 5.2.1, and a summary of the parameters that are commonly found in specu-

lation schemes can be found in Section 5.2.2. The design and workflow of the policy

selector is described in Section 5.3 with a thorough empirical evaluation presented in

Section 5.4. Finally a summary of key results is found in Section 5.5 and final conclu-

sions in Section 5.6.

5.1 Motivating Example

Consider the loop in Figure 5.1. A cursory glance will show that this loop can be

65

66 Chapter 5. Smart Speculation Policy Selection

for i = 1→ outer total do
for j = 1→ inner total do

local[j]← speculative[i][j]

end for
do something local(local,run time)

for j = 1→ inner total do
speculative[i][j]← local[j]

end for
end for

Figure 5.1: Motivating Example for Automated Policy Selection

safely parallelised on the outer loop without the need for speculation, but assume that

the compiler is unable to determine this and hence reverts to speculation. Depending

upon the speculative model being used this program’s performance will react very

differently.

With many models, should the outer loop have too few iterations (low outer total) all

execution of the loop will be dominated by administrative overhead: that is, the setup

of the speculative buffers and access structures. A requirement with all models is that

there are sufficient iterations to overcome these overheads.

Next, consider values of inner total. This variable controls the number of speculative

accesses for each iteration. If there are too many speculative writes then models with a

serial commit phase are inappropriate as threads stall waiting to enter critical commit

sections. In this case the selection of a model that makes writes directly to the protected

area must be selected, however there are often greater memory and synchronisation

overheads associated with such models. Should inner total be low then selecting a

model with a serial commit phase may be more appropriate, but if it is too low then

commit overheads will dominate execution. Again, threads will be forced to wait.

This can be overcome if there is sufficient computation on each outer iteration, in this

example controlled by the parameter run time.

Finally, the hardware that the code is executed on directly affects the performance.

Differences in architecture and importantly memory bandwidth can have an effect,

for example causing models with a large amount of shared variable interaction to be

limited. Counter-intuitively, adding more hardware such as additional processors can

have a detrimental effect on performance due to shared variables becoming thrashed,

5.2. SW-TLS Configuration 67

or threads being held up by critical sections.

For example, take the NNETFW benchmark (discussed in section 5.4). Testing has

shown that for large networks with many iterations speculation provides respectable

speedups of up to 7.14. However, on smaller networks with very few iterations, specu-

lation can cause execution to take over 50 times longer compared to sequential execu-

tion. Similarly, even on the large loop that generated a 7.14 speedup, a misconfigured

speculation policy can cause execution of over 30 times as long. Hence it is extremely

important that speculation, its models and their parameters are considered carefully

to ensure a performance gain. Doing this manually for every loop is difficult and

time-consuming, and completely rules out auto-parallelisation techniques. Hence the

automated method proposed by this chapter is desirable for both manual coders and

more aggressive auto-parallelisation tools.

5.2 SW-TLS Configuration

The correct configuration of SW-TLS schemes is a complex issue due to the high num-

ber of factors that can affect the performance of a program. These include, input factors

such as the code that is being executed and the hardware that it is executed on, and the

specific configuration of speculative execution.

In order to adequately employ automated parallelisation the input factors are generally

fixed except for the use of code transformations, however speculative execution is in-

tended for use when static analysis has failed making the use of code transformations

all but impossible. These factors are discussed in Section 5.2.1.

Instead, there is much flexibility in the configuration of a speculative policy. Not least

the selection of an appropriate speculation scheme, each scheme contains a number of

configurable parameters. These parameters cover all sections of the speculative execu-

tion, including how and when memory traces are collected and analysed, how backup

data is stored and discarded, and how speculative threads interact. It also includes

a number of more complex settings, such as the granularity of address hashing tech-

niques. All options are ripe for use with machine learning, however some, such as

learning a hash function based on input data sets are more complex issues than others.

The parameters used for training and predictions are discussed in Section 5.2.2.

68 Chapter 5. Smart Speculation Policy Selection

5.2.1 Factors Affecting Performance

A number of speculation models have been analysed to extract various metrics that

affect their performance. These metrics have been extracted through manual experi-

mentation of existing speculation schemes and are used as inputs to the the machine

learning based policy selector. The main input features that appear to affect a model’s

performance are:

(i) Speculative accesses made per iteration and in total. More speculative writes

generally cause longer commit times and can cause worse performance if there

are too many.

(ii) Instructions executed per iteration and in total. This gives a measure of how

much computation the loop performs other than speculative accesses. Less com-

putation can cause execution times to be dominated by speculation overheads.

(iii) Total number of iterations to be executed. There must be an adequate number

of iterations for speculation setup and teardown overheads to be overcome.

(iv) The ratio of instructions to speculative accesses. This is another measure of

the amount of time spent executing the loop compared to the amount of time

spent in the speculation library.

5.2.2 Common Speculation Parameters

Many speculation models also include parameters to fine tune them and obtain the

greatest performance. These can often include:

(i) Thread Count: dependent upon the loop being executed this can often be fewer

than the number of processing units available. If other parameters are chosen

poorly then threads may stall entering critical sections. Executing with more

than the optimal number of threads introduces an unnecessary drain on memory

bandwidth and other resources.

(ii) Unroll Factor: the number of iterations executed by each thread before expen-

sive dependence checks and write commits are performed. By unrolling the loop,

overheads associated with these sections can be minimised, but if this is set too

large then write buffers can become unwieldy. This is one of the main causes

5.3. Policy Selection Workflow 69

of performance degradation associated with speculation. A related metric is the

ratio of unroll factor to total number of iterations.

(iii) Access Vector Size: the size of the speculative data structures used. With many

models, the hash of each memory location is calculated and used as an index into

the data structures. If the load vector size is set too low many memory locations

will refer to the same index increasing the likelihood of a false positive. If this is

set too large, then memory usage can become excessive and structure reset times

can cause degraded performance.

(iv) Buffer Size: the size of the buffers used to store pre-commit or rollback infor-

mation. In general this must be set to the maximum numbers of writes that can

occur in an iteration or unrolled section.

These parameters are the outputs of the machine learning based policy selector.

5.3 Policy Selection Workflow

To ease the selection of an appropriate speculation scheme and its parameters for a

given input program, this chapter proposes the use of a machine-learning-based spec-

ulation policy calculator. This section introduces the training methods used for the

policy selector in Section 5.3.1, followed by the workflow used to perform the policy

selection in Section 5.3.2.

5.3.1 Prediction Model Training

The policy selector must undergo an initial offline training period. A wide range of

loops, including those both suitable and unsuitable for speculation, must be executed

with their runtimes recorded. They are initially executed sequentially, and then through

each available model across a subset of the available parameters, at which point the

speedup of each execution is calculated. The predictor is then trained using only the

best performing speculation policy for that loop, using the loop characteristics de-

scribed in Section 5.2.1 as inputs, and the speculation parameters described in Sec-

tion 5.2.2 as outputs. This initial training period can be expensive and must be redone

for new architectures, but this process is one-off and can be fully automated. The time

taken to build or reload the predictive models after training is nominal.

70 Chapter 5. Smart Speculation Policy Selection

Speculation
Suitable

Model
Selection

Thread Count
Calculation

Loop Unroll
Calculation

Execute
Sequentially

Speculation
Policy

Loop Features

M
od

el
 S

pe
ci

fic
P

ar
am

et
er

s

No

Yes

Figure 5.2: Prediction Workflow of Policy Selector

5.3.2 Policy Calculation

Figure 5.2 details the sequence of predictions made to calculate a suitable specula-

tion policy. Training data for each stage is selected based on the predictions made in

the previous stages, to ensure only relevant data points are used. The decision flow

proceeds as follows:

(i) Is the code suitable for parallelisation using speculation? If this prediction fails,

then speculation will likely slow down execution and should not be used.

(ii) Which model is most suitable? Often several models will provide speedup, how-

ever some will outperform others.

(iii) Model-specific parameters, the number and type of decisions made at this stage

can vary, however they are identical for models evaluated. These are thread

count and loop unroll factor as described in Section 5.2.2. Calculation of the

speculative storage size depends on more complex memory access patterns and

warrants individual research beyond the scope of this work. In each case it has

been fixed large enough to not cause a false positive.

5.4. Empirical Evaluation 71

5.4 Empirical Evaluation

This section demonstrates that the proposed machine-learning technique provides good

accuracy at deciding if a loop is suitable for speculation, and at selecting a speculation

policy that will provide consistent performance gains if a loop is so suitable.

First the testing and data-collection methodology is described, followed by a presenta-

tion and analysis of the results. All experiments have been executed on a four socket

dual-core AMD Opteron machine, model 1218 at 2.6 GHz, with 16 GB of RAM mem-

ory, running Red Hat Enterprise Linux 5. Each benchmark was compiled using gcc-

4.1.2 with -O3 optimisation and the pthread library.

5.4.1 Evaluation Methodology

For training and testing of the policy selector, a number of experiments were run using

the same 4 industry standard benchmarks as described in Chapter 4. The benchmarks

were chosen due to the abundance of parallelism available in the loop-kernels they

contain. They were also selected due to their heavy use of pointer arithmetic, making

them difficult to parallelise with only static information. As a baseline, only the exe-

cution times of those loops parallelised have been considered, excluding any setup and

teardown times associated with the benchmarks. For benchmarks containing several

suitable loops, the loops selected are structurally very dissimilar, with each warranting

individual model and parameter selection. These loops have been extracted and tested

separately.

The loops have been configured and executed in the same fashion as Chapter 4 with the

only exception that if an execution took significantly longer than the sequential time

(greater than 5 times) then it was cancelled as it would not provide any useful insight

into the performance of the model. These parameter selections provide a wide base of

training data to depict how the different models perform under each condition.

5.4.2 Policy Selection Testing

To evaluate the policy calculator, the new method was applied to every benchmark

setup we have collected data on. At each stage the predictor was trained in a leave-

one-out fashion at the granularity of the loop being parallelised. That is, for each loop

72 Chapter 5. Smart Speculation Policy Selection

Method Parameter Value

K-Nearest Neighbour Neighbours 1 - 3

Naive Bayes No parameters

Neural Net Training Cycles 500

Starting Weight Change 0.3

Incremental Weight Change 0.2

Support Vector Machine Kernel Type Dot Product

Linear Regression No parameters

Table 5.1: Summary of Machine Learning Parameters

tested, every data point for every workload associated with that loop was removed from

the training data. Every data point for that loop was then tested and the speculation pol-

icy and speedup obtained was stored. This process was repeated for every loop tested.

Using this method allowed estimations of how the policy calculator will perform when

given a completely unseen loop. The speedup obtained using the calculated policy was

compared to the best seen configuration for that loop. A comparison between calcu-

lating the unroll factor and the ratio between unroll to iterations was also performed to

see which method provided more useful results.

5.4.2.1 Machine Learning Techniques

Each predictor was trained and evaluated using the RAPIDMINER [26] software pack-

age, which allows easy testing of a number of different machine learning techniques.

The decisions whether to speculate, which model to use and how many processors

were treated as discrete decisions, with the unroll value and unroll ratio calculated as

unbounded or continuous values respectively. The unroll value was then rounded to

the nearest whole value.

For any discrete decision, Decision Tree, K-Nearest Neighbour, Naive Bayes and

Neural-Net-based deciders were evaluated. For unbounded/continuous decisions K-

Nearest Neighbour and Neural-Net deciders, Support Vector Machines and Linear Re-

gression Techniques were evaluated. Descriptions and analyses of these methods can

be found in [16]. Table 5.1 states the chosen machine-learning parameters.

Each stage of the predictor was tested separately, and compared to the best possible

5.5. Summary of Key Results 73

1

2

3

4

5

6

7

8

EP

ID
EAcip

he
r

ID
EAke

y

NNETBW

NNETFW

Spa
rs

eM
at

M
ult

Misprediction
Conservative
Prediction

Valid Prediction

S
p

e
e

d
u

p

Figure 5.3: Speedup for each loop using calculated speculation policy on an 8-core

machine. Each bar represents a separate input provided to the loop, ascending in size

of workload.

combination that was witnessed during data collection. Future stages of the predictor

used the best set of predictions from the previous stage as their input, and after the last

stage the speedup of the policy was calculated. If the policy had not been seen during

data collection then it was executed again, but the secondary executions were not used

as training data.

5.5 Summary of Key Results

Figure 5.3 gives the results for the best set of policies calculated, with Figure 5.4

displaying the best speedups achieved by each model. The policies calculated provide

speedup with a geometric mean of 1.64 and a maximum of 7.75 times that of sequential

74 Chapter 5. Smart Speculation Policy Selection

0

1

2

3

4

5

6

7

8

Serial Commit In Place Parallel Commit

0

1

2

3

4

5

6

7

8

EP IDEAcipher IDEAkey

NNETBW NNETFW SparseMatMult

S
pe

ed
up

S
pe

ed
up

Figure 5.4: Speedup for each loop using the best seen speculation policy on an 8-core

machine. Each result represents a separate input provided to the loop, ascending in

size of workload.

execution. 89% of the policies resulted in a speed of sequential or better, however

there are 7 policies that resulted in a direct slowdown, 3 of which were from incorrect

predictions in the first stage of the calculation, with the other 4 coming from poor

choice of model and/or model parameters. Of the conservative predictions, only one

was miscalculated, where the speedup witnessed during data collection had been just

1.04.

The first stage of the predictor, whether or not to use speculation, is arguably the most

important as for many pieces of code speculation is simply not suitable and causes

slowdown. As shown in Figure 5.5 it is possible for this predictor to be accurate

5.5. Summary of Key Results 75

Naive Bayes KNN 1 KNN 2 KNN 3 Decision Tree Neural Net

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

Accuracy False Positives False Negatives

P
re

d
ic

to
r

A
cc

u
ra

cy
 (

%
)

P
re

d
ic

tio
n

 C
o

u
n

ts

Figure 5.5: Accuracy of Speculation Suitable predictor (Left axis), and the error types

(Right axis)

Naive Bayes KNN 1 KNN 2 KNN 3 Decision Tree Neural Net

0

10

20

30

40

50

60

70

80

P
re

d
ic

to
r

A
cc

u
ra

cy
 (

%
)

Figure 5.6: Percentage of queries that yield the best model selection as seen during

data collection

76 Chapter 5. Smart Speculation Policy Selection

Naive Bayes KNN 1 KNN 2 KNN 3 Decision Tree Neural Net

0

10

20

30

40

50

60

70

P
re

di
ct

or
 A

cc
ur

ac
y

(%
)

Figure 5.7: Percentage of queries that yield the best thread count selection as seen

during data collection

when provided with suitable training data. Testing showed that using a K-Nearest

Neighbour predictor at this stage with k=1 yielded the best results, with an accuracy

of 93.55%. Of the 62 predictions made three were falsely detected as speculative and

are likely to execute slower, and just one false negative, when speculation would have

been appropriate.

As can be seen in Figure 5.6 the second stage, which model to use, was less accurate,

with the best option selecting the best model 71.15% of the time. However, this result

is based around the best model that had been seen, with other models and policies still

able to provide a speedup. A simple naive-bayes-based selector was the most accurate,

with other machine learning methods performing much worse.

Similarly, the thread count selection was less accurate again, with the best technique

selecting the most suitable value 65.91% of the time. Figure 5.7 displays the accuracies

calculated, with a simple naive-bayes- based selector performing best.

The final stage of the predictor cannot easily be compared with the best option due

to the unroll factor being unbounded. Without exhaustive testing that would take an

excessive amount of time the choice of unroll can only be compared to the speedup

the chosen policy provides, compared to the best seen during data collection. Table 5.2

gives the geometric mean and maximum speedups obtained across the various machine

5.5. Summary of Key Results 77

0 2 4 6 8

0
2

4
6

8

Possible Speculative Speedup

P
re

di
ct

ed
 S

pe
cu

la
tiv

e
S

pe
ed

up

0
2

4
6

8

Figure 5.8: Speedup Using Calculated Speculation Policy Versus Best Previously Seen

Speedup

learning techniques tested. As can be seen K-Nearest neighbour with k=2 performs

best with a geometric mean speedup of 1.64 and up to 7.75. Figure 5.8 shows the

comparison of the speedup obtained using our method, with the best speedup obtained

during data collection. On average this method was able to obtain 74% of the speed

seen during training. Calculating the ratio of the unroll factor to the total number of

iterations proved to be the best method as simply calculating the unroll-factor directly

often produced some unroll values of several times the actual number of iterations.

As mentioned the accuracy of results decreases with each stage of the predictor. This

can be partially accounted for by the decreasing number of options available at each

stage and the difficulty of each decision. For instance, the first stage, whether or not

speculation is appropriate, is a simple boolean decision that can be estimated more

accurately using higher level statistics. At this stage there are many different models

78 Chapter 5. Smart Speculation Policy Selection

Unroll Unroll Ratio

Geomean Maximum Geomean Maximum

Speedup Speedup Speedup Speedup

KNN 1 1.28 7.71 1.63 7.75

KNN 2 1.39 5.7 1.64 7.75

KNN 3 1.33 3.02 1.64 7.59

NNET 1.22 5.34 1.72 5.92

Linear Regression 1.24 2.91 1.38 6.21

SVM 1.32 6.06 1.47 7.63

Table 5.2: Speedups Using Calculated Speculation Policy Of Different Unroll Prediction

Techniques

and other configuration parameters that may provide a speedup, therefore for many

loops it is likely that if it satisfies certain conditions then there will be a speculation

scheme that will provide speedup.

In contrast, the selection of which scheme will provide the best speedup is a more dif-

ficult decision, partially because multiple schemes may provide a satisfiable speedup,

and that the exact conditions under which it will perform well may require more infor-

mation than those empirically discovered in Section 5.2.1, similar to how the selection

of an appropriate hash function requires a more advanced knowledge of the memory

access patterns of the loop. However, this chapter demonstrates that despite lower ac-

curacy in each stage, the selection of a reasonably well-performing policy can still be

acheived with this high level knowledge. Further research into the loop and scheme

analysis will likely result in more accurate results and a better performing speculation

policy.

5.6 Conclusions

This chapter has presented an integrated approach to efficiently implementing soft-

ware TLS on machines without architectural TLS support. Observing that there is no

one-size-fits-all solution in software TLS, this chapter has devised a machine-learning-

based technique to automatically select a suitable software TLS model and its detailed

configuration. The results obtained on a standard 8-core AMD machine demonstrate

5.6. Conclusions 79

that software-only TLS can deliver consistent speedups of up to 7.75, and with a geo-

metric mean of 1.64, across compute-intensive and difficult-to-parallelise benchmarks.

In general, simpler machine learning techniques perform best. For discrete choices

such as model selection and processor counts, naive bayes provides the best speedups.

For unbounded/continuous decisions, such as the unroll ratio, a nearest-neighbour de-

cider using only one or two neighbours worked best. Additionally for unbounded

decisions, calculating the ratio with respect to the number of iterations works best.

This novel technique is ideally suited to complement profile-based parallelisation ap-

proaches such as [44]. These techniques never execute known sequential loops as par-

allel, and any remaining loops have a very low probability of dependence violations

occurring.

Chapter 6

Automated Error Checking for

Aggressive High-Confidence

Parallelisation

This chapter explores the hypothesis that standard, heavyweight TLS methods are often

not required for aggressive parallelisation. With the advent of modern static analysis

and profiling techniques [44] it can be demonstrated that a loop or section of code is un-

likely to contain a data dependence with very high confidence. In these circumstances

it may be more appropriate to remove the ability to checkpoint and rollback and choose

a very lightweight error-checking scheme over a full TLS system. This would allow

for faster and scalable execution at the risk of an extremely high re-execution cost in

the unlikely event that a dependence violation is detected.

The architecture of a lightweight error-checking scheme can be similar to that of a stan-

dard TLS scheme; the most significant difference is that version control is no longer

required. Memory traces are still recorded during execution and used to detect de-

pendences, but each speculative access need no longer be backed up or committed to

memory at a later time. Instead, when a dependence is detected the entire process must

be killed and re-executed in a safe, non-speculative manner. This significantly reduces

the memory footprint as backup/commit logs are no longer stored. It also eliminates

the computation and synchronisation between threads on each access that would oth-

erwise be needed to maintain those logs. This can also allow further optimisation of

memory-trace techniques.

81

82 Chapter 6. Automated Error Checking for Aggressive Parallelisation

The goal of this work is to remove as much of the tracking and dependence overhead

from the critical path of execution as possible, while still being able to provide a guar-

antee of correct execution. This introduces three main performance considerations:

(i) Computation. The amount of work executed for each speculative access has a

direct impact on the critical path of execution. By removing safety from TLS,

computation is significantly decreased; however, memory trace and dependence

detection methods must still minimise computation.

(ii) Synchronisation. One of the largest obstacles to TLS scalability is how fre-

quently each thread must interact with others, be it by sharing data or having to

wait at barriers. By minimising the number of points during speculation where

threads must interact, the critical path of each thread is less interrupted; this

allows for a faster and more scalable TLS scheme.

(iii) Work Distribution. Similar to synchronisation, all computation should be dis-

tributable evenly between each thread. This is to limit a scaling bottleneck where

additional threads increase the load on a single thread.

With these performance considerations the most suitable scheme is one with an ex-

tremely lazy checking schedule and an entirely distributed trace topology to remove as

much cross-thread synchronisation as possible.

Section 6.1 briefly discusses the types and limitations of parallelism that this work tar-

gets. Section 6.2 presents the customised data structure used to store memory traces,

with analysis of how it limits memory usage and computation. Sections 6.3 to 6.5

present several methods to perform dependence checks and analyses how each method

distributes work between threads. Section 6.6 discusses the automated code transfor-

mations required to enable error-checked parallel execution, with several static analysis

methods that can be performed to optimise the resulting code. Section 6.7 provides a

thorough empirical evaluation, with final conclusions in Section 6.8.

6.1 Parallelisation Target

There are many forms of parallelism to which this style of TLS would apply. To limit

the scope required for evaluation, this has been restricted to simple DOALL loops.

More specifically: standard C/C++ for loops in which every iteration is guaranteed

6.2. Memory Trace Data Structure 83

to execute, such as those that do not contain break or goto statements. These loops

can include nested loops, for which the restriction of break statements does not apply;

however any goto statements contained cannot jump to beyond the outer loop.

As a further restriction this technique cannot be used on a program that performs irre-

versible I/O. If the program modifies another file, sends network traffic, or even has its

output piped to another program then any I/O performed in a speculatively-executed

region cannot be undone without additional support. In contrast, it is safe to use this

technique if the program simply reads in information from an immutable file, as a

re-execution would be able to read the same data.

In this work, parallelisable loops were selected using the profiling techniques presented

in [44]. Discovered probably-parallel loops were marked up using the OpenMP paral-

lel framework [3], with privatised and reduction variables added as appropriate. Fur-

ther analysis and code transformations required for speculative execution are discussed

in Section 6.6.

This technique can be used on other forms of parallelism, such as parallel threads. In

parallel schemes using simple synchronisation, such as barriers, memory traces would

be recorded between synchronisation points, and dependence checks triggered at each

synchronisation point. For programs using more complex synchronisation (such as

some producer/consumer models or pipelined threading) the checking schemes pre-

sented in this work would have to be modified, similar to those used by SPLSC [29],

SPLIP [28] or SPLPC (Decribed in Chapter 4).

6.2 Memory Trace Data Structure

For any TLS system it is important to use a compact and efficient data structure to

record memory access traces. Unfortunately, using a distributed, extremely-lazy track-

ing scheme also creates the largest memory traces. Further, standard speculation tech-

niques for lowering the memory footprint, such as those discussed in section 2.3.6, are

unsuitable for use as they introduce the possible detection of false dependences. In this

design the existence of false dependences introduces too high a risk of triggering an

extremely expensive re-execution of the entire program. Therefore the design of the

memory trace structure is centred around the following tenets:

(i) It should be impossible for distinct memory addresses to be recorded as identical.

84 Chapter 6. Automated Error Checking for Aggressive Parallelisation

0x2

0x5

0x2

Caches
Pages

0x12

Address Accessed

0xFFFF

0x1

0x0

0xFFFF

0xFFFF

0xFFFF

012171831

0x0

0x1

0x2

0x3

0x4

0x3FFF

Page Directory

Tag Pointer

Table Index Page Index

Bit Index

065535

Next Available Page 0x3

0xFFFF0x3FFE

0x5 0x2

Figure 6.1: Page Table Structure

(ii) Memory should be allocated to each trace only for regions that are actually ac-

cessed.

(iii) Both temporal and spatial locality of speculative accesses should be taken ad-

vantage of.

(iv) The structure should be able to grow as necessary to handle as many accesses as

possible, across any memory range.

(v) The memory allocated for each address accessed should be as low as possible —

optimally only a single bit per address accessed.

Following these tenets the most suitable data structure for memory traces is similar

to that of a page table as used in OS memory management systems. As shown in

Figure 6.1, the structure contains a directory and a pool of available pages. Each

page in the pool is a bitset, implemented as an array of unsigned long integers, with

each bit representing whether a particular address has been accessed. Each directory

entry contains either an index into the pool of pages for which that entry has been

assigned, or a special value to indicate that that entry has not yet been assigned a

page. On each access, the address of the access is split into two sections. The upper

section is the index into the page directory used to determine which page is tracking

6.2. Memory Trace Data Structure 85

that set of addresses. The lower section is the bit index used to set the relevant bit

within the page to show that it has been accessed. In the evaluation of this work,

word-aligned tracking was required, so the two least-significant bits are discarded.

A counter is maintained for which pages have been assigned, and incremented every

time an unassigned directory index is accessed, with the previous value stored in the

directory for that index.

The first design tenet is satisfied as every address is uniquely storable in the table. The

second tenet is satisfied as each page is only allocated/assigned when it is used. The

third tenet is also satisfied as the assignment of a page to a range of memory addresses

exploits spatial locality: accesses to one address are likely to be followed by subse-

quent accesses in the same memory region. A further optimisation to exploit temporal

locality is discussed in Section 6.2.1. The fourth tenet is satisfiable by ensuring there

is a large enough and expandable pool of pages to be assigned, and ensuring that the

directory entry element is large enough to index all available pages. The use of a pool

of available pages lowers allocation and initialisation costs for each speculative sec-

tion. Finally the fifth tenet is satisfied based on the efficiency of usage of a page. The

number of bits used per address accessed is defined as:

Definition 6.2.1.

bitsPerAddress =

(
lengthpage× sizepage element

)
+ sizedirectory element

countbits set

For optimal memory usage all elements in the page will be set; for nonoptimal usage

only a single element will be set. Figure 6.1 uses an unsigned short for each directory

element (sizedirectory element = 16 bits) and a page consisting of a 65536-element bitset

(lengthpage = 65536, sizepage element = 1 bit) giving an optimal case of 1.0002 bits per

address accessed, and a worst case of 8.001 KiB per address accessed. For conve-

nience, page usage efficiency is defined as:

Definition 6.2.2.

pageUsageEfficiency =

(
100× countbits set

lengthpage

)
%

6.2.1 Page Caching

To exploit temporal locality of speculative accesses, this design introduces the use of

page caches. Page caches are designed to reduce the time taken to find the correct page

86 Chapter 6. Automated Error Checking for Aggressive Parallelisation

for a given speculative access. For each cache the index into the page directory for the

most recent speculative access is stored as a tag alongside a pointer to the relevant

page. Before accessing the page directory to retrieve the relevant page, a simple check

is performed to see if it is the same as the one last accessed using that cache. If so

it is accessed directly, bypassing the directory entirely. The assignment of caches to

speculative accesses can be performed in various ways, such as assigning a cache to

every access of a particular variable or to each speculative access within a loop. Using

more caches reduces the likelihood of a cache miss, but increases set-up and memory

costs.

6.2.2 Structure Usage

During speculative execution there are three main phases of use of the memory trace

structure: allocation/initialisation, trace, and check. The check phase is described in

Sections 6.3 to 6.5.

6.2.2.1 Allocation/Initialisation

Initially, the page directory and a suitable number of pages and caches must be allo-

cated in main memory. The page directory must be large enough to cover all possible

values within the upper section of address bits of each speculative access. The data

type used for each directory entry must be large enough to index through every page

in the pool, plus a value to specify that a page has not been assigned. This can be

expanded if necessary, at an additional computation cost. The value of each directory

entry must be initialised to the value specifying an unassigned page.

The number of pages allocated is code-dependent and difficult to determine at compile

time; however the number of pages can be expanded at additional computation cost.

If this is likely to occur it may be more appropriate for the page directory to store a

pointer rather than index into the pool. Pages must be initialised to an empty bitset.

The number of caches allocated is also code-dependent, but is fixed and can be deter-

mined at compile time. Their tag must be initialised with a special value that signifies

it does not point to a page. This value cannot match any possible value within the

upper section of each speculative access.

6.2. Memory Trace Data Structure 87

1 s p e c A c c e s s (P a g e t a b l e ∗ pt , u i n t 3 2 addr , Cache ∗c) {
2 / / C a l c u l a t e and compare page cache t a g

3 u i n t 3 2 t a g = addr & 0xFFFC0000 ;

4 i f (cache−>t a g != t a g) {
5 / / I f n o t cached , check i f a page has been a s s i g n e d

6 cache−>t a g = t a g ;

7 u i n t 1 6 ∗ e n t r y = pt−>d i r + (t a g >> 1 8) ;

8 i f (∗ e n t r y == pt−>u n a s s i g n e d P a g e) {
9 / / I f not , a s s i g n one , r e s e t i t and up da t e cache

10 i f (p t−>n e x t P a g e == p a g e s A v a i l a b l e)

11 pt−>i n c r e a s e P a g e T a b l e () ;

12 ∗ e n t r y = pt−>n e x t P a g e ++;

13 cache−>page = pt−>pages + ∗ e n t r y ;

14 memset (cache−>page , 0 , s i z e o f (Page))

15 } e l s e

16 / / O t h e r w i s e j u s t up da t e t h e cache

17 cache−>page = pt−>pages + ∗ page Index ;

18 }
19 / / Update t h e page w i t h t h e s p e c i f i e d a c c e s s

20 b i t = ((add r >> 2) & 0xFFFF) ;

21 cache−>page [b i t >>6] |= 1 << (b i t & 0x3F)

22 }

Figure 6.2: Process of marking a single address as accessed in a page table.

To further lower maintenance costs, page tables can be reused for each speculative

section of a program. The number of caches allocated can be the maximum required

for any given speculative section, and only those required for each section need be

reset. Similarly, pages need only be reset when they are first assigned during each

speculative section. The page directory must always be reset before each speculative

section.

6.2.2.2 Trace

During the trace phase of execution, each speculative access is recorded in the page

table. The process of recording an access is shown in Figure 6.2. First the tag is

88 Chapter 6. Automated Error Checking for Aggressive Parallelisation

Read Page Table

Write Page Table

1

2

0

1

Thread Pair Table

Thread 1 Thread 2

n

Thread Storage

n

n

0

n-1

1 3

20

n = Number of Threads

Figure 6.3: Speculative Storage

calculated and compared with the cache for this access (lines 3–4). If the cache does

not match then its tag is updated and the entry in the page table is calculated (lines

6–7). The page entry is then examined to determine if a page has been assigned for

that location yet (line 8). If not, a new page is assigned and reset (possibly increasing

the size of the page table) and the cache is updated with a pointer to that page (lines

11–14). Otherwise, the cache is simply updated with the page already assigned to it

(line 17). Finally the bit within the page to be updated is calculated, and then set to

mark that it has been accessed (lines 20–21). Should the cache tag match, much of the

process is skipped: only the update of the cached page is performed.

6.3 Simple Distributed Error Detection

The simplest error detection scheme is simply to create a memory trace for each thread,

and then compare every possible combination of traces to detect a conflict. As shown

in Figure 6.3, the topology required for this scheme consists of two page tables per

thread: one for reads and one for writes. Each thread’s write table must be compared

against all other threads’ read tables and against all other threads’ write tables, thereby

detecting all RAW, WAR and WAW dependences. This is performed efficiently by

creating a Thread Pair Table (TPT), displayed in Figure 6.3, that stores a list of all

possible combination of thread pairs. Every pair is distributed as evenly as possible

among the available threads. For each pair the first thread’s read table is compared

against the second thread’s write table, then the first thread’s write table is compared

against the second thread’s read table; and finally the write tables of each thread are

compared. This method ensures each required comparison occurs only once and that

the comparisons are performed in parallel. During the check, every page table is a

6.3. Simple Distributed Error Detection 89

1 c o l l i s i o n (P a g e t a b l e ∗ pt1 , P a g e t a b l e ∗ p t 2) {
2 u i n t 6 4 r e s u l t = 0 ;

3 u i n t 1 6 ∗d1 = pt1−>d i r , ∗d2 = pt2−>d i r ;

4 u i n t 6 4 (∗ p1) [PAGESIZE] = pt1−>pages ;

5 u i n t 6 4 (∗ p2) [PAGESIZE] = pt2−>pages ;

6 / / Loop over a l l d i r e c t o r y e n t r i e s

7 f o r (i n t i = 0 ; i < TABLESIZE ; i ++) {
8 / / I n s p e c t t o s e e i f bo th t a b l e s have pages a s s i g n e d

9 i f (∗ d1 != 0xFFFFu && ∗d2 != 0xFFFFu) {
10 / / I f so , t r a v e r s e t h e pages l o o k i n g c o l l i s i o n s

11 u i n t 6 4 ∗x=p1 [∗ d1] , ∗y=p2 [∗ d2] ;

12 f o r (j = 0 ; j < PAGELENGTH; j ++) {
13 r e s u l t |= ∗x & ∗y ;

14 x ++; y ++;

15 }
16 }
17 d1 ++; d2 ++;

18 }
19 / / Re tu r n v a l u e o t h e r than z e r o i n d i c a t e s a c o l l i s i o n

20 re turn r e s u l t ;

21 }

Figure 6.4: Comparing two page tables: if a value other than zero is returned then a

collision has occurred.

read-only data structure, thus removing the need for any synchronisation and avoiding

cache thrashing during the check.

The comparison of two tables is simple and efficient. Figure 6.4 shows the process for

comparing two page tables. Each entry of the page directory is traversed to determine

if both tables have a matching entry (lines 7–9). If only one or neither contain entries

then a dependence cannot have occurred; otherwise an inspection of both tables pages

is required. For error detection purposes it is not a requirement to know which ad-

dresses have collided, just whether or not a collision has occurred. This simplifies the

inspection of each page into a bitwise and of each page. As each page is implemented

as an array of unsigned long integers, each element is instead combined using a bitwise

and, the result of which is bitwise or’ed with the earlier comparisons (lines 11–15).

90 Chapter 6. Automated Error Checking for Aggressive Parallelisation

Once the entire directory has been traversed the result is then returned (line 20). Any

value other than a result of zero indicates that a dependence has occurred between the

two page tables.

6.3.1 Scalability

The scalability of this detection scheme is mostly affected by the increased size of the

Thread Pair Table with the addition of more threads. Overall the total number of tables

to be compared has, at most, quadratic growth. However, as all pairs are distributed

evenly between all threads, the amount of work to be performed by each thread grows

linearly.

For example, given four threads, this will result in six pairs, (1-2, 1-3, 1-4, 2-3, 2-4,

3-4) resulting in 1.5 pairs per thread. Adding a fifth thread will result in four extra

pairs for a total of ten, or 2 per thread. This can be generalised to n(n−1)
2 total pairs,

and n−1
2 pairs per thread.

6.4 Reduction-Tree Error Detection

A more complex but more scalable method is to perform error detection using a reduction-

tree-based algorithm. Instead of examining every possible combination of page tables

only adjacent tables are compared. These page tables are then merged together, and

each adjacent merged table is compared. This process is repeated until there is only

one table left.

Optimal performance of this scheme relies upon an efficient method of merging two

page tables. To limit redundant processing the merge of two tables can be performed

in-place on two existing tables, with the higher thread always merging into the lower

thread. For each element of the page directory this allows for four circumstances:

(i) Neither table’s directory entry has a page assigned for that location. No change

is required.

(ii) Both tables’ directory entry has a page assigned for that location. The page

of the higher thread must be merged with the page of the lower thread using a

bitwise or on each page element.

6.4. Reduction-Tree Error Detection 91

n = Number of Threads
m = Number of Pages in Pool

Read Pages

Write Pages

m

m

Read Page Directory

Write Page Directory

n

Thread Storage

Figure 6.5: Tree Storage Topology

(iii) The table with the lower ID has a page assigned to that directory entry, but the

thread with the higher ID does not. No change is required.

(iv) The table with the higher ID has a page assigned to that directory entry, but the

thread with the lower ID does not. The page assigned to the higher thread should

be reassigned to the lower thread.

To assign a page from one table to another requires a small modification to the existing

page-table data structure. Specifically, the pool of available pages for each table must

be merged into a central pool of pages of equal size, allowing for each directory to refer

to any page assigned by any thread during execution. No additional synchronisation is

required as each thread can be assigned its own section of pages within the pool for use

during execution, with indexing to pages outside of that region only occurring during

merges. The storage topology implementing this change is shown in Figure 6.5.

To benefit from the caching methods used in modern CPUs the merge should be per-

formed on-the-fly with the check. This ensures any directory elements or page ele-

ments that must be merged have already been loaded into the CPU cache when it is to

be modified. The alternative would involve loading it to perform the check, having it

be evicted from the cache by the rest of the check, and then reloading it to perform the

merge.

The check is performed in two stages. First a list of page pairs is generated for en-

tries that require checking, merging, or both. In the second stage the list of pairs is

processed, checking and merging as appropriate. This two-stage process is used to

distribute all work evenly between the threads, ensuring the most efficient processing

92 Chapter 6. Automated Error Checking for Aggressive Parallelisation

of each pass.

During the first stage each thread is assigned a chunk of directories to process. Chunks

are distributed evenly among all threads. Figure 6.6 demonstrates how the scan of a

chunk of directory entries is performed. The thread processes each directory entry in

its chunk individually (line 6). First it inspects the read entries and write entries from

each table extracting the a pointer to each page and filling a state variable (lines 9–

16). The state variable is used to determine what further action, if any, is required.

For instance, if both directory entries have write pages assigned, then there could be

a write dependence logged in the two pages. In that case (state == 3) the two pages

would need to be scanned for dependences and merged together for the next pass.

After the pointers and state variable has been calculated, the state is checked to see if

further processing is required (lines 19–22). If so the state and page indexes are added

to the list (lines 23–24). In some cases the pages may need to be reassigned instead of

merged which is performed during the first stage (lines 23–31). At the end the count

of how many page pairs require extra processing is returned (line 36).

During the second stage each thread processes a section of each pair of pages dis-

tributed evenly among all threads. Figure 6.7 demonstrates how a thread processes a

pair of pages. Each thread is passed in the list of pages to be processed (list), the

number of items in the list (count), the start index within the page that the thread

should check from (start) and the quantity of page elements that it must process

(size). The thread handles each list item individually (line 4). First a pointer to the

first element the thread must process is extracted for each page (lines 6–7). Next the

state variable is inspected to select the most efficient loop for scanning/merging the set

of pages (line 8). There are nine different combinations of read and write pages where

different operations must be performed on the pages themselves. Examining the case

where all directory elements have pages assigned (Case 15), first the read and write

pages are compared using a bitwise and on each element ored together (line 21). The

necessary pages are then merged together into the table with the lower ID, again using

a bitwise or (line 22). This action is performed across the entire section of the page

assigned to the thread. Finally the result is returned with any non-zero value indicating

an error.

6.4. Reduction-Tree Error Detection 93

1 f i l l C o l l i s i o n T a b l e (u i n t 1 6 ∗ rdD1 , u i n t 1 6 ∗ rdD2 ,

2 u i n t 1 6 ∗wrD1 , u i n t 1 6 ∗wrD2 ,

3 s t r u c t P a g e C o l l i s i o n ∗ l i s t , i n t s i z e) {
4 i n t c o u n t = 0 ;

5 / / T r a v e r s e a l l d i r e c t o r y e n t r i e s a s s i g n e d

6 f o r (i n t i = 0 ; i < s i z e ; i ++) {
7 s t r u c t P a g e C o l l i s i o n i t em ; i t em . s t a t e = 0 ;

8 / / Get a l l o c a t e d pages and up da t e s t a t e v a r i a b l e

9 i f (∗ r d D i r 1 != 0xFFFFu) { i t em . r1 = pages [∗ rdD1] ;

10 i t em . s t a t e += 8 ; }
11 i f (∗ r d D i r 2 != 0xFFFFu) { i t em . r2 = pages [∗ rdD2] ;

12 i t em . s t a t e += 4 ; }
13 i f (∗ wrDir1 != 0xFFFFu) { i t em . w1= pages [∗wrD1] ;

14 i t em . s t a t e += 2 ; }
15 i f (∗ wrDir2 != 0xFFFFu) { i t em . w2= pages [∗wrD2] ;

16 i t em . s t a t e += 1 ; }
17 / / I f bo th t a b l e s c o u l d have a dependence v i o l a t i o n

18 / / Then add t h e i r pages t o t h e l i s t t o be scanned / merged

19 i f ((s t a t e | 1 2) | (s t a t e | 3) | (s t a t e | 9) | (s t a t e | 6) != 0) {
20 ∗ l i s t ++ = i t em ;

21 c o u n t ++;

22 }
23 / / I f h i g h e r t h r e a d has a page b u t lower doesn ’ t

24 / / Then r e a s s i g n h i g h e r page t o lower f o r bo th read and w r i t e

25 i f (i t em . s t a t e | 3 == 1) / / 0 1

26 ∗wrDir1 = ∗wrDir2 ;

27 i f (i t em . s t a t e | 12 == 4) / / 01

28 ∗ r d D i r 1 = ∗ r d D i r 2 ;

29 / / Move on to t h e n e x t d i r e c t o r y e n t r y

30 r d D i r 1 ++; r d D i r 2 ++; wrDir1 ++; wrDir2 ++;

31 }
32 / / Re tu r n number o f p o t e n t i a l l y c o l l i d i n g pages found

33 re turn c o u n t ;

34 }

Figure 6.6: Stage one of the reduction-tree process: two page tables are compared.

Any potentially colliding entries, for instance when both tables have write pages as-

signed, are added to a list for further processing.

94 Chapter 6. Automated Error Checking for Aggressive Parallelisation

1 p r o c e s s L i s t (s t r u c t P a g e C o l l i s i o n ∗ l i s t , i n t count ,

2 i n t s t a r t , i n t s i z e) {
3 u i n t 6 4 r e s u l t = 0 ;

4 / / T r a v e r s e each s e t o f pages i n t h e c o l l i s i o n l i s t

5 f o r (i n t i = 0 ; i < c o u n t ; i ++) {
6 / / Get p o i n t e r s f o r where t o s t a r t comparing / merging

7 u i n t 6 4 ∗ r1 = l i s t −>r1 + s t a r t , ∗ r2 = l i s t −>r2 + s t a r t ,

8 ∗w1 = l i s t −>w1 + s t a r t , ∗w2 = l i s t −>w2 + s t a r t ;

9 sw i t ch (l i s t −>s t a t e) {
10 case 3 : / / 0011

11 / / T r a v e r s e each page e l e m e n t

12 f o r (i n t j = 0 ; j < s i z e ; j ++) {
13 / / I n s p e c t f o r c o l l i s i o n s

14 o u t |= (∗w1 & ∗w2) ;

15 / / Merge e l e m e n t c o n t e n t s

16 ∗w1 |= ∗w2 ;

17 w1++; w2++;

18 } break ;

19 / / Cases 0110 , 0111 , 1001 , 1011 , 1100 , 1101 , 1110 o m i t t e d

20 case 1 5 : / / 1111

21 f o r (i n t j = 0 ; j < s i z e ; j ++) {
22 o u t |= (∗ r1 & ∗w2) | (∗ r2 & ∗w1) | (∗w1 & ∗w2) ;

23 ∗ r1 |= ∗ r2 ; ∗w1 |= ∗w2 ;

24 r1 ++; r2 ++; w1++; w2++;

25 } break ;

26 }
27 / / Move on to t h e n e x t e l e m e n t i n t h e l i s t

28 l i s t ++;

29 }
30 / / A r e t u r n v a l u e o t h e r than z e r o i n d i c a t e s a c o l l i s i o n

31 re turn r e s u l t ;

32 }

Figure 6.7: Stage two of the Reduction-Tree Process: each potentially conflicting pair

of pages are scanned and merged as appropriate. If a value other than zero is returned

then a collision has occurred.

6.5. GPU Conflict Detection 95

6.4.1 Scalability

The main influence on scalability with this model is how much extra processing is re-

quired on the addition of more threads. As this is a tree-based detection algorithm this

is centred around how many compare and merge passes are performed. Definition 6.4.1

states how many passes are required to perform a full dependence check.

Definition 6.4.1.
totalPasses = dlog2 (num threads)e

As can be seen the number of passes required grows logarithmically with the addition

of more threads. Additionally the most optimal detection scheme is one with a thread

count that is a factor of two, so that each stage of the reduction tree is fully utilised.

6.5 GPU Conflict Detection

By removing the ability to checkpoint and rollback from a TLS system it is possible to

offload dependence checking to an auxiliary device. Such offloading allows the main

program to continue to execute during the dependence check, minimising the delay

caused by performing the check. This section presents a conflict-detection scheme

using a GPGPU as an auxiliary processing unit.

The execution workflow for TLS on a GPU differs from that of a CPU. Whilst execut-

ing speculative regions of code, memory access traces are recorded normally as with

CPU-based schemes. At the end of the speculative region, the memory logs must be

transferred to the GPU or placed in a region of memory accessible by the GPU. The

check is then initiated on the GPU and, once completed, the result must be copied

back to CPU-accessible memory and used to determine whether the process must be

cancelled or may be allowed to continue. Modern GPGPU frameworks such as CUDA

or OpenCL allow all interactions with a GPU to be placed in a queue to be executed

automatically when the previous operations have finished, allowing the main thread to

continue to execute once all stages have been added to the queue.

Writing and optimising GPGPU-based programs can be notoriously difficult, requir-

ing very specific design considerations. For convenience these can be split into two

categories: CPU- or host-side optimisations and GPU- or device-side optimisations.

For the host-side, considerations include:

96 Chapter 6. Automated Error Checking for Aggressive Parallelisation

(i) Where possible, delays and barriers on the critical path must be minimised. At

the end of a speculative section all actions to be performed on the device must

be added to the device queue (or passed to another thread to do so) before the

main thread can continue.

(ii) It is desirable for additional speculative regions to be executable while the pre-

vious speculative section is still being checked. This can be done using a pool of

speculative storage structures used in a round-robin fashion. While one is being

copied to the device, another can be filled by a speculative region. Each structure

can also be copied to device memory while the previous check is being executed

on the device, effectively hiding the costs of all data transfers. Finally, if the

device is at capacity, it is possible to fall back to one of the host-based checks

from the previous sections.

(iii) Memory transfers from host to device are expensive, so it is desirable to min-

imise the amount of data transferred to the device to the extent possible. Instead

of transferring the entire pool of pages to the device, it is possible to only transfer

those that were used during the speculative execution.

(iv) Interactions with the GPU, such as adding tasks to the queue or using call-

backs, are similarly expensive. Where possible, memory transfers for each

thread should be performed in bulk, resulting in only a single task added to

the queue instead of one per thread. To enable this when transferring only used

pages, each thread must access a centralised pool with a mutex locked counter

for the next page.

For the device-side, considerations include:

(i) Each device has a maximum number of threads and thread blocks that can be

executed at once. The check must be configured such that all threads are used at

once without going over the thread block limit.

(ii) Thread instructions on the device are interlocked within each thread block and

hence execute every diverged path, even if only one thread within the block uses

that path, so divergence must be minimised. Traversing a page table by the direc-

tory is inherently diverse as each entry may or may not contain a corresponding

page. Traversing by each page results in wasted computation where each thread

repeatedly examines the directory for that page. This is a tradeoff that must be

considered during optimisation.

6.5. GPU Conflict Detection 97

n = Number of Threads
m = Number of Pages in Pool

 Pages

Next Page Index

m
Read Page Directory

Write Page Directory

n

Thread Storage

Figure 6.8: GPU Storage Topology

(iii) Thread-local memory is much faster than global memory but more limited in

size. Where possible, especially for interactions between threads, thread-local

memory should be utilised.

(iv) Accesses to global memory should be coalesced where possible. Due to the

design of device memory, each memory access to an individual address triggers

access of a chunk of addresses. If each thread performs an access in a coalesced

fashion then every access can be performed in the same chunk.

The resulting data structure used can be seen in Figure 6.8. Similar to the reduction-

tree checking scheme, each thread maintains its own page directory and each directory

indexes into a centralised pool of pages. However, now the index for the next avail-

able page is maintained through a centralised, mutex-locked counter on the host. This

adds synchronisation costs when a page is allocated, while dramatically reducing the

amount of data to be transferred to the device. Additionally there are now multiple

data structures the host can access to allow the pipelining of checks on the device.

The check performed on the device is similar to that of the reduction-tree-based check

from the previous section. First a list of pages requiring further action is generated;

then each set of pages in the list is processed. In this design, thread blocks are de-

termined by the directory being compared, with all threads in a block processing a

section of the same page directory during the first section, and all threads in a block

processing the same page during the second section. Multiple thread blocks are able to

execute at once allowing for multiple directory pairs to be processed simultaneously.

Similar to the CPU-based reduction tree, each full check requires multiple stages of

98 Chapter 6. Automated Error Checking for Aggressive Parallelisation

checking and merging, corresponding to each level of the reduction tree. All stages of

the reduction tree are queued at the start, but subsequent stages cannot be started until

all thread blocks from a previous stage have completed executing.

Figure 6.9 shows the process for completing the first section on the device. First the

IDs are calculated to determine which two directories are to be compared and merged

(lines 6–7). This is based on which stage of the reduction is being processed, with the

first stage pairing directories of threads 0 and 1, 2 and 3, and so on, and the second

stage pairing directories 0 and 2, 4 and 8 and so on until every stage is completed.

Next the list of pages requiring further processing is created and initialised (lines 9–

10). This list is stored in local memory and shared between all threads in the thread

block. A barrier is required at this point to ensure that the list has been fully initialised

before other threads begin to access it.

After this point the directories are processed on the device. Each thread within the

block handles a single row in each directory; these are read into thread-private mem-

ory by lines 15–16. Once read, a state variable is calculated to determine the required

course of action for this page. This is stored in short bitset to allow for easier com-

parison at later stages (lines 18–19). Next it is determined whether this combination

of directories requires additional processing in the form of checks and/or merges to

be performed in the second section. If so, a free index into the list is safely acquired

through an atomic increment function, and the element at that list is updated (lines

21–25). The atomic operation ensures safe shared use of the list and is efficiently im-

plemented in device hardware; however it does add a small cost to performance. The

final part of the first section is to copy over any relevant page indexes when a full merge

is not required (lines 27–28). After that, section two of operation commences (line 31)

and all pages that were added to the list are processed, as described below. This entire

process is repeated until all items in each directory have been processed. At that point

the output variable is updated if necessary, and execution finishes.

Figure 6.10 shows the process for completing the second section. For this section all

groups of pages that require additional actions are processed accordingly. Each item

in the list is read in from local memory along with the state variable calculated earlier

to determine what action is required (lines 10–11). Once the correct operations have

been determined (line 13), each page is then split and distributed between all threads in

the block to ensure an evenly distributed workload between the threads. For instance,

state 3, or two write pages would require both pages to be compared against each other

6.5. GPU Conflict Detection 99

1 k e r n e l void c h e c k K e r n e l (g l o b a l u i n t 1 6 (∗ d i r s) [2] [DIRLEN] ,

2 g l o b a l u i n t 6 4 (∗ ps) [PAGELEN] ,

3 g l o b a l boo l ∗ o u t p u t , i n t s t a g e) {
4 u i n t 1 6 rd1 , wd1 , rd2 , wd2 , s ; u i n t 6 4 o u t = 0 ;

5 / / C a l c u l a t e which d i r e c t o r i e s t o check

6 i n t d1 = g e t g l o b a l i d (0) ∗ (1 << (s t a g e + 1)) ;

7 i n t d2 = d i r 1 + (1 << (s t a g e + 1)) / 2 ;

8 / / Cr ea t e Loca l L i s t o f Page Groups

9 l o c a l i n t l i s t C o u n t e r ; l o c a l u i n t 1 6 l i s t [BLOCKSIZE] [5] ;

10 i f (g e t l o c a l i d (1) == 0) l i s t C o u n t e r = 0 ; b a r r i e r (LOCAL MEM) ;

11 / / Check each d i r e c t o r y e n t r y

12 f o r (i n t i = g e t l o c a l i d (1) ; i < DIRLEN ; i += BLOCKSIZE) {
13 s = 0 ;

14 / / Get d i r e c t o r y e n t r i e s

15 rd1 = d i r s [d1] [0] [i] ; wd1 = d i r s [d1] [1] [i] ;

16 rd2 = d i r s [d2] [0] [i] ; wd2 = d i r s [d2] [1] [i] ;

17 / / C a l c u l a t e s t a t e var

18 i f (rD1 != 0xFFFFu) s += 8 ; i f (rd2 != 0xFFFFu) s += 4 ;

19 i f (wD1 != 0xFFFFu) s += 2 ; i f (wd2 != 0xFFFFu) s += 1 ;

20 / / I f p a i r needs check / merge add t o l i s t

21 i f ((s | 12) | (s | 3) | (s | 9) | (s | 6) != 0) {
22 i n t j = a t o m i c i n c (& l i s t C o u n t e r) ;

23 l i s t [j] [0] = rd1 ; l i s t [j] [1] = rd2 ; l i s t [j] [2] = rd1 ;

24 l i s t [j] [3] = rd2 ; l i s t [j] [4] = s ;

25 }
26 / / R e a s s i g n page i n d e x e s t o lower t h r e a d

27 i f (s | 3 == 1) d i r s [d1] [1] [i] = wd2 ; / / 0 1

28 i f (s | 12 == 4) d i r s [d1] [0] [i] = rd2 ; / / 01

29 b a r r i e r (LOCAL MEM) ;

30 / / P r o c e s s any i t e m s i n t h e l i s t

31 o u t |= h a n d l e L i s t (ps , l i s t , l i s t C o u n t e r) ;

32 / / R e s e t L i s t

33 i f (g e t l o c a l i d (1) == 0) l i s t C o u n t e r = 0 ; b a r r i e r (LOCAL MEM) ;

34 }
35 / / I f c o l l i s i o n d e t e c t e d , up da t e o u t p u t

36 i f (o u t != 0) ∗ o u t p u t = t r u e ;

37 }

Figure 6.9: Comparing two page tables using the reduce-merge scheme: if a value

other than zero is returned then a collision has occurred.

100 Chapter 6. Automated Error Checking for Aggressive Parallelisation

1 u i n t 6 4 h a n d l e L i s t (u i n t 6 4 (∗ pages) [PAGELEN] ,

2 l o c a l u i n t 1 6 (∗ l i s t) [5] ,

3 i n t l i s t C o u n t e r) {
4 u i n t 1 6 rdDi r1 , rdDi r2 , wrDir1 , wrDir2 , s t a t e ;

5 u i n t 6 4 o u t p u t = 0 , r1 , r2 , w1 , w2 ;

6 i n t i , j ;

7 / / T r a v e r s e each page group

8 f o r (i = 0 ; i < l i s t C o u n t e r ; i ++) {
9 / / Get page i n d e x e s and s t a t e

10 r d D i r 1 = l i s t [i] [0] ; r d D i r 2 = l i s t [i] [1] ; wrDir1 = l i s t [i] [2] ;

11 wrDir2 = l i s t [i] [3] ; s t a t e = l i s t [i] [4] ;

12 / / S e l e c t most e f f i c i e n t check / merge loop

13 sw i t ch (s t a t e) {
14 case 3 : / / 0011

15 / / T r a v e r s e each page e l e m e n t

16 f o r (j = g e t l o c a l i d (1) ; j < PAGELENGTH; j += BLOCKSIZE) {
17 / / Get a c t u a l page e l e m e n t s

18 w1 = pages [wrDir1] [j] ; w2 = pages [wrDir2] [j] ;

19 / / I n s p e c t f o r c o l l i s i o n s

20 o u t p u t |= w1 & w2 ;

21 / / Merge e l e m e n t c o n t e n t s

22 pages [wrDir1] [j] = w1 | w2 ;

23 } break ;

24 / / Cases 0110 , 0111 , 1001 , 1011 , 1100 , 1101 & 1110 o m i t t e d

25 case 1 5 : / / 1111

26 f o r (j = g e t l o c a l i d (1) ; j < PAGELENGTH; j += BLOCKSIZE) {
27 r1 = pages [r d D i r 1] [j] ; r2 = pages [r d D i r 2] [j] ;

28 w1 = pages [wrDir1] [j] ; w2 = pages [wrDir2] [j] ;

29 o u t |= (r1 & w2) | (r2 & w1) | (w1 & w2) ;

30 pages [r d D i r 1] [j] = r1 | r2 ; pages [wrDir1] [j] = w1 | w2 ;

31 } break ;

32 }
33 }
34 / / R e t u r n i n g any v a l u e o t h e r than z e r o i n d i c a t e s a c o l l i s i o n

35 re turn o u t p u t ;

36 }

Figure 6.10: Comparing two page tables using the reduce-merge scheme: if a value

other than zero is returned then a collision has occurred.

6.6. Automated Program Transformations 101

for access collisions (line 20), and then merged together ready to be processed during

the next stage (line 22). The check and merge process is very similar to that of the

CPU-based reduction tree mentioned previously.

The two main considerations of this design are thread divergence and memory access

coalescing. During each section every access to global memory is coalesced together

with the one exception of lines 27–28 in Figure 6.9. This ensures that all accesses to

global memory are performed as efficiently as possible by the device. The comparison

of page directories contains an inherent thread divergence, due to the comparison of

whether or not pages have been assigned. Through this design all thread divergence is

restricted to the execution of the first section (lines 18–28), which has been optimised

to contain only minimal processing, thus minimising the cost caused by thread diver-

gence. Once the list has been populated all processing required is distributed evenly

among threads and ensures no divergence amongst threads within each block.

6.6 Automated Program Transformations

For any auto-parallelisation system, analyses and transformations must be applied to

existing code to discover and exploit parallelism that may exist. Those systems using

purely static analysis to discover parallelism often require only the addition of thread-

ing code, synchronisation points and privatised variables when required. In contrast

a particularly aggressive paralleliser using profiling to discover parallelisation might

create unsafe code if it were to only perform the same transformations as a purely

static auto-paralleliser. It is at these aggressive parallelisers that the design presented

in this chapter is aimed. Parallelisable loops were selected using the profiling tech-

niques presented in [44]. Discovered probably-parallel loops were marked up using

the OPENMP parallel framework, with privatised and reduction variables added as ap-

propriate. This section discusses the analyses and transformations used to implement

error-checked execution on these marked up loops.

After the discovery of probably-parallel loops, code transformations are then applied

to the original sequential application. The code required to perform speculative exe-

cution has been reduced to a library of functions, which our new application links to.

This keeps code transformation simple and automatable. An example transformation

of a simple sequential loop into a speculatively-parallel loop is shown in Figure 6.11.

102 Chapter 6. Automated Error Checking for Aggressive Parallelisation

f o r (i n t i = 0 ; i < N; i ++)

{
a [b [i]] += a [c [i]] ;

}

(a) Original Sequential Loop

#pragma omp p a r a l l e l f o r

f o r (i n t i = 0 ; i < N; i ++)

{
a [b [i]] += a [c [i]] ;

}

(b) Unsafely Parallelised Loop

#pragma omp p a r a l l e l

{
EC READ INIT (c) ;

EC READ INIT (b) ;

EC READ INIT (a) ;

EC WRITE INIT (a) ;

#pragma omp f o r

f o r (i n t i = 0 ; i < N; i ++)

{
EC READ (c [i] , c) ;

EC READ (b [i] , b) ;

EC READ (a [b [i]] , a) ;

EC WRITE (a [c [i]] , a) ;

a [b [i]] += a [c [i]] ;

}
EC CHECK () ;

}

(c) Error-Checked Parallel Loop

#pragma omp p a r a l l e l

{
EC READ INIT (a) ;

EC WRITE INIT (a) ;

#pragma omp f o r

f o r (i n t i = 0 ; i < N; i ++)

{
EC READ (a [b [i]] , a) ;

EC WRITE (a [c [i]] , a) ;

a [b [i]] += a [c [i]] ;

}
EC CHECK () ;

}

(d) Optimised Error-Checked Parallel Loop

Figure 6.11: Example code transformations required to turn an unsafely parallelised

loop into an error-checked parallel loop. a, b and c are all unaliased arrays containing

at least N elements.

6.6. Automated Program Transformations 103

Each probably-parallel loop is first enclosed in an OPENMP parallel section which

indicates that the enclosed section should be executed in parallel. Next, each variable

that is being speculatively tracked is specified explicitly; this is done using EC READ INIT

and EC WRITE INIT statements which assigns caches to each variable. The loop itself

is then surrounded by an OPENMP for directive which indicates that the iterations of

the following for loop should be distributed among the threads. The loop is then tra-

versed and every access of a given variable is preceded by a EC READ or a EC WRITE

statement to mark the address as being accessed. Finally, a call to the speculative check

function, EC CHECK, is inserted after the loop’s execution, still within the parallel

region.

Tracking the memory accesses performed is an expensive process, so it is desirable

that we only track dangerous accesses — those that can potentially cause a dependence

violation. To do so, limited static analysis can be performed on the program to generate

a list of variables that are considered dangerous. It is a waste of computation to track

the accesses of:

Read-only variables. If a variable only ever has its value read and not written to then

it is impossible for that variable to directly cause a data dependence. Therefore

tracking code is not added to completely read-only variables. However, when

pointers or references are used it is possible that what appears to be a read-only

variable may be aliased to another variable that is not, potentially causing a

dependence violation.

Thread-private variables. Access to variables that have been privatised and are not

subsequently shared between threads cannot directly cause a data dependence.

However, if these variables contain pointers to other data then it is possible that

access of the data they point to could cause a data dependence.

To scan for truly read-only variables, an Abstract Syntax Tree (AST) of the entire

program is generated and traversed looking for pointer and reference interactions. If

two variables could share pointers then those variables are linked to each other and

assumed that they could be the same variable. These links are shared between other

linked variables creating a graph of variables that could potentially be aliased. This

is a conservative approach assuming that if they might alias each other then they will.

For instance, if variable a shares a pointer with variable b, and then b shares a pointer

with variable c then variables a and c are also linked together. Once the graph of

104 Chapter 6. Automated Error Checking for Aggressive Parallelisation

linked variables has been generated, it is then possible to determine which variables

are definitely read-only during a probably-parallel loop. Note that this conservative

approach to static alias detection on read-only variables does not degrade accuracy of

dependence detection. As static analysis is only used as a filter to reduce the overhead

of dependence profiling, any overly eager classification of an alias will be still captured

during the profiling stage. Thread-private pointers are handled in the same manner.

6.7 Empirical Evaluation

Due to restrictions on the available hardware at the time of evaluation, each scheme

has been split into two groups:

1. CPU-only schemes

2. GPU schemes

Each group targets a standard shared memory system. In the case of CPU-only schemes

this consists of four 8-core Intel XEON processors, and for the GPU scheme, two 6-

core Intel XEON processors with an NVIDIA Tesla K20 GPU. A full overview of each

target platform is available in Table 6.1.

For the evaluation of each speculation scheme, benchmarks have been selected from

the NAS Parallel Benchmark suite [2]. For these benchmarks there exist both standard

sequential and manually parallelised implementations. Each benchmark was specu-

latively parallelised using a profiled execution based scheme [44]. Loops detected as

probably parallel were then selected if their execution time consisted of greater than

1% of the total sequential execution time. Additionally, loops that could be proven

parallel using an existing static analysis tool [13] were parallelised without speculative

error-checking. An overview of each benchmark is available in Table 6.2.

Each benchmark was executed in a number of different configurations to determine

how well each speculative scheme performed:

Sequential
This is the baseline measurement that each speedup was compared to.

Manual Parallel
This is the upper bound of the performance obtainable by each benchmark when

6.7. Empirical Evaluation 105

CPU-only Schemes GPU Scheme

Host

Quad-Socket, Intel Xeon L7555 @ 1.9GHz

4 × 8-cores, 32 cores total

3MB L3-cache shared/8 cores (24MB/chip)

64GB DDR3 SDRAM @ 1333MHz

Dual-Socket, Intel Xeon E5-2620 @ 2.0GHz

2 × 6-cores w/ Hyperthreading

12 cores total, 24 apparent threads

2.5MB L3-cache shared/6 cores (15MB/chip)

16GB DDR3 SDRAM @ 1333MHz

Device N/A

NVIDIA Tesla K20

2496 cores @ 706 MHz

5GB GDDR5 SDRAM @ 2600MHz

OS openSUSE 12.3 (x86 64) kernel 3.7.10-1.1

gcc 4.7.2 build 20130108

Compiler
-O3 -fopenmp -lpthread -lm

-O3 -fopenmp -lOpenCL -lpthread -lm

OpenCL Version 1.1

Table 6.1: Hardware and software configuration details of the target platforms.

Benchmark Static
Loops

Probably-
Parallel

Selected
Loops

Sequential
Time

Block Tridiagonal (BT) 30 20 8 242.31

Conjugate Gradient (CG) 11 3 2 2.23

Embarassingly Parallel (EP) 0 1 1 53.38

Fast Fourier Transform (FT) 2 3 3 7.75

Integer Sort (IS) 0 1 1 1.08

Lower-Upper Symmetric Gauss-Seidel (LU) 19 6 6 89.84

MultiGrid (MG) 0 11 6 3.26

Scalar Pentadiagonal (SP) 0 60 21 102.70

Table 6.2: Benchmark statistics including (a) number of statically detected loops, (b)

number of additional probably-parallel loops detected, (c) number of probably-parallel

loops using >1% of the sequential execution time, (d) the sequential execution time in

seconds when run on the CPU-only platform.

106 Chapter 6. Automated Error Checking for Aggressive Parallelisation

hand tuned.

Unsafe Parallel
This is the automatically parallelised version using the profiling technique men-

tioned above. This execution is unsafe as static analysis has not proven that

data dependences do not exist; however, it is performed to measure the possible

speedup obtainable without speculative support.

Trace Only
This is the automatically-parallelised version, with memory traces recorded but

not scanned for data dependences. This is to provide analysis of the impact on

performance that the logging mechanism has.

Full Error Detection
This is the full error detection scheme at work.

Statistics Collection
This is a non–performance-based execution to collect statistics on how each

model performs.

Initially the performance of the parallelisation technique is evaluated in Section 6.7.1.

This is followed by an analysis of page table statistics and the impact of recording the

memory trace in Section 6.7.2. Each CPU-only scheme is then evaluated and compared

in Sections 6.7.3 and 6.7.4, with an evaluation of the hybrid CPU-GPU scheme in

Section 6.7.5. Finally, the impact of and solutions to incorrectly parallelising a loop

containing data dependences are discussed in Section 6.7.6.

6.7.1 Auto-Parallelisation Analysis

The speedups obtained using the automated parallelisation technique as executed on

the CPU can be found in Figure 6.12. As can be seen, an appreciable speedup is

obtained for all but one benchmark with speedups of up to 23.8 times with a geometric

mean of 4.42 times that of sequential execution when executing with 32 threads. In four

of the benchmarks (BT, CG, EP and FT), it is notable that the performance continues

to increase with the addition of further threads. However, for three of the benchmarks

(IS, MG and SP) the performance increase peaks at around 8–16 threads.

Figure 6.13 displays the speedup of the automated parallelisation technique compared

6.7. Empirical Evaluation 107

GeoMeanBT CG FT IS LU MG SP
0
1
2
3
4
5

6
7

8
9

10
11

2

4

8

12

16

20

24

28

32

S
p
e
e
d
u
p

EP
0

5

10

15

20

25

2

4

8

12

16

20

24

28

32

Figure 6.12: Performance of each automatically-parallelised benchmark executed on

the CPU compared to sequential execution.

GeoMean BT CG EP FT IS LU MG SP
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2

4

8

12

16

20

24

28

32

S
p
e
e
d
u
p

Figure 6.13: Performance of each automatically-parallelised benchmark compared to

manually parallelised execution.

108 Chapter 6. Automated Error Checking for Aggressive Parallelisation

Benchmark Loops Pages
Used

Memory
Used

Access
Efficiency

BT 8 11,744 92.75 MiB 99.07%

CG 2 32 1.25 MiB 99.77%

EP 1 64 1.5 MiB 100.00%

FT 3 16,384 129 MiB 97.52%

IS 1 928 8.25 MiB 61.65%

LU 6 1,440 12.25 MiB 98.20%

MG 6 1,856 15.5 MiB 58.54%

SP 21 1,664 14 MiB 99.03%

Table 6.3: Page usage statistics for 32-thread execution.

to the manually parallelised version. In most executions the automatically parallelised

version has worse performance than the manual version. This is unsurprising, as many

of the manual versions involve more complex or coarser parallelisation techniques and

have been fine tuned for optimal performance. This performance is nonetheless in

the range of 0.8–0.9 times the speed of the manual version, which still constitutes an

appreciable speedup over serial execution. It is also notable that in some cases the

automated process provides performance increases over that of the manual version.

An exceptional instance is the SP benchmark, which provides a speedup of up to 4.31

times over manual parallelisation. This appears to be due to the coarser-grained paral-

lelism that the manual version applies, introducing slowdowns associated with certain

parallelised sections, whereas the automated version simply executes those sections se-

quentially. In contrast the LU benchmark has the opposite issue, in that the fine-grained

parallelism implemented by the automated version introduces too many overheads for

each parallel section, thus preventing substantial speedups from being achieved.

6.7.2 Page Table Statistics

The efficacy of the page table structure can be evaluated in a number of ways. The most

important issues are: the impact it has on the overall memory footprint of each bench-

mark; how efficiently each access is recorded; and how much time is spent interacting

with the page table versus actual execution of the benchmark.

6.7. Empirical Evaluation 109

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

100
200
300
400
500
600
700
800
900

1000

BT

CG

EP

FT

IS

MG

SP

Threads

P
a

g
e

s
U

se
d

Figure 6.14: Pages used per-thread based on thread count

Due to the dynamic nature of the page table structure the impact it has on memory

usage varies depending on the program that is using it. A longer running parallel

section will likely interact with larger sections of memory, generating a much larger

trace than that of smaller parallel sections of a program. Table 6.3 presents the total

number of pages used and the overall memory usage caused by each benchmark when

running at 32 threads. As can be seen there is a wide variation in the number of pages

used by each benchmark ranging from as low as 32 pages (1 per thread) up to 16,384

(512 per thread). This obviously has a direct effect on the amount of memory required

to perform each trace again, ranging from as low as 1.25 MiB up to 129 MiB taking into

account both pages and directories. On average the memory footprint was 34.3 MiB.

The configuration of the page table used during evaluation was word-based tracking

within a 32-bit address space. This means that the page table was able to distinctly

identify between 230 different addresses. To provide perspective on the memory foot-

prints mentioned above, a standard bitset would require 128 MiB of space per thread,

or 4 GiB of storage space for 32-thread execution, on average 119 times the required

space compared to the page table structure. Comparing this to a more complex, cen-

tralised tracking structure such as that used by SPLSC, for both read and write vectors

using a short int as an access counter would again require 4 GiB of stage space. Pro-

grams using SPLSC would likely use techniques discussed in Section 2.3.6 to reduce

110 Chapter 6. Automated Error Checking for Aggressive Parallelisation

BT CG EP FT IS LU MG SP
0%

20%

40%

60%

80%

100%

Run Log

E
xe

cu
tio

n
 T

im
e

Figure 6.15: Execution breakdown during memory traces. Each bar represents a sep-

arate thread count at 2, 4, 8, 12,16, 20, 24, 28 and 32 left-to-right for each respective

benchmark.

this size dramatically; however, doing so without introducing the risk of false data

dependences requires advanced knowledge about the memory access patterns of each

program, adding significant complexity to the parallelisation process. This process has

also not yet been automated. In contrast, the page-table design automatically scales as

required and cannot trigger false dependences.

It is possible to look more closely at how each benchmark interacts with the page table

by analysing the page usage across a different range of executing threads. Figure 6.14

presents the maximum number of pages used by an unsafe parallel section for each

benchmark. In general the lower the quantity of threads executing, the larger number of

pages each thread interacts with. This indicates that as the number of threads grows, the

amount of additional memory required for memory traces shrinks. Notable exceptions

to this are when the threads already require a low number of pages, CG and EP, and

for the benchmark FT which remains constant per thread beyond four threads.

Page caches were introduced as a means to increase the efficiency of every access by

bypassing the lookup of the page directory. This was implemented by maintaining a

list of {tag, pointer} tuples, in this evaluation at a per-variable level. To inspect

how well page caches performed first requires a definition for an inefficient access. An

6.7. Empirical Evaluation 111

GeoMeanBT CG FT IS LU MG SP
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2

4

8

12

16

20

24

28

32

S
p
e
e
d
u
p

EP
0

5

10

15

20

25

2

4

8

12

16

20

24

28

32

Figure 6.16: Speedup of simple distributed detection scheme

inefficient access is one that causes a speculative cache miss; that is the most recent

speculative access for that variable occurred in a page different from the most recent

access. From this, cache efficiency percentage ecache can be defined as:

ecache = 100− 100×# inefficient accesses
total accesses

Table 6.3 provides the overall cache efficiency for each benchmark at 32-thread execu-

tion. As can be seen overall access efficiency is high with six of the eight benchmarks

performing at over 97% efficiency, and on average 89.22%. It is likely that for the

less accurate benchmarks, the memory traces could be used to identify which accesses

were causing cache misses and assign them their own cache, thereby further increasing

efficiency.

The final part of the page table evaluation relies upon how much time is spent record-

ing accesses compared to the amount of time spent executing the actual benchmarks.

Figure 6.15 presents this ratio for each benchmark executing at a number of different

thread levels. As can be seen the ratio is highly dependent upon the benchmark itself,

with some benchmarks performing many more speculative accesses during each par-

allel section than others. For those benchmarks that do not perform a large number of

speculative accesses (approximately half of them) the time spent recording each access

112 Chapter 6. Automated Error Checking for Aggressive Parallelisation

2 4 8 12 16 20 24 28 32
0

200

400

600

800

1000

1200

1400

1600

To
ta

l T
im

e
 (

M
ill

is
e

co
n

d
s)

0 4 8 12 16 20 24 28 32
0

200

400

600

800

1000

1200

1400

1600

Exe Check Reset

Figure 6.17: Execution time analysis for CG benchmark.

is relatively low — between 10 and 30% of the overall execution. For the other half

the impact of recording the memory traces can be quite high, with up to 85% of the

execution time being spent performing these traces. However in each case it is clear

that as the number of threads grows the impact of performing the trace decreases, with

the majority of the benchmarks performing within the original 10–30% range.

6.7.3 Simple Distributed Detection Scheme

Figure 6.16 provides the overall speedups of each benchmark across a range of thread

counts using the simple distributed detection scheme. The scheme managed to achieve

a speedup of up to 22.53×, with a geometric mean of 2.16× that over sequential exe-

cution with 32 threads (1.55× excluding EP). It is noticeable that speculative execution

scales better with certain benchmarks over others. Notably BT, EP and MG all con-

tinue to profit from introducing additional threads. CG, FT, IS and LU all appear to

hit a peak performance at 12–20 threads, while for CG and FT their counterpart re-

sults when run unsafely continue to improve with more threads. This suggests that

the checking mechanism is becoming a dominant part of the execution time. If EP is

6.7. Empirical Evaluation 113

GeoMeanBT CG FT IS LU MG SP
0

1

2

3

4

5

6

7

2

4

8

12

16

20

24

28

32

S
p
e
e
d
u
p

EP
0

5

10

15

20

25

2

4

8

12

16

20

24

28

32

Figure 6.18: Speedup of reduction-tree detection scheme

excluded, the average speedup peaks at 1.61× at 20 threads.

Only one benchmark consistently performs poorly, SP. Further analysis indicates that

this is due to the memory access patterns of each thread. During loop execution practi-

cally all accesses are performed in the same memory region by each thread, so they all

have pages assigned to the same regions. This causes an expensive check whereby ev-

ery thread has conflicting pages that must be scanned slowly. This benchmark would

benefit from smaller pages to allow for fewer conflicts, or from a centralised trace

structure allowing for a more optimised on-the-fly check.

Investigating the execution further, it is noticeable that the time spent checking for de-

pendence violations becomes the limiting factor with more threads. For benchmarks

such as CG, FT and IS, the loops that are being parallelised are small and not very

compute-intensive. However, the frequency with which they must be checked for de-

pendences causes their performance to deteriorate at higher thread counts. This is

demonstrated for the CG benchmark in Figure 6.17. As can be seen, at low thread

counts (<12) most of the time is spent performing the loop execution, and the time

spent checking for dependences is negligible. Beyond this point the time spent in ex-

ecution continues to decrease, but the check time increases at a faster rate, preventing

further speedup from being achieved. It is noticeable that the check time increases

linearly with respect to the number of threads. Page table reset times are negligible for

114 Chapter 6. Automated Error Checking for Aggressive Parallelisation

GeoMeanBT CG EP FT IS LU MG SP
0.5

0.75

1

1.25

1.5

1.75

2

2

4

8

12

16

20

24

28

32

S
p
e
e
d
u
p

Figure 6.19: Speedup of reduction tree detection scheme compared to simple dis-

tributed scheme

all executions.

6.7.4 Reduction-Tree Detection Scheme

Figure 6.18 provides the speedups for each benchmark when using the reduction-tree

detection scheme. The scheme managed to obtain up to 22.30×with a geometric mean

of 2.50× speedup compared to sequential execution with 32 threads (1.82× excluding

EP). As with the simple distributed scheme, BT, EP and MG continue to scale with the

addition of more threads; however now FT also continues to scale. CG, IS and LU still

peak at a lower thread count suggesting that the reduction scheme has the same prob-

lem with longer checks at higher thread counts. If the results of the EP benchmark are

excluded the average speedup peaks again at 20 threads with a speedup of 1.86×. Fi-

nally SP also suffers from the same excessive check times using the reduction scheme.

6.7.4.1 Comparison to Simple Distributed Scheme

Figure 6.19 provides the speedup of the reduction tree detection scheme compared to

the simple distributed scheme. As can be seen, at lower thread counts the two schemes

6.7. Empirical Evaluation 115

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

200

400

600

800

1000

1200

1400

1600

Check

Check

Exe

Reset

Exe

Reset

To
ta

l T
im

e
 (

M
ill

is
e

co
n

d
s)

Exe

Check

Reset

Exe

Check

Reset

Exe

Check

Reset

Exe

Check

Reset

Reduction

Simple

Figure 6.20: Execution time analysis of CG benchmark with both simple and reduction

tree schemes

perform very similarly; occasionally the simple scheme performing slightly better al-

beit very nominally. For some benchmarks that do not perform many checks, such

as EP and LU, this remains the case across all thread counts: the time spent check-

ing is small in comparison to the execution of the benchmark. However, for every

other benchmark executing with 8–16 threads and higher the reduction tree scheme

becomes appreciably faster, with a geometric mean of 1.16× faster at 32 threads and

up to 1.98× faster. For BT this speedup continues with additional threads. For IS and

MG the speedup remains relatively constant at higher thread counts. Despite neither

scheme managing to obtain a speedup for the SP benchmark it is clear that the reduc-

tion scheme does not slow down the execution as much. For the FT benchmark the

speedups continue at higher thread counts although there is a lull at around 12 to 20

threads, due to the performance of the simple scheme hitting its peak.

Investigating the CG benchmark reveals that its performance using the reduction scheme

is significantly better, executing almost twice as fast at higher thread counts. Fig-

ure 6.20 provides the execution times between execute, check and reset for the CG

benchmark for both schemes across a range of threads. As can be seen for both

schemes the execute times are roughly the same, and the reset times are negligible.

However, looking at the checking times for each, there is a significant jump for the

116 Chapter 6. Automated Error Checking for Aggressive Parallelisation

GeoMeanBT CG FT IS LU MG SP
0

1

2

3

4

5

6

7

8

9

2

4

8

12

16

20

24

S
p
e
e
d
u
p

EP
0

2

4

6

8

10

12

14

16

2

4

8

12

16

20

24

Figure 6.21: Speedup of hybrid CPU-GPU detection scheme

simple detection scheme above 8 threads. This is partially due to the architecture

of the computer used for benchmarking, as beyond 8 threads execution must be per-

formed across multiple processors. The reduction scheme also continues to grow as

would be expected, but at a much slower rate than that of the paged scheme, allowing

for continual improvements in execution times at higher thread levels.

6.7.5 Hybrid CPU-GPU Detection Scheme

Figure 6.21 shows the speedup of benchmarks using the CPU-GPU detection scheme.

These benchmarks were evaluated on an alternative platform from the CPU-only based

schemes due to the lack of availability of a GPU on the original platform, therefore

each result was only able to be tested at up to 24 threads on a hyperthreaded plat-

form. Full details of the platform are listed in Table 6.1. The sequential versions of

each benchmark were re-executed on the GPU platform to give an accurate baseline

comparison.

Overall the speedups obtained in this evaluation performed worse than the CPU-only

evaluation. This is due to the lower thread count available and also the use of hyper-

threading to obtain threads beyond 12. Hyperthreading is a form of threaded execution

that alternates execution of two threads on the same core, sharing all caches and other

6.7. Empirical Evaluation 117

GeoMean BT CG FT IS LU MG SP EP
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2

4

8

12

16

20

24

S
p
e
e
d
u
p

Figure 6.22: Speedup of Hybrid CPU-GPU Detection Scheme Compared to Reduction-

Tree Scheme

resources of that core between each thread introducing additional restrictions on the

performance of a thread, especially on the utilisation of CPU caches during memory

tracing. Despite this, the evaluation was still able to obtain substantial speedups across

a number of the benchmarks, up to 14.74× with a geometric mean of 1.99× compared

to sequential when executing at 24 threads. Similar to the CPU models both BT and FT

were able to achieve further performance increases with the addition of more threads,

while IS, LU and MG peaked at lower thread counts. In this case they peaked at 12

threads, at the limit of one thread per CPU core. Unfortunately the MG benchmark

was only able to obtain a small speedup 1.10×: as with the CPU-only versions, the use

of hyperthreading made it impossible to obtain speedups beyond 12 threads. The CG

benchmark continued to achieve performance increases at higher thread counts, but

lost some performance at the highest count (24 threads). This is likely due to the fact

that communications with the GPU were performed in a separate thread, thus influ-

encing the performance and timings of the speculative threads. As with the CPU-only

versions the SP benchmark was not able to achieve a speedup.

To compare this to a CPU-only scheme, each benchmark was re-executed on the new

platform using the reduction-tree scheme. The speedup obtained by the CPU-GPU

scheme compared to the CPU-only scheme can be seen in Figure 6.22. As can be seen

118 Chapter 6. Automated Error Checking for Aggressive Parallelisation

BT CG EP FT IS LU MG
0

10

20

30

40

50

60

70

80

90

100

P
o

ss
ib

le
 F

a
ilu

re
s

(%
)

Figure 6.23: Percentage of Kill-and-Restart executions that can fail due to a depen-

dence violation before overall performance is worse than sequential.

the hybrid CPU-GPU scheme performs worse than the CPU-only scheme in most, but

not all cases. However this performance is roughly at 0.8× speedup or higher, with a

geometric mean of 0.96× or higher. The worst example is the SP benchmark which

performs poorly in all speculative cases. The poor performance is due to the costs

associated with transferring data to the GPU, a situation that will likely improve as

more modern APU designs, which integrate both CPU and GPU into the same wafer,

become available. An alternative solution would be to fallback to a CPU-only scheme

when the GPU is busy.

6.7.6 Dependence Violations

It is perhaps a little surprising that no dynamic dependence violations were detected

in any of the above experiments. This indicates that the profile-guided parallelisation

approach correctly identifies probably-parallel loops. While it is easy to construct a

counter example, it suggests that many loops are genuinely parallel even though static

analysis is unable to prove this. In fact, comparing the loops identified through analysis

with those parallelised in the manually derived OPENMP reference implementation of

the benchmarks confirm their equivalence (subject to insertion of speculation code).

Figure 6.23 displays the percentage of kill-and-restart executions (in their best con-

figuration) that can fail due to a dependence violation before the overall performance

becomes worse than sequential execution. The majority of benchmarks can have over

6.8. Conclusion 119

half of their executions fail due to a dependence violation and still obtain a perfor-

mance increase. In fact, all but one of the benchmarks can have over 40%, or two

executions in every five, fail due to a dependence violation and still obtain an overall

performance increase. For the EP benchmark, 19 out of every 20 executions can fail

due to a dependence violation and still obtain a performance increase.

One advantage of most benchmarks’ performance peaking at fewer than the total quan-

tity of threads is that this leaves additional computation units available for other uses.

This provides us with enough additional resources to execute the safe, sequential ver-

sion of the application in parallel using the competitive scheduling scheme. The lack

of CPU resource contention allows for a worst-case execution time within 5%, on av-

erage, of the sequential execution time, being affected only by memory bandwidth

limitations.

6.8 Conclusion

This chapter has demonstrated that often full SW-TLS schemes are unnecessary and

that a more lightweight error-checking scheme can be used in its place. It has pre-

sented an automated way to extract and implement parallel execution through a com-

bination of profiled-based parallelism detection and static analysis to detect variables

that are the cause of many may dependences that restrict traditional auto-parallelisation

techniques. Combined with error-checked execution this chapter has shown that sub-

stantial speedups can be achieved using this technique, with speedups of up to 22.53×
and a geometric mean of 2.50× executing at 32-threads. By providing such speedups it

has shown that even when dependences may exist in a program, but rarely surface, in-

creased performance can still be obtained, with on average 2 in every 5 executions able

to fail before performance becomes worse than sequential execution. In a competitive

scheduling scenario this could be limited to a worst case of approximately sequential

speed.

This chapter has also explored the use of auxiliary units, in this case a GPU, for the

purpose of offloading some of the cost of error-checked execution. It has demon-

strated that this technique, whilst performing slightly worse than the CPU-only, with

a geometric mean of 0.96× speedup, will become viable with upcoming hardware

improvements.

Now that GPU-based detection schemes have been shown to be a possible solution, the

120 Chapter 6. Automated Error Checking for Aggressive Parallelisation

next chapter introduces a completely GPU based speculation scheme, allowing both

execution and dependence detection to be performed on a general purpose GPU.

Chapter 7

GPU-Based Speculation

GPUs have become ubiquitous in a wide range of computing devices and consumer

electronics appliances. They provide a powerful resource for parallel processing and

can deliver great performance improvements for suitably mapped algorithms. Realis-

ing this potential, however, is challenging due to the complexity of their programming.

Auto-parallelisation technology can greatly reduce the barrier for GPU programming

by automatically generating parallel code from sequential programs. However, auto-

parallelisation targetting GPUs suffers from the same static analysis restrictions that

affect CPU-targetted auto-parallelisation techniques. Fortunately, the same profiling

techniques used to complement traditional static analysis in CPUs can also be applied

to GPU targetted parallelisation, suffering from the same potentially unsafe parallel

implementations. Speculative execution is the prime candidate to add safety to these

implementations.

This chapter presents a solution that combines profile-guided parallelisation, OPENCL

code generation and software thread-level speculation (SW-TLS) to exploit highly-

likely parallelism on the GPU. This solution exploits static and profile-based dy-

namic dependence analysis to detect parallelism and to automatically generate parallel

OPENCL code with in-place dependence checking. This solution exploits that parallel

loop candidates are “almost always” genuinely parallel, but are not amenable to static

analysis.

Section 7.1 provides an example situation that provides the motivation for speculative

execution on a GPU. Section 7.2 presents the customised workflow necessary to per-

form speculative execution on a GPU along with the protection mechanism used to

121

122 Chapter 7. GPU-Based Speculation

1 void b i n v c r h s (double l h s [5] [5] ,

2 double c [5] [5] , double r [5])

3 {
4 . . .

5 l h s [1] [1] = l h s [1] [1] − c o e f f ∗ l h s [0] [1] ;

6 c [1] [1] = c [1] [1] − c o e f f ∗c [0] [1] ;

7 . . .

8 }
9 . . .

10 void y s o l v e c e l l () {
11 . . .

12 f o r (j =1 ; j<g r i d p o i n t s [1]−1; j ++){
13 f o r (k =1; k<g r i d p o i n t s [2]−1; k ++){
14 b i n v c r h s (l h s [i] [0] [k] [BB] ,

15 l h s [i] [0] [k] [CC] ,

16 r h s [i] [0] [k]) ;

17 }
18 }
19 }

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Sp
ee

du
p

 S t a t i c p r o v a b l e
 S t a t e - o f - t h e - a r t
 O u r a p p r o a c h

(a) Source code of an example loop (b) Speedups obtained for the program

Figure 7.1: An example that static analysis fails to discover parallelism. No speedups

were observed by only exploring statically provable parallelism. Profiling-based analy-

sis, on the other hand, can provide additional information: no dependencies have been

encountered in any trial run. By exploiting this information, the GPU can be used to exe-

cute both statically and probably parallel loops (with speculation support) and to achieve

speedups rather than a slowdown. This approach gives a speedup of 2.9x which is 2

times faster than a speedup of 1.45x given by the state-of-the-art GPU speculation

scheme.

ensure correct execution. Section 7.3 details the design of the data structures used

to monitor memory accesses and the methods in which data dependences are de-

tected. Section 7.4 discusses the code transformation and compilation framework.

Section 7.5 with a thorough empirical evaluation in Section 7.6 and final conclusions

in Section 7.7.

7.1 Motivation

Consider the code fragment in figure 7.1 (a). This loop is extracted from the BT bench-

mark from the sequential version of the NAS benchmark suite. While conservative,

static analysis fails to exploit the parallelisation opportunity of this loop due to the

7.2. Execution Workflow 123

inter-procedural call to function binvcrhs at line 14. Here, an output dependence (that

is, write-after-write) to array lhs has to be assumed. Without further information, this

loop would have to be executed sequentially on the CPU (as it is too expensive to do

so on the GPU). Although it is possible to execute some loops on the GPU where they

are statically provable to be parallel, additional synchronisation will have to be intro-

duced and communications between the sequential CPU and parallel GPU executions.

The additional overhead, however, could be expensive and can outweigh the benefit of

GPU parallel execution. In fact, as can be seen from Figure 7.1 (b), doing so leads to a

slowdown of 3.6× over the sequential code on a NVIDIA GTX 580 platform described

in Section 7.5.

Profile-based dependence analysis, on the other hand, provides the additional informa-

tion that no actual data dependence inhibits parallelization for the given sample inputs.

While it is not possible to prove the absence of data dependences for every possible

input, the loop can be classified as a highly-likely parallel candidate. The loop can then

be speculatively executed in parallel on the GPU with dependence violation checking

together with a rollback scheme to ensure correctness if a true dependence violation

is discovered at runtime. This is safe and potentially fast. As shown in Figure 7.1(b),

a state-of-the-art GPU speculation scheme, Paragon [37], gives a speedup of 1.45×
for this particular benchmark. Though the result of Paragon is encouraging, it can be

further improved. Paragon requires a large buffer to record the speculative accessing

addresses, which will be used in a separated dependence checking procedure to check

the potential violations of speculative accesses. This, however, can result in expen-

sive indirect memory accessing overhead on the GPU. It is preferable to avoid this

overhead.

As described later in this chapter, the novel in-place dependence checking approach

does not require a buffer to store the speculative accessed addresses. It gives a speedup

of 2.9× — twice as fast as Paragon. With a novel dependence checking scheme, a

compiler framework is built to automatically generate parallel OpenCL code from se-

quential code using dependence profiling information and without user interaction,

allowing the exploitation of GPU parallelism for legacy code that is highly likely to be

parallel.

124 Chapter 7. GPU-Based Speculation

CPU GPU

serial

S
equent ial
process

L1

L2

L3

CPU GPU

serial

S
equen ti al
process

L1

L2

L3

CPU GPU

serial

S
equent i al
process

L1

L2

Violation
detected

L2:
Probably
Parallel

Serial
L1:
Parallel

L3:
Sequential

(a) (b) (c) (d)

Figure 7.2: Three different parallel execution scenarios for the sequential program

shown in (a): speculative execution runs faster with no conflict (b); sequential execution

runs faster (c); violations are found for speculative execution (d).

7.2 Execution Workflow

Ideally all suitable parallel executions would be performed solely on the GPU. How-

ever, by their nature, speculative parallel executions can fail despite prior dependence

profiling. Due to the memory architecture and traditional execution processes that

a GPU provides, it is infeasible to provide version control and rollback mechanisms

on the device itself. Doing so would cause excessive uncoalesced accesses to global

memory, and create code that is unreasonably divergent between each thread’s path of

execution. Instead an alternative execution workflow must be used to provide a suitable

version control system.

Similar to that of Paragon, a competitive scheduling scheme is used: a sequential ver-

sion of the program is executed simultaneously alongside the parallelised program on

a spare core of the host CPU. If a dependence violation is reported, the speculative

parallel execution is simply aborted, with the result produced by the safe, sequential

run as the output of the program. As an added benefit, competitive scheduling caps the

maximum execution time to that of the sequential program.

Figure 7.2 depicts the competitive scheduling scheme. This example contains three

loops: a statically proven parallel loop L1, a probably parallel loop L2, and a stati-

cally proven sequential loop L3. In this scheme, loops L1 and L2 will be executed

on the GPU and the sequential loop L3 will be executed on the host CPU. There are

three possible scenarios. If the speculative version finishes first and does not observe

any dependence violations, it terminates the sequential version (Figure 7.2 (b)). If

7.3. Speculative GPU Execution 125

the sequential version finishes first, it will abort the parallel speculative version (Fig-

ure 7.2 (c)). Finally, if the speculative version detects a dependence violation, it aborts

and the sequential version will eventually finish successfully (Figure 7.2 (d)).

7.3 Speculative GPU Execution

This sections presents the GPU-based speculative execution process. The scheme pre-

sented is inspired by a CPU-based SW-TLS scheme, SPLIP [30]. Proposed is an eager,

in-place dependence checking scheme for GPUs. Checking only needs to be applied

to speculative memory references in probably parallel loops. Statically-provable par-

allel loops require no runtime checking at all. Dependences are checked in-place and

on-the-fly, and any violation is reported to the control thread on the CPU.

The design and use of the data structures required to log memory traces are detailed

in Section 7.3.1. Details of how dependence violations are detected and the types of

violation that are supported is presented in Section 7.3.2. Finally a comparison to

another GPU detection scheme is presented in Section 7.3.3.

7.3.1 Speculative Data Structures

Due to the eager nature of this design, centralised data structures are used to record

each memory trace. However, unlike traditional CPU execution, GPU execution pre-

vents the use of several programming paradigms that must normally be considered dur-

ing speculative execution. Notably, the use of pointer arithmetic is heavily restricted,

disallowing the possibility of overlapping arrays and pointer aliasing. This allows the

use of multiple, per-variable memory traces without the risk of cross-trace dependence

violations going undetected.

As discussed in Section 2.3.6.3, per-variable traces can dramatically reduce the size of

speculative data structures and allow for simpler and more customisable address hash-

ing functions. In the evaluation of this work, the compactness of each trace allowed a

perfect hash to be used, preventing the possibility of false dependences.

The trace structure used is similar to that used by SPLIP. Each trace consists of

two centralised arrays of counters, a read log and a write log, with each counter

storing the highest iteration to access that location at a given moment. Figure 7.3

126 Chapter 7. GPU-Based Speculation

1 double specLD double (g l o b a l double ∗a , g l o b a l i n t ∗wr log ,

2 g l o b a l i n t ∗ r d l o g , i n t i t e r i d , g l o b a l i n t ∗ f l a g)

3 {
4 double v a l u e ;

5 atom max (r d l o g , i t e r i d) ;

6 v a l u e = a [0] ;

7 i f (∗ w r l o g > i t e r i d) /∗ C o n d i t i o n 1 ∗ /

8 ∗ f l a g = FAIL ;

9 re turn v a l u e ;

10 }
11

12 double s p e c S T d o u b l e (g l o b a l double ∗a , g l o b a l i n t ∗wr log ,

13 g l o b a l i n t ∗ r d l o g , i n t i t e r i d , g l o b a l i n t ∗ f l a g , double v a l u e)

14 {
15 atom max (wr log , i t e r i d) ;

16 i f (∗ w r l o g > i t e r i d) { /∗ C o n d i t i o n 2 ∗ /

17 ∗ f l a g = FAIL ;

18 }
19 a [0] = v a l u e ;

20 i f (∗ r d l o g > i t e r i d) { /∗ C o n d i t i o n 3 ∗ /

21 ∗ f l a g = FAIL ;

22 }
23 re turn v a l u e ;

24 }

Figure 7.3: The OpenCL implementation of a speculative load and store. Dependence

checking is combined with speculative loads and stores.

shows the OPENCL implementation of speculative load and store operations. For each

speculatively-accessed address, the corresponding entry in either the read or write log

is updated, that is, the rd log and wr log variables in Figure 7.3. As OPENCL does

not support barriers for GPU threads across work groups, the atom max operation pro-

vided by OPENCL was used to ensure only the highest iteration ID is stored in the log

(lines 5 and 15). The value of each log entry monotonically increases over time.

7.3.2 Violation Detection

As discussed, dependence detection is performed eagerly. This takes place during

speculative loads and stores, so checks for dependence violations only need to be per-

formed for addresses that are actually accessed at runtime.

7.3. Speculative GPU Execution 127

(a) flow dependence

Sequential

tim
e

Runtime Violation

(b) anti dependence (c) output dependence

i=0:

i=1:

Wp

Rp

Thread 1Thread 0

*rd_log=1

*wr_log=0
Wp

Rp

Sequential

tim
e

Runtime Violation

i=0:

i=1:

Rp

Wp

Thread 1Thread 0

*wr_log=1

*rd_log=0
Rp

Wp

Sequential

tim
e

Runtime Violation

i=0:

i=1:

Wp

Wp

Thread 1Thread 0

*wr_log=1

*wr_log=0
Wp

Wp

Figure 7.4: Three cross-iteration dependences and the possible runtime violations due

to GPU thread scheduling. All three violations can be successfully detected by the

dependence checking scheme with the read (rd log) and write (wr log) buffers as

shown in Figure 7.3.

7.3.2.1 Speculative Load

A speculative load is successful if there has been no speculative store to the same

memory location by a GPU thread that executes a later loop iteration. This condition

is checked in line 7. If the memory location has been written to by a later iteration

(*wr log > iter id), a violation will be reported (line 8).

7.3.2.2 Speculative Store

Conversely, a speculative store is successful as long as there have been no speculative

accesses (either loads or stores) to the same address by later iterations. This condition

is checked in lines 16 and 20. If a later iteration has already written to the same location

(*wr log > iter id) or read from it (*rd log > iter id), a violation is detected.

An added benefit of the eager design becomes apparent if cross-iteration dependent

accesses are executed in the correct sequential order by virtue of the GPU thread sched-

uler: this situation is correctly handled, without a violation being flagged.

The parallelisation scheme proposed maps each loop iteration to an OPENCL work

item to be executed by one GPU thread. Hence, no dependence violations are possible

within a single iteration. Cross-iteration dependence violations, on the other hand, are

possible, due to the arbitrary order of thread scheduling on the GPU. In this case, Fig-

ure 7.4 enumerates all three possible cross-iteration violations. Shown is the sequential

dependence of two consecutive iterations that must be respected and the potential vio-

lation due to GPU thread scheduling.

128 Chapter 7. GPU-Based Speculation

7.3.2.3 Flow Dependence

Figure 7.4 (a) illustrates a violation of a flow dependence (read after write), where

the use of p in iteration 1 happens before p is updated by thread 0, which executes

iteration 0. This violation will be detected in function specST. In this case, *rd log

== 1 and iter id == 0 and Condition 3 (line 18) of Figure 7.3 holds, such that a

violation will be reported.

7.3.2.4 Anti Dependence

In Figure 7.4 (b), the use of p happens after it has been updated by the a later iteration.

This causes an anti-dependence (write after read) violation, which will be captured

by function specLD. In this case, *wr log == 1 and iter id == 0 and Condition 1

(line 7) of Figure 7.3 holds, such that a violation will be reported.

7.3.2.5 Output Dependence

Figure 7.4 (c) is an output dependence (write after write) violation. After thread 1 has

updated p, this memory location is overwritten by thread 0, which executes a previous

iteration. In this case, *wr log == 1 and iter id == 0 and Condition 2 (line 16) in

Figure 7.3 holds, such that a violation will be reported.

7.3.3 Comparison to Other Approaches

The proposed speculative checking scheme has several advantages when compared to

other state-of-the-art GPU thread level speculative schemes, such as Paragon [37]. Un-

like Paragon, this scheme does not explicitly record addresses of speculative memory

accesses. Instead checking is performed on-the-fly as an integral part of the speculative

accesses. As such, this scheme does not have the indirect memory access overhead

resulting from the address bookkeeping buffer, a problem which hampers Paragon’s

performance. This scheme is particularly well suited for sparse data applications (e.g.

using sparse matrices) where only a small proportion of the total index space is ac-

cessed by the program. Unlike Paragon, load and store logs (rd log and wr log) can

be reused between multiple speculative kernels without the need for clearing them in

7.4. Compilation and Code Transformations 129

Static & Profile-
based Analysis

OpenCL Code
Generation Code Merge

Figure 7.5: The compiler framework first uses static and profile-based analysis to iden-

tify parallel candidates. Those parallel candidates are then translated into OpenCL ker-

nels. Dependence checking code is added to perform dependence checking for those

candidates that cannot be statically proven to be parallelisable but no dependence vio-

lation was discovered during profiling. Finally, the generated parallel OpenCL program

is merged with the original sequential program as output.

between. Finally, Paragon uses a naive violation-detection scheme where an output de-

pendence violation will be reported if there is more than one write to the same memory

address. This naive scheme may cause false positives (that is, a successful speculative

execution is reported as a violation) when an address has been updated multiple times

within the same loop iteration or a write dependence is honoured. By contrast, the

proposed precise violation detection scheme is exact and does not suffer from this

problem.

7.4 Compilation and Code Transformations

Figure 7.5 depicts the compilation framework for the proposed scheme. The compiler

uses three steps to generate parallel GPU code: parallelism detection, OPENCL code

generation and code merging.

7.4.1 Parallelism Detection

This work targets loop-level parallelism. In particular, static analysis is used to sep-

arate definitely-sequential and definitely-parallel loops from other loops, which may

or may not be parallel. For these possibly-parallel loops the scheme relies on depen-

dence profiling [44, 47] to extract those loops which are probably parallel. These

loops are marked as probably parallel if no cross-iteration dependences have been

observed during any profiled execution using different data inputs. These loops are

candidates for speculative parallel execution. The output of this stage is a program

130 Chapter 7. GPU-Based Speculation

Sequential Code

Static
Analysis

Instrumentation

Instrumented
Code

Instrumented
Binary

Program
inputs

Trace File

Dependence
Analysis

Annotated
Parallel Code

Figure 7.6: The process of profile-based dependence analysis. The compiler only uses

profile-guided analysis for code regions where static analysis has bailed out.

with OPENMP-like annotations to parallel and probably-parallel loops, which include

privatisable variables.

Figure 7.6 illustrates the hybrid static and dynamic parallelism detection approach.

Static analysis uses a customised memory dependence analysis path from LLVM v3.4.

Profile-guided analysis with similar capabilities to those of [44] is then performed, ex-

cept instrumenting only those memory operations that previous static analysis could

not resolve with certainty. The original, sequential application is recompiled and ex-

ecuted with several different inputs to generate traces of memory operations. Loop

traces are further analysed to determine if data dependences occurred during execu-

tion. Any loop that does not contain cross-iteration data dependences is then marked

as probably parallel. Additionally, traces can be used to support static reduction recog-

nition.

7.4.1.1 Speculative Variables

Tracking speculative memory accesses is expensive, so it is desirable that only those

accesses that could potentially cause a dependence violation are tracked. Here static

analysis generates a list of variables that require speculative tracking — those which

are subject to may-dependences. In particular, accesses to read-only and thread-private

are variables not tracked. For the remaining speculative accesses suitable wrappers are

inserted which invoke the appropriate checking functions.

7.4.2 OpenCL Code Generation

The annotated program is passed to an OPENCL code generator, which automatically

converts data-parallel loops and parallel reduction loops into OPENCL kernels. Each

data-parallel loop is translated to a separate kernel using the OPENCL APIs, where each

7.5. Experimental Setup 131

Intel CPU NVIDIA GPU

Model Core i7 GTX 580

Core Clock 3.6 GHz 1544 MHz

Core Count 6 (12 with HT) 512

Memory 12 GB 1.5 GB

Peak Performance 122 GFLOPS 1581 GFLOPS

Table 7.1: Hardware platform

iterator of the loop is replaced by a global work-item ID. Checking code is added to

speculative references, which may lead to a dependence violation in probably-parallel

loops. Figure 7.7 provides a simplified OpenCL-based code for the statically undecid-

able parallel loop shown in Figure 7.1.

7.4.3 Code Merging

The last compilation stage merges the generated parallel OPENCL code with the orig-

inal, sequential program into a single program. As such, the output program consists

of both the original, safe implementation in addition to the generated OPENCL parallel

code.

7.5 Experimental Setup

7.5.1 Platform

This approach has been evaluated on a CPU-GPU mixed system with an Intel Core

i7 CPU and an NVIDIA GTX 580 GPU. The system runs with openSUSE 12.3 with

Linux kernel 3.7.10. Table 7.1 gives detailed information of the platform.

7.5.2 Benchmarks

The NAS benchmark sequential v.2.3 suite was used, for which manually parallelised

CPU and GPU implementations are available. To parallelise the code, a profiling-based

132 Chapter 7. GPU-Based Speculation

1 void b i n v c r h s s p e c (g l o b a l double (∗ l h s) [5] ,

2 g l o b a l i n t (∗ r d l o g l h s) [5] ,

3 g l o b a l i n t (∗ w r l o g l h s) [5] ,

4 . . . ,

5 g l o b a l i n t ∗ s p e c f l a g ,

6 g l o b a l i n t i t e r i d)

7 {
8 . . .

9 r v a l 0 = specLD double (& l h s [1] [1] ,

10 &w r l o g l h s [1] [1] , & r d l o g l h s [1] [1] ,

11 i t e r i d , s p e c f l a g) ;

12

13 r v a l 1 = specLD double (& l h s [0] [1] , . . .) ;

14

15 / / s p e c u l a t i v e l y s t o r e t h e r e s u l t t o l h s [1] [1]

16 specST double ((r v a l 0−c o e f f ∗ r v a l 1) , &l h s [1] [1] ,

17 &w r l o g l h s [1] [1] , &r d l o g l h s [1] [1] ,

18 i t e r i d , s p e c f l a g) ;

19 . . .

20 }
21

22 k e r n e l void y s o l v e c e l l L 0 (. . .)

23 {
24 . . .

25 i t e r i d = g e t g l o b a l i d (1) ∗ g e t g l o b a l s i z e (0)

26 + g e t g l o b a l i d (0) + i n i t i t e r n u m ;

27 . . .

28 b i n v c r h s s p e c (lhs , r d l o g l h s , w r l o g l h s ,

29 lhs , r d l o g l h s , w r l o g l h s ,

30 rhs , r d l o g l h s , w r l o g l h s ,

31 s p c f l a g , i t e r i d) ;

32 }

Figure 7.7: A simplified OpenCL-based code for the statically undecidable parallel loop

shown in Figure 7.1. A speculative version of the original function binvcrhs is gener-

ated in which every access to the speculative variable lhs is replaced with a speculative

load/store operation.

7.5. Experimental Setup 133

auto-parallelisation tool was used to analyze the data dependences and generate paral-

lel OpenCL code. The tool uses speculative checking to parallelise loops that are found

to be parallelisable during profiling but cannot be statically proved parallelisable. For

all loops that can be statically proven to be safe to parallelise, the tool parallelises them

straightforwardly. The compiler parallelises up to three levels of nested loops, to cre-

ate as many GPU threads as possible. Whenever possible, CPU-GPU communication

and synchronisation was avoided by running a parallel loop on the GPU. Loops that

accounted for less than 1% of the whole-program execution time were also avoided un-

less there was a consecutive parallel or probably parallel loop candidate after it. This

was so that a CPU-GPU synchronisation point could also be avoided.

7.5.3 Compiler and Evaluation Runs

All programs were compiled using GCC 4.4.7 with the -O3 option. Each experiment

was repeated five times and the geometric mean execution time was recorded. All the

benchmarks were profiled using the smallest input provided by the benchmark (class S)

and evaluated with a larger input class (class A).

7.5.4 Comparison

This approach is evaluated against Paragon [37], the closest competitor. In Paragon,

probably-parallel loops are discovered at program runtime by profiling loops that are

statically undecidable. However, experimentation revealed that doing so is very ex-

pensive. To provide a fair comparison, the profiling stage was performed offline and

Paragon was provided with the same probably-parallel code, forcing speculation to

occur on exactly the same loops for each approach. Therefore, only the efficiency of

speculation rather than accuracy of parallelism discovery and profiling overhead was

evaluated. The Paragon scheme relies on OpenCL code generation. Again, the same

OpenCL code generator was used to provide a fair evaluation. In addition to Paragon, a

comparison of the approach is provided to two manually parallelised implementations

of the NAS benchmark suite: an OPENMP version and an OPENCL implementation

(SNU NPB [40]). Both versions were implemented by independent programmers. The

two manual implementations provide a good estimation of the upper-bound perfor-

mance achievable with the help of user assistance.

134 Chapter 7. GPU-Based Speculation

B T C G E P F T I S L U M G S P G e o - M e a n
0
1
2
3
4
5
6
7
8

Sp
ee

du
p

9 9 x

Figure 7.8: Speedups over the sequential execution of the approach. A geometric mean

speedup of 3.2× was acheived and parallel execution is never significantly slower than

sequential execution.

7.6 Empirical Evaluation

In this section the approach is evaluated against the sequential baseline followed by

a comparison of the approach to a scheme that only parallelises statically decidable

loops on GPUs. This is followed by comparisons to a state-of-the-art GPU speculation

scheme and the manually parallelised implementations. Finally, a closer look is taken

at the limitations of static analysis and the speculation overhead, with a discussion of

dependence violations.

7.6.1 Overall Results

Figure 7.8 shows the speedups achieved by the scheme. The performance numbers pre-

sented are speedups over the sequential execution on the CPU. The scheme achieves a

geometric mean speedup of 3.2×. Furthermore, by employing competitive-scheduling

the scheme has never significantly slowed down the program.

As can be seen from Figure 7.8, exploiting GPU parallelism for probably-parallel loops

can realise a great performance improvement. This is exemplified by the embarrass-

ingly parallel benchmark EP, where a speedup of 99× was observed. Parallel GPU

execution can be of benefit for other benchmarks too. For benchmarks BT, CG and SP,

a speedup of at least 2.6× and up to 7× was achieved. For benchmarks FT and MG,

7.6. Empirical Evaluation 135

B T C G L U S P0
1
2
3
4
5
6
7
8

Sp
ee

du
p

 S t a t i c a l l y S a f e
 O u r A p p r o a c h

Figure 7.9: Comparisons of the statically parallelised version and the in-place GPU

speculation scheme. The in-place scheme achieves substantial speedups on most

benchmarks, with the static version acheiving only slowdowns.

only modest speedups were achieved due to the available parallelism and cost of spec-

ulation. For benchmarks LU and IS, no speedups were observed on the platform. For

LU, a new algorithm is required to obtain improved performance on the GPU [40, 12].

For IS, the parallel loop only accounts for 27% of the sequential execution and it is not

worth parallelising it on the GPU. Nonetheless, the competitive-scheduling scheme

caps the execution time to the time of the sequential run if the parallel GPU execution

is not profitable.

7.6.2 Comparison with the Statically Safe Approach

Presented is a comparison of the new approach to a conservative approach that only

parallelises those statically proven parallel loops on the GPU, running the rest sequen-

tially on the CPU. Obviously, no speculation is needed for such a scheme but data

transfers and synchronisation are required to synchronise between the CPU and the

GPU threads.

Figure 7.9 compares the new approach with such a statically safe scheme. Here, some

of the benchmarks are omitted because static analysis fails to discover any parallelism

in them. As can be seen from this figure, no speedups were observed for the conser-

vative, safe scheme. This is due to the communication and synchronisation overhead

associated with the switch between the CPU and GPU executions, where shared vari-

ables have to be synchronized among the two devices. These costs outweigh the bene-

136 Chapter 7. GPU-Based Speculation

B T C G E P F T I S L U M G S P
0
1
2
3
4
5
6
7
8 9 9 x

Sp
ee

du
p

 P a r a g o n
 O u r S c h e m e

8 3 x

Figure 7.10: Comparison of Paragon and the in-place GPU speculation scheme. The

in-place approach achieves higher speedups on more benchmarks when compared to

Paragon.

fit of GPU parallel executions. The new approach, by contrast, avoids these overheads

by running two consecutive static and probably-parallel loops on the GPU so that all

data can be kept on the GPU and otherwise expensive CPU-GPU data transfers can be

avoided. Unlike the disappointing results of the static scheme, the new profile-based

GPU speculation scheme is able to achieve speedups for all the four programs except

LU (where a change of algorithms is required to achieve speedups on the GPU [40]).

Overall, static parallelisation technology is too conservative to exploit GPU parallelism

despite the abundant available parallelism for the majority of benchmarks. By contrast,

the new approach outperforms the static parallelisation approach by a factor of seven.

7.6.3 Comparison with Paragon

Figure 7.10 compares the new GPU speculation scheme with Paragon. The perfor-

mance achieved by co-running the sequential code has been factored out so that the

focus is solely on the quality of the GPU speculation scheme. Note that the same

OPENCL code optimizations were applied to both approaches; therefore, the perfor-

mance variations are mainly down to the difference of the speculation schemes.

This figure clearly demonstrates the advantages of the new approach. As can be seen

from this diagram, the overhead of Paragon can be significant for some benchmarks.

7.6. Empirical Evaluation 137

B T C G E P F T I S L U M G S P G e o - M e a n0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2 1 0 2

Sp
ee

du
p

 O p e n M P
 O u r a p p r o a c h
 S N U N P B

9 9

Figure 7.11: Performance of the manual OPENMP and OPENCL implementation of the

NAS benchmark suite and our automatically generated parallelised code.

For example, Paragon is not able to achieve speedups for SP while the new approach

gives a speedup of over 7×. For this benchmark, the indirect memory accessing and

initialization overhead of Paragon clearly outweighs the benefit of GPU parallel exe-

cution. Besides SP, the new scheme also outperforms Paragon on benchmarks BT and

FT, with a speedup up to 2 times higher. For benchmarks CG, EP and MG, specu-

lative checking only needs to be performed on a few speculative variables and both

approaches deliver similar performance. Finally, for benchmarks IS and LU, neither of

the two schemes achieve performance improvement due to the restriction of the pro-

gram and the GPU architecture as explained in section 7.6.1. Overall, the new scheme

outperforms Paragon: it achieves higher speedups whenever it is profitable to exploit

GPU parallelism.

7.6.4 Comparison to Manually Parallelized Code

Also provided is a comparison of the new approach to two manually parallelised im-

plementations developed by independent programmers: (1) the OpenMP version of

the NAS benchmark suite [2] for the CPU and (2) SNU NPB [40], an OPENCL imple-

mentation of the NAS benchmark suite for the GPU. The SNU NPB provides a good

estimation of the upper-bound performance that the new GPU speculation scheme can

achieve. The results are shown in Figure 7.11.

As can be seen from this diagram, exploitation of GPU parallelism for highly-likely

parallel code can be beneficial. Example benchmarks include BT, CG, EP and SP

138 Chapter 7. GPU-Based Speculation

where GPU execution significantly outperforms the OpenMP CPU execution by a fac-

tor of up to 10. It is not surprising that a manually parallelised GPU implementation

without speculation overhead outperforms the new automated scheme, but the new

approach is able to achieve a level of performance close to the manual implementa-

tion. For benchmarks CG and SP, the approach even outperforms the manual GPU

implementation with advanced GPU memory optimizations such as dynamic index re-

ordering applied by the OPENCL code translator [12]. For benchmarks FT and MG,

the new approach is not as good as the OpenMP implementation. This is restricted by

the programs themselves as the CPU-GPU communications are relatively high com-

pared to computation. This can be seen from the fact the manually parallelised GPU

code only outperforms the OpenMP CPU code by a small margin. For the benchmark

LU, the algorithm in the sequential code has to be changed to a hyperplane one to

achive speedups on the GPU [40]. This is of course out of the scope of the automated

approach. Finally, for IS, none of the three parallel versions can gain speedups because

the execution time of this program is dominated by serial code.

Overall the new automatic approach performs well. The 3.2× geometric mean speedup

achieved by this approach is very close to the 3.3× speedup of the manually paral-

lelised OPENCL implementation. Moreover, the approach also outperforms the OPENMP

implementation on the majority of the benchmarks by exploiting GPU parallelism.

7.6.5 Analysis

7.6.5.1 Limitation of Static Analysis

Table 7.2 shows the number of parallelised loops of the OpenMP implementation and,

among those, how many are statically decidable and undecidable. For benchmark CG,

a considerable number of the parallelised loops are statically decidable. However, for

most of the programs, merely relying on static analysis is not enough to exploit pro-

gram parallelism, which actually misses a significant amount of parallel opportunities.

For example, for benchmarks EP, FT and IS, static analysis fails to detect any of the

manually parallelised loops. This failure of static analysis to exploit parallelism is

particularly telling for the EP benchmark, where a speedup of 90× is available. De-

pendence profiling information, on the other hand, can provide additional information,

enabling the discovery of those parallel opportunities. By contrast to static analysis,

7.6. Empirical Evaluation 139

Benchmark Manual Statically Decidable Statically Undecidable

BT 54 23 31

CG 19 17 2

EP 1 0 1

FT 6 0 6

IS 1 0 1

LU 29 12 17

MG 12 5 7

SP 70 41 29

Table 7.2: Numbers of statically-decidable and -undecidable parallel loops of the man-

ual OpenMP implementation.

the new hybrid static and dynamic parallelism detection scheme identifies all the paral-

lel loops specified in the OpenMP implementation. This table shows that profile-based

analysis is a powerful technique that allows the discovery of parallelism for legacy

code that is highly likely to be parallel.

7.6.5.2 Speculation Costs

Figure 7.12 shows the overhead of the speculation overhead for each benchmark. In

this diagram, the program runtime is broken down into two parts: speculation overhead

and non-speculative GPU parallel execution. The two breakdowns are shown as the

percentage to the overall program runtime. As can be seen from this diagram, the spec-

ulation overhead varies from one program to the other. Depending on the number of

probably-parallel loops and the frequency of speculative accesses, the overhead varies

from 60% to 15% relative to the whole-program execution time. For some benchmarks,

such as CG, FT and SP, the speculation overhead is relatively low, around 20%. This is

because speculation only needs to be applied on a few arrays. For benchmark LU, the

program execution time is dominated by the synchronisation and communication over-

head due to the restriction of the program algorithm and thus the speculation overhead

is not significant. For benchmarks IS, MG and BT, the overhead is more than 30%

of the whole-program execution time, because of the high frequency of speculatively

accessed variables. Particularly, benchmark BT has the highest speculation overhead,

accounting for 60% of the total program execution time. For this benchmark, 31 out

140 Chapter 7. GPU-Based Speculation

B T C G E P F T I S L U M G S P0

2 0

4 0

6 0

8 0

1 0 0

Pe
rce

nta
ng

e t
o t

he

ov
era

ll e
xe

cu
tio

n t
im

e (
%)

 N o n - s p e c u l a t i v e G P U e x e c u t i o n S p e c u l a t i o n O v e r h e a d

Figure 7.12: Speculation overhead compared to the unsafe parallel execution without

speculation on the GPU.

of the 54 parallel loops cannot be statically determined, and speculation must be per-

formed on those statically undecidable loops. Despite the speculation overhead, the

new approach is still able to achieve a speedup of 2.9× as opposed to the 3.6× slow-

down of a static approach (see Section 7.1). On average, the speculation overhead is

28% across all benchmarks.

7.6.5.2.1 Dependence Violation It is perhaps a little surprising that no dynamic

dependence violations were detected in any of the above experiments. This indicates

that the profile-guided parallelisation approach correctly identifies probably parallel

loops. While it is easy to construct a counter example, it suggests that many loops

are genuinely parallel even though static analysis is unable to prove this. In fact, a

have comparison of the loops identified by this analysis with those parallelised in the

manually derived OPENMP reference implementation of the benchmarks confirmes

their equivalence (subject to insertion of speculation code).

7.7 Conclusion

This chapter has presented a holistic approach to exploit parallelism for highly-likely

parallel legacy code on commodity GPUs. Building on prior work on profile-guided

parallelization, a novel GPU-based speculation scheme to provide correctness guaran-

tees for probably parallel loops has been proposed. This scheme discards expensive

7.7. Conclusion 141

check-pointing for rollback that is not suitable for GPUs, and instead provides faster

dependence checking for speculative parallel execution regions, which are identified

as probably parallel by the profile-guided analysis. This novel approach allows depen-

dence checking to occur in-place with speculative access operations. Thus checking

only needs to be performed only on those addresses where speculative accesses ac-

tually take place. This approach has been evaluated on benchmarks that are rich in

parallelism but hard to parallelise using traditional static analyses. By exploiting GPU

parallel execution, the expensive overhead that otherwise would be required for se-

rial CPU executions was avoided. This chapter has demonstrated the effectiveness of

the in-place GPU speculation scheme by comparing it to a state-of-the-art GPU-based

speculation scheme. Experimental results show that the new technique outperforms

the state-of-the-art by a factor of 1.45. This translates to 99% of the performance of

a manual OPENCL implementation without speculation overhead where the probably-

parallel loops have been manually verified.

Chapter 8

Conclusion

This thesis has investigated the use of software thread-level speculation for automated

parallelisation in several ways: by furthering the research and techniques available

to fully automate the speculative workflow and to contribute to the performance of

speculative execution by introducing a number of new speculation techniques. Par-

ticularly the process of implementing speculative execution has always been a manual

and relatively time-intensive task, requiring detailed analysis of each program to obtain

performance improvements.

This work has presented means to automatically select suitable probably parallel re-

gions, select an appropriate speculation policy and translate existing legacy sequential

code to execute safely in parallel. It has also investigated the use of general purpose

GPUs for speculative execution providing additional possible platforms where per-

formance increases can be obtained, and also further work into creating extremely

lightweight speculation schemes.

The rest of this chapter is structured as follows: Section 8.1 presents a summary of

the contributions made by this thesis with an analysis of the experimental results it

has provided. Section 8.2 provides a short analysis of the work with a discussion of

potential areas of future research.

143

144 Chapter 8. Conclusion

8.1 Contributions

8.1.1 Automated Policy Selection

Chapter 5 introduced a fully automated technique to select and exploit appropriate par-

allel opportunities that would provide suitable performance increases when executed

speculatively. This is performed by extracting metrics from a loop as the input to a

machine-learning-based configuration tool to decide whether a loop should be spec-

ulated over and if so, which speculative policy would be the most profitable. This

technique requires an expensive off-line training period to collect the required data

points for the configuration tool, however this procedure is fully automatable and is

only required to be performed once for a given architecture.

Evaluation of this technique yielded substantial speedups across a number of bench-

marks with a geometric mean of 1.64× and up to 7.75× over sequential on an 8-core

AMD Opteron machine. A number of different machine-learning-based prediction

techniques were tested that resulted in 89% of the selected policies executing at a

speed of sequential or better. On average approximately 74% of the speedup obtain-

able through manual selection and configuration was achieved.

8.1.2 Lightweight Error Checking

Chapter 6 investigated the concept that many SW-TLS schemes are very heavyweight

when used with modern profile-based auto-parallelisation techniques. In cases where

profiling reveals loops that are almost certainly parallel these schemes prioritise recov-

ery from a dependence violation above that of actual execution. This thesis showed

that in these cases traditional version control used in speculative schemes was unnec-

essary, and that instead a very lightweight error checking scheme could instead be used

introducing the potential of an extremely expensive rollback scenario.

To minimise the risk of the rollback scenario a completely accurate access tracking

technique was introduced that dynamically allocated memory to the trace as necessary

reducing the overall memory footprint of the technique resulting in traces that used 3

percent or less than existing schemes across the same address space.

Several detection schemes were introduced; several CPU-only schemes and one hybrid

8.1. Contributions 145

CPU-GPU scheme. This thesis showed that using the new tracing method and CPU

detection schemes speedups of up to 22.53×, with a geometric mean of 2.16× were

possible at 32-thread execution and that for some benchmarks the detection schemes

continued to provide additional speedups as additional threads were added. The GPU

evaluation demonstrated that utilising additional auxiliary devices was a possible tech-

nique for offloading some of the processing of speculative execution achieving up

to 14.74× with a geometric mean of 1.99× speedup on a 24-thread hyperthreaded

machine. Compared to CPU-only reduction-tree scheme this performance is slightly

worse with a geometric mean of 0.96× speedup which is likely to improve with up-

coming hardware architectures.

This work also showed that removing the version control system was a possible way

of achieving higher performance, even if occasional dependence violations occurred.

Thanks to the speedups obtainable, all but one of the benchmarks showed it was pos-

sible to obtain improved performance even if 2 in every 5 executions failed due to a

dependence violation, and in one case 19 out of every 20 executions could fail and

speedup would still be achieved in a kill-and-restart scenario. For many benchmarks

where performance peaked at a lower thread count than was available, some CPU

resources could be reassigned to execute the program sequentially at the same time

in a competititive scheduling scenario resulting in at worst near-sequential execution

speeds.

8.1.3 GPU-Based Speculative Execution

Chapter 7 introduced a new speculation scheme that targetted a relatively unexplored

platform, the GPU. The scheme’s recovery technique mimics that of PARAGON [37]

whereby a sequential version of each speculatively parallel section is executed in tan-

dem to the speculative GPU execution. If a dependence is detected or the GPU version

takes longer to execute than the sequential version it is killed and the sequential results

are used. This technique ensures both correct execution and at worst approximately

sequential speeds.

The new scheme improves on PARAGON’s speculation design through the use of

a faster and more accurate detection scheme. Inspired by an existing CPU-based

scheme [30], the new GPU scheme records the highest iteration of the kernel to ac-

cess a given memory location, triggering a dependence violation if a lower iteration

146 Chapter 8. Conclusion

reads a location written to by a higher iteration, or writes to a location already read by

a higher iteration. This technique improves on PARAGON by allowing correctly or-

dered dependences and also allowing for multiple accesses of the same location. It also

performs the checking on-the-fly instead of in a separate kernel, improving execution

times and reducing the required memory footprint. The new GPU scheme proved effec-

tive by providing speedups of up to 99× and on average 3.2× that of sequential. The

scheme demonstrated it was possible to outperform standard static auto-parallelisation

by a factor of 7× and achieve approximately 99% of the speedup obtained from manual

parallel implementations.

8.1.4 Pipelined Speculation Scheme

Chapter 4 presented a new CPU based speculation scheme that provided speedups

on par with other existing schemes, performing better in some circumstances. This

scheme is intended to complement the existing range of CPU-based speculative schemes

allowing for further options and customisation to achieve speedup in speculative sce-

narios.

8.2 Analysis and Future Work

This section discusses a series of related ideas that has not been investigated by this

thesis along with a series of points that could be investigated in future work.

8.2.1 Limitations of Policy Selection

The policy selection techniques investigated and evaluated in Chapter 5 came with

several explicit limitations. Most importantly the policy selector required an expen-

sive off-line training period for every architecture that uses it. Whilst this process is

completely automatable, the expense is undesirable and the results may not take into

account existing load on the system. One possible solution to this is to perform the

training on-the-fly during the execution of the program. Doing so would likely result in

additional costs whilst executing, however may also result in more accurate predictions

and overall, larger performance increases. It would also further simplify the automa-

8.2. Analysis and Future Work 147

tion process. Related to this, the policy selection scheme was also performed off-line

at compile time resulting in a static selection of speculative loops. Alternatively the

policy selections could be performed at runtime enabling some more dynamic aspects,

such as machine load, to be considered during selection.

Additionally, one of the more complex tasks not considered by the policy selector is

that of memory access patterns, resulting, for instance, in the inability to select appro-

priate hashing techniques and sizes for speculative policies. This is a complex issue

that warrants individual research as the selection of an incorrect hash often results in

the detection of false data dependences, ultimately resulting in a program that executes

slower than the original sequential version.

8.2.2 Scalable Centralised Error Detection

One of the factors preventing further scalability of the error detection scheme evaluated

in Chapter 6 is the increasing cost of performing the dependence check at higher thread

counts. The reduction tree scheme and abilty to offload to an external computation

device aid in this somewhat however for some benchmarks the speedups obtainable

still peak at lower thread counts than the number of cores available.

One potential solution to this is to use an alternative, centralised tracing method based

on a hybrid version of the page table and SPLIP [30]. An alternative to hashed ac-

cesses, potentially causing false data dependences, is for the detection scheme to be

completely accurate with a page reclaiming process once they become no longer re-

quired keeping the memory footprint as small as possible. Such a scheme would ul-

timately make each speculative access more expensive and raise the synchronisation

costs between each thread, however the dependence check would be performed on-the-

fly and equally distributed between the threads instead of a larger block computation,

hopefully resulting in a more scalable scheme.

8.2.3 Block Tracing

One of the factors slowing down speculative execution is the length of time it takes

to perform a single speculative access. However, during the evaluation of this work

it became clear that many benchmarks perform a set of accesses across sequential ad-

dresses. These addresses require tracking code due to the base address of the set being

148 Chapter 8. Conclusion

uncalculatable at compile time, however static analysis can be performed extracting

these sequences, and possibly other patterns of memory access, with only the base

address being determined at runtime. In these circumstances it may be preferable to

collate these sequences into a bulk update of a memory trace, particularly for lazy de-

tection schemes. For instance, in the case of the page table evaluated in Chapter 6 a

single access would update a single bit of a page, a slow operation. Instead multiple

sequential accesses could be combined into an update more suitable for modern CPU

designs, such as performing an update to the page table on a word-level granularity.

Doing so would likely substantially increase the speed of performing memory traces in

certain circumstances, increasing the overall performance whilst also being orthogonal

to existing memory trace mechanisms where single-bit writes are still required.

8.2.4 Combination CPU-GPU Speculation

During the evaluation of the GPU-based scheme in Chapter 7 it became apparent that

in many cases the GPU is unsuitable for execution purposes. In some cases, even

when the GPU scheme provides a speedup CPU-based schemes may provide a larger

speedup. One possible solution to this is to expand on the GPU scheme’s protection

model to include a speculative version of each loop to execute on the CPU alongside the

sequential and GPU versions. This could act as a further form of competitive schedul-

ing ensuring only the result of the fastest execution is used whilst also ensuring safety

from data dependences.

Bibliography

[1] CoSy compiler framework. http://www.ace.nl/compiler/cosy.html.

[2] NAS parallel benchmarks 2.3, OpenMP C version. http://phase.hpcc.jp/
Omni/benchmarks/NPB/index.html.

[3] OpenMP parallel framework. http://openmp.org/wp/
openmp-specifications/.

[4] G. Anthes. The power of parallelism. Computerworld, November 2001.

[5] E. Bangeman. Intel pulls the plug on 4ghz Pentium 4, Ars Technica, Oct 2004.
http://arstechnica.com/uncategorized/2004/10/4311-2/.

[6] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular pro-
grams on gpus. In Workload Characterization (IISWC), 2012 IEEE International
Symposium on, pages 141–151, Nov 2012.

[7] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in
a parallel programming tool. In Proceedings of the second ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming, PPOPP ’90, pages
21–30, New York, NY, USA, 1990. ACM.

[8] Philippe Charles and Vivek Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. SIGPLAN Not., 40:519–538, October 2005.

[9] Marcelo Cintra, José F. Martı́nez, and Josep Torrellas. Architectural support for
scalable speculative parallelization in shared-memory multiprocessors. In Pro-
ceedings of the 27th Annual International Symposium on Computer Architecture,
ISCA ’00, pages 13–24, New York, NY, USA, 2000. ACM.

[10] Marcelo Cintra and Josep Torrellas. Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. SIGARCH Comput. Archit.
News, 28:13–24, May 2000.

[11] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and
Jack Dongarra. From CUDA to OpenCL: Towards a Performance-portable So-
lution for Multi-platform GPU Programming. Parallel Comput., 38(8):391–407,
August 2012.

[12] D. Grewe, Zheng Wang, and M.F.P. O’Boyle. Portable mapping of data parallel
programs to OpenCL for heterogeneous systems. In CGO ’13.

149

http://www.ace.nl/compiler/cosy.html
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://arstechnica.com/uncategorized/2004/10/4311-2/

150 Bibliography

[13] Tobias Grosser, Armin Größlinger, and Christian Lengauer. Polly - perform-
ing polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(4), 2012.

[14] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, Shih-Wei Liao,
E. Bugnion, and M.S. Lam. Maximizing multiprocessor performance with the
SUIF compiler. Computer, 29(12):84–89, Dec 1996.

[15] P. Hammarlund, A.J. Martinez, A.A. Bajwa, D.L. Hill, E. Hallnor, Hong Jiang,
M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R.B. Osborne, R. Rajwar, R. Sing-
hal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther,
T. Piazza, and T. Burton. Haswell: The fourth-generation intel core processor.
Micro, IEEE, 34(2):6–20, Mar 2014.

[16] Trevor Hastie and J. H. Friedman. The elements of statistical learning: data
mining, inference, and prediction: with 200 full-color illustrations. New York:
Springer-Verlag, 2001.

[17] Lorin Hochstein and Victor Basili. Parallel programmer productivity: A case
study of novice parallel programmers. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, SC ’05, Washington, DC, USA, 2005.

[18] H. Peter Hofstee. Power efficient processor architecture and the cell processor.
In Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture, HPCA ’05, pages 258–262, Washington, DC, USA, 2005.
IEEE Computer Society.

[19] Nikolas Ioannou and Marcelo Cintra. Toward a more accurate understanding
of the limits of the TLS execution paradigm. In Proceedings of the IEEE In-
ternational Symposium on Workload Characterization (IISWC’10), IISWC ’10,
Washington, DC, USA, 2010.

[20] Brian Jeff. Big.LITTLE system architecture from ARM: saving power through
heterogeneous multiprocessing and task context migration. In Patrick Groen-
eveld, Donatella Sciuto, and Soha Hassoun, editors, DAC, pages 1143–1146.
ACM, 2012.

[21] Kevin Jeffay. The real-time producer/consumer paradigm: A paradigm for the
construction of efficient, predictable real-time systems. In In Proc. ACM/SIGAPP
Symp. on Applied Computing, pages 796–804. ACM Press, 1993.

[22] Leslie Lamport. The parallel execution of DO loops. Commun. ACM, 17:83–93,
February 1974.

[23] O’Boyle M and Bull M. Expert programmer vs automatic parallelisation: Two
approaches to shared virtual memory. Scientific Programming, March 1996.

[24] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing se-
quential applications on commodity hardware using a low-cost software transac-
tional memory. SIGPLAN Not., 44:166–176, June 2009.

Bibliography 151

[25] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing se-
quential applications on commodity hardware using a low-cost software trans-
actional memory. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, New York, NY,
USA, 2009.

[26] Ingo Mierswa and Timm Euler. YALE: Rapid prototyping for complex data min-
ing tasks. In Lyle Ungar, Mark Craven, Dimitrios Gunopulos, and Tina Eliassi-
Rad, editors, KDD ’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, New York, NY, USA, Au-
gust 2006.

[27] C. Moore. Data processing in exascale-class computer systems. The Salishan
Conference on High Speed Computing, April 2011.

[28] Cosmin E. Oancea and Alan Mycroft. A lightweight model for software thread-
level speculation (TLS). In Proceedings of the Conference on Parallel Architec-
ture and Compilation Techniques, PACT ’07, Washington, DC, USA, 2007.

[29] Cosmin E. Oancea and Alan Mycroft. Software thread-level speculation: an
optimistic library implementation. In Proceedings of the Workshop on Multicore
Software Engineering, IWMSE ’08, New York, NY, USA, 2008.

[30] Cosmin E. Oancea, Alan Mycroft, and Tim Harris. A lightweight in-place im-
plementation for software thread-level speculation. In Proceedings of the twenty-
first annual symposium on Parallelism in algorithms and architectures, SPAA
’09, New York, NY, USA, 2009.

[31] Keshav Pingali. Why compilers have failed and what we can do about it. Keynote
Languages and Compilers for Parallel Computing, 2010.

[32] Manohar K. Prabhu and Kunle Olukotun. Using thread-level speculation to sim-
plify manual parallelization. In Proceedings of the ninth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’03, pages
1–12, New York, NY, USA, 2003. ACM.

[33] William Pugh. The Omega test: a fast and practical integer programming al-
gorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE Con-
ference on Supercomputing, Supercomputing ’91, pages 4–13, New York, NY,
USA, 1991. ACM.

[34] Arun Raman and David I. August. Speculative parallelization using software
multi-threaded transactions. In Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating systems, ASP-
LOS ’10, pages 65–76, New York, NY, USA, 2010. ACM.

[35] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and
David I. August. Parallel-stage decoupled software pipelining. In Proceedings
of the 6th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’08, pages 114–123, New York, NY, USA, 2008. ACM.

152 Bibliography

[36] Peter Rundberg and Per Stenström. An all-software thread-level data dependence
speculation system for multiprocessors. J. Instruction-Level Parallelism, 3, 2001.

[37] Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. Paragon:
Collaborative speculative loop execution on gpu and cpu. In Proceedings of the
5th Annual Workshop on General Purpose Processing with Graphics Processing
Units, GPGPU-5, pages 64–73, New York, NY, USA, 2012. ACM.

[38] Vivek Sarkar. Programming challenges for petascale and multicore parallel sys-
tems. In Proceedings of the 3rd International Conference on High Performance
Computing and Communications, Berlin, Heidelberg, 2007.

[39] R.R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE, 34(6):52–
59, Jun 1997.

[40] Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization of the
NAS Parallel Benchmarks in OpenCL. In IISWC ’11.

[41] Byoungro So, Sungdo Moon, and Mary W. Hall. Measuring the effectiveness
of automatic parallelization in SUIF. In Proceedings of the 12th International
Conference on Supercomputing, ICS ’98, pages 212–219, New York, NY, USA,
1998. ACM.

[42] Gurindar Sohi. Rethinking parallel execution for future multicore processors,
2011.

[43] J. Gregory Steffan. Hardware support for thread-level speculation. PhD thesis,
School of Computer Science, Pittsburgh, PA, USA, 2003. AAI3159472.

[44] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. To-
wards a holistic approach to auto-parallelization: integrating profile-driven paral-
lelism detection and machine-learning based mapping. In PLDI ’09: Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 177–187, New York, NY, USA, 2009. ACM.

[45] Khai Q. Tran, Spyros Blanas, and Jeffrey F. Naughton. On transactional memory,
spinlocks, and database transactions. In International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures -
ADMS 2010, Singapore, September 13, 2010, pages 43–50, 2010.

[46] Ilkka Tuomi. The Lives and Death of Moore’s Law. First Monday, 7(11), 2002.

[47] Rajeshwar Vanka and James Tuck. Efficient and accurate data dependence pro-
filing using software signatures. In CGO ’12.

[48] Tobias J. K. Edler von Koch and Björn Franke. Variability of data dependences
and control flow. In 2014 IEEE International Symposium on Performance Anal-
ysis of Systems and Software, ISPASS 2014, Monterey, CA, USA, March 23-25,
2014, pages 180–189, 2014.

	cover sheet
	Main
	Title Page
	Abstract
	Lay Summary
	Acknowledgements
	Declaration
	Publications

	Table of Contents
	1 Introduction
	1.1 Modern Parallel Architectures
	1.2 Automated Parallelisation
	1.3 Speculative Parallelisation
	1.3.1 Hardware or Software

	1.4 Motivation
	1.5 Goals
	1.6 Hypotheses
	1.7 Structure

	2 Background: Thread Level Speculation
	2.1 Parallelism and Dependences
	2.1.1 DOALL loops
	2.1.2 DOWHILE loops
	2.1.3 Thread Blocks
	2.1.4 Transactional Memory
	2.1.5 Dependence Types
	2.1.5.1 Safe Data Dependences
	2.1.5.2 False Data Dependences

	2.1.6 Other Hazards

	2.2 Automated Parallelism Discovery
	2.2.1 Static Analysis
	2.2.2 Execution Profiling
	2.2.3 Performance Considerations

	2.3 Speculative Execution
	2.3.1 Speculation Workflow
	2.3.2 When to Check
	2.3.2.1 Lazy Checking
	2.3.2.2 Eager Checking
	2.3.2.3 Combined Checking

	2.3.3 Trace Topologies
	2.3.3.1 Distributed Traces
	2.3.3.2 Centralised Traces
	2.3.3.3 Hybrid Topologies

	2.3.4 Synchronisation
	2.3.4.1 Barriers
	2.3.4.2 Master Thread
	2.3.4.3 Overlaps

	2.3.5 Trace Structures and Collision Detection
	2.3.5.1 Bitsets
	2.3.5.2 Counters
	2.3.5.3 Address Lists

	2.3.6 Accuracy and False Dependences
	2.3.6.1 Addressing Size
	2.3.6.2 Hashing Techniques
	2.3.6.3 Single or Multiple Traces

	2.3.7 Version Management
	2.3.7.1 Management Scheme
	2.3.7.2 Versioning Schedule
	2.3.7.3 Data Structures and Topology
	2.3.7.4 Value Forwarding
	2.3.7.5 Granularity

	2.4 Conclusions

	3 Related Work
	3.1 Profile-Driven Parallelism Detection
	3.2 Cpu Schemes
	3.2.1 S-Tls
	3.2.2 PolylibTls
	3.2.2.1 SpLSC
	3.2.2.2 SpLIP

	3.2.3 STMLite
	3.2.4 Dswp & Smtx

	3.3 GpGpu Speculation
	3.3.1 Paragon

	3.4 Hardware Based Speculation
	3.4.1 Transactional Synchronisation Extensions

	3.5 Conclusion

	4 Lightweight Pipelined Speculation
	4.1 Speculative Storage Structure
	4.2 Pipeline Stages and Execution Workflow
	4.3 Supported Dependences
	4.4 Conflict Detection
	4.5 Empirical Evaluation
	4.5.1 Experimental Methodology
	4.5.2 Summary of Key Results

	4.6 Conclusion

	5 Smart Speculation Policy Selection
	5.1 Motivating Example
	5.2 Sw-Tls Configuration
	5.2.1 Factors Affecting Performance
	5.2.2 Common Speculation Parameters

	5.3 Policy Selection Workflow
	5.3.1 Prediction Model Training
	5.3.2 Policy Calculation

	5.4 Empirical Evaluation
	5.4.1 Evaluation Methodology
	5.4.2 Policy Selection Testing
	5.4.2.1 Machine Learning Techniques

	5.5 Summary of Key Results
	5.6 Conclusions

	6 Automated Error Checking for Aggressive Parallelisation
	6.1 Parallelisation Target
	6.2 Memory Trace Data Structure
	6.2.1 Page Caching
	6.2.2 Structure Usage
	6.2.2.1 Allocation/Initialisation
	6.2.2.2 Trace

	6.3 Simple Distributed Error Detection
	6.3.1 Scalability

	6.4 Reduction-Tree Error Detection
	6.4.1 Scalability

	6.5 GPU Conflict Detection
	6.6 Automated Program Transformations
	6.7 Empirical Evaluation
	6.7.1 Auto-Parallelisation Analysis
	6.7.2 Page Table Statistics
	6.7.3 Simple Distributed Detection Scheme
	6.7.4 Reduction-Tree Detection Scheme
	6.7.4.1 Comparison to Simple Distributed Scheme

	6.7.5 Hybrid Cpu-Gpu Detection Scheme
	6.7.6 Dependence Violations

	6.8 Conclusion

	7 Gpu-Based Speculation
	7.1 Motivation
	7.2 Execution Workflow
	7.3 Speculative Gpu Execution
	7.3.1 Speculative Data Structures
	7.3.2 Violation Detection
	7.3.2.1 Speculative Load
	7.3.2.2 Speculative Store
	7.3.2.3 Flow Dependence
	7.3.2.4 Anti Dependence
	7.3.2.5 Output Dependence

	7.3.3 Comparison to Other Approaches

	7.4 Compilation and Code Transformations
	7.4.1 Parallelism Detection
	7.4.1.1 Speculative Variables

	7.4.2 OpenCL Code Generation
	7.4.3 Code Merging

	7.5 Experimental Setup
	7.5.1 Platform
	7.5.2 Benchmarks
	7.5.3 Compiler and Evaluation Runs
	7.5.4 Comparison

	7.6 Empirical Evaluation
	7.6.1 Overall Results
	7.6.2 Comparison with the Statically Safe Approach
	7.6.3 Comparison with Paragon
	7.6.4 Comparison to Manually Parallelized Code
	7.6.5 Analysis
	7.6.5.1 Limitation of Static Analysis
	7.6.5.2 Speculation Costs
	7.6.5.2.1 Dependence Violation

	7.7 Conclusion

	8 Conclusion
	8.1 Contributions
	8.1.1 Automated Policy Selection
	8.1.2 Lightweight Error Checking
	8.1.3 Gpu-Based Speculative Execution
	8.1.4 Pipelined Speculation Scheme

	8.2 Analysis and Future Work
	8.2.1 Limitations of Policy Selection
	8.2.2 Scalable Centralised Error Detection
	8.2.3 Block Tracing
	8.2.4 Combination CPU-GPU Speculation

	Bibliography

